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Electrical transport through a normal-metal/superconductor contact at biases smaller than the energy
gap can occur via the reflection of an electron as a hole of opposite wave vector. The same mechanism
of electron-hole reflection gives rise to low-energy states at the surface of unconventional
superconductors having nodes in their order parameter. The occurrence of electron-hole reflections at
normal-metal/superconductor interfaces was predicted independently by Saint-James and de Gennes
and by Andreev, and their spectroscopic features were discussed in detail by Saint-James in the early
sixties. They are generally called Andreev reflections but, in view of the literature, will here be
referred to as Andreev–Saint-James sASJd reflections. This review presents a historical review of ASJ
reflections and spectroscopy in conventional superconductors, and reviews their application to the
high-Tc cuprates. The occurrence of ASJ reflections in all studied cuprates is well documented for a
broad range of doping levels, implying that there is no large asymmetry between electrons and holes
near the Fermi level in the superconducting state. In the underdoped regime, where the pseudogap
phenomenon has been observed by other methods such as nuclear magnetic resonance sNMRd,
angular-resolved photoemission spectroscopy sARPESd, and Giaever tunneling, gap values obtained
from ASJ spectroscopy are smaller than pseudogap values, indicating a lack of coherence in the
pseudogap energy range. Low-energy surface bound states have been observed in all studied
hole-doped cuprates, in agreement with a dominant d-wave symmetry order parameter. Results are
mixed for electron-doped cuprates. In overdoped YBa2Cu3O7−d sd,0.08d and La2−xSrxCuO4, ASJ
spectroscopy is consistent with the presence of an additional imaginary component of the order
parameter. Results of ASJ spectroscopy under applied magnetic fields are also reviewed. A short
section at the end is devoted to some recent results on spin effects.
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I. INTRODUCTION

When an electron moving in a normal metal sNd with
momentum k hits an interface with a superconductor
sSd, it is reflected as a hole of equal momentum if its
kinetic energy measured from the Fermi level is smaller
than the energy gap D of S. Because of its negative ef-
fective mass, the reflected hole has a velocity opposite to
that of the incoming electron and carries charge current
in the same direction. This process, known today as an
Andreev reflection sAndreev, 1964d, is a key feature of
the solution of the Bogoliubov–de Gennes equations sde
Gennes, 1966d, based on the Bogoliubov transformation
sBogoliubov, 1947, 1958d, near an N/S interface. A solu-
tion of these equations was first given by de Gennes and
Saint-James s1963d, who applied it to the case of an N/S
bilayer. The special reflections decrease thermal trans-
port across an N/S interface, as shown by Andreev
s1964d and control the density of states in an N/S bi-
layer, as discussed in detail by Saint-James s1964d.

Andreev was interested in heat transport in the inter-
mediate state of a type-I superconductor and showed
that domain walls provide a resistance to this flow be-
cause of the electron-hole reflection mechanism. This is
why the thermal resistance in the intermediate state is
higher than in the Meissner state, as observed by Men-
delssohn and Olsen s1950d. Andreev was able to fit
quantitatively the detailed heat-transport measurements
of Zavaritskii s1960d. de Gennes and Saint-James, on the
other hand, were interested in the density of states in a
system consisting of a normal slab of thickness dN in
close electrical contact with a semi-infinite supercon-
ductor. They showed that the density of states has a se-
ries of peaks below D because of the existence of finite-
energy bound states in N. For large enough values of dN,
these peaks are located at energies that are multiples of
s"vF /4dNd, where vF is the Fermi velocity in N. Saint-
James s1964d remarks that the interlevel distance is half
of that for an electron in a potential well and explains
that this is because a complete cycle comprises two
electron-hole reflections at the N/S interface and two
specular reflections at the outer surface of N. In this
cycle, the quasiparticle has both an electronlike and a
holelike character.

The Andreev 1964 paper was, and still is, widely cited,
perhaps because it explained a specific and observed
physical phenomenon. The slightly earlier paper of de
Gennes and Saint-James s1963d is less often cited, and
the simultaneous paper of Saint-James s1964d is known
only to some experts in the field. It is an excellent paper,
which I highly recommend reading. Its emphasis on the
spectroscopic aspects of the electron-hole reflections is
very close to the topic of the present paper, the use of
these reflections for the spectroscopic study of high-
temperature superconductors. After consulting with
some colleagues, I decided for this reason to use in this
review the terms Andreev–Saint-James sASJd reflections
and spectroscopy.

Another curious aspect of the history of ASJ reflec-
tions is that it took almost 20 years before it was shown

theoretically that they enhance the electrical conduc-
tance of N/S contacts at biases below the gap, in con-
trast with the reduction of the thermal conductance. This
enhancement of the electrical conductance appears ob-
vious to us today. An electron coming in from the N side
at energies smaller than D cannot propagate inside S;
only Cooper pairs may do so. The reflected hole ensures
current conservation. A charge of 2e then flows across
the interface, which corresponds to an increase in the
conductance of the contact by a factor of 2 compared to
that in the normal state, or at biases much larger than
the gap. The detailed way in which the process occurs
involves the creation of electron and hole excitations in
S near the interface, which recombine into pairs over the
coherence length of the superconductor. Pankove s1966d
reported an enhanced electrical conductance of N/S
contacts below the gap. His observations on pressure
contacts between Al and Nb are clear: “When a contact
is made between a normal metal and a superconductor,
the V-I characteristic of the contact shows an initial re-
gion of high conductance with an abrupt change to a
region of lower conductance” sPankove, 1966, p. 406d.
However, Pankove did not relate his observation to the
works of Andreev and de Gennes and Saint-James.
Likewise, his observations were not noted by theorists.
Griffin and Demers s1971d were the first to calculate the
quasiparticle transmission probability for excitations go-
ing from a normal to a superconducting region for N/S
contacts of various transparencies, but did not take into
consideration the electron-hole reflection mechanism
and the corresponding flow of pairs. It was not until 1980
that Zaitsev s1980d calculated an enhanced conductance
below the gap, and only in 1982 did Blonder, Tinkham,
and Klapwijk sBlonder et al., 1982d give a complete the-
oretical discussion, including the effect of an imperfect
snot fully transparentd interface, and successfully com-
pare their predictions to measurements performed on
point contacts.

Sharvin s1965d was the first to note that the electrical
resistance of an ideal intermetallic contact of a size
smaller than the electronic mean free path is determined
by the number of quantum channels through the con-
tact. These contacts, called Sharvin contacts or point
contacts, are the ideal tool for the study of ASJ reflec-
tions, for reasons that will be reviewed later in great
detail. However, Sharvin apparently did not use them
for that purpose, another strange twist in the history of
ASJ reflections. Pankove contacts were actually Sharvin
contacts, and he calculates that their size is of about 50
Å, a typical point contact size.

The transition between the regions of higher and
lower conductance noted by Pankove occurs when the
bias across the contact is equal to the energy gap. ASJ
reflections are therefore a useful tool for the determina-
tion of the gap. Blonder et al. s1982d made this tool a
quantitative one by taking into account the nonideal na-
ture of the contact, including the effect of a thin insulat-
ing barrier and that of a mismatch of the Fermi veloci-
ties between the two metals. Yet their work had only a
limited impact on the study of low-temperature super-
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conductors, perhaps because it came much later than the
full development of tunneling theory sMcMillan and
Rowell, 1969d and also, I suppose, because the con-
trolled fabrication of thin tunneling dielectric barriers
had been achieved so successfully following the work of
Giaever s1960d.

By contrast, ASJ reflections have become a major tool
for the study of unconventional superconductors, such
as heavy fermions sGoll et al., 1993; Hasselbach et al.,
1993d, organic superconductors ssee, for instance, Ernst
et al., 1994d and high-Tc superconductors, which are the
focus of this review. This development is the object of
this review. One of the reasons why we became involved
in this field was that we had strong doubts that dielectric
junctions of a quality comparable to that achieved by
Giaever on low-temperature superconductors could ever
be achieved on high-temperature superconductors. Di-
electric junctions made on low-temperature supercon-
ductors are based on the oxidation of the metal. This
method is not applicable to high-Tc superconductors, be-
cause they are oxides by themselves, and further oxida-
tion renders them even more metallic sand eventually
nonsuperconductorsd. Further, the fabrication of high-Tc
superconductors requires high temperatures of the order
of 700–800 °C and the use of single-crystal substrates,
which precludes growing them on top of a regular metal
previously oxidized. In our laboratory, we therefore de-
cided to concentrate on the point-contact route. In fact,
observation of ASJ reflections turned out to be rela-
tively easy. I believe that Hass et al. s1992, 1993d were
the first to report such observations on single-crystal
high-quality YBCO samples, using a gold tip as the nor-
mal metal. For reasons that became clear only later and
that had to do with the d-wave symmetry of the order
parameter in this superconductor, the fit to Blonder-
Tinkham-Klapwijk theory was not perfect, but a gap
value of 18–20 meV could clearly be obtained. This
value still stands today.

However, a determination of the energy gap is not the
only, and may be not the most important, result of ASJ
spectroscopy of high-Tc superconductor materials. The
following points will give the reader a preliminary idea
of the main results.

sad A successful quantitative fit of point-contact data
to the Blonder-Tinkham-Klapwijk theory, as has now
been achieved in optimally doped samples, means that
the Bogoliubov–de Gennes equations, or, in other
words, a fermionic description of the excitations, is ap-
propriate for high-Tc superconductors. ASJ reflections
cannot occur without electron-hole mixing.

sbd According to Blonder and Tinkham s1983d, an en-
hanced conductance below the gap is only possible if the
Fermi velocities of the normal tip and of the supercon-
ductor are not too different. That this should be the case
in high-Tc superconductor/normal-metal contacts is by
no means trivial. In fact, angle-resolved photoemission
spectroscopy sARPESd data indicate for the high-Tc su-
perconductor a Fermi velocity of the order of 2
3107 cm/sec sMargaritondo, 1998d, almost one order of
magnitude smaller than that of gold. This apparent con-

tradiction between experiment and theory was ex-
plained by Deutscher and Nozières s1994d as resulting
from a renormalization of the Fermi velocity in the
point-contact experiments, which is different from the
full quasiparticle renormalization. This special renor-
malization also explains the occurrence of strong ASJ
reflections in heavy fermions sHasselbach et al., 1993d.

scd The BCS approximation of an energy gap that is
very much smaller than the Fermi energy applies ex-
tremely well to low-temperature superconductors, for
which the gap value is typically less than 1 meV, and the
Fermi energy value is several eV. It applies only margin-
ally to the high-Tc superconductors at optimum doping,
where the gap value is a few tens of meV and the Fermi
energy value a few 100’s of meV. It may not apply at all
in underdoped samples, where a Bose-Einstein conden-
sation regime could be approached. The properties of
ASJ reflections in a regime that is intermediate between
BCS and Bose-Einstein condensation sLeggett, 1980;
Nozieres and Schmitt-Rink, 1985d are a subject of great
current interest. In particular, the existence of ASJ re-
flections in the presence of preformed pairs sor, more
generally, of a pairing amplituded without phase coher-
ence is under intense consideration.

sdd ASJ reflections are phase sensitive. This major dif-
ference from conventional Giaever tunneling spectros-
copy turns out to be of great interest for the study of
superconductors having an unconventional symmetry or-
der parameter, as is the case for the high-Tc supercon-
ductors. As shown by Hu s1994d, d-wave symmetry re-
sults in zero-energy surface bound states, or ASJ bound
states, when the orientation of the surface with respect
to the crystallographic axis is such that there are inter-
ference effects between ASJ reflections from lobes of
the order parameter of opposite signs. This is in contrast
with the finite-energy bound states calculated by de
Gennes and Saint-James. The case of p-wave supercon-
ductors was earlier investigated by Buchholz and Zwick-
nagl s1981d.

This review is organized as follows. In Sec. II, I briefly
present the original calculation of de Gennes and Saint-
James for a one-dimensional s1Dd situation giving the
finite energy of bound states in a normal slab in contact
with a superconductor and contrast it with the zero-
energy states obtained in a hypothetical situation in
which the normal slab is sandwiched between two super-
conductors whose order parameters have phases that
differ by p. This serves as an introduction to the effect
of d-wave symmetry.

Section III is devoted to a brief summary of the
Blonder-Tinkham-Klapwijk theory and to point-contact
experiments in geometries where the d-wave symmetry
plays only a minor role. These experiments lead to de-
terminations of the gap and of a Fermi velocity that is
different from the fully renormalized value. Renormal-
ization of the latter as appropriate for point-contact
spectroscopy is included in this section. Effects related
to d-wave symmetry and, in particular, to the occurrence
of surface bound states, are discussed in Sec. IV. This
section includes the effect of surface currents on these
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states. Section V is devoted to ASJ reflections in the
underdoped or so-called pseudogap regime, in relation
to a possible BCS-to-Bose-Einstein-condensation cross-
over and other pseudogap models. Other advanced top-
ics, such as the occurrence and detection of a minority
imaginary component sis or idd of the order parameter
and the proximity effect between high-Tc superconduct-
ors and normal metals, are discussed in Sec. VI.

II. SOLUTION OF THE BOGOLIUBOV–de GENNES
EQUATIONS NEAR AN N/S INTERFACE

In order to make this review self-contained, we shall
briefly outline here the main steps of the derivation that
can be found in detail in the article of Saint-James
s1964d.

