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This article reviews the plane-wave/super Yang-Mills duality, which states that strings on a plane-wave
background are dual to a particular large R-charge sector of N=4, D=4 superconformal UsNd gauge
theory. This duality is a specification of the usual anti–de Sitter/conformed field theory sAdS/CFTd
correspondence in the “Penrose limit.” The Penrose limit of AdS53S5 leads to the maximally
supersymmetric ten-dimensional plane wave shenceforth “the” plane waved and corresponds to
restricting to the large R-charge sector, the Berenstein-Maldacena-Nastase sBMNd sector, of the dual
superconformal field theory. After reviewing the necessary background, the authors state the duality
and review some of its supporting evidence. They discuss the suggestion by ’t Hooft that Yang-Mills
theories with gauge groups of large rank might be dual to string theories and the realization of this
conjecture in the form of the AdS/CFT duality. Plane waves as exact solutions of supergravity and
their appearance as Penrose limits of other backgrounds are considered, followed by an overview of
string theory on the plane-wave background, discussing the symmetries and spectrum. The article then
makes precise the statement of the proposed duality and classifies the BMN operators. It examines the
gauge theory side of the duality, studying both quantum and nonplanar corrections to correlation
functions of BMN operators and their operator-product expansions. The important issue of operator
mixing and the resultant need for rediagonalization is stressed. Finally, the article studies strings on the
plane wave via light-cone string field theory and demonstrates agreement between the one-loop
correction to the string mass spectrum and the corresponding quantity in the gauge theory. A new
presentation of the relevant superalgebra is given.
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I. INTRODUCTION

In the late 1960s a theory of strings was first proposed
as a model for the strong interactions describing the dy-
namics of hadrons. However, in the early 1970s, results
from deep-inelastic scattering experiments led to the ac-
ceptance of the “parton” picture of hadrons, and this led
to the development of the theory of quarks as basic con-
stituents carrying color quantum numbers, and whose
dynamics are described by quantum chromodynamics
sQCDd, which is an SUsNcd Yang-Mills gauge theory
with Nf flavors of quarks. According to the standard
model of particle physics, Nc=3, Nf=6. With the accep-
tance of QCD as the theory of strong interactions the
old string theory became obsolete. However, in 1974
’t Hooft s1974a, 1974bd observed a property of SUsNcd
gauge theories which was very suggestive of a corre-
spondence or “duality” between the gauge dynamics and
string theory.

To study any field theory we usually adopt a perturba-
tive expansion, generally in powers of the coupling con-
stant of the theory. The first remarkable observation of
’t Hooft was that the true expansion parameter for an
SUsNd gauge theory swith or without quarksd is not the
Yang-Mills coupling gYM

2 , but rather gYM
2 dressed by N,

in the combination l, now known as the ’t Hooft cou-
pling:

l = gYM
2 N . s1.1d

The second remarkable observation ’t Hooft made
was that in addition to the expansion in powers of l one
may also classify the Feynman graphs appearing in the
correlation function of generic gauge theory operators in
powers of 1/N2. This observation is based on the fact
that the operators of this gauge theory are built from
simple N3N matrices. One is then led to expand any
correlation function in a double expansion in powers of
l as well as 1/N2. In the 1/N2 expansion, which is a
useful one for large N, the terms of lowest order in pow-
ers of 1/N2 arise from the subclass of Feynman diagrams
that can be drawn on a sphere sa one-point compactifi-
cation of the planed, once the ’t Hooft double-line nota-
tion is used. These are called planar graphs. In the same
spirit one can classify all Feynman graphs according to
the lowest-genus surface on which they may be placed
without any crossings. For genus h surfaces, with h.0,
such diagrams are called nonplanar. The lowest-genus
nonplanar surface is the torus with h=1. The genus h
graphs are suppressed by a factor of s1/N2dh with respect
to the planar diagrams. According to this 1 /N expan-
sion, at large N, but finite ’t Hooft coupling l, the corr-
elators are dominated by planar graphs.

The genus expansion of Feynman diagrams in a gauge
theory resembles a similar pattern in string theory:
stringy loop diagrams are suppressed by gs

h where h is
now the genus of the string worldsheet and gs is the
string coupling constant. The Feynman graphs in the
large-N limit form a continuum surface which may be
slooselyd interpreted as the string worldsheet. In Sec. I.A
of the Introduction, we shall very briefly sketch the me-
chanics of the ’t Hooft large-N expansion.

In the mid 1970s, string theory was promoted from an
effective theory of strong dynamics to a theory of fun-
damental strings and put forward as a candidate for a
quantum theory of gravity sScherk and Schwarz, 1974d.
Much has been learned since then about the five differ-
ent ten-dimensional string theories. In particular, by
1997, a web of various dualities relating these string
theories, their compactifications to lower dimensions,
and an as-yet-unknown, though more fundamental,
theory known as M theory, had been proposed and com-
pelling pieces of evidence in support of these dualities
uncovered sHull and Townsend, 1995; Witten, 1995d. We
do not intend to delve into the details of these dualities;
for such matters the reader is referred to the various
books and reviews, e.g., Johnson s2003d or Polchinski
s1998a, 1999bd.

Although our understanding of string and M theory
had been much improved through the discovery of these
various dualities, before 1997 the observation of ’t Hooft
had not been realized in the context of string theory. In
other words, the ’t Hooft strings and the “fundamental”
strings seemed to be different objects. Amazingly, in
1997 a study of the near-horizon geometry of D3-branes
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sMaldacena, 1998d led to the conjecture that strings of
type-IIB string theory on the AdS53S5 background are
the ’t Hooft strings of an N=4, D=4 supersymmetric
Yang-Mills theory.

AdS53S5 is a 9+1-dimensional manifold composed of
a 4+1 dimensional anti–de Sitter sAdS5d space, a space
of constant negative curvature and a five-dimensional
sphere S5 such that the radii of curvature of both AdS5
and S5 are equal. According to this conjecture any physi-
cal object or process in the type-IIB theory on an
AdS53S5 background can be equivalently described by
N=4, D=4 super Yang-Mills sSYMd theory, which is a
four-dimensional super conformal field theory sGubser
et al., 1998; Witten 1998; Aharony et al., 2000d. In par-
ticular, according to the Maldacena conjecture, the
’t Hooft coupling s1.1d is related to the AdS radius R as

SR

ls
D4

= gYM
2 N , s1.2d

where ls is the string scale. On the string theory side of
the duality, ls /R appears as the worldsheet coupling;
hence when the gauge theory is weakly coupled the two-
dimensional worldsheet theory is strongly coupled and
nonperturbative, and vice versa. In this sense the
anti–de Sitter/conformal field theory sAdS/CFTd duality
sWitten, 1998; Aharony et al., 2000d is a weak/strong du-
ality. Due to the smainly technicald difficulties of solving
the worldsheet theory on the AdS53S5 background,1

our understanding of the string theory side of the duality
has been mainly limited to the low-energy supergravity
limit, and in order for the supergravity expansion about
the AdS background to be trustworthy, we generally
need to keep the AdS radius large. At the same time we
must also ensure the suppression of string loops. As a
result, most of the development and checks of the dual-
ity from the string theory side have been limited to the
regime of large ’t Hooft coupling and the N→` limit on
the gauge theory side. A more detailed discussion of the
AdS/CFT duality will be presented in Sec. I.B.

One might wonder if it is possible to go beyond the
supergravity limit and perform real string theory calcu-
lations from the gauge theory side. We would then need
to have similar results from the string theory side to
compare with, and this seems notoriously difficult, at
least at the moment.

The s model for strings on AdS53S5 is difficult to
solve. However, there is a specific limit in which AdS5
3S5 reduces to a plane wave sGueven, 2000; Blau et al.,
2002a, 2002b, 2002c, 2003; Blau and O’Loughlin, 2003d,
and in this limit the string theory s model becomes solv-
able sMetsaev, 2002; Metsaev and Tseytlin, 2002d. In this
special limit we then know the string spectrum, at least
for noninteracting strings, and one might ask if we can
find the same spectrum from the gauge theory side. For

that we first need to understand how this specific limit
translates to the gauge theory side. We then need a defi-
nite proposal for mapping the operators of the gauge
theory to ssingled string states. This proposal, following
the work of Berenstein, Maldacena, and Nastase s2002d,
is known as the BMN conjecture. It will be introduced in
Sec. I.C of the Introduction and is discussed in more
depth in Sec. V. The BMN conjecture is supported by
some explicit and detailed calculations on the gauge
theory side. Spelling out different elements of this con-
jecture is the main subject of this review.

In Sec. II we review plane waves as solutions of super-
gravities that have a globally defined null Killing vector
field, and we emphasize an important property of these
backgrounds: they are exact solutions without a8 correc-
tions. We shall focus mainly on the ten-dimensional
maximally supersymmetric plane-wave background.
This maximally supersymmetric plane wave will be re-
ferred to as “the” plane wave to distinguish it from other
plane-wave backgrounds. We study the isometries of this
background, as well as the corresponding supersymmet-
ric extension, and we show that this background pos-
sesses a PSUs2 u2d3PSUs2 u2d3Us1d−3Us1d+ superal-
gebra. We also discuss the spectrum of type-IIB
supergravity on the plane-wave background.

In Sec. III we review the procedure for taking the
Penrose limit of any given geometry. We then argue that
this procedure can be extended to solutions of super-
gravities to generate new solutions. As examples, we
work out the Penrose limit of some AdSp3Sq spaces.
Moreover, we discuss how taking the Penrose limit
manifests itself as a contraction at the level of the super-
algebra. In particular, we show how to obtain the super-
algebra of the plane wave, discussed in Sec. II, as a sPen-
rosed contraction of the supergroup PSUs2,2 u4d which is
the superalgebra of the AdS53S5 background.

Having established that plane-wave backgrounds form
a8-exact solutions of supergravitiess, we find that they
form particularly simple backgrounds for string theory.
In Sec. IV we work out the s-model action for type-IIB
strings on the plane-wave background in the light-cone
gauge. Formulating a theory in the light-cone gauge has
the advantage that only physical son-shelld degrees of
freedom appear, and ghosts are decoupled sPolchinski,
1998ad. For the particular case of strings on plane waves,
due to the existence of the globally defined null Killing
vector field, fixing the light-cone gauge has an additional
advantage: the energies sfrequenciesd are conserved in
this gauge, and as a result the well-known problem as-
sociated with nonflat spaces, namely, particle sstringd
production, is absent. Adding fermions is done using the
Green-Schwarz formulation, and as usual redundant fer-
mionic degrees of freedom arise from k symmetry. After
fixing the k symmetry, we obtain the fully gauge-fixed
action from which one can easily read off the spectrum
of sfreed strings on this background. We also present the
representation of the plane-wave superalgebra in terms
of stringy modes.

In Secs. V–VII, we return to the ’t Hooft expansion,
though in the BMN sector of the gauge theory, and de-

1For a recent work in the direction of solving this two-
dimensional theory see Bena et al. s2003d and the references
therein.
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duce the spectrum of strings on the plane wave obtained
in Sec. IV, from gauge theory calculations. In this sense
these sections are the core of this review. In Sec. V we
present the BMN or plane-wave/SYM duality conjec-
ture.

In Sec. VI we present the first piece of supporting
evidence for the duality, where we focus on the planar
graphs. Reviewing the results of Constable et al. s2002a,
2002bd, Gross et al. s2002d, and Kristjansen et al. s2002d,
we show that the ’t Hooft expansion is modified for the
BMN sector of the gauge theory, and we are led to a new
type of “’t Hooft expansion” with a different effective
coupling. In Sec. VI.B we explain how and why anoma-
lous dimensions of operators in the BMN sector corre-
spond to the free-string spectrum obtained in Sec. IV.

In Sec. VII, we move beyond the planar limit and
consider the contributions to the spectrum arising from
nonplanar graphs, which correspond on the string theory
side to inclusion of loops. We shall see that the genus
counting parameter should also be modified in the BMN
limit. Moreover, as we shall see, the suppression of
higher-genus graphs with respect to the planar ones is
not universal and in fact depends on the sector of the
operators we are interested in. One of the intriguing
consequences of the nonvanishing higher-genus contri-
butions is the possible mixing between the original
single-trace operators with double and in general multi-
trace operators. The mixing effects will force us to
modify the original BMN dictionary of correspondences.
After making the appropriate modifications, we present
the results of the one-loop sgenus oned corrections to the
string spectrum.

After discussing the string spectrum on the plane
wave at both planar and nonplanar order from the gauge
theory side of the duality, we tackle the question of
string interactions on the plane-wave background in Sec.
VIII, with the aim of obtaining one-loop corrections to
the string spectrum from the string theory side. This pro-
vides us with a nontrivial check of the plane-wave/SYM
duality. From the string theory point of view, the pres-
ence of the nontrivial background, in particular the
Ramond-Ramond form sRamond, 1971d, makes using
the usual machinery for computing string scattering am-
plitude via vertex operators cumbersome, and one is led
to develop the string field-theory formulation, a field
theory that captures the dynamics of string theory and in
which every string mode is represented by an appropri-
ate field. From the gauge theory side, as we shall discuss
in Sec. VII, the nature of the difficulties is different: it is
not a trivial task to distinguish single, double, and in
general multistring states. We work out light-cone string
field theory on this background and use this setup to
calculate one-loop corrections to the string spectrum.
We shall show that the data extracted from nonplanar
gauge theory correlation functions are in agreement
with their string theoretic counterparts. In Sec. VIII.A
we present some basic facts and necessary background
regarding light-cone string field theory. In Sec. VIII.B
we work out the three-string vertex in the light-cone
string field theory on the plane-wave background. Then

in Sec. VIII.C we consider higher-order string interac-
tions and present one-loop corrections to the string mass
spectrum.

Finally, in Sec. IX, we summarize the main points of
the review and mention some interesting related ideas
and developments in the literature. We also discuss
some of the open questions in the formulation of strings
on general plane-wave backgrounds and the related is-
sues on the gauge theory side of the conjectured duality.

We have tried to make this review self-contained.
However, we assume that the reader is familiar with su-
persymmetry at the level of Wess and Bagger s1992d and
string theory at the level of Polchinski s1998a, 1998bd.
For standard reviews of the AdS/CFT, the reader is re-
ferred to Aharony et al. s2000ad and D’Hoker and Fried-
man s2002d.

A. ’t Hooft’s large-N expansion

In an effort to understand strong dynamics in gauge
theories, ’t Hooft introduced a remarkable expansion for
gauge theories with large gauge groups, with the rank of
the gauge group ,N s’t Hooft, 1974a, 1974bd. He sug-
gested treating the rank of the gauge group as a param-
eter of the theory and expanding in 1/N2, which turns
out to correspond to the genus of the surface onto which
the Feynman diagrams can be mapped without overlap,
yielding a topological expansion analogous to the genus
expansion in string theory, with the gauge theory Feyn-
man graphs viewed as “string theory” worldsheets. In
this correspondence, the planar or nonplanar Feynman
graphs may be thought of as tree or loop diagrams of the
corresponding “string theory.”

Asymptotically free theories, like SUsNd gauge theory
with sufficiently few matter fields, exhibit dimensional
transmutation, in which the scale-dependent coupling
gives rise to a fundamental scale in the theory. For
QCD, this is the confinement scale LQCD. Since this is a
scale associated with physical effects, it is natural to
keep this scale fixed in any expansion. This scale appears
as a constant of integration when solving the b-function
equation, and it can be held fixed for large N if we also
keep fixed the product gYM

2 N while taking N→`. This
defines the new expansion parameter of the theory, the
’t Hooft coupling constant l;gYM

2 N.
To see how the expansion works in practice, let us

consider the action for a gauge theory, for example, the
N=4 super Yang-Mills2 theory written down in compo-
nent form in Eq. sA1d. All the fields in this action are in
the adjoint representation. We have scaled our fields so
that an overall factor of 1/gYM

2 appears in front. We
write this in terms of N and the ’t Hooft coupling l,
using 1/gYM

2 =N /l. The perturbation series for this
theory can be constructed in terms of Feynman dia-
grams built from propagators and vertices in the usual

2Supersymmetry is not consequential to this discussion, and
we ignore it for now.
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way. With our normalization, each propagator contrib-
utes a factor of l /N, and each vertex a factor of N /l.
Loops in diagrams appear with group theory factors
coming from summing over the group indices of the ad-
joint generators. These give rise to an extra factor of N
for each loop. A typical Feynman diagram will be asso-
ciated with a factor

lP−VNV−P+sL+1d s1.3d

if the diagram contains V vertices, P propagators, and L
loops. These diagrams can be interpreted as simplicial
complexes if we choose to draw them using the ’t Hooft
double-line notation. For UsNd, the group index struc-
ture of adjoint fields is that of a direct product of a fun-
damental and an antifundamental. The propagators can
be drawn with two lines showing the flow of each index,
and with the arrows pointing in opposite directions ssee
Fig. 1d.

The vertices are drawn in a similar way, with the di-
rections of the arrows indicating the fundamental or an-
tifundamental indices of the generators. In this diagram-
matic presentation, the propagators form the edges, and
the insides of loops are considered to be the faces. The
one-point compactification of the plane then means that
the diagrams give rise to closed, compact, and orientable
surfaces, with Euler characteristic x=V−P+F=2–2h,
where h is the genus of the surface. The number of faces
is one more than the number of loops, since group
theory always gives rise to an extra factor of N for the
last trace. In the simplicial decomposition with the one-
point compactification, the outside of the diagram be-
comes another face and can be interpreted as the last
trace.

The perturbative expansion of the vacuum persistence
amplitude takes the form of a double expansion,

o
h=0

`

N2–2hPhsld , s1.4d

with h the genus and Ph some polynomial in l, which
itself admits a power-series expansion,

Phsld = o
n=0

`

Ch,nln. s1.5d

The basic idea is that all the diagrams generated for the
vacuum correlation function can be grouped in classes
based on their genera, and all the diagrams in each class
will have varying dependences on the ’t Hooft coupling
l. Collecting all the diagrams in a given class into groups
sharing the same dependence on l, we can extract the h-
and n-dependent constant Ch,n. It is clear from Eq. s1.4d
that, for large N, the dominant contributions come from
diagrams of the lowest genus, the planar sor sphericald
diagrams.

The double expansion s1.4d and s1.5d looks remark-
ably similar to the perturbative expansion for a string
theory with coupling constant 1/N and with the expan-
sion in powers of l playing the role of the worldsheet
expansion. The analogy extends to the genus expansion,
with the Feynman diagrams loosely forming a sort of
discretized string worldsheet. At large N, such a string
theory would be weakly coupled. The string coupling
measures the difference in the Euler character for
worldsheet diagrams of different topology. This has long
suggested the existence of a duality between gauge and
string theory. We of course also have to account for the
mapping of nonperturbative effects on the two sides of
the duality.

So far we have considered only the vacuum diagrams,
though the same arguments apply when considering cor-
relation functions with insertions of the fields. The ac-
tion appearing in the generating functional of connected
diagrams must be supplemented with terms coupling the
fundamental fields to currents, and these terms will en-
ter with a factor of N. The planar3 sleadingd contribu-
tions to such correlation functions with j insertions of
the fields will be suppressed by an extra factor of N−j

relative to the vacuum diagrams. The one-particle irre-
ducible three- and four-point functions then come with
factors of 1/N and 1/N2 relative to the propagator, sug-
gesting that 1/N is the correct expansion parameter. The
expansion s1.4d for these more general correlation func-
tions still holds if we account for the extra factors of N
coming from the insertions of the fields. The extra factor
depends on the number of fields in the correlation func-
tion, but is fixed for the perturbative expansion of a
given correlator.

The picture we have formed is of an oriented closed
string theory. Adding matter in the fundamental repre-
sentation would correspond to including propagators

3With the point at infinity identified, planar diagrams become
spheres, and higher-genus diagrams become spheres with
handles.

FIG. 1. Typical Feynman rules for adjoint fields and sample
planar and nonplanar diagrams.
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with a single line. These could then form the edges of
the worldsheets, and so would correspond to a dual
theory with open strings swith the added possibility of
D-branesd. Generalizations to other gauge groups such
as OsNd and SpsNd would lead to unorientable world-
sheets, since their adjoint representations swhich are
reald would appear like products of fundamentals with
fundamentals. This viewpoint has been applied to other
types of theories, for example, nonlinear sigma models
with a large number of fundamental degrees of freedom.

The new ingredient relevant to our discussion will be
the following: for a conformally invariant theory such as
N=4 SYM, the b function vanishes for all values of the
coupling gYM sit has a continuum of fixed pointsd. There
is no natural scale in this theory that should be held
fixed. This makes possible limits different from the
’t Hooft limit, and we take advantage of such an opening
via the so-called BMN limit, which we discuss at length
in what follows. Not all such limits are well defined. In
the BMN limit, we shall consider operators with large
numbers of fields. If the number of fields is scaled with
N, generically, higher-genus diagrams will dominate
lower-genus ones, and the genus expansion will break
down. The novel feature of the BMN limit is that these
large numbers of fields combine in a way that makes it
possible for diagrams of all genera to contribute without
the relative suppression typical in the ’t Hooft limit. In
this sense, the BMN limit is the balancing point between
two regions, one where diagrams of higher genus are
suppressed and do not contribute in the limit, and the
other where the limit is meaningless.

A concise introduction to the basic ideas underlying
the large-N expansion can be found in the article of
’t Hooft s2002d, with a more detailed review being that
of ’t Hooft s1994d. Applications to QCD are given by
Manohar s1998d. A review of the large-N limit in field
theories and the relation to string theory was presented
by Aharony et al. s2000d, who discuss many issues re-
lated to anti–de Sitter spaces, conformal field theories,
and the celebrated AdS/CFT correspondence.

B. String/gauge theory duality

’t Hooft’s original demonstration that the large-N limit
of UsNd gauge theory is dual to a string theory, sparked
many attempts to construct such a duality explicitly. One
such attempt sGross, 1993; Gross and Taylor, 1993d was
to construct the dual to two-dimensional pure QCD as a
map from two-dimensional worldsheets of a given genus
into a two-dimensional target space. QCD2 in two di-
mensions is almost a topological theory, with the corre-
lation functions depending only on the topology and the
area of the manifold on which the theory is formulated,
making the theory exactly solvable. The partition func-
tion of this string theory sums over all branched cover-
ings of the target space and can be evaluated by dis-
cretizing the target using a two-dimensional simplicial
complex with an N3N matrix placed at each link. The
partition function thus constructed can be evaluated ex-

actly via an expansion in terms of group characters, giv-
ing rise to a matrix model, whose solution has been
given by Kazakov et al. s1996d, Kostov and Staudacher
s1997d, and Kostov et al. s1998d. Zero-dimensional QCD
was considered by Brezin et al. s1978d as a toy model
that retains all the diagrammatic features but with trivial
propagators, allowing the investigation of combinatorial
counting in matrix models.

Another realization of ’t Hooft’s observation, this time
via conventional string theory, is the celebrated AdS/
CFT correspondence. The duality is suggested by the
two viewpoints presented by D-branes. The low-energy
effective action of a stack of N coincident D3-branes is
given by N=4 super Yang-Mills theory with gauge group
UsNd. While away from the brane the theory is type-IIB
closed string theory, there exists a decoupling limit
where the closed strings of the bulk are decoupled from
the gauge theory living on the brane sMaldacena, 1998d.
D3-branes are solitons in the string theory, analogous to
the solitons of Bogomolny, Prasad, and Sommerfeld
sBPS; see Bogomolny, 1975; Prasad and Sommerfeld
1975d. Because these D-branes break 16 of the super-
charges of the type-IIB vacuum, they are sometimes re-
ferred to as “half BPS.” The supercharges in the decou-
pling limit will be nonlinearly realized as the
superconformal supercharges in the N=4 worldvolume
theory of the branes, a theory that exhibits superconfor-
mal invariance. For large N, the stack of D-branes will
back-react, modifying the geometry seen by the type-IIB
strings. In the low-energy description given by super-
gravity, the presence of the D-brane is seen in the form
of the vacuum for the background fields like the metric
and the Ramond-Ramond fields. These are two different
descriptions of the physics of the stack of D-branes, and
the ability to take these different viewpoints is the es-
sence of the AdS/CFT duality. Type-IIB superstring-
theory on the AdS53S5 background is dual to sor can be
equivalently described byd N=4, D=4 UsNd supersym-
metric Yang-Mills theory with a prescribed mapping be-
tween string theory and gauge theory objects.

The specific prescription for the correspondence is
suggested by the matching of the global symmetry
groups and their representations on the two sides of the
duality. The matching extends to the partition function
of the N=4 SYM on the boundary of AdS5 sR3S3d and
the partition function of type-IIB string theory on
AdS53S5 sWitten, 1998d,

keed4x f0sxdOsxdlCFT = Zstringfufuboundary = f0sxdg , s1.6d

where the left-hand side is the generating function of
correlation functions of gauge-invariant operators O in
the gauge theory ssuch correlation functions are ob-
tained by taking derivatives with respect to f0 and set-
ting f0=0d and the right-hand side is the full partition
function of stype-IIBd string theory on the AdS53S5

background with the boundary condition that the field
f=f0 on the AdS boundary sAharony et al., 2000d. The
dimensions of the operators O si.e., the charge associ-
ated with the behavior of the operator under rigid coor-
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dinate scalingsd correspond to the free-field masses of
the bulk excitations. Every operator in the gauge theory
can be put in one-to-one correspondence with a field
propagating in the bulk of the AdS space, e.g., the
gauge-invariant chiral primary operators and their de-
scendents sD’Hoker and Freedman, 2002d on the Yang-
Mills side can be put in a one-to-one correspondence
with the supergravity modes of the type-IIB theory. In
the low-energy approximation to the string theory, we
have type-IIB supergravity, with higher-order a8 correc-
tions from the massive string modes. sNote, however,
that the AdS53S5 background itself is an exact solution
to supergravity with all a8 corrections included.d The re-
lation s1.2d between the radius of AdS5 sand also S5d
shows that when the gauge theory is weakly coupled, the
radius of AdS5 is small in string units. In this regime, the
supergravity approximation breaks down. Of course, to
make the duality complete, we have to find the mapping
for the nonperturbative objects and effects on the two
sides.

This conjecture has been generalized and restated for
string theories on many deformations of the AdS53S5

background, such as AdS53T1,1 sKlebanov and Witten,
1998d, the orbifolds of AdS53S5 space sGukov, 1998;
Kachru and Silverstein, 1998; Lawrence et al., 1998d, and
even nonconformal cases sKlebanov and Strassler, 2000;
Polchinski and Strassler, 2000d and AdS33S33M4 sGi-
veon et al., 1998; Kutasov and Seiberg, 1999d. For ex-
ample, in the Klebanov-Witten case, the statement is
that type-IIB strings on an AdS53T1,1 background are
the ’t Hooft strings of an N=1 super conformal field
theory and for the AdS33S3 case, ’t Hooft strings of the
N= s4,4d, D=2 super conformal field theory are dual to
strings on AdS33S33T4, where T4 is a four-dimensional
torus. The latter have been made explicit by the
Kutasov-Seiberg construction sGiveon et al., 1998; Kuta-
sov and Seiberg, 1999d. In general it is a nontrivial task
to determine the ’t Hooft string picture of a given gauge
theory.

C. Moving away from the supergravity limit; strings on
plane waves

Although Witten’s formula s1.6d is precise, from a
practical point of view our calculational ability does not
go beyond the large-N limit which corresponds to the
supergravity limit on the string theory side sexcept for
quantities protected by supersymmetry, the calculations
on both sides of the duality beyond the large-N limit
exhibit the same level of difficultyd. However, one may
still hope to go beyond the supergravity limit which cor-
responds to a restriction to some particular sector of the
gauge theory.

In this section we recall some basic observations and
facts which led Berenstein, Maldacena, and Nastase
s2002d to their conjecture, as well as a brief summary of
the results obtained based on and in support of the con-
jecture. These observations and results will be discussed
in some detail in the main part of this review.

• Although so far we have not been able to solve the
string s model in the AdS53S5 background and ob-
tain the spectrum of sfreed strings, the Penrose limit
sPenrose, 1976; Gueven, 2000d of AdS53S5 geom-
etry results in another maximally supersymmetric
background of type-IIB which is the plane-wave ge-
ometry. The corresponding s model sin the light-
cone gauged is solvable, allowing us to deduce the
spectrum of sfreed strings on this plane-wave back-
ground.

• Taking the Penrose limit on the gravity side corre-
sponds to restricting the gauge theory to operators
with a large charge under one of its global symme-
tries fmore precisely the R-symmetry charge associ-
ated with a Us1d,SOs6dRg J, the BMN sector, and
simultaneously taking the large-N limit.

• The BMN sector of N=4, D=4 UsNd SYM theory
comprises operators with large scaling dimension D
and large R-charge J, such that

1

m
p− ; D − J = fixed, s1.7ad

a8mp+ ;
1

2ÎgYM
2 N

sD + Jd = fixed, s1.7bd

together with

gYM = fixed,
J2

N
= fixed, N,J → ` . s1.8d

In the above, s1/mdp− and a8mp+ are the correspond-
ing string light-cone Hamiltonian and light-cone mo-
mentum, respectively. The parameter m is a conve-
nient but auxiliary parameter, the role of which will
become clear in the following sections.

• In Eq. s1.7ad, p− should be understood as the full
plane-wave light-cone string sfieldd theory Hamil-
tonian. Explicitly, one can interpret s1.7ad as an
equality between two operators, the plane-wave
light-cone string field-theory Hamiltonian HSFT on
one side and the difference between the dilatation
and the R-charge operators on the other side, i.e.,

1

m
HSFT = D − J , s1.9d

where D is the dilatation operator and J is the
R-charge generator. Therefore according to the iden-
tification s1.9d which is the simproved form of the
originald BMN conjecture, the spectrum of strings,
which are the eigenvalues of the light-cone Hamil-
tonian p−=HSFT, should be equal to the spectrum
of the dilatation operator, which is the Hamil-
tonian of the N=4 gauge theory on R3S3, re-
stricted to the operators in the BMN sector of the
gauge theory fdefined in Eqs. s1.7d and s1.8dg.
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• As stated above, Eq. s1.9d sets up an equivalence be-
tween two operators. However, the second part of
the BMN conjecture is about the correspondence be-
tween the Hilbert spaces that these operators act on;
on the string theory side, it is the string sfieldd theory
Hilbert space which is comprised of a direct sum of
the zero-string, single-string, double-string, and mul-
tistring states, quite similarly to the flat-space case
sPolchinski, 1998ad. On the gauge theory side it is the
so-called BMN operators, the set of UsNd invariant
operators of large R-charge J and large dimension in
the free gauge theory, subject to Eqs. s1.7d and s1.8d.

• According to the BMN proposal sBerenstein, Mal-
dacena, and Nastase, 2002d, single-string states map
to certain single-trace operators in the gauge theory.4

In particular, the single-string vacuum state in the
sector with light-cone momentum p+, sa8mp+d2

= sJ2 /gYM
2 Nd, is identified with the chiral primary BPS

operator

u0,p+l ↔ NJTrsZJduvacl , s1.10d

where NJ is a normalization constant that will be
fixed later in Sec. VI. In the above, Z= s1/Î2dsf5

+ if6d, where f5 and f6 are two of the six scalars of
the N=4, D=4 gauge multiplet. The R-charge we
want to consider, J, is the eigenvalue for a Us1d
generator, Us1d,SUs4dR, so that Z carries unit
charge and all the other bosonic modes in the vec-
tor multiplet, four scalars and four gauge fields,
have zero R charge. Since all scalars have D=1
sclassicallyd, for Z and hence ZJ, D−J=0. The ad-
vantage of identifying string vacuum states with
the chiral primary operators is twofold: sid they
have s1/mdp−=D−J=0, and siid their anomalous di-
mension is zero, and hence the corresponding p−

remains zero to all orders in the ’t Hooft coupling
and even nonperturbatively; see, for example,
D’Hoker and Freedman s2002d.

