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The use of exactly solvable Richardson-Gaudin models to describe the physics of systems with strong
pair correlations is reviewed. The article begins with a brief discussion of Richardson’s early work,
which demonstrated the exact solvability of the pure pairing model, and then shows how that work has
evolved recently into a much richer class of exactly solvable models. The Richardson solution leads
naturally to an exact analogy between these quantum models and classical electrostatic problems in
two dimensions. This analogy is then used to demonstrate formally how BCS theory emerges as the
large-N limit of the pure pairing Hamiltonian. Several applications to problems of relevance to
condensed-matter physics, nuclear physics, and the physics of confined systems are considered. Some
of the interesting effects that are discussed in the context of these exactly solvable models include sid
the crossover from superconductivity to a fluctuation-dominated regime in small metallic grains; siid
the role of the nucleon Pauli principle in suppressing the effects of high-spin bosons in interacting
boson models of nuclei, and siiid the possibility of fragmentation in confined boson systems. Interesting
insight is also provided into the origin of the superconducting phase transition both in
two-dimensional electronic systems and in atomic nuclei, based on the electrostatic image of the
corresponding exactly solvable quantum pairing models.
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I. INTRODUCTION

Exactly solvable models have played a major role in
helping to elucidate the physics of strongly correlated
quantum systems. Examples of their extraordinary suc-
cess can be found throughout the fields of condensed-
matter physics and nuclear physics. In condensed matter,
the most important exactly solvable models have been
developed in the context of one-dimensional s1Dd sys-
tems, where they can be classified into three families
sHa, 1996d. The first family began with Bethe’s exact so-
lution of the Heisenberg model sBethe, 1931d. Since
then a wide variety of 1D models have been solved using
the Bethe ansatz. A second family consists of the so-
called Tomonaga-Luttinger models sTomonaga, 1950;
Luttinger, 1963d, which are solved by bosonization tech-
niques and which have played an important role in re-
vealing the non-Fermi-liquid properties of fermion sys-
tems in one dimension. For this reason, these systems
are now called Luttinger liquids sHaldane, 1981d. The
third family, proposed by Calogero s1962d and Suther-
land s1971d and subsequently generalized to spin systems
sHaldane, 1988; Shastry, 1988d, are models with long-
range interactions. They have been applied to a variety
of important problems, including the physics of spin sys-
tems, the quantum Hall effect, random matrix theory,
electrons in one dimension, etc.*Electronic address: dukelsky@iem.cfmac.csic.es
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Exactly solvable models have also been developed in
the field of nuclear physics, but from a different perspec-
tive. In these models, the Hamiltonian is written as a
linear combination of the Casimir operators of a group
decomposition chain chosen to represent the physics of
a particular nuclear phase. One example is the SUs3d
model of Elliott s1958a, 1958bd, which describes nuclear
deformation and the associated rotational motion. Oth-
ers include the three dynamical symmetry limits of the
Us6d interacting boson model sIachello and Arima,
1980d, which, respectively, describe rotational nuclei fthe
SUs3d limitg, vibrational nuclei fthe Us5dlimitg, and
gamma-unstable nuclei fthe Os6d limitg. These models,
all exactly solvable, have been extremely useful in pro-
viding benchmarks for a description of the complicated
collective phenomena that arise in nuclear systems.

Superconductivity is a phenomenon that is common to
both nuclear physics and condensed-matter systems. It is
typically described by assuming a pairing Hamiltonian
and treating it at the level of the BCS approximation
sBardeen et al., 1957d, an approximation that explicitly
violates particle number conservation. While this limita-
tion of the BCS approximation has a negligible effect for
macroscopic systems, it can lead to significant errors
when dealing with small or ultrasmall systems. Since the
fluctuations of the particle number in BCS are of the
order of ÎN sN being the number of particlesd, improve-
ments of the BCS theory are required for systems with
N,100 particles. The number-projected BCS approxi-
mation sDietrich et al., 1964d was developed and has
been used in nuclear physics for a long time. More re-
cently it has been applied in studies of ultrasmall super-
conducting grains sBraun and von Delft, 1998d. In the
latter, it has been shown necessary to go beyond the
projected BCS approximation and to resort to the exact
solution sDukelsky and Sierra, 1999d to properly de-
scribe the crossover from the superconducting regime to
the pairing fluctuation regime. It was in this context that
the exact numerical solution of the pairing model, pub-
lished in a series of papers in the 1960s by Richardson
s1963a, 1963b, 1965, 1966a, 1968d and Richardson and
Sherman s1964d and independently discussed by Gaudin
s1995d, was rediscovered and applied successfully to
small metallic grains sSierra et al., 2000d. fFor a review,
see von Delft and Ralph s2001d.g The exact Richardson
solution, though present in the nuclear physics literature
since the 1960s, was scarcely used until very recently,
with but a few exceptions sBang and Krumlimde, 1970;
Hasegawa and Tasaki, 1987, 1993d.

Soon after the initial application of the exact solution
of the pairing model to ultrasmall superconducting
grains, it became clear that there is an intimate connec-
tion between Richardson’s solution and a different fam-
ily of exactly solvable models known as the Gaudin mag-
net sGaudin, 1976d. The connection came through the
proof of the integrability of the pairing model by Cam-
biaggio, Rivas, and Saraceno s1997d, who identified the
complete set of commuting operators of the model, the
quantum invariants whose eigenvalues are the constants
of motion. This made it possible to recast the pairing

Hamiltonian as a linear combination of the quantum in-
variants. Furthermore, by establishing a relation be-
tween the constants of motion of the pairing model and
those of the Gaudin magnet, it became possible to gen-
eralize the pairing model to three classes of pairinglike
models, all of which were integrable and all of which
could be solved exactly for both fermion and boson sys-
tems sAmico, Di Lorenzo, and Osterloh, 2001; Dukelsky
et al., 2001d. The potential importance of these exactly
solvable models in high-Tc superconductivity and other
fields of physics has recently been pointed out sHeritier,
2001d. It has also recently been shown how to obtain
the exact solutions of these models using the algebraic
Bethe ansatz sAmico, Falci, and Fazio, 2001; von Delft
and Poghossian, 2002; Zhou et al., 2002; Links et al.,
2003d, and a connection with conformal field theory and
Chern-Simons theory has been established by Sierra
s2000d and Asorey et al. s2002d.

Following their initial discussion of these exactly solv-
able quantum models, Richardson s1977d and Gaudin
s1995d proposed an exact mapping between these mod-
els and a two-dimensional classical electrostatic prob-
lem. By exploiting this analogy, they were able to derive
the thermodynamic limit of the exact solution, demon-
strating that it corresponds precisely to the BCS solu-
tion. Recently, the same electrostatic mapping has been
used to provide a pictorial view of the transition to su-
perconductivity in finite nuclei and to suggest an alter-
native geometrical characterization of this transition
sDukelsky et al., 2002d. Furthermore, the validity of the
thermodynamic limit based on the electrostatic image
has been numerically checked for very large systems
sRoman et al., 2002d.

In this Colloquium, we review the recent progress that
has been made in the use of exactly solvable pairing and
pairinglike models for the description of strongly corre-
lated quantum many-body systems. We begin with a re-
view of the early work of Richardson and Gaudin, who
first showed the exact solvability of such models. We
then discuss the extension to a wider class of exactly
solvable models, building on the ideas arising from their
integrability. We then discuss several recent applications,
to ultrasmall superconducting grains sSierra et al., 2000;
Schechter et al., 2001d, to interacting boson models of
nuclear structure sDukelsky and Pittel, 2001d, to elec-
trons in a two-dimensional lattice sDukelsky et al., 2001d,
and to confined Bose systems sDukelsky and Schuck,
2001d.

II. THE MODELS OF RICHARDSON AND GAUDIN AND
THEIR GENERALIZATION

A. Richardson’s exact solution of the pairing model

The pairing interaction is the part of the fermion
Hamiltonian responsible for the superconducting phase
in metals and in nuclear matter or neutron stars. It is
also responsible for the strong pairing correlations in the
corresponding finite systems, namely, ultrasmall super-
conducting grains and atomic nuclei. Its microscopic ori-

644 Dukelsky, Pittel, and Sierra: Colloquium: Richardson-Gaudin models for many-body quantum systems

Rev. Mod. Phys., Vol. 76, No. 3, July 2004



gin, however, depends on the system under discussion.
In condensed matter, it derives from the exchange of
phonons between the conduction electrons. In nuclear
physics, it comes about due to the short-range nature of
the effective nucleon-nucleon interaction in a nuclear
medium and includes contributions both from the
singlet-S and triplet-P channels of the nucleon-nucleon
interaction. The main feature of the pairing interaction
in both cases is that it correlates pairs of particles in
time-reversed states. For recent reviews, in condensed
matter see Sigrist and Ueda s1991d and in nuclear phys-
ics, Dean and Hjorth-Jensen s2003d.

Quite recently, the first direct sign of BCS supercon-
ductivity has been observed in a trapped degenerate gas
of 40K fermionic atoms. The pairing interaction in these
trapped dilute systems comes from the s wave of the
atom-atom interaction sHeiselberg, 2003d and is charac-
terized by the scattering length a. This property of the
pairing interaction can be experimentally controlled by
imposing an external magnetic field on the system,
thereby tuning the location of the associated molecular
Feshbach resonance. In this way, it is possible even to
change the sign of the scattering length, which is a key to
producing the observed fermionic superconductivity.

We begin our discussion of Richardson’s solution of
the pairing model by assuming a system of N fermions
moving in a set of L single-particle states l, each having
a total degeneracy Vl, and with an additional internal
quantum number m that labels the states within the l
subspace. If the quantum number l represents angular
momentum, the degeneracy of a single-particle level l is
Vl=2l+1 and −lømø l. In general, however, l simply
labels different quantum numbers. We shall assume
throughout this discussion of fermion systems that the
Vl are even, so that for each state there is another ob-
tained by time reversal. The operators on which the
pairing Hamiltonian is based are

n̂l = o
m

alm
† alm, Al

† = o
m

alm
† alm̄

† = sAld†, s1d

where alm
† salmd creates sannihilatesd a particle in the

state slmd, and the state slm̄d is the corresponding time-
reversed state. The number operator n̂l, the pair cre-
ation operator Al

†, and the pair annihilation operator Al
close the commutation algebra:

fn̂l,Al8
† g = 2dll8Al

†, fAl,Al†
† g = 2dll8sVl − 2n̂ld . s2d

The corresponding algebra is SUs2d.
The most general pairing Hamiltonian can be written

in terms of the three operators in Eq. s1d as

H = o
l

«ln̂l + o
ll8

Vll8Al
†Al8. s3d

Often a simplified Hamiltonian is considered, in which
the pairing strengths Vll8 are replaced by a single con-
stant g, giving rise to the pairing-model or BCS Hamil-
tonian,

HP = o
l

«ln̂l +
g

2o
ll8

Al
†Al8. s4d

When g is positive, the interaction is repulsive; when it is
negative, the interaction is attractive.