We consider two metals in ideal contact, the only dif-
ference between them being that one is a supercon-
ductor and the other a normal metal. We concentrate on
quasiparticle excitations having an energy « measured
from the Fermi level smaller than the energy gap D.
Such excitations will necessarily decay in S. They do so
over a certain length scale, which turns out to be on the
order of the coherence length j of the superconductor.
At larger distances from the interface, all electrons are
paired. Thus the reflection process that we have briefly
described in the introductory section, by which an elec-
tron coming from the N side is reflected as a hole, does
not occur abruptly at the interface, but over the length
scale j. This property, which appears explicitly in the
calculation, will be of great importance when we discuss
contacts with high-Tc superconductors, in particular in
the so-called pseudogap region.

As it is, the calculation ignores the effect of the prox-
imity of N on the value of the gap D in S near the inter-
face. It is well known that this effect cannot, in general,
be neglected and that a depression of D occurs over the
length j sDeutscher and de Gennes, 1969d. However, in
the actual point-contact setup described by Blonder et
al. s1982; see next sectiond, the contact size is smaller
than j so that this depression effect is much reduced and
can be neglected.

A. The case of a normal slab in contact with a semi-
infinite superconductor

In a normal metal, the excitation energies of electrons
and holes are derived, respectively, from the following
relations:

«u = f− s"2/2md ¹ − EFgu , s2.1d

«v = fs"2/2md ¹ + EFgv . s2.2d

In a superconductor, excitations have a mixed electron-
hole character and the above equations are comple-
mented by cross terms:

«u = f− s"2/2md ¹ − EFgu + Dv , s2.3d

«v = fs"2/2md ¹ + EFgv + D*u . s2.4d

The solutions for u and v are oscillatory in N, and for
«,D they are decaying in S with complex wave vectors.
The conditions at the interface, assuming that it is per-
fectly transparent, are that u and v and their derivatives
are continuous. At the outer surface of N, assumed to be
bonded by a dielectric, the boundary conditions are that
u and v are zero. With the normal slab having a thick-
ness dN, and taking the origin at the interface, one-
dimensional solutions in N are of the form

u = a sinfk18sx + dNdg , s2.5d

v = b sinfk28sx + dNdg , s2.6d

with

k18 = fs2m/"2dsEF + «dg1/2, s2.7d

k28 = fs2m/"2dsEF − «dg1/2. s2.8d

Solutions in S are of the form

u = a1 expsik1xd + a2 exps− ik2xd , s2.9d

v = b1 expsik1xd + b2 exps− ik2xd . s2.10d

The wave vectors are given by

k1 = s2m/"2d1/2fEF + s«2 − D2d1/2g1/2, s2.11d

k2 = s2m/"2d1/2fEF − s«2 − D2d1/2g1/2. s2.12d

Since we are interested in excitations for which «,D,
these wave vectors are complex and their imaginary part
ensures the exponential decay of the excitations inside S.
We can write them in the form

k1 = K1 + iK2, s2.13d

k2 = K1 − iK2. s2.14d

To a good approximation, K1=kF, and K2!K1. It is in-
structive to calculate explicitly the decay wave vector. To
fix the order of magnitude, we easily obtain it for «=0,

K2s« = 0d = D/"vF, s2.15d

which, except for a factor of p, is the inverse of the
coherence length j. It can easily be seen that the decay
length diverges when « approaches D.

The ratios sb1 /a1d and sb2 /a2d are determined by the
Bogoliubov–de Gennes equations, so that there are four
unknowns and four homogeneous linear equations relat-
ing them sthe boundary conditions at the interfaced. Af-
ter some simplifications resulting form the fact that
sD /EFd!1, the condition for the existence of a solution
to the eigenvalue problem reads

tansk28dNd = tansk18dN − fd , s2.16d

where f is defined by

D cos f = « . s2.17d

Taking into account Eqs. s2.7d and s2.8d, we find that the
solutions of Eq. s2.16d are
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s2dN/pjd cos f = f + np , s2.18d

where we have used the relation j= s"vF /pDd. For any
finite value of the normal slab thickness, there is no
zero-energy solution. An energy gap has been induced
in N by the proximity to S. When the slab thickness is
small compared to the coherence length, there is only
one solution at «,D and it approaches D. This bound
state is, in fact, localized over the length j, over which
excitations can penetrate into S. When the thickness is
much larger than j , f approaches p /2. There are a large
number of solutions, the separation between the levels
being

D« = s"2/2mdspkF/dNd . s2.19d

As noted by Saint-James s1964d, this is half the spacing
between the electronic levels in a 1D isolated normal
metal of the same thickness. He explains this difference
by noting that excitations in N in contact with S have a
mixed electron-hole character. At energies smaller than
D, the coefficients a and b are close to each other. Over
a complete cycle comprising two ASJ reflections at the
N/S interface and two specular reflections at the free
surface of N, the quasiparticle is electronlike half of the
time, and holelike the other half. This same Saint-James
cycle leads, as we shall see, to the formation of zero-
energy states at the surface of a d-wave superconductor.

In a more realistic 3D situation, instead of the discrete
energy levels that we have obtained, the density of states
is finite at any finite energy. Eigenvalues of the energy
for quasiparticle trajectories making an angle U with the
normal to the interface are reduced because the path
traveled before the ASJ reflection takes place is longer.
These eigenvalues tend to zero when U approaches p /2,
but the solid angle covered by such trajectories tends
itself to zero and as a result the density of states tends to
zero linearly with « sFig. 1d.

B. The case of a normal layer sandwiched between two
superconductors: Effect of a phase difference

It follows from our analysis that we would have ob-
tained the same eigenvalues if we had considered a nor-
mal slab of thickness 2dN sandwiched between two su-
perconductors. This is because, in that case, one
reflection at each interface is sufficient to complete a
cycle: an electron hitting the interface with S1 is reflected
as a hole, which is reflected back as an electron by S2. As
a matter of fact, this geometry was used to study the
proximity effect by thermal conductivity measurements
of S/N/S sandwiches sWolf, 1971d. These measurements
did reveal a reduced density of states in N. But for what
concerns us here, the main interest of an S/N/S geom-
etry is that it allows us to look for the effect of a phase
difference between the two superconductors on the den-
sity of states. Such a phase difference may, for instance,
be induced by a current flowing perpendicular to the
interfaces. To be specific, let us consider the case in
which this phase difference is equal to p sthis will be the
case of interest for a d-wave superconductord. The pair
potentials in S1 and S2 have then opposite signs. The
Bogoliubov–de Gennes equations require that the ratios
su /vd also have opposite signs in S1 and S2. The continu-
ity conditions at the interfaces then require that solu-
tions in N be of the form

u = a sinfk18sx + dNdg , s2.20d

v = b cosfk28sx + dNdg . s2.21d

The solution to the eigenvalue problem is then

− cotsk28dNd = tansk18dN − fd , s2.22d

sk28dNd − p/2 = sk18dN − fd + np , s2.23d

which gives the result

s2dN/pjd cos f = p/2 − f + np . s2.24d

In contrast to the case treated by Saint-James, it can
immediately be seen that here f=p /2 is a solution for
any value of the thickness. In other words, there exists a
solution with the eigenvalue «=0 even in the limit where
the thickness of the normal slab is zero. In effect, one
does not need a normal layer to obtain a zero-energy
bound state when there is a change of phase by p. This
zero-energy solution is localized near the interface be-
tween the two superconductors, and it decays in the su-
perconducting banks over a coherence length. It is a
zero-energy interface bound state. A self-consistent so-
lution would, of course, give a pair potential going to
zero at the interface. The situation is similar to that near
a vortex core: on opposite sides of the core, phases differ
by p, the pair potential goes to zero at the center of the
vortex core to accommodate this change in the phase,
and there are low-lying states of extension j sCaroli et
al., 1964d.

FIG. 1. Density of states for a normal-metal/superconductor
sN/Sd contact for different values of the normal layer thickness
a. The thickness is given in terms of a normalized parameter
s2a /pjd. Adapted from Saint-James, 1964.
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C. Surface bound states in a d-wave superconductor

The situation described in the previous subsection is
somewhat artificial, particularly in the limit of a zero-
thickness normal slab. But this exercise helps us to un-
derstand what happens at the surface of a d-wave super-
conductor when it is oriented perpendicular to a node
direction. For the dx2−y2 symmetry, the pair potential is
of the form

D = D0 cos 2u , s2.25d

where u is the angle with one of the principal axes sthe
antinodal directiond. The pair potential is at a maximum
along these axes and changes signs at 45° from them sthe
nodal directiond. The pair potentials on either side of
these nodes have the same absolute values, but opposite
signs. Let us go back to the original Saint-James geom-
etry and consider a normal-metal slab in contact with
the surface of a d-wave superconductor having the
above orientation sFig. 2d. An electron in N moving to-
wards the interface with a wave vector at some finite
angle with the interface will be ASJ reflected as a hole
by a pair potential having, say, positive sign. This hole
will then be specularly reflected at the outer surface of
N, after which it will be ASJ reflected as an electron by
a pair potential having negative sign. This electron will
then, in turn, be specularly reflected at the free surface
of N, which will close the Saint-James cycle. This process
is equivalent to that treated in the above subsection:
there are two successive ASJ reflections by pair poten-
tials having phases that differ by p. Zero-energy states
are formed in N and extend inside S over a coherence
length. This geometry was first studied by Hu s1994d,
who showed that zero-energy states are formed even in
the limit of a zero-thickness normal slab, as in the above
exercise. In the semiclassical approximation, they are
zero-energy surface bound states, or ASJ bound states.

The spectroscopic study of these states will constitute
a substantial part of this review. Whenever detected,
they are a clear signature of a pair potential that re-
verses sign around the Fermi surface. They are modified
by the presence of even a small imaginary component,
such as is or idxy, which cancels the sign reversal in the
vicinity of a d-wave node. In this way, such components
can be detected and their amplitude measured. In short,

the spectroscopic study of ASJ states allows the deter-
mination of the detailed symmetry of the pair potential
and the respective amplitudes of its components.

It will be appreciated that ASJ bound states will be
best studied by tunneling from a normal-metal electrode
through a junction formed directly at the surface of the
d-wave superconductor having the appropriate orienta-
tion. Making a clean contact with a normal metal would
result in short-lived ASJ states.

ASJ spectroscopy of the high-Tc superconductors thus
employs two different contact techniques: s1d clean Shar-
vin contacts are appropriate when formed on surfaces
oriented perpendicular to an axis along which the order
parameter is at its maximum, because in that geometry
no ASJ bound states are formed and the amplitude of
the gap is immediately accessible; s2d tunneling contacts
are preferred when formed on surfaces oriented perpen-
dicular to a spresumedd node direction, in order to de-
tect the presence of ASJ bound states due to an uncon-
ventional order-parameter symmetry. These two
methods are reviewed in the following sections.

III. CONDUCTANCE CHARACTERISTICS OF SHARVIN
CONTACTS

A. Sharvin contacts as a tool for ASJ spectroscopy

Let us consider a clean contact between two metals
having a very small cross section a2, so that its electrical
conductance in the normal state is equal to the number
of quantum channels connecting them, multiplied by the
quantum conductance se2 /"d. We neglect for the time
being any resistance that might arise from a dielectric
barrier between the two metals, or from a mismatch of
the Fermi velocities between them. Such a situation can
be nearly realized if we use broad-conduction-band met-
als, since they all have Fermi velocities of the order of
13108 cm/sec, and if we can avoid the formation of an
oxide at the interface. The current-voltage relationship
of this contact is

I = se2/hdskFad2V . s3.1d

The current density through the contact is

J = nev , s3.2d

where n is the carrier density and v is the velocity across
the contact. From Eq. s3.1d and the current-density defi-
nition J= sI /a2d, we obtain for the velocity the expression

v = seV/hdskF
2/nd . s3.3d

When we use Sharvin contacts to perform ASJ spectros-
copy, the bias across the contact will reach values of the
order of the pair potential. Using the value for the car-
rier density in the free-electron model, we obtain at such
bias a velocity of the order of

v = sD/pFd , s3.4d

which is the depairing velocity in the superconducting
side with gap D.

FIG. 2. sColor in online editiond Schematic representation of
an Andreev–Saint-James sASJd cycle for a d-wave supercon-
ductor coated with a normal-metal layer, the interface being
oriented perpendicular to a nodal direction.
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This high velocity is the main reason why we must use
a contact size both smaller than the electron mean free
path—in order to avoid heating effects—and smaller
than the coherence length sFig. 3d. Spreading of the cur-
rent after the contact bottleneck then reduces the cur-
rent density below the depairing value even at distances
smaller than j, thus avoiding quenching superconductiv-
ity at the contact, since superconductivity cannot be
quenched over a length scale smaller than j.

In summary, a small contact size is favorable for three
reasons: sid the condition a! l makes the contact ballis-
tic, which prevents heating effects at the large current
densities reached at biases of the order of the gap; siid
the condition a,j plays two roles: it prevents the weak-
ening of superconductivity in S due to the proximity
with N; and it prevents the destruction of superconduc-
tivity at biases of the order of the gap, where the carrier
velocity reaches the depairing value sD /pFd.

B. Fabrication of Sharvin contacts

In a clean superconductor the mean free path l.j,
and the above conditions are met if a,j. In a low-
temperature superconductor, j is typically of the order
of 1000 Å, and the contact qualifies as a Sharvin contact
if a<100 Å. For a high-Tc superconductor, we would
rather require a<10 Å. When making a point contact,
how can we make sure that such conditions are met?

