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Since the end of the cold war, macroscopic amounts of separated stable isotopes of most elements
have been available “off the shelf” at affordable prices. Using these materials, single crystals of many
semiconductors have been grown and the dependence of their physical properties on isotopic
composition has been investigated. The most conspicuous effects observed have to do with the
dependence of phonon frequencies and linewidths on isotopic composition. These affect the electronic
properties of solids through the mechanism of electron-phonon interaction, in particular, in the
corresponding optical excitation spectra and energy gaps. This review contains a brief introduction to
the history, availability, and characterization of stable isotopes, including their many applications in
science and technology. It is followed by a concise discussion of the effects of isotopic composition on
the vibrational spectra, including the influence of average isotopic masses and isotopic disorder on the
phonons. The final sections deal with the effects of electron-phonon interaction on energy gaps, the
concomitant effects on the luminescence spectra of free and bound excitons, with particular emphasis
on silicon, and the effects of isotopic composition of the host material on the optical transitions
between the bound states of hydrogenic impurities.
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I. INTRODUCTION

Soddy �1913� realized that there are mixtures of ele-
ments which cannot be separated by chemical means.
He then postulated that such elements, usually obtained
by radioactive transmutation, have the same intra-
atomic charge but different atomic masses. He called
them isotopes because they occupy the same place in the
periodic table �Greek: topos=place�. At about the same
time Thomson �1913� found the presence of neon in gas
discharge tubes, with atomic masses 20 and 22 and an
average mass 20.2, which agreed with the accepted mass
of this element. Those experiments, which were discon-
tinued because of the war, were not sufficiently convinc-
ing to establish the existence in nature of two stable
isotopes of Ne �Aston, 1920�. After the war Aston re-
started this work with a greatly improved mass spec-
trometer, confirmed the existence of 20Ne and 22Ne and
discovered the two stable isotopes of chlorine �35Cl and
37Cl�. Thus the presence on Earth of stable isotopes of
some elements was established. The three authors of the
discovery were awarded separate Nobel prizes �Chemis-
try: Soddy, 1921 and Aston, 1922; Thomson had already
received the Physics Nobel Prize in 1905�.

The separation of isotopes received great impetus dur-
ing World War II because of the military uses of 235U,
which although radioactive through nuclear fission, can
almost be considered stable �7�108 yr half-life� and is
found in natural uranium with an abundance of 0.7%
�see Emsley �1990��. For more recent listings of stable
isotopes and their abundances, see http://
physics.nist.gov/PhysRefData/Compositions/index.html.
The isotopic abundances are rather constant throughout
our planetary system. There is considerable literature
covering the generation of isotopes after the Sun was
formed. For recent reviews see Mason �1991� and Man-
uel �2001�. The state of the art around 1956 was re-
viewed by Suess and Urey �1956�.

The first large-scale separation of isotopes involved
the production of heavy water by electrolysis in Norway
in the 1930s. The initial purpose was merely academic,
but after the discovery of nuclear fission, it became evi-
dent that heavy water �as well as highly pure graphite�
would be the ideal neutron energy moderator for use in
nuclear reactors. This fact probably played a role in the
invasion of Norway by Germany. Attempts by the Allies
to thwart the acquisition of the precious liquid by the
Germans have even made it to a Hollywood movie �The
Heroes of Telemark, with Kirk Douglas, 1965�.

The second large-scale separation, at the opposite end
of the atomic mass spectrum, dealt with 235U for nuclear
warfare �Manhattan project�. This separation was per-
formed, in kilogram quantities, by electromagnetic

means, analogous in principle to the mass spectrometers
used by Aston �1920�. For the separation of 235U from
238U a large number of such spectrometers, called
calutrons, were set up at the Oak Ridge National Labo-
ratory �Love, 1973�.

Several other methods for separating isotopes have
been developed. They involve such diverse techniques
as laser excitation, thermal diffusion, gas centrifugation,
and chemical exchange. For a review, see Villani �1976�.
When the element to be separated can be prepared as a
gaseous compound �e.g., Si as SiF4�, the technique of
choice for separating large amounts of material is gas
centrifugation �Olander, 1978�. Isotopes of the following
elements are at present separated using this procedure:
Si, S, Cl, Ar, Ti, Cr, Ni, Cu, Zn, Ga, Ge, Se, Br, Kr, Mo,
Cd, Sn, Te, Xe, W, Ir, and U. There are nowadays only a
few separation plants in operation for civilian use, most
of them in Russia �Kurchatov Institute1� or in Western
Europe, although the separation facility at Oak Ridge,
which had been shut down, is operating again.

In spite of the small number of isotope separation fa-
cilities, the University of Vermont lists under http://
www.uvm.edu/~geology/geowww/suppliers.html 80 iso-
tope suppliers and dealers worldwide. They make
contacts with the producers, negotiate wholesale agree-
ments, sometimes check the quality �chemical purity, iso-
topic composition� of the isotopes, and arrange the pro-
duction of chemical compounds with specific isotopic
composition. The main consumers of stable isotopes are
the pharmaceutical and biomedical industries. They use
them for diagnostic purposes, such as markers of prod-
ucts whose final bodily destination is known. For in-
stance, 13C, with a nuclear magnetic moment, can be
applied to studies with NMR scanners. Chemicals con-
taining stable isotopes can be kept on the shelf and ac-
tivated by neutron irradiation shortly before using them
in cancer therapy �for instance, 88Sr+n= 89Sr, which is
radioactive and has found application in bone cancer
therapy�. Stable isotopes have also found application in
the laser industry �He-Cd lasers with isotopically pure
Cd produce a strong uv line, which is hard to obtain with
natural Cd�. 113Cd is used as a neutron absorber in reac-
tor technology. Many more applications can be found by
searching the Web for “applications of stable isotopes.”

The elements used in the work on semiconductors de-
scribed in this review are listed in Table I. Note that
aluminum, phosphorus, arsenic, and iodine, which are
components of some of the semiconductors discussed
here, have only one stable isotope. It is highly recom-
mended, in order to avoid unpleasant surprises, that one
check the agreement of the actual chemical purity and
isotopic composition with the assay provided by the sup-
pliers and to report to them as soon as possible any
important deviations before embarking on costly crystal
growth and experimentation. Isotopic analysis is usually
performed by mass spectroscopy �if spatial resolution is

1Russian isotopes became widely available in the West after
the fall of the Iron Curtain.
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required, with secondary-ion-mass spectroscopy�. In
some cases, a quick determination of the isotopic abun-
dances can be obtained with Raman spectroscopy �see
Sec. III� or, if the materials are compact, by Archime-
dian measurement of their density �the volume changes
at most by �0.05% with isotopic mass, see Sec. III.B.2�.
A nuclear resonance fluorescence technique for evaluat-
ing the 13C concentration has recently been reported
�Beck et al., 1998�.

The prices of the elements in Table I with abundances
higher than 5% lie between 1000 and 20 000 USD per
gram. The amount needed to grow high-quality single
crystals depends on the method of growth. Since the
amounts required by most of the work discussed here
are rather small, typical quantities of material needed
are of the order of 1 g. The most economical growth
technique is molecular-beam epitaxy. Commercial
molecular-beam-epitaxy machines are designed to oper-
ate with natural elements as sources. Hence loss of ma-
terial is not important and the substrate can be placed
quite far away from the sources. When using separated
isotopes, however, it is convenient to decrease this dis-
tance so as to lower the loss of expensive isotopes. With
1 g of isotope it is then possible to grow several tens of
samples with thicknesses of the order of 1 �m. When
growing bulk crystals with Bridgman �Itoh et al., 1993�,
Czochralski, or floating-zone �Bulanov, 2000� tech-
niques, it is also important to redesign the growth appa-
ratus so as to be able to use only a few grams of each
isotope. The same applies to crystal growth within an

ampoule by either sublimation or chemical transport
techniques �Debernardi et al., 1997; Serrano, Manjón, et
al., 2003�.

Semiconductors are often doped, either intentionally
or not, and the doping impurities are in many instances
dominant factors in the optical spectroscopy of the ma-
terial. Impurities can introduce electronic levels in the
gap �and transitions between these levels� and can local-
ize excitons forming bound excitons. They can also
change the phonon spectrum of the material by intro-
ducing local vibrational modes, which result in new ab-
sorption and Raman transitions. Variations of the isoto-
pic mass of the impurity species will have a strong and
direct effect on the frequency of the impurity local vi-
brational modes and may also have a small effect on the
electronic binding energies of impurity levels, as first ob-
served by Dingle �1959� and reviewed by Heine and
Henry �1975�. The present review deals primarily with
isotopic effects related to the host material, and not the
impurities.

II. PHONONS

A. Introduction

Lattice vibrations were probably first invoked by Ein-
stein �1907� in order to explain the specific heat of insu-
lators by means of a single quantized �Einstein� oscilla-
tor. In order to improve this theory, Nernst and
Lindemann �1911� used two single oscillators, thus intro-

TABLE I. Stable isotopes of elements used for the work described in this review. Phosphorus, aluminum, arsenic, and iodine have
only one stable isotope and are thus not listed. Some of the isotopes listed �e.g., 115In, half-life 6�1014 yr; 76Ge, half-life �1020 yr�
undergo radioactive decay. However, their half-life is larger than that of the solar system. The nuclear spins are given in boldface
parentheses �if they are not zero�. From www.webelements.com and Emsley �1990�.

Carbon 12C: 98.9%; 13C: 1.1% �3 /2�
Silicon 28Si: 92.2%; 29Si: 4.7% �3 /2�; 30Si: 3.1%
Germanium 70Ge: 20.8%; 72Ge: 27.5%; 73Ge: 7.7% �9 /2�; 74Ge: 36.3%; 76Ge: 7.6%
Tin �gray� 112Sn: 1%; 114Sn: 0.7%; 115Sn: 0.3% �1 /2�; 116Sn: 14.5%; 117Sn: 7.7% �1 /2�; 118Sn: 24.2%;

119Sn: 8.6% �1 /2�; 120Sn: 32.6%; 122Sn: 4.6%; 124Sn: 5.8%
Boron 10B: 19.9% �3�; 11B: 80.1% �3 /2�
Gallium 69Ga: 60.1% �3 /2�; 71Ga: 39.9% �3 /2�
Indium 113In: 4.3% �9 /2�; 115In: 95.7% �9 /2�
Zinc 64Zn: 48.6%; 66Zn: 27.9%; 67Zn: 4.1% �5 /2�; 68Zn: 18.8%; 70Zn: 0.6%
Cadmium 106Cd: 1.3%; 108Cd: 0.9%; 110Cd: 12.5%; 111Cd: 12.8% �3 /2�; 112Cd: 24.1%;

113Cd: 12.2% �1 /2�; 114Cd: 28.7%; 116Cd: 7.5%
Copper 63Cu: 69.2% �3 /2�; 65Cu: 30.8% �3 /2�
Chlorine 35Cl: 75.8% �3 /2�; 37Cl: 24.2% �3 /2�
Bromine 79Br: 50.7% �3 /2�; 81Br: 49.3% �3 /2�
Oxygen 16O: 99.8%; 17O: 0.05% �3 /2�; 18O: 0.2%
Sulfur 32S: 95%; 33S: 0.8% �3 /2�; 34S: 4.2%; 36S: 0.02%
Selenium 74Se: 0.9%; 76Se: 9.4%; 77Se: 7.6% �1 /2�; 78Se: 23.8%; 80Se: 49.6%; 82Se: 8.8%
Tellurium 122Te: 2.5%; 123Te: 0.9% �1 /2�; 124Te: 4.7%; 125Te: 7.1% �1 /2�; 128Te: 31.7%; 130Te: 34%
Nitrogen 14N: 99.6% �1�; 15N: 0.4% �1 /2�
Antimony 121Sb: 57.2% �5 /2�; 123Sb: 42.8% �7 /2�
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ducing a simplified model of the lattice vibrations, which
will be very useful here for interpreting the temperature
dependence of excitation energies. Debye �1912� intro-
duced the long-wavelength elastic vibrations of the crys-
tal in order to account for the dependence on tempera-
ture of the specific heat at low temperatures. The
frequency spectrum of the lattice vibrations thus be-
comes a continuum �in the limit of a very large crystal�
contrary to the discrete oscillators introduced by Ein-
stein �1907� and by Nernst and Lindemann �1911�. The
Debye model led to the famous T3 dependence of the
specific heat at low temperatures. A review of these and
more recent developments can be found in Born and
Huang �1956� and in Srivastava �1990�.

More realistic models involve the introduction of in-
teratomic potentials and their dependence on the atomic
coordinates. A power-series expansion around the equi-
librium position leads to a quadratic dependence of the
interatomic potentials on either atomic coordinates or
interatomic distances, the harmonic approximation. Ex-
tending this expansion to higher-order terms, usually up
to the fourth order, leads to anharmonic effects.

The translational symmetry operations of a perfect
crystal �i.e., made out of isotopically pure atoms� imply
that the eigenstates of the lattice vibrations must fulfill
Bloch’s theorem and thus depend on a vector q called a
wave vector or crystal momentum �not to be confused
with linear momentum�. This dependence of the �angu-
lar� frequency � on q gives rise to the dispersion rela-
tions ��q�, which can be restricted in q space, without
loss of generality, to the first Brillouin zone �BZ�. This
restriction leads to 3s branches of ��q�, where s is the
number of atoms in the primitive cell, the smallest pos-
sible translational unit that generates the crystal. The
first calculation of a realistic and nontrivial dispersion
relation was performed by Born and von Kármán �1912�.

The total number of states belonging to each branch
of the first BZ equals N, where N is the number of
primitive cells in the crystal. Another interesting con-
cept is that of the density of phonon states Nd���, which
is defined by considering the number of states Ndd� that
fall within the frequency range � and �+d�. The den-
sity of states can be calculated, usually numerically, from
the dispersion relations ��q�. Per unit volume of crystal
we find for each branch

Nd��� =
1

8�3 � dSq���
��q��

, �2.1�

where dSq��� represents an element of surface in q
space whose points correspond to frequencies lying be-
tween � and �+d�. Equation �2.1� yields the density of
states of a single branch of the dispersion relation. The
total density of states is obtained by summing over all 3s
branches. Since the density of states is proportional to
the volume of crystal under consideration, in order to
define it uniquely we must choose a specific volume of
crystal. The simplest choice is to normalize Nd��� over a
primitive cell, which leads to a total number of states 3s
and the normalization �for the total density of states�:

�
0

�

Nd���d� = 3s . �2.2�

The density of states Nd��� can also be generalized to
represent its projection Nd��� on each of the atoms of
the unit cell. For its evaluation we must then use, per
unit volume of crystal and branch j,

Nd��,r� =
1

8�3 � �erqj�2
dSq���
��q��

, �2.3�

where the vector erqj represents the component of the
eigenvector at atom r, corresponding to the BZ point q
and branch j, and �qj the corresponding frequency �see
Eqs. �2.6� and �2.7��. q must be summed over all N dis-
crete values within the first BZ �N is the number of unit
cells per unit volume�, whereas j must be summed over
all branches of the dispersion relations �j=1–3s�. The
orthonormal eigenvectors are normalized according to

�
r

�erqj�2 = 1, �2.4�

where r=1, . . . ,s must be summed over the total number
of atoms in the unit cell s.

The vibrational frequencies and amplitudes follow
from the classical equation of motion, force=mass
�acceleration �Menéndez, Page, and Guha, 1994�,

− M · ��2 + � · � = 0, �2.5�

where M and � are matrices with 3s�3s rows and col-
umns, representing the three directions of motion of
each of the various atoms, and � is a vector with similar
3s components. The matrix M is diagonal in r and its
components are the masses of the s atoms. � is the force
constant matrix.

Notice that Eq. �2.5� differs from a standard eigen-
value equation for which M is a multiple of the unit
matrix. However, since M is positive definite, Eq. �2.5�
can be transformed into a standard eigenvalue equation
by multiplying the right- and left-hand side by M−1/2 and
M+1/2, respectively, and introducing M−1/2 ·M+1/2=1 be-
tween M and both � and �. We thus find

− e�2 + D · e = 0, �2.6�

where

D = M−1/2�M−1/2,

e = M1/2� . �2.7�

D is the so-called dynamical matrix and e is the eigen-
vector �with 3s components�, which we take to be nor-
malized according to Eq. �2.4�. When handling lattice
vibrational problems we must always keep in mind the
difference between ����, which represents atomic dis-
placements, and e���, which represents the orthonormal
set of 3r eigenvectors of Eq. �2.6�.

Diagonalization of Eq. �2.6� leads to the 3r eigenfre-
quencies ��qj� and the corresponding eigenvectors erqj,
with a total of 3s�3s components for each value of q
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and j. The problem is then reduced to that of 3s decou-
pled harmonic oscillators per primitive cell �hence the
name harmonic for the approximation used, in which the
force matrix � is independent of the atomic displace-
ment�. Each of these oscillators can be quantized by us-
ing second quantization techniques, i.e., introducing cre-
ation �aqj

† � and annihilation �aqj� operators. We thus find
for each oscillator, labeled by q and j, the Hamiltonian
�Srivastava, 1990�

Hqj = ��qj	aqj
† aqj +

1
2

 . �2.8�

The ensemble average of Eq. �2.8� at temperature T
gives the average thermal energy

���qj� =
1
2

��qj�2nB + 1� , �2.9�

with the Bose-Einstein factor nB,

nB��qj� = �e��qj/kT − 1�−1. �2.10�

Equation �2.10� indicates that each oscillator has an
average energy 1

2��qj at T=0 for each atom, the zero-
point energy. This energy corresponds to a finite average
vibrational amplitude at T=0, the zero-point amplitude,
given by

�uqj
2 �r =

�

2Mr�N
�eqjr�2, �2.11�

where N is the total number of primitive cells in the
sample under consideration. For a finite temperature T,
Eq. �2.11� must be multiplied by 2nB+1. In the limit of
T→� �temperatures higher than the average Debye
temperature of the crystal�, nB→kT /��. In this limit,
the average squared vibrational amplitude of any of the
atoms, and also the total vibrational energy, are propor-
tional to T.

We consider next the simplest possible case of a mon-
atomic crystal �e.g., diamond�. In this case the low-
temperature vibrational amplitude �2.11� and also the
vibrational energy are inversely proportional to M1/2. At
high temperatures, however, the dependence on mass
disappears because of the proportionality of nB to
kT /�� and the fact that �	M−1/2. This confirms that the
zero-point vibrational amplitude is a true quantum ef-
fect. It vanishes for M→� and also for finite M at high
temperatures. The zero-point properties can thus be
modified by changing the isotopic mass, a fact that is the
basis of most of the work discussed in this review. Hence
if we want to observe isotopic effects, we must work at
low temperatures, which means at temperatures well be-
low the Debye temperature of the crystal TD. For dia-
mond, TD
2200 K �Debye, 1912� and isotopic mass ef-
fects become fully observable even at room
temperature. For germanium TD=370 K and for silicon
TD=640 K and quantum effects are small, but non-
negligible, at room temperature. However, they reach
magnitudes close to their maximum already at 100 K
�Sozontov et al., 2001�.

B. Force constants, dynamical matrix

In Eqs. �2.5� and �2.6� we have introduced the con-
cepts of the force constant matrix and the dynamical
matrix. The corresponding matrix elements have been
treated, until recently, as adjustable parameters deter-
mined by fitting the dispersion relations measured by
means of inelastic neutron scattering �Brockhouse and
Iyengar, 1958�.

The set of parameters to be fitted is not uniquely de-
termined. It is usually specified within one of a number
of more or less physical models. The simplest is the
springs-and-balls or Born–von Kármán model �Born and
von Kármán, 1912; Srivastava, 1990� in which the ions
are assumed to be rigid with springs which determine
the force constants connecting them. Springs connecting
nearest neighbors as well as farther ones can be consid-
ered. As shown by Brockhouse and Iyengar �1958�, the
fit of the first- and second-neighbor Born–von Kármán
model to the measured dispersion relations of germa-
nium is rather poor. In particular, it cannot represent the
very flat dispersion of the lowest transverse-acoustic
modes of the group-IV semiconductors, which requires
up to fifth-neighbor force constants for a reasonable fit
�Herman, 1959�.

The realization that long-range forces are important
even in nonpolar crystals suggested models in which
electron coordinates are introduced in a phenomeno-
logical way, e.g., as spherical shells surrounding the oth-
erwise rigid ions. This led to the shell models, which
require a large number of parameters in order to de-
scribe the measured dispersion relations of the covalent
semiconductors �Waugh and Dolling, 1963�. For covalent
semiconductors, the most successful phenomenological
force-constant model has been the bond-charge model
introduced by Weber �1977�. In this model shells are re-
placed by bond charges placed, in equilibrium, midpoint
between nearest-neighbor atoms so as to simulate the
covalent bonds. The additional electronic coordinates
are eliminated by the condition of adiabaticity, which
follows from the fact that the electronic mass is much
smaller than the ionic mass. We show in Fig. 1 the dis-
persion relations of germanium measured by inelastic
neutron scattering �Nilsson and Nelin, 1971; Nelin and
Nilsson, 1972� together with a fit to Weber’s bond-charge
model �Weber, 1977� with four adjustable parameters.
Although the fit is not perfect �see, e.g., the transverse-
optical �TO� modes at the X point of the BZ�, the very
flat measured transverse-acoustic bands near the X3 and
L3 points are represented rather well by the model.

As a by-product of a fit to measured dispersion rela-
tions, a set of eigenvectors is obtained. One must keep
in mind, however, that at a given point of the BZ there
are 3s �six for diamond� values of the frequency but 3s
�3s eigenvector components �36 for diamond�. Hence a
good fit to the six frequencies does not guarantee the
correctness of the corresponding calculated eigenvec-
tors, which, ideally, should be measured directly. Mea-
surements of eigenvectors over the whole BZ by inelas-
tic neutron scattering require careful determination of
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the relative intensities of all scattering peaks and has
only been performed in a limited number of cases
�Strauch and Dorner, 1986; Strauch, Mayer, and Dorner,
1990�. Eigenvectors at some special points of the BZ can
also be determined by measuring the frequency shifts
induced by isotopic substitution �Zhang et al., 1996,
1997�. This will be discussed in Sec. III.B.5.

C. Ab initio calculations

It follows from the Born-Oppenheimer approximation
�Born and Huang, 1956� that the interatomic force con-
stants, i.e., the matrix elements of the dynamical matrix,
can be obtained by taking the second derivatives of the
total energy �including electron-electron, electron-ion,
and ion-ion interactions� with respect to the atomic dis-
placements. This is, in general, a rather formidable un-
dertaking. Such calculation requires an accurate theoret-
ical description of the occupied electronic states of the
crystal, their mutual interactions, their interactions with
the constituent ions, and derivatives of these states with
respect to the nuclear positions.2 The most difficult part
of this problem is the many-body aspect of the electron-
electron interaction. When treated in a one-body mean-
field framework, the electron-electron interaction can be
split into a Hartree and a Fock �exchange� term. The
solution of the corresponding quantum-mechanical
problem, including these many-body effects, can be sim-
plified considerably using the density-functional theo-
rem �Hohenberg and Kohn, 1964; Kohn and Sham,
1965�, which states that the electron-electron interaction
can be described as a functional of the density of occu-
pied electrons and does not require the details of the
individual complex wave functions. This functional has
three terms, the straightforward Hartree term represent-
ing the Coulomb interaction between the electronic
charges, the exchange term, and a correlation correction
to the Hartree term. The exchange and correlation func-

tionals, are, in principle, not known. They are often ap-
proximated by the local electron-density functional, an
algebraic function of the local density that corresponds
to the exchange and correlation terms in a uniform elec-
tron gas �Kohn and Sham, 1965�.

Once the electronic charge density is known, e.g., by
means of a calculation using the local-density approxi-
mation to the exchange and correlation potentials, plus
the kinetic-energy functional for noninteracting elec-
trons, the force induced on an ion by its displacement
can be obtained with the Hellmann-Feynman theorem.
This theorem states that such force is produced by the
interaction of the moving ion with all other ionic charges
plus its interaction with the unperturbed electronic
charge density. The calculation of the electronic charge
density requires, within the local-density approximation,
the solution of a set of Schrödinger-like differential
equations, coupled through the Hartree and local-
density-approximation potentials. These solutions are
expressed as linear combinations of a set of orthornor-
mal functions. Lack of completeness can lead to consid-
erable errors in the Hellmann-Feynman forces, which
have been discussed by Srivastava �1990� and Baroni et
al. �2001�.

An early road map for the calculation of phonon dis-
persion relations was given by Sham �1974�. It is based
on the concept of polarizability �̃0, which gives the
charge density induced in a crystal by a small change in
the total crystal potential. The change induced by an
ionic motion is actually that induced by the change in
the potential of the moving ion plus that which corre-
sponds to the self-consistent charge in the electronic po-
tential. In order to determine the density response func-
tion we must thus calculate the susceptibility and invert
the corresponding self-consistency equation, which
means that one must perform an inversion of the dielec-
tric matrix.