• As for stringy excitations above the vacuum, Beren-
stein, Maldacena, and Nastase s2002d conjectured
that we need to work with certain “almost” BPS op-
erators, i.e., certain operators with large J charge and
with D−JÞ0, but D−J!J. In particular, single closed
string states were soriginallyd proposed to be dual to
single-trace operators with D−J=2. The exact form
of these operators and a more detailed discussion
regarding them will be presented in Sec. V. As we
will see in Secs. VII.B.2 and VII.C, however, this
identification of the single-string Hilbert space with
the single-trace operators, because of the mixing be-
tween single-trace and multitrace operators, should
be modified. Note that this mixing is present for both
chiral primaries and “almost” primaries.

• As is clear from Eq. s1.8d, in the BMN limit the
’t Hooft coupling goes to infinity and naively any per-
turbative calculation in the gauge theory sexcept of
course for chiral primary two- and three-point func-
tionsd is not trustworthy. However, the fact that we
are working with “almost” BPS operators motivates
the hope that, although the anomalous dimensions
for such operators are nonvanishing, being close to
primary and nearly saturating the BPS bound, some
of the nice properties of primary operators might be
inherited by the “almost” primary operators.

• We shall see in Sec. VII, as a result of explicit gauge
theory calculations with the BMN operators, that the
’t Hooft coupling in the BMN sector is dressed with
powers of 1/J2. More explicitly, the effective cou-
pling in the BMN sector is l8, rather than the
’t Hooft coupling l, where

l8 ;
l

J2 = gYM
2 N

J2 = sa8mp+d−2. s1.11d

The last equality is obtained using Eqs. s1.7d and
s1.8d.

• Moreover, we shall see that the ratio of nonplanar to
planar graphs is controlled by powers of the genus
counting parameter,

g2 ;
J2

N
= 4pgssa8mp+d2, s1.12d

which also remains finite in the BMN limit Eq. s1.8d.
Note that in Eq. s1.12d gs=ef, where f is the value of
the dilaton field,5 is not the coupling for strings on
the plane wave, although it is related to it.

• One can do better than simply finding the free-string
mass spectrum; we can study real interacting strings,
their splitting and joining amplitudes, and one-loop
corrections to the mass spectrum. As we shall discuss
in Secs. VII and VIII, the one-loop mass corrections
compared to the tree level results are suppressed by
powers of the “effective one-loop string coupling”
fcf. Eq. s7.32dg,

gone-loop
eff = Îl8g2

2 = gYM
J

ÎN
= 4pgsa8mp+. s1.13d

It has been argued that all higher-genus shigher-loopd
results replicate the same pattern, i.e., g2 always ap-
pears in the combination l8g2

2. This has been built
into a quantum-mechanical model for strings on
plane waves, the string-bit model sVaman and Ver-
linde, 2002; Verlinde, 2002d. However, a priori there
is no reason why such a structure should exist and in
principle g2 and l8 can appear in any combination.
Using another quantum-mechanical model con-
structed to capture some features of the BMN opera-

4The proposal as stated is only true for free strings. As we
shall see in Sec. VII, this proposal should be modified once
string interactions are included.

5Note that for the plane-wave background we are interested
in, the dilaton is constant.

860 D. Sadri and M. M. Sheikh-Jabbari: The plane-wave/super Yang-Mills duality

Rev. Mod. Phys., Vol. 76, No. 3, July 2004



tor dynamics, it has been argued that at the g2
4 level

there are indeed l8g2
4 corrections to the mass spec-

trum sBeisert, Kristjansen, et al., 2003b; Plefka,
2003d.

• The above observations revive the hope that we
might be able to do a full-fledged interacting string
theory computation using perturbative gauge theory
with smodifiedd BMN operators.

We should note that the BMN proposal has, since its
inception, undergone many refinements and corrections.
However, a full and complete understanding of the dic-
tionary of strings on plane waves and the smodifiedd
BMN operators is not yet at our disposal, and the field is
still dynamic. Some of the open issues will be discussed
in the main text and in particular in Sec. IX.

Finally, we would like to remind the reader that in this
review we have tried to avoid many detailed and lengthy
calculations, specifically in Secs. VI–VIII. In fact, we
found the original papers on these calculations quite
clear and useful, and for more details the reader is en-
couraged to consult with the references provided. We
have made available a more extensive version of this
review on the ArXiv sarxiv.orgd as hep-th/0310119 sSadri
and Sheikh-Jabbari, 2003bd. It includes a discussion of
Penrose limits of AdS orbifolds and conifolds, a discus-
sion of BMN operators with arbitrary numbers of impu-
rities, the all-orders analysis in l8, operator-product ex-
pansions in the BMN sector, higher point functions, and
more details on the calculations of one-loop mass cor-
rections in light-cone string field theory.

II. PLANE WAVES AS SOLUTIONS OF SUPERGRAVITY

Plane-fronted gravitational waves with parallel rays,
pp waves, are a general class of spacetimes and are de-
fined as spacetimes that support a covariantly constant
null Killing vector field vm,

¹mvn = 0, vmvm = 0. s2.1d

In the most general form, they have metrics which can
be written as

ds2 = − 2dudv − Fsu,xIddu2 + 2AJsu,xIddudxJ

+ gJKsu,xIddxJdxK, s2.2d

where gJKsu ,xId is the metric on the space transverse to
a pair of light-cone directions given by u ,v and the co-
efficients Fsu ,xId, AJsu ,xId, and gJKsu ,xId are con-
strained by ssuperdgravity equations of motion. The
pp-wave metric s2.2d has a null Killing vector given by
d /dv which is, in fact, covariantly constant by virtue of
the vanishing of the Gvu

v component of the Christoffel
symbol.

The most useful pp waves, and the ones generally con-
sidered in the literature, have AJ=0 and are flat in the
transverse directions, i.e., gIJ=dIJ, for which the metric
becomes

ds2 = − 2dudv − Fsu,xIddu2 + dIJdxIdxJ. s2.3d

As we shall discuss in the next subsection, the existence
of a covariantly constant null Killing vector field guaran-
tees the a8-exactness of these supergravity solutions
sHorowitz and Steif, 1990d.

A more restricted class of pp waves, plane waves, are
those admitting a globally defined covariantly constant
null Killing vector field. One can show that for plane
waves Fsu ,xId is quadratic in the xI coordinates of the
transverse space, but still can depend on the coordinate
u, Fsu ,xId= fIJsudxIxJ, so that the metric takes the form

ds2 = − 2dudv − fIJsudxIxJdu2 + dIJdxIdxJ. s2.4d

Here fIJ is symmetric and by virtue of the only nontrivial
condition coming form the equations of motion, its trace
is related to the other field strengths present. For the
case of vacuum Einstein equations, it is traceless.

There is an even more restricted class of plane waves,
homogeneous plane waves, for which fIJsud is a constant,
hence their metric is of the form

ds2 = − 2dudv − mIJ
2 xIxJdu2 + dxIdxI, s2.5d

with mIJ
2 being a constant.6

A. Plane waves as a8-exact solutions of supergravity

In this subsection we discuss a property of pp waves of
the form s2.3d which makes them epecially interesting
from the string theory point of view: they are a8-exact
solutions of supergravity sAmati and Klimcik, 1988;
Horowitz and Steif, 1990d. Supergravities arise as low-
energy effective theories of strings, and can receive a8
corrections. Such corrections generically involve higher
powers of curvature and form fields sGreen et al.,
1987bd. The basic observation made by Horowitz and
Steif s1990d is that pp-wave metrics of the form s2.3d
have a covariantly constant null Killing vector, nm

=] /]v, and their curvature is null sthe only nonzero
components of their curvature are RuIuJd. Higher a8 cor-
rections to the supergravity equations of motion are in
general comprised of all second-rank tensors con-
structed from powers of the Riemann tensor and its de-
rivatives. sThe only possible term involving only one
Riemann tensor should be of the form Rmanb

;mn, which is
zero by virtue of the Bianchi identity.d On the other
hand, any power of the Riemann tensor and its covari-
ant derivatives with only two free indices is also zero,
because nm is null and ¹mnn=0 fEq. s2.1dg. The same
argument can be repeated for the form fields, noting
that for pp waves that are solutions of supergravity these
form fields should have zero divergence and be null. As
a result, all the a8 corrections for supergravity solutions
with metric of the form s2.3d vanish, i.e., they also solve

6This use of the term “homogeneous” is not universal. For
example, the term symmetric plane wave has been used by
Blau and O’Loughlin s2003d for this form of the metric, reserv-
ing “homogeneous” for a wider subclass of plane waves.
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a8-corrected supergravity equations of motion. This ar-
gument about a8-exactness does not hold for a generic
pp wave of the form s2.2d with gIJsu ,xIdÞdIJ. The trans-
verse metric gIJ may itself receive a8 corrections. How-
ever, there are no extra corrections due to the wave part
of the metric sFabinger and Hellerman, 2003d.We would
like to comment that pp waves are generically singular
solutions with no event horizons sHubeny and Rangam-
ani, 2002d; however, plane waves of the form s2.4d for
which fIJsud is a smooth function of u, are not singular.

B. The maximally supersymmetric plane wave and its
symmetries

Hereafter in this review we shall focus only on a very
special plane-wave solution of 10-dimensional type-IIB
supergravity which admits 32 supersymmetries and by
“the plane wave” we shall mean this maximally super-
symmetric solution. In fact, demanding a solution of 10-
or 11-dimensional supergravity to be maximally super-
symmetric is very restrictive. Flat space, AdS53S5, and
a special plane wave in type-IIB theory in 10 dimensions
and flat space, AdS4,73S7,4, and a special plane wave in
11 dimensions are the only possibilities sFigueroa-
O’Farrill and Papadopoulos, 2003d. Note that type IIA
does not admit any maximally supersymmetric solutions
other than flat space.

Here, we focus on the 10-dimensional plane wave,
which is a special case of Eq. s2.5d with mIJ

2 =m2dIJ. This
metric, however, is not a solution to source-free type-IIB
supergravity equations of motion, and we need to add
form fluxes. It is not hard to see that with mIJ

2 =m2dIJ the
only possibility is turning on a constant self-dual
Ramond-Ramond five-form flux; moreover, the dilaton
should also be a constant. As we shall see in Sec. III, this
plane wave is closely related to the AdS53S5 solution.
The sbosonicd part of this plane wave solution is then

ds2 = − 2dx+dx− − m2sxixi + xaxadsdx+d2 + dxidxi

+ dxadxa, s2.6ad

F+ijkl =
4

gs
meijkl,

F+abcd =
4

gs
meabcd, s2.6bd

ef = gs = const, s2.6cd

where i , j=1,2 ,3 ,4, a ,b=5,6 ,7 ,8. In the above, m is an
auxiliary but convenient parameter and can be easily
removed by taking x+→x+/m and x−→mx− swhich is in
fact a light-cone boostd.

Let us first check that the background s2.6d is really
maximally supersymmetric. Note that this will ensure it
is also a supergravity solution, because supergravity
equations of motion are nothing but the commutators of

the supersymmetry variations. For this we need to show
that the gravitino and dilatino variations vanish for 32
independent sKillingd spinors, i.e.,

decm
a ; sD̂mdb

aeb = 0,

del
a ; sD̃db

aeb = 0, s2.7d

with m=0,1 , . . . ,9, a=1,2. These equations have 32 so-
lutions, where the dilatino la, gravitinos cm

a, and Killing
spinors ea are all 32-component 10-dimensional Weyl-
Majorana fermions of the same chirality sfor our nota-
tions and conventions see Appendix B.1d, and the super-

covariant derivative D̂m in the string frame is defined
sBena and Roiban, 2003; Cvetic et al., 2003; Sadri and
Sheikh-Jabbari, 2003a, 2003bd as

sD̂mdb
a = db

a¹m +
1
8

ss3db
aGnrHmnr +

ief

8
Fss2db

aGn]nx

−
i

3!
ss1db

aGnrlFnrl

+
1

2 3 5!
ss2db

aGnrlsdFnrlsdGGm, s2.8d

sD̃db
a =

1
2

db
aGn]nf −

1
4 3 3!

ss3db
aGmnrHmnr

−
i

2
efFss2db

aGn]nx −
i

2 3 3!
ss1db

aGnrlFnrlG ,

s2.9d

with the spin connection vm
âb̂ appearing in the covariant

derivative ¹m= s]m+ 1
4vm

âb̂Gâb̂d and the hatted latin indices
used for the tangent space. In these expressions f is the
dilaton, x the axion, H the three-form field strength of
the Neveu-Schwarz/Neveu-Schwarz sNS-NSd sector
sNeveu and Schwarz, 1971d, and the F’s represent the
appropriate Ramond-Ramond sRRd field strengths.

For the background s2.6d sD̃db
a is identically zero, and

sD̃db
a takes a simple form,

sD̂mdb
a = db

aS]m +
1
4

vm
abGabD

+
igs

16 3 5!
ss2db

aGnrlsdFnrlsd. s2.10d

In order to work out the spin connection vm
âb̂ we need

the vierbeins em
â which are

e+
+ = e−

− = 1, ei
j = di

j,

eb
a = db

a, e−
+ =

1
2

m2sxixi + xaxad , s2.11d

and therefore
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v−i
+ = m2xi, v−a

+ = m2xa, s2.12d

are the only nonvanishing components of vm
âb̂.

The Killing spinor equation can now be written as

s1 · ]m + Vmdb
aeb = 0, s2.13d

with

sV+db
a = −

1
2

m2xIG+Idb
a +

im

4
sP + P8dG+G+ss2db

a,

V− = 0, sVIdb
a =

im

4
G+sP + P8dGIss2db

a. s2.14d

In the above I= hi ,aj=1,2 , . . .8 , P=G1234 and P8=G5678.
The V’s satisfy a number of useful identities such as

G+VI = VIG
+ = G+V+ = 0,

VIVJ = VIV+ = 0,

V+VI = −
m2

4
s1 + PP8dG+I · 1 ,

V+G+ =
im

2
sP + P8dG+ · ss2db

a. s2.15d

We first note that the sm=−d component of Eq. s2.13d is
simply ]−e=0, so all Killing spinors should be x− inde-
pendent. The m=I component can be easily solved by
taking

ea = s1 − xIVIdb
axb, s2.16d

where xb is an arbitrary xI-independent fermion of posi-
tive 10-dimensional chirality. Plugging Eq. s2.16d into
Eq. s2.13d, using the identity VIV+=0 and the fact that
s1+xIVIds1−xIVId=1, the sm=+d component of the Kill-
ing spinor equation takes the form

f1 · ]+ + V+s1 − xIVIdgb
axb = 0. s2.17d

Equation s2.17d has an xI-independent piece and a part
that is linear in xI. These two should vanish separately.
Using the identities given in Appendix B.1 and after
some straightforward Dirac matrix algebra, one can
show that if G−x=0, Eq. s2.17d simply reduces to ]+x=0.
That is, any constant x with G−x=0 is a Killing spinor.
These provide us with 238=16 solutions. Now let us
assume that G−xÞ0. Without loss of generality, all such
spinors can be chosen to satisfy G+x=0. For these
choices of x’s the xI-dependent part of Eq. s2.17d van-
ishes identically, and the xI-independent part becomes

f1 · ]+ + imPss2db
agxb = 0,

where we have used the fact that G+x=0 implies Px
=P8x. This equation can be easily solved with sBlau et
al., 2002ad

xa = fdb
acos mx+ − iPss2db

asin mx+gx0
b, s2.18d

where x0
b is an arbitrary constant spinor of positive 10-

dimensional chirality. We have shown that Eqs s2.7d
have 32 linearly independent solutions and hence the
background s2.6d is maximally supersymmetric. Note
that Eq. s2.18d clearly shows the “wave” nature of our
background snote the periodicity in x+, the light-cone
timed, a fact that is not manifest in the coordinates we
have chosen. This wave nature can be made explicit in-
the so-called Rosen coordinates ssee Sec. III.Ad.

1. Isometries of the background

The background s2.6d has a number of isometries,
some of which are manifest. In particular, the solution is
invariant under translations in the x+ and x− directions.
These translations can be thought of as two snoncom-
pactd Us1d’s with the generators

i
]

] x+ ; P+ = − P−, i
]

] x− ; P− = − P+. s2.19d

Due to the presence of the sdx+d2 term, a boost in the
sx+ ,x−d plane is not a symmetry of the metric. However,
the combined boost and m scaling,

x− →Î1 − v

1 + v
x−, x+ →Î1 + v

1 − v
x+,

m →Î1 − v

1 + v
m , s2.20d

is still a symmetry.
Obviously, the solution is also invariant under two

SOs4d’s which act on the xi and xa directions. The gen-
erators of these SOs4d’s will be denoted by Jij and Jab
where

Jij = − iSxi
]

] xj − xj
]

] xiD, Jab = − iSxa
]

] xb − xb
]

] xaD .

s2.21d

Note that although the metric possesses SOs8d symme-
try, because of the five-form flux this symmetry is broken
to SOs4d3SOs4d. There is also a Z2 symmetry which
exchanges these two SOs4d’s, acting as

hxij↔
Z2

hxaj . s2.22d

So far we have identified 14 isometries which are gen-
erators of a Us1d3Us1d3SOs4d3SOs4d3Z2 symmetry
group. One can easily see that translations along the xI

= sxi ,xad directions are not symmetries of the metric.
However, we can show that if along with translation in xI

we also shift x− appropriately, i.e.,

H xI → xI + e1
I cos mx+,

x− → x− − e1
ImxI sin mx+,
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H xI → xI + e2
I sin mx+,

x− → x− + e2
ImxI cos mx+,

s2.23d

where e1
I and e2

I are arbitrary but small parameters, the
metric and the five-form remain unchanged. These 16
isometries are generated by the Killing vectors

LI = − iScos mx+ ]

] xI − mxI sin mx+ ]

] x−D ,

KI = − iSsin mx+ ]

] xI + mxI cos mx+ ]

] x−D , s2.24d

satisfying the following algebra:

fLI,LJg = 0, fKI,KJg = 0, s2.25d

fLI,KJg = mdIJ
]

] x− = imP+dIJ,

fP−,LIg = imKI, fP−,KIg = − imLI. s2.26d

Equations s2.25d are in fact an eight-dimensional sor a
pair of four-dimensionald Heisenberg-type algebrassd
with “"” being equal to mP+ sDas et al., 2002d. Note that
P+ commutes with the generators of the two SOs4d’s as
well as KI and LI. In other words, P+ is in the center of
the isometry algebra which has 30 generators
sJij ,Jab ,P+ ,P− ,Ki ,Ka ,Li ,Lad. It is also easy to check that
Ki ,Lj and Ka ,Lb transform as vectors sor singletsd under
the corresponding SOs4d rotations. Altogether, the alge-
bra of Killing vectors is fhs4d % hs4dg % sos4d % sos4d
% us1d+ % us1d−, where hs4d is the four-dimensional
Heisenberg algebra.

In addition to the above 30 Killing vectors generating
continuous symmetries, there are some discrete symme-
tries, one of which is the Z2 discussed earlier. There is
also the CPT symmetry sSchwarz, 2002d

xI → − xI, x± → − x±, m → − m s2.27d

snote that we also need to change md.
Finally, it is useful to compare the plane-wave isome-

tries to that of flat-space, the 10-dimensional Poincaré
algebra consisting of P+ ,P− ,PI=−is] /]xId and J+− slight-
cone boostd, J+I ,J−I, and JIJ fthe SOs8d rotationsg.
Among these 55 generators, P+ ,P− and Jij ,Jab are also
present in the set of plane wave isometries. However, as
we have discussed, J+− and J−I are absent. As for rota-
tions generated by Jia, only a particular rotation, namely,
the Z2 defined in Eq. s2.22d, is present. From Eq. s2.24d it
can readily be seen that KI and LI are a linear combina-
tion of PI and J+I,

PI = − i
]

] xI , J+I = x+PI − xIP+, s2.28d

and it is easy to show that fP− ,J+Ig=−iPI , fPI ,J+Jg
=−idIJP

+. In summary, J+− , J−I, and Jia swhich arealto-
gether 25 generatorsd are not present among the Killing
vectors of the plane wave, and therefore the number of

isometries of the plane wave is 55–25=30, agreeing with
our earlier results.

2. Superalgebra of the background

As we have shown, the plane-wave background s2.6d
possesses 32 Killing spinors, and in Sec. II.B.1 we
worked out all the isometries of the background. In this
subsection we combine these two results and present the
superalgebra of the plane-wave geometry s2.6d. Noting
the Killing spinor equations and their solutions, it is
straightforward to work out the supercharges and their
superalgebra ssee, for example, Green et al., 1987bd.

As discussed earlier, the solutions to the Killing spinor
equations are all x− independent. This implies that su-
percharges should commute with P+. However, as dis-
cussed in Sec. II.B.1, P+ commutes with all the bosonic
isometries and so is in the center of the whole superal-
gebra. We noted that Killing spinors fall into two classes,
either G+x=0 or G−x=0. The former lead to kinematical
supercharges Q+a with the property that G+Q+a=0, while
the latter lead to dynamical supercharges Q−a, which sat-
isfy G−Q−a=0. Since both sets of dynamical and kine-
matical supercharges have the same spositived 10-
dimensional chirality, the Q+a are in the 8s and Q−a in
the 8c representation of the SOs8d fermions sfor details
of the conventions see Appendix B.1d.

For the plane-wave background, however, it is more
convenient to use the SOs4d3SOs4d decomposition in-
stead of SOs8d. The relation between these two has been
worked out and summarized in Appendix B.2. We shall
use qab and qȧḃ for the kinematical supercharges and
Qȧb and Qaḃ for the dynamical ones. Note that all q and
Q are complex fermions.

The superalgebra in the SOs8d basis is presented by
Blau et al. s2002bd and Metsaev s2002d. Here we present
it in the SOs4d3SOs4d basis:

• Commutators of bosonic generators with kinematical
supercharges:

fJij,qabg =
1
2

sisijda
rqrb, fJij,qȧḃg =

1
2

sisijdȧ
ṙqṙḃ,

fJab,qabg =
1
2

sisabdb
rqar, fJab,qȧḃg =

1
2

sisabd
ḃ

ṙ
qȧṙ,

s2.29d

fKI,qabg = fLI,qabg = 0, fKI,qȧḃg = fLI,qȧḃg = 0,

s2.30d

fP+,qabg = fP+,qȧḃg = 0, s2.31d

fP−,qabg = + imqab, fP−,qȧḃg = − imqȧḃ. s2.32d
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• Commutators of bosonic generators with dynamical
supercharges:

fJij,Qaḃg =
1
2

sisijda
rQrḃ, fJij,Qȧbg =

1
2

sisijdȧ
ṙQṙb,

fJab,Qȧbg =
1
2

sisabdb
rQȧr, fJab,Qaḃg =

1
2

sisabd
ḃ

ṙ
Qaṙ,

s2.33d

fKi,Qaḃg =
m

2
ssida

ṙqṙḃ, fKa,Qaḃg = −
m

2
ssad

ḃ

r
qar,

fKi,Qȧbg =
m

2
ssidȧ

rqrb, fKa,Qȧbg =
m

2
ssadb

ṙqȧṙ,

s2.34d

fLi,Qaḃg = −
m

2
ssida

ṙqṙḃ, fLa,Qaḃg =
m

2
ssad

ḃ

r
qar,

fLi,Qȧbg =
m

2
ssidȧ

rqrb, fLa,Qȧbg =
m

2
ssadb

ṙqȧṙ, s2.35d

fP+,Qaḃg = 0, fP+,Qȧbg = 0, s2.36d

fP−,Qaḃg = 0, fP−,Qȧbg = 0. s2.37d

• Anticommutators of supercharges:

hqab,q†rlj = 2P+da
rdb

l, hqab,q†ȧḃj = 0,

hqȧḃ,q†ṙl̇j = 2P+dȧ
ṙd

ḃ

l̇
, s2.38d

hqab,Q†ṙlj = issida
ṙdb

lsLi + Kid ,

hqab,Q†rl̇j = issadb
l̇da

rsLa + Kad ,

hqȧḃ,Q†ṙlj = issad
ḃ

l
dȧ

ṙsLa − Kad ,

hqȧḃ,Q†rl̇j = issidȧ
rd

ḃ

l̇sLi − Kid , s2.39d

hQaḃ,Q†rl̇j = 2da
rd

ḃ

l̇
P− + msisijda

rd
ḃ

l̇
Jij + msisabd

ḃ

l̇
da

rJab,

hQaḃ,Q†ṙlj = 0,

hQȧb,Q†ṙlj = 2dȧ
ṙdb

lP− + msisijdȧ
ṙdb

lJij + msisabdb
ldȧ

ṙJab.

s2.40d

Let us now focus on the part of the superalgebra con-
taining only dynamical supercharges and SOs4d genera-
tors, i.e., Eqs. s2.33d, s2.36d, s2.37d, and s2.40d. Adding the
two SOs4d algebras to these, we obtain a superalgebra,
which is of course a subalgebra of the full superalgebra
discussed above. sWe have another sub-superalgebra
which contains only kinematical supercharges, P± and
J’s, but we do not consider it here.d The bosonic part of
this sub-superalgebra is Us1d+3Us1d−3SOs4d3SOs4d
3Z2, where Us1d± is generated by P± and Us1d+ is in the
center of the algebra. Next we note that the algebra does
not mix Qaḃ and Qȧb. This sub-superalgebra is not a
simple superalgebra, and it can be written as a semidi-
rect product of two simple superalgebras. Noting that
spins4d=SUs2d3SUs2d, we have four SUs2d factors, and
Qaḃ and Qȧb transform as doublets of two of the
SUs2d’s, each coming from different SOs4d factors. In
other words, the two SOs4d’s mix to give two SUs2d
3SUs2d’s. This superalgebra falls into Kac’s classifica-
tion of superalgebras sKac, 1977d and can be identified
as PSUs2 u2d3PSUs2 u2d3Us1d−3Us1d+. fThe bosonic
part of the PSUsn und supergroup is SUsnd3SUsnd,
while that of SUsm und for mÞn is SUsnd3SUsmd
3Us1d.g As mentioned earlier the two PSUs2 u2d super-
groups share the same Us1d, Us1d−, which is generated
by P−. The Z2 symmetry defined through Eq. s2.22d is
still present and at the level of superalgebra exchanges
the two PSUs2 u2d factors. It is interesting to compare
the 10-dimensional maximally supersymmetric plane
wave superalgebra with that of the 11-dimensional one,
which is SUs4 u2d sDasgupta et al., 2002bd. One of the
main differences is that in our case the light-cone Hamil-
tonian P− commutes with the supercharges fcf. Eq.
s2.37dg, and as a result, as opposed to the 11-dimensional
case, all states in the same PSUs2 u2d3PSUs2 u2d
3Us1d− supermultiplet have the same mass. Here we do
not intend to study this superalgebra and its representa-
tions in detail. However, this is definitely an important
question, which so far has not been addressed in the
literature. For a more detailed discussion on SUsm und
supergroups and their unitary representations the reader
is encouraged to look at the articles of Balantekin and
Bars s1981d; Dasgupta et al. s2002bd; Motl et al. s2003d,
and for the PSUsn und case Berkovits et al. s1999d.
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C. Spectrum of supergravity on the plane-wave
background

The low-energy dynamics of string theory can be un-
derstood in terms of an effective-field theory in the form
of supergravity sGreen et al., 1987bd. In particular, the
lowest-lying states of string theory on the maximally su-
persymmetric plane-wave background s2.6d should cor-
respond to the states of stype-IIBd supergravity on this
background. We are thus led to analyze the spectrum of
modes in such a theory.

As in the flat space, the kinematical supercharges act-
ing on different states would generate different “polar-
izations” of the same state, while dynamical super-
charges would lead to various fields in the same
supermultiplet. In the plane-wave superalgebra we dis-
cussed in the previous section, as could be seen from Eq.
s2.32d, kinematical supercharges do not commute with
the light-cone Hamiltonian, and hence we expect differ-
ent “polarizations” of the same multiplet to have differ-
ent masses stheir masses, however, should differ by an
integer multiple of md, as will be explicitly shown in this
section. This should be contrasted with the flat-space
case, in which the light-cone Hamiltonian commutes
with all supercharges, both kinematical and dynamical.
For the same reason, different states in the Clifford
vacuum sWess and Bagger, 1992d, which are related by
the action of kinematical supercharges, will carry differ-
ent energies, and so this vacuum is nondegenerate.
However, once a Clifford vacuum is chosen, the other
states of the same multiplet are related by the action of
dynamical supercharges and hence should have the same
slight-coned mass fsee Eq. s2.37dg.

As a warmup, let us first consider a scalar sor any
bosonicd field f with mass m propagating on such a
background, with classical equation of motion

sh− m2df = 0, s2.41d

with the d’Alembertian acting on a scalar given as

h =
1

Îugu
]msÎugugmn]nd

= − 2]+]− + m2xIxI]−]− + ]I]I. s2.42d

Here, the index I corresponds to the eight transverse
directions, and the repeated indices are summed. Then,
Eq. s2.41d for the fields with ]±f= ip7f reduces to

f2p+p− − smp+d2xIxI + ]I]Igf = 0, s2.43d

which is nothing but a Schrödinger equation for an
eight-dimensional harmonic oscillator, with frequency
equal to mp+. Therefore choosing the xI dependence of
f through Gaussians times Hermite polynomials fthe
precise form of which can be found in the article of Bak
and Sheikh-Jabbari s2003dg, we obtain the spectrum of
the light-cone Hamiltonian p− as

p− = mSo
i=1

8

ni + 4D +
m2

2p+ s2.44d

for some set of positive or zero integers ni. The spectrum
is discrete for massless fields sm=0d, in which case it is
also independent of the light-cone momentum p+. This
means that for massless fields, we cannot form wave
packets with nonzero group velocity s,]p−/]p+d, and
hence scattering of such massless states cannot take
place.7 The discreteness of the spectrum arises from the
requirement that the wave function be normalizable in
the transverse directions, and this is translated through a
coupling of the transverse and light-cone directions in
the equation of motion into the discreteness of the light-
cone energy. The flat-space limit sm→0d is not well de-
fined for these modes, but could be restored if we add
the non-normalizable solutions to the equation of mo-
tion, in which case the flat-space limit would allow a
continuum of light-cone energies. The case of vanishing
light-cone momentum is not easily treated in the light-
cone frame. For the massive case smÞ0d the light-cone
energy does pick up a p+ dependence, allowing us to
construct proper wave packets for scattering.

These considerations can be applied to the various
bosonic fields in supergravity. The low-energy effective
theory relevant here is type-IIB supergravity, whose ac-
tion sin the string framed is sPolchinski, 1998d

S =
1

2k10
2 E d10xÎ− det gsLNS + LR + LCSd ,

LNS = e−2fSR + 4]mf]mf −
1
2

uH3u2D ,

LR = −
1
2
SuF1u2 + uF̃3u2 +

1
2

uF̃5u2D ,

LCS = −
1

2Î− det g
C4 ∧ H3 ∧ F3, s2.45d

where H3=dBNS and F1=dx are the Neveu-Schwarz
Neveu-Schwarz sNS-NSd three-form and the Ramond-
Ramond sRRd scalar field strengths, respectively, and

F̃3 = F3 − x ∧ H3, F̃5 = F5 −
1
2

B2
RR ∧ H3 +

1
2

B2
NS ∧ F3,

and F3=dBRR and F5=df4. The equation of motion for

F5, which is nothing but the self-duality condition sF̃5

=*F̃5d, should be imposed by hand. We note here that the
NS-NS and RR terminology in the supergravity action is
motivated by the flat-space results of string theory,
which as we point out later in Sec. IV.C.1, does not cor-

7The particles are confined in the transverse space by virtue
of the harmonic-oscillator potential, but one can consider scat-
tering in a two-dimensional effective theory on the sp− ,p+d
subspace sBak and Sheikh-Jabbari, 2003d.
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respond to our SOs4d3SOs4d decomposition of states
ssee footnote 9d. The mapping of the fields presented in
this section and the string states will be clarified in Sec.
IV.C.

