REVIEWS OF MODERN PHYSICS, VOLUME 77, JULY 2005

Quantum cluster theories

Thomas Maier*

Computational Science and Mathematics Division, Oak Ridge National Laboratory, Oak
Ridge, Tennessee 37831-6164, USA

Mark Jarrell
Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221-0011, USA

Thomas Pruschke

Theoretical Physics, University of Géttingen, Tammannstrasse 1, D-37077 Géttingen,
Germany

Matthias H. Hettler

Forschungszentrum Karlsruhe, Institut fir Nanotechnologie, Postfach 3640, D-76021
Karlsruhe, Germany

(Published 6 October 2005)

This article reviews quantum cluster theories, a set of approximations for infinite lattice models which
treat correlations within the cluster explicitly, and correlations at longer length scales either
perturbatively or within a mean-field approximation. These methods become exact when the cluster
size diverges, and most recover the corresponding mean-field approximation when the cluster size
becomes 1. Although quantum cluster theories were originally developed to treat disordered systems,
they have more recently been applied to the study of ordered and disordered correlated systems,
which will be the focus of this review. After a brief historical review, the authors provide detailed
derivations of three cluster formalisms: the cluster perturbation theory, the dynamical cluster
approximation, and the cellular dynamical mean-field theory. They compare their advantages and
review their applications to common models of correlated electron systems.
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I. INTRODUCTION

A. Brief history

The theoretical description of interacting many-
particle systems remains one of the grand challenges in
condensed-matter physics. The field of strongly corre-
lated electron systems has gained theoretical and experi-
mental interest through the discovery of heavy-fermion
compounds and high-temperature superconductors. In
this class of systems the strength of the interactions be-
tween particles is comparable to or larger than their ki-
netic energy, i.e., any theory based on a perturbative
expansion around the noninteracting limit is at the least
questionable. Theoretical tools to describe these systems
are therefore faced with extreme difficulties, due to the
nonperturbative nature of the problem. A large body of
work has been devoted to a direct (numerically) exact
solution of finite-size systems using exact diagonaliza-
tion or quantum Monte Carlo methods. Exact diagonal-
ization, however, is severely limited by the exponential
growth of computational effort with system size, while
quantum Monte Carlo methods suffer from the sign
problem at low temperatures. Another difficulty of these
methods arises from their strong finite-size effects, often
ruling out the reliable extraction of low energy scales
that are important in capturing the competition between
different ground states often present in strongly corre-
lated systems.

Mean-field theories are defined in the thermodynamic
limit and therefore have different truncation errors than
finite-size simulations. With applications to a wide vari-
ety of extended systems from spin models to models of
correlated electrons and/or bosons, mean-field theories
are extremely popular and ubiquitous throughout sci-
ence.

Generally, mean-field theories divide the infinite num-
ber of degrees of freedom into two sets. A small set of
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degrees of freedom is treated either exactly or with an
approximation that goes beyond the mean-field level,
while the effects of the remaining degrees of freedom
are summarized as a mean field acting on the first set.
Throughout this review, by mean-field theory, we refer
to the class of approximations which account for the cor-
relations between spatially localized degrees of freedom
explicitly, while treating those at longer length scales
with an effective medium. The small set of local degrees
of freedom can, in principle, be treated exactly. Such
local approximations become exact in the limit of infi-
nite coordination number or equivalently infinite dimen-
sions D (Itzykson and Drouffe, 1989); however, nonlocal
corrections become important in finite dimensions. The
purpose of this review is to discuss methods for corre-
lated electron systems that incorporate nonlocal correc-
tions to local approximations.

Many different local approximations have been devel-
oped for systems with itinerant degrees of freedom.
Early attempts focused on disordered systems, and in-
cluded the virtual-crystal approximation (Nordheim,
1931a, 1931b; Parmenter, 1955; Schoen, 1969) and the
average-T matrix approximation (Beeby and Edwards,
1962; Schwartz et al., 1971). However, the most success-
ful local approximation for disordered systems is the
coherent-potential approximation (CPA) developed by
Soven (1967) and others (Taylor, 1967; Shiba, 1971). This
method is distinguished from the others in that it be-
comes exact in both the limit of dilute and concentrated
disordered impurity systems, as well as the limit of infi-
nite dimensions.

There have been many attempts to extend the CPA
formalism to correlated systems, starting with the dy-
namical CPA of Sumi (1974) [see also Kakehashi (2002)],
the extended noncrossing approximation of Kim et al
(1990; Kuramoto, 1985), and the lattice noncrossing ap-
proximation of Grewe (1987; Grewe et al., 1988). A great
breakthrough was achieved with the development of the
dynamical mean-field theory (DMFT) in a series of
works, starting with the seminal papers of Metzner and
Vollhardt (1989) and of Miiller-Hartmann (1989b) (for a
review see Pruschke et al., 1995; Georges et al., 1996).
The dynamical CPA and the DMFT employ the same
mapping between the cluster and the lattice problems.
They differ mostly in their starting philosophy. The dy-
namical CPA employs the CPA equations to relate the
impurity solution to the lattice, whereas in the DMFT
the irreducible quantities calculated on the impurity are
used to construct the lattice quantities.

Despite the success of these mean-field approaches,
they share the critical flaw of neglecting the effects of
nonlocal fluctuations. Thus they are unable to capture
the physics of, e.g., spin waves in spin systems, localiza-
tion in disordered systems, or spin-liquid physics in cor-
related electronic systems. Nonlocal corrections are re-
quired to treat even the initial effects of these
phenomena and to describe phase transitions to states
described by a nonlocal order parameter.

The first attempt to add nonlocal corrections to mean-
field theories was made by Bethe (1935) by adding cor-
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rections to the Weiss mean-field theory (Weiss, 1907).
Here, the lattice problem is mapped onto a self-
consistently embedded finite-size spin cluster composed
of a central site and z nearest neighbors embedded in a
mean field. For small z, the resulting theory provides a
remarkably large and accurate correction to the transi-
tion temperature (Kikuchi, 1951; Suzuki, 1986).

Many attempts have been made to apply similar ideas
to disordered electronic systems (Gonis, 1992). Most ap-
proaches were hampered by the difficulty of construct-
ing a fully causal theory, with positive spectral functions.
Several causal theories were developed including the
embedded-cluster method (Gonis, 1992) and the mo-
lecular CPA (MCPA) by Tsukada (1969) (for a review
see Ducastelle, 1974). These methods generally are ob-
tained from the local approximation by replacing the
impurity by a finite-size cluster in real space. As a result
these approaches suffer from the lack of translational
invariance, since the cluster has open boundary condi-
tions and only the surface sites couple to the mean field.

Similar effort has been expended to find cluster exten-
sions to the DMFT. Early attempts were not fully self-
consistent (Kampf, 1991) or suffered from causality vio-
lations (van Dongen, 1994; Schiller and Ingersent, 1995).
However, fully causal self-consistent methods have been
developed, most notably the dynamical cluster approxi-
mation (DCA; Hettler et al., 1998, 2000) and the cellular
dynamical mean-field theory (CDMFT; Kotliar et al.,
2001). They reduce the complexity of the lattice problem
by mapping it to a finite-size cluster self-consistently em-
bedded in a mean field. The main difference with their
classical counterparts arises from the presence of quan-
tum fluctuations. Mean-field theories for quantum sys-
tems with itinerant degrees of freedom cut off spatial
fluctuations but take full account of temporal fluctua-
tions. As a result the mean field is a time- or frequency-
dependent quantity. Even an effective cluster problem
consisting of only a single site (DMFT) is a highly non-
trivial many-body problem. cellular DMFT and the dy-
namical cluster approximation mainly differ in the na-
ture of the effective cluster problem. The cellular DMFT
shares an identical mapping of the lattice to the cluster
problem with the molecular CPA and hence also violates
translational symmetries on the cluster. The dynamical
cluster approximation maps the lattice to a periodic and
therefore translationally invariant cluster.

A numerically more tractable cluster approximation
to the thermodynamic limit was developed by Gros and
Valenti (1993). In this formalism the self-consistent cou-
pling to a mean field is neglected. This leads to a theory
in which the self-energy of an isolated finite-size cluster
is used to approximate the lattice propagator. As shown
by Sénéchal et al. (2000), this cluster extension of the
Hubbard-I approximation is obtained as the leading-
order approximation in a strong-coupling expansion in
the hopping amplitude and hence this method was
named the cluster perturbation theory.

Generally, cluster formalisms share the basic idea of
approximating the effects of correlations in the infinite
lattice problem with those on a finite-size quantum clus-
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ter. We refer to this class of techniques as quantum clus-
ter theories. In contrast to finite-system simulations,
these techniques are built for the thermodynamic limit.
In this review we focus on the three most established
quantum cluster approaches, the dynamical cluster ap-
proximation, the cellular DMFT, and the cluster pertur-
bation theory formalisms. The cellular DMFT approach
was originally formulated for general, possibly nonor-
thogonal basis sets. In this review we restrict the discus-
sion to the usual, completely localized orthogonal basis
set and refer the reader to Kotliar et al. (2001) for the
generalization to arbitrary basis sets.

The organization of this article is as follows: To famil-
iarize the reader with the concept of cluster approaches,
we develop in Sec. I.B a cluster generalization of the
Weiss mean-field theory for spin systems. Section II sets
up the theoretical framework of the cellular DMFT, dy-
namical cluster approximation, and cluster perturbation
theory formalisms by presenting two derivations based
on different starting philosophies. The derivation based
on the locator expansion in Sec. II.A is analogous to the
cluster generalization of the Weiss mean-field method
and thus is physically very intuitive. The derivation
based on the cluster approximation to diagrams defining
the grand potential in Sec. II.B is closely related to the
reciprocal space derivation of the DMFT by Miiller-
Hartmann (1989b). The nature of the different quantum
cluster approaches together with their advantages and
weaknesses are assessed in Sec. II.D. Discussions of the
effective cluster problem, generalizations to broken-
symmetry states, and the calculation of response func-
tions are presented in Secs. IL.E, IL.F, and II.G. The re-
mainder of Sec. II is devoted to describing the
application of the dynamical cluster approximation for-
malism to disordered systems in Sec. II.LH and to a brief
discussion of alternative methods proposed to introduce
nonlocal corrections to the DMFT method in Sec. ILL
In Sec. IIT we review the various perturbative and non-
perturbative techniques available to solve the effective
cluster problem of quantum cluster approaches. We in-
clude a detailed assessment of their advantages and limi-
tations. Although numerous applications of quantum
cluster approaches to models of many-particle systems
are found in the literature, this field is still in its early
stages and currently very active. A large body of work
has been concentrated on the Hubbard model. We re-
view the progress made on this model in Sec. IV to-
gether with applications to several other strongly corre-
lated models. Section V concludes the review, stressing
the limitations of quantum cluster approaches and pro-
posing possible directions for future research in this
field.

B. Corrections to Weiss theory

As an intuitive example of the formalism developed in
the next sections we consider a systematic cluster exten-
sion of the Weiss mean-field theory for a lattice of inter-
acting Ising spins. This discussion is especially helpful in
illustrating many new aspects of cluster approaches as
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compared to finite-size simulations. Whereas this meth-
odology was developed for correlated electronic sys-
tems, and has significant limitations when applied to spin
systems, this simple example will illustrate the qualita-
tive features of the method in an exactly solvable model,
the one-dimensional Ising model,

H=-J2 0,0, -h2 o, 1)

where o;==1 are Ising spins, / is an external magnetic
field, and the exchange integral />0 acts between near-
est neighbors only, favoring ferromagnetism. The gener-
alization of this approach to higher dimensions and
quantum spin systems is straightforward.

We start by dividing the infinite lattice into N/N, clus-
ters of size N, (see Fig. 3 in Sec. II.A) with origin £ and
the exchange integral J;; into intracluster (J.) and inter-
cluster (8J) parts,

J(X; - %)) =Jc5fi,)2j+ (X - X)), ()

where each of the terms is a matrix in the N, cluster
sites. The central approximation of cluster theories is to
retain correlation effects within the cluster and neglect
them between the clusters. A natural formalism to
implement this approximation is the locator expansion.
The spin susceptibility x;=pB((0,0)—(0;)}0})), where
=1/T is the inverse temperature, can be approximated
in a locator expansion in the intercluster part oJ of the
exchange interaction

XE=5) =X 8,5+ X2 AE - T)XE ), ()
I}

where we used again a matrix notation in the N, cluster
sites. In general x° is the susceptibility of an embedded
cluster. Here, for illustration purposes, we use the sim-
pler approximation to take x° to be the susceptibility of
an isolated cluster, i.e., x°=x(8J=0). By using the trans-
lational invariance of quantities in the superlattice X, this
expression can be simplified in the reciprocal space ¢ of
X to

xX(@)=x"+x"8¥ @ x(q). (4)

This locator expansion has two well-defined limits. For
an infinite-size cluster it recovers the exact result, since
the surface to volume ratio vanishes, making dJ irrel-
evant, and thus y=x°. For a single site cluster, N.=1, it
recovers the Weiss mean-field theory. This is intuitively
clear since for N.=1, fluctuations between all sites are
neglected. With the susceptibility of a single isolated site
x°=1/T and 8/(§=0)=J(q=0)=J, we obtain for the uni-
form susceptibility

1 1
Ux°-J(g=0) T-T,

x(q=0)= )
the mean-field result with critical temperature 7,.=/J.
For cluster sizes larger than one, translational symme-
try within the cluster is violated since the clusters have
open boundary conditions and &J only couples sites on
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the surface of the clusters. As detailed in the next sec-
tion, this shortcoming can be formally overcome and
translational invariance restored by considering an
analogous expression to the locator expansion (4) in the
Fourier space Q of the cluster,

X(0.4) = x(Q) + x(Q) (0.4 x(Q.9)
1
T 1) - 9(0.)°

with analogous relations for the intracluster and inter-
cluster parts of J,

&(0,§)=J(Q+§) -J(Q), ()

(6)

10)=2¢3 10+ 9. ®)
q

Here, g is a vector in the reciprocal space of x, and Q is
a vector in the reciprocal space of the cluster sites. The
Fourier transform of the exchange integral is given by

J(Q+q)=J cos(Q+4), the intracluster exchange is J(0),
while the intercluster exchange is 8/(Q,q). As we shall
see in the next section, the resulting formalism is analo-
gous to the dynamical cluster approximation for itiner-
ant fermion systems.

In analogy to the Weiss theory, the lattice system can
now be mapped onto an effective cluster model embed-
ded in a mean field, since correlations between the clus-
ters are neglected. The susceptibility restricted to cluster
sites is obtained by averaging or coarse graining over the
superlattice wave vectors ¢,

N, 1
Y = _C 71 == — 9
X(Q) N%X(Q,q) @ -T© )
with the hybridization function

N,
N 2 VHQ.Dx(Q.9)

q

- .
1+ ﬁE 81(0,4)x(Q.§)
q

I'(Q) = (10)

This follows from the fact that the isolated cluster sus-
ceptibility x°(Q) does not depend on the integration
variable ¢ in Eq. (9).

This expression defines the effective cluster model

Ho.=- % J(Q)o(Q)o(- Q) - ha(Q =0)
-2 3(0,§)a(Q)o(- 0 - §)), (11)
0.4

where o(Q) [o(q)] denotes the cluster (lattice) Fourier
transform of ¢; and (- - -) the expectation value calculated
with respect to the cluster Hamiltonian H,.. As in the
Weiss theory, the cluster model is used to self-
consistently determine the order parameter (o(Q+q))
=(0(0Q))8(g) in the ferromagnetic state.
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— Cluster mean field
- - Finite-size cluster
---+ Infinite cluster

0 10 20 30 40

FIG. 1. The cluster and finite-size estimates of the uniform
lattice susceptibility in the 1D Ising model vs cluster size when
J=1and T=12.

The uniform susceptibility x(Q=0,§=0) contains in-
formation about the nature of this cluster approach, its
critical properties, and its convergence with cluster size.
The sum in Eq. (8) may be solved analytically,

J(Q =0) =J(N,/msin(w/N,). (12)

The isolated cluster susceptibility x°(Q) can also be cal-
culated analytically by using the transfer-matrix method
to give (Goldenfeld, 1992)

1 —[tanh(K)]Ve

1+ [tanh(K) ]’ (13

x°(Q =0) = Bexp(2K)

where K=8J(Q=0)=BJ(N,/m)sin(w/N,). With these ex-
pressions the uniform lattice susceptibility Eq. (6) be-
comes

1
x(Q=0)-al(Q=0,4=0)

1
“1x°(Q =0) —J[1 - (N Jm)sin(m/N,)]

xX(T) =

(14)

The cluster estimate of the lattice susceptibility interpo-
lates between the Weiss result and the exact lattice re-
sult as NV, increases. It may be used to reveal some of the
properties of cluster approximations and to compare the
cluster results to both the finite-size calculation and the
exact result in the thermodynamic limit.

First, both the cluster mean-field result Eq. (14) and
the finite-size result Eq. (13) with K=8/ may be re-
garded as approximations to the thermodynamic result.
However, as illustrated in Fig. 1, the cluster mean-field
result is closer to the exact result for small N. than the
finite-size result. This reflects the superior starting point
of the cluster approximation compared to the finite-size
calculation. The cluster approximation is an expansion
about the mean-field result, whereas the finite-size cal-
culation is an expansion about the atomic limit.
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It is instructive to explore the convergence of the clus-
ter result analytically. For large N, the character of the
susceptibility Eq. (14) can be split into three regimes. At
very high temperatures

1

Mﬂ*T

where @ =~2J+(J/6)(m/N,)?* At intermediate tempera-
tures,

X(T) = Bez‘”[l -

w

N

2
: )] forJ>T>T,. (16)

The true critical behavior of the system can be resolved
by studying the properties of this intermediate tempera-
ture regime. At both high and intermediate tempera-
tures, the susceptibility differs from the exact result by
corrections of order O(1/ Nf). At low temperatures, very
close to the transition to the ferromagnetic state, devia-
tions from the exact result are far larger. Here, for large
clusters

N,
T-T,

x(T) ~ (17)

with the critical temperature 7.>0, whereas the exact
susceptibility in this regime x(7)= Bexp(2BJ) does not
diverge until zero temperature. This discrepancy is ex-
pected for cluster mean-field approximations, since they
treat long length scales in a mean-field way. Hence clus-
ter mean-field approximations generally predict finite
transition temperatures for any finite cluster size due to
their residual mean-field character, independent of di-
mensionality. With increasing cluster size, however, the
transition temperature will be suppressed by the explicit
inclusion of longer wavelength fluctuations.

For cluster sizes larger than 1, all three regions are
evident in the plot of the cluster mean-field estimate of
the inverse susceptibility, shown in Fig. 2. For N.=8 and
N =16, the high- and low-temperature parts are linear in
temperature, with the crossover region in between. In
numerical simulations, with significant sources of nu-
merical noise especially close to the ordering transition,
it can be difficult to resolve the true low-temperature
mean-field behavior. Exponents extracted from fits to
the susceptibility in such simulations will likely be domi-
nated by the intermediate-temperature regime. Note
that for larger clusters, the intermediate regime actually
reflects the temperature dependence of the infinite lat-
tice.

Despite the large deviations of the cluster result from
the exact result close to the transition, we may still ex-
tract correct physics through finite-size extrapolation. In
general, for a system where the correlations build like
E~|(T-T,)IT. ", we expect T.~T.+aL_"", where T, is
the exact transition temperature, L. is the linear cluster
size, and a is a positive real constant (Suzuki, 1986).
However, for the one-dimensional (1D) Ising system, &
~(1/2)exp(BJ), so more care must be taken. Fortu-
nately, an analytic expression for the transition tempera-
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1/x(T)

FIG. 2. (Color in online edition) The inverse susceptibility vs
temperature. The Weiss behavior at low 7, where 1/x(7) is
linear in 7, illustrates that the transition is always mean-field-
like. The true critical behavior of the transition is reflected in
the crossover region for 7<J and larger N,.. Inset: transition
temperature for the 1D Ising model vs inverse cluster size
when J=1, obtained with the cluster mean-field approach. For
large clusters, T.~Jm?/6N,, shown as a solid line.

ture may be extracted from Eq. (14). For large clusters,
T,~JNJ[(1/6)(w/N,)?*-(1/120)(w/N_,)*]. This behavior
is shown in the inset of Fig. 2 with the circles depicting
the numerical values for 7. and the solid line the
asymptotic ~1/N,_ behavior.

In this section, some of the properties of quantum
cluster approaches have been illustrated with an analyti-
cally solvable model. However, an accurate treatment of
spin systems requires a fully self-consistent numerical
calculation of the susceptibility employing some of the
techniques discussed below.

Il. QUANTUM CLUSTER THEORIES

In this section we provide two derivations of quantum
cluster approaches for systems with itinerant quantum
degrees of freedom. The locator expansion in Sec. II.A
is analogous to the cluster extension of the Weiss mean-
field theory developed in the preceding section. Section
II.B provides a microscopic derivation based on cluster
approximations to the thermodynamic grand potential.
A detailed discussion of the nature of quantum cluster
approaches and the effective cluster model is presented
in Secs. II.LD and ILE. Generalizations for broken-
symmetry phases, the calculation of susceptibilities, and
the application to disordered systems is explained in
Secs. ILF, I1.G, and II.H and a brief discussion of alter-
native cluster methods is presented in Sec. 1.1

A. Locator approach to quantum cluster theories

In this section, we derive a number of cluster formal-
isms for itinerant many-body systems using an analogous
approach to that discussed in Sec. I.B for classical spin
systems. For simplicity we assume in this section that no
symmetry breaking occurs; the treatment of broken-
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symmetry phases is discussed in Sec. II.F. The basic idea
is to write down a locator expansion, i.e., an expansion
in space around a finite-size cluster. As with their classi-
cal counterparts, quantum cluster theories approximate
the lattice problem with many degrees of freedom by an
effective cluster problem with few degrees of freedom
embedded in an external bath or mean field created
from the remaining degrees of freedom. By neglecting
correlations that extend beyond the cluster size, one can
then formulate a theory in which the lattice system is
replaced by an effective cluster embedded in a mean-
field host. While the formalism derived here is analo-
gous to the formalism discussed in Sec. I.B for spin sys-
tems, there are significant differences. Since we are
dealing with itinerant fermions, the theory is built upon
the single-particle Green’s function instead of the two-
particle spin-correlation function, and the mean field is
dynamical due to the itinerant nature of the particles.

This derivation is illustrated in the example of the ex-
tended single-band Hubbard model,

1 ,
H= E [ijchcja + E 2 UZU nio.njo.r . (18)

iy, ij,oa’

Here i and j are lattice site indices, the operators c)(, (¢i)
create (destroy) an electron with spin o on site i, n;,
=c] c;o is their corresponding number density, and U;’f”
denotes the Coulomb repulsion between electrons with
spins o and o’ on sites i and j. The hopping amplitude
between sites i and j is denoted by 7, its local contribu-
tion ¢;;=¢€,, and its Fourier transform to reciprocal space
is the dispersion €. In this section we limit the discus-
sion to the regular Hubbard model with a purely local

interaction UZ»"I =U(1-6,,1) 6
of finite nonlocal interactions Uf;"' for i+#j is discussed
in Sec. IL.B.

The central quantity upon which we build the locator
expansion is the single-particle thermodynamic Green’s
function (7 is the imaginary time, 7, is the corresponding
time-ordering operator, B=1/T is the inverse tempera-

ture, and iw, are the fermionic Matsubara frequencies),

Gij oD = = (Tocip( 7)) (19)

The more general case

B 2n+1)m
- B

or, respectively, its analytical continuation G (z)
=<(c,-(,,c;0))z to complex frequencies z.

To set up a suitable notation for cluster schemes, we
take the distance between sites as our unit of length and
divide the D-dimensional lattice of N sites into a set of
finite-size clusters, each with N, sites of linear size L.
such that N.=LP. We resolve the first Brillouin zone
into a corresponding set of reduced zones which we call
cells. This notation is illustrated in Fig. 3 for D=2 and
N_.=4 site clusters. We use the coordinate X to label the
origin of the clusters and X to label the N, sites within a
cluster, so that the site indices of the original lattice are

B
Gij,o‘(iwn):f dre' "G (1), ®, , (20)
0
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‘ﬁ ® o olaie o
X
[o/o] ! oIo X
%’ e °o o
| °® e

| eeoeolede

D : ~Ak=2mL

First Brillouin Zone

_______ = |

FIG. 3. (Color in online edition) Definition of the coordinates
in real (left) and reciprocal (right) space illustrated for N.=4
site clusters. The origin of a cluster is labeled by X, the sites
within a cluster by X. The reciprocal space to X is labeled by

K, the wave vectors of the superlattice, i.e., within a cell, by k.

x=X+X. The points X form a superlattice with a recip-

rocal space labeled by k. The reciprocal space corre-
sponding to the sites X within a cluster shall be labeled
K, with K,=n,27/L.) and integer n,. Then the wave
vectors in the full Brillouin zone are given by k=K+k.

With these conventions, the Fourier transforms of a

given function f(X,X) for intracluster and intercluster
coordinates are defined as

X0 = 253 XK, a1
k
fXK) =3 e X ), (22)
AXR) = -3 R DXAK R, 23)
NCK
fIKK) = 3 e HROXAX K). (24)
X

To separate out the cluster degrees of freedom, the
hopping amplitude ¢ and the self-energy 3 (defined from
the Green’s function via the Dyson equation G'=G; !
-3 with the noninteracting Green’s function G,) are
split into intracluster and intercluster parts,

t(X; — X)) = tcaii,ﬁj + Ot(X; - X)), (25)

(X=X 2) = 2(2) &g 5, + O (X; — X, 2). (26)

All the quantities are N.X N, matrices in the cluster
sites, t.=t(X=0) and 3.(z) =%(X=0,z) are the intracluster
hopping and self-energy, while 8t(X) and 8%(X,z) are the
corresponding intercluster quantities which are only fi-
nite for X#0.

1. Cluster perturbation theory and cellular dynamical
mean-field theory

With these definitions we write the Green’s function
using a locator expansion, an expansion in &t and 5%
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around the cluster limit. In matrix notation in the N,
cluster sites it reads

G(X; - X;,2) = g(z)é,;i,;]_ +8(2) > [St(X; — X))
' /

+ 0X(X; — X1, 2)]G(X; — X;,2), (27)
where the N.X N, matrix
g2)=[z+wl-t. -2 ()" (28)

is the Green’s function of the cluster decoupled from the
remainder of the system (u is the chemical potential).
Since translational invariance in the superlattice X is pre-
served, this expression may be simplified by Fourier
transforming the intercluster coordinates to give

G(k,2) =g(z) + g(2)[St(K) + 52(k,2)]G(K,2).  (29)

The central approximation that unites all cluster for-
malisms is to truncate the self-energy to the cluster by
neglecting 6% to arrive at

G(k,2) = g(z) + g(2) A(K)G(k,2) = [g7 () - dt(K)] ™.
(30)

As we discuss in Sec. I1.D.1, this approximation corre-
sponds to truncating the potential energy to the cluster.

The remaining self-energy term X .(z) implicitly con-
tained in the propagator g(z) in Eq. (30) is restricted to
the cluster degrees of freedom. Hence it can be calcu-
lated nonperturbatively in an effective cluster model as

a functional 3 .(z)=F[G(z)], where

0= T Gk, (31)
k

is the ﬁ-averaged or coarse-grained G(ﬁ,z), 1e., the
Green’s function restricted to the cluster. As discussed in
the next section this approximation is consistent with
neglecting intercluster momentum conservation, i.e., ne-
glecting the phase factors ¢’** on the vertices of the self-
energy diagrams.