The approximation leading to the pairing-model
Hamiltonian must be supplemented by a cutoff restrict-
ing the number of l states in the single-particle space. In
condensed-matter problems this cutoff is naturally pro-
vided by the Debye frequency of the phonons. In
nuclear physics, the choice of cutoff depends on the spe-
cific nucleus and on the set of active or valence orbits in
which the pairing correlations develop. The cutoff in
turn renormalizes the strength of the effective pairing
interaction that should be used within that active space
sBaldo et al., 1990d.

A generic state of M correlated fermion pairs and n
unpaired particles can be written as

un1,n2, . . . ,nL,nl =
1

ÎN sA1
†dn1sA2

†dn2
¯ sAL

† dnLunl , s5d

where N is a normalization constant. The number of
pairs nl in level l is constrained by the Pauli principle to
be 0ø2nl+nløVl, where nl denotes the number of un-
paired particles in that level. The unpaired state unl
= un1 ,n2 , . . . ,nLl, with n=olnl, is defined such that

Alunl = 0, n̂lunl = nlunl . s6d

A state with n unpaired particles is said to have seniority
n. The total number of collective sor Cooperd pairs is
M=olnl and the total number of particles is N=2M+n.

The dimension of the Hamiltonian matrix in the Hil-
bert space of Eq. s5d quickly exceeds the limits of large-
scale diagonalization for a modest number of levels L
and particles N. As an example, consider a problem in-
volving L doubly degenerate levels and M=N /2 pairs.
One can readily carry out full diagonalization for up to
L=16 and M=8, for which the full dimension of the
Hamiltonian matrix is 12 870. For systems with up to
L=32 and M=16, the Lanczos method can still be used
to obtain the lowest eigenvalues. But for larger values of
L and M, such methods can no longer be used and it is
necessary to find alternative methods to obtain physical
solutions. The BCS approach is an example of an alter-
native approximate method. Here we focus instead on
finding the exact solution, but without numerical diago-
nalization.

In spite of the apparent complexity of the problem,
Richardson showed that the exact unnormalized eigen-
states of the Hamiltonian of Eq. s4d can be written as

uCl = B1
†B2

†
¯ BM

† unl , s7d

where the collective pair operators Ba have the form
appropriate to the solution of the one-pair problem,
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Ba
† = o

l

1

2«l − Ea

Al
†. s8d

In the one-pair problem, the quantities Ea that enter Eq.
s8d are the eigenvalues of the pairing Hamiltonian, i.e.,
the pair energies. Richardson proposed to use the M pair
energies Ea in the many-body wave function of Eq. s7d
as parameters which are then chosen to fulfill the eigen-
value equation HPuCl=EuCl.

We shall not repeat here the derivation of the set of
equations that the pair energies must fulfill, referring the
reader to Richardson and Sherman s1964d. In Sec. IV, we
shall return to the eigenvalue problem for more general
Hamiltonians, of which the pairing Hamiltonian is a par-
ticular case.

The key conclusions from Richardson’s derivation are
as follows:

• The state given in Eq. s7d is an eigenstate of the pair-
ing Hamiltonian if the M pair energies Ea satisfy
the set of M nonlinear coupled equations scalled the
Richardson equationsd

1 − 4go
l

dl

2«l − Ea

+ 4g o
bsÞad

1

Ea − Eb

= 0, s9d

where dl=nl /2−Vl /4 is related to the effective pair de-
generacy of single-particle level l

• The energy eigenvalue associated with a given solu-
tion for the pair energies is

E = o
l

«lnl + o
a

Ea. s10d

Because the Richardson method reduces the problem
to solving nonlinear coupled equations, it can be used
for systems well beyond the limits of either exact nu-
merical diagonalization or the Lanczos algorithm. For
example, the method can be used to obtain exact solu-
tions for systems with L=1000 and M=500, for which
the dimension is 2.7310299. While we cannot obtain all
the solutions for such a problem, we can relatively easily
obtain the lowest few for any value of the coupling con-
stant. This means that, using the Richardson algorithm,
we can study the quantum phase transition for pairing
but not any phase transitions associated with tempera-
ture. To do the latter, we would need to develop the
thermodynamic Bethe ansatz for application to the pair-
ing model, as will be discussed further in the summary
given in Sec. VII.

B. The Gaudin magnet

Inspired by Richardson’s solution of the pairing
model, and building on his previous work on the Bethe
method for solving one-dimensional problems, Gaudin
s1976d proposed a family of fully integrable and exactly
solvable spin models. The Gaudin models are based on
the SUs2d algebra of the spin operators,

fKa,Kbg = 2i«abgKg, s11d

where Ka=sa sa=1,2 ,3d are the Pauli matrices.
A quantum model with L degrees of freedom is inte-

grable if there exist L independent, global Hermitian
operators that commute with one another. This condi-
tion guarantees the existence of a common basis of
eigenstates for the L operators, called the quantum in-
variants, and for their eigenvalues, the constants of mo-
tion.

Since the SUs2d algebra has one degree of freedom,
the most general set of L Hermitian operators, quadratic
in the spin operators and global in L spins, are

Hi = o
jsÞid=1

L

o
a=1

3

wij
aKi

aKj
a, s12d

where the wij
a are 3LsL−1d real coefficients. To define an

integrable model, i.e., to satisfy the commutation rela-
tions fHi ,Hjg=0, these coefficients must satisfy the sys-
tem of algebraic equations

wij
awjk

g + wji
bwik

g − wik
a wjk

b = 0. s13d

Gaudin proposed two conditions to solve this system
of equations. The first was antisymmetry of the w coef-
ficients,

wij
a = − wji

a. s14d

The second was to express the w coefficients as an odd
function of the difference between two real parameters,

wij
a = fashi − hjd , s15d

in order to fulfill Eq. s14d.
The most general solution of Eq. s13d subject to Eqs.

s14d and s15d can be written in terms of elliptic functions.
We further restrict consideration here to the case in
which the total spin in the z direction, Sz= 1

2oiKi
z, is con-

served, i.e., the L operators Hi sGaudin Hamiltoniansd
commute with Sz. Conservation of Sz requires that wij

x

=wij
y =Xij and wij

z =Yij, in terms of two new matrices X
and Y. In such a case, the integrability conditions of Eq.
s13d reduce to

YijXjk + YkiXjk + XkiXij = 0. s16d

There are three classes of solutions to Eq. s16d:

sId the rational model,

Xij = Yij =
1

hi − hj
; s17d

sIId the trigonometric model,

Xij =
1

sinshi − hjd
, Yij = cotshi − hjd; s18d

sIIId the hyperbolic model,

Xij =
1

sinhshi − hjd
, Yij = cothshi − hjd . s19d
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We shall hold off presenting details on the solutions of
the three families of Gaudin models until Sec. II.D,
where we discuss the generalization of the Richardson-
Gaudin models. At that point we shall see that the solu-
tions of the Gaudin models are based on precisely the
same ansatz as that used by Richardson in his solution of
the pairing model.

The most general integrable spin Hamiltonian that
can be written as a linear combination of the Gaudin
integrals of motion in Eq. s12d is

H = 2o
i

ziHi = o
iÞj

szi − zjdhXijfKi
xKj

x + Ki
yKj

yg + YijKi
zKj

zj .

s20d

The above Hamiltonian, which models a spin chain
with long-range interactions, has a total of 2L free pa-
rameters. There are L h parameters, which define the X
matrices, and L z parameters. It can be readily con-
firmed that the rational family gives rise to an XXX spin
model, while the trigonometric and hyperbolic families
correspond to an XXZ spin model. To the best of our
knowledge, there have been no physical applications of
the Gaudin magnet, though there are indications that
when the 2L free parameters of the model are chosen at
random the Gaudin magnet behaves as a quantum spin
glass sArrachea and Rozenberg, 2001d.

The Richardson model has a natural link to supercon-
ductivity and the Gaudin model to quantum magnetism,
both very important concepts in contemporary physics.
Despite these facts, neither model has received much
attention from the nuclear or condensed-matter commu-
nities for many years. On the other hand, the Gaudin
models have played an important role in the study of
quantum integrability. For a recent reference, see Gould
et al. s2002d.

C. Integrability of the pairing model

Despite the fact that the Richardson and Gaudin
models are so similar, it was not until the work of Cam-
biaggio, Rivas, and Saraceno s1997d that a precise con-
nection was established. We now discuss their work and
show how it provides the necessary missing link.

The key point of Cambiaggio et al. was to show that
the pairing model is integrable by finding the set of com-
muting Hermitian operators in terms of which the
pairing-model Hamiltonian could be expressed as a lin-
ear combination. Finding the complete set of common
eigenvectors of those quantum invariant operators is
then equivalent to finding the eigenvectors of the
pairing-model Hamiltonian.

In their derivation, they began by introducing a pseu-
dospin representation of the pair algebra, advancing a
connection between pairing phenomena and spin phys-
ics that had been pointed out long ago by Anderson
s1958d.

The elementary operators of the pair algebra, defined
in terms of the generators of the SUs2d pseudospin alge-
bra, are

Ki
0 =

1
2o

m
alm

† alm −
1
4

Vl,

Kl
+ =

1
2o

m
alm

† alm̄
† = sKl

−d†. s21d

The operator Kl
+ creates a pair of fermions in time-

reversed states. The degeneracy Vl of level l is related to
a pseudospin Sl for that level according to Vl=2Sl+1.
The three operators in Eq. s21d close the SUs2d commu-
tation algebra,

fKl
0,Kl8

± g = ±dll8Kl
±, fKl

+,Kl8
− g = 2dll8Kl

0. s22d

The SUs2d group for a level l has one degree of free-
dom and its Casimir operator is

sKl
0d2 +

1
2

sKl
+Kl

− + Kl
−Kl

+d =
1
4

sVl
2 − 1d . s23d

For a problem involving L single-particle levels, there
are obviously L degrees of freedom.

Guided by previous work on the two-level pairing
model, Cambiaggio et al. s1997d considered the following
set of operators:

Rl = Kl
0 + 2g o

l8sÞld

1

«l − «l8
F1

2
sKl

+Kl8
− + Kl

−Kl8
+ d + Kl

0Kl8
0 G .

s24d

They showed that these operators are sid Hermitian, siid
global, in the sense that they are independent of the
Hilbert space, siiid independent, in the sense that no one
can be expressed as a function of the others, and sivd
commute with one another. Furthermore, there are ob-
viously as many Rl operators as degrees of freedom. The
set of L such operators thus fulfills the conditions re-
quired for the quantum invariants of a fully integrable
model. Finally, they showed that the pairing-model
Hamiltonian of Eq. s4d can be written as a linear combi-
nation of the Rl according to

HP = 2o
l

«lRl + cte , s25d

where cte is an uninteresting constant.
We now return to the relationship between the Rich-

ardson pairing model and the Gaudin models. This can
be done by focussing on Gaudin’s rational model and
comparing its quantum invariants to those of Cambiag-
gio et al. fsee Eq. s24dg for the pairing model. As can be
readily seen, the two are very similar except that the
quantum invariants of Gaudin’s rational model are miss-
ing a one-body term or equivalently a linear term in the
spin operators. As shown by Cambiaggio et al., this term
preserves the commutability of the R operators and
therefore generalizes Gaudin’s rational model. In the
following subsection, we discuss the solution of the so-
called generalized Richardson-Gaudin models that
emerge when this term is added.
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D. Generalized Richardson-Gaudin models

The generalization of the Richardson and Gaudin
models we now discuss proceeds along two distinct lines.
First, we no longer limit our discussion to Gaudin’s ra-
tional model, but now generalize to all three types sra-
tional, trigonometric, and hyberbolicd. We shall see that
all three can be generalized by the inclusion of a linear
term in the quantum invariants. Second, we generalize
our discussion to include boson models as well as fer-
mion models.