To study the physical on-shell spectrum of supergrav-
ity on the plane-wave background with the nontrivial
five-form flux s2.6d, we linearize the supergravity equa-
tions of motion around this background and work in the
light-cone gauge, by setting jm¯n−=0, with jm¯n− generi-
cally any of the bosonic sother than scalard tensor fields,
considered as perturbations around the background.
Then, the jm¯n+ components are not dynamical and are
completely fixed in terms of the other physical modes,
after imposing the constraints coming from the equa-
tions of motion for the gauge-fixed components jm¯n−.
Therefore, in this gauge, we deal with only jI¯J modes,
where I , . . . ,J=1,2 , . . . ,8. Setting the light-cone gauge
for fermions is accomplished by projecting out spinor
components by the action of an appropriate combina-
tion of Dirac matrices sMetsaev and Tseytlin, 2002d. The
advantage of using the light-cone gauge is that in this
gauge only the physical modes appear.

It will prove useful to first decompose the physical
fluctuations of the supergravity fields in terms of SOs8d
→SOs4d3SOs4d representations sDas et al., 2002; Met-
saev and Tseytlin, 2002d. In the bosonic sector we have a
complex scalar, combining the NS-NS dilaton and RR
scalar, a complex two-form sagain a combination of
NS-NS and RR fieldsd, a real four-form, and a graviton.
Using the notation of Sec. II.B, we can decompose these
into SOs4d3SOs4d representations. We label SOs8d in-
dices by I ,J ,K ,L, indices in the first SOs4d by i , j ,k , l,
and those of the second by a ,b ,c ,d. The decomposition
of the bosonic fields is given in Table I.

The fermionic spectrum consists of a complex spin-
1 /2 dilatino of negative chirality and a complex spin-
3 /2 gravitino with positive chirality. For the dilatino, 16
degrees of freedom survive the light-cone projection.
For the gravitino, we note that removing the spin-1 /2
component by projecting out the g-transverse compo-
nents leaves 112 degrees of freedom. The details of the
decomposition of SOs8d fermions into representations of
SOs4d3SOs4d can be found in Appendix B.2. Using the
notation of the appendix, the dilatino is in 8c and the
gravitino in 8s. Fermions can be decomposed along the
same lines, using the result of Appendix B.2.

The dilaton is decoupled, in the linear regime, from
the four-form and is the simplest field to deal with. Its
equation of motion is simply that of a complex massless
scalar field s2.41d. Its lowest energy state has p−=4m,
with discrete energy levels above it.

The graviton and four-form field are coupled in this
background, leading to coupled equations of motion.
The coupled Einstein and four-form potential equations
of motion, after linearizing and going to light-cone
gauge, and using the self-duality of the five-form field
strength, imply the equation

hhij − 2mdij]−f = 0. s2.46d

There is a similar expression for the other SOs4d projec-
tions of the metric and four-form. We see that the trace
swhich we have yet to separate outd of the SOs4d metric
and four-form projections mix with each other. The
equation of motion for the four-form, coupled to the
metric through the covariant derivative, implies

hf + 8m]−h = 0. s2.47d

These are a pair of coupled equations which can be di-
agonalized by redefinition of the field and by using h
defined above:

c = hii + if . s2.48d

The equations governing the new fields are

hh̃ij = 0, sh + i8m]−dc = 0, s2.49d

together with the complex conjugate of the second.
These are equations of motion for massive scalar fields.
Fourier transforming as before, we can compare these
equations to Eqs. s2.41d and s2.44d, to arrive at the light-
cone energy spectrum,

p−sh̃ijd = msn + 4d, p−scd = msn + 8d, p−sc†d = 0,

s2.50d

with nPZ+, and obviously similar results for the compo-
nents along the other SOs4d. Note that c† is the only
combination of fields whose light-cone energy is allowed
to vanish. Similar reasoning leads, for the mixed fin

TABLE I. SOs4d3SOs4d decomposition of bosonic supergrav-
ity fields. 3+ and 3− are the self-dual and anti-self-dual projec-
tions of the 6 of SOs4d. The complex scalar and two-form are
defined as F=x+ ief and b=BNS+ iBRR, and we have also de-
fined the pseudoscalar “trace” piece of the four-form potential
f=eijklfijkl /6, and fia= 1

3ei
jklfajkl. The graviton hIJ and four-form

fIJKL are fluctuations around a nontrivial plane wave back-
ground. h=hii=−haa is the trace of the SOs4d “gravitons,” and
h̃ij=hij−

1
4dijhkk.

Field Components SOs4d3SOs4d D.o.f’s

Complex scalar F s1,1d 2

Complex bij s3+ ,1d % s3− ,1d 12
two-form bab s1 ,3+d % s1 ,3−d 12

bia s4 ,4d 32

Real fia s4 ,4d 16
four-form fijab s3+ ,3+d % s3− ,3−d 18

f s1 ,1d 1

h̃ij
s9 ,1d 9

Graviton h̃ab
s1 ,9d 9

hia s4 ,4d 16
h s1 ,1d 1
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terms of SOs4d3SOs4dg components of the metric and
four-form, to

sh + 4im]−dhia = 0, s2.51d

and its conjugate, where we have diagonalized the equa-
tions by defining

hia = hia + ifia. s2.52d

These lead to the light-cone energy for hia,

p−shiad = msn + 6d, p−shia
† d = msn + 2d . s2.53d

Finally, for fijab, we can show that p−=msn+4d.
The complex two-form can be studied in the same way

as the four-form and graviton, resulting in similar equa-
tions, but with different masses. The two-form can be
decomposed into representations that transform as two-
forms of each of the SOs4d’s, each of which can be fur-
ther decomposed into self-dual and anti-self-dual com-
ponents, with respect to the Levi-Cività tensor of each
SOs4d. The self-dual part will carry opposite mass from
the anti-self-dual projection. The decomposition will
also include a second rank tensor with one leg in each
SOs4d, which will obey a massless equation of motion
ffor the SOs4d3SOs4d decomposition see Table Ig. The
lowest light-cone energy for the physical modes of the
two-form takes the values p−/m=2,4 ,6, with the middle
value associated with the mixed tensor and the differ-
ence of energies between the self-dual and anti-self-dual
forms equal to four.

The analysis of the fermion spectrum follows along
essentially the same lines, with minor technical compli-
cations having to do with the spin structure of the fields
sinclusion of spin connection and some straightforward
Dirac algebrad. These technicalities are not illuminating,
and we merely quote the results. The interested reader
is directed to Metsaev and Tseytlin s2002d. For the spin-
1 /2 dilatino the lowest light-cone energies for the physi-
cal modes can take the values p−/m=3,5, while for the
spin-3 /2 gravitino the range is p−/m=1,3 ,5 ,7. It is
worth noting that the lowest states of fermions/bosons
are odd/even integers in m units. This is compatible with
what we expect from the superalgebra.

III. PENROSE LIMITS AND PLANE WAVES

As discussed in the previous section plane waves are
particularly nice geometries with the important property
of having a globally defined null Killing vector field.
They are also special from the supergravity point of view
because they are a8 exact ssee Sec. II.Ad. In this section
we discuss a general limiting procedure known as the
Penrose limit sPenrose, 1976d, which generates a plane-
wave geometry out of any given spacetime. This proce-
dure has also been extended to supergravity by Gueven
s2000d, hence when applied to supergravity this limit is
usually called the Penrose-Gueven limit ssee, for ex-
ample, Blau et al., 2002a, 2002bd. Although the Penrose
limit can be applied to any spacetime, if we start with
solutions of Einstein’s equations sor more generally the

supergravity equations of motiond we end up with a
plane wave that is still a ssuperdgravity solution. In other
words, the Penrose-Gueven limit is a tool to generate
new supergravity solutions out of any given solution. In
this section we first summarize the three steps for taking
the Penrose limit, then apply this procedure to the inter-
esting example of AdS spaces, and finally in Sec. III.B
we study a contraction of the supersymmetry algebra
corresponding to AdS53S5, PSUs2,2 u4d sAharony et al.,
2000d, under the Penrose limit.

A. Taking Penrose limits

The procedure for taking the Penrose limit can be
summarized as follows:

sid Find a lightlike snulld geodesic in the given space-
time metric.

siid Choose the proper coordinate system so that the
metric looks like

ds2 = R2h− 2dudṽ + dṽfdṽ + AIsu, ṽ, x̃Iddx̃Ig

+ gJKsu, ṽ, x̃Iddx̃Jdx̃Kj . s3.1d

In the above R is a constant introduced to facili-
tate the limiting procedure, the null geodesic is
parametrized by the affine parameter u, ṽ deter-
mines the distance between such null geodesics,
and x̃I parametrizes the rest of the coordinates.
Note that any given metric can be brought to the
form s3.1d.

siiid Take the R→` limit together with the scalings

ṽ =
v

R2 , x̃I =
xI

R
; u,v,xI = fixed. s3.2d

In this limit the AI term drops out and
gIJsu ,dṽ , x̃Id now becomes only a function of u,
therefore

ds2 = − 2dudv + gIJsuddxIdxJ. s3.3d

This metric is a plane wave, though in the Rosen
coordinates sRoen, 1937d. Under the coordinate
transformation

xI → hIJsudxJ, v → v +
1
2

gIJhIK8 hJLxKxL,

with hIKgIJhJL=dKL and hIJ8 = sd /dudhIJ the metric
takes the more standard form of Eq. s2.4d, the
Brinkmann coordinates sBrinkmann, 1923;
Hubeny et al., 2002d. The only nonzero compo-
nent of the Riemann curvature of plane wave
s2.4d is RuIuJ= fIJsud, and the Weyl tensor of any
plane wave is either null or vanishes.

The above steps can be understood more intuitively.
Let us start with an observer who boosts up to the speed
of light. Typically such a limit in sgenerald relativity is
singular; however, these singularities may be avoided by
“zooming” onto a region infinitesimally close to the
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slightliked geodesic the observer is moving on, in the par-
ticular way given in Eq. s3.2d, so that at the end of the
day from the original spacetime point of view we re-
move all parts except a very narrow strip close to the
geodesic. We then scale up the strip to fill the whole
spacetime, which is nothing but a plane wave. The cova-
riantly constant null Killing vector field of plane waves
corresponds to the null direction of the original space-
time along which the observer has boosted. To demon-
strate how the procedure works, we work out here the
explicit example of AdSp3Sq space.

Let us start with an AdSp3Sq metric in the global
AdS coordinate system sAharony et al., 2000d

ds2 = Ra
2s− cosh2rdt2 + dr2 + sinh2rdVp−2

2 d

+ Rs
2scos2udf2 + du2 + sin2udVq−2

2 d . s3.4d

We then boost along a circle of radius Rs in Sq direc-
tions, i.e., we choose the lightlike geodesic along t
− sRs /Radf direction at r=u=0. Next, we send Ra ,Rs
→` at the same rate, so that

Rs
2

Ra
2 = k2 = fixed, s3.5d

and scale the coordinates as

x+ =
1
2
St +

Rs

Ra
fD, x− = Ra

2St −
Rs

Ra
fD , s3.6ad

r =
x

Ra
, u =

y

Rs
, s3.6bd

keeping x+ ,x− ,x ,y and all the other coordinates fixed.
Inserting Eqs. s3.5d and s3.6d into s3.4d and dropping
Os1/Ra

2d terms, we obtain

ds2 = − 2dx+dx− − sxixi + k2yayadsdx+d2 + dxidxi

+ dyadya, s3.7d

where i=1,2 , . . . ,p−1 and a=1,2 , . . . ,q−1. For the case
of sp ,qd= s5,5d and s3,3d k=Rs /Ra=1, s4,7d k=Rs /Ra
=1/2 and s7,4d k=Rs /Ra=2 sMaldacena, 1998d.

Since AdSp and Sq are not Ricci flat, AdSp3Sq geom-
etries can be supergravity solutions only if they are ac-
companied by the appropriate fluxes; for the case of
AdS53S5 that is a sself-duald five-form flux of type-IIB.
For AdS43S7 and AdS73S4 it is a four-form flux of
11-dimensional supergravity, and for AdS33S3 it is a
three-form RR or NS-NS flux sMaldacena, 1998d. Let us
now focus on the AdS53S5 case and study the behavior
of the five-form flux under the Penrose limit. The self-
dual five-form flux on S5 is proportional to N=Rs

4 /gs,
explicitly sAharony et al., 2000bd

FS5 = 4NdV5, FAdS5
= *FS5, s3.8d

where dV5 is the volume form of a five-sphere of unit
radius. The numeric factor 4 is just a matter of super-
gravity conventions, and we have chosen our conven-
tions so that the 10-dimensional ssuperdcovariant deriva-

tive is given by Eq. s2.8d. Taking the Penrose limit we
find that

F =
4

gs
dx+ ∧ sdx1 ∧ dx2 ∧ dx3 ∧ dx4

+ dy1 ∧ dy2 ∧ dy3 ∧ dy4d .

Finally the metric can be brought to the form s2.6d
through the coordinate transformation

x+ → mx+, x− → 1

m
x−.

We would like to note that, as we see from the analysis
presented here, for the AdS53S5 case the xi come from
the AdS5 and ya from the S5 directions. However, after
the Penrose limit has been taken there is no distinction
between the xi or ya directions. This leads to the Z2 sym-
metry of the plane wave fsee Eq. s2.22dg.

Starting with a maximally supersymmetric solution,
e.g., AdS53S5, after taking the Penrose limit we end up
with another maximally supersymmetric solution, the
plane wave. In fact, generally speaking, under the Pen-
rose limit we never lose any supersymmetries, and as we
shall show in the next subsection we may even gain
some. It has been shown that all plane waves, whether
under the Penrose limit or not, preserve at least half of
the maximal possible supersymmetries si.e., 16 super-
charges for the type-II theoriesd. This gives rise to kine-
matical supercharges sfor example, see Cvetic et al.,
2002d. A class of these that may preserve more than 16
necessarily has a constant dilaton sFigueroa-O’Farrill
and Papadopoulos, 2003d.

B. Contraction of the superconformal algebra PSUs2,2 u4d
under the Penrose limit

In the previous subsection we showed how to obtain
the plane wave s2.6d from the AdS53S5 solution. In this
part we continue a similar line of logic and show that
under the Penrose limit the isometry group of AdS5
3S5, SOs4,2d3SOs6d exactly reproduces the isometry
group of the plane wave discussed in Sec. II.B.1. First,
we note that SOs4,2d3SOs6d and the isometry group of
Sec. II.B.1 both have 30 generators. In fact we shall
show that this correspondence goes beyond the bosonic
isometries and extends to the whole AdS53S5 superal-
gebra, PSUs2,2 u4d sMinwalla, 1998d. The contraction of
PSUs2,2 u4d superalgebra under the Penrose limit has
been considered by Hatsuda et al. s2002d.

1. Penrose contraction of the bosonic isometries

The bosonic part of the AdS53S5 isometries is com-
prised of the four-dimensional conformal group SOs4,2d
times SOs6d, the generators of which are

Jm̂n̂, JÂB̂, m̂ = − 1,0,1,2,3,4, Â = 1,2, . . . ,6.

Being SOs4,2d3SOs6d generators, they satisfy

fJm̂n̂,Jr̂l̂g = isĥm̂r̂Jn̂l̂ + permutationsd , s3.9ad
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fJÂB̂,JĈD̂g = isdÂĈJB̂D̂ + permutationsd , s3.9bd

where ĥm̂n̂=diags−,−, + , + , + , + d. In order to take the
Penrose limit, it is more convenient to decompose them
as

Jm̂n̂ = HJij,D = J−1,0,Li =
1

R
sJ−1,i + J0id,Ki =

1

R
sJ−1,i

− J0idJ , s3.10ad

JÂB̂ = HJab,J = J56,La =
1

R
sJ5a + J6ad,Ka =

1

R
sJ5a

− J6adJ , s3.10bd

where i , j and a ,b vary from 1 to 4, and we also redefine
D and J as

D = mR2P+ +
1

2m
P−, s3.11ad

J = mR2P+ −
1

2m
P−. s3.11bd

Note that, in the above, R and m are auxiliary param-
eters introduced to facilitate the procedure of taking the
Penrose limit. In the above parametrization the Penrose
limit s3.6d becomes R→` with Jij ,Jab , Ki ,Li , Ka ,La,
and P+, P− held-fixed. It is straightforward to show that
Eq. s3.9d goes over to the fhs4d % hs4dg % sos4d % sos4d
% us1d+ % us1d− discussed in detail in Sec. II.B.1.

2. Penrose contraction on the fermionic generators

The supersymmetry of AdS53S5 fits into the Kac
classifications of the superalgerbas sKac, 1977d and is
PSUs2,2 u4d see sDobrev and Petkova, 1985; Minwalla,
1998d, meaning that the bosonic part of the algebra is
sus2,2d % sus4d.sos4,2d % sos6d. Usually in the literature
this superalgebra is either written using sos3,1d nota-
tions ssee D’Hoker and Freedman, 2002d, or 10-
dimensional type-IIB notations ssee Metsaev and Tseyt-
lin, 1998d for fermions. For our purposes, where we
merely need the simplest form of the algebra, it is more
convenient to use sos4,2d or sos6d spinors directly. The
supercharges carry spinorial indices of both the SOs4,2d
and SOs6d groups. First, we recall that spins4,2d
=sus2,2d and spins6d=sus4d. Therefore the supercharges
should carry fundamental indices of sus2,2d and sus4d
ssee Appendix B.3d, explicitly QÎJ where both Î and J
run from one to four, the hatted index is the sus2,2d
spinorial index, and the unhatted one is that of sus4d. In
fact both of these indices are Weyl indices of the corre-
sponding groups. Further details of these six-
dimensional spinors are gathered in Appendix B.3. The
fermionic part of PSUs2,2 u4d superalgebra in this nota-
tion is

fJm̂n̂,QÎJg =
1
2

sigm̂n̂d
Î

K̂
QK̂J, s3.12ad

fJÂB̂,QÎJg = −
1
2

sigÂB̂dJ
KQÎK, s3.12bd

hQÎJ,Q
†K̂Lj = 2dJ

Lsigm̂n̂d
Î

K̂
Jm̂n̂ + 2d

Î

K̂sigÂB̂dJ
LJÂB̂.

s3.12cd

Writing the algebra in the above notation and using the
decomposition sB23d, we can readily take the Penrose
limit, if together with Eqs. s3.10d and s3.11d we scale the
supercharges as

QÎJ → SÎmRqab,ÎmRqȧḃ,
1

Îm
Qaḃ,

1
Îm

QȧbD , s3.13d

where we have introduced proper scalings for the kine-
matical and dynamical supercharges sq and Q, respec-
tivelyd. Inserting Eq. s3.13d into Eq. s3.12d, sending R
→`, and keeping the leading terms, it is straightforward
to see that Eq. s3.12d contracts to the superalgebra of the
plane wave studied in some detail in Sec. II.B.2.

IV. PLANE WAVES AS BACKGROUNDS FOR STRING
THEORY

As discussed in Sec. II.A plane waves are a8-exact
solutions of supergravity and hence provide us with nice
backgrounds for string theory. In fact, noting the simple
form of the metric s2.4d it can be seen that the bosonic
part of the s model action in this background in the
light-cone gauge takes a very simple form sthis is a direct
manifestation of the globally defined null Killing vector
field of the backgroundd. For fIJ=const sHyun and Shin,
2002; Metsaev, 2002; Russo and Tseytlin, 2002b; Sug-
iyama and Yoshida, 2002; Alishahiha et al., 2003d and
fIJ~u−2 sPapadopoulos et al., 2003d and some more gen-
eral cases sBlau and O’Loughlin, 2003d it is even exactly
solvable. In this review, however, we shall focus on the
maximally supersymmetric plane wave of Eq. s2.6d and
work out the Green-Schwarz action for this background.
Note that, due to the presence of the RR fluxes, the
Ramond-Neveu-Schwarz formulation of string theory
sNeveu and Schwarz, 1971; Ramond, 1971d cannot be
used. The Green-Schwarz formulation of superstring
theory on some other plane wave or pp-wave back-
grounds has also been considered in the literature.8

8See, for example, Berkovits and Maldacena s2002d; Fuji et al.
s2002d, Hikida and Sugawara s2002d; Maldacena and Maoz
s2002d; Russo and Tseytlin s2002ad; Cvetic et al. s2003d; Gimon
et al. s2003d; Kunitomo s2003d; Mizoguchi et al. s2003bd; Sadri
and Sheikh-Jabbari s2003a, 2003bd; Walton and Zhou s2003d.
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A. Bosonic sector of type-IIB strings on the plane-wave
background

The bosonic string s-model action in the background
s2.6d, which has metric Gmn and a vanishing NS-NS two-
form, is sPolchinski, 1998ad

S =
1

4pa8
E d2sgabGmn]aXm]bXn

=
1

4pa8
E d2sgabs− 2]aX+]bX−

+ ]aXI]bXI − m2XI
2]aX+]bX+d , s4.1d

where gab is the worldsheet metric, sa= st ,sd are the
worldsheet coordinates, and I=1,2 , . . . ,8. Note that the
RR background fluxes do not appear in the bosonic ac-
tion. We first need to fix the two-dimensional gauge sym-
metry, which is partly done by choosing

Î− ggab = hab, − htt = hss = 1. s4.2d

To fix the residual worldsheet diffeomorphism invari-
ance, we note that the equation of motion for X+, s]t

2

−]s
2dX+=0, has a general solution of the form fst+sd

+gst−sd. We choose fsxd=gsxd= 1
2a8p+x, i.e.,

X+ = a8p+t, p+ . 0. s4.3d

The choices s4.2d and s4.3d completely fix the gauge sym-
metry. This is the light-cone gauge. In this gauge, X+ and
X− are not dynamical variables anymore and are com-
pletely determined by XI’s through the constraints re-
sulting from Eq. s4.2d sGreen et al., 1987ad,

dL
dgts

= 0,
dL
dgtt

=
dL

dgss

= 0.

Using the solution s4.3d for X+ and setting −gtt=gss=1,
these constraints become

2a8p+]tX
− = ]tX

I]tX
I + ]sXI]sXI − sma8p+d2XIXI,

s4.4d

a8p+]sX− = ]sXI]tX
I. s4.5d

We can now drop the first term in Eq. s4.1d and replace
X+ with its light-cone solution. After rescaling t and s
by a8p+, we obtain the light-cone action

Sl.c.
bos. =

1

4pa8
E dtE

0

2pa8p+

dsf]tX
I]tX

I − ]sXI]sXI

− m2XI
2g . s4.6d

This action is quadratic in XI’s and hence it is solvable.
The equations of motion for XI,

s]t
2 − ]s

2 − m2dXI = 0, s4.7d

should be solved together with the closed string bound-
ary conditions

XIss + 2pa8p+d = XIssd . s4.8d

In fact, X± should also satisfy the same boundary condi-
tion. From Eq. s4.3d it is evident that X+ satisfies this
boundary condition. We shall come back to the bound-
ary condition on X− at the end of this subsection. The
solutions to these equations are

XI = x0
Icos mt +

p0
I

mp+sin mt

+Îa8

2 o
n=1

`
1

Îvn

fan
I e−isn+/a8p+

+ ãn
I e−isn−/a8p+

+ an
I†e+isn+/a8p+

+ ãn
I†e+isn−/a8p+

g , s4.9d

where

vn = În2 + sa8mp+d2, n ù 0, s4.10d

sn± = vnt ± ns , s4.11d

and a and ã correspond to the right- and left-moving
modes. The case of n=0 has been included for later con-
venience. The canonical quantization conditions

fXIss,td,PJss8,tdg = idIJdss − s8d , s4.12d

where PI= s1/2pa8d]tX
I, yield

fx0
I ,p0

Jg = idIJ, fan
I ,am

J†g = fãn
I ,ãm

J†g = dIJdmn. s4.13d

Next, using the light-cone action we work out the light-
cone Hamiltonian,

Hl.c.
bos. =

1

4pa8
E

0

2pa8p+

dsfs2pa8d2PI
2 + s]sXId2

+ m2XI
2g . s4.14d

As we expect, the light-cone Hamiltonian density is the
momentum conjugate to light-cone time X+, P−

= s2/a8p+ds]tX
−+m2XI

2d. Plugging the mode expansion
s4.9d into Eq. s4.14d, we obtain

Hl.c.
bos. =

1

a8p+Fa8mp+a0
I†a0

I + o
n=1

`

vnsan
I†an

I + ãn
I†ãI

ndG
+

8

a8p+S1
2

a8mp+ + o
n=1

`

vnD , s4.15d

where the last term contains the zero-point energies of
bosonic oscillators safter normal orderingd and we have
defined

ã0
I ; a0

I =
1

Î2mp+
p0

I − iÎmp+

2
x0

I . s4.16d

It is easy to check that fa0
I ,a0

J†g=dIJ. We shall see in the
next subsection that this zero-point energy is canceled
against the zero-point energy of the fermionic modes, a
sign of supersymmetry.

Now let us check whether X− also satisfies the closed
string boundary condition X−ss+2pa8p+d=X−ssd. From
Eq. s4.5d we learn that
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dX− = E
0

2pa8p+

ds]sXI]tX
I

= o
n=1

`

nsan
I†an

I − ãn
I†ãI

nd = 0, s4.17d

where dX−=X−ss+2pa8p+d−X−ssd, and we have used
the mode expansion s4.9d. Equation s4.17d is the level-
matching condition, which is in fact a constraint on the
physical excitations of a closed string sPolchinski,
1998ad.

The vacuum of the light-cone string theory, u0,p+l, is
defined as a state satisfying

ãI
nu0,p+l = an

I u0,p+l = 0, n ù 0. s4.18d

Note that this vacuum is specified with the light-cone
momentum p+, i.e., for different values of p+ we have a
different string theory vacuum state and hence a differ-
ent Fock space built from it. As we see from Eq. s4.15d,
in the plane-wave background all the string modes, in-
cluding the zero modes, are massive. In other words, all
the supergravity modes screated by a0

†d are also massive,
in agreement with the discussion in Sec. II.C.

Before moving on to the fermionic modes, we would
like to briefly discuss strings on compactified plane
waves. Such plane waves may naturally arise in the Pen-
rose limit of particular AdS53S5 orbifolds sMukhi et al.,
2002d. Let us consider the compactification of X− on a
circle of radius R−:

X− ; X− + 2pR−. s4.19d

As a result of this compactification the light-cone mo-
mentum p+, which is the momentum conjugate to the X−

direction, should be quantized,

p+ =
m

R−
, m P Z − h0j . s4.20d

For fixed m, we are in fact studying the discrete light-
cone quantization of strings on plane waves sAlishahiha
and Sheikh-Jabbari, 2002; Mukhi et al., 2002d. After
compactification, we might also have winding modes
along the X− direction. The X− winding number w is
related to XI excitation modes through the constraint
s4.5d:

w =
1

2pR−
E

0

2pa8p+

ds]sX− =
a8

R−
E

0

2pa8p+

ds]sXIPI,

where wPZ. This equation together with Eq. s4.20d
gives the “improved” level-matching condition for
strings, which is mw=on.0 nsan

I†an
I − ãn

I†ãI
nd. The string-

theory vacuum state is now identified by two integers m
and w. As for toroidal compactifications in the trans-
verse directions and T duality for strings on plane waves,
we shall not discuss them here. The interested reader is
referred to the available literature; see, for example,
Ideguchi and Imamura s2003d; Michelson s2002d; Mi-
zoguchi et al. s2003ad.

B. Fermionic sector of type-IIB strings on the plane-wave
background

1. The Green-Schwarz superstring action

The fermionic sector of the Green-Schwarz super-
string action for type-IIB strings is sGreen et al., 1987a;
Cvetic et al., 2000d

SF =
i

4pa8
E d2ssuadTsbabdar]aXmGmsD̂bdb

rub + Osu3d .

s4.21d

In the above ua , a=1,2 are two fermionic worldsheet
fields giving embedding coordinates of N=2 type-IIB su-
perspace, i.e., they are 32-component 10-dimensional
Weyl-Majorana fermions of the same chirality,

sbabdar = Î− ggabdar − eabss3dar, s4.22d

and sD̂bdb
r is the pullback of the supercovariant deriva-

tive s2.8d to the worldsheet, which for our background
becomes

sD̂bdb
r = db

r]b + ]bXnsVndb
r , s4.23d

and Vn is given in Eq. s2.14d.9 Our notations for 10-
dimensional type-IIB fermions is summarized in Appen-
dix B.1. By suadT we mean the transposition in the fer-
mionic indices. The eab term in Eq. s4.22d is in fact
coming from the Wess-Zumino term in the Green-
Schwarz action.

2. Fixing k symmetry and the fermionic spectrum

k symmetry is a necessary fermionic symmetry for
spacetime supersymmetry of the on-shell string modes.
In fact, by fixing the k symmetry, we remove half of the
fermionic gauge sunphysicald degrees of freedom so that
after gauge fixing we are left with 16 physical fermions,
describing on-shell spacetime fermionic modes. This
number of fermionic degrees of freedom is exactly equal
to the number of physical bosonic degrees of freedom
coming from the XI modes after fixing the light-cone
gauge snote that there are left and right modesd.

It has been shown that the action s4.21d for the plane-
wave background possesses the necessary k symmetry

9The Osu3d terms come from the higher-order u contributions
to the supervielbein. Explicitly, the Green-Schwarz Lagrangian
for a general background is

L = gabPa
mPa

nGmn + Lwz,

with Pa
m=]aZNEN

m , and where ZM= sXm ,uAad are the type-IIB
superspace coordinates and EN

M are the supervierbiens ssee
Metsaev, 2002d. One can then show that after fixing the light-
cone gauge for the plane-wave background all Osu3d correc-
tions to EN

M vanish sMetsaev, 2002d and the action reduces to
Eq. s4.21d without Osu3d terms. These complications are be-
yond the scope of this paper, and the interested reader is re-
ferred to Metsaev s2002d. A similar procedure for the
M2-brane action in the 11-dimensional plane-wave back-
ground has been carried out by Dasgupta et al. s2002ad.
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sMetsaev, 2002d, and to obtain the physical fermionic
modes we need to gauge-fix it, which can be achieved by
choosing

G+ua = 0, a = 1,2. s4.24d

As in the flat-space case sGreen et al., 1987ad, the above
suffices to fix the full k symmetry of the plane-wave
background sMetsaev, 2002d. By imposing Eq. s4.24d as
shown in Appendix B.1, we can reduce the 10-
dimensional fermions to the SOs8d representations, and
since the two ua have the same 10-dimensional chirali-
ties, both of them end up being in the same SOs8d fer-
mionic representation, which we have chosen to be 8s.

To simplify the action we note that Eq. s4.24d implies

suadTGIub = 0 ∀ a,b, sVIdb
aub = 0.

From the ]aXmGm term in the action, only ]aX+G+ sur-
vives, and from the Vm terms only V+ survives, and
hence

Sl.c.
fer =

i

4pa8
E dtE

0

2pa8p+

dshsuadTsbabdar

3s]aX+G+dfdb
r]b + ]bX+sV+db

rgubj .

Next, we use Eqs. s2.14d and s4.3d to further simplify the
action; after some straightforward algebra we obtain

Sl.c.
fer =

− i

4pa8
E dtE

0

2pa8p+

dsfu†]tu + u]tu
† + u]su

+ u†]su† − 2imu†Pug . s4.25d

Note that in the above we have replaced u1 and u2,
which are now eight-component 8s fermions with their
complexified version fsee Appendix B.1, Eq. sB9dg. The
last term in the action is a mass term resulting from the
RR five-form flux of the background. As we see, after
fixing the k symmetry, the spin connection does not con-
tribute to the action.

