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It is needless to say that I feel it a great honor and
privilege to have been selected for the 2003 Nobel Prize
in Physics for my theoretical work on superfluid 3He; I
am particularly pleased to be sharing the award with
Professors Ginzburg and Abrikosov, whom I have al-
ways looked up to as giants of the closely related field of
superconductivity. The story of how, in roughly the
twelve-month period July 1972–July 1973, we came to a
theoretical understanding of the experimental data on
what we now know as superfluid 3He is a sort of com-
plex detective tale, involving many actors besides me;
for reasons of time I will concentrate in this lecture on
my own involvement and will have to omit several im-
portant developments in which I had no direct role.

The element helium comes in two sstabled forms, 4He
and 3He; at low temperatures and pressures both form
liquids rather than solids. The liquid phase of the com-
mon isotope, 4He, was realized nearly a century ago, and
since 1938 has been known to show, at temperatures be-
low about 2 K, the property of superfluidity—the ability
to flow through the narrowest capillaries without appar-
ent friction. By contrast, the liquid form of the rare iso-
tope, 3He, has been available only since about 1950,
when enough of it was produced by the decay of the
tritium manufactured in nuclear reactors. However, it
was soon recognized that liquid 3He is in many ways
similar to a system that has been known for much
longer, namely, the electrons in metals. Although there
is one obvious difference sthe electrons in metals are
electrically charged whereas the 3He atom is electrically
neutrald, both systems are dense systems of particles that
have spin 1

2 and are therefore expected to obey Fermi-
Dirac statistics. sBy contrast, the atoms of 4He have spin
zero and should therefore obey Bose-Einstein statistics.d
If we consider a noninteracting gas of such particles in
thermal equilibrium at a temperature T!TF=eF /kB
swhere eF is the “Fermi energy,” determined by the mass
and densityd, then all states lying well below eF in energy
are occupied by a single particle, and all those well
above eF are empty; rearrangement of the particles can
take place only in an energy “shell” of width ,kBT
around eF, and all the thermal, transport, and response
properties are thus determined by the properties of the
states in this shell. In a famous 1956 paper, L. D. Landau

s1956d showed that under appropriate conditions this
picture remains qualitatively valid even in the presence
of strong interparticle interactions; the system is then
known as a “degenerate Fermi liquid.” Experiments on
liquid 3He in the 1950s and early 1960s showed that this
system indeed appeared to be behaving as a degenerate
Fermi liquid below ,100 mK, down to the lowest tem-
peratures then attainable saround 3 mKd.

Now, it has been known for nearly a century that the
electrons in metals, which have a Fermi temperature of
,104−105 K, may sometimes, at temperatures &20 K,
enter the so-called superconducting state, in which they
can flow without apparent resistance; this is just the ana-
log, for a charged system, of the superfluidity of liquid
4He. Since, for liquid 3He, the Fermi temperature is only
a few kelvins, it would have been reasonable to specu-
late that the atoms might undergo a similar transition at
temperatures of the order of millikelvins; since the at-
oms are electronically neutral, the result would be not
superconductivity but rather superfluidity, as in 4He.
However, in the absence of a microscopic theory of su-
perconductivity, no quantitative approach to this ques-
tion suggested itself.

Remarkable progress in the phenomenological de-
scription of superconductivity was made in the early
1950s sas recognized in the awards to my co-laureatesd,
in particular, by introducing the concept of a “macro-
scopic wave function” or order parameter. The micro-
scopic underpinning sBardeen et al., 1957d of this con-
cept was provided by my late colleague John Bardeen
and his collaborators Leon Cooper and Bob Schrieffer
in 1957, in what is now universally recognized as the
correct microscopic theory of superconductivity sat least,
as it was known at that timed, the “BCS” theory. They
postulated that in the superconducting state the elec-
trons within a “shell” of width ,kBTc around the Fermi
energy swhere Tc is the temperature of the supercon-
ducting transitiond tend to form Cooper pairs, a sort of
giant “dielectronic molecule,” whose radius is huge com-
pared to the average distance between electrons sso that,
between any two electrons forming a Cooper pair, there
are billions of other electrons, each forming their own
pairsd. An essential feature of the BCS theory of super-
conductivity is that the Cooper pairs, once formed, must
all behave in exactly the same way, that is, they must
have exactly the same wave function, as regards both the
center of mass and the relative coordinate. In fact, the
macroscopic wave function of Ginzburg and Landau
turns out to be nothing but the common center-of-mass
wave function of all the pairs. This wave function can
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have a very nontrivial spatial variation, and it is this
variation that gives rise to the effects described by Pro-
fessors Ginzburg and Abrikosov.

By contrast, in BCS theory the internal srelatived wave
function of the pairs is rather boring; the two electrons
have opposite spins, thus the pair has total spin zero,
and the relative orbital angular momentum is also zero,
so that in atomic notation the state of the “molecule” is
1S0, and all properties of the system are completely iso-
tropic; there are no “orientational” degrees of freedom.

When at the end of the 1950s people started to extend
the ideas of BCS to liquid 3He, they soon realized an
important difference between this system and the elec-
trons in metals: The interaction potential between two
He atoms is strongly repulsive at short distances and
becomes attractive only for interatomic separation r
,r0,3 Å; thus the atoms forming a Cooper pair cannot
approach much more closely than this. Since they come
from states close to the Fermi surface, however, their
relative momentum must be of the order of pF

;s2meFd1/2,1 Å−1. This then means that their dimen-
sionless relative angular momentum l must be of order
pFr0 /" and thus must be nonzero smost probably 1 or 2d,
in contrast to the case of metallic superconductors in
which, as we have seen, the pairs have l=0. sA more
quantitative calculation bears out the conclusion of this
intuitive argument.d The Fermi statistics then imply that
if l is even sso that the orbital state is symmetric under
exchange of the two particlesd then the spin state must
be a singlet sS=0d as in the original BCS case, while if l
is odd the spin state must be a triplet sS=1d. It was then
not unreasonable to expect that in either case sprovided
lÞ0d the orbital properties might be anisotropic, and
that in the case of spin-triplet pairing sodd ld the spin
properties might also be so; however, as we shall see,
this question is less straightforward than it might seem.

In the early 1960s there was a good deal of theoretical
interest in the possible existence and properties of a
Cooper-paired shence presumably superfluidd phase of
liquid 3He; in the present context two developments in
particular are worthy of note. In a seminal 1961 paper,
Anderson and Morel s1961d made a systematic adapta-
tion of the ideas of BCS to this system: that is, they
explicitly assumed sas had othersd that in the lÞ0 case,
just as in the l=0 one considered by Bardeen, Cooper,
and Schrieffer, all Cooper pairs form in exactly the same
state, with respect not only to their center-of-mass mo-
tion but also with respect to their internal (relative) state.
It is worth emphasizing that this assumption is not
trivial; indeed, there was at least one nearly contempo-
rary paper sGor’kov and Galitskii, 1961d which made a
quite different and perhaps prima facie more attractive
assumption, namely, that sin the l=2 cased all the five
Zeeman substates are equally populated in such a way
as to give a state of the system whose physical properties

are totally isotropic.1 By contrast, Anderson and Morel
showed that with their assumption the physical proper-
ties would in general be anisotropic in both orbital and,
in the odd-l sspin-tripletd case, spin space. They studied
in detail two cases: that of pairing in a relative d state
sl=2d, where they worked out various physical proper-
ties in considerable detail, and more briefly that of a p
state sl=1d. In the latter case they chose a particular
state, namely, one in which pairs form only in the Sz
= +1 s↑↑ d and Sz=−1 s↓↓ d states fa so-called equal-spin-
pairing sESPd stateg, and furthermore these states are
associated with the same orbital wave function, which
intuitively corresponds to the pairs’ having an orbital
angular momentum " along a direction conventionally

denoted by the unit vector l̂; this state has subsequently,
for reasons we shall see, acquired the name of the
Anderson-Brinkman-Morel sABMd state. As far as I
know, there was no particular reason at the time to
choose this state rather than, for example, the state
which within the generalized BCS theory is degenerate
with ABM, in which the Sz= +1 and Sz=−1 pairs have
opposite angular momenta saxial stated; so that the
choice they actually made was serendipitous.