Using the expression (30) for the lattice Green’s func-
tion and the fact that g(z) does not depend on Kk, the

coarse-grained Green’s function G can be written as

G(2) =g -T@I", (32)
with a hybridization function I' defined by

N ~ ~ -1
I'(z)= [1 + WZ &(k)G(k,z)]

k
X [%2 &(E)G(E,z)ét(ﬁ)]. (33)
k

Its physical content is that of an effective amplitude for
fermionic hopping processes from the cluster into the
host and back again into the cluster. The denominator in
Eq. (33) is a correction that excludes the cluster from the
effective medium. I'(z) thus plays an analogous role to
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that of the internal magnetic field in mean-field approxi-
mations of spin systems. However, due to the itinerant
character of the fermionic degrees of freedom, it is a
dynamical quantity.

Both the cluster perturbation theory and the cellular
DMFT formalisms may be defined at this point. A self-
consistent set of equations is formed from G as a func-
tional of 3, using Eq. (30) together with Eq. (28), and
with an appropriate choice of a cluster solver (see Sec.

I1I), 3. as a functional of G. In the cellular DMFT ap-
proximation the hybridization I' is determined self-
consistently with Eq. (33), i.e., from the translational in-
variance of the superlattice. The resulting self-
consistency cycle is discussed in Sec. I1.C.2. The cluster
perturbation theory formalism is obtained when I is ne-
glected. The Green’s function g(z) then becomes the
Green’s function of an isolated cluster and the cluster
perturbation theory result for the lattice Green’s func-
tion is obtained immediately via Eq. (30) without self-
consistency. Thus the renormalization of the cluster de-
grees of freedom due to the coupling to the host
described by I' is neglected in the cluster perturbation
theory but included in the cellular DMFT formalism.

2. Dynamical cluster approximation

The dynamical cluster approximation (DCA) formal-
ism is motivated by the need to restore translational in-
variance within the cluster. Since the intercluster hop-

ping &t(k) is finite for sites on the surface of the cluster
and zero for bulk sites, only surface sites hybridize with
the host. Hence translational invariance with respect to
the cluster sites X is violated. The cause of this violation

can be seen by representing the hopping integral t(k) as
the intracluster Fourier transform of the dispersion e, x
using Eq. (23),

- 1 P

[t(k)]XlX] = ﬁz el(K+k)'(Xi_X/')EK+l;. (34)
c K

The violation of translational symmetry is caused by the

phase factors e®Xi~X) associated with the superlattice

wave vectors k. Thus translational symmetry can be re-
stored by using the Fourier transform

[tDCA(lE)]Xl.Xj = [t(lz)]xixjefik‘(x”fxf)

1 .
= X ey (35)
c K

Since tpcya is fully cyclic in the cluster sites, the DCA
intracluster and intercluster hopping integrals can be
written as cluster Fourier transforms

1w . )
[tepcalxx, = ﬁz M XiXg, (36)
c K
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- 1 . s
[otnea(k)lxx, = 12 XXX oK + k) (37)
c K
with
N
éx = 2 €kuis (38)
N§
(K +K) = . — €. (39)

Since these hopping integrals retain translational in-
variance within the cluster, the cluster self-energy 3. and
hybridization function I' are translationally invariant.
The lattice Green’s function, Eq. (30), hence becomes
diagonal in cluster Fourier space,

G(K+k,z) =g(K,z) + g(K,2) (K + k) G(K + K, 2)
B 1
g'(K,2) - (K+K)
with the Green’s function decoupled from the host,
g(K7Z) :[Z_ éK+M_Ec(K9Z)]71‘ (41)

Along the lines presented above, the DCA cluster self-
energy 2.K,z) is calculated as a functional of the
coarse-grained Green’s function,

(40)

- N - 1
G(K,z) = W% G(K+K,z)= K7 TKD' (42)
which defines the hybridization function
N, - -
WE SPA(K+Kk)G(K +Kk,z)
M(K,2) = —— . (43)

1+ WCE MK +K)G(K +K,2)
e

The self-consistent procedure for determining the DCA
cluster self-energy X.(K,z) is analogous to that for cel-
lular DMFT and is discussed in detail in Sec. IL.C.2. It is
also possible to formulate an analog to the cluster per-
turbation formalism based on the dynamical cluster ap-
proximation. The Green’s function g(K,z) then becomes
the Green’s function of an isolated periodic cluster with
coarse-grained dispersion [Eq. (38)] and interactions.
The result of this combined approach for the lattice
Green’s function is obtained immediately via Eq. (40)
without self-consistency.

B. Diagrammatic approach to quantum cluster theories

In this section we provide a microscopic derivation of
the cluster perturbation theory, cellular DMFT, and
DCA formalisms based on different cluster approxima-
tions to the diagrammatic expression for the grand po-
tential. The advantage of this approach is that it allows
us to apply almost all of the diagrammatic technology
that has been developed over the past several decades to
a new set of cluster formalisms. Furthermore we are
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able to assess the quality of these approximations with
respect to their thermodynamic properties. The most
significant disadvantage is that the approach developed
here applies only to systems that are amenable to a dia-
grammatic expansion.

The following ideas will be illustrated on the extended
Hubbard model, Eq. (18). We use the notation intro-
duced in Sec. II.A, Fig. 3, i.e., the cluster centers are
denoted by X and sites within the cluster by X. The wave

vectors k and K are their respective conjugates.

Baym and Kadanoff (1961; see also Baym, 1962)
showed that thermodynamically consistent approxima-
tions may be constructed by requiring that the single-
particle self-energy 3, fulfill

G, -G '=3= %. (44)

That is, we require that the self-energy be expressible as
a functional derivative of the Baym-Kadanoff ® func-
tional with respect to the Green’s function G and that
the approximation be self-consistent. The Baym-
Kadanoff generating functional ®[G,U] is diagrammati-
cally defined as a skeletal graph sum over all distinct,
compact, closed, connected diagrams constructed from
the Green’s function G and the interaction U. Thus the
diagrammatic form of the approximate generating func-
tional together with an appropriate set of Dyson and
Bethe-Salpeter equations completely defines the dia-
grammatic formalism.

As described in standard textbooks (Abrikosov et al.,
1963) the relation between the grand potential func-
tional ) and the ® functional is expressed in terms of
the linked cluster expansion as

Q[G, U] =- kzT{®[G,U] - Tr In(- G) - Tr(2G)},
(45)

where the trace indicates summation over cluster sites

X, superlattice wave vectors k, frequency, and spin. With
the condition (44), the grand potential is stationary with
respect to G, i.e., 80/8G=0. Such approximations are
thermodynamically consistent, i.e., observables calcu-
lated from the Green’s function G agree with those cal-
culated as derivatives of the grand potential (. As
shown by Baym (1962), the requirement (44) together
with momentum and energy conservation at the vertices
also assures that the approximation preserves Ward
identities, i.e., satisfies conservation laws.

While prominent examples of conserving approxima-
tions such as the Hartree-Fock theory and the
fluctuation-exchange approximation (Bickers et al.,
1989) typically restrict the diagrams in & to a certain
subclass, usually the lowest-order diagrams in U, quan-
tum cluster approaches go a different route: They re-
duce the infinite number of degrees of freedom over
which ® is evaluated to those of a finite-size cluster. In
contrast to perturbative approaches, however, all classes
of diagrams are kept.
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1. Cluster perturbation theory

The simplest way to reduce the degrees of freedom in
®[G] is to replace the full-lattice Green’s function

G(k,z) by the Green’s function g(z)=[(z+w)l-t,
—-3.(2)]" of an isolated cluster of size N,.. Consequently
the self-energy 3.=5®[g]/Sg obtained from & is the
self-energy of an isolated finite-size cluster. This, how-
ever, leads to a theory that lacks self-consistency. More-
over, one has to make the ad hoc assumption that the
lattice self-energy is identical to that obtained from the
cluster, X. The left-hand side of Eq. (44) then yields the
form for the lattice Green’s function

G(k,z)=[Gy'(k,2) -3 ()], (46)

where all the quantities are N, X N, matrices in the clus-
ter sites. Since the bare-lattice Green’s function is given
by Go(f(,z):[(z+/_L)1—t(l~()]‘1 and the hopping can be
split into intracluster and intercluster parts [see Eq.

(25)], t(k)=t.+ 5t(K), we obtain

G(k,z)=[g(z) - ot(k)] . (47)

This form was derived in Sec. II.A from the locator ex-
pansion Eq. (30) by ignoring the hybridization I' be-
tween cluster and host. According to Eq. (46), the clus-
ter perturbation theory can be viewed as the
approximation obtained by replacing the self-energy in
the Dyson equation of the lattice Green’s function G by
the self-energy of an isolated cluster 3. This idea was
first developed by Gros and Valenti (1994) and applied
to the three-band Hubbard model. A different approach
to deriving the cluster perturbation theory was taken by
Pairault er al. (1998; see also Pairault et al, 2000;
Sénéchal er al., 2002). They showed that Eq. (47) is ob-
tained as the leading-order term in a strong-coupling ex-
pansion in the hopping &t between sites on different
clusters.

According to the above derivation, the cluster Green’s
function g is to be calculated on a cluster with open
boundary conditions. Since the intercluster hopping dt is
treated perturbatively, i.e., differently from the intraclus-
ter hopping t,, translational invariance for sites X in the
cluster is violated. Consequently, we have as a generali-
zation of the Fourier transform Eq. (24), omitting the
frequency dependence for convenience,

1 ) o
Gk k) =—2 > e*XG(X, X k)e® X
cQ Xi,Xi

xok-k'-Q), (48)

where k and k'’ are wave vectors in the full Brillouin
zone and Q is a wave vector in the cluster reciprocal
space." To restore translational invariance in the full-
lattice Green’s function, the cluster perturbation theory

'Here we used the relation G(E):G(k), which follows from
Eq. (22) when k is replaced by k=k+K.
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approximates G(k,k’) by the Q=0 contribution to ob-
tain

Gerrk) =+ 3, RN GX, X,k 9)
cXi,Xj

as the translationally invariant propagator used to calcu-
late spectra. With this approximation, the cluster pertur-
bation theory provides a very economical method for
calculating the lattice Green’s function of an infinite-size
(N —o0) Hubbard-like model from the Green’s function
(or equivalently self-energy) of an isolated cluster of fi-
nite size N.<N. From G¢pr(k) one can calculate single-
particle quantities such as photoemission spectra, kinetic
and potential energies, double occupancy, etc.

To reduce the numerical cost, it was suggested to use
periodic boundary conditions on the cluster by adding
the appropriate hopping terms to the intracluster hop-
ping t. and subtracting them from the intercluster hop-
ping &t (Dahnken et al., 2002). However, as discussed by
Sénéchal et al. (2002), periodic boundary conditions lead
to less accurate spectra for the 1D Hubbard model than
open boundary conditions. This a posteriori argument
for open boundary conditions is substantiated by calcu-
lations within Potthoff’s self-energy functional approach
(see Sec. IL.I) which show that the grand potential of the
system is only stationary in the limit of open boundary
conditions (Potthoff et al., 2003).

2. Cellular DMFT

A superior approximation may be obtained if, instead
of the isolated-cluster Green’s function g, the full-lattice
Green’s function G restricted to cluster sites is used to
evaluate the functional ®. This approximation can be
motivated microscopically by approximating the mo-
mentum conservation on internal vertices in the dia-
grams defining @, which is described by the Laue func-
tion

A= or ke KT NG g (50)
Here kik, are the momenta entering the vertex and
(ki,kj) the momenta leaving it. Miiller-Hartmann
(1989b) showed that the DMFT may be derived by com-
pletely ignoring momentum conservation at each inter-
nal vertex and setting A=1. Then one may freely sum
over all of the internal momentum labels, and the
Green’s functions in the diagrams are replaced by the
local Green’s function G;;=1/NZ, G (k).

The cellular DMFT and dynamical cluster approxima-
tion techniques may also be defined by their respective
approximations to the Laue function. In the cellular
DMEFT the Laue function is approximated by

. - . I o
ACDMFT — E etX-(K1+k1+K2+k2+~~—K1—k1—K2—k2—~~~)_ (51)
X

Thus the cellular DMFT omits the phase factors ek
resulting from the position of the clus_te~r in the original

lattice, but keeps the phase factors e*X. The latter are
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directly responsible for the violation of translational in-
variance. As in the coherent-potential approximation
(CPA), all quantities in the cellular DMFT are functions
of two cluster momenta, K;,K,, or two sites, X;, X, re-
spectively.

If the cellular DMFT Laue function Eq. (51) is applied
to diagrams in ®, each Green’s-function leg is replaced
by the cellular DMFT coarse-grained Green’s function
(the frequency dependence is dropped for notational
convenience)

G(XI,XZ)
=G(X,X,;x=0)

1 . - ~ o~ ) -
== E el(K1+k1)-X1G(K1’Kz;kl,k2)e—z(K2+k2)-X2
KK,
K.k
N? o
= 2 G Xk ky), (52)
K.k,

or in matrix notation for the cluster sites X; and X,,

Gm=%2c®m (53)
k

since G is diagonal in 121,122 due to the translational in-
variance of the superlattice. Similarly each interaction
line is replaced by its coarse-grained result (we sup-
pressed the spin dependence for notational conve-
nience),

> UK). (54)

K

U=

=|=

The summations over the cluster sites X within each dia-
gram remain to be performed. As a consequence of
coarse graining the propagators in ®, the cellular DMFT
self-energy

3 () - 2lC.U] (55)
6G(z)

is restricted to cluster sites and consequently indepen-

dent of k. Note that by definition, G and U are trun-
cated outside the cluster, i.e., if the interaction U is non-

local, U includes only interactions within, but not
between, clusters.

The cellular DMFT estimate of the lattice grand po-
tential is obtained by substituting the cellular DMFT ap-
proximate generating functional ®[G,U] into Eq. (45).
From the condition that the grand potential be station-
ary with respect to the lattice Green’s function, 8Q/6G
=0, one obtains a relation between the lattice self-
energy and the cluster self-energy
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FIG. 4. A second-order term in the generating functional ® of
the Hubbard model. The dashed line represents the interaction
U, and the solid line on the left-hand side (right-hand side) the

lattice (coarse-grained) single-particle Green’s function G (G).
With the dynamical cluster approximation (DCA) Laue func-
tion, the wave vectors collapse onto those of the cluster and
each lattice Green’s function is replaced by its coarse-grained
average.

3K Kk k) = e_ia(‘“;])'xlzc(xlaxz)ei(Kﬁiz)'xz

XI'XZ
(56)

With Eq. (52) the left-hand side of Eq. (44) then be-
comes the coarse-graining relation,

G(z) = %E [Gyl(k,z) - 2.(2)] (57)
K
with the bare Green function Go(z):[(z+ﬂ)]l—t(l€)]*1.

3. Dynamical cluster approximation

In the DCA the phase factors ¢*X in Eq. (51) are
omitted too, so that the approximation to the Laue func-
tion becomes

Apca = Nc51(1+K2+---,Ki+Ké+- . (58)

and the Green’s-function legs in ® are replaced by the
coarse-grained Green’s function

- N ~
G(K,2) =2 G(K+k3), (59)
k
since Green’s functions can be freely summed over the
N/N, wave vectors k of the superlattice. Similarly, the

interactions are replaced by the DCA coarse-grained in-
teraction

UK) = %E UK +Kk). (60)
K

As with the cellular DMFT, coarse graining the interac-
tion reduces the effect of nonlocal interactions to within
the cluster. This collapse of the diagrams in the ® func-
tional onto those of an effective cluster problem is illus-
trated in Fig. 4 for a second-order contribution.

The resulting compact graphs are functionals of the

coarse-grained Green’s function G(K) and interaction
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U(K) and thus depend on the cluster momenta K only.
For example, when N, =1, only the local part of the in-
teraction survives the coarse graining. As with the cellu-
lar DMFT, within the DCA it is important that both the
interaction and the Green’s function be coarse grained
(Hettler et al., 2000). As a consequence of the collapse of
the ® diagrams, the DCA self-energy

EC(K,Z) — w (61)
0G(K,z)

depends only on the cluster momenta K.
To obtain the DCA estimate of the lattice grand po-
tential, we substitute the approximate generating func-

tional ®[G(K), U(K)] into Eq. (45). The grand potential
is stationary with respect to G,

SO[G(K), U(K)]
5G(Kk)
when 2 (k)=2.(K) is used as the approximation for the

=3.(K) - 2(k) =0, (62)

lattice self-energy corresponding to ®[G(K),U]. The
self-consistency condition on the left-hand side of Eq.
(44) then becomes the coarse-graining relation,

G(K,z)= %2 [G' (K +K) - 5.(K,2)] (63)
k

with the bare Green’s function GO(K+12,Z)=[Z—EK+];
+u]

C. Technical details

1. Cluster selection

In this section, we describe a sensible scheme for se-
lecting the cluster geometries. For cluster perturbation
theory and the cellular DMFT, little is presently known
about the effect of different cluster geometries. In con-
trast, for the DCA, much can be learned from the simu-
lations of finite-size systems, where periodic boundary
conditions are typically used. Many different periodic
cluster geometries may be used to tile the full lattice.
Care should be taken to ensure that the lattice point-
group symmetry and, more significantly, the configura-
tion and number of neighbors in each near-neighbor
shell of the clusters do not differ too greatly from those
of the original lattice (Betts et al., 1996; Jarrell, Maier,
Huscroft, and Moukouri, 2001). Initially, DCA calcula-
tions were performed with clusters that had the same
geometry as the lattice; i.e., for a square lattice, square
clusters were used; although the high-symmetry direc-
tion of the clusters need not point along those of the
lattice (Jarrell, Maier, Huscroft, and Moukouri, 2001).

However, Haan et al. (1992) showed that certain par-
allelogram clusters could also produce good results in
finite-size exact diagonalization calculations. Parallelo-
gram clusters offer the distinct advantage of many more
possible tilings, so that these clusters may be selected for
quality. Betts et al. greatly expanded upon this idea, and
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FIG. 5. The best bipartite periodic clusters with N.<22 for the
square lattice. All are used for scaling, with the exception of
16B, which is highly imperfect. From Betts et al., 1999.

developed a grading scheme to determine which clusters
should be used (Betts et al., 1996, 1999). Their main
qualification is the imperfection of the near-neighbor
shells.

For an infinite square lattice, which is by definition
perfect, there are 4n vertices that are in the nth near-
neighbor shell. A topologically perfect cluster would
have a complete set of independent neighbors for each
of the j—1 neighbor shells, fewer than 4 neighbors in
the jth shell, and none in further shells. When perform-
ing finite-size scaling calculations with these clusters,
Betts et al. (1996, 1999) find that perfect clusters gener-
ally produce results that fall on the scaling curve, while
imperfect clusters generally produce results that lie off
the scaling curve. The squareness of the cluster is also
relevant, as are other properties. For example, the cal-
culation of antiferromagnetism requires bipartite clus-
ters. Those with 8<N,=<22 are shown in Fig. 5. These
clusters are perfect, except for 16B, which is highly im-
perfect. Because of this, and the fact that it is equivalent
to a four-dimensional hypercube, it produced poor re-
sults in scaling calculations. Clusters with N.<8 were
rejected since they do not have independent neighbors.
A cluster with N.=4 has the additional shortcoming of
being equivalent to a one-dimensional chain.

More complex clusters may be generated by the
method of Lyness ef al. (1991), who showed that any
finite lattice in dimension D may be tiled by an upper-
triangular matrix formulation. Their method may be
used to automate the generation of clusters, and has
been used to develop improved finite-sized scaling meth-
ods for simple cubic (Betts and Stewart, 1997), face-
centered-cubic (Stewart et al., 1997), and body-centered-
cubic (Betts et al., 1998) lattices.

Rev. Mod. Phys., Vol. 77, No. 3, July 2005

Quantum cluster theories

[ Cluster Solver ]

__N Zk[ (

FIG. 6. Sketch of the cellular DMFT and DCA embedded-
cluster algorithms. The iteration starts with computing the
coarse-grained Green'’s function G using an initial guess for the
cluster self-energy 3. The cluster excluded Green’s function G
is then used to define the effective cluster problem which
yields a new estimate of 3.

2. Self-consistency scheme

The coarse-graining equations [Egs. (63) and (57) for
the DCA and cellular DMFT, respectively] together
with a suitable cluster solver, form a nonlinear set of
equations that have to be solved self-consistently to de-
termine the cluster self-energy. For cluster solvers that
sum up all diagrams of 3, in contrast to a skeletal ex-
pansion of 2., an additional step is necessary. In order
not to overcount self-energy diagrams, 3. is to be calcu-
lated as a functional of the corresponding bare propaga-

tor to G, the excluded-cluster Green’s function,

G(2)=[G(2) + 2] ™" (64)
This equation” unambiguously defines the self-consistent
iteration procedure illustrated in Fig. 6:

(i)  the iteration is started by guessing an initial clus-
ter self-energy .(z), usually zero or the result
from second-order perturbation theory, to

(i)  calculate the coarse-grained quantities

Gl =23 [67'(K.2) - 3],
k

- N,

U= W% U(K).

’A unifying matrix notation is used. In the cellular DMFT,
the quantities are matrices in the N, cluster sites and in par-

ticular [Gol(k,z)]xx (z+,u)6xx [t(k)]xx For the DCA,
the matrices are dlagonal in the cluster momenta K and

[Gy'(k.2) kK =2+ 1~ €k i



Maier et al.: Quantum cluster theories 1039

(iii)  An effective cluster problem is then set up with
the excluded-cluster Green’s function G(z) and U.

(iv) The self-energy %.(z) or the cluster Green’s func-
tion G.(z) is calculated in the effective cluster
model (see Sec. II.LE) by using any of the quantum
cluster solvers discussed in Sec. III.

(v)  For techniques that produce the cluster Green’s
function G, rather than the self-energy, a new es-
timate of the cluster self-energy is calculated as
2.(2)=6"(2)-G.'(2).

The iteration is closed by recalculating the coarse-

grained Green’s function G(z) in step (ii) with the new
estimate of the cluster self-energy. This procedure is re-
peated until the cluster Green’s function G.(z) equals

the coarse-grained Green function G(z) to within the
desired accuracy.

3. Calculation of the lattice self-energy

Another significant difference between the cellular
DMFT and the dynamical cluster approximation ap-
pears in the calculation of the lattice self-energy. The
DCA approach approximates the lattice self-energy by a
constant within a DCA cell in momentum space, (K

+lE,z)=EC(K,z). Therefore the self-energy is a step
function in k space. In order to obtain smooth nonlocal
quantities such as the Fermi surface or the band struc-
ture, an interpolated 3 (k,z) may be used. Bilinear inter-
polation in two dimensions is guaranteed to preserve the
sign of the function, but leads to kinks in X(k,z). Yield-
ing the smoothest possible interpolation of %(K,z), the
use of an Akima spline (Akima, 1970) which does not
overshoot is consistent with the DCA assumption that
the self-energy is a smoothly varying function in k space.
However, it is important to note that this interpolated
self-energy should not be used in the self-consistent
loop, because this can lead to violations of causality, as
discussed in Sec. I1.D.6.

In the cellular DMFT, the lattice self-energy is given
by the Fourier transform of the cluster self-energy [see

Eq. (56)],

1 ) »
Skk2)=—3 S kX (X, X z)e KX
N, Q X.X;

x5k -k’ - Q). (65)

Since a cellular DMFT cluster violates translational in-
variance, the lattice self-energy depends on two mo-
menta, k and k', which can differ by a wave vector Q of
the cluster reciprocal space. To restore translational in-
variance, the cellular DMFT approximates the lattice
self-energy by the Q=0 contribution, to give (Gros and
Valenti, 1994; Sénéchal et al., 2000; Kotliar et al., 2001)

1 .
S(k,z)=— X e *X X3 (X, X),2). (66)
L'X,-,Xj

In real space, the lattice self-energy
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S0 = 3 S X) O x 0y (67
Nex,x; A
i}

is thus obtained by averaging over those cluster self-
energy elements X(X;,X;) where the distance X;-X;
equals the distance x;—x;. As explained by Biroli and
Kotliar (2002), the factor 1/N, leads to an underestimate
of nonlocal self-energy contributions at small cluster
sizes, since the number of contributions for fixed x;—x;
>0 in the sum Eq. (67) is always smaller than N.. As a
possible solution to this problem, Biroli and Kotliar
(2002) suggested replacing Eq. (67) for the lattice self-
energy by a weighted sum that preserves causality. One
could, for example, weight the terms in the sum by their
number instead of N, to achieve better results.

It is important to note that, as in the DCA, the lattice
self-energy, Eq. (66) or Eq. (67), does not enter the self-
consistent loop. Biroli et al. (2004), however, realized
that a translationally invariant formulation of the cellu-
lar DMFT algorithm could be obtained by replacing the
cluster self-energy %,.(z) by the translationally invariant

lattice self-energy 3(K), Eq. (66), in the coarse-graining
step Eq. (53). Despite the dependence on k, this form of

3(k) can be shown to preserve causality (Biroli er al.,
2004).

D. Discussion

In this section we discuss many of the fundamental
properties of these techniques. The essential approxima-
tion (Sec. II.D.1) common to all techniques has many
consequences. As discussed in Sec. II.D.2, quantum clus-
ter approximations have significant capabilities but also
limitations. The approximations also affect conservation
laws and the nature of the cluster model, as described in
Secs. I1.D.3 and I1.D 4. Of course, the resulting approxi-
mations are now functions of the cluster size (Sec.
I1.D.5). The truncation of correlations to the cluster
makes it difficult to form a causal theory (Sec. I1.D.6)
and makes it essential to take only irreducible quantities
from the cluster to form the lattice propagators (Sec.
IL.D.7).

1. Nature of approximation

The diagrammatic derivation of Sec. II.B shows that a
common aspect of all quantum cluster approaches is the
approximation of the lattice self-energy 3 by the self-
energy of a finite-size cluster. In each case, the single-
particle propagator used to calculate ¥ is that of the
cluster. In cluster perturbation theory, the propagator of
an isolated cluster is used, while in the cellular DMFT
and DCA, the self-energy is calculated from the lattice
propagator restricted to the sites inside the cluster. In
the latter cases, this leads to a self-consistent theory,
with a single-particle coupling between the cluster and a
mean-field host. Quantum cluster approaches hence ex-
tend conventional mean-field approximations and intro-
duce nonlocal correlations by replacing the insoluble lat-
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tice Hamiltonian by some manageable finite portion—
possibly  with effective model parameters—and
reintroducing the thermodynamic limit by a mean-field-
type treatment of the remaining system. Thus the funda-
mental approximation common to all these approaches
is that correlations within the cluster are treated explic-
itly, while those at longer length scales are described at
the single-particle mean-field level. In the DCA, for ex-
ample, the k dependence of the self-energy is approxi-
mated on a coarse grid of cluster K points [see Eq. (61)]
at intervals AK=2/L,.. This approximation assumes a
weakly k-dependent self-energy which, according to
Nyquist’s sampling theorem (Elliot and Rao, 1982), re-
produces correlations up to a spatial range §ésL./2.
Therefore quantum cluster approaches are good ap-
proximations to systems with significant screening,
where correlations are expected to be short ranged.
The locator approach in Sec. II.A reveals a comple-
mentary interpretation of cluster approximations. We
note that the potential energy may be written as
%Tr(EG) (Fetter and Walecka, 1971), where the trace
runs over cluster sites, superlattice wave vectors, fre-
quency, and spin. As detailed above, the central feature
of cluster expansions is their neglect of the intercluster

contributions, &3 (k,z)G(k,z) in Eq. (29). Thus the ap-
proximation 6%(z)=0 essentially neglects intercluster
corrections to the potential energy in all calculated lat-
tice quantities. On the other hand, the kinetic energy is
identified as Tr(tG). Since its intercluster contribution is
not neglected, the kinetic and potential-energy contribu-
tions are not treated on an equal footing. Indeed this is
an essential difference between cluster mean-field ap-
proximations and finite-size calculations. In the former
the potential energy of the lattice is truncated to that of
the cluster, whereas the kinetic energy is not. This leads
to a self-consistent theory, generally (but not always)
with a single-particle coupling between the cluster and
the host. In the potential-energy contribution, both the
kinetic and potential energies of the lattice are truncated
to their cluster counterparts. Therefore we might expect
cluster methods to converge more quickly as a function
of cluster size, compared to finite-size techniques, espe-
cially for metallic systems with extended states and sig-
nificant screening (see Sec. IV).