We begin by considering the generalization to boson
models. For boson systems, the elementary operators of
the pair algebra are

Ki
0 =

1
2o

m
alm

† alm +
1
4

Vl,

Kl
+ =

1
2o

m
alm

† alm̄
† = sKl

−d†. s26d

Note the similarity with the fermion pair operators of
Eq. s21d. The only differences are that sid there is a rela-
tive minus sign between the two terms in the operator
K0, and siid there is no longer a restriction to Vl being
even. The latter point follows from the fact that for
bosons a single-particle state can be its own time-
reversal partner. As an example, consider scalar bosons
confined to a 3D harmonic-oscillator potential, as will be
discussed further in Sec. VI.D. The degeneracy associ-
ated with a shell having principal quantum number n is
Vn= sn+1dsn+2d /2. The lowest two shells sn=0 and 1d
have odd degeneracies, whereas the next two sn=2 and
3d have even degeneracies.

The set of operators in Eq. s26d satisfy the commuta-
tion algebra

fKl
0,Kl8

± g = ±dll8Kl
±, fKl

+,Kl8
− g = − 2dll8Kl

0, s27d

appropriate to SUs1,1d
In subsequent considerations, we shall often treat fer-

mion and boson systems at the same time. To facilitate
this, we can combine the relevant SUs2d commutation
relations for fermions and SUs1,1d relations for bosons
into the compact form

fKl
0,Kl8

± g = ±dll8Kl
±, fKl

+,Kl8
− g = 72dll8Kl

0. s28d

When both types of systems are being treated together,
we follow a convention whereby the upper sign refers to
bosons and the lower sign to fermions.

Following earlier discussion, we now consider the
most general Hermitian and number-conserving opera-
tor with linear and quadratic terms,

Rl = Kl
0 + 2g o

l8sÞld
FXll8

2
sKl

+Kl8
− + Kl

−Kl8
+ d 7 Yll8Kl

0Kl8
0 G .

s29d

Note that this is a natural generalization of Eq. s24d, but
now appropriate to both boson and fermion systems.

We next look for the conditions that the matrices X
and Y in Eq. s29d must satisfy in order that the R opera-
tors commute with one other. Surprisingly, the condi-
tions are precisely those derived by Gaudin and pre-
sented in Eq. s16d, despite the fact that the quantum
invariants now include a linear term and that they now
represent both boson and fermion systems.

Here, too, there are three families of solutions, which
can be written in compact form as

Xij =
g

sinfgshi − hjdg
, Yij = g cotfgshi − hjdg , s30d

where g→0 corresponds to the rational model, g=1 to
the trigonometric model, and g= i to the hyperbolic
model. The three limits are completely equivalent to
those presented for the Gaudin magnet in Eqs.
s17d–s19d.

The next step is to find the exact eigenstates common
to all L quantum invariants given in Eq. s29d,

RiuCl = riuCl . s31d

This can be accomplished by using an ansatz similar to
the one used by Richardson fsee Eq. s7dg to solve the
pairing model, namely,

uCl = p
a=1

M

Ba
† unl, Ba

† = o
i=1

L

uisEadKi
+. s32d

The wave function in Eq. s32d is a product of collective
pair operators Ba

† , which are themselves linear combina-
tions of the raising operators Ki

+ that create pairs of par-
ticles in the various single-particle states. Note that they
are analogous to the Richardson collective pair opera-
tors of Eq. s8d.

We now present explicitly the solutions to the eigen-
value equations for the three models. As we shall see, it
is possible to present the hyperbolic and trigonometric
results in a single set of compact formulas, by using the
notation sn for sin or sinh, cs for cos or cosh, and ct for
cot or coth. These are not to be confused with elliptic
functions. The rational model solutions are of a some-
what different structure and thus are presented sepa-
rately. For each family, we first give the amplitudes ui
that define the collective pairs in terms of the free pa-
rameters hi and the unknown pair energies Ea, then the
set of generalized Richardson equations that define the
pair energies Ea, and finally the eigenvalues ri of the
quantum invariants Ri.

sId The rational model:

uisEad =
1

2hi − Ea

, s33d

1 ± 4go
j

dj

2hj − Ea

7 4g o
bsÞad

1

Ea − Eb

= 0, s34d

ri = diF1 7 2g o
jsÞid

dj

hi − hj
7 4go

a

1

2hi − Ea
G . s35d
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sIId and sIIId The trigonometric and hyperbolic mod-
els:

uisEad =
1

snsEa − hid
, s36d

1 7 2go
j

djctsEa − hjd ± 2g o
bsÞad

ctsEb − Ead = 0, s37d

ri = diH1 7 2gF o
jsÞid

djctshi − hjd − o
a

ctsEa − 2hidGJ .

s38d

In Eqs. s33d–s38d, the quantity dl is now given by

dl =
nl

2
±

Vl

4
. s39d

Given a set of parameters hi and a pairing strength g,
the pair energies Ea are obtained by solving a set of M
coupled nonlinear equations, either those of Eq. s34d for
the rational model or those of Eq. s37d for the trigono-
metric or hyperbolic models. In the limit g→0, Eqs. s34d
and s37d can only be satisfied for Ea→2hi. In this limit,
the corresponding pair amplitudes uisEad in Eqs. s33d
and s36d become diagonal and the states of Eq. s32d re-
duce to a product of uncorrelated pairs acting on an
unpaired state. The ground state, for example, involves
pairs filling the lowest possible states and no unpaired
particles. Excitations involve either promoting pairs
from the lowest paired states to higher ones or breaking
pairs and increasing the seniority. In this way, we can
follow the trajectories of the pair energies Ea that
emerge from Eqs. s34d and s37d as a function of g for
each state of the system.

For boson systems the pair energies are always real,
whereas for fermion systems the pair energies can either
be real or can arise in complex-conjugate pairs. In the
latter case, there can arise singularities in the solution of
Eqs. s34d and s37d for some critical value of the pairing
strength gc, when two or more pair energies acquire the
same value. It was shown by Richardson s1965d that
each of these critical g values is related to a single-
particle level i and that at the critical point there are 1
−2di pair energies degenerate at 2hi. These singularities
of course cancel in the calculations of energies, which do
not show any discontinuity in the vicinity of the critical
points. However, the numerical solution of the nonlinear
equations s34d and s37d may break down for values of g
close to the singularities, making impractical the method
of following the trajectories of the pair energies Ea from
the weak-coupling limit to the desired value of the pair-
ing strength g. Recently, Rombouts et al. s2003d pro-
posed a new method based on a change of variables that
avoids the singularity problem, opening the possibility of
finding numerical solutions in the general case.

The eigenvalues of the R operators, given by Eqs. s35d
and s38d, are always real since the pair energies are ei-
ther real or occur in complex-conjugate pairs. Each so-
lution of the nonlinear set of equations produces an

eigenstate common to all Ri operators, and consequently
to any Hamiltonian that is written as a linear combina-
tion of them. The corresponding Hamiltonian eigen-
value is the same linear combination of ri eigenvalues.

III. THE ELECTROSTATIC MAPPING OF THE
RICHARDSON-GAUDIN MODELS; PAIRONS AND
ORBITONS

We now introduce an exact mapping between the in-
tegrable Richardson-Gaudin models and a classical elec-
trostatic problem in two dimensions. Our derivation
builds on the earlier work of Richardson s1977d and
Gaudin s1995d, who used this electrostatic analogy to
show that the exact solution of the pairing-model Hamil-
tonian agrees with the BCS approximation in the large-
N limit. For simplicity, we concentrate here on the exact
solution for the rational family sg→0d. The exact solu-
tion of the trigonometric and the hyperbolic families can
be reduced to a set of rational equations by a proper
transformation and then also interpreted as a classical
two-dimensional problem sAmico et al., 2002d.

Let us assume that we have a two-dimensional s2Dd
classical system composed of a set of M free point
charges and another set of L fixed point charges. For
reasons that will become clear when we use these elec-
trostatic ideas as a means of studying quantum pairing
problems, we shall refer to the fixed point charges as
orbitons and the free point charges as pairons.

The Coulomb potential due to the presence of a unit
charge at the origin is given by the solution of the Pois-
son equation

¹2Vsrd = − 2pdsrd . s40d

The Coulomb potential Vsrd that satisfies this equation
depends on the space dimensionality. For one, two, and
three dimensions, respectively, the solutions are

Vsrd , 5r , 1D

lnsrd , 2D

1/r , 3D.

s41d

In three dimensions, the Coulomb potential has the
usual 1 /r behavior, but in two dimensions it is logarith-
mic. In practice, there are no 2D electrostatic systems.
However, there are cases of long parallel cylindrical con-
ductors for which the end effects can be neglected so
that the problem can be effectively reduced to a 2D
plane. In our case, however, we shall simply use the
mathematical structure of the idealized 2D problem to
obtain useful new insight into the physics of the quan-
tum many-body pairing problem.

For the purposes of this discussion, we map the 2D xy
plane into the complex plane by assigning to each point
r a complex number z=x+ iy. Let us now assume that
the pairons have charges qa and positions za, with a
=1, . . . ,M, and that the orbitons have charges qi and po-
sitions zi, with i=1, . . . ,L. Since they are confined to a
2D space, all charges interact with one another through
a logarithmic potential. Let us also assume that there is
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an external uniform electric field present, with strength e
and pointing along the real axis. The electrostatic energy
of the system is therefore

U = eo
a=1

M

qa Reszad + eo
j=1

L

qj Reszjd

− o
j=1

L

o
a=1

M

qaqj lnuzi − zau −
1
2 o

aÞb

qaqb lnuza − zbu

−
1
2o

iÞj
qiqj lnuzi − zju . s42d

If we now look for the equilibrium position of the free
pairons in the presence of the fixed orbitons, we obtain
the extremum condition

e + o
j

qj

zj − za

− o
bsÞad

qb

za − zb

= 0. s43d

It can be readily seen that the Richardson equations
for the rational family s34d coincide with the equations
for the equilibrium position of the pairons s43d, if the
pairon charges are qa=1, the pairon positions are za

=Ea, the orbiton charges qi are equal to the effective
level degeneracies di swhich for the ground configura-
tion are ±Vi /4d, the orbiton positions are zi=2hi, and the
electric field strength is e=±1/4g.

As a reminder, the hi’s are free parameters defining
the integrals of motion from which the generalized
Richardson-Gaudin Hamiltonian is derived fsee Eq.
s15dg. In the case of the pure pairing-model Hamiltonian,
which is a specific Hamiltonian in the rational family,
they are the single-particle energies of the active levels.
In any subsequent discussion in which they are used, we
shall thus refer to them as effective single-particle ener-
gies.