A second very important advance was made indepen-
dently by Vdovin s1963d in the former Soviet Union and
Balian and Werthamer sBW; 1963d in the West; they ob-
served that, in the odd-l case, it is possible to form pairs
simultaneously in all three Zeeman substates in such a
way that the pair wave function is a superposition, i.e.,
schematically of the form swhere r denotes the relative
coordinated

Cpair = F↑↑srd = F↓↓srdu↑↑l + F↓↓srdu↓↓l + F↑↓srd

3S 1
Î2

s↑↓ + ↓↑dD . s1d

It should be emphasized that all the Cooper pairs still
occupy the single superposition s1d. sWe do not have
one-third of the pairs occupying each Zeeman substate
independently!d The ESP states considered in earlier
work, such as that of Anderson and Morel, are special
cases of Eq. s1d with F↑↓srd;0; in particular, the ABM
state has sup to a phased F↑↑srd=F↓↓srd. In the specific
case l=1, Vdovin s1963d and Balian and Werthamer
s1963d showed that it is possible to choose F↑↑srd to cor-
respond to sapparentd angular momentum Lz=−1, and
F↓↓ and F↑↓ similarly to correspond to Lz= +1 and Lz
=0, respectively; in this way they constructed a state
with L=S=1 but J;uL+Su=0, i.e., in atomic notation a
3P0 state. By the Wigner-Eckart theorem such a state
should be isotropic in all its properties, whether involv-
ing orbital motion, spin, or their combination; in particu-
lar, the spin susceptibility should be isotropic and equal
to 2

3 of the normal-state value sreflecting the fact that a

1For arguments against this idea, see Hone s1962d and Balian
et al. s1962d. Many years later the idea was revived sChechet-
kin, 1982, and earlier references cited thereind, but again re-
futed sYip, 1984d.
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third of the spin state is Sz=0 with respect to any axisd.
Vdovin and also Balian and Werthamer showed that,
within the generalized BCS calculation which they used,
this state sconventionally known as the BW stated should
be more stable than any l=1 ESP state.

As a result of these and other considerations, the gen-
eral expectation in the theoretical community by around
1964 was that sad liquid 3He might enter a Cooper-paired
state, which would then display inter alia the property of
superfluidity, at a temperature that was difficult to pre-
dict, and sbd the symmetry of such a state was most
likely to be either l=2, S=0 or the BW s3P0d state; in
either case the spin susceptibility should be isotropic and
reduced from its normal-state value sto zero in the l=2
case, by a factor of 1

3 in the BW cased.
It was at this point that I became actively interested in

the possible superfluid phase of 3He. I had done a little
work on normal 3He in my D. Phil. thesis susing Landau
Fermi-liquid theory, which at that time was still some-
thing of a novelty in the Westd, and had subsequently
gone to work as a postdoc with David Pines at the Uni-
versity of Illinois at Urbana-Champaign sUIUCd. One
day, after I had been there for about a month, John
Bardeen and Leo Kadanoff came into my office and said
“Look, John Wheatley down in the basement is doing
experiments on the spin-diffusion coefficient of liquid
3He and is getting into the temperature regime where
people think the superfluid transition might occur. Why
don’t you try to work out how this would be reflected in
the spin-diffusion behavior?” I started this calculation
but never finished it; in retrospect this was probably just
as well, since we now know that, because of the anoma-
lous nuclear magnetic resonance sNMRd behavior of su-
perfluid 3He son which much more belowd, the spin dif-
fusion is an extraordinarily complicated problem, and it
is unlikely in the extreme that I would have got it right
in the absence of experimental clues.

The reason I never finished the spin-diffusion calcula-
tion was that I got sidetracked onto a problem that
struck me as much more interesting, namely, how to
combine the ideas of Bardeen, Cooper, and Schrieffer
on pairing in a weakly interacting Fermi system with
Landau’s “Fermi-liquid” theory of the normal state of
3He. After some vicissitudes ssee Leggett, 1982d, I was
able to reformulate the Landau theory in terms of a set
of “molecular fields,” a form in which it was then almost
trivial to apply it to the hypothetical superfluid phase as
well as to the normal one. I was able to show sfor the l
=0 cased that while the spin susceptibility and normal
density of a degenerate superfluid Fermi liquid, like that
of a weakly interacting superfluid Fermi gas, both fall to
zero in the limit T→0, their temperature dependence is
in general quite different from that of the latter sand
from one anotherd.2 In the case of the spin susceptibility,
I also applied the “molecular-field” idea to the BW state

and showed inter alia that in 3He Fermi-liquid effects
should depress the T=0 susceptibility srelative to the
normal-state valued from the “weakly interacting” value
of 2

3 to about 1
3 . In subsequent work I generalized Lan-

dau’s calculation of the low-frequency collective excita-
tions of a Fermi liquid, including zero sound, to the su-
perfluid phase.

During the two years following my postdoctoral year
at UIUC, I wandered about quite a bit, both
geographically3 and intellectually. Among other prob-
lems in the low-temperature area that I considered dur-
ing this period was one concerning the possible collec-
tive excitations of a two-band superconductor, that is, a
superconducting metal in which the Fermi surface inter-
acts with two different bands. I think I had probably
read, and been influenced by, P. W. Anderson’s elegant
formulation of the theory of superfluidity in 4He in
terms of conjugate number and phase variables; at any
rate, it occurred to me that a two-band superconductor
should show a sort of internal Josephson effect corre-
sponding to fluctuations of the relative number of elec-
trons in the two bands and of the relative phase of the
Cooper pairs in them, and in a paper published in
Progress of Theoretical Physics sLeggett, 1966d, I dis-
cussed the appropriate microscopic definitions of the
corresponding operators DN, Df, and their commuta-
tion relations, namely, fDN ,Dfg= i. At the time this
work sank more or less without trace, in part because by
the time it was published it had already become clear
that the experimental evidence for the existence of two-
band superconductors in nature was dubious; however, it
was to play a crucial role in the subsequent history.4

In the fall of 1967 I took up a lectureship at the Uni-
versity of Sussex, and for the next few years, in the in-
tervals allowed by my teaching duties, I continued to
work on various problems in low-temperature physics,
including liquid 3He. However, I found myself becoming
increasingly bored with this area of research and indeed
with much of conventional physics; at the same time,
thanks in part to a remarkable series of lectures deliv-
ered by my colleague Brian Easlea, I got more and more
intrigued by the conceptual formulations of quantum
mechanics, and by the summer of 1972 had made a firm
decision that I would abandon the sort of physics that
gets published in Physical Review B and devote myself
full time to foundational studies. sFortunately, in those
days even lectureship positions in British universities
carried tenure, so that it was possible to make such a
switch without drastically affecting one’s career pros-
pects!d

In July 1972 I was on a climbing holiday in Scotland

2Many years later I discovered that in both cases my conclu-
sions had been to some extent anticipated, by Fulde and Fer-

rell s1964d and sarguablyd Larkin s1964d, respectively. However,
at the time they were a great boost to my morale!

3See the biographical note which precedes, this lecture in Les
Prix Nobel, 2003 sLeggett, 2004ad.

4In early 2003, Ponomarev et al. s2004d reported experimental
evidence for the existence in MgB2 of the mode predicted in
my article of 1966 sLeggett, 1966d.
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when I heard that Bob Richardson, whom I knew at a
distance as an experimentalist at Cornell working on,
among other things, liquid and solid 3He, would be pass-
ing through Sussex for a day and would like to talk to
me. I was certainly keen to meet Bob sI had had some
correspondence with him concerning an effect in normal
liquid 3He on which he had done the experiment and I
the theoryd, but I was enjoying my holiday, and I remem-
ber debating with myself whether to go home a day
early to meet him or not. In the end I think the weather
made the decision for me: it rained on the morning in
question, so I went home early and spent several hours
talking to Bob. What he told me that day changed my
whole research career and led, 30 years later, to my pres-
ence in Stockholm today.

