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Theory of the weakly interacting Bose gas
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This article reviews recent advances in the theory of the three-dimensional dilute homogeneous Bose
gas at zero and finite temperature. Effective-field-theory methods are used to formulate a systematic
perturbative framework that can be used to calculate the properties of a system at T50. The
perturbative expansion of these properties is essentially an expansion in the gas parameter Ana3,
where a is the s-wave scattering length and n is the number density. In particular, the leading quantum
corrections to the ground-state energy density, the condensate depletion, and long-wavelength
collective excitations are rederived in an efficient and economical manner. Nonuniversal effects are
also discussed. These effects are higher-order corrections that depend on properties of the interatomic
potential other than the scattering length, such as the effective range. The article critically examines
various approaches to the dilute Bose gas in equilibrium at finite temperature. These include the
Bogoliubov approximation, the Popov approximation, the Hartree-Fock-Bogoliubov approximation,
the F-derivable approach, optimized perturbation theory, and renormalization-group techniques. The
article ends with a look at recent calculations of the critical temperature of the dilute Bose gas, which
include 1/N techniques, lattice simulations, self-consistent calculations, and variational perturbation
theory.
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I. INTRODUCTION

The remarkable realization of Bose-Einstein conden-
sation (BEC) of trapped alkali atoms (Anderson et al.,
1995; Bradley et al., 1995; Davis et al., 1995) has created
an enormous interest in the properties of the weakly
interacting Bose gas. Although the experiments are car-
ried out in magnetic and optical harmonic traps, the ho-
mogeneous Bose gas has also received renewed interest
(Shi and Griffin, 1998). The homogeneous Bose gas is
interesting in its own right, and it may prove useful to go
back to this somewhat simpler system to gain insight
that carries over to the trapped case.

Bose-Einstein condensation has a very long history
dating back to the early days of quantum mechanics and
the papers by Bose and Einstein (Bose, 1924; Einstein,
1924). The canonical example of a system that exhibits
BEC is liquid 4He. At very low atmospheric pressure,
4He becomes superfluid below a temperature of 2.17 K,
which is called the l point. The fluid then consists of two
components, namely, a normal and a superfluid compo-
nent. The superfluid component has zero viscosity, and it
has the remarkable property that it can flow through
narrow tubes without friction. In modern terminology,
the phase transition from a normal fluid to a superfluid
is described as spontaneous breaking of the global U(1)
symmetry and the occurrence of a condensate of atoms
residing in the zero-momentum state. This description
also explains the experimental fact that the spectrum is
gapless and linear in the long-wavelength limit; the exis-
tence of a gapless and linear dispersion relation follows
from the Goldstone theorem (Goldstone, 1961). It turns
out that 4He is strongly interacting, and this reduces the
density of the condensate to a rather small fraction of
the total number density. At very low temperature and
pressure, the condensate density is approximately 10%
of the total number density. Thus the condensate density
and superfluid density are very different at low tempera-
©2004 The American Physical Society
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ture. Liquid 4He consists of extended objects with very
complicated nonlocal interactions. Moreover, the fact
that it is strongly interacting makes it impossible to ap-
ply perturbative methods. This has led to the search for
weakly interacting Bose gases. The trapped alkali gases
are such systems, and their advantage over liquid 4He is
that they behave like systems of point particles with
simple local interactions. The study of these gases has
therefore become a very active field of research in the
past decade. Interested readers may consult the books
by Pethick and Smith (2002), and by Pitaevskii and
Stringari (2003), as well as the review papers by Dalfovo
et al. (1999) and by Leggett (2001).

The concept of Bose-Einstein condensation has been
applied in many areas of physics other than 4He, and
thus a thorough understanding of it is important. For
instance, many properties of a superconductor can be
understood in terms of a condensate of pairs of electrons
with opposite spin and momenta. Similarly, many prop-
erties of the QCD vacuum can be understood on the
basis of a condensate of quark-antiquark pairs with zero
total momentum. This condensate is called the chiral
condensate, and, in massless QCD, it breaks the chiral
symmetry of the QCD Lagrangian. The pions are inter-
preted as the corresponding Goldstone particles.

The homogeneous Bose gas at zero temperature has
been studied extensively for over 50 years, starting with
the classic paper by Bogoliubov (1947). At zero tem-
perature, the quantum loop expansion is essentially an
expansion in the gas parameter Ana3, where n is the
number density and a is the (positive) s-wave scattering
length. The leading quantum corrections to the chemical
potential, energy density, and speed of sound were cal-
culated many years ago by Lee and Yang using the
pseudopotential method (Lee and Yang, 1957). Part of
the second quantum correction to the energy density
was obtained by Wu (1959), by Hugenholz and Pines
(1959), and by Sawada (1959). Only recently, a complete
two-loop result has been obtained by Braaten and Nieto
(1997). The result depends not only on the scattering
length a , but also on an energy-independent term in the
scattering amplitude for 3→3 scattering. The fact that
physical quantities depend on properties other than the
s-wave scattering length was already pointed out by Hu-
genholz and Pines (1959). These effects are called non-
universal effects. In the past decades effective field
theory has been established as an ideal tool for system-
atically calculating low-energy observables of a physical
system (Lepage, 1989; Georgi, 1993; Kaplan, 1995).
Effective-field-theory methods have also proven very
useful for calculating higher-order corrections in powers
of Ana3 as well as nonuniversal effects in the weakly
interacting Bose gas (Braaten et al., 2001).

Finite-temperature corrections to the pressure of a di-
lute Bose gas were first calculated by Lee and Yang
(1958). Performing an expansion of the pressure about
zero temperature, they showed that the leading term
goes as T4. This shows that the thermodynamics at low
temperature are completely determined by the linear
part of the spectrum. Similarly, the low-temperature ex-
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pansion of the number density was calculated by Glass-
gold et al. (1960) and shows a T2 behavior. These calcu-
lations were all based on the Bogoliubov approximation
and are therefore valid only at low temperature, where
the depletion of the condensate is small. The first ap-
proach to take into account the excited states, and thus
to be usable over the whole temperature range up to Tc ,
is the Popov theory (Popov, 1983, 1987; Shi and Griffin,
1998). Very recently, an improved many-body T-matrix
approximation was developed (Al Khawaja et al., 2002;
Andersen et al., 2002), which does not suffer from the
infrared divergences in lower dimensions that plague the
Bogoliubov and Popov approximations. While the ap-
proach can be applied in any dimension, its main appli-
cation is in one and two dimensions, since the predic-
tions in three dimensions are very similar to those of
established approaches. For instance, it predicts the
same zero-temperature depletion of the condensate as
the Bogoliubov approximation and the same critical
temperature as the Popov approximation.

The most recent extensive review on the homoge-
neous Bose gas was written by Shi and Griffin (1998), six
years ago. In the meantime, significant progress has
been made, and a new review paper summarizing recent
advances is appropriate. There will of course be an over-
lap between the review of Shi and Griffin and the
present paper, but some new material is covered. This
includes nonuniversal effects (Braaten et al., 2001),
renormalization-group calculations (Bijlsma and Stoof,
1996a, 1996b; Andersen and Strickland, 1999; Metikas
and Alber, 2002), some of the variational approaches
(Lundh and Rammer, 2002), and calculations of the criti-
cal temperature Tc .1 Traditionally, the theory of dilute
Bose gases is presented using creation and annihilation
operators as well as normal and anomalous self-
energies. The present review is different in this respect,
since we are using modern functional methods, and only
occasionally will we present the material in terms of nor-
mal and anomalous averages. This also implies that we
are working with Lagrangians and actions, rather than
with Hamiltonians. We are largely going to base our dis-
cussion on effective-field-theory methods (Lepage, 1989;
Georgi, 1993; Kaplan, 1995). The virtue of effective field
theory is that it allows one to systematically calculate
physical quantities efficiently by taking advantage of the
separation of length scales in a particular problem. We
shall return to these issues in some detail later.

Much of the theoretical research on trapped Bose
gases in recent years has been on dynamical issues, e.g.,
condensate formation, damping of collective excitations,
and collapse of the condensate. There is also a large
body of literature on the nonequilibrium dynamics of

1See, for example, Grüter et al., 1997; Baym et al., 1999, 2000,
2001; Holzmann and Krauth, 1999; Arnold and Tomasik, 2000;
Arnold and Moore, 2001a, 2001b; de Souza Cruz et al., 2001,
2002; Kashurnikov et al., 2001; Arnold et al., 2002; Braaten and
Radescu, 2002; Davis and Morgan, 2003; Kastening, 2003,
2004; Kleinert, 2003; Ledowski et al., 2003.
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the dilute Bose gas, but these topics deserve a separate
review. Similarly, there has been significant progress in
the understanding of low-dimensional Bose gases, fol-
lowing their experimental realization (Petrov, Holz-
mann, and Shlyapnikov, 2000; Al Khawaja et al., 2002;
Andersen et al., 2002). In order to limit the material, we
shall focus entirely on the three-dimensional Bose gas in
this review. For the same reason, we also restrict our-
selves to the spinless Bose gas.

The paper is organized as follows: In Sec. II, the ideal
Bose gas at finite temperature is briefly reviewed. Sec-
tion III discusses the weakly interacting Bose gas at zero
temperature. A perturbative framework using effective-
field-theory methods is set up. This framework is used to
rederive the leading quantum corrections to various
quantities and discuss nonuniversal effects. Section IV
treats the weakly interacting Bose gas at finite tempera-
ture. We discuss the Hartree-Fock-Bogoliubov approxi-
mation, the Bogoliubov approximation, and the Popov
approximation. Then we consider the F-derivable ap-
proach and optimized perturbation theory, which are
variational approaches. Finally, renormalization-group
techniques are reviewed. Section V discusses the calcu-
lation of the critical temperature Tc using a variety of
different techniques. In Sec. VI, we summarize and con-
clude. Calculational details, as well as notation and con-
ventions, are included in the Appendix.

II. THE IDEAL BOSE GAS

In this section, we review the ideal Bose gas at finite
temperature. Although this is standard textbook mate-
rial, a discussion is included to make the paper self-
contained. In the remainder of the paper, we set \
52m5kB51. Factors of \, 2m , and kB can be rein-
serted using dimensional analysis.

Consider N bosons at temperature T in a box of vol-
ume V , so that the number density is n5N/V . We im-
pose periodic boundary conditions. We are always work-
ing in the thermodynamic limit, meaning N ,V→` in
such a manner that n is fixed.

At high temperature, where the thermal wavelength
lT52Ap/T is much shorter than the interparticle spac-
ing, the atoms behave classically, and their statistics are
not important. As the temperature is lowered, the atoms
can be viewed as little wave packets with extent of the
order lT . Bose-Einstein condensation takes place when
the thermal wavelength of a particle is on the order of
the interparticle spacing n21/3, and the wave functions of
the bosons start to overlap. The particles then accumu-
late in the zero-momentum state. At T50, all the par-
ticles reside in this state. Since fermions behave very
differently at low temperatures due to the Pauli exclu-
sion principle, BEC is truly a quantum phenomenon.

We can estimate Tc
0 by equating the thermal wave-

length lT with the average distance between the bosons
n21/3:

2Ap/Tc
0;n21/3. (1)
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The estimate for the critical temperature Tc
0 then be-

comes

Tc
0;4pn2/3. (2)

Having estimated Tc , we next discuss the thermody-
namics in more detail. In the functional approach to the
imaginary-time formalism, the grand-canonical partition
function Z is given by a path integral (Negele and Or-
land, 1988):

Z5E Dc* Dce2S[c* ,c], (3)

where the action S is given by

S@c* ,c#5E
0

b

dtE d3xc* ~x,t!F ]

]t
2¹22mGc~x,t!.

(4)

Here, b51/T and m is the chemical potential. The com-
plex fields c* and c satisfy the standard bosonic period-
icity condition that c(x,t) and c* (x,t) are periodic in t
with period b. We next write the complex field in terms
of two real fields,2

c5
1

&
~c11ic2!. (5)

After inserting Eq. (5) into the action (4), we find the
corresponding Green’s function or propagator to be

D0~vn ,p !5
1

vn
21~p22m!2 S p22m vn

2vn p22m D , (6)

where vn52pnT is the nth Matsubara frequency. The
path integral (3) is Gaussian and can therefore be evalu-
ated exactly. The result is

Z5e2*0
bdt*d3x det D0

21(vn ,p), (7)

where D0
21(vn ,p) is the inverse of the propagator (6)

and det denotes a determinant in the functional sense.
The free-energy density is given by

F52
1

Vb
ln Z

5 1
2 Tr ln D0

21~vn ,p !, (8)

where we have used that ln det A5Tr ln A for any matrix
A where Tr denotes the trace. Inverting Eq. (6) and
taking the trace, we obtain

F5
1
2X

P

ln@vn
21~p22m!2# , (9)

where the sum-integral means

2In traditional approaches, one uses the single complex field
c instead of two real fields. This is merely a matter of taste.
See also the comments at the end of this section.
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X

P

[M2eT (
vn52npT

E ddp

~2p!d . (10)

The sum-integral involves a summation over Matsubara
frequencies and a regularized integral over d5322e di-
mensions. M is a renormalization scale that ensures that
the integral also has the canonical dimensions for dÞ3.
In the following, we absorb the factor M2e in the mea-
sure, and so it will not appear explicitly. We discuss the
details further in the Appendix. After summing over
Matsubara frequencies, we obtain

F5E ddp

~2p!d H 1
2

~p22m!1T ln@12e2b(p22m)#J . (11)

The first term inside the brackets is an infinite constant
that is independent of temperature. It represents the
zero-point fluctuations and can be removed by a vacuum
energy counterterm DE. The second term is the standard
finite-temperature free energy of an ideal gas of nonrel-
ativistic bosons.

In the operator approach, the starting point would be
the grand-canonical Hamiltonian which corresponds to
the action (4):

H5
1
2 E d3p

~2p!3 ~p22m!ap
†ap . (12)

Using the Hamiltonian (12) to calculate physical quanti-
ties, one does not encounter zero-point fluctuation
terms, since it has been normal ordered; the operator ap
annihilates the vacuum. If it had not been normal or-
dered, one would find the same divergent terms as with
the path-integral approach. This is the usual ambiguity
of the quantization procedure in going from classical
field theory to quantum field theory.

We have replaced momentum sums by integrals over
p . Due to the measure ddp , the integrand always van-
ishes at p50, and the contribution from the ground state
is not accounted for. If we denote the condensate density
of particles in the lowest-energy state by n0 , and the
number density of particles in the excited states by nex ,
we have n5n01nex . The density of excited particles is
then given by minus the derivative of F with respect to
the chemical potential:

nex5E ddp

~2p!d n~p22m!, (13)

where

n~v!5
1

ebv21
(14)

is the Bose-Einstein distribution function. Equation (13)
makes sense only for m<0. If m.p2 for some p* , the
occupation number of the states with p,p* would be-
come negative. Clearly, this is unphysical. Below the
transition temperature, the number of particles in the
excited states is given by the integral (13) with m50.
One finds
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nex5

zS 3
2 D

~4p!3/2 T3/2, (15)

where z(x) is the Riemann zeta function with argument
x . The critical temperature is the temperature at which
all the particles can be accommodated in the excited
states, that is, n5nex . This yields

Tc
054pF n

zS 3
2 D G 2/3

. (16)

The quantity nlT
3 is called the degeneracy parameter.

For an ideal Bose gas, the critical number density nc

satisfies nclT
3 5z( 3

2 ). We see that the estimate (2) is cor-

rect within a factor of @z( 3
2 )#22/3'0.527 of the exact re-

sult (16). Using Eqs. (15) and (16), we can write the
condensate density n0 as a function of the temperature
T ,

n05nF12S T

Tc
D 3/2G . (17)

The exponent 3/2 in Eq. (17) is determined solely by the
density of states. For an ideal Bose gas in a three-
dimensional isotropic harmonic trap, the exponent is 3
(Dalfovo et al., 1999).

III. WEAKLY INTERACTING BOSE GAS AT ZERO
TEMPERATURE

In this section, we discuss in some detail the weakly
interacting Bose gas at T50. We begin with a descrip-
tion using effective field theory and formulate a pertur-
bative framework that can be used for practical calcula-
tions. We then calculate the leading corrections in the
low-density expansion to the energy density, depletion,
and long-wavelength excitations. Finally, we discuss non-
universal effects.

A. Effective field theory

Effective field theory is a general approach that can
be used to analyze the low-energy behavior of a physical
system in a systematic way (Lepage, 1989; Georgi, 1993;
Kaplan, 1995). One takes advantage of the separation of
scales in a system to make model-independent predic-
tions at low energy. The effective Lagrangian Leff that
describes the low-energy physics is written in terms only
of the long-wavelength degrees of freedom, and the op-
erators that appear are determined by these degrees of
freedom and the symmetries present at low energy. The
effective Lagrangian generally includes an infinite tower
of nonrenormalizable interactions, but they can be orga-
nized according to their importance at low energy. To a
certain order in a low-energy expansion, only a finite
number of operators contribute to a physical quantity
and one can carry out renormalization in the standard
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way, order by order in this expansion.3 Since the coeffi-
cients of these operators encode the short-wavelength
physics, we do not need to make any detailed assump-
tions about the high-energy dynamics to make predic-
tions at low energy.

In some cases, one can determine the coefficients of
the low-energy theory as functions of the coupling con-
stants in the underlying theory by a perturbative match-
ing procedure. One calculates physical observables at
low energies perturbatively and demands they be the
same both in the full and in the effective theory. The
coefficients of the effective theory then encode the
short-distance physics. If one cannot determine these
short-distance coefficients by matching, they can be
taken as phenomenological parameters that are deter-
mined by experiment.

A classic example of an effective field theory is chiral
perturbation theory, which is a low-energy field theory
for pions (Gasser and Leutwyler, 1984, 1985). Pions are
interacting particles whose fundamental description is
provided by QCD. However, QCD is strongly interact-
ing and confining at low energies, and so perturbative
calculations using the QCD Lagrangian are hopeless. In-
stead of using the quark and gluon degrees of freedom
in QCD, one writes down the most general Lagrangian
for the pions, which are the relevant low-energy degrees
of freedom. The terms that appear in the chiral Lagrang-
ian are determined by the global symmetries of QCD.
The coefficients of the chiral Lagrangian cannot be de-
termined as functions of the couplings and masses in
QCD using perturbative methods. They can, in prin-
ciple, be determined using a nonperturbative method
such as lattice gauge theory, but in practice they are nor-
mally determined by experiment.

Nonrelativistic QED (Caswell and Lepage, 1986) is an
example of an effective field theory whose coefficients
are tuned so they reproduce a set of low-energy scatter-
ing amplitudes of full QED. Nonrelativistic QED is tai-
lored to perform low-energy (bound-state) calculations,
where one takes advantage of the nonrelativistic nature
of the bound states by isolating the contributions from
the relativistic momentum scales. These are encoded in
the coefficients of the various local operators in the ef-
fective Lagrangian. Traditional approaches involving the
Bethe-Salpeter equation do not take advantage of the
separation of scales in bound-state problems and are
therefore much more difficult to solve.

Landau’s quasiparticle model for 4He can also be
viewed as an effective field theory. In order to explain
that the specific heat varies as T3 for temperatures much
smaller than Tc , he suggested that the low-lying excita-
tions are phonons with a linear dispersion relation. More

3The counterterms that are used to cancel the divergences in
the calculations of one physical quantity are the same as those
required in the calculations of another. Thus, having deter-
mined the counterterms once and for all, we can use the effec-
tive theory to make predictions about other physical quanti-
ties.
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generally, he proposed a spectrum that is linear for small
wave vectors and has a local minimum around p5p0 .
This part of the spectrum behaves like

e~p !5D1
~p2p0!2

2m0
, (18)

where D, p0 , and m0 are phenomenological parameters.
Excitations near p0 are referred to as rotons. Assuming
that the elementary excitations are noninteracting, one
can use the spectrum to calculate the specific heat. Lan-
dau determined the parameters by fitting the calculated
specific heat to experimental data (Landau, 1947).

The weakly interacting Bose gas is a system in which
effective-field-theory methods can be applied success-
fully. The starting point is the action

S@c* ,c#5E dt H E ddxc* ~x,t !