Such inversion is possible when local potentials are
used, as was suggested by Martin �1969� in connection
with phonon calculations. He also implemented in this
manner a calculation of the dispersion relations of sili-
con. This calculation, however, led to dispersion curves
that differ considerably from those measured by inelas-
tic neutron scattering �especially for the transverse-
acoustic modes�.

The dielectric screening method has given way to
more accurate techniques, especially after the introduc-
tion of nonlocal pseudopotentials together with local-
density-approximation functionals. This method leads to
rather accurate calculations of total energies, lattice con-
stants, elastic constants, and other macroscopic proper-
ties of semiconductors. The calculation of dynamical
matrices is most easily implemented by using density-
functional perturbation theory �Baroni, de Gironcoli,
and dal Corso, 2001�. Excellent agreement between cal-
culated dispersion relations and those measured by in-
elastic neutron scattering has been achieved for Si, Ge,
and a few III-V compounds by Giannozzi et al. �1991�.

Density-functional perturbation theory has also been
used in connection with other types of electronic band-

2In a realistic calculation the occupied electronic states are
usually divided into two groups: valence electrons and core
electrons. The ionic potential is that of the atomic core
screened by valence electrons.

FIG. 1. Phonon dispersion relations of natural Ge. The solid
lines show the adiabatic bond-charge-model calculations of
Weber �1977�, the dots the experimental values from neutron
scattering �Nilsson and Nelin, 1971; Nelin and Nilsson, 1972�.
The frequency scale is in THz. For convenience we have given
the equivalent scale in cm−1 on the vertical axis at the right.
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structure calculations such as the linear muffin-tin or-
bital method �for silicon, see Savrasov, 1996� and the
linearized augmented plane-wave method �Wang, Yu,
and Krakauer, 1994�. The latter method was applied to
CuCl, a zinc-blende-structure semiconductor with inter-
esting anharmonic effects which will be discussed in Sec.
III.B.3. The valence bands of this material, such as those
of the other cuprous halides, CuBr and CuI, show strong
hybridization of the standard p valence electrons of the
halogen with the 3d electrons of the copper. The latter
are difficult to treat with plane-wave pseudopotential
techniques. The linearized augmented plane-wave
method, in which the electron orbitals near the core are
chosen to be atomiclike, is ideally suited to handle these
materials.

A problem that will also be of interest in connection
with isotopic substitution is that of the transferability of
force constants from one compound �e.g., GaAs� to a
similar one �AlAs�. The interest lies in the fact that for
GaAs there are excellent inelastic neutron-scattering
data �Strauch and Dorner, 1986�, whereas for AlAs no
such data are available �because of the unavailability of
large single crystals�. It is therefore tempting to generate
the dispersion relations of AlAs from those of GaAs by
taking the same force constants and simply changing the
masses in the corresponding dynamical matrix �Eq.
�2.7��. This is the basis of the mass approximation. Be-
cause of the lack of experimental data, the density-
functional perturbation-theory calculations for GaAs
and AlAs have been used to check the adequacy of this
approximation �Giannozzi et al., 1991�. It was found that
the anion mass substitution, applied to the calculated
dynamical matrix of GaAs, reproduces rather well the
directly calculated dispersion relations of AlAs. It is
worth noting, however, that such an agreement is not
necessarily obtained if the mass approximation is ap-
plied to the usual six-parameter bond-charge model of
GaAs. A set of bond-charge-model parameters fitted
not only to phonon frequencies but to their eigenvec-
tors, however, restores the validity of the mass approxi-
mation �Colombo and Gianozzi, 1995; Baroni et al.,
2001�.

The mass approximation will implicitly be used in Sec.
IV.B to treat the effect of isotopic substitution. In this
case, however, the transferability of the force constants
is to be regarded as very accurate since the band struc-
ture is altered little by isotopic substitution. We shall see
in Sec. V that the isotopic substitution effects on the
electronic states amount to a few meV, except for mate-
rials with atoms in the first row of the periodic table
where they can be an order of magnitude larger �Manjón
et al., 2003�.

Before closing this section, we would like to mention
another ab initio method for calculating force constants
and phonon eigenvectors, namely, the frozen-phonon
technique. In this conceptually simple but somewhat
limited method, the total energy is calculated for the
unperturbed crystal and for a crystal with a small
phononlike displacement as a perturbation. The second-
order terms in the expansion of the energy versus dis-

placement correspond to force constants. This method is
particularly useful if one has a computer code for the
calculation of the total energy in a crystal with a given
translational lattice. The force constants are obtained di-
rectly from this code provided one considers only
phonons at the center of the BZ �
 point�. It is, however,
possible to extend the method to other high-symmetry
points by increasing the size of the primitive cell and
bringing the corresponding q point to the center of the
BZ. This increases the complexity of the method while
limiting the usefulness to only a few points in the BZ.
For early application of frozen-phonon methods to semi-
conductors, see Kunc and Martin �1982� and Yin and
Cohen �1982�.

In Sec. III we shall not only make use of the disper-
sion relations, densities of states, and eigenvectors of
phonons, but also of their anharmonic properties. Such
properties are related to terms of third and fourth order
in the expansion of the total energy versus phonon dis-
placements. Partial information about these terms can
be obtained by frozen-phonon methods �Vanderbilt et
al., 1984�.

We close this section by mentioning that Baroni
et al. �2001� have made available an open source
code for density-functional-theory–density-functional
perturbation-theory pseudopotentional calculations at
http://www.pwscf.org. Another such code is described by
Gonze et al. �2002� and can be found at http://
www.abinit.org.

III. PHONON EFFECTS RELATED TO AVERAGE ISOTOPIC
MASSES

A. Introduction

The vast majority of isotope effects in semiconductors
arise from the dependence of phonon frequencies and
eigenvectors, as well as their lifetimes, on isotopic
masses.3

These phonon parameters depend on isotopic mass in
a way that can usually be described by the mass approxi-
mation �Sec. II.C�, which implies that the force constants
do not depend on isotopic mass. This assumption does
not necessarily hold when substituting an atom by a dif-
ferent one �e.g., Ge by Si, Buchenauer et al., 1971, or Ga
by Al, Baroni et al., 2001�.

The mass effects on the phonons can be divided into
two categories:

�a� Effects of the average mass, which correspond to
the virtual-crystal approximation when more than
one isotope of a given atom is present.

�b� Effects of the mass fluctuations in materials with a
mixture of several isotopes of a given atom.

The average virtual-crystal approximation is intro-
duced in a crystal with several isotopes in order to re-
cover the translational invariance lifted by the isotopic

3For effects of the nuclear magnetic moment, see Sec. IV.D.
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disorder �most natural crystals fall into this category, see
Table I�. For this purpose, the masses of these isotopes
are replaced in the dynamical matrix, Eq. �2.7�, by their
average, weighted by the corresponding isotopic
abundances.4 The site-dependent difference between the
actual isotopic masses and their average, which lifts
translational invariance, is then treated as a perturba-
tion.

The use of the virtual-crystal approximation for the
unperturbed crystal leads to a vanishing of the first-
order perturbation of the mass fluctuations because the
average mass fluctuation, defined as

g1 = �
i

ci
�M� − Mi

�M�
, �3.1�

with �M�=�ciMi, vanishes �in Eq. �3.1� ci represents the
abundance of isotope i�. Terms of higher order in per-
turbation theory do not vanish, and will be discussed
below �Tamura, 1983; Widulle et al., 2001�.

For a monatomic crystal, the virtual-crystal approxi-
mation results in a proportionality of any of the phonon
frequencies to �M�−1/2 since the force constants do not
depend on �M�. In a crystal with different elements in
the primitive cell, each element acts differently on the
virtual-crystal-approximation frequency. The effects of
the changes in the average mass at r, induced by the
isotopic substitution, must be weighted by the corre-
sponding eigenvector components �Menéndez, Page,
and Guha, 1994�. This fact provides a method for deter-
mining eigenvectors if samples of different isotopic com-
positions are available �Zhang et al., 1997; see also Sec.
III.B.5�.

The effects of the average isotopic mass just men-
tioned are the simplest isotopic effects possible since
they appear in the harmonic approximation. They also
result in a dependence of the specific heat on isotopic
mass below the Debye temperature TD because of the
proportionality of TD to �M�−1/2 �Plekhanov, 2001;
Schnelle and Gmelin, 2001�. Other effects of �M� are
related to the anharmonic terms in the interatomic po-
tentials. The simplest of these effects corresponds to the
thermal expansion, which vanishes in the harmonic ap-
proximation where the average positions of the atoms
are independent of temperature �London, 1958; Bus-
chert et al., 1988; Sozontov et al., 2001�. Third-order an-
harmonic terms are responsible for the thermal expan-
sion. These terms are proportional to the square of the
vibrational amplitudes, which for a monatomic crystal is
proportional to �M�−1/2 �Barron and Klein, 1974�.

Most of the extant work on the dependence of anhar-
monic effects on the average mass is concerned with
phonon frequencies and linewidths �Cardona and Ruf,
2001; Widulle et al., 2001, 2002; Serrano, Widulle, et al.,

2003�. The linewidths �and the corresponding lifetimes�
at low temperatures are also governed by anharmonic
decay processes, which for monatomic crystals result in
linewidths proportional to �M�−1 �Widulle et al., 2001�.
These linewidths can be regarded as the imaginary part
of an anharmonic self-energy whose real part results in
frequency shifts with respect to the predictions of har-
monic calculations �Widulle et al., 2001; Sanati and Es-
treicher, 2003�.

Among the effects of isotopic mass fluctuations we
mention first what is probably the largest of such effects,
namely, the effect on the thermal conductivity �Wei et
al., 1993; Asen-Palmer et al., 1997; Ruf, Henn, et al.,
2000�.

Smaller, but important effects have been observed in
the phonon linewidths �Cardona and Ruf, 2001�. Fre-
quency shifts related to the real part of the correspond-
ing self-energy have also been reported �Hass et al.,
1992; Widulle et al., 2001�. The partial breakdown in
translational invariance effected by the isotopic disorder
results in a partial lifting of q conservation. Correspond-
ingly, not only phonons at q=0 can be excited with op-
tical spectroscopy �Raman as well as IR�. Therefore the
optical spectra of samples with isotopic disorder include
a weak component that mimics the density of phonon
states �Fuchs et al., 1993�. Brillouin as well as two-
phonon scattering and absorption measurements have
also been performed for isotopically controlled dia-
monds �Vogelgesang et al., 1996, 1998�.

B. Effects of the average isotopic masses on lattice
properties

1. Dependence of the specific heat Cp on isotopic mass

Measurements of Cp have been performed for germa-
nium with three different average isotopic masses ��M�
=70.01, 72.71, and 73.12; Schnelle and Gmelin, 2001�. At
low temperatures �T�TD�360 K� Cp is expected to be
proportional to TD

−3 for a given T, i.e.,

Cp = AM3/2T3. �3.2�

The T3 dependence of Eq. �3.2� is only valid for T
�6 K, a region that corresponds to TD�360 K. For T

6 K one has to increase A in Eq. �3.2�. This fact is due
to the strong nonlinearity of the dispersion relations of
the transverse-acoustic phonons �see Fig. 1� represented
with a temperature dependent TD reaching a minimum
TD�min��260 K at T�min��22 K. This effective Debye
temperature corresponds to an average phonon fre-
quency and is thus also expected to be proportional to
�M�−1/2. Thus the specific heat at T�min� should be pro-
portional to �M�3/2. The change in �M�3/2 between �M�
=70.02 and 73.12 is 4.27%, the corresponding change in
Cp„TD�min�… should then be 6.4%. The measured
change is 6.3%, in agreement with the prediction from
the change in �M�. Because of the strong dependence of
A on T, the most accurate measurement of the depen-
dence of Cp on M is that performed at T�min�. At higher
temperatures Cp must tend to a constant value, indepen-

4Note that according to Eq. �2.7� one should average the in-
verse isotopic masses. However, because of the small spread in
those masses �Table I�, averaging M−1 is nearly equivalent to
averaging M.
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dent of �M�, dictated by the Dulong and Petit law. The
temperature dependence of Cp is indeed found to de-
crease above T�min� and at 100 K is no longer observ-
able �see Fig. 2 of Schnelle and Gmelin, 2001�. Ab initio
calculations of the dependence of Cp�T� on isotopic
mass have been recently published �Sanati, Estreicher,
and Cardona, 2004�. Measurements for diamond and
silicon have also been recently performed �Cardona et
al., 2005; Gibin et al., 2005�.

2. Effects of isotopic masses on lattice parameters:
Thermal expansion

The effect of lattice vibrations on the lattice param-
eter a0 of a cubic crystal can be expressed in terms of the
mode Grüneisen parameters �qj as �Pavone and Baroni,
1994; Debernardi et al., 1996�

�a0

a0
=

�

3BV�
qj

�qj�qj�nB��qj� +
1
2
� , �3.3�

where V is the volume of the crystal, B its bulk modulus,
and �qj is defined as

�qj = −
��n�qj

��nV
. �3.4�

At high temperatures �T
TD�nB→kT /�� and the ther-
mal expansion is proportional to T:

�a0

a0
→

2kT

BVc
��qj� , �3.5�

where Vc is the volume of the primitive cell and ��qj� the
average of �qj over all branches of the Brillouin zone.
We have implicitly assumed a crystal with two atoms per
primitive cell. The linear dependence on T found experi-
mentally at high T extrapolates for T→0 to the bare
value of �a0 /a0. This extrapolation enables us to esti-
mate the renormalization of �a0 /a0 due to zero-point
vibrations:

	�a0

a0



T=0
=

�

BVc
��qj�qj� �

�

BVc
��qj���qj� . �3.6�

Note that the average of �qj that appears in Eq. �3.6�
may differ somewhat from that in Eq. �3.5�.

The use of Eqs. �3.5� and �3.6� for estimating the zero-
point renormalization of �a0 /a0 is illustrated in Fig. 2 for
the case of silicon. The renormalization turns out to be
�a0 /a0=1.9�10−3. The procedure illustrated above will
also be very useful for the determination of zero-point
renormalization for other physical properties, including
the elastic constants �Cardona, 2001a, 2001b�, phonon
frequencies, and electronic energy-band states �Secs.
III.B.3 and V�. It may seem surprising that such a con-
struction should enable us to obtain bare quantities from
measured experimental data since bare parameters are
basically not observable. The clue to this philosophical
question was given by Allen �1994�. The bare quantities
determined by the linear extrapolation procedure �and
also the isotopic mass substitution method to be de-

scribed next� are not exact. The procedure is based on
the treatment of the anharmonic interactions by pertur-
bation theory, keeping only second-order terms propor-
tional to �u2� ��T at high T�. Higher-order terms would
lead to higher powers of T which are not included in the
linear extrapolation procedure.

Equation �3.6� provides another way to determine
zero-point renormalizations in monatomic crystals. For
these crystals this equation can be written as

	�a0

a0



T=0
= C��qj� = D�M�−1/2. �3.7�

The determination of a0 for two values of �M� thus al-
lows us to determine D and, correspondingly, the zero-
point renormalization for any values of �M�. Measure-
ments of ��a0 /a0�T�0 for several values of the average
isotopic mass ��a0 /a0�T�0 have been performed for dia-
mond �Holloway et al., 1991�, germanium �Buschert et
al., 1988; Sozontov et al., 2001; Hu et al., 2003; and Car-
dona, 2005, see Fig. 4�, and silicon �Sozontov et al.,
2001�. The following values of ��a0 /a0�T=0 for a change
of 1 amu in ��M� have been reported: 7.5�10−5 for dia-
mond, 3�10−5 for Si, and 8.8�10−6 for Ge. These values
correspond, according to Eq. �3.7�, to zero-point renor-
malizations of ��a0 /a0�T=0 equal to −3.9�10−3 for dia-
mond, −1.7�10−3 for Si, and −1.3�10−3 for Ge. These
values are in good agreement with the values obtained
with the linear extrapolation method: −3.7�10−3 for dia-
mond �from Reeber and Wang, 1996�, −1.9�10−3 for Si
�see Fig. 2�, and −1.2�10−3 for Ge �from Singh, 1968�.

Another prescription for estimating the zero-point
renormalization is based on Eqs. �3.5� and �3.6�. The
zero-point renormalization can be obtained from the
asymptotic �high T� slope of �a0 /a0 versus T provided
one knows the approximate average frequency ��qj�.
The latter can be obtained from a single-oscillator fit to
�a0 /a0 versus T using Eq. �3.3�. This fit has been per-
formed for diamond �Cardona, 2001a� and Si �Cardona,
2001b�. The values of the �a0 /a0 renormalization at T

FIG. 2. Dependence on temperature of the linear expansion of
silicon �a0 /a0. The solid curve represents x-ray data. The
points are a fit to these data using the single-oscillator fre-
quency as given �with T in K�. The dashed line extrapolated to
T=0 determines the zero-point renormalization of �a0 /a0.
From Cardona, 2001b.
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=0 obtained with this procedure for diamond and Si are
−3.9�10−3 and −2.0�10−3, respectively. Using the slope
found in the article by Singh �1968�, we obtained for Ge
��a0 /a0�T=−1.8�10−3.

One may at this point wonder why a single oscillator
gives such an excellent fit to the data for Si �Fig. 2� and
to those for diamond �Fig. 3 of Cardona, 2001a� without
taking into account the Debye spectrum which repre-
sents the low-frequency acoustic phonons. Using the
Debye spectrum we obtain from Eq. �3.3� the following
temperature behavior for �a0 /a0 at low T:

�a0

a0
	 �

0

TD

��qj���3� 1

e��/kT − 1
+

1
2�d� , �3.8�

where ��qj� is the average of �qj over a q-space surface of
constant frequency �. If we assume that this average is
independent of �, we can take it out of the integral sign
and Eq. �3.8� becomes proportional to T4 at low T, and
equivalent to that which represents the thermal energy
in the Debye model. However, the assumption that
��qj�� is independent of � is actually incorrect. It is well
known that ��qj�� reverses sign twice at low T for most
tetrahedral semiconductors and thus never reaches very
high values in this region �Bienenstock, 1964; Deber-
nardi and Cardona, 1996�. This may explain the failure
to observe a Debye term in �a0 /a0 at low temperatures.

The discussion above applies to monatomic crystals.
Note, however, that Eq. �3.3� also applies to cubic crys-
tals containing different elements.5 In the case of poly-
atomic crystals, however, isotopic substitution will pro-
duce different effects on a0 depending on which element
is being substituted. Such different effects have not yet
been observed experimentally. Calculations involving
GaAs and ZnSe have, however, appeared. They are
based on the equation

1

a0

�a0

�Mr
= −

�

6B0
�
qj

�2��qj�
�V�Mr

. �3.9�

An evaluation with Eq. �3.9� of the effects of changing
either the cation or the anion mass of ZnSe and GaAs
on the lattice parameter a0 was given by Debernardi et
al. �1996� and Garro et al. �1996�.

We conclude this section by mentioning that the har-
monic lattice dynamics of a crystal can be calculated for
lattice parameters which include the temperature- and
mass-dependent renormalization just discussed. This is
the quasiharmonic approximation. It yields a contribu-
tion to the temperature- and mass-dependent shift of the
phonon frequencies which must be included in the ef-
fects and discussed in Sec. III.B.3.

3. Anharmonic effects on phonon frequencies
and linewidths

In the harmonic approximation the frequency is a
well-defined function of q for each phonon branch. An-
harmonic effects, and also isotopic mass fluctuations �see
Sec. IV.B�, replace this sharp dependence of � on q by a
spectral function, usually a Lorentzian function of � cen-
tered at �̃qj. The Lorentzian has a full width at half
maximum �FWHM� 
qj and is shifted slightly, by an
amount �qj, with respect to its harmonic value ��̃qj
=�qj+�qj�. It would be very interesting to determine 
qj
and �qj, and their dependence on T and isotopic compo-
sition, for all q points and branches of the BZ. Unfortu-
nately, the standard inelastic neutron-scattering tech-
niques usually do not have enough resolution to perform
this job, nor does the recently developed technique of
x-ray Raman scattering with synchrotron radiation �Ruf
et al., 2001a�. Nevertheless, some BZ points have been
investigated for germanium �Fuchs et al., 1993; Göbel,
Wang, et al., 1998� and for diamond �Ruf et al., 2001b�.
Measurements of phonon frequencies versus T at sev-
eral points of the BZ have been performed by Nelin and
Nilsson �1974�. More recently, very accurate investiga-
tions of 
 and � have been performed for the phonons
at the X point of Ge �Kulda et al., 2003� using neutron
spin echoes.

In spite of its limited applicability to inelastic neutron-
scattering measurements, isotopic substitution has been
very useful for measuring phonon dispersion relations in
crystals that contain natural isotopes that are strong
neutron absorbers. The most conspicuous case is cad-
mium compounds that contain 113Cd, one of the stron-
gest absorbers of slow neutrons. Inelastic neutron-
scattering measurements have been performed for
114CdTe �zinc-blende structure� by Rowe et al. �1974�
and for 114CdS by Debernardi et al. �1997�. We show in
Fig. 3 the experimental points for �qj obtained for
114CdS, the prototype of the wurtzite-type materials, to-
gether with the dispersion relations calculated ab initio.

The main mechanism that determines 
qj, and the cor-
responding lifetimes, is decay into two phonons with en-
ergy and wave-vector conservation. The lifetime is re-
lated to 
 through

�qj � 
qj
−1, �3.10�

where � is given in seconds and 
 in units of angular
frequency, i.e., rad/sec. We shall confine most of our dis-
cussion to phonons at q=0 �
 point, center of the BZ�
since these are the ones that can be easily investigated
by Raman spectroscopy.

The anharmonic decay of one phonon into two is rep-
resented, to lowest order in anharmonicity, by the Feyn-
man diagram of Fig. 4�a�. We have assumed, for simplic-
ity, that for the qj decaying phonon q is at the center of
the BZ. Thus for the two phonons into which it decays
we have

�0j = �q1j1
+ �−q1j2

. �3.11�
5The theory of �a0 /a0 for noncubic crystals can be found in

Barron and Klein, 1974.
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This is the only third-order anharmonic process that is
possible at T=0. At finite temperature some phonons
are already excited and it is possible to create a phonon
while destroying another one already present:

�0j = �q1j1
− �q1j2

. �3.12�

The processes �3.11� are called down-conversion or
sum processes whereas those that correspond to Eq.
�3.12� are called up-conversion or difference processes.
Since they only appear at relatively high temperatures,
the latter do not play an important role when consider-
ing isotope effects.

The evaluation of diagram 4�a� leads to a complex
quantity called the anharmonic self-energy �=�r+ i�i,
which is, in principle, frequency dependent. The spectral
function, a delta function of � in the harmonic approxi-
mation for an isotopically pure crystal, can be written as

A0j��� =
1

�


/2

�� − �0j − ��2 + �
/2�2 , �3.13�

where 
 /2=−�i and �=�r �note that �i is defined as
negative�. In Eq. �3.13� we have implicitly assumed that
� and 
 are small compared to �0j.

The diagram in Fig. 4�b� represents the fourth-order
anharmonicity taken as a first-order perturbation,
whereas in Fig. 4�a� the third-order vortex appears
twice, i.e., corresponding to a second-order perturba-
tion. The effect of the diagram in Fig. 4�b� is a real fre-
quency shift which must be added to the � of Fig. 4�a�
but does not contribute to the linewidth 
. Both contri-
butions to � have similar temperature and mass depen-
dence and will be treated as a single ���� unless other-
wise specified. We must also add to � the effect of
thermal expansion, including zero-point effects, which
affect the harmonic frequency in the quasiharmonic ap-

FIG. 3. Phonon dispersion of wurtzite-type CdS along differ-
ent high-symmetry directions in the Brillouin zone: �a�
M-
-A, �b� 
-K-M, �c� A-H-L, and �d� M-L-A. The symbols
represent the measured phonon frequencies; the solid curves
correspond to the ab initio calculation. The irreducible repre-
sentations of the modes at the 
 point are given in �a�. The
horizontal bars in �a� denote zone-center phonon frequencies
from Raman spectroscopy. The inset in �d� shows the Brillouin
zone and indicates the choice of axes and the notation of high-
symmetry points and lines used in the text. The distances be-
tween some points are 
K=4� /3a �along kz�, 
K=2� /31/2a
�along kz�, and 
K=2� /c. From Debernardi et al., 1997.

FIG. 4. �a� Feynman diagram that represents the third-order
anharmonic self-energy for a phonon of frequency �0. �b� Dia-
gram representing the fourth-order anharmonic correction to
the frequency �0. �c� First-order correction due to a mass dif-
ference at a given site. This term vanishes in the virtual-crystal
approximation. �d� Self-energy diagram corresponding to scat-
tering of a phonon with frequency �0 to an intermediate fre-
quency �� by a mass defect.
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proximation through the corresponding Grüneisen pa-
rameter.