The fabrication of point contacts has been well de-
scribed in the literature; see, for instance, Blonder et al.
s1982d. In short, a relatively sharp metallic tip, having a
local radius of curvature of the order of 1 mm, is brought
delicately into contact by a mechanical device with a
bulk counterelectrode. The tip can be, for instance,
made of a thin gold wire, cut with a sharp razor blade. If
the actual size of the contact were of the order of the
radius of curvature of the tip, the above conditions
would not be met. Its electrical resistance would be of
the order of 1 mV. In fact, the resistance of the contact

is often found to be of the order of 10–100 V. But how
can we determine whether this larger value actually re-
flects a small contact size, or rather a dirty contact? We
can get an answer to this question if we combine the
value of the normal-state resistance RN snamely, its
value above the critical temperature, or more practically
its value well above the gap biasd with its value RS at low
bias sbelow the gapd. In an ideal contact, we would have
sRN /RSd=2. This is, of course, never achieved. But a
ratio sRN /RSd.1 is an indication that ASJ reflections
may dominate, although some junction structures ssuch
as a proximity effect across the junctiond may give such
ratios and should be carefully checked, for instance,
through the bias dependence of the conductance.

It turns out that in many cases the contact realized is
indeed clean, and its size falls in the range of a few tens
of angstroms. One may wonder how that can happen, in
view of the rather crude contact technique used here. As
practitioners know from experience, when the tip is first
brought into contact with the counterelectrode, the re-
sistance is usually fairly high, in the range of a few kV,
and the IsVd characteristic is structureless. By applying
some slight movements to the tip, however, it is, possible
to bring the resistance down to the interesting range of
10–100 V and to obtain meaningful characteristics. One
may conjecture that these movements scratch away
some of the insulating material at the surface, revealing
the underlying pristine material. This, however, does not
explain the very small size of the contact achieved. On
the other hand, it is well known that when trying to
produce a uniform tunneling barrier, one often encoun-
ters a problem of shorts, presumably due to pinholes in
the barrier. It may be that small good contacts are estab-
lished through some naturally occurring defects in the
insulating layer, but this is still imperfectly understood.
Small-size contacts have been observed using very dif-
ferent techniques of tip preparation, such as electro-
chemical etching of a Nb wire, or cutting a thin Au wire
with a sharp razor blade, as said before. These methods
of tip preparation were reviewed by Achsaf et al., 1996.

C. Blonder-Tinkham-Klapwijk model

An electron moving from the N side towards the in-
terface can be scattered in four different ways:

sid it can be reflected as a hole along the incident
trajectory sASJ reflectiond with probability As«d;

siid it can be reflected as an electron snormal specular
reflectiond with probability Bs«d;

siiid it can be transmitted as an electron having a mo-
mentum k.kF sno branch crossingd with prob-
ability Cs«d;

sivd it can be transmitted as an electron having a mo-
mentum k,kF sbranch crossingd with probability
Ds«d.

The sum of these probabilities must be equal to 1:

FIG. 3. sColor in online editiond Schematic representation of a
Sharvin point contact having a size s much smaller than the
coherence length j and the mean free path l. At biases of the
order of the gap, the current density at the contact is of the
order of the depairing value, but at distances of the order of
sj , ld, it is reduced much below that value. The condition s
! sj , ld avoids heating effects and quenching of superconduc-
tivity in the vicinity of the contact.

115Guy Deutscher: Andreev–Saint-James reflections

Rev. Mod. Phys., Vol. 77, No. 1, January 2005



As«d + Bs«d + Cs«d + Ds«d = 1. s3.5d

Since current is conserved across the interface, it suffices
to calculate it, for instance, at the N side of the contact:

I = J0E
−`

+`

f1 + As«d − Bs«dgffs« − eVd − fs«dd« , s3.6d

where fs«d is the Fermi function and J0 is a conductance
taking into account the geometry of the contact.

Blonder et al. s1982d have given a complete calculation
of the dependence of coefficients A and B on energy for
barriers characterized by a delta-function potential. For
their derivation, we refer the reader to their paper.
Here, we limit ourselves to some simple limiting behav-
iors that we feel are of particular importance.

1. Case of a clean interface

For a clean interface, there are no specular reflections
at the interface, Bs«d=0. Also, As«d=1 for «,D. For «
.D, excitations can propagate in S. They have a partial
electron character with amplitude u0, and a partial hole
character with amplitude v0. From BCS theory, we know
that

u0
2 = f1 + s«2 − D2d1/2/«g/2, s3.7d

v0
2 = f1 − s«2 − D2d1/2/«g/2. s3.8d

ASJ reflections occur in proportion to the probabili-
ties for a hole-to-electron character of the excitations
propagating in S:

As«d = f1 − s«2 − D2d1/2/«g/f1 + s«2 − D2d1/2/«g . s3.9d

The conductance is equal to twice the normal-state
value below the gap and goes back to it over a scale D in
a manner that can be calculated from Eqs. s3.9d and
s3.6d.

It is interesting to consider more closely how the nor-
mal current in N is converted into a superfluid pair cur-
rent in S sFig. 4d. As already shown by Saint-James, and
noted earlier in this review, there are evanescent quasi-
particle waves in S at excitation energies smaller than
the gap. They decay over a length scale of the order of j,

and are at the same time converted into a superfluid.
More precisely, Blonder et al. s1982d show that the decay
length is given by

l = s"vF/2Ddf1 − s«/Dd2g−1/2. s3.10d

This progressive conversion of quasiparticles into a su-
perfluid has important consequences, some of which we
have already outlined. At a distance j from the inter-
face, the current density is reduced by a factor of sa /jd3,
which, in a low-temperature superconductor, can be a
factor of 1310−6. The velocity is then negligible com-
pared to the depairing velocity, even at biases much
larger than the gap. The situation is plainly much less
favorable in a high-Tc superconductor because of the
short coherence length. Thus we can hope at small bias
to have, at best, aøj. However, as the bias is increased,
the situation becomes more favorable because of the di-
vergence of the decay length. Another point, which is
trivial for low-temperature superconductors, is that
propagation of quasiparticles over a distance j from the
interface is necessary for the conversion to take place,
and therefore for full ASJ reflections to occur. This con-
dition is not a trivial one when we consider some situa-
tions peculiar to the high-Tc superconductors, such as
the existence of a pseudogap that may be larger than the
pair potential. This special situation will be discussed in
a later section.

2. Contacts with a finite transparency

Blonder et al. s1982d calculated the coefficients As«d
and Bs«d for contacts with a finite transparency, which
they modeled with a d-function barrier V=Hdsxd. They
used in their calculation a dimensionless parameter Z
= sH /"vFd. For the case in which the Fermi velocities in
N and S are different, Blonder and Tinkham s1983d
showed that one can replace Z by an effective barrier
parameter,

Zeff = Z2 + s1 − rd2/4r2, s3.11d

where r=vFN /vFS sor the inversed. The shape of the IsVd
characteristics is a function of Zeff only. There is no way
one can distinguish between the effects of a dielectric
barrier and that of a mismatch between the Fermi ve-
locities. This result, obtained for a delta-function barrier,
is not general. In particular, it does not hold when the
normal side is spin polarized ssee the last section of this
reviewd.

A finite Z results in a finite probability of ordinary
specular electron reflections at the N/S interface. Bs«d is
now finite, As«d,1 even at «,D: the conductance be-
low the gap is smaller than 2RN

−1; it goes to zero as Z is
made very large. Blonder et al. s1982d showed that, at
zero bias,

As0d = s1 + 2Zeff
2 d−2. s3.12d

Since at biases smaller than the gap C=D=0, it follows
from the sum rule A+B+C+D=1 and from Eq. s3.6d
that the current at zero bias is proportional to 2As0d. In

FIG. 4. Buildup of the superfluid density S and decrease of the
quasiparticle density QP in the superconductor side of an N/S
contact. ASJ reflections build up progressively over the dis-
tance j.
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the normal state, or at a bias much larger than the gap, it
is proportional to s1−Bd= s1+Zeff

2 d−1. From Eq. s3.5d, the
ratio of the zero-bias to the high-bias resistances,
sRS /RNd, is thus given by

sRS/RNd = 2s1 + Zeff
2 d/s1 + 2Zeff

2 d2. s3.13d

From the measurement of the ratio of the contact resis-
tances at high and zero bias, one can calculate the value
of the effective barrier parameter. This value is useful
for two purposes. First, it allows the calculation of the
actual size of the contact by

skFad2 = sh/RNe2ds1 + Zeff
2 d . s3.14d

Second, this parameter gives a lower bound on the ratio
of the Fermi velocities by assuming the absence of any
dielectric barrier at the interface.

More generally, using the analytical expressions de-
rived by Blonder et al. s1982d for the coefficients As«d
and Bs«d, it is possible to fit experimental IsVd curves
and to extract values of the gap and of the barrier pa-
rameter. Figure 5 gives a few examples of conductance
characteristics calculated for different values of the bar-
rier parameter. As it increases, the normalized zero-bias
conductance falls below 2, while at the gap edge it in-
creases above 2. In fact, at the gap edge the conductance
value is unaffected by the barrier. Blonder et al. s1982d
obtained values of the gap and of the Z parameter by
fitting the conductance curves of Nb/Cu Sharvin con-
tacts to their theory ssee Blonder and Tinkham, 1983d.
Characteristics could be fitted successfully for normal-
state resistances falling in the range of 10–100 V. Re-
ported values of Zeff were smaller than 1, and could be
as small as 0.3. Calculated contact radii varied from 10
to 120 Å, fully qualifying them as Sharvin contacts meet-
ing the conditions a, sj , ld. The bound to the mismatch
of the Fermi velocities was as expected. In fact, the ex-
perimentally determined values of the effective barrier
parameter mean that the contact was basically a clean

one. In turn, this justified modeling the barrier as a d
function, since the mismatch of the Fermi velocities oc-
curred over an atomic distance.

D. High-temperature superconductor point-contact results
for an antinodal orientation

1. Early experiments on high-quality single-crystal
YBCO samples

The earlier Sharvin point-contact experiments on
high-quality single-crystal samples were performed by
Hass et al. s1992d on melt-textured YBCO samples cut
out in a cubic shape so that four faces had the s100d or
equivalent orientation and two the s001d orientation. As
already noted, the main motivation for attempting this
experiment was the hope that there was a better chance
of obtaining a good point contact than of making a good
tunnel junction. Hass et al. revealed the following main
features.

sad On the s100d faces, contacts with a normal-state
resistance of about 10 V could be made. Their conduc-
tance increased by about 50% below a bias of about 20
mV sFig. 6d. This bias value was interpreted as being the
gap edge. The shape of the characteristic was generally
in accordance with the predictions of Blonder et al.
s1982d for a barrier parameter of about 0.3, except for
two features. First, the return to the normal-state con-
ductance above the gap was somewhat faster than it
should have been; this might have been due to the fact
that the condition a,j was only barely met, because of
the short coherence length. Second, the data did not
show the expected conductance peak at the gap edge.
The absence of this conductance peak was also noted
later on similar contacts produced on LSCO samples
sHass et al., 1994d. The main surprise came from the
substantial enhancement of the conductance at low bias,
which implied a small mismatch of the Fermi velocities.

sbd On the s001d-oriented faces, the characteristics
were basically structureless except for an occasional
zero-bias peak, and positive slopes at negative as well as
positive biases. The absence of a conductance enhance-
ment at low bias for this orientation was expected, in
view of the large mismatch of the Fermi velocities for
that case. However, Blonder-Tinkham-Klapwijk theory
then predicts that the characteristic should have the
shape of a regular Giaever tunneling junction, which was
not observed.

2. Effect of d-wave symmetry for an antinodal direction

The original theory of Blonder et al. s1982d is not ap-
propriate for d-wave symmetry. However, the later ver-
sion does not have dramatic effects for an antinodal di-
rection, probed in the experiments of Hass et al. s1992d.
As noted above, there are no ASJ low-energy surface
bound states for that orientation because specular re-
flections at the surface then preserve the value and the
sign of the pair potential. The coefficients A and B can
be calculated by performing a 2D integral of the
Blonder-Tinkham-Klapwijk coefficients over all angles.

FIG. 5. Conductance characteristics of N/S contacts for vari-
ous values of the barrier parameter Z. Adapted from Blonder
et al., 1982.
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For clean contacts, having an effective Z parameter
smaller than 1, it is not necessary to take into account a
finite tunneling cone aperture. Typical shapes of conduc-
tance characteristics are shown in Fig. 7 sZ values: 0; 0.2;
0.3; 0.5; 0.7; 1.0d. For Z=0, they assume a triangular
shape; for Z values around 0.3, they are rather flat up to
the gap edge, which is the case observed in the early
experiments on YBCO shown above; for Z values in the
range of 0.5–1, they assume a V shape at low bias, reach-
ing a maximum slightly below the gap, followed by a
sharp descent back to the normal-state conductance. We
note that for an antinodal direction in this range of Z
values, which is typical for point contacts, the maximum
conductance reached is always smaller than twice the
normal-state value. Typical maximum conductance val-

ues are around 30–50 % higher than the normal-state
value.