In earlier work the Cornell group sat that time con-
sisting of Doug Osheroff, Dave Lee, and Bob himselfd
had studied the pressurization curve sthat is, the graph
of pressure versus timed of a mixture of liquid and solid
3He, and had observed two small but reproducible
anomalies, which with some hindsight indicate phase
transitions in the liquid: a second-order transition at
TA,2.6 mK and a first-order one at about TB,2 mK
ssee Fig. 1d. Using the nomenclature which later became
standard, the liquid phase which exists between 2 and
2.6 mK is the A phase and that below 2 mK is the B
phase: thus the normal sNd-A transition is second order
and the A-B one first order. The group had published
their experimental results sOsheroff et al., 1972d in early
1972, but had erroneously interpreted the phase transi-
tions as occurring in the solid rather than the liquid; I
had vaguely known about this work but had not been
particularly excited by it, in part because there was a
general expectation that some kind of magnetic-
ordering transition would occur in solid 3He in the mil-
likelvin regime,5 and it did not seem that the resulting
phase was likely to be particularly novel in its proper-
ties.

What Bob told me, however, was that the group sby
now augmented by Willy Gullyd had gone on to do
NMR experiments sOsheroff et al., 1973d on the solid-
liquid mixture in the temperature regime in which the
thermodynamic anomalies occurred. These were
straightforward cw absorption measurements, with the rf
field polarized perpendicular to the external dc field

Hext. The first qualitative conclusion, which was drawn
from an analysis of the spatial profile of the NMR, ab-
sorption, was quite unambiguously that the phase tran-
sitions were occurring in the liquid component of the
mixture, not the solid. Now, what an NMR experiment
in the above standard geometry measures is the rf power
absorption as a function of the frequency v of the rf
field; provided a linear approximation is valid, from this
one can directly infer the imaginary part of the strans-
versed spin-density response function of the system xsvd,
and application of a Kramers-Kronig relation to the lat-
ter ssee belowd then allows one to infer the dc suscepti-
bility x0.

In the normal sNd phase the absorption profile has a
very sharp resonance at the stemperature-independentd
Larmor frequency vres=gHext, where g is the gyromag-
netic ratio of the free 3He atom, and the dc susceptibility
x0 is also temperature independent and of the general
order of magnitude of that predicted for a free Fermi
gas with the mass and density of liquid 3He. These re-
sults were already well established and not considered at
all surprising: the discrepancy between the experimental
and free-gas values of x0 is entirely consistent with the
interpretation of the N phase as a degenerate Landau
Fermi liquid, and the fact that the observed resonance
frequency is swithin experimental errord the free-atom
value tells us that any effective magnetic field, other
than those of exchange origin, arising from the system
itself are negligible. sThe exchange fields, which are in
part responsible for the renormalization of the dc sus-
ceptibility, are automatically parallel to the total spin of
the system; thus they cannot exert a torque on the latter
and thus cannot shift the resonance frequency, which is
determined by the external field alone: see below.d This
is exactly what is expected, since the only possible origin
of such a non-exchange-field is the tiny dipole interac-
tion son which more belowd.

By contrast, the NMR behavior in the A and B phases
is highly unconventional ssee Fig. 2d. As the temperature
falls below the temperature TA of the second-order tran-
sition, the resonance absorption peak remains very
sharp but shifts upwards in frequency. The shift is not
proportional to the external field Hext but rather obeys a
“Pythagorean” law:

5A few years later, such a transition was indeed observed
sHalperin et al., 1974d at a temperature of about 1 mK.

FIG. 1. The phase diagram of liquid 3He at melting pressure
below 3 mK.

FIG. 2. The behavior of the NMR resonance frequency vres in
liquid 3He below 3 mK. sThe qualitative behavior of the static
susceptibility x is also noted.d
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vres
2 = g2Hext

2 + v0
2sTd , s2d

with v0
2 having the approximate temperature depen-

dence

v0
2sTd > As1 − T/TAd, A/s2pd2 > 5 3 1010 Hz2. s3d

When the system undergoes the first-order phase transi-
tion into the B phase, the resonance frequency drops
back discontinuously to the Larmor sN-stated value
vres=gHext;vL. Meanwhile the dc susceptibility, ob-
tained as described from the absorption data using a
Kramers-Kronig relation, remains constant in the A
phase at its N-state value;6 however, it drops discontinu-
ously at the A-B transition by a factor of ,50% and
thereafter decreases further with temperature in the B
phase.

The behavior of the susceptibility struck me as sur-
prising but not extraordinary. In particular, it could be
fitted into the expected Cooper-pairing scenario if we
make the assumption that the A phase is of the ESP type
ssince no Sz=0 pairs are formed, the susceptibility
should indeed be unreduced from the N-state valued,
while the B phase is either a spin singlet seven-ld state or
the BW state. Of course, such an assumption leaves us
with the question why then should there be two different
Cooper-paired phases at all, and even more urgently,
how any kind of ESP phase can be stable with respect to
the BW phase, in clear contradiction to the predictions
of the generalized BCS theory.

What struck me as truly extraordinary about the
NMR data, however, was the shift of the resonance fre-
quency in the A phase. To see why, let us try making the
most obvious interpretation of the Pythagorean formula
s2d, namely, that the system somehow generates a mag-
netic field H0sTd;v0sTd /g in a direction perpendicular
to the external one, so that the total field in which the
spin precesses is fHext

2 +H0
2sTdg1/2;vres /g. As empha-

sized above, the origin of such a field cannot be ex-
change effects, which although strong cannot give rise to
any extra precession. So, where could it come from? The
atomic electrons in liquid He form inert closed shells,
with excitation energies of the order of 50 eV, so any
contribution from them at temperatures in the mil-
likelvin range should be utterly negligible. This leaves
the nuclear magnetic dipole moments: each 3He nucleus
can be thought of as a tiny magnet, with a magnetic
moment M=gS parallel to its spin, and these magnets
should then produce a field just as a macroscopic bar
magnet would. Moreover, just as in the case of a bar
magnet, the field is in general not parallel to the mag-
netic moment, i.e., to the spin, and thus could in prin-
ciple shift the resonance frequency.

So far, so good. However, the problem is the magni-
tude of the effect. To fit the data to the above scenario,
the field H0sTd would have to be of the order of 30 G at

the A-B transition. Now, even at the distance of closest
approach of two He atoms sr0,2.5 Åd, the maximum
field exerted by a nuclear spin on its neighbor is less
than 1 G, and even taking into account the long-range
sr−3d behavior of the field, it seems impossible to envis-
age a stacking arrangement of the atoms that could give
rise to the required value of H0sTd squite apart from the
fact that such a stacking would be expected both to cost
a large amount of energy and to produce dramatic ef-
fects on the dc susceptibilityd.

Indeed, my initial reaction to these results was that
they were so extraordinary that they might be the first
evidence for a breakdown of some fundamental prin-
ciple of quantum mechanics ssuch as the Pauli exclusion
principled under the very exotic conditions characteriz-
ing liquid 3He in the millikelvin regime. Given that, it
seemed sensible to postpone my planned foray into the
conceptual foundation of quantum mechanics until I
could be quite sure that quantum mechanics was still
actually working! So, as soon as Bob had gone home, I
sat down sfortunately it was still the Sussex vacation for
another few weeksd to try to construct a formal proof
that, given the generally accepted laws of quantum and
statistical mechanics, the shift observed in the experi-
ments simply could not occur.

Now, there are very few things that can be proved
rigorously in condensed-matter physics, and most of
those refer to the linear-response behavior and are ob-
tained by the use of various sum rules. In the case of the
Cornell NMR data, it seemed prima facie plausible that
the rf field was weak enough to justify a linear-response
approximation, so I asked myself what information
could be extracted from the known sum rules involving
the operator that couples to this field, namely, the total x

component of nuclear spin Ŝx;oi ŝxi. fThe x direction is
arbitrarily chosen as that of the slinearly polarizedd rf
field.g If, as above, xsvd denotes the frequency-
dependent rf susceptibility, then there are two such well-
known sum rules:

1

p
E

0

` Im xsvd
v

dv = x0, s4d

1

p
E

0

`

v Im xsvddv = − Šk†ŜxfŜx,Ĥg‡l‹0, s5d

where x0 denotes the dc susceptibility and Ĥ the total
Hamiltonian of the system in the absence of the rf field;
the angular brackets denote the expectation value taken
with respect to the unperturbed thermal equilibrium
state, i.e., with density matrix proportional to

exps−Ĥ /kBTd. The first sum rule, Eq. s4d, is just a special
case of the Kramers-Kronig relation, while the second,
Eq. s5d, is the analog of the well-known f-sum rule of
atomic physics and is obtained straightforwardly by writ-
ing down the second-order perturbation theory expres-
sion for xsvd and evaluating the double commutator on
the right-hand side explicitly. sSee, for example, Pines