The linewidth for the down-conversion in terms of Eq.
�3.11� is given by Fermi’s golden rule:


��0j� = �V3�2Nd2��0j��1 + nB1 + nB2� , �3.14�

where V3 is an anharmonic matrix element, Nd2��0j� rep-
resents the density of states for the sum of two phonons
into which the phonon of frequency �0j decays, and
nB1 ,nB2 are the Bose-Einstein factors that correspond to
those two phonons. For the up-conversion processes we
obtain a similar expression with the term in parentheses
replaced by nB2−nB1. This term obviously vanishes for
T→0. Equation �3.14� becomes linear in T at high T and
for T→0 extrapolates to a finite value, which corre-
sponds to the zero-point effect.

Let us examine next the dependence of Eq. �3.14� on
M for a monatomic crystal. The anharmonic matrix ele-
ment �V3�2 is proportional to the product of phonon am-
plitudes �u0

2� · �u1
2� · �u2

2�, i.e., to M−3/2 for T→0. The den-
sity of states is inversely proportional to the maximum
frequency, i.e., to M1/2, hence 
��0j� should be propor-
tional to M−1 for T→0. For T→� it is proportional to
M−1/2 but the ratio 
��0j� /�0j becomes independent of
M. The dependence on M−1 for T�0 is illustrated in Fig.
5 for the Raman frequencies of four nearly isotopically
pure germanium samples �M�70,73,74,76�. The widths
of two additional isotopically mixed samples �a natural
one and a 70Ge0.5

76Ge0.5 sample� have also been dis-

played in Fig. 5 in order to illustrate the effect of mass
fluctuations, which will be discussed in Sec. V.B.

In order to describe the temperature dependence of

��0� we must decide how to split �0 into �1+�2. This
depends on which are the most important contributions
to the density of states Nd2��0�.

In the cases of Ge and Si it has been shown both
experimentally and theoretically that the simplest pos-
sible ansatz �1=�2=�0 /2 does not work as well as the
ansatz �1=2�0 /3 and �2=�0 /3 �Menéndez and
Cardona, 1984; Debernardi et al., 1995�. Figure 6 illus-
trates the measured shift of the frequency of the Raman
phonon of silicon with increasing temperature. As al-
ready mentioned, this shift has three contributions: that
of thermal expansion plus those represented diagram-
matically in Figs. 4�a� and 4�b�. Conceptually, the most
complicated one is that which corresponds to the real
part of the self-energy �r �Fig. 4�a��, which can be writ-
ten as �Barron and Klein, 1974�

�r��0� =
�V3�2

�
�

0

� ��Nd2����
�0

2 − ��2 �1 + nB1 + nB2�d��,

�3.15�

where the integral is to be understood as the Cauchy
principal part and �V3� as an average value.

For Si and Ge Nd2��� extends from ��=0 to ��=2�0.
The portions of Nd2 for ��
�0 contribute a negative
term to Eq. �3.15�, whereas those for ����0 contribute
a positive term. It is easy to speculate that the latter are
smaller than the former because they involve acoustic
phonons and the corresponding matrix elements should

FIG. 5. Intrinsic Raman phonon linewidth of isotopic Ge vs
the average mass �M� measured at 10 K with a laser excitation
of 6471 Å. The straight line represents the predicted propor-
tionality to �M�−1 for the anharmonic linewidth. The circle rep-
resents the anharmonic linewidth of natural Ge plus the calcu-
lated effect of the mass disorder. From Cardona and Ruf, 2001,
with permission from Elsevier.

FIG. 6. Temperature dependence of the Raman frequency of
silicon. The solid curve represents a fit with the ansatz �1
=2�2=2�R /3, including the thermal-expansion effect. The dot-
ted asympotic line illustrates the construction described in the
text to estimate the bare harmonic frequency �0 from the lin-
ear extrapolation to T→0. From Widulle et al., 2001, with per-
mission from Elsevier.
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vanish for either �1 or �2→0 �Barron and Klein, 1974�.
Hence the overall shift given in Eq. �3.15� should have
the sign revealed in Fig. 6. Lang et al. �1999� and Deber-
nardi �2000� have shown by means of ab initio calcula-
tions that the contribution of Fig. 4�b� to � is also nega-
tive and so is the contribution of the thermal expansion.
Moreover, these contributions can all be represented by
Bose-Einstein factors similar to those of Eq. �3.14� �with
�1=�2� for the contributions of thermal expansion and
Fig. 4�b�. Note that the frequency of the intermediate
state �=�1+�2 need not be equal to �0 in Eq. �3.15�.
Fits to the experimental points can be attempted with a
sum of two average Bose-Einstein factors �0	1+nB1
+nB2, using �1 and �2 as adjustable parameters. Figure 6
shows such a fit for the Raman frequency of Si. Acciden-
tally, the best fitting frequencies are the same as those
that determine the temperature dependence of 
0. Note
that at the lowest temperatures the variation of � with T
should be proportional to T5 �see Sec. III.B.2�. Neither
the existing experimental data nor the calculations are,
at present, sufficiently accurate and detailed to reveal
this dependence.

The linear extrapolation method has been used in Fig.
6 to extract the T=0 anharmonic renormalization �0�0�
=−6 cm−1. Another method to determine �0�0� is to fit
the Raman frequencies measured for 28Si and 30Si with
the expression

�0��M�� = �0� 28

�M�
+ �0�0�

28

�M�
, �3.16�

which gives �0�0�=−5.4 cm−1 and a bare frequency �0
=530.2 for natural Si. The latter agrees astoundingly well
with recent ab initio calculations ��0=531 cm−1, Sanati
and Estreicher, 2003�. Measurements for diamond have
also recently been performed �Cardona et al., 2005�.

The anharmonic linewidths at T�0 and their depen-
dence on M have also been determined for diamond
�
−3 cm−1, Spitzer et al., 1993�, germanium �Zhang,
Giehler, et al., 1998�, and �-Sn �Wang et al., 1997�. The
anharmonic renormalization of the Raman frequency of
diamond has been found to be −20 cm−1 �Herchen and
Capelli, 1981� while that of �-Sn was −1 cm−1 �Zhang et
al., 1997�.

4. Fermi resonances

In the previous section we have implicitly assumed
that Nd2��0j� in Eq. �3.14� is a smooth and well-behaved
function of the Raman frequency �0j. However, a den-
sity of states is known to have singularities of various
types, especially at high-symmetry points in the BZ.
They are called van Hove singularities or critical points
�Yu and Cardona, 2005�. The number of such singulari-
ties is small, typically about a dozen for a crystal with
two atoms per primitive cell. Among these crystals we
consider those with either diamond or zinc-blende struc-
ture. The former have one Raman frequency �0 whereas
the latter have two, �TO and �LO. The chances that one
of these Raman frequencies is close to one of the ap-

proximately 12 van Hove singularities are therefore
small, but nevertheless twice as large for a zinc-blende
crystal as for one with the diamond structure. The large
variety of crystals with zinc-blende structure enhances
even more the probability of finding such a coinci-
dence. Indeed, no accidental proximities of �0 to critical
points in Nd2��� have been found for group-IV
semiconductors.6

Near-degeneracies of Raman phonons with critical
points of Nd2��� have been found for GaP �Weinstein,
1976�, ZnS �Tallman et al., 2004�, CuCl �Ulrich et al.,
1999�, CuBr �Manjón et al., 2001�, and ZnO �Serrano,
Manjón et al., 2003�. We discuss first one of the most
striking examples of the coupling of a Raman phonon to
a singularity in Nd2���, which is found in ZnO. The re-
sulting phenomenon is often called a Fermi resonance.

ZnO, the mineral zincite, crystallizes under normal
conditions in the hexagonal wurtzite structure, with four
atoms per unit cell. There are therefore nine phonons at
the center of the BZ, some of which �those with E2 sym-
metry� are doubly degenerate. There are a total of six
different Raman frequencies. One of them, E2

high at

420 cm−1, corresponds to nearly pure vibrations of two
neighboring oxygen atoms against each other, whereas
for the E2

low
100 cm−1 phonons the neighboring Zn at-
oms vibrate against each other. The latter phonons are
very sharp at low T. Their width is probably determined
by up-conversion processes �Serrano, Widulle, et al.,
2003�.

Here we shall be concerned with the E2
high processes.

Figure 7 indicates that they occur, for a large number of
isotopic compositions investigated, around singularities
in Nd2��� �Serrano, Manjón, et al., 2003�. The frequency
of the E2

high phonons of ZnO is approximately propor-
tional to MO

−1/2, where MO is the atomic mass of oxygen.
Nd2 at this frequency corresponds to a sum of a
transverse-acoustic and a longitudinal-acoustic �LA�
phonon near the edge of the BZ. Such acoustic phonons
should have frequencies nearly proportional to MZn

−1/2.
Hence by varying the isotopic masses of O and Zn we
can sweep with the E2

high frequency, a highly structured
region of Nd2���, as shown in Fig. 7. The various Nd2���
that correspond to different Zn masses have been
shifted in frequency in Fig. 7 so as to make them coin-
cide. The result is rather striking. A fit with Eq. �3.14�
leads to the value �V3�2=57 cm−2 for the anharmonic
coupling constant.

The strong variation of 
 throughout the various iso-
topic ZnO samples is due to the fact that E2

high depends
on MO

−1/2, whereas the transverse-acoustic and
longitudinal-acoustic frequencies depend almost exclu-
sively on MZn

−1/2. Another way of sweeping Nd2��� with

6Ab initio calculations suggested that such coincidences may
appear for silicon under a pressure of �7 GPa. Experiments
showed, however, that the coincidence occurs at pressures well
beyond the experimental range of �10 GPa �Ulrich et al.,
1997�.
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the E2
high frequency is achieved by applying a high hy-

drostatic pressure. The E2
high frequency shifts by

+5 cm−1/GPa with increasing pressure, whereas the cor-
responding ridge in Nd2��� shifts by only +1.5 cm−1. The
combined effect is similar to that obtained in Fig. 7 by
varying the isotopic masses. Figure 8 shows a large num-
ber of E2

high frequencies obtained either by applying
pressure or by mass substitution on the corresponding
Nd2��� calculated ab initio �Serrano, Manjón, et al.,
2003� and shifted so as to be able to compare the pho-
non widths with the same Nd2��� curve for all frequen-
cies and isotopic masses.

The widths 
 plotted in Figs. 7 and 8 have been ob-
tained through fits with Eq. �3.13� under the assumption
of frequency-independent values of 
 and � for each
individual sample. This assumption represents an ap-
proximation that neglects, for instance, asymmetries in
Aoj due to the frequency dependence of 
 and �. Al-
though such asymmetries have indeed been observed for
some of the samples, the excellent fit displayed in Fig. 8
confirms the validity of the procedure used. However, in
the other zinc-blende materials mentioned earlier �GaP,
ZnS, CuCl, CuBr�, the frequency dependence of 
 and �
is of the essence for the understanding of the Fermi-
resonance phenomena related to the decay of the TO

�GaP, ZnS, CuCl� and longitudinal-optical �LO� �CuBr�
phonons. We consider next the case of GaP, where Ga
has two stable isotopes �69Ga and 71Ga� but P only has
one. We show in Fig. 9 the Raman spectra measured for
four samples, one with the natural isotopic composition
of Ga �69Ga0.4

71Ga0.6P�, another with a so-called anti-
natural composition �69Ga0.6

71Ga0.4P�, and two with
pure Ga isotopes. The dashed curves in the figure rep-
resent the corresponding Nd2���, with a van Hove singu-
larity, and their shift with isotopic composition induced
by the change in the Ga mass since the corresponding
two phonons are acoustic �longitudinal acoustic
+transverse acoustic near the X point of the BZ�. The
TO Raman frequency shifts like the reduced mass �−1

=MGa
−1 +MP

−1. Because MP�MGa, the shift in �−1 with
MGa is strongly reduced, as illustrated in Fig. 9. The
change in the masses allows us to sweep the van Hove
singularity of Nd2��� through �TO and thus through the
Fermi resonance, which is almost exactly achieved for
the natural samples. Two structures, labeled A and B,
are seen in the clearly non-Lorentzian spectra. The
curves through the experimental points were obtained
by substituting the 
��� and ���� obtained with Eqs.
�3.14� and �3.15� into Eq. �3.13�. The anharmonic cou-
pling parameter �Widulle, Ruf, Göbel, et al., 1999� re-
sulting from the fit turns out to be �V3�2=114 cm−2. As in
the case of ZnO, the Fermi resonance can also be swept
through for GaP by the application of hydrostatic pres-
sure. Figure 10 shows Raman spectra of the TO phonons

FIG. 7. Resolution-corrected FWHM of the E2
high phonons ob-

tained from Raman spectra measured at 7 K for several isoto-
pic compositions. The points corresponding to 64ZnxO samples
are plotted at the measured frequencies. The others have been
shifted as explained in the text. The solid line displays the
calculated Nd2��� scaled by a factor of 57 cm−2. The large
width observed for natZn16O0.5

18O0.5 illustrates the effect of
isotopic mass fluctuations. From Serrano, Manjón, et al., 2003.

FIG. 8. Measured linewidths of the E2
high phonons of ZnO re-

plotted vs peak frequency, with the frequency shifts required
to compare them with the calculations based on a single
Nd2���. The solid line was obtained by adding to the down-
conversion contribution 
+��� a constant attributed to up-
conversion processes 
−��� �dashed line�. From Serrano, Man-
jón, et al., 2003.
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of 69GaP measured at several pressures and for T
=10 K. The spectra sharpen up considerably with in-
creasing pressure as the phonon frequency shifts away
from the van Hove singularity �Ves et al., 2001�. Similar
effects have been observed for ZnS �Tallman et al.,
2004�.

We shall not go into the details of the Fermi reso-
nance observed for the TO Raman phonons of CuCl
�Göbel et al., 1997� and the LO phonons of CuBr �Ser-
rano et al., 2001�. The corresponding line shapes are
rather complex and have received a lot of attention since
the presence of a Fermi resonance was suggested by
Krautzman et al. �1974� for the TO spectrum of CuCl.

5. Isotopic substitution and phonon eigenvectors

The E2
high and E2

low phonons of wurtzite materials are
an ideal pair to illustrate the determination of eigenvec-
tors by isotopic substitution. These eigenvectors depend
only on one parameter that represents the mixture of
the vibrations of the low-mass atom E2

high with those of
the high-mass counterpart E2

low. Isotope substitution for
only one of the constituent atoms suffices to obtain the
mixing parameter. This was done for GaN since only
N-substituted samples were available. For CdS �Zhang
et al., 1996� and ZnO �Serrano, Widulle, et al., 2003� both
isotopes were substituted �see Sec. III.B.4� and the prob-

lem became overdetermined. This led to a more accu-
rate determination of the admixture parameter. Some
work has also been performed for several polytypes of
SiC �Widulle, Ruf, Buresch, et al., 1999�.

The change in a phonon frequency �qj induced by a
change in the isotopic mass at site r is given by �Menén-
dez et al., 1994; Zhang et al., 1997�

��qj

�Mr
= −

1

2Mr
�qj�eqjr�2, �3.17�

where the vector eqjr represents the component of the
orthonormal eigenvector at site r corresponding to the
qj phonon. Equation �3.17� allows us to determine the
absolute value of this component �usually complex ex-
cept at the center of the BZ� if we measure the deriva-
tive of �qj with respect to the mass Mr. For the E2 modes
of wurtzite �e.g., GaN�, the eigenvector, which describes
the E2

high-E2
low admixture, is real and can be found by

solving the following secular equation �Zhang et al.,
1997�:

�− �2 +
kGa

MGa

kGa N

�MGaMN

kGa N

�MGaMN

− �2 +
kN

MN

� · 	eGa

eN

 = 0, �3.18�

where kGa and kN represent force constants for the
GauGa and NuN vibrations, respectively, and kGaN
the coupling of these two modes. The two observed fre-
quencies of the E2

high and E2
low phonons do not suffice to

determine kGa, kN, and kGaN. However, if we include the
derivative of Eq. �3.17� we obtain, either from Eq. �3.18�
or from Eq. �3.17�, the eigenvectors ��eGa�
=0.204±0.0045; �eN�=0.677±0.012� for the E2

high phonons
and ��eGa�=0.677±0.012; �eN�=0.204±0.0045� for the E2

low

phonons. Because of the presence of four atoms in the
primitive cell these eigenvectors have been normalized
according to

2��eGa�2 + �eN�2� = 1. �3.19�

As indicated in Eq. �3.19� the relative sign of eGa and

FIG. 9. Raman spectra of the transverse-optical �TO� phonon
of �a� 69GaP; �b� natGaP; �c� 69Ga0.4

71Ga0.6P; �d� 71GaP. The
measurements were performed at T=6 K. The solid lines are
fits to the experimental data �symbols� using the indicated N2d
�dashed lines�. The vertical lines represent the �-function
peaks which correspond to the TO phonons in the harmonic
approximation. From Widulle, Ruf, Göbel, et al., 1999.

FIG. 10. Pressure dependence of the Raman spectrum of the
TO phonon of GaP at 10 K. Note the sharpening of the mea-
sured peak with increasing pressure. From Ves et al., 2001.
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eN cannot be determined by isotopic substitution. Ab
initio calculations give magnitudes of eGa and eN that
agree with those determined experimentally and for Ga
and N neighboring atoms placed along the c direction,
parallel �antiparallel� displacements for the E2

high �E2
low�

modes. The E2
high-E2

low admixture is somewhat larger in
CdS, as expected from the smaller frequency splitting of
these modes �Zhang et al., 1996�. For ZnO, the eigenvec-
tors are nearly the same as for GaN �Serrano, Widulle, et
al., 2003�.

We close this section by mentioning that isotopic sub-
stitution has been used rather successfully to obtain in-
formation about phonon eigenvectors in high-Tc super-
conductors �Henn et al., 1997�. These materials have a
large number of atoms per unit cell and reliable infor-
mation about eigenvectors is otherwise difficult to ob-
tain.

IV. PHONON EFFECTS RELATED TO ISOTOPIC
DISORDER

A. Thermal conductivity

In insulators and semiconductors �at temperatures be-
low that of the gap� the thermal conduction is effected
by phonons, predominantly acoustic ones. The simplest
expression for the thermal conductivity � is

��T� =
1
3

�vph��ph�T�Cp�T� , �4.1�

where �vph� is an average phonon velocity, �ph�T� their
mean free path, and Cp�T� the corresponding specific
heat. A theory of ��T� requires basically the calculation
of �ph�T�=�ph�T��vph�,7 a rather formidable task since
several scattering mechanisms contribute to determining
this mean free path. The simplest of these mechanisms,
and the one that can be varied for a given material at a
fixed temperature, is the scattering of the acoustic
phonons by isotopic mass fluctuations. This mechanism
is best visualized by considering virtual-crystal phonons
and how they collide with mass fluctuations at lattice
sites where the masses are either higher or lower. This
scattering is equivalent to Rayleigh scattering �of pho-
tons� at point defects. Within the Debye approximation,
we find for phonons of frequency � the contribution to
�ph:

�ph
−1 = A�4, with A =

g2V

4��vph�3 , �4.2�

where V is the volume occupied by the isotopically
mixed atom and the mass fluctuation parameter g2 is
given by

g2 =
�M2� − �M�2

�M�2 . �4.3�

In Eq. �4.3� the angular brackets represent averages over
the isotopes of a given atom present in the crystal.

The isotope effect on the thermal conductivity was
predicted by Pomeranchuk �1942�. An early investiga-
tion of ��T� for LiF and its dependence on the g2 of the
lithium isotopes present can be found in the article of
Berman and Brock �1965�. We shall discuss here the re-
sults obtained for germanium �Geballe and Hull, 1958;
Asen-Palmer et al., 1997� and also mention data avail-
able for silicon �Ruf, Henn, et al., 2000� and diamond
�Wei et al., 1993�.

Figure 11 displays the thermal conductivity of several
germanium samples with different isotopic composi-
tions. �M� and �S� represent measurements performed
on the same sample in Stuttgart �MPI� or at the Moscow
Kurchatov Institute, respectively. The general behavior
versus temperature of the curves in Fig. 11 is typical of
most insulators and semiconductors, although the posi-
tion of the maximum Tm and the corresponding absolute
value of ��Tm� vary from material to material. Tm is, to a
good approximation, independent of isotopic composi-
tion for a given material, whereas ��Tm� decreases
strongly with increasing mass-fluctuation parameter g2
�by as much as a factor of 13 in Fig. 11�. This depen-
dence of ��Tm� on g2 is probably the strongest isotope
mass effect observed in solids.

The curves in Fig. 11 exhibit three distinct regions:

�a� Below about 8 K they tend to the T3 behavior ex-
pected from Eq. �4.1� if �ph is independent of T.
This behavior arises from the proportionality of Cp
to T3.

�b� A maximum around Tm�18 K, which as already7�ph�T� is the phonon relaxation time.

FIG. 11. Thermal conductivity vs temperature of five Ge
samples with different isotopic compositions: 70Ge�99.99% �,
70Ge�96.3% �, 76Ge�86% �, natGe1, and 70/76Ge. Two of the
samples, 70Ge�99.99% � and natGe1, have been measured with
two different experimental setups, in Stuttgart �S� and in Mos-
cow �M�. The dot-dashed line represents a T3 law, expected for
pure boundary scattering, while the dashed line shows a 1/T
dependence, expected for phonon scattering at high tempera-
tures. From Asen-Palmer et al., 1997.
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mentioned, depends strongly on the isotopic mass
fluctuation parameter g2.

�c� Above 20 K, ��T� decreases rapidly with increasing
T.

In region �a� �ph is of the order of the sample dimensions
and is basically determined by collisions with its walls.
Although it is well defined for a given sample with a
specific surface treatment, thermal conductivity as a ma-
terial property is not uniquely defined. It depends on
sample dimensions, shape, orientation, and, last but not
least, surface treatment. Details for the samples of Fig.
11 are given in Table I of Asen-Palmer et al. �1997�.

In region �b� � is usually a well-defined property of
the bulk material; Tm�20 K for Si whereas for diamond
Tm�80 K �close to liquid-nitrogen temperature!�. The
high value of ��Tm� found for isotopically pure samples
has suggested several applications to cases in which a
large amount of heat is generated and must be carried
away. Such applications have been implemented for iso-
topically pure diamond for which ��Tm� is three times
higher than for the natural material �Berman et al.,
1993�.

In region �c� anharmonic processes take over. These
processes also operate in regions �a� and �b�. In those
regions, however, they do not contribute much to the
thermal resistance since they mostly conserve crystal
momentum and thus do not affect the heat flow. At suf-
ficiently high temperatures, summation processes, in
which two phonons combine into one with a crystal mo-
mentum outside the BZ, become possible. Bringing the
phonon outside the BZ to a point inside �an umklapp
process� reverses the sign of energy flow for this phonon
and thus contributes to the thermal resistance. Since
phonons of a sufficiently large energy must be present
for the umklapp process to take place, these processes
have an exponential dependence ��e−C/T� on tempera-
ture.

We shall not delve into the details of the semiempir-
ical calculations that lead to a description of the curves
in Fig. 11. The resulting fits �see Fig. 4 of Asen-Palmer et
al., 1997� were performed using the same set of anhar-
monic scattering parameters and varying only the iso-
tope scattering according to Eq. �4.2�.

Thermal-conductivity measurements have also been
performed for 28Si and compared with those for natural
samples �Ruf, Henn, et al., 2000�. ��Tm� was reported to
be a factor of 6 larger in the 28Si material. At 300 K an
enhancement of about 60% was also reported. This en-
hancement suggested the use of 28Si at room tempera-
ture for devices in which a lot of heat is generated and
must be conducted away. Unfortunately, the measure-
ments of the 28Si sample were recently shown to be in-
correct. New measurements showed reproducibly that
the enhancement of ��T� for the 28Si sample with re-
spect to natural Si is only 10% �Kremer et al., 2004�.
Nevertheless, an enhancement by about a factor of 2 at
77 K has been confirmed. This may still be of interest for
components that operate at this temperature, such as

mirrors and diffraction elements for use with synchro-
tron radiation �Berman et al., 1993�.

Until recently all theories on thermal conductivity had
a strongly phenomenological flavor, making use of the
relaxation-time approximation �see Asen-Palmer et al.,
1997, and references therein�. In recent years, consider-
able progress towards an ab initio theory has been made
by Omini and Sparavigna �1997� and by Sparavigna
�2002, 2003�. These authors used two- and three-body
potentials obtained by fitting phonon dispersion rela-
tions and related the anharmonic properties with a
single average Grüneisen parameter. In this manner they
determined the third-order coupling coefficients for all
possible three-phonon combinations. They then solved
iteratively the Boltzmann equation for phonon transport
without using the relaxation-time approximation. A
scattering time must, however, still be used to describe
boundary scattering in the lowest temperature region
�a�. In this manner they reproduced rather well the ther-
mal conductivities of diamond, Ge, and Si, and the ob-
served isotope effects.