The d-wave symmetry explains the main disagreement
between the data of Hass et al. s1992d and the original
Blonder-Tinkham-Klapwijk theory, namely, a conduc-
tance at the gap edge smaller than twice the normal-
state value. Actually, the various theoretical shapes cal-
culated for the range 0,Z,1 have been observed
experimentally. Figure 8 shows data obtained on an
a-axis-oriented YBCO surface sKohen et al., 2003d, and
Fig. 9 shows data obtained on a BiSrCaCuO single crys-
tal in the s100d orientation sD’Gorno and Kohen, 1998d,
with fits to theory. The predicted V shape at low bias is
clearly observed in both cases. Fits are of a high quality
and require only a small ‘‘smearing” factor G sKohen et
al., 2003d. Kohen et al. establish that ASJ spectroscopy is
a reliable and quantitative spectroscopic tool for the
study of high-Tc superconductors. When performed in
an antinodal direction, it provides a precise determina-
tion of the gap value. The effect of the d-wave symmetry
can be clearly seen in the shape of the characteristics.

Two kinds of deviation from pure d-wave behavior
have been reported. A special proximity effect has been
observed between the normal tip and the d-wave super-
conductor at very small Z values sZ,0.5d, which may
induce an is component in the superconductor. This is
discussed in detail in the last section of this review. An-
other deviation has been seen in strongly overdoped
YBCO samples. It involves a small imaginary minority
component sidxy or isd, whose occurrence is also dis-
cussed in the last section.

E. Renormalization of the Fermi velocity

1. The problem of the small Fermi velocity mismatch

The other question raised by the experiments of Hass
et al. s1992d was the surprisingly small value of the bar-
rier parameter needed to fit some of the data. Z values
of 0.3–0.4, as found for YBCO sHass et al., 1992; Wei et
al., 1998d imply that the ratio between the Fermi veloci-

FIG. 6. Conductance characteristics of Au/YBCO point con-
tacts for the antinodal orientation. The increase in the conduc-
tance at low bias is about 50%. The edge is at about 20 mV.
Note the absence of a conductance peak at the gap edge. Data
from three different locations on the same sample. Adapted
from Hass et al., 1992.

FIG. 7. Calculated conductance characteristics for a d-wave
order parameter in an antinodal orientation, at different values
of the barrier parameter Z s0; 0.2; 0.3; 0.5; 0.7; 1.0d. Note for
Z.0.5 the clear V shape at low bias and the sharp decrease in
the conductance at the gap edge.
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ties of YBCO and of the normal tip is, at most, a factor
of 2 sassuming that the finite Z is entirely due to the
Fermi velocity mismatchd. Taking, for instance, the case
of the Au tip, in which the Fermi velocity is 1.4
3108 cm/sec, one obtains for the Fermi velocity in
YBCO a lower bound of 0.73107 cm/sec. This is more
than three times larger than the velocity measured by
ARPES in BiSrCaCuO, vFS=23107 cm/sec ssee, for in-
stance, Margaritondo, 1998d, which is presumably typical
of all high-Tc superconductors. Using this value of vFS,
one obtains Z=6. For such a high Z value, the point-
contact characteristic should be a tunneling one
sTanaka, 1996d, that is, the small-bias conductance
should be much smaller than the normal-state value,
contrary to what is observed experimentally.

2. Solution to the problem

As shown by Deutscher and Nozières s1994d, the so-
lution to the problem lies in the fact that the small value
of the quasiparticle Fermi velocity in the cuprates is a
many-body effect, which does not come into play in the
mismatch that governs ASJ reflections. The quasiparti-
cle velocity is

vF = zv̄F, s3.15d

where

v̄F = vF0 − ] S/] k s3.16d

and

z = 1/s1 + ] S/] vd . s3.17d

Here vF0 is the bare Fermi velocity sthe band velocity,
undressed for interaction effectsd, and S is the self-
energy correction Ssk ,wd. The wave-vector dependence
of the self-energy is a nonlocal effect susually quite small
in metalsd, and its energy dependence is a retardation
effect, leading to mass enhancement. This factor can
sometimes be extremely large, as in heavy fermions
sHasselbach et al., 1993d. It is, in principle, accessible by
a measurement of the low-temperature electronic heat
capacity. In practice, however, that is not possible in the
high-Tc cuprates, because of their extremely high critical
field. Another quantity that is sensitive to the mass en-
hancement factor is the coherence length, since it is the

quasiparticle velocity that enters into that length:

j = "vF/pD , s3.18d

where D is the measured gap. We can obtain the value of
vF from Eq. s3.17d, putting in the value of j derived from
the measured upper critical field Hc2=f0 /2pj2, and the
value of D obtained, for instance, from ASJ spectros-
copy, as described in the previous paragraph. We can
then calculate the mass-enhancement factor z by com-
paring this value of vF to the lower bound of the velocity
obtained from the effective barrier parameter Zeff deter-
mined from a fit to point-contact conductance character-
istics.

If we take the specific example of YBCO, from j
=15 Å, D=20 meV, we calculate for the quasiparticle
velocity vF=1.53107 cm/sec. The lower bound of the
velocity obtained from the lowest measured Zeff=0.3 is,
from Hass et al. s1992d, 6–73107 cm/sec, giving a mass
enhancement factor of 4–5. It should be emphasized that
this factor combines two effects: nonlocality and retar-

FIG. 8. sColor in online editiond Conductance characteristics of Au/YBCO film contacts fitted to a d-wave order parameter for
different values of the barrier parameter Z sfrom left to right: 0.68; 0.49; 0.34d. The fit is for an antinodal direction. Note the
pronounced V shape at low bias for the highest-Z contact. Adapted from Kohen et al., 2003.

FIG. 9. Measured conductance characteristic of a
Au/Bi2Sr2CaCu2O8 in-plane contact to a bulk-oriented
sample. Note the low-bias V shape and the sharp drop at about
20 mV. The fit is for an antinodal direction and Z=0.8.
Adapted from Okashi and Kohen, 2002.
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dation. The respective contributions of these two effects
cannot be determined directly. This would require a
fairly exact knowledge of the bare-band velocity.
Massida et al. s1991d showed that it is smaller than the
velocity derived from the point-contact measurements,
suggesting that both contributions are important.

F. Summary

In this section, we have reviewed the application of
the Blonder-Tinkham-Klapwijk model to the study of
ASJ reflections. We have shown that it can be applied
successfully, in a quantitative way, to point-contact ex-
periments carried out on high-Tc superconductors in
configurations where phase effects due to the d-wave
symmetry of the order parameter are not dominant. The
Blonder-Tinkham-Klapwijk model is based on a solution
of the Bogoliubov–de Gennes equations for the pair po-
tential. Use of these equations implicitly assumes a
Fermi-liquid description of the superconductor. The
high quality of the fit between experiment and theory
shows that this assumption is justified, at least for
samples near optimum doping. The exact shape of the
point-contact conductance characteristics obtained on
surfaces perpendicular to an antinodal direction is in ex-
cellent agreement with a d-wave order parameter. The
small value of the barrier parameter Z implies a good
match between the Fermi velocities of the normal-metal
tip and the high-Tc superconductor, which is well ex-
plained by a mass enhancement effect in the spirit of
Fermi-liquid theory.

Geometries in which the d-wave symmetry has a more
dramatic effect are reviewed in the next section.

IV. ASJ SURFACE BOUND STATES

As was briefly mentioned in Sec. II.C, zero-energy
ASJ surface bound states are a direct result of a d-wave
symmetry of the order parameter when the surface is
oriented perpendicular to a nodal direction fs1,1,0d-
oriented surfaceg. The origin of these states lies in the
sign reversal of the pair potential “seen” by quasiparti-
cles upon specular reflection at the surface. For reasons
of symmetry, sign reversal for this orientation will occur
for trajectories making any angle with the normal to the
surface. For other surface orientations, sign reversal will
occur for a certain angular range, with the exception of
the case of the antinodal orientation, reviewed in Sec.
III.D, where there is no sign reversal for any trajectory.
Hence zero-energy surface bound states will exist for
any surface orientation except the antinodal one. In the
smore practicald case of diffuse reflections at the surface,
for any orientation of the surface there will always be a
sign reversal for some trajectories. Surface bound states
are therefore a robust property of d-wave superconduc-
tivity.

A. Zero-bias conductance peaks and d-wave symmetry

Motivated by the findings of Hu s1994d, Kashiwaya et
al. s1995; Tanaka and Kashwaya, 1995d have extended
the model of Blonder et al. to the case of a d-wave sym-
metry for all surface orientations.

The main difference from the results of Blonder et al.
s1982d, obtained for the s-wave symmetry case, comes
about when one considers the two transmission channels
having the respective transmission probabilities Cs«d, for
an electronlike transmission, and Ds«d for a holelike
transmission. While in the s-wave case a 1D calculation
was sufficient, automatically taking care of momentum
conservation in the direction parallel to the interface,
here a 2D calculation is necessary. A complete review of
the theory and early experiments has been given by
Kashiwaya and Tanaka s2000d.

1. Results of Kashiwaya et al. for the „110… orientation

We summarize here the results of Kashiwaya et al.
s1995d for the nodal orientation, following their notation
and defining a normalized conductance as

ss«d = s̄Ss«d/s̄Ns«d , s4.1d

where

s̄is«d = E
−p/2

+p/2

s̄is«,fddf si = N,Sd , s4.2d

f being the angle with the normal to the surface.
In the limit Z@1, this expression reduces to

s̄Ns«,fd = 4 cos2 f/Z2, s4.3d

s̄Ss«,fd = 32 cos4 f/u4 cos2 f + Z2s1 + G2du2 s4.4d

with

G = «/uDu − fs«/Dd2 − 1g1/2. s4.5d

At zero bias, we have just sSs0,fd=2. The conductance
is twice as large as the value it would have in the normal
state in the absence of any barrier sDeutscher and May-
nard, 1998d. On the other hand, the actual normal-state
conductance varies as Z−2. Hence the appearance in the
measured conductance of what is called a zero-bias con-
ductance peak for a high-barrier contact. The bias range
over which the conductance is substantially enhanced
compared to its actual normal-state value is

u«/Du ø Z−2. s4.6d

As the barrier height is increased, the conductance peak
becomes higher and narrower. Lifetime effects and dis-
crete lattice effects on the zero-bias conductance peak
have been discussed by Walker and Pairor s1999d. They
broaden and reduce the zero-bias conductance peak.
Discrete lattice effects limit zero-energy bound states to
certain orientations of the wave vector. They can also
modify the shape of the conductance peak near zero
bias. There can thus be substantial deviations from the
Kashiwaya et al. s1995d expressions. Since the conduc-
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tance at zero bias GSs0d is unaffected by the presence of
a barrier for a pure s110d orientation, its value may be
used to calculate the actual size of the contact:

skFad2 = s"/e2dGSs0d . s4.7d

Figure 10 shows how the shape of the conductance char-
acteristic evolves as a function of Z for the s110d orien-
tation. For Z=0, it has a triangular form, the conduc-
tance at zero bias being twice as large as the normal-
state value, reached when the applied bias is equal to the
value of the gap. For Z@1, the conductance dips below
its normal-state value before returning to it at a bias of
the order of the gap. Notice that the gap is not marked
by a sharp structure at any value of Z. Hence the s110d
orientation is not as favorable as the s100d one for an
accurate determination of the gap. On the other hand, it
is highly sensitive to the symmetry of the order param-
eter.

2. Results of Kashiwaya et al. for arbitrary orientations

Kashiwaya et al. s1995d have given expressions for the
amplitudes of hole as« ,fd and electron bs« ,fd reflec-
tions. These expressions allow us to calculate the IsVd
characteristics for any surface orientation and Z value,
taking into account a possible angular dependence of Z
in the case of a strong barrier stunneling coned. The
zero-bias conductance peak is a robust feature of d-wave
symmetry sFig. 11; Yang and Hu, 1994d. It occurs for any
orientation of the surface except the s100d one, and for
any value of Z. The structure at the gap edge is, in gen-
eral, a weak one. It can be a small step down at low Z
values, a small step up at large Z values, or a weak maxi-
mum at large Z values and intermediate orientations.
An important difference between a contact and an
s-wave superconductor is that no large conductance
peak is predicted at the gap edge feven for the s100d
orientation it remains of modest heightg. This peak,
called the coherence peak in s-wave superconductors, is

destroyed for in-plane tunneling by the very interference
effects that give rise to the zero-bias conductance peak.

B. Experimental results

We review in turn results obtained for low-Z contacts
sSharvin contactsd and high-Z contacts stunneling con-
tactsd.

1. Low- Z „110… contacts

Figure 12 shows the conductance of a contact pre-
pared on a s110d face of a LSCO single crystal sDagan et
al., 2000d. The crystal itself had Tc=33 K, near optimum
doping, but the local Tc at the contact was only 16 K,
probably due to the manipulations used to prepare it,
resulting in a local loss of oxygen. The characteristic has
the shape of an inverted V, in agreement with the theo-

FIG. 10. Calculated conductance characteristics for a contact
to a d-wave superconductor in a nodal direction, for different
values of the barrier parameter Z s0; 0.5; 1.0; 2.0; 3.0d. Con-
trary to the case of antinodal contacts, there is no sharp struc-
ture at the gap bias, only a smooth return to the normal-state
conductance.

FIG. 11. Calculated conductance characteristics for a contact
to a d-wave superconductor in a nodal direction with Z=5, at
different openings of the tunneling cone. Return to the
normal-state conductance always occurs at about the gap
value. The curves have been calculated using the weight func-
tion expf−su /uMd2g, with uM values 90°, 57°, 33°, 23°, and 18°.

FIG. 12. Measured conductance characteristic of a
Au/La2−xSrxCuO4 single-crystal underdoped contact. The data
were fitted for a nodal direction, giving Z=0.3, and a gap of 5
meV. Adapted from Dagan et al., 2000.
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retical predictions for a low-Z s110d surface sFig. 7d. A fit
to theory gives D=5 meV. This result will be important
when we discuss the underdoped regime spseudogap re-
gimed in the next section.

