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Inhomogeneous superconductivity arises when the species participating in the pairing phenomenon
have different Fermi surfaces with a large enough separation. In these conditions it could be more
favorable for each of the pairing fermions to stay close to its Fermi surface and, unlike the usual BCS
state, for the Cooper pair to have a nonzero total momentum. For this reason, in this state the gap
varies in space, the ground state is inhomogeneous, and a crystalline structure might be formed. This
situation was considered for the first time by Fulde and Ferrell (1964) and Larkin and Ovchinnikov
(1964), after whom the corresponding state is called the LOFF state. The spontaneous breaking of the
space symmetries in the vacuum state is a characteristic feature of this phase and is associated with the
presence of long-wavelength excitations of zero mass. The situation described here is of interest both
in solid-state and in elementary-particle physics, in particular in quantum chromodynamics at high
density and low temperature. This review presents the theoretical approach to the LOFF state and its
phenomenological applications using the language of the effective field theories.
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I. INTRODUCTION

The story of superconductivity is one of the most fas-
cinating chapters of modern physics. It has had far
reaching influence in many different domains of physics
and has shown a tremendous capacity for cross-
fertilization, to say nothing of its numerous technologi-
cal applications. This review is devoted to a less-well-
known aspect of this story, inhomogeneous
superconductivity. Before giving a more accurate defini-
tion of this phenomenon, let us briefly sketch the histori-
cal path leading to it. This path began with Kamerlingh-
Onnes (1911), who discovered that the electrical
resistance of various metals, e.g., mercury, lead, tin, and
©2004 The American Physical Society
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many others, disappeared when the temperature was
lowered below some critical value Tc . The actual values
of Tc varied with the metal, but they were all of the
order of a few degrees K, or at most of the order of
tenths of a degree K. Subsequently, perfect diamagne-
tism in superconductors was discovered (Meissner and
Ochsenfeld, 1933). This property implied not only that
magnetic fields are excluded from superconductors, but
also that any field originally present in the metal is ex-
pelled from it when the temperature is lowered below its
critical value. These two features were captured in the
equations proposed by the brothers F. London and H.
London (1935), who first realized the quantum character
of the phenomenon.

In the decade starting in 1950, there were two major
theoretical breakthroughs. First, Ginzburg and Landau
(1950) created a theory describing the transition be-
tween the superconducting and the normal phases. It
should be noted that, when it appeared, the Ginzburg-
Landau theory looked rather phenomenological and was
not really appreciated in the western literature. Seven
years later Bardeen, Cooper, and Schrieffer (BCS) cre-
ated the microscopic theory that bears their initials
(Bardeen et al., 1957). Their theory was based on the
fundamental theorem of Cooper (1956), which states
that, for a system of many electrons at small T , any
weak attraction, no matter how small it is, can bind
two electrons together, forming the so-called Cooper
pair. Subsequently Gor’kov (1959) realized that the
Ginzburg-Landau theory was equivalent to the BCS
theory around the critical point, and this result vindi-
cated the Ginzburg-Landau theory as a masterpiece in
physics. Furthermore, Gor’kov proved that the funda-
mental quantities of the two theories, i.e., the BCS pa-
rameter gap D and the Ginzburg-Landau wave function
c were related by a proportionality constant, so that c
could be thought of as the Cooper-pair wave function in
the center-of-mass frame. In a sense, the Ginzburg-
Landau theory was the prototype of the modern effec-
tive theories. In spite of its limitation to the phase tran-
sition, it has a larger field of application, as shown, for
example, by its use in the inhomogeneous cases, when
the gap is not uniform in space.

Another remarkable advance in these years was Abri-
kosov’s theory of type-II superconductors (Abrikosov,
1957), a class of superconductor allowing penetration of
the magnetic field, within certain critical values.