B. Phonon self-energy due to the isotopic mass disorder

In Sec. IV.A we have discussed the effect of isotopic
disorder on thermal conductivity. This effect is due to
scattering of the acoustic phonons by mass fluctuations
as represented by the parameter g2. Here we discuss the
equivalent effects on optic phonons, especially those
that can be observed by Raman spectroscopy. These ef-
fects are represented by the Feynman diagrams �c� and
�d� of Fig. 4. Diagram �c� vanishes if we adopt, for the
unperturbed crystal, the virtual-crystal approximation.
Restricting ourselves to these diagrams implies the use
of perturbation theory up to second order, which is jus-
tified if the mass fluctuations �as measured by g2� are
small compared with the width of the relevant phonon
band normalized to the phonon frequency. This is a rea-
sonably good approximation for the semiconductors un-
der consideration here �see Table II for the g2’s of el-
emental semiconductors and Fig. 1, typical for the
bandwidths�. Higher-order terms have nevertheless been
discussed theoretically by Tamura �1983� and observed
experimentally by Widulle et al. �2002�. For molecular
crystals, the phonon bands are rather narrow and pertur-
bation theory may break down. In this case, localized
vibrations �i.e., bound states� corresponding to the dif-
ferent isotopes can appear. Of particular interest is the
case of the molecule C60 �fullerene�, for which the vir-
tual crystal provides a good approximation to the vibra-
tions of a single molecule �e.g., either 12C60 or 12C59

13C1�
but two molecules with different isotopes in crystalline
form or in solution preserve their independent vibra-
tional frequencies without averaging them �see Fig. 1 of
Menéndez et al., 1994�.

Figure 4�d� shows a self-energy diagram similar to that
of Fig. 4�a� but with the vertices corresponding to elastic
scattering on a static mass fluctuation. The real and
imaginary parts of the corresponding self-energy are
given by expressions similar to Eqs. �3.14� and �3.15�,
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with Nd2 replaced by the one-phonon density of states
Nd1. The anharmonic matrix element is replaced by the
matrix element for the coupling to a mass difference
�with respect to the virtual crystal�, which must then be
averaged for all possible lattice sites.8 The resulting con-
tribution to the linewidth is, for a cubic monatomic crys-
tal �Tamura, 1983; Widulle et al., 2002�,


0i =
�

12
g2�2Nd1��0� , �4.4�

where Nd1 is the density of one-phonon states at the
frequency �0 of the phonon whose self-energy is being
considered. The real part of the self-energy �0i, corre-
sponding to a frequency shift when inserted in Eq.
�3.13�, is given by

�0i =
g2�0

2

24 �
0

� ��

�0 − ��
Nd1����d��. �4.5�

Note that while only intermediate states which con-
serve the frequency �0 contribute to Eq. �4.4�, all states
�� �i.e., virtual transitions� contribute Eq. �4.5�. States
such that ����0 produce an upshift in frequency while
those for which ��
�0 give rise to a downshift and a
certain degree of compensation takes place except for
the highest-frequency phonons �the Raman phonons of
Ge, Si, �-Sn� for which only upshift contributions occur.
This is the reason for the relatively large values of �0i
listed in Table II in the cases of diamond, Si, Ge, and
�-Sn. Note, however, that the values of 
0i in this table
are rather small, except for diamond. This is illustrated
in Fig. 12, where the Raman line shapes observed for
silicon �a� and diamond �b� have been plotted for several
isotopic compositions. Figure 12�b� shows a clear in-
crease in the linewidth for the isotopically mixed
samples with respect to the pure ones, whereas in Fig.
12�a� it is not possible to see such an increase with the
naked eye. The observed widths are basically the anhar-
monic ones. A careful fit to the measured spectra, how-
ever, reveals mass disorder contribution of the order of
10% of the anharmonic one for Si, Ge, and �-Sn �see
Fig. 5 and Table II�, whereas for diamond the mass dis-
order contribution is even larger than the anharmonic
one. This striking difference is related to the fact that �0

8One must, however, keep in mind that the scattering in-
volved in Figs. 4�c� and 4�d� is elastic, harmonic, and tempera-
ture independent, whereas that in Figs. 4�a� and 4�b� is inelas-
tic, anharmonic, and temperature dependent.

TABLE II. Isotopically mixed crystals of elemental semiconductors that have been used to determine the real ��0i� and imaginary
�−
0i /2� parts of phonon self-energies due to isotopic disorder. The values of g2 must be multiplied by 10−5. For references see the
text.

Natural 12C0.85
13C0.15

12C0.63
13C0.37

12C0.53
13C0.47

12C0.18
13C0.82

Diamond �M� 12.01 12.15 12.37 12.47 12.82
g2 7 86 152 160 90

0i 0 1.4 4.0 5.5 3.8
�0i 0 3 5 6 4

Natural 28Si0.75
30Si0.25

28Si0.50
30Si0.50

28Si0.25
30Si0.75

30Sia

Sia �M� 28.1 28.5 28.8 29.5 29.7
g2 20 92 114 88 48

0i 0 0.05 0.06 0.07 0.04
�0i 0.1 0.8 1.2 0.7 0.4

Natural 70Ge0.5
76Ge0.5

Geb �M� 72.6 72.8
g2 59 153

0i 0.035 0.06
�0i 0.34 1.06

Natural 116Sn0.5
124Sn0.5

112Sn0.5
124Sn0.5

�-Sn �M� 118.7 120 118.1
g2 33 110 258

0i 0 0.036 0.04
�0i 0.02 0.7 1.8

aThe nominal 30Si only has 87% of this isotope.
bThe nominal 76Ge only has 94% of this isotope.
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�corresponding to the center of the BZ� is the largest
phonon frequency for Si, Ge, and �-Sn, but for diamond
the highest frequency occurs away from the center of the
BZ. In Eq. �4.4� Nd1 vanishes when the Raman fre-
quency is the largest one. No phonon states are present
into which the Raman phonons can scatter elastically.
For diamond, however, the highest phonon frequency
lies away from the BZ center and elastic scattering of
the Raman phonon becomes possible �see Fig. 13�. The
small values of 
0i listed in Table II for Si, Ge, and
�-Sn are to be regarded as residual contributions that
appear in higher-order perturbation theory. Anharmo-
nicity broadens �0 and thus generates around it a finite
Nd1 into which the �0 phonon can scatter. The small
values of 
0i given in Table II for Si, Ge, and �-Sn can
thus be qualitatively understood as a higher-order per-
turbation effect involving anharmonicity and isotopic
disorder �Fuchs et al., 1993; Widulle et al., 2001�.

Even if 
0i is rather small, �0i can be appreciably large
because the contributions of all frequencies �� to the
integral in Eq. �4.4� are positive when the frequency �0
is the highest of all phonon frequencies. In the case of
diamond there is a small region ��
�0 that results in a
negative contribution to �0i. However, this contribution
is small and a net positive shift results �see Table II�. We
show in Fig. 14 the measured frequency �0, including
anharmonic and disorder effects, for 28Six

30Si1−x crystals
with six different values of x. The solid line represents
the virtual-crystal behavior plus the anharmonic correc-
tion. The dashed line, drawn through the experimental
points, includes the effect of mass disorder, which can be
represented by �Widulle et al., 2001�

�0i = 4.2x�1 − x� . �4.6�

A calculation based on Eq. �4.4� gives the value 6 for
the prefactor in Eq. �4.6�. The shifts calculated with Eq.
�4.4� for Ge, �-Sn, and diamond also agree reasonably
well with the measured ones. Ab initio calculations of
this effect, on the basis of vibrations of a large supercell
containing several isotopes �i.e., without using perturba-
tion theory�, yield �0i=1.1 cm−1 for 70Ge0.5

76Ge0.5, in
good agreement with the experimental data and with the

results from Eq. �4.5� �Vast and Baroni, 2000�.
We discuss next the mass-fluctuation effects in crystals

with two different atoms per primitive cell �generaliza-
tion to more than two different atoms is straightfor-
ward�. In this case, we must introduce two different g2
factors, one for the anion �g2a� and one for the cation
�g2c�. Equations �4.4� and �4.5� must be modified to take
into account the separate effects of the two independent
mass fluctuations. The modification must include the
eigenvectors of the phonons under consideration at ei-
ther the anion or the cation as well as those of the inter-
mediate states. Equation �4.4� thus becomes


0i =
��0

2

6
�g2cNd1c��0��e0c�2 + g2aNd1a��0��e0a�2� , �4.7�

where e0c and e0a are the components of the eigenvector
of the Raman phonon at either the cation or the anion,
and Nd1c ,Nd1a are the densities of states projected on
the cation or anion, respectively �see Eq. �2.3��. The lat-
ter include values of �ec�2 and �ea�2 for all phonons of
frequency �0. A similar generalization of Eq. �4.5� to the
diatomic crystal is straightforward.

The effect of mass disorder on the LO and TO
phonons has been investigated for ZnSe and ZnS. No
mass disorder-induced broadening is observed for the
LO phonons, a fact that can also be related to the van-
ishing of the one-phonon density of states for the LO
frequency, which is the highest in the phonon spectrum.
However, a finite Nd1 is present at the �TO frequency
�Fig. 13�c�� and, correspondingly, a broadening due to
mass disorder is found for the TO Raman phonons. For
natural Zn and Se with a considerable isotopic mixture
�see Table I�, the measured contribution to 
i due to
mass disorder of the TO Raman phonon is 1.4 cm−1, in
excellent agreement with the prediction of Eq. �4.7�
�Göbel et al., 1999�. For these phonons, �0a�−0.5 cm−1.
Note that the corresponding frequency shift is negative
because of the large contribution of frequencies ��
larger than �TO. A strong effect of the oxygen mass dis-
order has been observed for the E2

high phonons of Zn
16O0.5

18O0.5 �see Fig. 7�.

FIG. 12. Low-temperature Ra-
man spectra of �a� silicon, with
several isotopic concentrations.
No broadening is apparent to
the naked eye for the
28Si0.5

30Si0.5 sample. �b� Dia-
mond, with three different iso-
topic concentrations. Note the
strong broadening for the isoto-
pically disordered samples. The
vertical lines indicate the peak
positions expected in the ab-
sence of isotopic disorder. From
Cardona and Ruf, 2001.
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Most of the isotopic work discussed so far for phonons
has been confined to Raman phonons, i.e., those at the
center of the BZ. A few publications have appeared
dealing with more general points in the BZ. We have
already mentioned the inelastic neutron-scattering work
performed for Ge �Göbel, Wang, et al., 1998�. In Fig. 9 of
Göbel, Wang, et al. �1998�, mass disorder self-energies
found for Ge throughout the 100–200-cm−1 frequency

range are displayed and compared with calculations
based on Eqs. �4.4� and �4.5�. The experimental data
were obtained by inelastic neutron scattering, second-
order Raman and IR spectroscopy, and photolumines-
cence.

Because of its connection with the next section, we
discuss briefly here the results of cathodoluminescence
experiments on isotopically mixed diamonds �Cardona
and Ruf, 2001�. This luminescence results from recombi-
nation of electrons close to the X point of the BZ �q
= �2� /a��0,0 ,0.76�� and holes at the BZ center. It there-
fore involves the emission of phonons with a similar q
vector. It was observed that the LO phonons with this q
vector shift up with isotopic disorder whereas the corre-
sponding TO phonons shift down. These shifts can be
understood qualitatively on the basis of Eq. �4.5� and
more quantitatively by using the more general coherent-
potential approximation. Experimental and calculated
results are displayed in Fig. 15.

C. Disorder-induced Raman scattering

It is usually believed that first-order Raman and IR
spectra only reveal excitations near the center of the BZ
�q�0�. This is true if the crystals are perfect, not only
from the point of view of the structure, but also from the
isotopic point of view. Each constituent element must be
isotopically pure. This is not the case for natural isotopic
compositions of diamond, Si, Ge, and �-Sn. Therefore at
least partial lifting of the q-conservation rule is expected
for these isotopically natural crystals and even more so
for those with a 50% content of the higher and lower

FIG. 13. Schematic diagrams of the processes that contribute
to the mass disorder-induced broadening of the Raman
phonons. �a� No elastic processes are possible for Si, Ge, and
�-Sn. �b� Because of the reentrant dispersion relation at q=0,
elastic processes are possible for diamond. �c� Typical example
of an ionic material �ZnSe� in which the q=0 Raman phonons
are split into longitudinal-optical �LO� and TO components.
No elastic processes are possible for the LO component,
whereas for TO phonons scattering into the LO band becomes
possible.

FIG. 14. Measured Raman shifts of the zone-center optic
mode in silicon with various isotopic compositions. The solid
line indicates the mass dependence expected for isotopically
pure crystals, including anharmonic renormalization. Isotope
mass fluctuation-induced deviations from this line for which a
parabolic bowing �dashed line� is shown as a guide to the eye.
From Widulle et al., 2001, with permission from Elsevier.
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isotopic masses �Table I�. For these crystals, the Raman
and IR spectra should, in principle, contain a broad
component reflecting the density of states Nd1.9

Equations �3.13� and �4.4� provide a rather simple way
to understand the origin of the disorder-induced density-
of-states spectra. From Eq. �3.13� we obtain, for �−�0j
−��
 /2 ,�,

A0 �
1

�


/2

�� − �0�2 . �4.8�

Substituting Eq. �4.4� into Eq. �4.8�, after replacing �0 by
�, we find

A��� �
1
24

g2
�2Nd1���
�� − �0�2 . �4.9�

To a good approximation, the line shape of the mass
disorder-induced spectra should be given by Eq. �4.9�.
Note that the denominator in the right-hand side of this
equation enhances the portions of Nd1��� for frequen-
cies � close to �0, i.e., the TO regions in Nd1���. The
acoustic phonons are therefore very difficult to observe
in disorder-induced spectra.

Spectra that correspond to Eq. �4.9�, or to its more
sophisticated coherent-potential-approximation version
�Taylor, 1967; Widulle et al., 2001�, have been observed
for isotopically mixed diamond �Spitzer et al., 1993�, Si
�Widulle et al., 2001; see Figs. 16�a� and 16�b��, germa-
nium �Fuchs et al., 1993�, and �-Sn �Wang et al., 1997�.

D. Nuclear magnetic resonance

Isotopes with an odd atomic weight have a nuclear
angular momentum �Table I� which can be used for
nuclear magnetic resonance �NMR� investigations.
Some low atomic number, even atomic weight, elements
�e.g., 2H, 10B, 16N� also have nuclear angular momentum
I�0. Each of the group-IV elements has at least one
isotope with I�0. The present ability to vary the con-
centration of nuclei with I�0 in a crystal has inspired a
number of NMR investigations involving diamond, Si,
and Ge crystals. Considerable attention has been paid to
29Si, whose nuclear spin states may find application as
qubits in quantum computation �Ladd et al., 2002�. NMR
investigations have been performed for diamond �Lef-
mann et al., 1994�, Si �Verhulst et al., 2003�, and 73Ge
�Verkhovskii et al., 2000, 2003�.

The magnetic isotopes 13C and 29Si have I= 1
2 but their

abundance is only a few percent in unenriched samples.
Their value of I implies that electric quadrupole terms
do not contribute to the NMR spectra. The NMR inves-
tigations performed for diamond and silicon crystals
have therefore been confined to the effects of dipole-
dipole interaction on the line shapes of the NMR spectra
and the electron-lattice relaxation times, which are par-
ticularly large for 29Si �
2 h�. The perturbation Hamil-
tonian of the dipole-dipole interaction which contributes
to the linewidths depends on the angle � between the
line connecting a given pair of dipoles and the magnetic
field H. This dependence is proportional to 1−3 cos2 �.
It thus vanishes at the magic angle �=54.74°, i.e., for
nearest neighbors in tetrahedral semiconductors when H
is along the �100� axis. For H � �111� the dipole-dipole
interaction effects reach a maximum that manifests itself
as a spectral doublet corresponding to the bonds along

�111� and those along �1̄1̄1� �the Pake doublet; Pake,

9For the IR spectra this component has not been detected in
group-IV crystals, a consequence of the homopolar nature of
the bonds.

FIG. 15. Isotopic mass disorder contributions to phonon fre-
quencies of diamond. �a� Raman-scattering data �lozenges� and
cathodoluminescence data �circles and squares�; �b�–�d� Data
extracted from the cathodoluminescence spectra. The solid
lines represent coherent-potential-approximation �CPA� calcu-
lations using ab initio lattice dynamics. From Cardona and
Ruf, 2001.
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1948�. The doublet splitting for H � �111� has been mea-
sured to be 1.2 kHz in enriched �92%� 29Si �Verhulst et
al., 2003� and 8 kHz for 99% 13C diamond �Lefmann et
al., 1994�.

The motivation for mentioning NMR in this section is
provided by recent measurements performed for 73Ge in
crystals containing 73Ge with I=9/2 �Verkhovskii et al.,

2003�. In this case, nuclear quadrupole terms play an
important role in determining the NMR line shape, es-
pecially in crystals with a low 73Ge concentration: 0.1%
for the crystals used by Verkhovskii et al. �2003�. For
these low concentrations, the effect of dipole-dipole in-
teractions is rather small. Two types of crystals were
used: one that was nearly isotopically pure �96% 70Ge�
and the other with 43% of 70Ge and 48% of 76Ge. The
former can be considered as a nearly perfect cubic crys-
tal for which the electric-field gradients at the 73Ge nu-
clei vanish. Thus in the case of the nearly pure 70Ge, the
interaction of the electric-field gradient with the nuclear
quadrupole moment is very small. In the 70Ge- 76Ge
mixed crystal, variations of the bond lengths around the
randomly distributed isotopes, similar to those discussed
in Sec. III.A.2, take place. They produce random strains
as well as random variations of bond charges, which re-
sult in random electric-field gradients at the 73Ge nuclei.
These electric-field gradients, interacting with the
nuclear quadrupole moments, lead to a broadening of
the NMR spectra. Verkhovskii et al. �2003� have mea-
sured these broadenings and have calculated them using
several parameters drawn from other experiments, e.g.,
the dependence of the lattice constant on isotopic mass
�Sec. III.B.2�. The observed inhomogeneously broad-
ened line shapes are characterized by a linewidth param-
eter ��Q, which is proportional to g2

1/2, not to g2, as in
most of the effects discussed so far. This proportionality
is illustrated in Fig. 4 of Verkhovskii et al. �2003�. We
display in Fig. 17 the four NMR spectra measured by
these authors for 70Ge0.96 and 70Ge0.43

76Ge0.48 with
H � �111� and H � �100�. The wings of the 70Ge0.43

76Ge0.48
spectra are the signature of the mass disorder-induced
quadrupole effects.

E. Local vibrational modes

We have, thus far, discussed the isotopic effects on the
vibrations of chemically pure, but isotopically mixed,
crystals. A related and very active research topic, with
important scientific and technological applications, is the
investigation of the local vibrational modes �LVMs� of
chemical impurities in semiconductors, using either in-
frared absorption or Raman spectroscopy. An important
aspect of these studies has involved changing the isoto-
pic composition of the impurity species, and since only
minute amounts of isotopically pure impurities are re-
quired, it started well before the current upsurge of
work on host isotope effects, requiring the acquisition of
macroscopic quantities of stable isotopes. As an ex-
ample of early work see Hrostowski and Kaiser �1957�.
These authors used silicon doped with 18O to demon-
strate, on the basis of LVM spectroscopy, the structure
of interstitial oxygen in Si �nonlinear Si-O-Si units�. In
view of the vast literature already extant for isotopic
effects on LVMs, we shall confine this section to giving
four references to review articles and a few specific ref-
erences to recent original research, in particular, that in-

FIG. 16. �a� Spectra of six silicon crystals with several isotopic
compositions, showing the disorder-induced density-of-states
scattering in the 460–510-cm−1 region. The frequency scales
have been shifted so as to cause the main Raman phonon peak
to coincide for all samples. The height of this peak has been
normalized to 1. The disorder-induced spectra show critical
points of Nd1��� corresponding to TO �W� and TO �L�. The
2TA band, centered at 440 cm−1, is not disorder induced. �b�
Isotope disorder-induced density-of-states spectra calculated
with Eq. �3.13� using the frequency-dependent 
��� and ����.
Note the similarity with the experimental results of Fig. 16�a�.
From Widulle et al., 2001, with permission from Elsevier.
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volving host isotope effects, with some comments to the
work they contain whenever appropriate.

The present understanding of the LVM of oxygen in
Si was reviewed by Pajot �1994�. This review also dis-
cussed effects of the natural isotopic abundances of
three Si �host� isotopes on oxygen LVMs as well as iso-
topic effects of LVMs induced by carbon and hydrogen
�for host effects on LVMs of oxygen in Si, see also the
recent publication by Kato et al. �2003��. A detailed ac-
count of LVMs of oxygen in Ge, including rotational
effects and theoretical as well as experimental data, was
given by Lassmann et al. �1999� and by Pajot et al. �1997,
2000�. An analysis of the Ge-O-Ge vibrations using
monoisotopic Ge as a host simplifies the interpretation
of the LVMs �Mayur et al., 1994�. The interstitial oxygen
vibrations in GaAs have been shown to be split due to
the presence, as nearest neighbors, of the two Ga iso-
topes of the host �Schneider et al., 1989�. Similar topics,
including the vibrations of substitutional impurities in
II-VI compounds, were dealt with in a review by Stavola
�1999�. Another review article covering LVMs in GaAs,
including substitutional impurities and impurity com-
plexes �such as Si-Ge, Si-Cu, Si-Zn, Si-Li, Si-Li, and Si
vacancy�, also appeared in the series Semiconductors
and Semimetals �Newman, 1993�. An additional review
covering most of the topics mentioned above has been
authored by McCluskey �2000�.

Recent work includes isotope effects on the LVM of
O-Si:H in silicon �Bech-Nielsen et al., 1997�. We also
mention an ab initio calculation of LVMs involving sub-
stitutional Se in ZnS and N in ZnSe, including all pos-
sible combinations of isotopes for the impurity and the

nearest-neighbor host atom �resulting in 180 modes for
nitrogen replacing Se in ZnSe; Petzke, 1999� and an ex-
perimental and theoretical study of the LVMs of protons
placed interstitially in isotopically pure 28Si, 29Si, and
30Si �Pereira et al., 2003�. We finally draw the reader’s
attention to work involving the lifetime and linewidth of
LVMs �oxygen in Si and Ge� and its dependence on the
isotopic mass of the impurity due to the shifts and
change in overlap between the LVM energy and the
density of states of the host phonons and their overtones
�Sun et al., 2004�.

Davies et al. �2005� have compared a number of well-
known impurity and defect-related LVMs between natu-
ral Si and 30Si, and have developed an empirical model
for the shifts of these transitions. Sennikov et al. �2005�
have studied both the host-lattice modes and the
carbon- and oxygen-related LVMs in 28Si, 29Si, and 30Si,
providing important information for the use of LVM-
related spectroscopy in determining carbon and oxygen
concentrations in isotopically modified silicon.

V. EFFECTS OF THE ELECTRON-PHONON INTERACTION
ON THE FUNDAMENTAL OPTICAL SPECTRA

A. Introduction

1. The dielectric function

By fundamental optical spectrum of a solid we mean
that which corresponds to optical transitions from occu-
pied electronic states �the valence bands in the case of
semiconductors or insulators� to empty states �the con-
duction bands in this case�. In a perfect crystal these
transitions must conserve the k vector �i.e., the crystal
momentum of the electronic states�. Since for photons in
the optical range this vector is very small, the optical
transitions must take place between valence and conduc-
tion states with the same k �kc�kv, direct transitions�.
Semiconductors and insulators have the lowest transi-
tion energy above which direct transitions can occur. It is
called the direct gap. In many cases the minimum energy
difference between conduction and valence states corre-
sponds to the direct gap �e.g., GaAs, ZnSe, CuCl�. In
others, however, transitions for which kc�kv can take
place below the direct gap. For optical excitation they
require the contribution of a phonon or some kind of
crystal disorder. These transitions are called indirect.
The lowest gaps of some important semiconductors such
as diamond, Ge, Si, and AlAs are indirect. For phonon-
aided indirect transitions the observed optical absorp-
tion edge corresponds, at low T, to the electronic gap
plus one phonon energy. Hence it depends on the isoto-
pic mass through the relationship between phonon en-
ergy and mass �as we shall see later, the electronic en-
ergy difference between the band edges may also
depend on �M��. Such dependence has been investigated
for diamond �Cardona and Ruf, 2001; see Fig. 15� and
silicon �Karaiskaj et al., 2002a�.