Table I summarizes the relationship between the
quantum pairing model and the classical electrostatic
problem implied by the above analogy.

From the above discussion, we see that solving the
Richardson equations for the pair energies Ea is com-
pletely equivalent to finding the stationary solutions for
the pairon positions in the analogous classical 2D elec-
trostatic problem.

Assuming that the real axis is vertical and the imagi-
nary axis horizontal, and taking into account that the
orbiton positions are given by the real single-particle en-
ergies, it is clear that they must lie on the vertical axis.

The pairon positions are not of necessity constrained to
the vertical axis, but rather must be reflection symmetric
around it. This reflection symmetry property can be
readily seen by performing complex conjugation on the
electrostatic energy functional s42d. As a consequence, a
pairon must either lie on the vertical axis sfor real pair
energiesd or must be part of a mirror pair sfor complex
pair energiesd.

The various stationary pairon configurations can be
readily traced back to the weakly interacting system sg
→0d. In this limit, the pairons for a fermionic system are
distributed around sand very near tod the orbitons,
thereby forming compact artificial atoms. The number of
pairons surrounding orbiton i cannot exceed u2diu, as re-
quired by the Pauli principle, i.e., we cannot accommo-
date in a single level more particles than its degeneracy
permits. The lowest-energy sground-stated configuration
corresponds to distributing the pairons around the
lowest-position orbitons consistent with the Pauli con-
straint. We then let the system evolve gradually with
increasing g until we reach its physical value. Of course,
the Pauli limitation does not apply to boson systems,
examples of which are discussed in Sec. VI.

To illustrate how the analogy applies for a specific
quantum pairing problem involving fermions, we con-
sider the atomic nucleus 114Sn. This is a semimagic
nucleus, which can be modeled as 14 valence neutrons
occupying the single-particle orbits of the N=50–82
shell. Furthermore, it can be meaningfully treated in
terms of a pure pairing-model Hamiltonian with single-
particle energies extracted from experiment. We shall
return to this problem briefly in Sec. VI.B. For now we
simply want to use this problem to illustrate the relation-
ship between the quantum parameters and the electro-
static parameters for the analogous classical problem.

In Table II, we list the relevant single-particle orbits of
the 50–82 shell in the third column, their corresponding
single-particle energies in the first column, and the asso-
ciated degeneracies in the second. Each level corre-
sponds to an orbiton in the electrostatic problem, with
the position of the orbiton given in the fourth column sat
twice the single-particle energy of the corresponding
single-particle leveld. Note that this is always purely real,
meaning that in the 2D plot each orbiton has y=0. Fi-
nally, in the fifth column we give the charge of the orbi-
ton, which is simply related to the degeneracy of the
level according to the prescription in Table I.

To illustrate the weak-pairing limit discussed above,

TABLE I. Analogy between a quantum pairing problem and the corresponding 2D classical electro-
static problem.

Quantum pairing model Classical 2D electrostatic picture

effective single particle energy hi orbiton position Zi=2hi

effective orbital degeneracy di orbiton charge qi=di

pair energy Ea pairon position za=Ea

pairing strength g electric-field strength e=±1/4g
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we show in Fig. 1 the pairon positions associated with
the electrostatic solution for 114Sn calculated for a pair-
ing strength of g=−0.02 MeV, well below the strength at
which the superconducting phase transition sets in. Solid
lines connect each pairon to its nearest neighbor. As we
can readily see, the seven pairons in this case indeed
distribute themselves very near to the lowest two orbi-
tons, with three forming an artificial atom around the
d5/2 and four forming an artificial atom around the g7/2.

IV. THE LARGE-N LIMIT

We now discuss how the electrostatic mapping of the
previous section can be used to study the exact solution
of the pairing problem in the large-N or thermodynamic
limit. We focus on fermion systems and consider the
pairing-model sor BCSd Hamiltonian used by von Delft
et al. s1996d to describe the physics of ultrasmall super-
conducting grains,

HBCS =
1
2 o

js=±
ejajs

† ajs − Go
jj8

aj+
† aj−

† aj8−aj8+, s44d

where aj± and aj±
† are annihilation and creation opera-

tors, respectively, in the time-reversed single-particle
states uj± l, both with energies «j=ej /2, and G is the BCS
dimensionful coupling constant. Thus ej denotes the en-
ergy of a pair occupying the level j and eiÞej for iÞ j.

This model was solved analytically by Richardson and
Sherman s1964d and numerically up to L=32 single-
particle levels by Richardson s1966ad. The seniority-zero
eigenstates for a system of M fermions depend on a set
of parameters En sn=1, . . . ,Md sthe pair energiesd that
are, in general, complex solutions of the M coupled al-
gebraic Richardson equations,

1

G
= o

j=1

L
1

ej − En

− o
m=1sÞnd

M
2

Em − En

, n = 1, . . . ,M .

s45d

The energy E associated with a given solution is given
by the sum of the resulting pair energies fsee Eq. s10dg.
The ground state is given by the solution of Eq. s45d with
the lowest value of E.

In Fig. 2, we plot the solution of Eq. s45d for a model
of equally spaced energy levels, ej=ds2j−L−1d,

TABLE II. Relationship between the quantum pairing problem for the nucleus 114Sn and the corre-
sponding 2D classical problem. The single-particle energies are in MeV.

Single-particle
energy

Single-particle
degeneracy

Single-particle
level/orbiton

Orbiton position Orbiton charge

0.0 6 d5/2 0.0 −1.5
0.22 8 g7/2 0.44 −2.0
1.90 2 s1/2 3.80 −0.5
2.20 4 d3/2 4.40 −1.0
2.80 12 h11/2 5.60 −3.0

FIG. 1. Two-dimensional representation of the pairon posi-
tions in 114Sn for a pure pairing-model Hamiltonian with
single-particle energies as given in Table II and with g
=−0.02 MeV.

FIG. 2. Evolution of the real and imaginary parts of Emsgd, in
units of d=v /L, for the equally spaced model with M=L /2
=8, as a function of the coupling constant g. For convenience,
the energy levels are chosen in this figure as ej=2j. From Ro-
man et al., 2002.
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j=1, . . . ,L, where d=v /L is the single-particle level
spacing and v is twice the Debye energy. The calculation
is done at half filling for M=L /2=8. Note: At half filling,
the number of levels L is equal to the number of par-
ticles N. For small values of the coupling constant g
=GL all the solutions Em are real, but as we approach
some critical value gc,1 the two roots closest to the Fermi
level develop into a complex-conjugate pair. The same
phenomenon happens to other roots as g is further in-
creased, until eventually all of the roots form complex
pairs. This fact was observed by Richardson s1977d and
Gaudin s1995d and suggested a way to analyze systems
with a large number of particles, where the exact solu-
tion must converge asymptotically to the BCS solution.

Figure 3 shows the solutions to Eq. s45d for a system
with a much larger number of particles, M=N /2=100
pairs, and for three values of g. For g=1.5, the roots Em

form an arc which ends at the points 2l±2iD, where l is
the BCS chemical potential and D the BCS gap. For g
=1.0 and 0.5, the set of roots consist of two pieces, one
formed by an arc G with endpoints 2l±2iD which
touches the real axis at some point «A, and a set of real
roots along the segment f−v ,«Ag. As g decreases, the
latter segment gets progressively larger while the arc be-
comes smaller and eventually shrinks to a point when
g=0.

The solid lines in the figure are the results obtained
from the algebraic equations derived by Gaudin s1995d
in the large-N limit. Note that they are in excellent
agreement with the results obtained by numerically solv-
ing Eq. s45d.

We now show how to make the connection between
the large-N limit of the pairing-model problem and BCS
theory more precise, by applying the electrostatic anal-
ogy introduced in Sec. III. We shall consider the limit in
which L→`, while keeping fixed the following quanti-
ties:

G =
g

L
, r =

M

L
. s46d

Assuming that the pair energies organize themselves
into an arc G which is piecewise differentiable and sym-
metric under reflection on the real axis, Eq. s45d sthe
Richardson equationd in the continuum limit is con-
verted into the integral equation

E
V

rsedde

e − j
− PE

G

rsj8dudj8u
j8 − j

−
1

2G
= 0, j P G , s47d

where rsed is the energy density associated with the en-
ergy levels that lie in the interval V= f−v ,vg and satis-
fies

E
V

rsedde =
L

2
, s48d

while rsjd is the density of the roots Em that lie in the arc
G and satisfies

E
G

rsjdudju = M , s49d

E
G

jrsjdudju = E . s50d

The last equation is a consequence of Eq. s10d. The
solution of Eq. s47d was given by Gaudin s1995d using
techniques of complex analysis. We now summarize his
main results, which from a different perspective were
also given by Richardson s1977d. A detailed derivation
of the continuum limit together with a comparison with
numerical results for large but finite systems was pre-
sented by Roman et al. s2002d.

Introducing an “electric field,” and studying its prop-
erties in the vicinity of the arc G, one can show that Eq.
s47d yields the well-known BCS gap equation

E
V

rsedde

ÎS e

2
− lD2

+ D2

=
1

G
, s51d

that Eq. s49d becomes the equation for the chemical po-
tential

M = E
V11 −

e

2
− l

ÎS e

2
− lD2

+ D22rsedde , s52d

and that Eq. s50d gives the BCS expression for the
ground-state energy,

E = −
D2

G
+ E

V11 −

e

2
− l

ÎS e

2
− lD2

+ D22rsedede . s53d

Thus by using the electrostatic analogy for the quan-
tum pairing problem we are able to demonstrate how
the BCS equations emerge naturally in the large-N limit.

FIG. 3. Plot of the roots Em for the equally spaced pairing
model in the complex j plane. The discrete symbols denote the
numerical values for M=100. All energies are in units of v.
From Roman et al., 2002.
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V. THE ELEMENTARY EXCITATIONS OF THE BCS
HAMILTONIAN

Most of the studies to date of excited states of the
BCS Hamiltonian fsee Eq. s44dg based on Richardson’s
exact solution have dealt with a subclass of these states,
namely, those obtained by breaking a single Cooper pair.
In a case involving doubly degenerate levels only, the
levels in which the broken pair reside can no longer be
occupied by the collective pairs. Those levels are thus
blocked and this is reflected in the Richardson equations
by their having an effective degeneracy dl=0. For more
general pairing problems, with degeneracies larger than
2, a broken pair will not completely block a single-
particle level, but rather will increase the seniority nl of
the level and give rise to a reduced effective degeneracy
di=ni /2−Vi /4. There is also another class of collective
excitations that arises without changing the seniority.
These excitations, known in nuclear physics as pairing
vibrations, correspond to the different solutions of the
Richardson equations for a given seniority configuration
ni.

In a mean-field treatment of the same Hamiltonian,
the lowest such excitations of both types correspond to
two quasiparticle states in the BCS approximation,
which are then mixed by the residual interaction in the
random phase approximation sRPAd. While this bears
no obvious resemblance to the Richardson approach for
these elementary excitations, it is clear that they should
coincide in the large-N limit.