The exciting work in superconductivity inspired re-
lated work in the field of elementary-particle physics.
Two pioneering papers (Nambu and Jona-Lasinio,
1961a, 1961b) introduced the idea of generating
elementary-particle masses through the mechanism of
dynamical symmetry breaking suggested by supercon-
ductivity. This idea was so fruitful that it eventually be-
came a crucial ingredient of the standard model of el-
ementary particles, in which the masses are generated by
the formation of the Higgs condensate much in the same
way as superconductivity originates from the presence of
a gap. Furthermore, the Meissner effect, which is char-
acterized by a penetration length, is the origin, in the
Rev. Mod. Phys., Vol. 76, No. 1, January 2004
elementary-particle-physics language, of the masses of
the gauge-vector bosons. These masses are nothing but
the inverse of the penetration length.

With the advent of quantum chromodynamics (QCD)
it was early realized that at high density, due to the prop-
erty of asymptotic freedom (Gross and Wilczek, 1973;
Politzer, 1973) and to the existence of an attractive chan-
nel in the color interaction, diquark condensates might
be formed (Collins and Perry, 1975; Barrois, 1977; Fraut-
schi, 1978; Bailin and Love, 1984). Since these conden-
sates break the color gauge symmetry, the subject took
the name of color superconductivity. In the last few
years this has become a very active field of research;
these developments are reviewed by Hsu (2000), Alford
(2001), Hong (2001), Rajagopal and Wilczek (2001), and
Nardulli (2002a). It should also be noted that color su-
perconductivity might have implications for astrophysics
because in some compact stars, e.g., pulsars, the baryon
densities necessary for color superconductivity are prob-
ably reached.

Superconductivity in metals was the subject of an-
other breakthrough in the 1980s with the discovery of
high-Tc superconductors. The main subject of this re-
view, however, is a different and separate development
of superconductivity, which took place in 1964. It origi-
nates in high-field superconductors where a strong mag-
netic field, coupled to the spins of the conduction elec-
trons, gives rise to a separation of the Fermi surfaces
corresponding to electrons with opposite spins. If the
separation is too high, the pairing is destroyed and there
is a transition (first-order at small temperature) from the
superconducting state to the normal one. In indepen-
dent papers, Larkin and Ovchinnikov (1964) and Fulde
and Ferrell (1964) showed that a new state could be
formed, close to the transition line. This state, which
hereafter will be called the LOFF1 state or LOFF phase,
has the feature of exhibiting an order parameter, or a
gap, which is not a constant, but has a space variation
whose typical wavelength is of the order of the inverse
of the difference in the Fermi energies of the pairing
electrons. The space modulation of the gap arises be-
cause the electron pair has nonzero total momentum,
and it is a rather peculiar phenomenon that leads to the
possibility of a nonuniform or anisotropic ground state,
breaking translational and rotational symmetries. It has
also been conjectured that the typical inhomogeneous
ground state might have a periodic or, in other words, a
crystalline structure. For this reason, this phenomenon is
also known as inhomogeneous, anisotropic, or crystal-
line superconductivity.

Inhomogeneous superconductivity in metals has been
the object of intense experimental investigation, espe-
cially in the last decade. For reasons to be discussed
below, the experimental research has been aimed at
rather unconventional superconductors, such as heavy-
fermion superconductors, quasi-two-dimensional lay-

1In the literature the LOFF state is also known as the FFLO
state.
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ered organic superconductors, or high-Tc superconduct-
ors. While different from the original LOFF proposal,
these investigations still aim at attaining a superconduct-
ing state characterized by nonzero total momentum of
the Cooper pair and space modulation of its wave func-
tion. At the moment they represent the main possibility
of discovering the LOFF state in condensed-matter
physics.

Quite recently, it has also been realized that at mod-
erate density the mass difference between the strange,
up, and down quarks at the weak equilibrium and/or
color and electric neutrality lead to a difference in the
Fermi momenta, which, in principle, renders the LOFF
state possible in color superconductivity (Alford et al.,
2001b). The same authors have pointed out that this
phenomenon might have some relevance in explaining
the sudden variations (glitches) in the rotation periods
of pulsars.