3F i
]

]t
1¹21mGc~x,t !

2
1
2 E ddxE ddx8c* ~x,t !c* ~x8,t !

3V0~x2x8!c~x,t !c~x8,t !1¯J . (19)

Here, c* (x,t) is a complex field operator that creates a
boson at the position x at time t , m is the chemical po-
tential, and V0(x) is the two-body potential. The ellipses
indicate terms that describe possible interactions be-
tween three or more bosons. The chemical potential m
must be adjusted to get the correct number density n .

The interatomic potential can be divided into a cen-
tral part V0

c(x) and a remainder. The central part of the
potential depends only on the separation x of the atoms
and their electronic spins. It conserves separately the
total orbital angular momentum and the total electronic
spin of the atoms. The noncentral part of the interaction
conserves the total angular momentum, but does not
separately conserve the orbital angular momentum and
the total electronic spin of the atoms. An example of a
term in the noncentral part of the interaction is the mag-
netic dipole-dipole interaction.

The central part of the potential consists of a short-
range part with range x0 and a long-range van der Waals
tail. The latter goes as 1/x6 as x→` . A typical two-body
potential is shown in Fig. 1. A model potential of this
kind is the sum of a hard-core potential with range x0
and a van der Waals potential:

V0
c~x !5H 1` , x,x0

2
C6

x6 , x.x0 ,
(20)

where C6 and x0 are constants. Another example is the
hard-core square-well potential:

V0
c~x !5H 1` , x,xc

2V0 , xc,x,x0

0, x,x0 ,

(21)
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where x0 and xc are constants. This potential sustains a
number of two-body bound states depending on the val-
ues of x0 and xc . Many real potentials used in experi-
ments sustain bound states, and the ground state of the
system is no longer a homogeneoues gas, but rather a
state of clusters of atoms. However, if the scattering
length is positive, the homogeneous Bose gas can exist
as a long-lived metastable state.

In Fig. 2, we have shown the Fourier transform V(k)
of a typical short-range two-body potential with range
x0 . Since a true interatomic potential vanishes for large
momenta k , one will never face ultraviolet divergences
using it in actual (perturbative) calculations.

In this paper we restrict our calculations to the spin-
less Bose gas. In experiments with trapped alkali atoms
(e.g., 7Li, 23Na, 85Rb, 87Rb, and 133Cs), the situation is
more complicated. In all these atoms, there is a single s

FIG. 1. Typical behavior of a two-body potential V0
c(x).

FIG. 2. Short-range two-body potential with range x0 : solid
line, typical behavior of the potential in momentum space
V(k); dotted line, Fourier transform of a contact potential. M
is an ultraviolet cutoff.
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electron outside closed shells. Consequently these atoms
have electron spin S51/2. The total spin of a colliding
pair of alkali atoms is therefore either S50 or S51. The
central part of the potential V0

c(x) depends on the total
spin, and one refers to these potentials as the singlet and
triplet potentials, respectively. The singlet potential is
generally much deeper and sustains many more bound
states than does the triplet potential. For example, the
singlet potential of 87Rb is deeper than the triplet poten-
tial by more than one order of magnitude. The scatter-
ing lengths are denoted by as and at . In the case of
atomic hydrogen, they have been calculated from first
principles; as50.3a0 and at51.3a0 , where a0 is the Bohr
radius. Similarly, the coefficient of the van der Waals tail
has also been determined; C656.499a0 (Yan et al.,
1996).

One can associate a natural length scale l with any
atomic potential V0

c(x). For a short-range potential, this
length is the range x0 itself. For a long-range potential, it
is a little more complicated. The length scale associated
with the van der Waals tail is lvdW;C6

1/4 . In this case, the
length scale l is either the range or lvdW , whichever is
larger. For a generic potential, the low-energy observ-
ables such as the scattering length and the effective
range are of the order l . There is nothing that forbids
these quantities being much larger than l , but it is un-
natural and typically requires fine-tuning of one or more
parameters in the potential. In the case of the alkali at-
oms, lvdW is much larger than the range of the short-
range part of the potential and is thus the natural length
scale for these atoms. The spin-singlet scattering length
for 85Rb is as512800a0 , which is more than an order of
magnitude larger than l5lvdW5164a0 . This can be
viewed as a fine-tuning of the mass of the atom, as can
be seen from the fact that the mass of 87Rb is only 2.3%
larger, and the spin-singlet scattering length has the
more natural value as5190.4a0 . One can also obtain
unnaturally large scattering lengths by tuning an exter-
nal parameter in experiments. One way of doing this is
to tune an external magnetic field to a Feshbach reso-
nance (Feshbach, 1962), which is currently receiving a
lot of attention both theoretically (Stwalley, 1976; Ties-
inga, Verhaar, and Stoof, 1993) and experimentally (In-
ouye et al., 1998).

In the remainder of this work, we do not specify the
magntiude of the scattering length. We require only that
the diluteness condition be satisfied, namely, that

na3!1. (22)

We now return to the action (19), which is invariant un-
der a global phase transformation

c~x,t !→eiac~x,t !. (23)

The global U(1) symmetry reflects the conservation of
atoms. It also ensures that the number density n and
current density j satisfy the continuity equation,

ṅ1¹•j50, (24)
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where the dot denotes differentiation with respect to
time.

The nonlocal evolution equation that follows from the
action (19) cannot always be used for practical calcula-
tions, but can be replaced by a local one. Suppose we are
interested in the properties of the system at momenta k
such that the de Broglie wavelength 1/k is much longer
than the range of the interatomic potential V0(x). The
interactions therefore appear pointlike on the scale of
the de Broglie wavelength, and they can be mimicked by
local interactions. The parameters of these local interac-
tions must be tuned so that they reproduce low-energy
observables to sufficient accuracy. However, if the po-
tential is long range, the scattering amplitude depends in
a nonanalytic way on the wave vector k characterizing
the incoming atoms in the center-of-mass frame. Such
behavior cannot be reproduced by local operators. If
V0

c(x) falls off like 1/x6, this nonanalytic behavior enters
first at order k4 (Braaten and Hammer, 2003).

The effective Lagrangian for the bosons can be con-
structed using the methods of effective field theory.
Once the symmetries have been identified, one writes
down the most general local effective Lagrangian consis-
tent with these symmetries. At zero temperature, the
symmetries are Galilean invariance, time-reversal sym-
metry, and the global phase symmetry (23). These sym-
metries severely restrict the possible terms in the effec-
tive action. One finds (Braaten and Nieto, 1997)

S@c* ,c#5E dt E ddx H c* F i
]

]t
1¹21m Gc

2
1
2

g~c* c!22
1
2

h@¹~c* c!#2

2
g3

36
~c* c!31¯J , (25)

where g , h , and g3 are coupling constants that can be
determined by a matching procedure. The dots denote
operators that are higher order in the field c or its de-
rivative ¹c and that respect the symmetries. One de-
mands that the effective field theory represented by the
action (25) reproduce a set of low-energy observables to
some desired accuracy. Examples are the coefficients of
the expansions in Ana3 of the ground-state energy den-
sity or the coefficients in the low-energy expansions for
the scattering amplitudes in the n-body sector. When the
coefficients in the action (25) have been determined to
some accuracy in a low-energy expansion, effective field
theory guarantees that all other observables can be de-
termined with the same accuracy.

The quantum field theory defined by the action (25)
has ultraviolet divergences that must be removed by
renormalization of the parameters m ,g ,h ,g3 , . . . . They
arise because we are treating the interactions between
the atoms as pointlike down to arbitrarily short dis-
tances. For instance, the operator g(c†c)2 can be
thought of as a contact potential with strength g ; V0(x
2x8)5gd(x2x8). The Fourier transform is then a con-
stant in momentum space; V0(k)5g . This is illustrated
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in Fig. 2, where the dotted line shows V(k). Thus V(k)
does not vanish for large momenta, and this is the rea-
son why one encounters ultraviolet divergences in the
calculation of Feynman diagrams. In order to make the
theory well defined, we must introduce an ultraviolet
cutoff. This is indicated in Fig. 2, where we exclude wave
numbers k.M in momentum integrals.

If we use a simple momentum cutoff M to cut off the
ultraviolet divergences, there will be terms that are pro-
portional to Mn, where n is a positive integer. There are
also terms that are proportional to ln(M). The coeffi-
cients of the power divergences depend on the method
we use to regulate the integrals, while the coefficients of
ln(M) do not. Thus the power divergence are artifacts of
the regulator, while the logarithmic divergences repre-
sent real physics. In this paper, we shall be using dimen-
sional regularization (’t Hooft and Veltman, 1972) to
regulate infrared as well as ultraviolet divergences in the
loop integrals. In dimensional regularization, one calcu-
lates the loop integrals in d5322e dimensions for val-
ues of e for which the integrals converge. One finally
continues analytically back to d53 dimensions. In di-
mensional regularization, an arbitrary momentum scale
M is introduced to ensure that loop integrals also have
their canonical dimensions away from three dimensions.
This scale can be identified with the simple momentum
cutoff mentioned above. Advantages of dimensional
regularization are that it respects symmetries such as ro-
tational symmetry and gauge invariance. Dimensional
regularization sets power divergences to zero, and loga-
rithmic divergences show up as poles in e. With dimen-
sional regularization, therefore, the only ultraviolet di-
vergences that require explicit renormalization are
logarithmic divergences. This simplifies calculations sig-
nificantly, as we shall see. In fact, all the divergences
encountered in the one-loop calculations that we present
here can be removed by the renormalization of m, g , and
the vacuum energy E, which, in three dimensions, are
power divergences. Thus no explicit renormalization is
required.

We now return to the determination of the parameters
g ,h ,g3 , . . . . We follow Braaten et al. (2001) and deter-
mine the parameters by demanding that the effective-
field theory (25) reproduce the low-momentum expan-
sions for the scattering amplitudes in the vacuum for 2
→2 scattering, 3→3 scattering, etc. to some desired ac-
curacy.

To calculate the coupling constant g , consider the
scattering of two atoms in the vacuum with initial wave
numbers k1 and k2 , and final wave numbers k18 and k28 .
The probability amplitude for the 2→2 scattering is
given by the T-matrix element T. The tree-level contri-
bution to T comes from the leftmost diagram in Fig. 3
and is given by

T0522g , (26)

where the subscript indicates the number of loops. The
quantum corrections to the tree-level result come from
the loop diagrams in Fig. 3. The leading quantum cor-
rection comes from the one-loop diagram and reads
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T1~q !522ig2E dv

2p E ddk

~2p!d

1
v2k21i«

3
1

~v2k1
22k2

2!1~k2k12k2!21i«
, (27)

where q5 1
2 uk12k2u, and we have used that the free

propagator D0(v ,k) in the vacuum corresponding to the
action (25) is

D0~v ,k!5
i

v2k21ie
. (28)

The integral over v is performed using contour integra-
tion. After changing variables k→k1uk11k2u/2, we ob-
tain

T1~q !5g2E ddk

~2p!d

1
k22q22i«

. (29)

Note that the integral over k is linearly divergent in the
ultraviolet. This divergence is set to zero in dimensional
regularization. Using dimensional regularization, the re-
sult of the integration of k can be written as

T1~q !5g2M2e

GS 12
d

2 D
~4p!d/2 @2q22i«#~d22 !/2, (30)

where G(x) is the gamma function. The limit d→3 is
regular, and Eq. (30) reduces to

T1~q !5i
g2q

4p
. (31)

This expression is simply Fermi’s golden rule. The quan-
tum corrections from higher orders are given by the dia-
grams like the two-loop graph in Fig. 3. They form a
geometric series that can be summed up exactly, and the
exact 2→2 amplitude becomes

T~q !52
2g2

g1T1~q !
. (32)

The scattering amplitude for 2→2 scattering in the un-
derlying theory described by the action (19) can be cal-
culated by solving the two-body scattering problem in
the potential V0(x2x8). The contribution from s-wave
scattering is (Landau and Lifshitz, 1980)

T5
16p

q
eid0(q) sin@d0~q !# , (33)

where d0(q) is the s-wave phase shift. We next write the
low-momentum expansion as follows:

FIG. 3. Diagrams contributing to the 2→2 scattering ampli-
tude.
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q cot@d0~q !#5F2
1
a

1
1
2

rsq
21¯G . (34)

This expansion defines the scattering length a and the
effective range rs . Using the identity eix sin(x)
51/@cot(x)2i#, we can expand the T matrix in powers of
momentum q . Matching Eqs. (32) and (33) through first
order in the external momentum q using Eq. (34), we
obtain

g58pa . (35)

The parameter h can be determined by going to the next
order in the low-momentum expansion. We shall do this
in Sec. III.E. Similarly, the parameter g3 can be deter-
mined by solving the three-body scattering problem in
the potential V0(x2x8) and demanding that the 3→3
scattering amplitudes in the full and in the effective
theory be the same at low momentum.

Traditionally, the starting point has been the inter-
atomic potential V0(x2x8). At low densities, it can be
shown that the ladder diagrams are of equal importance
and must be summed. The summation of these diagrams
can be expressed in terms of an effective interaction G
that satisfies an integral equation which also involves
V0(x2x8) (Beliaev, 1958; Fetter and Walecka, 1971).
The interatomic potential appearing in G can be elimi-
nated in favor of the scattering amplitude for two-
particle scattering. In the low-momentum limit, the ef-
fective interaction reduces to 8pa . The mean-field self-
energies, and therefore the first-order propagator and
spectrum, can be expressed in terms of the effective in-
teraction. Thus the spectrum reduces in the low-
momentum limit to the Bogoliubov spectrum.

B. Perturbative framework

We next discuss the perturbative framework set up by
Braaten and Nieto (1999a, 1999b), which can be used to
calculate systematically the low-energy properties of a
weakly interacting Bose gas.

We first parametrize the quantum field c in terms of a
time-independent condensate v and a quantum fluctuat-
ing field c̃ :

c5v1c̃ . (36)

The fluctuating field c̃ can be conveniently written in
terms of two real fields:

c̃5
1

&
~c11ic2!. (37)

Substituting Eqs. (36) and (37) into Eq. (25), we decom-
pose the action into three terms,

S@v ,c1 ,c2#5S@v#1S free@v ,c1 ,c2#1S int@v ,c1 ,c2# ,
(38)

where we have indicated that the action depends on v ,
as well, and switched to the variables c1 and c2 instead
of c* and c. S@v# is the classical action,



607Jens O. Andersen: Theory of the weakly interacting Bose gas
S@v#5E dtE ddxFmv22
1
2

gv4G , (39)

while the free part of the action is

S free@v ,c1 ,c2#5E dtE ddxF1
2

~ ċ1c22c1ċ2!

1
1
2

c1~¹21X !c11
1
2

c2~¹21Y !c2G ,

(40)

where

X5m23gv2, (41)

Y5m2gv2. (42)

The terms 3gv2 and gv2 in X and Y are often referred
to as mean-field self-energies. The interaction part of the
action is

S int@v ,c1 ,c2#

5E dtE ddxF&Jc11
1

&
Zc1~c1

21c2
2!

2
1
8

g~c1
21c2

2!2G . (43)

The sources in Eq. (43) are

J5@m2gv2#v , (44)

Z52gv . (45)

The propagator that corresponds to the free action
S free@v ,c1 ,c2# in Eq. (40) is

D~v ,p !5
i

v22e2~p !1i« S p22Y 2iv

iv p22X D . (46)

Here, p5upu, where p is the wave vector, v is the fre-
quency, and e(p) is the dispersion relation:

e~p !5A~p22X !~p22Y !. (47)

Note that one can diagonalize the matrix (46) by a field
redefinition, which is equivalent to a Bogoliubov trans-
formation in the operator approach. Such a field redefi-
nition, however, makes the interaction terms much more
complicated and increases the number of diagrams that
one needs to evaluate. For practical purposes, we there-
fore stick to the above propagator.

The partition function Z can be expressed as a path
integral over the quantum fields c1 and c2 (Negele and
Orland, 1988):

Z5E Dc1Dc2 eiS[v ,c1 ,c2]. (48)

All the thermodynamic observables can be derived from
the partition function Z. For instance, the free-energy
density F is given by
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F~m!5i
ln Z
V , (49)

where V is the spacetime volume of the system. The
pressure P(m) is

P~m!52F~m!. (50)

The number density n is given by the expectation value
^c* c& in the ground state:

n~m!5E Dc1Dc2 ~c* c!eiS[v ,c1 ,c2]. (51)

It can therefore be expressed as

n~m!52
]F~m!

]m
. (52)

The energy density E is given by the Legendre transform
of the free-energy density F:

E~n !5F~m!1nm . (53)

The free energy F is given by all connected vacuum
diagrams that are Feynman diagrams with no external
legs. The sum of the vacuum graphs is independent of
the condensate v . At this point it is convenient to intro-
duce the thermodynamic potential V(m ,v). The thermo-
dynamic potential is given by all one-particle irreducible
vacuum diagrams and can be expanded in the number of
loops:

V~m ,v !5V0~m ,v !1V1~m ,v !1V2~m ,v !1¯ , (54)

where the subscript n denotes the contribution from the
nth order in the loop expansion. If V is evaluated at a
value of the condensate that satisfies the condition

v̄5^c&, (55)

all one-particle reducible diagrams (those that are dis-
connected by cutting a single propagator line) vanish.
Thus evaluating the thermodynamic potential at the
value of the condensate that satisfies Eq. (55), one ob-
tains the free energy

F~m!5V0~m , v̄ !1V1~m , v̄ !1V2~m , v̄ !1¯ . (56)

Using Eq. (37), condition (55) reduces to ^c2&50 and
^c1&50. The first condition can be automatically satis-
fied by a suitable choice of the phase of c. The second
condition is then equivalent to

]V~m ,v !

]v
50. (57)

The value of the condensate that satisfies Eq. (57) is
denoted by v̄ . The free energy can also be expanded in
powers of quantum corrections around the mean-field
result F0(m):

F~m!5F0~m!1F1~m!1F2~m!1¯ . (58)

The loop expansion (56) of F(m) does not coincide with
the expansion (58) of F(m) in powers of quantum cor-
rections because of its dependence on v̄ . To obtain the
expansion of F in powers of quantum corrections, we
must expand the condensate v̄ in powers of quantum
corrections:
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v̄5v01v11v21¯ , (59)

where v0 is the classical minimum, which satisfies

]V0~m ,v !

]v
50. (60)

By expanding Eq. (57) about v0 , one obtains the quan-
tum corrections v1 ,v2 , . . . to the condensate. For in-
stance, the first quantum correction v1 to the classical
minimum v0 is

v152
]V1~m ,v !

]v U
v5v0

Y ]2V0~m ,v !

]v2 U
v5v0

. (61)

The mean-field free-energy density is

F0~m!5V0~m ,v0!. (62)

Inserting Eq. (59) into Eq. (56) and expanding in powers
of v1 ,v2 , . . . , we obtain the quantum expansion of the
free-energy density. The first quantum correction to the
free-energy density is

F1~m!5V1~m ,v0!, (63)

and the second quantum correction to the free-energy
density is

F2~m!5V2~m ,v0!1v1

]V1~m ,v !

]v U
v5v0

1
1
2

v1
2 ]2V0~m ,v !

]v2 U
v5v0

. (64)

Expressions for higher-order corrections to the free en-
ergy can be derived in the same way.

The value of the condensate v that minimizes the clas-
sical action (39) is given by v05Am/g . The linear term in
Eq. (43) then vanishes since J50. At the minimum of
the classical action, both the propagator (46) and the
dispersion relation (47) simplify significantly, since we
also have Y50. At the minimum, these equations re-
duce to

D~v ,p !5
i

v22e2~p !1i« S p2 2iv

iv e2~p !/p2D , (65)

e~p !5pAp212m . (66)

The spectrum (66) was first derived by Bogoliubov
(1947). The dispersion relation is gapless and linear for
small wave vectors. This reflects the spontaneous break-
down of the U(1) symmetry. The dispersion relation
changes from linear to quadratic in the vicinity of p
5A2m , which is called the inverse coherence length. For
very large wave vectors, the dispersion relation is ap-
proximately e(p)5p21m , where the second term rep-
resents the mean-field energy due to interaction with
condensed particles.