To investigate this relation, we focus, for simplicity, on
the BCS Hamiltonian of Eq. s44d and study systemati-
cally its excited states for systems with a fixed number of
particles. Once we know the excited states, we can try to
interpret them in terms of elementary excitations char-
acterized by definite quantum numbers, statistics, and
dispersion relations. A generic excited state will then be
given by a collection of elementary excitations.

The elementary excitations within the exact Richard-
son approach are associated with the number of pair
energies NG, either real or in complex-conjugate pairs,
that in the large-g limit stay finite, trapped between
single-particle energy levels sRoman et al., 2003;
Yuzbashyan et al., 2003d. We display this behavior in Fig.
4 for the ground state sNG=0d and the first two excited
states, with NG=1,2, respectively, for a system with L
=40 single-particle levels at half filling sM=20d as a func-
tion of g.

In the large-g limit, the pair energies that stay finite
sEn

f d satisfy the Gaudin equation

o
j=1

L
1

ej − En
f − o

m=1sÞnd

NG 2

Em
f − En

f = 0, n = 1, . . . ,NG,

s54d

while the remaining M−NG pair energies sEn
i d go to in-

finity and are the solution of the generalized Stieltjes
problem encountered by Shastry and Dhar s2001d in the

study of the excitations of the ferromagnetic Heisenberg
model,

1

g
+

L

En
i + o

m=1sÞnd

M−NG 2

Em
i − En

i = 0, n = 1, . . . ,M − NG.

s55d

The fact that the elementary excitations are related to
the trapped pair energies can be readily seen in Fig. 5,
where we show the low-lying excited states for the same
system as in Fig. 4. We see a clear transition from the
normal system at small g, where the states are classified
by the single-particle configurations, to a superconduct-
ing system for g,0.3. That the crossings take place
around the transition region is a unique characteristic of
an integrable model. Observation of level repulsion in
the spectrum would immediately signal nonintegrability.

In the extreme superconducting limit sg→ ` d, the
states with the same number NG of excitations are de-

FIG. 4. Real part of Em for the equally spaced pairing model
with M=L /2=20 pairs and NG=0, 1, 2 excitations. From Ro-
man et al., 2003.

FIG. 5. Lowest 44 excitation energies Eexc=E−EGS for M
=20 pairs at half filling. From Roman et al., 2003.
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generate. Moreover, the slope of the excitation energies
in that limit is given by NG.

The degeneracies of the states in the extreme super-
conducting limit dL,M,NG

have been obtained by Gaudin
using the fact that the Richardson model maps onto the
Gaudin magnet in this limit, and are given by

dL,M,NG
= CNG

L − CNG−1
L , 0 ø NG ø M , s56d

where CN
L is the combinatorial number of N permuta-

tions of L numbers. They satisfy the sum rule CM
L

=oNG=0
M dL,M,NG

, so that the sum of degeneracies is the
total degeneracy.

In general, the practical way to solve the Richardson
equations is to start with a given configuration at g=0
and to let the system evolve with increasing g. Hence the
problem is to find for each initial state the number of
roots NG that remain finite in the g→` limit. This is a
highly nontrivial problem as it connects the two extreme
cases of g=0 and g=`. The algorithm that relates each
unperturbed configuration to NG has been worked out
by Roman et al. s2003d in terms of Young diagrams. We
shall not give further details here, but show in Fig. 6 a
particular example with NG=3 to illustrate the complex-
ity of the evolution of the real part of the pair energies
as a function of g. For sufficiently large values of g and
after a complicated pattern of fusion and splitting of
roots s2 real roots↔1 complex rootd, the final result of
NG=3 emerges.

These results show the nontrivial nature of the el-
ementary excitations of the pairing model, as exempli-

fied by their nontrivial counting. As noted above, the
elementary excitations satisfy an effective Gaudin equa-
tion. They also satisfy a dispersion relation similar to
that of Bogolioubov quasiparticles. For these reasons,
this new type of elementary excitation has been called
gaudinos by Roman et al. s2003d. An interesting prob-
lem, which has been partially addressed by Yuzbashyan
et al. s2003d, would be to analyze in detail the relation
between gaudinos and Bogolioubov quasiparticles for
large systems.

VI. APPLICATIONS

A. Ultrasmall superconducting grains

Anderson s1959d made the conjecture that supercon-
ductivity must disappear for metallic grains when the
mean level spacing d, which is inversely proportional to
the volume, is of the order of the superconducting gap in
bulk, D. A simple argument supporting this conjecture is
that the ratio D /d measures the number of electronic
levels involved in the formation of Cooper pairs, so that
when D /dø1 there are no active levels accessible to
build pair correlations. Apart from some theoretical
studies, this conjecture remained largely unexplored un-
til the recent fabrication of ultrasmall metallic grains.

Ralph, Black, and Tinkham s1997d, in a series of ex-
periments, studied the superconducting properties of ul-
trasmall aluminum grains at the nanoscale. These grains
have radii ,4–5 nm, mean level spacings d,0.45 MeV,
Debye energies vD,34 MeV, and charging energies

FIG. 6. An illustration of the algorithm for determining the number of roots NG, for a case with NG=3: sad Top, initial state at
g=0, where each solid circle sPd denotes a level occupied by a pair, each empty circle ssd denotes an empty level, and the vertical
dashed line with an F near it denotes the position of the Fermi surface; bottom, the associated Young diagram; sbd real part of Em.
From Roman et al., 2003.
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EC,46 MeV. Since the bulk gap of Al is D
,0.38 MeV, this satisfies Anderson’s condition, dùD,
for the possible disappearance of superconductivity.
Moreover, the large charging energy EC implies that
these grains have a fixed number of electrons, while the
Debye frequency gives an estimate of the number of
energy levels involved in pairing, namely, V=2vD /d
,150, which is rather small. Among other things, Ralph
et al. s1997d found an interesting parity effect, similar to
what is known to occur in atomic nuclei, whereby grains
with an even number of electrons display properties as-
sociated with a superconducting gap, while the odd
grains show gapless behavior.

These experimental findings produced a burst of the-
oretical activity focused on the study of the pairing
Hamiltonian fEq. s44dg with equally spaced levels, i.e.,
«j= jd. Many different approaches were used to study
this model including sid BCS approximation projected on
parity svon Delft et al., 1996d; siid number-conserving
BCS approximation sBraun and von Delft, 1998d; siiid
Lanzcos diagonalization with up to V=23 energy levels
sMastellone et al., 1998d; sivd perturbative renormaliza-
tion group combined with small diagonalization sBerger
and Halperin, 1998d; svd the density-matrix renormaliza-
tion group sDMRGd with up to V=400 levels sDukelsky
and Sierra, 1999d, etc. fFor a review on this topic, see
von Delft and Ralph s2001d.g Following this flurry of
work, it was suddenly realized that the pairing model
under investigation had in fact been solved exactly in the
manner of Bethe by Richardson long before. This came
as a surprise and led to a posteriori confirmation of the
results obtained by the “exact” numerical methods,
namely, Lanzcos diagonalization and the DMRG. More-
over, the rediscovery of the Richardson solution pro-
duced other important new developments, including
generalization of its solution, new insight from the point
of view of integrable vertex models, connection with
conformal field theory, Chern-Simons theory, etc. fFor a
review, see Sierra s2002d.g

Returning to the application of the Richardson solu-
tion to ultrasmall superconducting grains, we shall focus
on two quantities, the condensation energy and the
Matveev-Larkin parameter sMatveev and Larkin, 1997d.
The condensation energy is the difference between the
ground-state energy of the pairing Hamiltonian and the
energy of the Fermi state sFSd, namely, the Slater deter-
minant obtained by simply filling all levels up to the
Fermi surface. It is given by

Eb
C = Eb

GS − kFSuHBCSuFSl , s57d

where b=0 for even-parity grains and b=1 for those
with odd parity. In the BCS solution, appropriate when
the number of electrons N is very large, the leading-

order behavior of Eb
C is given by −D̃2 / s2dd, where D̃ is

the BCS gap in bulk and d scales as 1/N, suggesting that
Eb

C is independent of the parity b of the system. How-
ever, an odd ultrasmall grain has a single electron occu-
pying the level nearest to the Fermi energy. One can
easily show that this electron decouples from the dy-

namics of the pairing Hamiltonian, since the pairing in-
teraction only scatters pairs from energy levels that are
doubly occupied to those that are empty. Hence the
single electron only contributes through its free energy.
Furthermore, since there is one less active level at the
Fermi energy, it is harder for the pairing interaction to
overcome the gap, and the total energy thus increases.
This is the physical origin of the parity effect in super-
conducting grains.

Recall that the BCS gap in bulk is given by D̃
=dN / sinhs1/gd, with g=0.224 for aluminum grains. The
BCS result is obtained by solving the gap equation with
a finite number of energy levels N. For even grains,

there is a critical value of the ratio d0
c / D̃=3.53, above

which there is no solution to the gap equation. If the
grains are odd, the singly occupied s“blocked”d level
must be eliminated from the Hamiltonian, and the criti-

cal ratio becomes d1
c / D̃=0.89. The fact that this is

smaller than the even critical ratio indicates that odd
grains are less superconducting than even grains. Thus
BCS provides an explanation of the parity effect ob-
served by Ralph et al. s1997d. At the same time, it sug-
gests the existence of an abrupt crossover between the
superconducting regime and the normal state, as conjec-
tured originally by Anderson.

However, the BCS ansatz does not have a definite
number of particles, which it only fixes on average.
Though irrelevant for a macroscopic sample, this can be
important for systems with a small number of particles,
in which fluctuations in the phase of the superconduct-
ing order parameter may destroy the superconductivity.
For this reason, Braun and von Delft s1998d considered
the number-conserving BCS state, which includes num-
ber projection and thus does not suffer from this limita-
tion. There are several important differences between
the results obtained with number projection and with-
out. First, the condensation energies Eb

C from the
number-projection BCS ansatz are much lower than
those from a corresponding BCS treatment. Second, the
sharp transition between the superconducting regime
and the fluctuation-dominated regime that arises in BCS
is smoothed out by number-projection BCS. Neverthe-
less, some BCS features survive the inclusion of number
projection, particularly for odd grains. Lastly, in contrast
to BCS, there is always a solution to the number-
projection BCS equations.

