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The current-phase relation in Josephson junctions
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This review provides a theoretical basis for understanding the current-phase relation (CFR) for the
stationary (dc) Josephson effect in various types of superconducting junctions. The authors summarize
recent theoretical developments with an emphasis on the fundamental physical mechanisms of the
deviations of the CFR from the standard sinusoidal form. A new experimental tool for measuring the
CFR is described and its practical applications are discussed. The method allows one to measure the
electrical currents in Josephson junctions with a small coupling energy as compared to the thermal
energy. A number of examples illustrate the importance of the CFR measurements for both
fundamental physics and applications.
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I. INTRODUCTION

The Josephson effect was discovered by Brian Joseph-
son in 1962 (see also Josephson, 1964, 1965). The sta-
tionary Josephson effect was first observed experimen-
tally by Anderson and Rowell (1963) and Rowell (1963),
and the nonstationary Josephson effect was observed by
Yanson et al. (1965). Since that time, there has been a
continuously growing interest in the fundamental phys-
ics and applications of this effect. The achievements in
Josephson-junction technology have made it possible to
develop a variety of sensors for detecting ultralow mag-
netic fields and weak electromagnetic radiation; they
have also enabled the fabrication, testing, and applica-
tion of ultrafast digital rapid single flux quantum
(RSFQ) circuits as well as the design of large-scale inte-
grated circuits for signal processing and general purpose
computing (Likharev and Semenov, 1991; Likharev,
1996, 2000; SEMATECH, 2001). In the present litera-
ture, there is no recent overview of this area of physics
available to both experts and people entering the field.

Classical developments are summarized in the review
by Likharev (1979) and several standard textbooks that
deal with the Josephson effect (Barone and Paterno,
1982; Likharev, 1986; Schmidt, 1997), where thorough
treatments are provided of the basic phenomena of the
Josephson effect in tunnel junctions and weak links.

Several recent review articles have been devoted to
applications of the Josephson effect, e.g., in high-Tc su-
perconductors and Josephson quantum bits.1 At the
same time, recent progress in the physics of the Joseph-

1See, for example, Kupriyanov and Likharev, 1990; Braginski,
1992; Sigrist and Rice, 1995; van Harlingen, 1995; Delin and
Kleinsasser, 1996; Kashiwaya and Tanaka, 2000; Tsuei and
Kirtley, 2000; Löfwander et al., 2001; Makhlin et al., 2001;
Hilgenkamp and Mannhart, 2002.
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son effect justifies an overview of the fundamentals of
the Josephson effect on a more general level.

The purpose of the present review is to provide a the-
oretical basis for the dependence of the supercurrent IS
on the phase difference w and to discuss the forms this
dependence takes in Josephson junctions of different
types: superconductor-normal-superconductor (SNS),
superconductor-insulator-superconductor (SIS), double-
barrier (SINIS), superconductor-ferromagnet-super-
conductor (SFS), and superconductor two-dimensional
electron gas superconductor (S-2DEG-S) junctions,
and superconductor-constriction-superconductor (ScS)
point contacts. Unconventional symmetry in the order
parameter of a high-Tc superconductor, as manifested in
the current-phase relation (CFR) will also be discussed.

Recently, a new experimental tool has been developed
(Rifkin and Deaver, 1976; Il’ichev, Zakosarenko, IJssel-
stein, et al., 1998a; Il’ichev, Zakosarenko, Schultze, et al.,
2000) and applied to the study of the CFR for a variety
of Josephson junctions. We shall describe this method
and its practical applications. It is important that the
method has a resolution permitting the study of weak
links with Josephson energies smaller than the thermal
energy. We shall illustrate by a number of examples the
importance of these experimental studies for fundamen-
tal physics and applications. The examples include mea-
surements of small critical currents in Josephson junc-
tions, a calibration of second oxidation in SINIS
junctions, and studies of hybrid S-2DEG-S Josephson
devices, CFR anomalies in high-Tc superconducting
junctions, physics of p states in SFS junctions and qubit
structures.

The main emphasis in this review is on the general
nature of the Josephson effect and on fundamental
physical mechanisms that control the CFR. At the same
time, some details are provided regarding types of weak
links and their fabrication. References to original ex-
perimental papers are given in the appropriate places.

II. dc JOSEPHSON EFFECT

Josephson (1962) predicted that a supercurrent IS
could exist between two superconductors separated by a
thin insulating layer and that its value would be propor-
tional to the sine of the difference w5x12x2 of the
phases of the superconductor order parameters
D1 exp$ix1% and D2 exp$ix2%,

IS~w!5IC sin w , (1)

the so-called dc Josephson effect. The maximum current
IC in that CFR is the critical current. Further studies
have shown (de Gennes, 1966; for a review see Likharev,
1979) that the effect extends beyond Josephson’s predic-
tions and can exist if superconductors are connected by
a ‘‘weak link’’ of any physical nature (normal metal,
semiconductor, superconductor with smaller critical tem-
perature, geometrical constriction, etc.)

The CFR is an important characteristic of a Joseph-
son junction. In only a few cases does the CFR reduce
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to the familiar sinusoidal form of Eq. (1), which is ordi-
narily used to study the dynamics and ultimate perfor-
mance of analogous and digital devices based on Joseph-
son junctions (see van Duzer and Turner, 1981; Barone
and Paterno, 1982; Likharev, 1986; Gallop, 1991; Or-
lando and Delin, 1991; Tinkham, 1996; Schmidt, 1997;
Kadin, 1999).

The physics of the dc Josephson effect can be under-
stood if we take into account that a quasiparticle located
in the weak link cannot penetrate directly into a super-
conductor if its energy is smaller than the superconduct-
ing energy gap. However, another form of charge trans-
port, the so-called Andreev reflection (Andreev, 1964),
can occur. An electron with momentum k impinging on
one of the interfaces is converted into a hole moving in
the opposite direction, thus generating a Cooper pair in
a superconductor. This hole is consequently Andreev re-
flected at the second interface and is converted back to
an electron, leading to the destruction of a Cooper pair
(see Fig. 1). As a result of this cycle, a pair of correlated
electrons is transferred from one superconductor to an-
other, creating a supercurrent flow across a junction.
Since Andreev reflection amplitudes depend on the cor-
responding phases x1,2 , the resulting current depends on
the phase difference w, thus leading to the dc Josephson
effect.

Due to the electron-hole interference in the quantum
well, formed by the pairing potentials of the supercon-
ducting electrodes, standing waves with quantized en-
ergy EAB appear in the weak-link region The corre-
sponding quantum states are referred to as Andreev
bound states. The physics of Andreev bound states in
Josephson junctions has been studied extensively, start-
ing with the pioneering work of Kulik (1969).

It follows from the microscopic theory of supercon-
ductivity (see review by Lambert and Raimondi, 1998;
Belzig et al., 1999; Kopnin, 2001) that in stationary situ-
ations the supercurrent across a Josephson junction,

IS~w!}E
2`

`

dE@122 f~E !# Im$IE~w!%, (2)

depends on the electron energy distribution function
f(E) and the spectral current Im$IE%. The spectral cur-
rent incorporates information on the energy distribution
of the Andreev bound state in a junction. Im$IE% de-
pends on the distance d , between the superconductors

FIG. 1. Formation of Andreev levels in a Josephson junction.
An electron e and the Andreev-reflected hole h are shown. A
pair of correlated electrons is transferred from the left super-
conductor to the right one, creating a supercurrent flow across
a junction.
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and the transport parameters of the junction’s materials
(resistivities r1,2 , Fermi velocities vF1,2 , and interface
parameters).

In structures where the momentum of an electron in
the weak-link region is a good quantum number (so-
called ‘‘clean’’ Josephson junctions), Andreev bound
states form a regular structure in energy and Im$IE(w)% is
peaked at the corresponding energies (Kulik, 1969; Ishii,
1970; Bardeen and Johnson, 1972; Bagwell, 1992; Schüs-
sler and Kummel, 1993; Tang, Wang, and Zhang, 1996;
Tang, Wang, and Zhu, 1996).

An increase of the degree of disorder in the weak link
leads to a broadening and decrease of the amplitudes of
the peaks. The disorder generates a distribution of the
lengths of the electron trajectories in the weak link.
Therefore Im$IE(w)% for a disordered junction is a
weighted average of the ballistic result over the corre-
sponding distribution. This makes the spectral current
Im$IE(w)% a continuous function of energy. Other
sources of the broadening of Andreev bound states are
the Doppler shifts of Andreev bound-state energies due
to current flow (see, for example, Fogelström et al.,
1997) and many-body lifetime effects (Freericks et al.,
2002).

The electron energy distribution function in Eq. (2)
defines the population of Andreev bound states at a
given temperature. Thus Eq. (2) shows that the whole
supercurrent IS(w) is the sum of the partial currents
transported via Andreev bound states. Therefore one
can modify the shape of IS(w) in two ways: (a) by modi-
fying the spectral current Im$IE(w)%, changing the mate-
rial parameters or the geometry of a junction; (b) by
manipulating the occupation numbers of Andreev
bound states, i.e., creating a nonequilibrium distribution
function f(E) in a weak link.

Nonequilibrium effects in weak links have been inten-
sively studied by many authors.2 These effects occur ei-
ther in the nonstationary regime, when I.IC and a volt-
age is generated across the junction (stimulation by
current), under microwave irradiation, or in multitermi-
nal structures, when the junction is in a stationary re-
gime but voltage is applied via additional terminals.

In this review we shall restrict ourselves to the station-
ary Josephson effect in two-terminal weak links when
nonequilibrium effects do not play a role. This corre-
sponds to the above-mentioned case (a), when the CFR
is determined by the spectral current Im$IE(w)%, depend-

2See, for example, Zaitsev, 1976, 1993, 1995; Artemenko
et al., 1979; Zaikin and Zharkov, 1981; Aslamazov and Lem-
pitskii, 1982; Lempitskii, 1983; Zaikin 1983, 1988; Aslamazov
and Volkov, 1986; van Wees et al., 1991; Shumeiko et al., 1993;
Gorelik et al., 1995; Volkov, 1995; Chang and Bagwell, 1997;
Samuelsson et al., 1997, 2000, 2001; Volkov and Takayanagi,
1997; Morpurgo et al., 1998; Tolga Ilhan et al., 1998; Wilhelm
et al., 1998, 2000; Yip, 1998; Baselmans et al., 1999, 2001;
Kutchinsky et al., 1999, 2000; Neurohr et al., 1999; Heikkilä
et al., 2000, 2002; Seviour and Volkov, 2000; Sun et al., 2000;
Baselmans, Heikkila, et al. 2002; Baselmans, van Wees, et al.,
2002; Huang et al., 2002; Zhu et al., 2002; Brinkman et al.,
2003.
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ing on material parameters, junction geometry, and cur-
rent flow.

A. General properties of the Josephson current-phase
relation

There are several properties of the CFR that are
rather general and depend neither on the junction’s ma-
terials and geometry nor on the theoretical model used
to describe the processes in the junction.

(1) A change of phase of the order parameter of 2p in
any of the electrodes is not accompanied by a
change in their physical state. Consequently this
change must not influence the supercurrent across a
junction, and IS(w) should be a 2p periodic func-
tion,

IS~w!5IS~w12p!. (3)

(2) Changing the direction of a supercurrent flow across
the junction must cause a change of the sign of the
phase difference; therefore

IS~w!52IS~2w!. (4)

Note that Eq. (4) is violated in superconductors with
broken time-reversal symmetry, leading to sponta-
neous currents. These effects have been discussed
for Josephson junctions between superconductors
with unconventional pairing symmetry (Geshken-
bein et al., 1986, 1987; Yip, 1995; Fogelstrom et al.,
1997; Tanaka and Kashiwaya, 1997b; Sigrist, 1998)
and for superconductor-ferromagnet-supercon-
ductor (SFS) junctions (Krawiec et al., 2002). Dis-
cussion of spontaneous currents and their mecha-
nisms is beyond the scope of this review and Eq. (4)
is fulfilled in all considered cases.

(3) A dc supercurrent can flow only if there is a gradient
of the order-parameter phase. Hence, in the absence
of phase difference, w50, there should be zero su-
percurrent,

IS~2pn!50, n50,61,62, . . . . (5)

(4) It follows from (1) and (2) that the supercurrent
should also be zero at w5pn ,

IS~pn!50, n50,61,62, . . . ; (6)

therefore it is sufficient to consider the IS(w) only in
the interval 0,w,p .

As follows from Eqs. (1)–(4), IS(w) can in general be
decomposed into a Fourier series (see, for example,
Tanaka and Kashiwaya, 1997b)

IS~w!5 (
n>1

$In sin~nw!1Jn cos~nw!%, (7)

where In and Jn are coefficients to be determined. The
Jn vanish if time-reversal symmetry is not broken.

The free energy EJ of a Josephson junction is gener-
ally given by an integral (\/2e)*0

wIS(x)dx . If the CFR
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is sinusoidal, IS(w)5IC sin w (Fig. 2, curve a), the de-
pendence of EJ on w has the standard form

EJ~w!5
\IC

2e
~12cos w!, (8)

also well known as the 2p-periodic ‘‘washboard poten-
tial.’’ The standard junction has an energy minimum at
w50 when there is no current flowing across the junc-
tion. For junctions with a small capacitance, the charging
energy becomes important and should be added to
EJ(w) (Likharev, 1986; Tinkham, 1996).

Possible types of CFR in Josephson junctions are
shown in Fig. 2. Curve a is the standard sinusoidal CFR.
The critical current IC5max@IS(w)# can be achieved at
both wmax<p/2 and wmax>p/2 (the curves b and c , re-
spectively).

An interesting special case is the junction with IC,0
(Fig. 2, curve d), the so-called p junction (Bulaevskii
et al., 1977). According to Eq. (8), such a junction has an
energy minimum at w5p , i.e., it provides a phase shift
of p in the ground state.

A p junction may be used as the phase inverter in
superconducting digital circuits. The so-called comple-
mentary Josephson digital devices (e.g., the p SQUID),
were discussed by Terzioglu and Beasley (1998). Ioffe
et al. (1999), Blais and Zagoskin (2000), and Zagoskin
(2002) proposed p junctions as candidates for engineer-
ing a quantum two-level system, or qubit, which is the
basic element of a quantum computer. Blatter et al.
(2001) suggested structures including arrays of conven-
tional (0) and p junctions for the realization of a ‘‘quiet’’
phase qubit. A topologically stable qubit, based on a
triangular or more complicated p junction array, was dis-
cussed by Blatter et al. (2001) as well.

In some special cases IS(w) may cross the horizontal
axis at a position in between w50 and w5p , as shown
in Fig. 2, curve e . The energy-phase relation in this case
has two minima at w50 and w5p .

FIG. 2. Various types of current-phase relation (CFR): curve
a , the standard sinusoidal CFR; curves b and c , deviations
from the standard CFR, when the critical current is achieved
at wmax<p/2 and wmax>p/2, respectively; curve d , a p junction:
curve e has the CFR whose energy-phase relation has two
minima at w50 and w5p ; curve f , multivalued CFR that
does not correspond to a true Josephson effect and may have
various causes (see the text).
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One might consider the possibility of a multivalued
CFR with IS(pn)Þ0, as shown in Fig. 2, curve f . How-
ever, structures with a multivalued CFR cannot be re-
garded as real Josephson junctions. Such a current-
phase relation may be realized either due to Abrikosov
vortices (see Kupriyanov et al., 1975; Likharev, 1979) or
phase-slip centers inside the junction (Ivlev and Kopnin,
1984; Martin-Rodero et al., 1994; Sols and Ferrer, 1994).
The CFR in this case is controlled by completely differ-
ent physical processes than in the standard Josephson
junctions.

IS(w) dependences of the type shown in Fig. 2 by
curves b and c may be roughly described by the expres-
sion (see Likharev, 1976, 1979; Zubkov et al., 1981;
Schüssler and Kümmel, 1993)

I£~w!5IC sin@w2£I£~w!# , (9)

by which a weak link is represented as an ideal Joseph-
son junction with IS(w)}sin w connected in series with a
nonlinear inductance £. This inductance can be either
positive (Fig. 2, curve b) or negative (Fig. 2, curve c)
and is a consequence of the specific properties of a su-
perconducting condensate. The presentation of the CFR
in the form of Eq. (9) may be useful for the analysis of a
mode of operation of a system containing several Jo-
sephson junctions with a nonsinusoidal CFR.

B. Basic Josephson structures

The Josephson effect may be observed in a variety of
structures. To realize such structures it is enough to fab-
ricate a ‘‘weak’’ place interrupting the supercurrent flow
in a superconductor or suppress the ability of a super-
conductor to carry a current, e.g., by deposition of a
normal metal on its top, by implantation of impurities
within a restricted volume, or by changing the geometry
of a sample. All of these possibilities have been exten-
sively discussed in reviews and textbooks (see Likharev,
1979, 1986; van Duzer and Turner, 1981; Barone and
Paterno, 1982; Gallop, 1991; Orlando and Delin, 1991;
Tinkham, 1996; Schmidt, 1997; Kadin, 1999). Among
them only a few configurations have importance for
practical applications. These are point contacts, tunnel
junctions, sandwiches, and variable-thickness bridges
(having a normal metal, a semiconductor, or a weak fer-
romagnet as a weak-link material), and double-barrier
structures.

We shall begin our analysis by considering the dc Jo-
sephson effect in point contacts in Sec. III. The point
contact is a structure with strong supercurrent concen-
tration and provides the simplest system in which the
Josephson effect may be observed. A point contact may
be fabricated by placing a superconducting tip on top of
a bulk superconductor or by depositing a supercon-
ductor on top of a superconductor-dielectric bilayer with
a submicrometer hole in the insulator which defines a
small contact area. Contacts based on a two-dimensional
electron gas are also close to this type of structure. Point
contacts are well-defined systems in which the funda-
mental physics of the Josephson effect can be most eas-
Rev. Mod. Phys., Vol. 76, No. 2, April 2004
ily studied theoretically and verified experimentally, be-
cause all nonlinear, nonstationary, and nonequilibrium
processes are localized within the weak link, while the
electrodes may be considered as undisturbed (i.e., in
equilibrium).

Fabrication and measurements of ultrasmall super-
conducting point contacts, in which the constriction size
is reduced towards atomic dimensions, was reported by
several groups in atomic break junctions and nanotubes
(Muller et al., 1994; van der Post et al., 1994; Vleeming
et al., 1994; Scheer et al., 1997, 2001; Ludoph et al., 2000;
Buitelaar et al., 2002, 2003; Agrait et al., 2003). Such
atomic contacts have proven a rich test bed for concepts
from mesoscopic physics like multiple Andreev reflec-
tion, shot noise, conductance quantization and fluctua-
tions, and dynamical Coulomb blockade.

In tunnel junctions, discussed in Sec. IV, the weak
place is formed by a dielectric layer separating two su-
perconducting electrodes. An ideal tunnel junction is
characterized by a sinusoidal CFR. In many real tunnel
junctions, such as those based on NbAl/AlOx /Nb tech-
nology (Gurvitch et al., 1983), the base electrode has the
form of a NbAl bilayer. The proximity effect may
strongly influence the supercurrent in such junctions,
while the CFR remains sinusoidal (see Golubov, Ku-
priyanov, and Lukichev, 1984; Golubov and Kupriyanov
1988, 1989; Golubov, Gurvitch, et al., 1993; Golubov,
Houwman, et al., 1995). AlOx forms a thin dielectric
layer with a high potential barrier having an approxi-
mately trapezoidal barrier profile (Tolpygo, Cimpoiasu,
et al., 2003). In order to increase the current density up
to the values of 100–200 kA/cm2, required for fabrica-
tion of high-JC , intrinsically shunted tunnel junctions
(where JC is the critical current density), this barrier can
be made extremely thin, of the order of a few atomic
layers, by decreasing the degree of Al oxidation to a
level at which the formation of a disordered region is
expected rather than a high-quality AlOx barrier. The
properties of these junctions should be close to those of
superconductor-correlated metal-superconductor struc-
tures studied theoretically by Nikolić et al. (2001) and
Freericks et al. (2002). The transport properties of high-
JC tunnel junctions were analyzed by Naveh et al. (2000)
and Rippard et al. (2002), who have shown that elec-
tronic transport across these structures may be domi-
nated by resonant tunneling via localized states in the
disordered region.

High-quality Nb-based tunnel junctions have also
been fabricated with AlNx barriers (see Iosad et al.,
2003; Lapitskaya et al., 2003). In tunnel structures hav-
ing NbN electrodes, either TiNx (see, for example, Ish-
izaki et al., 2003; Takeda et al., 2003; Uzawa et al., 2003;
Wang, Saito, et al., 2003) or MgO (see, for example,
Johnson et al., 2003) barriers have been successfully
used for fabrication of SIS mixers and RSFQ circuits.

There exists another type of tunnel junction consisting
of homogeneous electrodes divided by a thick and rela-
tively low potential barrier (as in high-Tc junctions with
PrBaCuO barriers; see, e.g., Gao et al., 1990). The situ-
ation in structures with extended barriers may be more
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complex due to the appearance of additional Andreev
bound states (see Wendin and Shumeiko, 1996a, 1996b)
or localized states inside the barrier.3 These effects as
well as the influence of depairing processes in the elec-
trodes on the shape of the CFR will be discussed in Sec.
IV.

In Sec. V, SNS sandwiches and variable-thickness
bridges are discussed. In these junctions the weak link is
formed by a normal metal separating two superconduct-
ing electrodes. In the last few years, interest in SNS
weak links has grown continuously.4 They have been
considered as a reliable elementary base for the realiza-
tion of a programmable voltage standard (see Benz and
Burroughs, 1997; Hamilton et al., 1997; Hagedorn et al.,
2001, 2002; Jeanneret et al., 2001; Dresselhaus et al.,
2003) and have also been used for fabrication of small-
scale RSFQ circuits (see van Duzer et al., 2002; Hage-
dorn et al., 2003).

In these junctions the shape of IS(w) not only de-
pends on temperature and the distance between elec-
trodes, but also on the critical temperature of the inter-
layer and the transport parameters of both metals and
the interfaces. As we shall see in Sec. V, one may expect
in these junctions the realizations of the CFR presented
in Fig. 2.

An increased concentration of localized states inside
the barrier or a decrease of the barrier thickness under a
fixed localized state concentration may lead, as dis-
cussed above, to the formation of superconductor-
correlated metal-superconductor structures, in which
current flows via a material that is close to the metal-
insulator transition. Structures of that kind were fabri-
cated by Kaul et al. (2001), who used TaNx as a barrier
material sandwiched between superconducting NbN
electrodes. TaNx was identified as a promising barrier
material due to tunability of its resistivity over a wide
range by varying growth conditions (Willmott, 1972).
The Ta-N system exhibits a remarkable variety of equi-
librium and metastable phases. More than 11 have been
reported, while very little is known about their relative
stability (see Shin et al., 2002; Stampfl and Freeman,
2003). Stampfl and Freeman (2003) have proposed that
Ta vacancies and/or regions of Ta-deficient structures
are primarily responsible for the metal-insulator transi-
tion observed experimentally in TaNx at x'0.6. Proper-

3See Gubankov et al., 1985; Amatuni et al., 1987; Xu et al.,
1990; Golubov et al., 1994; Vengrus et al., 1994; Dömmel et al.,
1995; Kupriyanov and Tsai, 1995; Satoh et al., 1995, 1998; Wen
et al., 1995; Verhoeven et al., 1996; Gerritsma et al., 1997;
Horstmann et al., 1997, 1998; Verbist et al., 1997; Yoshida et al.,
1997; Sun and Gao, 2000; Yoshida, 2000.

4See, for example, Imamura and Hasio, 1989; Benz, 1995;
Benz and Burroughs, 1997; Sachse et al., 1997; Fritzsch et al.,
1998, 1999; Whiteley et al., 1998; Lacquaniti et al., 1999, 2000,
2001, 2003; Niemeyer, 2000; Pöpel, Hagedorn, Buchholz, et al.,
2000; Hadfield, Burnell, Booij, et al., 2001; Hadfield, Burnell,
Kang, et al.. 2001; Hagedorn et al., 2001, 2002; Kaul and van
Duzer, 2001; Ohta et al., 2001; Schubert et al., 2001; van Duzer
et al., 2002.
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ties of a Josephson junction with the barrier tuned
through a metal-insulator transition were described
theoretically by Freericks et al. (2001, 2002, 2003).

Section VI deals with SINIS double-barrier junctions.
Here the weak link is formed by a normal metal sepa-
rated by tunnel barriers from each of the superconduct-
ing electrodes (N could also be a weak superconductor,
S8, e.g., Al). The barriers may be naturally formed at the
NS interfaces during the fabrication or made artificially.
Double-barrier junctions are unique devices, which com-
bine the main advantages of weak links and tunnel junc-
tions (see Kupriyanov and Lukichev, 1988a, 1988b). It is
important to note that these structures can be fabri-
cated, making use of a modification of the standard SIS
junction fabrication process (Gurvitch et al., 1983). Their
parameters are intrinsically homogeneous due to addi-
tional averaging of the irregularities of the interface
transparency by the intermediate Al layer, which is char-
acterized by a large coherence length. They are repro-
ducible on the on-chip level. This fact has been success-
fully demonstrated by several technological groups.5

SINIS junctions are now considered prospective ele-
ments for superconducting electronics. We shall show
below in Sec. VI that the shape of IS(w) in these junc-
tions strongly depends on the critical temperature of the
S8 material.

At relatively small critical current density
(<1 kA/cm2) SINIS structures can be fabricated with
good reproducibility of their parameters. This has been
demonstrated by Wender et al. (2003) and by Schulze
et al. (2000), who fabricated, respectively, a 1-V 14-bit
programmable voltage standard containing 8192 SINIS
junctions and a 10-V standard based on more than
70 000 junctions. Practical realization of double-barrier
junctions with high critical current density at the level of
10 kA/cm2 has faced difficulties in performing the sec-
ond oxidation in a controllable way. Due to the different
morphology of the first and second Al films in a
Nb/Al/AlOx /Al/AlOx /Nb structure, the same oxidation
conditions result in increasing barrier asymmetry with
decreasing interlayer thickness and oxygen exposure
(see Cassel et al., 2001; Born et al., 2003; Tolpygo, Brink-
man, et al., 2003). One possible technological solution of
this problem, using AuAl2 instead of the second Al film,
was suggested by Wang, Chang, et al. (2003).

In SFS Josephson junctions, discussed in Sec. VII, the
weak link is formed by a ferromagnetic metal placed

5See Amin et al., 1992; Nevirkovets, 1995, 1997; Capogna and
Blamire, 1996; Nevirkovets et al., 1996, 1999, 2000; Capogna
et al., 1997; Maezawa and Shoji, 1997; Sugiyama et al., 1997,
1999; Balashov et al., 1998, 1999, 2000, 2001; Schulze et al.,
1998, 2000; Behr et al., 1999; Buchholz and Kessel, 1999;
Brinkman et al., 1999, 2001; Khabipov et al., 1999, 2002a,
2002b; Kupriyanov et al., 1999; Buchholz et al., 2001; Cassel
et al., 2001; Kohlmann et al., 2001, 2002; Nevirkovets, Ketter-
son, and Rowell, 2001; Nevirkovets, Ketterson, and Siegel,
2001; Shaternik et al., 2001; Kieler et al., 2002; Nevirkovets and
Ketterson, 2002; Yamamori et al., 2002; Tolpygo, Brinkman,
et al., 2003.
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between the S electrodes. Until now, only a planar ge-
ometry has been realized in experiments by Ryazanov
et al. (2000, 2001a, 2001b, 2002), Blum et al. (2002), Kon-
tos et al. (2002), and Surgers et al. (2002). In these ex-
periments the transition from the 0 state (curve a Fig. 2)
to the p state (curve d Fig. 2) was observed experimen-
tally. Theory predicts that if the weak link in a Joseph-
son junction is formed by a magnetic material, either
metal or dielectric, the shape of the CFR may have the
variety of forms shown in Fig. 2.