We next comment on how traditional approaches fit
into the more general perturbative framework discussed
in this section. The starting point is the second-
quantized grand-canonical Hamiltonian that includes a
two-body potential V0(x):
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H5E ddxc* ~x!@2¹22m#c~x!

1
1
2 E ddxE ddx8c* ~x!c* ~x8!

3V0~x2x8!c~x!c~x8!. (67)

This Hamiltonian is nonlocal and is often replaced by a
local one. This is done by approximating the true two-
body potential by a local two-body interaction, whose
strength g is tuned to reproduce the scattering length of
V0(x2x8). This yields

H5E ddx H c* @2¹22m#c1
1
2

g~c* c!2J . (68)

The grand-canonical Hamiltonian is expressed in terms
of creation and annihilation operators that satisfy the
standard equal-time commutation relations. Bogoli-
ubov’s idea was to treat the p50 momentum separately
(Bogoliubov, 1947). Since this state is macroscopically
occupied, to a very good approximation, the creation
and annihilation operators for bosons with p50 com-
mute. Thus they can be treated classically and be re-
placed by a constant which is the condensate density.
This step is equivalent to splitting the quantum field c

into a condensate v and a fluctuating field c̃ , as in Eq.
(36).

In the Bogoliubov approximation (Bogoliubov, 1947),
one makes a quadratic approximation to the Hamil-
tonian by neglecting terms with three and four opera-
tors. Since the resulting Hamiltonian contains products
of two annihilation operators and products of two cre-
ation operators, it must be diagonalized by a canonical
transformation. The resulting quasiparticle spectrum is
then given by Eq. (66).

In the Beliaev approximation (Beliaev, 1958), one
goes one step further by calculating the leading quantum
corrections to the quasiparticle spectrum (66). This is
done by including all one-loop diagrams, that is, all dia-
grams up to second order in the interaction in the self-
energies and then calculating the poles of the propaga-
tor. The correction to the Bogoliubov spectrum (66) was
first calculated by Beliaev (1958) and coincides with a
leading-order calculation in the approach outlined here.
We shall return to that calculation in Sec. III.D.

The perturbative framework has been formulated in
terms of two real fields, c1 and c2 . As noted in the
Introduction, one has traditionally presented the theory
in terms of normal and anomalous Green’s functions,
G11(v ,p) and G12(v ,p), and the self-energies S11(v ,p)
and S12(v ,p). This formulation corresponds to using
the fields c* and c instead of c1 and c2 . In either for-
mulation, one ends up with a 232 matrix for the propa-
gator and self-energies, and the amount of work to cal-
culate most quantities is comparable. For readers who
want to translate intermediate results to a more familiar
language, we note that

S11~v ,p !5
1
2

@P11~v ,p !1P22~v ,p !# , (69)
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S12~v ,p !5
1
2

@P11~v ,p !2P22~v ,p !# , (70)

where P ij(v ,p) are the components of the 232 self-
energy matrix.

We next comment on the Hugenholz-Pines theorem
(Hugenholz and Pines, 1958), which ensures that the
spectrum does not exhibit a gap. This has been proven
to all orders in perturbation theory. It is simply the
Goldstone theorem for a dilute Bose gas with a sponta-
neously broken continuous symmetry. The Hugenholz-
Pines theorem is normally given in terms of normal and
anomalous self-energies:

m5S11~0,0!2S12~0,0!.

In terms of the self-energies P ij(v ,p), the theorem
takes a particularly simple form:

m5P22~0,0!. (71)

C. Ground-state energy density and condensate depletion

In this subsection, we calculate the leading quantum
correction to the ground-state energy and the depletion
of the condensate. While these results are standard text-
book material (Fetter and Walecka, 1971), it is instruc-
tive to see how they are derived within the present
framework.

The mean-field thermodynamic potential V0(m ,v) is
given by the terms in the classical action (39):

V0~m ,v !52mv21
1
2

gv4. (72)

The minimum of the mean-field thermodynamic poten-
tial is given by v05Am/g and the mean-field free energy
F0 is obtained by evaluating Eq. (72) at the minimum:

F0~m!52
m2

2g
. (73)

The mean-field number density follows from differenti-
ating Eq. (73) with respect to m. The chemical potential
in the mean-field approximation is then obtained by in-
version:

m05gn . (74)

From Eq. (53), the mean-field energy E0 is easily found
to be

E0~n !5
1
2

gn2

54pan2. (75)

The mean-field result for the energy density was first
obtained by Bogoliubov (1947).

The one-loop contribution to the thermodynamic po-
tential V(m ,v) is given by

V1~m ,v !5i
ln Z0

V , (76)
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where Z0 is the path integral involving the quadratic
quantum fluctuations around the mean field,

Z05E Dc1Dc2 eiSfree[v ,c1 ,c2]

5ei*dt*d3x~1/2 ! det D21(v ,p). (77)

Here D21(v ,p) is the inverse of the propagator (46)
and det denotes a determinant in the functional sense.
Using the fact that Tr ln A5ln det A for any matrix A ,
we obtain

V1~m ,v !52
1
2

iE dv

2p E ddk

~2p!d ln det D21~v ,k !

1D1V . (78)

Here we have added D1V , which is the one-loop coun-
terterm. The counterterm is added to cancel the ultra-
violet divergences that one encounters when evaluating
the integral in Eq. (78). After integrating over v using
Eq. (A1), we obtain

V1~m ,v !5
1
2 E ddk

~2p!d A~k22X !~k22Y !

1D1V~m ,v !. (79)

The one-loop contribution F1 to the free energy is ob-
tained by evaluating Eq. (79) at the classical minimum,
where Y50 and X522m . The one-loop free energy
then reduces to

F011~m!52
m2

2g
1

1
2 E ddk

~2p!d kAk212m1D1F~m!

52
m2

2g
1

1
2

I0,21~2m!1D1F~m!, (80)

where the integral Im ,n(L) is defined in the Appendix,
and D1F is the one-loop counterterm. The integral
I0,21(L) has quintic, cubic, and linear ultraviolet diver-
gences that are set to zero in dimensional regularization.
The counterterm D1F is therefore zero, and the limit d
→3 is regular. We obtain

F011~m!52
m2

2g F12
4A2mg2

15p2 G . (81)

It might be useful to see how the renormalization pro-
cedure works with a simple ultraviolet cutoff. In that
case, the one-loop contribution to the free energy F1 can
be written as

F1~m!5
1
2 E

M d3k

~2p!3 kAk212m1D1F, (82)

where the integral is calculated in d53 dimensions and
the superscript M indicates that uku,M has been im-
posed. We can now rewrite this as

F1~m!5
1
2 E

M d3k

~2p!3 FkAk212m2k22m1
m2

2k2G
1EM d3k

~2p!3 Fk21m2
m2

2k2G1D1F. (83)

The first integral is now convergent in the limit M→`
and the divergences have been isolated in the second
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integral. This first term goes like M5 and is independent
of m and g . It can therefore be removed by a vacuum-
energy counterterm D1E. The form of D1F can be found
by substituting g→g1D1g and m→m1D1m in F0(m)
and expanding to first order in D1g and D1m . Including
the vacuum counterterm, we obtain

DF1~m!52
m

g
D1m1

m2

2g2 D1g1D1E. (84)

The counterterms needed to cancel the quintic, cubic,
and linear divergences can then be found by inspection.
One obtains

D1E5 2
1
2 E

M d3k

~2p!3 k2, (85)

D1g5
1
2

g2EM d3k

~2p!3

1
k2 , (86)

D1m5
1
2

gEM d3k

~2p!3 . (87)

Note that the counterterm D1g in Eq. (86) is precisely
what is needed to cancel the divergence appearing in the
one-loop correction to the scattering length, Eq. (29).
This is in accord with our comment on counterterms in
footnote 3. The renormalized one-loop free energy can
then be written as

F011~m!52
m2

2g
1

1
2 E

M d3k

~2p!3 Fe~k !2k22m1
m2

2k2G .

(88)
We can now take the limit M→` . Evaluating the inte-
gral, we recover Eq. (81).

Finally, we mention that the pseudopotential method
(Huang and Yang, 1957) is an alternative way of treating
ultraviolet divergences. One replaces the contact poten-
tial gd3(x)/2 by the pseudopotential gd3(x)(]/]x)x/2,
and one can avoid the ultraviolet divergences by evalu-
ating the partial derivative at the right stage of the cal-
culation. We shall not discuss this method any further.

Using Eqs. (52), (80), and (A7), we obtain the number
density in the one-loop approximation

n011~m!5
m

g
2

1
2

I1,1~2m!5
m

g F12
A2mg2

3p2 G . (89)

Inverting Eq. (89) to obtain the chemical potential as a
function of the number density, one finds

m011~n !5gn1
1
2

gI1,1~2gn !

58panF11
32
3
Ana3

p G . (90)

Note that here and in the following we are replacing the
argument m by gn in the loop integrals Im ,n , since cor-
rections are of higher order in Ana3. Using Eqs. (53),
(80), and (89), we obtain the energy density in the one-
loop approximation:
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E011~n !5
1
2

gn21
1
2

I0,21~2gn !

54pan2F11
128
15
Ana3

p G . (91)

The leading quantum correction to the mean-field result
(75) was first derived by Lee, Huang, and Yang (Lee,
Huang, and Yang, 1957; Lee and Yang, 1957) for a hard-
sphere potential. Later, it was shown that it is universal
in the sense that it applies to all short-range potentials
with scattering length a (Brueckner and Sawada, 1957;
Beliaev, 1958; Lieb, 1963). Note that the result (91) is
nonanalytic in the scattering length a . This shows that
the result is nonperturbative from the point of view of
‘‘naive’’ perturbation theory, where one uses free-
particle propagators. It corresponds to the summation of
an infinite set of one-loop diagrams, with repeated inser-
tions of the operator 3

2 gv2c1
2. The structure of these

diagrams is the same as the ring diagrams first discussed
by Gell-Mann and Brueckner for the nonrelativistic
electron gas (Gell-Mann and Brueckner, 1957), and they
are summed in the same manner. It is interesting to note
that each diagram in the series is increasingly divergent
in the infrared, but the sum is infrared convergent.

Using Eq. (36) and the parametrization (37), the ex-
pression for the number density becomes

n5v21
1
2 ^c1

21c2
2&. (92)

The condensate density n0 is given by the expectation
value v25u^c&u2. At the mean-field level, one neglects
the fluctuations of c1 and c2 and replaces ^c* c& by
u^c&u2. The total number density is then equal to the
condensate density. But when quantum fluctuations are
taken into account, this is no longer the case. Due to
interactions, some of the particles are kicked out of the
condensate and are not in the k50 momentum state.
The difference n2n0 is called the depletion of the con-
densate and is proportional to the diluteness parameter
Ana3. The one-loop diagrams that contribute to the ex-
pectation values ^c1

2& and ^c2
2& are shown in Fig. 4. The

solid line denotes the diagonal propagator for c1 , and
the dashed line the diagonal propagator for c2 . The
solid circles denote an insertion of the operator c1

2 or
c2

2. Taking these one-loop effects into account, Eq. (92)
reduces to

FIG. 4. One-loop diagrams contributing to expectation values
^c1

2& and ^c2
2&.



611Jens O. Andersen: Theory of the weakly interacting Bose gas
n011~n0!5n01
1
2

iE dv

2p E ddk

~2p!d F k21e2~k !/k2

v22e2~k !1i«G
5n01

1
4

@I1,1~2gn0!1I21,21~2gn0!# . (93)

Using the expressions for the integrals in the Appendix,
we obtain

n011~n0!5n0F11
8
3
An0a3

p G . (94)

The result (94) for the depletion was first obtained by
Bogoliubov (1947). In recent experiments, Cornish et al.
(2000) were able to vary the s-wave scattering length a
for 85Rb atoms over a large range by applying a strong
external magnetic field and exploiting the existence of a
Feshbach resonance at B;155 G. Values for Ana3 up to
approximately 0.1 were obtained and should be suffi-
ciently large to see deviations from the mean field in
experiments. In order to observe this quantum phenom-
enon, it is essential that experiments be carried out at
sufficiently low temperature so that the thermal deple-
tion of the condensate is negligible.

D. Collective excitations

The Bogoliubov spectrum is given by Eq. (66) and
was derived from the microscopic theory represented by
the action (25). It is linear for small momentum p with
slope A2m . The spectrum v(p) of collective excitations
is given by the poles of the propagator. The poles are the
solutions to the equation
Rev. Mod. Phys., Vol. 76, No. 2, April 2004
det@D0
21~v ,p !2P~v ,p !#50, (95)

where D0(v ,p) is the real-time version of the free
propagator (6) and P(v ,p) is the 232 self-energy ma-
trix. The dispersion relation v(p) is generally complex
and can therefore be written as

v~p !5Re v~p !2ig~p !. (96)

The real part Re v(p) gives the energies of the excita-
tions, while the imaginary part g(p) represents the
damping of the excitations. The Bogoliubov spectrum is
purely real and therefore, in this approximation, the ex-
citations have an infinite lifetime.

In the following, we calculate the leading quantum
correction to the real part of the spectrum in the long-
wavelength limit and thus reproduce Beliaev’s classic re-
sult (Beliaev, 1958). The one-loop Feynman diagrams
that contribute to the self-energies are shown in Figs.
5–7.4 The solid line denotes the diagonal propagator for
c1 and the dashed line the diagonal propagator for c2 .
The off-diagonal propagators for c1 and c2 are repre-
sented by lines that are half solid and half dashed. One-
loop contributions to self-energies are down by a factor
of Ana3 compared to the mean-field terms in the inverse
propagator. It is therefore consistent to evaluate the self-
energies using the mean-field dispersion relation e(p),
since corrections would be suppressed by at least a fac-
tor of na3.

In the following, we calculate the off-diagonal self-
energy P12(v ,p) explicitly. The expression is
P12~e~p !,p !5g2v2E dv

2p E ddk

~2p!d H 3@v1e~p !#k2

$@v1e~p !#22e2~ up1ku!1i«%@v22e2~k !1i«#

2
@v1e~p !#e2~k !/k2

$@v1e~p !#22e2~ up1ku!1i«%@v22e2~k !1i«# J . (97)
After integrating over v, we find that the imaginary part
of P12„e(p),p… becomes

Im P12„e~p !,p…52g2v2E ddk

~2p!d

3H @e~p !1e~k !#@3k2/e~k !2e~k !/k2#

@e2~ up1ku!2e2~p !2e2~k !#

1
3k22e2~k !/k2

$@e~k !1e~p !#22e2~ up1ku!% J . (98)

Finally, we expand Eq. (98) in powers of the external
momentum p . We simplify using Eqs. (A7)–(A9),
whereupon the self-energy reduces to
Im P12„e~p !,p…5
1
8

g~2gv2!3/2@3I1,32I21,1#p

1O~p3/Agv2!. (99)

Notice in particular that P12(0,0) vanishes. This prop-
erty holds to all orders in perturbation theory and fol-
lows from time-reversal invariance. Note also that
P21(v ,p)52P12(v ,p), which also holds to all orders in
loop expansion. The real part of the self-energies
P11„e(p),p… and P22„e(p),p… are expanded about zero

4Note that the sum of all one-particle reducible diagrams that
contribute to the self-energies vanishes. This sum is propor-
tional to the derivative of the effective potential and is zero
when evaluated at the minimum of the effective potential.
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external momentum in the same way. Including the
mean-field self-energies, one finds

Re P11„e~p !,p…53gv21
1
4

g@3I1,11I21,21

2gv2~9I2,326I0,11I22,21!#

1O~p2!, (100)

Re P22„e~p !,p…5gv21
1
12

g@9I1,113I21,21

2p2gv2~6I3,5211I1,313I21,1!#

1O~p4/gv2!. (101)

The expressions for the self-energies P11„e(p),p…,
P22„e(p),p…, and P12„e(p),p… are infrared divergent.
The integrals I22,21(2gn0) and I21,1(2gn0) both have a
logarithmic divergence as the loop momentum k goes to
zero. These divergences show up as poles in e in Eqs.
(A16) and (A17). However, it is important to point out
that they cancel in the final results for physical quanti-
ties, as we shall see below.

The real part of Eq. (95) can now be written as

@v2Im P12„e~p !,p…#25@p22m1Re P11„e~p !,p…#

3@p22m1Re P22„e~p !,p…# .

(102)

The next step is to eliminate the chemical potential from
Eq. (102) by minimizing the one-loop thermodynamic

FIG. 5. One-loop diagrams contributing to the self-energy
P11(v ,p).

FIG. 6. One-loop diagrams contributing to the self-energy
P22(v ,p).
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potential V011(m ,v). This is found by differentiating
the sum of Eqs. (72) and (79) with respect to the con-
densate v and setting it to zero, which yields

052m1gv21
1
4

gE ddp

~2p!d

3~p22Y !1~p22X !

A~p22X !~p22Y !
.

(103)

To the order in quantum corrections at which we are
calculating, it is consistent to evaluate the one-loop con-
tribution to Eq. (103) at the classical minimum v5v0 .
Equation (103) then reduces to

052m1gv21
1
4

g@3I1,11I21,21#52m1P22~0,0!.

(104)

Equation (104) shows that the Goldstone theorem is sat-
isfied at the stationary point of the thermodynamic po-
tential. Using Eq. (93), we see that the chemical poten-
tial obtained from Eq. (90) agrees with Eq. (104).
Solving for the chemical potential and substituting this
result as well as the self-energies given by Eqs. (99)–
(101) into Eq. (102), we obtain

Fv1
1
8

g~2gv2!3/2~3I1,32I21,1!pG2

5p2Fp212gv2S 12
1
8

g~9I2,31I22,2126I0,1! D G
3F12

1
12

g2v2~6I3,5211I1,313I21,1!G . (105)

We can now solve for v in Eq. (105). In the long-
wavelength limit p!A2gv2, we obtain

Re v~p !5pA2gv2F12
g2v2

24
~6I3,517I1,323I21,1!G

3F12
1
16

g~9I2,326I0,11I22,21!G
5pA2gn0F11

28
3
An0a3

p G . (106)

The infrared-divergent terms that appear in the expres-
sions for the self-energies cancel algebraically after hav-
ing used the relations (A7)–(A9). The ultraviolet diver-
gences associated with the integrals in Eq. (106) are
again power divergences. Thus one immediately obtains
a finite result, and this is another example of the conve-
nience of employing dimensional regularization. The re-
sult (106) was first obtained by Beliaev (1958). One can
easily check that the slope of v in Eq. (106) is the same
as the macroscopic speed of sound c , which one obtains
from differentiating the pressure with respect to the

FIG. 7. One-loop diagrams contributing to the self-energy
P12(v ,p).
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number density (Fetter and Walecka, 1971). This equal-
ity was proven to all orders in perturbation theory by
Gavoret and Nozier̀es (1964) and by Hohenberg and
Martin (1965).

The effective-field-theory approach presented in this
section is based on a Cartesian parametrization of the
quantum field c̃ in Eq. (37). A similar effective-field-
theory approach was developed by Popov (1987) and
later extended by Liu (1997, 1998). Instead of using a
Cartesian parametrization of the field c, it was param-
etrized using the density n and the phase x:

c~x,t !5An~x,t ! eix(x,t). (107)

The density field is shifted in analogy with the shift in
Eq. (36):

n~x,t !5v21s~x,t !. (108)

We recall that condition (55) simplifies calculations,
since it makes all one-particle reducible diagrams van-
ish. This condition is replaced by

^s&50. (109)

Using the parametrization (107) together with Eq. (108),
we find that the action (25) takes the form

S5S@v#1E dtE ddxF1

v
Js1

1
2

~xṡ2ẋs!2
1
2

gs2

2v2~¹x!22
1

4v2 ~¹s!22s~¹x!21
1

4v4 s~¹s!2

1¯G , (110)

where the dots indicate an infinite series of higher-order
operators. The classical action S@v# and the source J are
given by Eqs. (39) and (44), respectively. After a rescal-
ing of the fields s and x, the free propagator correspond-
ing to the action (110) is identical to Eq. (65). However,
the interaction vertices are different. In particular, the
vertex corresponding to the operator s(¹x)2 is momen-
tum dependent. One feature of the perturbative expan-
sion that follows from the action (110) is the absence of
infrared divergences in individual diagrams (Popov,
1983). The momentum dependence of the trilinear inter-
action s(¹x)2 compensates for the singular behavior of
the propagator at low momenta. This difference should
not be viewed as being fundamental, since infrared di-
vergences always cancel in physical quantities. We have
already seen one example of this when we considered
the quantum correction to the Bogoliubov dispersion re-
lation. On the other hand, individual diagrams are more
severely ultraviolet divergent, but these cancel when the
diagrams are added. The above features merely repre-
sent a different way of organizing the perturbative cal-
culations. The equality of calculations of physical quan-
tities order by order in perturbation theory simply
reflects the reparametrization invariance of the func-
tional integral.