2. Capabilities and limitations

Quantum cluster theories offer unique capabilities for
the theoretical description of correlated lattice systems.
Since the small parameter in these techniques is a low
power of the inverse cluster size (see Sec. I11.D.5), it is
often possible to solve the cluster problem using an ap-
proach that is nonperturbative in the interaction and
hence applicable to a whole range of interactions. Such
theories allow for the calculation of static and dynamic
single-particle and two-particle correlation functions and
thus for the determination of various experimentally ac-
cessible quantities, such as those related to photoemis-
sion, transport, magnetism, and superconductivity. As
the fundamental approximation, quantum cluster theo-
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ries cut off correlations beyond the length scale set by
the cluster size while remaining in the thermodynamic
limit. As we show in Sec. I1.D.5 they allow for system-
atic improvement by increasing the cluster size and re-
cover the mean-field-exact result in the single-site—
infinite-size cluster limit.

One must bear in mind, however, the limitations of
quantum cluster approaches originating in the spatial
cutoff of correlations. Due to the neglect of long-
wavelength fluctuations, quantum cluster approxima-
tions may yield transitions to ordered phases which are
otherwise prohibited by the Mermin-Wagner theorem.
In addition, quantum cluster methods fail as a classical
or quantum critical point is approached. In fact, since
the critical behavior close to the transition is determined
by the long-wavelength limit, quantum cluster ap-
proaches always yield mean-field exponents. However, a
finite-size scaling analysis of the cluster size dependence
of thermodynamic quantities may give valuable informa-
tion about the critical behavior of the system. The criti-
cal exponent v, for example, may be determined from
the cluster size scaling of the critical temperature [see
Sec. 1.B, Suzuki (1986), and Hettler et al. (2000)]. Al-
though the mean-field quantum cluster approaches are
too close to mean-field theory to permit a proof of phase
transitions, they allow one to investigate a system’s ten-
dency to certain types of orders and to identify the pos-
sible existence of long-ranged correlations.

Studies with larger cluster sizes can help to alleviate
this problem and suppress the spurious transitions found
for small clusters by including longer-wavelength fluc-
tuations and thus driving transition temperatures down.
Finite-size simulations of small systems, in contrast, ex-
perience difficulty in finding long-range order. Here,
larger systems have to be simulated in order to see a
tendency towards ordering. Thus, while finite-size tech-
niques have difficulty finding true transitions, quantum
cluster approaches make it challenging to suppress spu-
rious transitions. Properties that are suppressed by fluc-
tuations may disappear in the large-cluster limit,
whereas those that are driven by fluctuations should per-
sist as the cluster size is increased. Fluctuation-induced
properties such as the Mott-Hubbard gap in the Hub-
bard model should become more pronounced in larger
clusters, since longer-ranged fluctuations are included.
By contrast, finite-size simulations usually overestimate
gaps in small systems. This complementarity of quantum
cluster approaches and finite-size techniques is discussed
in more detail in Sec. IV.A.

From a purely technical point of view, the solution of
the effective cluster model (see Sec. II.LE) remains a for-
midable task (see Sec. III for techniques), as potentially
exact cluster solvers become numerically quite expen-
sive as the number of local and spatial degrees of free-
dom on the cluster increases. The underlying many-
particle problem usually inhibits the consideration of the
full electronic structure, and the restriction to low-
energy scales becomes necessary. Hence the models that
can be treated numerically exactly within quantum clus-
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ter methods are usually limited to a few correlated or-
bitals.

3. Conservation and thermodynamic consistency

The DCA and cellular DMFT approximations are
both self-consistent and & derivable since they satisfy
Eq. (44). Thus they are thermodynamically consistent in
the Baym-Kadanoff sense. Observables calculated from
the lattice Green’s function G agree with those calcu-
lated as derivatives of the lattice grand potential (.
Since the cluster perturbation theory is not self-
consistent, it is not thermodynamically consistent. How-
ever, none of these approaches is conserving in the
Baym-Kadanoff sense, since they all violate local mo-
mentum conservation by approximating the Laue mo-
mentum conservation function. Thus each of these ap-
proaches is likely to violate some set of Ward identities
(Hettler et al., 2000).

4. Nature of effective cluster problem

In contrast to the DMFT, a unique setup for the
embedded-cluster theory does not exist. Depending on
the treatment of boundary conditions (see Sec. IL.A and
Biroli and Kotliar, 2002), differences in the coupling of
the cluster to its environment arise (see comparison in
Sec. I1.D.4 below). In fact, there exist infinitely many
realizations of embedded-cluster theories for any given
model Hamiltonian (Biroli and Kotliar, 2002; Okamoto
et al., 2003; Potthoff, 2003b; Potthoff et al., 2003), two of
which we focus on in this review.

Detailed comparisons of the DCA and cellular DMFT
algorithms were presented by Biroli and Kotliar (2002),
Maier, Gonzalez, et al. (2002), Maier and Jarrell (2002),
Biroli et al. (2004), and Aryanpour, Maier, and Jarrell
(2005). Both approximations share the underlying idea
and general algorithm, and differ only in the form used
for the hopping matrix t [see Eq. (35)]. The purpose of
this and the following section is to examine the effects of
this, at first sight, small difference on the effective clus-
ter problem and the convergence properties.

We illustrate the nature of the effective cluster prob-
lems using a 1D model with nearest-neighbor hopping ¢,
on-site energy €,=0, and cluster size L.. The generaliza-
tion to higher dimension or longer-ranged hopping
terms is straightforward. The cellular DMFT uses the

original form for the hopping matrix t(k) which is ob-
tained, for example, as an intercluster Fourier transform
[see Eq. (22)] of t(X). Only entries between neighboring

sites inside the cluster [t(lg)]Xi’Xl_ﬂz—t and between
neighboring sites on the surface of the -cluster

[t(k)] Xi,Xii(Lc,l):—teiikLc are finite. The former entries

form the intracluster hopping matrix t.=N,/NZ;t(k)
while the latter entries form the intercluster hopping
matrix 5t(l€)=t(l€)—tc. Both amplitudes are given by the
original hopping ¢. For the effective cluster problem this
translates to the fact that only sites on the surface of the
cluster couple to the effective medium, while sites inside
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the cluster couple only to their neighboring sites in the
cluster. Hence the cluster problem has open boundary
conditions, and translational invariance is violated

within the cluster. The lattice Green’s function G(k) [see
Eq. (30)] is a matrix in the cluster sites and cannot be
diagonalized by going over to cluster K space. Therefore
the coarse-graining step, Eq. (31), is performed in real
space.

The DCA restores translational invariance by setting
[tnca()]xx =[t0)]x .y e ™ X% [see Eq. (35)] As a
consequencé, its matrix elements become identical and
are given by —te** between sites X;=X;+1 and X;
=X;+(L.—1). Hence the DCA hopping matrix tpca (k) is
fully cyclic with respect to the cluster sites, and the lat-
tice Green’s function G(k) is diagonalized by going over
to cluster K space. The DCA intracluster hopping ma-
trix t, pca=N./ NZtpea(k) is also cyclic with finite ma-
trix elements

[tc,DCA]XA,Xj ==t &sinl, (68)
i T L,

between sites X;=X;+1 and X;=X;+(L.~1), and the
problem of the DCA cluster therefore has periodic
boundary conditions. At finite cluster size L., the intra-
cluster hopping is reduced by the factor 1/6(w/L,)?
+O[(m/ L.)*] compared to its lattice counterpart . In the
limit of infinite cluster size it becomes ¢. This reduction
in the intracluster coupling is compensated for by the
intercluster hopping, which is long ranged in nature,

sin[(X F 1)#/L,] sin(Tr/LC)5 )
- %0 |5

} ~ (
[tpca(®@lxx,=~1 ( (T DL, 7L,

(69)

between sites X;=X;+ 1 and X;=X;*(L.~1). It is impor-
tant to note that dtpc couples all the sites in the cluster
to sites in the effective medium. It vanishes for x=0 and
decreases as 1/x with increasing Xx. We also note that

Otpca ~ 1/L. (70)

for large linear cluster sizes L, and emphasize that this
result holds generally in any dimension D.

These results show that the restoration of transla-
tional invariance in the DCA is achieved by mapping the
lattice onto a cluster with periodic boundary conditions,
reduced hopping integrals . pca, and coupling of every
site in the cluster to a neighboring site in the effective
medium through long-ranged hopping integrals
Otpca(X). Similar conclusions about the nature of the ef-
fective cellular DMFT and DCA cluster problems were
reached in a study of the large-U limit of the Falicov-
Kimball model [see Eq. (182)], i.e., the classical Ising
model (Biroli et al., 2004).

We stress that clusters with linear size L,=2 are spe-
cial in the DCA. Here both terms in the intracluster
hopping Eq. (68) give a contribution to the same matrix
element. Hence the nearest-neighbor hopping is given
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by —2«(L./m)sin(7/L,.), i.e., with the prefactor —2¢ in-
stead of — for larger clusters. This reflects the fact that
every site sees its nearest neighbor twice due to the pe-
riodic boundary conditions. Nonlocal fluctuations are
thus enhanced in clusters with linear size L.=2 as seen,
for example, in a stronger suppression of transition tem-
peratures (see Sec. IV.D.2).

5. Systematics

The quantum cluster approaches discussed here have
well-defined limits. Cluster perturbation theory, cellular
DMFT, and the DCA become exact in the weak-
coupling limit, the strong-coupling limit, and the limit of
infinite cluster size, N.— . In the weak-coupling limit,
the cluster self-energy vanishes and the exact solution is
given by the noninteracting Green’s function, which is
reproduced in all three approaches. In the strong-
coupling limit, all the sites in the lattice are decoupled.
The effective cluster problem reduces to a single-site
problem without coupling to a mean field, since the hy-
bridization function I' vanishes in this limit. The cluster
Green’s function then becomes the Green’s function of
an isolated site and solves the problem exactly. In the
limit N.—%, the effective cluster problem becomes
identical to the original problem and the cluster Green’s
function becomes the exact Green’s function of the full
system.

At intermediate couplings and cluster size N.=1, the
cellular DMFT and the DCA both reduce to the DMFT
for a finite-dimensional system. In this limit, both the
cellular DMFT and DCA Laue functions [Egs. (51) and
(58)] reduce to A=1, ® is evaluated with the local
Green’s function and local contribution of the interac-
tions, and the DMFT is recovered. In contrast, the clus-
ter perturbation theory reduces to the Hubbard-I ap-
proximation (Hubbard, 1963) when N.=1 where the
self-energy is approximated by that of an isolated atom
(Gros and Valenti, 1994; Sénéchal et al., 2000, 2002).

Quantum cluster approaches can thus be viewed as
interpolation schemes between the DMFT or Hubbard-I
result at N.=1 and the exact result at N.— . That quan-
tum cluster methods are systematic in the cluster size
may be rigorously shown within the analysis presented
in the preceding section. The approximation performed
by the DCA and the cellular DMFT is to replace the
exact lattice Green’s function G by its coarse-grained

quantity G in diagrams for the generating functional ®
(see Sec. I1.B). For example, in the DCA, where, with
the nomenclature introduced in Sec. II.A, the lattice
self-energy is written as 3(k)=3.(K)+ 53 (K+k) and
3.(K) is the DCA cluster self-energy, the relationship
between G(k) and G(K) is given by
1
GKk)=— — — . (71)
1/G(K) - 8t(K k) — 6%(K,k) + T'(K)

We note that a similar expression holds for the cellular
DMFT. G(k) thus differs from G(K) in the intercluster
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hopping &, the self-energy corrections 6%, and the hy-
bridization function I'. Since the diagrams in @ are

summed over k and N,/NZ;o(k)=0 the terms having

the same order as 8t(k)~1/L, vanish [see Eq. (70)]. If
we assume that the self-energy has corrections of the
same or higher order in 1/L, as I, the convergence of ®
with cluster size is entirely determined by I'.

To leading order, the hybridization with the mean-
field T vanishes like & as the cluster size increases [see
Egs. (33) and (43)]. In the cellular DMFT the magnitude
of 6t is of order 1 for the sites on the surface of the
cluster and 0 otherwise. The average hybridization per
cluster site in the cellular DMFT thus scales as

r L r ] (9( ! ) (72)
= —1T] ~ —_— .

CDMFT N. CDMFT L.

where the trace runs over cluster sites and frequency.
This behavior is evident because only the 2D(Lf -1 sites
on the surface contribute to the sum and N.=L?”. In the
DCA, 8t=0(1/L.) [see Eq. (70)]. The average hybridiza-
tion of the DCA cluster to the effective medium scales
faster to zero as

r ! Tr[Tpcal (9( ! ) (73)
- Ty ol =
DCA Nc DCA Lz

since each of the N, terms contributes a term of the
order O(l/L?). Thus the differences in boundary condi-
tions between cellular DMFT and the DCA translate
directly to different asymptotic behaviors for large clus-
ter sizes N,.

With the scaling relations (72) and (73) we find for the
cellular DMFT that ®cpypr=®+O(1/L,.) while the
DCA converges as (I>DCAz<ID+O(1/L3). Since
=0®/6G, it converges with L, as the corresponding .
The exact lattice self-energy 2 is therefore approxi-
mated by the cluster self-energy 2. according to

3 =3P L oa/L?), (74)

3 =3PMT L 01/L,). (75)

Hence both quantum cluster approaches, the DCA and
cellular DMFT, have systematic expansions in the clus-
ter size. With increasing cluster size, the generating func-
tional ® and hence the self-energy and the grand poten-
tial converge to the exact result, with corrections
o/ L%) in the DCA and with corrections O(1/L,) in
cellular DMFT.

The scaling behavior Egs. (72) and (73) of the
CDMFT and DCA average hybridization strengths for
both approaches was verified numerically for the 1D
Falicov-Kimball model by Maier and Jarrell (2002; see
also Maier, Gonzalez, et al., 2002). Here we review the
effects of the different scaling behaviors of the average
hybridization on the phase transition in this model. The
Hamiltonian of the Falicov-Kimball model is discussed
in Sec. IV.B, Eq. (182). It can be considered as a simpli-
fied Hubbard model with only one spin species being



Maier et al.: Quantum cluster theories 1043

U=W=1 o DCA i
003
o
o
o
po®
002 O o -
o DCA: U=W=1,N=4
© 04 T=0028 104
o £ g 5
0.01+ 02— =-0.2
o 2 [o mm
o ® ® Q'
u 1 T n
% 0.05 0.1 0
T
0 L 1 L | L 1 L 1 L
0 0.1 0.2 0.3 0.4 0.5

I/N

c

FIG. 7. (Color in online edition) Transition temperature vs
inverse cluster size: circles, calculated with the DCA Monte
Carlo technique; squares, cellular DMFT Monte Carlo when
U=W=4¢=1. Inset: DCA order parameter m(7T) and inverse
charge susceptibility x(Q)™! vs temperature. Taken from
Maier, Gonzalez, et al., 2002.

itinerant. However, it still shows a complex phase dia-
gram, including a Mott gap for large U at half-filling, an
Ising-like charge ordering with the corresponding tran-
sition temperature 7, being zero in one dimension, and
phase separation in all dimensions (Freericks and Zlatic,
2003). Since the 1D Falicov-Kimball model is in the 1D
Ising universality class, we expect similar scaling behav-
ior to that observed in the results for the 1D Ising model
in Sec. L.B. In particular, we expect finite transition tem-
peratures within both cluster approximations due to
their residual mean-field character. Their effective clus-
ter models were solved with a Monte Carlo approach
described by Hettler et al. (2000).

The DCA transition temperature 7, was determined
from the divergence of the lattice charge susceptibility
x(Q) calculated from the particle-hole correlation func-
tion as detailed in Sec. II.G. In the cellular DMFT for-
malism the calculation of lattice susceptibilities is diffi-
cult if not impossible due to the lack of translational
invariance. Here T, is determined from the calculation
of the charge order parameter m as detailed in Sec. IL.F.
For the DCA both techniques are illustrated in the inset
to Fig. 7.

As for the 1D Ising model (see Fig. 2 in Sec. 1.B), the
DCA result for T scales to zero almost linearly in 1/N,
for large N.. Moreover, the T, obtained from the DCA
is smaller and thus closer to the exact result than the 7.
obtained from cellular DMFT. The cellular DMFT does
not show any scaling behavior and in fact seems to tend
to a finite value for T,. as N.—. As explained above,
this striking difference can be attributed to the different
boundary conditions. The open boundary conditions of
a cellular DMFT cluster result in a large surface contri-

bution so that I'cpyer>1Tpca. This engenders pro-
nounced mean-field behavior that stabilizes the finite-
temperature transition for the cluster sizes treated in
Fig. 7. For larger cluster sizes, the bulk contribution to

Rev. Mod. Phys., Vol. 77, No. 3, July 2005

the cellular DMFT grand potential should dominate, so
that 7, is expected to fall to zero.

Complementary results are found in simulations of
finite-size systems. In general, systems with open bound-
ary conditions are expected to have a surface contribu-
tion in the grand potential of order O(1/L,) (Fisher and
Barber, 1972). This term is absent in systems with peri-
odic boundary conditions. As a result, simulations of
finite-size systems with periodic boundary conditions
converge much more quickly than those with open
boundary conditions (Landau, 1976).

The DCA converges faster than the cellular DMFT
for critical properties as well as extended cluster quanti-
ties due to the different boundary conditions and the
coupling to the mean field. As detailed above, each site
in the DCA cluster experiences the same coupling to the
effective medium, while in the cellular DMFT only sites
on the boundary of the cluster couple to the mean-field
host. Provided that the system is far from a transition,
the sites in the center of the cellular DMFT cluster
couple to the mean field only through propagators which
fall exponentially with distance. Local results such as the
single-particle density of states thus converge more
quickly in the cellular DMFT than in the DCA when
measured on a central site (see Maier, Gonzalez, et al.,
2002).

6. Causality

To formulate a systematic embedded-cluster theory
that is causal, i.e., one in which the retarded Green’s
functions have poles only in the lower half of the com-
plex plane [or a self-energy with Im X(k,w+i0%)<0]
turned out to be a difficult task. Early attempts to for-
mulate cluster extensions to DMFT (van Dongen, 1994;
Schiller and Ingersent, 1995) encountered negative por-
tions in the single-particle spectral functions, a clear vio-
lation of causality. The origin of the problem is easily
illustrated with an example: Consider a single-band
Hubbard model, with near-neighbor hopping ¢ and dis-
persion ¢, for which we know the local and near-
neighbor contributions to the self-energy Xo(w) and
>1(w). A straightforward lattice estimate from just these
two components is 3(k,w)=2)(w)+(g/1)2(w). How-
ever, Im 3, (w), being nonlocal, has no definite sign and
€/t can become large near the band edges. Therefore
causality violations in the form of Im X(k,w+i0%)>0
can occur for regions of wave vectors close to the band
edges.

Explicit proofs for causality have been given for the
DCA (Hettler et al., 2000), the molecular CPA (Ducas-
telle, 1974), and the cellular DMFT? (Kotliar et al., 2001;
see also Biroli et al., 2004). Instead of summarizing the
proofs for the different methods, we here give a unified
argument for causality, based on projection techniques.

3Since the mappings between the cluster and the lattice in the
cellular DMFT and the molecular CPA are identical, the same
proof should apply for both formalisms.
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We start with Egs. (28), (30), and (31). Note that all
quantities appearing in these equations are in general
matrices in the cluster indices. We now define a set of
vectors |f}) (u=1,...,N,.), such that for any cluster quan-

tity A(k) the coarse-graining step Eq. (31) can be ex-
pressed as

N, R
W% A(k) = Oo(fo|v4|f0) (76)

with a suitably chosen linear operator 4. Here O,

=(f,|f,) is the overlap matrix for the vectors |f%), which
we may choose to be the identity matrix without loss of
generality. In particular, the coarse-grained Green’s
function may be written as

_ .1 .
G(z) = (fo|Z_—H|fo)- (77)

We now introduce idempotent projection operators

Po=lf)(fol, Qu=1-7, (78)
and then rewrite Eq. (77) as (Maier et al., 2000b)

G(2) = | 21 - (ol HIfo)

1

. 1 e
—(fo|HQoTWQOQoH|fo) . (79)

Since

%2_ BHK) = (X =0) = 0 (80)

it follows that z1—(fy|H|fy)=g(z)~\. If we further define

I'(2) = (fo HQ, QuHlfy) (81)

1
Z— QoH Qo

we recover the form (32) obtained from the locator ex-

pansion for G(z).

Causality violations for embedded-cluster theories
like the cellular DMFT and DCA can arise only in the
“cluster exclusion” step, Eq. (64), in which the host
Green’s function G is computed. Combining Egs. (28)
and (64), we see that for causality to hold, the hybridiza-
tion function I has to be causal itself. To prove causality

of I, let us iterate the above procedure. We define |f1)

= Q0H|f0) with Olz(}?1|]?1), an operator H;=QyHQ,, and
corresponding projection operators P; and Q. It is
straightforward to show that

N, ~
0,= (WE &(k)z) = (82)
K
With this convention we may rewrite Eq. (81) as
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1 - .
I'(z)=9|zl- O_(f1|H1|f1)
1

1 - 1 - |
- (A Q= QM) | - (83)
Ol(fl| 11 O M0, <! il
With some tedious but straightforward algebra one finds
1 - - 1N, - -
1-— =——2 otk)G(k,z) " st(k
-5 A = 57 2 akGk.2)" tlk)

k

with G(k,z) given by Eq. (30). Finally, one can move the
prefactors yin (83) from the numerator into the denomi-
nator and vice versa to obtain

1
I'(z)=v — i v, (84
N 2 UG K,2)'U)" - Ty(2)
k
where U(k) =y 6t(k) and
1 - S
I'i(z) = ;(fﬂHlleQlHﬂfﬂ- (85)

The above scheme can be continued to yield an ex-

pression for G(z) as a continued fraction

G =g -y ! ”

FCE UK)G(k,2) " UK)" -
K

(86)

The only dependence on z in the last term representing

I'(z) comes from G(K,z), which fulfills causality require-
ments. Thus I'(z) is also causal by construction, which is
what is needed for causality of the algorithm.

The above derivation puts certain limits on various
approximations of the cluster algorithms, and may be
motivated by numerical reasons. It is, for example,
tempting to replace the well-defined cluster quantity
3.(z) in Eq. (28) by some approximation to X(z), i.e., the
full self-energy. As has been discussed in some detail by
Okamoto et al. (2003; see also Sec. IL.I), such a proce-
dure will generally lead to causality violations. The ulti-
mate effect of such violations on the interesting low-
energy results is difficult to ascertain, but at least there
should be doubt about the quantitative accuracy.

The result in Eq. (86) also has an appealing interpre-
tation in terms of quantum impurity problems: From the
general structure of the propagator of a quantum impu-

rity model one can identify the quantity =3 5t(k)>
with the squared (effective) hybridization matrix be-
tween impurity and host degrees of freedom and
N. -~ - -
Gi(2) = | 2 UMG(k2) UK - (87)
k

with the (effective) propagator for the host degrees of
freedom.
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7. Reducible versus irreducible quantities

The one-particle self-energy ¥ and its many-particle
counterparts carry the information about the many-body
physics of a model. It is built from irreducible diagrams,
i.e., graphs that cannot be separated into parts by cutting
a Green’s-function line. In contrast, the single-particle
Green’s function or a susceptibility is a reducible quan-
tity. The cluster theories discussed use only the irreduc-
ible cluster quantities such as the single-particle self-
energy to build the reducible lattice quantities such as
the single-particle Green’s function.

This may be motivated physically for systems with sig-
nificant screening. The irreducible lattice self-energy ac-
curately reflects short-ranged correlations within the
screening cloud. It is well approximated with its cluster
counterpart, in which long-range correlations are cut off
by the finite size of the cluster. On the other hand, the
phase accumulated by the propagation of a particle
through the lattice is described by the single-particle
Green’s function. Since this accumulated phase is crucial
in the description of the quantum dynamics, it is impor-
tant that the single-particle Green’s function remain ac-
curate at long length scales. Therefore it must not be
approximated by its cluster counterpart.

More formally, consider the grand potential functional
Eq. (45). It is expressed as a sum over all closed con-
nected distinct graphs constructed from the bare Green’s
function G, and interaction U. The subset of compact
graphs constructed from the dressed Green’s function G
and interaction U comprise the Baym-Kadanoff gener-
ating functional ®[G,U], which is expressed as a skel-
etal graph sum over all distinct, compact, closed, con-
nected graphs. Compact diagrams have no internal parts
representing corrections to the Green’s function G. In
quantum cluster theories the graphs for the irreducible
@ are approximated by their cluster counterparts. As an
example, consider the limit of infinite dimensions, used
by Metzner and Vollhardt (1989) to derive the DMFT. In
this limit most closed connected graphs are local, since
both the bare and dressed Green’s functions fall off
quickly with distance r, G(r)~D™2. Only the set of
graphs corresponding to noncompact corrections re-
mains nonlocal. To see this, consider the simplest nonlo-
cal corrections to noncompact and compact parts of the
grand potential of a Hubbard-like model, illustrated in
Fig. 8. Here the upper circle is a set of graphs composed
of intrasite propagators restricted to site n, and the
lower circle is a set of intrasite propagators restricted to
the origin. Consider all such nonlocal corrections on the
shell of sites which are n mutually orthogonal unit trans-
lations from the origin. In the limit of high dimensions,
there are 2"D!/[(D—-n)!n!]~O(D") such sites. Since as
D—w, G(r)~D™"? (Metzner and Vollhardt, 1989), the
legs on the compact correction contribute a factor
O(D~2"), whereas those on the noncompact correction
contribute O(D™"). Therefore the compact nonlocal cor-
rection falls as D" and vanishes as D — c0; whereas the
noncompact correction remains of order 1, regardless of
how far site n is from the origin. As a result, the gener-
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R
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FIG. 8. Noncompact (left) and compact (right) nonlocal cor-
rections to the grand potential. Here the upper and lower
circles are meant to represent a set of graphs that are closed
except for the external lines shown, and restricted to site n (the
origin).

ating functional, which is composed of only compact
graphs, is a functional of the local Green’s function and
interaction in this limit,

q)[G,U] = (D[Giiv Uii] + O(l/D) (88)

A similar analysis was done for the DCA cluster prob-
lem by Aryanpour et al. (2002). They found that the cor-
rections from sites outside the cluster associated with
compact diagrams were quite small (i.e., high order in
the linear cluster size 1/L,), justifying the approximation

®[G,U] = P[G(K),U(K)], (89)

while those associated with noncompact diagrams were
large and could not be neglected. The same analysis may
be done for the cellular DMFT, simply by replacing the
DCA graphs by those for the cellular DMFT.

Thus the essential feature of the DMFT, the DCA,
and the cellular DMFT is to approximate the lattice gen-
erating functional ® by its cluster counterpart in the es-
timate of the lattice grand potential, Eq. (45). Concomi-
tantly the derivatives of ®, i.e., the lattice self-energy
and vertex functions, are approximated by their respec-
tive cluster counterparts. This once more underlines why
in embedded-cluster theories it is necessary always to
work with the irreducible quantities of the cluster; they
are the only quantities that correspond directly to their
lattice counterparts.