In Sec. VIII we discuss the experimental method for
measuring the CFR and its applications. The range of
validity of the method, measuring technique, and cali-
bration are discussed. The applications include measure-
ments of small critical current, the CFR in SINIS,
S/2DEG/S, and high-Tc superconducting junctions. Of
particular interest are the CFR anomalies observed in
high-Tc junctions. High-Tc superconductors are charac-
terized by an unconventional d-wave symmetry of the
order parameter as was proved by phase sensitive tests
[see review papers by van Harlingen (1995) and by Tsuei
and Kirtley (2000)]. Since the theory of the Josephson
effect between d-wave superconductors has been exten-
sively discussed in the review papers by Kashiwaya and
Tanaka (2000) and Löfwander et al. (2001), we shall in-
troduce the relevant theoretical concepts only in connec-
tion with the measurements in Sec. VIII.

The theoretical results discussed in this review have
been obtained within the quasiclassical theory. This
theory has proved to be very successful in describing
superconductivity and the properties of weak links in
conventional materials. On the other hand, some
material-specific aspects, in particular correlation and
self-energy effects in high-Tc superconducting oxides
and in materials close to metal-insulator transition, are
outside the scope of the quasiclassical theory. The influ-
ence of these effects on the properties of Josephson
junctions was discussed by Martin-Rodero et al. (1994,
1999), Levy Yeyati et al. (1995), Cuevas et al. (1996),
Martin and Annett (1998, 1999), Nikolić et al. (2001,
2002), and Freericks et al. (2002).

III. JOSEPHSON EFFECT IN POINT CONTACTS

Point contacts are structures with strong supercurrent
concentration. If the constriction size is smaller than the
electronic mean free path, the contact is usually called a
Sharvin point contact (Sharvin, 1965). Upon further re-
duction of the transverse size, making it comparable
with the Fermi wavelength, the contact enters the quan-
tum regime, in which conductance is quantized. This re-
gime was realized in normally conducting structures with
two-dimensional electron gas by van Wees et al. (1988)
and in superconducting structures by Takayanagi and
Kawakami (1985) and Takayanagi et al. (1995a, 1995b)
(see the recent review by Schäpers, 2001). Another re-
gime is that of the diffusive point contact, with a size
larger than the electronic mean free path (the so-called
Maxwell contact).
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Superconducting constrictions serve as model systems
for understanding the fundamental physics of the Jo-
sephson effect. In this section we discuss the classical
models of Aslamazov and Larkin and Kulik and Ome-
lyanchuk, their extensions, and the physics of Andreev
bound states.

A. Aslamazov-Larkin model

The model suggested by Aslamazov and Larkin
(1969) illustrates the basic principle of Josephson cou-
pling: the coupling occurs due to an overlap of supercon-
ducting order parameters from both electrodes in the
weak-link region. The model is applicable near the Tc of
the electrodes if the characteristic size of a weak link is
sufficiently small, Leff!j(T), where j(T) is the
Ginzburg-Landau coherence length [see Eq. (A29)].
The details of the derivation for the supercurrent can be
found in the review by Likharev (1979). The result is
(Aslamazov and Larkin, 1969)

IS~w!5
pD1D2

4eRNT
sin w , (10)

where D1,2 are the magnitudes of the pair potentials in
the superconducting electrodes and RN is the normal-
state resistance of the weak link. We write the Boltz-
mann constant as kB51 in Eq. (10) and elsewhere, un-
less stated otherwise.

Equation (10) is very general: it does not depend on
the electronic mean free path in the weak link and is
applicable to all types of weak links near Tc . According
to Eq. (10), near Tc the CFR is always sinusoidal, inde-
pendent of the material of the weak link, which is char-
acterized only by its resistance RN .

The Aslamazov-Larkin model can be generalized to
arbitrary temperatures in both the clean and dirty limits.
At low temperature the CFR is no longer universal, but
depends on the electronic mean free path in the weak
link.

B. Kulik-Omelyanchuk model, dirty limit (KO-1)

Kulik and Omelyanchuk (1975a) considered a point
contact as a diffusive quasi-one-dimensional wire, con-
necting two superconductors, having length d!Aj0l and
transverse size a!d , where j05\vF/2pTc and l!j0 is
the electronic mean free path. In this case, the supercur-
rent can be calculated from the Usadel equations
(A11)–(A14), in which nongradient terms are neglected
(see the derivation in Appendix, Sec. 2). For a symmet-
ric junction formed by identical superconductors (D1
5D25D) the result is

IS~w!5
4pT

eRN
(
v.0

D cos~w/2!

d
arctan

D sin~w/2!

d
, (11)

where d5AD2 cos2(w/2)1v2 and v5pT(2n11) are
the Matsubara frequency. The CFR at arbitrary tem-
perature can be calculated numerically from Eq. (11).
Examples of CFR’s for this model, hereafter referred to
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as the KO-1 model, are shown in Fig. 3. The curves
IS(w) are nonsinusoidal at low temperatures and reduce
to the Aslamazov-Larkin result for T→Tc .

Equation (11) was generalized to the asymmetric case
(D1ÞD2) by Zubkov et al. (1981; see Appendix, Sec. 2).
As the ratio D2 /D1 increases, the CFR becomes closer
to sinusoidal. For D2 /D1@1 the result is

IS~w!5
D1

eRN
F ln

2D2

D1@11cos ~w!#Gsin w , (12)

i.e., there is a slow logarithmic crossover to sin w depen-
dence.

C. Kulik-Omelyanchuk model, clean limit (KO-2)

A clean point contact provides a model system for the
study of fundamental aspects of the Josephson CFR. As
we shall see below, the supercurrent per single channel is
a building block for more complex structures. A clean
point contact is a constriction with a size in both direc-
tions (transverse and along the current) smaller than the
electronic mean free path. The contact may contain a
single scattering center, e.g., a tunnel barrier of finite
transparency, characterized by the transmission coeffi-
cient D , where 0<D<1. A highly idealized model for a
clean constriction is the aperture in a thin impenetrable
screen.

Kulik and Omelyanchuk (1977) advanced a theory,
hereafter referred to as the KO-2 model, to describe the
Josephson effect in the fully ballistic case, D51. The
supercurrent was calculated in the framework of the
Eilenberger equations [Eqs. (A6)–(A8) in Appendix,
Sec. 2]. For D51, the boundary conditions, Eqs. (A9)
and (A10), provide continuous matching of the Green’s
functions along the trajectories crossing the constriction.
The Eilenberger equations can then be straightfor-
wardly solved (see also discussion by Likharev, 1979),
with the supercurrent given by the simple expression

FIG. 3. Current-phase relations for a symmetric diffusive point
contact—the Kulik-Omelyanchuk (KO-1) model—at various
temperatures T , normalized to Tc .
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IS~w!5
pD

eRN
sin~w/2!tanh

D cos~w/2!

2T
. (13)

The only characteristic of the weak-link material in Eq.
(13) is the Sharvin resistance RN

215e2kF
2 S/(4p2\),

where kF is the Fermi wave vector and S is the constric-
tion area.

The conductance of a ballistic point contact is quan-
tized in units of 2e2/h (see the review by Beenakker and
van Houten, 1991a). The generalization of Eq. (13) to
the quantum regime was provided by Beenakker and
van Houten (1991b) and by Furusaki and Tsukada
(1990, 1991). It was shown theoretically that the critical
current of a smooth and impurity-free superconducting
constriction increases stepwise as a function of its width,
with the step height at zero temperature being equal to
eD/\ . This result is a natural extension of Eq. (13),
where the quantum resistance RN

215e2/p\ . If N chan-
nels are open, the general expression for the supercur-
rent is

IS~w!5N
eD

\
sin~w/2!tanh

D cos~w/2!

2T
. (14)

Supercurrent quantization with a variation of the junc-
tion width was observed by Takayanagi et al. (1995b) in
ballistic S/2DEG/S structures.

D. Point contact, the general case

Haberkorn et al. (1978) generalized the Kulik-
Omelyanchuk result to the case of arbitrary transpar-
ency of a tunnel barrier inserted in the constriction by
directly solving the Gor’kov equations (A1). The result
is

IS~w!5
pD

2eRN

sin w

A12D̄ sin2
w

2

3tanhF D

2T
A12D̄ sin2

w

2
G , (15)

where D̄ is the angle-averaged transmission probability
and the contact resistance RN is

RN
215

e2kF
2 S

4p2\
D̄ . (16)

Equation (15) interpolates nicely between a clean ballis-
tic constriction and a tunnel junction. This expression
reduces to the Aslamazov-Larkin result near Tc and to
the Ambegaokar-Baratoff result for a tunnel junction
for D̄!1, which was later derived by several authors
using different approaches (see Zaitsev, 1984; Arnold,
1985; Furusaki and Tsukada, 1990; Beenakker and van
Houten, 1991b; Bagwell, 1992).

The modifications of the CFR with varying average
transparency and temperature given by Eq. (15) are
shown in Figs. 4 and 5, respectively. The strongest devia-
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tions from the sinusoidal form occur for ballistic contact
with D̄51 at low T , when IS(w)}sin(w/2). There is a
crossover to harmonic dependence with increasing tem-
perature or decreasing D̄ . According to the above dis-
cussion, the CFR becomes sinusoidal for D̄!1 over the
whole temperature range or near Tc for arbitrary D̄ .

A multichannel generalization of Eqs. (15) and (14)
was performed by Beenakker (1991; see also Böttcher
and Kopp, 1997):

IS~w!5
eD2

2\
sin w (

n51

N Dn

En
tanhF En

2TG , (17)

where Dn are the eigenvalues of an arbitrary transmis-
sion matrix that describes a disordered junction, n is the
number of channels, and En5DA12Dn sin2(w/2) is the
energy of the Andreev bound state. Equation (17) is

FIG. 4. Current-phase relations for a clean point contact at
zero temperature and various values of the angle-averaged
transmission probability D̄ .

FIG. 5. Current-phase relations for a clean point contact for
D51 and various temperatures.
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valid for arbitrary degrees of disorder. If the number of
channels N is large, one can go from summation over n
to integration over transmissions D according to
(n51

N
¯ 5*0

1r(D)dD ¯ , where r(D) is the transmis-
sion eigenvalue density. In a diffusive point contact,
when l!j0 , the eigenvalue density function is universal
(Dorokhov, 1984; Nazarov, 1994a)

r~D !5~p\/2e2RN!D21/2~12D !21/2. (18)

Integrating Eq. (15) with this function provides ex-
actly the Kulik-Omelyanchuk expression for the super-
current in the dirty limit, Eq. (11). Below, we shall dis-
cuss the applicability of this result to other types of short
weak links. For a derivation based on the Eilenberger
equations and further applications of nonstationary
problems see Bardas and Averin (1997) and Zaitsev and
Averin (1998).

The most general formula for a dc supercurrent
through a classical point contact (large number of chan-
nels N) was derived by Zaitsev (1984). The theory of
Zaitsev takes the asymmetry of the electrodes into ac-
count as well as possible non-BCS structure of the den-
sities of states in the superconducting electrodes [e.g.,
due to the proximity effect or a magnetic field; see also
Aminov et al. (1996) and Zaitsev and Averin (1998)]. As
a model for the constriction, an aperture of small radius
was considered in a thin impenetrable screen dividing
two different superconductors. The angle-dependent
transmission coefficient D(a) was introduced within the
aperture, where a is the angle between the electronic
trajectory and normal to the junction plane. Solving the
Eilenberger equations [Eqs. (A6)–(A8) in the Appen-
dix, Sec. 2] with the proper boundary conditions [Eqs.
(A9) and (A10) in the Appendix, Sec. 2], Zaitsev (1984)
derived the following general expression for the super-
current:

IS~w!5
8pT

eRN
(
v.0

K f1f2 sin w

21D~g1g21f1f2 cos w21 !L ,

(19)

where the angular brackets ^ ¯ &5*0
1( ¯ )xdx denote

averaging over angle u between electronic trajectories
and the interface normal, x5cos u. For a symmetric
junction with bulk values for the Green’s functions in
both electrodes, g1,25v/Av21D2 and f1,25D/Av21D2,
the summation in Eq. (19) can be performed analytically
and it reduces to the result of Haberkorn et al. (1978).

Equation (19) can be rewritten in the real energy rep-
resentation of Eq. (2) with the equilibrium distribution
function fL5tanh(E/2T) and spectral supercurrent
Im IS(E) given by the analytical continuation of the ex-
pression in the angular brackets in Eq. (19) from Mat-
subara frequencies iv5E1i0. For fixed D , the resulting
expression has poles at energies

E~w!56DA12D sin2~w/2!, (20)

corresponding to the Andreev bound state [see also
Beenakker (1991) or Bagwell (1992), who derived this
result from the Bogoliubov–de Gennes equations].
When we wish to distinguish the positive and negative
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poles, we use a subscript, E656DA12D sin2(w/2). The
two signs describe two possible processes (one of them is
shown in Fig. 1), which differ in the direction of propa-
gation of the electrons and holes and correspond to cur-
rents flowing in opposite directions.

Coupling to an external magnetic field or supercurrent
leads to a Doppler shift of the bound-state energies
given by vF•pS , where vF is the Fermi velocity and pS is
the condensate momentum (see Fogelström et al., 1997,
for details). In the problems considered in this review
within the quasiclassical Green’s-function technique, the
Doppler shift is automatically taken into account and
leads to depairing by the current.

Each bound state carries a current

I~w!52ef0@E~w!#
d

dw
E~w!

5ef0@E~w!#D
D2

2E~w!
sin~w!, (21)

where f0@E(w)# is the Fermi occupation factor of the
bound state. Therefore the factor 122 f5tanh(E/2T) in
Eq. (2) has a simple physical interpretation (Bagwell,
1992): it arises due to the difference in populations of
two Andreev bound states, tanh(E/2T)5f0(E1)
2f0(E2), where E5E152E2 . This can be viewed as
a thermal average of the contributions of the two bound
states (i.e., left- and right-moving electrons) to the su-
percurrent.

Figure 6 shows the Andreev bound state as a function
of the phase difference w across a single-channel junc-
tion characterized by a single transmission coefficient D .
In the ballistic regime (D51), two levels, correspond-
ing to left-moving (E1) and right-moving (E2) elec-
trons, cross at f5p , while the gap 2DA12D opens for
D,1.

As mentioned above, Eq. (19) is quite general and
describes not only an ideal ScS junction, but also a junc-
tion with spatially inhomogeneous electrodes. Aminov
et al. (1996) considered the practically interesting case of
a SNcNS point contact, two NS bilayers coupled by a
clean constriction with arbitrary transparency D . If the
NS bilayers are in the dirty limit, the Green’s functions
f1,2 and g1,2 in Eq. (19) suitable for this problem are
found from the Usadel equations [Eqs. (A11)–(A14) in

FIG. 6. Energy-phase relation for Andreev bound states in a
short weak link. The energies of two bound states given by Eq.
(20) are shown: solid lines, the tunneling limit (low transpar-
ency); dotted line, the ballistic regime (D51); dashed lines,
the intermediate case.
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Appendix, Sec. 2]. For a symmetric SNcNS contact with
thin normal layers, dN!j2 , the supercurrent is given by
the rather simple expression (Aminov et al., 1996)

IS~w!5
2pT

eRN
(
v.0

F2~v!sin w

v21@12D sin2~w/2!#F2~v!
. (22)

Here the function F(v)5D/@11(D2

1v2)1/2gBM /pTc# , where gBM5gBd/j2 with gB given
by Eq. (A19). Such a constriction model for SNcNS con-
tacts was applied to interpret experimental data for
some high-Tc superconducting junctions and S/2DEG/S
Josephson junctions by Aminov et al. (1996), Chrestin
et al. (1997), Golubov et al. (1997), Golubov, Devyatov,
et al. (1998), Schäpers (2001), and Grajcar, Ebel, et al.
(2002).

At nonzero bias voltage, the mechanism of conduc-
tion in point contacts is the process of multiple Andreev
reflection (Zaitsev, 1980; Klapwijk et al., 1982). A discus-
sion of multiple Andreev reflection theory in short weak
links is outside the scope of the present review.6

IV. JOSEPHSON JUNCTIONS WITH TUNNEL-TYPE
CONDUCTIVITY

The Josephson effect in a tunnel junction deals with
the coherent transmission of Cooper pairs through a
barrier which separates superconducting electrodes. The
simplest case of an ideal tunnel junction, with the barrier
modeled by a delta functional potential, was originally
considered by Josephson (1962). Further developments
in the theory include more complex situations, like ex-
tended barriers, resonant tunneling through localized
states, and depairing by current.

A. Ideal tunnel junctions

Ambegaokar and Baratoff (1963) used the Green’s-
function method to generalize the calculation of Joseph-
son (1962) to finite temperatures. They also explicitly
pointed out that the Josephson effect occurs because the
Cooper-pair amplitudes [the Gor’kov F functions; see
Eq. (A1)], which are nonlocally dependent on the super-
conducting pair potential D, may overlap in the oxide
layer even though D50 there.

The CFR in an SIS tunnel junction is sinusoidal and is
given by the following expression (Ambegaokar and
Baratoff, 1963):

6This theory was advanced by Arnold (1985), Gunsenheimer
and Zaikin (1994), Averin and Bardas (1995), Bratus’ et al.
(1995), and Martin-Rodero et al. (1996). Multiple Andreev re-
flection was observed in various types of nanoscale contacts by
Kleinsasser et al. (1994), van der Post et al. (1994), Vleeming
et al. (1994), Takayanagi et al. (1995a, 1995b), Mur et al.
(1996), Scheer et al. (1997, 2001), Ludoph et al. (2000), Naveh
et al. (2000), Buitelaar et al. (2002, 2003), and Agrait et al.
(2003).
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eIS~w!RN

2pTc
5

T

Tc
(
v.0

D1D2

A~v21D1
2!~v21D2

2!
sin w . (23)

This result can be also obtained directly from Eq. (19) in
the limit D!1.

The Ambegaokar-Baratoff formula (23) is a particular
case of the general theory formulated by Larkin and
Ovchinnikov (1966) and Werthamer (1966) for an SIS
tunnel junction at arbitrary constant bias voltage V ,

IS5
sin w

2eRN
E

2`

`

$Re F1~E !Im F2~E1eV ! (24)

1Im F1~E !Re F2~E1eV !%tanh~E !dE , (25)

where the time-dependent phase difference w52eVt
1w0 and F1,2 are the quasiclassical Green’s functions in
superconductors, F1,25D1 /AD1,2

2 2E2 [compare with Eq.
(A15) for v52iE]. In the limit V→0, Eq. (24) is re-
duced to Eq. (23).

The physical mechanism of a supercurrent transfer
across the tunnel barrier can be understood in terms of
Andreev bound states. Comparing Eq. (24) with Eq. (2),
one can see that in an asymmetric tunnel junction with
uD1u<uD2u all states with energies in the interval D1
<uEu<D2 contribute to the spectral current. That means
that the Andreev bound states are distributed over the
whole energy range between uD1u and uD2u. In a symmet-
ric tunnel junction (D15D25D) the bound-state ener-
gies are E(w)56D (see Fig. 6) and, in accordance with
Eq. (23), the supercurrent

IS~w!5
eD

2
D tanh

D

2T
sin~w! (26)

is proportional to the normal electron transparency of
the junction.

In tunnel junctions with extended barriers, supercur-
rent transport is more complex due to the existence of a
resonant coupling between superconducting surface
states, situated at the two SI interfaces of the SIS junc-
tion (Furusaki and Tsukada, 1991; Wendin and
Shumeiko, 1996a, 1996b) and the appearance of local-
ized states inside the barrier.7 The physics of resonant
tunneling will be discussed below.

B. Tunnel junctions with extended barriers

In junctions with a thick tunnel barrier having a small
transparency D!1, the structure of the bound-state
spectrum is determined by the coupling of the supercon-

7See Knauer, 1977; Itskovich and Shekhter, 1981; Aslamazov
and Fistul’, 1982; Larkin and Matveev, 1987; Glazman and
Matveev, 1988, 1989; Tartakovsky and Fistul’, 1988; Beenakker
and van Houten, 1991a, 1991b, 1991c; Devyatov and Kupriy-
anov, 1993, 1994a, 1994b, 1997a, 1997b, 1998; Devyatov, Gon-
charov, et al., 1995, 2001a, 2001b; Aleiner, 1996; Devyatov, Ku-
priyanov, and Wendin, 1997; Naveh et al., 2000; Halbritter,
2002.
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ducting surface states situated at the two SI interfaces of
the SIS junction (Wendin and Shumeiko, 1996a, 1996b):

E2~w!5D2@12V2# , V5S ubu
2

6ADUsin
w

2U D , (27)

w@ddk ,

dk5$A2m@W2~m1E !#2A2m@W2~m2E !#%,

b'22ksdk/~ks
21kb

2 !, ubu!1.

Here ks5A2mm , kb5A2mW , m is the effective
mass, W is the height of the barrier, m is the Fermi en-
ergy, and E is the quasiparticle energy.

Each bound state carries a large current,

IS@E6~w!#57nF@E~w!#
eDD

2
sin~w!

3S 16
ubu

2AD

1

Asin2~w/2!1~dkd/2!2D .

(28)

The magnitude of I@E6(w)# is proportional to the am-
plitude rather than the probability of normal electron
tunneling. Nevertheless, the currents are distributed
among the bound states in such a way that they almost
cancel each other in equilibrium, giving rise to a com-
paratively small residual current, including the contribu-
tion from the continuum. This current coincides with the
Ambegaokar-Baratoff expression (26).

The large current of a single bound state as well as a
nonsinusoidal CFR can be revealed under nonequilib-
rium conditions, when the bound level population is un-
balanced by means of microwave pumping or tunnel in-
jection.

C. Tunneling via localized states

The problem of supercurrent transfer across a Joseph-
son tunnel junction containing resonant impurity levels
in the tunnel barrier, the so-called localized electronic
states, was first considered by Aslamazov and Fistul’
(1982). They showed that resonant propagation of co-
herent electrons along trajectories made up of periodi-
cally arranged impurity atoms results in a slower de-
crease of the critical current with increasing barrier
thickness than occurs with direct tunneling. The CFR
remains sinusoidal; in this model the localized states
form long metallic channels so that the junction is simi-
lar to a long SNS junction that has a sinusoidal CFR.

Deviations from the sin(w) law may occur if the
charge transport is via a single localized state (Larkin
and Matveev, 1987; Glazman and Matveev, 1989;
Beenakker and van Houten, 1991a, 1991b, 1991c;
Devyatov and Kupriyanov, 1997b, 1998; Devyatov et al.,
1997; Naveh et al., 2000).

Devyatov and Kupriyanov (1997b) have shown that
the properties of the structure depend on the relation of
the barrier thickness d and the decay lengths j i and jb ,
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j i5
AW2m

2mE
, jb5

m

AW2m
ln

W2m

E
. (29)

If the thickness of the tunnel barrier d!j i ,jb , then
the Andreev bound-state spectrum is determined by the
equation (Devyatov and Kupriyanov, 1997b)

AD22E2S E22ER
2 2

G2

4 D1
D2G1G2

AD22E2
sin2S w

2 D1GE2

50, (30)

G5G11G2 , G15G0 expS 2
x0

a D ,

G25G0 expS x0

a D ,

where a5@2m(W2m)#21/2 is the inverse radius of the
localized state, G052(W2m)AD is the width of the
state’s resonant level, ER is the renormalized energy,
and x0 is the position of the state inside the barrier.
Equation (30) was obtained previously by Beenakker
and van Houten (1991a, 1991b, 1991c) for the problem
of tunneling via a quantum dot that connects two super-
conductors.

In the limit of a broad resonance G0@D , i.e., in the
range of barrier thickness

a!d!a lnF8
W2m

D
AW2m

m G , (31)

the dispersion relation (30) yields an expression for the
energy of the Andreev bound state similar to Eq. (20) in
constrictions,

E~w!56DA12D~ER!sin2S w

2 D , (32)

with the coefficient D replaced by D(ER),

D~ER!5
G0

2

~E2ER!21G0
2 cosh2~x0 /a!

, (33)

describing the Breit-Wigner resonance for a localized
state with an energy ER .

Equations (21) and (32) immediately provide the Jo-
sephson current through the structure (Glazman and
Matveev, 1989),

IS~w!5
eD2

2
D~ER!

sin~w!

uE~w!u
tanh

uE~w!u
2T

, (34)

which is formally the same as the CFR for a single-
mode ScS constriction (Haberkorn et al., 1978).

In the opposite case of a narrow resonance, G0!D ,
both E(w) and IS(w) have the same dependence on w as
in Eqs. (32) and (34), respectively, but with a strongly
suppressed prefactor,

E~w!56
DG0A12D~ER!sin2~w/2!

AD~ER!$ER
2 1@D1G0 cosh~x0 /a!#2%

,

(35)
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IS~w!5
eD2G0AD~ER! sin~w!tanh@ uE~w!u/2T#

2uE~w!uA$ER
2 1@D1G0 cosh~x0 /a!#2%

.

(36)

Equations (34) and (36) imply that in both limiting cases
IS(w) differs from sinusoidal for localized-state energies
ER,G0 . In particular, for ER50 and x050 the struc-
ture is fully transparent and IS(w)}sin(w/2) at T50 in
the two cases of broad or narrow resonance.

To calculate the supercurrent one has to average Eq.
(34) over the coordinates and energies of the localized
state,

^IS~w!&5E IS~w!r~ER ,x0!dx0dER , (37)

where r(ER ,x0) is the distribution function.
Naveh et al. (2000) have shown that if G0 in Eq. (33) is

so large that the first term in the denominator is unim-
portant, then D(ER) depends only on the position of
the localized state inside the barrier, x0 . To calculate a
current it is enough to average Eq. (34) only over x0 .
Then D(ER ,x0)'cosh(x0 /a)22 and, for a system with a
uniform spatial distribution of localized states,
r(ER ,x0)5r(x0)5const. Averaging over the positions
of the localized states,

dx05S dD

dx0
D 21

dD[r~D !dD ,

is equivalent to averaging the supercurrent in Eq. (34)
with Dorokhov’s distribution function r(D) given by
Eq. (18). This provides exactly the result of the KO-1
theory, Eq. (11).

If, on the other hand, the localized states are distrib-
uted uniformly in energy and are located in the middle
of the barrier, so that x0'0 and D(ER ,x0)'$11@(E
2ER)2/G0

2#%21, then

dER5S dD

dER
D 21

dD[r~D !dD

with the distribution function

r~D !5~\/e2RN!D23/2~12D !21/2, (38)

as derived by Schep and Bayer (1997a, 1997b) for disor-
dered interfaces. This averaging provides the tempera-
ture dependence of the supercurrent, is a good fit with
the experimental data of Naveh et al. (2000) for high-JC
SIS junctions. The same distribution is also valid for
double-barrier junctions (Beenakker, 1997), for which
the averaging gives exactly the result of Kupriyanov and
Lukichev (1988a, 1998b; see Sec. VI below) for SINIS
junctions in the coherent regime, Eq. (118). Therefore
the form of the supercurrents in high-JC SIS and SINIS
junctions in the coherent regime are identical, though
the corresponding physical mechanisms are different.

If r(ER ,x0) is a function of both arguments, then av-
eraging the supercurrent of Eq. (34) over the coordi-
nates and energies of the localized-state results in
IS(w)}sin(w) over almost the entire temperature range.



423Golubov, Kupriyanov, and Il’ichev: The current-phase relation in Josephson junctions
An averaging procedure carried out in the three-
dimensional case using the Green’s function formalism
yields the same result (Glazman and Matveev, 1989;
Devyatov and Kupriyanov, 1994a).

A comparison of the temperature dependencies of the
critical current for different types of short weak links
and tunnel junctions is shown in Fig. 7. At T50, the
ICRN product for a ballistic ScS point contact (KO-2) is
twice as large as for a tunnel junction (Ambegaokar and
Baratoff, 1963). The ICRN product for a diffusive point
contact (KO-1) and a double-barrier junction in the co-
herent (Kupriyanov and Lukichev) regime have inter-
mediate values between KO-1 and the Ambegaokar and
Baratoff equation (23).

It can be shown that a further increase of the barrier
thickness (jb!d!j i ,) leads to the appearance of two
additional Andreev levels located in the vicinity of E
5D (Devyatov and Kupriyanov, 1997b). These two new
solutions are direct analogs of the split Andreev levels
examined by Wendin and Shumeiko (1996a, 1996b) for
the case of a long SIS junction and discussed earlier. The
expressions for E(w) and IS(w) obtained in this limit
have the same form as Eqs. (27) and (28) with the fac-
tors D and sin(w/2) replaced by the resonance transpar-
ency in Eq. (33) and cos(w/2), respectively. Similarly, the
large currents carried by the individual levels flow in
opposite directions and effectively cancel each other.
The resulting current appears to be exponentially small
as compared to the contribution from the lower energy
levels in Eq. (36) and does not affect resonant transport.