As mentioned before, the imaginary part of the dis-
persion relation represents the damping of the collective
Rev. Mod. Phys., Vol. 76, No. 2, April 2004
excitations. In the case of a dilute Bose gas, this term
was first calculated by Beliaev (1958). In the long-
wavelength limit, his calculations showed that the damp-
ing rate is proportional to p5:

g~p !5
3p5

320pn0
. (111)

The imaginary part g(p) is connected with one phonon
decaying into two phonons with lower energy, often re-
ferred to as Beliaev damping. The action (110) was later
used by other authors (Popov, 1983; Liu, 1997, 1998) to
rederive Eq. (111). The calculations represent a signifi-
cant simplification compared to the original derivation.

E. Nonuniversal effects

In the previous subsection, it was shown that the
dominant effects of the interaction between the atoms
could be subsumed in a single coupling constant called
the s-wave scattering length. Thus, to leading order in
the low-density expansion, all interatomic potentials
with the same s-wave scattering length will have the
same properties, and this property is called universality.
However, at higher orders in the low-density expansion,
physical quantities will depend on the details of the in-
teratomic potential such as the effective range rs . These
are called nonuniversal effects. A detailed analysis of
nonuniversal effects can be found in the paper by
Braaten, Hammer, and Hermans (2001). We discuss
these effects next.

Including the operator @¹(c* c)#2 in Eq. (25), we can
again calculate exactly the scattering amplitude for
s-wave scattering. Summing the contributions from the
diagrams in Fig. 3, we obtain (Braaten et al., 2001)

T~q !52F 1
2g14hq2 1i

q

16pG21

. (112)

The coupling constant h is then related to the effective
range rs of the true potential (Braaten et al., 2001), and
it is determined by matching Eqs. (33) and (112)
through third order in q . This yields

h52pa2rs . (113)

After performing the shift (36), we find that the opera-
tor @¹(c* c)#2 also contributes to the free part of the
action. Including the effects of this operator, one obtains
a modified propagator and a modified dispersion rela-
tion:

D~v ,p !5
i

v22e2~p !1i« S p2 2iv

iv e2~p !/p2D , (114)

where the new dispersion relation is

e~p !5pA~112hv2!p212gv2. (115)

The spectrum (115) has the Bogoliubov form with modi-
fied coefficients. It is therefore straightforward to recal-
culate the ground-state energy density and the depletion
of the condensate by rescaling the momentum p
→pA112hv2. For instance, the expression for the num-
ber density is analogous to Eq. (93):
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n011~n0!5n01
1
4 F E ddp

~2p!d

p2

e~p !
1

e2~p !

p2 G
5n01

1
4

@112hv2#2 ~d11 !/2I1,1

1
1
4

@112hv2#2 ~d21 !/2I21,21 . (116)

The limit d→3 is regular, and we obtain

n011~n0!5n0F11
1

24p2

A8n0g3

~112hv2!2 ~122hv2!G .

(117)

Using Eqs. (35) and (113), and expanding to first order
in the effective range rs , we find

n011~n0!5n0F11
8
3
An0a3

p
2

32p2rs

a S n0a3

p D 3/2G .

(118)

Similarly, we can calculate the ground-state energy den-
sity. Expanding to first order in the effective range rs ,
one finds (Braaten et al., 2001)

E011~n !54pan2F11
128
15
Ana3

p

2
1024p2rs

15a S na3

p D 3/2G . (119)

Effective field theory can be used to determine at which
order in the low-density expansion a given operator
starts to contribute to various physical quantities. As an
example, we consider the energy density E. Each power
of c* c contributes a factor of n . Each power of ¹ con-
tributes a factor of Ana . Each loop order in the quan-
tum loop expansion contribitutes a factor of Ana3. The
derivative interaction @¹(c* c)#2 does not contribute to
the energy density at the mean-field level for a homoge-
neous Bose gas, since ¹v obviously vanishes in this case.
It first contributes at the one-loop level, and this gives
one factor of Ana3. There are two powers of c* c and
two powers of ¹, which give two factors of n and Ana ,
respectively. This yields a contribution proportional to
rsn

2(na3)3/2, in accordance with the explicit calculation
(119).

We next comment on the nonuniversal effects that
arise in higher-order calculations of the energy density.
For simplicity, we ignore all other coupling constants
than g . The leading term is the mean-field contribution
given in Eq. (75). A one-loop calculation gives rise to a
universal correction proportional to Ana3 shown in Eq.
(91). At the two-loop level, one encounters two terms.
The first is a universal logarithmic correction propor-
tional to na3 ln na3. This term was first calculated by Wu
(1959). The second term is a nonuniversal term propor-
tional to na3, first calculated by Braaten and Nieto
(1999b). It comes about as follows. At the two-loop
level, there is a logarithmic ultraviolet divergence that
cannot be canceled by a local two-body counterterm of
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the form Dg(c* c)2. The only way to cancel it is to add
to the Lagrangian a local counterterm of the form
Dg3(c* c)3 and absorb the divergence in the coefficient
of this operator. One can see the necessity of such an
operator by considering 3→3 scattering. At the two-
loop level, or fourth order in a , there are Feynman dia-
grams that depend logarithmically on the ultraviolet cut-
off. They give an additional momentum-independent
contribution to the 3→3 scattering amplitude. In order
to reproduce the low-energy scattering of three atoms,
the local momentum-independent operator Dg3(c* c)3

must be included in the effective Lagrangian. The coun-
terterm of this operator that removes the logarithimic
divergences from the 3→3 scattering amplitude is then
exactly the same counterterm needed to remove the
logarithmic divergence in the energy density.

The coefficient g3 generally depends on the properties
of the two-body and three-body potentials. The operator
(c* c)3 in Eq. (25) takes into account not only the con-
tribution from 3→3 scattering from a possible three-
body potential, but also the contribution from the suc-
cessive 2→2 scattering via the potential V0(x). One way
to determine the coefficient g3 would be to solve the 3
→3 scattering problem for the potential V0(x). Alterna-
tively, one could determine it from calculating the
ground-state energy density of bosons interacting
through V0(x). Such a strategy was recently employed
by Braaten, Hammer, and Hermans (2001) using the
Monte Carlo calculations of the condensate fraction and
the energy density for four different model potentials of
Giorgini, Boronat, and Casulleras (1999). The four po-
tentials were a hard-sphere potential with radius a , two
soft-sphere potentials with height V0 and radii R55a
and R510a , and a hard-sphere square-well potential
with depth V0 and inner and outer radii of R5a/50 and
R5a/10, respectively. These four potentials all have the
same s-wave scattering length a , but different effective
ranges rs . By calculating the energy density for the ho-
mogeneous Bose gas in the low-density expansion and
matching it to the Monte Carlo results, Braaten, Ham-
mer, and Hermans were able to estimate the coefficient
g3 . Due to the large statistical errors, they could not find
any deviation from universality in the three-body con-
tact parameter. In order to determine the coefficient
more accurately, one needs data with greater precision
at various densities.

IV. WEAKLY INTERACTING BOSE GAS AT FINITE
TEMPERATURE

In this section, we discuss the weakly interacting Bose
gas at finite temperature. We first review the Hartree-
Fock-Bogoliubov (HFB) approximation, the Bogoliubov
approximation, and the Popov approximation. We then
discuss Wilson’s renormalization-group approach ap-
plied to this problem. Finally, we discuss improved varia-
tional approaches to the finite-temperature Bose gas.



615Jens O. Andersen: Theory of the weakly interacting Bose gas
A. Hartree-Fock Bogoliubov approximation

The self-consistent Hartree-Fock-Bogoliubov ap-
proximation and its relation to the Bogoliubov approxi-
mation and the Popov approximation have been dis-
cussed in detail (Griffin, 1996; Shi and Griffin, 1998;
Hutchinson et al., 2000). The starting point is the action
(25) in imaginary time:

S@c* ,c#5E
0

b

dtE ddxH c* F ]

]t
2m2¹2Gc

1
1
2

g~c* c!2J . (120)

The next step is to treat the interaction term using a
self-consistent quadratic approximation. After perform-
ing the shift (36), there are terms that are cubic and
quartic in the quantum field c̃ . These terms are approxi-
mated as

c̃* c̃c̃'2^c̃* c̃&c̃1^c̃c̃&c̃* , (121)

c̃* c̃c̃* c̃'4^c̃* c̃&c̃* c̃1^c̃* c̃* &c̃c̃1^c̃c̃&c̃* c̃* .
(122)

Terms involving the expectation value of a single field
have been omitted since ^c̃&5^c̃* &50. Moreover, terms
involving the expectation values of three or four fields
are omitted. The quantities ^c̃* c̃& and ^c̃c̃& are often
referred to as the normal and anomalous averages, re-
spectively.

We next write the quantum field c̃5(c11ic2)/& and
insert Eqs. (121) and (122) into the action (120). We
then obtain an approximate action, which is quadratic in
the fluctuating fields:

S@v ,c1 ,c2#5S@v#1S free@v ,c1 ,c2#1S int@v ,c1 ,c2# ,

(123)
where in analogy with the zero-temperature case, we
have defined the classical, free, and interacting parts of
the action by

S@v#5E
0

b

dtE ddxF2mv21
1
2

gv4G , (124)

S free@v ,c1c2#5E
0

b

dtE ddxF1
2

i~c1ċ22ċ1c2!

1
1
2

iWc1c21
1
2

c1~2¹21X !c1

1
1
2

c2~2¹21Y !c2G , (125)

S int@v ,c1 ,c2#5E
0

b

dtE ddxH F2m1gS v212^c̃* c̃&

1
1
2 ^c̃c̃&1

1
2 ^c̃* c̃* & D G&vc1

1
1
2

@^c̃* c̃* &2^c̃c̃&#&vc2J , (126)
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where

W5g@^c̃c̃&2^c̃* c̃* &# , (127)

X52m1gF3v212^c̃* c̃&1
1
2 ^c̃c̃&1

1
2 ^c̃* c̃* &G ,

(128)

Y52m1gFv212^c̃* c̃&2
1
2 ^c̃c̃&2

1
2 ^c̃* c̃* &G .

(129)

Requiring that the terms linear in c1 and c2 in Eq. (126)
vanish immediately yields

05^c̃* c̃* &2^c̃c̃&, (130)

052m1gFv212^c̃* c̃&1
1
2 ^c̃c̃&1

1
2 ^c̃* c̃* &G . (131)

The equation of motion for the quantum field c̃ follows
from Eq. (125) and reads

]c̃

]t
52@¹21m#c̃1g@2~v21^c̃* c̃& !c̃

1~v21^c̃c̃& !c̃* # . (132)

The propagator that corresponds to the free part of the
action is

D~vn ,p !5
1

vn
21e2~p ! S p222g^c̃c̃& vn

2vn p212gv2D ,

(133)

where we have used Eq. (130) to simplify. The disper-
sion relation is given by

e2~p !5@p222g^c̃c̃&#@p212gv2# . (134)

It can be shown that the anomalous average ^c̃c̃& is
negative (Griffin, 1996), so that the dispersion relation
(134) makes sense.

Equations (131)–(134) constituting the Hartree-Fock-
Bogoliubov approximation. One of the attractive fea-
tures of this approximation is that it is guaranteed to
respect the conservation laws that follow from the un-
derlying symmetries of the field theory. On the other
hand, one of the problems with it is that there is a gap in
the spectrum (134), which is a consequence of the spon-
taneously broken symmetry. Thus the HFB approxima-
tion violates the Goldstone theorem. Shi and Griffin
(1998) have argued that the problem of a gap in the
HFB approximation is due to overcounting diagrams
that contribute to the anomalous self-energy and are
second order in the interaction, making it inconsistent to
that order in the interaction.

Another problem with the HFB approximation is that
is it computationally difficult to apply. One starts with
some initial guess for the condensate density and the
chemical potential, as well as the normal and anomalous
averages satisfying Eq. (131). One then solves for the
infinitely many normal modes in Eq. (132). These nor-
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mal modes are then used to calculate the normal and
anomalous averages. The procedure is iterated to
self-consistency.5 In this way, one obtains information
about the different normal modes. However, since the
HFB approximation has a gap, some of this information
must be qualitatively incorrect.

The HFB approximation can also be viewed as a
variational one (Blaizot and Ripka, 1986), although the
equivalence seems to have gone unnoticed in some of
the literature. The idea is to make a Gaussian ansatz for
the ground-state wave functional and the excitations.
The variational parameters are the normal and anoma-
lous self-energies S11(vn ,p) and S12(vn ,p), which are
normally taken to be independent of frequency and mo-
mentum. The corresponding terms S11(vn ,p)c* c and
S12(vn ,p)cc are quadratic in fields and are simply
added to and subtracted from the Lagrangian. Express-
ing the normal and anomalous self-energies in terms of
P11 and P22 , the action can be split into a free part and
an interacting part according to

S free@v ,c1c2#5E
0

b

dtE ddxF1
2

i~c1ċ22ċ1c2!

1
1
2

c1~2¹22X !c1

1
1
2

c2~2¹22Y !c2G , (135)

S int@v ,c1 ,c2#5E
0

b

dtE ddxF1
2

~3gv22P11!c1
2

1
1
2

~gv22P22!c2
22

1

&
Zc1~c1

21c2
2!

1
1
8

g~c1
21c2

2!2G , (136)

where we have defined

X5m2P11 , (137)

Y5m2P22 , (138)

Z52gv2. (139)

The propagator that corresponds to the free part of the
action is

D~vn ,p !5
1

vn
21e2~p !

S p22Y vn

2vn p22X D ,

where the dispersion relation is given by

e~p !5A~p22X !~p22Y !. (140)

The next step is to calculate the thermodynamic poten-
tial in some approximate way including the interaction

5In practice, one faces the problem of ultraviolet divergences
in the anomalous average. Various renormalization procedures
have been discussed by Hutchinson et al. (2000).
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term (136), which consists of three- and four-point ver-
tices together with the subtracted self-energies. This is
done by calculating the thermodynamic potential ap-
proximately according to

V52mv21
1
2

gv41Tr ln D211^S int&, (141)

where ^A& is the thermal average of the operator A .
The thermodynamic potential then becomes

V52mv21
1
2

gv41
1
2

Tr ln D21

1
1
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P
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1
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gFX
P

p22Y
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21e2~p !G 2

1
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8

gFX
P

p22X
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21e2~p !G 2

1
1
2

~3gv22P11!X
P

F p22Y

vn
21e2~p !G

1
1
2

~gv22P22!X
P

F p22X

vn
21e2~p !G . (142)

The Feynman diagrams that correspond to the interac-
tion term in Eq. (142) are shown in Fig. 8. The solid
circle denotes an insertion of either 3gv22P11 or gv2

2P22 .
The condensate density v is determined by the sta-

tionarity condition

]V

]v
50. (143)

Using Eq. (142) for the thermodynamic potential, we
find that Eq. (143) becomes

052m1gv21
3
2

gX
P

F p22Y

vn
21e2~p !G

1
1
2

gX
P

F p22X

vn
21e2~p !G . (144)

The self-energies P11 and P22 are determined variation-
ally by requiring that they minimize the free energy:

FIG. 8. Vacuum diagrams included in the Gaussian approxi-
mation.
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]V

]P11
50, (145)

]V

]P22
50. (146)

Equations (145) and (146) are often referred to as gap
equations. Their solutions are

P1153gv21
3
2

gX
P

F p22Y

vn
21e2~p !G

1
1
2

gX
P

F p22X

vn
21e2~p !G , (147)

P225gv21
1
2

gX
P

F p22Y

vn
21e2~p !G

1
3
2

gX
P

F p22X

vn
21e2~p !G . (148)

The Feynman diagrams that correspond to the gap
equations (147) and (148) are shown in Fig. 9. Inserting
Eqs. (147) and (148) into Eq. (140), and using Eq. (144)
to eliminate the chemical potential, we obtain the
Hartree-Fock-Bogoliubov spectrum (134).

The Gaussian approximation can be made the starting
point for a systematic expansion procedure. This expan-
sion was first formulated by Okopinska (1987). Stancu
and Stevenson (1990) calculated the leading corrections
to the Gaussian approximation for a relativistic f4

theory in four dimensions. The Feynman diagrams that
are included in this next-to-leading-order calculation are
the three-loop diagrams, the two-loop setting sun dia-
grams, the two-loop double bubbles with a single self-
energy insertion, and the one-loop diagrams with two
insertions of a self-energy.

We next discuss the Bogoliubov and Popov approxi-
mations, which are obtained by making certain approxi-
mations in the full HFB approximation.

1. Bogoliubov approximation

The Bogoliubov appoximation amounts to neglecting
both the normal and the anomalous averages in Eqs.
(131)–(134). The chemical potential (131) then reduces
to

m5gv2. (149)

FIG. 9. Feynman diagrams included in the self-energies P11
and P22 in the Gaussian approximation.
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The spectrum (134) is given by

e~p !5pAp212m , (150)

which is gapless. The Bogoliubov approximation has a
natural interpretation in terms of Feynman diagrams. It
is obtained by neglecting the two-loop diagrams contrib-
uting to the thermodynamic potential (142). The self-
energies that follow from the gap equations are then
given by their mean-field values, so we have
P11(vn ,p)53gv2 and P22(vn ,p)5gv2. The stationar-
ity condition (143) simply reduces to Eq. (149). The free
energy is obtained by substituting the mean-field values
for the self-energies into the thermodynamic potential
evaluated at the minimum. This yields

F52
m2

2g
1

1
2X

P

ln@vn
21e2~p !#

52
m2

2g
1

1
2

I0,211
T

2p2 E
0

`

dp p2 ln@12e2be(p)# .

(151)

In the Bogoliubov approximation, one assumes that
most particles are in the zero-momentum state. Clearly,
this approximation is only valid at very low tempera-
tures where one can ignore the thermal depletion of the
condensate.

One can expand the free energy (151) about zero tem-
perature. At sufficiently low temperatures, the thermo-
dynamics are dominated by the phonon part of the spec-
trum. Using Eqs. (A10) and (A31), the free energy
reduces in the limit T!2m to

F52
m2

2g F12
4A2mg2

15p2 G2
p2T4

90~2m!3/2 . (152)

The other thermodynamic functions follow from the free
energy (151). In the low-temperature limit, the number
density becomes

n5
m

g F12
A2mg2

3p2 G2
p2T4

60~2m!5/2 . (153)

Inverting Eq. (153), we obtain the chemical potential in
the limit T!2gn :

m5gnF11A2ng3

3p2 G1
gp2T4

60~2gn !5/2 . (154)

Similarly, for temperatures T!2gn , the equilibrium en-
ergy density is

E54pan2F11
128
15
Ana3

p G2
p2T4

90~2gn !3/2 . (155)

Using Eq. (92), one can calculate the total number den-
sity as a function of the condensate density and tempera-
ture:
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n5n01
1
2X
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p21e2~p !

vn
21e2~p !

5n01
1
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@I1,11I21,21#

1
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4p2 E
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`
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p2@p21e2~p !#

e~p !
n@e~p !# . (156)

In the limit T!2gn0 , one finds

n5n0F11
8
3
An0a3

p G1
T2

24A2gn0

. (157)

Equations (152)–(157) were first obtained by Lee and
Yang (1958). The second term inside the brackets is the
quantum depletion of the condensate that was calcu-
lated in Sec. III.C. The last term is the thermal deple-
tion.