E. Effective cluster model

Quantum cluster approaches reduce the complexity of
the lattice problem with an infinite number of spatial
degrees of freedom to a (numerically) solvable system
with N, spatial degrees of freedom. As detailed in Sec.
II.B, this is achieved through the approximation of
®[G,U], the exact Baym-Kadanoff functional of the ex-
act Green’s function G and interaction U, by a spatially

localized quantity ®[G,U] which is a functional of the
corresponding (coarse-grained) quantities restricted to

the cluster sites, G=N,/ NE,;G(]E) and I_J:NC/NEI;U(IE).
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®[G,U] may be calculated nonperturbatively as the
solution of a quantum cluster model,

HC:HC,O+HC,I' (90)

H, consists of a noninteracting term H, ., describing the
bare cluster degrees of freedom and their coupling to a
host. The interacting term H,; is related to the corre-
sponding term in the original lattice model through the

coarse-grained interaction U. This ensures that the func-
tional dependencies of the cluster functional ®, and its
lattice counterpart ® are identical.

The noninteracting term H, is fixed by the require-
ment that the Green’s function G, of the cluster model

equal the coarse-grained Green’s function G of the origi-
nal model,

GL’ = (-_; = [g71 - Ec:rlv (91)

and hence is specified by the excluded-cluster Green’s
function G [see Eq. (64)].

For Green’s functions or action-based cluster solvers
like perturbation theory or quantum Monte Carlo, H,
can be encoded in the excluded-cluster Green’s function
G. The corresponding cluster action S, for the fermionic
cluster degrees of freedom represented by the Grass-
mann variables y,y" reads in imaginary time and cluster
real space

B B
Sly.y1=- J de A7 2 Yi(DGj o 7= ) jo(7)
0 0 ij,o

B v,
+ f dr 3 =507 (D% (7)7i0(7)

0 ij,o0’
(92)

where we used the shorthand notation i, j for the cluster
sites X;,X;. Note that for the cellular DMFT the quanti-
ties G;; and l_];]’f” are given by Eqs. (54) and (64), respec-
tively, while for the DCA they are given by the cluster

Fourier transforms of G(K)=[G(K,z)+3.K,z)]™* and

U (K) [see Eq. (60)].

For Hamiltonian-based techniques, like the noncross-
ing approximation, exact diagonalization, or numerical
renormalization group, one needs an explicit formula-
tion of H . To set up the bare part H,, it is convenient
to use Eq. (32) for the cellular DMFT or (42) for the
DCA, together with Eq. (91) to represent the excluded-
cluster Green’s function G. In cellular DMFT, we have
with Eq. (28)

G =[z+mwl-t.-T)]", (93)

and the matrix elements of the intracluster hopping t.
are given by the hopping amplitudes of the original lat-
tice, 7; as detailed in Sec. IL.D.4. The noninteracting
problem is thus split into two parts, cluster degrees of
freedom with hopping integrals ; and their coupling to a
dynamic host described by the hybridization function
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I'(z). The cellular DMFT cluster model can hence be
written as (see also Bolech et al., 2003)

.t -
H.= E (ti/' - M@/)ngcja + E )\ijk[ﬂilgoajka +H.c.]
.o ijk,o
+ [Vi/(k)cjaajﬁan H.c.]
iik,o
ur oL
+ 2 l2 C;g-cjl(r/cja’cio" (94)
ij,oa’
The first part describes the cluster degrees of freedom
with fermionic creation (destruction) operators C,Ta (Cig)-
The second term simulates the host degrees of freedom
as a noninteracting conduction band with the help of
auxiliary operators ajl;lf (a;k,) and energy levels ;. The
coupling between the cluster states and the bath with an
amplitude Vl-]-(lz) is described by the third term, and the
interaction term is given by the last term. The sums over
k run over the N/N, wave vectors of the superlattice.
Integrating out the auxiliary degrees of freedom yields
an action of the form (92) with

Gi(2) =z +wl-t.-T(2)]; (95)
Lei(2) = 2 V)2l = MK) T, V(). (96)
Imk

Self-consistency then requires that the auxiliary param-

eters \; and Vl-/-(l;) be chosen in such a way that the
cluster hybridization function I'(z) is identical to its lat-
tice counterpart I'(z) defined in Eq. (93). Since I';; is only
finite on the surface of the cluster (see Sec. I1.D.4), Vl-j(l;)
only couples sites i on the surface of the cluster to the
host. This was numerically verified in cellular DMFT ex-
act diagonalization studies by Bolech et al. (2003).
For the DCA we have with Eqgs. (41) and (42)

GK,2)=[z-é&+un-T(K 2], (97)

and hence the DCA effective cluster model is best rep-
resented in cluster K space as

He= 2 (8 — WCkoCko + 20 Mellfolke
K,o k,o

+ 2 [ViK)ek ax.k, + Hel
KKk, o

U (Q)
+ E E CK+Q0'CI(’—QO-’CK’U"CKO" (98)
"IN,
K,K' oo
Q

The operators c;f(o (cky) create (destroy) an electron

with momentum K and spin o on the cluster. l_]‘T‘TI(Q) is
the Coulomb repulsion between electrons on the cluster

defined in Eq. (60) and the sum over k in the coupling
term again is restricted to the N/N, wave vectors of the
superlattice. Analogously to the cellular DMFT case, the
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DCA cluster model yields an action of the form (92) (in
cluster Fourier space) with a G of the form (97) and the
cluster hybridization function

o\ [2

R, = e bl (99)

N2 7= Nk

The auxiliary parameters of the DCA cluster model are
then determined by the condition I'.(K)=T"(K).

For N,.=1 both the cellular DMFT and the DCA clus-
ter models reduce to the single-impurity Anderson
model. As detailed in Sec. II.A, the cluster perturbation
theory formalism sets the hybridization function T' to
zero, i.e., considers an isolated cluster without coupling
to a host. Thus the cluster perturbation theory model is
identical to the original lattice model restricted to clus-
ter sites, i.e., given by the first and last terms of the
cellular DMFT cluster model Eq. (94).

F. Phases with broken symmetry

For simplicity, in the preceding sections the self-
consistent equations of quantum cluster theories were
derived assuming the absence of symmetry breaking. In
Sec. I1.G we review how instabilities to ordered phases
can be identified by the computation of response func-
tions. However, to explore the nature as well as possible
coexistence of broken-symmetry states, generalizations
that explicitly account for the possibility of symmetry
breaking on the single-particle level are necessary.

The applicability and modifications required to treat
broken-symmetry phases depend on the cluster ap-
proach. The cluster perturbation theory formalism is not
amenable to the description of ordered phases because
its self-energy is that of a finite isolated cluster in which
spontaneous symmetry breaking cannot occur. However,
Dahnken et al. developed a variational extension of this
theory (Dahnken et al, 2004) based on the self-energy
functional approach by Potthoff (2003b), which yields a
self-consistent scheme for studying ordered phases (see
Sec. ILI). The cellular DMFT formalism can describe
ordered phases which are identifiable by a broken trans-
lational symmetry (such as antiferromagnetism) by con-
struction, since the translational symmetry of the cellu-
lar DMFT cluster is already broken (see Maier,
Gonzalez, et al., 2002; Maier and Jarrell, 2002; Biroli et
al., 2004). Hence translationally invariant solutions are
often found to be unstable against the ordered one
(Biroli et al., 2004). The DCA formalism is translation-
ally invariant by construction, and therefore generaliza-
tions of the algorithm are necessary to treat ordered
phases. To keep this section concise, we give examples
of generalizations of the DCA formalism to a selection
of types of broken-symmetry phases along with the map-
ping onto the corresponding cluster models. The adap-
tion of the presented concepts to the cellular DMFT
approach is straightforward.

Once the equations are generalized to account for
symmetry breaking, the requisite algorithmic changes
are relatively simple. A finite conjugate external field is
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used to initialize the calculation and break the symme-
try. The field is then switched off after a few iterations
and the system relaxes to its equilibrium state in the
absence of external fields. On the other hand, if the field
remains small and finite, the dependence of the order
parameter on the field can be determined and used as an
alternate way to calculate the susceptibility (by extrapo-
lation to zero field). This approach is especially useful
for cluster solvers such as the noncrossing approxima-
tion or the fluctuation-exchange approximation, in
which the computation of two-particle correlation func-
tions is numerically too expensive.

1. Ferromagnetism

We first consider the formalism necessary to treat fer-
romagnetism. A finite homogeneous external magnetic
field & is introduced which acts on the spin o of the
fermions according to the Zeeman term

—hY, oc) cio-

i,o

(100)

The effect of # on the motion of the electronic degree of
freedom, i.e., the diamagnetic term, is neglected for
simplicity.*

In the presence of a finite 4 or uniform magnetization,
the single-particle Green’s functions for up- and down-
spin electrons are not equivalent. To account for this
SU(2) symmetry breaking, the spin index of the Green’s
function G, self-energy 3, and effective medium G,
(and hence I',) in the derivation of the DCA equations
has to be retained. For a finite uniform magnetic field 4
the DCA lattice Green’s function reads

1
7 - egk+ ut+ho—3% (K,2)

G,(k,z) = (101)

and the coarse-grained and corresponding cluster-
excluded Green’s function,

G,(K,z)= %2 G,(K+k,z), (102)
k

G (K.2) =G, (K.z) + 3. ,(K.2), (103)

become spin dependent.

The action of the effective cluster model is identical to
the action in the paramagnetic state, Eq. (92), but the
spin indices have to be explicitly retained. It then de-
scribes electrons in an external magnetic field # coupled
to a spin-dependent host, and self-consistency is estab-
lished by equating the Green’s function of the cluster
model with the coarse-grained Green’s function (102).

By analogy, for Hamiltonian-based cluster solvers, an
additional term

“In 2D systems the magnetic field can be applied parallel to
the plane to avoid orbital effects.
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T
- hz O-CK(J'CKU'
K,o

(104)

is added to the cluster Hamiltonian, Eq. (98), in the pres-
ence of a finite external magnetic field 4. The coarse-

grained Green’s function G, Eq. (101), is then used to
calculate the magnetization m:=1/NZX,,0¢n;,) according
to

1 -
m=—2, ¢G,(K,7=0")

(105)
cK,o
or after analytical continuation
11 i - '
m=———>0| dof(o)lmG,(K,w+id. (106)
71-]Vc Ko —0

2. Superconductivity

In this and the next section we generalize the DCA
formalism to treat phases with superconducting and an-
tiferromagnetic order, respectively. For simplicity, we re-
frain from discussing phases with coexisting supercon-
ducting and antiferromagnetic order. The extension to
an integrated formalism is straightforward and has been
described by Lichtenstein and Katsnelson (2000).

We consider superconducting phases in which the
electrons are paired in spin-singlet or triplet states with a
vanishing z component of the spin, §,=0, which is indi-
cated by finite values of the order parameter Ay
:=(cki¢_k) for some k. In addition to the normal Green’s
function G(k, 7) it is therefore necessary to introduce the
anomalous Green’s function F(k,7)=—(T,cx(7)c_g)).
The spatial and temporal symmetry of the pairing state
can then be inferred from the symmetries of F. Since F
describes the pairing of fermions, it necessarily is anti-
symmetric under the exchange of two particles. The spa-
tial symmetry of the pairing state is determined by the k
dependence of the anomalous Green’s function F(k, 7).
If we assume conventional even-frequency pairing
F(k,-7)=F(k, 7); in the case of spin-singlet pairing, F has
to be symmetric in k, i.e., F(-k,7)=F(k, 7) as is the case
for even-parity order parameters such as s-wave and
d-wave orders. In the case of spin-triplet pairing, F is
antisymmetric in k, i.e., F(-k,7)=—F(k, 7) as in a p-wave
state.

The allowed symmetry of the pairing state is restricted
by the cluster geometry. It depends upon the k depen-
dence of the dispersion ¢, and the K dependence of the
cluster self-energy (K, 7). When N.=1, ¥ is local and
the k dependence of F(k,7) is entirely through €,. Hence
only pairing states whose lattice symmetry is described
by an order parameter with a local contribution such as
s-wave and extended s-wave order can be described’ by
this formalism (Jarrell, 1992; Jarrell and Pruschke, 1993).
Larger cluster sizes are necessary to describe order pa-

SNote, however, that these order parameters cannot be distin-
guished.
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rameters with a symmetry less than the lattice symmetry.
For example, simulations with N.=4 are needed to de-
scribe phases with a d,2_>-wave order parameter which
transforms according to cos k,—cos k,,.

By utilizing the concept of Nambu spinors,

W o= (e Wi = (P, (107)

one can write the self-consistent equations in a more
compact form, since the corresponding Green’s function
matrix in Nambu space,

Gkz)  Flkz) )
F(kvzv) - G*(_ k,—Z*) ’

(108)
contains information about both the normal and anoma-
lous Green’s functions. In the presence of an external
pairing field #n(k)=7'(k)+i7'(k) which couples to
C_k|Ckj» the noninteracting part of the Hubbard Hamil-
tonian can be written as HO:Ek\I’lT([ekog— 7' (K)o
+17"(K) o, |V so the DCA lattice Green’s function in the
superconducting state becomes

G(k,z) =[z0, - (e — w)o3 — 7' (K)o — 7'(k) o
- EC(K’Z)]719

G(k,2) = (¥, ; V). = (

(109)

where k=K+k and o; are the Pauli spin matrices. The
diagonal parts of the Nambu matrix .(K,z) describe
quasiparticle renormalizations, and the off-diagonal
parts contain information about the K dependence and
frequency dependence of the pairing state. Again, the
coarse-grained Green’s function,

G(K.z) = %2 G(K +k,2)
k

:<G(K,z) FK.2) ) 1o

F(K,7z) -G'(-K,-2)

is used to calculate the excluded-cluster Green’s func-
tion,

G(K,2) =[G '(K,2) + 2.(K,2)] !,

which together with the coarse-grained interaction

(111)

U’ (K) defines the action of the corresponding effective
cluster model,

B B
Sc:_f er dr' 2 (N Gy(7= 7)h(7)
0 0 ij

B uee’
+ J 472 =~ [ (DD (Dersay( )],

0 ij
(112)

As in the normal-state case [see Eq. (92)], the cluster
action is represented in cluster real space, and all the
quantities are cluster Fourier transforms of the corre-
sponding quantities in cluster K space. The spinors of
Grassmann variables 1//3:(7/;,7%) and o;=()" gener-
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ate coherent states corresponding to the cluster Fourier
transform of the Nambu spinors, Eq. (107). Similarly, the
corresponding cluster Hamiltonian in the superconduct-
ing state is obtained from the normal-state cluster
Hamiltonian Eq. (98) by representing it with the Nambu
spinors (107) and adding a U(l) symmetry-breaking
term,

- % VL7 (K)o, - 7'(K) oy [, (113)

where 7(K)=N,/NZ;n(K+k) is the coarse-grained pair
field.

After self-consistency is established by requiring that
the Green’s function of the effective cluster model, cal-
culated with the action Eq. (112), equal the coarse-
grained Green’s function Eq. (110), the order parameter
Ay can be calculated. Within the DCA the resolution in
k space is restricted to the cluster K points and the order
parameter is coarse grained,

_ N, _
Ag= Fz (Cksk1C-(k+k)) = FIK,7=07), (114)
k

and given by the equal-time coarse-grained anomalous

Green’s function F (after analytical continuation) as

FK,7=0%) = %E FK,iw,)

1(~ _
:—f dwtanh(%)ImF(K,w+i5).

m™J0

(115)

3. Antiferromagnetic order

In this section we derive the DCA cluster formalism
for antiferromagnetism on a bipartite lattice. This for-
malism is appropriate when N.>1. A formalism suitable
for the case when N,.=1 is discussed in detail by Georges
et al. (1996) in the context of DMFT.

The antiferromagnetically ordered state is character-
ized by a spatial variation of the magnetization accord-
ing to

m(x) = me'?x, (116)
where x denotes the sites in the lattice and Q is the
antiferromagnetic wave vector [Q=(r, ) in 2D]. Hence
bipartite lattices can be divided into two inequivalent
sublattices with ¢/®*=+1 for sites x in the A sublattice
and ¢’@*=—1 for sites x in the B sublattice. The magnetic
ordering thus reduces the translational symmetry of the
original lattice. The volume of the magnetic unit cell is
twice that of the structural unit cell. Accordingly, the
volume of the first Brillouin zone in the antiferromag-
netic state is reduced to half the original volume and
Q=(,7) becomes a reciprocal-lattice vector.

As a consequence, the correlation function
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Gk .k +Q:;7) =~ (Toepo( Dty 00 (117)

becomes finite. Along the lines of the formalism for the
superconducting state it is then convenient to introduce
spinors,

\I’ko = (\IIIT(U)T’

\IIIT(U' = (Clt(raclt+Qg-) 7 (1 18)

for the antiferromagnetic state. In the presence of a
staggered external magnetic field h(x)=h exp(iQ-x) the
noninteracting part of the Hamiltonian for bipartite lat-
tices with .o=—€ then becomes Hy==; V| [€03
—a(h/2)o]¥y, where the prime on the sum indicates
summation over the reduced Brillouin zone only. The
corresponding Green’s function,

G, (k,2) = (Vs Vi ).
h -1
= ZUo—(Ek—M)%—UEUl—EC(K,Z) ,

(119)

with sz+lE, is coarse grained over the DCA cells,

G, =153 G, (K + )

k
i ( GKK) G KK+Q) ) 120
G, K+QK) G,(K+QK+Q)

where we have dropped the frequency argument for
convenience. The excluded-cluster Green’s function,

G,(K,2) =[G, (K,2) + =, ,(K,2)] ™", (121)

then has two elements, G (K,K) and G (K,K+Q). As a
result, its Fourier transform to real space,

1 .
Gij.o= ﬁ% KXX)G,(K)

1 . .
2 XN ONG KK+ Q). (122)
c K

breaks translational symmetry. The action of the corre-
sponding cluster model in the antiferromagnetic state is
then formally identical to the action in the paramagnetic
state, Eq. (92). As in the superconducting state the cor-
responding cluster model is obtained from the paramag-
netic cluster model Eq. (98) by changing the representa-
tion to the Nambu spinors [Eq. (118)] and adding a
symmetry-breaking term,

h
- E O-_\I,I(oo-lq,KU’

(123)
Ko 2

to account for the external staggered magnetic field 4.

After convergence, the sublattice magnetization m
=1/NZ,,e'®*g(n;,) may be calculated from the off-
diagonal component of the Green’s-function matrix Eq.
(120) according to
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1 _
m=—20G,(KK+Q;7=0)
NCKO’
1 e _
=——> dof(w)oIm G (K, K+ Q;w+id).
NCWKO' —©

(124)

G. Calculation of susceptibilities

A convenient way to identify continuous phase tran-
sitions is to search for divergences of susceptibilities.
One particular advantage of quantum cluster theories is
that they allow us to consistently calculate these suscep-
tibilities from the corresponding cluster susceptibility
(Hettler et al., 2000). Unfortunately, the calculation of
two-particle correlation functions in the cellular DMFT
formalism is strongly hampered by the violation of
translational invariance on the cluster. So, in this section,
we shall restrict our attention to the calculation of two-
particle quantities in the DCA following Hettler et al.
(2000) and Jarrell, Maier, Huscroft, and Moukari (2001).

As a specific example, we describe here the calcula-
tion of the two-particle Green’s function,

B (B (B B
Xo’o"(qvkak/):f J f J dTldT2dT3dT4
0oJ0 Yo JO

X ei[(wn+v)71—wn7'2+wnr 73— (0,1 +v)74]
i
X <T761T(+qg(T1)Cka(Tz)CkrUr(T3)Ck'+qa'(7'4)>,

where we adopt the conventional notation (Abrikosov et
al., 1963) k=(k,iw,), k'=(k’,iw,), g=(q,iv,), and T, is
the time-ordering operator.

Xoo'(q,k,k") and the irreducible two-particle vertex
function I',,(q,k,k’) (not to be confused with the
single-particle hybridization function) are related to
each other through the Bethe-Salpeter equation,

X(T(T’(qvksk’) = X((:—o—’(qak’k,) + ngﬂ(q,k,k”)

XL grgn(q, K", K" ) Xgmor (g, K" k"), (125)

where X?m,(q,k,k”) is the noninteracting susceptibility
constructed from a pair of fully dressed single-particle
Green’s functions. As usual, a summation is to be made
for repeated indices.

We now make the DCA substitution I',,(q,K
+k, K’ +k) =T, (q.K,K’) in Eq. (125) where T, is the
irreducible two-particle vertex calculated on the cluster
(frequency labels have been suppressed). Note that only
the bare and dressed two-particle Green’s functions y

depend upon the superlattice wave vectors K. Since X
and x" in the product on the right-hand side of Eq. (125)
share no common momentum labels, we may freely sum

over the wave vectors K, yielding

Rev. Mod. Phys., Vol. 77, No. 3, July 2005

Koo (K K') = X0 (@, K,K') + Xoon(q, K, K")
X FC(r”o"”(q7KH,KI”))20"”0’(q’KW’K,)-
(126)

By coarse graining the Bethe-Salpeter equation, we
have greatly reduced its complexity; each of the matrices
above is sufficiently small that they may be easily ma-
nipulated using standard techniques.

In contrast to the single-particle case, in which the
coarse-grained quantities are identical to those of the
cluster, the cluster quantity x.,,(q,K,K') is not equal to
Xoo'(q,K,K'). This is because the self-consistency is es-
tablished only at the single-particle level. Unlike the

single-particle case, in which both 3 .(K) and G(K) are
directly calculated, neither I'.,,(q,K,K’) nor the
coarse-grained susceptibility Y., (q,K,K’) is calculated
during the self-consistency. Instead, the coarse-grained
noninteracting susceptibility )}gg,(q,K ,K') is calculated
after the DCA converges, using the relation

A_/ga"l:(qJ'Vn) 7(K7lwn) ;(K’,iwn,)]

N ~
= 5(70" &(K'awnwn/ﬁz G(r(K + kaiwn)
K

XG (K +K+q,iw, + 1,). (127)

The corresponding cluster susceptibility is calculated by
the cluster solver, e.g., the quantum Monte Carlo pro-
cess, as discussed in Sec. II1.C.1, and the vertex function
is extracted by inverting the cluster two-particle Bethe-
Salpeter equation,

chr'(q’K’K’) = X(C)a-a’(q’K’K’) + X(C)g-oﬂ(q’K’K”)
X FCUJ,OJ”(q’K”’K,,,)Xcajrro_r(q’K”,’K,) )
(128)

If we combine Egs. (128) and (126), then the coarse-
grained susceptibility may be obtained after elimination
of I' C(m,(q,K ,K') between the two equations. It reads

—_ _oL

-1
l=x! -+ X, (129)

where, for example, yx is the matrix formed from
Xo.0'(q,K,K") for fixed g. The charge (ch) and spin (sp)
susceptibilities xcnp(q,T) are deduced from y according
to

(ksT)? ] ,
Xch,sp(QaT) = B—2 E )\UU’XUU’((],K,K )s (130)
NC KK'oo'

where A\, =1 for the charge channel and \,, =00’ for
the spin channel. The calculation of particle-particle
(i.e., pairing) susceptibilities follows from a straightfor-
ward generalization of this formalism. The reader is re-
ferred to prior articles on cluster quantum Monte Carlo
methods for more details on these topics (Jarrell, Maier,
Huscroft, and Moukouri, 2001).
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FIG. 9. (Color in online edition) A few low-order diagrams in
the irreducible self-energy of a quenched diagonally disor-
dered system. Each circle represents the scattering of a state k
from sites denoted by X and a dotted line. The correlations
between the electrostatic potentials on different sites are de-
noted by the wavy line.

H. Disordered systems

In this section, we describe cluster approximations for
disordered systems. The mapping between the lattice
and the cluster in the cellular DMFT and the molecular
coherent potential approximation is identical, and when
the cellular DMFT is applied to disordered systems, it
becomes identical to the molecular CPA (Tsukada, 1969;
Ducastelle, 1974). The molecular CPA and related tech-
niques for disordered systems are extensively reviewed
by Gonis (1992) and will not be discussed here.

In the remainder of this section we describe a version
of the DCA for disordered systems that recovers the
CPA for N.=1 and becomes exact when N,— . This is
an extension of the formalism introduced by Jarrell and
Krishnamurthy (2001), modified to include the effects of
correlated disorder (Jarrell and Johnson, 2004). We con-
sider an Anderson model with diagonal disorder, de-
scribed by the Hamiltonian

H=-1 2 (cjo-cj(r + C}-g—ci(r) + 2 (Vl - Iu“)ni(r?
(j)o io

(131)

where c]_creates a quasiparticle on site i with spin o and
anC,Tng- The disorder occurs in the local orbital ener-
gies V; which describe the electrostatic potential at site i
and thus in the site occupancies labeled by y. We assume
that V; are quenched random variables distributed ac-
cording to some specified probability distribution which
includes the effects of intersite correlations.

The effect of the disorder potential =;,Vn; , may be
described using standard diagrammatic perturbation
theory (although we eventually sum to all orders). We
perturb around the ordered Hamiltonian, described by
the first term in Eq. (131).

Translational invariance and momentum conservation
are restored by averaging over all allowed values of the
site occupancies {;} and the corresponding disorder po-
tentials V;. We study this effect, for example, on the
sixth graph shown in Fig. 9, which makes a contribution
to the self-energy
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1
— 2 (VIV)HG(k)G(ky)G(ks)
N ik Koy

Xeixi-(k1—k+k3—k2)eix]--(k2—k]+k’—k3) . (132)
After averaging over the disorder configurations, <Vl-2Vf)
becomes a function of x;—x;. We identify this average as
D??. With translational invariance restored, we may
complete the Fourier transform and obtain

% S D(q)Gk)Gky)Glky)
kq,

ko.k3.q

X (N5q+k2+k,k] +ky 1) . (133)

It is easy to extend this argument to all orders in pertur-
bation theory. All graphs are composed of sums of prod-
ucts of Laue functions (e.g, A=N&x kK +k,) and
Green’s functions G(k) and D""(q), where D""'(q) is the
Fourier transform of DZ-’"z(Vf’ V;”).

A hierarchy of approximations may then be con-
structed by approximating the Laue functions within the
graphs. These include the CPA, in which conservation of
the internal momentum labels is completely neglected.
Here, all of the Laue functions involving the internal
momentum labels are set to 1, A=N 5k1+k2+..4—>1. In this
case we may freely sum over all internal momentum la-
bels, and all terms describing nonlocal correlations, such
as those on the bottom of Fig. 9, vanish, whereas the
CPA graphs shown on top remain. Different cluster ap-
proximations, including the molecular CPA and the
DCA, may be constructed by systematically restoring
momentum conservation through the appropriate choice
of Laue function, as discussed in Sec. II.B

If we choose the DCA Laue function, then we may

freely sum over superlattice wave vectors k within each
DCA coarse-graining cell (see Fig. 3). This leads to the
replacement of the lattice propagators G(k) and D""(k)
with coarse-grained propagators G(K) and D""(K), re-
spectively,

G(K.z)= %E G(K+Kk,2), (134)
k

D"(K) = %E D" (K +Kk).
K

(135)

The first of these sums is straightforward; however, the
second requires some investigation due to the powers of
the potential.

Here, we calculate D""(K) for a binary A,B alloy
where the concentration of A atoms is ¢ and that of B
atoms is 1—c. This calculation can be generalized to
multicomponent alloys and may easily be extended for
more complex alloys. For the binary alloy, we employ an
idempotent formalism where the idempotent =1, indi-
cating that the site is occupied by an A atom, or §=0,
indicating a B-atom site. If we associate V;=V 4 or Vp
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for an A or B atom, respectively, then V,=§&V,+(1
—&)Vp. Then, since &'=¢ and (1-¢)"'=1-§,

ViviH ={&Va+ (1= EVpI'§VA+ (1 -V
=([&Va+ A -&VEIEVE + (1 - §VED
= ViVigh, (136)

Y
where repeated indices in the last line are summed over
and

83/‘ = (&), (137)
g% =(&(1-§)), (138)
g’ =(1-£0-§) (139)

are the joint probabilities for occupation of sites i and j
by atoms of the designated types.