6Subsequent work sPaulson et al., 1974d has shown that there
is in fact a very small jump sa fraction of a percentd in x0 at the
N-A transition.
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and Nozières, 1966, Sec. 2.2, for the corresponding pro-
cedure in the parallel case of the density sum rule.d

The two sum rules s4d and s5d are quite generally
valid. Now let us assume that the experimentally ob-
served rf absorption is indeed a measure of the imagi-
nary part of the linear ac susceptibility xsvd, and use the
fact that the former is observed sin all three phases, N,
A, and Bd to be proportional to a delta function, dsv
−vresd, where, however, the resonance frequency vres is
in general a function of the phase and of temperature.7

Substituting this form of Im xsvd into Eqs. s4d and s5d,
we immediately obtain an expression for vres:

vres
2 = − x0

−1k†Ŝx,fŜx,Ĥg‡l0. s6d

The double commutator has a simple physical signifi-
cance: Imagine that we rotate the whole nuclear-spin
system uniformly by a small angle ux around the x axis
saxis of the rf fieldd, keeping the orbital variables fixed.
By using the fact that the operator which generates such

a rotation is exp siŜxuxd, and that the quantity kfŜx ,Ĥgl
must be zero in thermal equilibrium, we find that the
double commutator is nothing but the negative of

]2kĤl /]ux
2, the second derivative of the mean energy un-

der such a rotation.
Suppose, first, that apart from the Zeeman energy in

the external field, mnoi SziH, the only spin-dependent
energies in the problem are spin-conserving, i.e., they
depend only on the magnitude of the total spin S, not on
its direction; this is the case, in particular, for energies of
exchange origin. Such terms clearly cannot contribute to
the double commutator, which then turns out to be sim-
ply equal to g2SzHext;g2x0Hext

2 ; thus, in this case, the
resonance is uniquely constrained to lie exactly at the
Larmor frequency vL;gHext. Thus, as already stated,
any shift of vres away from the Larmor value, such as
occurs in the A phase, is unambiguous evidence for the
operation of some spin-nonconserving energy. In liquid
3He, as we have already seen, the only known such en-
ergy is the nuclear dipole-dipole interaction, which has
the standard form

ĤD = mn
2o

ij
sr̂ij

−3dHŝi · ŝj −
3ŝi · rijŝj · rij

rij
2 J srij ; uri − rjud .

s7d

Evidently this expression is not invariant under rota-
tion of the spins alone, without simultaneous rotation of
the orbital coordinates, so in principle it can contribute
to the double commutator in Eq. s6d. In fact, this equa-
tion becomes explicitly

vres
2 = g2Hext

2 + x0
−1]2kHDl/] ux

2. s8d

Comparing this expression with the experimental re-

sult, Eqs. s2d and s3d, we find that in the A phase we
must have

]2kHDlsTd
] ux

2 = Ks1 − T/TAd, K > 10−3 ergs/cm3, s9d

while in the N and B phases the quantity ]2kHDl /]ux
2

must be zero within the accuracy of the experiment.
Now, it is intuitively rather clear that the quantity

]2kHDl /]ux
2 cannot be larger in order of magnitude than

kHDl itself. Thus the A-phase shift in the resonance fre-
quency can be explained—but only if the expectation
value of the nuclear dipole energy in that phase is of the
order of magnitude of Eq. s9d. But how can this be? The
maximum possible value scall it gDd of the dipolar en-
ergy of a single pair of spins i , j, obtained by setting rij in
Eq. s7d equal to the distance of closest approach
s,2.5 Åd is only about 10−7 K. Now, it is true that if one
multiplies gD by the average density n swhich should be
a crude measure of the number of pairs that closely ap-
proach one anotherd, one gets a quantity of the order of
1 erg/cm3, more than enough to account for the value
s9d; in principle, there is enough dipole energy available!
The problem, however, lies with the thermal disorder:
Given that two 3He nuclei have an orbital separation rij,
the energy advantage of a “right” spin orientation sspins
parallel to rijd over a “wrong” one sspins perpendicular
to rijd is at most only ,gD, so even in a classical model
the preference for “right” orientations over “wrong”
ones should only be a factor of order gD /kBT; this then
gives an expectation value of kHDl of order ngD

2 /kBT,
which is too small to account for Eq. s9d. Actually, the
situation is worse than this, since in a degenerate Fermi
liquid such as 3He the “polarizability” of the spairs ofd
spins by the dipole interaction sas by an external fieldd is
governed not by the thermal energy kBT but by the
much larger Fermi energy kBTF, so that the resulting
value of kHDl is only of order ngD

2 /kBTF. An explicit
calculation of kHDl in the Fermi-liquid model of the nor-
mal phase confirms this estimate, showing that the asso-
ciated contribution of the dipole forces to the right-hand
side of Eq. s8d is too small for the resulting shift to be
seen experimentally, as is indeed the case.8

Where could this argument possibly go wrong? I wor-
ried over it day and night for a couple of weeks, and
then the solution suddenly hit me: it is an idea which I
called spontaneously broken spin-orbit symmetry, or
SBSOS for short. It is most easily explained by analogy
with the more familiar case of a magnetic system de-
scribed by the sisotropicd Heisenberg Hamiltonian; the
explicit correspondence is given in Table I. The crucial
point, in the magnetic case, is that in the paramagnetic
phase the competition of the thermal energy kBT is with
the single-spin Zeeman energy gZ; since for reasonable

7There is of course, an implicit assumption here, namely, that
there are no contributions to the absorption that are too dif-
fuse to be picked up in the experiments.

8Much more recently, a shift of the predicted order of magni-
tude in the N phase has in fact been seen sHaard et al., 1994d,
although it is not clear that its detailed properties agree with
theoretical expectations.
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fields we have gZ!kBT, the degree of polarization is
small s,gZ /kBT!1d, and the expectation value of the
total Zeeman energy is ,NgZ

2 /kBT, i.e., second order in
gZ sN is the total number of spinsd. However, in the
ferromagnetic phase, the isotropic sHeisenbergd part of

the Hamiltonian Ĥ0, while it cannot pick out a direction
in space, nevertheless forces all sor most ofd the spins to
lie in the same direction. Now, instead of each spin hav-
ing to choose individually to lie parallel or antiparallel to
the field scorresponding to energies differing by gZd we
need to choose scrudely speakingd between all spins ly-
ing parallel or all lying antiparallel; the energy differ-
ence between these two configurations is NgZ rather
than gZ, and it is with this large energy that the thermal
energy kBT has to compete. Since typically NgZ@kBT,
the polarization is almost 100%, and the resulting value
of the total Zeeman energy is ,NgZ, i.e., linear rather
than quadratic in gZ.

In a similar way, we may suppose that, in the normal
phase of liquid 3He, the different pairs of nuclear spins
behave more or less independently; then, as sketched
above, it is the single-pair energy dipole gD which com-
petes with the thermal energy kBT, the degree of “po-
larization” is ,gD /kBT!1, and the resulting expecta-
tion value kHDl is ,NgD

2 /kBT. Now, however, suppose
that in the A phase son whose specific nature we do not
at the moment speculated the effect of the spin-
conserving terms in the energy skinetic energy, van der
Waals potential energy, etc.d is such that, while not fa-
voring any particular configuration of the nuclear spins

relative to the orbital coordinates, it forces all pairs to
have the same configuration. Then, crudely speaking, we
are forced to choose between a configuration in which
all pairs have the “right” configuration, and one in which
they all have the “wrong” one. The corresponding en-
ergy difference is now not gD but NgD, so that, provided
that NgD@kBT sor actually @kBTFd, as is certainly the
case in practice, the “degree of polarization” of the pairs
is of the order of 1 and the resulting value of kHDl can in
principle be of order NgD, as required by the experimen-
tal value of the constant K in Eq. s9d.