We should also point out that other possibilities have
been explored in the literature allowing pairing between
quarks with different Fermi surfaces. The first possibil-
ity, the deformed-Fermi-sphere superconductor, was
considered by Muther and Sedrakian (2002). The idea is
that Fermi spheres are deformed by the interactions in
such a way that they intersect, which allows pairing in a
region close to the intersection. This makes the pairing
similar to that in the LOFF phase (although there is no
breaking of translational invariance) but with a large en-
ergy cost due to the deformation. For this reason, one
may suspect that the deformed-Fermi-sphere phase has
a larger free energy than the LOFF phase. The second
possibility is ‘‘breached-pair’’ color superconductivity
(Gubankova et al., 2003; Liu and Wilczek, 2003). When
the Fermi sphere of the heavy quarks is smaller than
that of the light fermions, heavy quarks move from their
own surface to momenta of the order of the Fermi mo-
mentum of the light sphere, thus allowing Cooper-pair
formation. It turns out that this phase is stable depend-
ing on whether one is at a fixed number density or at a
fixed chemical potential. An energy-free comparison
with the LOFF case has not yet been done. These two
possibilities are certainly very interesting. However,
much study is still necessary in order to reach a firm
conclusion about their physical realization. Therefore
we shall not discuss them any further in this review.

The main aim of this review is to present the ideas and
methods of the two main paths to inhomogeneous super-
conductivity, i.e., condensed matter and QCD. Our ap-
proach will be mainly theoretical, and the discussion of
phenomenological consequences will be limited, first be-
cause we lack the necessary skills, and second because
the theory of LOFF superconductivity is currently more
advanced than experiment, and its main phenomeno-
logical implications belong to the future. For this reason,
we shall devote more space to the theoretical founda-
tions of inhomogeneous superconductivity and will
present only a summary of the experimental results. We
shall attempt to show the similarities of different physi-
cal situations and to present as unified a formalism as
possible. This is not only to prove once again the cross-
Rev. Mod. Phys., Vol. 76, No. 1, January 2004
fertilization power of superconductivity, but also to ex-
pose experts in the two fields to results that may be
easily transferrable from one sector to the other. More-
over, by presenting the LOFF phenomenon in a unified
formalism, this review can contribute, we hope, to estab-
lishing a common language. To this end, we discuss the
LOFF state both in solid-state and in QCD physics,
starting with the Nambu-Gor’kov equations. From the
solid-state side they will be derived by the effective
theory of the relevant degrees of freedom at the Fermi
surface, and from the QCD sector by the so-called high-
density effective theory which, as we shall see, leads to
equations of motion that coincide with the Nambu-
Gor’kov equations. In this way we establish a reference
that allows us to switch easily from one field to the other.

The plan of this review is as follows. In Sec. II we
begin by describing the general formalism based on the
Nambu-Gor’kov equations (Gor’kov, 1959; Nambu,
1960). As shown by Polchinski (1993) using the
renormalization-group approach, excitations at the
Fermi surface can be described by an effective-field
theory. Its equations of motion are exactly the Nambu-
Gor’kov equations of ordinary (homogeneous) super-
conductivity. We shall then apply this formalism to fer-
mions with different Fermi surfaces. The difference can
be due to a magnetic field producing an energy splitting
between spin-up and spin-down electrons, or, as in
QCD, to a difference in the chemical potential originat-
ing from weak equilibrium, color and electric neutrality,
or a difference in mass between the pairing fermions.
We shall discuss the circumstances leading, in these
cases, to inhomogeneous superconductivity. The
Ginzburg-Landau expansion can be used, as already
mentioned, for the description of the inhomogeneous
phase. It will be discussed in Sec. III, both at zero tem-
perature and close to the tricritical point. The T50 case
is more interesting for QCD applications, while the
finite-temperature case might be relevant in condensed
matter. In Sec. IV we switch to QCD. We shall first give
a brief introduction to color superconductivity and then
a description of the effective Lagrangian for quarks at
zero temperature close to the Fermi surface. We shall
also discuss more specifically the LOFF case for QCD
with two massless flavors. Since in the LOFF phase both
translational and rotational symmetries are spontane-
ously broken, the Goldstone theorem requires the pres-
ence in the physical spectrum of long-wavelength, gap-
less excitations (phonons). In Sec. V we discuss the
phonon effective Lagrangians for two crystalline struc-
tures, the single plane wave and the cubic structure. We
limit our presentation to the QCD case, though the pres-
ence of these excitations is obviously general. We also
discuss gluon propagation inside these two crystalline
media. In Sec. VI we shall discuss the possible phenom-
enological applications of the LOFF phase. This discus-
sion will go from strongly type-II superconductors to
two-dimensional structures for condensed matter. For
hadronic matter we discuss applications both in nuclear
physics and in QCD, with particular emphasis on the
physics of glitches in pulsars.
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We conclude this introduction by apologizing to the
many authors whose work is not reviewed here in depth.
Space constraints forced us to sacrifice a more detailed
exposition. The extensive bibliography at the end will,
we hope, lead the interested reader to the original
sources.