In the upper panel of Fig. 7, we compare the results of
the condensation energy for even and odd grains as a
function of the grain size calculated in the number-
projection BCS approximation and exactly. The number-
projection results show an abrupt change at the critical

level spacing values d0
C<0.5D̃ for the even systems and

d0
C<0.25D̃ for the odd systems, thereby signaling a

breakdown of the superconductivity. The critical value
of the mean level spacing separates two well-defined re-
gimes, the fluctuation-dominated regime characterized
by an intensive behavior of the condensation energy sEC

almost independent of dd and the extensive supercon-
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ducting regime where it can be shown that the conden-
sation energy is proportional to the volume sEC,1/dd.
The exact solution shows a completely smooth transition
between superconducting and fluctuation dominated, al-
though one can still talk about two asymptotic regimes
that match near the level spacing for which the Ander-

son criterion d / D̃,1 is satisfied.
Another characterization of the parity effect is in

terms of the gap parameter, which measures the differ-
ence between the ground-state energy of an odd grain
and the mean energy of the neighboring even grains ob-
tained by adding and removing one electron,

DML = E1sNd −
1
2

fE0sN + 1d + E0sN − 1dg . s58d

The lower panel in Fig. 7 compares the value of

DML / D̃ computed at the level of the number-projection
BCS approximation and exactly. Both curves show a

minimum in this quantity as a function of d / D̃. This lat-
ter feature was first conjectured by Matveev and Larkin
s1997d, which is why the associated gap is called the
Matveev-Larkin parameter. It was subsequently con-
firmed by Mastellone et al. s1998d using the Lanczos
method, by Berger and Halperin s1998d using the pertur-
bative renormalization group combined with small di-
agonalization, by Braun and von Delft s1998d using the
number-projection BCS method, and by Dukelsky and
Sierra s2000d using the DMRG method. The shape of
the exact curve, which is identical to that obtained using
the DMRG, is rather smooth as compared with the

number-projection BCS method. This can be interpreted
as a suppression of the even-odd parity effect.

Richardson’s exact solution of the pairing model can
also be used to study the interplay of randomness and
interactions in a nontrivial model, by examining the
effect of level statistics on the superconducting/
fluctuation-dominated crossover, as reflected for ex-
ample in the location of the critical level spacing. There
was an earlier study of the latter question by Smith and
Ambegaokar s1996d using the BCS approach; they con-
cluded that randomness enhances pairing correlations.
More specifically, they compared the results for a pairing
model with a random spacing of levels sdistributed ac-
cording to a Gaussian orthogonal ensembled with one
having uniform spacings. What they showed is that for
both models the BCS theory gives rise to an abrupt
superconducting/fluctuation-dominated crossover, that
the random-spacing Hamiltonian produces a lower cor-
relation energy Eb

C than the corresponding uniform-
spacing model, and that the average value of the critical
level spacing in the model based on random splittings is
larger than the corresponding value for the uniform-
spacing model. As noted earlier, however, the mean-field
BCS theory produces an abrupt vanishing of Eb

C that is
not present in more sophisticated treatments. This raises
the question of whether the conclusions they found re-
garding the role of randomness may be an artifact of the
BCS approach.

Indeed, the exact results shown in Fig. 8 for random
levels show that the superconducting/fluctuation-
dominated crossover is as smooth as for the case of uni-
formly spaced levels. This means, remarkably, that even
in the presence of randomness, pairing correlations

never vanish, no matter how large d / D̃ becomes. Quite
the contrary, the randomness-induced lowering of EC is
found to be strongest in the fluctuation-dominated re-
gime.

B. A pictorial representation of pairing in a two-
dimensional lattice

We next apply the electrostatic analogy to a model of
electrons in a two-dimensional lattice with a residual

FIG. 7. Calculated results for ultrasmall superconducting
grains as a function of the grain size. The upper panel gives the
condensation energies Eb

C for even sb=0d and odd sb=1d
grains calculated using the number-projected BCS and exact
wave functions. The lower panel gives the Matveev-Larkin
gap, DML, obtained in number-projected BCS calculations
sBraun and von Delft, 1998d and in exact calculations.

FIG. 8. Exact even and odd condensation energies Eb
C for uni-

form equally spaced levels sdashed lined, and the ensemble-
averaged energies kEb

Cl for randomly-spaced levels ssolid lined.
The height of the fluctuation bars gives the variances dEb

C.
From Sierra et al., 2000.
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pairing interaction sDukelsky et al., 2001d. Assuming a
nearest-neighbor hopping term, the single-electron ener-
gies in momentum space are «k=−2scos kx+cos kyd, with
ks=2pns /P and −P /2øns,P /2. In this expression, s
=x ,y and P is the number of sites on each side of the
square lattice. In the numerical example that follows, we
consider a 636 square lattice at half filling sM=18d with
a constant and attractive pairing Hamiltonian for which
«k=hk. Table III shows the corresponding information
on the positions and charges of the orbitons in the sub-
space of seniority-zero states.

Figure 9 shows the equilibrium positions of the
pairons associated with the ground-state solution for
three values of g. The orbitons are represented by open
circles with radii proportional to the charges, and the
pairons are represented by solid circles. For each pairon
in the figure, we draw a line connecting it to the one that
is closest to it.

In the limit of weak pairing sg=−0.040d, five pairons
surround the half filled orbiton with charge −5 located at
the Fermi energy. The other 13 pairons are distributed
close to the lowest orbitons, consistent with the Pauli
principle. As is clear from the figure, for weak pairing
the pairons organize themselves as artificial atoms
around their corresponding orbitons. As g increases, the
pairons repel, causing the atoms to expand. For g
=−0.064 the two orbitons closest to the Fermi energy
have already lost their pairons, which are forming a

pairon cluster with those from the next closest orbiton,
while the remaining five pairons are still attached to
their orbitons. We claim that this delocalization effect in
the classical problem is a reflection of the transition
from a normal system sindependent atomsd to a super-
conducting system scollective clusterd in the quantum
problem. By g=−0.130, the cluster has grown to the
point that all pairons are trapped in it. This is the ex-
treme superconducting limit, in which all electron pairs
are participating in the superconductive phenomenon.

Similar results have been reported by Dukelsky et al.
s2002d for the problem of pairing between like nucleons
in atomic nuclei. The analysis was for two isotopes of Sn,
including the isotope 114Sn briefly alluded to in Sec. II.
There, too, the superconducting phase transition was
seen to be associated with a transition from isolated at-
oms to a cluster in the analogous electrostatic picture.
Furthermore, there, too, the transition to full supercon-
ductivity was seen to develop in steps, depending on the
single-particle levels that played a role in producing the
pair correlations and their energy hierarchy.

The analysis of pairing in nuclei reported by Dukelsky
et al. s2002d assumed a pure pairing-model interaction.
Of course, this is just an approximation to the true
nuclear interaction in the Jp=0+ channel. Nevertheless,
we expect that the general features of the transition to
superconductivity should be the same even for a more
realistic pairing interaction. It is in fact possible to build
greater flexibility into the nuclear structure analysis,
while still preserving the electrostatic analogy, by consid-
ering more general exactly solvable Hamiltonians of the
rational family.

C. Electrostatic image of interacting boson models

As an example of the use of the electrostatic mapping
for a finite boson system, we now discuss the phenom-
enological interacting boson model of nuclei sIachello
and Arima, 1980d. This model captures the collective dy-
namics of nuclear systems by representing correlated
pairs of nucleons with angular momentum L by ideal
bosons with the same angular momentum. In its simplest
version, known as IBM1, there is no distinction between
protons and neutrons, and only angular momentum L
=0 ssd and L=2 sdd bosons are retained. We shall use
the electrostatic image to study the properties of a
second-order quantum phase transition that arises in the
IBM1 from a vibrational system with Us5d symmetry to
a gamma-unstable deformed system with Os6d symme-
try. This phase transition can be modeled by the one-
parameter IBM1 Hamiltonian

TABLE III. Positions and charges of the orbitons for an attractive 2D pairing model.

2ek −8 −6 −4 −2 0 2 4 6 8
−Vk /4 −1/2 −2 −2 −2 −5 −2 −2 −2 −1/2

FIG. 9. Two-dimensional representation of the positions of the
orbitons and pairons corresponding to a 636 lattice at half
filling, for three selected values of g. The orbitons are repre-
sented by open circles and the pairons by solid circles, with
radii proportional to their charges.
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H = n̂d +
x

2
P†P , s59d

where n̂d=omdm
† dm, P†=s†s†−oms−1dmdm

† d−m
† , s† creates a

boson with angular momentum L=0, dm
† creates a boson

with angular momentum L=2 and z projection m s−2
ømø2d, and x is the ratio of the pairing strength g to
the single-particle splitting «d−«s. The parameter x can
be varied from x=0 fthe Us5d limitg to x=` fthe Os6d
limitg. Equation s59d is an example of an exactly solvable
repulsive pairing Hamiltonian, and the second-order na-
ture of the phase transition it describes has been re-
cently attributed to quantum integrability sArias et al.,
2003d.

The electrostatic problem that corresponds to this
quantum boson model consists of two orbitons with
positive charges qs=1/4 and qd=5/4 ssee Sec. IIId. Both
the s and d orbitons are located on the real axis, with the
s located at position 0.0 and the d at position 2.0. There
are M pairons with positive unit charge that interact
with the orbitons and with one another and that feel an
external electric field pointing downwards with strength
1/x. In the ground-state configuration, the pairons are
constrained to move between the two orbitons.

Figure 10 shows the pairon positions for a system of
ten bosons as a function of the control parameter x. For
x close to 0, corresponding to weak repulsive pairing,
there is a very strong electric field, which compresses the
pairons very close to the s orbiton. As x increases, the
electric field decreases and the Coulomb repulsion
among all the charges begins to counteract the effects of
the external field. As a consequence, the pairons gradu-
ally expand along the energy interval between the s and
the d orbitons. The phase transition between the vibra-
tional Us5d system and the gamma-unstable Os6d system,
clearly depicted in the classical electrostatic problem,
arises when the Coulomb repulsion and the external
electric field balance one another. Prior to the phase

transition, the quantum system is primarily an s boson
condensate, with perturbative contributions from d
bosons. Following the phase transition, it is a frag-
mented condensate mixing the s and d bosons.

A similar analysis by Dukelsky and Pittel s2001d has
also been carried out for a system with many even an-
gular momentum boson degrees of freedom, not just the
s and d. The purpose of that analysis was to better un-
derstand why the IBM1, with just s and d bosons, works
so well in describing the collective properties of nuclei.
Recognizing that bosons in this model are an ideal rep-
resentation of the lowest fermion pairs of identical
nucleons and that there are not just 0+ and 2+ pairs, a
natural question to ask is: Why can we ignore the higher-
angular-momentum pairs/bosons when dealing with
nuclear collective properties? Part of the answer is con-
tained in the dominant quadrupole-quadrupole neutron-
proton interaction, which is known to favor the lowest
0+ and 2+ pair degrees of freedom. Dukelsky and Pittel
s2001d suggested another mechanism, based on an analy-
sis of a generalized boson model containing all even an-
gular momenta up to some maximum and interacting via
a repulsive boson pairing interaction. The latter is a
means of simulating the repulsive interaction between
bosons that arises due to the Pauli principle between the
fermion snucleond constituents of which they are com-
prised. Using the Richardson solution of this model,
they showed that a repulsive boson pairing interaction
can only correlate two boson degrees of freedom, and
that these should be the lowest two, the s and the d.
More recently, this result has been interpreted by means
of electrostatic mapping sPittel and Dukelsky, 2003d.
Even in the presence of many boson degrees of freedom
and thus many orbitons, the collective pairons are al-
ways confined to lie between the lowest two, i.e., be-
tween the s and the d.