This formalism may be generalized to a multicompo-
nent alloy 8=A,B,C,... . Since a site may only be occu-
pied by an atom of one type only, in general

VIV = VigVigl. (140)

(V;‘V;") is a linear function of the probabilities ggy for all
n and m. Thus the effect of coarse graining D" (k) is
equivalent to coarse graining g#(k) for all n and m.

As an example, consider a binary alloy with only near-
neighbor configurational correlations. Here we may
write

877 =g""+ a(285,~1)3;,)s (141)

where € indexes the near neighbors to site i, and g%44

=c?, g"BB=(1-c)?, and g*1B=c(1-c) are the joint prob-
abilities for the occupation of different sites for a system
without configurational correlations. On a hypercubic
lattice of dimension D

D
8°7(k) = 8" 8 + a(28,~ 1) 2 cos(k)). (142)
=1
The corresponding coarse-grained result is
D
§7(K) = 8" 8o + a(28g,~ DR cos(K),  (143)
I=1

where R=(L./m)sin(w/L,) is a coarse-graining factor
(L,=NYP is the linear cluster size). If we transform back
to the cluster coordinates, then

ggyz P+ Ra(285,- )8, (144)

are the configurational probabilities for the -cluster,
where € labels the sites adjacent to i. In the CPA limit,
L.=1 and thus R vanishes, indicating the lack of any
configurational correlations. In the limit as N,= L — oo,
R=1, so correlations are systematically restored.

The cluster problem generated by the substitution A
— Apca may be solved numerically. Each of the dia-
grams in Fig. 9 representing N, independent scatters, or
fewer, remains finite; however, scattering diagrams for
greater than N, scatters vanish. The complexity of the
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problem is further reduced since the nontrivial sums in-
volve only the cluster momenta K (numbering N, in-
stead of N). Furthermore, since these diagrams are the
same as those from a finite-sized periodic cluster of N,
sites, we can easily sum this series to all orders by nu-
merically solving the corresponding cluster problem.
The resulting algorithm is identical to that presented in
Sec. II1.C.2, except that (i) in the coarse-graining step we
must calculate both the coarse-grained correlation func-
tion,

— Nc it
g(K) =2 g (K + ), (145)
K
and the coarse-grained cluster Green’s function,
- N, 1
G(K.2)=—2 (146)

N 2+ p— e~ 2(Kz)

(i) We then solve the cluster problem by performing a
weighted average of the cluster Green’s function (in ma-
trix notation in the cluster sites),

G=(g'-v),

over all disorder configurations. The weighting of each
configuration is determined by the Fourier transform of
2PY(K) to obtain the cluster configurational probabilities
ggV. After convergence is reached, the irreducible cluster
quantities may be used to calculate the properties of the
lattice.

Quantum cluster theories thus allow for systematic
improvement of the CPA by including nonlocal correc-
tions. However, they share with the CPA their limited
ability to describe localization effects, since the cluster
sites are coupled to a translationally invariant host
which effectively acts to delocalize the electrons on the
cluster. However, since the crossing graphs, which are
known to be responsible for localization, are systemati-
cally restored with increasing cluster size, the localiza-
tion transition might be accessible by a finite-size scaling
analysis that remains to be developed.

(147)

|. Alternative cluster methods

In this review we decided to focus on the three, in our
view, most established cluster methods. This section
briefly mentions several other ideas proposed to intro-
duce nonlocal correlations, some of which are comple-
mentary to the approaches discussed. For details we re-
fer the reader to the references provided.

1. Self-energy-functional theory

The self-energy-functional theory developed by Pot-
thoff (2003b; see also Potthoff ef al., 2003) is a very gen-
eral unifying concept for existing cluster approaches and
in addition provides the power to construct novel cluster
algorithms. Similar to the formalism presented in Sec.
I1.B, this approach views the grand potential () as the
central quantity. Here, the self-energy 3 is considered
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the basic dynamic variable and a self-energy functional
Q[2]=TrIn[-(G,'-2) ']+ F[3] is constructed from the
Legendre transform F{2]=®[G[X]]-Tr(XG[X]) of the
®[G] functional. This approach proceeds with setting up
a general variational scheme to use dynamical informa-
tion from a (numerically) solvable reference system H'
=H(t')+ H(U) to approximate the physics of the origi-
nal system H=H(t)+ H;(U). Provided that both systems
share the same interaction part H, it can be shown that
the grand potential of the original system Q3] may be
evaluated exactly from the grand potential (), the trial
self-energy %(t’), and Green’s function G’ of the refer-
ence system. Variation is then performed with respect to
the single-particle parameters t’ of the reference system
and the stationary point is determined by
a0 [2(t")]/at' =0.

A set of decoupled clusters of size N, as a reference
system H' yields the cluster perturbation theory when
the intracluster parameters t’ are fixed to the original
values t (Potthoff et al., 2003). Embedded-cluster theo-
ries are constructed by introducing an additional set of
n, bath sites. The DMFT is obtained with a reference
system of decoupled sites coupled to n,=% bath sites,
while the cellular DMFT is constructed from a set of
decoupled clusters with intracluster hopping t'=t
coupled to nj,=c bath sites (Potthoff et al., 2003). Inter-
mediate approximations are constructed by considering
a finite number 0<n, <o of bath sites. Such an ap-
proach for N.=1 was applied to a study of the Mott
transition in the Hubbard model by Potthoff (2003a) and
Pozgajci¢ (2004). Furthermore, due to its generality the
self-energy-functional approach allows us to improve ex-
isting cluster methods. Dahnken et al. (2004), for ex-
ample, constructed a variational cluster perturbation
theory within the self-energy-functional theory to ex-
tend the applicability of the cluster perturbation theory
to broken-symmetry phases.

2. Fictive impurity models

Like the self-energy-functional approach discussed
above, this very general approach by Okamoto et al
(2003) is centered on the self-energy 3 as the basic dy-
namic variable. It is based on the idea that the cluster
model is merely an algorithm for calculating coefficients
in an orthogonal function expansion of the momentum
dependence of the electronic self-energy X,,prox(k,2)
=3,_..,Pi(k)2;(z). The coefficients X;(z) can then be
obtained from the solution of a n+1-site fictive impurity
model involving n+1 mean fields which are fixed by the
requirement that the impurity model Green’s func-
tions G; equal the corresponding integrals over the
lattice  Green’s function Gi(z):Ek(I)i(k)[G(",l(k,z)
—X pprox(K,2)]7". To include local and nearest-neighbor
correlations, the momentum dependence of the self-
energy may be expanded up to second order using the
orthogonal functions ®y(k)=1 and ®,(k)=e*. Since in
general the orthogonal functions ®,(k) change sign over
the Brillouin zone except for the local term i=0, causal-
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ity is not guaranteed when the expansion is truncated at
low order. However, it is shown that simple filtering of
the higher-order terms may be used to circumvent these
problems (Okamoto et al., 2003).

The DCA may be viewed as a specific example of this
approach, in which the indices i correspond to the cen-
ters K of the DCA cells and the functions ®g(k) are set
to 1 if k is contained in the cell represented by K and 0
otherwise (see Fig. 3). Causality problems are thus
avoided by using orthogonal functions which are non-
negative everywhere.

3. Nonlocal effects via spectral density approximation

Laad and van den Bossche (2000) proposed the inclu-
sion of nonlocal 1/D corrections by combining DMFT
with the spectral density approximation (Roth, 1969)
and applied this approach to the Falicov-Kimball model
[see Eq. (182)], for which it becomes particularly simple.
In the spectral density approximation, the moments of
the spectral function are determined (via repeated
evaluation of commutators with the Hamiltonian) by
complicated but static correlators. For the Falicov-
Kimball model, to order 1/D the self-energy of the d
electrons, X ,(k,z), can be expressed in terms of the
static susceptibility of the f electrons. This self-energy is
purely real, but momentum dependent and is used to
approximate the bath self-energy 3 ,(k,z) in the hy-
bridization function I'(z)=3,{*/[z-+pn—2¢qk,2)]}
for the effective impurity problem in D=c. The impu-
rity self-energy 3, 4(z) (see Brandt and Mielsch, 1989)
is combined with % 4(k,z) to create a dynamical, non-
local self-energy of the form 3 ,(k,z)=3npq(2)
+304(k,z2) -2 30 4(k,z). This finally determines the
Green’s function of the mobile d electrons of the usual
form, G, (k,z)=[z—+u—2,4k,z)]"!, which is used to-
gether with 2 ,(k,z) to estimate the susceptibility of the f
electrons. % ,(k,z) can then be recalculated to close the
self-consistency loop.

Results for the density of states (DOS) and spectral
function of the Falicov-Kimball model on a square lat-
tice obtained with this method (Laad and van den
Bossche, 2000) agree well with known results and with
other studies like that of Hettler et al. (2000). For a
model with true dynamics, however, like the Hubbard
model, it is unclear whether the method is even feasible
(due to the additional spin-flip and pair-hopping correla-
tors), and the limitation of a purely real bath self-energy
is likely to be too restrictive.

4. Nonlocal corrections via projection technique

Using the projection technique Tien has developed a
cluster extension of the DMFT by taking into account
both local and nonlocal contributions to the dynamics
within a relevant subspace of Liouville or operator space
(Minh-Tien, 1998, 1999a, 1999b, 2001; Tanh-Hai and
Minh-Tien, 2001). The information of a given subspace
is stored in static susceptibility and frequency functions
while the effects of the remaining subspace are collected
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in a dynamic memory function which is approximated by
a local quantity. If the relevant subspace is spanned by
operators acting on the same or nearest-neighbor sites
only, unknown quantities can be calculated in an effec-
tive impurity model (Minh-Tien, 1998, 1999a) or, in an
improved version, in a two-site cluster model (Minh-
Tien, 1999b, 2001; Tanh-Hai and Minh-Tien, 2001).

This approach has not been rigorously proven to be
causal, however, its application to the Falicov-Kimball
model (Minh-Tien, 1998, 1999b) and the Hubbard model
(Minh-Tien, 2001) shows that the spectral function is
positive definite and the sum rules of the first few mo-
ments of the spectral densities are preserved. The ne-
glect of nonlocal dynamical correlations, however, leads
to spurious behavior at low temperatures: A Kondo
resonance emerges in the 2D half-filled Hubbard model
at low temperatures similar to the behavior observed in
DMFT simulations but inconsistent with other cluster
calculations which show a pseudogap down to the lowest
temperatures (see Sec. IV.D.2).

5. Two-site correlations with composite operators

A dynamical nonperturbative two-site approximation
for the Hubbard model based on the composite operator
method was developed by Matsumoto and Mancini
(1997) and later adopted and improved by Stanescu and
Phillips (Stanescu and Phillips, 2001, 2004). By using
Hubbard operators as a local basis which exactly diago-
nalize the interaction part of the Hamiltonian, this ap-
proach recovers both the weak-coupling U<t and
strong-coupling U>¢ limits of the Hubbard model. On-
site and nearest-neighbor dynamical correlations are in-
cluded by expanding the memory function dm(k,w),
which collects the effects of dynamical correlations, in a
two-site approximation. Unknown quantities are ex-
pressed in terms of resolvents for the eigenstates of a
two-site impurity system and the coupling to the sur-
rounding of the two-site system is treated within the
noncrossing approximation.

The application of this technique to the Hubbard
model shows qualitative agreement of the single-particle
spectra (Matsumoto and Mancini, 1997) in two dimen-
sions with finite-size quantum Monte Carlo results and
high accuracy of specific heat results (Stanescu and Phil-
lips, 2001) as compared to the Bethe ansatz solution in
one dimension. Although this technique includes only
on-site and nearest-neighbor correlations, it already cap-
tures important signatures of correlations consistent
with DCA-quantum Monte Carlo results for larger clus-
ters (see Sec. IV.D).

lll. QUANTUM CLUSTER SOLVERS

Cluster techniques map the lattice system onto a self-
consistently embedded quantum cluster model. This sec-
tion discusses the most promising numerical approaches
used to solve this cluster problem. After stressing some
general difficulties faced by potential cluster solvers in
Sec. III.A, we present several perturbative techniques in
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Sec. III.B and nonperturbative (numerically) exact tech-
niques in Sec. III.C. While a detailed discussion of the
different methods would be highly desirable here, the
restricted space allows us only to touch briefly on most
methods, referring the interested reader to the refer-
ences.

A. General remarks

The fundamental difference between a finite-size clus-
ter and the effective cluster problem of quantum cluster
theories is the existence of additional quantum-
mechanical bath degrees of freedom in the latter. The
simplest realization of such a system is of course the
well-known Anderson impurity model (Anderson, 1961).
In general, its ground and excited states are nontrivial
many-body states and typically involve dynamically gen-
erated low-energy scales which depend nonanalytically
on system parameters. Consequently, any perturbation
theory is faced with severe limitations concerning its re-
gion of applicability, and the most successful techniques
used to solve this fundamental problem of solid-state
theory are nonperturbative (Hewson, 1993).

Nevertheless, a variety of tools for solving this model
approximately or numerically have been developed over
the last 25 years (Hewson, 1993). Since the physics of the
Anderson impurity model are very well understood
(Hewson, 1993), this knowledge can be employed to
judge the quality of results and region of applicability of
these various analytical or computational techniques, a
priori as well as a posteriori. This statement does also
apply to a large extent to the DMFT, where an effective
Anderson impurity model plays the central role (Prus-
chke et al., 1995; Georges et al., 1996).

The situation becomes much more involved for quan-
tum cluster problems. First, from a purely technical
point of view, the complexity of the system can limit the
applicability of a method or even rule it out as a poten-
tial cluster solver altogether. Similarly important is the
complexity of the physics, making it harder to judge the
reliability and quality of results obtained with a certain
method. In contrast to the single-impurity case, in which
the qualitative results to be expected from a calculation
can in principle be read off from the input parameters,
such a plausibility check for a given method is not pos-
sible in quantum cluster models. Experience tells us that
even at first sight physically plausible results need to be
checked carefully. An example is the occurrence of a
quantum phase transition in the two-impurity Kondo
model (Jones and Varma, 1987; Jones et al., 1988) driven
by the competition between the Ruderman-Kittel-
Kasuya-Yosida (RKKY) magnetic interaction favoring a
nonlocal singlet and the Kondo effect with its local sin-
glet formation. This quite intuitive result was later reex-
amined by others and found to be valid only under very
special circumstances (Sakai et al, 1990; Sakai and
Shimizu, 1992).

Thus, in order to obtain a reliable and consistent un-
derstanding of the physics of correlated electron systems
in the framework of cluster mean-field theories, it is vital
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to employ a variety of complementary and possibly non-
perturbative tools to solve the effective quantum cluster
model. We therefore discuss in detail the applicability
and reliability of different computational and analytical
tools.

B. Perturbative techniques

The numerical effort required to solve the cluster
problem increases rapidly with the cluster size, in prin-
ciple exponentially for exact methods. Thus simpler
methods, able to reduce the complexity of the problem,
are called for, such as the various perturbative methods.
One such method, the fluctuation-exchange approxima-
tion, is discussed in the following section. A complemen-
tary strong-coupling approach handles the interaction
exactly, but treats the coupling to the host I' in a pertur-
bative expansion. An example of this approach is the
noncrossing approximation, discussed in Sec. 111.B.2.

1. Fluctuation-exchange approximation

The application of the fluctuation-exchange approxi-
mation (Bickers et al., 1989; Bickers and White, 1990) as
a cluster solver follows immediately from the formula-
tion in Sec. II.B when one considers an infinite subset of

diagrams in the cluster ®[G] functional. It rests on the
assumption that the interacting electron system can be
viewed as a problem of electrons exchanging self-
consistently determined fluctuations of various kinds,
i.e., density, spin, and pair fluctuations. In the context of
quantum cluster theories, the fluctuation-exchange ap-
proximation was applied within the DCA by Aryanpour,
Hettler, and Jarrell (2003). Here we briefly review the
corresponding formalism.

The generating functional ® of the fluctuation-
exchange approximation is a sum of the three fluctua-
tion contributions (Bickers et al., 1989),

D= DY + D+ D, (148)

where

1 1 1

(149)
¢ 3 1
@p =5 Tr In(1 - Xon) + Xph + 5 Xon |- (150)
1
@, =Tr{In(1 + xpp) = Xpp + gXlzap , (151)

and the trace Tr denotes (7/N,)2¢Z,. With the notation
K=K, iw,,), 0=(Q,iv,), where K,Q are cluster mo-
menta and w,, (v,) is a fermionic (bosonic) Matsubara
frequency, we have for the particle-hole susceptibility
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Ul - -
Xon(Q) ==~ 2 G(K+ Q)G(K), (152)
¢ K
and the particle-particle susceptibility
UT< - -
Xpp(Q) = =2 G(Q - K)G(K). (153)
¢ K

The self-energy may be calculated from a functional de-
rivative of ®[G] with the coarse-grained Green’s func-
tion G. It is

ur -
S (K) = VE [VPY(Q)G(K - Q)
c Q0

- VP(Q)G(Q - K)],

where the fluctuation-exchange or so-called FLEX po-
tentials are given by

(154)

1 Xph 3 Xph
VPN =y oS AR 155
X T xon 21— xon (155)
Vo =y 4 ) (156)
PP 1 + pr

Here we ignored the constant (first-order) Hartree term,
which just shifts the chemical potential. The FLEX po-
tentials constitute an infinite sum of fluctuation diagrams
similar to the series of density fluctuations also known as
the random-phase approximation, which is in fact a sub-
set of the fluctuation-exchange approximation. How-
ever, the latter also includes significant spin and pair
fluctuations. Note that second-order perturbation theory
is reproduced by expanding Eq. (155) to first order in
Xph-

pThe convolutions in the equations above may be
readily computed with the fast Fourier transform (FFT).
Straightforward application of the FFT to Green’s func-
tions (in particular with fermionic Matsubara frequen-
cies), however, is likely to incur large errors, due to the
slow 1/iw, decay of the Green’s functions and self-
energies. Details on how to overcome this technical dif-
ficulty can be found in Deisz et al. (2003). To obtain
real-time (or frequency) data, an analytic continuation
of the Green’s function or self-energy is necessary. For
the fluctuation exchange, this is achieved by means of
Padé approximation (Vidberg and Serene, 1977). Real-
frequency results and details on the implementation of
the Padé approximation are given by Aryanpour, Het-
tler, and Jarrell (2003).

Naturally, the drawback of weak-coupling methods
lies in the fact that some strong-coupling phenomena
such as the opening of a Mott gap at half-filling simply
cannot be described by the fluctuation-exchange ap-
proach. Such an inherent shortcoming cannot be over-
come by adding a quantum cluster theory like DCA on
top of the fluctuation-exchange approximation. How-
ever, other issues like problems with convergence of the
self-consistency loop at low temperatures (due to diver-
gences in perturbatively evaluated response functions)
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are at least alleviated. Also, since the DCA/FLEX is
within the thermodynamic limit, the scaling with cluster
size is complementary to that of the plain FLEX on a
finite-size system; see Sec. IV.A. In this sense, the com-
bined use of the DCA and fluctuation-exchange ap-
proximations provides a means to push the FLEX ap-
proach to its limits.

For the cellular DMFT, one can formulate similar ex-
pressions, but, as discussed in Sec. 11, the self-energy and
Green’s function are matrices in cluster real space. The
matrix inversions needed during the iteration become
costly as the cluster size is increased.

2. Noncrossing approximation

The noncrossing approximation (NCA) (Keiter and
Kimball, 1971; Grewe, 1983; Keiter and Czycholl, 1983;
Kuramoto, 1983) was originally developed for the single-
impurity Anderson model and is based on a diagram-
matic perturbation theory (Keiter and Kimball, 1970;
Kuramoto, 1983) around the atomic limit of this model.
A comprehensive and detailed description of the non-
crossing approximation and its limitations can be found
in the review by Bickers (1987). This approximation has
been extensively applied as an approximate solution of
the effective impurity model in the context of DMFT
(Kuramoto, 1985; Kim et al., 1990; Pruschke et al., 1993a,
1993b; Lombardo et al., 1996; Schmalian et al., 1996;
Maier et al., 1999a, 1999b; Zo6Ifl et al., 2000) and the
DCA (Maier et al., 2000b).

The perturbation theory used to construct the non-
crossing approximation is based on a resolvent tech-
nique. It starts from the local part of the cluster Hamil-
tonian, Eq. (98),

Hc,loc = E (EK - lu’)CI(g-CK(T
Ko

U@ ;g
+ E Z —CK+QG'CK'_QU—’CK’0"CK0"
2N,

K,K’ oo’
Q
(157)

The perturbation expansion is done with respect to the
coupling to the continuous auxiliary noninteracting fer-
mions ay, (aj,). Hence this approach should be an espe-
cially useful approximation when the local energy scales

(in this case U) exceed the magnitude of the coupling V
to the host. To proceed, the fermionic cluster operators
ko (ck,) are expanded in terms of Hubbard operators
an=|m><l’l|,

CKo = E Crﬁn mn» C-IT((;-: 2 sz-anmv (158)
mn m,n

where {|m)} are the eigenstates of the local Hamiltonian,
Eq. (157),
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Hc,loc= E Emem (159)

with eigenenergies E,, and Cgr=(m|ck,/n). Since the
X, do not obey standard fermionic commutation rela-
tions, the conventional Feynman diagram technique can-
not be used for a perturbational expansion and the con-
cept of resolvents must be introduced instead
(Kuramoto, 1983). The matrix elements of these resol-
vents in the space of the local eigenstates have the form

R, (2) = (2= Ep) & —3R(2), (160)

where the resolvent self-energy 3%(z) collects renormal-
ization effects of the individual molecular states {|m)}
due to the hybridization to the host.

Keeping only the lowest-order contributions to the re-
solvent self-energy 3F [for a detailed discussion see,
Bickers (1987); Maier et al. (2000b)] defines the non-
crossing approximation and leads to the analytical ex-
pression

SR (1)=- lz > {f def(e)Im ['(K,2)Cy,,

7TK,(r Ll

—oo

o0
XR”/(Z + S)Crll(l;r* + f de(— S)Im F(K,S)Ci?i,.*

—0

XRy(z - s)cig;}, (161)

where I'(K, ¢) is defined by Eq. (99). Note that the host
degrees of freedom enter only through I'(K,e), i.e.,
there is no need to explicitly calculate the auxiliary host

parameters Vi (k) and )\, of the cluster Hamiltonian, Eq.
(98). Written in terms of Hubbard operators, the cluster
Green’s function G(K,z)={{ck,;ck,)). becomes

Gc(Ka 7)= E

’ r
mn,m'’ . .n

W O X s X))z

Within the noncrossing approximation

e h
2 i an(z,)Rm’n’(Z, + Z)a

<<Xmm’;Xn’n>>z = Zié dZ,
cJC
where Z, denotes the cluster partition function, =1/T
the inverse temperature and the contour C encircles all
singularities of the integrand counterclockwise.

Although the application of this approximation was
illustrated for the DCA cluster model, it can in principle
also be applied to solve the cellular DMFT cluster prob-
lem, Eq. (94). The fact that in the cellular DMFT the
hybridization function I' is a matrix in the N, cluster
sites, however, complicates this task considerably.

One can show analytically that the noncrossing ap-
proximation can produce a low-energy scale depending
nonanalytically on the bare model parameters (Miiller-
Hartmann, 1984) and that certain general features like
universality in this energy scale are present, too (Fischer,
1997). Although the noncrossing approximation breaks
down at low temperatures (Grewe, 1983; Kuramoto,
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1983; Miiller-Hartmann, 1984), there exists a finite win-
dow down to temperatures of the order of an effective
Fermi-liquid scale where it produces reliable results
(Bickers, 1987; Cox and Grewe, 1987; Pruschke et al.,
1993b; Fischer, 1997).

A rather different question is whether these results
are only qualitatively or even quantitatively correct.
Here, the answer depends on the system under consid-
eration. Going beyond a single Anderson impurity at
U= introduces the need to include diagrams beyond
the lowest-order noncrossing approximation (Bickers et
al., 1987; Pruschke and Grewe, 1989; Heindl e al., 2000).
Neglecting these so-called vertex corrections means that
the magnitude of a possible Fermi-liquid scale will be
grossly underestimated. However, in the case of strong
nonlocal fluctuations, as one would expect in 2D prob-
lems, such a scale will in general be extremely small or
even zero anyway. Here, the influence of vertex correc-
tions can be expected to be less severe and the noncross-
ing approximation even quantitatively reliable.

Even with these restrictions, solution of the noncross-
ing approximation still becomes formidable as the clus-
ter size N, increases. The number of eigenstates and
hence number of coupled equations (160) and (161) that
have to be solved self-consistently grows exponentially.
Thus, although the study of larger clusters is in principle
possible, the noncrossing approximation technique is
very limited in cluster size and so far has only been ap-
plied to N.=4 size clusters.

C. Nonperturbative techniques

Nonperturbative techniques solve the effective cluster
problem (numerically) exactly. This advantage comes at
the expense of allowing only small cluster sizes to be
treated. The size restriction on the cluster quantum
Monte Carlo technique described in the following sec-
tion is basically the same as in the case of quantum
Monte Carlo for finite-size systems. For the exact diago-
nalization and numerical renormalization-group ap-
proaches discussed in the next sections, however, a
Hamiltonian for both the cluster and the host degrees of
freedom needs to be explicitly simulated, further limit-
ing the usefulness of these methods.

1. Quantum Monte Carlo

a. Introduction

The quantum Monte Carlo (QMC) method is a pow-
erful and general technique for solving quantum cluster
problems. It has several advantages, including the ability
to treat relatively large clusters (compared to other ex-
act methods), the simplicity of the required code, and
the fact that only the excluded cluster Green’s function G

and the coarse-grained interaction U are required as in-
puts. Quantum Monte Carlo is also numerically exact,
with small and controllable sources of systematic and
statistical errors. Its disadvantages include the fact that
there is a minus sign problem that is unpredictable, dif-
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ficulties in calculating real-frequency results, and the nu-
merical expense of the approach.

The quantum Monte Carlo algorithm for clusters is
based on an algorithm of Hirsch and Fye that was devel-
oped to simulate the Anderson impurity problem
(Hirsch and Fye, 1986). It was later generalized to solve
the DMFT and DCA effective impurity problems by
Jarrell (1992) and Jarrell, Maier, Huscroft, and Mouk-
ouri (2001), respectively. Although the algorithm is for-
mulated using a path integral in imaginary time, the
maximum-entropy method may be used to analytically
continue the quantum Monte Carlo data to obtain real-
frequency spectra (Jarrell and Gubernatis, 1996).

The quantum Monte Carlo algorithm uses the action
of the effective cluster model, Eq. (92), as a starting
point and therefore can be equally applied within the
cellular DMFT and the DCA. It requires as inputs the
initial bare Green’s function G and the form of the

coarse-grained interaction® U. This is an advantage,

since due to the required self-consistency of embedded
cluster techniques, we generally do not know the auxil-
iary parameters of the cluster Hamiltonian.