II. THE GENERAL SETTING

In this section we give a pedagogical introduction to
inhomogeneous superconductivity. We begin by review-
ing the Nambu-Gor’kov approach to homogeneous su-
perconductivity via a field theory with effective spin-1/2
fields describing quasiparticles. The effective-field
theory considers only the relevant degrees of freedom in
the limit of small temperatures and high chemical poten-
tial; they are the modes in a shell around the Fermi sur-
face. The dominant coupling in this limit is the four-
fermion interaction, as first introduced in the BCS
model. The dominance of this coupling can be also
proved in more modern language by using the
renormalization-group approach (Benfatto and Gal-
lavotti, 1990; Polchinski, 1993; Shankar, 1994), which
shows that the BCS coupling is marginal and therefore,
in the absence of relevant couplings, it can dominate
over other irrelevant couplings and produce the phe-
nomenon of superconductivity.

After having derived the Nambu-Gor’kov equations
and the gap equation in Sec. II.A, we discuss the case of
homogeneous superconductors in Sec. II.B, and analyze
its phase diagram. We assume from the very beginning
that the two species participating in the Cooper pairing
have different chemical potentials, as this is the neces-
sary situation for the LOFF state. In Sec. II.C we discuss
anisotropic superconductivity and also show that for ap-
propriate values of the difference in chemical potentials
an anisotropic modulated gap D(r)}exp(iq•r) leads to a
state that is energetically favored in comparison to both
the BCS and the normal nonsuperconducting states.
This was the state first discussed by Fulde and Ferrell
(1964).

A. Nambu-Gor’kov equations

To start with, we consider, at T50, a fermion liquid
formed by two species, u and d , having different Fermi
energies. In electron superconductivity, as in the original
LOFF papers (Fulde and Ferrell, 1964; Larkin and
Ovchinnikov, 1964), the species are the electron spin-up
and spin-down states, but our formalism is general and
will be applied later to the case in which the fermions
forming the Cooper pair are two quarks with different
flavors. In superconducting materials the difference of
chemical potentials can be produced by the presence of
paramagnetic impurities. All these cases give rise to an
effective exchange interaction that can described by
adding the following term to the Hamiltonian:

Hexch52dmc†s3c . (2.1)
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In the case of electron superconductivity, dm is propor-
tional to the magnetic field, and the effect of Eq. (2.1) is
to change the chemical potentials of the two species:

mu5m1dm , md5m2dm . (2.2)

Adopting a BCS interaction, the action can be written

A5A01ABCS , (2.3)

A05E dt
dp

~2p!3 c†~p!@ i] t2E~p!1m1dms3#c~p!,

(2.4)

ABCS5
g

2 E dt )
k51

4
dpk

~2p!3 @c†~p1!c~p4!#

3@c†~p2!c~p3!#3~2p!3d~p11p22p32p4!.

(2.5)

Here and below, unless explicitly stated, c(p) denotes
the three-dimensional (3D) Fourier transform of the
Pauli spinor c(r,t), i.e., c(p)[cs(p,t). For nonrelativ-
istic particles the functional dependence of the energy
would be E(p)5p2/2m , but we prefer to leave it in the
more general form of Eq. (2.4).