The above action takes a particularly nice and simple
form if we adopt SOs4d3SOs4d representations for fer-
mions ssee Appendix B.2d. In that case u and u† are
replaced with uab ,uȧḃ and their complex conjugates,
where a and ȧ are Weyl indices of either of the SOs4d’s.
In this notation the action is

Sl.c.
fer =

− i

4pa8
E dtE

0

2pa8p+

dsfuab
† ]tu

ab + uab]tuab
†

+ uab]suab + u†ab]suab
† − 2imuab

† uab

+ a,b → ȧ,ḃg . s4.26d

As can be seen, uab and uȧḃ decouple from each other.
The coupled equations of motion for the fermions are

s]t + ]sdsuab + uab
† d − imsuab − uab

† d = 0,

s]t − ]sdsuab − uab
† d − imsuab + uab

† d = 0. s4.27d

The solution to the above is

u =
1

Îp+
b0eimt +

Îa8m

2 o
n=1

`
1

Îvn
FS1 − r−n

Îr−n
Dbne−isn+/a8p+

+ S1 + r−n

Îr−n
Dbn

†e+isn−/a8p+
+ S1 − rn

Îrn
Db̃ne−isn−/a8p+

+ S1 + rn

Îrn
Db̃n

†e+isn−/a8p+G , s4.28d

where vn is defined in Eq. s4.10d, sn± in Eq. s4.11d, and

r±n =
vn ± n

a8mp+ . s4.29d

In the above, since there was no confusion, we have

dropped the fermionic indices. The uȧḃ’s also satisfy a
similar equation.

Imposing the canonical quantization conditions,

huabss,td,url
† ss8,tdj = 2pa8dr

adl
bdss − s8d , s4.30d

leads to

hb0,b0
†j = 1, hbn,bm

† j = hb̃n,b̃m
† j = dmn, s4.31d

where again we have suppressed the fermionic indices.
Using the light-cone action and the mode expansion

s4.28d, we work out the light-cone Hamiltonian:

Hl.c.
fer. =

1

a8p+Fa8mp+b0
†b0 + o

n=1

`

vnsbn
†bn + b̃n

†b̃ndG
−

8

a8p+S1
2

a8mp+ + o
n=1

`

vnD . s4.32d

In the above we have used bn
†bn as a shorthand for

bnab
† bn

ab+b
nȧḃ

†
bn

ȧḃ for nù0.
In the full light-cone Hamiltonian, which is a sum of

bosonic and fermionic contributions, the zero-point en-
ergies cancel and

Hl.c.
s2d =

1

a8p+Fa8mp+sa0
I†a0

I + b0
†b0d + o

n=1

`

vnsan
I†an

I

+ ãn
I†ãI

n + bn
†bn + b̃n

†b̃ndG . s4.33d

C. Physical spectrum of closed strings on the plane-wave
background

Having worked out the Hamiltonian and the mode
expansions, we are now ready to summarize and list the
low-lying string states in the plane-wave background.
First, we note that the level-matching condition s4.17d
also receives contributions from fermionic modes. Again
using the fact that dsLb+Lfd /dgts=0, we find that a term
like u†u should be added to the right-hand side of Eq.
s4.5d, and hence the improved level-matching condition
in which the fermionic modes have been taken into ac-
count is
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o
n=1

`

nsan
I†an

I + bn
†bn − ãn

I†ãI
n − b̃n

†b̃nduCl = 0, s4.34d

with uCl a generic physical closed string state.
As usual the free string theory Fock space H is

sPolchinski, 1998ad

H = uvacuuml %
m=1

`

Hm, s4.35d

where Hm, the m-string Hilbert space, is nothing but m
copies of sor the direct product of md single-string Hil-
bert spaces H1. The string theory vacuum state in the
sector with light-cone momentum p+, which will be de-
noted by uvl, is the state that is annihilated by all an and
bn:

anuvl = ãnuvl = 0, bnuvl = b̃nuvl = 0, ∀ n ù 0.

s4.36d

Hereafter we shall use convention of suppressing the
light-cone momentum in the vacuum state, and the light-
cone momentum p+ is implicit in uvl. Again, we have

defined b̃0=b0 for later convenience.
This state is clearly invariant under SOs4d3SOs4d

symmetry and has zero energy. However, it is possible to
define some other “vacuum” states that are invariant
under the full SOs8d. These states all necessarily have
higher energies. Two such vacua which have been con-
sidered in the literature are sMetsaev and Tseytlin, 2002;
Spradin and Volovich, 2002d

u0l ; b011
† b012

† b021
† b022

† uvl, or

u0̇l ; b
01̇1̇
†

b
01̇2̇
†

b
02̇1̇
†

b
02̇2̇
† uvl . s4.37d

It is evident that both u0l and u0̇l have energy equal to

4m. The interesting and important property of u0l and u0̇l
is that they are SOs8d invariant, and hence it is natural
to assign them positive Z2 eigenvalues. fNote that, as
discussed in Sec. II.B.1, Z2 is a specific SOs8d rotation.g
On the other hand, it is not hard to check that under Z2

b012 ↔ b021 and b01̇2̇ ↔ b02̇1̇ .

Therefore uvl and u0l should have opposite Z2 charges
sChu et al., 2002d; with the positive assignment for u0l, uvl
should have a negative Z2 eigenvalue. Giving negative Z2
charge to uvl at first sight may look strange, but this
charge assignment is the more natural one when we note
the arguments of Sec. II.C. The uvl vacuum state, which
has zero energy smassd, in fact arises from a combination
of metric and the five-form field excitations. On the
other hand, since the full transverse metric is traceless,
the traces of the SOs4d parts of the metric should have
opposite signs, and hence we expect uvl to be odd under

Z2. The vacua u0l and u0̇l arise from excitations of the
axion-dilaton field, which is an SOs8d scalar. Therefore
the natural assignment is to choose them to be even
under Z2 sPankiewicz, 2003ad.

Based on the vacuum state uvl, we can build the
single-string Hilbert space H1 by the action of pairs of
right- and left-moving sbosonic or fermionicd modes on
the vacuum. This would guarantee that the level-
matching condition s4.34d is satisfied. Note that the
above does not exhaust all the possibilities when we
have zero-mode excitations. In fact if we only excite n
=0 modes the level-matching condition s4.34d is fulfilled
for any number of excitations. Therefore we consider
generic n and n=0 cases separately.

1. Generic single-string states

These states are generically of the following forms:

bosonic modes:

an
i†ãn

j†uvl,an
a†ãn

b†uvl,an
i†ãn

a†uvl,an
a†ãn

i†uvl , s4.38ad

bnab
† b̃nrl

† uvl,b
nȧḃ

†
b̃

nṙl̇

† uvl,bnab
† b̃

nṙl̇

† uvl,b
nȧḃ

†
b̃nrl

† uvl ,

s4.38bd

fermionic modes:

an
i†b̃nab

† uvl,an
a†b̃nab

† uvl,bnab
† ãn

i†uvl,bnab
† ãn

a†uvl , s4.39ad

an
i†b̃

nȧḃ

† uvl,an
a†b̃

nȧḃ

† uvl,b
nȧḃ

†
ãn

i†uvl,b
nȧḃ

†
ãn

a†uvl , s4.39bd

with nÞ0. All the above states have mass equal to 2vn,
though they are in different SOs4d3SOs4d representa-
tions. The first line of Eq. s4.38d for which both the left-
and right-movers are coming from bosonic modes, in the
usual conventions, comprise the “NS-NS” sector, and
the second line of Eq. s4.38d the “RR” modes.10

It is instructive to work out the SOs4d3SOs4d repre-
sentations of these modes. Here we shall study only the
bosonic modes, and the fermionic modes are left to the
reader. First we note that

sid uvl is SOs4d3SOs4d singlet,

siid an
i† and an

a† are, respectively, in s4 ,1d and s1 ,4d of
SOs4d3SOs4d, and

siiid as discussed in Appendix B.2, bnab
† and b

nȧḃ

†
are in

„s2 ,1d , s2 ,1d… and „s1 ,2d , s1 ,2d…, respectively.

10In the usual sflat-spaced conventions NS-NS and RR modes
come from the decomposition of two bosonic and two fermi-
onic modes of SOs8d, respectively sGreen et al., 1987ad. It is
worth noting that this classification does not hold in our case in
the sense that two bosonic modes sor equivalently two bosonic
insertionsd give rise to a combination of the metric and the
self-dual five-form, while two fermionic insertions give rise to
two-forms, NS-NS and RR. So, as we can see, there is a mix-
ture of the usual NS-NS and RR modes which appear from
two bosonic or fermionic stringy modes. This is not surprising,
recalling that in our case we are dealing with the plane-wave
background and SOs4d3SOs4d representations instead of flat
space and SOs8d. Therefore in our notations we reserve “NS-
NS” and “RR” sinstead of NS-NS and RRd to distinguish this
difference from flat space.
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Therefore an
i†ãn

j†uvl is in the SOs4d3SOs4d represen-
tation

s4,1d ^ s4,1d = s1,1d % s9,1d % s3+,1d % s3−,1d , s4.40d

where by 3± we mean the self-dual sor anti-self-duald
part of 6 of SOs4d. Likewise an

a†ãn
b†uvl can be decom-

posed into s1 ,1d % s1 ,9d % s1 ,3+d % s1 ,3−d. Here an
i†ãn

a†uvl
and an

a†ãn
i†uvl are both in s4 ,4d because

s4,1d ^ s1,4d = s4,4d . s4.41d

Now let us consider the “RR” modes. For two bnab
† or

b
nȧḃ

†
excitations we note that

„s2,1d,s2,1d… ^ „s2,1d,s2,1d…

= s1,1d % s3+,3+d % s3+,1d % s1,3+d , s4.42ad

„s1,2d,s1,2d… ^ „s1,2d,s1,2d…

= s1,1d % s3−,3−d % s3−,1d % s1,3−d , s4.42bd

and for one bnab
† and one b

nȧḃ

†
type excitations

„s2,1d,s2,1d… ^ „s1,2d,s1,2d… = s4,4d . s4.42cd

2. Zero-mode excitations

Now let us restrict ourselves to the excitations which
only involve a0

† and b0
† modes. Compared to the previous

case, there are two specific features to note. One is that
the left- and right-movers are essentially the same se.g.,

there is no independent ã0
† or b̃0

†d and second, any num-
ber of excitations is physically allowed fthere are no re-
strictions imposed by the level-matching condition
s4.35dg.

Here we consider only strings with two excitations,
i.e., those with mass equal to 2m. These modes are very
similar to Eqs. s4.38d and s4.39d after setting n=0. This
means that the modes of the form a0

i†a0
j†uvl are symmet-

ric in i and j indices. In other words, in the decomposi-
tion s4.40d only s1 ,1d % s9 ,1d survive. Similarly,
a0

a†a0
b†uvl-type states are in the s1 ,1d % s1 ,9d representa-

tion. The a0
i†a0

b†uvl states, however, would lead to a
single s4 ,4d representation. In sum the 36 “NS-NS” zero
modes are in s1 ,1d % s9 ,1d % s1 ,1d % s1 ,9d % s4 ,4d.

In the decomposition of “RR” modes among Eqs.
s4.2d we should keep modes that are antisymmetric. Ex-
plicitly, they are earb0ab

† b0rl
† uvl in s1 ,3+d, eblb0ab

† b0rl
† uvl

in s3+ ,1d, eȧṙb
0ȧḃ

†
b

0ṙl̇

† uvl in s1 ,3−d, and eḃl̇b
0ȧḃ

†
b

0ṙl̇

† uvl in
s3− ,1d of SOs4d3SOs4d. Therefore altogether the 28
“RR” modes are in s3+ ,1d % s3− ,1d % s1 ,3+d % s1 ,3−d
% s4 ,4d representations.

The above may be compared with the supergravity
modes discussed in Sec. II.C. Clearly there is a perfect
match. This basically indicates that there exists a low-
energy limit in the plane-wave background so that the
effective string dynamics are governed by the supergrav-
ity modes; in such a limit, the lowest modes of strings
created by a0

† and b0
† would decouple from the rest of

the string spectrum. For such a decoupling to happen,

two necessary conditions should be met: first, vn
@a8mp+ for any nù1, and second, strings should be
“weakly coupled,” i.e., gs

eff!1. The former is satisfied if
a8mp+!1.

D. Representation of the plane-wave superalgebra in
terms of string modes

String theory on the plane-wave background in the
light-cone gauge that we discussed earlier has the same
supersymmetry as the background whose algebra was
introduced in Sec. II.B. In this section we shall explicitly
construct the representations of that algebra in terms of
string modes.

1. Bosonic generators

As in the flat-space case sGreen et al., 1987ad, to find
the representation of 30 bosonic isometries of the plane-
wave background in terms of string modes, we start with
their representations in terms of coordinates and their
derivatives and then replace them with string worldsheet
fields and their momenta, respectively. Noting Eqs.
s2.29d, s2.33d, and s2.37d, we learn that some of these
bosonic generators should also have a part that is qua-
dratic in stringy fermionic modes. Putting this all to-
gether we have

P+ = p+1, P− = Hl.c.
s2d, s4.43d

KI = E
0

2pa8p+

dsFsin mtPI +
m

2pa8
XIcos mtG ,

LI = E
0

2pa8p+

dsFcos mtPI −
m

2pa8
XIsin mtG , s4.44d

Jij = E
0

2pa8p+

dsFsXiPj − XjPid −
i

4pa8
fuab

† ssijdr
aurb

+ u
ȧḃ

† ssijdṙ
ȧuṙḃgG ,

Jab = E
0

2pa8p+

dsFsXaPb − XbPad

−
i

4pa8
fuab

† ssabdr
buar + u

ȧḃ

† ssabdṙ
ḃuȧṙgG . s4.45d

Note that in the above P+ is proportional to the identity
operator, which is compatible with the observation in of
Sec. II.B.2 that the Us1d generated by P+ is in the center
of the superalgebra. It is straightforward to check that
these generators really satisfy the desired algebras.

2. Fermionic generators

As discussed in Sec. II.B.2, there are two classes of
supercharges, the kinematical and dynamical ones. Let
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us first focus on the kinematical supercharges. From
Eqs. s2.29d–s2.32d one can see that qab should be propor-
tional to uab, explicitly

qab =
Î2

2pa8
E

0

2pa8p+

dsuab, s4.46d

qȧḃ =
Î2

2pa8
E

0

2pa8p+

dsuȧḃ.

As for the dynamical supercharges, we note that, un-
like the q’s, which are in the complex 8s of SOs8d, they
are in the complex 8c. Next we note that if u is in 8s then
gIu is in 8c fit has opposite SOs8d chiralityg. We also
expect the Q’s to contain first-order X’s and P’s, so that
their anticommutator would generate the Hamiltonian,
which is quadratic in X’s and P’s. Putting these together
and demanding the Q’s satisfy Eqs. s2.33d–s2.37d fixes
them to be

Q
aḃ

s0d
=

1

2pa8
E

0

2pa8p+

dsfs2pa8Pi − imXidssida
ṙu

ṙḃ

†

+ s2pa8Pa + imXadssad
ḃ

r
uar

† + i]sXissida
ṙuṙḃ

+ i]sXassad
ḃ

r
uarg , s4.47ad

Qȧb
s0d =

1

2pa8
E

0

2pa8p+

dsfs2pa8Pi − imXidssidȧ
rurb

†

+ s2pa8Pa + imXadssadb
ṙuȧṙ

† + i]sXissidȧ
rurb

+ i]sXassadb
ṙuȧṙg . s4.47bd

The superscript s0d on the Q’s emphasizes that they are
only linear in X and P’s. As we shall argue in Sec. VIII,
however, when we consider interacting strings there are
corrections to the Hamiltonian as well as the dynamical
supercharges, and in fact both H and Q should be
viewed as power-series expansions in the string coupling.
At zeroth order they match with the Qs0d and Hs2d pre-
sented here.

One may also try to insert the mode expansions and
express the generators of the superalgebra in terms of
string creation-annihilation operators. Doing so, it is
easy to see that the “kinematical” generators, KI , LI,
qab, and qȧḃ, which have a linear dependence on the
string worldsheet fields, depend only on the zero modes.

The “dynamical” generators, Jij, Jab, Q
aḃ

s0d
, Qȧb

s0d, and Hs2d,
however, are quadratic and hence they depend on all the
stringy operators.

V. STATING THE PLANE-WAVE/SUPER YANG-MILLS
DUALITY

In Sec. III we demonstrated that plane waves may
generically arise as Penrose limits of given geometries,
and in particular the maximally supersymmetric plane
wave appears as the Penrose limit of AdS53S5 geom-

etry. On the other hand, as briefly discussed in the In-
troduction sGubser et al., 1998; Witten, 1998; Aharony et
al., 2000d, type-IIB string theory on the AdS53S5 back-
ground is dual to the N=4, D=4 ssuperconformald gauge
theory. In this section we show the latter duality can be
revived for type-IIB strings on the maximally supersym-
metric plane wave.

The basic idea of the BMN proposal sBerenstein, Mal-
dacena, and Nastase, 2002bd is to start with the usual
AdS/CFT duality and find what procedure parallels the
taking of the Penrose limit in the dual gauge theory side.
As we argued in Sec. III, the process of taking the Pen-
rose limit consists of finding a lightlike geodesic and re-
scaling the other lightlike directions, as well as all the
other transverse directions, in the appropriate way given
in Eq. s3.2d. For the case of AdS53S5, the geodesic was
chosen as a combination of a direction in S5 and the
global time s3.6d. The generator of translation along this
lightlike geodesic, P− is then a combination of transla-
tion along the global time and rotation along the S1 in-
side S5 fEq. s3.6adg. According to the AdS/CFT duality,
however, translation along global time corresponds to
the dilatation operator sor, equivalently, Hamiltonian
operator in the radial quantizationd of the N=4 gauge
theory on R4, while the rotation in the S1 direction cor-
responds to a Us1d of the R symmetry. Explicitly, the
dilatation operator D is the generator of Us1dD
PSUs2,2d.SOs4,2d sthe conformal group in four di-
mensionsd and J is the generator of Us1dJPSUs4d
.SOs6d R symmetry fsee Eq. s3.10dg.

As an initial step towards building the plane-wave/
super Yang-Mills sSYMd duality we state the proposal in
this section. As mentioned in the Introduction, Sec. I.C,
this duality can be stated as the operator equality s1.9d
supplemented with a correspondence between the Hil-
bert spaces on both sides, where the operators act. In
the first part of this section we show how the N=4 gauge
theory fields fall into the SOs4d3SOs4d representations,
which is the first step in making the correspondence with
the string theory. Then in the later parts of this section
we state the duality and introduce the BMN operators.
Our conventions for the N=4 gauge theory fields and
the action of the theory are summarized in Appendix A.

A. Decomposition of N=4 fields into D ,J eigenstates

The matter content of the N=4 gauge multiplet natu-
rally falls into the representations of SOs4,2d3SOs6d
sfor more details see, for example, D’Hoker and Freed-
man, 2002d. However, in order to trace the Penrose limit
in the gauge theory and state the BMN proposal, we
need to study their representations in the SOs4d
3SOs4d3Us1d3Us1d subgroup of SOs4,2d3SOs6d.
The N=4 gauge multiplet contains six real scalars
fI , I=1, . . . ,6, four gauge fields Aa , a=1,2 ,3 ,4, and
eight complex Weyl fermions ca

A , a=1,2 and A
=1,2 ,3 ,4 sWess and Bagger, 1992; also see Appendix
Ad. Here we are only interested in UsNd gauge theories
where scalars and fermions are both in the adjoint rep-
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resentation of the UsNd, so they are N3N Hermitian
matrices. Aa are not in the adjoint representation, how-
ever sbut they do transform in the adjoint for global
transformationsd, and as in any gauge theory one might
consider the covariant derivative of the gauge theory,

Da = ]a + iAa, s5.1d

which is in the adjoint of the local UsNd. In all our ar-
guments we shall consider Euclidean gauge theory on R4

so the a index of Da is an Os4d index. We might, how-
ever, switch between field theories on R4 and its confor-
mal map, R3S3.

The eigenvalues of J will be denoted by J. Since J is
the generator of a Us1d subgroup of the Us4d
R-symmetry group, the gauge fields are trivial under it.
That is,

fJ,Dag = 0; s5.2d

in other words, Da has charge J=0. The scalars, how-
ever, decompose into two sets. We choose J to make
rotations in the f5 and f6 plane, i.e.,

Z =
1
Î2

sf5 + if6d ; fJ,Zg = + Z , s5.3d

and hence fJ ,Z†g=−Z†. Therefore Z has J=1 sand
Z† , J=−1d. The other four scalars, which will be de-
noted by fi , i=1,2 ,3 ,4 commute with J and have J=0.
The 16 fermionic fields also decompose into two sets of
eight with J= ± 1

2 .
The eigenvalue of D will be denoted by D. For fields

in the N=4 gauge multiplet at free-field-theory level, D

=1 for scalars and Da and D= 3
2 for fermions. Hereafter

we shall use D0 to denote the dimension of operators at
free-field level sthe engineering dimensionsd and D for
the full interacting theory; explicitly for any operator
Osxd,

fD,Os0dg = fD0 + OsgYM
2 dgOs0d . s5.4d

After taking out the two Us1d factors sD ,Jd of the
SOs4,2d3SOs6d for SUs2,2d3SUs4dg, the bosonic part
of the four-dimensional superconformal group, we re-
main with an SOs4d3SOs4d fone SOs4dPSOs4,2d and
the other SOs4dPSOs6dg subgroup. We also need to find
the SOs4d3SOs4d representation of the fields. Obvi-
ously Z and Z† are singlets of both SOs4d’s, the s1 ,1d
representation, fi are in s1,4d, and the Da are in s4 ,1d.
The SOs4d3SOs4d representation of fermions can be
worked out noting the arguments of Sec. III.B and Ap-
pendix B.3. Explicitly, we first note that SOs4d.SUs2d
3SUs2d and, as for the usual four-dimensional Euclid-
ean Weyl fermions, they are in s2 ,1d or s1 ,2d of each
SOs4d’s ssee Appendix B.2d. The SOs4d3SOs4d3Us1d
3Us1d representations of all fields of the N=4 gauge
multiplet have been summarized in Table II. Note that
for all the fields in Table II, bosonic and fermionic, D0
−J is integer valued.

B. Stating the Berenstein-Maldacena-Nastase proposal

Having worked out the SOs4d3SOs4d3Us1dD
3Us1dJ representation of the N=4 fields, we are ready
to take the BMN limit, restricting to the operators with
parameterically large R charge J, but finite D0−J. In fact,
starting with the AdS/CFT correspondence, the BMN
limit on the gauge theory side parallels the Penrose limit
on the gravity side, according to which

− i
]

] f
↔ J, i

]

] t
↔ D . s5.5d

Then, Eqs. s3.6d and s3.11d imply that

im
]

] x− =
ia8

2R2S ]

] t
−

]

] f
D ↔ 1

2ÎgYM
2 N

sD + Jd , s5.6ad

i

m

]

] x+ = iS ]

] t
+

]

] f
D ↔ D − J , s5.6bd

where in Eq. s5.6ad we have used Eq. s1.2d. On the grav-
ity sstring theoryd side, is] /]x−d and is] /]x+d are the
light-cone momentum and the light-cone Hamiltonian,
respectively. Taking the Penrose limit Eq. s3.6d is then
equivalent to taking gYM

2 N and J to infinity while keep-
ing J2 /gYM

2 N fixed fsee Eqs. s1.7d and s1.8dg. According
to Eq. s5.6ad the value of J2 /gYM

2 N is equal to the string
light-cone momentum ssquaredd on the string theory
side fsee Eq. s1.7bdg.

In summary, part one of the plane-wave/SYM duality
can be stated as follows:

The light-cone string field theory Hamiltonian in the
plane-wave background is equal to the difference between
the dilatation operator D and the R charge operator J:

1

m
HSFT = D − J , s5.7d

in the sector of the gauge theory consisting of gauge-
invariant operators with parametrically large R charge,
the BMN sector.

TABLE II. SOs4d3SOs4d3Us1d3Us1d representations of all
fields of the N=4 gauge multiplet. The dimensions are those of
the free theory. For the J charge of fermions, note that cab and
cȧb are related by CPT and hence have opposite J charge;
similarly for the other two fermionic modes.

Field D0−J D0+J SOs4d3SOs4d

Z 0 2 s1 ,1d
Z† 2 0 s1 ,1d
fi 1 1 s1 ,4d
Da 1 1 s4 ,1d

cab 1 2 „s2 ,1d , s2 ,1d…
cȧḃ 1 2 „s1 ,2d , s1 ,2d…
caḃ 2 1 „s2 ,1d , s1 ,2d…
cȧb 2 1 „s1 ,2d , s2 ,1d…
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A more detailed discussion about the construction
and form of the BMN operators and also correspon-
dence between the Hilbert spaces on the string and
gauge theory sides, i.e., part two of the plane-wave/SYM
duality, will be presented in the next subsection.

C. The BMN operators

As mentioned earlier, in the plane-wave/SYM duality
the relevant operators on the gauge theory side are
those with large R charge J; these are the so-called BMN
operators, through which D−J acts. In this section we
present such gauge-invariant operators. The BMN op-
erators can be classified by the number of traces sover
the N3N gauge theory indicesd involved, and also the
value of D0−J. In fact, because of the BPS bound
sD’Hoker and Freedman, 2002d DùJ and when D=J the
BPS bound is saturated. This can be seen from Table II
and the fact that the value of D0−J for composite opera-
tors is just the sum of D0−J of the basic fields present in
the composite operator. Besides the value of D0−J and
number of traces to completely specify the operator we
need to identify its SOs4d3SOs4d representation.

1. BMN operators with D0−J =0

The first class of the BMN operators we consider are
those with D0−J=0, in the usual N=4 conventions these
are chiral primary operators sD’Hoker and Freedman,
2002d. According to Table II, such operators can only be
composed of Z fields. Therefore they are necessarily
SOs4d3SOs4d singlets, and hence this class of BMN op-
erators is completely specified with the number of
traces, the simplest of which is of course the single-trace
operator

OJsxd =
1

ÎJN0
J
TrZJsxd, N0 =

1

8p2gYM
2 N . s5.8d

The normalization is fixed so that the planar two-point
function of OJsxd and OJ†s0d is equal to 1/ uxu2J; we shall
come back to this point in Sec. VI.A. We would like to
stress that the point x where the above operator is de-
fined is in R4. One can then define a state by acting Eq.
s5.8d on the vacuum of the gauge theory on R4, which
will be denoted by uvacl. In this way there is a natural
one-to-one correspondence between BMN states and
BMN operators. Hence in this review we shall not dis-
tinguish between BMN operators and BMN states, and
they will be used interchangeably. According to the sec-
ond part of the BMN proposal the above single-trace
operator sor stated corresponds to a single-string state on
the string theory side:

uvl ↔ OJs0duvacl , s5.9d

where uvl is the single-string vacuum with the light-cone
momentum p+ fEq. s4.36dg.

The next state belonging to this class is the double-
trace operator

TJ,r = sOr·JOs1−rd·Jdsxd

=
1

JÎrs1 − rdNJ
:TrZJ1sxdTrZJ−J1sxd , s5.10d

where J1 /J=r and J1 ranges between 1 and J−1. Of
course the above operator is a BMN operator if J1 is of
the order of J. In a similar way Eq. s5.10d was proposed
to correspond to the double-string state with the total
light-cone momentum p+, with the partition r ·p+ and
s1−rd ·p+. One can then straightforwardly generalize the
above to multitrace operators.

We would like to point out that each of the OJ or TJ,r

operators are chiral primaries. In other words, they are
half BPS states of the four-dimensional superconformal
algebra PSUs2,2 u4d. Being chiral primary, these opera-
tors sstatesd are eigenstates of the dilatation operator
and have D−J=0 exactly sD’Hoker and Freedman,
2002d. We should stress, however, that from the
PSUs2 u2d3PSUs2 u2d3Us1d− superalgebra discussed in
Sec. II.B.2, these operators form a complete supermul-
tiplet, which in this case is in fact a singlet, and are still
half BPS in the sense that all the dynamical super-
charges Qaḃ and Qȧb annihilate them.

2. BMN operators with D0−J =1

The next level of states are those with D0−J=1. In
order to obtain such BMN states we should insert one of
the fields in Table II which have D0−J=1 into Eq. s5.8d
or s5.10d. There are eight bosonic states scorresponding
to insertions of fi or Dad and eight fermionic states scor-
responding to insertions of cab or cȧḃd. Each of these
insertions may be viewed as impurities in the line of Z’s.
Due to cyclicity of the trace it does not matter where in
the sequence of Z’s these impurities are inserted. These
8+8 states complete a supermultiplet of PSUs2 u2d
3PSUs2 u2d3Us1d− superalgebra. Here, we should em-
phasize that in the full superconformal PSUs2,2 u4d alge-
bra representations, however, these states are descen-
dents of chiral primaries and are in the same short
supermultiplet as chiral primaries. From the PSUs2 u2d
3PSUs2 u2d3Us1d− superalgebra point of view they are
in different multiplets than chiral primaries with D−J
=0.

As examples we present two such single-trace opera-
tors:

Oi
J =

1
ÎN0

J+1
TrsfiZ

Jd, Oa
J =

1
ÎN0

J+1
TrsDaZZJ−1d .

s5.11d

These operators correspond to a0
i† or a0

a† on the string
theory side. Note that in the closed string theory a physi-
cal state should satisfy the level-matching condition
s4.34d and is generically composed of equal energy exci-
tations of left and right modes. The operators s5.11d,
however, correspond to “zero-momentum” string states
and satisfy the level-matching condition.
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In the same spirit as Eq. s5.10d the double-trace D0
−J=1 BMN operators can be obtained by combining OJ

with Eq. s5.11d, e.g.,

Ti
J,r = sOi

r·JOs1−rd·Jdsxd

=
1

Îs1 − rd · JN0
J
:TrfiZ

J1sxdTrZJ−J1sxd: , s5.12d

where, as in Eq. s5.10d, r is the ratio J1 /J; we shall use
this notation throughout the rest of this paper.

We would like to note that all the operators of this
class, e.g., those presented in Eqs. s5.11d and s5.12d, are
descendents of chiral primaries and are exact eigenstates
of D−J, with D−J=1.

3. BMN operators with D0−J =2

To obtain BMN operators with D0−J=2 we can either
have two insertions of fields with D0−J=1 or a single
insertion of a D0−J=2 field from Table II into the se-
quence of Z’s. For the case of two D0−J=1 insertions,
the position of the insertions is important. However, due
to the cyclicity of the trace only the relative positions of
the insertions is relevant. We fix our conventions so that
one of the impurity fields always appears at the begin-
ning of the sequence. In the single D0−J=2 insertion,
similar to the case of Sec. V.C.2, the insertion position is
immaterial. For single-trace operators with two D0−J
=1 insertions, there are J+1 choices, depending on the
relative positions of the insertions, which we may use as
their “discrete” Fourier modes. To begin, let us consider
the case in which both of the insertions are of the fi
form

Oij,n
J =

1
ÎJN0

J+2Fo
p=0

J

e2pipn/J TrsfiZ
pfjZ

J−pd

− dijTrsZ†ZJ+1dG . s5.13d

As we shall show in Sec. VI, once we turn on the gauge-
theory coupling, individual operators of the form

Õp ; TrsfiZ
pfjZ

J−pd s5.14d

are no longer eigenvectors of the dilatation operator D.
However, the Oij,n

J operators, at planar level sand of
course in the large-J limitd have definite D eigenvalue
sscaling dimensiond. Using Eq. s5.13d it is easy to check
that

Oij,n
J = Oji,−n

J . s5.15d

One may then consider two Da insertions or one fi
and one Da fthe Da insertions have been considered by
Gursoy s2003d and Klose s2003dg :

Oab,n
J =

1
2

1
ÎJN0

J+2Fo
p=0

J

e2pipn/JTrfsDaZdZpsDbZdZJ−pg

+ TrfsDaDbZdZJ+1gG , s5.16d

Oia,n
J =

1
Î2

1
ÎJN0

J+2Fo
p=0

J

e2pipn/JTrffiZ
psDaZdZJ−pg

+ TrfsDafidZJ+1gG . s5.17d

Note that in the above equation of motion, DaDaZ=0
should also be imposed on the fields. The normalization
of Oij,n

J operators has been fixed so that the two-point
function of these operators, in the planar free gauge
theory limit, is of the form kvacuOij,n

†J sxdOi8j8,n
J s0duvacl

=dii8djj8s1/ uxu2sJ+1dd, and similarly for Oia,n
J and Oab,n

J

operators. The difference in factors of 1, 1
2 , and 1/Î2

in the normalization is a consequence of our con-
ventions in which kvacuZ†sxm / uxudZs0duvacl=1 and
kvacufi

†sxm / uxudfjs0duvacl=dij, while kvacusDaZd†sxm /
uxudfDbZs0dguvacl=2dab.