It is worth emphasizing that the concept of SBSOS is
in some ways more subtle than the analogous one of the
breaking of rotational symmetry in a ferromagnet. In
particular, as illustrated in Fig. 3, it is entirely compatible
with the total spin of the pairs Spair and their relative
orbital angular momentum Lpair, both having expecta-
tion value zero falthough in general quantities like ksL
3Sdpairl may be nonzerog. Even in cases in which Spair is
nonzero,9 this need not automatically of itself imply that
the total spin S of the system is nonzero; Spair is a mea-
sure of the spin correlations of those pairs of atoms
which are close in space. It is this consideration, inciden-
tally, which explains the failure of the simple argument
above, which purports to show that the nuclear dipole
moments cannot possibly produce the required
“Pythagorean” field to explain the A-phase resonance
shift: Consider the equation of motion of the total spin

9An example is, the A1 phase ssee, Leggett, 1975, Sec. XIIId.

TABLE I. Analogy between SBSOS and ferromagnetism.
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of the system in the presence of the external field and
the dipole interaction. This has the form

dS
dt

;
d

dtoi
Si = go

i
Si 3Hi, s10d

H;Hext +Hd, Hda ; o
j

fabsrijdSjb, s11d

where a and b indicate Cartesian components of the
spin values. Equation s10d is a quantum-mechanical sop-
eratord equation of motion, and we need to take the
expectation values of the quantities on the two sides:

dkSl
dt

= gHkSl 3Hext + o
i

kSi 3HilJ . s12d

The argument given above implicitly assumes that we
can make the approximation kSi3Hil>kSil3 kHil, in
which case the maximum possible value of any preces-
sional frequency associated with the dipole forces is in-
deed of the order of g times the maximum value of kHil,
i.e., ,1 G. In a state without SBSOS sand at tempera-
tures such that kBT@gDd the mean-field approximation
s12d is very good; however, in the presence of SBSOS it
fails dramatically, and in fact the second term on the
right-hand side of Eq. s12d can have a substantial value
even when the total spin polarization S;oi Si is very
small.

Given, then, that the shift in the resonance frequency
in the A phase of liquid 3He shows unambiguously that
this phase must possess the property of SBSOS, what
kind of microscopic model could give rise to this prop-
erty? As a matter of fact, there are several, including the
crystalline antiferromagnetic phase subsequently shown

experimentally sHalperin et al., 1974d to exist in solid
3He below ,1 mK. However, in light of preexisting the-
oretical speculations, the most obvious possibility is a
spin-triplet Cooper-paired phase swhich must automati-
cally have lÞ0d. We already know, from the unchanged
susceptibility, that if it is indeed a Cooper-paired phase it
must be of the ESP type, in which only ↑↑ and ↓↓ pairs
form. For such a state, the dipole forces favor an orbital
configuration in which the relative orbital separation of
the correlated pairs is in the z direction rather than the
xy plane, and any rotation of the spins away from their
original orientation ssuch as is induced by a rf fieldd will
cost energy, as required by Eq. s7d. In fact, I was able to
estimate the quantity ]2kHDl /]ux

2, obtaining both the or-
der of magnitude and the temperature dependence re-
quired by Eq. s9d. This calculation was presented by my
Sussex colleague Mike Richards at the Low Tempera-
ture conference in Boulder, Colorado in August 1972,10

and published sLeggett, 1972d in Physical Review Letters
later that year.11

By now the Sussex autumn term was under way, and I
had little time over the next few months to work actively
on the new phases sthough I did write a longer paper,
Leggett, 1973a, which explored the concept of SBSOS
more thoroughly than had been possible in the Letterd.
The experimental data still posed two very obvious
problems. First, assuming that the A phase was indeed
an ESP Cooper-paired phase, why should such a phase
ever be stable with respect to a phase of the BW type in
which all three Zeeman substates were populated? sIn
my letter I had proposed a couple of tentative and, in
retrospect, highly implausible explanations for this.d Sec-
ond, what about the mysterious B phase? The most ob-
vious explanation, and one certainly consistent with its
reduced susceptibility, was that it was indeed the theo-
retically expected BW phase, and most theorists appar-
ently assumed so. However, at the end of my Letter, I
had remarked that the absence of a frequency shift
showed that the B phase did not possess the property of
SBSOS and hence could not be the BW phase, which
would be expected to show SBSOS. fI speculated that it
was either an even-l sspin-singletd BCS state or some-
thing of currently unknown nature.g As we shall see, the
first part of this argument turned out to be spectacularly
wrong. Meanwhile, my SBSOS-based approach to the
NMR data had itself not gone unchallenged; an alterna-
tive scenario sAnderson, 1973d emphasized the aniso-
tropy of the susceptibility in an ESP-type phase, some-
thing to which I had given no particular attention. It
became increasingly clear that to develop a convincing

10There was an amusing glitch, because of my initial misread-
ing of the experimental data, which I have recounted in Leg-
gett s1982d and will not repeat here.

11It is interesting, historically, that this was, to my knowledge,
the first calculation of any property of a Fermi superfluid in
which it turned out to be necessary to worry about the behav-
ior of the Cooper-pair wave function at distances of the order
of the interatomic spacing.

FIG. 3. A comparison between ferrromagnetism and sponta-
neously broken spin-orbit symmetry.
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theory of the NMR I needed to go well beyond the
simple sum-rule arguments of the Letter and do a be-
lievable calculation of the full microscopic dynamics.

In the early spring of 1973, the problem of the stability
of the A phase sand simultaneously of the correct iden-
tification of the B phased was beautifully solved in a
seminal paper by Anderson and Brinkman sAB; 1973d.
They took up an idea concerning superfluid 3He that
had been proposed prior to the experimental discovery
of the new phases, namely, that the effective attraction
necessary to bind the Cooper pairs in 3He does not sim-
ply come from the attractive part of the “bare” van der
Waals potential, but has an important contribution also
from the exchange of virtual spin fluctuations sparamag-
nons, as they had been christenedd. Crudely speaking,
just as in the BCS theory of superconductivity one elec-
tron polarizes the ionic lattice, and a second electron
then “feels” the induced polarization and is thereby at-
tracted to the first one sor more accurately to where the
first one was in the recent pastd, so in liquid 3He, with its
strong tendency towards ferromagnetism, the spin of
one 3He atom would induce a parallel collective spin
polarization of the liquid in the vicinity, which would
then attract a second atom of the same spin. As pointed
out by Layzer and Fay s1971d, this mechanism favors
pairing with parallel spins sS=1d, hence an odd value of
l, and correspondingly disfavors even-l sspin-singletd
states; it thus goes some way towards explaining why the
l=2 state, which most theoretical work had anticipated,
does not occur in real liquid 3He. Now, however, Ander-
son and Brinkman went further and pointed out a cru-
cial difference between this spin-fluctuation exchange
mechanism and the phonon-exchange mechanism be-
lieved to operate in metallic superconductors: In the lat-
ter case, the virtual excitation exchanged is an excitation
of a system sthe ionic latticed that is different from the
objects sthe electronsd that are thereby attracted to one
another and thereby form Cooper pairs, so that its struc-
ture is very insensitive to the onset of pairing in the
electron system. By contrast, in the case of liquid 3He,
the exchanged spin fluctuation is a collective excitation
of precisely these objects that are forming the pairs sthe
3He atomsd and thus its structure, and hence the effec-
tive attraction itself, is in general modified by the onset
of pairing. At first sight it is tempting to dismiss this
effect as insignificant. However, Anderson and Brink-
man were able to do a quantitative calculation flater
extended sBrinkman et al., 1974d in collaboration with
Sereneg, which showed that the effect can, under certain
circumstances, be comparable to the differences in BCS
theory between the energies of different pairing configu-
rations. In fact, they were able to show that while over
most of the P-T phase diagram the BW phase should be
stable just as in simple BCS theory, there is a compara-
tively small region of high pressure and temperature
where the spin-fluctuation “feedback” effects render a
particular ESP state stable. This conclusion precisely
agrees with the experimental phase diagram fobtained
soon thereafter by John Wheatley and his group sPaul-

son et al., 1973dg, if the B phase is identified with the BW
phase and the A phase with the relevant ESP phase.
Remarkably, the particular ESP phase that is favored is
none other than the one explicitly investigated by
Anderson and Morel in their 1961 paper fthus this phase
acquired the name of the Anderson-Brinkman-Morel
sABMd phaseg. This work constitutes a major qualitative
leap beyond the simple BCS theory, and was, in my view
a crucial contribution to the solution of the puzzle of the
new phases.