The BCS interaction (2.5) can be written

ABCS5Acond1Aint , (2.6)

with

Acond52
g

4 E dt )
k51

4
dpk

~2p!3 @J̃~p3 ,p4!c†~p1!Cc†~p2!

2J̃* ~p1 ,p2!c~p3!Cc~p4!#~2p!3

3d~p11p22p32p4!,

Aint52
g

4 E dt )
k51

4
dpk

~2p!3 @c†~p1!Cc†~p2!

1J̃* ~p1 ,p2!#@c~p3!Cc~p4!2J̃~p3 ,p4!#

3~2p!3d~p11p22p32p4!, (2.7)

where C5is2 and

J̃~p,p8!5^c~p!Cc~p8!& . (2.8)

In the mean-field approximation the interaction term
can be neglected while the gap term Acond is added to
A0 . Note that the spin-0 condensate J̃(p,p8) is simply
related to the condensate wave function

J~r!5^c~r,t !Cc~r,t !& (2.9)

by the formula

J~r!5E dp
~2p!3

dp8

~2p!3 e2i(p1p8)•rJ̃~p,p8!. (2.10)

In general the condensate wave function can depend on
r. Only for homogeneous materials does it not depend
on the space coordinates. Therefore in this case J̃(p,p8)
is proportional to d(p1p8).
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In order to write down the Nambu-Gor’kov equations
we define the Nambu-Gor’kov spinor

x~p!5
1

&
S c~p!

cc~2p! D , (2.11)

where we have introduced the charge-conjugate field

cc5Cc†. (2.12)

We also define
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D~p,2p8!5
g

2 E dp9

~2p!6 J̃~p9,p1p82p9!. (2.13)

The free action can therefore be written as follows:

A5E dt
dp

~2p!3

dp8

~2p!3 x†~p!S21~p,p8!x~p8!, (2.14)

with
S21~p,p8!5~2p!3S ~ i] t2jp1dms3!d~p2p8! 2D~p,p8!

2D* ~p,p8! ~ i] t1jp1dms3!d~p2p8!
D . (2.15)
Here

jp5E~p!2m'vF•~p2pF!, (2.16)

where

vF5
]E~p!

]p U
p5pF

(2.17)

is the Fermi velocity. We have used the fact that we are
considering only degrees of freedom near the Fermi sur-
face, i.e.,

pF2d,p,pF1d , (2.18)

where d is the ultraviolet cutoff, of the order of the De-
bye frequency. In particular in the nonrelativistic case

jp5
p2

2m
2

pF
2

2m
and vF5

pF

m
. (2.19)

S21 in Eq. (2.15) is the 3D Fourier transform of the
inverse propagator. We can make the energy depen-
dence explicit by Fourier-transforming the time variable
as well. In this way, we get for the inverse propagator
written as an operator

S215S ~G0
1!21 2D

2D* 2~G0
2!21D , (2.20)

and

@G0
1#215E2jP1dms31ie sgn E ,

@G0
2#2152E2jP2dms32ie sgn E , (2.21)

with e501 and P the momentum operator. The ie pre-
scription is nothing but the usual one for the Feynman
propagator, that is, forward propagation in time for the
positive-energy solutions and backward propagation for
the negative-energy solutions. As for the Nambu-
Gor’kov propagator S , one gets

S5S G 2F̃

2F G̃
D . (2.22)
S has both spin, s , s8, and a ,b indices, i.e., Sss8
ab .2 The

Nambu-Gor’kov equations in compact form are

S21S51, (2.23)

or, explicitly,

@G0
1#21G1DF51,

2@G0
2#21F1D* G50. (2.24)

Note that we shall use

^ruDur8&5
g

2
J~r!d~r2r8!5D~r!d~r2r8! (2.25)

or

^puDup8&5D~p,p8!, (2.26)

depending on our choice of the coordinate or momen-
tum representation. The formal solution of the system
(2.24) is

F5G0
2D* G,

G5G0
12G0

1DF, (2.27)

so that F satisfies the equation

F5G0
2D* ~G0

12G0
1DF! (2.28)

and is therefore given by

F5
1

D* @G0
1#21@D* #21@G0

2#211D* D
D* . (2.29)

In the configuration space, the Nambu-Gor’kov equa-
tions (2.24) are as follows:

2We note that the presence of the factor 1/& in Eq. (2.11)
implies an extra factor of 2 in the propagator: S(x ,x8)
52 ^T$x(x)x†(x8)%&, as can be seen considering, e.g., the ma-
trix element S11: ^T$c(x)c†(x8)%&5(i] t2j2i¹W 2dms3)21d(x
2x8), with „x[(t ,r)….
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@E2E~2i“ !1m1dms3#G~r,r8,E !1D~r!F~r,r8,E !