The second part of the plane-wave/SYM duality,
which is a map between the string theory Hilbert space
and BMN operators, can then be stated as follows:

The operators Oij,n
J , Oab,n

J , and Oai,n
J correspond to the

“NS-NS” modes of the single-string sector of free closed
string theory on the plane-wave background (see Secs.
IV.C.1 and IV.C.2). Explicitly,

Oij,n
J ↔ ai,n

† ãj,n
† ,

Oab,n
J ↔ aa,n

† ãb,n
† , ∀ n ù 0,

Oia,n
J ↔ ai,n

† ãa,n
† , s5.18d

where ai,n
† and ãi,n

† are the left- and right-moving string
modes defined in Eq. (4.9). The “RR” and Neveu-
Schwarz/Ramond (“NSR” or “RNS”) modes (note the
comment in footnote 10) and all of the fermionic modes
can be obtained in a similar way through insertions of
fermionic cA fields, two cA fields for the bosonic modes
and one cA and one fi or Da for fermionic modes. On
the string theory side the inner product on the Hilbert
space is the usual one in which m and n string states are
orthogonal to each other unless m=n. On the gauge
theory side, however, the inner product corresponds to the
two-point function of the corresponding BMN operators.

We should warn the reader that identifying the inner
product on the Hilbert space with the two-point func-
tions on the gauge theory side already suggests that the
correspondence s5.18d should be modified because the
two-point functions of the single- and double-trace op-
erators generically do not vanish. This will produce fur-
ther complications, which will be discussed in detail in
Sec. VII.C.

The operators Oij,n
J , Oab,n

J , and Oai,n
J form the bosonic

states of a PSUs2 u2d3PSUs2 u2d3Us1d− supermultiplet.
Note that from the superconformal PSUs2,2 u4d algebra
point of view they are only a part of the bosonic states of
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a supermultiplet.11 In general since the supercharges of
the PSUs2 u2d3PSUs2 u2d3Us1d− commute with the
Hamiltonian, P− fsee Eq. s2.37dg all the states in the
same supermultiplet must have the same energy or mass.
This should be contrasted with the superconformal alge-
bra of PSUs2,2 u4d in which states with different D−J
appear in the same multiplet. For example, chiral prima-
ries and their descendents, Eqs. s5.8d and s5.11d, and
D0−J=2 with n=0 BMN operators discussed earlier, fall
into the same PSUs2,2 u4d supermultiplet sBeisert, 2003d.

These operators, as they are written, are not in irre-
ducible representations of SOs4d3SOs4d. Following the
discussions of Sec. IV.C fEq. s4.40dg one can decompose
Oij,n

J into 1
2Si=1

4 Oii,n
J in s1 ,1d, Osijd,n

J = 1
2 sOij,n

J +Oji,n
J d in

s9 ,1d, and 1
2 sOfijg,n

J ± 1
2eijklOfklg,n

J d, where Ofijg,n
J = 1

2 sOij,n
J

−Oji,n
J d, in s3± ,1d representations of SOs4d3SOs4d. Simi-

lar decompositions can be made for Oab,n
J states. Noting

Eq. s4.41d, we see that the Oai,n
J states form a s4 ,4d of

SOs4d3SOs4d. For the cases in which we have two fer-
mionic c-field insertions the decomposition can be car-
ried out using Eq. s4.42ad if we have two cab insertions
or Eq. s4.42bd if we have two cȧḃ insertions. We might
also have one cab and one cȧḃ insertion, whose decom-
position could than be read from Eq. s4.42cd.

The n=0 case, i.e., Oij,0
J , Oab,0

J , and Oai,0
J , corresponds

to the supergravity modes of the strings in the plane-
wave background. At first it might seem that we should
not expect to find supergravity modes and the results of
Sec. II.C from gauge theory, because the truncation of
stringy excitations to the supergravity modes only makes
sense when all the other excitations are much heavier
than the lowest modes, which, noting Eq. s4.10d, is when
a8mp+!1. As we shall see in the next section, this is the
limit where the “improved” ’t Hooft coupling s1.11d is
very large and one cannot trust the gauge theory analy-
sis. However, one should note that from the superalge-
bra point of view these states are short sBPSd multiplets
of the PSUs2,2 u4d superconformal algebra sBeisert,
2003d as well as the plane-wave superalgebra PSUs2 u2d
3PSUs2 u2d3Us1d−, and hence it is natural to expect
them to be protected by supersymmetry. Noting Eq.
s5.15d, we see that the s3+ ,1d, s3− ,1d, s1 ,3+d, and s1 ,3−d
representations are absent in these supergravity modes.
These representations, which correspond to the fluctua-
tions of type-IIB NS-NS or RR two-form fields ssee Sec.
II.Cd, can arise from two fermionic insertions. Note that
for supergravity modes sthe n=0 cased, due to the fact
that fermions anticommute, only the totally antisymmet-

ric representations of Eqs. s4.42ad and s4.42bd remain
which are s3+ ,1d, s3− ,1d and s1 ,3+d, s1 ,3−d. Then the two
s4 ,4d representations arising from Oai,0

J and cab, cȧḃ in-
sertions form the 32 modes of metric and self-dual five-
form fluctuations. This is compatible with the results of
Secs. II.C and IV.C.2 These n=0 operators are descen-
dents of chiral primaries sthey are in fact 1/4 BPSd, and
hence we expect them to be exact eigenstates of D−J
with D−J=2.

We may also build double-trace operators with D0−J
=2. Clearly there are two possibilities, a combination of
Eq. s5.8d-type operators and Eq. s5.13d-type or two Eq.
s5.11d-type operators:

Tij,n
J,r = :Oij,n

r·J Os1−rd·J: ,

Tij
J,r = :Oi

r·JOj
s1−rd·J: . s5.19d

These operators are conjectured to correspond to
double-string states. As we shall see in Sec. VII, once
the string coupling is turned on and we have the possi-
bility of strings joining and splitting, because of operator
mixing effects, there is a mixture of single-trace, double-
trace, and multitrace operators which correspond to
string states diagonalizing the string field-theory Hamil-
tonian. We remind the reader that, as stated in Sec. I.A,
string loop diagrams correspond to nonplanar graphs in
the gauge theory.

Finally we would also like to note that the set of BMN
operators we have introduced in this subsection is in-
variant under the action of Z2 which exchanges the two
SOs4d factors. One can similarly extend the above con-
struction to BMN operators with an arbitrary number of
impurities.

VI. SPECTRUM OF STRINGS ON PLANE WAVES FROM
GAUGE THEORY I: FREE STRINGS

In this section we consider planar results in the N=4
gauge theory, which, according to the BMN correspon-
dence, should connect with the string theory side at zero
string coupling. Higher-genus corrections will be post-
poned until Sec. VII, where a new complication arising
from the need to rediagonalize the basis of BMN opera-
tors, at each order in the genus expansion, will be dis-
cussed. We start this section by studying the two-point
functions of BMN operators with their conjugates, in the
free-field-theory limit, and use the results to set the nor-
malization of these operators. We then move on to dis-
cuss the quantum corrections to the scaling dimensions,
i.e., the anomalous dimensions. We first present a very
brief but general overview of the scaling behavior of
correlation functions and the appearance of anomalous
dimensions through the renormalization-group equa-
tion. While this discussion provides the physical context
in which anomalous dimensions are normally encoun-
tered in quantum field theory, the main point of this
section is the actual calculation of anomalous dimen-
sions in the interacting theory at planar one-loop level.
An important concept in the renormalization of compos-

11The operators we have presented here are given in the
BMN sJ→`d limit. However, as discussed by Beisert s2003d,
there is a generalization of such operators for finite J, based on
supersymmetry. The form of such operators is slightly different
from that of the BMN ones, differing in the Fourier phase
factor, where in 2pinp /J, J should be replaced with J+3.
These operators are in fact “generalized” Konishi operators,
interpolating between the usual Konishi operators sat J=0 or
1d sKonishi, 1984d and J=`, the BMN operators.
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ite operators, operator mixing, appears when loop cor-
rections are taken account of. Operator mixing, together
with the requirement that BMN operators have a well-
defined scaling dimension, are used to motivate the
choice of BMN operators. As a stringent test of the
BMN correspondence, we compare the calculations of
the corrected scaling dimensions to the masses on the
string theory side and find agreement.

Another key point of this section is the appearance of
the new modified ’t Hooft coupling l8 fEq. s1.11dg, which
will first be seen when taking the BMN limit of the one-
loop anomalous dimension.

A. Normalization of BMN operators

The propagator for the scalars in the N=4 supermul-
tiplet, which transform in the adjoint of UsNd, are

kfi
absxdfj

cds0dl0 =
gYM

2 dij

8p2uxu2
daddbc, s6.1d

where we explicitly display the matrix indices on the
fields. We denote correlation functions in the free theory
with a subscript 0, as above. With the convention s5.3d
for the fields carrying the Us1dJ charge, the propagator
for them is

kZabsxdsZ†dcds0dl0 =
gYM

2

8p2uxu2
daddbc. s6.2d

Using these propagators, we can demonstrate a set of
rules which facilitate the evaluation of correlation func-
tions involving traces over algebra-valued fields swhich
we denote by Trd. We assume that the composite opera-
tors we work with are normal ordered, so no contrac-
tions between fields in the same operator si.e., at the
same spacetime pointd will appear. Such contractions
would lead to infinite renormalizations of the operator.
We start with the simplest such structures, evaluated in
the free theory. We have the following fission rules:

Trf:fiA::fjB:g , dij:TrfAg::TrfBg: ,

Trf:fi::fjA:g , dijN:TrfAg: , s6.3d

where for clarity we have dropped some obvious prefac-
tors arising from the propagators, remembering that the
rank of UsNd is N. Clearly the second identity is a spe-
cial case of the first swith one of the operators taken to
be the identity matrix in the space of color indicesd. We
have explicitly kept the normal-ordering symbols here
for clarity. Caution must be used when applying these
rules not to allow contractions between fields at the
same spacetime point sappearing in the same normal-
orderingd. In the second identity, we can take A=1,
which gives Trffifjg,dijN

2. We also have the fusion
rule,

:TrffiAg::TrffjBg: , dijTrf:A::B:g . s6.4d

In the future, we shall drop the normal-ordering symbol,
but all calculations are implicitly assumed to account for
their presence.

Consider now the normalization of the operator s5.14d
in the free theory and at planar level. We assume that
the vacuum of the theory leaves the SUs4d R symmetry
unbroken, as is the case for the superconformal points in
the moduli space of N=4 SYM. The correlation function
of any set of operators then vanishes if they do not form
an SUs4d singlet.

Keeping the planar contributions, as is usual with
’t Hooft expansions, amounts to keeping the leading-
order contribution in 1/N2. The normalization of the

operator Õ s5.15d is fixed by requiring uxu2sJ+1d

3kÕpsxdÕps0dl0=1 at planar level. The two-point func-
tions provide a natural notion of an inner product on the
space of BMN operators, and in the BMN correspon-
dence are the analog of the inner product between string
states ssee discussions of Sec. V.C.3d.

We work with sgYM=0d free theory and use Wick con-
tractions to write the correlation function as sums of
products of scalar propagators. We first write out the
traces explicitly,

kÕpsxdOD qs0dl0 = kTrsZpfjZ
J−pfidsxd

3TrsfiZ̄
J−qfjZ̄

qds0dl

= kfZab
p sfjdbcZcd

J−psfiddagsxd

3fsfidefZ̄fg
J−qsfjdghZ̄he

q dgs0d0, s6.5d

having used the cyclicity of the trace and defining Z̄
;Z†. A sum over repeated UsNd color indices a¯h is
implied. The normal-ordering symbols can be safely
dropped in this correlation function if we assume that i
Þ j ssince then f’s at the same point could not be con-
tracted, as is also the case for the Z’s and Z†’sd. We shall
make this assumption since it also simplifies some of the
combinatorics. Repeatedly taking Wick contractions on
the f’s and Z’s that are nearest to each other using Eqs.
s6.1d and s6.2d, we arrive at

kÕpsxdOD qs0dl0 = S gYM
2 N

8p2uxu2D
J+2

dp,q. s6.6d

The requirement that these operators be normalized as

uxu2sJ+1dkÕpsxdOD qs0dl=dp,q can be satisfied by taking Õp

→ s8p2 /gYM
2 NdsJ+2d/2Õp. Similar reasoning gives the nor-

malization of the other BMN operators. For example,
the normalization of the BMN operator with D0−J=2 in
Eq. s5.13d is fixed by the normalization we have just con-
sidered, but an extra factor of 1/ÎJ+1 enters from the
J+1 terms appearing in the sum.

B. Anomalous dimensions

In a conformal field theory such as N=4 super Yang-
Mills, the content of the theory can be extracted via the
correlation functions of gauge-invariant operators and is
embodied in their scaling dimensions, how they mix
amongst each other under renormalization, and the co-
efficients in their operator-product expansions. We now
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present a brief overview of the first two topics, leaving
the discussion of the operator-product expansion for a
later section. Two discussions of these points in general
quantum field theory are those of Zinn-Justin s1989d and
Peskin and Schroeder s1995d.

We consider a bare correlation function built of n bare
fields fb and the renormalized correlation function, built
in the same way, but using renormalized fields,12

Gn
sbaredshxij,lsbared,Ld = kfsbaredsx1d ¯ fsbaredsxndl ,

Gn
srendshxij,lsrend,md = kfsrendsx1d ¯ fsrendsxndl . s6.7d

The bare correlation functions depend implicitly on a set
of bare parameters defined at the cutoff scale L of the
theory, while the renormalized ones depend on the
renormalized parameters defined at the renormalization
scale m. The renormalized fields are proportional to the
bare fields, via the wave-function renormalization,
fsrendsxd=Zf

−1/2smdfsbaredsxd. The dependence of the field
strength of the renormalized field on the renormaliza-
tion scale m is the source of the anomalous dimension.

A simple consequence of Eq. s6.7d is that the bare and
renormalized n-point functions are related by powers of
the wave-function renormalization,

Gn
srendshxij,lsrend,md = Zf

−n/2smdGn
sbaredshxij,lsbared,Ld .

s6.8d

The renormalization scale dependence enters the renor-
malized n-point function via the wave-function renor-
malization Zf and the renormalized parameters lsrend of
the theory, which are defined at that scale, but not the
bare n-point functions, hence

]

] ln m
Gn

sbaredshxij,lsbared,Ld = 0. s6.9d

The chain rule then gives

Sm
]

] m
+ blsrend ]

] lsrend + nglsrendDGn
srendslsrend,md = 0.

s6.10d

For a single coupling massless theory slike N=4 SYMd,
we have written this relation in terms of the dimension-
less functions b and g, which take account of shifts in the
field strength, and coupling constants that compensate
for changes in the renormalization scale to keep the bare
correlation functions constant. They are defined as13

bslsrendd = Um
] lsrendsmd

] m
U

lsbared
,

gslsrendd = um
] lnZfsmd

] m lsbared. s6.11d

For a small change in the renormalization scale m
→m+dm, as a result of which the coupling and fields
change as l→l+dl and f→ s1+dhdf, the change in the
field strength is related to the anomalous dimension via
dh= sdm /2mdg.

The renormalization-group equation s6.10d is a highly
nontrivial statement about the behavior of correlation
functions in a quantum field theory, with deep implica-
tions sfor example, the running of couplings and
massesd. The scale dependence introduced into the
renormalized theory in the guise of the renormalization
scale m generically breaks any classical scale invariance
that might be present in a massless theory with dimen-
sionless couplings. However, there may exist fixed points
of the renormalization group sspecial values of the pa-
rameters l*d at which the b function vanishes.14 At these
fixed points, the classical scale invariance of the renor-
malized theory is restored. The classical scaling of the
fields and the correlation functions might be modified by
the presence of anomalous scaling dimensions, with the
scaling dimension of the field becoming D=D0+g. Un-
like the classical scaling dimensions, the anomalous di-
mensions may take on a continuum of values, which,
however are constrained by the conformal algebra.15 At
a fixed point, the behavior of the correlation functions
reflects the dependence on the nontrivial scaling:

Gn
srendssxi,l*,s

−1md = s−nDGn
srendsxi,l*,md . s6.12d

We shall encounter composite operators which are lo-
cal monomial products of fields. The process of renor-
malization of a given composite operator might generate
new divergences which are proportional to other com-
posite operators, requiring their introduction as counter-
terms, and leading to a mixing of operators under renor-
malization. In general a composite operator may mix
under renormalization with any operator of equal or
lower dimension that carries the same quantum num-
bers. For a massless theory with no dimensionful param-
eters, only operators of the same classical dimension
mix. If we choose as a basis for these local gauge-
invariant operators a set, which we shall label hOij, then
multiplicative renormalization occurs in the form of ma-
trix multiplication,

12Generally, a number of different types of fields may enter
into a correlation function: however, we are most concerned
with the scaling behavior of such correlators, and for the N
=4 SYM theory of interest to us, supersymmetry implies that
all fields in a supermultiplet receive the same anomalous di-
mensions. We therefore simplify our notation and write only
one type of field.

13The b function and anomalous dimension g are universal in
the sense that they are the same for all correlation functions in
a given renormalizable theory.

14There is of course always the trivial fixed point for which
the couplings vanish, and hence so do the anomalous dimen-
sions. For N=4 SYM, there is in fact a line of fixed points, and
the b function vanishes at all values of the couplings.

15For example, for unitary representations, the dimensions
are bounded from below sMinwalla, 1998d. Also, as a result of
supersymmetry, in N=4 SYM, all fields in the same N=4 mul-
tiplet receive the same anomalous dimensions.
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Oi
sbaredsxd = o

j
ZijOj

srendsxd . s6.13d

The statement that the operator mixes only with those
of lower or equal classical dimensions implies that the
matrix Zij can be cast in triangular form when the basis
is arranged in order of dimensions of the operators. Cor-
relation functions with insertions of composite operators
also satisfy a renormalization-group equation, generaliz-
ing Eq. s6.10d, with a new anomalous-dimension matrix,

gijslsrendd = um
] lnZijsmd

] m lsbared. s6.14d

A few final comments are in order concerning general
properties of conformal field theories, which clarify
some of the points we shall encounter in later sections. It
is believed that unitary interacting scale-invariant quan-
tum field theories generally exhibit a larger symmetry
containing scale invariance, the group of conformal
transformations. Conformal invariance turns out to be
restrictive enough to completely fix the dependence of
two- and three-point functions on the spacetime coordi-
nates sin a suitable basisd; those of higher point func-
tions, while not completely fixed, are restricted by the
requirement that they depend on certain special combi-
nations of the coordinates, the conformal ratios sDi
Francesco et al., 1997d. In a unitary conformally invari-
ant quantum field theory, we can choose a basis of op-
erators with definite scaling dimensions seigenstates of
the dilatation operatord. These are the quasiprimary op-
erators. In each multiplet of the conformal sor supercon-
formald algebra, the operators of lowest dimension16 are
the conformal sor superconformald primaries. Two qua-
siprimary operators are correlated if and only if they
have the same scaling dimensions, and the two-point
correlation function takes the form sdropping normal-
ization factorsd

kOisx1dOjsx2dl =
dDi,Dj

ux12u2Di
, s6.15d

with x12;x1−x2. Here Di is the full sengineering plus
anomalousd scaling dimension of the operator Oi. The
three-point functions are similarly constrained and sat-
isfy sDi Francesco et al., 1997d

kOisx1dOjsx2dOksx3dl

=
CDi,Dj,DksgYM

2 ,Nd

ux12uDi+Dj−Dkux13uDi+Dk−Djux23uDj+Dk−Di
. s6.16d

For the two-point functions, quantum corrections can
enter only through anomalous dimensions for the opera-
tor, while for three-point functions there is the more
general possibility that the coefficient CDi,Dj,Dk

sgYM
2 ,Nd

may also receive corrections at higher loops. When com-

puting the anomalous dimension of an operator in per-
turbation theory, we have a power-series expansion g
=g1+g2+¯, and gn includes the nth power of the
’t Hooft coupling ln. The dependence of the two-point
function on the positions of the operators, when com-
puted in perturbation theory, will take the form

1

uxu2D <
m2g1

uxu2D0
s1 − g1lnuxmu2d s6.17d

to one-loop order, with the renormalization scale enter-
ing to keep the argument of the log dimensionless. This
approximation is valid so long as g1! lnsxmd−2. While
this expression suggests that scale invariance has been
broken, the scale m will drop out when it is re-summed
to all orders in perturbation theory, to reproduce the
left-hand side of the expression. The scale m is merely an
artifact of perturbation theory.

In the next two sections we move on to a practical
calculation of the anomalous dimension of composite
BMN operators, first at one loop, and then to all orders
in perturbation theory.

C. Anomalous dimensions of the BMN operators, first
order in gYM

2

The goal of this section is to compute the anomalous
dimension of a class of BMN operators to first-loop or-
der on the gauge theory side and to compare the result
to the appropriate computation of the string theory
masses. This will provide a first check of the BMN cor-
respondence stated in Sec. V. In this section we concen-
trate on anomalous dimensions only at the planar level;
we shall revisit the issue at nonplanar level in Sec.
VII.B.2.

Consider a local gauge-invariant operator of the form

Õp
Jsxd = TrffiZ

pfjZ
J−psxdg s6.18d

with engineering dimension D0=J+2. Such a generic op-
erator would not remain an eigenstate of the dilatation
operator after renormalization, as a result of the opera-
tor mixing discussed in the previous section, and would
therefore not have a well-defined scaling dimension.
This means that after computing loop corrections, even
at planar level, the two-point function of the operators
s6.18d would not remain diagonal. Quantum effects in-
duce a mixing with operators in the same SUs4d repre-
sentation with Dynkin labels s2,J−2,2d and the same
engineering dimension. Any operator of the form s6.18d
for any 0øpøJ satisfies the mixing criteria, and in gen-
eral any operators with this charge and dimension would
take the form s6.18d for some p. The interaction term in
the Hamiltonian which connects only the scalars takes
the form Hint, :gYM

2 oijTrsffi ,fjgffi ,fjgd:.17 It therefore

16These are operators that are annihilated by the generator of
special conformal transformations sor the superconformal su-
perchargesd.

17We work with a normal-ordered Hamiltonian, which
amounts to discarding all self-contractions in a given insertion
of the Hamiltonian in perturbation theory. Contractions across
different insertions are not removed by normal ordering.
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contains terms that exchange the order of Us1dJ charged
and neutral fields fi and Z, and also two different fi
fields. We shall refer to such exchanges as “hopping.”

The interactions mix operators Õp
J and Õq

J , both of the
form s6.18d, but with pÞq. For each additional loop, the
mixing would extend to operators with the insertions of
the impurities shifted by one more position. For ex-
ample, at one-loop order, these interactions generate
diagrams with no hopping, and those which have one
hop, either forward or backward.

Since the operators s6.18d do not have well-defined
scaling dimensions, they cannot be put in a simple cor-
respondence with the string theory side of the BMN
conjecture. One of the main goals of this section will be
to construct operators with well-defined renormalized
scaling dimensions at planar level, and hence diagonal
two-point functions, which can be put in one-to-one cor-
respondence with string theory objects.

In the free theory sgYM=0d, operators with pÞq do
not mix at planar level, and the two-point function re-
mains diagonal. We can write the nondiagonal contribu-
tions at higher-orders as

kÕp
JsxdÕq

Jsydl ~ o
l=0

`

llMp,q
sld sx − yd ; Mp,qsx − yd ,

s6.19d

where we have dropped proportionality constants com-
ing from the normalization of the tree-level two-point
function. The zeroth-order term is simply the identity
Mp,q

s0d =dp,q. The matrices Mp,q
sld are proportional to lth

powers of logs of the separation sx−yd of the two opera-
tors, Mp,q

sld sxd= flnsxmd2glMp,q
sld , coming from perturbation

theory at l loops. The matrices Mp,q
sld are symmetric in

p ,q, because for each insertion of the Hamiltonian
which generates a hop to the right, there is one generat-
ing a hop to the left. The hopping can be exhibited more
explicitly by separating Mp,q

sld into “hopping” matrices
mj

sld,

Mp,q
sld = o

j=−l

l

dp,q+jmj
sld, s6.20d

with the interpretation that mj
sld captures all the effects at

loop l coming from j hops sj can be positive or negatived,
and mj

sld=m−j
sld because forward and backward hops are

governed by essentially the same term in the Hamil-
tonian. We were able to extract a p- and q-independent
term mj

sld here because in the interaction Hamiltonian,
the commutator terms which generate the various hops
all enter with precisely the same coefficient. Equation
s6.20d makes it explicit that the range of allowed hops is
set by the number of loops sor insertions of the Hamil-
toniand which are included, a point we noted earlier. Us-
ing Eq. s6.17d, we can read the l-loop anomalous dimen-
sions directly from Mp,q

sld .

The sum sform all p=0, . . . ,Jd of the operators in
s6.18d is protected by a BPS condition, and this gives the
relation among the coefficients

o
p=0

J

Mp,q
sld = 0, ∀ l,q . 0. s6.21d

As mentioned previously, to specify precisely the cor-
respondences between the gauge theory and string
theory sides of the duality, we need to find a basis of
operators with well-defined scaling dimensions. Such a
basis would contain operators formed as linear combina-
tions of the above,

On
Jsxd = o

p=0

J

FnpsJdÕp
Jsxd , s6.22d

for some F to be determined by the condition that Eq.
s6.22d have a well-defined scaling dimension. We can
think of F as a change of basis on the vector space of

operators Õp
J . We also impose an additional constraint

on the expansion coefficients, requiring F0psJd=1, which
is another statement of the BPS condition.

A few comments are in order regarding the range of
the summation in Eq. s6.22d. The end points p=0 and
p=J correspond, for iÞ j in s6.18d, to the case where the
positions of fi and fj are reversed. Both orderings must
be included since the interaction Hamiltonian will gen-
erate such exchanges, and in principle these terms can
mix with each other. In addition, for the BPS condition
to hold when n=0 in Eq. s6.22d, the summation must
include both arrangements. Lastly, if we drop either of
p=0 or p=J, we will compute an anomalous dimension
with a finite piece in the BMN limit, and one that scales
as l and hence diverges in the double scaling limit. The
divergent piece is exactly canceled when the missing
term is included sConstable et al., 2002; Kristjansen et
al., 2002d.

We are now ready to determine the form of the matrix
FnpsJd, which at each order in perturbation theory acts
on the operators s6.18d, after which the transformed op-
erators are diagonal, and hence their two-point func-
tions have perturbative expansions in l of the form

kOm
J sxdŌn

Jsydl = dm,no
l=0

`

llflsx − yd ; dm,nfmsx − yd

s6.23d

and fmsx−yd can be different for each Om
J . We have the

similarity transformation

sFMF†dm,n = dm,nfmsx − yd s6.24d

with F admitting a power-series expansion in J. A suit-
able, though not unique, choice for F is

Fnp = e2pinp/J, s6.25d

which diagonalizes the above operators up to order
Os1/J2d for any order in perturbation theory, where the
l dependence appears in fm. In the BMN limit where J
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→`, the correction terms vanish and the diagonaliza-
tion, at planar level, is exact. Note that at planar level,
the quantum corrections do not induce mixing between
operators with different numbers of traces. When we
come to consider the nonplanar corrections in Sec. VII,
this lack of mixing will no longer be the case, and the
mixing between operators with different numbers of
traces will have to be dealt with also. In fact, even in the
free theory, the single-trace BMN operators will mix
among themselves at nonplanar level. The significance
of this second type of mixing and its role in the duality
will be the central theme of Sec. VII.

The statement that On
J has a well-defined scaling di-

mension can be translated into the requirement that, af-
ter renormalization, the bare and renormalized quanti-
ties be related by an overall scaling and not a matrix that
connects it to other operators as in Eq. s6.13d. Then,

On
Jsbared = Znsl,mdOn

Jsrend, s6.26d

with the renormalization constant generically a function
of the coupling sgoing to the identity for l=0d, and the
renormalization scale m, or alternatively e=2−D /2 in
dimensional regularization. The rescaling Z depends on
the composite operator renormalization ZO of the op-
erator On

J in addition to the usual wave-function renor-
malizations ZZ and Zf for the fields Z and f, and takes
the form

Zn = ZOn
ZfsZZdJ/2, s6.27d

since there are J fields charged under the Us1dJ and two
neutral fields.

The anomalous dimension gn of the operator On can
be computed order by order in perturbation theory, and
has a power-series expansion in the ’t Hooft coupling l,

gnsld = o
l=1

`

llcl
snd, s6.28d

where the l=0 term vanishes since the anomalous di-
mension appears as a quantum correction to the classical
scaling dimension. The coefficients of this expansion can
be Fourier transformed,

cl
snd = o

h=−l

l

cl,h
snde−2pinh/J, s6.29d

with a natural interpretation that, as we shall see below,
cl,h

snd represents the portion of the anomalous dimension
of the operator On that arises at loop l, from the sum of
diagrams with h hops. By convention, positive h will cor-
respond to hops to the right. We now compute the Fou-
rier coefficients cl,h

snd at one loop, working at the planar
level.

Our goal is to compute the counterterms necessary to
absorb the divergences generated by insertion of the
composite operator s6.22d and the wave-function renor-
malizations of the Z and f scalar fields, and use these to
derive the anomalous dimension of the composite op-
erator, via Eq. s6.27d. Here we shall only consider BMN

operators with two nonidentical scalar impurities, which
can be in s9 ,1d or s3± ,1d SOs4d3SOs4d representations
fthe explicit calculations regarding the singlet case s1 ,1d
have been made by Gomis et al. s2003bdg. All the other
BMN operators should have the same anomalous di-
mensions, due to the supersymmetry ssee Sec. V.C.3d.
We work in position space and use dimensional regular-
ization. In dimensional regularization, the anomalous di-
mension becomes

gsld = e
l

Zn

] Zn

] l
. s6.30d

Consider a two-point function of the operators s6.22d
with the choice s6.25d for the diagonalizing matrix. We
can expand this correlation function of sums of opera-
tors into a double sum of correlation functions of indi-
vidual composite operators. In a generic quantum field
theory, a correlation function of ordinary operators with
an insertion of a single composite operator has diver-
gences which can be removed, in addition to the usual
counterterms, with a wave-function renormalization of
the composite operator. Insertions of additional compos-
ite operators will in general produce additional diver-
gences requiring subtractions. However, for a conformal
field theory, the form of the two-point function is fixed,
as shown in Eq. s6.15d, and the wave-function renormal-
ization s6.26d suffices to absorb all divergences coming
from the composite operators.