A further increase in the junction thickness does not
affect the expression for the Andreev level [Eq. (35)]
near the chemical potential (ER'G0). A numerical
analysis (Devyatov and Kupriyanov, 1997b) has shown
that, as before, two split roots exist near E5D , but they
become flatter and, as before, their presence does not
contribute to the full equilibrium resonant Josephson
current determined by Eq. (36).

The CFR associated with tunneling via individual lo-
calized states has the same form as for a geometrical

FIG. 7. Temperature dependencies of the critical current for
various types of short weak links.
Rev. Mod. Phys., Vol. 76, No. 2, April 2004
constriction. Therefore a localized state can be consid-
ered to be a constriction in energy space. The contribu-
tion of an individual localized state as a function of G0
saturates at large G0@D , while at small G0 it scales as
G0 /D .

The experimental observation of deviations of IS(w)
from sin w in tunnel structures is difficult since, in real
SIS junctions, the resonant contributions to the full su-
percurrent are effectively averaged over the positions
and energies of the localized state inside the barrier. To-
gether with the contribution from the direct tunneling
channel, this results in a sin(w) dependence with a criti-
cal current larger than prediction of the Ambegaokar-
Baratoff theory [Eq. (23)].

Nevertheless, nonsinusoidal IS(w) can be observed in
high-JC tunnel junctions (Naveh et al., 2000) or as a re-
sult of depairing by the supercurrent in the electrodes,
which may occur for an increased barrier transparency
in in-line Josephson junctions with a very narrow elec-
trode width.

D. SIS structures with high transparency: Depairing by
current

Depairing by current generally occurs when the bar-
rier transparency is high. Due to self-consistency (cou-
pling across the barrier), the pair potential near the in-
terface is suppressed more strongly than the bulk pair
potential. As a result, with increasing current, depairing
at the interface is achieved faster than the depairing in
the bulk. Such a crossover from the Josephson effect to
bulk superconducting flow was first analyzed quantita-
tively by Kupriyanov (1992) for SIS junctions with high
barrier transparency. Similar results were obtained by
Sols and Ferrer (1994) and Freericks et al. (2002) for a
wider class of junctions and using different models.

The supercurrent across an SIS structure with arbi-
trary transparency D can be obtained from the Usadel
equation (A23), with boundary conditions Eqs. (A25)
and (A26) at the barrier going to a spatially homoge-
neous current-carrying state far from the SIS interface
(Kupriyanov, 1992). The problem is simplified by the
fact that, in symmetric junctions, the boundary condi-
tions (A25) and (A26) do not contain Matsubara fre-
quencies and, as in the depairing problem (Kupriyanov
and Lukichev, 1980), the phases of all Usadel functions
can be chosen equal to the phase of D in the electrodes.

With this simplification, it can be shown that at T
&Tc the CFR can be found from the first integral of the
Ginzburg-Landau equation,

S 2a sin2~w/2!

GB
D 2

1~a21 !

3F12
I2D0

4

aI0
2D4~`!

2
D2~`!~11a !

2D0
2 G50, (39)

where a is a parameter defined in Eq. (41). The super-
current is given by

I5I0vS~12vS
2 !, I05

pD0
2

4erTcj~T !
, (40)
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where D(`) is the magnitude of the pair potential far
from the interface,

D2~`!5D0
2~12vS

2 !, vS5a
sin~w!

GB
, a5

D~0 !

D~`!
. (41)

Here D0
25@8p2/7z(3)#Tc(Tc2T), GB5gBj(T)/j is the

suppression parameter, and D(0) is the magnitude of the
pair potential at the interface.

In the limit of small transparency (GB@1) in a first-
order approximation on GB

21 , it follows from Eq. (39)
that parameter a51 and the result of the Ambegaokar-
Baratoff equation (26) for the supercurrent is repro-
duced. Corrections to this result are caused by the sup-
pression of D(`) and D(0) by supercurrent. The last of
these factors is more essential at GB@1 and leads to
corrections to the critical current,

IC5I0GB
21~12&GB

21! (42)

and small deformations of IS(w) having a maximum at
wmax5p/22&GB

21,p/2.
In the opposite limit (GB!1) the IS(w) is mainly con-

trolled by depairing in the electrodes. The critical state
should be achieved at I'I0 and it follows from Eqs. (40)
and (41) that I'I0'I0GB

21 sin(w). Therefore in this limit
the position of the maximum of IS(w) must be shifted to
the value wmax'GB

21!1. The calculations provide the re-
sult

IS~w!5H b~12b2!, 0<w<wmax

q~12q2!, wmax<w!1

GB/4cot~w/2!, wmax!w<p ,

(43)

where b5w/GB and q215b1A11b2. The maximum
IS(w) is achieved at wmax5GB /)!1 and the critical cur-
rent equals the depairing current IC5(2/3))I0 .

The IS(w) dependencies for arbitrary GB have been
obtained numerically by Kupriyanov (1992) and are
shown in Fig. 8 [see also Sols and Ferrer (1994) and
Freericks et al. (2002)]. In full agreement with the above
analysis, a decrease of GB leads to a transition from the

FIG. 8. The CFR for a superconductor-insulator-
superconductor (SIS) junction for various values of the barrier
transparency parameter GB . Adapted from Kupriyanov, 1992.
Rev. Mod. Phys., Vol. 76, No. 2, April 2004
sin(w) law to the IS(w) defined by Eq. (43). At GB'10
(corresponding to the specific barrier resistance RB
'10rj), the wmax shifts more than 10% from p/2.

For typical low-temperature superconducting materi-
als, this value RB'10rj is ;10211 V cm2. Such values
have been found experimentally for Nb/Cu (Baxter
et al., 1999; Park et al., 2000), Nb/Al (Dmitriev, 1999;
Zehnder et al., 1999; Brammertz et al., 2001; den Hartog
et al., 2001), and Pd/Cu and Pt/Cu interfaces (Kurt et al.,
2002).

V. SNS JUNCTIONS

SNS Josephson junctions are structures composed of
two superconducting electrodes connected by a normal
metal, which may be a superconductor with a smaller
critical temperature Tc8 . These structures are further
classified as ‘‘clean’’ (,@j0 ,d) and ‘‘dirty’’ (,!j0 ,d)
depending on the relationship between the electron
mean free path , , the order parameter decay length in
the interlayer material j0 , and the distance d between
electrodes.

Various types of SNS junction geometries are de-
scribed by Likharev (1979) and include SNS sandwiches,
variable-thickness bridges, and ramp junctions. The
theory presented below deals with one-dimensional ge-
ometry, when depairing by supercurrent flow and self-
consistency of the pair potential across the structure
should be taken into account. In structures with current
concentration (variable-thickness bridges and ramp
junctions), depairing does not play an essential role.

The shape of IS(w) in SNS junctions depends on a
variety of parameters: the ratio of the decay length in
the interlayer material and distance between electrodes,
the ratio of the critical temperatures Tc and Tc8 , and the
transport properties of the interfaces. We shall see that
there are several practically important limits in which
IS(w)}sin(w). Deviations resulting in a shift of wmax to
the region wmax>p/2 are controlled mainly by processes
in the interlayer material, while wmax<p/2 occurs due to
processes in the electrodes.

To demonstrate this, let us start with an analysis of the
simplest situation: electrodes with equal critical tem-
peratures, Tc850, T&Tc , both S and N in the dirty limit,
and a junction width smaller than the Josephson pen-
etration depth lJ .

A. The limit of high temperature, T'Tc

An analysis of the shape of the CFR at temperatures
close to Tc was carried out by Ivanov et al. (1978, 1981),
who showed that, in the practically interesting limit

g!gB1min$1,d/j2%, (44)

where j2 is the coherence length in the normal metal,
the shape of IS(w) may be found from the solution of
two algebraic equations [see the definitions of g ,gB in
Eqs. (A21) and (A16)]. One of them follows from the
first integral of the Ginzburg-Landau equations,
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G2a2@p cos2~w/2!1q sin2~w/2!#21~a21 !

3F12S IS
2~w!D0

4

aI0
2D4~`!

D 2
D2~`!~11a !

2D0
2 G50. (45)

The other equation follows from the expression for the
supercurrent,

IS~w!5
a

2
I0G~q2p !

D2~`!

D0
2 sin~w!. (46)

Here a5D(d/2)/D(`) and D(d/2),D(`) are the magni-
tudes of the pair potentials at the NS interface and in the
bulk, respectively, G5gj(T)/j2 is the suppression pa-
rameter, and the functions p(gB ,d) and q(gB ,d) are
defined by

p (
v.0

v225(
v

v22b

bgB1coth~bd/2j2!
, (47)

q (
v.0

v225(
v

v22b

bgB1tanh~bd/2j2!
, (48)

where b5ApTc /v .

1. Weak depairing in the electrodes (rigid boundary
conditions)

It follows from Eq. (45) that the critical current is
smaller than I0 and, in first approximation, D(d/2)
5D(`)5D0 under the conditions Gq!1 and Gp!1, i.e.,
when

G!gB1min$1,d/j2%. (49)

Hence, in the considered limit, the CFR is sinusoidal
(see Kupriyanov and Lukichev, 1988a, 1988b; Heslinga
and Klapwijk, 1993), with IC given by

IC5I0

8G

p2 (
v.0

b23 sinh21~bd/j2!

@11b2gB
2 12bgB coth~bd/j2!#

. (50)

In the limit of small gB , Eq. (50) coincides with the
result of Likharev (1976) for variable-thickness SNS
bridges.

The normal resistance of the junction is the sum of the
resistances of the weak-link material, R̃N5r2d/S , and
the boundary resistances,

RN5
2RB1r2d

S
5R̃N~112GB!, G̃B5gB

j2

d
, (51)

where S is the cross-section area of the interlayer, which
is assumed to be equal to the area of the interfaces.

The ICRN product decreases with increasing gB . In
particular, for d!j2 it follows from Eqs. (50) and (51)
that

ICRN5V0H 12
4

ap2 FcS 11q

2 D2cS 1
2 D G J , (52)

V05
pD0

2

4eTc
, q5

11G̃B

gB
2 ,
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where c(x) is the digamma function. It follows from Eq.
(52) that decreasing transparency leads to a decrease in
the slope of ICRN(T) for T'Tc ,

RN

dIC

dT
5H 635S 12

4
qp2 ln

q

2 D FmV

K G , gB
2 !11

gBj2

d

1082q FmV

K G , gB@
j2

d
.

(53)

Equations (52) and (53) allow one to estimate the inter-
face resistance from IC(T) data.

In the limit of large thickness, d@j2 , both the critical
current and the ICRN product are exponentially small,

ICRN5V0

16
p2

112G̃B

~11gB!2

d

j2
expH 2

d

j2
J , d@j2 .

(54)

It follows from Eqs. (51), (53), and (54) that the ICRN
product is independent of weak-link transport param-
eters only if gB is relatively small,

gB!max$1,j2 /d%. (55)

In the opposite parameter range, IC is proportional to
gB

22 and RN}gB for large gB , leading to ICRN}RN
21 .

2. Depairing in superconducting electrodes by the proximity
effect

It follows from Eqs. (47) and (48) that Gp and Gq are
greater than 1 under the condition

G@gB1min$1,d/j2%.

In this regime one can neglect the magnitude of
D(d/2)}D0 /max(Gp,Gq) in comparison with D(`) in Eq.
(46). Further, D(`).D0 due to the smallness of the cur-
rent through the superconductor I}I0 /(Gp ,Gq). With
the simplifications made, we obtain directly from Eqs.
(45) and (46) that

IS~w!5IC

qp sin~w!

p cos2~w/2!1q sin2~w/2!
,

IC

I0
5

q2p

4Gqp
.

(56)

The critical current IC is proportional to (T2Tc)2,
achieved at w5arctan(q/p). Its asymptotic behavior at
small and large values of d is given by the expressions

IC

I0
5

p2

8G~11gB!2 F(
v

1
b3~11bgB!G22

, d@j2 , (57)

IC

I0
5

p2j2

16Gd

12~4/qp2!C@~11q!/2#2C~1/2!

C@~1/21G/gB
2 !#2C~1/2!

, d!j2 .

(58)

Note that at fixed G@1 the reduction of the weak-link
thickness deforms the CFR, shifting its maximum into
the region wmax,p/2.

3. Depairing in superconducting electrodes by supercurrent

It follows from Eqs. (47) and (48) that, if the N-layer
thickness is small enough compared to j2 , the param-
eter range
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gB1min$1,d/j2%!G!gB1max$1,j2 /d% (59)

exists with Gq@1 and Gp!1. Neglecting the term pro-
portional to Gp in Eqs. (45) and (46), one arrives at

IS~w!

I0
55

~2Gq !21 cot~w/2!, w@
1

AGq
,

Gqw@12~Gqw/2!2# , 0<w!1<
2

)Gq
,

4Gqw/@Gqw1A41~Gqw!2# ,
2

)Gq
<w!1.

(60)

The last two expressions in Eq. (60) merge asymptoti-
cally in the interval (Gq)21/2!w!1. The supercurrent
reaches its critical value at w52()Gq)21 and is equal
to the pair-breaking current of the superconducting elec-
trodes. In this regime IC}(Tc2T)3/2.

Figure 9 shows the thickness dependence of ICRN as
numerically determined by Ivanov et al. (1978, 1981) for
various values of parameter G. From the shape of this
dependence one may conclude that, for reasonably small
G, there is a broad range of parameters,

G!gB1d/j2 , gB!gB
211j2 /d , d&j2 , (61)

for which ICRN is close to its maximum value V0 . Vio-
lation of the first inequality in Eq. (61) leads to a tran-
sition into the depairing current regime, with a linear
decrease of ICRN with decreasing d . The physical rea-
son for the decrease of ICRN with decreasing d is that in
this limit IC does not depend on d , while RN is propor-
tional to d .

The violation of the last two inequalities in Eq. (61)
results in a suppression of the critical current, with ei-
ther the form of ICRN}V0 /gB or exponential with
thickness ICRN}V0 exp$2d/j2%. Since G5g/A12T/Tc,
the smaller the g, i.e., the higher the resistivity of the
normal interlayer, the larger the interval of d when the
ICRN product is large.

FIG. 9. Thickness dependence of the critical current in an SNS
junction. Adapted from Ivanov et al., 1981.
Rev. Mod. Phys., Vol. 76, No. 2, April 2004
Note that increasing T causes an increase of G for
fixed values of the parameters gB , g, and d/j2 . There is
therefore a crossover from the linear temperature de-
pendence ICRN}Tc2T , predicted by the Aslamazov-
Larkin theory, to the quadratic dependence ICRN}(Tc
2T)2, first suggested by de Gennes (1964).

4. Nonlinear phase shift in the electrodes

Figure 10 shows a set of IS(w) curves calculated by
Ivanov et al. (1978, 1981) for gB50, G50.1, and various
ratios of d/j2 . It can be clearly seen that the reduction
of d/j2 deforms the CFR in such a way that their maxi-
mum shifts into the region w,p/2.

The CFR’s shown in Fig. 10 by solid lines correspond
to experimentally observed relations only at relatively
low critical currents, when the kinetic inductance of the
superconducting electrodes LK can be neglected in com-
parison with the Josephson-junction inductance LJ
5F0/2pIC . In this case the phase difference across the
junction increases linearly with the coordinate x in the
electrodes and is either negligibly small or can be sub-
tracted by using the compensating measuring scheme

w~x !5w~d/2!12
IS~w!

I0

D0
2

D2~`!

x

j~T !
, (62)

resulting in w(`)5w(d/2). However, at sufficiently
small d , namely, in the limit of large supercurrents, LK
@LJ , the order parameter is suppressed by a supercur-
rent near the interfaces, and, in addition to a large linear
team, there is also a nonlinear contribution to w,

w~x !5w~d/2!1E
d/2

` IS~w!

I0
F D0

2

D2~y !
Gdy . (63)

The phase difference increases linearly with distance
from the weak-link region only far from the interfaces,

FIG. 10. The CFR for a SNS junction in the depairing regime.
Adapted from Ivanov et al., 1981.



427Golubov, Kupriyanov, and Il’ichev: The current-phase relation in Josephson junctions
w~x !5w~`!12
IS~w!

I0

D0
2

D2~`!

x

j~T !
. (64)

Here w(`) is the phase difference that could be mea-
sured by a compensating measuring scheme and is given
by the expression

w~`!5w~d/2!1E
d/2

` IS~w!

I0
F D0

2

D2~y !
2

D0
2

D2~`!
Gdy , (65)

which takes into account the effective increase in geo-
metrical size of the weak-link region caused by destruc-
tion of the superconducting state in the electrodes in the
vicinity of the SN interfaces.

The curves IS@w(`)# (dashed lines in Fig. 10) also
have maxima at wmax<p/2. The smaller the d/j2 , the
closer the system to the depairing limit and the larger
the deviation of wmax from p/2.

5. Influence of the critical temperature of weak-link material
on ICRN

The influence of the critical temperature of the weak-
link material on ICRN at T'Tc has been discussed by
Likharev and Yakobson (1975) and by Barone and
Ovchinnikov (1979).

Likharev and Yakobson (1975) considered the situa-
tion in which the critical temperatures of both the weak-
link material Tc8 and the electrode material Tc are close
to the physical temperature, and consequently Tc8'Tc .
Assuming further that the pair potential at the interfaces
is equal to its bulk value (the so-called rigid-boundary
condition), Likharev and Yakobson (1975) reduced the
problem of calculating the CFR to the solution of the
Ginzburg-Landau equations in the interlayer. They
found that if the junction is sufficiently short,

d!min$j~T !,j~T !/A%, A25
Tc2T

uTc82Tu
, (66)

then in the first approximation on d the CFR is given by

IS~w!

I0
5Fj~T !

d
1S 1

6
2

A2

10 D d

j~T !G
3sin w2

1
30

d

j~T !
sin 2w . (67)

According to Eq. (67), the corrections to a sinusoidal
form of the CFR are small even for small d of the order
of j(T) or j(T)/A . A further increase in d results in
effects that are different for T.Tc8 and T,Tc8 .

For T.Tc8 , the weak-link material is in the normal
state, superconducting correlations induced from the
electrodes decay exponentially with increasing d , and
the function IS(w) remains almost sinusoidal. Maximum
deviations from sin w occur at d'j(T), and, according
to Eq. (67), they are of the order of a few percent.

For T,Tc8 , the weak-link material is in the supercon-
ducting state and, with increasing d , a transition from
the Josephson effect to the depairing effect takes place.
As a result, the critical current first decreases with d (see
Rev. Mod. Phys., Vol. 76, No. 2, April 2004
Fig. 11) and then saturates at a constant value when d
exceeds approximately 10j(T). Simultaneously, the
shape of IS(w) is radically changed. At d*3.6j(T), the
CFR becomes multivalued, with a shape close to that
given by the curve

IS~w!5IC

wj~T !

d F12S wj~T !

d D 2G ,
IC

I0
5

2

3)A2
.

(68)

The unstable reverse branch of the IS(w) function cor-
responds to a sharp drop of D in the middle of the junc-
tion, i.e., to the nucleation of the phase-slip centers (see
Ivlev and Kopnin, 1984; Sols and Ferrer, 1994).

Summarizing the discussion above, we conclude that,
even at high temperatures, the CFR takes a variety of
shapes. Deviations from sin(w) depend on the relation
between parameters characterizing either the properties
of the weak-link material, like d/j2 , Tc , and Tc8 , or the
influence of processes in the electrodes upon the junc-
tion’s characteristics [e.g., the suppression parameters g,
gB , T/Tc , and d/j(T)].

To estimate the range of validity of the different re-
gimes discussed above at arbitrary T , we shall subdivide
the CFR problem into two parts: (1) influence of the
processes in the weak link and (2) influence of the pro-
cesses in the electrodes.

B. Dirty limit, arbitrary temperature

To calculate the CFR for dirty SNS junctions at arbi-
trary temperatures, the general approach is to solve the
Usadel equations (A23) and (A24) in S and S8 and
match them with the boundary conditions (A25) and
(A26) at the interfaces. Far from the interfaces the so-
lution tends to a uniform current-carrying superconduct-
ing state,

Re F1~7`!5F` cos w , Im F1~7`!57F` sin w ,
(69)

FIG. 11. Variation of the CFR with the length of a weak link
at T,Tc8 . Adapted from Likharev and Yakobson, 1975.
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F`5
uD1~`!u

11u2pTc /Av21F`
2 , (70)

w5w~`!22ux/j1 , (71)

where w(`) is the asymptotic phase difference across the
junction, u52mvsj1 , m is the electron mass, and vs is
the superfluid velocity.

Note that, since the boundary conditions [Eqs. (A25)
and (A26)] include the Matsubara frequency v, the
phases of the F1 functions depend on v and, in general,
differ from the phase of the pair potential D at the SN
interfaces, w(6d/2). Therefore it is the value w(`)
rather than w(d/2) that can be measured experimentally,
using a scheme that compensates for the part of Eq. (71)
that is linear in x (see also the related discussion in Sec.
V.A).

We now consider several important limiting cases of
the solution of the general problem.

1. Rigid boundary conditions

In this approximation it is assumed that suppression
of superconductivity in the S layer is weak and the solu-
tion of the Usadel equations in the superconductor has
the form

F1S 6
d

2 D5D1 expH 6
w

2 J , GS5
v

Av21D1
2 , (72)

where D1 is the modulus of the electrode order param-
eter. As discussed in Sec. III, these conditions are valid
for the constriction weak-link geometry. The quantita-
tive criteria for the validity of this approximation for
planar SS8S sandwiches, where S8 is a weak supercon-
ductor, and variable-thickness bridges will be discussed
below for different parameter ranges.

In this approximation, the CFR depends on the re-
duced temperature T/Tc , the reduced weak-link thick-
ness d/j2 , and the ratio Tc8/Tc (see Kulik and Omelyan-
chuk, 1975a; Likharev, 1976; Kupriyanov and Lukichev,
1981; Kupriyanov et al., 1981, 1982; Zaikin and Zharkov,
1981; Dubos et al., 2001).

In the limit of small interlayer thickness, d!j2 , the
KO-1 theory is valid and, as discussed in Sec. III.C, the
CFR is independent of Tc8/Tc , and the maximum is
wmax>p/2, tending to 1.86 at low T . Increasing d leads
to different effects, depending on the relationship be-
tween T , Tc , and Tc8 .

a. Structures made from one material (Tc5Tc8)

The supercurrent across a junction consisting of bulk
electrodes connected by a one-dimensional filament of
the same material (Tc5Tc8) was analyzed by Kupriy-
anov and Lukichev (1981). The main effect predicted
here is the crossover from Josephson to depairing effects
with decreasing temperature for fixed values of the fila-
ment length. This is clearly demonstrated in Figs. 12–14

Figure 12 shows the CFR calculated numerically for
structures with d510j2 and T/Tc50.28, 0.53, and 0.8.
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The deformation of the CFR from sin w to a multivalued
function of w at low T can be clearly seen.

The physical reason for this transformation becomes
clear if we take into account that the characteristic
length over which the order parameter and Usadel func-
tions vary is temperature dependent. For T&Tc , the
properties of the junction depend on the relation be-
tween d and the Ginzburg-Landau coherence length
j(T) given by Eq. (A29). In the vicinity of the critical
temperature j(T)@d and the CFR is sinusoidal, ac-
cording to the Aslamazov-Larkin theory (Aslamazov
and Larkin, 1969). With decreasing temperature, the co-
herence length j(T) also decreases, which is equivalent
to increasing the effective length of the structure, lead-
ing to a transition to the depairing regime, most clearly
visible for T<0.5Tc . In this temperature range, the
characteristic length of variation of the function F2 is
close to j2 , and the effective length of the junction is
large on this scale. As a result, for T50.28Tc the Jo-
sephson critical current becomes rather close to the de-
pairing current calculated for the same temperature by
Kupriyanov and Lukichev (1980).

Figure 13 shows the temperature dependences of the
ICRN product calculated numerically for various d/j2
ratios. The thin line in Fig. 13 is the IC(T)RN depen-
dence in the depairing limit (Kupriyanov and Lukichev,
1980); RN is the normal resistance calculated for d
510j2 . IC(T)RN is smaller in this limit than in a junc-
tion of the same length (d510j2). The Josephson IC
exceeds the depairing current because the electrodes ad-
ditionally support superconductivity in the line.

For T close to Tc , all of the curves have a similar
temperature dependence: ICRN}Tc2T , as predicted by
the Aslamazov-Larkin theory. „For the depairing limit,
indicated by the thin line, @IC(T)RN}(Tc2T)3/2# .… De-
viations from this linear law depend on the length of the
structure. The open circles in Fig. 13 mark the tempera-
tures at which the CFR becomes multivalued. The locus
of these positions determines the boundary between Jo-
sephson and depairing effects, shown in Fig. 13 by the

FIG. 12. Transformation from Josephson to depairing effect in
a long SS8S junction with Tc85Tc . Adapted from Kupriyanov
and Lukichev, 1981.
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dash-dotted line. It is interesting that this curve has a
maximum at T'0.5Tc , which corresponds to d
'(4 –6)j2 , and that the maximum value of ICRN in this
region is even larger than ICRN for a dirty point contact
at T50, predicted by the KO-1 theory.

b. SS8S junctions (TcÞTc8)

The Josephson effect in SS8S junctions at arbitrary
temperatures was analyzed by Kupriyanov et al. (1981,
1982) in the framework of the Usadel equations.

The results of this study are summarized in Fig. 14,
which demonstrates the ICRN products at Tc8/Tc50.2
for various ratios of d/j2 . As in Fig. 13, the open circles
mark the temperatures at which the CFR starts to be
multivalued at low T when the depairing regime occurs.

FIG. 13. Temperature dependence of the critical current in a
SS8S junction with Tc85Tc . The open circles mark the tem-
peratures when the CFR starts to be multivalued. Adapted
from Kupriyanov and Lukichev, 1981.

FIG. 14. Temperature dependence of the critical current in a
SS8S junction with Tc8,Tc . Adapted from Kupriyanov and
Lukichev, 1981.
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The smaller Tc8/Tc and d/j2 , the faster is the transfor-
mation from depairing to the Josephson effect with in-
creasing T .

Note that at low temperatures, T,Tc8 , the ICRN
product first decreases with increasing d , but then in-
creases (see the curve for d/j2 in Fig. 14). The reason is
that at T,Tc8 the critical current IC is limited by the
depairing effect and does not depend on d for large d ,
while RN is proportional to d and thus ICRN}d . There-
fore these large ICRN values do not correspond to the
Josephson effect. The proportionality ICRN}d is natu-
ral for the depairing of long one-dimensional supercon-
ducting filaments. It occurs in the parameter range cor-
responding to the left side from the line, which can be
drawn via open circles in Fig. 14 and which marks the
boundary between the depairing and the Josephson ef-
fects.

In the limit of large d and T>Tc8 the solution of the
Usadel equations in the interlayer is a linear superposi-
tion of the functions F̃2(x) describing the penetration of
superconductivity from the S electrode into the semi-
infinite S8,

F2~x !5F̃2~x2d/2!exp$iw/2%

1F̃2~x1d/2!exp$2iw/2%. (73)

Substitution of Eq. (73) into the expression for the su-
percurrent in Eq. (A27) leads to a sinusoidal CFR and
exponential thickness dependence of the ICRN product
(Likharev, 1976):

eICRN

2pTc
5V*

d

j*
expH 2

d

j* J , d@j* . (74)

An exponential decrease in ICRN as d/j* →` is typical
for SNS weak links (see de Gennes, 1964; Aslamazov
and Larkin, 1969; Clarke, 1969), but the exact values of
the prefactor V* and the effective decay length j* in
Eq. (74) depend on Tc8/Tc and T/Tc . Analytic expres-
sions for V* and j* for a symmetric SNS junction with
Tc850 were derived by Zaikin and Zharkov (1981):

j* 5j2ATc

T
,

V* 5
32TD2

Tc@pT1D* 21A2D* ~pT1D* 2!#2
, (75)

where D* 5A(pT)21D2. For arbitrary Tc8 the determi-
nation of V* and j* is simplified by the existence of two
different decay lengths for the function F2 and the pair
potential D2 in the weak superconductor (S8) material
at low T . In the vicinity of the interfaces the decay is
described by the nonlinear Usadel equations and occurs
over distances of the order of j2 . Further decay of both
F2 and D2 takes place on the scale j* .j2 , with j*
given to an accuracy better then 3% by the expression
(Kupriyanov et al., 1982)

j* 5j2ATc

T F11
p2

4
ln21

T

Tc8
G , T>Tc8 . (76)
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The V* (T) dependencies calculated numerically by Ku-
priyanov et al. (1982) are shown in Fig. 15. The curve for
Tc850 is close to the envelope of the curves correspond-
ing to different values of Tc8 . This means that SS8S junc-
tions with Tc8Þ0 can be described by Eq. (74) with the
parameters V* and j* defined by Eqs. (75) and (76)
over a wide temperature interval T*Tc8 .