5d~r2r8!,
(2.30)

@2E2E~2i“ !1m2dms3#F~r,r8,E !

2D* ~r!G~r,r8,E !50.

The gap equation at T50 is the following consistency
condition:

D* ~r!52i
g

2 E dE

2p
TrF~r,r,E !, (2.31)

where F is given by Eq. (2.29). To derive the gap equa-
tion we observe that

D* ~r!5
g

2
J* ~r!

5
g

2 E dp1

~2p!3

dp2

~2p!3 ei(p11p2)•rJ̃* ~p1 ,p2!

52
g

2 E dE

2p

dp1

~2p!3

dp2

~2p!3 ei(p11p2)•r

3^c†~p1 ,E !cc~p2 ,E !&

51i
g

2 (
s

E dE

2p

dp1

~2p!3

dp2

~2p!3

3ei(p12p2)•rSss
21 ~p2 ,p1!

51i
g

2 (
s

E dE

2p
Sss

21 ~r,r!, (2.32)

which gives Eq. (2.31).
At finite temperature, and introducing the Matsubara

frequencies vn5(2n11)pT , the gap equation reads

D* ~r!5
g

2
T (

n52`

1`

TrF~r,r,E !uE5ivn
. (2.33)

B. Homogeneous superconductors and their phase
diagram

It is useful to specialize these relations to the case of
homogeneous materials. In this case we have

J~r!5const[
2D

g
, (2.34)

J̃~p1 ,p2!5
2D

g

p2

pF
2 d

~2p!3d~p11p2!. (2.35)

Therefore we get

D~p1 ,p2!5Dd~p12p2! (2.36)

and, from Eqs. (2.25) and (2.34),

D~r!5D* ~r!5D . (2.37)

Therefore F(r,r,E) is independent of r and, from Eq.
(2.29), we get
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TrF~r,r,E !522DE d3p

~2p!3

1

~E2dm!22jp
22D2 ,

(2.38)

which gives the gap equation at T50,

D5igDE dE

2p

d3p

~2p!3

1

~E2dm!22jp
22D2 , (2.39)

and at TÞ0,

D5gT (
n52`

1` E d3p

~2p!3

D

~vn1idm!21e~p,D!2 , (2.40)

with

e~p,D!5AD21jp
2. (2.41)

We now use the identity

1
2

@12nu2nd#

5e~p,D!T (
n52`

1` 1

~vn1idm!21e2~p,D!
, (2.42)

where

nu~p!5
1

e(e1dm)/T11
and nd~p!5

1
e(e2dm)/T11

.

(2.43)

The gap equation can be therefore written as

D5
gD

2 E d3p

~2p!3

1
e~p,D!

@12nu~p!2nd~p!# . (2.44)

In the Landau theory of the Fermi liquid, nu and nd are
interpreted as the equilibrium distributions for quasipar-
ticles of types u and d . It should be noted that the last
two terms act as blocking factors, reducing the phase
space and eventually producing D→0 when T reaches a
critical value Tc (see below).

Before considering the solutions of the gap equations
in the general case let us first consider the case dm50;
the corresponding gap is denoted D0 . At T50 there is
no reduction of the phase space, and the gap equation
becomes

15
g

2 E d3p

~2p!3

1
e~p,D0!