D. Application to a boson system confined by a harmonic-
oscillator trap

We now consider the problem of a set of bosons con-
fined to a harmonic-oscillator trap and subject to a bo-
son pairing interaction. We claim that such a Hamil-
tonian cannot realistically describe the physics of a
confined boson system, for the following reason. Look-
ing back at the commutators of the pair operators Al

†

given in Eq. s2d, we see that they are normalized to the
square root of the degeneracy Vl of the level l. Thus the
pairing-model Hamiltonian of Eq. s4d has a pairing ma-
trix element proportional to ÎVlVl8. In a three-
dimensional harmonic confining potential, these degen-
eracies are in turn proportional to l2, where l plays the
role of the principal quantum number and the summa-
tion in the pair operators of Eq. s1d now includes both
the orbital and the magnetic quantum numbers. On the
other hand, the single-boson energies «l for such a con-
fining potential are linear in l. Thus a boson pairing in-
teraction in the presence of a confining oscillator trap
would have the net effect of scattering boson pairs to

FIG. 10. Evolution of the pairon positions as a function of the
scaled strength parameter x for a model with ten s and d
bosons subject to a Hamiltonian with linear single-boson ener-
gies and a repulsive boson pairing interaction. The circles at
x=0 denote the positions of the s and d orbitons.
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high-lying levels with greater probability than to low-
lying levels, producing unphysical occupation numbers.

To test this conjecture numerically, we have solved the
Richardson equations fEq. s34dg for a system of 1000
bosons sM=500d trapped in a three-dimensional har-
monic oscillator fVl= sl+1dsl+2d /2 and «l="vsl+3/2dg
with a cutoff at 101/2"v sL=50 single boson levelsd. Fol-
lowing Richardson s1968d, the occupation numbers can
be calculated as

kn̂ll = K ]Hp

]«l
L = o

p

]Ep

]«l
. s60d

From Eqs. s4d and s34d, a set of M coupled nonlinear
equations in terms of M new unknowns are obtained,
which when solved give the L occupation numbers. For
details of the derivation, see Richardson s1968d.

In Fig. 11, we show the occupation numbers versus the
single-boson energies in units of "v for a pairing
strength of g=−0.0025. We have excluded the occupa-
tion of the l=0 condensed boson state from the figure,
since it lies outside the scale of the figure. The overall
depletion is 0.21, which gives an occupation of the l=0
state of n0=790 bosons. The figure clearly shows that the
depletion is unphysically dominated by the high-lying
si.e., high-ld levels, due to the nature of the pair-coupling
matrix elements discussed above.

We can use the freedom we have in choosing the pa-
rameters hl entering in the definition of the R operators
to obtain a more physical exactly solvable model. In or-
der to cancel the unphysical dependence of the pair-
coupling matrix elements on the degeneracies, we
choose the hl parameters so that hl= s«ld3. Then the new
Hamiltonian, which is given by the associated linear
combination of Rl operators, will be

H = 2o
l

«lRl = C + o
l

«̄lnl + o
lÞl8

Vll8fAl
†Al8 − nlnl8g ,

s61d

where

C =
1
2o

l
«lVl −

1
4 o

lÞl8

Vll8VlVl8,

«̄l = «l − o
l8sÞld

Vll8Vl8,

Vll8 =
g

2

1

«l
2 + «l8

2 + «l«l8

. s62d

Taking into account that «l is proportional to l, the
two-body matrix elements in Eq. s62d cancel the depen-
dence on the degeneracies in the effective pair-coupling
matrix elements. Thus the above Hamiltonian should be
more appropriate when modeling a harmonically con-
fined boson system with a pairinglike interaction.

The interaction in Eq. s62d has the nice feature that its
two-body matrix elements decrease with the number of
shells, as one would expect in general. It has the particu-
lar property that the interactions of the pair and density
fluctuations are strictly the same but opposite in sign.
The energy eigenvalues of this Hamiltonian can be ob-
tained from the eigenvalues rl of the associated Rl op-
erators as E=2Sl«lrl, with the end result being

E =
1
2o

l
«lVl −

1
4 o

lÞl8

Vll8VlVl8 − 2go
lp

«lVl

2«l
3 − Ep

. s63d

Note that the first two terms in the energy eigenvalues
of Eq. s63d exactly cancel the constant term C in Eq.
s61d.

We have solved the Richardson equations for the
Hamiltonian of Eq. s62d, i.e., with hl= s«ld3, for the same
system considered above, namely, M=500 and L=50. In
Fig. 12, we show the occupation numbers for g=−1.0, for
which the overall depletion factor is 0.245. They display
a reasonable physical pattern, with the occupancies de-
creasing monotonically with increasing single-boson en-
ergy. A comparison between the exact results and such
approximations as Hartree-Fock-Bogolyubov theory or
its number-conserving variants will be the subject of fu-
ture work.

FIG. 11. Occupation numbers for 1000 bosons confined in 50
harmonic-oscillator shells and interacting via a pure pairing
interaction with strength g=−0.0025. The occupation of the l
=0 state is off scale and thus not shown.

FIG. 12. Occupation numbers for 1000 bosons confined in 50
harmonic-oscillator shells and interacting via a renormalized
pairing interaction fsee Eq. s62dg with g=−1.0.
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When the same modified form for the Hamiltonian,
but with repulsive pairing, was considered, a highly un-
expected feature was found sDukelsky and Schuck,
2001d. Figure 13 shows the occupation numbers of the
first and second levels versus the scaled pairing interac-
tion x=2Mg /"v for the same system as above sM
=500, L=50d. At the critical value of the scaled interac-
tion, xc=1, the normal ground-state boson condensate
suddenly changes into a new phase in which the bosons
occupy the l=0 and the l=1 levels, with the occupation
of all other levels negligible.

This new phase is characterized in the large-N limit by
having two macroscopically occupied states, thus repre-
senting a fragmented condensate. It is commonly ac-
cepted since the work of Nozières and Saint James
s1982d that for confined systems fragmentation cannot
occur in systems of scalar bosons with repulsive interac-
tions. This might be the first example of fragmentation
in a confined boson system.

VII. SUMMARY AND OUTLOOK

In this Colloquium, we have reviewed recent efforts to
develop exactly solvable models of the Richardson-
Gaudin type and have discussed how these models have
been used to provide valuable insight into the physics of
systems with strong pair correlations. We began with a
brief review of Richardson’s original treatment of the
pairing model and Gaudin’s related treatment of the
Gaudin magnet and then showed how they could be
generalized to several classes of exactly solvable models
that still preserve a pairinglike structure.

A very attractive feature of these models is that one
can establish an exact analogy between the associated
quantum many-body problem and the classical physics
of a two-dimensional electrostatic system. This feature,
which was originally appreciated by both Richardson
and Gaudin, has now been generalized to all such ex-
actly solvable models.

The solution to a classical problem is typically ame-
nable to simple geometrical interpretation, which can

then be used to give an alternative perspective on the
quantum model from which it derives. This has been
used in several examples we have discussed, for both
boson and fermion systems. It provides a new perspec-
tive on how superconductivity arises in fermion models
and also an interesting new perspective on a second-
order quantum phase transition that arises in the nuclear
interacting boson model.

Another important outcome of the classical electro-
static analogy is that it facilitates a treatment of these
models in the thermodynamic limit. Not surprisingly, it
shows that BCS theory is indeed the correct large-N
limit of the fermion pairing model with attractive inter-
actions.

The generalization of Richardson and Gaudin’s mod-
els was first discussed in the context of the physics of
small metallic grains, as a means of obtaining exact so-
lutions to the BCS Hamiltonian appropriate to such sys-
tems in cases where numerical diagonalization was out
of the question. As discussed in some detail in this Col-
loquium, the existence of a method of exact solution for
this model provides important insight into the detailed
physics present when the size of the system gets small
enough so that superconductivity disappears. Neither
BCS theory nor number-projected BCS theory can cap-
ture the physics of the phase transition acceptably.

The new families of exactly solvable models that we
have discussed are based on the algebras SUs2d sfor fer-
mion systemsd or SUs1,1d sfor boson systemsd. These two
algebras have a pseudospin representation in terms of
fermion pairs or boson pairs, respectively. All applica-
tions to date and all that we have therefore discussed are
based on these representations of the associated alge-
bras. At the same time, the SUs2d group has other pos-
sible representations in terms of spin operators or two-
level atoms which have not yet been exploited.

Perhaps, the most important feature of the exactly
solvable Richardson-Gaudin models is the enormous
freedom within an integrable family. For a given set of L
single-particle levels sor orbitsd, we can define an exactly
solvable Hamiltonian in terms of L+1 hi and g param-
eters that enter in the definition of the associated quan-
tum invariants fEqs. s29d and s30dg, and an additional set
of L parameters «i that define a Hamiltonian as a linear
combination of the quantum invariants. The models
therefore contain 2L+1 free parameters, which allows
enormous flexibility in constructing a general pairinglike
interaction tailored to the physical problem of interest
sDukelsky et al., 2003d. In contrast, most other exactly
solvable models have either no free parameters sthe
Heisenberg modeld, one free parameter sthe XXZ
model, the Hubbard model, or the Elliott modeld, or just
a few free parameters sthe three dynamical symmetry
limits of the nuclear interacting boson modeld. We re-
ported here one particularly interesting use of this flex-
ibility, namely, to model the physics of bosons confined
to a harmonic trap. A pure pairing interaction has the
anomalous feature that it scatters pairs of bosons pref-
erentially to high-energy states. By exploiting the flex-
ibility of the generalized Richardson-Gaudin models, it

FIG. 13. Occupation numbers n0 and n1 for 1000 bosons con-
fined to 50 harmonic-oscillator shells and interacting via a re-
pulsive renormalized pairing interaction as a function of the
scaled strength parameter x.
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was possible to find a more physically meaningful
Hamiltonian for such systems, which nevertheless was
still exactly solvable. Analysis of this new model led to a
suggestion that confined boson systems can exist in a
fragmented state, contrary to prior expectations.

All the applications discussed in this Colloquium
made use of generalized Richardson-Gaudin models of
the so-called rational class. Other interesting applica-
tions within this class of models should certainly be
sought.

A potentially interesting example concerns the prop-
erties of the pairing phase transition in finite Fermi sys-
tems at finite temperature. There has already been im-
portant work reported on this topic fsee, for example,
Dean and Hjorth-Jensen s2003d and references thereing.
As noted earlier, the exact solution of the pairing model
can be derived from the algebraic Bethe ansatz. It is
natural therefore to study the thermodynamic Bethe an-
satz, which provides the exact finite-temperature de-
scription of short-range 1D integrable models, to see
whether it could be extended for application to inte-
grable pairing models. If so, this would allow for an ex-
act treatment of the finite-temperature properties of
such systems as nuclei, ultrasmall superconducting
grains, and degenerate Fermi gases.

Another important topic that has recently received at-
tention sDean and Hjorth-Jensen, 2003d is the study of
the low-energy properties of quantum many-body sys-
tems with random interactions and in particular with
random pairing interactions. Though random pairing in-
teractions in general have chaotic properties, there is an
important subset of integrable pairing Hamiltonians that
have a large number of free parameters which can be
chosen randomly. Some of the physical consequences of
randomly chosen pairing interactions in the general cha-
otic regime and within the integrable subset of pairing
models have been reported recently by Volya et al.
s2002d and Relaño et al. s2004d.