It follows from Eq. (76) that, for a fixed d , there is a
temperature interval with T'Tc8 over which j* >d and
Eq. (74) are violated. Instead, in the limit of d@j2 the
ICRN product falls as ICRN}(j2 /d)2. The CFR in this
limit is close to that in the KO-1 theory.

The case of SNS junctions with Tc850 was first ana-
lyzed by Likharev (1976). More extensive calculations
were performed by Dubos et al. (2001), who demon-
strated that, in a long-junction limit (d@j2) at T50,

eICRN520.64pTcFj2

d G2

510.82ETh . (77)

Here ETh5\D/d2 is the Thouless energy, the natural
scale for the proximity effect, which provides the mag-
nitude of the induced energy gap in a diffusive normal
metal attached to a superconductor (Golubov and Ku-
priyanov, 1988; Aminov et al., 1996; Courtois et al., 1996;
Melsen et al., 1996; Zhou et al., 1998; Belzig et al., 1999;
Pannetier and Courtois, 2000). In contrast to the pair
potential D set by the interactions in the superconduct-
ing electrodes, the Thouless energy ETh5\D/d2 is a
single-electron quantity: it provides the diffusion rate for
a single electron across a sample of length d . The con-
dition of a long junction length, d@j2 , is equivalent to
D@ETh .

The CFR in a long junction, Eq. (77), has wmax
'1.27p/2 (for comparison, the KO-1 theory valid for d
&j2 provides wmax'1.25p/2).

Studies of the temperature dependences of ICRN for
SNS junctions with Tc850 are summarized by Delin and
Kleinsasser (1996) and Dubos et al. (2001).

The Josephson effect can take place in SNS weak
links even if the effective electron-phonon interaction in

FIG. 15. Temperature dependence of the characteristic voltage
V* for a SS8S junction for various Tc8 . Adapted from Kupriy-
anov et al., 1982.
Rev. Mod. Phys., Vol. 76, No. 2, April 2004
the N layer is repulsive (lN,0). The repulsion sup-
presses the ability of the weak-link material to carry su-
percurrent and leads to a decrease in ICRN . This effect
was analyzed by Kupriyanov et al. (1982), who showed
that the main influence of a negative lN is a decrease of
the decay length from j* 5j2 for lN50 to j* '0.65j2 in
the limit of strong repulsion. Even for ulNu50.9lS
(where lS is the BCS coupling constant in the supercon-
ducting electrodes) the temperature dependencies of
ICRN for d/j2<5 differ only slightly from those for lN
50.

Besides negative lN , there are several other physical
mechanisms that lead to suppression of the ICRN prod-
uct and a deformation of the shape of the CFR in weak
links. They are

• suppression of superconductivity in the electrodes due
to the proximity effect at S8S interfaces,

• depairing in the electrodes by the current across the
junction,

• potential barriers at S8S interfaces.

Fortunately, the first mechanism is most effective for
d.j2 , while the second is important in the opposite
limit, d,j2 . This allows for an independent analysis of
the influences of these factors on weak-link properties.
The influence of the transparency of S8S interfaces on
SINIS junctions will be discussed in Sec. VI.

2. SNS junction at arbitrary T: Depairing due to the proximity
effect

The proximity of normal and superconducting materi-
als results not only in the penetration of superconduct-
ing correlations into the normal metal, as studied above
for rigid boundary conditions. It also causes quasiparti-
cle excitations, which can diffuse into the supercon-
ductor, resulting in suppression of superconductivity
near the interface. The influence of this effect on long
one-dimensional planar-type SNS junctions (d.j2) was
analyzed by Kupriyanov and Lukichev (1982). They sup-
posed that both interfaces are transparent and that Tc8
50. Their calculations lead to a sinusoidal CFR and an
exponential dependence of ICRN . Equation (74), with
j* 5j2 and a temperature-dependent V* , is shown in
Fig. 16 for various values of g, defined in Eq. (A21).

Clearly, for g&0.1 the ICRN values are close to those
calculated using rigid boundary conditions, Eq. (75),
over a broad temperature range. An increase of g leads
to suppression of ICRN . If normal metals like Au, Ag,
Cu are used, then g>1, and the magnitude of the sup-
pression exceeds two orders of magnitude at T'0.5Tc .

Thus to get high values of ICRN it is necessary to use
highly resistive weak-link materials.

In variable-thickness bridges composed of two
superconducting-banks placed on the top of a thin nor-
mal film of thickness dn , the situation is close to that
described above (see Golubov et al., 1983; Kupriyanov,
1989) and the ICRN product is weakly suppressed if g
<0.3 max$1,j2 /dn%.
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3. SS8S junction at arbitrary T: Depairing by the supercurrent

The suppression of superconductivity in electrodes by
a supercurrent across an SS8S junction may become es-
sential if

d!j2 (78)

and the transparency of S8S interfaces is high. This situ-
ation has been studied by Zubkov and Kupriyanov
(1983) within the framework of the Usadel equation.
Based on Eq. (78) they reduced the problem to the so-
lution of Eqs. (A23) and (A24) with the boundary con-
ditions at the S8S interface

j1G1]x Im F152vgJ arctanFG1 Im F1

v G , (79)

G15
v

Av21Re F1
2

, gJ5g
j2

d
(80)

with the conditions given by Eqs. (69)–(71) in the bulk.
Figure 17 shows the CFR calculated for T50.1Tc by

Zubkov and Kupriyanov (1983). Here, w(`) is the
asymptotic phase difference defined by Eq. (71). At gJ
50 the KO-1 theory is valid and wmax is '1.25p/2, as
shown in Fig. 17. An increase of gJ makes IS@w(`)#
close to the sin(w) form at gJ'2.5 and shifts wmax to a
value smaller than p/2 for larger gJ . At high tempera-
tures in the absence of the depairing effect (gJ50, rigid
boundary conditions), the shape of IS(w) is close to the
sinusoidal form. In complete agreement with the situa-
tion discussed above in Sec. V, an increase of gJ leads to
deformation of the shape of IS@w(`)# so that the posi-
tion of its maximum shifts to wmax,p/2.

Numerical calculations made by Zubkov and Kupriy-
anov (1983) have shown that at

gJ&0.1 (81)

there is a large temperature interval where the suppres-
sion of superconductivity in the S electrodes is small. At
larger gJ and T&0.4Tc the ratio decays exponentially
with gJ ,

FIG. 16. Temperature dependence of the critical voltage for a
SS8S junction for various values of the proximity-effect param-
eter g. Adapted from Kupriyanov and Lukichev, 1982.
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ICRN~T ,gJ!

ICRN~T ,0!
'0.8 expH 2

gJ

1.45J , gJ*0.2. (82)

At T'Tc an additional temperature-dependent factor
should be taken into account and the parameter GJ

5gJ /A12T/Tc should be used instead of gJ . This
means that under fixed gJ there will be a transition to
the depairing regime similar to that discussed above.

We can conclude that the processes in the electrodes
are not essential if

g<0.1~gB1min$1,d/j2%!A12T/Tc. (83)

The violation of this inequality leads to a suppression of
the ICRN product and deformation of the shape of
IS(w), calculated on the base of rigid boundary condi-
tions. The deviations from Eq. (83) make the depen-
dence IS@w(`)# closer to the sinusoidal form. In some
cases wmax,p/2 may be expected. It is important that,
due to nonlinear effects in the electrodes, the phase dif-
ference be considered in the sense of Eq. (71). Strictly
speaking, w(`)'w only if the condition

g<0.1~gB1d/j2!A12T/Tc (84)

is not violated.

C. Clean SNS junctions

Now we shall briefly examine the properties of clean
weak links in which the mean free path of an electron ,2
is larger than the distance between the superconducting
electrodes d and weak-link coherence length j02
5vF2/2pTc and in which the condition of the clean limit
,1@j015vF1/2pTc is also fulfilled in the superconduct-
ing electrodes.

The Josephson coupling and the shape of the CFR in
these structures have been studied by Kulik (1969), Ishii
(1970), Svidzinskii et al. (1971), and Bardeen and
Johnson (1972). In these models it was supposed that
the superconductor and normal metal had the same

FIG. 17. The CFR in a SS8S junction for various values of the
depairing current parameter gJ . Adapted from Zubkov and
Kupriyanov, 1983.
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transport parameters, that Tc850 in the normal material,
that the distance between superconducting electrodes
was large (d@j02), and that T!Tc . The suppression of
superconductivity in the electrodes was neglected and
rigid boundary conditions were used for the calculation
of IS(w).

Zaikin and Zharkov (1983) found that under the
above conditions the pair potential was suppressed at
the interface and its magnitude at T!Tc was twice as
small as in the bulk. Thus the rigid boundary conditions
were not strictly valid.

On the other hand, it was shown by Kupriyanov
(1981) that the rigid boundary conditions were still ap-
plicable if there was a large difference between Fermi
velocities of the metals, namely,

vF2!vF1 . (85)

Under this condition, only a small number of electrons
from the S metals moving almost perpendicular to the
SN interface could penetrate from S into N and finally
from N into the second electrode, thus providing a Jo-
sephson coupling in the structure (see Fig. 18). Smooth
transparent interfaces were assumed in this model. The
electrons in S with the momentum component parallel
to the interface larger than vF2 were reflected back into
S. This meant that, exactly as in the KO-2 model (Kulik
and Omelyanchuk, 1977, 1978), the electron distribution
function in the superconductor momentum space devi-
ated from its bulk value only in the small-angle range

uu1u<vF2 /vF1 , (86)

where u1 is the angle between the x axis and direction of
vF1 . Therefore, to solve the Eilenberger equations (A6)
and (A7), one may assume that the pair potential D and
the isotropic parts of functions ^f1&, ^f1

1&, and ^g1& in the
electrodes are spatially homogeneous and equal to their
bulk values, which in the symmetrical case are given by

K f1S 6
d

2 D L 5

DS 6
d

2 D
E0

,

K f1
1S 6

d
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D* S 6
d

2 D
E0

,

FIG. 18. Processes of current transport in a clean SNS junc-
tion.
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where D1 is the magnitude of the pair potential in the
superconducting electrodes. As a result, Eq. (A6) is re-
duced to a linear differential equation similar to that
solved in the KO-2 model. The solutions for the outgo-
ing (→) and the incoming (←) trajectories have the form

f1
�5

D

E0
1f� expH 2

ud/22xu
j* cos u1

J , (89)
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j
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where
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In the range of angles u1>(vF2 /vF1)sin u2 , where u2 is
the angle between the x axis and the direction of elec-
tron Fermi momentum vF2 in the N metal, the functions
f15^f1& and g15^g1& are equal to their bulk values as
given in Eqs. (87) and (88).

In the normal metal D250, and the solutions of Eq.
(A6) in the limit ,1→` have the simple form

f25C expH 2
x

j02 cos u2

v

pTc
J , g25A12CC* .

(92)

The integration constants C , g→, and g� are defined by
requiring that the solutions (89)–(92) be continuous at
x56d/2. This provides the supercurrent (see also Za-
goskin, 1997)

IS~w!

5 (
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0

1 4pTeN2vF2D1
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~v21E0
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(93)
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v

pTc
, z5cos u2 .

Equation (93) was first derived by Svidzinskii et al.
(1971). The spectral current can be obtained by the ana-
lytical continuation v52iE10 in Eq. (93) and yields
the equation for an Andreev bound state in a clean SNS
contact. For d@j0T , the energies of the low-lying bound
states, En!D1 , are given by the well-known simple ex-
pression (Kulik, 1969)

En5
\vFz

d
pS n1

1
2

2
w

2 D . (94)

Kupriyanov (1981) generalized Eq. (93) to the case of
different superconducting electrodes. A more general



433Golubov, Kupriyanov, and Il’ichev: The current-phase relation in Josephson junctions
expression, taking into account the full asymmetry in the
structure, has been obtained by Galaktionov and Zaikin
(2002).

In the limit of small N-layer thickness, d!j02 , the
sum in Eq. (93) converges at v under which ¸!1. Sub-
stitution of cosh ¸'1 and sinh ¸'0 in Eq. (93) provides
the CFR of the KO-2 model.

In the opposite case of d@j0T5j02Tc /T the CFR is
sinusoidal with an exponentially small critical current,

IS~w!5
8pTeN2vF2D1

2 sin~w!

@pT1A~pT !21D1
2#2

j0T

d
expH 2

d

j0T
J . (95)

For a long SNS junction (j02!d!j0T) at low T one
can transform the sum over v in Eq. (93) to the integral

2p( ~ ¯ !→E ~ ¯ !dv→E ~ ¯ !D1 cosh udu ,

where v5D sinh u. The main contribution to the inte-
gral comes from small u and the result is (Ishii, 1970)

IS~w!5
1
2

eN2v2D1 (
k51

`

~21 !k21
sin kw

k
. (96)

The Fourier series, Eq. (96), determines the periodic
IS(w) function in the form

IS~w!5eN2v2D1H w

2
2pF w

2p
1

1
2G J , (97)

where @x# is the integer part of x . Details of these cal-
culations can be found in the textbook by Svidzinskii
(1982).

Thus, in clean SNS junctions, the CFR transforms
from the sinusoidal form at T'Tc to the saw-toothed
curve of Eq. (97) at low T if the suppression of super-
conductivity by current or proximity effect is negligibly
small and rigid boundary conditions are valid.

The range over which rigid boundary conditions are
valid at a clean NS interface was analyzed by Kupriy-
anov and Lukichev (1988b). They considered thick (d
@j0T) SNS junctions with fully transparent interfaces
under arbitrary ratio between Fermi velocities of normal
and superconducting materials. Starting with the analyti-
cal solution of the Eilenberger equations for a normal
metal (92), they derived the general expression for the
supercurrent

IS~w!5
8pTeN2vF2D1 sin~w!

gC
2 @pT1A~pT !21D1

2#
E

0

up
F1~u!

3expH 2
d

j0TA12gC
22 sin2~u!

J sin~u!cos~u!du ,

gC5
vF2

vF1
, F1~u!5

1
2 F f1S d

2
,u D1f1

1S d

2
,u D G . (98)

Here up5p/2, if gC>1, and up5arcsin gC , if gC<1, and
f1(d/2 ,u) is the Eilenberger function on the supercon-
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ducting side of the NS interface. Thus the problem is
reduced to a calculation of the function F1(u) by a nu-
merical solution of the Eilenberger equations in the su-
perconducting electrodes.

In the limit of small gC!1, the integration in Eq. (98)
takes place only in a very small cone. As discussed
above, the supercurrent is defined by the function
F1(u)5D1 /@pT1A(pT)21D1

2# on the trajectory per-
pendicular to the interface, and Eq. (98) is reduced to
Eq. (95).

In the opposite case of gC@1, the supercurrent falls as
gC

22 and has a slightly different dependence on d . Note
that the function F1(u) depends on gC only for gC
<1. Moreover, the suppression of F1(u) with an in-
crease of gC is essentially weaker than in the dirty limit,
when for g'1 the ICRN is reduced by two orders of
magnitude (see Sec. V.B.2).

As a result, for gC&1 and over a wide temperature
range T&0.8Tc the suppression of superconductivity in
the electrodes does not essentially modify the results ob-
tained in the framework of the rigid boundary condi-
tions.

Let us now consider briefly the opposite limiting case
of Tc85Tc , when two superconductors are connected by
a narrow wire of length d made from the same material.
In a short contact, d!j0T , IS(w) is described by the
KO-2 model. However, strong modifications take place
as one moves to the opposite case, d@j0T . Starting
from a critical value dC;j0T , the function IS(w) be-
comes multivalued (Kulik and Omelyanchuk, 1975b;
Likharev, 1979; Martin-Rodero et al., 1994; Sols and Fer-
rer, 1994). This situation corresponds to the appearance
of the solution with a phase-slip center inside the contact
and is similar to that discussed above in Sec. V.B.3 for
the dirty limit.

Interesting peculiarities in the CFR of ballistic and
symmetrically stacked double SNSNS junctions were
predicted by Chang and Chu (1997).

VI. DOUBLE-BARRIER SINIS JUNCTIONS

Double-barrier junctions have recently attracted con-
siderable interest both in experiments and in theory. A
supercurrent in a tunnel SIS contact depends linearly on
the barrier transparency, since Cooper pairs tunnel co-
herently (Josephson, 1962). Supercurrent transport in an
SINIS structure, having two barriers, is of a more com-
plicated nature. It is well known from the theory of
Blonder, Tinkham, and Klapwijk (1982) that the subgap
resistance of a ballistic SIN junction has a quadratic de-
pendence on the transparency of the interface, since An-
dreev reflection is a two-particle process. The disorder in
a normal region enhances the Andreev current due to
opening of some fraction of the tunneling channels, and
the resistance has a linear dependence on the transpar-
ency. This effect is known as reflectionless tunneling in
SIN junctions [see Volkov et al. (1993), Nazarov (1994b),
and further references in the review article by Beenak-
ker (1997)]. Interestingly, tunnel channels may be
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opened in a ballistic NI1NI2S junction, as well, by plac-
ing a second tunnel barrier [Melsen and Beenakker
(1994)]. Therefore it is important to understand how
barrier transparency and disorder influence coherence in
SINIS junctions and what the corresponding modifica-
tions of the CFR are.

Coherent effects in SINIS junctions are of significant
practical importance. Recent experiments have demon-
strated the possibility of engineering Josephson junc-
tions with desired properties using existing multilayered
techniques. As already mentioned in Sec. II.B, the
present interest in SINIS junctions is related to their
possible application in superconducting electronics. Ref-
erences to experiments are given in Sec. II.B.

An overview of the early experimental work on super-
current flow in superconductor-semiconductor-
superconductor junctions was given by van Huffelen
et al. (1993). Carrier transport through these structures
was found to be dominated by interfaces; therefore they
are of the SINIS type. Several types of weak links using
various semiconducting materials that carry large super-
currents were reported by Klapwijk et al. (1989) and
Kleinsasser et al. (1989). The operation of a supercon-
ducting field-effect transistor, with a gate electrode con-
trolling the supercurrent, has been demonstrated. More
recently, structures using two-dimensional electron gas
(2DEG) as a weak-link material were successfully fabri-
cated and investigated by Marsh et al. (1994), Takay-
anagi et al. (1995a), Mur et al. (1996), Chrestin et al.
(1997, 1999), Heida et al. (1999), Lehnert et al. (1999),
Neurohr et al. (1999), Grajcar, Ebel, et al. (2002), and
Schäpers et al. (2003). A qubit device based on manipu-
lating Andreev bound states in SINIS junctions was re-
cently proposed by Shafranjuk et al. (2002).

A theory of long SINIS junctions with low barrier
transparency was developed by Aslamazov et al. (1968;
see also discussion in the previous section). Nikolić et al.
(2002) recently reported on a theoretical study of
double-screened dipole barrier SINIS junctions, which
are of relevance to high-Tc superconducting grain-
boundary junctions.

In this section, recent developments in the theory of
SINIS structures with low-transparency barriers are dis-
cussed. We shall concentrate on SINIS junctions with
thin metallic interlayers, which are of the most practical
importance.

A. SINIS junctions, clean limit

1. The general case

Supercurrent in ballistic SINIS structures is controlled
by an interplay between Andreev bound states and
transmission (Breit-Wigner) resonances. Much theoreti-
cal work has concentrated on studying resonant super-
currents in low-dimensional structures, in particular in
S-2DEG-S (where 2DEG is a two-dimensional electron
gas).
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Supercurrents in such structures were calculated using
various theoretical approaches.8 Much of this work was
devoted to the physics of supercurrent flow through
Breit-Wigner resonances in ballistic structures. The com-
mon conclusion from these studies is that the physics of
supercurrent via a single Breit-Wigner resonance is simi-
lar to that of resonant tunneling via a localized state in
SIS tunnel junctions, discussed above in Sec. III. The
CFR depends on the width of the resonance and its
position with respect to the Fermi level. An important
consequence is that supercurrent is influenced signifi-
cantly by phase-coherent normal reflections, which may
lead to an oscillation of supercurrent as a function of
interlayer thickness or electronic momentum. These ef-
fects are strongest in low dimensions. Supercurrent os-
cillations as a function of a gate voltage in S-2DEG-S
junctions were observed by Takayanagi et al. (1995a).

For most practical applications the universal features
of supercurrent in a three-dimensional SINIS junction
are of interest, where proper averaging over the reso-
nances is important. The theory of stationary properties
in such structures was developed by Brinkman and Gol-
ubov (2000), Galaktionov and Zaikin (2002), and Ozana
et al. (2002). For thin interlayers, the existence of the
coherent regime was demonstrated when supercurrent
averaged over the transmission resonances was propor-
tional to the barrier transparency D . With increasing
thickness, the supercurrent became incoherent, of the
order of D2, as expected for two uncorrelated sequential
tunneling processes. Quantitative calculations were car-
ried out by Brinkman and Golubov (2000) and Galak-
tionov and Zaikin (2002) in order to study the crossover
between these two regimes. The results are briefly sum-
marized below.

In a clean SINIS junction, the Eilenberger equations
are in general not applicable because of interference be-
tween the two interfaces. Starting from a set of Gor’kov
equations, Brinkman and Golubov (2000) found an ex-
pression for the Green’s functions in a clean three-
dimensional SINIS structure. Here N is either a normal
metal or a weak superconductor (S8) with Tc8,Tc . In
the case of symmetric low-transparency barriers the su-
percurrent is given by

Is5
e

\ E d2k i

~2p!2 T (
v.0

3

D1
2 sin w1D1D2AE1 /E2d/jxW2 sin

w

2

2W4E1
2~cosh d/jx2cos 2kxd !1E3

2 . (99)

8These include those of Kresin (1986), Gudkov et al. (1988),
Zaitsev (1990), Furusaki et al. (1991, 1992), Schüssler and
Kümmel (1993), Chrestin et al. (1994), Golub and Horovitz
(1994), Rittenhouse and Graybeal (1994), Volkov et al. (1995),
Riedel et al. (1996), Tang, Wang, and Zhang (1996), Tang,
Wang, and Zhu (1996), Wendin and Shumeiko (1996a, 1996b),
Buttcher and Kopp (1997), Gogadze and Kosevich (1998), Jo-
hansson et al. (1999), Nevirkovets and Shafranjuk (1999), Sam-
uelsson et al. (2000), Shchelkachev (2000), Kuhn et al. (2001),
Lodder and Nazarov (2002), and Otadoy and Lodder (2002).
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Here k i is the wave-vector component parallel to the
interfaces, E15Av21D1

2, E25Av21D2
2, E3

5Av21D1
2 cos2w/2, and W5W1,2 /\vx@1, where W1,2 is

the strength of the interface potential V(x)5W1d(x)
1W2d(x2d), and D1 , D2 are the magnitudes of the
pair potentials in the S and N layers, respectively. Fur-
ther, vx5vF cos u, kx5kF cos u, and jx5\vF cos u/2v ,
where vF is the Fermi velocity and kF the Fermi mo-
mentum in the interlayer. For the case of a normal inter-
layer, D250, a more general expression for the supercur-
rent for arbitrary barrier transparency was obtained by
Galaktionov and Zaikin (2002), which agrees with Eq.
(99) in the relevant limits.

Equation (99) describes the interplay between the
quasiparticle Breit-Wigner and Andreev resonances for
arbitrary values of the parameter kFd . It is instructive to
consider this crossover in terms of the width of the
transmission resonances in a double-barrier junction,
which in the symmetrical case is given by G

5\vF^xD(x)&/2d5\vF/8dW̃2, where ^xD(x)& is the
angle-averaged transparency of a single barrier (x
5cos u). The transmission resonance occurs as a result
of interference between normally reflected electrons in-
side the double-barrier structure, and the width G can be
interpreted as the inverse drag time of an electron inside
the structure due to multiple normal reflections.

It was proven by Galaktionov and Zaikin (2002) that
the supercurrent given by Eq. (99) for large kFd is
equivalent to that obtained directly from the quasiclas-
sical Eilenberger equations, while in the case of more
than two interfaces (e.g., a SININIS junction) the quasi-
classical approach does not work due to quantum-
mechanical interference from multiple interfaces. For a
detailed discussion of transport through multiple inter-
faces, see also Ozana et al. (2002).

Nonquasiclassical techniques, in particular, the dy-
namical mean-field theory, have recently been applied to
theoretical descriptions of SINIS junctions [see the re-
view article by Freericks et al. (2002) and references
therein].

The supercurrent of a SINIS junction is controlled by
a single parameter geff ,

geff5
pTc

G
5

2pTcd

\vF^xD~x !&
, (100)

which is equal to the ratio of the widths of Andreev and
Breit-Wigner resonances. Since the ratio 2pTc /\vF
;ke2kh , where ke ,h are the wave vectors of the elec-
trons and holes forming the Andreev bound states, and
since d/^xD(x)& is the average path L of the particles
inside the N layer, the parameter geff determines the
dephasing of the Andreev bound states. We shall call the
regime of small geff , when there is no dephasing, the
coherent regime.

2. Coherent regime (broad resonances)

As follows from Eq. (99), the coherent regime applies
for a thin interlayer when the transmission resonances
are broad, G@pTc . The supercurrent is then given by
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IS~w!5
e

\ E d2k i

~2p!2 T(
v

D1
2 sin w

E1
2D2

212D1
2 sin2 w/2

, (101)

where D2 is the transparency of a double barrier
NININ contact, which has a resonant structure, D2

21

511(2W cos kxd12W2 sin kxd)2. Integration over the
directions of k i (over the resonances) yields the super-
current

eIS~w!RN52pT (
v.0

D1
2 sin w

Av21D1
2Av21D1

2 cos2 w/2
,

(102)

which does not depend on the properties of the
interlayer and coincides with the dirty-limit result
(Kupriyanov and Lukichev, 1988a). Here RN

21

5e2kF
2 g/4p2\ is the normal-state contact resistance

per square, where g5^xD(x)&51/4W2. This
expression can be generalized to the asymmetric case:
eIS(w)RN52pT(vuD1u2 sin w/E1E38 , with E38

5Av21uD1u2(cos2 w/21g2
2 sin2 w/2), g25(g12g2)/(g1

1g2), g1,25^xD1,2(x)&, where D1,2 are the individual
barrier transparencies. In this case, RN

215e2kF
2 gc/2p2\ ,

where gc5g1g2 /(g11g2).
For T50 the maximum value of eIS(w)RN is

achieved at w'1.86 and exceeds the eICRN value of
(p/2)uD1u for a tunnel SIS contact (see Fig. 7).

Equation (102) is identical to that found by Kupriy-
anov and Lukichev (1988a) for a SINIS junction with a
diffusive interlayer in the same limit of geff!1 [see Eq.
(118) below]. This means that Eq. (118) is more general
than the model used to derive it, since it holds even
when the dirty-limit condition is violated in the inter-
layer.

Note that in the coherent regime of geff!1 the super-
current in a SINIS junction scales with ^xD(x)& (similar
to the SIS case) and not with ^xD(x)&2. The reason is
that the transmission resonances are broader than D for
geff!1.

Brinkman and Golubov (2000) have shown that Eq.
(102) can be derived by integrating the supercurrent per
single channel over the transmission eigenvalue density
for a normal double-barrier contact. This is proven by
integrating *0

1 IC(D)r(D)dD with IC(D) from Eq. (15)
and with the density function r(D)5(\/e2RN)D23/2(1
2D)21/2 for a double-barrier contact (Beenakker, 1997).
Note that the same function r(D) describes a disor-
dered barrier [see Eq. (38)], which was applied by
Naveh et al. (2000) to high-Jc SIS junctions.