The optical response of such crystals in the fundamen-
tal absorption region �and also below the gap� is de-

FIG. 17. NMR spectra of 73Ge atoms in two Ge single crystals
with different isotopic compositions. The experimental data
are represented by circles. The solid lines correspond to calcu-
lations which take into account the quadrupole interaction in-
duced by isotopic mass fluctuations. From Verkhovskii et al.,
2003.
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scribed by the complex dielectric function ����=�r���
+ i�i���. This function is usually a second-rank tensor
since it connects two vectors, the electric field E and the
displacement D. We shall confine our discussion here,
for simplicity, to cubic materials and neglect spatial dis-
persion effects �the dependence of ���� on photon wave
vector; Yu and Cardona, 2005�. In this case ���� can be
represented by a complex scalar function of �. Its imagi-
nary part is directly related to the joint density of states
for interband transitions Ncv given by Eq. �2.1� with an
additional factor of 2 to include spin degeneracy and �
=�c�k�−�v�k�. The expression for �i��� can thus be writ-
ten to a good approximation �Cardona, 1969; Yu and
Cardona, 1970�, as

�i��� =
4�2

�
	 e

�m

2

P2Ncv��� , �5.1�

where e �m� are the electron charge �mass�, and P is an
average matrix element of the linear momentum opera-
tor between valence and conduction states. The real part
of ���� can be derived from �i��� in a way similar to that
used to derive Eq. �3.15� from Eq. �3.14�, by employing
the Kramers-Kronig relations �Yu and Cardona, 2005�.
We obtain

�r��� =
8�

�
	 e

m

2�

0

� Ncv����
�������2 − �2�

d��. �5.2�

Equations �5.1� and �5.2� will show van Hove singulari-
ties or critical points whenever �k��c−�v�=0 �see Eq.
�2.1��. These singularities have characteristic forms that
have been discussed in detail by Yu and Cardona �2005�.
They are seen in the optical spectra, especially through
the use of modulation spectroscopy �Cardona, 1969�. An
excellent technique for pinpointing such critical points
and measuring their parameters is spectral ellipsometry
followed by numerical differentiation of the �r��� and
�i��� spectra obtained.

Figure 18 displays the electronic band structure of ger-
manium. The vertical arrows indicate the critical points
corresponding to direct transitions. The lowest direct
critical point is labeled E0. We note that about �0
=0.3 eV higher in energy than E0 there is another criti-
cal point, spin-orbit split from E0, which is not explicitly
labeled in Fig. 18. It is usually called E0+�0 and corre-
sponds to transitions between the 
7

+ states and the 
7
−

states. The E1 and E1+�1 critical points, also spin-orbit
split, will be discussed in Sec. V.B.1 in connection with
isotopic effects.

Full experimental spectra of ���� appeared in the late
1950s and there was increasing activity in the field in the
1960s. The development of spectral ellipsometry in the
1970s led to renewed activity that has lasted until the
present day �Aspnes and Studna, 1983; Aspnes, 2004�.
Soon after the first reliable spectra became available,
theoretical efforts were begun to try to understand them
on the basis of semiempirical theoretical band structures
�the only kind available then�. The first successful at-
tempt seems to have been that of Brust et al. �1962�.

These authors calculated the �i��� spectrum of Ge using
Eq. �5.1� and treating P2 as an adjustable parameter. The
pseudopotential band structure used was similar to that
of Fig. 18, except for the lack of spin-orbit coupling.
Hence the splitting of the E1− �E1+�1� critical points,
observed experimentally, was not reproduced by the cal-
culation.

2. Ab initio calculations

Soon after the work just mentioned, calculations in-
cluding realistic, not average, matrix elements P and
spin-orbit splittings appeared. For a review, see Cohen
and Chelikowsky �1989�.

The introduction of ab initio techniques based on the
local-density approximation resulted, initially, in some
disappointment. The calculated gaps, in particular the
lowest one, were much too small. One soon realized that
the local-density functional need not be the same for the
crystal with either an electron in the conduction band or
a hole in the valence band, a fact that could explain the
discrepancy just mentioned �Perdew and Levy, 1983;
Sham and Schluter, 1983�.

This is the gap problem of the local-density approxi-
mation and can be rather striking. The lowest gap of
germanium turns out to be negative �i.e., Ge would be a
metal in a fully relativistic local-density-approximation
calculation; Bachelet and Christensen, 1985�. A number
of attempts to solve this problem have been made. The
most successful one is based on the GW approximation
�Hybertsen and Louie, 1986�. In this approach, the local-
density exchange and correlation functional is replaced
by a complex self-energy, whose calculation will be
briefly discussed below. Hence the electrons and holes
become quasiparticles. The real part of the self-energy
effects a shift in their energy, whereas its imaginary part
introduces a broadening in a way similar to the self-

FIG. 18. Electronic band structure of germanium with the
double-group �including spin� notation corresponding to high-
symmetry points and directions. The vertical arrows indicate
the direct interband transitions that dominate the fundamental
optical spectra. The lowest gap is indirect, between 
8

+ and L6
−.

Adapted from Yu and Cardona, 2005, Fig. 6.13.
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energies of phonons described in Secs. III.B.3 and IV.B.
The self-energy is discontinuous at the lowest gap, thus
introducing significant corrections to the gap energy,
which for Ge ends up being 0.75 eV, in excellent agree-
ment with the experimental value �0.74 eV at 0 K�.

The self-energy is obtained by appropriately convolut-
ing the bare single-particle Green’s function with the
screened Coulomb interaction �containing both direct
and exchange contributions�. This task reduces mainly
to the determination of a manageable frequency and
wave-vector-dependent dielectric screening matrix
�−1�� ,k�, which has been described in detail by Hybert-
sen and Louie �1986�. This GW procedure leads to cor-
rect energy gaps and single quasiparticle energies �in-
cluding widths� for conduction electrons and valence
holes. It still does not lead to a correct description of the
two-particle excitation spectra as represented by �i���
�Albrecht et al., 1998�. This is illustrated in Fig. 19 for
silicon, where �i��� spectra measured at 300 and 20 K
are compared with calculations based on the quasiparti-
cle band structure �dashed line�. This comparison re-
veals a general trend for tetrahedral semiconductors.
The calculated �i��� is lower than the experimental one
at the E1 critical point, the missing spectral strength hav-
ing been transferred to higher energies �between E2 and
E1��. This problem is solved by considering that �i��� is
due to two-particle excitations, the excitons, consisting
of a conduction electron and a valence hole. The experi-
mental spectra are well reproduced �see solid curve la-
beled “calculation with exciton,” Fig. 19�. It is clear that
the calculated spectrum agrees better with that mea-
sured at 20 K than with that for 300 K, especially
around the E1 critical point. With increasing tempera-
ture the spectrum is modified by the electron-phonon

interaction, not included to date in any such calcula-
tions. Even measurements at the lowest possible tem-
peratures are affected by the zero-point vibrations, as
discussed in Sec. V.B.2.

B. Electron-phonon interaction effects

1. Effect of the electron-phonon interaction on electronic
states and interband transitions: Germanium and
diamond

State-of-the-art calculations of critical-point energies
in semiconductors, including GW self-energies and exci-
ton interaction, are generally believed to reproduce the
experimental data to better than 100 meV. Yet, they ne-
glect the effect of electron-phonon interaction. As we
shall see, the electron-phonon-interaction effects on the
electronic band structure pose a rather formidable the-
oretical problem. Except for a calculation by King-Smith
et al. �1989� based on an ab initio band structure, most
calculations have been performed by combining a semi-
empirical phonon dispersion relation and the corre-
sponding eigenvectors with a semiempirical band struc-
ture. We discuss next the general principles behind the
effects of electron-phonon interaction on optical spectra
and the corresponding calculations.

The Feynman diagrams that represent the renormal-
ization of electronic states to second order in the pho-
non amplitude are shown in Fig. 20. The first-order
terms cancel when taking the average over u in the har-
monic approximation since �u�=0. Note the similarity of
this figure with Figs. 4�a� and 4�b�. Figure 20�a� corre-
sponds to the first-order electron-phonon interaction us-
ing second-order perturbation theory, whereas Fig. 20�b�
represents the second-order electron-phonon interaction
with first-order perturbation theory. Figure 20�a� is a
self-energy diagram and effects a shift as well as a
broadening of the corresponding electronic states. Fig-
ure 20�b�, similar to Fig. 4�b�, corresponds only to an
energy shift. In order to have an imaginary part of the
self-energy, �i���, one must have an energy-conserving
intermediate state in Fig. 20�a�, i.e., the energy of the
electronic state under consideration must equal that of
the intermediate state plus or minus �for T�0� the pho-
non energy. Note the similarity of these considerations
with those made in connection with Figs. 4�a� and 4�b�.

FIG. 19. Spectral dependence of the imaginary part of the
dielectric function of silicon measured at 20 and 300 K. The
dashed line represents the spectrum calculated ab initio with-
out excitonic interaction. The thick solid line corresponds to
such calculation including exciton effects. From Cardona et al.,
1999, and Albrecht et al., 1998.

FIG. 20. Feynman diagrams representing the electron-phonon
interaction that renormalizes the gap energies. �a� Self-energy
diagram �also known as Fan diagram�. �b� Debye-Waller �also
known as Anton~ík or Yu-Brooks� terms. The former contrib-
ute a real and an imaginary part to the critical-point energy,
the latter only a real part.
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Both diagrams in Figs. 20�a� and 20�b� must be taken
together since they correspond to effects proportional to
�u2�. Diagram 20�a� represents what are usually called
the Fan terms and was taken as the only contribution to
the electron-phonon renormalization of gaps in early
work. Diagram 20�b� represents the Debye-Waller or
Anton~ik �sometimes, inappropriately, Yu-Brooks�
terms. Again, it was often taken to be the only contribu-
tion in some early publications, thus implying that the
Fan and Anton~ik �Figs. 20�a� and 20�b�� terms repre-
sented different, alternative theories, instead of comple-
mentary terms to the same order in u and in T.

In a pseudopotential calculation, however, each of
these terms is not uniquely defined, only their sum is.
For a review see Cardona �2001a, 2001b� and Allen and
Cardona �1981, 1983�.

We have mentioned above that the first-order term in
u vanishes in the harmonic approximation. It does not
vanish in the presence of the anharmonic terms that are
responsible for the thermal expansion and the zero-
point renormalization of a0 �Sec. III.B.2�. Hence the ad-
ditional thermal-expansion term

�Eg
te =

�a0

a0
	 �Eg

� ln a0



T
�5.3�

must be added to the shifts corresponding to Figs. 20�a�
and 20�b�. In Eq. �5.3� ��Eg /� ln a0�T is the hydrostatic
deformation potential of the critical point or gap Eg,
which can be obtained from either an ab initio band-
structure calculation or measured in an experiment per-
formed under hydrostatic pressure. As discussed in Sec.
III.B.2, this term can be represented by a Bose-Einstein
function except at very low temperatures, at which one
must take into account the nonmonotonic T dependence
of �a0 /a0 if the gap measurements are sufficiently accu-
rate �see Sec. VI�.

We discuss next the terms in Figs. 20�a� and 20�b�. The
latter �Debye-Waller term� leads to an energy shift �for
monatomic crystals�:

�Eg
DW = �

q,j

ADW�n,q�
�q,jM

�2nB��qj� + 1� , �5.4�

where ADW is proportional to squared matrix elements
of the electron–two-phonon interaction, M is the aver-
age isotopic mass, and �qj the virtual-crystal frequency
�if several isotopes are present�. Figure 20�a� leads to a
self-energy �ep=�r+ i�i for direct electron-hole
excitations10 with an imaginary part that vanishes below
the energy E0,i−��qj, where E0,i represents the lowest
gap, direct or indirect, as the case may be. This fact is
very important at the indirect gap of silicon, as discussed
in Sec. VI. Above the lowest gap, −�i soon reaches val-
ues of the order of 50 meV, close to or larger than the
phonon frequencies. Because of this broadening, the

phonon frequencies are usually neglected in the corre-
sponding perturbation theoretical expression, but keep
in mind that when dealing with transitions involving the
lowest conduction or the highest valence states these
frequencies must be restored in the corresponding ex-
pression, which for the imaginary part of � is

�i
g = − ��

qj
��Vqjc

ep �2��Eg
c − Eqj� + �Vqjv

ep �2��Eg
v − Eqj��

��1 + 2nB��qj�� , �5.5�

where Vqjc
ep and Vqjv

ep are the matrix elements of the
electron-phonon Hamiltonian for energy-conserving
transitions within the conduction and valence bands, re-
spectively. In order to transform Eq. �5.5� into an expres-
sion containing the densities of conduction and valence
states �similar to Eq. �3.14��, we must take �Vqjc

ep �2�1
+2nB��qj�� and the corresponding equation for the va-
lence band as averages out of the summation signs. Sin-
gularities in �i

g will therefore appear at energies Ec and
Ev for which there are singularities in the densities of
states.

The real parts of �g are obtained from the corre-
sponding imaginary parts by application of the disper-
sion relations in a way similar to that used to convert
Eq. �3.14� into Eq. �3.15�. The � functions in Eq. �5.5� are
then replaced by energy denominators and all states, va-
lence as well as conduction, contribute to �r

g as virtual
transition states. Those that are above Eg

c lower the gap,
while those that are below raise the gap, whereas the
opposite is true for Eg

v since Eg=Eg
c −Eg

v.
As in the cases of the temperature and mass depen-

dence of phonon properties �see Secs. III.B.2 and
III.B.3�, the real self-energy effects �plus the thermal ex-
pansion and the effect of Eq. �5.4�� on critical-point en-
ergies, including the lowest indirect gaps of Si, Ge, and
diamond, can be handled by replacing the Bose-Einstein
factors by an average single oscillator. One must also
keep in mind that the e-p matrix elements are propor-
tional to ��qjM�−1, i.e., to M−1/2. Hence at low tempera-
tures, all self-energy effects on the fundamental optical
spectra should be proportional to M−1/2 for monatomic
crystals.

As discussed in connection with Eq. �3.8�, the single-
oscillator approximation cannot be used at very low
temperatures if sufficient resolution �both instrumental
and in terms of the natural linewidth� is available. The
reason is the linear �Debye� dispersion relation of the
acoustic phonons which cannot be approximated by a
single oscillator. As in the case of Eq. �3.8�, this leads to
a T4 dependence for �r and also for the other two con-
tributions to the shift of critical-point energies with tem-
perature. Such effects have been observed for silicon
and discussed in Sec. VI.

2. Dependence of gaps on temperature and isotopic
mass: Typical examples

Before going into the description of the theoretical
work on temperature and isotopic mass dependence of

10We neglect in the present discussion exciton effects. They
can be, to a first approximation, introduced after e-p renormal-
ization of the corresponding electron and hole states.
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critical-point energies, we give a few typical examples of
single-oscillator fits to experimental data on the tem-
perature dependence of gaps, and the consequences de-
rived from them.

We plot in Fig. 21 the indirect gap of germanium mea-
sured versus temperature �dots� by Thurmond �1975�.
The continuous line through and above the dots repre-
sents the single-oscillator fit:

�Ei�T� = 53�1 + 2�e235/T − 1�−1� meV, �5.6�

with T in K. Hence the single-oscillator frequency
amounts to 235 K=164 cm−1, slightly more than half the
Raman frequency of natural Ge �302 cm−1�. The fitted
value of 164 cm−1 is thus reasonable as an average vibra-
tional frequency of natural Ge. The gap Ei has been
measured to shift up by 2.2 meV at low T from 70Ge to
76Ge �Etchegoin et al., 1992�. Using the M−1/2 depen-
dence of the zero-point mass renormalization we obtain

�Ei�0� = − 2 � 2.2 �
M

�M
= − 53.5 meV, �5.7�

in excellent agreement with the value obtained by the
linear extrapolation method �−53 meV; see Fig. 21�. In
Ge it is also possible to measure rather accurately the
lowest direct gap E0 and its temperature dependence.
The reason is that its energy is 0.90 eV at 4.2 K, only

slightly above the lowest indirect gap �0.74 eV at 4.2 K�.
Actually, even the E0+�0 gap and its dependence on
isotopic mass can be measured �Parks et al., 1994�. The
temperature dependence of E0 for Ge has been already
shown in Fig. 21. The extrapolation to T=0 of the linear
dependence found at high temperature gives a zero-
point renormalization of −60 meV, which is found to
correspond, using Eq. �5.7�, to an isotopic effect between
70Ge and 76Ge of 2.5 meV.

The value measured directly by Parks et al. �1994� is
also 2.5 meV �see Fig. 22�. The value of −370 meV
found for the zero-point renormalization of Ei in dia-
mond �see Fig. 23� can be used to obtain the dependence
on isotopic mass by means of the M−1/2 rule �Eq. �5.7��.
We find

dEi�0�
dM

=
1
2

� 370 �
1
13

= 14.2 meV/amu. �5.8�

This value of the isotope mass derivative agrees well
with that determined by measuring the shifts of spectral
features associated with Ei in diamond �13.6 meV/amu;
Collins et al., 1990�.

3. Band-structure and lattice dynamical calculations of
electron-phonon interaction effects

We have so far treated electron-phonon interaction
effects with a phenomenological ansatz involving the ap-
proximation of the dispersion relations with a single
Einstein oscillator whose frequency was a suitable aver-
age of all phonon frequencies. This ansatz turned out to
be appropriate for describing the temperature depen-
dence of the lowest gaps of diamond, silicon, and germa-
nium, except for the indirect gap of silicon at very low
temperatures �T�10 K� where, because of the highly
accurate data available, a T4 dependence had to be used
�Sec. VI�. Through the simple device of linear extrapo-
lation to T=0 of the dependence on T found at high
temperatures, we have been able to obtain the zero-
point renormalization of electronic states produced by

FIG. 21. Temperature dependence of the indirect gap mea-
sured for Ge �dots�. The solid line �through the points and at
higher temperatures� represents a fit with a single oscillator
�see text�. The thin line below 200 K represents the linear ex-
trapolation of the single-oscillator fit to T=0, used to deter-
mine the zero-point renormalization of −53 meV.

FIG. 22. Photomodulated reflectivity used to determine the E0
direct gap of single crystals of 70Ge, 74Ge, and 76Ge, at T
=6 K. From Parks et al., 1994.
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the electron-phonon interaction. In order to perform
this extrapolation, fits to the experimental data versus T
with any of several analytic expressions that reproduce
the linear dependence at high T can be used. The single-
oscillator Bose-Einstein factor is the simplest and physi-
cally most transparent of these expressions. As in the
case of the specific heat �Nernst and Lindemann, 1911�,
two isolated oscillators can also be used to improve the
quality of the fits to the temperature dependence of
electronic gaps and critical points �Manoogian and
Leclerc, 1979; Göbel, Ruf, et al., 1998; Pässler, 2001�.
While the improvement achieved with the two-oscillator
model for the group-IV semiconductors is not very sig-
nificant, it may be in binary compounds, especially those
in which the cation and anion masses are very different
�Pässler, 2001�. In semiconductors containing d electrons
in the valence bands �e.g., the copper and silver halides
and the corresponding chalcopyrites; Manoogian and
Leclerc, 1979; Göbel, Ruf, et al. 1998; Serrano et al.,
2002�, the contributions of the two oscillators in a two-
oscillator fit turn out to have opposite signs!

Before discussing ab initio calculations of the effect of
electron-phonon interaction on electronic states, we
mention a few fully phenomenological expressions, with-

out much physical content, which have been used to de-
scribe the temperature dependence of gaps. The most
commonly used one is Varshni’s expression �Varshni,
1967�:

Eg�T� = Eg�0� −
�T2

� + T
. �5.9�

This expression becomes linear in T at high T and thus
can be used in the extrapolation procedure to determine
unrenormalized gaps at T=0. It has, however, the prob-
lem of yielding a temperature dependence 	T2 at low T,
instead of the T4 predicted theoretically and observed
experimentally for silicon �Sec. VI�. This drawback has
been illustrated for silicon in Fig. 4 of Cardona �2001b�,
where it was shown that in the case of silicon Ei�T� be-
low 50 K falls midway between the fit with Eq. �5.9� and
the single-oscillator fit. In order to remedy this problem,
Pässler �1999� proposed a number of other expressions,
typically of the type

Eg�T� = Eg�0� −
��p

2
��p 1 + 	2T

�p

p

− 1� , �5.10�

with three adjustable parameters: � �units of meV K−1�,
�p �an average phonon temperature in units of K�, and a
dimensionless parameter p. For large T, Eq. �5.10� re-
produces the linear temperature of the gap, whereas at
low T it yields

Eg�T� � Eg�0� −
��

2p
	2T

�

p

. �5.11�

Equation �5.11� reproduces the T4 behavior for p=4.
Pässler gave fitted values of p for 22 semiconductors
�Table I of Pässler, 1999�. They lie in the 2�p�3.3
range. The reason why this value of p is lower than the
expected value of 4 probably lies in the nature of the fit,
which goes well beyond the T range of validity of the T4

law.
Note that Eq. �5.10� leads to the following expression

for the zero-point renormalization of Eg:

�g�0� = −
��p

2
. �5.12�

From the values of � and �p given in Table I of Pässler
�1999� we find �g�0�=270 meV for the indirect gap of
diamond, 65 meV for that of Si, and 47 meV for that of
Ge, in reasonable agreement with those given in Sec.
V.B.2.

The only ab initio calculation of the temperature de-
pendence of a gap �and, by extrapolation, of the zero-
point electron-phonon renormalization� is that of King-
Smith et al. �1989�. For this calculation they used an
approach rather different from that described by the
diagrams of Fig. 20. They considered the energy of a
solid in its ground state at a temperature T to be the
electronic energy plus that of all phonons excited at that
temperature. After exciting an electron-hole pair, the
energy equals the electronic energy of the crystal with
an electron missing at the top of the valence band, which

FIG. 23. Indirect exciton gap of diamond measured by Clark et
al. �1964�. The temperature range does not suffice to pinpoint
the linear behavior expected at high temperatures, but a
single-oscillator fit ���ph��1080 cm−1, see curve drawn
through experimental points� helps �fit parameters from
Pässler, 2001�. The extrapolation of the linear behavior of the
fitted curve at high T as a straight line to T=0 leads to a
zero-point gap renormalization of −370 meV, much larger than
the accuracy of 100 meV often claimed for full-blown ab initio
calculations.
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has been transferred to the bottom of the conduction
band. To this energy one must add that of the corre-
sponding phonons. The gap renormalization results from
the fact that the phonon frequencies are not the same in
the electronic ground state as in the state that contains
an electron-hole excitations. The phonon frequencies ac-
tually decrease when the electron-hole pair is excited, a
fact that results in a decrease of the gap with increasing
temperature.

The ab initio calculation proceeds as follows. The
electronic band structure is calculated with an ab initio
pseudopotential using the local-density approximation.
The harmonic frequencies of 60 phonons are then calcu-
lated using the frozen-phonon technique �Sec. II.C� and
a large supercell �containing 16 atoms� in order to obtain
phonons with q�0. This procedure is carried out twice:
first for the electronic ground state and next for a state
with 1% of valence electrons missing at the top of the
valence band, which have been transferred to the bot-
tom of the conduction band. The differences in the two
frequencies, multiplied by the appropriate Bose-
Einstein factors, give the temperature dependence of
the gap after proper normalization to the crystal volume
and one single excited pair �instead of 1% of the valence
electrons�.

The calculated temperature dependence is about two-
thirds of the measured one, which is rather satisfactory
when one considers that the calculation is ab initio and
without adjustable parameters. The zero-point renor-
malization obtained with the linear extrapolation
method from the calculated temperature dependence
�see Fig. 2 of King-Smith et al., 1989� is about 40 meV,
somewhat smaller than estimates based on experimental
data �see above and also Sec. VI�. King-Smith et al.
�1989� mentioned the interesting fact that all phonon
branches contribute approximately an equal amount to
the decrease in the indirect gap of Si with T.

All other available calculations of e-p renormaliza-
tions of electronic states evaluate the diagrams of Fig. 20
using several types of semiempirical band structures
�e.g., pseudopotential, linear combination of atomic or-
bitals� and lattice dynamics �shell models, bond-charge
models�. The thermal-expansion effect is added sepa-
rately. It is unfortunate that no such calculations are
available for the Cu and Ag halides and related materi-
als �Serrano et al., 2002�. For these materials, the vibra-
tions of the copper �or silver� induce an increase in the
gap with increasing temperature �and, correspondingly, a
positive zero-point renormalization, as opposed to the
vibrations of the anion, which lead to effects of the op-
posite sign�.

The empirical linear-combination of atomic orbitals
�also called tight-binding� method uses electronic band
structures fitted to experimental data �Krishnamurty et
al., 1995�. The atomic displacements associated with the
various phonons and their eigenvectors induce changes
in the matrix elements of the Hamiltonian correspond-
ing to the overlap of wave functions of nearest-neighbor
atoms �a sampling over the whole BZ is performed�.
This change is estimated with the conventional assump-

tion that the matrix elements of the Hamiltonian are
proportional to d−n, where d is the bond length and n a
number of the order of 2 �Olguin et al., 2002�. The per-
turbation Hamiltonian contains terms proportional to
the first derivative of the overlap integrals with respect
to d �corresponding to Fig. 20�a�� and also terms propor-
tional to its second derivative �Fig. 20�b��. For the expo-
nent n the universal value n=2 has been proposed by
Harrison �1989�. More recent values of n, which differ
somewhat from 2 depending on whether one considers
s-s, s-p, or p-p overlap, have been used by Olguin et al.
�2002�. These authors calculated the temperature depen-
dence of the lowest direct gaps of Ge, GaAs, InAs, ZnS,
ZnSe, ZnTe, and CdTe and the corresponding depen-
dence of the gap at T=0 on isotopic masses based on
either the shell model or bond-charge-model lattice dy-
namics.