April 1973 was the spring vacation at Sussex, and, at
the invitation of Bob Richardson, I was able to spend
the whole month as a visitor at the Laboratory of
Atomic and Solid State Physics at Cornell. This month
was without doubt the single most exciting month of my
more than 40-year academic career: I was alone and was
able to spend 16 hours a day, seven days a week, think-
ing about the microscopic basis of the NMR data. I
spent much of the time commuting between the base-
ment of Clark Hall, where the experiments were ongo-
ing, and the sixth-floor offices of the theory group, who
were of course equally excited about the problem and
eager to exchange ideas about it.

The theory I came up with sLeggett, 1973bd during
this month can actually be viewed as a natural generali-
zation of my long-forgotten work on the internal Joseph-
son effect in a two-band superconductor. Consider an
ESP triplet state: the two spin configurations s↑↑ and ↓↓d
are then exactly analogous to the pairs formed, in the
superconducting case, in the two bands, and the analog
of the number difference DN is simply Sz, the z compo-
nent of the total snot the Cooper-pair!d spin of the sys-
tem. What is the analog of the phase difference Df be-
tween the pairs in the two bands? If we consider for
notational simplicity an ABM-type state, so that the or-
bital wave function factors out, the spin state is of the
form of a superposition:

Cpair , au↑↑l + bu↓↓l ; auSz = + 1l + buSz ; − 1l , s13d

so Dw;argsb /ad. But for a spin-1 system, a change in
the relative phase of the Sz=1 and Sz=−1 components
of the wave function is just equivalent to a rotation of
the spin coordinates for, equivalently, to the sinvertedd
rotation of the spin itselfg around the z axis. Hence, up
to a factor of 2, Dw is just the angle uz of such a rotation.
By the same arguments as used earlier sLeggett, 1966d,
one would then expect that Sz and uz satisfy the commu-
tation relation

fSz,uzg = i . s14d

However, there is nothing special about the z axis. One
would therefore expect12 that if S denotes the total spin
vector and the vector u specifies the operation of rota-

12The derivation of the dynamics in the original paper uses
the standard d-vector notation ssee, for example, Leggett,
1975, Sec. XI.Dd and is rigorous. Now I use a somewhat less
precise but hopefully intuitive notation and argument.
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tion through an angle uuu about the axis û, then we
should have the generalized commutation relation, valid
for an arbitrary pairing state,

fSa,ubg = idab. s15d

Now comes the crunch: The commutation relations
s15d, while rigorous, will lead us to a useful dynamics
only if the effective Hamiltonian for the latter can be
expressed in terms of S and u alone. Is this possible? I
argued that it is, for the following reason: We know from
experiment that the characteristic frequency associated
with the dipole forces13 fthe quantity v0sTdg is small
compared to the other obvious characteristic frequen-
cies in the problem, namely, the gap frequency DsTd /"
and the sN-phased quasiparticle relaxation rate t−1.
Thus, during the NMR, all the microscopic degrees of
freedom se.g., the distribution of normal quasiparticles,
or the configuration of the Cooper pairs apart from their
overall spin orientationd should follow the macroscopic
degrees of freedom S and u adiabatically, and one can
make a sort of “Born-Oppenheimer” approximation in
which the effective Hamiltonian is simply the minimum
value of the sfreed energy for the given values of those
two variables.

Now the only energy, apart from the Zeeman term,
which depends on the overall rotation angle of the
nuclear spin system is the dipolar energy Hdsud, which
can be calculated explicitly as a function of u for any
given assumed Cooper-pair configuration se.g., the ABM
phased.14 As to the S-dependent energy, it consists of the
Zeeman energy plus a polarization energy which, in a
degenerate Fermi liquid, has contributions from kinetic-
energy sPauli-principled and exchange effects; in any
event, for a given value of S the minimum value of this
energy is simply 1

2g2x0
−1S2, where x0 is the static spin

susceptibility swhich is in general a function of tempera-
ture, etc.d. Thus the total effective Hamiltonian in the
Born-Oppenheimer sadiabaticd approximation takes the
simple form

HsS,ud = 1
2g2x0

−1S2 − gS ·Hstd + HDsud , s16d

where H is the total external magnetic field, that is in
general the sum of the dc field and the rf one. From Eqs.
s16d and s17d we immediately obtain the equations of
motion of S and u:

dS
dt

= S 3Hstd −
] HD

] u
, s17ad

du

dt
=Hstd − x0

−1S . s17bd

Note that in thermal equilibrium du /dt is zero as it
should be. Although strictly speaking the quantities S ,u
appearing in Eq. s17d are quantum-mechanical opera-
tors, once one has got to them it is an excellent approxi-
mation, under all conditions realized to date in liquid
3He, to treat them semiclassically, i.e., to take the expec-
tation value of Eqs. s11d and replace k]HD /]ul by
s] /]kuldHDskuld, thereafter treating kSl;S and kul;u as
classical variables.15

The equations of motion s17d should be exact within
the Born-Oppenheimer approximation; it is clear that
they are conservative and thus cannot account for the
finite linewidths observed experimentally, but in 1973 I
left that question for future work.16 In principle, they
can be solved for any motion of the spin system that
respects this approximation, whether or not it is linear in
the rf field. In the linear case, which was at the time the
most urgent for the interpretation of the existing experi-
ments, it turns out that in the standard “transverse” ge-
ometry the values of the resonance frequencies sthere
may be more than one of themd are determined by the
eigenvalues of the tensor quantity

Vij
2 ; ]2kHDl/] ui ] uj. s18d

Since the form of this tensor is characteristic of the
particular pairing state assumed, we see that the experi-
mental NMR behavior is a “fingerprint” of the pairing
state. In particular, let us assume for definiteness ,=1
pairing and consider the three most frequently discussed

states. For the ABM state, the form of the tensor V̂ is
such that only a single resonance line is predicted in the
NMR absorption, with a frequency that is correctly
given by Eq. s6d as derived from the sum rules.17 For the
axial state, by contrast, the linearized versions of Eqs.
s17d predict two resonance lines, with a splitting that de-
creases rapidly with the dc external field and would have
thus been invisible in the experiments existing in April
1973, but should be easily visible at lower fields. Al-
though by this time it had already been shown sAnder-
son and Brinkman, 1973; Mermin and Stare, 1973d that
within the framework of a generalized Ginzburg-Landau
theory the axial phase is never thermodynamically
stable, the above observation suggested that it would be
desirable to confirm, by NMR “fingerprinting” at lower
dc fields, that the A phase shows no splitting of the reso-

13In high fields the Larmor frequency may exceed t−1, but this
does not matter since the relevant motion is simply uniform
rotation of the spin system.

14It is implicitly assumed that the reference sequilibriumd
state is the one that minimizes the expectation value of HD.

15For a discussion of the NMR behavior under conditions
where the semiclassical approximation might fail, see Leggett
s2003d.

16In fact, in later work with S. Takagi sLeggett and Takagi,
1977d I was able to generalize Eq. s17d so to produce an ac-
count of the dissipation.

17Strictly speaking this is true provided we assume that the
so-called d-vector lies perpendicular to the direction of the rf
field. fThere is a subtlety connected with Eq. s4d, which there is
no space to discuss here.g
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nance at any field, and such experiments were rapidly
initiated both at Cornell and by Doug Osheroff at Bell
Labs, to which he had by that time moved after complet-
ing his doctorate.

As regards the BW phase, the predictions made by
the linearized versions of Eqs. s17d are very intriguing. It
turns out that the determination of the correct form sori-
entationd of the equilibrium state is quite delicate: The
3P0 state originally considered by Vdovin s1963d and by
Balian and Werthamer s1963d does not minimize the
nuclear dipole energy, and in fact to do this it is neces-
sary to rotate the spin coordinates through an angle of
cos−1s− 1

4
d=104+ relative to the orbital one. However, in

zero dc external field it is obvious from the isotropy of
the 3P0 state that the axis v̂ of this rotation is completely
arbitrary. A finite external field along the z axis breaks
this degeneracy by depopulating, very slightly, the Sz

=0 Zeeman component of the pair state relative to the
Sz= ±1 components, and it turns out that this means that
it is energetically advantageous to choose v̂ to be along
the spositive or negatived z axis. The relevant energy,
while it thus determines the equilibrium state, is suffi-
ciently small that, at least at first sight, it does not have
to be taken into account explicitly in the dynamics,
which can thus be calculated by assuming a “pseudoiso-
tropic” state, that is, one obtained from the struly isotro-
picd 3P0 state by rotating the spins relative to the orbital
coordinates through 104° around the z axis. Now the
structure of the tensor Vij in Eq. s18d for this state is
rather striking: A small rotation of the nuclear-spin sys-
tem away from the equilibrium configuration around
any axis in the xy plane corresponds, up to the relevant
order, simply to a change in the axis of rotation while
keeping the angle fixed, and therefore brings into play

only the very small energy that stabilizes V̂ in the z
direction; at first sight, at least, it is consistent to neglect
this,18 and the transverse resonance therefore remains at
the Larmor value as in the normal phase. On the other
hand, a rotation around the z axis involves a change of
the angle of the spin-orbit rotation away from the equi-
librium value of 104°, and therefore should bring into
play a dipole energy of the same order of magnitude as
seen in the A-phase transverse resonance.