An analytical continuation of Eq. (102) provides the
spectral supercurrent in the coherent regime (Brinkman
and Golubov, 2000):

Im IE5Im
D1

2 sin w

AD1
22E2AD1

2 cos2~w/2!2E2
. (103)

It follows from Eq. (103) that supercurrent is carried
by Andreev bound states in the energy range
D1 cos w/2,E,D1 . The reason for this broad energy
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distribution is that all channels with transmission coeffi-
cients 0<D<1 contribute to the supercurrent.

3. Incoherent regime (narrow resonances)

In this case, G!pTc or, equivalently, geff@1. With an
increase in interlayer thickness, the coherent regime
breaks down due to dephasing of the transmission reso-
nances. After performing the angle averaging in Eq. (99)
we obtain the general expression for a double-barrier
junction

eIS~w!RN52pT (
v.0

D1
2 sin w

E1
2 E

0

1 4x5dx

W̃2Aa221

1

D1D2sin
w

2

E1E2

d

js8
E

0

1 8x2dx

Aa221
, (104)

where a5cosh(d/jx)1(1/2W4)E3 /E1 . The pair potential
in S8 is determined self-consistently with

2D2 ln
T

Tc8
52pT (

v.0
S D2

v
2^F2& D , (105)

where ^F2& is the angle-averaged anomalous Green’s
function in the interlayer,

^F2&54E
0

1S D2

E2
sinhS d

jx
D1

2D1

E1
x4 cos

w

2 D xdx

Aa221
.

(106)

It follows from Eq. (104) that at low temperatures the
CFR has two components, determined by first and sec-
ond terms on the right-hand side of Eq. (104). The sign
of the second term is determined by the sign of the in-
terlayer pair potential D2 , which is determined self-
consistently from Eq. (105) and depends on the sign of
the effective electron-electron interaction in a weak su-
perconducting (S8) material. Due to the proximity ef-
fect, the interlayer pair potential D2 does not vanish at
temperatures T.Tc8 . If the effective electron-electron
interaction is attractive, D2 has a positive sign, while for
a repulsive interaction D2 is negative at T.Tc8 (where
Tc8 is defined using the absolute value of the coupling
constant). Thus the measurements of a CFR in a SIS8IS
junction can in principle be used for measuring the sign
of the electron-electron interaction in metallic films
(Brinkman and Golubov, 2000). A quantitative study of
the corresponding corrections to the CFR in various
limits and, in particular, of the influence of nonequilib-
rium effects on these corrections has not yet been per-
formed.

As follows from Eq. (104), for T.Tc8 and geff@1 the
supercurrent is second order in ^xD(x)&,

eIS~w!RN5
32pT

7geff
(
v.0

D1
2 sin w

E1
2 . (107)

Therefore, with increasing geff , a crossover occurs
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from direct tunneling with a nonsinusoidal CFR and
large ICRN to sequential tunneling with sinusoidal CFR
and ICRN}1/geff .

B. SINIS junctions, dirty limit

1. The general case

Now we consider the situation in which the interlayer
is in the dirty limit ,!(d ,j2) with j25ADN/2pTc. In
this case the stationary Josephson effect in a SINIS
structure was analyzed in the framework of the Usadel
equations by Kupriyanov and Lukichev (1988a), Zaitsev
(1991), Golubov and Kupriyanov (1994), and Kupriy-
anov et al. (1999), using various approximations.

Kupriyanov et al. (1999) performed a detailed analysis
in the practically interesting regime of small interlayer
thickness d!j2 and obtained the following general ex-
pression for the CFR:
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v2Ṽ

1
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where

geff5
gB1gB2
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d , g25
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, (109)
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geffv
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and

G5v/Av21D1
2,

Ṽ5Av2~11q !21@qD1h~w!1D2#2.

The magnitude of the pair potential in the interlayer
D2 is determined by the self-consistency equation,

D2H ln
T

Tc8
12pT (

v.0
F 1

v
2

1

Ṽ
G J 52pT (

v.0
FqD1h~w!

Ṽ
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(110)
The first term in Eq. (108) describes the direct cou-

pling of the superconducting electrodes, while the sec-
ond term describes the contribution to the supercurrent
due to sequential tunneling in two SIS8 junctions con-
nected in series. The interplay between these two chan-
nels depends on the barrier parameters gB1,2 , tempera-
ture, and the ratio between Tc8 and Tc .

Figure 19 shows the results of a calculation of the
critical current in a SINIS junction with a self-
consistently determined pair potential in both the clean
and dirty limits. The coherent (I) and incoherent (II)
regimes are indicated. III is the regime of two SIS8 tun-
nel junctions connected in series for T,Tc8 . In the co-
herent regime I the supercurrent does not depend on
whether the interlayer is in the clean or dirty limit.
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Below we shall consider several limiting cases in
which the CFR can be calculated analytically.

2. Limit of high temperatures

If the temperature is high enough to guarantee the
inequality

pT@
geffD2

11geff
1

D1

11geff
, (111)

the magnitude of the interlayer order parameter D
}h(w) and the CFR is sinusoidal. For T close to Tc ,
the self-consistency equation D2 can be solved analyti-
cally in two limits of small and large values of geff . For
geff!1 the supercurrent is given by (Kupriyanov et al.,
1999)

IS~w!RN5
D1

2

pTc
H p2

4
1

geff ln2~1/2geff!

ln~Tc/2geffTc8! J sin~w!, (112)

while for geff@1

IS~w!RN5
D1

2 sin~w!

4pTcgeff
H 7z~3 !1

geffp
4/4

p2/41geff ln~Tc /Tc8!J .

(113)

For small geff Eq. (112) coincides with the Aslamazov-
Larkin result, Eq. (10). For large geff it follows from Eq.
(113) that the ICRN product is enhanced by an increase
of the Tc8 .

3. Limit of low temperatures

If T!Tc8 and geff@Tc /Tc8 , the maximum value of the
supercurrent flowing through the boundaries I
;ss8D1D2 /js8gB is much smaller than the depairing cur-

FIG. 19. ICRN product in a SINIS junction in the clean limit
(solid lines) and the dirty limit (dashed lines) for the ratio
Tc /Tc857.4 corresponding to the Nb/Al combination. Adapted
from Brinkman and Golubov, 2000.
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rent in the interlayer material. In this regime the struc-
ture is equivalent to two junctions in series and the CFR
is given by

IS~w!RN52pT (
v.0

D1D2

A~v21D1
2!@v21D2

2~T !#

sin~w!

h~w!
.

(114)

The critical current is achieved at

cos~w!5minH gB1

gB2
,
gB2

gB1
J (115)

and is equal to

ICRN52pT (
v.0

D1D2

A~v21D1
2!@v21D2

2~T !#

3
gB11gB2

max$gB1 ,gB2%
. (116)

At T50, Eq. (114) yields

IS~w!5
IC1IC2 sin~w!

AIC1
2 1IC2

2 12IC1IC2 cos~w!
, (117)

where IC1 and IC2 are the critical currents of each of
two consecutive Josephson junctions. For a symmetric
structure Eq. (117) yields the CFR sin(w/2).

4. Limit of small geff

As follows from Eqs. (108) and (110), direct coupling
is dominant for geff!1 and the CFR is determined by

IS~w!RN52p (
v.0

D1
2 sin~w!

Av21D1
2Av21@D1h~w!#2

. (118)

As soon as h(w)<1 at any w, the ICRN product of a
SINIS junction in this limit is larger than that for a sym-
metric SIS junction with a gap D1 in both electrodes. At
T50, Eq. (118) yields

IS~w!RN5D~0 !KSA12g2
2 sin

w

2 D sin
w

2
,

where K(x) is the elliptic integral of the first kind. At
g250, critical current is achieved at w51.86 with an
ICRN product 22% larger than in an SIS junction. In the
symmetric case Eq. (118) coincides with Eq. (102) for a
clean SINIS junction.

5. Limit of large geff

In the limit of large geff there are three characteristic
temperature intervals in the IC(T) dependence.

At temperatures larger than the critical temperature
of the interlayer material

T/Tc8*11@ATc~Tc2Tc8!/~geffTc8!#2/3,
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the CFR is sinusoidal. A general expression for the
CFR was derived by Kupriyanov et al. (1999). The
ICRN product in this case is proportional to geff

21 .
In the rather narrow temperature interval

uT/Tc821u&T/Tc8&11@ATc~Tc2Tc8!/~geffTc8!#2/3,

IS(w) is modified

IS~w!RN

2pTc
}

sin~w!

@h~w!#2/3 . (119)

Finally, for T!Tc8 , the CFR corresponds to two tun-
nel junctions in series and is given by Eq. (114).

Figure 20 summarizes the temperature dependencies
of ICRN in a symmetric SINIS junction in the dirty limit
for various values of geff and Tc8 . The sinusoidal CFR is
realized at large geff and high temperatures. The CFR
for small geff is described by Eq. (118), for low tempera-
tures by Eq. (114) and for close to Tc8 by Eq. (119).

VII. SFS JOSEPHSON JUNCTIONS

There is a continuously growing interest in charge and
spin transport in contacts between superconductors and
ferromagnets. For a long time, the observation of Jo-
sephson coupling in SFS junctions was a serious chal-
lenge. The solution to the problem of measuring super-
currents in SFS Josephson junctions was found by
employing dilute ferromagnetic alloys. The first experi-
mental observation of supercurrents in SFS junctions
and the crossover from 0 to p state in Nb/CuxNi12x /Nb
Josephson junctions was reported by Ryazanov et al.
(2000, 2001a, 2001b) and Veretennikov et al. (2000), and
further phase-sensitive measurements were reported by
Ryazanov et al. (2002). According to Eq. (8), the p state
is characterized by a phase shift of p in the ground state
of a junction and is formally described by the negative
critical current IC in the CFR IS(w)5IC sin(w).

FIG. 20. Temperature dependence of critical current in a sym-
metric SINIS junction in the dirty limit: KL, Kupriyanov-
Lukichev curve, described by Eq. (102); SIS, junction that cor-
responds to the Ambegaokar-Baratoff curve. Adapted from
Kupriyanov et al., 1999.
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The possibility of a p state was first predicted by Bu-
laevskii et al. (1977) in a Josephson tunnel junction with
magnetic impurities localized in the barrier. Bulaevskii
et al. (1977) also predicted that a superconducting ring
containing a p junction could generate a spontaneous
current and magnetic flux.

The discovery of a p junction by Ryazanov et al.
(2000, 2001a, 2001b) and Veretennikov et al. (2000)
stimulated further experimental activity in this field and
led to the observation of new phenomena in Josephson
junctions with interlayers made from various ferromag-
netic alloys (Kontos et al., 2001, 2002; Blum et al. 2002;
Surgers et al., 2002).

At the same time, the theory of SFS p junctions also
attracted widespread interest. The physics of the 0-to-p
crossover in SFS junctions was studied theoretically
from several different approaches.9 In addition to the
study of p transitions, new intriguing predictions have
been made concerning a complex CFR.

Recently, the generation of a long-range triplet order
parameter was predicted in structures with inhomoge-
neous magnetization or with noncollinear orientations
of magnetization in different F layers (Bergeret et al.,
2001c; Kadigrobov et al., 2001; Volkov et al., 2003). The
Josephson effect in junctions between unconventional
superconductors across different types of magnetic bar-
riers was studied theoretically by Tanaka and Kashiwaya
(1999, 2000).

The variety of systems exhibiting p states include pla-
nar SFS proximity-effect structures, tunnel junctions
with a magnetic insulator or magnetically active inter-
faces, and structures with barriers containing more than
one magnetic layer. In this section, we shall concentrate
on the basic features of the Josephson effect in junctions
containing weak homogeneous metallic ferromagnets
with collinear magnetization directions.

A. Proximity effect in SF bilayer

1. The formalism

Consider a bilayer consisting of a semi-infinite super-
conductor and a ferromagnet, separated by an interface
with arbitrary transparency. Superconducting correla-
tions induced in a ferromagnet differ qualitatively from
those in SN proximity systems. Generally, the proximity
effect can be understood as a penetration of a Cooper-
pair amplitude into a nonsuperconducting material. An
electron and a hole having opposite spins and momenta
are correlated via Andreev reflection (see Fig. 1), thus

9See, for example, Buzdin et al. (1982, 1992), Buzdin and Ku-
priyanov (1991), Radović et al. (1991), Tanaka and Kashiwaya
(1997a), Procić et al. (1999), Dobrosavljević-Grujić et al.
(2000), Fogelström (2000), Bergeret et al. (2001a, 2001b),
Chtchelkatchev et al. (2001, 2002), Krivoruchko and Koshina
(2001a, 2001b), Kulić and Kulić (2001), Radović et al. (2001),
Barash and Bobkova (2002), Barash, Bobkova, and Kopp
(2002), Buzdin and Baladie (2002), Golubov et al. (2002a,
2002b).
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providing an extension of superconductivity into a non-
superconducting region. In the NS bilayer at a nonzero
temperature these correlations decay exponentially with
distance from the interface to the normal metal due to a
dephasing between the wave functions of electrons and
holes. In an SF bilayer the correlated electrons and
holes, having opposite spin directions, are under the ex-
change field of a ferromagnet. This results in an energy
shift between these quasiparticles and the creation of a
nonzero momentum Q of Cooper pairs (Demler et al.,
1997).

As a result, the amplitude of superconducting correla-
tions oscillates spatially in the ferromagnetic metal as
cos Qx. The sign change of this amplitude is equivalent
to periodic 0-p phase jumps at certain points in the fer-
romagnet. Such an oscillating Cooper-pair amplitude is
an analog of the so-called Larkin-Ovchinnikov-Fulde-
Ferrel (LOFF) state in magnetic superconductors (Fulde
and Ferrel, 1964; Larkin and Ovchinnikov, 1964).

The oscillations in the ferromagnet decay with dis-
tance from the SF interface. There is a quantitative dif-
ference between the decay lengths of clean and diffusive
ferromagnets. At T50, the decay length in the dirty
limit exactly coincides with the oscillation period (Buz-
din and Kupriyanov, 1991; Radović et al., 1991). In the
clean limit the decay length is infinite at T50 (Buzdin
et al., 1982) and is limited only by elastic impurity scat-
tering (Bergeret et al., 2002) or spin-orbit scattering
(Demler et al., 1997) and typically exceeds the oscilla-
tion period. Therefore spatial oscillations are easier to
observe in cleaner systems, but there is no qualitative
difference between these two regimes. Keeping in mind
that most of the practical thin-film junctions are in the
dirty limit, we shall concentrate on this regime below.

We consider a SF bilayer in which the dirty-limit con-
ditions are fulfilled in the S and F metals. The SF inter-
face is not magnetically active and can be described by
the spin-independent parameters g and gB ,

gB5RB /rFjF , g5rSjS /rFjF , (120)

where RB is the specific resistance of the SF interface,
and rS(F) is the resistivity of the S(F) layer, while the
coherence lengths are related to the diffusion constants
DS(F) as jS(F)5ADS(F)/2pTc. This approach is valid for
relatively weak ferromagnetic materials—the case we
are mostly interested in, when the exchange integral is
smaller than 0.1 eV and spin-dependent corrections to
resistivity can be neglected.

The problem is described by the Usadel equations,
Eq. (A11) (see the Appendix). In a ferromagnet, the
Matsubara frequency v is replaced by the complex fre-
quency ṽ5v1iH , where H is the exchange energy.
Thus the following parametrization can be used in a fer-
romagnet:

Gv5
ṽ

Aṽ21FvF2v*
, Fv5

Fv

Aṽ21FvF2v*
. (121)

The Usadel equation for the ferromagnet has the form
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jF
2 pTc

ṽGF

]

]x FGF
2 ]

]x
FFG2FF50, (122)

while in the S layer ṽk5v . The boundary conditions at
the SF interface (x5dF) are

jSGS
2

v

]

]x
FS5g

jFGF
2

ṽ

]

]x
FF , (123)

gB

jFGF

ṽ

]

]x
FF5GSS FS

v
2

FF

ṽ D . (124)

One can directly see from Eq. (122) that the effective
coherence length in a ferromagnet is complex. This
point will be discussed in detail in the following subsec-
tion. Another interesting fact is that FS near the SF
interface is a complex function. This is a consequence of
the nonlocal nature of the proximity effect: the influence
of the exchange field on Cooper pairs penetrates into a
superconductor at the distance jS (Buzdin and Kupriy-
anov, 1991; Krivoruchko and Koshina, 2002).

2. Complex coherence length

Far from the SF interface in a ferromagnet, the Us-
adel equations can be linearized (GF51). Then it fol-
lows from Eq. (122) that the solution in a ferromagnet
has the form

F~x !}e2x/ j̃F}e2x/jF1e2ix/jF2, (125)

with the complex coherence length j̃F given by

j̃F5A \DF

2~v1iH !
. (126)

The main consequence of the complex coherence length
j̃F is that F(x) oscillates with a period defined by jF2
and the oscillations decay on the scale of jF1 . Further, in
a strong ferromagnet, when T!H , one can neglect v in
the denominator of Eq. (126) and get jF15jF2
5A\DF /H , i.e., in a strong diffusive ferromagnet both
scales exactly coincide. On the other hand, for a weak
ferromagnet the exchange field and the temperature are
equally important, which yields (Ryazanov et al., 2001a,
2001b)

jF1,25A \DF

@H21~pT !2#1/26pT
. (127)

Here, the Matsubara frequency v5pT for n50 was
taken for simplicity (an exact treatment will be pre-
sented below).

For H@T , Eq. (127) yields jF15jF25A\DF /H as en-
countered with classical ferromagnets (Fe, Co, Ni)
where H;1 eV is much higher than superconducting
Tc .

On the other hand, in a weak ferromagnet T'H . In
that case the decay length jF1 increases with decreasing
temperature whereas jF2 decreases. As a result, a tem-
perature variation changes the oscillation period and
therefore is able to change the phase of the supercon-
ducting order parameter at a given point in the ferro-
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magnet from a 0 to a p value (Heikkilä et al., 2000; Rya-
zanov et al., 2001a, 2001b). This fact, together with the
large decay length jF1 for a small value of H (long-range
proximity effect), makes weak ferromagnets very inter-
esting for experimental investigation.

Let us compare these results with those for a clean
ferromagnet. In this case, as follows directly from the
Eilenberger equations (Buzdin et al., 1982), the coher-
ence length is also complex and j̃F5\vF/2(v1iH),
where vF is the Fermi velocity in a ferromagnet. In a
strong ferromagnet, T!H , j̃F'\vF/2iH is purely
imaginary, which corresponds to an oscillating order pa-
rameter without decay. A detailed treatment (Bergeret
et al., 2002) has revealed that the order parameter de-
cays at the scale of the mean free path l@j0 , where j0
5\vF/2pTc is the standard clean-limit coherence
length.

3. Phase variation at the SF interface

A jump of the superconducting phase is possible at
the SF interface if a relatively low transparent barrier is
present (Krivoruchko and Koshina, 2001a, 2001b; Gol-
ubov et al., 2002a).

In the limit of small F-layer thickness,

dF!minS jF ,ADF

2H D (128)

the gradients in Eq. (122) are small and in first approxi-
mation on dF /jF the solution of Eq. (122) has the form

FF5
ṽFSGS

v~GS1ṽgBM /pTc!
, gBM5gB

dF

jF
. (129)

Further, if rigid boundary conditions hold @g/(11gBM)
!1# , then GS5v/Av21D2, and one can calculate the
anomalous Green’s function FF ,v5FF ,v /
Aṽ21FFvFF ,2v* , which defines the superconducting or-
der parameter. The function FF is complex and the
phase shift x between FF and the pair potential D in a
superconductor equals

x5
1
2

arctan
q

p
1

p

4
~12sgn p !sgn H , (130)

where

p511
v22H2

~pTc!2 gBM
2 12

v2gBM

pTcAv21D2
, (131)

q52gBM

Hv

pTc
S gBM

pTc
1

1

Av21D2D . (132)

At low v, the phase shift x monotonically increases with
H , achieving its maximum value

xmax5
p

2
(133)

at H* ;pTc /gBM . The characteristic exchange field H*
increases with increasing interface transparency or de-
Rev. Mod. Phys., Vol. 76, No. 2, April 2004
creasing thickness dF . Thus the phase rotation occurs at
the interface between a superconductor and a ferromag-
net.

B. Current-phase relation in SFS junctions: Simple
geometry

The most prominent feature of the CFR of an SFS
junction is the possibility of realizing the p state. Below
we shall discuss several mechanisms of 0-p transitions
and their quantitative criteria in terms of S, F material
parameters and the SF interface resistance. Further, un-
der certain conditions new types of nontrivial CFR’s can
be realized, having two energy minima for w50 and w
5p . We shall discuss the corresponding physical mecha-
nisms in terms of the spin splitting of Andreev bound
states.

1. 0-p transitions due to oscillating order parameter

We start from the simplest model of an SFS junction
with a metallic ferromagnet: a one-dimensional geom-
etry and a resistivity of the ferromagnet high enough so
that rigid boundary conditions are fulfilled at the SF in-
terface. This model was studied by Buzdin et al. (1982),
who predicted the p states for the first time. Buzdin
et al. (1982) assumed that clean-limit conditions were
fulfilled in a ferromagnet. Later Buzdin and co-workers
(Buzdin and Kupriyanov, 1991; Buzdin et al., 1992) con-
sidered the experimentally more relevant case in which
both S and F metals were in the dirty limit. Strong fer-
romagnetism was assumed such that H@pTc . At tem-
peratures near Tc the Ginzburg-Landau equations were
solved for this structure, leading to a sinusoidal CFR
with critical current (Buzdin and Kupriyanov, 1991; Buz-
din et al., 1992)

ICRN5
pD2

4eTc
y

sinh y cos y1cosh y sin y

sinh2 y cos2 y1cosh2 y sin2 y
, (134)

y5
dF

jF
A H

2pTc
.

Here, dF is the thickness of the F layer, RN is the resis-
tance of the junction, and D is the value of the pair po-
tential in a superconductor near the SF interface. Equa-
tion (134) describes damped oscillations of the critical
current as a function of dF , where the negative values of
IC correspond to a p junction. At large thickness the
critical current decays as IC}exp(2dF /jF1), while the os-
cillation period is given by 2pjF2 , with jF1,2
5A\DF /H in accordance with Eq. (127). The critical
current vanishes at y'3p/41pn .

At arbitrary T , analytical results can be obtained in
the limit of large thicknesses, y@1, and under rigid
boundary conditions. The CFR is sinusoidal, with the
critical current given by (Buzdin and Kupriyanov, 1991;
Buzdin et al., 1992)

ICRN532&
D

e
F~D/T !y exp~2y !sin~y1p/4!, (135)
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where F(D/T) is a monotonic function of temperature,
F(D/T)5(p/128)D/Tc at T'Tc , and F(D/T)'0.071 at
T!Tc . Near the transition temperature Eq. (135) coin-
cides with Eq. (134). Thus the damped oscillatory be-
havior of IC vs dF holds over the whole temperature
range.

Let us now consider the case of a weak ferromagnet,
in which thermal energy T is not negligible as compared
to the exchange energy H and in which the complex
coherence length jF1,2 is given by Eq. (127).

If the interface transparency is low (gB@1), the Us-
adel equations in the F layer can be linearized and the
supercurrent is given by (Ryazanov et al., 2001b)

IS5
4pT

eRN

dF

gBjF

Re (
v.0

D2 sin~w!

~v21D2!d̃F sinh d̃F

(136)

with d̃F5dF / j̃F . Equation (136) is valid for sufficiently
high temperatures, T/Tc@dF /(jFgB). In this regime,
the temperature dependence of IC is not sensitive to the
value of gB , while the magnitude of the ICRN product is
suppressed as this parameter rises. It also follows from
Eq. (136) that IC oscillates vs dF with the temperature-
dependent period jF2 given by Eq. (127). This provides
the possibility of 0-p crossover as temperature de-
creases, if H;pTc and dF;jF2 .

Such a crossover was observed by Ryazanov et al.
(2001a, 2001b) in Nb/Cu12xNix /Nb Josephson junctions
and explained using Eq. (136). Figure 21 shows the ex-
perimental data for Nb/Cu12xNix /Nb junctions for x
50.52 (left panel). This crossover is reasonably well re-
produced by the simple calculation using Eq. (136)
(right panel).

At low T , Eq. (136) is not applicable, and nonlinear
Usadel equations must be solved. The results of self-
consistent numerical calculations of the critical current
in SFS junctions are presented in Fig. 22. Here, the more
general case is considered when the F layer is split into
two parts with parallel or antiparallel magnetization di-
rections. IC decreases monotonically with H for antipar-
allel magnetizations of the F layers, and the 0-p cross-
over takes place for the parallel case. Thus switching of
the supercurrent between 0 and p states may be
achieved by changing the magnetization directions of
the layers. A thermally induced 0-p crossover is shown
in the inset of Fig. 22 using parameters that are relevant
to the junctions studied by Ryazanov et al. (2001a,
2001b).

Therefore the theory based on the Usadel equations
accounts reasonably well for the observed thermally in-
duced crossover to the p state in SFS junctions. Phase-
sensitive proof of the p shift below the crossover tem-
perature in Nb/Cu12xNix /Nb junctions was reported by
Ryazanov et al. (2002).

2. 0-p transitions due to phase jumps at the SF interfaces

As was shown above, the phase of the order param-
eter x is discontinuous at the SF interface if a potential
barrier exists between the two metals see [Eq. (130)].
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Such phase jumps may lead to a p transition even if the
F-layer thickness is smaller than jF2 so that the order
parameter in the ferromagnet does not oscillate
(Krivoruchko and Koshina, 2001a, 2001b; Golubov
et al., 2002a).

To illustrate this, consider a tunnel junction formed by
two SF bilayers (SFIFS structure) with thin diffusive F
layers, dF!jF . We also assume rigid boundary condi-
tions to hold at both the SF interfaces. In this case, the
general expression for the supercurrent has the form

I5
pT

eRN
(
v

Im@FF ,L* ~2HL!FF ,R~HR!# , (137)

where FF ,L(R) are solutions of the Usadel equation in
the left (right) ferromagnetic layers [(Eq. 129)] and RN
is the barrier resistance.

Let us consider for simplicity a symmetric structure in
which the SF bilayers may differ only by the magnetiza-
tion directions in the F layers and uHLu5uHRu. In this
case, the CFR is sinusoidal, IS(w)5IC sin(w), with the
critical current given by

IC5
pT

eRB ,I
(
v

uFSu2

v21uFSu2

cos C

~p21q2!1/2 ,

FIG. 21. Temperature dependence of critical current IC : left
panel, IC as a function of temperature for Nb-Cu0.48Ni0.52-Nb
junctions with different F-layer thicknesses between 23 and 27
nm as indicated: right panel, model calculations of the tem-
perature dependence of IC in a SFS junction from Eq. (136)
for exchange energy H50.8pTc , gB510, and different values
of the ratio dF /jF . Adapted from Ryazanov et al., 2001a.
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with C5 1
2 @xR(HR)2xL(2HL)# , where the constants

p ,q are given by Eqs. (131), (132), and the phases xL ,R
by Eq. (130).

For antiparallel orientation of the magnetizations,
HR52HL , the phase shift across the junction is Ca
50, since the phase drops at the two SF interfaces are
subtracted from each other. For parallel orientation,
HR5HL , we have

Cp5arctan
q

p
1

p

2
~12sgn p !. (138)

In this case, the phase shifts at the two SF interfaces are
added and provide the possibility of a p state. Such a
crossover happens for sufficiently large exchange fields.
For uHL ,Ru,pTc /gBM , the parameter p is positive, so
that Cp,p/2 and the junction is always in the 0 state
@IS(w)5IC sin(w)#. However, with an increase of ex-
change field above the threshold value pTc /gBM , the
parameter p changes sign at small v. As a result, a sharp
transition to the p state occurs at H5pTc /gBM and low
T .

We emphasize that the F layers are thin, so that there
are no spatial oscillations of the order parameter in
these layers. There is no phase variation in the S layers
either. Therefore the considered scenario of a 0-p tran-
sition layer is totally related to the phase jumps at the SF
interfaces. Indeed, according to Eq. (130), the phase
drop x between the Usadel functions FS}D and FF
}Dexp$ix% at each SF interface is equal to p/2 in the
limit of large H , providing the total p shift between
FF ,L(2HL) and FF ,R(HR) [it is the phase difference
between these two functions that determines the super-
current according to Eq. (137)].