Low-Z contacts on LSCO at actual optimum doping
have slightly different characteristics. Figure 13 shows
that of a contact obtained by electromigration sAchsaf et
al., 1996d. Upon making contact between the tip and the
sample, the resistance was first very high, in the 100-kV
range, presumably due to an oxygen-depleted surface
layer. A positive bias was then applied to the tip, possi-
bly attracting positively charged oxygen ions from the
bulk of the sample towards the surface. The general
shape of the characteristic is still that of an inverted V,
but with a local minimum near zero bias. As explained
in the theory section, this local minimum is incompatible
with a pure d-wave symmetry.

Etching the surface is another way to obtain a low-Z
contact. On the same crystal, this method produced
characteristics of the same general shape as that ob-
tained on a junction prepared by electromigration, dis-
cussed above, but with a wider separation between the
two peaks. It may be that etching exposes other crystal-
lographic facets besides s110d, giving a characteristic
more like that obtained on s100d surfaces. Similar char-
acteristics were obtained by Gonelli and co-workers
sDaghero et al., 2002d on polycrystalline LSCO samples.
They were also interpreted as indicating a mixed sym-
metry.

Concerning the gap value, Achsaf et al. s1996d con-
clude from their low-Z data that it is of about 9 meV in
a slightly underdoped LSCO single crystal. This is some-
what smaller than the value of the gap obtained from
tunneling contacts on the same crystal, which is closer to
15 meV.

Relatively low-Z contacts sZ=1d were obtained by
Wei et al. s1998d on an optimally doped YBCO single
crystal by driving a Pt-Ir tip into the sample. The char-
acteristics also had the shape of an inverted V. The gap
value extracted from the fit is 27±4 meV. For compari-

son, a regular scanning tunneling microscope sSTMd
measurement taken along the c axis on the same crystal
gives a gap value of 19±4 meV.

2. High- Z „110… contacts

In agreement with theory, high-Z contacts to s110d-
oriented surfaces show a zero-bias conductance peak
and a weak structure at the gap edge.

Sinha and Ng s1998d have produced tunnel junctions
on the edges of BSCCO single crystals by evaporating
onto them a Pb or Ag counterelectrode. The roughness
of the edge is large s3000 Åd, therefore there is no well-
defined surface orientation. Taking this orientation as a
free fit parameter, and a smearing factor of 3.08 meV,
Sinha and Ng s1998d obtained a good fit of their data to
the theory of Kashiwaya et al. s1995d, with Z=2 and D
=13 meV. One can see from Fig. 14 that the zero-bias
conductance is larger than the normal-state conductance
by a factor larger than 2, and that the gap edge has a
weak signature as a dip below the normal shigh-biasd
conductance value followed by a progressive recovery.
The Tc of the junction was 75 K, presumably indicating
underdoping at the surface, either intrinsic or provoked
by the contact with the counterelectrode. The rather
small gap value will be commented upon in relation to
the pseudogap issue in the next section.

FIG. 14. IsVd and conductance characteristics of an in-plane
contact to a Bi2Sr2CaCu2O8 single crystal. Note the return to
the normal-state conductance at about 10 meV. Adapted from
Sinha and Ng, 1998.

FIG. 13. Measured conductance characteristic of a
Au/La2−xSrxCuO4 single-crystal contact near optimum doping.
Note the small split of the conductance peak at small bias. The
line is an attempt to fit the data with an s-wave gap. Arrows
indicate high-bias structures possibly related to phonons.
Adapted from Achsaf et al., 1996.
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Wei et al. s1998d measured the characteristics of STM
tunnel junctions on s110d faces of YBCO single crystal.
They showed a large zero-bias conductance peak, the
conductance at zero bias reaching up to eight times the
normal-state value. As predicted by theory, the peak is
followed by a dip before return to the normal-state
shigh-biasd value. The gap value obtained from the fit is
27±4 meV.

In general, the highest zero-bias conductance peaks
have been obtained on STM junctions. The scanning
tunneling microscope neatly reveals the large anisotropy
in the total density of states of the high-Tc supercon-
ductor. Sharoni et al. s2001d have reported observing, on
the same sample, a c-axis oriented YBCO film, three
types of characteristics: V shaped on s001d areas, zero-
bias-dominated on s110d grain edges, and flat bottomed
on s100d edges sFig. 15; see also Sharoni et al., 2003d.
These observations show that the total density of states
can vary over a length scale of the order of a nanometer.
On s110d-oriented films, a zero-bias conductance peak
and a gaplike feature are both observed sSharoni et al.,
2002d. Macroscopic contacts allowing in-plane tunneling
into films having the s100d or s110d orientations have
been produced by a number of techniques, such as using
a Pb counterelectrode ssometimes with a thin Ag buffer
layer in order to avoid massive oxygen out-diffusion; see
Lesueur et al., 1992d or a copper counterelectrode
sAprili et al., 1999d. The method that we have used most
of the time is to stick a small In dot on the fresh surface
of the film sKrupke and Deutscher, 1999d. These con-

tacts are very stable and can sustain repeated thermal
cycling without damage. The exact nature of the dielec-
tric layer is not known. It may be the result of some loss
of oxygen at the surface, resulting in an underdoped
YBCO insulating surface, or it may be due to oxidation
of the In counterelectrode by oxygen diffusing out from
the YBCO layer. The process appears to be self-limited
sthis is not the case with a Pb counterelectrode, which
“pumps out” oxygen so effectively that the underlying
YBCO film can become insulatingd. Millimeter-size con-
tacts have typical resistances in the convenient range of
10–100 V. These junctions do not yield characteristics as
ideal as those that can be obtained by STM, apparently
due to surface roughness and to the high sensitivity of
the total density of states to faceting on the nanometer
scale, as demonstrated by the STM observations of
Sharoni et al. s2001d. s110d facets actually act as shorts,
but the junctions have a significant advantage in that
they allow measurements to be easily taken as a function
of temperature and applied magnetic field.

A typical characteristic obtained by this method on a
s110d-oriented film is shown in Fig. 16. Compared to
STM data, the zero-bias conductance peak is consider-
ably smeared. On the other hand, a gaplike feature is
well pronounced. This gaplike-feature peak has been in-
terpreted within the framework of the Kashiwaya et al.
s1995d theory as resulting from surface roughness sFo-
gelstrom et al., 1997d, which has about the same effect as
if the surface had an effective orientation intermediate
between s100d and s110d. Actually, there is not much dif-

FIG. 15. Measured scanning tunneling microscope sSTMd conductances at various positions on an YBCO grain having a s001d-
oriented upper surface. The shape of the characteristics goes from V shape on top of the grain sb, cd, to U shape near a s100d face
sdd, to inverted V near a s110d face se, fd. Adapted from Sharoni et al., 2001.

123Guy Deutscher: Andreev–Saint-James reflections

Rev. Mod. Phys., Vol. 77, No. 1, January 2005



ference between the characteristics of macroscopic junc-
tions prepared on s100d- and s110d-oriented films. They
show similar zero-bias conductance peaks and gaplike
features. A quantitative fit to the data, taking into ac-
count surface roughness, has been presented by Fogel-
strom et al. s1997d. The gaplike feature is well repro-
duced. Its peak position is somewhat below the value of
the gap. Experimentally, its position is extremely repro-
ducible from sample to sample soptimally dopedd, and
from laboratory to laboratory. It is, in fact, one of the
most reliable pieces of data to be found in the high-Tc
superconductor literature. Its position is 17 mV for op-
timally doped YBCO, with a variation of less than 1 mV
between data originating from different laboratories.
Fogelstrom et al. s1997d determined that the gap value
might be up to 50% higher, or about 25 meV, depending
on the exact surface orientation spread. Assigning to the
ASJ gap in optimally doped YBCO a range of 20–25
meV is a safe estimate.

3. High- Z „110… contacts under magnetic fields

Lesueur et al. s1992d were the first to notice that a
magnetic field can induce a split of the zero-bias conduc-
tance peak in YBCO films, and proposed that it might
be due to a Zeeman effect, under the assumption that
the conductance peak itself is due to the presence of
magnetic impurities in the vicinity of the barrier. Cov-
ington et al. s1997d further studied this effect, which was
given a different interpretation by Fogelstrom et al.
s1997d in terms of a Doppler shift of the energy of the
ASJ surface states. This Doppler shift is due to the su-
perfluid velocity corresponding to the field-induced
Meissner currents. The experimental proof that the
zero-bias conductance peak is not primarily due to the
presence of magnetic impurities was given by Krupke
and Deutscher s1999d and by Aprili et al. s1999d. With
films having a good in-plane orientation of the c axis,
they showed that the zero-bias conductance-peak field
splitting is very anisotropic, being strong when the field
is oriented perpendicular to the CuO2 planes and unde-
tectable when it is in the orthogonal direction sFig. 17d.

It is in the first geometry that Meissner currents flow
along the CuO2 planes. If the zero-bias conductance
peak had been of magnetic origin, its splitting should
have been isotropic.

In the model of Fogelstrom et al. s1997d, the energy of
the ASJ states is Doppler shifted by an energy equal to
vS ·pF cos U, where vS is the superfluid velocity associ-
ated with the Meissner currents, pF is the Fermi momen-
tum, and U is the angle that the trajectory of a tunneling
quasiparticle makes with the surface of the sample. At
low fields, theory predicts that since vs increases linearly
with the applied field, so should the zero-bias
conductance-field splitting, as indeed has been observed
experimentally snonlinear effects may arise due to the
presence of a s-wave channel; Fogelstrom et al., 2003d.
Saturation is predicted to occur at fields of the order of
the thermodynamical critical field Hc as observed by
Covington et al. s1997; Fig. 18d. The strong anisotropy of

FIG. 16. Tunneling characteristics of an In/YBCO junction on
a s110d-oriented film at increasing magnetic fields of up to 6 T.
Inset: measurements in decreasing fields. Adapted from Dagan
and Deutscher, 2001a.

FIG. 17. Tunneling characteristics of an In/YBCO junction in
increasing fields. The YBCO film has the s110d orientation, and
the field is oriented parallel to the surface of the film and par-
allel to the c axis sitself in-plane orientedd. Note sinsetd that the
splitting does not take place when the field is applied perpen-
dicular to the c axis. Adapted from Beck, 2004.

FIG. 18. Field dependence of the zero-bias conductance peak
for in-plane junctions to YBCO films. The fit for the
YBCO/Cu contact is from the theory of Fogelstrom et al.
s1997d. Adapted from Covington et al., 1997.
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the zero-bias conductance-peak field splitting, and its
field dependence, strongly support the idea that d-wave
symmetry is at the origin of the zero-bias conductance
peak. The model of Fogelstrom et al. s1997d assumes that
vortices do not penetrate into the sample for fields of up
to the order of Hc, or, in other words, that there exists a
strong Bean-Livingston sBean and Livingston, 1968d bar-
rier. Since there is no such barrier against vortices’ exit-
ing in decreasing fields sBussières, 1976d, a strong hyster-
esis of the zero-bias conductance-peak field splitting is
expected. Again, this is in general agreement with ex-
periment, the splitting being larger in increasing than in
decreasing fields sKrupke and Deutscher, 1999d. In fact,
according to the Doppler-shift model based on the
Bean-Livingston currents, there should be no zero-bias
conductance-peak splitting at all, or only a small one, in
decreasing fields. It is also expected that the splitting
should be strongly decreased at thicknesses smaller than
the London penetration depth l, for which Meissner
currents reduce as the thickness divided by l. Both pre-
dictions are again in agreement with early results ob-
tained on films that had the s100d orientation sKrupke
and Deutscher, 1999d or the s103d orientation sCovington
et al., 1997d. For such films, the very existence of the
zero-bias conductance peak is supposedly due to surface
roughness. Later results, obtained on films that did have
the s110d orientation, show a more complex behavior. In
particular there is a strong splitting in decreasing fields,
and it persists even at small thickness sDagan and Deut-
scher, 2001b; Beck et al., 2003d. This behavior raises
questions that will be discussed in the last section of this
review.

V. ASJ SPECTROSCOPY AND THE PSEUDOGAP ISSUE

Andreev–Saint-James spectroscopy allows a good de-
termination of the gap in the cuprates, it gives solid evi-
dence that they have well-defined quasiparticles, and it
provides a good estimate of their mass renormalization.
ASJ spectroscopy is also a phase-sensitive tool. More
will be said on this last topic when we discuss the occur-
rence of minority components of the order parameter in
the last section of this review. It turns out that ASJ spec-
troscopy also sheds light on the possible origins of the
pseudogap, one of the least understood features of the
cuprates.

A. Manifestations and possible origins of the pseudogap

There exists converging experimental evidence from
NMR spin-susceptibility measurements sAlloul et al.,
1989d, heat-capacity measurements sTallon and Loram,
2001d, ARPES sDing et al., 1996d, optical measurements
ssee the review by Timusk and Statt, 1999d, and tunnel-
ing experiments sRacah and Deutscher, 1996; Miyakawa
et al., 1997; Renner et al., 1997d that in underdoped cu-
prates there is a loss of states at the Fermi level below a
temperature T*spd that increases as the doping p is de-
creased. T* and Tc have opposite variations as p is re-

duced below the optimum level pM. This loss of states
occurs over a certain energy range, called the
pseudogap, which can be measured by different spectro-
scopic methods. There are even today sharply conflicting
views on its origin. From a phenomenological stand-
point, these views can be grouped into two classes: one
holds that the pseudogap is a high-temperature precur-
sor of the superconducting state, the other that it is
strictly a normal-state property, with no direct relation
to superconductivity. In the first case, T* is the tempera-
ture below which a pairing amplitude appears, without
the phase coherence, which is achieved at a lower criti-
cal temperature Tc; it follows necessarily that T*.Tc. In
the second case, T*, being a normal-state property, is not
necessarily larger than Tc. In the first case, there cannot
be a crossing point between T*spd and Tcspd; in the sec-
ond case, there may be one.