The correlation function will then include the overlap
of all operators of the form s6.18d with the appropriate
exponential factors, in other words, the sum of the cor-
relators of all pairs of operators s6.18d, with some expo-
nential coefficient. At one-loop order, where we have a
single insertion of the interaction Hamiltonian, there
will in general be two classes of diagrams: sid those in
which the correlator receives contributions from two-
point functions with the same p, corresponding to dia-
grams with no exchange of f and Z, and siid those in
which one exchange of f and Z takes place. The corre-
sponding diagrams are presented in Fig. 2.

The first diagram arises from contractions where one
f field has “hopped” past a Z field, in this case to the
left. The exponential factor appearing in front of this
term is exps2pin /Jd, since the amplitude for this term is

e2pipn/Je−2pisp−1dn/JkÕp
JsxdÕp−1

J sydl . s6.31d

There will also be a contribution from a diagram in
which a f field hops to the right, and it will be associated
with a factor exps−2pin /Jd, with the amplitude other-
wise the same.

We shall now compute the amplitude for this diagram
at planar level, but only keep track of the divergent
parts which determine the counterterm structure and
eventually the anomalous dimension. In position space,
this diagram consists of J+2 fields located at spacetime
position x, interacting with J+2 fields located at y. The
divergence arises from the loop at the center of the dia-
gram, which corresponds to the integration over all
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spacetime si.e., ed4wd of one insertion of the Hamil-
tonian and four propagators. The loop integral will con-
tribute, beyond the tree-level result,

le2pin/JE dDw

64p4

1

uw − xu4uw − yu4

,
1

16p2ux − yu4
l

e
e2pin/J, s6.32d

where we have continued to D=4–2e dimensions to
regulate the ultraviolet divergence coming from x→w
and y→w, which now appears as a pole in e. We have
the ’t Hooft coupling appearing here because a factor of
gYM

2 combines with a factor of N at planar level when the
first contractions across the traces are taken. We drop
the contributions from the part of the diagram outside
the interaction, since these do not modify the counter-
term structure we are seeking. We see the appearance of
the combination l /e appropriate to one-loop order. We
ignore the issue of infrared divergences when the exter-
nal momenta vanish; these do not affect the anomalous
dimension.

There are also diagrams in which the f and Z fields
interact, but which nonetheless do not lead to hopping.
The hopless diagrams in which f and Z fields interact
arise in two ways. The first such diagram is similar to the
one we considered above, but with a different ordering
of the fields in the interaction term. There is also a dia-
gram in which the interaction between the scalar f and
Z fields is due to gluon exchange. These two diagrams
contain the same divergences in their loops, but with
opposite sign, and so their sum is finite. We ignore finite
contributions since they do not give rise to anomalous
dimensions.

The action sA1d contains an interaction term in which
only Z fields interact with each other and a term in

which Z fields interact with gluons and clearly lead to no
hopping. Such interactions give rise to diagrams in which
the four scalar Z fields interact directly and diagrams in
which their interaction is a result of gluon exchange.
Both these diagrams contribute equal divergences with
the same sign. The divergence part of these is the same
as in Eq. s6.32d, but since there is no hopping, the expo-
nential prefactor is missing. At planar level, there are
J−2 possible ways the Z fields can interact among each
other.

The ultraviolet divergences in these diagrams can be
removed by the addition of counterterms to the action
to absorb the divergences. Computing the correlation
function above, to one-loop order, with an insertion of
the composite operator, and including the counterterms
appropriate to this order, we find the finite renormalized
ZO, whose value is

ZOn
= 1 −

l

8p2e
f2e2pin/J + 2e−2pin/J + sJ − 2dg , s6.33d

where the first two terms absorb the divergences from
the diagrams with one hop to the left or right, respec-
tively, with a factor of 2 multiplying the exponential due
to the hopping, since we are considering composite op-
erators with two impurities. The last term absorbs the
divergences from the two diagrams that do not result in
a hop, come from the interactions of Z fields alone, and
contribute J−2 such counterterms.

We are now almost ready to compute the anomalous
dimension of the operator On. The only remaining piece
left to compute is the wave-function renormalizations of
the individual fields which enter into the correlation
function, as seen in Eq. s6.27d. There are three types of
diagrams which modify the scalar propagators at one
loop. The wave-function renormalizations, which are the
only kind of renormalization to the bare N=4 propaga-
tors, are generated by diagrams in which a closed loop is
constructed as in Fig. 3, and arise from gauge boson,
fermion, and scalar loops. Their computation is straight-
forward, and the resultant one-loop wave-function
renormalization is

Zf = ZZ = 1 +
1

4p2

l

e
. s6.34d

The factor of l arises because there are two interac-
tion vertices, each contributing gYM, and a factor of N
enters due to the traces over color indices from the
closed loop. Putting these together we have to first-loop
order

FIG. 2. Feynman diagrams containing a single insertion of the
interaction Hamiltonian. The two different impurities are la-
beled f and c.

FIG. 3. Diagrams contributing to the scalar wave-function
renormalization at one loop. The first is a scalar tadpole, the
second a gauge-boson loop, and the third a fermion loop.
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Zn = 1 −
l

4p2e
se2pin/J + e−2pin/J − 2d , s6.35d

which yields the anomalous dimension

gn = −
l

4p2 se2pin/J + e−2pin/J − 2d . s6.36d

The 2 is a direct result of supersymmetry, since, for n
=0, we have a BPS operator, which is protected against
receiving quantum corrections. This is a manifestation of
the BPS condition in the form s6.21d. Incidentally, we
can decompose this result into the cl,h

snd we met in Eq.
s6.29d, whence c1,1

snd =c1,−1
snd =1 and c1,0

skd =−2.
We mention also that, had we separated the interac-

tion Lagrangian into F and D terms, at first loop we
would have found that only the F terms contributed, and
the sum of all the diagrams with insertions of D terms
would have vanished for two- and three-point functions
sConstable et al., 2002; Kristjansen et al., 2002d.

The anomalous dimension in Eq. s6.36d has been com-
puted for finite J. In the BMN limit, when J is taken
large, the anomalous dimension becomes

gn = n2l8 s6.37d

and we see explicitly the appearance of the new effective
coupling l8=l /J2 because the ’t Hooft coupling l

=gYM
2 N has combined with a 1/J2 from the expansion of

the exponentials. We see that in the BMN limit the
anomalous dimensions of BMN operators are finite,
since gYM

2 is held fixed while N and J are scaled such that
l8 remains finite. Contrast this with a normal ’t Hooft
expansion, in which the expansion parameter is l, and
this diverges in the BMN limit. This is a key result, since
it tells us that in the double scaling limit BMN operators
will have finite, and hence well-defined, scaling dimen-
sions, which can be compared to the string side of the
duality. Recall that the exponentials entered as the di-
agonalizing matrix transforming the original basis of op-
erators s6.18d to one with well-defined scaling dimen-
sion, which we took to define one set of BMN operators.
In turn, the precise structure of this matrix originated in
the hopping behavior embodied in the interaction
Hamiltonian.

We can compare this result for anomalous dimensions
of single-trace operators with two impurities to the
string theory calculation of the mass spectrum for single-
string states s6.10d, with excitations of the left- and right-
moving oscillators at level n in the plane-wave back-
ground. As we discussed in Sec. V.B, the BMN
correspondence states a relationship between the effec-
tive coupling in the gauge theory and in the BMN limit,
and string theory parameters on the plane-wave back-
ground, which was stated in Eqs. s1.11d–s1.13d. We noted
earlier in Sec. II.B.1 that p+ is a central charge of the
supersymmetry algebra of the plane-wave background,
since its generator commutes with all the other genera-
tors of the algebra. As such, its value specifies a sector of
the string theory, unmixed by actions of the isometry or
string interactions. This is in distinct contrast to flat

space, where the light-cone boosts can change p+. There-
fore it makes sense to think of a8mp+ sor equally m in a
sector of fixed p+d as an expansion parameter on the
string side. The effective gauge theory expansion param-
eter l8 is related to the light-cone momentum, which is
held fixed in the BMN double scaling limit, via Eq.
s1.11d. When the gauge theory is weakly coupled and l8
is small, the light-cone momentum a8mp+ is large. This
implies that the tension term in the light-cone string
theory action s4.6d dominates the gradient terms ssince
we have taken m larged, and the quantum mechanics of
the string becomes that of a collection of massive par-
ticles. This has motivated the string bit model sVaman
and Verlinde, 2002; Verlinde, 2002d. Under these condi-
tions, the mass spectrum s4.10d can be expanded to first
order, with the result that

vn < a8mp+S2 +
n2

sa8mp+d2D . s6.38d

We use the relation D−J=D0+g−J, which for the op-
erator we have considered gives D−J=2+g. We then
have 2vn /a8mp+=D−J, after using Eqs. s6.37d and
s1.11d. The comparison is valid so long as l8!1/n2, or
equivalently, when ua8mp+u@n. For any finite n, we are
free to choose l8 or a8mp+ so that these conditions hold.
This is our first direct test of the BMN conjecture, and it
has passed with flying colors.

In this section, we computed anomalous dimensions
of a class of BMN operators to first order in gYM

2 , and
found that it reproduces the string theory calculation,
giving a first test of the BMN conjecture. We may won-
der whether this result extends to higher loops. The in-
vestigation of this question will be the focus of the next
section, and we shall show that the result indeed holds to
all orders in perturbation theory.

The above one-loop results have been extended to all
orders in l8 using superspace techniques sSantambrogio
and Zanon, 2002; see also the ArXiv version of this re-
view, Sadri and Sheikh-Jabbari, 2003b, for more detailsd.

VII. STRINGS ON PLANE WAVES FROM GAUGE THEORY
II: INTERACTING STRINGS

Having carefully considered the planar structure of
BMN operators, we are now ready to move on and ex-
amine nonplanar corrections to the quantities we have
been studying in Sec. VI, first considering higher-genus
corrections to two-point correlation functions of chiral
primary operators sthese receive no loop, i.e., l8, correc-
tionsd. The BMN limit of these correlators is examined,
showing that in the double scaling limit, certain higher-
genus contributions survive. This result distinguishes the
BMN limit from the standard ’t Hooft limit, wherein all
contributions from higher-genus diagrams are seen to
vanish. This consideration will demonstrate explicitly
the appearance of the genus counting parameter in the
BMN limit. We next look at correlators of BMN snear-
BPSd operators, first in the free field theory limit but
with first nonplanar contributions, and then after turning
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on interactions, computing the first nontrivial contribu-
tions in both the genus counting parameter and the
modified ’t Hooft coupling l8. Mixing between single-
and multiple-trace BMN operators, and the requisite re-
diagonalization of the basis, leading to the so-called “im-
proved BMN operators,” will play a central role in the
precise formulation of the correspondence between
gauge theory operators and string states. We collect the
above results in an elegant form suggested by Constable
et al. s2002a, 2002b; see also Gomis et al., 2002; Gross et
al., 2003d.

A. Nonplanar contributions to correlators of chiral primary
operators

We review the expansion to all genera of the two-
point functions of chiral primary operators, which are
protected against quantum corrections by virtue of being
BPS. Hence the results we present can be calculated in
the free theory, but extend to all values of the coupling.

To gain some insight into the genus expansion, con-
sider the simplest correlation function that receives con-
tributions from higher-genus diagrams, the two-point
function of chiral primary operators s5.8d with J=3 sthe
case of J=2 receives only planar correctionsd

kOJsxdŌJs0dlJ=3 =
1

3N0
3 kZabZbcZcaZ̄deZ̄efZ̄fdl . s7.1d

There are six possible ways of applying Wick contrac-
tions. Three of these lead to a factor of N3 from contrac-
tions sleaving aside for now the prefactor coming from
the normalizationd. These correspond to the planar dia-
grams. Planar diagrams always generate the highest
power of N, and hence are the ones that dominate a
large-N expansion sfor finite Jd. Planar diagrams are
those which can be drawn on a sphere sa one-point com-
pactification of the planed without any lines crossing.
There are also three sthat this number equals J is a co-
incidenced nonplanar diagrams of genus one. These are
diagrams that cannot be drawn on a sphere without
crossing, but can be placed on a torus without crossing.
They contribute a single power of N. One can see the
structure more clearly by the following trick sKristjansen
et al., 2002d. Imagine that each trace corresponds to a
loop on which we place beads corresponding to the in-

dividual fields Z and Z̄, white beads depicting Z’s and

black ones for the conjugate fields Z̄. The beads are free
to move on the loop, but cannot be pushed past each
other stheir order is significantd. Changing the ordering
of two nearby beads corresponds to crossing or uncross-
ing the lines connecting them. For the case J=3, revers-
ing the order of the beads on one of the loops while
keeping the other loop’s ordering fixed exchanges planar
and nonplanar diagrams, showing how the ordering of
the beads is relevant. The cyclicity of the trace is re-
flected in the fact that rotating the beads around the
loop results in an identical loop. One of the possible
nonplanar contractions is depicted in Fig. 4 supper
paneld.

For J=3, the maximum genus contributing is the
torus. This trick can be generalized to higher J and ge-
nus. First we need the notion of an irreducible diagram.
We replace all lines in a diagram that are topologically
parallel scalling these reducibled with a single line sirre-
ducibled. The resulting diagram built only from irreduc-
ible lines is itself irreducible. Diagrams can be grouped
into equivalence classes, where the equivalence is de-
fined as follows: two diagrams are considered equivalent
if they both collapse to the same irreducible diagram.
For J=4 there are diagrams which reduce to the one we
have already considered for J=3, and new ones which
reduce to the one depicted in the lower panel of Fig. 4.
For higher J, all toroidal diagrams can be reduced to the
two already considered. More generally, at genus h, the
set of irreducible diagrams consists of those where the
number of irreducible lines l ranges between l=2h+1
and l=4h, which for genus one gives l=3,4 and for ge-
nus two the range is l=5¯8 sKristjansen et al., 2002d.

At genus one, for arbitrary Jù3, there are J ! / fsJ
−3d !3!g ways of grouping the beads into three sets sthe
three irreducible lines in Fig. 4d while maintaining the

FIG. 4. Irreducible toroidal diagrams contributing to
kTrZJTrZ̄Jl. The arrows indicate the direction in which traces
are taken.

888 D. Sadri and M. M. Sheikh-Jabbari: The plane-wave/super Yang-Mills duality

Rev. Mod. Phys., Vol. 76, No. 3, July 2004



order associated with the operator, and for for Jù4 the
number of such groupings into sets of four is J ! / fsJ
−4d !4!g. We denote the number of inequivalent irreduc-
ible diagrams with l irreducible lines at genus h by nh,l.
The calculation of this number is the trickiest part of
working out the combinatorics. For the cases we have
already considered, n1,3=1 and n1,4=1, while n1,j=0 for
j.4. However, for higher genera, there exist nh,k greater
than one. The total number of diagrams in an equiva-
lence class with l irreducible lines for fixed J can be
found as follows: given a set of J elements, place the
elements into l ordered distinct sets, maintaining the
same overall cyclic ordering among all the elements. The
number of possible ways of doing this is J ! / fsJ− ld ! l!g.
The total number of diagrams at genus h with l irreduc-
ible lines for fixed J is nh,lJ ! / fsJ− ld ! l!g. At fixed genus,
to arrive at the total number of graphs we must sum up
the contribution from graphs in all equivalence class for
all allowed l. For the torus, this gives

n1,3SJ

3
D + n1,4SJ

4
D <

J4

4!
, s7.2d

where in the last step we have shown the scaling in the
large-J limit. Notice that sums of this form are always N
independent. The N dependence in the combinatorics
arise from traces over indices of Kronecker deltas ap-
pearing in the propagators s6.1d and s6.2d after all the
Wick contractions are applied sof course keeping only
diagrams at a fixed genusd, and this dependence defines
the genus order via the standard ’t Hooft argument,
where the suppression factor at any genus relative to the
next lower genus goes like 1/N2 sor 1/N2h relative to
planar diagramsd. As a result, in the BMN double scaling
limit s1.8d sas opposed to the usual ’t Hooft limitd, dia-
grams at all genera contribute to correlation functions,
giving rise to a new effective expansion parameter g2

2

= sJ2 /Nd2, which is fixed at an arbitrary but finite value
and measures the relative contribution of each genus in
perturbation theory. Contributions from diagrams at ge-
nus h scale as g2

2h. For the planar diagrams, there is an
overall suppression by a factor of J due to the normal-
ization of the operators in Eq. s5.8d, but a compensating
enhancement by the same factor arising from the cyclic-
ity of the trace swhich amounts to the rotation of the
beads on one of the loops relative to the other oned.
Putting together these observations, we arrive at the
planar-plus-toroidal contribution to the two-point func-
tion of chiral primary operators,

kOJsxdŌJs0dl =
1

uxu2JS1 +
g2

2

4!
+ Osg2

4dD . s7.3d

The normalization of the operator s5.8d is chosen to re-
move the overall dependence of the above two-point
function on N as well as the coupling gYM

2 and factors of
8p2. Here we see the appearance of the parameter g2

2

which organizes the expansion by genus. The planar dia-
grams contribute at order g2

0 and the toroidal diagrams
at order g2

2. The new observation for the BMN double

scaling limit is that the operators considered receive
contributions from a number of diagrams which grow as
J4h at genus h, but these are suppressed by 1/N2h, and
the J and N dependence combine into the new effective
expansion parameter g2

2, appearing at genus h as g2
2h.

We shall now describe a method for establishing the
all-orders sin g2

2d result. We earlier mentioned two-
dimensional QCD as a realization of ’t Hooft’s idea, and
its exact solution via a matrix model sKostov and Stau-
dacher, 1997; Kostov et al., 1998d. It turns out that many
of the correlation functions we are interested in can be
reduced to correlation functions in this matrix theory.
Higher-genus correlation functions in the complex ma-
trix model, using loop equations, have been computed
by Ambjorn et al. s1992d. An alternative method for
evaluating statistical ensembles of complex sor reald ma-
trices was presented by Ginibre s1965d and Mehta
s1990d. We shall need only the most rudimentary results
from matrix theory, which we collect here. Consider N
3N complex matrices Zij, with i , j running from 1 to N,

and define the measure dZdZ̄ as

dZdZ̄ = p
ij

1

p
dsReZijddsImZijd . s7.4d

The partition function over these matrices is defined as
the above measure weighted by a Gaussian function

Z =E dZdZ̄e−TrsZZ̄d. s7.5d

The measure and the weight sand hence the partition
functiond are UsNd3UsNd invariant, representing inde-
pendent multiplications on the left and the right. Corre-
lation functions in this matrix model are defined as usual
in quantum field theory:

kOsZ,Z̄dlMM =E dZdZ̄e−TrsZZ̄dOsZ,Z̄d . s7.6d

The normalization of the measure is chosen so that k1l
=1.

The correlation functions we study are not invariant
under the full symmetry, but only under those generated
by the diagonal subgroup, acting in the adjoint represen-
tation. For correlators built out of traces which do not

mix Z and Z̄, the solution can be given by using
character-expansion techniques, expanding the correla-
tion function in terms of group characters. These char-
acters are orthogonal, with a proportionality constant
that can be evaluated from group-theory. The expansion
coefficients are similarly computed from Young-diagram
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considerations. We summarize the relevant result for
two-point functions:

kTrZJTrZ̄JlMM = o
k=1

J

p
i=1

k

sN − 1 + id p
m=1

J−k

sN − md

=
1

J + 1
SGsN + J + 1d

GsNd
−

GsN + 1d
GsN − Jd D ,

s7.7d

where have assumed 0,J,N in the last step. In the
above, N is the rank of the group UsNd swe have kept N
finite thus fard. Up to this point the results are exact.

Let us now return to the correlation function s7.3d. As
we discussed in Sec. VI.B the spacetime dependence of
this two-point function is completely fixed by conformal
invariance. Moreover, being chiral primary, the scaling
dimension is also fixed by supersymmetry to the free
field theory engineering dimension. These have already
been made manifest in s7.3d. The remaining problem in
computing Eq. s7.3d is that of computing the dependence
on factors of J and N arising from the combinatorics of
all the Wick contractions. Separating out the spacetime
dependence, and also the numerical and coupling-
constant factors in the scalar field propagators, we can
rewrite the correlation function in terms of a correlation
function in the matrix model we have described, which
captures the combinatorics from evaluating all the traces
over UsNd color indices sproducing both planar and
nonplanar contributionsd, as well as the combinatoric
dependences on J,

kTrfZJsxdgTrfZ̄Js0dgl = S gYM
2

8p2uxu2D
J

kTrZJTrZ̄JlMM,

s7.8d

making use of the matrix model result s7.7d. We are in-
terested in the large-J limit of Eq. s7.8d, and hence that
of Eq. s7.7d. We can expand it as

kTrZJTrZ̄JlMM = JNJF1 + o
h=1

`

o
k=2h+1

4h SJ

k
Dnh,k

N2hG
< JNJF1 + o

h=1

`
nh,4h

s4hd!S J4

N2Dh

+ ¯G ,

s7.9d

where in the last expression we have taken the large J
limit, and ¯ denotes terms which vanish in the large-J
and large-N limit if we scale J,ÎN. We see that the
genus counting parameter g2

2=J4 /N2 makes a natural ap-
pearance in this limit. We shall see in the next section
when we come to consider non-BPS operators that this
continues to be the case. In fact, this is another way to

view the BMN limit: the limit is chosen precisely to en-
sure that the terms involving nh,4h in this limit remain
finite and so we receive contributions from all genera.
We can explicitly evaluate Eq. s7.8d using Eq. s7.9d in the
BMN limit, giving for the chiral primary operators

kOJsxdŌJs0dl =
1

uxu2J ·
sinhSg2

2
D

g2

2

. s7.10d

Expanding this to first order in g2
2 reproduces Eq. s7.3d.

B. Nonplanar contributions to BMN correlators

In this section we move on to the non-BPS s“almost-
BPS”d BMN operators and compute the g2

2 order non-
planar contributions to their two-point functions, first at
free field theory and then at first order in l8.

1. Correlators of BMN operators in free gauge theory to
first nontrivial order in g2

Having studied the two-point function of chiral pri-
mary operators to all orders, we are now ready to dis-
cuss the inclusion of phases in the more general BMN
operators. We shall concentrate on operators of the
form s5.13d for iÞ j, and choose the notation fi=f and
fj=c. In this section we study the correlator in the free
theory, postponing consideration of interactions to the
next section. The correlator we are interested in is

kOij,m
J sxdŌij,n

J s0dl0. s7.11d

The calculation of the torus-level contribution to the
two-point function of BMN operators in the free gauge
theory has been carried out along two different lines,
using matrix model technology sKristjansen et al., 2002d
and via direct computation taking account of the combi-
natorics sConstable et al., 2002a, 2002bd. We shall see
that the scaling with N and J, in the BMN limit, is the
same as for the chiral primary operators, and g2

2

= sJ2 /Nd2 will appear again as the genus counting param-
eter. We follow closely the presentation of Constable et
al. s2002a, 2002bd

To count the number of Feynman diagrams that con-
tribute to a two-point function at genus h, we draw a
polygon with 4h sides, then place one operator at the
center and divide the other operator among the 4h ver-
tices. We then pairwise identify all the sides and identify
the vertices. All allowed diagrams are then generated by
connecting the two operators via propagators, but with-
out allowing the diagram to be collapsed to lower genus
by shrinking homology cycles where no propagators
have been placed. At genus h, the irreducible diagrams
are those with 2h+1 to 4h groups of lines. The number
of ways of dividing J lines into 4h sets is

890 D. Sadri and M. M. Sheikh-Jabbari: The plane-wave/super Yang-Mills duality

Rev. Mod. Phys., Vol. 76, No. 3, July 2004



S J

4h
D =

J!

sJ − 4hd ! s4hd!
<

J4h

s4hd!
, s7.12d

where the last expression gives the behavior at large J.
A similar counting applies to the diagrams where we
group the lines into 4h−1 sets and so on, down to 2h
+1, but the number of such groupings is suppressed rela-
tive to the 4h case. For example, the case 4h−1 yields

S J

4h − 1
D =

4h

J − 4h + 1
S J

4h
D s7.13d

as the number of ways of distributing J lines into 4h−1
sets, and their contributions relative to the 4h groupings
vanish in the BMN limit. This is the same behavior we
saw in the previous section at genus one, and it general-
izes to arbitrary genus and for any finite number of im-
purities.

We can open up Fig. 4 for the torus diagrams with
four groups of lines consisting of J scalar fields Z
charged under Us1dJ and two different scalar impurities
we shall label f and c. Using the cyclicity of the trace,
we can always place one of the impurities, say f, as the
first field in each operator before applying contractions.
This simplifies the counting since the position of the f
field is fixed, and we only have to worry about placing
the c field. The diagram can then be drawn as in Fig. 5.

Now there are five groups of fields, in which the first
one begins with the f field. Let Ji denote the number of
fields, with i=1, . . . ,5 swith no c field yetd. We can place
the c field in any of these groups, and there are Ji ways
of doing so for the ith group. Let us consider first the
case in which m=n in Eq. s7.11d, so the two operators
have similar phase structures. The two impurities may
appear in the same group, in which case when we con-
tract the fields in the two operators, the relative posi-
tions of f and c will remain fixed, and these diagrams
will not contribute a phase factor. If the impurities are
placed in different groups, then their relative positions
in the two operators can in principle change, and the
contractions will then be associated with a phase. For
example, if c is placed in the second group, then it will
contract with a field in the conjugate operator where its
relative position to the other conjugate scalar will have
shifted by J3+J4 places, and this introduces a relative
phase of expf2pinsJ3+J4d /Jg. Summing over all ways of
placing c, we have for the two-point function the follow-
ing expression:

kOij,m
J sxdŌij,m

J s0dl0
torus =

1

JNJ+2S 1

uxu2D
J+2

NJ

3 o
J1+¯+J5=J+1

o
k=1

5

Jke2pimuk/J,

with the phases defined as u1=u5=0,u2=J3+J4 ,u3=J4
−J2, and u4=J2+J3. In performing the sum, we must im-
pose the condition that oi=1

5 Ji=J+1. The first term on
the right-hand side is due to the normalization of the
operators in Eq. s5.13d. The next term arises from the

propagators, with the normalization of the operators
and propagators conspiring to remove the coupling and
numerical factors. The last term comes from all the color
index contractions at torus level. This expression is awk-
ward, but can be turned into an integral representation
in the large-J limit, with a delta function imposing the
constraint, which can be evaluated explicitly. To see this,
define Ji=J · ji. Then, in the large-J limit, we can rewrite
the two-point functions as

kOij,m
J sxdŌij,m

J s0dl0
torus = S 1

uxu2D
J+2S J2

N
D2

3 p
k=1

5 E
0

1

djkjke2pimuk/J

3dS1 − o
l=1

5

jlD ,

and we again see the appearance of J2 /N;g2 which is
held fixed in the BMN limit. The integral can be evalu-
ated in a straightforward way. The construction when
mÞn follows along the same lines, with the added com-
plication that the position at which c is inserted in each
group becomes relevant, since the two operators have
different phase structures. This more complicated situa-
tion has been considered by Constable et al. s2002a,
2002bd and Kristjansen et al. s2002d; we present only the
result. The final expression for the torus two-point func-
tion of BMN operators of the type we have been con-
sidering is

kOij,m
J sxdŌij,n

J s0dl0 = S 1

uxu2D
J+2

sdmn + g2
2Mmn

1 d , s7.14d

for iÞ j and where g2=J2 /N, and with the matrix Mmn
1

symmetric, i.e., Mmn
1 =Mnm

1 , and is defined as

FIG. 5. Diagram depicting the phase shift in a torus diagram
with no interactions. The solid lines represent an arbitrary
number of Z fields, and the dashed lines represent the contrac-
tion between two f’s or c’s.
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Mmm
1 =5

0, m = 0,n Þ 0 or m Þ 0,n = 0;

1
24

, m = n = 0;

1
60

−
1

24p2m2 +
7

16p4m4 , m = n Þ 0;

1

48p2m2 +
35

128p4m4 , m = − n Þ 0;

1

4p4sm − nd2Sp2

3
+

1

m2 +
2

n2 −
3

2mn
−

1

2sm − nd2D , all other cases.

s7.15d

The case of m=0 or n=0 corresponds to a two-point
function with one of the composite operators being BPS;
the m=n=0 gives the two-point function of BPS opera-
tors, while if mÞn, but one of m or n zero, we see that
the single-trace BPS operators do not mix with the non-
BPS ones, at torus level. We expect the two-point func-
tion for m=n=0 to be exact to all orders in gYM

2 , since
these operators are protected against receiving any
anomalous dimensions. The non-BPS cases will receive
gYM

2 corrections, and we will discuss these corrections in
Sec. VII.B.2. The other cases show explicitly that in the
free theory, single-trace non-BPS operators generically
mix with each other, and this mixing begins at order g2

2,
where g2

2 is the genus counting parameter. The discus-
sion above can be generalized in an obvious way to
higher-genus diagrams in the free theory, with the genus
h contributions coming in at order sg2

2dh.

2. Correlators of BMN operators to first order in l8 and
J2/N

We have already computed the planar anomalous di-
mension to order l8 is Sec. VI.C. We are now ready to
move beyond planar level, but will work only to first
order in l8. The duality would then put the result in
correspondence with the string theory masses with loop
corrections, giving a highly nontrivial test of the corre-
spondence and a step beyond what has been possible in
the standard AdS/CFT correspondence.

The result will be proportional to l8g2
2, showing that

g2
2 will continue to play the role of the genus counting

parameter even with interactions switched on, and the
role of the effective quantum loop counting parameter is
still played by l8 in the BMN limit. The computation
mirrors that of the previous section, but now taking ac-
count of the insertions of interaction terms. We only
present an overview of the calculations; technical details
can be found in the article of Constable et al. s2002ad. At
this order, only flavor-changing interactions contribute,
and therefore the only interactions of relevance are the
so-called F terms, which appear as the square of the
commutator of scalars in different N=1 chiral multi-
plets. We are considering two scalar impurity operators
which are in s1 ,9d of SOs4d3SOs4d. They are symmetric

in i , j indices. Therefore the F term, which involves the
commutator of the two impurities, being antisymmetric,
does not contribute. The two impurities can therefore be
considered separately, since they do not simultaneously
enter into interactions and only enter into interactions
that are quadratic in the charged fields Z. These obser-
vations greatly reduce the number of possible diagrams
that must be considered at this order.

There are three classes of Feynman diagrams to con-
sider, involving nearest-neighbor, semi-nearest-neighbor
and non-nearest-neighbor.18 Nearest-neighbor diagrams
are the ones where two lines alongside each other are
connected through an interaction term. One of these
lines will always be an impurity. There are four possible
interaction types coming from squaring the commutator
in the interaction, all with equal weight, with those that
switch the order of the impurity and charged field con-
tributing a minus sign relative to those which do not. We
must sum over all ways of building such diagrams by
inserting a single interaction into the free diagrams, tak-
ing care with the phases from exchanges and the phase
of the free diagram. The phase considerations parallel
our discussion in the previous section. Summing all
nearest-neighbor diagrams, we find that the result s7.14d
of the previous section is simply modified by a logarith-
mic correction which merely changes the scaling dimen-
sion we computed at planar level, since the result does
not involve g2. The other two types of diagrams will,
however, involve honest toroidal corrections.

The class of semi-nearest-neighbor diagrams are those
in which the fields entering an interaction are nearest
neighbors in one of the composite operators, but not the
other. These contribute to the two-point function only
when mÞn. For m=n there are cancellations among
semi-nearest-neighbor diagrams. The number of such
diagrams is suppressed relative to the nearest-neighbor
ones by 1/J, but this is countered by an enhancement by

18These can be classified according to the possible combina-
tions of contractible and noncontractible homology cycles on a
torus, corresponding to the two propagator loops connecting
to the interaction vertex. The diagrams with two noncontract-
ible cycles on the torus do not enter at this order in gYM

2 be-
cause they involve interactions other than F terms.
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a factor of J because these diagrams have a different
phase structure, which in the large-J limit is larger by a
factor J than the nearest-neighbor diagrams.