Figure 24 shows E0�T� calculated for GaAs with the
shell model �solid curve� and the bond-charge model
�dashed curve�, including the effect of thermal expan-
sion �dotted curve�. The dots represent the experimental
points, which follow rather closely the calculated curves.
Olguin et al. �2002� also calculated dE0 /dMGa
=0.35 meV/amu �we give here the average of the two
values obtained with the shell and bond-charge models�,
which agrees remarkably well with the experimental
value of 0.39�6� meV/amu �Garro et al., 1996�. Although
only one stable isotope of As exists, they also calculated
dE0 /dMAs=0.37 meV/amu. The dE0 /dM calculated for
the direct gap of germanium �average bond-charge
model and shell model� is 0.61 meV/amu, whereas the
experimental one is 0.49 meV/amu �Parks et al., 1994�.

The band structure most commonly used for the cal-
culation of electron-phonon effects in semiconductors is
based on empirical pseudopotentials. The first and sec-
ond derivatives of the pseudopotential are calculated on
the basis of the rigid-ion model in which the crystal
pseudopotential is constructed as a combination of
atomic pseudopotential form factors Vi�k� multiplied by
the appropriate structure factors.

For a group-IV semiconductor we find the crystal
pseudopotential V�G�:

V�G� = Vi�G��eiG� + e−iG�� , �5.13�

where G are reciprocal-lattice vectors and �= �G0 /
8��111� for the undistorted crystal. One usually adjusts
the magnitudes of the three shortest G’s to experimental
data �in general optical gaps� and then interpolates and
extrapolates the three empirical values of �G� either with
a spline or with a theoretical expression. When following
this procedure, one must make a choice concerning the
extrapolation of Vi�G� to �G�=0. Two types of ansatz are
used, the respective results not being very different from
each other: �a� Vi�0�=0 and �b� Vi�0�=−2EF /3, where EF
is the Fermi energy of a metal with an electron density
equal to the valence electron density �Allen and Car-
dona, 1983�. The derivatives of V�G� with respect to the
phonon displacements �obtained from the corresponding
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eigenvectors� are found after adding these displace-
ments to � in Eq. �5.13�.

The contribution of the diagram in Fig. 20�b� to the
temperature dependence of an electronic state is ob-
tained from the second derivative of Eq. �5.13� with re-
spect to the displacement u. This contribution can be
evaluated in a rather simple way by replacing V�G� in

the band-structure calculation with Ṽ�G�:

Ṽ�G� = V�G� e−�1/6��u2��G�2, �5.14�

where �u2� is the average phonon displacement squared.
The second factor on the right-hand side of Eq. �5.14� is
the Debye-Waller factor which appears in many other
fields of crystal physics.11 The difference between the
energy of a given electronic state obtained with Eq.
�5.14� and that obtained with Eq. �5.13� gives the contri-
bution of the diagram in Fig. 20�b� with the temperature
effect under consideration. Note, however, that the ex-
ponential in Eq. �5.14� contains not only terms propor-
tional to �u2� �i.e., linear in T at high T� but all iterations
of Fig. 20�b� terms to all orders in �u2�. Below the melt-
ing point, however, the higher-order terms can usually
be neglected.

The simplicity of the calculation of the Debye-Waller
terms resulted in its nearly exclusive use for calculating

Eg�T� while completely neglecting the Fan terms �Fig.
20�a�; see Cohen and Chadi, 1980� until the early 1980s
�Allen and Cardona, 1983; Lautenschlager, Allen, et al.,
1985�.

The first articles in which both diagrams of Fig. 20
were evaluated presented electronic energies versus T
without reporting explicitly the zero-point renormaliza-
tion �. �It can nevertheless be extracted from E�T� data
by the linear extrapolation procedure.� The reason is
that experimental determinations of � were not avail-
able due to the lack of isotopically modified crystals. As
soon as such crystals became available �in the late
1980s�, all calculations of E�T� paid attention to zero-
point renormalizations and the corresponding widths
when finite.

We mention a rather exhaustive study of zero-point
effects and temperature dependence of electronic states
at high-symmetry points of the BZ performed for dia-
mond and germanium using pseudopotential band struc-
tures and bond-charge-model lattice dynamics �Zollner
et al., 1992�. For the indirect gap of diamond, a zero-
point renormalization of −610 meV was calculated, even
larger than the measured one �−340 meV, Cardona,
2001a; see also Sec. V.B.1 where the value of −370 meV
is given�. For the indirect gap of germanium the calcu-
lated zero-point renormalization was −56 meV, in rather
good agreement with the experimental value �−53 meV;
Parks et al., 1994�. The corresponding renormalization
for the direct gap of Ge was calculated to be −62 meV,
also in reasonable agreement with experimental data
�−71 meV, Parks et al., 1994�. We note, however, that
Parks et al. �1994� measured for the zero-point renormal-
ization of the spin-orbit-split direct gap of Ge �E0+�0�
the value −108 meV, which is hard to understand since
one would expect this renormalization to be very similar
to that of the E0 gap.

The gap renormalization given above for diamond is
nearly an order of magnitude larger than that found for
germanium and silicon. This surprising result has been
attributed to the lack of p electrons in the carbon cores
�Cardona, 2005�. It has also been related to the recent
discovery of superconductivity in heavily boron-doped
diamond �Ekimov et al., 2004; Cardona, 2005�.

A particularly interesting case is that of the lead chal-
cogenides �PbS, PbSe, PbTe� for which the lowest direct
gap increases with increasing temperature �Paul and
Jones, 1953; Laff, 1965�. The thermal-expansion contri-
bution also has an anomalous sign and accounts for
about half of the measured temperature dependence of
the gap. The Debye-Waller term of Fig. 20�b� was evalu-
ated by Tsang and Cohen �1971� for PbTe. Together with
the thermal-expansion contribution, it accounts rather
well for the observed temperature dependence of the
gap of PbTe up to �400 K �see Fig. 3 of Cohen and
Chadi, 1980�. The available experimental data suggest a
saturation of E0�T� above 400 K, which may be similar
to the effect observed in CuCl �Göbel, Ruf, et al., 1998�
but requires additional confirmation. The isotopic mass
derivatives of the lowest gaps and the corresponding

11Note that Eq. �5.14� is only valid for monatomic crystals.
Generalization to the polyatomic case is straightforward.

FIG. 24. Temperature dependence of the direct gap �E0 for
GaAs from low to room temperatures. The dots represent ex-
perimental data. The dotted line corresponds to the thermal-
expansion term. The total contribution �thermal-expansion
plus e-p terms� to �E0 is represented by solid �shell model� and
dashed �bond-charge model� lines. From Olguin et al., 2002,
with permission from Elsevier.
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zero-point mass renormalizations measured or calcu-
lated for a number of tetrahedral semiconductors are
listed in Table III together with the linear temperature
coefficients found at high T.

We discuss next the calculations of electron-phonon
renormalization of the E1 critical points that have been
performed for germanium and silicon �Lautenschlager et
al., 1985� and compare them with experimental results.
Since the E1 interband critical points of Ge and Si over-
lap with the continuum of interband transitions, the cor-
responding self-energy has not only a real part but also
an imaginary one �Lautenschlager et al., 1986� which
contributes to the measured Lorentzian width of the cor-
responding optical spectra. The calculation of the Fan
and Debye-Waller terms of Fig. 20 must be performed
not only at the edge of the BZ �see Fig. 18� but also for
several � points along the 
-L direction since they all
contribute to the E1 transitions. The existing calcula-
tions have not included spin-orbit coupling, which is
clearly observed in the experimental spectra for Ge �E1
and E1+�1 critical points� but not for Si. This was done
under the assumption, corroborated by the experiments,
that �1 is temperature independent, i.e., that E1 and
E1+�1 behave the same way when the e-p interaction is
included. We recall that the calculations attributed to E1
and E1+�1 �Zollner et al., 1992� were performed only at
an L point and may differ somewhat from more realistic
calculations involving the whole � direction �Lauten-
schlager, Logothetidis, et al., 1985, 1986�.

The results of the calculation versus T of the real part
of the self-energy, plus the contribution of the diagram
in Fig. 20�b� and the thermal-expansion contribution, are
compared with experimental data in Fig. 25. Although
the experimental shifts of the E1 gaps with T �dotted
lines� are somewhat larger than the calculated ones
�solid lines�, the agreement is quite satisfactory. Extrapo-
lation to T=0 of the calculated data, which can be per-
formed either by hand �using Fig. 25� or with any of the
fitting functions discussed earlier, leads to a zero-point
renormalization of about −90�20� meV for Ge and
−75�15� meV for Si. As can be seen in Fig. 25 the ex-
trapolation of the experimental curves to T=0 leads to
values of the zero-point renormalization that are only
slightly higher than the theoretical ones.

The imaginary part of the self-energy corresponds to
the Lorentzian half width at half maximum which will be
designated here by 
 �note that in the case of phonon
self-energies, 
 was taken to represent a FWHM�. The
Lorentzian 
’s are found by fitting the experimental
�r��� and �i��� spectra with analytical expressions for
the critical points of the type

����� 	 �i���� − Eg�T� + i
�T��n/2, �5.15�

where n is an integer that represents the dimensionality
of the critical point under consideration �n=1 for three-
dimensional critical points; Yu and Cardona, 2005� and
the phase � represents the type of critical point �maxi-
mum, minimum, saddle point� and is sometimes used to
include excitonic effects �Velický and Sak, 1966�. The

accuracy in the determination of the parameters of the
fit with Eq. �5.15� is improved by fitting the second or
third derivative of ����� versus � to the corresponding
derivative of Eq. �5.15�. Because of experimental noise,
the fit parameters, especially 
, depend on the order of
the derivative but usually they are already well con-
verged when the second or third derivatives are used.

Figure 26 shows the calculated and measured depen-
dence of 
 on T for the E1 critical points of Si �a� and Ge
�b�. The experimental results for the E1+�1 critical
points of Ge have also been plotted so as to indicate
that, while slightly broader, they depend on T in a man-
ner similar to the calculated curve. It is interesting to
note that 
�T� can be represented by a single-oscillator
Bose-Einstein expression, which suggests that the zero-
point width 
�0��40 meV results from the zero-point
vibrations and other broadening mechanisms �impuri-
ties, imperfections, surfaces� can be excluded �see Sec.
V.B.4�.

The real and imaginary self-energies shown in Figs. 25
and 26 will be discussed further in the next subsection in
connection with measurements for isotopically substi-
tuted samples.

4. E1 gaps of germanium and silicon: Dependence on
isotopic mass

Two investigations of the dependence of �����
=�r����+ i�i���� on isotopic mass for germanium and
silicon covering the range of the E1 and E1+�1 critical
points have been published �Rönnow et al., 1998;
Lastras-Martínez et al., 2000�.

In order to obtain information on zero-point renor-
malizations of critical points, the measurements were
performed at low temperature ��30 K�. The changes in
E1 and 
E1

induced by isotopic mass changes are rather
small �a few meV� compared with the corresponding
Lorentzian widths ��40 meV; see Fig. 26�. Therefore
the ellipsometric measurements of ����� must be per-
formed very carefully and repeated several times in or-
der to obtain meaningful data on their dependence on
isotopic mass.

Lastras-Martínez et al. �2000� used a sophisticated
method of data analysis based on a Fourier transform
�Aspnes and Arwin, 1983� in the neighborhood of the
critical points. Figure 27�a� shows the measured depen-
dence of the E1 and E1+�1 gaps of Ge, and their differ-
ence �1, on isotopic mass. The solid lines represent fits
with the theoretical expression

EM = E� +
B

�M
, �5.16�

where E� corresponds to the renormalized gap and B is
a fit parameter. From the E1 fit we obtain the gap renor-
malization for a natural Ge crystal E72.6−E�

=−132±28 meV, which agrees with that given in the pre-
vious subsection. The renormalization of the E1+�1 gap,
however, is somewhat larger �−180±30 meV� so that a
marginal increase of �1 with increasing mass seems to
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take place. It may be related to the increase in �0 men-
tioned in Sec. V.B.2. The origin of this dependence of
the spin-orbit splittings on mass is not known.

Figure 27�b� shows the dependence of the Lorentzian

 �corresponding to a half width at half maximum� on
isotope mass for Ge. The solid lines represent fits with
the expression


M = 
� + CM−1/2, �5.17�

where 
� and C are adjustable parameters. 
� should, in
principle, represent any possible temperature-

independent mechanisms and is expected to be small for
high-quality crystals. From the fit to 
�E1� one indeed
finds 
�=−4.6±11 meV, a physically meaningless nega-
tive value which, however, is zero within the error bars.
The zero-temperature width corresponding to the natu-
ral sample turns out to be 41±11 meV and agrees re-
markably well with the calculated value of 34 meV
�Zollner et al., 1992�.

Similar measurements for silicon, described by
Lastras-Martínez et al. �2000�, yield at 30 K a shift of the
E1 gap of 3.7±0.7 meV/amu, which corresponds to a

TABLE III. Derivative with respect to the isotope masses of the lowest energy gaps E0 for several elemental and binary semi-
conductors. Also, zero-temperature renormalization of these gaps �−�E0�T=0�� as obtained from the mass derivatives ��� and
from E0�T� �†, see text�. The last column lists the linear T coefficients of E0�T� in the high-T limit. The listings are from
experimental data and were extracted from Pässler �1999�, Plekhanov �2001�, Meyer et al. �2003�, and the Landolt-Börnstein tables,
unless otherwise indicated.

E0�T�0�
�eV�

dE0 /dMc
�meV/amu�

dE0 /dMa
�meV/amu�

−�E0�T=0�a

�meV�
−�E0�T=0�b

�meV�
−�dE0 /dT�T→�

�meV/K�

Diamond 5.48 14c 14c 364d 370d 0.54
Silicon 1.17 1.04e 1.0e 62e 64 0.32
Germanium 0.74 0.36 0.36 52 47 0.41
AlN 6.20 239 0.83
GaN 3.47 0.4f 4.2f 173f 173 0.60
InN 0.77g 0.025 178 68 0.21
AlP 2.5 23 0.35
GaP 2.34 0.19h 0.95h 86h 85 0.48
InP 1.42 48 0.39
AlAs 2.23 39 0.36
GaAs 1.52 0.39 0.34i 45i 54 0.47
InAs 0.41 20 0.28
AlSb 1.69 39 0.34
GaSb 0.81 33 0.38
InSb 0.23 16i 17 0.25
ZnO 3.44 0.39j 3.3j 164j 156j 0.57j

ZnS 3.84 0.31k 0.59k 105k 80k 0.53
ZnSe 2.82 0.21i 0.22i 50i 47 0.49
ZnTe 2.39 0.44i 0.10i 60i 33 0.45
CdS 2.58 0.06h 0.71h 62h 68l 0.40
CdSe 1.85 34 0.41
CdTe 1.61 24i 17 0.31
CuCl 3.40 −0.076m,n 0.36m,n 17m,n 31h −0.089o

CuBr 3.07 −0.11m,n 0.12m,n 6m,n 5m,n −0.087n

CuI 3.11 −0.53m −9m �0.0m

PbS 0.29 +0.069o −0.43o �0o −0.45o

Cu2O 2.17 0.22p,d 1.1 33p,d 33p,d 0.34p,d

aObtained from the mass derivatives of the gaps.
bObtained from the linear extrapolation of E0�T� to T=0.
cCollins et al. �1990�.
dCardona, Meyer, et al. �2004�.
eKaraiskaj et al. �2002a�.
fManjón, Hernández-Fenollosa, et al. �2004�.
gYu and Cardona �2005�.
hMeyer et al. �2003�.

iOlguin et al. �2002�.
jManjón et al. �2003�.
kManjón, Moller, et al. �2004�.
lZhang, Ruf, et al. �1998�.
mSerrano et al. �2002�.
nGöbel, Ruf, et al. �1998�.
oThewalt and Cardona �unpublished�.
pFröhlich and Cardona �unpublished�.
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zero-point renormalization of −118±22 meV. Note that
in Fig. 19 there is a shift of about −100 meV between the
E1 peak measured at 20 K and the calculated one. This
difference may be due, at least in part, to not having
included the electron-phonon interaction in the other-
wise state-of-the-art calculation.

5. Low-frequency dielectric constant versus temperature
and isotopic mass

An important parameter governing the optical re-
sponse of crystals is the long-wavelength �i.e., low-
frequency� dielectric function �usually called dielectric
constant since the dispersion in this region is small�. We
consider here only cubic semiconductors, in which case
this function ��0� is real and a scalar. We discuss only
nonpolar crystals so as to be able to neglect direct
phonon-photon interaction. This interaction can, other-
wise, be neglected above the frequency of all IR-active
phonons. Our aim here is to discuss extant calculations
and experimental data concerning the temperature and
isotopic mass dependence of ��0�.

Like the case of other optical parameters, the tem-
perature dependence �also called renormalization� of
��0� contains two contributions: that of thermal expan-
sion and that which results from the electron-phonon
interaction, which is related to the effects of the dia-

grams in Fig. 20 as applied to all electronic intermediate
states. The thermal-expansion effect can be obtained
from the measured or calculated dependence of ��0� on
volume �at constant T� and the effect of thermal expan-
sion on the lattice parameter a0�T� �Sec. III.B.2�. An
early calculation of the electron-phonon interaction ef-
fect on ��0� �Yu and Cardona, 1970� included only
Debye-Waller terms. It was based on the assumption of
a single average gap, the Penn gap, with energy ��Penn
which determines ��0� through the expression

��0� � 1 + D
�p

2

�Penn
2 . �5.18�

In Eq. �5.18� �p is the plasma frequency of the valence
electrons:

�p
2 =

4�Nve2

m
, �5.19�

where Nv is the number of valence electrons per unit
volume and e ,m the electron charge and mass, respec-
tively.

Equation �5.18� can be used to calculate the depen-
dence of ��0� on volume provided the dependence of
�Penn on volume and the effect of the e-p interaction is

FIG. 25. Shift of the E1 gap of Si and Ge vs temperature.
Dashed line, shift due to electron-phonon interaction. Solid
line, shift due to electron-phonon interaction plus thermal ex-
pansion. Dots, experimental points. From Lautenschlager,
Allen, et al., 1985.

FIG. 26. Broadening of the E1 gap for �a� Ge and �b� Si vs
temperature. Solid lines, calculated phonon-induced broaden-
ings. The symbols and dotted lines represent experimental
data �for E1 and E1+�1 in the case of Ge�. From Lauten-
schlager et al., 1986.
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known. Yu and Cardona �1970� identify �Penn with the
gap at the X point �
4.4 eV for Ge; see Fig. 18� and
calculate the effect of the e-p interaction on �Penn using
empirical pseudopotentials multiplied by temperature-
dependent Debye-Waller factors, which corresponds to
Fig. 20�b�. A simple analytic calculation yields values of
the high-temperature slope d��0� /dT that are in fairly
good agreement with measurements for Si, Ge, GaAs,
and other III-V compounds �see Table III of Yu and
Cardona, 1970, where d ln n�0� /dT is given, n�0�=���0�
being the refractive index�. �For recent experimental re-
sults see McCaulley et al., 1994.� Using a single-oscillator
temperature dependence of ��0�, with ��ph��430 K, we
estimate for silicon ���0�=12� from the data in Table III
of Yu and Cardona �1970� a zero-point e-p renormaliza-
tion ���0�� +0.22. A more elaborate calculation, in-
cluding Debye-Waller and Fan terms �see Table I of
Karch et al., 1996�, gives ���0�= +0.14.

The results of Yu and Cardona �1970� suggest that the
Fan terms in the calculation of the corresponding tem-
perature dependence of ��0� are small. A hand-waving
argument supporting this conclusion can be given as fol-
lows.

The conduction- and valence-band states involved in
the transitions at the energy ��Penn occupy, on the aver-
age, the centers of the respective valence and conduc-
tion bands. The corresponding self-energy diagrams
�Fig. 20�a�� have intermediate states above and below
those involved in the Penn gap. The corresponding
�r��Penn� for these two groups of states are negative and
positive, respectively. They therefore approximately can-
cel each other. The imaginary part �i��Penn�, of course,
does not vanish and contributes to the broadening of the
corresponding critical points but such broadening, to a
first approximation, does not contribute to ���0�.

Taking the usual M−1/2 dependence for ��0�, we find
for silicon

d��0�
dM

= −
1
2

���0�
M

� −
1
2

0.14
29

= − 2.4 � 10−3 �amu�−1.

�5.20�

The isotope mass derivative in Eq. �5.20� is rather small,
corresponding to d ln n�0� /dM=1�10−4 �amu�−1. This is
the reason why, to date, there are no direct experimental
determinations of the dependence of ��0� on isotope
mass.

The points in Fig. 28 represent measurements of the
temperature dependence of the refractive index of dia-
mond n�0,T�. The solid curve through the points corre-
sponds to the single-oscillator fit �Ruf, Henn, et al.,
2000�:

n�0,T� = n0 + A�nB�����/kT� +
1
2
� , �5.21�

where ����711 cm−1, A=0.019�7�, and n0=2.377�3�. The
straight line in Fig. 28 represents the asymptotic behav-
ior corresponding to Eq. �5.21�, whose intercept with the
vertical axis yields a zero-point renormalization n�0,0�
−n0=A /2= +0.0095, which corresponds to ���0�=0.045;
this value is three times smaller than that calculated by
Karch et al. �1996�. In order to clarify this discrepancy, it
would be interesting to measure directly the dependence
of ��0� on isotopic mass. The value expected on the basis
of the M−1/2 behavior �Eq. �5.20�� is, however, too small
to justify the expense involved in the production of two
suitable diamonds.

6. Donor and acceptor states

The discovery of discrete infrared absorption transi-
tions between the ground state and various bound ex-
cited states of the shallow acceptor impurity B in Si by
Burstein et al. �1953� provided an important new tool for
the advancement of semiconductor physics. The rapid
progress of this field, with ever-increasing spectral reso-
lution and sensitivity coupled with increasingly sophisti-

FIG. 27. �a� Energies of the E1 and E1+�1 critical points of
germanium vs isotopic mass. Also shown is their difference,
equal to the spin-orbit splitting �1. The solid lines are fits to
the experimental points with the expression EM=E�+BM−1/2.
�b� Lorentzian widths �half width at half maximum� of the E1
and E1+�1 critical points of germanium vs isotopic mass. The
solid lines are fits with the expression 
M=
�+CM−1/2. From
Rönnow et al., 1998.
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cated theoretical treatments of the ground- and excited-
state binding energies, is covered in the excellent review
by Ramdas and Rodriguez �1981�.

The common analogy between impurity states and the
states of the hydrogen atom is most directly applicable
to the case of shallow donor impurities in direct-gap
semiconductors, where the electron effective mass m* is
a scalar and small compared to the free-electron mass
m0. Thus the spectrum of bound states is simply a scaled
version of the hydrogen spectrum, with binding energy
for states of principal quantum number n �n=1 being the
ground state� of

EB
n = 13.6

m*

n2�0
2 �eV� , �5.22�

where 13.6 eV is the hydrogen Rydberg, m* the effective
mass of the bound carrier �in units of the free-electron
mass�, and �0 the dielectric constant of the host material
�the static � in nonpolar semiconductors�. Calculations
for donor states in indirect band-gap semiconductors
such as Si and Ge are rendered somewhat more compli-
cated by the existence of multiple, degenerate
conduction-band minima, together with the fact that for
each minimum the constant-energy surfaces are ellip-
soids of revolution, requiring characterization by two ef-
fective masses, labeled longitudinal and transverse. The
calculation of acceptor levels is complicated by the de-
generacy of the valence bands at the center of the BZ
and the resulting warping of the constant-energy sur-
faces, which makes the definition of a simple effective-
mass tensor for bound holes impossible. Baldereschi and

Lipari �1973, 1974�� introduced a powerful method, re-
writing the Luttinger Hamiltonian in terms of spherical
tensors and separating terms having cubic and spherical
symmetry, with the properties of the valence-band edge
characterized by the dimensionless Luttinger parameters
�1, �2, and �3. For further details on the theory of impu-
rity states and their binding energies the reader is again
referred to the review by Ramdas and Rodriguez �1981�
and to Yu and Cardona �2005, Chap. 4�.

Another complication that we have not yet discussed
is the deviation from the simple screened Coulomb po-
tential seen by the bound carrier when it approaches
near the impurity ion—the so-called central-cell effects.
These are, of course, most significant for states whose
wave functions have significant amplitudes near the im-
purity ion: S-like states, and in particular the ground
state. They are almost always negligible for excited
states having odd symmetry and thus wave functions
with nodes at the impurity-ion core.

The most general of these effects is the reduced
screening of the Coulomb potential near the impurity
ion, which requires the use of a spatially dependent, or
nonlocal dielectric constant, leading to an increase in the
ground-state binding energy as compared to the simple
hydrogenic approximation. A technologically important
effect is the chemical shift, which results from the exis-
tence of potentials other than the simple Coulomb po-
tential when the bound particle is near the impurity-ion
core, leading to different ground-state binding energies
for different chemical impurity species. The chemical
shift is smallest for isocoric impurities, whose nuclear
charge differs only by ±1 from the replaced host atom
�for Si, the isocoric acceptor is Al, and the isocoric do-
nor P�. These chemical shifts also affect, to a lesser ex-
tent, the even-parity impurity excited-state binding en-
ergies, but are generally negligible for the odd-parity
excited states.