2. Popov approximation

In the Popov approximation (Popov, 1983), one ne-
glects the anomalous average in Eqs. (131)–(134). The
chemical potential (131) reduces to

m5g@v212^c̃* c̃&# . (158)

Similarly, the spectrum (134) becomes

e~p !5pAp212gv2 (159)

and is gapless. Note that the spectrum formally has the
same form as the Bogoliubov spectrum, but now the
condensate density depends on the temperature. The
number density n satisfies

n5n01^c̃* c̃&. (160)

Equations (158) and (160) constitute the equations of
state for the weakly interacting Bose gas in the Popov
approximation. For a given temperature T and total
number density n , they must be solved simultaneously
for the condensate density n0 and the chemical poten-
tial. Note in particular that the condensate density has a
strong temperature dependence. For small values of the
gas parameter, the condensate density as a function of
temperature typically deviates by only a few percent
from the result (17) for the ideal gas.

At T50, the expectation value in Eq. (158) is sup-
pressed by a factor of Ana3 compared to the mean-field
term. This implies that the Popov approximation gives
the same results as the Bogoliubov approximation for all
thermodynamic quantities up to corrections of the order
of the gas parameter Ana3. Since the Popov approxima-
tion does not include all corrections of order Ana3, it is
no more accurate than the Bogoliubov approximation at
zero temperature.

At higher temperatures, the Popov approximation
ought to give a better description than the Bogoliubov
approximation, since it takes into account the tempera-
ture dependence of the condensate. However, the Popov
approximation breaks down in a narrow temperature re-
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gion around Tc . This can be seen from the fact that the
Popov approximation predicts a first-order phase transi-
tion for the weakly interacting Bose gas, while universal-
ity arguments based on O(2) symmetry tell us that the
phase transition is of second order.6

The Popov approximation can also be interpreted in
terms of Feynman diagrams. This is done by expressing
propagators and interactions in terms of normal and
anomalous self-energies rather than P11 and P22 . The
Feynman diagrams that contribute to the thermody-
namic potential in the HFB approximation are still those
shown in Fig. 8, but the sum-integrals are now in terms
of normal and anomalous propagators, and the symme-
try factors are different. The Popov approximation for
the thermodynamic potential is then defined by keeping
the diagrams that involve normal propagators and ne-
glecting those that involve anomalous ones. The corre-
sponding gap equation, which follows from the varia-
tional principle, gives the normal self-energy as the sum
of the mean-field contribution 2gv2 and the one-loop
tadpole diagram that involves the normal propagator.
The anomalous self-energy is given by the mean-field
contribution gv2 alone. This definition has been given
before (Shi and Griffin, 1985). Finally, the free energy is
obtained by substituting the expressions for the self-
energies into the thermodynamic potential evaluated at
the minimum. The free energy in the Popov approxima-
tion has the Bogoliubov form (151).

3. Many-body T matrix and modified Popov approximation

In Sec. III.A, we calculated the exact scattering ampli-
tude for 2→2 scattering in a vacuum. In the limit where
the external momentum goes to zero, the two-body scat-
tering matrix goes to a constant. In the next section, we
shall show, using renormalization-group methods, that
the effective coupling constant for a weakly interacting
Bose gas is temperature dependent and in particular
that it vanishes at the critical temperature. This behavior
is expected at a second-order phase transition where the
correlation length goes to infinity (the effective chemical
potential or the effective mass goes to zero) due to the
fact that f4 theory is a trivial theory. It is therefore im-
portant to improve on the Popov theory by using an
effective temperature-dependent coupling constant. This
can be done by using the many-body T-matrix approxi-
mation. This approximation takes medium effects into
account by summing repeated two-body scattering pro-
cesses of quasiparticles in the gas rather than in the
vacuum. This is done by calculating the diagrams in Fig.
3 at finite temperature using the propagator (65). The
many-body T matrix TMB(k ,k ,K ;z) depends on the
relative momenta of the two atoms k and k before and

6In Sec. IV.C, we show that the long-distance properties of
the dilute Bose gas are given by a classical field theory in three
dimensions with an O(2) symmetry. In particular, the infrared
Wilson-Fisher fixed point is that of a three-dimensional O(2)
model. This model is known to have a second-order phase
transition.
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after collision, the total center-of-mass momentum K,
and the center-of-mass energy z . In the following, we
neglect this energy and momentum dependence, which
is a good approximation (Bijlsma and Stoof, 1996a; Shi
and Griffin, 1998).

At zero external momentum p , the one-loop diagram
in Fig. 3 is

T1~0 !52g2
X

P

1

vn
21e2~p !

5gI0,11g
1

p2 E
0

`

dp
p2

e~p !
n@e~p !# . (161)

By summing the geometric series corrresponding to the
diagrams shown in Fig. 3, we find (Bijlsma and Stoof,
1996a; Shi and Griffin, 1998)

TMB~0 !5
2g2

2g2T1~0 !
. (162)

We next consider the many-body T matrix at low tem-
perature. For T!2gn0 , we obtain

TMB~0 !5gH 11
A2n0g3

4p2 F12
p2

6 S T

n0g D 2G J . (163)

We note in particular that at T50, the many-body T
matrix reduces to g up to corrections of order Ana3.

The many-body T matrix has been used to obtain an
improved approximation from the Gaussian approxima-
tion (Bijlsma and Stoof, 1996a). The normal and anoma-
lous self-energies can be easily calculated from Eqs.
(147) and (148). We obtain

S1152gv21gX
P

F p22Y

vn
21e2~p !G1gX

P
F p22X

vn
21e2~p !G

52g@v21^c̃* c̃&# ,

S125gv21gX
P

F p22Y

vn
21e2~p !G2gX

P
F p22X

vn
21e2~p !G

5gv21
1

2g
S12T1~0 !. (164)

The last equation can be easily solved for S12 . Using
Eq. (162), we obtain

S125TMB~0 !v2. (165)

Thus the normal self-energy S11(0,0) is given in the
Hartree-Fock or one-loop approximation, while the
anomalous self-energy S12(0,0) is given in the many-
body T-matrix approximation. This observation moti-
vated Bijlsma and Stoof (1996a) to redo the calculation
using the many-body T matrix as an effective interac-
tion. This gives both the normal and anomalous self-
energies in the many-body T matrix approximation:

S1152TMB~0 !@v21^c̃* c̃&# , (166)

S125TMB~0 !v2. (167)
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These modified self-energies define a modified Gaussian
approximation, which was used to investigate the ther-
modynamic properties of the homogeneous Bose gas in
two and three dimensions. In three dimensions, this ap-
proach yields a second-order phase transition, but the
critical temperature is the same as that of an ideal gas.
At the same time, the effective coupling constant, which
is precisely the many-body T matrix, vanishes at the
temperature given by Eq. (16) (Shi and Griffin, 1998).
However, it turns out that the Hugenholz-Pines theorem
is not always satisfied. At very low temperature, it can
be shown (Bijlsma and Stoof, 1996a) that the value of v2

that minimizes the thermodynamic potential does not
exactly correspond to the condition m5S11(0,0)
2S12(0,0).

The self-energies (166) and (167) can also be obtained
from the HFB equations (128) and (129) by neglecting
the anomalous average and replacing the coupling con-
stant g by the many-body T matrix. By making the sub-
stitution g→TMB and neglecting the anomalous average
in the remaining equations that define the HFB approxi-
mation, Hutchinson et al. (1998) and Proukakis et al.
(1998) obtained a gapless approximation.7 Equations
(131), (132), and (134) now become

052m1TMB@v212^c̃* c̃&# , (168)

]c̃

]t
52@¹21m#c̃1TMB@2~v21^c̃* c̃& !c̃1v2c̃* # ,

(169)

e2~p !5p2@p212TMBv2# . (170)

The modified mean-field approximation does not repro-
duce known perturbative results at T50. For instance,
the prediction for the correction to the Bogoliubov spec-
trum at long wavelengths differs from Eq. (106). Thus at
T50, this approximation is no more accurate than the
Bogoliubov or Popov approximations.

B. Other variational approaches

In this subsection, we discuss other variational ap-
proaches to the weakly interacting Bose gas. The idea is
to define a thermodynamic potential V that depends on
a set of variational parameters ai . The free energy and
other thermodynamic variables are then given by the
thermodynamic potential and its derivative evaluated at
the variational minimum ]V/]ai50. A variational
method can be successful only if the essential physics
can be captured by the variational parameters.

1. F-derivable approach

The F-derivable approximation is an approach in
which the full propagator serves as an infinite set of vari-
tional parameters. It was first formulated by Luttinger

7It is not gapless in the sense that the value of the condensate
v that minimizes the effective potential coincides with m
5S11(0,0)2S12(0,0), as explained above.



620 Jens O. Andersen: Theory of the weakly interacting Bose gas
and Ward (1960), and by Baym (1962) for nonrelativistic
fermions, and later generalized to relativistic field theo-
ries by Cornwall, Jackiw, and Tomboulis (1974). A prop-
erty of the F-derivable approximation is that it is con-
serving, which means that it respects the conservation
laws that follow from the global symmetries of the sys-
tem.

We next apply the F-derivable approach to the dilute
Bose gas. We shall rederive some of the results obtained
by Lundh and Rammer (2002), but the formulation is
somewhat different.

The F-derivable thermodynamic potential V@D# has
the form

V@D#52mv21
1
2

gv41
1
2

Tr ln D21

2
1
2

TrPD1F@D# , (171)

where P is the exact self-energy, D is the exact propa-
gator, and the interaction potential F@D# is the sum of
all two-particle irreducible vacuum diagrams. These are
diagrams that do not fall apart when two propagator
lines are cut. It is understood that both P and D are 2
32 matrices. Tr denotes the trace in configuration space.
The condensate v is found by minimizing the thermody-
namic potential in the usual way

]V@D#

]v
50. (172)

Similarly, the variational principle requires that the ther-
modynamic potential be stationary under variations of
the full propagator at fixed D0 . This can be expressed as

]V@D#

]D
50. (173)

If we denote the free propagator by D0 , the Schwinger-
Dyson equation for the exact propagator D can be writ-
ten as

D215D0
211P . (174)

Using Eq. (174), we can rewrite Eq. (173)

]F@D#

]D
5

1
2

P . (175)

Equation (175) for the self-energy cannot be solved ex-
actly, but one can resort to a systematic approximation.
The n-loop F-derivable approximation is such an ap-
proximation. It is defined by keeping all two-particle ir-
reducible diagrams up to n loops in the thermodynamic
potential. Differentiation with respect to the compo-
nents of the propagator is equivalent to cutting the cor-
responding lines in the Feynman diagrams. Thus the gap
equations for the self-energy in the n-loop F-derivable
approximation contain all two-particle irreducible dia-
grams up to n21 loops. It leads to a set of integral equa-
tions for the self-energies that generally are extremely
difficult to solve. In certain simple cases, where the self-
energies are momentum independent, one can solve
these equations.
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Consider the one-loop F-derivable approximation.
The diagrams that contribute to F1@D# are shown in
Fig. 10, and the approximation reads

F1@D#5
3
2

gv2
X

P

p22Y

vn
21e2~p !

1
1
2

gv2
X

P

p22X

vn
21e2~p !

. (176)

The self-energies are given by

P1153gv2, (177)

P225gv2, (178)

while P12 and P21 both vanish. Thus the self-energies
are those of the Bogoliubov approximation. We next
substitute the self-energies (177) and (178) into the ther-
modynamic potential (171). It turns out that the two
terms 2 1

2 TrPD and F1@D# cancel each other, and the
one-loop F-derivable approximation for the free energy
reduces to the Bogoliubov approximation (151).

The two-loop F-derivable approximation F2 is very
complicated. The two-loop diagrams that contribute to
the thermodynamic potential are shown in Fig. 11. The
corresponding equation for the self-energy matrix (175)
is obtained by cutting the lines in the diagrams. The dia-
grams that are first order in the interaction are momen-
tum independent and can be easily calculated. The dia-
grams that are second order in the interaction are
momentum dependent. The difficult momentum depen-
dence comes from the self-energy in the propagators.
This leads to intractable integral equations for the self-
energies. There have been attempts to simplify the two-
loop F-derivable approximation by making the ansatz

FIG. 10. Vacuum diagrams contributing to the one-loop
F-derivable approximation F1@D# .

FIG. 11. Vacuum diagrams contributing to the two-loop
F-derivable approximation F2@D# .
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that the self-energy is a momentum-independent mass
term (Amelino-Camelia and Pi, 1993). However, such
approximations lead to a mass gap and hence violate the
Hugenholz-Pines theorem.

Finally, we notice that if one neglects the setting sun
diagrams in Fig. 11, the two-loop F-derivable approxi-
mation reduces to the Gaussian approximation that was
discussed in detail in the previous subsection.

2. Optimized perturbation theory

The complexity of the F-derivable approach makes
the use of simpler variational approaches very appeal-
ing. One such approach is optimized perturbation
theory. One introduces a finite number of variational pa-
rameters. In its simplest form, one introduces a single
variational parameter m or m. In a relativistic field
theory, m is a variational mass parameter, while in a
nonrelativistic field theory, m is a variational chemical
potential. This method, first formulated by Yukalov
(1976), can be extended to include variational coupling
constants and a variational kinetic-energy term (Chiku,
2000). At this point, it is important to emphasize that the
parameters introduced in optimized perturbation theory
are completely arbitrary and that one needs a prescrip-
tion for them in order to complete a calculation. One
prescription is the principle of minimal sensitivity, in
which one requires that the parameters satisfy a station-
arity condition. For instance, one can demand that the
free energy be stationary with respect to variations of
these parameters. Another criterion is the principle of
fastest apparent convergence. This condition requires
that the difference between a physical quantity calcu-
lated at two different loop orders be as small as possible.

The starting point is the action (120). We rewrite the
corresponding Lagrangian by introducing an effective
chemical potential m1 , an effective coupling constant l,
and a counting variable d in the following manner:

L5c* F ]

]t
2¹22m12d~m2m1!Gc1

1
2

l~c* c!2

1
1
2

d~g2l!~c* c!21¯ . (179)

If we set d51, we immediately recover the Lagrangian
that corresponds to the action (120). Optimized pertur-
bation theory is defined by the power counting rule that
d be of the order l;g . We carry out calculations in
powers of l and, at the end of the calculations, we set
d51. It is important to note that the power counting
rules also should be applied to the counterterms. The
ultraviolet divergences that appear in optimized pertur-
bation theory are removed by the counterterms deter-
mined in the standard loop expansion for perturbation
theory at T50.

The introduction of m1 and l represents a reorganiza-
tion of the perturbative series, which is a selective re-
summation of higher-order graphs. But it is important to
emphasize that there is no overcounting of diagrams.
Every diagram is counted once with the correct symme-
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try factor. If calculated to all orders, the results for
physical quantities would be independent of these pa-
rameters. However, at any finite order in perturbation
theory, they do depend on these parameters.

When we perform the shift (36), the free propagator
takes the form

D~vn ,p !5
1

vn
21e2~p !

S p22Y vn

2vn p22X D , (180)

where

X5m123lv2, (181)

Y5m12lv2, (182)

e~p !5A~p22X !~p22Y !. (183)

The mean-field thermodynamic potential is

V052m1v21
1
2

lv4. (184)

The one-loop contribution to the thermodynamic poten-
tial reads

V152d~m2m1!v21
1
2

d~g2l!v4

1
1
2X

P

ln@vn
21~p22X !~p22Y !# . (185)

The one-loop thermodynamic potential is then given by
the sum of Eqs. (184) and (185). Setting d51, we obtain

V01152mv21
1
2

gv4

1
1
2X

P

ln@vn
21~p22X !~p22Y !# . (186)

At this point, we would like to discuss the Goldstone
theorem in connection with optimized perturbation
theory. There is some confusion in the literature whether
optimized perturbation theory violates Goldstone’s
theorem. Depending on the choice of the parameters m1
and l, the mean-field dispersion relation e(p) in Eq.
(183) may or may not be gapless when evaluated at the
minimum of the effective potential. Beyond the mean-
field approximation, however, the dispersion relation is
not given by Eq. (183), but rather by

det@D0
21~vn ,p !2P~vn ,p !#50, (187)

where D0(v ,p) is the propagator (6) and P(vn ,p) is
the 232 self-energy matrix. The solution to Eq. (187) is
gapless, order by order, in optimized perturbation
theory. We can easily check this at the one-loop level.
Differentiating the effective potential (186) with respect
to the condensate and requiring that v be a stationary
point yields
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052m1gv21
1
2

lX
P

3~p22Y !1~p22X !

vn
21e2~p !

52m1P22~0,0!, (188)

where P22(0,0) is an imaginary-time version of Eq.
(101) and corresponds to the self-energy diagrams dis-
played in Fig. 6. Equation (188) ensures that Goldstone’s
theorem is satisfied at one loop.

We next discuss various choices of the parameters m1
and l. Although in principle they are arbitrary, from a
physics point of view, some choices are better motivated
than others. One requirement one might impose is that
the results reduce in the limit T→0 to the results one
obtains by applying the perturbative framework dis-
cussed in the previous section. One very simple choice is

m15gv2, (189)

l5g . (190)

This choice leads to the dispersion relation (66). An-
other choice is motivated by the principle of minimal
sensitivity, where one demands that the parameters sat-
isfy

]V

]m1
50, (191)

]V

]l
50. (192)

At the one-loop level, the only solution to Eqs. (191)
and (192) is the trivial solution m15l50 (Chiku, 2000).
Only at higher orders are there nontrivial solutions. A
very promising choice is

m15m , (193)

l5TMB. (194)

The many-body T matrix has several desirable features.
Up to corrections of order Ana3, it reduces to the
s-wave scattering length at T50. Thus the choice of Eqs.
(193) and (194) will reproduce the results for the weakly
interacting Bose gas at T50. Furthermore, it also takes
into account medium effects by summing repeated two-
particle scattering in the gas.

Relativistic f4 theory at finite temperature has been
studied using optimized perturbation theory (Chiku and
Hatsuda, 1998; Chiku, 2000). The one-loop calculation
that was carried out (Chiku and Hatsuda, 1998) predicts
a first-order phase transition, while the two-loop calcu-
lation (Chiku, 2000) predicts a second-order phase tran-
sition. Thus it is very likely that a two-loop calculation
using optimized perturbation theory is capable of cor-
rectly describing this important aspect of the phase tran-
sition while incorporating the Goldstone theorem. Sec-
ond, optimized perturbation theory provides an ideal
framework for calculating the energy shifts and damping
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rates of collective excitations of a Bose-Einstein conden-
sate. Clearly, however, more work is needed.

In the paper by Haugset et al. (1998), the authors con-
struct an improved one-loop thermodynamic potential
by including the self-energy P22(0,0) in the propagator.
The calculation of the improved one-loop effective po-
tential is equivalent to summing up all the ring diagrams,
except that the two-loop diagram is counted twice. One
must then subtract by hand the term that was overin-
cluded. From the viewpoint of optimized perturbation
theory, this overcounting comes about because the one-
loop diagram with a self-energy insertion was omitted
(in addition to the setting sun diagrams). Thus a consis-
tent power counting according to the rules above is nec-
essary to avoid problems with overcounting of Feynman
diagrams.

C. Renormalization-group approach

One very powerful method of quantum field theory is
the Wilson renormalization group (RG; Wilson and
Kogut, 1974; Polchinski, 1984). The basic idea is to sepa-
rate the momentum modes in the path integral into fast
modes and slow modes by a cutoff. One then integrates
out the fast modes. This yields an effective action for the
slow modes, in which the coefficients of the original op-
erators are renormalized and new operators are in-
duced. By lowering the cutoff infinitesimally, one obtains
a set of differential equations for the parameters in the
effective action. Integrating out all modes down to k
50 yields the full effective action.

Renormalization-group techniques have been applied
to the homogeneous Bose gas at finite temperature by
several authors (Bijlsma and Stoof, 1996a; Andersen and
Strickland, 1999; Metikas and Alber, 2002). The first
quantitative study was carried out by Bijlsma and Stoof.
In that paper, they considered the one-loop diagrams
that contribute to the effective chemical potential, effec-
tive four-point vertex, etc. By introducing a cutoff, as
explained above, they derived a set of coupled differen-
tial equations. They then solved these equations numeri-
cally and obtained the condensate density as a function
of the temperature and the critical temperature as a
function of the s-wave scattering length. They also de-
rived equations for the fixed points and calculated criti-
cal exponents.