Friedel s1988, 1989d has applied the concept, devel-
oped by Mott scited by Friedel, 2004d to describe the
effects of coherent diffraction of valence electrons from
a local atomic order in liquid or amorphous metals or
Hume-Rothery alloys, to the case of local 2D antiferro-
magnetic order. The term “pseudogap” that he intro-
duced describes a density of states resembling that re-
sulting from long-range antiferromagnetic order, with a
gap and peaks at the gap edges, but with states within
the gap and broadened peaks.

By contrast, other authors have seen the pseudogap as
a high-temperature precursor to superconductivity. An
early model is the bipolaronic approach of Alexandrov
and Mott s1994d. Chen et al. s2004d have investigated the
regime of BCS-to-Bose-Einstein sBEd crossover with the
emphasis on finite-temperature effects. They find that, in
the crossover region, the order parameter is distinct
from the gap in the single-particle excitation spectrum,
going to zero at Tc while the gap remains finite, and
going smoothly into the pseudogap regime above Tc. In
the ground state, as seen in a low-temperature spectro-
scopic experiment, there is only one single energy scale,
the order parameter and the gap being identical. In yet a
different approach, Bernevig et al. s2003d have studied
the effect of strong Coulomb effects on superconductiv-
ity. They find that these effects generate a d-wave gap,
and at the same time reduce the superfluid density. The
stronger they are, the larger the gap value and the
smaller Tc will be because of Kosterlitz-Thouless effects
sEmery and Kivelson, 1995d. The transition to the insu-
lating antiferromagnetic state occurs at half filling. If
Coulomb effects reduce sas may be expected in the over-
doped regiond, there is a smooth transition to a BCS
superconductor. In this model, as well as in the BCS-
to-BE crossover scheme, the pseudogap is a manifesta-
tion of incipient superconductivity.

In a different approach, Perali et al. s2000d have stud-
ied the consequences of a strong anisotropy, both the
effective interaction and the Fermi velocity being mo-
mentum dependent. At the antinodes the interaction is
strong and the Fermi velocity small, and vice versa at the
nodes. One possible mechanism of a strong momentum
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dependence is a charge instability for stripe formation,
occurring below a line T*spd that starts from a quantum
critical point at T=0 near optimum doping. Other theo-
ries have emphasized the role of fluctuations around a
quantum critical point, causing the appearance of an
imaginary component of the order parameter on one
side of the quantum critical point sSachdev, 2000; Ng and
Varma, 2004d.

Renner et al. s1997d performed STM measurements
on BSCCO single crystals at different doping levels and
observed a pseudogap swith a substantial density of
states within itd above Tc, merging into the gap in the
superconducting state below Tc. In underdoped crystals,
a pseudogap could be observed up to room temperature
sFig. 19d. Even in overdoped samples, a pseudogap was
seen to persist a few tens of K above Tc. In other words,
T*spd and Tcspd, as measured by tunneling in BSCCO,
do not cross each other. This behavior is compatible with
the pseudogap’s possibly being a precursor of the super-
conducting gap, as proposed by the authors. An increase
of the gap was also measured by break junctions on un-
derdoped BSCCO by Miyakawa et al. s1997d.

On the other hand, Tallon and Loram s2001d have
concluded from an analysis of heat-capacity data on a
number of cuprates that T*spd and Tcspd do cross each
other, T*spd following a linear behavior that extrapolates
at zero temperature to a universal “critical” concentra-
tion pc=0.18 holes/Cu. They conclude that T* is not di-
rectly related to superconductivity.

Very recently, Alff et al. s2003d reported that in the
electron-doped compounds PrCeCuO and LaCeCuO, a
pseudogap develops only at low temperatures T,T*

,Tc, as can be seen by applying magnetic fields strong
enough to destroy superconductivity. They conclude that
the pseudogap cannot be a precursor to the supercon-
ducting state. The absence of a pseudogap opening
above Tc in the electron-doped cuprates was also noted
by Kleefisch et al. s2001d, and its presence below Tc
noted by Qazilbash et al. s2003d.

These results sand many others that we have not
citedd do not allow one to draw a general conclusion
regarding the origin of the pseudogap. It may be that
different kinds of measurements, such as tunneling and
heat capacity, “see” different pseudogaps. Additionally,
it could also be that the pseudogap has different origins
in different cuprates. For a review on the pseudogap, see
Timusk and Statt s1999d.

B. ASJ spectroscopy in the pseudogap regime

The first important observation is that strong ASJ re-
flections are observed in the pseudogap regime. This is
particularly true for ASJ bound states. Zero-bias con-
ductance peaks have been observed in strongly under-
doped YBCO sDagan et al., 2000d and BSCCO sSinha
and Ng, 1998d. They persist up to Tc, where they vanish.
The second observation is that in the pseudogap regime
gap values determined by ASJ spectroscopy and single-
particle spectroscopies stunneling or ARPESd are differ-
ent, while they roughly agree in the overdoped regime
sDeutscher, 1999d.

In underdoped YBCO, Yagil et al. s1995d reported
measurements of ASJ reflections by point contact on
a-axis films fs100d-oriented surfaceg yielding a gap value
of 13 meV. The enhancement of the conductance below
the gap was weaker than in optimally doped YBCO.
Giaever tunneling on similarly underdoped a-axis films,
with Tc values in the range of 40–60 K, gives a gap of
40–50 meV sRacah and Deutscher, 1996; Fig. 20d.

As mentioned above, in an underdoped BSCCO junc-
tion close to the s110d orientation and having a Tc
=70 K, Sinha and Ng s1998d obtained from their fit to
the data an ASJ gap of 13 meV. This is much smaller
than the 50-meV STM gap value at similar doping sRen-
ner et al., 1997d. Aubin et al. s2002d prepared tunnel
junctions on optimally doped single-crystal BSCCO hav-
ing a surface passivated by a thin CaF2 layer. Crystals
were cut and polished so as to expose s100d- and s110d-
oriented surfaces. On s100d surfaces, broad Giaever-like
tunneling curves were obtained with maxima at 37 meV,
which is in agreement with STM data sRenner et al.,
1997d. On s110d surfaces the conductance characteristic
had the shape typical of high-Z junctions for that orien-
tation, with a high zero-bias conductance peak followed
by a dip before recovery to the normal-state conduc-
tance. Recovery occurred in the range of 20–30 meV
fFig. 4sad and Fig. 2 of Aubin et al., 2002g, which we
would expect corresponds to the range of possible gap

FIG. 19. Scanning tunneling microscope characteristics mea-
sured on an underdoped Bi2Sr2CaCu2O8 single crystal, at tem-
peratures ranging from 4.2 K up to room temperature. A con-
ductance dip persists up to the highest temperature. Note,
however, the change in the dip amplitude when going from 123
to 151 K. Adapted from Renner et al., 1997.
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values. A fit to these s110d data, considered as reason-
able by the authors, was nevertheless given with a gap
value of 37 meV. D’Gorno and Kohen s1998d obtained
point-contact junctions on a nearly optimally doped
smaybe slightly overdopedd BSCCO single crystal that
could be fitted very well to a s100d orientation with a gap
value of 20 meV and Z=0.8 sFig. 9d. We would conclude
that, for BSCCO, ASJ spectroscopy flow-Z s100d con-
tacts, moderate, and high-Z s110d contacts, both sets of
data being dominated by ASJ reflectionsg gives for
BSCCO a gap of 20–30 meV at or near optimum doping,
and less than 15 meV in underdoped samples. By con-
trast, Giaever tunneling gives gap values of 30–40 meV
at optimum doping and 40–50 meV in underdoped
samples. Recently, a detailed STM study on BSCCO
cleaved crystals, systematically scanning large areas of
the crystal, have shown that up to energies in the range
of 20 meV, the single-particle tunneling spectra are quite
homogeneous across the sample’s surface even in under-
doped samples sMcElroy et al., 2004d. By contrast, gap
values, as determined by the bias at which the conduc-
tance is at a maximum, are quite inhomogeneous and
range from 20 meV up to 70 meV. Spectra showing the
larger gaps have weak coherence peaks. They corre-
spond to antinodal states, which are quite inhomoge-
neous in space. These observations are consistent with
our report of strong ASJ reflections ranging in energies
up to about 20 meV sDeutscher, 1999d. This appears to
be the energy scale of the superconducting condensate.
It does not increase in the underdoped regime.

On LSCO Daghero et al. s2002d reported measure-
ments of ASJ gaps that decrease in the underdoped re-
gime, as also seen by Dagan and Deutscher s2001ad. As
in YBCO and BSCCO, Giaever gaps do increase in un-
derdoped samples.

The following experimental picture then emerges.
Strong ASJ reflections occur in optimally doped and
overdoped samples for all surface orientations. In under-

doped samples, ASJ reflections are weakened on s100d
surfaces, but remain strong on s110d surfaces. Gap val-
ues obtained from conductance characteristics domi-
nated by ASJ reflections are equal to or smaller than
gap values obtained from single-particle tunneling. They
decrease in the underdoped regime, following at least
qualitatively the doping dependence of Tc sFig. 21d.

At low temperatures, there exists in most cuprates a
tunneling pseudogap that increases as doping is reduced.
The pseudogap appears in the normal state below a tem-
perature T*, which can be higher or lower than Tc. In
some cuprates, such as BSCCO, T*.Tc in most sif not
alld of the doping range. In other cuprates, the curves
T*spd and Tcspd cut each other at some doping level p*.
This is the case for YBCO and even more clearly for the
electron-doped compounds. For p,p*, the pseudogap
appears above Tc and is larger than the ASJ gap. For
p.p*, the ASJ gap and the Giaever gap converge. In
that regime the pseudogap does not appear above Tc,
but in electron-doped cuprates it may be seen below Tc
by applying a field strong enough to quench supercon-
ductivity.

C. Compatibility of ASJ reflections and pseudogap
models

1. Resonating valence bond and other models
emphasizing strong correlation effects

A pseudogap is already implicit in the resonating
valence-bond sRVBd model of Anderson s1987d, which
postulates that electron correlations are the key ingredi-
ent in the superconductivity of the cuprates. There may
be, however, one major difficulty with this model regard-
ing ASJ reflections, which concerns the nature of elec-
tronic excitations. In the RVB model, these are not the
usual quasiparticle excitations we are familiar with in

FIG. 20. Comparison between an ASJ sinside graphd and a
Giaever characteristic measured on similarly underdoped
YBCO samples. Note the difference in energy scales: about 15
meV for the ASJ reflection edge, and 50 meV for the Giaever
gap. Adapted from Deutscher, 1999.

FIG. 21. Behavior of ASJ and Giaever sor ARPESd energy
scales as a function of doping in different cuprates. The ASJ
scale sDcd follows the same behavior as does Tc while the
Giaever scale sDpd keeps rising as the doping is reduced.
Adapted from Deutscher, 1999.

127Guy Deutscher: Andreev–Saint-James reflections

Rev. Mod. Phys., Vol. 77, No. 1, January 2005



metals, but rather excitations that do not carry at the
same time charge and spin sholons and spinonsd. There
is no electron-hole symmetry, and it is not clear whether
under these circumstances one could even have strong
ASJ reflections, whose very existence implies electron-
hole mixing: in a Saint-James cycle, an excitation is elec-
tronlike half of the time, and holelike the other half.

This difficulty may be overcome in other models
where strong electron correlations play a key role. They
include fermion-boson models with electron pockets de-
veloping near the nodes as doping is increased sAltman
and Auerbach, 2002; for earlier fermion-boson models,
see Friedberg and Lee, 1989; Ranninger et al., 1995d. In
the condensed state, there is a bosonic field that gener-
ates a superconducting gap à la BCS in the electron
pockets, and excitations from this gap would have the
usual electron-hole symmetry.

In another recent model originally proposed by
Laughlin sLaughlin, 2002; Bernegiv et al., 2003d, strong
electron correlations come on top of a conventional
BCS Hamiltonian. In contrast with the resonating
valence-bond model, the nature of electronic excitations
is then identical to that in ordinary metals; there are thus
no problems with ASJ reflections. Strong correlations
continuously increase the value of the BCS gap, while at
the same time the superfluid density is reduced, eventu-
ally leading to the destruction of superconductivity as a
macroscopic coherent phenomenon sEmery and Kivel-
son, 1995d. The spseudodgap appearing at high tempera-
tures is then a precursor of superconductivity, before it is
quenched altogether. As we shall see below, there are
problems with this part of the model.

2. The semiconductor-superconductor and strong-
coupling models

Pistolesi and Nozières s2000d have calculated the con-
ductance of N/S contacts within two models compatible
with the existence of a gap in the density of states above
Tc: one where it is a normal-state property, that is, there
is a semiconducting gap D0 due to a competing order
such as a charge-density wave sCDWd, which has no di-
rect relation to superconductivity sNozières and Pis-
tolesi, 1999d; and another one, in which the pseudogap is
a manifestation of a crossover to strong coupling sBose-
Einstein limitd where the energy necessary to break a
pair can be much larger than kBTc sLeggett, 1980;
Nozières and Schmitt-Rink, 1985d.