Several steps are required to evaluate the path inte-
grals of this action using the quantum Monte Carlo
method. We first introduce Hubbard-Stratonovich fields,
which are required to decouple the interaction, trans-
forming a problem of interacting electrons to one of
noninteracting particles coupled to time-dependent
Hubbard-Stratonovich fields. The fermionic and bosonic
fields are then integrated out, and the integrals over the
decoupling fields are performed with a Monte Carlo al-
gorithm. Measurements of any diagrammatic quantity
are accomplished by decomposing the associated opera-
tors using Wick’s theorem (both connected and discon-
nected contractions must be included) and then averag-
ing the result over the Monte-Carlo-generated field
configurations.

b. Quantum Monte Carlo for the simple Hubbard model

As a specific example, we consider the simple Hub-
bard model with a local interaction of strength U. Since
this interaction is local, it is unaffected by coarse grain-

ing, so U=U. To approximate the time integrals in the
action, we introduce a discrete time grid with L slices
and a time step Ar=8/L. The interacting part of the
action is then decoupled by mapping it to an auxiliary
Ising field via a discrete Hirsch-Hubbard-Stratonovich
transformation (Hirsch, 1983),

e’ATUEi(”iT1/2)(’%*1/2) — lefA‘rU/AtH 2 easi(”ifnii)’
2 i os==1
(162)

where cosh(a)=e and the index i denotes the cluster
sites. With this change, the cluster action takes the form

A7U/2

%It is also possible to treat the interaction in a self-consistent
manner, as was described by Hettler et al. (2000).
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SIv.y1= 2 %0 WL ) Y,
iLi’ o
Nc NI

- E E 2 a'y;l,oo-si,l'yi,l—l,m

i=1 =1 o

(163)

where [ denotes the time slice 7, and G(i,/;i’,l")
=G;i(7,— 1) the excluded-cluster Green’s function de-
fined in Eq. (91). Now we integrate out the remaining
cluster Grassmann variables. The partition function then
becomes

o f DlyIDL 7’*]675"[%}/*] = Tr{si z}H det(GCU—;Si 1)71 ’

(164)

where factors that are fixed during the quantum Monte
Carlo process have been ignored. (GCU;S”)‘1 is the

inverse-cluster Green’s-function matrix with elements

-1 -1
(Gco;sil i = gi,qu,z/ - 5|xi 51’,1—1a0'5i,l- (165)

A Monte Carlo algorithm is used to perform the re-
maining integral over the Hirsch-Hubbard-Stratonovich
fields. The Markov process in this algorithm proceeds by
suggesting local changes of the Hirsch-Hubbard-
Stratonovich fields at one point in space-time. These
changes are accepted or rejected according to the
change in their Boltzmann weight, the argument of the
trace in Eq. (164). If the change is accepted, the Green’s
function must be updated accordingly. Several approxi-
mations, i.e., changes to these equations that are beyond
linear order in A7, are necessary to obtain an efficient
algorithm. First, we reexponentiate the first term on the
right-hand side of Eq. (165), obtaining in a simple matrix
notation in space-time

G,l=g"-T("-1), (166)

where T is 601, and V,(i,])=as;;0. Note that the
term in the parentheses is beyond zeroth order in At
Therefore, to first order in A7, we may write

G =G'+(G " =1" 1), (167)

since G'=1=-T+O(A7). Therefore the inverse Green’s
functions for two different field configurations, {s;;} and
{s{}, are related by

G leVo=GleVo—eVore Vo, (168)
Or, after multiplying by ch/r, and collecting terms,
G- G =(G. - D)eVo(eVr - e¥). (169)

Multiplying from the left by G, and from the right by
G/, we find
G, =G, +(G, - 1)(e" V- 1)G, (170)

or
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G, G '=1+0- G, ("o Vo-1). (171)
The quantum Monte Carlo algorithm proposes changes
in the Hubbard-Stratonovich field configuration {s;;}
—{s{;} and accepts these changes with the transition
probability P,_ .. Thus, to implement the algorithm, we
need P, and a relation between the cluster Green’s
functions G, and G/ for the two different auxiliary field
configurations. To simplify the notation, we introduce a
combined space-time index i=(i,/) and consider only lo-
cal changes in the fields s,,—s,,=—s,,. As can be inferred
from Eq. (164), the probability of a configuration {s;} is
Psocdet(G;Tl{s.})det(G;j{S.}).7 On the other hand, detailed
balance reqﬁires PS,P;,HS:PSPHS, for all s’. We may
satisfy this requirement either by defining the transition
probability P, ,=R/(1+R), where

Py det(Gep)det(Ge)) (172)
Py det(G[,)det(G,))

R

is the relative weight of two configurations, or by setting
P, o =minimum(R,1). The first choice is called the
“heat-bath” algorithm, and the second the “Metropolis”
algorithm which is often superior. If the difference be-
tween two configurations is due to a flip of a single
Hubbard-Stratonovich field at the mth location in the
cluster space-time (Hirsch and Fye, 1986), we obtain
from Eq. (171)

R=T1[1+(1=Geppm)e@Sn=w -1 (173)

For either the Metropolis or the heat-bath algorithm, if
the change is accepted, we must update the Green’s
function accordingly. The relationship between G, and
G| is given by Eq. (170),

: G

coyij = Heoyij

(Gar,im - ‘sim)(efao'(smﬂ,,n) -1)
1+ (1 — Gco,mm)(e_a(r(sm_sr,n) _ 1)

comj*

(174)

The quantum Monte Carlo procedure is initialized by
setting G, ;=G;; and choosing the corresponding field
configuration with all s;,=0. Then we use Eq. (175) to
create a Green’s function corresponding to a meaningful
field configuration [i.e., s;= +1, for each i=(i,/) or the {s;}
from a previous run or iteration] and proceed by step-
ping through the space-time of the cluster, proposing lo-
cal changes s;——s;. We accept the change if Py _, is
greater than a random number between 0 and 1 and
update the Green’s function according to Eq. (175). Af-
ter roughly one hundred warmup sweeps through the

It P, is not positive definite, then |P;| is used as the sampling
weight, and its sign is appended to the measurement. l.e., for a
measurement m and sign S, (m)p={(mS)p/{S)p-
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space-time lattice of the cluster, the system generally
comes into equilibrium and we begin to make measure-
ments.

c. Measurements

Several points must be considered when making mea-
surements in the quantum Monte Carlo procedure. First,
for a given configuration of the Hirsch-Hubbard-
Stratonovich fields, the problem is noninteracting. Thus
the estimators of any correlation function may be con-
structed by taking all allowed Wick’s contractions (both
connected and disconnected). Any quantity that may be
represented in terms of the Green’s functions (and per-
haps the Hirsch-Hubbard-Stratonovich fields them-
selves) may be measured. Second, great care must be
taken when constructing the estimators of the measure-
ments. Different estimators may yield different results
due to the systematic and statistical error in the quan-
tum Monte Carlo procedure. It is important to choose
the optimal form of the estimator of each measurement,
and then use all the prior knowledge (exact limits, sym-
metries, etc.) that we have to reduce the error.

For example, one difficulty encountered with the
quantum Monte Carlo algorithm is that a reliable trans-
form from imaginary-time quantities to Matsubara fre-
quencies is required. A careful treatment of the fre-
quency summation or the imaginary-time integration is
crucial in order to ensure the accuracy and the stability
of the algorithm and to maintain the correct high-
frequency behavior of the Green’s function (Jarrell ez al.,
1993; Deisz et al., 1997; Bliimer, 2002). We need to evalu-
ate the following integral:

B
G.(K,iw,) = f dreionG (K, 7). (175)
0

But from the quantum Monte Carlo algorithm we know
the function G.(K,7) only at a discrete subset of the
interval [0, 8]. As may be readily seen by discretizing the
above equation, the estimate of G.(K,iw,) becomes in-
accurate at high frequencies. This is formalized by
Nyquist’s theorem, which tells us that above the fre-
quency w.=/A7 unphysical results are produced by
conventional quadrature techniques. For example, a
rectangular approximation to the integral in Eq. (175)
yields a G .(K,iw,) that is periodic in w,. This presents a
difficulty, since causality requires that

1
lim G (K, iw,) = — + O(1/w?). (176)

®,—% l(,l)n

This problem may be avoided by using the high-
frequency information from other sources. For example,
some of the perturbation-theory results discussed in Sec.
III.B have the correct asymptotic behaviors. Alterna-
tively, we can use the Green’s function from the previous
iteration, which has the correct high-frequency behavior.
We then compute the Matsubara-frequency Green’s
function from the imaginary-time quantum Monte Carlo
Green’s function as (Jarrell et al., 1993)
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B
G/ K,iw,) =G, (K,iw,) + f dre’n G (K, 7)
0

- Gc,pt(K7 T):|9 (177)

where G, is any Green’s function with the correct
high-frequency behavior. The integral is computed by
first interpolating the difference G.(K,7) -G (K, 7) us-
ing an Akima spline, and then integrating the spline (a
technique often called oversampling). The smooth
Akima spline suppresses spurious high-frequency behav-
ior so that G.(K,iw,)=G,(K,iw,) when o,>w. The
resulting self-energy, extracted from 3K, iw,)
=1/6(K,iw,)-1/G(K,iw,) is still not accurate at high
frequencies since it reflects either the perturbation
theory or the previous iteration. However, the exact
high-frequency form is known. Thus we can fit the high-
frequency self-energy, at frequencies at or below the Ny-
quist cutoff 7/(A7), to the form

S (K, iw,) = a(K)/(iw,) + b(K)/w>. (178)

In some cases a and b are known exactly. We may then
append this form to the self-energy at frequencies higher
than 7/ (A7).

2. Exact diagonalization

The Lanczos exact diagonalization method (Haydock
et al., 1975) provides a numerical way to diagonalize the
Hamiltonian of a finite-size system. Since the cluster
model in the cluster perturbation theory formalism is
identical to the model of a finite-size system with open
boundary conditions, the regular Lanczos exact diago-
nalization method can be applied in this case without
modification (Sénéchal et al, 2000). For the cluster
model of embedded-cluster theories, however, it needs
to be generalized to account for self-consistent coupling
to the host. Exact diagonalization has been used to solve
the impurity problem of the DMFT (Caffarel and
Krauth, 1994; Si et al., 1994). It is natural to extend its
use to that of a cluster solver in quantum cluster theo-
ries. This was demonstrated by Bolech ef al. (2003) in an
application of the cellular DMFT to the 1D Hubbard
model. The general method of exact diagonalization
(Haydock et al., 1975) need not be reviewed here. We
only outline the specific implementation necessary for a
cluster theory.

Exact diagonalization is a wave-function-based
method, i.e., it is applied to diagonalize the effective
cluster Hamiltonian, for example, the Hamiltonian in
Eq. (94). To this end, the hybridization function I'(z)
[see Eq. (93)] is fitted to the form (96) to obtain esti-

mates for the auxiliary parameters of the host, )\,7(12) and

V,j(lz). In order to apply exact diagonalization to the
cluster Hamiltonian, one must discretize the auxiliary

host degrees of freedom, i.e., the sum over lE, to a finite
set of N, orbitals. Applying exact diagonalization to the
resulting Hamiltonian, one can then compute a cluster
self-energy ¢ (Caffarel and Krauth, 1994), and from the
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cluster self-energy a new estimate of the coarse-grained

Green’s function G to close the self-consistency loop.

The Hilbert space of the resulting Hamiltonian in-
creases exponentially with the cluster size N, and the
number of wave vectors N, representing the host. For
exact diagonalization to be feasible, the total number of
“sites” N=N_.+ N, must be of the order of N~20. Fur-
thermore, for the distinction of the lattice into cluster
and host to make sense, N, must be greater than or
equal to N.. This size limitation may be prohibitive for
anything but 1D systems. Moreover, by applying exact
diagonalization to solve the cluster model one abandons
the thermodynamic limit, one of the advantages of clus-
ter mean-field theories. Still, exact diagonalization is an
exact method and can deal with more complicated inter-
actions than the simple on-site Hubbard repulsion, as
shown by Bolech et al. (2003), who considered nearest-
neighbor interactions.

3. Wilson’s numerical renormalization group

Over the past ten years, Wilson’s numerical renormal-
ization group (Wilson, 1975; Krishnamurthy et al., 1980a,
1980b) has become a major computational tool for the
study of quantum impurity problems. Its advantages are
that it (i) is nonperturbative, (ii) can handle exponen-
tially small energy scales with unprecedented accuracy,
and (iii) does not suffer from any principle limitations
regarding the parameter space of the model. In addition,
through the inspection of the flow of the spectrum of the
Hamiltonian under the renormalization-group transfor-
mation, the method provides direct, very detailed infor-
mation about the structure of the low-energy spectrum.

Originally, its application was limited to static quanti-
ties (Wilson, 1975; Krishnamurthy er al., 1980a, 1980b),
but the calculation of dynamical properties is also pos-
sible (for a comprehensive overview of the early work
see Hewson, 1993), hence its application to the DMFT
impurity problem (Sakai and Kuramoto, 1994; Shimizu
and Sakai, 1995). The direct calculation of the one-
particle self-energy from the numerical renormalization
group (Bulla et al., 1998) triggered a variety of appli-
cations within the DMFT framework (Bulla, 1999;
Pruschke et al., 2000; Bulla et al., 2001; Zitzler et al.,
2002, 2004; Pruschke and Zitzler, 2003) at both 7=0 and
finite temperatures.

Given this tremendous success, the obvious question
is whether an extension of the numerical renormaliza-
tion group might be useful for quantum cluster prob-
lems. Let us therefore briefly repeat the basic steps in
this approach. The procedure starts by picking a number
A>1 and an interval on the energy axis that contains
the support of the density of states of the bath degrees
of freedom. As depicted in Fig. 10, this interval is then
partitioned into exponentially decreasing intervals
[A-+D A~ for >0 with n=0,1,..., and likewise for e
< 0. Within each interval, a Fourier decomposition of
the bath operators is performed; the fundamental ap-
proximation of the numerical renormalization group
consists of neglecting all Fourier components except for
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FIG. 10. Schematic setup of the numerical renormalization
group. The energy axis is partitioned into exponentially de-
creasing intervals.

the homogeneous one. As a final step, the resulting
Hamiltonian is tridiagonalized, resulting in

s

HQI = Hlmp + E E (8nalaana + tn—la:l—laamr + H'C')’

o n=1

(179)

where Hyy,, denotes the Hamiltonian of the “impurity”
and the operators agi represent the bath degrees of free-
dom. Note that the Hamiltonian (179) represents a semi-
infinite chain with the impurity at its left end. Wilson
(1975) showed that the quantities £, A2 If 7,=\A",
and g,= \f'ﬁsn, one can cast the Hamiltonian in a recur-
rency form,

- ’/_ - _ T
Hpy, = VAHy + E EN+1AN16AN+1o
g

+ 2 (inaj,ay. e+ He). (180)

Given the eigenvalues and eigenvectors of Hy, Hy.; can
be constructed straightforwardly. Since at each of these
steps the dimension of the Hilbert space increases by a
factor of 4, the practical use would be limited by the
same constraints as conventional exact diagonalization,

only more severely, because the construction of Hy,
requires a knowledge of the whole set of eigenvectors

and eigenvalues of Hy. However, the multiplication of
Hy by VA>1 expands the bandwidth of the spectrum
and, because fy=0O(1), the low-energy properties of
Hy,, are determined by a restricted set of low-lying

states of Hy only. This observation is put into a practical
computational scheme by the following algorithm: (i) At

step N=0 (N=0 corresponds to Hyyp), diagonalize Hy
and calculate all interesting local properties for that par-
ticular chain length. (ii) Use a suitable number Nyrg of

the lowest eigenstates of Hy to construct the next

Hamiltonian Hy,, according to (180). (iii) Continue with
(i) until the desired accuracy for the ground state is
reached. Note that step (ii) ensures that, no matter how
long the chain becomes, the dimension of the Hamilton
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matrix to diagonalize can be fixed to a manageable num-
ber.

As has been discussed extensively in the literature
(Wilson, 1975; Krishnamurthy et al., 1980a, 1980b; Hew-
son, 1993), a knowledge of the local properties at chain
length N provides the means to calculate physically in-
teresting quantities (thermodynamics and dynamics) at
energy scales or temperatures scales AN, This expo-
nential decrease in successive energy scales explains why
the numerical renormalization group is suitable for stud-
ies of problems with extremely small dynamical energy
scales. Of course, as usual there is a price to pay, namely,
a loss of accuracy in high-energy features (Hewson,
1993).

Up to now the discussion has been restricted to spin
degeneracy. However, it is obvious that additional de-
grees of freedom do not influence the general lines of
argument. In fact, for a problem with =1 internal de-
grees of freedom, in addition to the spin (like cluster
sites or several orbitals per site), the result (179) acquires
the form

L ©

~ [ [ Il
Hor =~ Hypp + DD AN e AT AN
=1 o n=1

+H.c), (181)

where Hyy,, is again of arbitrary structure. Likewise, the
recurrency relation (180) can be set up and the algorithm
extended. However, a simple example demonstrates that
for L.>1 the technique can easily become useless. For a
typical application to the single-impurity Anderson
model one chooses a A=2 and Nyrg=1000. This is suf-
ficient to obtain very accurate results for all relevant
physical quantities. Let us now consider the next step, an
orbitally degenerate problem with L=2. Without cou-
pling between the orbitals, this corresponds to two inde-
pendent single-impurity Anderson models that we try to
solve in a single calculation. Obviously, to obtain the
same accuracy as in the true single-impurity case, one
needs at least Nygrg=1000% or A =22 [for a more detailed
discussion of the issue of the accuracy of the numerical
renormalization group see Paula ef al. (1999), and refer-
ences therein].

While Nygrg=10007 is beyond all numerical possibili-
ties, because one needs the complete spectrum, a too
large A introduces a huge loss in accuracy, both at high
and low energies (Oliveira and Oliveira, 1994). As long
as L=2 the loss can be partially compensated for by
respecting the additional symmetries in the system (Sa-
kai et al., 1989) or other numerical tricks (Oliveira and
Oliveira, 1994). However, to use this approach as a ge-
neric tool for solving the effective quantum cluster prob-
lem arising in embedded-cluster techniques, one must
have much larger values of L accessible. While the nu-
merical renormalization group is still applicable for a
study of qualitative effects of nonlocal correlations with
N.=2 (see results in Sec. IV.D.1), the preceding discus-
sion makes it clear that already for N.=4 one is far be-
yond any practical limit for this method.
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IV. APPLICATIONS TO STRONGLY CORRELATED
MODELS

In this section we review the application of various
quantum cluster approaches to a selection of standard
models of strongly correlated electron systems. We put
special emphasis on the capabilities and advantages of
these techniques over both finite-size simulations and
DMEFT. In Sec. IV.A we show that quantum cluster ap-
proaches are complementary to finite-size simulations,
i.e., that taken together the information obtained from
both techniques can yield conclusive results. The effects
of nonlocal correlations on single- and two-particle spec-
tra as well as phase diagrams are emphasized through-
out the discussions of the Falicov-Kimball model in Sec.
IV.B, the 1D Hubbard model in Sec. IV.C, and the 2D
Hubbard model in Sec. IV.D. Due to space restrictions
we have to omit recent applications of the cluster per-
turbation theory and DCA to electron-phonon systems
and refer the reader to the articles by Hohenadler et al.
(2003) and Hague (2003), respectively.

A. Complementarity of finite-size and quantum cluster
simulations

Finite-size simulations and quantum cluster ap-
proaches yield exact solutions in the infinite-cluster-size
limit. At finite cluster size N, quantum cluster ap-
proaches differ from finite-size simulations by the cou-
pling to a self-consistent dynamic host. At cluster size
N.=1, this difference is most pronounced: While finite-
size simulations reduce to the atomic limit, quantum
cluster approaches reduce to the DMFT, i.e., a highly
nontrivial approximation to the infinite lattice. Thus it is
instructive to compare quantum cluster results with
those obtained from finite-size simulations systemati-
cally as a function of cluster size. This has been done in
the half-filled 2D Hubbard model using the DCA/QMC
algorithm, i.e., DCA combined with quantum Monte
Carlo as a cluster solver, by Huscroft e al. (2001) and
Moukouri and Jarrell (2001) and with DCA/FLEX by
Aryanpour, Hettler, and Jarrell (2003).

In the 2D Hubbard model at half-filling, the antiferro-
magnetic correlation length ¢ increases with decreasing
temperature and diverges at 7=0. In finite-size simula-
tions, i.e., in a finite-size lattice with periodic boundary
conditions, the system freezes when the correlation
length exceeds the system size and a gap to excitations
opens. As the system size is increased this tendency is
reduced. Correlation-induced gaps are thus generally
overestimated in finite-size simulations for smaller clus-
ters since the system is artificially closer to criticality. In
contrast, in quantum cluster approaches the system is in
the thermodynamic limit with correlations restricted to
the cluster size. Hence the system never freezes. As the
cluster size is increased, longer-ranged correlations are
progressively included. The effects of correlations there-
fore increase with cluster size.

This behavior is illustrated in Fig. 11, where we repro-
duce the results obtained from DCA/QMC and finite-
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FIG. 11. The imaginary-time Green’s function G(k,7) at k
=(7r,0) in the half-filled 2D Hubbard model, calculated with
finite-size quantum Monte Carlo (filled symbols) and DCA
(open symbols) when U=4.4¢t and B=4/t. From Moukouri and
Jarrell, 2001. See also Aryanpour, Hettler, and Jarrell, 2003.

size QMC simulations for the imaginary-time Green’s
function G(k,7) at the Fermi wave vector k=(7,0) for
different cluster sizes N.. One can see that |G(k,7)| de-
cays faster from its value at 7=/2 when correlation ef-
fects are stronger, so the gap is more pronounced. With
increasing cluster size, the DCA and finite-size results
for G(k,7) converge from opposite directions. Consis-
tent with the expectation that correlation effects are
overestimated in finite-size simulations but underesti-
mated in the DCA, the decay is stronger for smaller
system sizes in finite-size simulations, while the DCA
results show the opposite behavior. Since the two tech-
niques become identical in the infinite-cluster-size limit,
the exact G(k, 7) curve is bracketed by the finite-size and
DCA curves. For methods like the FLEX (see Sec.
II1.B.1) for which calculations with much larger clusters
are feasible, scaling of the results to the infinite system is
possible (see Fig. 12). The extrapolations of finite-size
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FIG. 12. The imaginary-time Green’s function G(k,7) at k
=(m,0), 7=B/2 in the half-filled 2D Hubbard model, calculated
with finite-size FLEX method (circles) and DCA/FLEX
method (squares) when U=1.57¢ for various cluster sizes N,
=L X L. Both methods scale as 1/L? and coverge to a single
value as L — . From Aryanpour, Hettler, and Jarrell, 2003.
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FLEX and DCA/FLEX to the infinite system (1/L?
—0) coincide within numerical uncertainties, thus allow-
ing the determination of the infinite-lattice FLEX result
with unprecedented accuracy.

This complementarity is also seen in results for the
spectral gap in the 2D half-filled Hubbard model (see
Huscroft et al., 2001 and Aryanpour, Hettler, and Jarrell,
2003). In the DCA the gaps converge from small to large
as the cluster size increases, while the converse occurs in
finite-size simulations. Although we have only shown re-
sults of the DCA, we expect the cellular DMFT to show
similar size dependence, since DCA and cellular DMFT
share the same nature (see discussion in Sec. II.D). Re-
sults obtained with the cluster perturbation theory algo-
rithm, however, can be viewed to some extent as a peri-
odic continuation of finite-size simulations. Thus it is an
open question whether the cluster perturbation method
shows similar complementarity.

B. 2D Falicov-Kimball model

The usefulness of the discussed cluster theories was
first demonstrated in an application of the DCA to the
2D Falicov-Kimball model by Hettler et al. (1998, 2000).
While the Falicov-Kimball model is a particularly gentle
test bed for novel approaches, it allows us to study the
effects of nonlocal fluctuations.

The Falicov-Kimball model can be considered as a
simplified Hubbard model in which one spin species has
zero hopping amplitude. The Hamiltonian reads

H=-1Y, djdj+ U, (nld—1><n{— l),
) i 2 2

with n?=d]d; and n/=fif. For a 2D square lattice the
bandwidth of the noninteracting system is W=8t. At
half-filling and D=2 the system has a second-order
phase transition from a homogeneous high-temperature
phase to a charge-density wave (CDW) with ordering
vector Q=(mr,m) for any nonzero U (Brandt and
Schmidt, 1986, 1987). The universality class is that of the
2D Ising model, the strong-coupling limit U/t>1 of the
Falicov-Kimball model. Hettler et al. (2000) evaluated
the Falicov-Kimball model within the DCA by a combi-
nation of Monte Carlo methods and exact enumeration
for small clusters. Since the DMFT is a single-site theory
(N.=1), it yields an unphysical temperature-independent
density of states (DOS) of the mobile d electrons
(Brandt and Mielsch, 1989) due to the constraint of half-
filling (one electron per site of either the d or f variety).
In a cluster theory with N.>1 this artifact is absent,
since a redistribution of Boltzmann weight with tem-
perature is possible among the various configurations of
d or f electrons on the cluster sites, while maintaining
the condition of half-filling on average. This tempera-
ture dependence is demonstrated in Fig. 13, where a
pseudogap develops in the local DOS with decreasing
temperature. This pseudogap can be interpreted as a
precursor of the eventual transition to a CDW phase,
which features a full gap at the Fermi level. In addition

(182)
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FIG. 13. Density of states, of the 2D Falicov-Kimball model
for a 4 X4 cluster at various temperatures calculated with the
DCA. The DOS develops a pseudogap as the temperature ap-
proaches T.~0.189¢ (U=4t) due to the nonlocal CDW fluctua-
tions present in the DCA (N.>1). In the DMFT (N_.=1), there

is no T dependence of the DOS above T,. From Hettler et al.,
2000.

to the gap, there is fine structure in the DOS, related to
an exchange energy J.y This is better observed in the
momentum-resolved spectral function (see Hettler et al.,
2000; Laad and van den Bossche, 2000).

As stated above, the Falicov-Kimball model has an
instability to a phase with CDW order. As discussed in
Secs. I.LB and II.D, embedded-cluster theories exhibit
phase transitions at some temperature that, due to their
residual mean-field character, lies above the exact 7. of
the infinite system. As the cluster size increases, one ex-
pects the effect of the mean field to decrease, leading to
a decreasing T, with increasing cluster size. The N, de-
pendence of the transition temperature 7, is shown in
Fig. 14, together with a comparison with the 7. obtained
from finite-size methods (de Vries et al., 1993a, 1993b,
1994) and T. of the 2D Ising model with exchange cou-
pling J=£*/(2U). The extrapolated cluster results agree
with the finite-size estimates and, for large values of U,
also with the results obtained from the 2D Ising model.
For smaller U however, charge fluctuations begin to play
a larger role, suppressing the 7. compared to that of the
Ising model which lacks charge fluctuations.

The effect of different boundary conditions in the
DCA cluster is illustrated in the inset.® In small clusters
the effect is strong, but already in a 6 X 6 cluster the bulk
of the cluster dominates and the boundaries play a mi-
nor role.

When N_.=1 only charge fluctuations with an energy
scale U are present. In a cluster theory the nonlocal

8According to the derivation of the DCA formalism (see
Secs. II.A and I1.B, and Fig. 3) the DCA cluster has periodic
boundary conditions. By shifting the set of cluster K points,
one can simulate however, different boundary conditions.
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FIG. 14. T, in the 2D Falicov-Kimball model as a function of
the inverse linear cluster size for U/t=8,12,16 calculated with
the DCA. The Ising limit, and finite-size estimates of T, are
shown for comparison. The inset shows that the influence of
the cluster boundary conditions on 7. disappears rapidly with
increasing cluster size. From Hettler et al., 2000.