But how to see this effect? The answer is to look for a
“longitudinal” resonance, that is, a finite-frequency reso-
nance in the absorption spectrum of an rf field polarized
parallel rather than perpendicular to the dc field. sIn the
normal phase, as in any phase lacking SBSOS, this ab-
sorption spectrum is simply a diffusive peak centered on
zero frequency.d The presence of such a resonance, at a
frequency that could be estimated with some confidence
on the basis of the “calibration” of the dipole energy
from the A-phase shift, should, when coupled with the
absence of a transverse shift, identify the B phase almost
uniquely as the BW state. sA similar longitudinal reso-

nance is predicted to occur in both the ABM and axial
phases.d

Although initially neither the Anderson-Brinkman
theory of the stability of the ABM phase nor the spin
dynamics that I had developed during my stay at Cornell
found universal acceptance ssee Leggett, 1982d, by the
late summer of 1973 the smoke had cleared sufficiently
that most researchers sincluding med were convinced
that both were correct and that the existing experimen-
tal data were entirely consistent with the identification
of the A phase as ABM and the B phase as BW. The
clinching NMR observations, of a lack of splitting of the
A-phase transverse resonance at low fields sOsheroff,
1974d and of a longitudinal resonance at roughly the pre-
dicted frequency in the B phase sBozler et al., 1974d,
came in within a year or so, and from then on these
identifications, while occasionally challenged in the lit-
erature, appear to have stood the test of time and are by
now standard textbook material. It should of course be
added that the hypothesis of Cooper pairing leads to
many other predictions, above all that of superfluid be-
havior, and that this and the vast majority of other pre-
dictions are by now very well confirmed experimentally
fsee, for example, the comprehensive text by Vollhardt
and Wölfle s1990dg.

30 years later, following the award of the Nobel Prize
for my participation in these events, one question that I
am frequently and legitimately asked by journalists and
others is “What is superfluid 3He good for?” Particularly
when standing next to my UIUC colleague and co-
laureate Paul Lauterbur, whose MRI research has obvi-
ously been of such direct and immediate benefit to man-
kind, I find this question somewhat embarrassing, since
in the most direct and practical sense the most honest
answer is: nothing whatever! Helium is the most chemi-
cally inert of the elements; its application best known to
the general public is probably the filling of balloons at
children’s parties, and its main scientific application is in
cryogenics, an area in which the srare and expensived
light isotope 3He cannot compete with its much more
readily available cousin 4He. If this were not enough, the
superfluid phases of 3He occur only at less than one-
hundred-thousandth of room temperature, a regime that
is hardly conducive to most kinds of practical applica-
tion. So, while it is conceivable that the “superfluid am-
plification” property to be discussed below may in the
future be put to use in metrology sthe determination of
the fundamental constantsd, from all other points of view
superfluid 3He may well be the most practically useless
system ever discovered.

If we take a broader view, however, and content our-
selves with indirect applications, the picture is much
rosier. With the arguable exception of the fractional
quantum Hall systems discovered ten years later, the su-
perfluid phases of liquid 3He are probably the most so-
phisticated physical systems of which we can claim a
quantitative understanding, showing a subtlety of corre-
lation unprecedented in all of known physics; and the
lessons learned from them have been very widely ap-18Though see Osheroff, 1974.
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plied elsewhere, both in condensed-matter physics ffor
example, to the cuprate superconductors, which like 3He
are believed to form Cooper pairs in an “exotic” snon-
s-waved pairing stateg, and in particle physics and cos-
mology; indeed, whole books se.g., Volovik, 2003d have
been written on the analogies between various phenom-
ena known experimentally to occur in superfluid 3He
and some postulated in particle physics and/or the cos-
mology of the early universe. A second area in which the
uniquely rich structure of the order parameter spair
wave functiond of superfluid 3He has had fruitful conse-
quences is in studies of chaos and turbulence, and par-
ticularly of the way in which topological defects in the
order parameter are generated in quenching through a
phase transition sa process that is in fact frequently re-
garded as a model for processes believed to occur in the
early universed.

However, to my mind the single most exciting prop-
erty characteristic of the superfluid phases of 3He is the
superfluid amplification associated with the existence of
SBSOS. By superfluid sor Bosed amplification I mean
that the fact that all the Cooper pairs have to behave
identically has the consequence that tiny effects, which
in a normal system would be completely quenched by
thermal disorder, may become spectacularly visible. In
itself this property is of course not peculiar to 3He; in a
BCS superconductor the Josephson effect and, less ob-
viously, the Meissner effect itself can be regarded as il-
lustrations of this behavior. What is new and unique19

about the superfluid 3He system is the fact that the Coo-
per pairs have one or more nontrivial internal sorienta-
tionald degrees of freedom and must all behave identi-
cally with respect to these as well as to the center-of-
mass motion si.e., most show the property of SBSOSd.
As a result, the phenomenon of superfluid amplification
occurs also in properties associated with the internal
srelatived motion. We already saw one striking example
of this in the NMR behavior; I would like to close with a
second potential application of this principle that, if it
can be realized experimentally, should be even more
spectacular.

Unlike the gravitational and electromagnetic interac-
tions, which have direct and obvious manifestations at
the everyday smacroscopicd level, the weak interaction
postulated in particle physics has so far manifested itself
directly only at the microscopic level. One striking prop-
erty of this interaction that distinguishes it from the
other known interactions sgravitational, electromag-
netic, and strongd is that it violates the principle of in-
variance under spatial inversion sPd; the consequences
of this violation have been seen in scattering experi-
ments and more recently in the optical behavior of
heavy atoms. It is interesting to ask: Is it possible to see
the effects of this P violation at the macroscopic level?
In discussing this question, it is important to bear in
mind that, except for a very small CP-violating compo-

nent sof order 10−3 of the totald, the weak interaction
respects the principle of invariance under time reversal
sTd. As a result, if we ignore for present purposes the
small CP-violating component, the weak interaction
cannot give rise to an electric dipole moment on any
“simple” quantum system selementary particle, atom, or
moleculed. The reason is as follows: by the Wigner-
Eckart theorem, such an electric dipole moment sdd
would have to be proportional to the only vector quan-
tity characterizing this system, namely, the total angular
momentum J. But the ansatz d=const3J evidently vio-
lates T as well as P, and hence sin the absence of CP
violationd is unviable.

Consider, however, the Cooper pairs in the spseudo-
isotropicd B phase of superfluid 3He. Because of the
nonlinearity of the generalized BCS equation, which
describes the formation of pairs, the pseudoisotropic
state sas distinct from the original 3P0 state of Balian,
Werthamer, and Vdovind is not characterized by a well-
defined angular momentum L+S;J. However, it does
possess a characteristic vector that has a finite expecta-

tion value in the ground state, namely, the vector kL̂
3 Ŝl, which turns out to be directed along the spin-orbit
rotation axis v̂ ssee aboved. Since both L and S are axial
vectors and odd under time reversal, the ansatz

d = const 3 ksL 3 Sdl

violates P but not T, and is therefore allowed by sym-
metry even the absence of CP violation.