A somewhat different renormalization-group ap-
proach was used by Andersen and Strickland (1999). It
is based on a derivative expansion of the effective action
G@v# (Morris, 1994a, 1994b), which is obtained by inte-
grating out the quantum and thermal fluctuations. If one
imposes an infrared cutoff k , one can expand the corre-
sponding effective action Gk@v# as

Gk@v#5E
0

b

dtE ddxH Vk~v !1
1
2

iZk
(1)~v !e ijv i

]

]t
v j

1
1
2

Zk
(2)~v !~¹v i!

21¯J , (195)

where i ,j51,2, and repeated indices are summed over.
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Vk is the effective potential, Zk
(1) and Zk

(2) are wave-
function normalization constants, e ij is the Levi-Civita
symbol, and v i is the ith component of the condensate v .
The dots indicate all higher-order terms in the derivative
expansion. Here and in the following, the subscript k
indicates a dependence on the infrared cutoff. By lower-
ing the cutoff k , one obtains a set of coupled integral
equations for the functions Vk ,Zk

(1) ,Zk
(2) , . . . . The lead-

ing order in the derivative expansion is defined by set-
ting the coefficients Zk

(1) and Zk
(2) to unity and the coef-

ficients of all higher derivative operators in Eq. (195) to
zero. This is called the local-potential approximation. In
the following, we restrict ourselves to the local potential
approximation and derive a flow equation for the effec-
tive potential Vk(v).

1. One-loop effective potential

We are now ready to calculate quantum and thermal
corrections to the classical potential. We compute the
one-loop effective potential which we shall ‘‘RG im-
prove’’ in Sec. IV.C.2. This method of deriving RG flow
equations is conceptually and technically simpler than
the direct application of exact or momentum-shell RG
techniques (Andersen and Strickland, 1999).
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The one-loop effective potential reads

V5V01
1
2

Tr ln D21~vn ,p !

52mv21
1
2

gv41
1
2X

P

ln@vn
21e2~p !# , (196)

where the mean-field potential has been denoted by V0

52mv21 1
2 gv4. We proceed by dividing the modes in

the path integral into slow and fast modes separated by
an infrared cutoff k . This is done by introducing a cutoff
function Rk(p), or regulator, which we keep general for
the moment. We add the term

Sk@c1 ,c2#52E
0

b

dtE ddx
1
2

Rk~A2¹2!

3@c1¹2c11c2¹2c2# , (197)

to the action Eq. (120). The argument p of the function
Rk(p) has been replaced by A2¹2 in coordinate space.
After performing the shift (36), we have the modified
propagator
Dk~vn ,p !5
1

vn
21ek

2~p !
S p2@Rk~p !11#1V08 vn

2vn p2@Rk~p !11#1V0812V09v2D , (198)
where a prime on V0 denotes differentiation with re-
spect to v2. The modified dispersion relation is

ek~p !5A$p2@Rk~p !11#1V08%

3A$p2@Rk~p !11#1V0812V09v2%. (199)

By a judicious choice of Rk(p), we can suppress the
low-momentum modes in the path integral and leave the
high-momentum modes essentially unchanged. It is use-
ful to introduce a blocking function fk(p) which is de-
fined by

Rk~p !5
12fk~p !

fk~p !
. (200)

The blocking function satisfies

lim
p→0

fk~p !50, lim
p→`

fk~p !51. (201)

These properties ensure that the low-momentum modes
are suppressed by making them very heavy, while the
high-momentum modes are left essentially unchanged.
Typical blocking functions are shown in Fig. 12.

The sharp cutoff function Rk(p) is defined by the
blocking function fk(p)5u(p2k), and is shown in Fig.
12 (solid line). It provides a sharp separation between
fast and slow modes. When the sharp cutoff is used, the
slow modes become completely suppressed in the path
integral, while the fast modes are completely unaltered.
The advantage of using a sharp cutoff is that certain
integrals can be done analytically, and the integro-
differential RG equation is reduced to a differential RG
equation.

The solutions to approximate renormalization-group
equations (e.g., the truncation of the derivative expan-
sion at some finite order) depends on the regulator func-
tion Rk(p). There have been several papers on the op-
timal choice of the cutoff function (Andersen and
Strickland, 1999; Litim, 2000, 2001). Here we consider
the class of smooth blocking functions

fk
m~p !5

pm

p21km . (202)

In the limit m→` , we recover the sharp blocking func-
tion. In Sec. IV.C.3, we shall see that a smooth regulator
is better than the sharp one, but it comes at the expense
of more complicated numerics.

We return to the one-loop effective potential in Eq.
(196). Using the inverse propagator Dk

21(vn ,p), we find
that the modified one-loop effective potential becomes

Vk5V01
1
2X

P

ln@vn
21ek

2~p !# . (203)

Upon summation over the Matsubara frequencies, we
obtain
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Vk5V01E ddp

~2p!d H 1
2

ek~p !1T ln@12e2bek(p)#J .

(204)
The first term in the brackets is the T50 part and rep-
resents the zero-point fluctuations. The second term in-
cludes thermal effects. Differentiation with respect to
the infrared cutoff k yields

k
]

]k
Vk52kE ddp

~2p!d S ]Rk~p !

]k D 1
2ek~p !

3$112n@ek~p !#%$p2@Rk~p !11#1V08

1V09v2%. (205)

Equation (205) is an integro-differential equation for the
one-loop effective potential. It is obtained by integrating
out each mode independently, where the feedback from
the fast modes to the slow modes is completely ignored.
Since all modes are integrated out independently, this is
sometimes called the independent-mode approximation
(Liao and Strickland, 1995). The lack of feedback leads
to a poor tracking of the effective degrees of freedom.
The situation is remedied by applying the renormaliza-
tion group, which effectively sums up important classes
of diagrams.

2. Renormalization-group improvement

The easiest way of deriving the RG-improved version
of Eq. (205) is simply to make it self-consistent by re-
placing V0 by Vk everywhere. This yields

k
]

]k
Vk52kE ddp

~2p!d S ]Rk~p !

]k D 1
2ek~p !

3$112n@ek~p !#%$p2@Rk~p !11#1Vk8

1Vk9v2%, (206)

where the RG-improved dispersion relation is

ek~p !5A$p2@Rk~p !11#1Vk8%

3A$p2@Rk~p !11#1Vk812Vk9v2%, (207)

FIG. 12. Typical balancing function: solid line, sharp blocking
function; and dashed line, a typical smooth blocking function.
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and the primes in Eqs. (206) and (207) again denote
differentiation with respect to v2. The self-consistent
equation (206) is not a perturbative approximation, but
is exact to leading order in the derivative expansion.
This equation has been rigorously derived using the
path-integral representation and the derivative expan-
sion of the effective action (Andersen and Strickland,
1999). There are other ways of regulating the one-loop
expression (196) and subsequently ‘‘RG-improving’’ it.
However, they do not always resum perturbation theory
correctly (with all higher-order diagrams included and
all combinatorical coefficients correct). These issues
have been studied in detail by Litim and Pawlowski
(2002; see also Canet et al., 2003).

Note that since Vk508 vanishes at the minimum of the
effective potential, the dispersion relation in the broken
phase reduces to

ek50~p !5pAp212Vk509 v2. (208)

Thus the Goldstone theorem is automatically satisfied
for temperatures below Tc .

In the calculations that follow, we shall restrict our-
selves to using a sharp cutoff function. The integral over
p in Eq. (206) can be done analytically, resulting in a
differential RG equation. In this case, Eq. (206) reduces
to

k
]

]k
Vk52

1
2

Sdkd$e~k !12T ln@12e2be(k)#%, (209)

where

Sd5
Vd

~2p!d , (210)

and Vd is the area of a d-dimensional sphere whose ex-
pression is given in the Appendix.

Since the factor ]Rk(p)/]k forces p5k , we have de-
fined e(k)5ek(p5k), where the dispersion relation
e(k) is

e~k !5A@k21Vk8#@k21Vk812Vk9v2# . (211)

In order to solve Eq. (209), one must impose the cor-
rect boundary condition on the effective potential Vk .
For k5` , no modes have been integrated out and Vk
reduces to the classical potential V0 . In practice, one
must impose the boundary condition at a large but finite
value k5L .

Equation (209) has been solved numerically for the
effective potential Vk50(v) with the above boundary
condition in d53 dimensions for different values of T ,
as shown in Fig. 13. We have normalized the condensate
v as well as the effective potential by the appropriate
powers of the ultraviolet cutoff L. The curves clearly
show that the phase transition is second order. For T
,Tc , the effective potential has a small imaginary part,
and we have shown only the real part in Fig. 13. The
imaginary part of the effective potential does, however,
vanish for T>Tc . The effective chemical potential mk50
as well as the effective quartic coupling constant gk50
are shown in Fig. 14, and both quantities vanish at the
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critical point. The corresponding operators are relevant
and must therefore vanish at Tc , and we see that the
renormalization-group approach correctly describes the
behavior near criticality. Moreover, it can be shown that
the sextic coupling gk50

(6) goes to a nonzero constant at
the critical temperature.

3. Critical behavior and critical exponents

In order to investigate critical behavior near fixed
points, we write the flow equation in dimensionless form
using the dimensionless quantities

b̄5bk2 (212)

v̄5b1/2k ~22d !/2v (213)

V̄k5bk2dVk , (214)

ē~k !5k22e~k !. (215)

Equation (209) can then be written as

FIG. 13. Real part of the RG-improved effective potential
Vk50(v) for various values of the temperature. The phase
transition is clearly second order.

FIG. 14. The effective chemical potential mk50 and the effec-
tive quartic coupling gk50 near the critical temperature. Both
vanish at Tc .
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05Fk
]

]k
2

1
2

~d22 !v̄
]

] v̄
1dGV̄k

1
1
2

Sdb̄ ē~k !1Sd ln@12e2b̄ ē(k)# . (216)

The critical potential is obtained by setting to zero the
derivative with respect to k in Eq. (216). Expanding in
powers of b̄ ē(k), we obtain

F2
1
2

~d22 !v̄
]

] v̄
1d GV̄k52

1
2

Sdb̄ ē~k !2Sd ln@b̄ē~k !# .

(217)

Taking the limit b̄→0 and ignoring the term which is
independent of v leads to

F2
1
2

~d22 !v̄
]

] v̄
1dGV̄k52

1
2

Sd~ ln@11V̄k8#

1ln@11V̄k812V̄k9 v̄2# !.

(218)

This is the same equation as obtained by Morris (1998)
for a relativistic O(2)-symmetric scalar theory in d di-
mensions to leading order in the derivative expansion.
Therefore the results for the critical behavior at leading
order in the derivative expansion will be the same as
those obtained in the d-dimensional O(2) model at zero
temperature.

The above also demonstrates that the system behaves
as a d-dimensional one as the temperature becomes
much higher than any other scale in the problem. Thus
the system goes from being (d11) dimensional at low
temperature to being effectively d dimensional at high
temperature, and this is often called dimensional cross-
over. It is also referred to as dimensional reduction. The
nonzero Matsubara modes decouple, and the system can
be described in terms of a classical field theory for the
n50 modes in d dimensions (Landsman, 1989). We re-
turn to this subject in Sec. V, where we discuss the cal-
culation of the critical temperature of a dilute Bose gas.

The RG equation (206) satisfied by Vk@v# is highly
nonlinear, and a direct measurement of the critical ex-
ponents from the numerical solutions is very time con-
suming. This becomes even worse as one goes to higher
orders in the derivative expansion, and so it is important
to have an additional reliable approximation scheme for
calculating critical exponents. In the following we per-
form a polynomial expansion (Nicoll et al., 1974) of the
effective potential, expand around v50, and truncate at
Nth order:

Vk52mkv21
1
2

gkv41 (
n53

N gk
(2n)

n!
v2n. (219)

The polynomial expansion turns the partial differential
equation (209) into a set of coupled ordinary differential
equations. In order to demonstrate the procedure we
shall show how the fixed points and critical exponents
are calculated at the lowest nontrivial order of trunca-
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tion (N52). We write the equations in dimensionless
form using Eqs. (212)–(215) and

m̄k5k22mk , ḡk5b21kd24gk . (220)

We then obtain the following set of equations:

k
]

]k
m̄k522m̄k1Sdb̄ ḡk$112n@ ē~k !#% (221)

k
]

]k
ḡk5~d24 !ḡk1Sdb̄ ḡk

2F 1
2~12m̄k!

$112n@ ē~k !#%

1b̄n@ ē~k !#$11n@ ē~k !#%G . (222)

A similar set of equations was first obtained by Bijlsma
and Stoof (1996a) by considering the one-loop diagrams
that contribute to the running of the effective chemical
potential, the effective quartic coupling constant, etc.

The equations for the fixed points are

k
]

]k
m̄k50, k

]

]k
ḡk50. (223)

If we introduce the variables r and s through the rela-
tions

r5
m̄k

12m̄k
, s5

ḡk

~12m̄k!2 , (224)

and expand the equations in powers of b̄(12m̄k), the
RG equations can be written as

]r

]k
522@11r#@r2Sds# , (225)

]s

]k
52s@42d14r29Sds# . (226)

We have the trivial Gaussian fixed point (r ,s)5(0,0) as
well as the infinite-temperature Gaussian fixed point
(21,0). Finally, for d,4 there is the infrared Wilson-
Fisher fixed point „(42d)/5,(42d)/(5Sd)… (Wilson and
Kogut, 1974).

Setting d53 and linearizing Eq. (225) around the
fixed point, we find the eigenvalues (l1 ,l2)
5(21.278,1.878). The critical exponent n is given by the
inverse of the largest eigenvalue: n51/l250.532. This
procedure can now be repeated including a larger num-
ber N of terms in the expansion Eq. (219). The result for
n is plotted in Fig. 15 as a function of the number of
terms in the polynomial expansion (dashed line). Our
result agrees with that of Morris, who considered the
relativistic O(2) model in d53 at zero temperature
(Morris, 1998). The critical exponent n oscillates around
the average value 0.73. The value of n never converges
as N→` , but continues to fluctuate. For comparison, we
have also showed the results using the smooth regulator
function (202) with m55. Clearly, the convergence
properties have improved signficantly.

Our result should be compared to experiment on 4He
and the e expansion, which both give a value of 0.67
(Zinn-Justin, 1989). The result n50.73 is a leading-order
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result in the derivative expansion of the effective action
(195). The next-to-leading order in the derivative expan-
sion involves a set of coupled equations for the potential
Vk and the wave-function normalization terms Zk

(1) and
Zk

(2) . These equations were derived by Morris (1998). A
calculation of the critical exponent gives a value of n
50.65. One expects the critical exponent n to converge
towards 0.67 as one includes more terms in the deriva-
tive expansion.

We close this section by comparing the two ap-
proaches discussed here (Bijlsma and Stoof, 1996a;
Andersen and Strickland, 1999). The renormalization-
group equation (209) that we obtained in the local po-
tential approximation is highly nonlinear. We made a
further approximation by expanding the effective poten-
tial in a power series, which turns the partial differential
equation (209) into a set of coupled ordinary differential
equations. These flow equations were first obtained by
Bijlsma and Stoof (1996a) by considering the one-loop
diagrams that contribute to the various n-point func-
tions, while neglecting their momentum dependence.
However, the two sets of RG equations differ if one
includes the momentum dependence of the one-loop
graphs and goes beyond the local potential approxima-
tion (Liao and Strickland, 1995; Andersen and Strick-
land, 1999).

D. Beliaev-Popov approximation

In Sec. III.B, we discussed in some detail the Beliaev
approximation at zero temperature. We recall that this
approximation is defined by all one-loop diagrams con-
tributing to the self-energies. It was shown that the re-
sulting dispersion relation is gapless. Popov (1983) gen-
eralized the Beliaev approximation to finite
temperature, and hence it is often called the Beliaev-
Popov approximation (Shi and Griffin, 1998). He calcu-
lated the one-loop diagrams in the limit of zero external
energy and momentum. However, one has to be careful
because the limits v→0,p→0 and p→0,v→0 do not
commute at finite temperature. Later, Shi and Griffin
gave a detailed discussion of the Beliaev-Popov approxi-
mation and explicit formal expressions for the normal
and anomalous self-energies at finite temperature and
arbitrary external energy v and momentum p. An analy-

FIG. 15. The critical exponent n as a function of number of
terms N in the polynomial expansion.
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sis of the Beliaev-Popov approximation similar to the
one presented at zero temperature in Sec. III would
probably be significantly simpler. For instance, it follows
immediately from the finite-temperature version of Eq.
(104) that the chemical potential is free of the infrared
divergences that separately plague the expressions for
S11(0,0) and S12(0,0). The expression for the chemical
potential is

m5gv21
1
2

gX
P

4p224m16gv2

vn
21e2~p !

5gv21
1
4

g@3I1,11I21,21#

1
1

2p2 gE
0

`

dp
p2~2p222m13gv2!

e~p !
n@e~p !# .

(227)

In the high-temperature limit, where bgv2!1, one finds

m5gv2F12
3

8p2

T

gv2 A2g3v2G . (228)

Thus at high temperature, the dimensionless expansion
parameter has an extra factor of T/gv2 compared to the
zero-temperature case, where it is Ag3v2.

So far our description of the dilute Bose gas has been
in terms of spontaneous breaking of the U(1) symmetry
and has used a chemical potential to ensure that the
mean number of particles is constant. There exist alter-
native approaches that are number conserving. Such an
approach was first introduced by Giradeau and Arnowitt
as early as in 1959 (Giradeau and Arnowitt, 1959). This
approach is variational in nature and, like the HFB ap-
proximation, it exhibits a gap in the dispersion relation.
However, it was later shown by Takano (1961) that the
gap is removed if one takes into account cubic terms in
the Hamiltonian in a consistent manner. More recently,
Morgan (1999) discussed in detail number-conserving
approaches and generalized them to trapped Bose gases.
The starting point is the Hamiltonian, including interac-
tion terms describing binary collisions written in terms
of pair operators that conserve particle number. These
operators are defined by

a i5b0
†ai , (229)

where ai are the standard annihilation operators and
b05(11a0

†a0)21/2a0 . The Hamiltonian can then be di-
vided into terms containing zero, one, two, three, and
four creation/annihilation operators. The terms that con-
tain up to two operators are then diagonalized, while the
cubic and quartic terms are treated as perturbations us-
ing first- and second-order perturbation theory. The va-
lidity of perturbation theory is the usual requirement
that Ana3!1 at T50. At high temperature, it follows
from Eq. (228) that the requirement be TAg3v2/gv2

!1. In the zero-temperature limit, the calculations re-
produce several known results presented in Sec. III. The
Hamiltonian can be used to calculate the ground-state
energy density E (rather than the free-energy density F),
Rev. Mod. Phys., Vol. 76, No. 2, April 2004
and a calculation involving the quadratic terms yields
the result of Bogoliubov given in Eq. (91). A second-
order calculation reproduces the na3 ln(na3) term of Wu
(1959), but one is faced with a logarithmic ultraviolet-
divergent term which is proportional to na3. As we ar-
gued in Sec. III.E, the correct way to treat this diver-
gence is to absorb it in the coefficient of the operator
(c* c)3, which represents 3→3 scattering. The ap-
proach also reproduces Beliaev’s results for the phonon
spectrum (106) and the damping rate (111). Finally, we
mention that the modified Popov approximation
(Hutchinson et al., 1998; Proukakis et al., 1998) has also
been examined within the framework of number-
conserving approaches (Morgan, 1999).

V. CALCULATIONS OF Tc

The critical temperature for an ideal Bose gas is given
by Eq. (16). A natural question to ask is: what is the
leading-order effect of a weak two-body interaction on
the critical temperature of a homogeneous Bose gas?
This question has been around for almost 50 years, but
only very recently has the issue been settled. It has been
discussed in detail by Baym et al. (1999, 2001), and we
follow their paper to some extent. Various approaches to
the problem have also been discussed very recently by
Haque (2003).

In the following, we assume that the interaction is re-
pulsive, which corresponds to a positive scattering
length a . One might think that the effect of a repulsive
interaction is to decrease the critical temperature of a
Bose gas. For instance, the superfluid transition in liquid
4He takes place at a lower temperature than that of an
ideal gas of the same density. However, liquid 4He is not
weakly interacting, and it turns out that the leading ef-
fect of the interactions in the dilute Bose gas is to in-
crease Tc .