An interesting central-cell effect seen in a few cases is
the small dependence of the impurity ground-state bind-
ing energy on the isotopic mass of the impurity species.
Since this effect is outside the scope of this review, it will
be discussed only briefly. It was first reported by Dingle
�1959� for the Cu acceptor in ZnO. It was later observed
for a number of other impurities in a variety of semicon-
ductors as reviewed in the theoretical paper by Heine
and Henry �1975�, who following Morgan �1968� inter-
preted the energy shift as resulting from the change of
the �mass-dependent� zero-point vibrational energy of
the impurity due to the change in the charge distribution
near the impurity ion between the electronic ground and
excited �or ionized� states. Since the ground-state charge
distribution very near the impurity ion is central to this
effect, it is expected to be significant only for rather
deep impurities and traps, as summarized by Heine and
Henry �1975�, but recent results for the shallow acceptor
B in Si discussed in the next section would seem to chal-
lenge this assumption.

The first report of a host isotope dependence of an
impurity binding energy was for the B acceptor in dia-
mond �Kim et al., 1997, 1998�. In Fig. 29 the ground-state

FIG. 28. Temperature dependence of the refractive index of
diamond. The open circles and asterisks represent experimen-
tal data. The thick solid line represents the fit of Eq. �5.21� to
these data. The thin solid line extrapolates the high-
temperature limit of the fit to the data. From Ruf, Cardona, et
al., 2000.
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to excited-state absorption spectrum for B in natural
diamond ��99% 12C� is compared to that in a �99%
13C diamond. Clearly the B ground-state binding energy
is �1.5 meV larger in 13C than in 12C. A closer exami-
nation also reveals that the isotopic shift is not constant
for the different transitions, but increases somewhat as
the relevant excited-state binding energy decreases. Kim
et al. �1997, 1998� considered a number of possible
mechanisms for the observed shift, concluding, for ex-
ample, that the host isotope dependence of �0 would be
much too small to account for it, but were unable to
provide any quantitative explanation.

Cardona �2002� similarly concluded that the change in
�0 was much too small to account for the observed shifts,
but introduced a simple explanation in terms of the host
isotope dependence of the valence-band effective
masses, which reproduced the observed result. In gen-
eral, band-edge effective masses as determined via k ·p
perturbation theory are to a good approximation pro-
portional to the relevant interband gap energy �Yu and
Cardona, 2005�. Since the host isotope dependence of
many of the gap energies have already been determined,
one can then calculate the expected change in carrier
effective mass �or valence-band Luttinger parameters�
with isotopic composition, and substitute these into Eq.
�5.22� or a more sophisticated binding-energy calcula-
tion, and obtain the host isotope shift of the impurity
ground- and excited-state binding energies. For the case
of diamond, Cardona �2002� used the simple one spheri-
cal band approximation for the acceptor binding energy
in which the binding energies are given by Eq. �5.22�
with the simple substitution m*=�1, which can be justi-
fied by the dominance of �1 for diamond. Taking �1

	 �E0��
−1, where E0� is the lowest direct gap, m* was found

to increase by 0.37% in going from 12C to 13C, producing
the same relative increase in the ground-state binding
energy, in good agreement with experiment. While not
discussed explicitly by Cardona �2002�, this simple

model clearly predicts that the excited-state binding en-
ergies will also increase by the same factor, explaining
qualitatively the observation of Kim et al. �1997, 1998�
that the energy differences between the transitions in
12C and 13C increased with increasing transition energy.

Similar host isotope shifts of the binding energy of the
shallow donor P and the shallow acceptor B have been
observed between 28Si and 30Si by Karaiskaj, Thewalt, et
al. �2003�, as shown in Fig. 30. As for diamond, the im-
purity binding energies are seen to increase with increas-
ing host mass, and the shift between transitions in 28Si
and 30Si is seen to increase for increasing transition en-
ergy �smaller final-state binding energy�. In Si these
shifts were found to be much less than for B in diamond,
both due to the small relative mass change and to the
much lower impurity binding energies. An accurate de-
termination of the shifts was further hampered by the
relatively low quality of the 30Si sample, resulting in
broad and slightly split transitions due to heavy doping
effects and the presence of random strain fields, possibly
from C contamination. Karaiskaj, Thewalt, et al. �2003�
concluded that between 28Si and 30Si the ground-state
binding energy for the B acceptor increased by
0.73 cm−1, and that of the P donor by 0.32 cm−1, in good
agreement with theoretical estimates based on the host
isotope dependence of �0 and m*.

VI. NEW RESULTS FOR 28Si: EFFECTS OF ISOTOPIC
RANDOMNESS ON ELECTRONIC PROPERTIES
AND TRANSITIONS

A. Introduction

As discussed in Sec. IV, the isotopic randomness
present in semiconductor crystals having the natural iso-
topic composition, or in crystals having a modified but
mixed isotopic composition, can have important effects
on many aspects of the vibrational properties of the ma-
terial and on the spectroscopy of its phonons. In particu-

FIG. 29. Comparison of the absorption spectrum of the boron
acceptor in diamond of natural isotopic composition �99% 12C�
and 13C diamond. From Kim et al., 1998.

FIG. 30. Comparison of several of the infrared absorption
lines of the acceptor boron and the donor phosphorus between
28Si and 30Si. From Karaiskaj, Thewalt, et al., 2003.
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lar, the isotopic randomness has a dramatic influence on
the thermal conductivity, especially at low temperatures,
as reviewed in Sec. IV.A. However, until the recent re-
sults for highly enriched 28Si appeared, the subject of
this section, studies of isotopic effects on the electronic
properties of semiconductors, focusing mainly on the de-
pendence of electronic band-gap energies on average
isotopic mass �M� as reviewed in Sec. V.B, provided no
evidence for the possible effects of isotopic randomness.
In other words, they dealt with isotopic effects only
within the virtual-crystal approximation. The lack of any
experimental evidence for the broadening of electronic
transitions due to isotopic randomness in the numerous
previous studies of other semiconductors summarized in
Table III likely resulted from the rather small effects of
isotopic composition on band gaps and electronic tran-
sition energies. In semiconductors other than Si unre-
lated inhomogeneous broadening mechanisms domi-
nated the observed linewidths.

The various dramatic demonstrations of the impor-
tance of the isotopic randomness present in natural Si
reviewed in this section are a testament to the highly
developed state of Si materials science and technology.
Indeed, the importance of inhomogeneous isotope
broadening effects in setting many of the spectroscopic
limits in natural Si is at first surprising given that natural
Si is close to monoisotopic, consisting of 92.23% 28Si
+4.67% 29Si+3.10% 30Si. It is now routine to produce
natural Si samples via the floating-zone method and
dislocation-free growth, which have sufficiently low con-
centrations of both electrically active impurities �donors
and acceptors� and electrically inactive impurities such
as O and C �which can nevertheless introduce inhomo-
geneous random strain fields� so as to leave the inhomo-
geneous isotope broadening as the dominant broadening
mechanism for many transitions. Of course, the demon-
stration of this also requires the growth of isotopically
enriched samples that are dislocation-free and have suf-
ficient chemical purity so that their transitions are nar-
rower than those seen in natural Si. While this has been
achieved for 28Si, the chemical purity of these samples
still lags considerably behind what is available for natu-
ral Si. Consequently, while many transitions are found to
be narrower in 28Si than in natural Si, and sometimes
dramatically so, the question of the ultimate linewidths,
and what mechanisms determine them, remains open at
this time.

B. Linewidths of shallow donor and acceptor
bound-exciton transitions in isotopically enriched Si

1. The spectroscopic challenge presented by 28Si

The spectroscopy of electronic transitions in isotopi-
cally enriched 28Si held, and no doubt still holds, many
surprises, as became evident in the first comparison of
the photoluminescence �PL� spectra of 28Si and natural
Si �Karaiskaj et al., 2001�. High-resolution PL spectros-
copy had been carried out for a number of years on
high-quality samples of natural Si doped with a variety

of impurities, using the improved resolution available
with Fourier transform techniques based on commer-
cially available Michelson interferometers �Thewalt et
al., 1990; Karasyuk et al., 1992, 1993, 1994�. The maxi-
mum instrumental resolution of �0.014 cm−1 available
with such instruments �Bomem DA8� at the Si photolu-
minescence energy region was more than adequate to
resolve the narrowest line observed in natural Si, the
no-phonon transition of the P bound exciton, which ex-
hibited a FWHM of 0.041 cm−1. It should be emphasized
that identical linewidths and BE structure were seen in
all high-quality samples of natural Si, where high quality
can be defined as dislocation-free with very low concen-
trations of C and O �less than �1016 cm−3� and donor
and acceptor concentrations below �1015 cm−3, and in
fact usually well below that. Note that P and B are the
most widely studied shallow donor and acceptor impuri-
ties in Si, since their residual concentrations of
�1011 cm−3 in even the purest natural Si are readily ob-
served in the bound-exciton PL spectrum.

The no-phonon PL transitions of the bound excitons
�BE� associated with the shallow donor P and the shal-
low acceptor B are shown for natural Si as the top spec-
trum in Fig. 31. Note that the donor BE transition �NP

1 is
expected to be a single unsplit line �in the absence of
magnetic or strain fields� from the shell model of BE
and bound multiexciton complexes in Si �Kirczenow,
1977�. The nine components of the B bound exciton evi-
dent in natural Si spectra, when using a PL apparatus
having sufficient spectral resolution, can be understood
at a simplified level as arising from two separate three-
fold splittings of the acceptor BE ground state. First, the
12-fold degenerate �including spin� 1s-like electron state
in Si is split by the valley-orbit interaction into three
states having symmetry 
1, 
3, and 
5, just as for the
donor ground state, and second, the two 1s-like 
8 holes
in the acceptor BE interact, and this hole-hole interac-
tion splits the coupled two-hole state into three compo-
nents ��
8�
8�=
1+
3+
5�. In reality, the B bound-
exciton ground state is even more complicated, as shown
by detailed studies of the splitting of these PL transitions
in natural Si under uniaxial stress �Karasyuk et al., 1992�
and magnetic fields �Karasyuk et al., 1993�. The pre-
dicted location of 18 BE ground-state components in the
absence of perturbations, based on fitting to the uniaxial
stress results �Karasyuk et al., 1992�, are shown as the
vertical dashes at the bottom of Fig. 31, but again only
nine distinct components can be resolved in the PL spec-
trum of B in natural Si.

The no-phonon region of the PL spectrum of 28Si �en-
riched to 99.9%�, shifted so as to compensate for the
0.92 cm−1 decrease in band-gap energy relative to natu-
ral Si, is shown at the bottom of Fig. 31. It is immedi-
ately obvious that the lines are much sharper in the 28Si
sample than in natural Si, even though the 28Si was of
only moderate chemical purity, with a B concentration
of 7�1014 cm−3 and a P concentration of 7�1013 cm−3.
Note that the new structure for the B bound exciton
revealed in the 28Si spectrum agrees well with the pre-
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dicted location of the components indicated along the
bottom. The observed linewidth of the P bound exciton
line was 0.014 cm−1 FWHM, essentially identical to the
measured instrumental resolution. The inability of our
instrument to resolve the linewidths of the BE transi-
tions in the 28Si sample is further evidenced by the struc-
ture at the base of the P bound-exciton line in the bot-
tom spectrum of Fig. 31—it results from taking the
Fourier transform, with no apodization so as to maxi-
mize the resolution, of an interferogram that is still
strongly modulated at the maximum optical path differ-
ence achievable by the instrument. On the basis of these
results, Karaiskaj et al. �2001� could only set an upper
limit of 0.005 cm−1 on the true FWHM of the P bound
exciton in 28Si. No instrument capable of collecting PL
spectra at such high resolution at this photon energy was
commercially available, resulting in a spectroscopic chal-
lenge. A solution to this challenge will be discussed in
the next subsection.

In hindsight, the importance of inhomogeneous iso-
tope broadening for the no-phonon bound-exciton PL
transitions, which have been studied in natural Si for
many years, is readily understood. It is nonetheless re-
markable that so little attention was paid in the past to
the issue of how narrow these transitions might be, and
what processes determined their widths. A simple calcu-
lation combining the observed shift of the band-gap en-
ergy in Si with average isotopic mass with the statistical
fluctuations of the isotopic composition expected for
natural Si within an effective BE volume of radius
�3.5 nm produces a broadening in good agreement with
the observed FWHM of 0.041 cm−1 for the P bound ex-
citon in natural Si. Dramatic reductions of the BE no-
phonon linewidths were also observed for the deeper
acceptors Al, Ga, and In in 28Si, as discussed in Sec.
VI.C, although for the acceptor BE the broadening may
be better modeled as arising predominantly from a
broadening of the acceptor ground state, the final state
of the BE transition. This is because the randomness of

the isotopic composition has a greater effect on the
valence-band edge than on the conduction-band edge, as
discussed in Sec. VI.C, and also because the impurity
ground-state wave function is spatially more compact
than either the electron or hole wave functions of the
BE, resulting in larger statistical fluctuations around the
average composition within the effective volume of the
ground-state wave function.

Thus the first investigation of bound-exciton PL in
isotopically enriched Si �Karaiskaj et al., 2001� left us
with a spectroscopic challenge. The BE linewidths in 28Si
were narrower than the instrumental resolution avail-
able with a Fourier transform PL apparatus having the
highest resolution available in that spectral region of any
commercially available system. One possible approach
would be to construct a PL apparatus having higher
resolution, either a custom-made Michelson interferom-
eter or a system based on Fabry-Perot interferometers.
We decided against both of these possibilities, the first
because constructing a Michelson interferometer having
more than a modest increase in resolution over existing
systems would be time consuming and financially pro-
hibitive, and the second since it lacked the spectroscopic
flexibility we had become accustomed to in Fourier
transform PL, and also because it was not clear that it
would provide the sensitivity needed to study the weak
Si PL signals at the required resolution.

2. Meeting the 28Si challenge: Photoluminescence
excitation spectroscopy

Instead we adopted an approach capable of an enor-
mous increase in spectral resolution: photoluminescence
excitation spectroscopy, using a tunable single-frequency
laser source whose sub-MHz linewidth ��40 kHz� would
be more than adequate to resolve the BE linewidths
even if they were at their fundamental lifetime limit
�shallow BE lifetimes in Si are in the 100 ns–1 �s range
�Schmid, 1977��. In photoluminescence excitation spec-
troscopy, the laser source is scanned across the BE no-
phonon transitions, and the very weak absorption in
which BE are created is monitored by observing the re-
sulting PL in the relatively strong transverse-optical
�TO� wave-vector-conserving-phonon replica, which is
well separated in energy from the no-phonon region
simplifying the rejection of the strong scattered laser
light. We had earlier demonstrated the feasibility of
studying shallow BE no-phonon transitions in natural Si
at moderate resolution using a multimode Ti-sapphire
laser source �Karasyuk et al., 1994�. The new photolumi-
nescence excitation apparatus, which has been described
briefly elsewhere �Cardona, Meyer, and Thewalt, 2004;
Thewalt et al., 2004�, is based on a temperature-tunable
distributed feedback Yb-doped fiber laser, followed by
an Yb-doped fiber amplifier providing up to 600 mW of
tunable single-frequency laser excitation spanning the Si
no-phonon BE energy region. The transverse-optical
wave-vector-conserving-phonon replica BE photolumi-
nescence signal is separated from the scattered laser ra-
diation using a 3/4 m double monochromator, and

FIG. 31. Photoluminescence spectra at the maximum instru-
mental resolution of 0.014 cm−1 FWHM, comparing the no-
phonon P bound-exciton �BE� ��NP

1 � and B bound-exciton
transitions in natural Si �top� and 28Si �bottom�. The 28Si spec-
trum has been shifted up in energy by the change in band-gap
energy �0.92 cm−1, the length of the horizontal arrow� so as to
align the transitions. From Karaiskaj et al., 2001.
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detected by a liquid-nitrogen–cooled InGaAs photode-
tector. While the details of the photoluminescence exci-
tation spectroscopy of 28Si will be published elsewhere,
we give a brief summary of the results here.

In Fig. 32, the photoluminescence excitation spectra
of two subcomponents of the B bound-exciton no-
phonon spectrum, which are seen as single lines in the
PL spectrum at the bottom of Fig. 31, are compared for
two samples of 28Si, both enriched to 99.9% but having
somewhat different impurity content �in comparing tran-
sition energies, note that the 28Si spectrum in Fig. 31 has
been shifted up by 0.92 cm−1�. Linewidths as narrow as
0.0025 cm−1 are observed for the 28Si sample 1, but there
is good reason to believe that this is still not the funda-
mental limit for BE linewidths in isotopically enriched
Si. As seen in Fig. 32, the spectrum of sample 1 in the
region near 9280.00 cm−1 is considerably sharper than
that of sample 2, while the transitions near 9279.37 cm−1

show an additional splitting, which is larger for sample 2
than it is for sample 1. We believe that this sample-
dependent splitting, and the extra broadening seen for
sample 2, both result from residual random strain fields
in the samples, which are evidently larger for sample 2.
Note that the splitting of some of the B bound-exciton
components and the broadening of others can be under-
stood in terms of the different responses of the various
BE ground-state components to strain fields �Karasyuk
et al., 1992�. The presence of random internal strain
fields is also demonstrated in the photoluminescence ex-
citation spectrum of the P bound exciton in both
samples, which is expected to be a single line, but is in
fact split with sample 2 again showing the larger split-
ting.

The origin of these random internal strain fields is
quite likely unintentional C impurities, which at higher
concentrations have been shown �Safonov, Davies, and
Lightowlers, 1996� to produce readily observable split-
tings of the P bound-exciton no-phonon PL line in natu-
ral Si. The photoluminescence excitation spectroscopy
of 28Si thus appears to be sample limited at the present
time, and the determination of the ultimate shallow BE
linewidths must await the availability of samples having
higher chemical purity and perfection.

Another aspect of the photoluminescence excitation
spectra shown in Fig. 32 remains to be discussed: the
splitting of each of the components into doublets, with
identical splitting energies of �0.011 cm−1 and intensity
ratios of �80/20. In fact, all of the components of the B
bound exciton observed in the photoluminescence exci-
tation spectra show this doublet splitting. It is inter-
preted as a shift of the B bound-exciton localization en-
ergy with B isotopic species, since natural B consists of
11B and 10B with an abundance ratio of �80/20. While
shifts of BE energies with the isotopic mass of the bind-
ing center have been previously observed for much
deeper BE in other semiconductors �Heine and Henry,
1975�, this is the first observation of an impurity isotope
shift for such a shallow BE, and its observation results
directly from the dramatic improvement in BE linewidth

realized in 28Si. Confirmation of the B isotope shift in Si
has been obtained from high-resolution midinfrared ab-
sorption spectroscopy of the B acceptor in 28Si, as dis-
cussed in Sec. VI.D.

3. Applications of ultrahigh-resolution
photoluminescence excitation spectroscopy
in 28Si: The temperature dependence of gap energies as
T\0

As discussed in Secs. V.B.1 and V.B.2, the temperature
dependence of band-gap energies in semiconductors has
received much attention, both theoretically and experi-
mentally. In the past, the observed temperature depen-
dences have been fitted with empirical expressions such
as Eq. �5.9� suggested by Varshni �1967�, which predicts
a T2 dependence as T→0, and more general forms such
as Eq. �5.10�, proposed by Pässler �1999�, which in the
low-T limit varies as Tp where p is a fitting parameter
ranging from 2 to 3.3 for various semiconductors. How-
ever, because of the limited spectral resolution available
in all of the previous studies, reliable data were not
available in the true T→0 limit, and the fits are in fact
dominated by the intermediate to high-T behavior. It
has already been argued in Secs. V.B.1 and V.B.2 that
the true, universal low-T behavior of gap energies
should go as T4, but this argument appeared only very
recently in our study �Cardona, Meyer, et al., 2004� of
the temperature shift of BE transitions in 28Si covering
the liquid-He temperature region.

That study made use of the remarkably narrow BE
linewidths discussed above in the photoluminescence ex-

FIG. 32. Photoluminescence excitation �PLE� spectra of two of
the B BE no-phonon components revealed in the bottom spec-
trum of Fig. 31 compared for the two best available samples of
28Si. In comparing energies with Fig. 31, the 0.92-cm−1 shift
applied there to the 28Si spectrum must be taken into account.
The narrowest component of sample 1 has a FWHM of
0.0025 cm−1. Note that both samples show an identical doublet
splitting for all B BE components of 0.011 cm−1, which is in-
terpreted as a splitting between the BE associated with 10B
and 11B. Differences between the spectra for samples 1 and 2
are discussed in the text.
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citation spectra of shallow BE in 28Si, having E /�E
4
�106. The temperature shift of the band gap, which is
barely observable between 4.2 and 1.3 K when using
standard PL spectroscopy at the maximum instrumental
resolution of 0.014 cm−1, was revealed by locking the
photoluminescence excitation laser source to the stron-
gest B bound-exciton transition and monitoring the laser
frequency with a wave meter, using averaging to in-
crease the precision. In this way, changes of EG
��278.2 THz in frequency units� as small as 2 MHz
could be detected, giving a resolving power of greater
than 108. While the raw data of BE energy versus tem-
perature already gave a good fit to T4, it was realized
that the actual temperature dependence was only a
small part of the observed shift. In all of these ultrahigh-
resolution measurements, the sample sits freely in the
liquid-He bath and the temperature is changed by
pumping on the He gas, reducing the vapor pressure and
thus the temperature. Thus the hydrostatic pressure
changes as well as the temperature and it could be dem-
onstrated that this pressure effect was, in fact, larger
than the temperature effect and that the hydrostatic
pressure coefficient of the Si band gap measured at He
temperature and �1 bar agreed well with the known co-
efficient, measured using much higher pressures �Car-
dona, Meyer, and Thewalt, 2004�.

After carefully accounting for these hydrostatic pres-
sure effects, the remaining temperature component of
the Si band-gap shift was in very good agreement with
the predicted T4 behavior, as shown in Fig. 33. While
these results for the indirect gap of 28Si are at present
the only clear confirmation of the behavior, the predic-
tion is expected to apply quite generally to the gaps and
critical-point energies of all semiconductors and insula-
tors in the T→0 limit.

C. Origin of the intrinsic acceptor ground-state splitting
in Si: Isotopic randomness

A discussion of the literature on the intrinsic or re-
sidual acceptor ground-state splitting, which has been
studied in Si using a wide array of experimental tech-
niques for over 25 years, is beyond the scope of this re-
view, but a short summary has been given by Karaiskaj,
Thewalt, et al. �2002b, 2003�. These diverse studies dem-
onstrated a small doublet splitting �or, to be more pre-
cise, a distribution of small splittings� of the neutral ac-
ceptor �A0� ground state, which was expected to be a
fourfold degenerate 1S 
8 level in the absence of pertur-
bations reducing the crystal symmetry. The most prob-
able splitting increases with increasing acceptor binding
energy, and the distribution for a given acceptor species
is reproducible between all samples of sufficiently high
quality. This splitting is discussed here due to a method
of detecting it optically in the no-phonon PL and photo-
luminescence excitation spectra of BE associated with
these shallow acceptors in natural Si �Karasyuk et al.,
1994�. Indeed, the initial investigation in isotopically en-
riched Si was based on the expectation that the use of

28Si to eliminate the inhomogeneous isotope broadening
inherent in natural Si, as discussed in Sec. VI.B.1 for the
P and B bound excitons, would lead to better resolved
spectra of the A0 splitting. The result, as shown for the
Al bound exciton in Fig. 34, was much more surprising—
not only were the lines much sharper, but all evidence of
the A0 splitting disappeared in the spectra using 28Si
�Karaiskaj et al., 2002b�. The same dramatic sharpening
of the spectra, and disappearance of the A0 splitting,
were also observed for the Ga and In bound excitons
�Karaiskaj et al., 2002b; Thewalt et al., 2003�. The best
available spectrum of the In bound-exciton no-phonon
spectrum from 28Si is compared to the natural Si spec-
trum in Fig. 35, revealing a dramatic sharpening of the
transitions. While the A0 ground-state splitting in natu-
ral Si is less evident in the In bound-exciton spectrum
than for the Al bound exciton, it is clearly absent in the
28Si spectrum.