“spin” fluctuations with an effective energy scale J.;
(«1/2U for large U) must also be observable in thermo-
dynamic quantities like the entropy and the specific
heat. These quantities were computed by Hettler et al.
(2000) via a maximum-entropy method (Huscroft ez al.,
2000). For better comparison, the calculations were per-
formed in the uniform phase, even at temperatures be-
low the CDW ordering 7, by not allowing for the sym-
metry breaking. The results for a 2 X 2 cluster are shown
in Fig. 15, where the ratio of the specific heat C to the
temperature 7T is plotted for the DCA and the DMFT.
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FIG. 15. Specific heat vs temperature for single-site and 2 X2
clusters calculated with the DCA and exact enumeration when
U=8t. For N.=1, there is a single peak with integrated weight
In(2) associated with the suppression of local charge fluctua-
tions. For N.=4, there is an additional peak at lower tempera-
tures associated with critical fluctuations near the charge-
ordering transition temperature. 7, for N.=4 is indicated by an
arrow. In the inset the entropy S(T):fng’[C(T’)/ T'] is
shown in units of In(2). From Hettler et al., 2000.



1064 Maier et al.. Quantum cluster theories

8+ — Exact
~— LISA
~— CDMFT
6 -
g
O 4k

I
10

FIG. 16. Spectral gap in the half-filled 1D Hubbard model as a
function of U/t calculated with DMFT local-impurity self-
consistent approximation (LISA) and cellular DMFT for a
two-site cluster, N.=2, compared to the exact result. From
Bolech et al., 2003.

The appearance of a second peak at lower temperature
is a clear indication of additional nonlocal fluctuations
present on the cluster. The effect on the entropy is also
strong, as shown in the inset.

C. 1D Hubbard model

In this section we discuss the application of quantum
cluster approaches to the 1D Hubbard model (in the
usual notation),

H = - IE (Cj+1o'ci0'+ HC) + UE n”nil,

i,o i

(183)

which provides a nontrivial test ground for these tech-
niques. In one dimension quantum fluctuations are
stronger than in higher dimensions. Hence quantum
cluster approaches that cut off correlations beyond the
length scale set by the cluster size are expected to be less
efficient than in higher dimensions. If quantum cluster
approaches accurately describe the physics in one di-
mension, they are highly likely to capture the physics in
two and three dimensions. In addition, since the exact
ground state of the 1D Hubbard model is known from
the Bethe-ansatz solution (Lieb and Wu, 1968), a quan-
titative comparison of certain static quantities is pos-
sible. Fairly reliable results for dynamical quantities can
be obtained from the density-matrix renormalization
method.

Bolech et al. (2003) applied the cellular DMFT exact
diagonalization method to the 1D Hubbard model and
systematically compared the results with those obtained
from the DMFT and DMRG approaches. As an ex-
ample of this study we show in Fig. 16 a comparison of
the exact result with that obtained from DMFT (re-
ferred to as LISA for “local impurity self-consistent ap-
proximation”) and cellular DMFT for the single-particle
spectral gap A(U) as a function of the on-site Coulomb
repulsion U in the half-filled case. The total number of

Rev. Mod. Phys., Vol. 77, No. 3, July 2005

N=4 N=8 N=12

ED

U=16t M
CPT
U=16t
ED
U=8t
CPT
U=8t

0 05 @-L 0 05 @l ¢ 05 O]
U U U

FIG. 17. The spectral function A(k,w) at k=m/2 in the half-
filled 1D Hubbard model when U=16¢ (top) and U=8¢ (bot-
tom), calculated with ordinary exact diagonalization and with
cluster perturbation theory for cluster sizes N=4,8,12. From
Sénéchal et al., 2000.

sites in the effective cluster model including cluster and
bath sites was fixed to six in the exact diagonalization
approach (see Sec. II1.C.2).

In contrast to the exact result which shows a finite
Mott gap for all values of U, the N.=1 (LISA) spectral
gap is reduced to much smaller values and even vanishes
at U/t=6. The N,.=2 cellular DMFT result shows the
Mott transition at a much smaller value, U/t=2, above
which it follows the exact result quite accurately. The
existence of this spurious Mott transition in one dimen-
sion originates in the spatial cutoff of correlations. This
result shows, however, that the inclusion of nearest-
neighbor correlations already can lead to a significant
improvement over the single-impurity results. Larger
cluster sizes should produce even better results, and in-
deed a comparison of the nearest-neighbor Green’s
function with DMRG results shows systematic improve-
ments with increasing cluster size (Bolech et al., 2003).

A related fundamental feature in 1D correlated sys-
tems is the breakdown of the Fermi-liquid picture be-
cause of spin-charge separation as described in the con-
cept of Luttinger liquids (see, for example, Voit, 1994).
In a Fermi liquid, the spectral weight A(k, w) is centered
around a single quasiparticle peak at w=¢,, while in a
Luttinger liquid, A(k, ) is distributed between two sin-
gularities associated, respectively, with spin and charge
excitations (spinons and holons). Sénéchal er al. (2000)
have calculated A(k,w) in the 1D Hubbard model using
the cluster perturbation theory formalism. Figure 17
shows a comparison of this quantity at the Fermi wave
vector k=m/2 as calculated by ordinary exact diagonal-
ization and its infinite lattice extension within the cluster
perturbation theory method for various cluster sizes N
when U=8¢ (bottom) and U=16¢ (top).

While no sign of spin-charge separation is seen in the
pure exact diagonalization results, the cluster perturba-
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FIG. 18. The spectral function A(k,w) in the half-filled 1D
Hubbard model when U=4¢, calculated with CPT for N.=12.
From Sénéchal et al., 2000.

tion theory method reveals the two branches of the spec-
tral weight indicative of spin-charge separation. The
two-peak structure resolves more clearly as the cluster
size increases. Since propagation between clusters re-
quires the spinon and holon to recombine, spin-charge
separation can only exist on length and time scales lim-
ited by the cluster size. Consequently it takes fairly large
clusters to clearly resolve this feature.

The analysis of the k-dependent spectral function in
Fig. 18 shows that the spinon and holon branches have
different dispersions and can be clearly identified to-
gether with the gap at the chemical potential at k=/2.
An extension of these 7=0 results to 7>0 by Aichhorn
et al. (2003) within a novel low-temperature Lanzcos al-
gorithm revealed that the spin-charge separation persists
at finite, low temperatures.

As shown by these studies, quantum cluster ap-
proaches can be very useful in exploring the complex
behavior of the 1D Hubbard model. Even studies with
small cluster sizes are consistent with well-known results
such as the existence of spin-charge separation. This suc-
cess in the 1D case shows great promise for applications
of cluster methods in two or three dimensions, where
they are expected to be even more efficient, since corre-
lations are less pronounced.

D. 2D Hubbard model

Interest in the 2D Hubbard model (in the usual nota-
tion),

H= E tijcj'o-cju' + UE niTnil,
i

ij,o

(184)

has revived recently, in particular since it is believed to
capture the physics of the superconducting planes in
high-temperature superconductors (Zhang and Rice,
1988, 1990; Anderson, 1997b). This section reviews vari-
ous applications of quantum cluster approaches to the
2D Hubbard model at half-filling and at finite doping,
including results for a possible Mott-Hubbard transition,
antiferromagnetism and its precursors, pseudogap phe-
nomena, and superconductivity.

Rev. Mod. Phys., Vol. 77, No. 3, July 2005

1. Metal-insulator transition

The question of a possible metal-insulator transition
in the 2D Hubbard model at half-filling (e,=t;=-U/2) is
under active research. This problem was studied in the
unfrustrated model, i.e., with only nearest-neighbor hop-
ping t;;=¢€,5;—15;;, within the DCA/QMC approach by
Moukouri and Jarrell (2001) and with the two-site
composite-operator method (see Sec. I1.I) by Stanescu
and Phillips (2001). The frustrated case (additional next-
nearest-neighbor hopping t'&;;,) was investigated by
Parcollet et al. (2004).

Numerical calculations have shown that the ground
state of the unfrustrated model is an antiferromagnetic
insulator with the Néel temperature 7y=0 constrained
by the Mermin-Wagner theorem. Hence a spectral gap
exists at 7=0. However, the central question of the ori-
gin of the gap and its relation to antiferromagnetic or-
dering is less understood. Is the gap a direct conse-
quence of the antiferromagnetic ordering at 7=0 or
does it arise from strong correlations at higher tempera-
tures?

To appreciate the significance of this issue it is impor-
tant to understand the fundamental difference between
antiferromagnetic insulators, i.e., insulators due to mag-
netic ordering, and Mott insulators, i.e., insulators due to
electronic correlations. Antiferromagnetic insulators re-
sult from the doubling of the unit cell in the ordered
state and are therefore adiabatically connected to band
insulators, which have an even number of electrons per
unit cell. In contrast, paramagnetic Mott insulators have
an odd number of electrons per unit cell and are there-
fore fundamentally different from band insulators.

At strong coupling (U> W) the situation is well under-
stood: A charge gap of order U develops in the spectrum
below temperatures 7= U due entirely to strong elec-
tronic correlations. The spins are coupled by the ex-
change interaction J=4*/U and govern the low-energy
physics. As a result spin and charge are separated. Sys-
tems in this regime are hence Mott insulators and the
antiferromagnetic ordering at 7=0 is merely the result
of the Mott transition at higher temperatures.

Different scenarios, however, exist for the weak-
coupling regime (U< W): In the weak-coupling point of
view, a spin-density wave forms at 7=0 due to the nest-
ing of the Fermi surface and leads to the doubling of the
unit cell. Hence the gap in the spectrum is a direct con-
sequence of the antiferromagnetism at 7=0. This pertur-
bative point of view is referred to as the Slater mecha-
nism. It is in contrast to the second opinion due to
Anderson (1997a, 1997b), who argued that the 2D half-
filled Hubbard model is always in the strong-coupling
regime, so that a Mott gap is present for all U>0 as in
one dimension (see Sec. IV.C). As the temperature de-
creases, local moments develop because of the opening
of the Mott gap, which then order at T=0. Thus the
antiferromagnet at 7=0 is a consequence of the Mott
transition.

The metal-insulator transition in the half-filled Hub-
bard model has been extensively studied within the
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FIG. 19. Double occupancy as a function of temperature for
different values of U in the half-filled 2D Hubbard model cal-
culated with the DCA/QMC method for various cluster sizes
N.. Energies are in units of 4¢. Here, t=0.25, so the lines for
U=0.5,1,2 correspond to U/t=2,4,12. From Moukouri and Jar-
rell, 2001.

DMEFT (for a review see Georges et al, 1996). In the
DMFT one can easily disentangle the effects leading to
antiferromagnetic and Mott gaps. The DMFT equations
for the paramagnetic state of the bipartite Bethe lattice
are identical with the equations of the fully frustrated
infinite-dimensional model (Georges et al., 1996). This
justifies the study of the paramagnetic solution within
the antiferromagnetic phase of the unfrustrated model,
which shows a first-order Mott metal-insulator transition
ending at a finite-temperature critical point (Georges et
al., 1996). Although this justification does not hold for
N_.>1, one can still study the paramagnetic solution by
enforcing the spin symmetry and hence avoiding the
opening of a full spectral gap due entirely to magnetic
ordering. Following this approach, Moukouri and Jarrell
(2001) studied the metal-insulator transition in the un-
frustrated 2D half-filled Hubbard model using the DCA/
QMC approach systematically as a function of cluster
size N.. The metal-insulator transition can be identified
by analyzing the behavior of the double occupancy (D)
=(nyn ). This quantity is shown in Fig. 19 for different
values of the Coulomb repulsion U and cluster size N,.

When N_.=1 the double occupancy displays evidence
for a metal-insulator transition when U is of the order of
the bandwidth W=8¢=2: (D) is monotonically increasing
with temperature when U=3, but displays a minimum
for U=0.5 and 1 indicating the emergence of quasiparti-
cle states at the chemical potential at low temperatures.
When N.>1 the situation is radically different: In the
strong-coupling regime (U=3), local fluctuations domi-
nate and (D) is essentially independent of N, except at
very low temperatures. In contrast, in the weak-coupling
regime, the minimum found for N.=1 flattens progres-
sively as N, increases from 8 to 16. When N,.=36 a
downturn in (D) appears at low temperatures. By open-
ing a gap and hence localizing the moments, the system
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FIG. 20. Density of states when U/t=4 at T=0.125¢ in the
half-filled 2D Hubbard model calculated with the DCA/QMC
for various cluster sizes N.. From Moukouri and Jarrell, 2001.

can gain free energy by taking advantage of the short-
ranged magnetic correlations.

The results for the DOS shown in Fig. 20 support the
evidence from the double occupancy. The quasiparticle
Kondo-like resonance at the chemical potential for N,
=1 is destroyed by nonlocal correlations when N.>1. As
N, increases, a gap opens at the chemical potential and
the Hubbard sidebands become more pronounced, con-
sistent with the suppression of (D). Given the fact that
DCA always underestimates correlation-induced spec-
tral gaps (see Sec. IV.A), these simulations indicate the
absence of a weak-coupling regime in the unfrustrated
2D Hubbard model at half-filling, consistent with
Anderson’s point of view. Another interesting question
is whether this result changes at zero temperature, T
=0, and the metal-insulator transition predicted by
DMEFT returns. As evidence that even at 7=0 one must
expect a gap in the spectra for any U>0, we show here
first the DCA results at 7=0 obtained with Wilson’s nu-
merical renormalization group for a cluster size of N,
=2. The appropriate tiling of the Brillouin zone is shown
in Fig. 21, and the resulting coarse-grained spectral func-

tions A(K,w)=—(1/m)ImG(K,w) for the two cluster K
points are shown in Fig. 22. Even for small values of U a
well-defined gap exists in the spectrum at the Fermi en-
ergy. Note that all calculations were done in the para-
magnetic phase, i.e., the concept of a Slater insulator
does not apply here. The gap quickly increases with in-
creasing U and at the same time the system gains more
spectral weight in the incoherent parts of the spectrum,
begining to resemble what one expects from Mott local-
ized states.

The DCA results (Moukouri and Jarrell, 2001) were
confirmed in a similar cluster study by Stanescu and
Phillips (2001) using the two-site composite-operator
method discussed in Sec. IL.I. Figure 23 shows the results
of this study for the temperature dependence of the
value of the DOS at the chemical potential p(0) in the
1D and 2D models for small U=2¢. As a consequence of
the shape of the noninteracting DOS, the 2D result for
p(0) is enhanced over the 1D result. However, in both
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FIG. 21. (Color in online edition) Tiling of the first Brillouin
zone for N.=2.

one and two dimensions, p(0) falls to zero as the tem-
perature decreases, indicating the absence of a metallic
state at half-filling even for small U.

To elucidate the role of antiferromagnetic correlations
in the opening of the Mott gap, the frustrated Hubbard
model may be studied. In the -t/ Hubbard model, a
next-nearest-neighbor hopping ¢’ between sublattices
strongly frustrates antiferromagnetic correlations. This
model was studied by Parcollet ef al. (2004) for t'=t on a
2X2 cluster using the cellular DMFT/QMC approach.
We reproduce their results for the U dependence of the
double occupancy dy..=1/ 42?:1<n,¢n,» 1) for different tem-
peratures in Fig. 24. Similar to the behavior found in
DMFT, d,. displays a downturn at a critical value U,,
indicating a transition from a metallic to an insulating
state. An inspection of the spectral weight A(k,0) at the
chemical potential reveals that the gap opens first in the
region around k= (7,0) (Parcollet et al., 2004). These re-
sults were substantiated by a cluster perturbation theory
study of the frustrated 2D Hubbard model (Sénéchal
and Tremblay, 2004) for ¢’ =-0.4t. Although not the fo-
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FIG. 22. DCA coarse-grained spectral functions for different
values of U obtained from N,.=2 DCA/numerical renormaliza-
tion group calculations at 7=0. For all U>0 a gap exists at the
Fermi energy.
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FIG. 23. Density of states as a function of temperature at the
chemical potential in the 1D and 2D half-filled Hubbard model
when U=2t calculated with a two-site composite-operator ap-
proximation. From Stanescu and Phillips, 2001.

cus of this study, the results show further evidence of a
Mott transition at a finite value of U in the filling depen-
dence of the chemical potential.

The existence of the Mott transition in the frustrated
Hubbard model and its absence in the unfrustrated
model seem to indicate that antiferromagnetic correla-
tions play a key role in the opening of a Mott gap at
weak coupling. Since the opening of the gap occurs in
the paramagnetic solution, it cannot be attributed to the
existence of antiferromagnetic ordering. Thus the con-
clusion reached from these cluster studies is that a sym-
biosis of local-moment formation and short-ranged anti-
ferromagnetic correlations cause the gap to open at
finite temperatures (Moukouri and Jarrell, 2001).

2. Antiferromagnetism and precursors

If the simulations are performed without enforcing
the spin symmetry or frustrating the lattice, the system is
able to transform to a state with antiferromagnetic or-
der. Since the system is two dimensional, we know from

0.2

oce

0.05 H

FIG. 24. Double occupancy as a function of U in the frustrated
2D Hubbard model with ¢’ =t for different temperatures (from
top to bottom) 7/t=1/5,4/30,1/10,1/11, calculated with the
cellular DMFT/QMC method. From Parcollet et al., 2004.
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FIG. 25. Sublattice magnetization as a function of temperature
in the half-filled 2D Hubbard model calculated with the DCA/
NCA method for cluster sizes N.=1,4 when U=4t. Inset: Neél
temperature vs doping. From Maier, 2001.

the Mermin-Wagner theorem that the true Néel tem-
perature Ty is necessarily zero. As discussed in Secs.
I1.D.2 and 1.B, however, finite transition temperatures
are predicted even in two dimensions due to the residual
mean-field character of quantum cluster approaches, but
expected to fall to zero with increasing cluster size.

As discussed in Secs. I1.G and ILF, phase transitions
can be identified from the disordered (here paramag-
netic) state by calculating the corresponding susceptibil-
ity, or from the ordered state by computing the order
parameter. The calculation of order parameters is shown
in Fig. 25, where we plot the DCA/NCA result for the
sublattice magnetization m:l/NEi,Ue"Q"‘i(m,»a [see Eq.
(124)] as a function of the reduced temperature ¢
=T/ Ty in the 2D half-filled Hubbard model for the clus-
ter sizes N.=1 and N,=4 when U=4t. The N.=4 Néel
temperature Ty=0.208¢ is reduced from the N,.=1 result
Tn=0.304¢ and the order parameter is strongly sup-
pressed. As expected, nonlocal spin fluctuations sup-
press antiferromagnetism.

Figure 26 shows the DCA/QMC result for the tem-
perature dependence of the inverse antiferromagnetic
susceptibility 1/ yar at U=6¢ for various cluster sizes N,
in the paramagnetic state. At high temperatures the sus-
ceptibility is independent of N, due to the lack of non-
local fluctuations. In contrast to finite-size simulations,
the low-temperature susceptibility diverges at 7=Ty, in-
dicating instability to the antiferromagnetic state. When
N.=1 the susceptibility diverges with a critical exponent
vy=1 as expected for a mean-field theory. Consistent
with the DCA/NCA results the susceptibility diverges at
lower temperatures when N.>1 with larger exponents
indicative of fluctuation effects. However, as discussed in
Sec. I.B, these critical exponents reflect the behavior at
intermediate temperatures. Very close to the transition,
there must a region of mean-field behavior. However,
this region is very difficult to resolve with DCA/QMC
techniques, due to numerical noise, which is especially
large near the transition.
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FIG. 26. Inverse antiferromagnetic susceptibility vs tempera-
ture in the half-filled 2D Hubbard model calculated with the
DCA/QMC method for various cluster sizes N, when U=6t.
The lines are fits to the function (7 Ty)?. Inset: Correspond-
ing Neél temperatures as a function of the cluster size. Ener-
gies are in units of 4¢. From Jarrell, Maier, Huscroft, and
Moukouri, 2001.

As shown in the inset, the transition temperatures fall
very slowly with the cluster size N.. As detailed in Sec.
I1.D.4, fluctuation effects in clusters with linear size L,
=2 are overproportionally enhanced since its coordina-
tion number is reduced compared to the original system.
Hence the N.=4 result does not fall on the curve, similar
to the behavior seen in DCA studies of the Falicov-
Kimball model (Hettler er al., 2000).

The question arises of whether the same nonlocal
fluctuations which are responsible for suppressing the
antiferromagnetism result in precursors of the antiferro-
magnetic phase transition. The onset of antiferromag-
netic correlations on short time and length scales may be
signaled by a pseudogap in the DOS as a precursor to
the antiferromagnetic gap. This was predicted by Kampf
and Schrieffer (1990) using a phenomenological ansatz
for the weak-coupling Hubbard model based on the
presence of strong antiferromagnetic spin fluctuations.
On a microscopic level, this question has been addressed
by finite-size quantum Monte Carlo in the 2D Hubbard
model by Vekic and White (1993) and Creffield et al.
(1995) and by approximate many-body techniques by
Deisz et al. (1996) and Moukouri et al. (1999). But the
results have been inconclusive due to the limitations of
these techniques.

Within quantum cluster approaches the pseudogap
phenomenon was first studied by Maier et al. (2000b)
using the DCA/NCA formalism. In contrast to N.=1
where a Kondo-like quasiparticle peak emerges at the
chemical potential as the temperature is decreased
[identical to the D= DMFT result (Georges et al.,
1996)], a pseudogap was found when nonlocal correla-
tions were included in N.=4 simulations. For larger clus-
ter sizes, the emergence of the pseudogap in the DOS
was explored by DCA/QMC techniques in Huscroft et
al. (2001) and DCA/FLEX in Aryanpour, Hettler, and
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FIG. 27. Spectral function A(k,w) and the real Re 3(k,w) and
imaginary Im 3 (k,w) parts of the self-energy for various tem-
peratures at k=(7r,0) in the 2D half-filled Hubbard model for
U=5.2t calculated with the DCA/QMC method for a 64-site
cluster (N.=64). From Huscroft et al., 2001.

Jarrell (2003). Figure 27 displays the DCA/QMC results
for the spectral function A(k,w) and the self-energy
3 (k,w) at the Fermi wave vector k=(,0) in the para-
magnetic state for a 64-site cluster (N.=64) at various
temperatures. With decreasing temperature a pseudogap
develops in A(k,w) at the Fermi wave vector k=(,0).
Simultaneously the slope of Re 2(k,0) becomes positive
at k=(7,0) signaling the appearance of two new solu-
tions in the quasiparticle equation w-e€+u
—-Re 3(k,w)=0. In addition to the strongly damped so-
lution at w=0, which is also present in the noninteract-
ing system, these two new quasiparticle solutions appear
on both sides of w=0. A consequence of the antiferro-
magnetic order on short time and length scales, they can
be viewed as precursors of the doubling of the unit cell
in the antiferromagnetic state. The pseudogap is gener-
ated by the local minimum in Im 3(k, w), which signals
the breakdown of Fermi-liquid behavior.

By studying the system on a triangular lattice, Imai
and Kawakami (2002) investigated the effects of frustra-
tion on the pseudogap in the half-filled 2D Hubbard
model using the DCA/NCA and DCA/FLEX ap-
proaches. Figure 28 schematically illustrates the triangu-
lar lattice and the choice of cluster wave vectors in the
corresponding Brillouin zone for N.=4. For t'=0 this
setup corresponds to the unfrustrated system and the
effects of frustration can be systematically studied as ¢’ is
increased to its maximal value ¢'=¢. Figure 29 repro-
duces the results for the DOS and coarse-grained spec-

tra A(K,w) for different values of the frustration ¢'. As
the geometrical frustration increases from t'=0 to ¢’ =¢,
antiferromagnetic spin fluctuations are suppressed. Con-
sequently the pseudogap in the unfrustrated system di-
minishes and a quasiparticle peak develops at the chemi-
cal potential. The change in the DOS mainly originates
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(a)

FIG. 28. Tllustration of the triangular lattice with (a) hopping
amplitudes ¢ and ¢/ and (b) DCA coarse-graining cells in the
first Brillouin zone (dashed line) of the triangular lattice when
N.=4. Cluster K points are indicated by the dots. From Imai
and Kawakami, 2002.

in the region in momentum space around K= (,7/3)
where the Fermi surface is located. These results are
thus consistent with an antiferromagnetic spin-
fluctuation-driven pseudogap.

3. Pseudogap at finite doping

The properties of the Hubbard model away from half-
filling are of great interest especially in the context of
high-temperature superconductors. Contrary to Fermi-
liquid theory, low-energy spin excitations in high-
temperature superconductors are suppressed at low
temperatures, as evidenced by Knight-shift experiments.
Concomitantly, the Fermi surface is gapped along cer-
tain directions in the Brillouin zone as indicated in
angle-resolved photoemission spectroscopy (ARPES)

;
-10

FIG. 29. The 2D half-filled frustrated Hubbard model: (a) den-
sity of states; coarse-grained single-particle spectral functions
A(K,0) for (b) K=(0,0), () K=(m m/\3), and (d) K
=(0,27/3) for various values of the frustration ' when U
=6¢ and 7=0.6t. From Imai and Kawakami, 2002.
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FIG. 30. Density of states for various temperatures in the 2D
Hubbard model at 5% doping when U=12¢ near the chemical
potential (w=0) calculated with the DCA/NCA for a four-site
cluster, N.=4. From Maier, 2001.

experiments. This pseudogap phenomenon9 has proven
a great challenge for theories of strongly correlated sys-
tems.

The DMFT has provided great insight into the evolu-
tion of spectra in doped Mott insulators. Exact results
based on the self-consistent mapping onto an Anderson
impurity model show that the system is a Fermi liquid in
the metallic state in the absence of symmetry breaking
below a coherence temperature reminiscent of the
Kondo temperature (Georges and Kotliar, 1992). Hence
the spin susceptibility becomes finite at low tempera-
tures in contrast to the experimental results in under-
doped cuprates. Furthermore, Miiller-Hartmann (1989a)
showed that because the self-energy is momentum inde-
pendent, volume and shape of the Fermi surface are
identical to the noninteracting Fermi surface. Thus
DMFT does not include the effects that lead to the
emergence of a pseudogap in the spin and quasiparticle
spectrum and cluster extensions are necessary.

Within quantum cluster approaches the pseudogap
phenomenon in the doped 2D Hubbard model was stud-
ied with the DCA/NCA approach by Maier et al. (2000b)
and Maier (2001), with the DCA/QMC approach by Jar-
rell, Maier, Hettler, and Tahvildarzadeh (2001) and by
Maier, Jarrell, et al. (2002), with the two-site composite-
operator method by Stanescu and Phillips (2003, 2004)
and with the cluster perturbation theory by Sénéchal
and Tremblay (2004).

Figure 30 shows the DCA/NCA result for the low-
energy DOS in the 2D Hubbard model at 5% doping
(6=0.05) around the chemical potential (w=0) calculated
on a four-site cluster (N,=4). At high temperature T
> 0.3t no pseudogap is seen in the DOS. As the tem-
perature is lowered the DOS distorts at the chemical

°For a review on the pseudogap phenomenon see Timusk and
Statt (1999).
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N(w)

FIG. 31. Density of states for various dopings & in the 2D
Hubbard model at 7=0.092¢ and U=8¢ calculated with DCA/
quantum Monte Carlo for a four-site cluster, N.=4. Inset: Uni-
form spin susceptibility as a function of temperature. Energies
are in units of 4z. From Jarrell, Maier, Hettler, et al., 2001.

potential and a pseudogap emerges at w=0 when T
=0.3z.