The non-nearest-neighbor contributions do introduce
logarithmic corrections whether or not mÞn. These dia-
grams are rarer than the nearest-neighbor one by a fac-
tor of 1/J2, but we again have an enhancement that com-
pensates for this, due to the phase structure. When we
sum over all contributions from the above graphs, we
must also consider the phase associated to the diagram
from the placement of the second impurity, as we had to
do when considering the two-point function in the free
theory.

The final result for the two-point function of the
single-trace BMN operators we have been considering is

kOij,m
J sxdŌij,n

J s0dl = S 1

uxu2D
J+2Hdmns1 + l8Lm2d

+ g2
2FMmn

1 + l8LSmnMmn
1

+
Dmn

1

8p2 DGJ , s7.16d

with L=−lnsuxu2L2d and the matrix Mmn
1 given in Eq.

s7.15d. This result holds for iÞ j. The matrix Dmn
1 is

Dmm
1 =5

0, m = 0 or n = 0;

2
3

+
5

p2n2 , m = ± n Þ 0;

2
3

+
2

p2m2 +
2

p2n2 , all other cases.

s7.17d

The next question of interest, the significance of which
will become clear in the next subsection, is the correla-
tion function of a single-trace operator and a double-
trace one, and two-point functions of double-trace op-
erators. The double-trace operators have been defined
in Eqs. s5.10d, s5.12d, and s5.19d. The double-trace opera-
tors s5.19d contain two scalar impurities, and, as dis-
cussed in Sec. V.C.3, can be in s1 ,9d, s1 ,3±d, or s1 ,1d
tensor representations of SOs4d3SOs4d. BPS operators
do not occur in the antisymmetric representation of Tij,n

J,r ,
since Ofijg,n

J =−Ofijg,−n
J . The correlators of nonsinglets

have been computed sBeisert, Kristjansen, et al., 2003ad,
with the result

kTij
J,rsxdT̄ij

J,ss0dl = S 1

uxu2D
J+2

drs,

kTij,m
J,r sxdT̄ij,n

J,s s0dl = S 1

uxu2D
J+2

drsdmnS1 + l8L
m2

r2 D ,

kTij,m
J,r sxdT̄ij

J,ss0dl = 0 s7.18d

siÞ jd, up to order l8 and g2. We see that the double-
trace operators are diagonal to order g2. Their mixing,
like the single-trace operators, begins at order g2

2. We
are considering here the SOs4d nonsinglet operators, but

not making a distinction between the 9 and 3± represen-
tations. The results for the singlet representations are
complicated by the inclusion of the TrsZ†ZJ+1d term in
the definition s5.13d. The 9, 3±, and 1 representations all
receive the same anomalous dimensions, and this degen-
eracy is a result of supersymmetry ssee discussions of
Sec. V.C.3d. Starting from any one of these representa-
tions, we may reach the others by transformations gen-
erated by combinations of supercharges, and these com-
binations commute with the dilatation operator.

The single- and double-trace operators mix at order
g2, with the overlaps, at first order in l8, being

kTij,m
J,r sxdŌij,n

J s0dl = S 1

uxu2D
J+2 g2

ÎJ

r3/2Î1 − rsin2spnrd
p2sm − nrd2

3S1 +
l8Lsm2 − mnr + n2r2d

r2 D ,

kTij
J,rsxdŌij,n

J s0dl = S 1

uxu2D
J+2 g2

ÎJ
Sdn,0r −

sin2spnrd
p2n2 D

3s1 + l8Ln2d . s7.19d

Do not be alarmed by the appearance of 1/ÎJ in these
expressions. When we come to rediagonalize the single-
trace operators in the next section, we shall see that the
1/J terms are compensated by sums sover rd, and the
two-point functions of the rediagonalized single-trace
operators will receive contributions from such terms.

Extracting an overall power of g2 in expressions like
s7.19d, we can arrange the remaining terms into an ex-
pansion in powers of g2

2, i.e., in terms of planar and non-
planar diagrams.

At this order in g2, there are nonzero overlaps be-
tween double- and triple-trace operators, and at order g2

2

even overlaps between single-trace and triple-trace op-
erators. More generally, the overlap of a single-trace op-
erator with any t-trace operator begins at order g2

t−1. We
have ignored these corrections since they do not affect
the anomalous dimensions of single-trace operators at
order g2

2.

C. Operator mixings and an improved BMN conjecture

The results of the previous two sections have been
computed and presented in the BMN basis. These re-
sults are to be compared to those on the string theory
side of the duality according to the identification s5.7d, in
which we are instructed to compare the eigenvalue spec-
trum of the string field-theory Hamiltonian to the spec-
trum of the dilatation operator minus the R charge in
gauge theory. This is a basis-independent comparison.
Alternatively, we may compare the matrix elements of
the operators on the two sides of the duality. The two
sides involve different Hilbert spaces, and the mapping
between the bases of these distinct Hilbert spaces is part
of the statement of the duality. We denote the basis on
the gauge theory side by hualgaugej and on the string
theory side by huãlstringj, with a labeling gauge theory
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states, and ã the labels on the string side. We need an
isomorphism between the states of the two theories:

hualgaugej ↔ huãlstringj , s7.20d

under the condition that the inner products on both
sides agree,

gaugekaublgauge = stringkãub̃lstring. s7.21d

The duality, in the proper basis, holds between these
matrix elements:

gaugekausD − Jdublgauge = stringKãUH

m
Ub̃L

string
. s7.22d

In Sec. V.C.3 the text around Eq. s5.18d sthe second
part of the SYM/plane-wave dualityd, we introduced a
specific mapping between the Hilbert spaces on either
side of the duality; however, we warned the reader that
Eq. s7.21d does not hold for the identification s5.18d
smore precisely, it only holds at g2

0 leveld. In this section
we intend to refine the correspondence between gauge
theory and string theory Hilbert spaces, taking account
of higher g2 orders.

On the string theory side, there is a natural basis, the
one which diagonalizes the free string theory Hamil-
tonian. We shall refer to this basis as the free-string ba-
sis. In this basis, m-string states are orthogonal to
n-string states for mÞn, and in fact this basis is ortho-
normal ssee discussions of Sec. IV.Cd. The interactions
induce mixings between these states; this basis does not
diagonalize the full string field-theory Hamiltonian. For
example, at order gs, the cubic string field-theory Hamil-
tonian will cause transitions between one- and two-
string states.

On the gauge theory side we start with the BMN ba-
sis, but if we are interested in the full scaling dimensions,
including the anomalous dimensions, then we should
choose a basis that diagonalizes the dilatation operator.
This basis is referred to as the D-BMN basis sGeorgiou
et al., 2003d. Incidentally, in this basis the operators are
conformal primaries, and this is the basis in which the
two- and three-point functions take the forms s6.15d and
s6.15d required by conformal invariance. This basis
would correspond to the one on the string theory side
that diagonalizes the full string field-theory Hamil-
tonian, and is not the free-string basis we defined above.
The basis of BMN operators we have been working with
above are neither of these. They have well-defined scal-
ing dimensions at planar level, but nonplanar correc-
tions induce nondiagonal mixings between the single-
trace operators and between single-trace and multitrace
operators in general. For example, at toroidal level, the
classical sl8=0d scaling dimensions are no longer well
defined because of order g2

2 mixings. This can be easily
seen by noting that single-trace and double-trace BMN
operators overlap at order g2, as in Eq. s7.19d, and show
up at order g2

2 in two-point functions of single-trace op-
erators as in Eq. s7.16d.

The results of Sec. VII.B.1 can be cast in the form

uxu2D0kOasxdŌbs0dl = Gab − l8Gablnsuxu2L2d + Osl82d ,

s7.23d

written in the BMN basis. We have introduced a nota-
tion whereby the indices a range over single-, double-,
and in general n-trace operators, and the operators
within each such class. This expression is written up to
first order in l8, with the remaining terms of higher or-
der in l8. D0 is the classical snonanomalousd scaling di-
mension. The matrix Gab is the inner product on the
Hilbert space of states created by the BMN operators,
and Gab is the matrix of anomalous dimensions.

The free-string basis can be constructed on the gauge
theory side by taking linear combinations of the original
BMN operators

ualgauge = UabObs0du0lgauge, s7.24d

with the BMN operator Oa acting on the gauge theory
vacuum. When g2 vanishes, this basis coincides with the
original BMN basis. Therefore, at order g2

0, the change
of basis matrix U is simply the identity.

Perturbative corrections in powers of g2 result in a
mixing between BMN operators with different numbers
of traces, and we must rediagonalize this set of operators
at each order in g2 to maintain orthonormality of the
inner product Gab, to preserve the isomorphism with the
free-string basis. The change of basis is chosen such that

UGU† = 1, s7.25d

leading to

gaugekausD − Jdublgauge = fUsD0 − JdGU† + UGU†gab

= ndab + G̃ab, s7.26d

with n counting the number of impurities in the operator

Oas0d creating the state ualgauge, and G̃ the anomalous-
dimension matrix in the free-string basis. In the basis
where the inner product G is diagonal, the anomalous-
dimension matrix is symmetric. The matrix elements
s7.26d are to be compared to the matrix elements of the
string field-theory Hamiltonian in the free-string basis.
We shall return to this in Sec. VIII.

The change of basis implemented by U is not unique,
but all such choices are related by orthogonal transfor-
mations. We may make a unique choice, with one
subtlety involving BPS operators which we mention mo-
mentarily, by requiring that the matrix U implementing
the change of basis s7.25d be a real symmetric matrix.
This turns out to be the choice for which the matrix
elements of the rediagonalized operators can be
matched to the matrix elements on the string side in the
free-string basis. As we have already pointed out, in the
BMN basis, single-trace BPS operators do not mix with
single-trace non-BPS operators, and likewise for pairs of
double-trace operators, but they may mix with each
other. However, this mixing does not involve l8 correc-
tions, since both operators are BPS. This mixing will not
affect the anomalous dimensions. A similar pattern oc-
curs in the string field theory, where the sums over inter-
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mediate BPS states do not alter the string masses. The
correspondence between the string and gauge theory
sides of the duality then seems to contain ambiguities for
the BPS operators and their corresponding string states
sBeisert, Kristjansen, et al., 2003ad; for example, we are
unable to distinguish between single-string and double-
string vacuum states, as well as single- and double-
graviton states. We shall comment on this point briefly in
Sec. IX. Mixing between BPS and non-BPS operators
can be dealt with by choosing a basis in which BPS op-
erators do not mix with non-BPS operators, regardless
of the number of traces; however, the degeneracy in the
BPS subspace remains.

We expand the diagonalizing matrix, the inner-
product matrix, and the matrix of anomalous dimen-
sions, to order g2:

U = 1 + g2Us1d + Osg2
3d ,

G = 1 + g2Gs1d + Osg2
3d ,

G = Gs0d + g2Gs1d + Osg2
3d . s7.27d

U and G are the identity at zeroth order in g2 since the
BMN operators start mixing among each other only at
order g2 for single-trace and double-trace overlaps, and
at order g2

2 for single-trace overlaps with single-trace
with double-trace intermediate channels, while the non-
vanishing of Gs0d to this order captures the first order sin
l8d anomalous dimensions of the unmixed BMN opera-
tors.

Inserting the expansions s7.27d into Eq. s7.25d, we find
that the change of basis matrix U, to order g2 involves
the term of the same order in the expansion of the inner-
product matrix, and since U is unitary, we have

Us1d = −
1
2

Gs1d. s7.28d

We may also solve for G̃ to first order in g2, using Eq.

s7.26d and expanding G̃ as above in Eq. s7.27d, with G̃s0d

=Gs0d. This yields

G̃s1d = Gs1d −
1
2

hGs1d,Gs0dj . s7.29d

We then have for the order g2 rediagonalized matrix of
anomalous dimensions

G̃s1d = 1 0 G̃n,qs
s1d G̃n,s

s1d

G̃pr,m
s1d 0 0

G̃r,m
s1d 0 0

2 . s7.30d

In writing this matrix, we have chosen to discard the
entries corresponding to the BPS operators Oij,n=0

J and
the combination ÎrTij,n=0

J,r +Î1−rTij
J,r. This combination is

chosen because it is orthogonal to Oij,n
J , nÞ0, which can

be easily seen from Eq. s7.19d. The sub-matrix involving
these BPS operators can be diagonalized using the free-
dom we mentioned in the discussion following Eq.

s7.26d. The remaining basis elements are chosen to cor-
respond to the non-BPS single- and double-trace BMN
operators given in Oij,n

J ,Tij,n
J,r snÞ0d, and Î1−rTij,n=0

J,r

−ÎrTij
J,r, in order. The entries of Eq. s7.30d in this basis

can be read off from Eq. s7.19d, and are

G̃n,r
s1d = G̃r,n

s1d = −
sin2spnrd

ÎJ2p2
, s7.31ad

G̃n,pr
s1d = G̃pr,n

s1d =
Î1 − r
ÎJr

sin2spnrd
2p2 . s7.31bd

This procedure can be continued to higher-orders in g2
in an obvious way.

To read off the anomalous dimensions, we must
choose a basis that diagonalizes the dilatation operator.
This basis would simultaneously diagonalize both the
matrices Gab and Gab. That such a diagonalization is pos-
sible si.e., that these two matrices commuted, can be ar-
gued from conformal invariance, since it implies that a
basis of operators with definite scaling dimensions sclas-
sical plus anomalousd can be chosen. This choice of basis
has been presented by Constable et al. s2002a, 2002bd
and Beisert, Kristjansen, et al. s2003ad. Going to the
D-BMN basis, we find for the scaling dimension of
single-trace BMN operators with two impurities, at or-
der g2

2,

D = D0 + l8Fn2 + g2
2S 1

48p2 +
35

128p4n2DG , s7.32d

for nÞ0 and with D0=J+2 for two impurities. For n=0,
the classical scaling dimension is protected against quan-
tum corrections by virtue of supersymmetry. Equation
s7.32d is the main sbasis-independentd result of this sec-
tion, to be directly compared with the corresponding
string field-theory results of Sec. VIII.

Up to this point, our focus has been on the calculation
of two-point functions of BMN operators. One may
wonder whether three and higher point functions have
any relevance to the duality. The answer turn out to be
negative. In the ArXiv version of this review sSadri and
Sheikh-Jabbari, 2003bd, we address three and even
higher point functions, and some pathology in their be-
havior is noted.

VIII. PLANE-WAVE LIGHT-CONE STRING FIELD THEORY

As a theory which is described by a two-dimensional
s model plus vertex operators, string theory is a first-
quantized theory sPolchinski, 1998ad in the sense that all
its states are always on-shell states and can only be
found as external “particles” of an S matrix. However,
one may ask if we can have a theory allowing sdescrib-
ingd off-shell string propagation. Such a theory, which is
necessarily a field theory sas opposed to first-quantized
quantum mechanicsd, is called string field theory. The
on-shell part of “Hilbert space” of string field theory
should then, by definition, match with the spectrum of
string theory. There have been many attempts to formu-
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late a superstring field theory. See, for example, Witten
s1986a, 1986bd, Berkovits et al. s2000d, and for a review
Siegel s1988d. However, the final formulation has not yet
been achieved. One of the major places where a string
field-theory description becomes useful and necessary is
when the vacuum sor backgroundd about which we are
expanding our string theory is not a true, stable vacuum.
Such cases generally have the pathology of having tachy-
onic modes. This line of research has attracted a lot of
attention sBerkovits et al., 2000d. In this section, we
study a simpler question, string field theory after fixing
the light-cone gauge, the light-cone string field theory, in
the plane-wave background. Being a light-cone field
theory, light-cone string field theory in the zero-coupling
limit only describes on-shell particles. Therefore the
“Hilbert space” of light-cone string field theory, where
the corresponding operators act, is exactly the same as
the one discussed in Sec. IV.C. The light-cone string field
theory in flat space for bosonic closed and open strings
was developed even before two-dimensional conformal-
field-theory techniques were available sMandelstam,
1974; Arfaei, 1975, 1976d and then generalized to super-
symmetric open sGreen and Schwarz, 1983d and closed
sGreen et al., 1983d strings. A comprehensive discussion
of light-cone string field theory on flat space can be
found in Chapter 11 of Green et al. s1987bd.

Here we first very briefly review the basic tools and
concepts needed to develop light-cone closed super-
string field theory and then focus on the plane-wave
background. Using the symmetries, including supersym-
metry, we fix the form of the cubic string vertices and
then in Sec. VIII.C study second-order terms sin string
couplingd in the light-cone string field-theory Hamil-
tonian.

A. General discussion of the light-cone string field theory

The fundamental object in light-cone string field
theory is the string field operator F, which creates or
destroys complete strings, i.e.,

F:Hm → Hm±1, s8.1d

where Hm is the m-string Hilbert space ssee Sec. IV.Cd.
In the light-cone theory, F is a function of x+ and p+

slight-cone time and momentumd, as well as string
worldsheet fields XIssd , uabssd, and uȧḃssd, where
XIssd=XIss ,t=0d and likewise for the other fields. Of
course it is also possible to consider the “momentum”-
space representation, in which F is a function of
PIssd , labssd, and lȧḃssd, with l equal to −i times the
momentum conjugate to u, i.e.,

lab =
1

2pa8
uab

† , lȧḃ =
1

2pa8
u

ȧḃ

†
. s8.2d

Here we mainly consider the momentum-space repre-
sentation. Noting the commutation relations s4.12d and
s4.30d, we find that

XIssd = i
d

dPIssd
, uabssd = i

d

dlabssd
. s8.3d

As in any light-cone field theory, the light-cone dy-
namics of F is governed by the nonrelativistic
Schrödinger equation

HSFTF = i
]

] x+F , s8.4d

where HSFT is the light-cone string field-theory Hamil-
tonian. In principle, in order to study the dynamics of
the theory, we should know the Hamiltonian, and ob-
taining the Hamiltonian is the main goal of this section.
As usual we assume that HSFT has an expansion in pow-
ers of string coupling and at the free string theory limit it
should be equal to the Hamiltonian coming from the
string theory s model. In our case this is Hl.c.

s2d fcf. Eq.
s4.33dg :

HSFT = Hl.c.
s2d + gsHs3d + gs

2Hs4d + ¯ . s8.5d

Our guiding principle for obtaining gs corrections to the
Hamiltonian is to use all the symmetries of the theory,
both bosonic and fermionic, to restrict the form of such
corrections. In the case of flat space these symmetries
are so restrictive that they completely fix the form of
Hs3d and all the higher-order corrections sGreen and
Schwarz, 1983; Green et al., 1983d. In the plane-wave
case, as we discussed in Sec. II.B, the number of symme-
try generators is less than in flat space. Nevertheless, as
we shall see, the number of symmetry generators is large
enough to determine Hs3d up to an overall p+-dependent
factor.

Let us now come back to Eq. s8.4d and try to solve it
for free strings. This will give some idea of what the
free-string fields F look like. Let us first consider the
bosonic strings with the Hamiltonian s4.14d. We shall
work in the momentum basis.

Hereafter we shall set a8=2; instead of p+ we shall use
a;a8p+ and esxd;signsxd= uxu /x. If necessary, powers of
a8 can be recovered on dimensional grounds.

Since in the Hamiltonian there are ]sX terms, it is
more convenient to use Fourier modes of XIssd and
PIssd, i.e., we use Eq. s4.9d at t=0. However, in order to
match our conventions with those of the literature
sSprandlin and Volovich, 2002, 2003a; Pankiewicz,
2003ad we need to redefine the an and ãn modes:

XIssd = x0
I +

1
Î2

o
nÞ0

fxunu
I − iesndx−unu

I geins/a,

PIssd =
1

2paFp0
I +

1
Î2

o
nÞ0

fpunu
I − iesndp−unu

I geins/aG ,

s8.6d

where xn
I − ix−n

I =Î2/vnsãn+an
†d, ipn

I +p−n
I =Îvn /2sãn−an

†d,
n.0. Using these xn and pnsnPZd, one can introduce
another basis for creation-annihilation operators which
is usually used in the light-cone string field theory sSpra-
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dlin and Volovich, 2002d and whose indices range from
−` to +`:

an =
1

Î2i
san + ãnd, a−n =

1
Î2

sãn − and, n . 0, s8.7d

where a0=a0. Likewise for fermions,

bn =
1

Î2i
sbn + b̃nd, b−n =

1
Î2

sb̃n − bnd, n . 0,

s8.8d

and b0=b0. It can be readily seen that

fan,am
† g = dmn, hbn,bm

† j = dmn, n P Z ,

where all the bosonic and fermionic indices have been
suppressed. The light-cone Hamiltonian s4.33d in this ba-
sis is Hl.c.

s2d=onPZvnsan
†an+bn

†bnd.
Since fxn

I ,pm
J g= idIJdmn or equivalently xn

I = isd /dpn
I d,

the Hamiltonian s4.14d written in terms of these Fourier
modes becomes

Hs2d =
1

a
o

n=−`

+` Fpn
2 +

1
4

vn
2xn

2G
=

1

a
o

n=−`

+` Fpn
2 −

1
4

vn
2S d

dpn
I D2G ,

and hence the eigenfunctions of the Schrödinger equa-
tion s8.4d are products of san infinite number ofd mo-
mentum eigenfunctions cNn

spnd, where Nn is the excita-
tion number of the nth oscillator with frequency vn /a.
Being a momentum eigenstate, sÎvn /2dsan

† +andcspnd
=pncspnd implies that

cspnd = S 2

pvn
D1/4

expF−
1

vn
pn

2 +
2

Îvn

pnan
† −

1
2

an
†an

†G .

s8.9d

The string field F is a linear combination of these
modes, i.e.,

Ffpng = o
hNnj

fhNnj p
n=−`

+`

chNnjspnd . s8.10d

To quantize the string field theory, as we do in any
field theory, we promote fhNnj to operators acting on the
string Fock space where it destroys or creates a com-
plete string with excitation number hNnj at t=0. Explic-
itly fhNnj :Hm→Hm±1 and fhNnjuvacuuml= uhNnjl. Next we
promote all the superalgebra generators to operators
acting on the string field-theory Hilbert space. We shall
generically use hatted letters to distinguish string field-
theory representations from those of first-quantized
string theory. As for the generators in the plane-wave
superalgebra, as discussed in Sec. IV.D, the kinematical
ones depend only on the zero modes of strings and the
dynamical ones are quadratic in the string creation-
annihilation operators. Therefore, at the free string
theory limit szeroth order in gsd, the dynamical

PSUs2 u2d3PSUs2 u2d3Us1d− superalgebra generators,

Ĵij , Ĵab , Q̂
aḃ

s0d
, Q̂ȧb

s0d, and Ĥs2d, should be quadratic in the
string field F, for example,

Ĥs2d =
1
2 E adaD8pssdD8lssdF†Hl.c.

s2dF , s8.11d

with D8pssd=pn=−`
` dpn and D8lssd=pn=−`

` dln
ab

3dln
ȧḃdln

†abdln
†ȧḃ. Note that all these operators preserve

the string number; i.e., they map Hm onto Hm.
Now let us use the supersymmetry algebra scf. Secs.

II.B.1 and II.B.2d to restrict and obtain the corrections
to supersymmetry generators once string interactions
are turned on. The kinematical sector of the superalge-
bra, as well as P+, are not corrected by the string inter-
actions, because they depend only on the zero modes sor
center-of-mass modesd of the strings and do not have the
chance to mix with other string modes. Among the dy-

namical generators, Ĵij , Ĵab, being generators of a com-
pact SOs4d3SOs4d group, cannot receive corrections,
because their eigenvalues are quantized and cannot vary

cotinuously swith gsd. Therefore only Q̂ and Ĥ can re-
ceive gs corrections. We have parametrized the correc-

tions to Ĥ as in Eq. s8.5d and similarly the Q̂’s can be
expanded as

Q̂aḃ = Q̂
aḃ

s0d
+ gsQ̂aḃ

s3d
+ gs

2Q̂
aḃ

s4d
+ ¯ , s8.12d

where the superscripts s3d and s4d in Eqs. s8.5d and s8.12d
show that they are cubic and quartic in the string field F;
more precisely,

Ĥs3d,Q̂
aḃ

s3d
,Q̂ȧb

s3d:Hm → Hm±1, s8.13ad

Ĥs4d,Q̂
aḃ

s4d
,Q̂ȧb

s4d:Hm → Hm ø Hm±2. s8.13bd

These gs corrections, however, should be such that Ĥ
and Q̂ still satisfy the superalgebra. This, as we shall
show momentarily, will impose strong restrictions on the
form of these corrections. From Eqs. s2.24d, s2.26d,
s2.34d, and s2.35d, and the fact that the algebra should
hold at any x+, we learn that

fĤsnd,X̂Ig = 0, fQ̂snd,X̂Ig = 0, s8.14ad

fĤsnd,P̂Ig = 0, fQ̂snd,P̂Ig = 0, n . 2. s8.14bd

Note in particular that Eq. s8.14bd means that the inter-

action parts of Ĥ and Q̂ are translationally invariant,

while the quadratic parts of Ĥ and Q̂ do not have this
symmetry fcf. Eqs. s2.26d and s2.34dg. Similarly Eqs.
s2.32d and s2.39d imply that

fĤsnd,q̂abg = fĤsnd,q̂ȧḃg = 0, s8.15ad

fQ̂snd,q̂abg = fQ̂snd,q̂ȧḃg = 0, n . 2, s8.15bd

and finally since P̂+ commutes with all generators,
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fĤsnd,P̂+g = 0, fQ̂snd,P̂+g = 0 n . 2. s8.16d

B. Three-string vertices in the plane-wave light-cone string
field theory

Let us now focus on the three-string vertex. We shall
be working in the sector with light-cone momentum p+

Þ0. Hereafter we shall relax the positivity condition on
p+ fsee Eq. s4.3dg and take the incoming states to have
p+.0 and the outgoing states p+,0 sSprandlin and Vo-
lovich, 2002d. Without loss of generality we can assume
that string one and string two are incoming and string
three is outgoing. The physical quantities, such as PI and
lab of the rth string sr=1,2 ,3d will be denoted by Psrd

I

and lsrd
ab. In order to guarantee Eqs. s8.14bd, s8.15d, and

s8.16d, which are nothing but the local momentum con-

servations of bosonic and fermionic fields, Ĥs3d ,Q̂s3d

must be proportional to

D8Fo
r=1

3

Psrd
I ssdGD8Fo

r=1

3

lsrd
abssdGD8Fo

r=1

3

lsrd
ȧḃssdGdSo

r=1

3

asrdD
where the D functionals are products of san infinite num-
ber ofd d functions of the corresponding argument at
different values of s. In sum, so far we have shown that

Ĥs3d =E dm3H3Fs1dFs2dFs3d ,

Q̂s3d =E dm3Q3Fs1dFs2dFs3d , s8.17d

where Fsrd is the string field of the rth string, H3 ,Q3
=H3 ,Q3sasrd ,Psrd ,Xsrd ,usrd ,lsrdd are to be determined
later using the dynamical part of the superalgebra, and

dm3 = Sp
r=1

3

dasrdD
8PsrdssdD8lsrdssdDD8Fo

r=1

3

Psrd
I ssdG

3D8Fo
r=1

3

lsrd
abssdGD8Fo

r=1

3

lsrd
ȧḃssdGdSo

r=1

3

asrdD .

s8.18d

We note that Eq. s8.14ad and its fermionic counterpart
fwhich is a combination of Eqs. s8.15ad and s8.15bdg
should still be imposed on Ĥs3d and Q̂s3d. Since Eqs.
s8.14d–s8.16d are exactly the same as their flat-space
counterparts sGreen and Schwarz, 1983; Green et al.,
1983d, much of the analysis of Green et al. s1983; Green
and Schwarz, 1983d carries over to our case.

1. Number-operator basis

Since in the string scattering processes we generally
start and end up with states that are eigenstates of the
number operator Nn si.e., they have definite excitation
numberd rather than the momentum eigenstates, it is
more convenient to rewrite Eq. s8.17d in the number-

operator basis; in fact this is what is usually done in the
light-cone string field-theory literature sfor example, see
Green et al., 1987b, Chap. 11d.

Since H3 and Q3 do not depend on the string field, we
can simply ignore them for the purpose of converting
the basis to a number-operator basis and focus on the
measure dm3 and Fsrd. For this change of basis we need
to write down explicitly chNnjspnd’s fcf. Eq. s8.10dg and

perform the momentum integral. To identify Ĥs3d and

Q̂s3d it is enough to find their matrix elements between
two incoming strings and one outgoing string fsee Eq.
s8.13dg. However, it is more convenient to work with
uHs3dl , uQs3dlPH3 where

k1u ^ k2uHs3du3l ; k1u ^ k2u ^ k38uHs3dl s8.19d

and similarly for uQs3dl. In the above k38u and u3l are
related by worldsheet time reversal, in other terms k38u
= kvuFs3d† while Fs3duvl= u3l sfor more details see Green
et al., 1987bd. Then, when we define uV3l as

uV3l = FE dm3p
r=1

3

p
n=−`

`

cspndGuvl3, s8.20d

where a uvl3 is a three-string vacuum, uHs3dl anduQs3dl
take the form

uHs3dl = H3uV3l, uQs3dl = Q3uV3l . s8.21d

H3 and Q3 are operators acting on three-string Hilbert
space H3 and as we shall state in the next subsection Q3
is linear and H3 is quadratic in bosonic string creation
operators. uV3l itself maybe decomposed into a bosonic
part uEal and a fermionic part uEbl sGreen et al., 1987b;
Spradlin and Volovich, 2002d

uV3l = uEal ^ uEbldSo
r

arD . s8.22d

The notation a and b for bosons and fermions stems
from our earlier notation in which the bosonic and fer-
mionic creation operators where denoted by an

† and
bn

† , nPZ.
As mentioned earlier, Eq. s8.14ad and a part of Eq.

s8.15d should still be imposed on uHs3dl and uQs3dl. These
are nothing but the worldsheet continuity conditions,

o
r=1

3

esardXsrdssduHs3dl = 0,

o
r=1

3

esardusrd
abssduHs3dl = 0,

o
r=1

3

esardusrd
ȧḃssduHs3dl = 0, s8.23d

and similarly for uQs3dl.
We omit all the details of the computations and only

present here the final result. More details may be found
in the ArXiv version of this review sSadri and Sheikh-
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Jabbari, 2003bd, as well as in Spradlin and Volovich
s2002d and Pankiewicz and Stefanski s2003bd.

2. Interaction-point operator

In this section we use the dynamical PSUs2u2d
3PSUs2u2d3Us1d− superalgebra to determine the
“prefactors” H3 and Q3 fcf. Eqs. s8.17d or s8.21dg. To do
this we expand both sides of Eqs. s2.37d and s2.40d in
powers of gs and note that the equality should hold at
any order in gs. At first order in gs we obtain

fĤs3d,Q̂
aḃ

s0dg + fĤs2d,Q̂
aḃ

s3dg = 0, s8.24ad

hQ̂
aḃ

s3d
,sQ̂s0dd

rl̇

† j + hQ̂
aḃ

s0d
,sQ̂s3dd

rl̇

† j = 2eareḃl̇Ĥs2d. s8.24bd

The equations for Q̂ȧb are quite similar and hence we do
not present them here. In fact, as in the flat-space case,
one can show H3 and Q3 as a function of the worldsheet
coordinate s should only be nonzero at the interaction
point ssee Fig. 6d s=2pa1 sGreen et al., 1987b, Chap.
11d. These equations, being linear in Q3 and H3, only

allow us to determine Ĥs3d and Q̂s3d up to an overall
m-dependent sor more precisely a8mp+-dependentd fac-
tor. This should be contrasted with the flat-space case, in
which besides the above there is an extra condition com-
ing from the boost in the light-cone directions sgener-
ated by J+− in the notations of Sec. II.B.1; Green et al.,
1983d. In the plane-wave background, however, this
boost symmetry is absent and this overall factor should
be fixed in some other way, e.g., by comparing the string
field-theory results with their gauge theory correspon-
dents swhich are valid for a8mp+@1d or by the results of
supergravity on the plane-wave background swhich are
trustworthy for a8mp+!1d. Here we skip the detailed
analysis and present only the final result fa more elabo-
rate discussion of how to solve Eqs. s8.20d and s8.24d as
well as the expression for uEal can be found in the arXiv
version of this review, Sadri and Sheikh-Jabbari, 2003b,
and references thereing:

uHs3dl =
fsmd
4p

ua3u3bsb + 1do
r=1

3

dSo
r=1

3

arDo
nPZ

vnsrd

ar

3 sansrd
i† a−nsrd

i − ansrd
a† a−nsrd

a duEal , s8.25d

where vnsrd=În2+m2ar
2 and fsmd for more precisely

fsa8mp+dg is an overall factor that is not fixed through
the superalgebra requirements.