At H5pTc /gBM and low temperatures, the critical
current is enhanced logarithmically, Ic

(a)}ln(Tc /T) for
antiparallel directions of the magnetizations. Such an
enhancement of IC was demonstrated by Bergeret et al.

FIG. 22. Critical current in a SFS junction calculated self-
consistently at T/Tc50.5: solid line, antiparallel orientation of
magnetizations; dashed lines, parallel magnetization; inset,
thermally induced 0-p crossover in the parallel case. Adapted
from Golubov et al., 2002a.
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(2001b) in a simple model. More detailed calculations
were performed by Krivoruchko and Koshina (2001a,
2000b), Barash et al. (2002b), Chtchelkatchev et al.
(2002), and Golubov et al. (2002a). It was shown that the
origin of this effect is the exchange splitting of the
proximity-induced density of states and the Andreev
bound states in the F layers, which becomes equal to D
at H5pTc /gBM .

The above-mentioned results are illustrated in Fig. 23,
where the critical current of an SFIFS junction is shown
for parallel and antiparallel configurations. For arbitrary
F-layer thicknesses and interface parameters, the bound-
ary problem (121)–(122) can be solved by using a fully
self-consistent numerical procedure (Golubov et al.,
2002a), which includes self-consistency with the super-
fluid velocity vs , essential (contrary to the constriction
case) in the quasi-one-dimensional geometry.

Figure 23 demonstrates a sharp 0-p transition in a
SFIFS junction in the parallel case at low temperature
and a small-barrier transparency (described by the pa-
rameter gB ,I@1, which characterizes the barrier I). The
transition broadens with decreasing gB ,I and shifts to
large values of H . The same holds true for the magni-
tude of the IC enhancement in the antiparallel case: the
peak magnitude drops with a decrease of the barrier
strength, when the ratio dFgB ,I /jF becomes comparable
to T/Tc .

Figure 24 illustrates the supercurrent flow in a SFIFS
tunnel junction with two antiparallel-oriented ferromag-
netic layers. Electrons and holes shift their energies
upon crossing the barrier. Due to the spin flip under
Andreev reflection, the reflected hole gains exactly the
same energy as is lost by the electron. The correspond-
ing resonance transmission leads to an IC enhancement
in the antiparallel case (Chtchelkatchev et al., 2002; Gol-
ubov et al., 2002a).

FIG. 23. Influence of temperature and barrier transparency on
enhancement of the critical current (antiparallel magnetiza-
tions, solid lines) and the 0-p transition at which Ic changes its
sign (parallel magnetizations, dashed lines) in a SFIFS junc-
tion: dotted line, T/Tc50.01 and jF /dFgB ,I50. Adapted from
Golubov et al., 2002a.



443Golubov, Kupriyanov, and Il’ichev: The current-phase relation in Josephson junctions
C. Asymmetric case: SIFS tunnel junction

A practically interesting geometry is the one-
dimensional SIFS tunnel junction, in which the super-
conducting phase drops at the tunnel barrier between
the S and F materials. The CFR is sinusoidal in this
case, but supercurrent oscillates as a function of the
F-layer thickness dF . Such a junction was realized re-
cently by Kontos et al. (2002), who reported an oscillat-
ing dependence of IC on dF .

The critical current is given by

IC5
2pT

eRN
(
v.0

D2

v21D2
ReH 1

g̃B sinh d̃F1GS cosh d̃F
J ,

(139)

where g̃B5gBAṽ/pTc, d̃F5dFAṽ/pTc. This expression
is valid for arbitrary thickness dF and exchange-field H
assuming rigid boundary conditions at the FS interface.
For large dF this expression describes damped oscilla-
tion behavior of IC vs d .

In the case of a strong ferromagnet, H@pTc , a
simple analytical expression for the critical current can
be obtained. In the vicinity of the transition temperature
and for highly transparent SF interfaces Buzdin and
Baladie (2002) have obtained the critical current

ICRB ,I5
pD2

2Tc

cos y cosh y

cos 2y1cosh 2y
(140)

where y5(dF /jF)AH/2pTc.
For arbitrary T and low-transparency SF interfaces,

when

gBA H

2pTc
@cothS dF

jF
A H

2pTc
D ,

one arrives at the expression

ICRB ,I5
pD

4e
~sinh y cos y2cosh y sin y !

z~sinh2 y1sin2 y !
tanhS D

2T D ,

(141)

where z5(gB /AH/2pTc). A similar expression was
used at low T by Kontos et al. (2002) to fit their experi-
mental data on IC(dF) in SIFS junctions, and an excel-
lent agreement with theory was reported.

FIG. 24. Processes leading to critical current enhancement in
SFIFS junction at antiparallel orientatons of the magnetiza-
tions at H5pTc /gBM .
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D. Clean SFcFS point contact

A clean point contact, or constriction, connecting two
superconducting SF bilayers (SFcFS) may exhibit rather
peculiar IS(w) dependences (Golubov et al., 2002b).

Assume that the constriction has a transparency D
and its size is much smaller than the mean free path, a
!l . For illustration, we consider a generic system in
which both the F layers are thin, dF!jF , and their mag-
netization directions are parallel.

The supercurrent can be calculated by the general ex-
pression (19) with functions f1,2 and g1,2 in the F layers.
Since f1,2(2v)Þf1,2(v), the summation over v should
be extended from 2` to `.

In the symmetric junction, IS(w) is determined by the
expression

IS~w!5
4pT

eRN
(
v.0

Re
D2 sin w

W21D2@12D sin2~w/2!#
,

(142)

W5v1gBMṽAv21D2/pTc . (143)

At small v, the function IS(w) changes its sign at the
finite phase difference

wc52 arcsin A@12~gBMH/pTc!2#/D

if the exchange field is in the range 12D
,(gBMH/pTc)2,1. The resulting CFR is shown in Fig.
25.

In order to understand this result, we note that Eq.
(142) has a form similar to the expression for supercur-
rent in a clean ScS point contact, with renormalized fre-
quency v→W . Going to the spectral current Im I(«) by
analytical continuation v→2i(«1i0), we see that
Im J(E)}(id(E2EBi). The Andreev bound-state ener-
gies EBi are the roots of the equation

FIG. 25. Current-phase relation in a clean SFcFS junction with
ideally transparent constriction (D51) at T/Tc50.01, gBM

51 for different values of the normalized exchange field H .
Inset, spectral supercurrent density at w52p/3 for H50 (solid
line) and H50.4 (dashed lines). Adapted from Golubov et al.,
2002b.
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EB1gBM~EB2H !
AD22EB

2

pTc
56DA12Dsin2

w

2
.

(144)

For gBM50 the standard result EB

56DA12D sin2(w/2) for an ScS contact is recovered,
while in the presence of an exchange field this bound
state splits into two (see inset in Fig. 25). At w5wc one
of these split (positive) peaks crosses zero, leaving the
domain E.0, and simultaneously a negative peak
moves from the region E,0 into E.0, thus reversing
the sign of the supercurrent.

The splitting of Andreev bound states in SFS junc-
tions was first predicted by Kuplevakhskii and Fal’ko
(1990, 1993) for an SFS junction either with a clean me-
tallic ferromagnet with fully transparent interfaces or
with a paramagnetic tunnel barrier. The splitting of the
Andreev bound states was later demonstrated in various
types of weak links involving ferromagnets by Tanaka
and Kashiwaya (1997a), Dobrosavljević-Grujić et al.
(2000), Fogelström (2000), Chtchelkatchev et al. (2001),
Radović et al. (2001), Barash and Bobkova (2002), Gol-
ubov et al. (2002b).

The sign reversal of the supercurrent in SFS junctions
can also be achieved at fixed H due to the nonequilib-
rium population of levels as discussed by Heikkilä et al.
(2000) and Yip (2000).

For an antiferromagnetic orientation in the F layers a
0-p transition does not occur due to a compensation of
the phase shifts in both electrodes.

E. Diffusive SFcFS point contact

Let us now consider the case of a diffusive point con-
tact connecting two SF bilayers. In a symmetric structure
with rigid boundary conditions at the SF interfaces and
thin F layers supercurrent can be derived from the Us-
adel equations (Golubov et al., 2002a, 2002b),

IS~w!5
4pT

eRN
Re (

v.0

D cos~w/2!

AW21D2 cos2~w/2!
(145)

3arctanS D sin~w/2!

AW21D2 cos2~w/2!
D , (146)

where W is given by Eq. (143).
At gBM50, Eq. (145) reproduces the KO-1 formula

for diffusive ScS constrictions, in which case the super-
current does not depend on the properties of the inter-
layer. Thus the exchange field does not influence IS(w)
if the SF interfaces are transparent, gBM50. Still, for
finite gBM , a stronger modification of the CFR takes
place in an SFcFS contact than in an ScS contact. The
calculation of IS(w) using the Eq. (145) yields results
similar to those for a clean point contact, with a less
sharp transition from the 0 to the p state (see Fig. 26).

The temperature dependence of the critical current in
this case shows a thermally induced 0-p crossover with
nonzero critical current at the transition point, in agree-
Rev. Mod. Phys., Vol. 76, No. 2, April 2004
ment with the results of Chtchelkatchev et al. (2001).
The IC(T) curves are presented in Fig. 27. The non-
vanishing supercurrent at the 0-p transition point is gen-
erally realized when higher harmonics are present in
IS(w) (a similar situation takes place in d-wave junc-
tions; see Sec. X). The zero value of IC at the 0-p tran-
sition by Ryazanov et al. (2001a, 2001b; see Fig. 21) is
due to the fact that the low-transparency regime (and
hence a sinusoidal CFR) was realized in that experi-
ment.

Note that Eq. (145) can also be derived by an integra-
tion over the transmission distribution *0

1r(D)I(D)dD ,
where I(D) is given by Eq. (142) and r(D) is Dor-
okhov’s distribution function, Eq. (18).

A CFR of the type shown in Figs. 26 and 27 corre-
sponds to the coexisting stable and metastable 0 and p
states. The consequences for a SQUID with ferromag-
netic junctions were discussed theoretically by Radović
et al. (2001), who predicted new modes of the magnetic-
flux penetration in such SQUID’s. It was shown that the
coexistence of integer and half-integer fluxoid configu-
rations appears in both rf and dc SQUID’s and generates
two flux jumps per one external flux quantum.

FIG. 26. The CFR in a diffusive SFcFS point contact at
T/Tc50.01, gBM51 for different values of the exchange field
h . Adapted from Golubov et al., 2002b.

FIG. 27. Temperature dependence of the critical current in a
diffusive SFcFS point contact at gBM51 for different values of
the exchange field H .
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F. Double-barrier SIFIS junction

A double-barrier SIFIS junction with a diffusive F in-
terlayer is easier to implement experimentally than a
SFcFS junction. Therefore we consider this case sepa-
rately.

We assume that the condition g!max(1,gB) is satis-
fied. In that case, rigid boundary conditions can be used.
For low-transparency barriers, gB@dF /jF , the expres-
sion for the supercurrent is given by (Golubov et al.,
2002b)

IS~w!5
2pT

eRN
Re (

v.0

D2 sin w

Av21D2AW21D2 cos2~w/2!
,

(147)

where W is given by Eq. (143). IS(w) is strongly modi-
fied by the finite H (see Fig. 28), especially at low tem-
peratures. An increase in H results in a shift of the
IS(w) maximum from wmax'1.86 at H50 to values
smaller than p/2. In the limit of large exchange fields,
H/pTc@gBM

21 , IS(w) returns to the sinusoidal form.
The physical origin of these results can be clarified in

a real-energy representation. Making an analytical con-
tinuation in Eq. (147), we obtain the spectral supercur-
rent [compare with Eq. (103) for a SINIS junction]

Im IE5Im
D0

2 sin w

AD22E2AD2 cos2~w/2!2Ẽ2
, (148)

Ẽ5E1gBM~E2H !AD22E2/pTc .

Equation (148) implies that at wc52 arccos(gBMH/pTc)
singularities in Im I(E) are shifted to the Fermi level. At
w.wc the negative singularity in Im I(E) for one spin
projection crosses the Fermi level and appears in the
positive energy domain, whereas the positive peak for
the other projection leaves the domain E.0 (this pro-
cess is illustrated in Fig. 29). As a result, the supercur-
rent starts to decrease at w.wc (see Fig. 28).

Figure 30 shows the temperature dependencies of the
ICRN product for various H and gBM51. For H50, the

FIG. 28. The CFR in a double-barrier SIFIS junction at
T/Tc50.02, gBM51 for different values of the exchange field
H . Adapted from Golubov et al., 2002b.
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Kupriyanov and Lukichev curve is reproduced with a
maximum in IS(w) at wm'1.86. For larger H , thermal
effects suppress IC at low T due to the presence of low
energy peaks of Im I(E). The strongest modifications of
IC(T) take place for H/pTc51. In contrast to the
SFIFS case considered above, there is no transition to
the p state in a double-barrier SIFIS structure. As was
shown recently by Buzdin (2003), such a transition is
possible in the case of very low-transparent SF inter-
faces.

The Josephson effect in ballistic double-barrier SIFIS
planar junctions was studied theoretically by Radović
et al. (2003), who showed that in the case when the F
metal is in the clean limit, coherent geometrical oscilla-
tions of the maximum Josephson current are superim-
posed on oscillations related to the crossovers between 0
and p states.

FIG. 29. Spectral supercurrent in a diffusive double-barrier
junction with a thin ferromagnetic interlayer at gBM51, w
52p/3 for two different values of the exchange field H . The
chosen value of w corresponds to wc at gBMH/pTc50.5.
Adapted from Golubov et al., 2002b.

FIG. 30. The nonmonotonic temperature dependence of the
critical current in a diffusive double-barrier junction with a
thin ferromagnetic interlayer at gBM51 and various values of
the exchange field H .
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VIII. EXPERIMENTAL METHOD OF MEASURING IS(w)
AND ITS APPLICATION

From the above-mentioned consideration we can see
that a study of the CFR may provide important infor-
mation about a junction’s parameters. Below, we shall
describe the method for CFR measurement and some of
its practical applications.

A. Description of the experimental method

Most commonly for the experimental investigation of
the CFR, the weak link of interest is incorporated in a
superconducting ring with a sufficiently small inductance
L . This circuit is usually called a single-junction interfer-
ometer. When an external flux Fe is applied to a super-
conducting ring, circulating current is induced and the
flux F i through the ring is given by

F i5Fe2IL . (149)

Here I is the full current in the loop. In this case the
phase difference w across the weak link is

w52p
F i

F0
12pn , (150)

where F0 is the flux quantum and n is an integer num-
ber. In general, the total current may consist of several
components. We consider below the situations in which
the superconducting part IS(w)5ICf(w) of the current
essentially exceeds all other components, namely,

vL/RN[vt!1, LCv2!1, (151)

where RN is the normal junction resistance and C is the
capacitance. Under this limitation we get from Eqs.
(149) and (150)

w5we2bf~w!, (152)

where we52pFe /F0 is the normalized external flux,
and the normalized critical current b is defined as

b52pLIc /F0 . (153)

Jackel et al. (1974, 1976) and Waldram and Lumley
(1975) demonstrated that in this case the CFR can be
obtained by monitoring w with a flux detector as a func-
tion of we . In practice it is difficult to determine the flux
F i with the required sensitivity.

A more elegant method based on radio frequency, the
rf technique, was proposed by Silver and Zimmerman
(1967). The method was further developed by Rifkin
and Deaver (1976), who showed that the CFR and the
phase-dependent conductance could be extracted from
experimental data without any fitting parameters.

In the rf method the interferometer and the weak link
of interest are coupled through a mutual inductance M ,

M5kALLT, (154)

to a tank circuit with known inductance LT , capacitance
CT , and quality factor Q . Here k is the coupling coef-
ficient between the tank circuit and the interferometer.
The tank circuit is driven by a dc bias current Idc and an
Rev. Mod. Phys., Vol. 76, No. 2, April 2004
rf current Irf of a frequency v close to the resonant fre-
quency v051/ALTCT of the tank circuit. Usually in the
experiment Q@1 and k!1 are chosen and the rf cur-
rent in the tank circuit is sinusoidal. The total magnetic
flux applied to the interferometer is Fe5Fdc1Frf . If
the amplitude of Frf is small, Frf!F0 , then we>wdc
and the CFR can be determined by monitoring the ef-
fective impedance of the tank circuit-interferometer
combination as a function of the externally applied mag-
netic flux.

Rifkin and Deaver (1976) and Il’ichev and co-workers
(Il’ichev, Hoenig, et al., 2001; Il’ichev, Zakosarenko,
Fritzsch, et al., 2001) have shown that if in addition to
the restrictions given by Eq. (151) the condition of a
small signal limit wrf!11bf8(w) is valid, then the back
influence of the superconducting loop on the tank circuit
can be expressed via the effective tank circuit induc-
tance Leff and the resistance Reff ,

Leff5LTS 12
k2bf8~w!

11bf8~w! D , (155)

Reff5RTS 11
k2Qvt

@11bf8~w!#2

v

v0
D . (156)

Here, RT determines the damping of the rf oscillations
when the interferometer is decoupled. The phase angle
a between the drive current Irf and the tank voltage U is
given by

tan a5
1

Reff~we!
•S 1

vCT
2vLeff~we! D . (157)

It follows from Eqs. (155), (156), and (157) that at v
5v0 and v0t!1 the phase angle is

tan a5
k2Qbf8~w!

11bf8~w!
. (158)

By combining

dw5
dwdc

11bf8~w!
(159)

and Eq. (158) one can easily obtain

IS~wdc!5
Ic

k2Qb E
0

wdc
tan a~wdc!dwdc . (160)

The numerical factor in Eq. (160) can be obtained
from experiment. Indeed, the mutual inductance M is
extracted from the period DIdc of the a2Idc depen-
dence according to MDIdc5F0 . Combining Eqs. (153)
and (154) this factor can be rewritten as

Ic

k2Qb
5

LT~DIdc!2

2pQF0
. (161)

The inductance LT can be measured in a conventional
setup. The quality factor Q can be determined from the
resonant response curve of the tank circuit. Thus all the
parameters in Eq. (160) are known. Note that for an
analysis of experimental data no fitting parameter is
needed.

If the parameter bf8(w) in Eq. (159) is small, then the
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difference between w and wdc is also negligible, w.we ,
and Eq. (157) is simplified to

tan a5k2Qbf8~w!, bf8~w!!1. (162)

Moreover, since in experiments the typical value of
k2Q&1, then tan a.a and the measured dependence
a(wdc) is proportional to the derivative of the CFR
f8(w) with respect to the phase difference across the
junction of interest.

B. The range of validity of the method

Let us now briefly discuss the physical limitations on
the key parameters. First of all it is important to note
that, in order to reconstruct the CFR over the complete
phase range 2p,w,p , the inequality

ubf8~w!u,1 (163)

should be fulfilled. Otherwise the CFR becomes multi-
valued in the vicinity of we5p12pn [see Eq. (152)] and
certain values of w cannot be fixed by applying an exter-
nal magnetic flux.

For a given critical current of the Josephson element
of interest, an upper limit for the loop inductance L is
set by the inequality (163). For moderate critical cur-
rents of the order of 20 mA, the inductance L is
.10 pH, which is close to the practical geometrical limi-
tations on L .

On the other hand, if the critical current is much
smaller, say of the order of 10 nA, inequality (163) does
not limit the loop inductance. Instead the fluctuation in-
ductance Lf restricts the value of L [see Eq. (165) be-
low]. That is why measurements of very small supercur-
rents, which become accessible by the method described
here, are typically realized within the limit b!1.

Il’ichev and co-workers (Il’ichev, Hoenig, et al., 2001;
Il’ichev, Zakosarenko, Fritzsch, et al., 2001) have also
shown that the condition b!1 can be achieved by re-
ducing the critical current even to the limit when the
Josephson coupling energy EJ5ICF0/2p becomes
smaller than the thermal energy kBT . According to
Khlus and Kulik (1975), an exponential reduction of the
observable critical current with temperature occurs in
this limit,

IC→IC exp~2L/2Lf!, (164)

where

Lf5~F0/2p!2/kBT (165)

is the so-called fluctuation-threshold inductance. At T
54.2 K the value of Lf'1.7 nH exceeds the geometrical
inductance limit (10 pH) by several orders of magni-
tude. Therefore the required interferometer inductance
is L!Lf , permitting us to neglect the reduction of IC ,
which can be easily realized experimentally.

If L;Lf , thermal noise modifies the internal flux in
the ring and therefore the measured (apparent) CFR is
also modified compared to the real CFR (see Jackel,
Rev. Mod. Phys., Vol. 76, No. 2, April 2004
et al., 1974; de Bruyn Ouboter and Omelyanchouk, 1995;
Il’ichev, Zakosarenko, IJsselstein, et al., 1998a; Il’ichev,
Zakosarenko, Schultze, et al., 2000). For instance, in a
junction with a sinusoidal CFR, the apparent CFR is
deformed in such way that its maximum shift to a phase
wmax,p/2, and the slope of its curve at w50 become
larger than unity. Nevertheless, Il’ichev, Zakosarenko,
Schultze, et al. (2000) have shown that the real CFR can
be reconstructed from the data, and thus the method is
still applicable even for the case L;Lf .

Therefore, if the inequality (163) is fulfilled, then
quite generally the CFR can be extracted from the data
over the complete phase range by using Eqs. (152) and
(160) without any fitting parameters. This method, being
differential with respect to w, provides a high sensitivity
of the CFR measurement. In practice, however, this
procedure works perfectly well when bf8(w) is not close
to unity. Indeed, even small thermal fluctuations and the
applied rf flux wrf can distort the w(we) dependence and
hence the apparent CFR, because for bf8(w)51 the
derivation dw/dwe diverges [see Eq. (159)].

C. Measuring technique and calibration

Several parameters of the measurement setup have
been tested and applied for study of the current-phase
relation. The inductance of the tank circuits was in the
range of 102221 mH, providing resonant frequencies of
5–40 MHz. The unloaded quality factor measured for all
tank circuits at different temperatures was in the range
of 102,Q,103. Usually the inductive coupling between
an interferometer and a tank circuit was provided by a
flip-chip configuration. In some particular cases the in-
terferometer of interest was integrated with the coil on
the same chip.

The interferometer inductances were in the range of
10–100 pH, providing L!Lf for liquid-helium tempera-
tures, where the deviation of the CFR from conven-
tional sinusoidal form is expected. In earlier studies the
tank voltage was detected by a room-temperature am-
plifier with high input impedance. In order to increase
the sensitivity of the setup, Oukhanski et al. (2003) re-
cently developed a cold amplifier with low noise tem-
perature, which operates down to 300 mK. To satisfy the
small signal limit, the measurements were carried out
with an amplitude of Irf , providing a flux of
(1023 –1021)F0 in the interferometer loop.

At present, several setups for CFR measurements are
available which work in the temperature range from Tc
down to 10 mK. External magnetic field is shielded by a
magnetic shield or by a combination of magnetic and
superconducting shields.

From the periodicity of IS(w) it follows that
*0

p tan a(wdc)dwdc50. This condition permits subtraction
of a constant phase shift coming from electronics and
cables. Since the only sample characteristic entering Eq.
(160) is IS(w), the measurement system can be cali-
brated using samples with known critical current and
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IS(w). For this purpose Nb interferometers with con-
ventional Nb/AlOx /Nb tunnel junctions are used for the
calibration.

As follows from the inequality (163), in order to ob-
tain the CFR in the complete phase range for the f(w)
5sin w the regime b,1 is required. For a junction with
critical current of the order of 20 mA this leads to a
restriction on the interferometer inductance of L
,16 pH. Such a small value of L limits the size of the
interferometer loop to below 10310 mm2. For conven-
tional tank coils with diameter of about 1 mm it is diffi-
cult to get reasonable M values between a tank circuit
and an interferometer for a flip-chip arrangement.
Moreover, the external magnetic field, producing one
flux quantum in the interferometer loop, simultaneously
produces the finite value of the magnetic flux in the
junction (the size of the tunnel junction is 3.5
33.5 mm2), suppressing the critical current value due to
IC(H) dependence (Il’ichev, Schultze, et al., 2000). In
order to avoid these difficulties, the value of L was de-
creased by using a series of samples with the interferom-
eter loop consisting of six washers, each having an in-
ductance of 55 pH, and all connected in parallel. The

FIG. 31. Nb tunnel junction: (a) circuit and coupling scheme:
(b) photo of the six-washer structure. Adapted from Il’ichev,
Zakosarenko, Fritzsch, et al., 2001.
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ten-turn coupling coils were placed on each washer and
connected in series (see Fig. 31). The coupling coil was
connected to a large 535-mm2 loop integrated on the
chip. In this configuration the total inductance of the
interferometer was evaluated to be 9 pH.

An example of the experimental data obtained for the
structure presented in Fig. 31 is shown in Fig. 32. From
the measured a(Idc) dependence (see Fig. 32, upper
curve), the corresponding CFR was reconstructed (see
Fig. 32, bottom curve). As expected, the sinusoidal CFR
was obtained and the critical current was in a good
agreement with IC of a similar shunted tunnel junction
from the same chip obtained by standard transport mea-
surements.

D. Measurements of small critical currents

The properties of supercurrent in submicron-size Jo-
sephson junctions are of considerable fundamental and
practical interest. Josephson-junction circuits have been
recently proposed as qubits (the elementary units in
quantum information processing) based either on the
flux (Bosco et al., 1997; Ioffe et al., 1999; Mooij et al.,
1999) or charge (Averin, 1998; Makhlin et al., 1999) de-
grees of freedom. Such circuits have recently been suc-

FIG. 32. Current-phase relation and dc current: (a) phase
angle between the driving current and the output voltage as a
function of dc current Idc ; (b) the CFR, determined from the
upper curve. Adapted from Il’ichev, Zakosarenko, Fritzsch,
et al., 2001.
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cessfully tested by Nakamura et al. (1999), Friedman
et al. (2000), van der Waals et al. (2000), Yu et al. (2000),
Martinis et al. (2002), Vion et al. (2002), and Wallraff
et al. (2003). Further practical realization of quantum
networks requires comprehensive investigation of quan-
tum coherence in small Josephson junctions.

In SIS tunnel junctions with submicron dimensions
the capacitance is reduced to less than 100 fF and IC
is typically below 1 mA, while the normal-state resis-
tance RN is of the order of a few kV. Under these pa-
rameters the Josephson coupling energy is smaller than
or comparable to the thermal energy kBT , and it be-
comes difficult to distinguish the critical current from
the switching current on the I-V curve. The routine so-
lution requires drastically increased cooling efforts as
well as careful electromagnetic filtering (Vion et al.,
1995).

Il’ichev et al. (Il’ichev, Hoenig, et al., 2001; Il’ichev,
Zakosarenko, Fritzsch, et al., 2001) demonstrated that
CFR measurements are much less sensitive to thermal
fluctuations. In this work, in particular, double-junction
samples consisting of two SIS contacts in series were
investigated. The values of critical currents were chosen
in the range EJ /kBT50.3–20. In this case thermal noise
substantially affects the switching current measured by
the standard I-V method.

For these samples, the experimentally measured
CFR’s have the shape given by Eq. (117). For highly
asymmetric double junctions the shape was close to sin w
as expected. The most remarkable result of this experi-
ment was the demonstration of the ability to resolve the
CFR even though the thermal energy exceeded the Jo-
sephson coupling energy by a factor of 3.3. Further, in
accordance with Eq. (117), the CFR in the symmetric
case was far from sin w and was fitted well by k'0.4.
From this fitting parameter and the overall critical cur-
rent of the sample, the individual critical currents 1.1
and 2.8 mA were found.

Besides the high resolution, another promising feature
of the rf-readout technique was the demonstration that a
broad range of supercurrents could be investigated. At
the present level, it is possible to reconstruct the CFR
from samples characterized by 0.005,b,1, i.e., for
fixed loop inductance the CFR can be studied over a
range of critical currents that varies by more than two
orders of magnitude.

E. Measurement of barrier transparency asymmetry in
SINIS junctions

Cassel et al. (2001), Nevirkovets, Ketterson, and Row-
ell (2001), and Tolpygo, Brinkman, et al. (2003) have re-
cently shown that one of the hidden difficulties for
implementation of SINIS double-barrier junction tech-
nology is asymmetry in the barrier transparency of inter-
faces.