The obvious conclusion is that the intrinsic A0

ground-state splitting is actually a result of the random-
ness inherent in the isotopic distribution of natural Si
and hence the same in all high-quality samples of natural
Si. In hindsight, this is a rather obvious solution to the
problem of the origin of the splitting since the random
distribution of Si isotopes surrounding a given acceptor
impurity in natural Si reduces the local symmetry and
can therefore lift the degeneracy of the 1S 
8 A0 ground
state. The reason why this was not put forward as a pos-
sible explanation of the A0 splitting long ago is that it
was difficult to see how an effect as subtle as the isotopic
randomness present in natural Si could produce such a
relatively large splitting. A related effect—the splitting
of the A0 ground state by compositional fluctuations in
semiconductor alloys—was analyzed earlier by Benoit à
laGuillaume �1983�, but that formalism, together with
the Schechter �1962� wave functions for A0 and any rea-

FIG. 33. The natural logarithm of �ET, the temperature-
dependent component of the observed shift in band-gap en-
ergy �in GHz� relative to the asymptotic T=0 value, is plotted
vs the natural logarithm of the temperature �in K�. The straight
line has a slope of exactly 4. From Cardona, Meyer, et al., 2004.
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sonable estimation of the fields produced by the isotopic
fluctuations, would predict a splitting far smaller than
the observed intrinsic splitting of A0.

However, Karaiskaj, Kirczenow, et al. �2003� were able
to quantitatively account for the isotopic origin of the
acceptor ground-state splitting in natural Si using the
observed shift of the band gap between 28Si, 29Si, and
30Si, together with highly accurate variational wave func-
tions for the acceptor ground state �Buczko and Bassani,
1992�. A simple calculation, based on the results of Car-
dona and Gopalan �1989�, provided an estimate that the
changes in band-gap energy were mainly �75%� due to
changes in the valence-band edge energy with isotopic
composition. It was assumed that the A0 ground-state
binding energy was identical in 28Si, 29Si, and 30Si, a

good approximation as seen in Sec. V.B.6. Finally, the
effects of a specific distribution �having the same aver-
age isotopic ratios as natural Si� of the Si isotopes sur-
rounding the acceptor site were evaluated using the
variational wave functions for the acceptor ground state
and diagonalizing the Hamiltonian discretized onto the
lattice sites, where an additional potential of 0, �E29, or
�E30 is placed at each site for, respectively, 28Si, 29Si, and
30Si. �E29 and �E30 �
2�E29� are simply the valence-
band edge shifts �75% of the band-gap shifts� between
29Si and 30Si, and 28Si, which is taken as the reference
point. These random perturbations can both lift the de-
generacy of the A0 ground state and shift the center-of-
mass of the resulting doublet, where the average shift is
equal to the shift in the valence-band edge energy be-
tween 28Si and natural Si, or, in other words, 75% of the
observed band-gap shift. For each acceptor species, this
procedure was repeated for 40 000 different random dis-
tributions of Si isotopes around the acceptor site. The
resulting distributions of A0 ground-state splittings for
B, Al, Ga, and In acceptors in natural Si are shown in
Fig. 36. The most probable splitting and the overall
shape of the splitting distributions are in excellent agree-
ment with the known intrinsic ground-state splitting dis-
tributions, as reviewed by Karaiskaj, Kirczenow, et al.
�2003�.

Before leaving the discussion of the acceptor ground-
state splitting, it is interesting to note that a similar small
splitting of the B acceptor ground state in diamond has
been observed using electronic Raman scattering �Kim
et al. �1999�� and explained in terms of a Jahn-Teller
distortion. Such distortion had also been postulated as
an explanation for the splittings in Si by Karasyuk et al.
�1994� before the isotopic origin of the effect in Si was
demonstrated by Karaiskaj et al. �2002b�. Diamonds
made from natural C are isotopically mixed, with the
nominal composition being 98.9% 12C+1.1% 13C.
While the isotopic randomness is thus less in natural
diamond than in natural Si, it must be remembered that
the binding energy of B in diamond is much larger than
that of any of the shallow acceptors in Si, resulting in a
very compact ground-state wave function with the
smaller effective volume accentuating any effect of sta-
tistical fluctuations in the isotopic composition. The
band-gap shift for a 1 amu change in isotopic mass is
also much larger for diamond than for Si, as shown in
Table III. The B ground-state splitting was reported to
be “observably smaller” in a 13C diamond sample �Kim
et al., 1999�, but that sample had comparable isotopic
randomness to natural diamond since it contained ap-
proximately 1% 12C. If the B ground-state splitting in
diamond has an isotopic origin, as is the case in Si, then
it should vanish for a B-doped enriched 12C �or pure
13C� diamond, a possibility that should be investigated.

FIG. 34. High-resolution no-phonon photoluminescence �PL�
spectra of the Al BE in natural Si and 28Si compared, after
shifting the 28Si spectrum up by the band-gap shift of
0.92 cm−1, as indicated by the arrow at the bottom. Inset: The
origin of the six components seen in natural Si as a result of
the threefold BE �A0X� splitting together with the A0 ground-
state splitting, which is found to be absent in 28Si.

FIG. 35. High-resolution no-phonon PL spectra for In BE
compared for natural Si and 28Si, as in Fig. 34. Inset: The dou-
blet splitting of the A0 ground state obtained by fitting the
natural Si spectrum. For In, the 
5 BE state is further split by
spin-orbit coupling. From Thewalt et al., 2003.

1213M. Cardona and M. L. W. Thewalt: Isotope effects on the optical spectra of semiconductors

Rev. Mod. Phys., Vol. 77, No. 4, October 2005



D. Importance of inhomogeneous isotope broadening
in the midinfrared absorption spectroscopy of shallow
donors and acceptors in Si

The study of the infrared absorption resulting from
transitions between the electronic ground state of neu-
tral donor and acceptor impurities and their bound ex-
cited states is one of the oldest �Kohn, 1957� and most
well developed of semiconductor spectroscopies. Ini-
tially, the widths of these transitions were dominated by
inhomogeneous fields and interimpurity interactions re-
sulting from relatively high impurity concentrations and
a lack of crystalline perfection present in early Si. As the
field progressed, together with the development of Si
technology, there came a point when the linewidth of a
given transition in high-quality dislocation-free samples
grown using the floating-zone method ceased to improve
when the sample purity increased. This naturally sug-
gested that the linewidth had reached a fundamental
limit, and that all sources of inhomogeneous broadening
had been eliminated. A suitable fundamental limit, in
reasonable agreement with the observed linewidths, was
provided with the theory of Barrie and Nishikawa
�1963�, which treated the lifetime broadening of the im-
purity excited states resulting from phonon-assisted
transitions to other near-lying states. While these calcu-
lations were not exact, the agreement with the observed
ultimate linewidths was sufficiently close that it became
generally assumed that all of the observed linewidths in
high-quality Si samples were in fact determined by this
process. As we shall see, this may be true for some of
the absorption transitions in natural Si, but it is far from
being true in general. The mechanism proposed by Bar-
rie and Nishikawa �1963� will provide an ultimate limit
to the linewidth once all inhomogeneous broadenings
have been rendered negligible.

The importance of the isotopic randomness present in
natural Si was demonstrated by Karaiskaj, Stotz, et al.
�2003� in comparison of the infrared absorption spectra

of shallow donor and acceptor impurities between natu-
ral Si and 28Si. We begin by considering the results for
the shallow acceptor B, since the origin of the inhomo-
geneous isotope broadening follows from model calcula-
tions of the broadening and splitting of the acceptor
ground state �Karaiskaj, Kirczenow, et al., 2003� de-
scribed in the preceding section. In Fig. 37, we see a
comparison of several of the well-known B absorption
transitions, labeled according to the convention of Ram-
das and Rodriguez �1981�, between natural Si �top� and
28Si �bottom�. Some of the B transitions, such as line 4B
seen in the figure, appear identical �and broad� in both
natural Si and 28Si, and we can therefore conclude that
for the excited states involved in such transitions the
lifetime broadening mechanism proposed by Barrie and
Nishikawa �1963� dominates over the inhomogeneous
isotope broadening. However, lines 4 and 6 in Fig. 37,
and five other B transitions studied by Karaiskaj, Stotz,
et al. �2003�, show a dramatic narrowing in 28Si as com-
pared to natural Si. For these transitions, the inhomoge-
neous isotope broadening must dominate over the life-
time broadening in natural Si. For these seven
transitions, the lines in 28Si resolve into very similar dou-
blets, as seen for lines 4, 6, and 8 in Fig. 37, with a
splitting of 0.15 cm−1 and an intensity ratio of 80/20,
with the weaker component lying at higher energy.

As in Sec. VI.B.2 and Fig. 32, this doublet is explained
as arising from a B isotope effect, since natural B con-
tains 11B and 10B in an 80/20 ratio. The binding energy
of 10B is seen to be larger than that of 11B �by
0.15 cm−1�, as expected from the work of Heine and
Henry �1975�. Note that in Fig. 32 the 10B transition lies

FIG. 36. The calculated statistical distribution of the B, Al,
Ga, and In acceptor ground-state splittings for 40 000 configu-
rations of random distributions of the Si isotopes, with average
abundances equal to those of natural Si, around the acceptor
site. From Karaiskaj, Kirczenow, et al., 2003.

FIG. 37. Absorption lines of the B acceptor compared be-
tween natural Si �top� and 28Si �bottom�. Lines 4, 6, and 8 are
significantly sharper in 28Si than ever before seen in natural Si,
revealing a doublet structure with a splitting of 0.15 cm−1, ex-
plained in the text as a B isotope splitting. The middle spectra,
which are seen to accurately reproduce the observed spectra
for natural Si, were obtained by convolving the 28Si spectra
with the distribution of ground-state broadenings calculated
for B in natural Si. From Karaiskaj, Stotz, et al., 2003.
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at lower energy than that of 11B, rather than higher as in
Fig. 37. This is simply because a larger impurity binding
energy results in a larger BE localization energy for that
impurity, thus producing PL at a lower energy. Indeed,
this relationship between the impurity binding energy
and the associated BE localization energy, known as the
Haynes rule �Haynes, 1960�, also explains the difference
in the splitting energy observed in the IR absorption
spectra and the BE PL spectra. For shallow impurities in
Si, the Haynes rule produces a BE localization energy
that is approximately 10% of the impurity binding en-
ergy, hence the 0.011-cm−1 splitting seen in the BE spec-
trum and the 0.15-cm−1 splitting seen in the IR absorp-
tion spectrum are entirely consistent. At present, the
size of the B isotope splitting, which is quite large for
such a shallow impurity, remains to be explained.

The inhomogeneous isotopic broadening of the shal-
low impurity infrared absorption transitions in natural Si
was explained by Karaiskaj, Stotz, et al. �2003� in terms
of the effects of isotopic randomness on the impurity
ground-state energy. Changes of the ground-state bind-
ing energy within the virtual-crystal approximation, or,
in other words, the differences in binding energy be-
tween pure 28Si, 29Si, and, 30Si discussed in Sec. V.B.6,
were ignored. This seems a reasonable approximation,
given the very small expected size of this shift between
natural Si and 28Si, based on the difference between 28Si
and 30Si. Instead, the broadening may be understood in
terms of the model used in Sec. VI.C to calculate the
splitting and broadening of the acceptor ground state
observed in the acceptor bound-exciton PL spectrum. In
this model, the deviation of the actual isotopic composi-
tion away from the average composition within the vol-
ume of the rather compact acceptor ground-state wave
function produces a local shift in the valence-band en-
ergy from the value expected within the virtual-crystal
approximation. As summarized in Sec. VI.C, the virtual-
crystal-approximation shift of the valence band, relative
to the energy in 28Si, should be approximately 75% of
the shift in band-gap energy between natural Si and 28Si.
The acceptor ground-state energy is assumed to shift rig-
idly with this local shift in valence-band energy. Since
the excited states are much more extended than the
ground state, the excited-state wave functions sample an
isotopic composition much closer to the average compo-
sition of natural Si. The ground-state binding energy,
which is equal to the absorption transition energy in the
limit of the excited final-state binding energy tending to
zero, is thus modified for each acceptor by the difference
between the average composition and the detailed iso-
topic environment as sampled by its ground-state wave
function. Thus in natural Si all of the absorption transi-
tions would be expected to be broadened by essentially
the same amount—the ground-state broadening.

Since these acceptor ground-state distributions were
already calculated by Karaiskaj, Kirczenow, et al. �2003�
in explaining the bound-exciton PL spectra, it can be
demonstrated that they also account for the inhomoge-
neous isotope broadening of the IR absorption transi-

tions in natural Si. The middle spectra in Fig. 37 are the
observed spectra for B in 28Si convolved with the broad-
ening of the B ground state in natural Si calculated by
Karaiskaj, Kirczenow, et al. �2003�. The result is seen to
be in excellent agreement with the observed spectra in
natural Si. It would be interesting to compare the ab-
sorption spectra of deeper acceptors in 28Si and natural
Si, since for the deeper acceptors, with their more com-
pact ground-state wave functions, an even larger inho-
mogeneous isotope broadening would be expected in
natural Si. To a good approximation, the inhomoge-
neous ground-state broadening present in natural Si for
the deeper acceptors Al and In may be estimated by
comparing the observed sharpening of their bound-
exciton PL spectra as shown in Figs. 34 and 35.

Karaiskaj, Stotz, et al. �2003� reported similar reduc-
tions for the linewidths of many shallow donor IR ab-
sorption transitions in 28Si as compared to natural Si. As
seen in Fig. 38�a�, the 2p0 absorption line of the P donor
in 28Si had a FWHM of only 0.034 cm−1, five times nar-
rower than the narrowest reported measurement of the
same line in natural Si! The P 2p± and 3p± transitions in
the 28Si sample were also narrower than in natural Si,
but less dramatically so since for the higher excited
states the broadening due to interimpurity interactions
�concentration broadening� inherent in the relatively
heavily doped and compensated 28Si sample became
more important. Still, the dramatically sharpened P 2p0
line sets a new record for the narrowest linewidth of an
impurity absorption transition. Similarly, as shown in
Figs. 38�b�–38�d�, the transitions to the lower-lying ex-
cited states of the Li donor, inadvertently introduced in
some samples during annealing, were also considerably
sharper in 28Si revealing new structure which was inter-
preted as resulting from the splitting between the 
3 and

5 valley-orbit components of the Li 1s ground states
�Karaiskaj, Stotz, et al. 2003�. Samples of 28Si having
much higher chemical purity will be needed to observe
the true linewidths of transitions to higher-lying excited
states and to verify that the removal of the inhomoge-
neous ground-state broadening sharpens all donor tran-
sitions. Indeed, if 28Si samples of higher chemical purity
can be produced, it seems likely that new records for
narrow linewidths may be set for some of these transi-
tions to higher-lying excited states. The explanation of
inhomogeneous isotope broadening of the shallow do-
nor IR absorption transitions in natural Si is identical to
that offered above for the acceptors, differing only in
scale, since the conduction-band shift with changing iso-
topic composition is only approximately one-third that
of the valence band. It should be possible to quantita-
tively account for donor ground-state broadenings in
natural Si using calculations similar to those described
for acceptors in Sec. VI.C and accurate wave functions
for the ground state of specific donor species.

Hayama, Davies, and Ito �2004� and Hayama, Davies,
Tan, et al. �2004� have recently reported studies of deep
photoluminescence centers in 30Si, showing that the en-
ergy shifts as compared to natural Si could be under-
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stood on the basis of a simple empirical relationship, but
there have as yet been no observations of reduced line-
widths for deep transitions in isotopically enriched semi-
conductors.

E. The elimination of inhomogeneous isotope broadening:
Future prospects

As outlined above, much has already been accom-
plished. The limits of BE spectroscopy and impurity ab-
sorption spectroscopy in isotopically enriched Si have
already been shown to lie far beyond what were com-
monly assumed to be the limits based on the study of
natural Si, in some cases by more than an order of mag-
nitude. As a result of the improvements in spectral reso-
lution, new effects have been discovered such as the T4

dependence of EG in the limit of T→0 and the isotope
splitting between the shallow acceptors 10B and 11B.
However, at present we are in much the same situation
that studies using natural Si were at several decades
ago—the ultimate linewidths of many of the transitions
are presently limited by the chemical purity and crystal-
line perfection of the available 28Si samples. In particu-
lar, the rather high concentrations of electrically active
impurities in the presently available 28Si makes the in-
vestigation of the very weakly bound impurity excited
states impossible, and it is there that some of the truly
narrow transitions may yet be discovered. Not only must
the concentrations of electrically active impurities such

as B and P be reduced, but also the concentration of
electrically inactive species such as C and O, which can
introduce inhomogeneous broadening due to random
strain fields.

Even more dramatic improvements of the linewidths
of absorption transitions associated with deeper impuri-
ties can be expected, even in the presently available 28Si,
due to their more compact ground-state wave functions,
and these should be actively investigated. Similar dra-
matic improvements in the emission linewidths of
deeper BE centers can also be expected in 28Si. Moving
further afield, the discovery that the intrinsic acceptor
ground-state splitting is an isotopic effect that vanishes
in enriched 28Si suggests that the electron-spin-
resonance spectra of the neutral acceptor ground state
should be reinvestigated in 28Si, from which improved
results may be expected. Also, as discussed above, the B
acceptor ground state should be investigated in 12C dia-
mond to determine whether the origin of the observed
splitting is isotopic or due to a Jahn-Teller effect now
that the isotopic origin of the analogous splitting in Si
has been discovered. Such samples would also allow for
a comparison of the B bound-exciton linewidths and in-
frared absorption linewidths in natural and 12C dia-
mond, for investigating whether inhomogeneous isotope
broadening is significant in natural diamond. Related to
this, diamond, and perhaps in particular 12C diamond
�depending on the outcome of the linewidth compari-
son�, may be a suitable material for further investigating
the newly discovered T4 dependence of the band-gap
energy in the low-temperature limit.

Given the very high perfection and chemical purity
now possible in the growth of epitaxial GaAs using mo-
lecular beam epitaxy, it would be interesting to investi-
gate the effects of the elimination of the rather large
isotopic randomness present due to the use of natural
Ga, which consists of 69Ga and 71Ga in a 60/40 ratio.
This could begin with high-resolution photolumines-
cence spectroscopy, but the effects of the elimination of
isotopic randomness may not be limited to optical prop-
erties. Given the remarkable low-temperature electron
mobilities achievable in remotely doped two-
dimensional electron gases, one wonders what bounds
isotopic randomness scattering may place on such prop-
erties.

In conclusion, while much has been discovered re-
garding the spectroscopy of isotopically enriched semi-
conductors, and particularly Si, very little is yet com-
plete, and what we have learned so far suggests many
new possibilities for further discoveries both in Si and in
other semiconductors.

VII. CONCLUSIONS

We have discussed the effects of isotopic substitution
on the physical properties of semiconductor crystals and
possible applications to the investigation and character-
ization of these technologically important materials.
With few exceptions �Al, P, As, I�, the constituent atoms

FIG. 38. Four representative absorption lines are shown for
the shallow donors �a� P and �b�–�d� Li in a sample of 28Si at a
temperature of 1.8 K, with an instrumental resolution of
0.014 cm−1 FWHM. From Karaiskaj, Stotz, et al., 2003.
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of tetrahedral semiconductors have several stable iso-
topes and single crystals can be grown with custom-
made concentrations provided budgetary considerations
allow it. Three types of effects have been identified: ef-
fects corresponding to the average isotopic mass, effects
corresponding to the random distribution of the isotopic
masses, and, in a few cases, effects due to the nuclear
spins. We have discussed first the effects on macroscopic
thermomechanical properties, including the effect of the
average isotopic mass on the specific heat and thermal
expansion. In the case of thermal expansion, we have
emphasized the zero-point renormalization of the crystal
dimensions, which is strongly affected by the average
isotopic mass. For thermal conductivity, we discussed the
effect of isotopic mass disorder, which is particularly im-
portant at low temperatures. As an example of effects
related to nuclear spins we discussed the nuclear reso-
nance of 73Ge, whose spectral linewidth is strongly af-
fected by the random distribution of other Ge isotopes
present. We next discussed the direct effect of average
isotopic masses and their random distribution on specific
phonons and phonon dispersion relations. The harmonic
approximation must be modified to include anharmonic-
ity �which depends on the average isotopic masses of
each of the constituent elements� and spatial distribution
of such isotopes, random or otherwise. These effects
have been characterized by complex self-energies, with
real parts which represent temperature-dependent fre-
quency shifts �including zero-point renormalizations�
and imaginary parts which describe linewidths of
phonons and, correspondingly, their lifetimes. Theoreti-
cal predictions have been compared with available ex-
perimental data.

Isotopic effects have also played an important role in
the investigation and structural assignment of local vi-
brational modes. Because of space limitations and the
availability of extensive reviews, we have not discussed
them here in detail. We have simply mentioned some of
the salient problems and given appropriate-literature
references.

Average isotopic compositions and their spatial distri-
bution also affect the energies and widths of electronic
states and corresponding spectroscopic transitions. We
discussed isotopic effects on the lowest �fundamental�
energy gap of several semiconductors, which in some
cases, such as diamond, silicon, and germanium, is indi-
rect �phonon or defect-aided transitions�, whereas in
others �GaAs, GaN, ZnO� it is direct. The observed ef-
fects, including zero-point renormalizations, have been
attributed to thermal expansion and to electron-phonon
interaction. Particularly interesting is the case of dia-
mond, for which the zero-point gap renormalization is
an order of magnitude larger than that for germanium
and silicon. It has been suggested that the correspond-
ingly large electron-phonon interaction is of the essence
to the superconductivity recently reported for boron-
doped diamond.

The electronic effects discussed are related to the av-
erage isotopic mass �M�. In fact, they are proportional to
�M�−1/2 for elemental semiconductors. They can be de-

scribed, at the lowest absorption edge, by real self-
energies which gain an imaginary component �corre-
sponding to a broadening or a lifetime� for higher gaps.
The last section of this review discusses effects of the
isotopic disorder on electronic excitations in silicon.
Paramount among these effects is the broadening of the
photoluminescence spectra of excitons bound to electri-
cally active impurities. Contrary to the homogeneous
broadenings described earlier, this broadening is inho-
mogeneous. It is related to fluctuations in the isotopic
abundance within the sphere determined by the radius
of the bound exciton. It has been shown that this phe-
nomenon determines the linewidth of the corresponding
luminescence spectra of natural silicon. Isotopically pure
28Si samples exhibit extremely sharp bound-exciton lu-
minescence lines that can be used to precisely determine
the temperature dependence of the indirect band gap of
Si in the very-low-temperature region �2–6 K�. In this
manner, the theoretically predicted T4 dependence has
been confirmed. Related effects observed for transitions
between acceptor impurity levels, in particular the split-
ting of the acceptor ground state, have also been attrib-
uted to the random distribution of the three isotopes
present in natural silicon.

A very recent issue of Solid State Communications
�133, 691–747 �2005�� is fully devoted to isotope effects
in semiconductors.

This review has been confined to basic isotope effects
on phonons and electrons in semiconductors. In doing
so, and because of space limitations, we have omitted
rather important related topics of applied interest.
Among them we mention here the doping by nuclear
transmutation. This technique, first proposed by Lark-
Horovitz �1951�, is being applied commercially for the
n-type doping of silicon. It makes use of the natural
abundance of 30Si which is transmuted into 31Si upon
neutron capture. The unstable 31Si decays into the stable
donor 31P �see Jagannath et al. �1979��. For the doping
by nuclear transmutation of Ge, see Itoh et al. �1993�.
Another important topic which lies beyond the scope of
the present review concerns the application of isotopic
superlattices for investigating self-diffusion in semicon-
ductors. The interested reader should consult the review
by Haller �2005�. While some of the future prospects
which originate from the elimination of the inhomoge-
neous isotope broadening present in silicon �and also in
all other semiconductors� have been discussed in Sec.
VI.E, it is worth underlining that this is at present a very
new and exciting field, which may have quite unexpected
impacts. One of these may be on quantum computing.
Fu et al. �2004� have recently described an optical detec-
tion technique for the phosphorus nuclear spin in highly
enriched 28Si using the hyperfine splitting of the donor
ground state, which they conclude may be observable
based on the sharpening of the shallow donor bound-
exciton transitions in 28Si described in Sec. VI.B. An-
other possibility, based on the elimination of the inho-
mogeneous broadening of the donor and acceptor
transitions described in Sec. VI.D, is the expectation
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that transitions to the higher excited states of these cen-
ters in highly enriched 28Si may become extremely nar-
row once the chemical purity of the samples has been
improved sufficiently to eliminate concentration broad-
ening, perhaps allowing for spectroscopy similar to that
involving the Rydberg states of atomic systems.

Finally, we mention an application of highly pure 28Si
which is now in progress as part of an international col-
laboration �Becker, 2003�. This work is motivated by the
fact that nearly all fundamental units �meter, second,
ohm, etc.� can nowadays be based on atomic properties,
the only exception being the kilogram �kg�. The kg can
be derived from atomic units through Avogadro’s num-
ber NA, which is the number of atoms in a mole of 28Si
�27.976 927 g in the present units of mass�. For the pur-
pose of redefining the unit of mass in terms of the
atomic mass, an extremely perfect sphere of approxi-
mately 1 kg weight is being made out of highly pure 28Si.
The number of atoms in such a sphere will then be de-
termined by x-ray techniques. This will fix the mass of
the sphere in atomic mass units. Avogadro’s number will
then lead to the mass of the sphere in kg.
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