In the normal-state pseudogap scenario, ASJ reflec-
tions are reduced by the competing order, which pre-
vents the full conversion of incoming quasiparticles into
superfluid. In the strong-coupling limit, ASJ reflections
are reduced because of a mismatch of the Fermi wave
vectors when the gap approaches the Fermi level. In
both cases, there exists an energy gap Eg which is a com-
bination of the normal-state gap, or energy necessary to
break a preformed pair, and the superconducting order
parameter. In both models, the Blonder-Tinkham-
Klapwijk–reflection coefficient As«d is reduced below
Eg; this reduction becoming substantial if Eg is large

compared to the order parameter D. No strong ASJ re-
flections can then occur.

In the specific example of the semiconductor-
superconductor model, the CDW order sD0d induces
Bragg reflections and the superconducting order sDmd
ASJ reflections. The strongest order determines the pen-
etration depth of the evanescent wave. If D0 is larger, the
specular Bragg reflection will build up before the ASJ
reflection does. The latter will therefore be weak. A
similar conclusion is reached in the strong-coupling
limit. In the calculated conductance characteristic, there
is no structure at the bias equal to the superconducting
order parameter if D0.Dm, or in the strong-coupling
limit.

These results are of a generic nature. They apply to
different models of the pseudogap such as the BCS-
to-BE crossover sChen et al., 2004d or models emphasiz-
ing strong correlations sBernegiv et al., 2003d or models
of competing orders sCastellani et al., 1997d. A subgap
structure can be restored if a buffer layer of sufficient
thickness is assumed to exist between N and S sAlexan-
drov and Andreev, 2001d, but the origin of such a layer is
not clear. They are not in agreement with the experi-
mental findings of strong ASJ reflections, and of an ASJ
energy scale smaller than the Giaever gap, in the
pseudogap regime, if one assumes that the competing
order parameter sor the strong-coupling effectsd domi-
nates all around the Fermi surface over the supercon-
ducting order parameter.

Note, however, that the calculation assumes that the
normal-state gap is a full gap, i.e., that in the normal
state there are no states below it. This is, of course, an
oversimplification of the experimental situation. For
PCCO, in which the normal-state total density of states
has been measured at low temperatures sAlff et al.,
2003d, the zero-bias conductance is still about 80% or
more of its normal-state value, so there are, in fact,
many states below the pseudogap. Such a high density of
states in the pseudogap region is obtained in the model
of Friedel and Kohmoto s2002d. If these states are con-
ducting, one might expect structures in the conductance
characteristic at both biases—the superconducting order
parameter and the pseudogap scales. Two energy
scales—one where the conductance goes down, marking
the ASJ gap, and one where it goes up, marking the
pseudogap—are indeed visible in the data of Yagil et al.
s1995d, but no conductance calculations are available for
the Friedel-Kohmoto sFriedel and Kohmoto, 2002d
pseudogap model that we could compare quantitatively
to experiments.

An alternative approach has been tried by Pistolesi
s1998d, who has shown that a critical current effect may,
in fact, introduce into the conductance characteristic a
structure at a bias value, typically the phase stiffness L,
which limits Tc in the strong-coupling or weak-superfluid
density limit. As shown, for instance, by Emery and Kiv-
elson s1995d, when the superfluid density is very small,
Tc is determined by
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kTc = s16p3d−1sF0d2sa/l2d , s5.1d

where F0 is the flux quantum, l the in-plane London
penetration depth, and a a length scale equal to the co-
herence length in the direction perpendicular to the
CuO planes or to the interplane distance, whichever is
larger. Pistolesi finds that a critical current effect will
reduce the conductance at a voltage Vc given by

eVc = LskFjphased−1 s5.2d

where the phase jphase was calculated by Pistolesi and
Strinati s1996d and by Marini et al. s1998d. In the vicinity
of the BCS-to-BE crossover, kFjphase<1, and eVc<L
<kTc, in agreement with experimental results sDeut-
scher, 1999d.

3. Two-gap model

The Rome group sPerali et al., 2000d has extended the
semiconductor-superconductor model of Pistolesi and
Nozières s2000d to the case of a d-wave order parameter.
In this model, the competing order parameter dominates
over the superconducting one only in the antinode re-
gions. Specifically, the origin of the pseudogap lies in the
vicinity of a charge-density-wave sCDW; Benfatto et al.,
2000d line T*spd, as mentioned above, but from a phe-
nomenological standpoint their main results are given in
terms of a gap Dsfd which is dominated by the
pseudogap Dp near the antinodal points and by the su-
perconducting order parameter near the nodes. They ar-
gue in favor of the weak-coupling limit D, t, where t is
the nearest-neighbor interaction term in the tight-
binding approximation, so that Tc is equal within a nu-
merical factor to the energy scale that governs the be-
havior of D near the nodes. In the overdoped regime,
Dsfd follows the d-wave law Dsfd=Ds0d cos 2f over the
entire angular range. In the underdoped regime, the
value of the gap at the nodal points is uncorrelated with
the slargerd characteristic energy scale near the nodes.

This model is qualitatively in agreement with the re-
sults of ASJ spectroscopy on s110d surfaces in the under-
doped regime as described above. The pseudogap near
the antinodal points is larger than the value that the
superconducting order parameter would have in the ab-
sence of this pseudogap sin the language of Nozières and
Pistolesi, D0.Dm near the antinodal pointsd. Thus these
regions do not contribute to the ASJ reflection ampli-
tude because, for the corresponding k vectors, normal
quasiparticle reflection occurs before conversion to the
condensate takes place. Hence the only energy scale that
will appear in ASJ spectroscopy will be that which char-
acterizes the angular dependence of the gap near the
nodes, which is the superconducting order parameter,
itself proportional to Tc. The fact that for all cuprates
studied so far the ASJ spectroscopy energy scale varies
with doping as Tc does just means that these cuprates
are basically in the weak-coupling limit, as assumed by
the Rome group.

More generally, a momemtum dependence of the in-
teractions leading to the pseudogap, whatever its origin

may be, seems to be a necessity if agreement with ASJ
experiments is to be achieved. This is because these ex-
periments tell us that there is no pseudogap around the
nodes. Theories that do not include a momentum depen-
dence, such as those of Chen et al. s2004d, or Bernevig et
al. s2003d, for which the pseudogap is a d-wave gap that
becomes the superconducting gap at low temperatures,
do not seem to be compatible with the observation of
strong ASJ reflections in the underdoped regime.

4. Some comments on the pseudogap

In a previous publication sDeutscher, 1999d I left open
the question of the origin of the pseudogap: whether the
loss of states at the Fermi level that starts below T* is
due to an emerging pairing amplitude sa strong-coupling
effectd, or whether it bears no direct relation to super-
conductivity. Theoretical progress in the analysis of ex-
perimental results known at this time and new experi-
ments reviewed in this section, and particularly
conclusions drawn from the observation of strong ASJ
reflections in the pseudogap regime, present, in fact, se-
rious difficulties for both kinds of models, at least if no
momentum dependence is included. Yet I believe that
the balance now tilts somewhat against the preformed
pairs scenario.

The formation of true bound pairs above Tc, in the
sense of a negative chemical potential with respect to
the bottom of the conduction band, requires a binding
energy of the order of a fraction of the bandwidth, say,
of the order of the eV. Pseudogap values determined by
ARPES and tunneling reach at most 10% of this value,
so there cannot really be bound pairs. More specifically,
for sD /EFd<0.1, as seen experimentally, strong-coupling
theory sPistolesi and Strinati, 1996d tells us that the two
length scales jpair sthe size of a paird and jphase sthe size
of a vortex cored differ only by a few percent, and so
should the corresponding energy scales. Instead, for
moderately underdoped samples sTc about half of its
maximum valued, the pseudogap and the ASJ gap differ
by a factor of about 4. According to this analysis, the
pseudogap is not a strong-coupling effect. Additionally,
there should be at low temperatures only one energy
scale in the superconducting state sChen et al., 2004d. In
the underdoped regime, this is not the case, since the
Giaever and the ASJ gaps have opposite doping depen-
dences sFig. 21d. The recent experiments of McElroy et
al. s2004d also establish that there is no correlation be-
tween homogeneous, low-energy excitations in the nodal
regions and large gaps in the antinode regions.

Ruling out the pseudogap as a homogeneous precur-
sor of superconductivity in real space and in momentum
space does not mean that the cuprates are strictly in the
BCS weak-coupling limit. In fact, they are not far from
the BCS-to-BE crossover, defined as shown by Pistolesi
and Strinati by the condition skFjpaird=1. One of the
manifestations of this proximity is the Uemura plot Tc
~l−2 followed by all underdoped cuprates sUemura,
2002d. Another is the observation of strong fluctuation
effects in the heat-capacity transition. These measure-
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ments allow us, in fact, to draw a fine distinction be-
tween different cuprates in terms of their proximity to
the BCS-BE crossover. The heat-capacity transition in
YBCO can be analyzed in terms of a mean-field jump
with additional fluctuation effects sMarcenat et al., 1996;
Junod et al., 1999d. These fluctuation effects become
quite weak in overdoped samples sJunod et al., 1999d, for
which the transition becomes more and more BCS-like
as doping is increased. In contrast, no mean-field jump
can be identified in BSCCO, for which fluctuation ef-
fects clearly extend several tens of K above Tc, consis-
tent with its being closer to the BCS-BE crossover than
is YBCO. Enhanced fluctuations may also reflect the
more 2D nature of BSCCO. But a closer proximity of
BSCCO to the BCS-BE crossover is also consistent with
spectroscopy results. At optimum doping, the Giaever
gap in BSCCO sabout 30–40 meVd is larger than that in
YBCO sabout 20 meVd. Also, the coherence length as
measured by the radius of the vortex core is shorter in
BSCCO than it is in YBCO sFischer et al., 1998d. These
are clear indications that, at comparable doping levels,
BSCCO is closer than is YBCO to the condition
skFjpaird=1.

The STM pseudogap data of Renner et al. s1997; Fig.
19d on underdoped BSCCO reveal that there may be a
difference between characteristics measured up to 121
K, and above that temperature. The former indeed bear
a strong resemblance to those measured immediately
below Tc, while the latter show only a weak anomaly
that remains essentially temperature independent up to
room temperature. This suggests that there might be
both a superconductivity-related pseudogap between Tc
and 120–130 K, and a normal-state pseudogap at higher
temperatures. More data are needed here to clarify the
situation.

As for YBCO, the quasi-mean-field behavior of the
heat capacity at optimum doping is fully consistent with
the absence of a pseudogap in tunneling, as well as with
the fact that the Giaever and ASJ gaps are identical.
YBCO is, in fact, the only cuprate that clearly breaks
away from the Uemura plot. By overdoping it with oxy-
gen up to O7, one can increase its superfluid density up
to a factor of 2 over its value at optimum doping, while
Tc remains almost constant sit only goes down by a few
degrees; Bernhardt et al., 1995d. In the overdoped re-
gime, YBCO presents all the characteristics of a strict
BCS superconductor: a critical temperature independent
of the superfluid density, a sharp heat-capacity transi-
tion, and an identity between the Giaever and ASJ gaps.
It would be really surprising if nearly optimally doped
BSCCO, not so different after all, would show precursor
effects of superconductivity at temperatures up to room
temperature. Maybe such strong precursor effects could
be found in more strongly underdoped cuprates if the
condition skFjpaird could be reached. Research is still go-
ing on in this area.

VI. SYMMETRY STUDIES AND SPIN EFFECTS

In this last section, I would like to mention two topics
of current interest in ASJ spectroscopy: effects on the

symmetry of the order parameter in the cuprates of dif-
ferent perturbations such as nonoptimum doping, ap-
plied magnetic fields, and proximity with a normal
metal. A few words on spin effects are added at the end
of this section.

Phase-sensitive experiments are the only ones that can
lead to definite conclusions regarding the symmetry of
the order parameter. Such were the cornerstone experi-
ments of Wollman et al. s1993d on superconducting
quantum interference devices sSQUID’sd and those of
Tsuei and Kirtley s2000a, 2000bd that established that
the order parameter in the cuprates has a dominant
d-wave symmetry. These experiments have, however,
left two interesting issues unresolved. First, because they
measure phase differences of the order parameter at sur-
faces or interfaces sgrain boundariesd, they are not sen-
sitive to possible changes of the symmetry between the
surface and the bulk. Muller has recently raised this is-
sue and has argued that an s-wave channel may, in fact,
dominate in the bulk sMuller, 2004d. Second, they are
not well suited to detecting the existence of a small
imaginary minority component. In the experiments of
Tsuei et al., for instance, the signature of pure d-wave
symmetry is a spontaneous half flux quantum at a tri-
crystal junction. A small idxy component would only
slightly modify this flux value and would be undetected
if this change were smaller than the margin of error in
the measured value. Additionally, these experiments
were plainly not designed to study possible effects of
strong applied fields on the symmetry of the order pa-
rameter. ASJ spectroscopy is ideally suited to answer
such questions. ASJ bound states are very sensitive to
the existence of a small imaginary component of the or-
der parameter, which has the immediate effect of remov-
ing the nodes. Finally, ASJ spectroscopy can be easily
performed under applied fields.