For junctions with relatively small critical current den-
sity, e.g., for Josephson voltage standards, intrinsically
shunted junctions with low asymmetry have been
Rev. Mod. Phys., Vol. 76, No. 2, April 2004
fabricated.10 However, for digital applications, junctions
with critical current density in the range 1 –10 kA/cm2

are required. This may be achieved by shorter oxidation
of both Al layers in a NbAl/AlOx /Al/AlOx /Nb struc-
ture. The inherently different deposition conditions for
the first and second Al films in multilayer fabrication
result in different morphologies of the two Al films.
Therefore oxidation performed under the same oxida-
tion conditions should lead to the formation of AlOx
barriers having different transparency (see Cassel et al.,
2001; Tolpygo, Brinkman, et al., 2003). The barrier
asymmetry reduces the suppressed ICRN product of
SINIS junctions and strongly limits their applicability in
digital curcuits.

Cassel et al. (2001) have shown that among the differ-
ent methods for monitoring asymmetry, measurement of
the CFR should provide the most accurate results. In
accordance with Eqs. (108) and (110), the CFR in SINIS
junctions depends on the asymmetry parameter g2 and
the ratio Tc8/T , where Tc8 is the critical temperature of
an Al interlayer. At T.Tc8 Al is in the normal state, and
IS(w) is close to sin w if geff is large. At T,Tc8 Al is in

10See Maezawa and Shoji, 1997; Sugiyama et al., 1997, 1999;
Balashov et al., 1998, 1999, 2000, 2001; Schulze et al., 1998,
2000; Behr et al., 1999; Buchholz and Kessel, 1999; Khabipov
et al., 1999, 2002a, 2002b; Buchholz et al., 2001; Cassel et al.,
2001; Kohlmann et al., 2001, 2002; Kieler et al., 2002.

FIG. 33. The CFR of a SINIS junction in the temperature
range 1.90–1.95 K (from top to bottom increasing in steps of
0.01 K): (a) experimental results; (b) calculated curves.
Adapted from Götz, Grajcar, et al., 2000.
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the superconducting state, sequential tunneling domi-
nates the supercurrent flow, and the CFR transforms to
that given by Eq. (117).

Götz, Grajcar, et al. (2000) confirmed the above con-
siderations by measuring the CFR in SINIS junctions,
fitting the data by curves calculated from Eqs. (108) and
(110). The set of measured CFRs is presented in Fig.
33(a). The corresponding theoretical curves are shown
in Fig. 33(b). As was reported in detail by Götz, Grajcar,
et al. (2000), the CFR shown in Fig. 33(a) as well as the
IC(T) dependence shown in Fig. 34 can be fitted with a
single set of parameters. This procedure allows one to
extract all the junction characteristics for this series of
samples, namely, Tc8'1.935, geff'105, RN'83 V , and
g2'0.45.

This method opens the way for calibration of the sec-
ond oxidation process in SINIS junction technology,
based on accurate measurement of the barrier asymme-
try parameter (g2).

F. Current-phase relation in hybrid S-2DEG-S junctions

For low-temperature electronics it is quite natural to
combine the technology of modern superconductors
with that of semiconductors. One of the practical real-
izations of such a combined approach is to couple two
superconducting electrodes by a 2D electron gas (Marsh
et al., 1994; Takayanagi et al., 1995a; Chrestin et al.,
1997, 1999; Heida et al., 1999; Lehnert et al., 1999; Neu-
rohr et al., 1999; Grajcar, Ebel, et al., 2002; Schäpers
et al., 2003).

For practical applications it is important to estimate
the degree to which the critical current is limited by the
S-2DEG interfaces. Grajcar, Ebel, et al. (2002) have
demonstrated that the CFR measurements may provide
this information.

Grajcar and co-workers (Grajcar, Ebel, et al., 2002;
Grajcar, Hlubina, et al., 2002) studied samples consisting

FIG. 34. The fit of the temperature dependence of the critical
current. The solid line represents the calculation and symbols
are the experimental data. Adapted from Götz, Grajcar, et al.,
2000.
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of two Nb electrodes coupled by a 2DEG formed in the
native inversion layer at the surface of p-type bulk InAs
(see Chrestin et al., 1997 for details). The electron den-
sity and the Fermi velocity of the 2DEG in the channel
could be adjusted via the field effect using a gate elec-
trode. At a typical electron density of ns51.2
31012 cm22 and mobility m'10 000 cm2/V s, the elec-
tron mean free path, ,'240 nm, was comparable to the
coherence length j2'145 nm at 1.8 K and the channel
length d'120 nm. Thus the studied quasiballistic junc-
tion was in the intermediate regime between short and
long weak-link regimes. Due to proximity effect, a thin
InAs layer underneath the Nb electrodes is supercon-
ducting as well, resulting in formation of a SIN-2DEG-
NIS junction.

To describe theoretically the Josephson effect in such
a structure, a more general expression than that dis-
cussed in Secs. III and IV is needed. It should take into
account both the scattering of electrons inside the
2DEG and the proximity effect in the NS electrodes.
The expression for the supercurrent was derived by Gra-
jcar, Ebel, et al. (2002):
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and combines the result of Brouwer and Beenakker
(1997) for IS(w) in chaotic Josephson junctions with the
constriction model developed by Aminov et al. (1996)
and Golubov et al. (1997). Here R05h/e2 is the resis-
tance quantum, a is the amplitude of the Andreev re-
flection at the InAs(2DEG)/InAsNb NIS interface, Sij
are the elements of the scattering matrix for electron

FIG. 35. The current-phase relation in a Nb/InAs(2DEG)/Nb
Josephson junction. The curves from top to bottom correspond
to T52.75, 3, 3.25, 3.5, 3.75, 4, 4.2, 4.5, and 5 K. Adapted from
Grajcar, Ebel, et al., 2002.
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propagation across the structure, and N is the number of
open transmission channels.

Experimental CFR’s are shown in Fig. 35. Gradual
deviations from sinusoidal behavior with decreasing
temperature can be clearly seen. Reasonable agreement
between experimental and theoretical data was obtained
[for details see Grajcar, Ebel, et al. (2002)].

We should point out that a relatively large inductance
(80 pH) for the interferometers was used in this set of
experiments. In this case the inequality (163) requires
that the current be smaller than 4 mA. Usually the criti-
cal current of a Nb/InAs(2DEG)/Nb Josephson junction
exceeds this value considerably. The junctions measured
by Grajcar, Ebel, et al. (2002) had reduced critical cur-
rent and lower interface transparency. Still, a shift of the
maximum of the CFR towards p was observed. The in-
vestigation of the CFR of junctions with higher critical
current requires a more sophisticated technique.

G. Current-phase relation anomalies in high-Tc

superconducting junctions

1. d-wave effects in high-Tc superconducting

The most important phenomenological difference be-
tween the high-Tc superconducting cuprates and con-
ventional superconductors is the orbital symmetry of the
superconducting order parameter. In high-Tc supercon-
ductors the pair potential changes sign depending on the
direction in momentum space according to D(u)
5D0 cos(u2a), where u is the angle between the x axis
and the wave vector and a is the Cu-Cu bond direction
of the superconductor. As a result, the p shift of the
superconducting phase occurs between the a and b crys-
tallographic directions, The unconventional symmetry in
cuprates was experimentally confirmed by phase-
sensitive experiments (see van Harlingen, 1995; Tsuei
and Kirtley, 2000).

Several comprehensive review articles exist on the Jo-
sephson effect in high-Tc superconducting junctions,
both on fundamental aspects and an applications [see
van Harlingen (1995), Sigrist and Rice (1995), Delin and
Kleinsasser (1996), Kashiwaya and Tanaka (2000), Tsuei
and Kirtley (2000), Hilgenkamp and Mannhart (2002)].
The theory of the effects of d-wave symmetry on the
CFR was discussed in detail in review papers by Kashi-
waya and Tanaka (2000) and Löfwander et al. (2001).

There are several important consequences of an un-
conventional order-parameter symmetry in high-Tc su-
perconducting junctions. First, in high-Tc electrodes the
superconducting state in the vicinity of the interfaces
differs essentially from that in the bulk. Due to the an-
gular dependence of the pair potential, incoming and
reflected quasiparticles at certain trajectories through
the junction probe a sign change of the pair potential
upon reflection. This sign change has fundamental
consequences—it leads to the appearance of robust mid-
gap states at zero energy (Hu, 1994). The midgap states
do not occur at the sign-conserving trajectories, but in
both cases the interface is pair breaking, and the self-
Rev. Mod. Phys., Vol. 76, No. 2, April 2004
consistently determined magnitude of the pair potential
near the interface is reduced in comparison with its bulk
value. The nucleation of an order parameter with differ-
ent symmetry is possible, as well.

Different types of high-Tc Josephson junctions have
been fabricated, including ramp-type junctions (Gao
et al., 1990), grain-boundary junctions (see reviews by
Tsuei and Kirtley, 2000; Hilgenkamp and Mannhart,
2002), intrinsic junctions (Kleiner and Müller, 1994;
Krasnov et al., 2000, 2001; Latyshev et al., 2001), combi-
nation high-Tc/low-Tc junctions (van Harlingen, 1995;
Smilde et al., 2002), and SNS-type junctions (Delin and
Kleinsasser, 1996).

The physics of the Josephson effect in high-Tc junc-
tions is strongly influenced by a number of physical pro-
cesses. They are

(a) robust midgap states at zero energy, which may
contribute to the supercurrent (see Hu, 1994;
Tanaka and Kashiwaya, 1995, 1996; Barash et al.,
1996; Fogelström et al., 1997; Riedel and Bagwell,
1998; Barash, 2000);

(b) bound states with finite energy due to suppression
of the pair potential at the interface (see Barash
et al., 1997);

(c) a subdominant order parameter with different sym-
metry from that in the bulk (see Fogelström et al.,
1997);

(d) gapless singlet superconductivity nucleated at
rough interfaces (see Golubov and Kupriyanov,
1998, 1999a, 1999b);

(e) spontaneous half-flux vortices (Mannhart et al.,
1996; Tsuei and Kirtley, 2000; Hilgenkamp et al.,
2003), which may have peculiar static and dynamic
properties (Goldobin et al., 2002).

The possibility of broken time-reversal symmetry in
cuprates, when the order parameter in the bulk has an
imaginary subdominant component, was suggested by
Sigrist and Rice (1995). The consequences for high-Tc
superconductor junctions have been discussed and some
experimental findings have been interpreted as realiza-
tions of this state (for references see Tanaka and Kashi-
waya, 2000; Tsuei and Kirtley, 2000; Löfwander et al.,
2001). Further, it was predicted by Löfwander et al.
(2000) and Amin et al. (2001) that spontaneous time-
reversal symmetry breaking at high-Tc junctions may oc-
cur even in the absence of subdominant components in
the bulk. Note that, according to Geshkenbein et al.
(1986, 1987), the symmetry property of the CFR, Eq.
(4), should be violated when time-reversal symmetry is
broken.

So far, the experimental data, including the CFR mea-
surements discussed below, have not been able to re-
solve unambiguously the issue of time-reversal symme-
try breaking. Further study is needed to realize the full
potential of the CFR measuring technique in this re-
spect.

Here we shall concentrate on experimental measure-
ments of the CFR in high-Tc superconductor junctions,
where the anomalies due to pure d-wave symmetry have
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been revealed by CFR measurements: (1) detection of a
strong second harmonic in the CFR, (2) manifestation
of midgap states and (3) CFR anomalies in c-axis tun-
neling.

2. Asymmetric 45° grain-boundary junction

Tanaka (1994) and Yip (1995) pointed out that the
Josephson coupling energy may have minima neither at
w50 nor at w5p in a junction between pure d-wave
superconductors, even in the absence of time-reversal
symmetry breaking. This may occur due to strong reduc-
tion of the first harmonic I1 in Eq. (7) so that the second
harmonic I2 may become comparable to or larger than
I1 .

Walker and Lüttmer-Strathmann (1996) took these ar-
guments further. Since the order parameter is bound to
the crystal lattice, the supercurrent of a junction be-
tween two d-wave superconductors depends on the ori-
entation of the d-wave electrodes with respect to their
boundary. Let u1 and u2 denote the angle between the
normal to the junction interface and the a axis in elec-
trodes 1 and 2. The symmetry of the problem dictates
that (Walker and Lüttmer-Strathmann, 1996)

I15IC cos 2u1 cos 2u21IS sin 2u1 sin 2u2 . (167)

The coefficients IC and IS are functions of the barrier
strength and temperature. As follows from Eq. (167),
the criterion for the observation of an anomalous IS(w),
I150, is realized for an asymmetric 45° junction, i.e., a
junction with u1545° and u250. In this case one expects
double-periodic IS(w) dependence. Note that such a
type of CFR was discussed by Ioffe et al. (1999) in their
proposal for a d-wave qubit.

Before discussing the detection of the second CFR
harmonic, let us mention that in practice the properties
of grain boundaries are strongly influenced by the effect
of meandering (faceting) of the junction boundary (Co-
petti et al., 1995; Hilgenkamp et al., 1996). Within the
d-wave scenario, faceting has a more significant influ-
ence on the electronic properties of boundaries with a
misorientation close to 45° than on boundaries with con-
siderably smaller misorientation angles (Hilgenkamp
et al., 1996). Grain-boundary junctions, fabricated on bi-
crystal substrates with the misorientation angle 45°, con-
tain a higher density of facets which by themselves show
anomalous behavior. Due to the sign difference of the
adjacent lobes of the d-wave order parameter, many fac-
ets are biased with an additional p phase shift (p facets).
Therefore the supercurrent density JS is a random alter-
nating function in the plane of the contact. This effect
must be taken into account in the interpretation of the
data.

Il’ichev and co-workers (Il’ichev, Zakosarenko, IJssel-
stein, et al., 1998a, 1998b, 1999b) measured the CFR in
45° grain-boundary junctions with u1,2522.5° as well as
u1519° and u2526°. The junction size was between 1
and 3 mm. These junctions exhibit deviations of the
CFR from the conventional sinusoidal form. The differ-
ence between first and second harmonics of the CFR
Rev. Mod. Phys., Vol. 76, No. 2, April 2004
was not too large, I2 /I1;0.1–0.2. But surprisingly the
second harmonic had a positive sign, I2.0. This means
that the supercurrent reaches its maximum value at
wmax,p/2. As discussed in Sec. IV.D, such a CFR may
be realized in an s-wave SIS junction with high barrier
transparency due to depairing by the current (Kupriy-
anov, 1992). However, high barrier transparency is
hardly the case in 45° grain-boundary junctions. To our
knowledge, the observed CFR with wmax,p/2 cannot be
explained in the framework either of the s-wave or the
d-wave scenario on the assumption that the junction has
a flat interface.

Il’ichev, Zakosarenko, IJsselstein, et al. (1999a) ap-
plied the model developed by Mints (1998) for a faceted
junction to derive the CFR of a Josephson junction in
the presence of a randomly distributed alternating cur-
rent density, assuming that the local CFR was sinu-
soidal. It was shown that the model was in good agree-
ment with experimental results.

In the other set of measurements by Il’ichev et al.
(1999b), the CFR of a grain-boundary junction (u1
50° and u2545°, the so-called asymmetric grain-
boundary junction) 1–2 mm size were measured. It was
found that uI2 /I1u.1 with a negative second harmonic.
The results of measurements at different temperatures
are shown in Fig. 36. At T515 and 20 K, the curves are
2p periodic, but the local minima show the presence of
the second harmonic of the CFR. At T,10 K the am-
plitude of the second harmonic becomes larger than the
first.

The CFR determined from the data in Fig. 36 is
shown in Fig. 37. For all curves, a minimal necessary
shift consistent with IS(w50)50 was performed. Thus
it was assumed that at wdc50 a minimum of a(wdc) was
realized. For an interferometer with a conventional
s-wave weak link, at wdc50 a maximum of a(wdc) is
realized. Note that the maximum of a(wdc) at wdc50
implies a diamagnetic response, while a minimum there
implies a paramagnetic response of the interferometer in
the limit of small applied fields. Figure 38 shows the

FIG. 36. Phase angle a as a function of the dc current flowing
through the tank coil for an interferometer with an asymmetric
45° grain-boundary junction at various temperatures. Adapted
from Il’ichev et al., 1999a.
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coefficients I1 and I2 determined by Fourier analysis of
the CFR at various temperatures. With decreasing T ,
uI2u grows monotonically down to T54.2 K, while the I1
component exhibits only a weak temperature depen-
dence.

In order to explain the fact that uI2 /I1u.1 within the
faceted scenario, the alternating current density should
average to zero (Hlubina et al., 2003). This is possible
only for sufficiently long junctions, at least much longer
than the Josephson penetration depth, whereas in the
experiment of Il’ichev, Zakosarenko, IJsselstein, et al.
(1999a) much shorter junctions with L;1 mm were
studied. Therefore it is impossible to explain the large
measured I2 /I1 ratio within the faceted scenario. One
explanation might be that for some reason only a few
facets carry the supercurrent, and therefore averaging
does not occur. In this case the models of Tanaka (1994)
and Walker and Lüttmer-Strathmann (1996) for the flat
interface are applicable and can explain the results.

In order to avoid the influence of faceting, submicron
junctions are required. These results will be discussed in
the next section.

3. Symmetric 45° grain-boundary junction: Manifestation of
midgap states in the current-phase relation

The presence of midgap states is expected to influence
in a spectacular way Josephson junctions between

FIG. 37. Josephson current through a junction as a function of
the phase difference w, determined from the data in Fig. 36.
Adapted from Il’ichev et al., 1999a.

FIG. 38. Temperature dependence of the Fourier expansion of
the CFR, determined from the data in Fig. 36. Adapted from
Il’ichev et al., 1999a.
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d-wave superconductors with different crystallographic
orientations. As shown by Tanaka and Kashiwaya (1995,
1996), Barash et al. (1996), Fogelström et al. (1997),
Riedel and Bagwell (1998), and Barash (2000), the mid-
gap states in symmetric d-wave junctions provide an
anomalous contribution to the supercurrent with oppo-
site sign to the contribution of the regular Andreev
bound states. As a result, a sign change of the first CFR
harmonic I1 , i.e., a crossover to a p junction, should
take place at low T .

Motivated by the search for the midgap states,
Il’ichev, Grajcar, et al. (2001) have studied symmetric
grain-boundary junctions (u15u2522.5°) of small sub-
micron size. It is important to note that in this case stan-
dard transport measurements of IC are only possible at
low temperatures, when the thermal energy kBT is
smaller than the Josephson coupling energy. As was de-
scribed above, the radio-frequency method offers the
possibility of investigating IS(w) at thermal energy
much higher than the Josephson coupling energy.

A temperature-controlled crossover to a p junction
should manifest itself as a p shift of the phase a-vs-Idc
oscillations. For a junction with nominal width of about
0.5 mm, as shown in Fig. 39, such behavior was observed
experimentally (see Fig. 40). At high temperatures the
curves are 2p periodic, but the local minima show the
presence of the second harmonic of the CFR. At T
'11 K the a-vs-Idc oscillations are p periodic, i.e., the
amplitude of the first harmonic equals zero. At lower
temperatures the local minima transform to the local
maxima, hence the amplitude of the first harmonic
changes sign. The corresponding CFR and IC(T) de-
pendence are shown in Figs. 41 and 42, respectively.

Note also the remarkably large magnitude of the sec-
ond harmonic I2 . As was argued by Il’ichev, Grajcar,
et al. (2001), this enhancement may also be explained by
the contribution of the midgap states. An alternative
model which explains the large second harmonic by

FIG. 39. Schematic picture of an interferometer. The YBCO
thin film occupies the gray area. The inset shows an electron
microscope image of the grain-boundary Josephson junction.
Adapted from Il’ichev, Grajcar, et al., 2001.
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quantum fluctuations of the order parameter was pro-
posed by Hlubina (2002; Hlubina et al., 2003).

We conclude that the data for submicron grain-
boundary junctions are in qualitative agreement with
theoretical predictions for the CFR for a high-Tc junc-
tion with ideally flat interfaces. Thus the experiment by
Il’ichev, Grajcar, et al. (2001) has revealed the contribu-
tion of the midgap states to the Josephson effect in high-
Tc superconducting junctions.

4. c-axis high-Tc superconducting junctions

Recently, it has become clear that a finite admixture
of the order-parameter component with s-wave symme-
try should exist in addition to the dominant d-wave or-
der parameter in YBCO materials. An elegant c-axis
tunneling experiment by Kouznetsov et al. (1997) has di-
rectly shown that the s-wave component changes sign
upon crossing the twin boundary in YBCO.

The above picture of the YBCO pairing state is chal-
lenged by the experimental observation of a finite c-axis
Josephson current between heavily twinned YBCO and
a Pb counterelectrode (Sun et al., 1996). The contribu-

FIG. 40. The phase angle a as a function of the dc current
flowing through the tank coil for an interferometer with a sub-
micron symmetric 45° grain-boundary Josephson junction at
various temperatures. From top to the bottom the data corre-
spond to T520, 15, 11, 10, 5, and 1.6 K. Adapted from Il’ichev,
Grajcar, et al., 2001.

FIG. 41. The CFR for a submicron symmetric 45° grain-
boundary Josephson junction, calculated from the data in Fig.
40. From top to the bottom the data correspond to T515, 11,
10, 5, and 1.6 K. Adapted from Il’ichev, Grajcar, et al., 2001.
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tion of the s-wave part of the YBCO order parameter to
the Josephson coupling between Pb and YBCO should
average to zero for equal abundances of the two types of
twins. That is, the macroscopic pairing symmetry of
twinned YBCO samples should be a pure d wave
(Walker and Lüttmer-Strathmann, 1996). Tanaka (1994)
has shown that a finite value of the Josephson current
occurs for second-order tunneling between YBCO and
Pb. However, measurements of microwave-induced
steps at multiples of hf/2e on the I-V curves of Pb/Ag/
YBCO tunnel junctions imply dominant first-order tun-
neling (Kleiner et al., 1996). Therefore the finite c-axis
Josephson current has to result from a nonvanishing
s-wave component of the macroscopic pairing state
(Walker and Lüttmer-Strathmann, 1996). Two alterna-
tive explanations of how this can take place have been
discussed in the literature:

(i) Sigrist et al. (1996) suggested that the phase of the
s-wave component in YBCO does not simply jump from
0 to p upon crossing the twin boundary, but rather
changes in a smooth way, attaining the value of p/2 right
at the twin boundary. The twinned YBCO sample is thus
assumed to exhibit a macroscopic d1is pairing symme-
try. A related picture has been proposed by Haslinger
and Joynt (2000), who propose a d1is surface state of
YBCO.

(ii) O’Donovan et al. (1997) argued that a difference
in the abundances of the two types of twins implies a d
1s symmetry of the macroscopic pairing state. Let us
point out that structural peculiarities of other types
(such as a lamellar structure in a preferred direction)
may also lead to the d1s macroscopic pairing symmetry.

Komissinski, Il’ichev, Ovsyannikov, Kovtonyuk, et al.
(2002) have measured the CFR in c-axis Nb/Au/
(001)YBCO heterojunctions and found a deviation from
the sinusoidal shape, as shown in Fig. 43. The obtained
results are consistent with the statement that the macro-
scopic pairing symmetry in YBCO films is of the d1s
type, most probably due to a difference in the abun-

FIG. 42. Submicron 45° grain-boundary Josephson junction:
m, critical current; j, the harmonic component I1 ; d, har-
monic component I2 , all three as a function of temperature as
calculated from the data in Fig. 40. Adapted from Il’ichev,
Grajcar, et al., 2001.
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dances of the two types of twins. Komissinski, Il’ichev,
Ovsyannikov, Kovtonyuk, et al. (2002) used a single set
of parameters to explain the measured values of the
normal-state resistance RN together with I1 and I2
within the standard microscopic d1s picture of the
YBCO pairing state, under the additional assumption
that the barrier fluctuates along the junction.

5. General remarks

Due to the relatively complicated structure of high-Tc
materials, there is no generally accepted picture of the
nature of barriers in grain-boundary junctions, where
many mechanisms have been suggested [see Hilgen-
kamp and Mannhart (2002), and references therein].
The CFR measurements of Il’ichev, Zakosarenko,
IJsselstein, et al. (1999c) and by Grajcar, Hlubina, et al.
(2002) for the 24° and 36° grain-boundary junctions are
consistent with the tunnel limit prediction that IS(w)
}sin w. According to the data, a transition from low-
angle boundaries to large-angle ones increases the grain-
boundary resistance (for a detailed theoretical analysis,
see Gurevich and Pashitskii, 1998). The average trans-
parency of 45° is smaller than for low-angle grain-
boundary junctions. Therefore it is natural to try to ex-
plain the large amplitude of the second harmonic of the
CFR in the tunnel limit. Recently Hlubina (2003) and
Hlubina et al. (2003) proposed to take into account
quantum fluctuations of the order parameter in order to
explain the experimental data on the CFR in grain-
boundary junctions.

The barrier in grain-boundary junctions may also be
represented as a disordered normal metal, such that the
structure is of the SNS type. This may occur, for ex-
ample, due to a short coherence length in high-Tc super-
conductors (Deutscher and Müller, 1987), deviations
from stoichiometry (Gross and Mayer, 1991; Halbritter,
1993), or band bending (Hilgenkamp and Mannhart,
1998; Nikolić et al., 2002). The generation of the second
harmonic in SNS junctions was discussed by Huck et al.

FIG. 43. The CFR for a Nb/Au/(001)YBCO heterojunction (c
contact). From top to the bottom the data correspond to T
51.66, 2.5, 4.2, and 6 K.
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(1997) and Zagoskin (1997). Asano (2001) has studied
theoretically the CFR in SNS junctions of unconven-
tional superconductors, including the cases of spin-
singlet, spin-triplet unitary, and spin-triplet nonunitary
superconductors. This study generalized previous theo-
ries by Sigrist and Ueda (1991) and Millis et al. (1988) to
the case in which midgap states and disorder are present
in the junction. A challenging problem for future CFR
measurements remains to verify the predictions of vari-
ous models in order to shed light on the conductance
mechanisms across the grain boundary in high-Tc super-
conductors.

Let us close the experimental part of the review by a
general remark concerning method. First measurements
of the CFR for high-Tc junctions were reported by
Tinchev (1994) and Polushkin et al. (1995) using conven-
tional rf technique at temperature close to Tc , and sinu-
soidal CFR was observed. Apart from methods for mea-
surements of the CFR, described above, some
conclusions about the behavior of the CFR can be
reached by measuring microwave-induced Shapiro steps
(Kleiner et al., 1996; Ovsyannikov et al., 1999, 2000; Ko-
missinski, Ovsyannikov, et al. 2001, 2002; Borisenko
et al., 2002; Komissinski, Il’ichev, et al., 2002). In this
case the junction of interest is biased by finite voltage,
which can lead, for instance, to deviations of the elec-
tron energy distribution function f(E) from equilibrium.
This in turn, according to Eq. (2), generally leads to de-
viations of the CFR from equilibrium. Therefore in
principle information on the CFR can be obtained from
Shapiro steps. However, the experimental results should
be carefully analyzed for each particular case.

IX. SUMMARY AND OUTLOOK

We have discussed various possible forms of the CFR
in different types of Josephson junctions. Due to space
limitations, only a small fraction of the research work in
this area was reviewed. We did not consider the possi-
bility of controlling the CFR by high-frequency irradia-
tion or dc current injection into a weak link, nor did we
discuss Josephson transistors and multiterminal Joseph-
son devices. Nevertheless, even under these limitations
we have demonstrated the existence of a variety of
current-phase relations as a result of complex funda-
mental processes in superconductors.

We have discussed resonant tunneling in SIS struc-
tures and the crossover from a classical tunnel junction
to a set of parallel constrictions or to a double-barrier
structure. In particular, the models described or referred
to in this review may serve as a basis for theoretical
description of junctions with ultrathin tunnel barriers,
which are of great practical interest (Naveh et al., 2000;
Rippard et al., 2002).

The type of CFR found in SNS junctions makes it
possible to judge the degree of pair breaking in the S
electrodes. This may provide information that is impor-
tant for practical applications, since pair breaking by
current or proximity effect may lead to a reduction in
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the high-frequency cutoff by orders of magnitude com-
pared to a classical SNS junction.