These noncrossing approximation results were con-
firmed in DCA/QMC simulations by Jarrell, Maier, Het-
tler, and Tahvildazadeh (2001), which we reproduce in
Fig. 31. At low temperatures a pseudogap is observed in
the DOS at dopings §=0.2. This depression of quasipar-
ticle states at the chemical potential is accompanied by a
downturn of the uniform magnetic susceptibility shown
in the inset. For low to intermediate doping it develops a
maximum defining a crossover temperature 7°. Below
T", quasiparticle and low-energy spin excitations are
suppressed by nonlocal correlations similar to what is
observed in the experiment. At the same time, the
charge susceptibility (not shown) displays qualitatively
different behavior, forming a strong low-energy peak at
low temperatures (see Maier, Jarrell, Macridin, and
Zhang, 2004, 2002, and Fig. 37), which signals the emer-
gence of coherent charge excitations below 7°. The N,
=4 DCA results are thus consistent with a spin-charge
separated picture as in Anderson’s resonating valence
bond (RVB) theory. This is not surprising since, as we
discussed in Sec. IV.D.2, fluctuations are enhanced in the
N_.=4 cluster due to the “too small” coordination num-
ber. It is known that small coordination numbers favor
the spin-charge-separated RVB state (Anderson, 1987)
over the Néel state. Indeed the RVB state was shown to
be the ground state of a 2X2 Heisenberg model with
periodic boundary conditions and a large gap to the first
excited state (Dagotto and Moreo, 1988).

The corresponding four-site DCA/QMC result for the
momentum-resolved spectral function A(k,w) in the
pseudogap regime is displayed in Fig. 32 for energies
near the chemical potential between points of high sym-
metry, I'=(0,0), X=(,0), and M= (r, ) in the first Bril-
louin zone. The overall dispersion of the band crossing
the chemical potential w=0 follows that of the noninter-
acting system, €,. While coherent quasiparticles exist
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FIG. 32. The spectral function A(k,®) near the chemical po-
tential in the 5% doped 2D Hubbard model at 7=0.88¢ and
U=8t along high-symmetry directions in the first Brillouin
zone between I'=(0,0), X=(7,0), and M=(m,m) calculated
with the DCA/QMC method for a four-site cluster N.=4. The
DCA self-energy was interpolated using a smooth spline (see
Sec. IL.D.4).

along I'— M, the pseudogap is seen near X=(,0) at the
chemical potential w=0. The anisotropy of the
pseudogap is thus consistent with that observed in
ARPES measurements on underdoped hole-doped cu-
prates.

Qualitatively similar results for the emergence of the
quasiparticle spectrum in the doped 2D Hubbard model
were obtained by Stanescu and Phillips (2003) using the
two-site composite-operator approach discussed in Sec.
ILI (see also Stanescu and Phillips, 2004). Figure 33 il-
lustrates their results for the doping dependence of the
chemical potential w, the imaginary part of the self-
energy Im 2, and the U dependence of the low-energy
DOS. At half-filling the chemical potential has a discon-
tinuity, indicating the absence of mid gap states. In
agreement with DCA/QMC results (Jarrell, Maier, Het-
tler and Tahvildarzadeh, 2001; Jarrell, Maier, Huscroft,
and Moukouri, 2001) and DCA/NCA (Maier, 2001) re-
sults, [Im 3| is large in the underdoped pseudogap re-
gime (n=0.97) and acquires Fermi-liquid behavior at
larger doping n=<0.80, indicated by the parabolic mini-
mum at the chemical potential. As illustrated in the in-
set, the depth of the pseudogap decreases as U increases,
suggesting a pseudogap scale compatible with 2/ U.

Sénéchal and Tremblay (2004) recently investigated
the difference in pseudogap behavior between electron-
and hole-doped high-temperature superconductors us-
ing cluster perturbation theory for the 2D ¢—t'—¢" Hub-
bard model. As illustrated in the Fermi-surface plots in
Fig. 34, their results at U=8¢ demonstrate that the
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FIG. 33. The doping dependence of the chemical potential in
the 2D Hubbard model calculated with the two-site composite-
operator method; dashed line, 7=0.15¢; solid line, T=0.07.
Right inset: DOS for various values of U at 5% doping (n
=0.95). Left inset: Imaginary part of the self-energy evaluated
at a Fermi momentum (0.3,2.10) for n=0.97, (0.3,1.84) for n
=0.80, and (0.3,1.06) for n=0.3. From Stanescu and Phillips,
2003.

pseudogap in hole-doped systems (right side) occurs
near X=(,0) at optimal doping consistent with the re-
sults discussed above. In electron-doped systems (left
side), however, the pseudogap appears at the crossing
points of the Fermi surface with the antiferromagnetic
Brillouin-zone boundary at moderate interaction U=4t.
When U is large, however (not shown), the Fermi sur-
face only survives in the neighborhood of (,0) and
(0,71). As shown in the lower panels of Fig. 34 the

U=4 U=8

A(k,0)

— Im 2(k,0)

©0) 003 o.ﬁ

FIG. 34. (Color in online edition) Intensity plot of the spectral
function A(k,0) (top) and imaginary part of the self-energy
Im 2(k,0) (bottom) of the 2D Hubbard model calculated with
cluster perturbation theory on a 3 X 4-site cluster. The left side
shows the results in the first quadrant of the Brillouin zone for
the 17% electron-doped system at U=4t and the right side for
the 17% hole-doped system at U=8¢. The dashed line repre-
sents the Fermi surface of the noninteracting system. From
Sénéchal and Tremblay, 2004.
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FIG. 35. Comparison of different DCA cells:
(a) density of states near the chemical poten-

tial; (b), (c), and (d) coarse-grained anomalous
Green’s function G1y(K,w)=F(K,w) in the
superconducting state of the 2D Hubbard

model at 19% doping, 7=0.047¢t, U=12¢ for
different cluster K points calculated with
DCA/NCA for a four-site cluster, N.=4.
From Maier et al., 2000a.
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pseudogap in both cases is generated by a large scatter-
ing rate |Im X(k,0)| at the chemical potential. A unified
picture of the spectral properties of the electron- and
hole-doped cuprates thus emerges from these results if
the interaction strength U is allowed to be doping de-
pendent. To reproduce the experimental observations in
optimally doped cuprates, large values of U seem neces-
sary in hole-doped (U = 8¢) systems, while smaller values
of U describe the electron-doped systems (U=6t)
(Sénéchal and Tremblay, 2004).

4. Superconductivity

It is well known from weak-coupling finite-size FLEX
results (Bickers ef al., 1989) and phenomenological theo-
ries (Monthoux et al., 1991; Scalapino, 1999) that antifer-
romagnetic spin fluctuations mediate pairing with
d-wave symmetry and cause a pseudogap in underdoped
systems. Recent numerical renormalization-group stud-
ies (Halboth and Metzner, 2000; Zanchi and Schulz,
2000) in fact show strong evidence that the ground state
of the weak-coupling 2D Hubbard model is supercon-
ducting with a d-wave order parameter at finite doping
when t'=0, and when ¢’ is finite even at half-filling.
Finite-size QMC simulations for the doped 2D Hubbard
model in the intermediate coupling regime U~ W sup-
port the idea of a spin-fluctuation driven interaction me-
diating d-wave superconductivity (for a review, see
Scalapino, 1999). The fermion sign problem, however,
limits these calculations to temperatures too high to
study a possible transition. These calculations are also
restricted to relatively small system sizes, making state-
ments for the thermodynamic limit problematic, and in-
hibiting studies of the low-energy physics. These short-
comings do not apply to embedded-cluster theories
which are built for the thermodynamic limit. Cluster
sizes larger than 1 are necessary, however, to describe a
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possible transition to a state with a nonlocal (d-wave)
order parameter as discussed in Sec. IL.F.

In optimally doped cuprates, the spin fluctuations are
known to be short ranged, extending over a few lattice
spacings. Hence quantum cluster approaches should
provide an adequate methodology to study supercon-
ductivity in these systems. Pairing in the 2D Hubbard
model was studied using the DCA/NCA by Maier et al.
(2000a), and with the DCA/QMC approach by Jarrell,
Maier, Hettler, and Tahvildarzadeh (2001), Jarrell,
Maier, Huscroft, and Moukouri (2001), and Maier, Jar-
rell, Macridin, and Slezak (2004). The possible coexist-
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Pair Field Susceptibility

FIG. 36. Pair-field susceptibilities vs temperature in the even-
frequency s-wave, extended s-wave (xs), d-wave, and odd-
frequency s-wave channels in the 2D Hubbard model at 5%
doping, U=8¢ calculated with the DCA/QMC method for a
four-site cluster, N.=4. Inset: Inverse d-wave pair-field suscep-
tibility vs temperature for different dopings and cluster sizes.
The solid line is a fit to b(T-T.)” with T7.=0.084¢ and y=0.72.
Temperatures are in units of 4¢. From Jarrell, Maier, Hettler,
and Tahvildarzadeh, 2001.
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FIG. 37. DOS (left), local dynamic spin susceptibility (center), and local dynamic charge susceptibility (right) in the 2D Hubbard
model at 5% doping at different temperatures above and below the critical temperature 7,.=0.0218=0.087¢ calculated with the
DCA/QMC method for a four-site cluster, N.=4. Temperatures are in units of 4z. From Maier, Jarrell, Macridin, and Zhang, 2004.

ence of superconductivity with antiferromagnetic order
was investigated by Lichtenstein and Katsnelson (2000).

The results of four-site (N.=4) DCA simulations for
the doped 2D Hubbard model show an instability to a
superconducting phase with a d,2>_,2-wave order param-
eter at low enough temperatures. As a typical example
of this transition, Fig. 35 shows the DCA/NCA result for
the DOS and the coarse-grained anomalous Green’s

function G1,(K,w)=F(K,w) defined in Eq. (110) at dif-
ferent cluster K points near the chemical potential in the

superconducting state. G1,(K,®) vanishes at K=(0,0)
and (7, ) but is finite at (7,0) and (0, ) with opposite
signs. Since the K dependence of the coarse-grained or-

der parameter Ak is given by the K dependence of the
coarse-grained anomalous Green’s function [see Eqg.
(114)], this result is consistent with a d,2_,» symmetry of
the order parameter. The finite pair amplitude is also
reflected in the DOS depicted in the upper left part,
where the lower subband of the full spectrum is shown.
It displays the opening of a pseudogap at zero frequency.

Jarrell, Maier, Hettler and Tahvidarzadeh (2001) and
Jarrell, Maier, Huscroft, and Moukouri (2001) used
DCA/QMC to search for many different types of super-
conductivity, including s, extended s, p, and d wave, of
both even and odd frequency. Of these, only the odd-
frequency s-wave and even-frequency d-wave pair-field
susceptibilities were strongly enhanced, and only the
d-wave susceptibility diverged. This is illustrated in Fig.
36 where the pair-field susceptibilities are plotted versus
temperature at 5% doping. As illustrated in the inset,
for N.=1 there is no tendency towards pairing. As de-
tailed in Sec. ILLF, the DMFT is not able to describe
pairing with symmetries lower than the lattice symmetry
(i.e., p, d wave, etc.). For N.=4 and §=0 the inverse
susceptibility rises abruptly as the temperature is low-
ered and the Mott gap opens in the DOS. The Mott gap
becomes more pronounced as N, increases (see Sec.
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IV.D.1), so that for larger clusters the gap prevents su-
perconductivity even for U< W. If charge excitations are
gapped, then pairing is suppressed. At half-filling, for
U=8t the gap is of order U, and thus much larger than
the magnetic exchange energy J~4¢2/U=0.5t. Hence
the opening of the Mott gap suppresses any magnetically
mediated pairing. Away from half-filling the width of the
pseudogap in the charge excitation spectrum is much
smaller, of the order of J (see Sec. IV.D.3), so that mag-
netically mediated pairing is possible.

More insight in the nature of pairing was gained from
further DCA/QMC studies of the 2D Hubbard model
(Maier, Jarrell, Macridin, and Slezak, 2004). Figure 37
shows the DCA/QMC result for the evolution of the
DOS, the local dynamic spin and local dynamic charge
susceptibility10 as the temperature decreases below the
critical temperature 7. As discussed in Sec. IV.D.3, the
normal-state low-temperature DOS and spin susceptibil-
ity display a pseudogap, i.e., a depression of low-energy
quasiparticle and spin excitations. Both quantities
evolve smoothly across the superconducting transition
with the pseudogap changing to a superconducting gap11
below T.. However, since the charge susceptibility is
peaked at zero frequency even slightly above T, it
changes abruptly upon pairing to show the same behav-
ior as the spin susceptibility, including the superconduct-
ing gap at low frequencies. Remarkably, well below T
all quantities display narrow peaks at w=0.1 eV, delim-

%Note that in the DCA, local quantities are identical in the
lattice and on the cluster and thus are easily calculated.

Note that due to the finite resolution in momentum space,
the DCA underestimates low-energy spectral weight in super-
conductors where the gap has nodes on the Fermi surface. As
a result, a fully developed gap is found at low temperatures
instead of a DOS that vanishes linearly in frequency, as ex-
pected for a d-wave superconductor.
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FIG. 38. Kinetic (top) and potential (bottom) energies vs tem-
perature in the normal (NS) and superconducting (SC) states in
the 2D Hubbard model at 5% (left) and 20% (right) doping for
U=8t calculated with the DCA/QMC method on a four-site
cluster (N.=4). T, is indicated by the vertical dotted lines.
Temperatures are in units of 4¢. From Maier, Jarrell, Macridin,
and Slezak, 2004.

iting the superconducting gap. This clearly indicates the
formation of quasiparticles below 7,. It is important to
note, however, that the absence of quasiparticles in the
normal state undermines the very foundation of the
BCS theory of conventional superconductors where
pairing is a result of a Fermi surface instability that re-
lies on the existence of quasiparticles in a Fermi liquid
(Schrieffer, 1993).

DCA/QMC results for the condensation energy fur-
ther establish the unconventional character of supercon-
ductivity in the 2D Hubbard model (Maier, Jarrell,
Macridin, and Slezak, 2004). Figure 38 presents the ki-
netic (top) and potential (bottom) energies, Tr(tG) and
Tr(2G), respectively, of the superconducting (SC) and
normal-state (NS) solution as a function of temperature
at low doping §=0.05 (left) and optimal doping §=0.20
(right). For both doping levels, the kinetic energy in the
superconducting state is reduced compared to the nor-
mal state, while the potential energies are almost iden-
tical. This result is in agreement with recent optical ex-
periments which show that the superconducting
transition in the cuprates is due to a lowering of the
electronic kinetic energy (Molegraaf et al., 2002). It fur-
ther supports the evidence that pairing in the Hubbard
model is fundamentally different from BCS pairing
which occurs through a reduction of the electronic po-
tential energy accompanied by a slight increase in the
kinetic energy.

The possibility of coexisting d-wave superconducting
and antiferromagnetic order in the 2D Hubbard model
was investigated by Lichtenstein and Katsnelson (2000)
using a four-site cluster approach similar to the DCA/
OMC method [see Fig. 39(a)]. In this approach, an 8
X 8 matrix representation of the Green function is re-
quired to account for both the antiferromagnetic order
parameter (clTch 1» and the superconducting order param-
eter {(c; cj). Figure 39(c) reproduces the results for the
two order parameters as a function of doping at fixed
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FIG. 39. (Color in online edition) Four-site cluster calculation
for the 2D Hubbard model: (a) Schematic representation of an
antiferromagnetic d-wave 2 X2 periodically repeated cluster.
(b) Generic phase diagram of high-temperature supercon-
ductor. (c) Magnetic (M) and d-wave superconducting (F) or-
der parameters versus hole doping in the 2D Hubbard model
at pr=15, t'=-0.15t, U=4.8¢ calculated with a four-site cluster
approach similar to the DCA/QMC method. From Lichten-
stein and Katsnelson, 2000.

temperature in the weak-coupling regime (U=4.8¢). The
authors find that the antiferromagnetic order parameter
coexists with the d-wave superconducting order param-
eter over a wide range of doping. Consistent with the
DCA/QMC results, the antiferromagnetic order param-
eter is maximal at zero doping where the superconduct-
ing order parameter vanishes due to the opening of the

gap.

5. Phase diagram

The results reviewed in the preceding sections illus-
trate that quantum cluster approaches applied to the 2D
Hubbard model are able to capture the complex behav-
ior observed in high-temperature superconductors. The
qualitative agreement with experiments is summarized
in the N.=4 DCA/QMC temperature-doping (7-6)
phase diagram of the 2D Hubbard model in the
intermediate-coupling regime U=W shown in Fig. 40.
The antiferromagnetic and d-wave superconducting
phase boundaries were determined by the instabilities of
the paramagnetic phase as indicated by the divergence
of the corresponding susceptibilities. Therefore these re-
sults do not allow any conclusions about a possible co-
existence of the antiferromagnetic and d-wave supercon-
ducting phases for 6<0.5. The results obtained by
Lichtenstein and Katsnelson (2000), however, suggest
this coexistence at least for weak coupling [see Fig.
39(c)].

The pseudogap crossover temperature 7" determined
by the peak in the uniform spin susceptibility (see Fig.
31) serves as a boundary separating the observed Fermi-
liquid and non-Fermi-liquid behavior. For T<T" the
self-energy shows non-Fermi-liquid character for the
parts on the Fermi surface near k=(m,0) (see Fig. 33).
Quasiparticle and low-energy spin excitations are sup-
pressed as indicated by the pseudogap in the DOS and
the spin susceptibility (see Fig. 37). At §=0.2 Fermi-
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FIG. 40. Temperature-doping phase diagram of the 2D Hub-
bard model when U=38t calculated with DCA/QMC for a four-
site cluster, N,=4. The error bars on T~ result from the diffi-
culty in locating the maximum in the uniform spin
susceptibility. Regions of antiferromagnetism, d-wave super-
conducting, and pseudogap behavior can be seen.

liquid behavior is recovered (see Fig. 33). At low tem-
peratures, the system is antiferromagnetic near half-
filling. The d-wave superconducting phase at finite
doping has its maximum transition temperature at &
~(.05.

As indicated in Sec. IV.D.3, the N.=4 DCA cluster
favors the spin-charge separated RVB state. The N.=4
results may thus be interpreted within the RVB picture
(Anderson, 1987): The pairing of spins in singlets below
the crossover temperature 7" results in the suppression
of low-energy spin excitations and consequently in a
pseudogap in the density of states. Charge excitations
are quasifree as indicated by the zero-frequency peak in
the charge susceptibility (see Fig. 37). Well below the
transition spin and charge degrees of freedom recom-
bine, forming electrons which pair. Frustrated kinetic
energy is recovered as indicated by the reduction of the
kinetic energy as the system goes superconducting (see
Fig. 38).

Although the properties of high-temperature super-
conductors are well described by the N.=4 results, it is
important to ask the question whether the phase dia-
gram and in particular the observed RVB nature of the
results are stable when the cluster size is increased.
While the pseudogap temperature 7" may be expected
to persist with increasing N,., the Neél temperature is
expected to fall to zero, as discussed in Sec. .B (see also
Fig. 26). Superconductivity, however, may persist as
Kosterlitz-Thouless topological order (Kosterlitz, 1973;
Kosterlitz and Thouless, 1973). Larger cluster simula-
tions (Maier, Jarrell, Schulthess, and White, 2005), how-
ever, indicate that superconductivity persists at finite
temperatures in larger clusters, albeit with reduced tran-
sition temperature.
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6. Studies of related models

a. Stripes in the t-J model

Several numerical studies indicate that there is a ten-
dency for doped holes to form stripes separated by an-
tiferromagnetic domains in strongly correlated systems
(for a review see Dagotto, 1994). Cluster perturbation
theory is the quantum cluster method of choice to study
the large unit cells in the inhomogeneous stripe phase,
which complicate if not preclude the application of the
numerically more expensive embedded-cluster tech-
niques (cellular DMFT, DCA). A thorough study of
stripes in the large U limit of the Hubbard model, the
t-J model, was conducted by Zacher et al. (2002a, 2002b)
within the cluster perturbation theory. To implement
cluster perturbation theory for this problem, the authors
divided the lattice into alternating clusters of metallic
stripes and antiferromagnetic domains. The intercluster
hopping linking these clusters was treated perturbatively
within the theory. The enforced stripe pattern in this
implementation prohibits exploration of the stability of
stripes, but allows the investigation of the effects of the
stripe pattern on the single-particle excitations. In sys-
tems with less than 12% doping the technique was
shown to reproduce salient ARPES features in selected
high-temperature superconductors if a site-centered 3
+1 stripe pattern, i.e., half-filled antiferromagnetic
three-leg ladders separated by doped one-leg chains,
was chosen (Zacher et al., 2002b). At higher dopings the
comparison with ARPES indicates that the weight of
bond-centered stripes with a 2+2 pattern increases in
which excess holes proliferate out of the stripes into the
antiferromagnetic domain (Zacher et al., 2002a).

b. Spectral properties of the three-band Hubbard model

In the context of high-temperature superconductors,
the single-band Hubbard model can be viewed as a low-
energy approximation of the more complex and more
realistic three-band Hubbard model (Emery, 1987; Em-
ery and Reiter, 1988). The three-band Hubbard model
takes into account the p, and p, oxygen orbitals in ad-
dition to the Cu d degrees of freedom in the supercon-
ducting CuO, planes. The cluster perturbation theory
study of its spectral properties by Dahnken et al. (2002)
shows very good agreement with ARPES data on high-
temperature superconductors at half-filling as well as in
the doped system including a holelike Fermi surface at
high doping which splits into an electronlike and a hole-
like branch when a bilayer hopping ¢, is included.

c. Cluster simulations of the periodic Anderson model

The periodic Anderson model is widely considered to
be a paradigm for a variety of rare-earth and actinide
compounds, including the heavy-fermion systems. It is
composed of a strongly hybridizing band of d electrons
weakly coupled to localized f electrons described by the
Hamiltonian
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DMFT simulations of the periodic Anderson model
reveal an antiferromagnetic insulating phase at half-
filling of both the f and the d bands. The gap is set by the
Kondo coherence scale 7, which is strongly enhanced
compared to the single-impurity model scale. When the
d band is doped away from half-filling while the f band
remains roughly half-filled, the system becomes more
metallic, and the Kondo scale is strongly suppressed
compared to that of the STAM. In both the insulator and
metal, the temperature dependence of the impurity sus-
ceptibility and many other low temperature quantities
deviate strongly from that of the single-impurity Ander-
son model (Tahvildar-Zadeh et al., 1997).

Nonlocal corrections were studied by Shimizu (2002)
who used the DCA together with the noncrossing ap-
proximation as a cluster solver to study the single-
particle spectra. He finds large deviations from the
DMFT result due to the effects of Ruderman-Kittel-
Kasuya-Yosida (RKKY) exchange. At half-filling, where
the RKKY exchange is strong and antiferromagnetic, he
finds a large gap of the order of the RKKY exchange
energy. When the filling of the conduction band is small
and the RKKY exchange is weaker and ferromagnetic,
the coherence peak is restored.

V. CONCLUSIONS AND PERSPECTIVES

In this review we have tried to convey the message
that quantum cluster approaches provide powerful the-
oretical tools for the study of the rich phenomenology in
systems dominated by strong electronic interactions.
Quantum cluster approaches are nonperturbative in na-
ture, their quality can be systematically improved by in-
creasing the cluster size, and they provide complemen-
tary information to finite-size simulations. By mapping
the lattice problem to a finite-size cluster they describe
short-ranged correlations within the cluster accurately
while approximating longer-ranged physics on the mean-
field level. Of the various attempts to add nonlocal cor-
rections to local approximations such as DMFT, we have
focused in this review on three established quantum
cluster approaches which we believe play the major role
in the description of many-particle systems.

The cluster perturbation theory provides a very eco-
nomical way to calculate the single-particle dynamics by
continuing the results of an isolated finite-size cluster to
the thermodynamic limit. For a cluster consisting of a
single site only, this method is identical to the Hubbard-I
approximation, while it recovers the exact result in the
infinite-cluster limit. When combined with the self-
energy-functional approach, the cluster perturbation
theory can also be used to study instabilities to broken-
symmetry phases.

Both embedded-cluster techniques, the dynamical
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cluster approximation and the cellular dynamical mean-
field theory, are superior to the CPT in that they map
the lattice to an embedded cluster instead of the cluster
perturbation theory’s isolated cluster. This leads to a
self-consistent theory with a single-particle coupling be-
tween the cluster and the host. As a result, both DCA
and cellular DMFT naturally allow for the study of
phase transitions and they provide thermodynamically
consistent results on the one- and two-particle level.

The cellular DMFT can be viewed as a direct gener-
alization of DMFT to a cluster in real space. The map-
ping between lattice and cluster problems is identical to
that of the long established molecular CPA for disor-
dered systems. It leads to a cluster with open boundary
conditions which violates translational symmetries. In
contrast, the DCA cluster is defined in cluster reciprocal
space. Hence the DCA cluster has periodic boundary
conditions and therefore preserves the translational
symmetries of the lattice. This difference in boundary
conditions translates directly to different asymptotic be-
haviors for large linear cluster sizes L., and the decision
of which method to use for a given problem strongly
depends on the quantities of interest: Local quantities,
such as the local density of states when defined on cen-
tral cluster sites converge faster in the cellular DMFT
since they do not directly couple to the mean field. Due
to the large mean-field coupling of the surface sites,
however, the cellular DMFT converges slowly, with cor-
rections of order O(1/L,), for quantities extended over
the cluster. The DCA converges more quickly, as
o/ L%), due to the periodic boundary conditions on the
cluster.

Quantum cluster approaches reduce the complexity of
the infinite lattice problem by mapping it to a cluster
with fewer spatial degrees of freedom. The numerous
methods employed to solve the DMFT equations are in
principle available for the study of the effective cluster
model. However, as the complexity of this task rapidly
increases with cluster size, potential cluster solvers are
faced with severe size limitations. As the most promising
techniques we reviewed perturbative approaches includ-
ing the fluctuation-exchange approximation and the
noncrossing approximation as well as nonperturbative
techniques including quantum Monte Carlo and the nu-
merical renormalization group.

We discussed the application of quantum cluster ap-
proaches to a wide range of problems in condensed-
matter physics. The information gained from these stud-
ies has led to significant progress in the field of strongly
correlated electron systems. Even studies using small
cluster sizes opened up new insight in problems such as
one-dimensional systems, the Mott-Hubbard transition
in two dimensions, and high-temperature superconduc-
tivity.

Larger-cluster-size studies are inevitable, however, to
verify or possibly disprove the information obtained
from small clusters. This task is severely hampered by
the rapidly increasing complexity with cluster size. Fu-
ture progress therefore is closely linked to improve-
ments in the efficiency and flexibility of the techniques
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used to solve the effective cluster problem. Within quan-
tum cluster approaches we explored a coarse-graining
approximation in k space. To further reduce the com-
plexity, the same idea could be extended to the fre-
quency domain. By coarse-graining the frequency de-
pendence of irreducible quantities, correlations on long
time scales are neglected, while the short-time-scale be-
havior is described accurately. An important aspect in
this context is again the causality question. First test re-
sults are encouraging; they show that coarse graining in
Matsubara space leads to acausalities, while coarse-
graining the real frequency axis does not face this prob-
lem (Aryanpour, Hettler, and Jarrell, 2003).

Another route to defeating the cluster size problem is
to develop hybrid algorithms that treat different length
scales in the problem with different accuracy. As a
promising step in this direction, Hague et al. (2004) have
developed a hybrid technique which maps the infinite
lattice onto two embedded clusters of different size, thus
dividing the problem into three length scales. Short-
ranged correlations described by the small cluster are
treated accurately within quantum Monte Carlo, corre-
lations of intermediate length scale are treated perturba-
tively in the large cluster using the fluctuation-exchange
approximation, and the long-ranged physics beyond the
size of the larger cluster is again approximated on the
mean-field level.

To improve comparisons with experiments and to
achieve predictive capability, the inclusion of the specif-
ics of the actual materials is required. Along the lines of
the local-density approximation+DMFT approach, one
can use electronic structure calculations to parametrize
the models studied by quantum cluster approaches. The
first steps in this direction have been taken by Poteryaev
et al. (2004). A more integrated approach to the ab initio
description of strongly correlated systems by combining
the ideas of density-functional theory and quantum clus-
ter approaches remains an important and challenging
task.
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