The first paper in which a quantitative prediction ap-
pears is by Lee and Yang (1957). In that paper, the au-
thors predict that the critical temperature increases com-
pared to that of an ideal Bose gas and that the increase
is proportional to Aa . Later, the same authors predicted
that the shift is linear with a (Lee and Yang, 1958). This
prediction was purely qualitative, since neither sign nor
magnitude were given. A couple of years later, Glass-
gold et al. (1960) also predicted an increase of Tc pro-
portional to Aa . A couple of decades later, the problem
was revisited by Toyoda (1982). He predicted a decrease
of the critical temperature proportional to Aa . Since the
sign agrees with the measurements on 4He, there
seemed to be at least qualitative agreement between
theory and experiment. Long ago, Huang claimed an
increase in Tc proportional to a3/2 (Huang, 1964), and,
very recently, he has claimed in another paper that Tc

increases proportional to Aa (Huang, 1999). From this
selection of papers, it is clear that there has been con-
siderable confusion about how Tc depends parametri-
cally on the scattering length. What these, as well as
other attempts to calculate Tc (Schakel, 1994; Wilkens
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et al., 2000) have in common, is that they are based on
perturbation theory. However, Bose condensation in a
dilute gas is governed by long-distance physics that is
inherently nonperturbative. These issues will be dis-
cussed later.

There have also been other approaches to the calcu-
lation of Tc . Bijlsma and Stoof have carried out
renormalization-group calculations of the critical tem-
perature (Bijlsma and Stoof, 1996a). This approach was
discussed in the previous section, and it predicts that the
leading shift is proportional to a ln a. Since this approach
is purely numerical, it is difficult to take the limit a→0
and thus obtain the correct dependence on a in the di-
lute limit. Very recently, there was a calculation of Tc
based on the exact renormalization group by Ledowski,
Hasselmann, and Kopietz (2003). They calculated the
momentum-dependent two-point function and showed
that the leading behavior is proportional to the scatter-
ing length a .

The first Monte Carlo simulations for hard-sphere
bosons in the low-density regime were done by Grüter
et al. (1997). In that paper, the authors predicted a posi-
tive linear shift after extrapolating to the limit a→0.
This result was somewhat surprising since some early
Monte Carlo simulations, as well as the experiments on
4He, show a decrease in Tc due to repulsive interactions.
Later, it was shown rigorously, using effective-field-
theory methods, that the parametric dependence of Tc is
indeed linear in a (Baym et al., 1999, 2001). Thus in the
dilute limit, we can write

DTc

Tc
0 5cn1/3a , (230)

where c is a constant that is to be determined. The prob-
lem of determining the constant c has been attacked by
analytical as well as numerical methods in recent years.
These methods include high-precision Monte Carlo
simulations, 1/N expansions, self-consistent calculations
involving summation of bubble and ladder diagrams,
and variational perturbation theory. We shall discuss
these in Secs. V.B.1–V.B.3.

A. Hartree-Fock approximation and breakdown
of perturbation theory

In this subsection, we shall briefly discuss the Hartree-
Fock approximation and show that it predicts no shift in
the critical temperature. We approach the phase transi-
tion from above, so the condensate density v is zero.

In an ideal gas, the number density of excited particles
is given by Eq. (13), which can be written as

nex5
1

lT
3 g3/2~z !, (231)

where the function g(z) is the polylogarithmic function

gl~z !5 (
n51

` zn

nl , (232)

and z5ebm is the fugacity.
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The simplest way to include the effects of interactions
is to include the self-energy in the Hartree-Fock ap-
proximation. The Feynman graph is the tadpole diagram
shown in Fig. 16. The tadpole is independent of the ex-
ternal momentum, and the expression for the Hartree-
Fock self-energy is

SHF52gX
P

p22m

vn
21~p22m!2 52gn , (233)

where we have used Eqs. (13) and (A30). Thus a particle
with momentum p effectively has the energy e(p)5p2

12gn , where the term 2gn arises from the mean field of
the other particles. We can now generalize Eq. (231) by
writing

n5
1

lT
3 g3/2~eb(m22gn)!. (234)

Equation (234) shows that we must increase the chemi-
cal potential by an amount Dm5SHF to keep the same
number density as that of an ideal gas at the same tem-
perature. It shows in particular that m must approach
SHF from below to obtain the critical number density at
a given temperature. Thus the critical temperature re-
mains the same. The conclusion is that including a con-
stant mean-field shift in the single-particle energies can-
not change the critical temperature of a Bose gas. This is
an example of the fact that mean-field theories effec-
tively treat interacting gases as ideal gases with modified
parameters and thus predict the same Tc .

Calculations using the Hartree-Fock approximation
have been carried out by Huang (1999). He applies a
virial expansion to Eq. (234) and obtains a change in the
critical temperature which is proportional to a1/2. How-
ever, this is an artifact of the approximation, as can be
seen by including more terms in the expansion. This was
discussed in some detail by Baym (1999, 2001). A cor-
rect treatment was given by Pethick and Smith (2002).
Similarly, the summation of ring diagrams (Haugset
et al., 1998) in the effective potential does not change
Tc . The reason is that these diagrams are evaluated at
zero external momentum and therefore merely corre-
spond to a redefinition of the chemical potential.

We have seen that a leading perturbative calculation
in the scattering length a gives no corrections to the
critical temperature of a dilute Bose gas. One might try
to improve on this result by going to higher orders in
perturbation theory. The Feynman diagrams contribut-
ing to the self-energy at second order in perturbation
theory are shown in Fig. 17.

If we focus on the contribution from the n50 Mat-
subara mode, the diagrams read

FIG. 16. Self-energy diagram in the Hartree-Fock approxima-
tion.
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S2a~0,p!524g2T2E ddk

~2p!d E ddq

~2p!d

3
1

~k22m!~q22m!2 , (235)

S2b~0,p!522g2T2E ddk

~2p!d E ddq

~2p!d

3
1

~k22m!~q22m!~ up1q1ku22m!
,

(236)

where the chemical potential acts as an infrared cutoff in
the integral. The left diagram is independent of the ex-
ternal momentum. If we use the mean-field criterion
that m→0 at the transition, the integral is linearly diver-
gent in the infrared. The right diagram depends on the
external momentum p. For m50, it is logarithmically di-
vergent as the external momentum goes to zero. As one
goes to higher orders in the perturbation expansion, the
diagrams become increasingly infrared divergent for m
50. If we denote a generic self-energy diagram with n
loops by Sn , we have (Baym et al., 1999, 2001)

Sn;TS a

lT
D 2S a2

mlT
4 D ~n22 !/2

. (237)

This shows that perturbation theory breaks down in the
critical region due to infrared divergences. Physically,
these infrared divergences are screened, and this can be
taken into account by summing certain classes of dia-
grams from all orders of perturbation theory. An ex-
ample of this is the summation of bubble or ladder dia-
grams. We return to this issue at the end of this section.

B. Dimensional reduction

In Sec. IV.C, we saw that the renormalization-group
equations at high temperature reduce to those of a
three-dimensional O(2)-symmetric theory. This is an ex-
ample of dimensional reduction and, for the dilute Bose
gas, it can be understood as follows. In the imaginary
time formalism, the fields are decomposed into modes
that are characterized by their Matsubara frequency vn
52pnT . At distances much larger than the thermal
wavelength, and for temperatures sufficiently close to
the critical temperature, the time-derivative term for n
Þ0 is much larger than both the kinetic-energy term and
the effective chemical potential term. This implies that
the nonstatic Matsubara modes decouple, and the long-
distance physics can be described in terms of an effective

FIG. 17. Two-loop self-energy diagrams.
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three-dimensional field theory for the n50 mode. The
fact that the long-distance physics associated with the
phase transition is well separated from the typical mo-
mentum scale T associated with the nonzero Matsubara
modes makes effective-field-theory methods ideal for
studing the phase transition.

An effective three-dimensional theory that describes
the long-distance physics can be constructed using the
methods of effective field theory (Georgi, 1993). Once
the symmetries of the theory have been identified, one
writes down the most general Lagrangian Leff that is
consistent with these symmetries. In the present case, we
simply have a complex scalar field with an O(2) symme-
try. In addition, there is a three-dimensional rotational
symmetry. The effective three-dimensional theory is
then described by the action

Seff5E d3xF2
1
2

f* ¹2f1
1
2

m3f* f

1
1
24

u~f* f!21¯G , (238)

where we have used the conventional normalization of
an O(2)-invariant theory. The dots indicate operators
with more derivatives and more fields. Examples are
@¹(f* f)#2 and (f* f)3. The relation between the pa-
rameters in the effective theory and in the full theory
can be determined by perturbative matching; one re-
quires that the effective theory (238) reproduce static
correlators at long distances R@1/T to a specified accu-
racy. The reason why the parameters of the effective
three-dimensional theory can be determined in pertur-
bation theory is that the coefficients of the effective
theory encode the short-distance physics at the scale T ,
which is perturbative, and that the matching procedure
does not involve the nonperturbative long-distance
physics.

At the tree level, the matching can be done simply by
inspection. By comparing the action (120) that describes
the full four-dimensional theory with the action (238)
that describes the effective three-dimensional theory, we
can read off the relation between the fields in the two
theories. This yields

c5AT

2
f . (239)

Similarly, by matching the other terms in the action in
the two theories at the tree level and using Eq. (239),
one easily finds

m352m , (240)

u53gT . (241)

Higher-order operators, as well as corrections to the co-
efficients of the operators in Eq. (238), can be ignored at
the order of interest in the diluteness expansion. For
instance, the coefficient of the operator @¹(f* f)#2 is
proportional to a2/lT . From dimensional analysis, it fol-
lows that the contribution to physical quantities from
this operator is then suppressed by a factor of n1/3a com-
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pared to the operator (f* f)2. The contribution to
physical quantities from other operators are analyzed in
a similar manner.

For an ideal Bose gas, the critical temperature is given
by Eq. (16). Equivalently, the critical number density nc

0

at fixed temperature satisfies nc
0lT

3 5z( 3
2 ). Due to the

repulsive interactions in the dilute Bose gas, the critical
number density changes. The first-order change in the
critical temperature DTc5Tc2Tc

0 is related to the first-
order change Dnc5nc2nc

0 in the critical number density
at fixed Tc by (Baym et al., 1999, 2001)

DTc

Tc
0 52

2
3

@nc~Tc!2nc
0~Tc!#

n

52
1
3

T0D^f* f&
nc

0 . (242)

The factor 2/3 in the first line comes from the relation
T0}(n0)2/3. The last equality follows from the fact that
n5^c* c& and that the contribution from the zeroth
Matsubara mode is 1

2 T^f* f&, which follows from Eq.
(239).

In order to calculate the critical temperature, we must
evaluate the quantity D^f* f&. We discuss this next.

1. 1/N expansion

The 1/N expansion is a nonperturbative method that
has been widely used in high-energy and condensed-
matter physics (Breźin and Wadia, 1993; Moshe and
Zinn-Justin, 1998). In condensed-matter physics, it has
been used to study the critical behavior of O(N) spin
models and calculate their critical exponents (Zinn-
Justin, 1989). The idea is to generalize a Lagrangian with
a fixed number of fields to N fields, and then let N be a
variable. The expansion is defined as an expansion in
powers of 1/N while gN is held fixed (g is the coupling
constant). The method is nonperturbative in the sense
that, for calculations at every order in 1/N , there are
Feynman diagrams contributing from all orders of per-
turbation theory. In this way, one sums up graphs from
all orders of perturbation theory. One hopes that this
expansion captures some of the essential physics that
cannot be captured by perturbative methods.

The critical temperature was recently calculated by
Baym, Blaizot, and Zinn-Justin (Baym et al., 2000) in

FIG. 18. Three-loop Feynman diagrams contributing to
D^f2&.
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the large-N limit. The next-to-leading-order result was
obtained by Arnold and Tomášik (2000).

In the present case, the Lagrangian (238) is general-
ized to a scalar field theory with N real components. The
Lagranigan is now O(N) invariant and reads

Leff52
1
2

f i¹
2f i1

1
2

m3f i
21

1
24

u~f if i!
2, (243)

where i runs from 1 to N . Summation over i is implicitly
understood. The large-N limit is obtained by taking N
→` , while keeping uN constant.

Generally, the diagrams that contribute to D^f2& can
be obtained from vacuum diagrams by inserting an op-
erator f2. For example, at the three-loop level there are
two diagrams that contribute, and they are shown in Fig.
18. The solid circle denotes an insertion of the operator
f2. It can be shown that the first diagram is suppressed
by a factor of 1/N relative to the second.

The Feynman diagrams that contribute to D^f2& at
leading order in 1/N are shown in Fig. 19. These dia-
grams are called bubble diagrams, and the bubble sum-
mation is thus exact in the large-N limit. The expression
for the expectation value D^f i

2& then becomes

D^f i
2&52NE ddp

~2p!d

1
p4 S~p !, (244)

where S(p) is the self-energy. The Feynman diagrams
for the self-energy are obtained from those in Fig. 19 by
cutting the propagator line that goes through the solid
circles. The self-energy diagrams are shown in Fig. 20.

After mass renormalization, so that S(0)50, the ex-
pression for the self-energy is (Zinn-Justin, 1989)

S~p !5
2
N E ddk

~2p!d

1
6/Nu1T1~k ! F 1

up1ku2 2
1
k2G ,

(245)

where T1(k) is the one-loop contribution to the four-
point function

T1~k !5E ddq

~2p!d

1
q2uq1ku2 . (246)

In the Appendix, we show how to calculate the function
T1(k) in dimensional regularization. One finds

T1~k !5M2e

GS 22
d

2 DGS d

2
21 D

22d23p~d21 !/2GS d21
2 D kd24. (247)

FIG. 19. Feynman diagrams contributing to D^f2& to leading
order in 1/N .

FIG. 20. Feynman graphs contributing to the self-energy to
leading order in 1/N .
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The next step is to evaluate the integral over p in Eq.
(244). Using Eq. (A21), we obtain

E ddp

~2p!d

1
p4 F 1

up1ku2 2
1
k2G

5M2e

GS 32
d

2 DGS d

2
22 D

22d24p~d21 !/2GS d23
2 D kd26. (248)

Inserting Eqs. (247) and (248) into Eq. (245), we obtain

D^f i
2&52M2e

GS 32
d

2 DGS d

2
22 D

22d25p~d21 !/2GS d23
2 D

3E ddk

~2p!d

kd26

a1bkd24 , (249)

where

a56/Nu , (250)

b5M2e

GS 22
d

2 DGS d

2
21 D

22d23p~d21 !/2GS d21
2 D . (251)

The final step consists of integrating over k . Using Eq.
(A22) in the Appendix we obtain

D^f i
2&5M4ea ~d22 !/~d24 !b ~32d !/~d24 !

3

GS 32
d

2 DGS d

2
22 DGS 22d

42d DGS 62d

42d D
23d26pd2 1/2GS d23

2 D .

(252)

The limit d→3 is regular and one obtains

D^f i
2&52

Nu

96p2 . (253)

Inserting the result (253) into Eq. (242), we obtain the
critical temperature to leading order in 1/N :

DTc

Tc
0 5

8p

3FzS 3
2 D G4/3 an1/3'2.33n1/3a , (254)

where we have used that u53gT and g58pa and set
N52. Thus Tc increases linearly with a . As noted before
(Baym et al., 2000), the result (254) is independent of N .
However, it is only valid in the limit N→` .

The 1/N correction to the above result has recently
been calculated by Arnold and Tomášik (2000). This is a
very lengthy and technically complicated calculation.
For instance, the integrals that one encounters at order
1/N are difficult to evaluate in 322e dimensions. In-
stead, Arnold and Tomášik always reduced their dia-
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grams to unambiguous integrals in three dimensions that
are simpler to evaluate. We shall not review the calcula-
tion, but merely state the result. Through next-to-
leading order in 1/N , the shift in Tc is

DTc

Tc
0 5

8p

3FzS 3
2 D G4/3 F12

0.5272
N Gn1/3a . (255)

For N52, this gives a correction of only 26%:

DTc

Tc
0 51.71n1/3a . (256)

2. Monte Carlo simulations

The action (238) can also be used as the starting point
for numerical calculations of the critical temperature
and other nonuniversal effects of a dilute Bose gas. This
is done by putting the theory on a lattice and using
Monte Carlo methods to solve the theory nonperturba-
tively. Such numerical simulations have been carried out
by several groups (Grüter et al., 1997; Holzmann and
Krauth, 1999; Arnold and Moore, 2001a, 2001b;
Kashurnikov et al., 2001; Arnold et al., 2002). This ap-
proach has been discussed in considerable detail by Ar-
nold et al. (2002). The value of the coefficient in Eq.
(230) reported by Grüter et al. (1997) is c.0.34, while
Holzmann and Krauth (1999) obtained c.2.3. The most
recent values reported by Arnold and Moore (2001a,
2001b) and by Kashurnikov et al. (2001) are c.1.32 and
c.1.29, respectively. One source of discrepancy lies in
the nonlinear corrections to Tc as a function of a at the
densities where the simulations of Grüter et al. (1997)
were performed. Holzmann and Krauth (1999) ex-
panded the integrand in the path integral in powers of
the interaction and kept only the first term in that ex-
pansion. This perturbative treatment of the interaction
is incorrect, since the physics close to the phase transi-
tion is inherently nonperturbative. This is in contrast to
the Monte Carlo simulations based on the action (238)
(Arnold and Moore, 2001a, 2001b; Kashurnikov et al.,
2001). These calculations agree within error bars. We
shall regard these lattice results as the correct result for
the coefficient c in Eq. (230).

3. Other calculations

In this subsection, we briefly discuss other calculations
of the shift in Tc in the dilute Bose gas. Generally, the
expectation value ^f2& can be written as

^f2&5E ddk

~2p!d

1
k21m31S~k !

, (257)

where S(k) is the self-energy function. The critical
point is determined by the condition that the correlation
length becomes infinite, or equivalently that the effec-
tive chemical potential m31S(0) vanishes:

m31S~0 !50. (258)
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In the absence of interactions, the condition (258) re-
duces to the well known m350. Using Eq. (258) to elimi-
nate the chemical potential m3 , we can write Eq. (242)
as

D^f2&5E ddk

~2p!d F 1
k21S~k !2S~0 !

2
1
k2G . (259)

The next step is to make an approximation for the self-
energy function appearing in Eq. (259). In the previous
section, we used the large-N expression for the self-
energy (245). Baym et al. (1999, 2001) considered three
different equations for the self-energy.

• The one-bubble approximation:
The self-energy is approximated by the second dia-
gram in Fig. 17:

S~p!2S~0!522g2TE ddk

~2p!d T1~k !

3F 1
up1ku21S~ up1ku!2S~0 !

2
1

k21S~k !2S~0 !G . (260)

• The bubble-summation approximation:
The self-energy is approximated by the bubble sum in
Fig. 20:

S~p!2S~0!522g2TE ddk

~2p!d

T1~k !

112gT1~k !

3F 1
up1ku21S~ up1ku!2S~0 !

2
1

k21S~k !2S~0 !G , (261)

• The ladder-summation approximation:
The self-energy is approximated by the ladder sum
similar to the bubble sum,

S~p!2S~0!5E ddk

~2p!d

T1~k !

11gT1~k !

3F 1
up1ku21S~ up1ku!2S~0 !

2
1

k21S~k !2S~0 !G . (262)

Note that Eqs. (260)–(262) have been made self consis-
tent by replacing the free propagators on the right-hand
side by the interacting propagators.

Equations (260)–(262) have been solved numerically,
and the results were used to evaluate Eq. (259) to obtain
the corresponding shifts in Tc . The results for the coef-
ficient c are 3.8, 2.5, and 1.6, respectively, and thus
within a factor of 3. Note also that the prediction for the
shift in Tc from the non-self-consistent bubble summa-
tion (the leading 1/N result with N52) is very close to
the result from the self-consistent bubble summation.
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We can gain more insight into the mechanism behind
the increase in Tc by looking at the modification of the
spectrum for small momenta. Let us consider the non-
self-consistent bubble sum

e~k !5k21S~k !2S~0 !, (263)

where

S~k !5E ddk

~2p!d

T1~k !

11gT1~k !