We would like to note the Z2 behavior of uHs3dl. This
Z2, as discussed in Sec. II.B.1, exchanges the two SOs4d’s
of SOs4d3SOs4d isometry. From Eq. s8.25d it is evident
that ansrd

i† a−nsrd
i −ansrd

a† a−nsrd
a is odd under Z2. However, as we

argued in Sec. IV.C the vacuum uvl is odd under Z2,
therefore altogether uHs3dl is Z2 even. Of course with a
little bit of work, one can show that this property is also
true for the full expression of H3.

Before closing this subsection we should warn the
reader that in most of the plane-wave string field-theory
literature se.g., Spradlin and Volovich, 2002, 2003cd
SOs8d fermionic representations together with an

SOs8d-invariant vacuum u0l or u0̇l fsee Eq. s4.37dg have
been used. In the SOs8d notation, unlike our case, this Z2
symmetry is not manifest. It has been shown that the
SOs4d3SOs4d formulation we presented here and the
SOs8d one are indeed equivalent sPankiewicz and Ste-
fanski, 2003ad. In the SOs8d notation it is very easy to
observe that, as one would expect, this formulation in
the m→0 limit goes over to the well-known flat-space
result; this point can be sand in fact has beend used as a
cross check for the calculations.

C. One-loop corrections to the string spectrum; plane-
wave, light-cone string field-theory analysis

In this section we shall test the plane-wave/SYM du-
ality at Osg2

2d by working out the one-loop corrections to
the single-string spectrum. Explicitly, we run the machin-
ery of quantum-mechanical time-independent perturba-
tion theory with the Hilbert space H and Hamiltonian

Ĥ. One might also try to use time-dependent perturba-
tion theory starting with string wave packets to study
string scattering processes. This possibility will not be
pursued here; we shall only make some comments about
it later on in this section and also in Sec. IX.

It is easy to see that, at first order in gs, time-
independent perturbation theory gives a vanishing result

for energy shifts, i.e., kcuĤs3ducl=0 for any uclPH1 sof
course one should consider degenerate perturbation
theory; nevertheless, this result is obviously still trued.
Therefore we should consider the second-order correc-

tions. For that, however, we need to work out Ĥs4d. So, in
this section we shall first continue the analysis of Sec.

VIII.B and work out the needed parts of Ĥs4d. As we
shall see, to compare the gauge theory results of Sec.
VII with the string field theory side we do not need to

have the full expression for Ĥs4d, which considerably
simplifies the calculation.

FIG. 6. Three-string interaction vertex in the light-cone gauge.
Note that, due to closed string boundary conditions, s=0, s
=2pa1, and s=2psa1+a2d are identified and I is the interac-
tion point.
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1. Four-string vertices

The procedure of finding Ĥs4d and Q̂s4d is essentially a
direct continuation of the procedure of the previous sec-
tion; i.e., solving the continuity conditions s8.14d, s8.15d,
and s8.16d together with the constraints coming from the
dynamical supersymmetry algebra, which are

fĤs3d,Q̂
aḃ

s3dg + fĤs2d,Q̂
aḃ

s4dg + fĤs4d,Q̂
aḃ

s0dg = 0, s8.26ad

hQ̂
aḃ

s3d
,sQ̂s3dd

rl̇

† j + hQ̂
aḃ

s0d
,sQ̂s4dd

rl̇

† j + hQ̂
aḃ

s4d
,sQ̂s0dd

rl̇

† j

= 2eareḃl̇Ĥs4d. s8.26bd

The important point to be noted is that Ĥs4d contains
two essentially different pieces, one that does not
change the string number and the other that changes
string number by two fsee Eq. s8.13bdg. In fact, in our
analysis to find mass corrections to single-string states,

we need to calculate kcuĤs4ducl , uclPH1. We then note

that Q̂s4d is quartic in the string field F and that Q̂s0d

maps H1 onto H1. Therefore the terms in Eq. s8.26bd
involving Q̂s4d do not contribute to the energy shift of
single-string states at the gs

2 level. This in particular

means that we need not calculate Q̂s4d, and therefore we
have all the necessary ingredients for calculating the
one-loop string corrections to the string mass spectrum.

2. One-loop corrections to the string spectrum

In this subsection we compute the mass shift to the
string state in the s9 ,1d representation of SOs4d
3SOs4d ssee Sec. IV.Cd, i.e.,

usijd,nl =
1
Î2

San
i†ãn

j† + an
j†ãn

i† −
1
2

dijan
k†ãn

k†Duvl , s8.27d

where it is easy to show that

kskld,musijd,nl = dmnSdikdjl + dildjk −
1
2

dijdklD . s8.28d

For other states, as a direct result of the superalgebra,
we expect to see the same mass shift.

The corrections to the mass at order gs
2 receive contri-

butions from second-order perturbation theory with Ĥs3d

and first-order perturbation with Ĥs4d:

dEn
s2d = gs

2S o
1,2PH2

1
2

uk1,2uĤs3dusijd,nlu2

En
s0d − E1,2

s0d

+
1
8

ksijd,nuhQ̂
aḃ

s3d
,Q̂s3d†aḃjusijd,nlD . s8.29d

The extra factor of 1
2 in the first term comes from the

fact that this term arises from a second-order perturba-
tion theory, eS+dS=eSf1+dS+ 1

2 sdSd2g or, in other words,
it is due to the reflection symmetry of the one-loop light-
cone string diagram sRoiban et al., 2002d while the factor

of 1
8 in the second term is obtained noting Eq. s8.26bd

after taking the trace over ar and ḃl̇ indices. Note that,
since the Hamiltonian is a singlet of SOs4d3SOs4d3Z2,
and also following our superalgebra arguments, we ex-
pect states in different irreducible SOs4d3SOs4d repre-
sentations not to mix and hence we use nondegenerate
perturbation theory. Here we skip the details of the
computations and the interested reader is referred to the
arXiv version of this review sSadri and Sheikh-Jabbari,
2003bd or Pankiewicz s2003bd. The one-loop contribu-
tion to the single-string mass spectrum is sRoiban et al.,
2002; Pankiewicz, 2003ad

dEn
s2d = m

l8g2
2

4p2 S fsmd
2pm2a3

2DS 1
12

+
35

32p2n2D . s8.30d

Choosing fsmd=2pm2a3
2 for large m, this result is in pre-

cise agreement with the gauge theory result of Eq.
s7.32d. In fact it is possible to absorb fsmd into gs, the
string field-theory expansion parameter, i.e., the effec-
tive string coupling is

gs
eff = gsfsa8mp+d , gssa8mp+d2 = g2

2, s8.31d

where , in the above shows the large-m limit.

3. Discussion of the string field-theory one-loop result

Here we would like to discuss briefly some of the is-
sues regarding the large-m expansion and the string
field-theory one-loop result s8.30d. As we discussed, Eq.
s8.30d was obtained by allowing only the “impurity-
conserving” intermediate string states in the sums s8.29d.
However, at the same order one can have contributions
from string states that change impurity by two. For the
impurity-nonconserving channel, the matrix elements of
the first term of Eq. s8.29d are of order m2 while they are
of order m in the impurity-conserving channel sPearson
et al., 2003; Spradlin and Volovich, 2003a, 2003cd. More-
over, the energy difference denominator in the impurity-
changing channel is of order m, while it is of order m−1 in
the impurity-conserving channel. Therefore, altogether
the contributions of the impurity-conserving and
impurity-nonconserving channels are of the same order,
and from the string theory side it is quite natural to
consider both of them. However, the available gauge
theory calculations are only in the impurity-conserving
channel; this remains an open problem to be addressed.

The other point, which should be taken with a grain of
salt, is the large-m expansion. In fact, as we see in Eq.
s8.29d, sums may contain energy excitations ranging
from zero to infinity. On the other hand, to obtain the
large-m expansion generically it is assumed that vn

=În2+ sa8mp+d2 can be expanded as a8mp++n2 /a8mp+

+¯; this expansion is obviously problematic when n is
very large. In other words, the large-m expansion and
the sum over n do not commute. In fact, it has been
shown that if we do the large-m expansion first, we will
get contributions that are linearly divergent sthey grow
like m; Roiban et al., 2002d, leading to energy corrections
of the order mg2

2Îl8. However, if we do the sum first and
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then perform the large-m expansion, we get a finite re-
sult for any finite value of m. This is expected if the
results are going to reproduce the flat-space results in
the m→0 limit. This divergent result from the gauge
theory point of view, being proportional to Îl8 seems
like a nonperturbative effect sKlebanov et al., 2002;
Spradlin and Volovich, 2003ad.

IX. CONCLUDING REMARKS AND OPEN QUESTIONS

In this review we have presented a new version of the
string/gauge theory correspondence, the plane-wave/
SYM duality, and spelled out the correspondence be-
tween various parameters and quantities on the two
sides. As evidence for this duality we reviewed the
gauge theory calculations leading to the spectrum of free
strings on the plane wave as well as one-loop corrections
to this spectrum, showing strong support for the duality.
There have been many related problems pursued in the
literature, which are interesting in their own right but
which are beyond the scope of a pedagogical review.
However, we would like to mention some of these top-
ics:

• Plane-wave/SYM duality for open strings
The plane-wave/SYM duality we discussed in this re-

view was constructed for stype-IIBd closed strings. The
extension of the duality to the case of open strings has
been studied, for example, by Berenstein, Gava, et al.,
2002; Gomis et al., 2003a; Imamura, 2003; Lee and Park,
2003; Skenderis and Taylor, 2003; and Stefanski, 2003.

• String bit model and quantum-mechanical model for
BMN gauge theory

In the large-m limit one can readily observe that in Eq.
s4.6d we can drop the s]sXd2 term against the mass term
m2X2. This in particular implies that in such a limit
strings effectively become a collection of some number
of massive particles, the string bits. Hence it is quite
natural to expect the large-m dynamics of strings on the
plane-wave background to be governed by a string bit
model sVaman and Verlinde, 2002; Verlinde, 2002; Zhou,
2003d in which the effects of string tension and interac-
tions are introduced as interaction terms in the string bit
Lagrangian. The proposed string bit model consists of J
string bits of mass m, with permutation symmetry and,
more importantly, PSUs2 u2d3PSUs2 u2d3Us1d− symme-
try built into the model. The action for the string bit
model, besides the kinetic squadraticd term, has cubic
and quartic terms, but terminates at the quartic level, as
dictated by supersymmetry. The model has been con-
structed sor engineeredd so that it gives the free-string
mass spectrum. Moreover, one of the basic predictions
of the string bit model is that the genus counting param-
eter g2 would always appear through the combination
l8g2

2 fsee Eq. s1.13dg. This result, however, has been chal-
lenged by yet another quantum-mechanical model of the
BMN gauge theory, constructed to capture the dynamics
of BMN operators. The Hamiltonian for this quantum-
mechanical model is the dilatation operator of the N

=4 SYM, and its Hilbert space is the set of BMN states
with two impurities sEynard and Kristjansen, 2002; Bei-
sert, Kristjansen, et al., 2003b; Kristjansen, 2003; Spradin
and Volovich, 2003bd.

• D-branes in plane-wave backgrounds
Here we have studied only strings on the plane-wave

background. However, type-IIB string theory on this
background also has D-brane solutions. Similar to the
flat-space case, D-branes on the plane-wave background
can be studied by introducing open strings in the type-II
theory and imposing Dirichlet boundary conditions on
them sPolchinski, 1995d, or equivalently by giving the
closed-string description through the boundary-state for-
mulation sCallan et al., 1996d. Both approaches have
been pursued for D-branes in the plane-wave back-
ground; see Billo and Pesando, 2002; Dabholkar and
Parvizi 2002; and Bergman et al., 2003 for examples.

In general, D-branes in the plane-wave background
can be classified into two sets, those which are “paral-
lel,” meaning that they include x− along their worldvol-
ume, and those which are “transverse,” in which the x−

direction is transverse to the worldvolume. It has been
shown that in the plane-wave background we can have
shalf-supersymmetricd “parallel” Dp-branes for p
=3,5 ,7, which are localized at the origin of the space
transverse to the brane sDabholkar and Parvizi, 2002d.
“Parallel” Dp-branes in plane-wave backgrounds, other
than the maximally supersymmetric one, have been un-
der intensive study. 19 Topics studied include their super-
symmetric intersections, D-brane interactions, their
worldvolume theory, and the corresponding supergravity
solution.

As for the transverse D-branes, one can in fact show
that the only half-supersymmetric brane solution of the
maximally supersymmetric plane-wave background is a
spherical three-brane, which is a giant graviton
sMcGreevy et al., 2000d. The role of these giant gravitons
in the context of plane-wave/SYM duality has not been
explored in detail. However some useful preliminary
analyses have been made by Balasubramanian et al.
s2002d and Metsaev s2003d.

• T duality on plane-wave backgrounds
One of the other interesting directions in which the

literature has grown is the question of extending the
usual T or S dualities, which are generally studied for
flat-space backgrounds, to plane waves. T duality is
closely tied with compactification. Compactification is
possible along directions that have translational symme-
try sor along the Killing vectorsd. In the coordinates we
have adopted for plane waves fsee Eq. s2.4dg such isom-

19See, for example, Alishahiha and Kumar, 2002; Biswas et
al., 2002; Ganor and Varadarajan, 2002; Kumar et al., 2002;
Michishita, 2002; Skenderis and Taylor, 2002; Bain, Meessen,
and Zamaklar, 2003; Bain, Peters, and Zamaklar, 2003; Chan-
drasekhar and Kumar, 2003; Gaberdiel et al., 2003; Hyun et al.,
2003; Kim et al., 2003; Ohta et al., 2003; Sadri and Sheikh-
Jabbari, 2003; Sarkissian and Zamaklar, 2003.
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etries are not manifest. However, as we have extensively
discussed, there are a pair of eight spacelike Killing vec-
tors fLI’s and KI’s in Eq. s2.24dg, and hence by a suitable
coordinate transformation we could make them mani-
fest. Such a coordinate transformation would necessarily
involve using a “rotating frame” sMichelson, 2002d. sOf
course the possibility of lightlike compactification along
the x− direction always exists.d Upon compactification, in
the fermionic sector we need to impose nontrivial
boundary conditions on the sdynamicald supercharges
and we may generically lose some supersymmetries.
That is, T duality may change the number of super-
charges. One can also study T duality and the Narain
lattice at the level of string theory. However, on the
plane-wave background the T-duality group is generally
smaller than its flat-space counterpart; studies of com-
pactification and T duality on the plane-wave back-
ground include those of Michelson s2002d; Alishahiha et
al. s2003d; Bertolini et al. s2003d; Mizoguchi et al. s2003ad;
and Sadri and Sheikh-Jabbari s2003ad.

• “Semiclassical” quantization of strings in the AdS5
3S5 background

The BMN sector of the N=4 gauge theory is defined
as a sector with large spin R-charge J. One may ask
whether it is possible to make similar statements about
the states with large spin S. It has been argued that the
string s model on the AdS53S5 background takes a par-
ticularly simple form for strings with large spin, and one
could quantize them semiclassically sGubser et al., 2002d.
This has opened a new line of explorations of the AdS/
CFT correspondence. Among many useful references
we mention Alishahiha and Mosaffa, 2002;. Frolov and
Tseytlin, 2002; Mandal et al., 2002; Russo, 2002; Aru-
tyunov et al., 2003; Beisert, Frolov, et al., 2003; Beisort,
Minahan, et al., 2003; Minahan, 2003; Tseytlin, 2003.
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APPENDIX A: CONVENTIONS FOR N=4,D=4
SUPERSYMMETRIC GAUGE THEORY

There are various formulations of the N=4 supersym-
metric Yang-Mills theory, three of which are most com-
monly encountered in the literature. One is based on
dimensional reduction of the 10-dimensional component
formulation of SYM theory, another realized by writing
the Lagrangian in terms of N=1 superspace gauge
theory coupled to a set of chiral multiplets, and the third

a formulation of the N=4 SYM theory based on N=2
harmonic superspace. The first one is more useful when
actually computing Feynman diagrams and studying the
combinatorics which lead to the double expansion char-
acteristic of the double scaling limit proposed by Beren-
stein, Maldacena, and Nastase, and it is the one we have
used performing the computations of Sec. VI.

We use the mostly minus metric convention, gmn

=diags+,−,−,−d. The Lagrangian sand field contentd of
the N=4 super Yang-Mills theory can be deduced by
dimensionally reducing the 10-dimensional N=1 SYM
theory swith 16 superchargesd on T6 swhich preserves all
supersymmetriesd. There is a single vector, four Weyl
fermions, and six real scalars, all in the adjoint represen-
tation of the gauge group. The reduced Lagrangian, in
component form, is

L =
1

gYM
2 TrS−

1
2

FmnFmn +
uI

16p2FmnF̃mn

+ o
i=1

6

DmfiDmfi + o
A=1

4

iC̄AGmDmCA

+
1
2 o

i,j=1

6

ffi,fjg2 + o
A=1

4

o
i=1

6

C̄AGiffi,CAgD . sA1d

Decomposing the 10-dimensional Dirac matrices yields
four- sGmd and six- sGid dimensional ones. This Lagrang-
ian is manifestly invariant under a UsNd gauge symme-
try. The generators of UsNd are chosen with the snon-
standardd normalization

TrstAtBd = dAB

sA ,B=1, . . . ,N2d, and satisfy the Lie algebra commuta-
tor relation and the appropriate completeness relation

ftA,tBg = ifABCtC,

dABstAdb
astBdd

c = dd
adb

c , sA2d

a ,b=1, ... ,N, since these are the generators in the ad-
joint representation. The fields take values in the UsNd
algebra

xsxd = xAsxdtA,

with x any of the fields in the N=4 multiplet. The sums
above are taken over the N2−1 generators of SUsNd and
the single generator of the Us1d factor in UsNd. The
covariant derivative is defined as Dmx=]m− ifAm ,xg.
When diagrams are computed, the Feynman gauge is
chosen to simplify calculations, taking advantage of the
similarity between scalar and vector propagators in this
gauge. There is also a global SUs4d,SOs6d R symmetry,
under which the scalars fi transform in the fundamental
of SOs6d, and the fermions CA in the fundamental of
SUs4d=spins6d. The vectors are singlets of the R symme-
try. The u term counts contributions from nontrivial in-
stanton backgrounds, which is ignored when one as-
sumes the trivial vacuum.
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APPENDIX B: CONVENTIONS FOR 10-DIMENSIONAL
FERMIONS

We briefly review our conventions for the representa-
tions of Dirac matrices in ten dimensions. We use the
mostly plus metric. As for the 10-dimensional indices,
mainly used in Sec. IV, we use greek indices m ,n , . . . to
range over the curved starget-spaced indices, while hat-

ted latin indices â , b̂ , . . . denote tangent-space indices,
and I ,J=1,2 , . . . ,8 label coordinates on the space trans-
verse to the light-cone directions. In the plane-wave
background, it is more convenient to decompose I ,J in-
dices into i , j and a ,b, each ranging from one to four. In
this review, unless explicitly stated otherwise, the a ,b
indices will denote these four directions. The curved-
space gamma matrices are then defined via contraction
with vierbeins, as usual, Gm=eâ

mGâ.
We may rewrite the two Majorana-Weyl spinors in 10-

dimensional type-IIA and -IIB theories as a pair of Ma-
jorana spinors xa , a=1,2, subject to the chirality condi-
tions appropriate to the theory,

G11x1 = + x1, G11x2 = ± x2, sB1d

where for the second spinor we choose − for nonchiral
type-IIA and + for chiral type-IIB theories, and treat the
index a labeling the spinor as an SLs2,Rd index. Type-II
string theories contain two Majorana-Weyl gravitinos cm

a

and two dilatinos la, a=1,2, which are of the same
chirality in IIB and of opposite chirality in IIB.

1. Ten-dimensional fermions in SOs8d representations

The Dirac matrices in ten dimensions obey

hGm,Gnj = 2gmn. sB2d

A convenient choice of basis for 32332 Dirac matrices,
which we denote by Gm, can be written in terms of 16
316 matrices gm such that

G+ = iS0 Î2

0 0
D, G− = iS 0 0

Î2 0
D ,

GI = SgI 0

0 − gI D, G11 = Sgs8d 0

0 − gs8d D , sB3d

and the gI satisfy hgI ,gJj=2dIJ with dIJ the metric on the
transverse space. Choosing a chiral basis for the g’s, we
have gs8d=diags18 ,−18d. The above matrices satisfy

sG+d† = − G−, sG−d† = − G+, sG+d2 = sG−d2 = 0,

hG11,G±j = 0, hG11,GIj = 0, fG±,GIJg = 0, sB4d

and G±GI
¯GJG±=0 if the same signs appear on both

sides.
We define light-cone coordinates x±= sx0±x9d /Î2 and

likewise for the lightlike gamma matrices G±

= sG0±G9d /Î2, and also define antisymmetric products of
g matrices with weight one, gIJ¯KL;gfIggJ

¯gKgfLg.

We may choose our 10-dimensional, 32-component
Majorana fermions c to satisfy

G+c+ = 0, G−c− = 0. sB5d

Noting Eq. sB3d, it can easily be seen that

c+ = Sca
+

0
D, c− = S 0

ca
− D, a = 1,2, . . . ,16, sB6d

where ca
± can be thought of as SOs8d Majorana fermi-

ons, and the real gI matrices as 16316 SOs8d Majorana
gamma matrices. Moreover, we have

G11c+ = Sgs8dca
+

0
D, G11c− = S 0

− gs8dca
− D , sB7d

i.e., the 10-dimensional chirality is related to
8-dimensional SOs8d chirality as indicated in Eq. sB7d.

Now let us focus on the type-IIB theory where the
maximally supersymmetric plane wave is defined. In this
case we start with fermions of the same 10-dimensional
chirality. Then, as stated in Eq. sB7d, ca

± should have
±SOs8d chirality. Explicitly, we have

sgs8dc±da = ± ca
±. sB8d

Therefore, in the type-IIB theory +/− can also be under-
stood as SOs8d chirality. The above equation, however,
can easily be solved with the choice gs8d=diags18 ,−18d,
where

ca
+ = Sca

+

0
D, ca

− = S 0

cȧ
−D, a, ȧ = 1,2, . . . ,8.

ca
+ and cȧ

− are then Majorana-Weyl SOs8d fermions, usu-
ally denoted by 8s and 8c, respectively sGreen et al.,
1987ad. The gamma matrices can also be reduced to 8
38 representations, gaȧ

I and gȧa
I , where the 16316 gI

matrices are

gI = S 0 gaȧ
I

gȧa
I 0

D, I = 1,2, . . . ,8, a, ȧ = 1,2, . . . ,8.

The fermionic coordinates of the IIB superspace con-
sist of two same-chirality 10-dimensional Majorana-
Weyl fermions, u1 and u2, and after fixing the light-cone
gauge,

G+u1,2 = 0,

and as explained above, we end up with two SOs8d
Majorana-Weyl fermions both in the 8s representation,
ua

1 and ua
2, a=1,2 , . . . ,8. We may then combine these two

real eight-component fermions into a single complex
eight-component fermion,

ua =
1
Î2

sua
1 + iua

2d, ua
† =

1
Î2

sua
1 − iua

2d . sB9d

As for the 32 supercharges, the 16 kinematical super-
symmetries are in the complex 8s representation while
the 16 dynamical ones are in the complex 8c representa-
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tion. Note that this statement is true both in flat space
and in the plane-wave background we are interested in.

2. Ten-dimensional fermions in SOs4d3SOs4d
representations

In the plane-wave background, due to the presence of
the RR five-form flux, the SOs8d symmetry is broken to
SOs4d3SOs4d. Therefore for the purpose of this review
it is more convenient to make this SOs4d3SOs4d, which
is already manifest in the bosonic sector, explicit in the
fermionic sector by choosing SOs4d3SOs4d representa-
tions instead of complex SOs8d 8s and 8c fermions. Un-
less explicitly stated otherwise, we shall use this SOs4d
3SOs4d notation for fermions and gamma matrices.

First, we note that an SOs4d Dirac fermion l can be
decomposed into two Weyl fermions la and lȧ, a , ȧ
=1,2. As usual for the SUs2d fermions, these Weyl indi-
ces are lowered and raised using the e tensor,

la = eablb. sB10d

We have defined uab
† = suabd*. Therefore the SOs4d

3SOs4d fermions are labeled by two SOs4d Weyl indi-
ces, i.e., lab8, laḃ8, lȧb8, lȧb8 and lȧḃ8, where the

“primed” indices, such as b8 and ḃ8, correspond to the
second SOs4d. We may drop this prime whenever there
is no confusion and then simply use, e.g., lab where the
first or second Weyl index corresponds to the first or
second SOs4d factor. In fact, as explained in the main
text in Sec. II.B.1, there is a Z2 symmetry which ex-
changes these SOs4d factors, and hence the theory
should be symmetric under the exchange of the first and
second Weyl indices.

To relate these SOs4d3SOs4d fermions to those of
SOs8d scomplex 8s and 8cd, we note that in our conven-
tions 8s has positive SOs8d chirality, while 8c has naga-
tive chirality. On the other hand, if we denote the two
SOs4d “gs5d’s” by P and P8, i.e.,

P = g1234, P8 = g5678, sB11d

then it is evident that

gs8d = PP8. sB12d

Therefore for 8s fermions, the two SOs4d’s should have
the same chirality while for 8c they should have opposite
chirality. Explicitly

ca → cab8 and cȧḃ8,

cȧ → caḃ8 and cȧb8. sB13d

We would like to emphasize that by 8s and 8c we mean
the complex SOs8d fermions defined in Eq. sB9d.

Noting that SOs4d.SUs2d3SUs2d, a Weyl SOs4d fer-
mion can be represented as s2 ,1d for la and s1 ,2d for lȧ

and hence an SOs4d3SOs4d fermion lab8 may be ex-
pressed as „s2 ,1d , s2 ,1d…, and similarly for the others. In
this notation, Eq. sB13d can be written as

8s → „s2,1d,s2,1d… % „s1,2d,s1,2d… ,

8c → „s2,1d,s1,2d… % „s1,2d,s2,1d… . sB14d

As the last step we need to choose a proper SOs4d
3SOs4d basis for the gaȧ

I matrices. Following the nota-
tion we have adopted in the review ssee Sec. IId, we
denote the first four SOs4d directions by i , j and the
other four by a ,b:

gaȧ
I = sgaȧ

i ,gaȧ
a d ,

where

gaȧ
i =S 0 ssidaḃda8

b8

ssidȧbdȧ8
ḃ8 0

D ,

gȧa
i =S 0 ssidaḃdȧ8

ḃ8

ssidȧbda8
b8 0

D , sB15d

and

gaȧ
a = S− da

bssada8ḃ8 0

0 dȧ
ḃssadȧ8b8D ,

gȧa
a = S− da

bssadȧ8b8 0

0 dȧ
ḃssadȧ8b8

D , sB16d

with

ssidaȧ = s1,s1,s2,s3daȧ, sB17d

and similarly for sa, where ss1, s2, s3d are the Pauli
matrices. In the above

ssidaȧ = eabeȧḃssidḃb. sB18d

In this basis, P fsee Eq. sB11dg, is given by

Pab = S1 0

0 − 1
D = diags14,− 14d . sB19d

As usual one can show that

ssidaḃssjdḃg + ssjdaḃssidḃg = 2dijda
g ,

ssidȧbssjdbġ + ssjdȧbssidbġ = 2dijdȧ
ġ . sB20d

The generators of SOs4d rotations, gij= 1
2 fgi ,gjg, can be

easily worked out in terms of sij. They are

sgijdab =Sssijdabda8
b8 0,

0 ssijdȧḃdȧ8
ḃ8D , sB21d

where

ssijdab =
1
2

fssida
ġssjdbġ − ssjda

ġssidbġg = ssijdba,

ssijdȧḃ =
1
2

fssidg
ȧssjdḃg − ssjdg

ȧssidḃgg = ssijdḃȧ. sB22d
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3. SO~6! and SO~4,2! fermions

Here we briefly present the spins6d and spins4,2d fer-
mion conventions used in Sec. II.B.2. Let us first con-
sider the spins6d spinors, i.e., six-dimensional Euclidean
fermions smore details may be found in Polchinski,
1998bd. In six dimensions we deal with 26/2=8 compo-
nent Dirac fermions. The sos6d 838 Dirac matrices sat-
isfy

hGÂ,GB̂j = 2dÂB̂, Â,B̂ = 1,2, . . . ,6.

As usual sand by definitiond, the commutator of these G

matrices, which is denoted by GÂB̂= 1
2 fGÂ ,GB̂g, forms an

838 representation of sos6d. The eight-component sos6d
Dirac fermions, however, may be decomposed into two
four-component scomplexd Weyl spinors. Explicitly, cA,
where A=1, . . . ,8, can be decomposed into cI and cİ

where I , İ=1,2 ,3 ,4 can be thought of as fundamental

santifundamentald sus4d indices. The Dirac matrices GÂ,
similarly to Eq. sB3d, can be decomposed into G± and gI,
where now the g’s are 434 matrices and act on the Weyl
spinors. Each of these sos6d Weyl spinors in turn can be
decomposed into two four-dimensional fi.e. sos4dg Weyl
spinors, though with opposite chiralities,

cI → sca,cȧd ,

where a , ȧ=1,2. Since the arguments closely parallel
those of Appendix B.1 fwhere we explained how to re-
duce SOs9,1d fermions into the SOs8d fermionsg, we do
not repeat them here. In fact, a similar result is also true
for sos4,2d fermions, and a Weyl sos4,2d fermion can be
decomposed into two sos4d Weyl fermions of opposite

chirality; if we denote the sos4,2d Weyl index by Î sI
=1,2 ,3 ,4d, this means

cÎ → sca,cȧd .

The SOs4,2d3SOs6d fermions naturally carry spino-
rial indices of both of the groups. Therefore in general
we can have four different fermions depending on the
chirality of the fermions under either of the groups. In
our case the spinors that we deal with sthose appearing
in the AdS53S5 superalgebrad, should have the same
chirality under both groups. This comes from the fact
that we are working with type-IIB theory in which both
of the fermions have the same 10-dimensional chirality.
So a general AdS53S5 fermion would carry two indices,
which are fundamentals of sus2,2d and sus4d, e.g., cÎJ or
cİ

ˆ
J̇. sThe choice of cÎJ or cİ

ˆ
J̇ fermions is related to the

sign of the self-dual five-form flux on the S5 of the
AdS53S5 geometry. Here we have chosen the positive
case and hence we are dealing with cÎJ fermions.d Note
that, since these are complex fermions, this spinor has 32
degrees of freedom. This fermion can be decomposed as
an SOs4d3SOs4d fermion using the above decomposi-
tions:

cÎJ → scab,caḃ,cȧb,cȧḃd . sB23d
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