The formalism of Kashiwaya et al. s1995d can be used
to calculate IsVd characteristics for any order parameter
Dsfd. For instance, for

Dsfd = D0 cos 2f + iD1 sin 2f s6.1d

sthe d+ id symmetryd, the s110d zero-bias conductance
peak is split speak to peakd by D1. The same holds for a
sd+ isd symmetry. Such symmetries have been discussed
by Yang and Hu s1994d and Hu s1994d. These order pa-
rameters break time-reversal symmetry, implying the
flow of boundary currents sLaughlin, 1998d.

A. ASJ bound states under applied fields

Meissner screening currents also lead to a split of the
zero-bias conductance peak, as discussed in Sec. IV.
When a zero-bias conductance peak splits under an ap-
plied field, how can we know whether it does so because
of field-induced Meissner currents or because it is the
field itself snot the currentsd that has induced a change in
the symmetry of the order parameter, as proposed, for
instance, by Laughlin s1998d?
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Beck et al. s2004d remarked that the current effect
should cancel out in decreasing fields, because it is
known that there is no Bean-Livingston surface barrier
against flux exit. A zero-bias conductance-peak split in
decreasing fields, if observed, should therefore be prima-
rily a field effect, and not a current effect. Beck et al.
measured such a split in the characteristics of junctions
prepared on s110d-oriented YBCO films, and showed
that it follows the law

dsBd = AB1/2, s6.2d

where 2d is the conductance-peak split expressed in
meV, A=1.1 meV/T1/2, and B is the field in tesla. This
law was found to hold up to a field of 16 T sFig. 22d. It is
in agreement with a prediction by Laughlin s1998d re-
garding the amplitude D1 of a field-induced idxy compo-
nent. Node removal costs an energy proportional to
uD1u3, but an energy proportional to sB ·D1d is gained be-
cause of the magnetic interaction with the field of the
moment produced by the circulating currents propor-
tional to the amplitude of the idxy component. Minimi-
zation of the sum of the two terms leads to a law of the
form s6.2d. The value of the coefficient A found experi-
mentally is in quantitative agreement with theory.

B. Doping effect on the symmetry

Covington et al. s1997d reported a spontaneous split of
the zero-bias conductance peak in YBCO in-plane tun-
neling, and interpreted it as an effect of spontaneous
time-reversal symmetry breaking. Fogelstrom et al.
s1997d proposed that this spontaneous split results from
the emergence at the surface of an is component of the
order parameter, an emergence made possible by the
local depression of the main d component.

Dagan and Deutscher s2001ad reported that in YBCO
the spontaneous zero-bias conductance-peak split occurs
only in overdoped samples, where it follows the law

d = Csp − pMd , s6.3d

where p is the doping level and pM its optimum value sat
maximum Tc; see Fig. 23d. These results were obtained
on oxygen-overdoped films. A similar law was reported
by Sharoni et al. s2002d on Ca-overdoped YBCO films.

There is no direct way to know from tunneling mea-
surements whether the spontaneous imaginary compo-
nent supposedly responsible for the zero-bias
conductance-peak split has s or dxy symmetry. An s sym-
metry would mean that the strength of the subdominant
s channel, emerging at the surface as postulated by Fo-
gelstrom et al. s2003d, has a strong doping dependence.
Alternatively, the imaginary component might be a bulk
property. Friedel and Kohmoto s2002d predicted that an
idxy component should appear in the overdoped regime,
while the symmetry is pure d-wave in the underdoped
one, as reported by Dagan and Deutscher s2001ad. In
their theory, the d-wave symmetry does not come about
because of the interaction responsible for pairing, but
rather due to the symmetry of the carrier wave function.
Yet another possibility is that the change of symmetry at
optimum doping reflects the existence of a quantum
critical point sSachdev, 2000; Dagan and Deutscher,
2001ad.

Some ASJ data indicating a possible change of sym-
metry near optimum doping are also available on LSCO
sAchsaf et al., 1996; Dagan et al., 2000d and on the
electron-doped PCCO sQazilbash et al., 2003d. The
electron-doped cuprates had long been considered an
exception to d-wave symmetry sFournier et al., 1998d,
inter alia because of the absence of a zero-bias conduc-
tance peak sAlff et al., 1997d. More recent tricrystal ex-

FIG. 22. sColor in online editiond Split of the zero-bias con-
ductance peak in a number of In/YBCO junctions on s110d-
oriented films of different thickness, measured in decreasing
fields. The split follows a square-root law, with a coefficient of
the order of 1 mV/T1/2. Adapted from Beck et al., 2004.

FIG. 23. Dependence of the spontaneous zero-bias
conductance-peak split in In/YBCO junctions on s110d-
oriented films, as a function of a parameter proportional to the
doping level. Overdoping was achieved by increasing the oxy-
gen content. A spontaneous split is only found in overdoped
samples. The inverse of the initial slope of the zero-bias
conductance-peak field splitting, or susceptibility, is also
shown. The susceptibility diverges near optimum doping. The
behavior of the spontaneous splitting and of the susceptibility
is indicative of the presence of a quantum critical point near
optimum doping, beyond which the order parameter develops
a small imaginary component. Adapted from Dagan and Deut-
scher, 2001.
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periments sTsuei and Kirtley, 2000a, 2000bd indicated a
d-wave symmetry. But very recently, a change of behav-
ior of PCCO has been reported as a function of doping,
including the ASJ data of Qazilbash et al. s2003d already
mentioned, and penetration-depth data in overdoped
PCCO is better fitted by a nodeless order parameter
sSkinta et al., 2002d. It could well be that the long-
standing controversy on the symmetry of the order pa-
rameter in the electron-doped cuprates is on its way to-
wards a resolution in terms of a doping dependence.
Electron-doped cuprates are naturally overdoped, which
may explain the early results pointing to a nodeless be-
havior.

A doping-dependent symmetry, if confirmed as a bulk
property, would be of some consequence for our under-
standing of the mechanism for high-Tc superconductiv-
ity. Many of the proposed theoretical models, such as the
st ,Jd models, give a prominent role to the antiferromag-
netic coupling parameter J, with this interaction being
the primary coupling channel. A pure d-wave symmetry
necessarily follows in such models, at any doping level.
In contrast, in the model of Friedel and Kohmoto s2002d,
the d-wave symmetry does not follow from the pairing
interaction itself, but rather from the symmetry of the
electronic wave functions, as they are affected by the
proximity of the antiferromagnetic state. In that case,
Friedel and Kohmoto show that the order-parameter
symmetry changes with doping, and in a manner that fits
the experimental observations of Dagan and Deutscher
s2001ad, an imaginary component appearing beyond op-
timum doping. In fact, it has been claimed very recently
on the basis of high-temperature expansions in the ther-
modynamical limit that the one-band st ,Jd model does
not lead to a superconducting state sPryadko et al.,
2004d, contrary to what had been proposed earlier from
numerical work on finite-size systems. So it may be that
more conventional interactions such as the electron-
phonon interaction will now receive renewed attention.

C. Proximity effect on the symmetry

Wei et al. s1998d noted the possibility of a proximity
effect between a normal tip and YBCO resulting in a
partial s-wave character of the order parameter in the
latter. Daghero et al. s2002d studied low-Z contacts sZ
,0.5d on LSCO samples as a function of Sr doping.
They analyzed the conductance characteristics in terms
of a complex order parameter and determined the inten-
sity of each component as a function of doping. They
found them to be of the same order. This is in sharp
contrast with results obtained on high-Z contacts with
YBCO, described in the preceding subsection. There,
the is sor idd component is never more than a fraction of
the dominant d component. Kohen et al. s2003d recently
reported a systematic study of the intensity of the minor-
ity component in YBCO as a function of the barrier
transparency, for point contacts having all Z,1 sFig.
24d. They conclude that the value of Z has a strong in-
fluence on the intensity of this component, which, ac-

cording to their analysis, has the is symmetry. At low-Z
values, both components have similar values. The is
component diminishes quickly for Z.0.5. The authors
interpret their results in terms of a proximity effect.
They argue that a good contact with the normal metal
depresses the d-wave order parameter near the inter-
face, because this symmetry channel is very unfavorable
for a proximity-induced order parameter in N. In the
presence of a subdominant s-symmetry channel in S,
that symmetry can then manifest itself near the inter-
face. An interesting observation by Kohen et al. s2003d is
that the excitation gap for the case of a sd+ isd order
parameter, Dg= sDd

2 +Ds
2d1/2, does scale with Tc, meaning

that it retains at the surface its bulk value, although the
respective weights of the two components vary with Z
from junction to junction.

D. Spin effects

ASJ reflections are profoundly modified at the inter-
face with a ferromagnetic metal. This topic was recently
reviewed by Zutic et al. s2004d. As the spin polarization
increases, the conductance of a Sharvin contact at sub-
gap voltages decreases: spin conservation requires that
the ASJ reflected hole have a spin opposite to that of the
incoming electron, a process incompatible with full spin
polarization in the ferromagnet sde Jong and Beenakker,
1995d. This has been verified experimentally sSoulen et
al., 1998; Upadhyay et al., 1998d. Zutic and Valls s1999,
2000d have, however, pointed out that this low-bias con-
ductance decrease as the polarization is increased is only
a general property for contacts in which the Fermi ve-
locities of both sides are nearly matched. When they are
not, the zero-bias conductance may in fact initially rise
with the polarization. Care should therefore be exer-
cised when one attempts to extract the value of the po-
larization from conductance curves. Using for the fit the
Blonder-Tinkham-Klapwijk parameter Z, which does
not distinguish between the effect of a dielectric barrier
and that of a Fermi velocity mismatch, may not be jus-

FIG. 24. sColor in online editiond Variation with the barrier
parameter Z of the d-wave component and of the is-wave
component at Au/YBCO contacts fitted to the s100d orienta-
tion. The is component becomes of the order of the d-wave
one for high-transparency barriers, suggesting that it is due to
a proximity effect. Adapted from Kohen et al., 2003.
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tified. Chen et al. s2001d have studied transport across
the interface between an YBCO layer and a high-spin-
polarized oxide. They conclude that spin polarization
tends to diminish the zero-bias conductance-peak fea-
ture. There has recently been experimental interest in
spin injection from ferromagnets into high-Tc cuprates
sDong et al., 1997; Vas’ko et al., 1997; Fu et al., 2002d.
Ngai s2004d has developed an injection scheme allowing
a simultaneous STM measurement and has shown that
spin injection reduces and broadens the zero-bias
conductance-peak feature. Theoretical treatment has
taken into account the influence of ASJ reflections at the
interface, including the effect of d-wave symmetry, and
particularly that of surface bound states sKashiwaya et
al., 1999; Merril and Si, 1999; Zhu et al., 1999; Zutic and
Valls, 1999d.

Mesoscopic studies of ASJ reflections cover a large
field that could be the subject of a review all by itself.
We limit ourselves here to a particular situation that is
drawing increasing attention, that in which two ferro-
magnetic tips in close proximity are in contact with a
superconductor, the distance between them being
shorter than the coherence length. If we assume that the
tips are fully polarized, that they are connected to a bus-
bar, and that a difference of potential is applied between
this busbar and the superconductor, then an electron
coming from one of the ferromagnetic legs cannot be
ASJ reflected as a hole in that same leg. It can, however,
be reflected in the other leg, provided the polarizations
in the two legs are antiparallel sDeutscher and Feinberg,
2000d. As a result, the resistance of the device will de-
pend on the relative magnetic polarizations of the two
legs: it will be high if they are parallel, low if they are
antiparallel. One can consider the device as a kind of
transistor—the resistance can be modified by applying a
local magnetic field that can reverse the polarization of
one of the two legs. More fundamentally, in the case of
antiparallel polarizations, the incoming electron in one
leg and the reflected hole in the other can be considered
as two electrons of the same Cooper pair separated in
space, a situation that can have interesting implications
sRecher and Loss, 2003d. The basic prediction of a resis-
tance sensitive to the relative polarizations has recently
been verified experimentally, as has the exponential de-
cay of the effect on the scale of the coherence length
sBeckmann et al., 2004d. The amplitude of the effect is
sensitive to the exact geometry and to scattering inside
the superconductor sMelin and Feinberg, 2002d.

VII. CONCLUSIONS

ASJ reflections are a powerful tool for the study of
the nature of electronic excitations in superconductors,
determination of energy-gap values, and studies of the
symmetry of the order parameter. Strong ASJ reflections
have been observed in all cuprates tested so far, includ-
ing in the underdoped pseudogap regime. Because their
occurrence implies electron-hole mixing, it follows that
the nature of electronic excitations in the cuprates is
similar to that in ordinary metals. This is an important

result, which can help to discriminate between the pre-
dictions of different theoretical high-Tc superconductor
models. From the energy dependence of ASJ reflections,
one can infer that the scale of coherent, homogeneous
superconductivity is on the order of 20 meV. Pseudogap
values substantially exceeding this value may not be re-
lated directly to superconductivity, and are apparently
characteristic of the antinode directions. If the
pseudogap is a high-temperature precursor of supercon-
ductivity, it must be strongly momentum dependent. The
same holds if it is the manifestation of a competing or-
der. ASJ doping dependence gives indications for the
existence of an additional interaction channel, besides
the one giving rise to d-wave symmetry. This additional
channel becomes stronger as doping is increased beyond
optimum doping. ASJ spectroscopy under applied mag-
netic fields provides a tool for the study of surface cur-
rents, including Meissner currents due to an effective
Bean-Livingston barrier against vortex penetration, and
currents possibly linked to an imaginary component of
the order parameter induced by the magnetic field.
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