A calculation sLeggett, 1977d of the order of magni-
tude of the electric dipole moment expected to be pro-
duced by the weak interaction in 3He-B indicates that it
involves a number of dimensionless factors that are each
individually small in this system, and that as a result the
electric dipole moment on a single Cooper pair is some-
thing like ten orders of magnitude smaller than the
smallest electric dipole moment that would be visible sif
realized on, for example, the neutrond in current beam
experiments. However, now comes the crunch: because
of the property of SBSOS, all the Cooper pairs must
have exactly the same value of kL3Sl and hence of d, so
that the total electric dipole moment of the system is in
principle macroscopic! Although calculations indicate it
is still extremely small, it is not obviously beyond the
reach of existing measurement techniques, and Doug
Osheroff at Stanford is currently building an experiment
to look for it. If it can be seen, it will be the first ever
example of a direct manifestation of the weak interac-
tion, and in particular of its characteristic property of P
violation, at the level of everyday life.

In conclusion, I would first like to thank those who did
the hard work involved in nominating me for the Nobel
prize, and the Physics Committee of the Swedish Acad-
emy of Sciences for the even harder work which even-
tually resulted in my selection; I am very conscious that
I am only one of a number of researchers whose work
both before and after the experimental discovery helped
to clarify the nature of the new phases, and in this con-
text it is impossible not to mention one name in particu-

19At least until the recent advent of the Bose-Einstein con-
densate sBECd alkali gases with a hyperfine degree of freedom.
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lar, that of Phil Anderson, who with various collabora-
tors contributed so many vital insights during these
years and later. Second, I would like to thank all those
who in one way or another helped me along the path
which has led me to stand here today. In particular I am
grateful to the late Fr. Charles O’Hara for introducing
me to the marvels of modern mathematics and giving me
the confidence that I could do it if I ever had to; to
David Brink and Michael Baker for accepting me, a
classics graduate with zero formal training in physics, to
do a second undergraduate degree in that subject, and to
the Fellows of Merton College, Oxford, for providing
the means for me to do it: to the late Dirk ter Haar for
accepting me—still the proverbial dark horse—to do an
advanced degree in theoretical physics, and to the fac-
ulty of Magdalen College, Oxford, for electing me to a
fellowship which considerably more than kept body and
soul together while I did it and thereafter; and to David
Pines for choosing me as his postdoc at The University
of Illinois at Urbana-Champaign, and for his encourage-
ment in my first ventures into the area of superfluid 3He.
I owe special thanks to Bob Richardson, Doug Osheroff,
Dave Lee, and Willy Gully for their generosity in shar-
ing their data with me long before publication, and for
innumerable, fruitful, and inspiring discussions; and to
David Mermin, Vinay Ambegaokar, Joe Serene, and
other members of the Cornell theoretical group for their
help, particularly sbut not onlyd with the technical details
of the calculation. In this context I should also mention
Shin Takagi, who while not around for the period I have
reviewed became an invaluable collaborator in my later
work on superfluid 3He.

Finally, I owe a huge debt to the various people who
have supported me in my research over the years,
whether, like my former colleagues at Sussex and my
current ones at Illinois, by providing a congenial aca-
demic environment, or in less direct but equally impor-
tant ways through their friendship and encouragement.
In this last category I am especially grateful to my wife,
Haruko, to whom I was getting engaged just as all the
excitement I have described was happening, and who
nevertheless tolerated and even encouraged my going
off by myself to Cornell for that vital month—and who,
with my daughter Asako, has been equally supportive of
my research, and tolerant of its sometimes
unreasonable-seeming demands, over the last 30 years.
To all of you, my sincere and heartfelt thanks.

REFERENCES

Anderson, P. W., 1973, Phys. Rev. Lett. 30, 368.
Anderson, P. W., and W. F. Brinkman, 1973, Phys. Rev. Lett.

30, 1108.
Anderson, P. W., and P. Morel, 1961, Phys. Rev. 123, 1911.
Balian, R., L. H. Nosanow, and N. R. Werthamer 1962, Phys.

Rev. Lett. 8, 372.

Balian, R., and N. R. Werthamer, 1963, Phys. Rev. 131, 1553.
Bardeen, J., L. N. Cooper, and J. R. Schrieffer, 1957, Phys.

Rev. 108, 1175.
Brinkman, W. F., J. Serene, and P. W. Anderson, 1974, Phys.

Rev. A 10, 2386.
Bozler, H. M., M. E. R. Bernier, W. J. Gully, R. C. Richardson,

and D. M. Lee, 1974, Phys. Rev. Lett. 32, 875.
Chechetkin, V. R., 1982, Fiz. Nizk. Temp. 8, 41 fSov. J. Low

Temp. Phys. 8, 19 s1982dg.
Fulde, P., and R. A. Ferrell, 1964, Phys. Rev. 135, A550.
Gor’kov, L. P., and V. M. Galitskii, 1961, Zh. Eksp. Teor. Fiz.

40, 1124 fSov. Phys. JETP 13, 792 s1962dg.
Haard, T. M., J. B. Kycia, M. R. Rand, H. H. Hensley, Y. Lee,

P. J. Hamot, D. T. Sprague, and W. P. Halperin, 1994, Phys.
Rev. Lett. 72, 860.

Halperin, W. P., C. N. Archie, F. B. Rasmussen, R. A. Buhr-
man, and R. C. Richardson, 1974, Phys. Rev. Lett. 32, 927.

Hone, D., 1962, Phys. Rev. Lett. 8, 370.
Landau, L. D., 1956, Zh. Eksp. Teor. Fiz. 30, 1058 fSov. Phys.

JETP 3, 920 s1957dg.
Larkin, A. I., 1964, Zh. Eksp. Teor. Fiz. 46, 2188 fSov. Phys.

JETP 19, 1478 s1964dg.
Layzer, A., and D. Fay, 1971, Int. J. Magn. 1, 135.
Leggett, A. J., 1966, Prog. Theor. Phys. 36, 901.
Leggett, A. J., 1972, Phys. Rev. Lett. 29, 1227.
Leggett, A. J., 1973a, J. Phys. C 6, 2187.
Leggett, A. J., 1973b, Phys. Rev. Lett. 31, 352.
Leggett, A. J., 1975, Rev. Mod. Phys. 47, 331.
Leggett, A. J., 1977, Phys. Rev. Lett. 39, 587.
Leggett, A. J., 1982, Physica B & C 109, 1393.
Leggett, A. J., 2004a, Les Prix Nobel 2003 sThe Nobel Foun-

dation, Stockholmd.
Leggett, A. J., 2004b, Synth. Met. 141, 51.
Leggett, A. J., and S. Takagi, 1977, Ann. Phys. sN.Y.d 106, 79.
Mermin, N. D., and G. Stare, 1973, Phys. Rev. Lett. 30, 1135.
Osheroff, D. D., 1974, Phys. Rev. Lett. 33, 1009.
Osheroff, D. D., W. J. Gully, R. C. Richardson, and D. M. Lee,

1973, Phys. Rev. Lett. 29, 920.
Osheroff, D. D., R. C. Richardson, and D. M. Lee, 1972, Phys.

Rev. Lett. 28, 885.
Paulson, D. N., H. Kojima, and J. C. Wheatley, 1974, Phys.

Rev. Lett. 47, 457.
Paulson, D. N., R. T. Johnson, and J. C. Wheatley, 1973, Phys.

Rev. Lett. 31, 746.
Pines, D., and P. Nozières, 1966, Theory of Quantum Liquids

sBenjamin, New Yorkd, Vol. I.
Ponomarev Ya. G., S. A. Kuzmichev, M. G. Mikheev, M. V.

Sudakova, S. N. Tchesnokov, N. Z. Timergaleev, A. V. Yari-
gin, E. G. Maksimov, S. I. Krasnosvobodtsev, A. V. Varlash-
kin, M. A. Hein, G. Muller, et al., 2004, Solid State Commun.
129, 85.

Vdovin, Yu. A., 1963, in Application of Methods of Quantum
Field Theory to Problems of Many Particles, edited by A. I.
Alekseyeva sGosatomizdat, Moscowd sin Russiand.

Vollhardt, D., and P. Wölfle, 1990, The Superfluid Phases of
Helium-3 sTaylor and Francis, Londond.

Volovik, G. E., 2003, The Universe in a Helium Droplet sClar-
endon, Oxfordd.

Yip, S., 1984, Phys. Lett. 105A, 66.

1011Anthony J. Leggett: Superfluid 3He: the early days as seen by a theorist

Rev. Mod. Phys., Vol. 76, No. 3, July 2004