We also expect interesting applications to ensue for
the trigonometric and hyperbolic models. As one ex-
ample, the trigonometric model was used by Gaudin
s1976d to derive the limit of an exactly solvable model of
the interaction of a two-level atomic system with an ex-
ternal oscillator field. This kind of model could lead to a
generalization of the celebrated Jaynes-Cummings
model. Using techniques similar to the algebraic Bethe
ansatz derivation of the Richardson model, exactly solv-
able models for boson atomic-molecule systems and two
coupled Bose-Einstein condensates have recently been
found sLinks et al., 2003d. Based on these arguments, we
believe that Richardson-Gaudin models could have a
promising future in quantum optics and in the study of
dilute Fermi and Bose gases sDukelsky et al., 2004d.

Another area of great interest is the generalization of
Richardson-Gaudin models based on the SUs2d or
SUs1,1d algebras to larger algebras. Some work has al-
ready been reported along these lines sAsorey et al.,
2002d. A complete solution for models with Os5d or
SUs4d symmetries could lead to interesting applications
for nuclear systems with N<Z, where it is important to

include explicitly the isospin degree of freedom. It could
also provide useful insight into the properties of high-Tc
superconductors sZhang, 1997; Wu et al., 2002d. Though
in previous works Richardson s1966b, 1967d proposed an
exact solution for pairing Hamiltonians with these two
group symmetries, recent work by Pan and Draayer
s2002d indicates that his solution is invalid for systems
with more than two pairs. Moreover, Links et al. s2002d
and Guan et al. s2002d have found different solutions for
the same problems. More work is clearly required along
these lines.

In closing, the use of exactly solvable Richardson-
Gaudin models has already provided significant new and
important insight into the properties of many diverse
quantum systems, ranging from atomic nuclei to elec-
tronic systems in condensed matter. We are optimistic
that many more exciting applications are still to come.

ACKNOWLEDGMENTS

This work was supported in part by the Spanish DGI
under Grant No. BFM2000-1320-C02-01/02 and in part
by the U.S. National Science Foundation under Grant
Nos. PHY-9970749 and PHY-0140036. We wish to ex-
press our gratitude to Carlos Esebbag, José María
Román, and Peter Schuck, all of whom contributed sig-
nificantly to the work reported in this Colloquium.

REFERENCES

Amico, L., A. Di Lorenzo, A. Mastellone, A. Osterloh, and R.
Raimondi, 2002, Ann. Phys. sN.Y.d 299, 228.

Amico, L., A. Di Lorenzo, and A. Osterloh, 2001, Phys. Rev.
Lett. 86, 5759.

Amico, L., G. Falci, and R. Fazio, 2001, J. Phys. A 34, 6425.
Anderson, P. W., 1958, Phys. Rev. 112, 1900.
Anderson, P. W., 1959, J. Phys. Chem. Solids 11, 28.
Arias, J. E., J. Dukelsky, and J. E. García-Ramos, 2003, Phys.

Rev. Lett. 91, 162502.
Arrachea, L., and M. J. Rozenberg, 2001, Phys. Rev. Lett. 86,

5172, and private communication.
Asorey, M., F. Falceto, and G. Sierra, 2002, Nucl. Phys. B 622,

593.
Baldo, M., J. Cugnon, A. Lejeune, and U. Lombardo, 1990,

Nucl. Phys. A 515, 409.
Bang, J., and J. Krumlimde, 1970, Nucl. Phys. A 141, 18.
Bardeen, J., L. N. Cooper, and J. R. Schrieffer, 1957, Phys.

Rev. 108, 1175.
Berger, S. D., and B. I. Halperin, 1998, Phys. Rev. B 58, 5213.
Bethe, H. A., 1931, Z. Phys. 71, 265.
Braun, F., and J. von Delft, 1998, Phys. Rev. Lett. 81, 4712.
Calogero, F., 1962, J. Math. Phys. 10, 2191.
Cambiaggio, M. C., A. M. F. Rivas, and M. Saraceno, 1997,

Nucl. Phys. A 624, 157.
Dean, D. J., and M. Hjorth-Jensen, 2003, Rev. Mod. Phys. 75,

607.
Dietrich, K., H. J. Mang, and J. H. Pradal, 1964, Phys. Rev.

135, B22.
Dukelsky, J., G. G. Dussal, C. Esebbag, and S. Pittel, 2004,

Phys. Rev. Lett. sto be publishedd.

661Dukelsky, Pittel, and Sierra: Colloquium: Richardson-Gaudin models for many-body quantum systems

Rev. Mod. Phys., Vol. 76, No. 3, July 2004



Dukelsky, J., C. Esebbag, and S. Pittel, 2002, Phys. Rev. Lett.
88, 062501.

Dukelsky, J., C. Esebbag, and P. Schuck, 2001, Phys. Rev. Lett.
87, 066403.

Dukelsky, J., and S. Pittel, 2001, Phys. Rev. Lett. 86, 4791.
Dukelsky, J., J. M. Román, and G. Sierra, 2003, Phys. Rev.

Lett. 90, 249803.
Dukelsky, J., and P. Schuck, 2001, Phys. Rev. Lett. 86, 4207.
Dukelsky, J., and G. Sierra, 1999, Phys. Rev. Lett. 83, 172.
Dukelsky, J., and G. Sierra, 2000, Phys. Rev. B 61, 12302.
Elliott, J. P., 1958a, Proc. R. Soc. London, Ser. A 242, 128.
Elliott, J. P., 1958b, Proc. R. Soc. London, Ser. A 242, 562.
Gaudin, M., 1976, J. Phys. sParisd 37, 1087.
Gaudin, M., 1995, États Propres et Valeurs Propres de

l’Hamiltonien d’Appariement sLes Éditions de Physique,
Franced.

Gould, M. D., Y.-Z. Zhang, and S.-Y. Zhao, 2002, Nucl. Phys.
B 630, 492.

Guan, X.-W., A. Foerster, J. Links, and H.-Q. Zhou, 2002,
Nucl. Phys. B 642, 501.

Ha, Z. N. C., 1996, Quantum Many-Body Systems in One Di-
mension sWorld Scientific, Singapored.

Haldane, F. D. M., 1981, J. Phys. C 14, 2585.
Haldane, F. D. M., 1988, Phys. Rev. Lett. 60, 635.
Hasegawa, M., and S. Tasaki, 1987, Phys. Rev. C 35, 1508.
Hasegawa, M., and S. Tasaki, 1993, Phys. Rev. C 47, 188.
Heiselberg, H., 2003, Phys. Rev. A 68, 053616.
Heritier, M., 2001, Nature sLondond 414, 31.
Iachello, F., and A. Arima, 1980, The Interacting Boson Model

sCambridge University, Cambridge, Englandd.
Links, J., H.-Q. Zhou, M. D. Gould, and R. H. McKenzie,

2002, J. Phys. A 35, 6459.
Links, J., H.-Q. Zhou, R. H. McKenzie, and M. D. Gould,

2003, J. Phys. A 36, R63.
Luttinger, J. M., 1963, J. Math. Phys. 15, 609.
Mastellone, A., G. Falci, and R. Fazio, 1998, Phys. Rev. Lett.

80, 4542.
Matveev, K. A., and A. I. Larkin, 1997, Phys. Rev. Lett. 78,

3749.
Nozières, P., and D. Saint James, 1982, J. Phys. sParisd 43, 1133.
Pan, F., and J. P. Draayer, 2002, Phys. Rev. C 66, 044314.
Pittel, S., and J. Dukelsky, 2003, nucl-th/0309020.
Ralph, D. C., C. T. Black, and M. Tinkham, 1997, Phys. Rev.

Lett. 78, 4087.

Relano, A., J. Dukelsky, J. M. G. Gomez, and J. Retamosa,
2004, Phys. Rev. E sto be publishedd.

Richardson, R. W., 1963a, Phys. Lett. 3, 277.
Richardson, R. W., 1963b, Phys. Lett. 5, 82.
Richardson, R. W., 1965, J. Math. Phys. 6, 1034.
Richardson, R. W., 1966a, Phys. Rev. 141, 949.
Richardson, R. W., 1966b, Phys. Rev. 144, 874.
Richardson, R. W., 1967, Phys. Rev. 159, 792.
Richardson, R. W., 1968, J. Math. Phys. 9, 1327.
Richardson, R. W., 1977, J. Math. Phys. 18, 1802.
Richardson, R. W., and N. Sherman, 1964, Nucl. Phys. 52, 221.
Roman, J. M., G. Sierra, and J. Dukelsky, 2002, Nucl. Phys. B

634, 483.
Roman, J. M., G. Sierra, and J. Dukelsky, 2003, Phys. Rev. B

67, 064510.
Rombouts, S., D. Van Neck, and J. Dukelsky, 2003, Phys. Rev.

B sto be publishedd.
Schechter, M., Y. Imry, Y. Levinson, and J. von Delft, 2001,

Phys. Rev. B 63, 214518.
Shastry, B. S., 1988, Phys. Rev. Lett. 60, 639.
Shastry, B. S., and A. Dhar, 2001, J. Phys. A 34, 6197.
Sierra, G., 2000, Nucl. Phys. B 572, 517.
Sierra, G., 2002, in Statistical Field Theories, edited by A. Cap-

pelli and G. Mussardo, NATO Sciences Series, Vol. 73 sKlu-
wer Academic, Londond, pp. 317–328.

Sierra, G., J. Dukelsky, G. G. Dussel, J. von Delft, and F.
Braun, 2000, Phys. Rev. B 61, R11 890.

Sigrist, M., and K. Ueda, 1991, Rev. Mod. Phys. 63, 239.
Smith, R. A., and V. Ambegaokar, 1996, Phys. Rev. Lett. 77,

4962.
Sutherland, B., 1971, J. Math. Phys. 12, 246.
Tomonaga, S., 1950, Prog. Theor. Phys. 5, 544.
Volya, A., V. Zelevinsky, and B. A. Brown, 2002, Phys. Rev. C

65, 054312.
von Delft, J., D. S. Golubev, W. Tichy, and A. D. Zaikin, 1996,

Phys. Rev. Lett. 77, 3189.
von Delft, J., and R. Poghossian, 2002, Phys. Rev. B 66, 134502.
von Delft, J., and D. C. Ralph, 2001, Phys. Rep. 345, 61.
Wu, L.-A., M. W. Guidry, Y. Sun, and C.-L. Wu, 2002, Phys.

Rev. B 67, 014515.
Yuzbashyan, E. A., A. A. Baytin, and B. L. Altshuler, 2003,

Phys. Rev. B 68, 214509.
Zhang, S.-C., 1997, Science 275, 1089.
Zhou, H.-Q., J. Links, R. H. McKenzie, and M. D. Gould,

2002, Phys. Rev. B 65, 060502.

662 Dukelsky, Pittel, and Sierra: Colloquium: Richardson-Gaudin models for many-body quantum systems

Rev. Mod. Phys., Vol. 76, No. 3, July 2004