1
up1ku2 . (264)

For small momenta k , the difference S(k)2S(0) can
be approximated by (Baym et al., 1999, 2001)

S~k !2S~0 !52
2

3p2 k2S ln
k

kc
2

1
3 D , k!kc , (265)

where kc58p2a/lT
2 is the screening wave number. The

logarithmic term in Eq. (265) indicates a modified spec-
trum for small wave numbers ;k22h and thus a harden-
ing of the spectrum compared to the noninteracting case
(the spectrum is of the form ka, where a,2). The hard-
ening results from correlations among particles with low
momentum, which leads to a decrease in the critical den-
sity and thus an increase in the critical temperature.
Other approximations show a different functional de-
pendence of the difference S(k)2S(0) at small k , but
the basic mechanism remains the same, namely, a hard-
ening of the spectrum at the critical temperature. It has
been pointed out (Baym and Holzmann, 2003) that the
hardening of the spectrum for the n50 Matsubara mode
takes place exactly only at Tc . The Bogoliubov operator
inequality guarantees that the spectrum remains qua-
dratic away from Tc .

Variational methods have also been used recently (de
Souza Cruz et al., 2001, 2002; Braaten and Radescu,
2002) to calculate Tc . The basic idea is to compute Eq.
(259) using an effective three-dimensional Lagrangian
that has been reorganized according to the discussion in
Sec. IV.B.2. The Lagrangian is written as L5L01Lint ,
where

L052
1
2

f i¹
2f i1

1
2

m2f i
2, (266)

Lint5
1
2

d~m32m2!f i
21

1
24

du~f if i!
2, (267)

and i runs from 1 to N . Calculations are carried out by
using d as a formal expansion parameter, expanding to a
given order in d, and setting d51 at the end of the cal-
culation. Finally, we need to give a prescription for the
mass parameter m . In the calculations below, we shall
use the criterion of minimal sensitivity. In this context, it
reads

]D^f2&
]m

50. (268)

If we wish to apply variational methods to calculating
the shift in Tc , we need to generalize the quantity D^f2&
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appearing in Eq. (259) to the field theory defined by
Eqs. (266) and (267). We must be able to expand this
quantity in powers of d, and it must reduce to D^f2&
when d51. Several prescriptions for generalizing D^f2&
have been proposed in the literature (de Souza Cruz
et al., 2001, 2002; Braaten and Radescu, 2002). Some of
these prescriptions are well behaved in the limit N
→` , and some of them are not. Since the result for the
shift in Tc is known analytically in this limit, this a de-
sirable property for a prescription. Two generalizations
that have this property have been considered (Braaten
and Radescu, 2002):

Da^f
2&5NE ddk

~2p!d F 1
k21S~k !2S~0 !

2
1
k2G , (269)

Db^f2&5NE ddk

~2p!d F 1
k21m2~12d!1S~k !2S~0 !

2
1

k21m2~12d!G . (270)

In the following, we shall consider Da^f
2&. The strategy

is to calculate the difference S(k)2S(0) in a powers
series in d, substitute the result into Eq. (269), and fi-
nally expand the resulting integral in powers of d. The
Feynman diagram that contributes to the self-energy to
first order in d is the leftmost diagram in Fig. 17. It is
independent of the external momentum, and so the dif-
ference S(k)2S(0) vanishes. The first nonzero contri-
bution to the quantity S(k)2S(0) is then given by the
two-loop diagram in Fig. 17. The expression is

S2~k !2S2~0 !5d2
N~N12 !

18
u2E d3p

~2p!3 E d3q

~2p!3

3F 1
p21m2

1
q21m2

1

~p1q1k !21m2

2
1

p21m2

1
q21m2

1

~p1q !21m2G , (271)

where the subscript n indicates the order in the loop
expansion. We have set d53 since the integral is finite in
three dimensions. The integral is calculated in the Ap-
pendix. Using Eq. (A26), we obtain

S2~k !2S2~0 !5d2
N~N12 !

18
u2

1

~4p!2

3F12
3m

k
arctan

k

3m
2

1
2

ln
k219m2

9m2 G .

(272)

The self-energy (272) is itself second order in d. The
second-order result for Da

(2)^f2& is then obtained by ex-
panding Eq. (269) in powers of the subtracted self-
energy and keeping only the first term:

Da
(2)^f2&5E d3k

~2p!3

1
k4 @S2~k !2S2~0 !# , (273)

where the superscript indicates the order of d. Using Eq.
(A27),
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Da
(2)^f2&52

1
108~4p!3

1
m

d2u2N~N12 !. (274)

The minimal-sensitivity criterion (268) has no solution at
second order in d because Eq. (274) is a monotonic func-
tion of m . Thus one has to go to the third order in order
to obtain a value for m . The result for Da

(3)^f2& reads
(Braaten and Radescu, 2002)

Da
(3)^f i

2&52
1

108~4p!3

1
m

d2u2N~N12 !S 11
1
2

d D
2d3

N~N12 !~N18 !

18
u3I3 , (275)

where

I352
1

24~4p!4 Fp2116 ln
3
4

112Li2~21/3!G 1
m2 .

(276)

Here

Lin~x !5(
i51

` xi

in (277)

is the polylogarithmic function. At this order, the
minimal-sensitivity criterion has a single real solution:

m51.04u
N18
24p

. (278)

The resulting value for Da
(2)^f i

2& is

Da
(2)^f i

2&50.4813
N12
N18 S 2

Nu

96p2D . (279)

When we set N52, the prefactor becomes 0.19. The lat-
tice result (Arnold and Moore, 2001a, 2001b) is

D^f i
2&5~0.28460.004!S 2

Nu

96p2D . (280)

Thus the third-order approximation differs from the lat-
tice Monte Carlo result by 66%. Similarly, it was found
(Braaten and Radescu, 2002) that the fourth-order ap-
proximation differs from the numerical simulations by
61%. Braaten and Radescu (2002) also studied the con-
vergence of the linear d expansion to the exact result in
the large-N limit. It was shown that it converges to the
lattice Monte Carlo result (254), but that the conver-
gence is rather slow.

A straightforward application of the linear delta ex-
pansion to field-theoretic problems has recently been
criticized by Kleinert (Kleinert, 2003; Kleinert and Ham-
precht, 2003). One must take into account the correct
Wegner exponent (Wegner, 1972) that governs the ap-
proach to the strong-coupling limit. The method is then
called variational perturbation theory (Kleinert, 1998a,
1998b, 1999). The failure to take into account the correct
Wegner exponent is the reason why one finds complex-
valued solutions in the linear delta expansion. These
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TABLE I. The critical temperature for a dilute Bose gas obtained by various analytic and numerical
methods.

DTc

T0
52.33n1/3a , leading order 1/N (Baym et al., 2000)

DTc

T0
51.71n1/3a , next-to-leading order 1/N (Arnold and Tomasik, 2000)

DTc

T0
5~1.3260.02!n1/3a , lattice (Arnold and Moore, 2001a, 2001b)

DTc

T0
5~1.2960.05!n1/3a , lattice (Kashurnikov et al., 2001)

DTc

T0
50.7n1/3a , one-bubble approximation (Holzmann et al., 1999)

DTc

T0
53.8n1/3a , one-bubble self-consistent approximation (Baym et al., 1999, 2001)

DTc

T0
52.5n1/3a , ladder-summation approximation (Baym et al., 1999, 2001)

DTc

T0
51.6n1/3a , bubble-summation approximation (Baym et al., 1999, 2001)

DTc

T0
5~1.2760.11!n1/3a , seven-loop variational perturbation theory (Kastening, 2004)

DTc

T0
5~1.236 !n1/3a , renormalization group in three dimensions (Ledowski et al., 2003)

DTc

T0
5~1.360.4!n1/3a , simulations of classical field theory (Davis and Morgan, 2003)
matters are highly technical and beyond the scope of this
paper. Interested readers are referred to the textbook by
Kleinert and Schulte-Frolinde (2001). Variational per-
turbation theory has very recently been applied in a
seven-loop calculation by Kastening (2004, see also Kas-
tening, 2003; and Kleinert, 2003 for five and and six-loop
calculations). The result for the coefficient is c51.28
60.1, which is in excellent agreement with lattice field-
theory results. We also note that seven-loop calculations
have been carried out for the case N51 and N54 as
well. The values for the coefficient c are 1.0760.10 and
1.5460.11, respectively. These results are also in good
agreement with the lattice simulation of Sun (2003), who
obtained the values 1.09 and 1.59, respectively.

We close this section by listing in Table I the predic-
tions for the shift in the critical temperature that were
obtained by the various methods we have discussed.

VI. CONCLUSIONS

In the present paper, we have extensively discussed
the dilute Bose gas at zero and finite temperature. Using
effective-field-theory methods, we set up a systematic
perturbative framework that can be used to calculate
any quantity of the dilute Bose gas at zero temperature.
Within this framework many of the classic results for the
weakly interacting Bose gas are derived in an efficient
and economical manner. Nonuniversal effects are an-
., Vol. 76, No. 2, April 2004
other application in which effective-field-theory meth-
ods are ideal. For instance, such methods were used to
solve the long-standing problem of calculating the full
order-na3 correction to the ground-state energy density
of a weakly interacting Bose gas. Similarly, it would be
of interest to calculate higher-order corrections to the
condensate density and compare the result with numeri-
cal results (Giorgini et al., 1999). The strength of the
effective-field-theory approach lies in the fact that it is
systematic. To any given order in the low-energy expan-
sion, only a finite number of terms in the effective La-
grangian contribute to a physical quantity, and this al-
lows us to make definite predictions. Although effective
field theories are nonrenormalizable in the traditional
sense of the word, one can carry out renormalization
systematically order by order in the low-energy expan-
sion.

We have also discussed different approaches to the
dilute Bose gas at finite temperature. Although both the
Bogoliubov and Popov approximations are gapless, they
break down at sufficiently high temperature. Since the
interactions between excited bosons are ignored in the
Bogoliubov approximation, it is only valid at very low
temperatures, where one can neglect the thermal deple-
tion of the condensate. The Popov approximation can be
used at much higher temperatures. However, being a
mean-field theory, it breaks down in the critical region.
It incorrectly predicts a first-order phase transition with
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the same Tc as the ideal Bose gas. The full HFB ap-
proximation violates the Hugenholz-Pines theorem,
which any reasonable approximation should incorpo-
rate. The modified Popov approximation based on the
many-body T matrix is an improvement over the origi-
nal Popov approximation because it correctly predicts a
second-order phase transition. The renormalization-
group equations that have been derived (Bijlsma and
Stoof, 1996a; Andersen and Strickland, 1999) show that
the critical properties of the dilute Bose gas are given by
a three-dimensional spin model with a continuous O(2)
symmetry. Explicit numerical calculations demonstrate
that the system undergoes a second-order phase transi-
tion where the effective coupling constant vanishes at
the critical point. Of the other approaches to the ther-
modynamics of the dilute Bose gas, optimized perturba-
tion theory is probably the most promising. It is a sys-
tematically improvable expansion with significant
flexibility with respect to the choice of parameters. This
approximation also respects the Goldstone theorem or-
der by order in the perturbative expansion. To go be-
yond one loop for the free energy in optimized pertur-
bation theory is a difficult, but not impossible, task. The
complicated setting sun diagrams that appear at the two-
loop level are most easily calculated using a method in
which one separates the diagrams into contributions
from zero, one, and two Bose-Einstein distribution func-
tions (Andersen, Braaten, and Strickland, 2000).

Calculating the shift in the critical temperature of a
weakly interacting Bose gas has been a long-standing
problem. Using effective-field-theory methods to obtain
an effective three-dimensional field theory combined
with high-precision lattice calculations has settled the is-
sue in a very elegant way. The next-to-leading-order re-
sult in the 1/N expansion shows that this expansion
works surprisingly well for Tc ; for N52, the result is
29% higher than the predictions from the lattice simula-
tions. Among other notable calculations, we mention the
application of variational perturbation theory through
seven loops. The agreement with lattice data for N51, 2,
and 4 is convincing.

This summarizes our current understanding of some
aspects of the homogeneous Bose gas at zero and finite
temperature. Significant progress has been made in the
last ten years, but there are still open problems. We
hope that this review has stimulated the reader to fur-
ther research in the field.
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APPENDIX: CALCULATIONAL DETAILS, NOTATION,
AND CONVENTIONS

In this appendix, we give some calculational details
that may be useful for the reader who is interested in
going through the calculations in detail. We also define
our notation and conventions used throughout the pa-
per.

1. Zero temperature

All the zero-temperature calculations are carried out
in real time. Loop integrals are integrals over real ener-
gies v and over three-dimensional momenta k. The in-
tegrals over v are evaluated using contour integration.

The specific integrals needed are

E dv

2p
ln@v22e2~p !#5ie~p !, (A1)

E dv

2p

1

@v22e2~p !#
52

i

2e~p !
, (A2)

E dv

2p

1

@v22e2~p !#2 5
i

4e3~p !
. (A3)

Some momentum integrals are divergent in the infra-
red or in the ultraviolet, or both. Dimensional regular-
ization can be used to regularize both ultraviolet and
infrared divergences in three-dimensional integrals over
momenta. The spatial dimension is generalized to d53
22e dimensions. The continuum limit is taken by re-
placing sums over wave vectors by integrals in d53
22e dimensions:

1
V (

p
→M2eE ddp

~2p!d . (A4)

Here, M is a renormalization scale that ensures that the
integral also has the canonical dimension for dÞ3. In
the following, we absorb the factor M2e in the measure,
and so it will not appear explicitly. Integrals are evalu-
ated at a value of d for which they converge and then
analytically continued to d53.

The integral Im ,n is defined by

Im ,n~L!5E ddp

~2p!d

p2m

pn~p21L2!n/2 . (A5)

With dimensional regularization, Im ,n is given by the for-
mula

Im ,n~L!5
Vd

~2p!d M2eLd12m22n

3

GS d2n

2
1m DGS n2m2

d

2 D
2GS n

2 D , (A6)

where Vd52pd/2/G(d/2) is the area of a d-dimensional
sphere.

The integrals Im ,n satisfy the relations
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d

dL2 Im ,n52
n

2
Im11,n12 , (A7)

~d12m2n !Im ,n5nIm12,n12 , (A8)

L2Im ,n5Im21,n222Im11,n . (A9)

The first relation follows directly from the definition of
Im ,n . The second relation follows from integration by
parts, while the last is simply an algebraic relation.

The specific integrals we need in the calculations are
listed below. In the limit d→3, they become

I0,215
L5

15p2 , (A10)

I1,15
L3

3p2 , (A11)

I21,2152
L3

6p2 , (A12)

I4,552
4L

3p2 , (A13)

I2,352
L

p2 , (A14)

I0,152
L

2p2 , (A15)

I22,2152
L

4p2 F1
e

142L2g1ln~p!G , (A16)

I21,152
1

4Lp2 F1
e

122L2g1ln~p!G , (A17)

where L5ln(L2/M2). The integrals I21,1 and I22,21 are
both logarithmically divergent in the infrared and this
shows up as a pole in e.

We also need to calculate some integrals in d dimen-
sions that depend on the external momentum k . The
integral T1(k) defined in Eq. (246) is

T1~k !5E ddq

~2p!d

1
q2uq1ku2 . (A18)

By introducing a Feynman parameter y , we can write
the integral as

T~k !5E
0

1
dyE ddq

~2p!d

1

~q21m2!2 , (A19)

where m25y(12y)k2. First integrating over q , and
then over y gives

T~k !5M2e

GS 22
d

2 D
~4p!d/2 E

0

1
dymd24

5M2e

GS 22
d

2 DGS d

2
21 D

22d23p~d21 !/2GS d21
2 D kd24. (A20)
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Other integrals needed are calculated in the same man-
ner. Specifically, we need the integrals

E ddp

~2p!d

1
p4 F 1

up1ku2 2
1
k2G

5M2e

GS 32
d

2 DGS d

2
22 D

22d24p~d21 !/2GS d23
2 D kd26, (A21)

E ddp

~2p!d

pd26

a1bpd24

52M2e

GS 22d

42d DGS 62d

42d D
2d21pd/2GS d

2 D a ~d22 !/~d24 !b ~32d !/~d24 !.

(A22)

Note that the integral in Eq. (A21) vanishes in d53
dimensions due to the factor G(2e) in the denominator.
The integral (A22) has a pole in e. When these integrals
are combined, the limit d→3 is regular.

We need to evaluate the subtracted two-loop self-
energy in the linear delta expansion. The expression is

S2~k !2S2~0 !5E ddp

~2p!d E ddq

~2p!d

3F 1
p21m2

1
q21m2

1

~p1q1k !21m2

2
1

p21m2

1
q21m2

1

~p1q !21m2G .

(A23)

This integral is ultraviolet finite and can be calculated
directly in three dimensions by going to coordinate
space:

S2~k !2S2~0 !5E d3r@eik"r21#V3~r !, (A24)

where V(r) is the Fourier transform of the propagator,

V~r !5E d3p

~2p!3

eip"r

p21m2 5
1

4pr
e2mr. (A25)

This is the usual Yukawa potential. Integrating over r
yields

S2~k !2S2~0 !5
1

~4p!2 F12
3m

k
arctan

k

3m

2
1
2

ln
k219m2

9m2 G . (A26)

Finally, we need to evaluate the integral

Da
(2)^f2&5E ddk

~2p!d

1
k4 @S2~k !2S2~0 !# .

The integral is finite in the ultraviolet and can thus be
evaluated directly in three dimensions. One obtains
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Da
(2)^f2&52

1
6~4p!3

1
m

. (A27)

2. Finite temperature

In the imaginary-time formalism for thermal field
theory, the four-momentum P5(vn ,p) is Euclidean
with P25vn

21p2. The Euclidean energy p0 has discrete
values: vn52npT for bosons, where n is an integer.
Loop diagrams involve sums over vn and integrals over
p. With dimensional regularization, the integral is gen-
eralized to d5322e spatial dimensions. We define the
dimensionally regularized sum-integral by

X

P

[M2eT (
vn52npT

E ddp

~2p!d . (A28)

Again, the factor M2e is absorbed in the measure for
convenience.

We also need to evaluate the various sums over Mat-
subara frequencies. They can be calculated by a stan-
dard contour trick, where one rewrites the sum as a con-
tour integral in the complex energy plane (Kapusta,
1989). Specifically, we need the following sums:

(
n

ln@vn
21v2#5bv12 ln@12e2bv# , (A29)

(
n

1

vn
21v2 5

b

2v
@112n~v!# , (A30)

where n(v)51/(ebv21) is the Bose-Einstein distribu-
tion function.

We also need to expand some sum-integrals about
zero temperature. The phonon part of the spectrum then
dominates the temperature-dependent part of the sum-
integral. We can therefore approximate the Bogoliubov
dispersion relation e(p) by pA2m , and this gives the
leading temperature correction. The specific sum-
integrals needed are

X

P

ln@vn
21e2~p !#

5I0,211
T

p2 E
0

`

dpp2 ln@12e2be(p)#

5
~2m!5/2

15p2 2
p2T4

45~2m!3/2 1¯ , (A31)

X

P

e2~p !/p2

vn
21e2~p !

5
1
2

I21,211
1

2p2 E
0

`

dpe~p !n@e~p !#

52
~2m!3/2

12p2 1
T2

12A2m
1¯ , (A32)

X

P

p2

vn
21e2~p !

5
1
2

I1,11
1

2p2 E
0

`

dp
p4

e~p !
n@e~p !#

5
~2m!3/2

6p2 1
p2T4

30~2m!5/2 1¯ , (A33)
Rev. Mod. Phys., Vol. 76, No. 2, April 2004
X

P

1

vn
21e2~p !

5
1
2

I0,11
1

2p2 E
0

`

dp
p2

e~p !
n@e~p !#

52
A2m

4p2 1
p2T2

12~2m!3/2 1¯ . (A34)
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Grüter, P., D. Ceperly, and F. Laloe, 1997, Phys. Rev. Lett. 79,

3549.
Haque, M., 2003, cond-mat/0302076.
Haugset, T., H. Haugerud, and F. Ravndal, 1998, Ann. Phys.

(N.Y.) 266, 27.
Hohenberg, P. H., and P. H. Martin, 1965, Ann. Phys. (N.Y.)

34, 291.
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