The CFR in ballistic SINIS structures is controlled by
the interplay between Andreev bound states and trans-
mission resonances. Götz and co-workers (Götz, Graj-
car, et al., 2000; Götz, Khanin, et al., 2000) introduced a
procedure for extracting all the parameters of SINIS
junctions from the measured CFR. This method opens
the way for a calibration of the second oxidation process
in SINIS junction technology.

In low-dimensional SINIS structures, the supercurrent
oscillates as a function of interlayer thickness or elec-
tronic momentum. This effect may be used for the con-
trol of supercurrent, as demonstrated in S-2DEG-S junc-
tions by Takayanagi et al. (1995a). On the other hand,
this effect also has an uncontrollable influence on junc-
tion parameters, as was shown by Gudkov et al. (1988).

In Josephson junctions with a magnetoactive inter-
layer material it is possible to invert the sign of the clas-
sical CFR and realize a so-called p junction. Moreover,
modifications of the CFR are generally not reduced to
the 0-p transition. The energy-phase relation in such
junctions may have two minima, at w50 and w5p . The
effect is observable in a variety of structures: SFS sand-
wiches or SFcFS constrictions using metallic ferromag-
nets, tunnel junctions with a ferromagnetic insulator, or
junctions with magnetically active interfaces. These phe-
nomena may be used in the engineering of cryoelec-
tronic devices manipulating spin-polarized electrons and
in qubit structures.

For a long time, the real shape of the CFR was not
considered as an important factor. Practical Josephson-
junction-based devices have been implemented on tun-
nel SIS structures with IS(w)}sin w. However, these de-
vices have relatively low critical current densities and
require external shunting by a normal resistor to avoid
undesirable hysteresis on current-voltage characteristics.
These drawbacks limit the integration scale of the de-
vices and their application in the mK temperature range,
e.g., in quantum-bit readout systems. The new concept
of a programmable voltage standard (Hamilton et al.,
1995) essentially employs junctions with a nonhysteretic
current-voltage characteristic and large current densi-
ties. Thus the transition from classical Nb/Al/AlOx /Nb
tunnel junctions to intrinsically shunted high-JC tunnel
junctions, double-barrier structures, or SNS weak links
seems to be very natural for the future development of
basic elements in large-scale integrated superconducting
circuits.

As was shown in this review, the CFR in all these
structures differs from IS(w)}sin w especially at low
temperatures, T!Tc . This deviation does not essen-
tially affect the response of the junctions on a steady
magnetic field (Cassel et al., 2001) and may be taken
into account in the circuit design as an additional intrin-
sic inductance (see Likharev, 1976, 1979; Zubkov et al.,
1981; Schüssler and Kümmel, 1993), which has to be
added to the geometrical one in the circuit simulation.
The shape of the CFR, or more explicitly the energy
and phase dependencies of spectral current density,
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which determine the CFR according to Eq. (2), as well
as the phase dependence of the energy distribution func-
tion in Eq. (2) become important in an analysis of the
dynamic properties of Josephson-junction circuits. In
particular, a nonsinusoidal CFR results in the genera-
tion of subharmonic Shapiro steps (see, e.g., Cassel
et al., 2001), which may lead to instabilities in modes of
operation of Josephson voltage standards.

The study of the CFR is also important for under-
standing the fundamental properties of superconducting
materials, such as the symmetry of the superconducting
correlation and peculiarities of spin transport in multi-
layered systems based on superconducting and ferro-
magnetic materials. As we just saw from the examples
described in Sec. VIII, the monitoring of the CFR may
provide information that is either impossible to get by
any other means, or that can be obtained only by a dras-
tic increase in cooling efforts and careful electromag-
netic filtering. CFR measurements are also of funda-
mental importance as a possible tool for direct detection
of time-reversal symmetry breaking at the interfaces of
unconventional superconductors.

Modern technology is focused on the fabrication of
submicron-size Josephson junctions and will require de-
velopments in precise measuring technique. We have
seen in this review that the measurement of the CFR
permits one to determine experimentally the critical cur-
rent even in the case of a Josephson energy smaller than
that of a thermal fluctuation. Measurements of the CFR
may also provide information on the transparency of in-
terfaces, which is important for junction fabrication.
These measurements may be used as routine controls in
various technological steps and processes.

Finally, the w dependence of a particular Josephson-
junction’s energy, which can be directly reconstructed
from its experimental CFR, may be important in the
design of superconducting quantum bits. Recently,
Il’ichev, Wagner, et al. (2002) have applied a method de-
veloped for CFR measurements to the characterization
of superconducting qubit circuits.

We believe that CFR spectroscopy may become a
useful tool for novel fundamental and technological de-
velopments.

ACKNOWLEDGMENTS

We are grateful to our colleagues J. Aarts, M. H. S.
Amin, D. Balashov, G. Brammertz, A. Brinkman, I.-M.
Buchholz, N. M. Chtchelkatchev, I. A. Devyatov, Ya. V.
Fominov, E. Goldobin, D. V. Goncharov, M. Götz, M.
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APPENDIX: MICROSCOPIC THEORY OF
SUPERCONDUCTIVITY

We describe below the formalisms that form the basis
for description of the stationary Josephson effect in vari-
ous types of Josephson junctions.

1. Green’s functions

Quantum field-theoretical methods in terms of
Green’s functions are a powerful tool in all many-body
problems (see, for example, Abrikosov et al., 1975;
Rammer and Smith, 1986; Zagoskin, 1998).

The starting point for all problems in superconductiv-
ity is the Green’s function in Nambu space, which com-
bines the particle and hole space (Nambu, 1960). In a
superconductor the Green’s function has ‘‘anomalous’’
components, F(x ,x8), F†(x ,x8), and a normal compo-
nent G(x ,x8), which obey a set of coupled Gor’kov
equations (Gor’kov 1958, 1959a, 1959b):

H ivt31
\2

2m

]2

]r1
2 1m1U~r1!1D̂~r1!J Ĝ~r1 ,r2!

5d~r12r2!, (A1)

D̂5S 0 D

2D* 0 D , Ĝ5S G F

F† 2G D .

The pair potential D is determined by the self-
consistency equation

D~r!52
l

2
T(

v
Tr~t11it2!Ĝ~r,r!. (A2)

Here v5pT(2n11) are the Matsubara frequency, t i
are Pauli matrices, U(r1) is the electric potential, and l
is the strength of the attractive interaction. For a normal
metal we have l50 and hence D50, but the pair ampli-
tude F can still be nonzero in various situations (e.g.,
due to the proximity effect in NS structures, as will be
considered in detail below).

The solutions of the Gor’kov equations oscillate as a
function of the relative coordinate r12r2 on a scale of
the Fermi wavelength lF . However, characteristic
length scales in the typical problems in superconductiv-
ity, j05\vF /D and jT5\vF/2pT , are much larger than
lF . If additionally the characteristic spatial scale of a
system exceeds lF , it is sufficient to know only the de-
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pendence of the Green’s functions on the center-of-mass
coordinate (r12r2)/2 and integrate out the dependence
on the relative coordinate. This procedure leads to the
quasiclassical equations of motion for the Green’s func-
tions, formulated by Eilenberger (1968) and by Larkin
and Ovchinnikov (1968).

2. The quasiclassical approximation

a. Eilenberger equations

We shall now discuss the quasiclassical approximation
in equilibrium and stationary situations. The formula-
tion for nonequilibrium and time-dependent problems
was introduced by Eliashberg (1971) and Larkin and
Ovchinnikov (1975, 1977; see also the review papers of
Schmid, 1981; Larkin and Ovchinnikov, 1986; Rammer
and Smith, 1986; Schön, 1986; Lambert and Raimondi,
1998; Belzig et al., 1999).

The derivation of the quasiclassical equations is based
on a gradient expansion of the Gor’kov equations using
the small parameter lF /j0 . These equations are written
for the functions f(r,n) and g(r,n), which are the
energy-integrated Gor’kov functions:

f~r,nW !5
i

p E E Fpdj , g~r,n!5
i

p E E Gpdj . (A3)

Here j5p2/2m2m , r5(r11r2)/2, and nW is the unit vec-
tor normal to the Fermi surface. The functions Fp and
Gp are defined by the relations

Fp5
1

~2p!3 E E F~r1 ,r2!

3exp$ip~r12r2!/\%d~r12r2!,

Gp5
1

~2p!3 E E G~r1 ,r2!

3exp$ip~r12r2!/\%d~r12r2!.

The functions f and g satisfy the following normaliza-
tion and symmetry relations:

g2~r,n!1f†~r,n!f~r,n!51, (A4)

f†~r,n!5f~r,2n!, (A5)

and obey the Eilenberger equations,

vF]rĝ1Fvt̂31D̂2
1
t

^ĝ& , ĝG50, (A6)

D ln
T

Tc
2pT(

v
S D

v
2^f& D50. (A7)

Here ]r5¹2i (2e/\c) A, where A is a vector potential,
vF is the Fermi velocity, and t is the impurity scattering
time; square brackets denote commutator, angular
brackets denote angle averaging. The matrices D̂ and ĝ
are defined as

D̂5S 0 D

D* 0 D , ĝ5S g f

f† 2g D .
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The electrical current density is expressed through g as

J52eN~0 !pT(
v

^vF Im g&, (A8)

where N(0) is the density of states per spin at the Fermi
level.

The quasiclassical approximation is not valid in the
vicinity of atomically sharp interfaces and potential bar-
riers. Therefore Eq. (A6) should be completed by effec-
tive boundary conditions. A derivation of such condi-
tions valid at arbitrary transmission of the interface has
been given by Zaitsev (1984) on the basis of the full
theory by matching the solutions of the Gor’kov and
Eilenberger equations along the classically transmitted
and reflected trajectories. For the trajectories connecting
two metals, the boundary conditions have the form

ĝ1
a5 ĝ2

a[ ĝa, (A9)

ĝa$R2R~ ĝa!21D~ ĝ2
c !2%5Dĝ2

c ĝ1
c , (A10)

where D is the transmission probability across the inter-
face, R512D , and the functions ĝc(a) are defined as

ĝ6
c 5

1
2

~ ĝ1
c6 ĝ2

c !, ĝ1,2
c(a)5

1
2

$ĝ1,2~nz!6 ĝ1,2~2nz!%.

Here nz is a unit vector along the normal to the inter-
face.

For fully reflected trajectories, when the momentum
component p i is parallel to the interface and satisfies the
condition pF1,p i,pF2 , the following condition is satis-
fied:

ĝ1
c5 ĝ2

c .

A different form of boundary condition, using the so-
called Ricatti parametrization (Schopohl and Maki,
1995), was derived by Yip (1997), Eschrig (2000), and
Fogelström (2000). This method is more convenient for
stable numerical solution of the Eilenberger equations.

b. The dirty limit: Usadel equations

An important practical case is the superconducting
material with strong impurity scattering. If the mean
free path is much smaller than the coherence length
(quantitative criteria will be given below), in the so-
called dirty limit, the Eilenberger equations can be fur-
ther simplified. In this limit the electron motion is diffu-
sive and the Green’s functions are nearly isotropic, i.e.,
in the main approximation they do not depend on the
direction of the vector nW . In this case, expanding the
Green’s functions in spherical harmonics, it is possible to
obtain the equations (see Usadel, 1970) for the isotropic
parts Ĝ of the Green’s functions:

i\D]r@Ĝ~r !]rĜ~r !#5@vt̂31D̂~r !,Ĝ~r !# , (A11)

where

D̂5S 0 D

D* 0 D , Ĝ5S G F

F* 2G D
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and D5vFl/3 is the diffusion coefficient. The matrix
Green’s function Ĝ satisfies the normalization condition

Ĝ251, G21FF* 51, (A12)

and the pair potential D is determined by the self-
consistency equation

D ln
Tc

T
5pT(

v
S D

v
2F D . (A13)

Equations (A11)–(A13) are called in literature the Us-
adel equations.

The current density in the dirty limit is given by

J~r !52
ips

2e
T(

v
Tr@ t̂3Ĝ~r !]rĜ~r !# , (A14)

where s52e2N(0)D is the normal-state conductivity.
In a homogeneous bulk s-wave superconductor under

equilibrium conditions, the solutions for G and F are

G5
v

AD21v2
, F5

D exp~ ix!

AD21v2
, (A15)

where D and x are the magnitude and phase, respec-
tively, of the pair potential at a given temperature.

The boundary conditions for the Usadel equations at
an interface between two superconductors S1,2 were de-
rived by Kupriyanov and Lukichev (1988a) as

pF1
2 l1Ĝ1

d

dx
Ĝ15pF2

2 l2Ĝ2

d

dx
Ĝ2 , (A16)

gBj1Ĝ1

d

dx
Ĝ15@Ĝ1 ,Ĝ2# . (A17)

Here x is the coordinate along the normal direction to
the interface, pF1,2 and l1,2 are the Fermi momenta, and
j1 is the dirty-limit coherence length in S1 ,

j15A \D1

2pTc
, (A18)

where D15vF1l1/3 and Tc is the transition temperature
of S1 .

The dimensionless parameter gB describes the effect
of the interface barrier (Kupriyanov and Lukichev,
1988a),

gB5
2l1

3j1
K 12D

xD L 5
RB

r1j1
, (A19)

where angular brackets denote averaging over angles of
trajectories, x5pF1x /pF1 , D is the barrier-transmission
coefficient, and r1 is the normal-state resistivity of a su-
perconductor S1 .

The boundary conditions (A16) and (A17) have a
simple physical interpretation: Eq. (A16) manifests cur-
rent conservation on both sides of the interface, while
Eq. (A17) shows the current continuity across the inter-
face.

According to the definition (A19), gB50 for a fully
transparent interface. It follows from Eq. (A17) that the
Green’s functions Ĝ1,2 are continuous at the interface in
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this case. In the regime of low-barrier transparency (tun-
nel junction), gB@1 and Ĝ1,2 have discontinuities at the
interface. Lambert et al. (1997) have shown that the con-
dition (A17) is exact in two limits of high and low bar-
rier transparency, gB50 and gB@1, and have also found
corrections at the intermediate values of gB;1 which,
however, do not exceed 10%.

It is useful to introduce another dimensionless param-
eter describing the proximity effect between S1,2 , which
will be used extensively below. For this purpose we re-
write Eq. (A16) in the form

gj1Ĝ1]xĜ15j2Ĝ2]xĜ2 , (A20)

where

g5
r2j2

r1j1
. (A21)

The parameter g determines the magnitude of Ĝ2 gra-
dients near the interface: the higher the conductivity in
S1 compared to that in S2 , the larger the gradient of Ĝ2

and thus the stronger the deviation of the surface Ĝ2
value compared to the bulk one. In particular, if S1 is a
weak superconductor (or a normal metal) and S2 is a
strong superconductor, g determines the strength of sup-
pression of superconductivity in S2 near the interface
compared to the bulk: no suppression occurs for g50,
while strong suppression of F2 and D2 takes place for
g@1.

c. F parametrization

A new function F can be introduced in the following
way, which fulfills automatically the normalization con-
dition

G5
v

Av21FF*
, F5

F

Av21FF*
5

GF

v
. (A22)

In the bulk superconductor, F5D .
The Usadel equation, the self-consistency equation,

and the boundary conditions now take the form

F5D1
D

2v
]x~G2]xF!, (A23)

D ln
Tc

T
5pT(

v

D2FG

v
, (A24)

j2G2
2]xF25gj1G1

2]xF1 , (A25)

j2gBG2]xF25G1~F12F2!. (A26)

The current density is given by

J~r !5
ps

e
T(

v
Im~G2F* ]xF!. (A27)

F parametrization simplifies the analytical treatment
in the cases of small gradients (when F.D) and large
gradients [when nongradient terms in Eq. (A23) may be
neglected]. Moreover, Eq. (A23) becomes linear when F
is small compared to v.
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3. Ginzburg-Landau equations

At temperatures near the critical temperature Tc , a
superconductor is described by the Ginzburg-Landau
equations,

j2~T !]x
2D1D~12uDu2/D0

2!50. (A28)

Here D0
25@8p2/7z(3)#Tc(Tc2T), and j(T) is the

Ginzburg-Landau coherence length, which in the dirty
limit is given by

j~T !5~p/2!j~12T/Tc!21/2, (A29)

where j is given by Eq. (A18). Equation (A28) can be
derived directly from the Usadel equations (A23) and
(A24) using expansion of F over small gradients in Eq.
(A23) and substituting it into the self-consistency equa-
tion (A24).

The supercurrent density in the Ginzburg-Landau
theory is given by

J5
p

4erTcj~T !
Im~D* ]xD!. (A30)

Despite the fact that this theory is limited to tempera-
tures close to Tc , it has proven very useful in describing
current-carrying states in various types of Josephson
junctions, due to its computational simplicity compared
to the quasiclassical methods. Moreover, the Ginzburg-
Landau method is physically more transparent, since a
superconductor is described by a single function D which
has the meaning of the superconducting order param-
eter. It is also commonly referred to as a condensate
wave function.

The Ginzburg-Landau equations describe the spatial
evolution of D at a length scale of the order of j(T).
They should be completed at the interfaces by corre-
sponding boundary conditions, knowledge of which is
crucial for application of the Ginzburg-Landau theory.

As was first shown by de Gennes (1964, 1966), the
general form of the boundary condition is

n]rD5
1
b

D , (A31)

where n is the unit vector along the direction normal to
the interface and b is the so-called extrapolation length.
The quantity j(T)/b determines the slope of the order
parameter of a superconductor S near the interface, i.e.,
the spatial scale of a penetration of the order parameter
from S into another weaker superconductor or to a nor-
mal metal brought into contact with S . At the contact
with a dielectric or at a free surface of a superconductor,
b5` . For a contact with a normal metal, the parameter
b was calculated by de Gennes with accuracy up to nu-
merical prefactor

b5j~T !/g , (A32)

where g is defined in Eq. (A21). The dependence of b
on the parameters of adjacent S and N metals was later
studied quantitatively by Ivanov et al. (1978), Barone
and Ovchinnikov (1979), and Ivanov et al. (1981).
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4. Critical current in a diffusive point contact: Derivation of
the KO-1 result

Kulik and Omelyanchuk (1975a) calculated the super-
current in a diffusive point contact between two super-
conductors. Here we reproduce this derivation for the
more general case of an asymmetric junction having left
and right electrodes with the magnitudes of pair poten-
tials D1 and D2 , respectively. Due to the dirty-limit con-
ditions and the smallness of the contact size, d!Aj0l ,
the supercurrent can be calculated from the Usadel
equations (A11)–(A14), in which nongradient terms are
neglected.

Let us denote x as the direction normal to the junc-
tion plane and put the origin of the x axis in the middle
of a ScS structure. We have to find the solutions of the
Usadel equations in the constriction region (2d/2,x
,d/2) and match them with the bulk solutions in the
superconducting electrodes at x56d/2. It is convenient
to use F parametrization to solve the problem.

Neglecting nongradient terms in Eq. (A23), we re-
write it in the form

1
v

G2
]

]x
F15A ,

1
v

G2
]

]x
F25B , (A33)

G25
v2

v21F122F22 , (A34)

where A and B are integration constants and

F65
1
2

~F6F* !.

From Eq. (A33) it follows that

B
]

]x
F15A

]

]x
F2. (A35)

This means that F1 can be expressed via F2 as

F15
A

B
F21vC5hF21vC , (A36)

where C is the integration constant. After substitution
of Eq. (A36) into Eq. (A33), we get the differential
equation for F2, and further integration provides

F2

v
5

h

12h2 C1
M

12h2 tan@M~Bx1Q !# , (A37)

F1

v
5

1
12h2 C1

hM

12h2 tan@M~Bx1Q !# , (A38)

where Q is the integration constant, and M
5A(12h2)1C2.

Matching these solutions with the Green’s functions in
the superconducting electrodes at x56d/2, we get the
following equations for the integration constants:

F1,2
2

v
5

h

12h2 C1
M

12h2 tanFMS 6B
dC

2
1Q D G ,

(A39)

F1,2
1

v
5

1
12h2 C1

hM

12h2 tanFMS 6B
dC

2
1Q D G ,

(A40)
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where F1,2
2 and F1,2

1 are taken at the left and right sides
of the constriction, respectively. The solutions of Eqs.
(A39) and (A40) are

h5
F2

12F1
1

~F2
22F1

2!
, (A41)

C5
~F2

2F1
12F1

2F2
1!

v~F2
22F1

2!
, (A42)

Q5
1

2M Farctan
F2

22hF2
1

vM
1arctan

F1
22hF1

1

vM G ,

(A43)

B5
1

dM Farctan
F2

22hF2
1

vM
2arctan

F1
22hF1

1

vM G .

(A44)

Substitution of the solution (A39)–(A44) into the ex-
pression for the supercurrent (A27) leads to the formula

IS~w!5
pT

eRN
(
v

C

M Farctan
F2

22hF2
1

vM

2arctan
F1

22hF1
1

vM G , (A45)

which expresses the supercurrent through the values of
the Usadel functions on both sides of the constriction.
Here RN is the normal resistance of the junction.

The expression for the supercurrent, Eq. (A45), can
be further rewritten in terms of the pair potentials D1
and D2 (Zubkov et al., 1981),

IS~w!5
2pT

eRN
b (

v.0

1
p H arctan

D1d2ab

p

1arctan
D2d1ab

p J , (A46)

where

a5
D22D1

D21D1
, b5

2D1D2

D11D2
cos~w/2!,

p5@b21~a211 !v2#1/2, d5~a211 !sin~w/2!.

In a symmetric junction D15D25D , the expression
for the supercurrent reduces to

IS~w!5
4pT

eRN
(
v.0

F C

A11C2
arctanS C

A11C2
tan

w

2 D G
5

4pT

eRN
(
v.0

D cos~w/2!

d
arctan

D sin~w/2!

d
,

(A47)

with d5AD2 cos2(w/2)1v2, which coincides with the
KO-1 result, Eq. (11).

The remarkable fact is that this result can be repro-
duced by integration of the supercurrent in a ballistic
junction, Eq. (19), over the distribution of transmission
eigenvalues D [see Eq. (18)] according to
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*0
1r(D)I(D)dD , where r(D) is the transmission eigen-

value density given by Eq. (18) and I(D) is given by Eq.
(19). Straightforward integration for a symmetric junc-
tion yields Eq. (A47). The physical reason for the appli-
cability of such a scattering approach is the absence of
dephasing of Andreev bound states in a point contact.
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Götz, M., V. V. Khanin, H. Schulze, A. B. Zorin, J. Niemeyer,
E. Il’ichev, A. Chwala, H. E. Hoenig, and H.-G. Meyer, 2000,
Appl. Phys. Lett. 77, 1354.

Grajcar, M., M. Ebel, E. Il’ichev, R. Kürsten, T. Matsuyama,
and U. Merkt, 2002, Physica C 372-376, 27.

Grajcar, M., R. Hlubina, E. Il’ichev, and H.-G. Meyer, 2002,
Physica C 368, 267.

Gross, R., and B. Mayer, 1991, Physica C 180, 235.
Gubankov, V. N., S. A. Kovtonyuk, V. P. Koshelets, 1985, Zh.

Eksp. Teor. Fiz. 89, 1335 [Sov. Phys. JETP 62, 773 (1985)].
Gudkov, A. L., M. Yu. Kupriyanov, and K. K. Likharev, 1988,

Zh. Eksp. Teor. Fiz. 94, 319 [Sov. Phys. JETP 67, 1478 (1988)].
Gunsenheimer, U., U. Schüssler, and R. Kümmel, 1994, Phys.

Rev. B 49, 6111.
Gunsenheimer, U., and A. D. Zaikin, 1994, Phys. Rev. B 50,

6417.
Gurevich, A., and E. A. Pashitskii, 1998, Phys. Rev. B 57,

13 878.
Gurvitch, M., W. A. Washington, and H. A. Huggins, 1983,

Appl. Phys. Lett. 42, 472.
Haberkorn, W., H. Knauer, and J. Richter, 1978, Phys. Status

Solidi A 47, K161.
Hadfield, R. H., G. Burnell, W. E. Booij, S. J. Lloyd, R. W.

Moseley, and M. G. Blamire, 2001, IEEE Trans. Appl. Super-
cond. 11, 1126.

Hadfield, R. H., G. Burnell, Dae Joon Kang, M. G. Blamire, P.
Dresselhaus, and S. P. Benz, 2001, Supercond. Sci. Technol.
14, 1086.

Hagedorn, D., R. Dolata, F.-I. Buchholz, and J. Niemeyer,
2002, Physica C 372-376, 7.

Hagedorn, D., R. Dolata, R. Popel, F.-I. Buchholz, and J.
Niemeyer, 2001, IEEE Trans. Appl. Supercond. 11, 1134.

Hagedorn, D., M. Khabipov, R. Dolata, F.-I. Buchholz, and J.
Niemeyer, 2003, IEEE Trans. Appl. Supercond. 13, 1096.

Halbritter, J., 1993, Phys. Rev. B 48, 9735.
Halbritter, J., 2002, in Advances in Cryogenic Engineering, AIP

Conference Proceedings No. 614, edited by Balu Baluchan-
dran, Donald Gubser, and K. Ted Hartwig (AIP, Melville,
NY), p. 777.

Hamilton, C. A., S. P. Benz, C. J. Burroughs, and T. E. Harvey,
1997, IEEE Trans. Appl. Supercond. 7, 2472.

Hamilton, C. A., C. J. Burroughs, and R. L. Kauts, 1995, IEEE
Trans. Instrum. Meas. 44, 233.



464 Golubov, Kupriyanov, and Il’ichev: The current-phase relation in Josephson junctions
Haslinger, R., and R. Joynt, 2000, J. Phys.: Condens. Matter 12,
8179.

Heida, J. P., B. J. van Wees, T. M. Klapwijk, and G. Borghs,
1999, Phys. Rev. B 60, 13 135.
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Pöpel, R., D. Hagedorn, F.-I. Buchholz, and J. Niemeyer, 2000,
in Proceedings of EUCAS 1999, the Fourth European Confer-
ence on Applied Superconductivity, edited by X. Obradors, F.
Sandiumenge, and J. Fontcuberta (IOP, Bristol, UK), Vol. 2,
p. 277.
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Walker, M. B., and J. Lüttmer-Strathmann, 1996, Phys. Rev. B

54, 588.
Wallraff, A., T. Duty, A. Lukashenko, and A. V. Ustinov, 2003,

Phys. Rev. Lett. 90, 037003.
Wang, M.-J., H.-W. Cheng, S.-L. Wu, P.-K. Chuan, and C. C.

Chi, 2003, IEEE Trans. Appl. Supercond. 13, 1100.
Wang, Z., A. Saito, A. Kawakami, and H. Hamasaki, 2003,

IEEE Trans. Appl. Supercond. 13, 131.
Wen, J. G., N. Koshizuka, C. Traeholt, H. W. Zandbergen, E.

M. C. M. Reuvekamp, and H. Rogalla, 1995, Physica C 255,
293.

Wender, G., M. Schubert, T. May, L. Fritzsch, H.-G. Meyer,
G. Thummes, Y. Kucukkaplan, L. M. Qiu, J. Kohlmann, J.
Niemeyer, H. Hofmeister, and J. Scheerer, 2003, IEEE Trans.
Appl. Supercond. 13, 915.

Wendin, G., and V. S. Shumeiko, 1996a, Phys. Rev. B 53,
R6006.

Wendin, G., and V. S. Shumeiko, 1996b, Superlattices Micro-
struct. 20, 569.

Werthamer, N. R., 1966, Phys. Rev. 147, 255.
Whiteley, L., M. Schubert, G. Wende, and H. G. Meyer, 1998,

Appl. Phys. Lett. 73, 1583.
Wilhelm, F. K., G. Schön, and A. D. Zaikin, 1998, Phys. Rev.

Lett. 81, 1682.
Wilhelm, F. K., G. Schön, and A. D. Zaikin, 2000, Physica B

280, 418.
Willmott, D., 1972, J. Appl. Phys. 43, 4865.
Xu, Y., A. Matsuda, and M. R. Beasley, 1990, Phys. Rev. B 42,

1492.
Yamamori, H., M. Ishizaki, M. Itoh, and A. Shoji, 2002, Appl.

Phys. Lett. 80, 1415.
Yanson, I. K., V. M. Svistunov, and I. M. Dmitrenko, 1965, Zh.
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