, (2.45)

whose solution (assuming d3p5pF
2 dpdV) is

D05
d

sinh
2

gr

. (2.46)

Here

r5
pF

2

p2vF
(2.47)

is the density of states and we have used jp'vF(p
2pF) [see Eqs. (2.16)–(2.19)]. In the weak-coupling
limit Eq. (2.46) gives



269R. Casalbuoni and G. Nardulli: Inhomogeneous superconductivity in condensed matter and QCD
D052de22/rg. (2.48)

Let us now consider the case dmÞ0. By Eq. (2.44) the
gap equation is written as

211
g

2 E d3p

~2p!3

1
e

5
g

2 E d3p

~2p!3

nu1nd

e
. (2.49)

Using the gap equation for the BCS superconductor, we
can write the left-hand side (lhs), in the weak-coupling
limit, as

lhs5
gr

2
ln

D0

D
, (2.50)

where we got rid of the cutoff d by using D0 , the gap at
dm50, and T50. Let us now evaluate the right-hand
side (rhs) at T50. We get

rhsuT505
gr

2 E
0

d djp

e
@u~2e2dm!1u~2e1dm!# .

(2.51)

The gap equation at T50 can therefore be written as
follows:

ln
D0

D
5u~dm2D!arcsinh

Adm22D2

D
, (2.52)

i.e.,

ln
D0

dm1Adm22D2
50. (2.53)

One can immediately see that there are no solutions for
dm.D0 . For dm<D0 one has two solutions:

~a! D5D0 , (2.54)

~b! D252dmD02D0
2. (2.55)

The first arises since for D5D0 , the lhs of Eq. (2.52) is
zero. But since we may have solutions only for dm
<D0 , the u function in Eq. (2.52) also makes the rhs
zero. The existence of this solution can also be seen
from Eq. (2.39). In fact, in this equation one can shift the
integration variable E→E1dm , getting the result that,
in the superconductive phase, the gap D is independent
of dm, i.e., D5D0 .

To compute the free energy we make use of the theo-
rem saying that, for small variations of an external pa-
rameter of the system, all the thermodynamical quanti-
ties vary in the same way (Landau and Lifshitz, 1996).
We apply this to the grand potential to get

]V

]g
5 K ]H

]g L . (2.56)

From the expression for the interaction Hamiltonian
[see Eq. (2.5)], we immediately get (cf. Abrikosov et al.,
1963, Chap. 7)

V52E dg

g2 E dxuD~x!u2. (2.57)

For homogeneous media this gives
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V

V
52E dg

g2 uDu2. (2.58)

Using the result (2.48), we can trade the integration over
the coupling constant g for an integration over D0 , the
BCS gap at dm50, because dD0 /D052dg/rg2. There-
fore the difference in free energy between the supercon-
ductor and the normal state is (we shall use interchange-
ably the symbol V for the grand potential and its density
V/V)

VD2V052
r

2 EDf

D0
D2

dD0

D0
. (2.59)

Here D f is the value of D0 corresponding to D50. D f
50 in case (a), Eq. (2.54), and D f52dm in case (b) Eq.
(2.55); in the latter case we see immediately that VD

2V0.0 because from Eq. (2.55) it follows that D0
,2dm . The free energies for dmÞ0 corresponding to
the cases (a) and (b) above can be computed by substi-
tuting Eq. (2.54) and Eq. (2.55) into Eq. (2.59). Before
doing that, let us derive the density of free energy at T
50 and dmÞ0 in the normal nonsuperconducting state.
Let us start from the very definition of the grand poten-
tial for free spin-1/2 particles:

V0~0,T !522VTE d3p

~2p!3 ln~11e [m2e(p)]/T!. (2.60)

Integrating this expression by parts we get, for T→0,

V0~0 !52
V

12p3 E dVpp3deu~m2e!. (2.61)

From this expression we can easily evaluate the grand
potential for two fermions with different chemical po-
tentials, expanding at the first nontrivial order in dm/m.
The result is

V0~dm!5V0~0 !2
dm2

2
r . (2.62)

Therefore from Eqs. (2.54), (2.55), and (2.59) in cases
(a) and (b) we have

~a! VD~dm!5V0~dm!2
r

4
~22 dm21D0

2! (2.63)

and

~b! VD~dm!5V0~dm!2
r

4
~24dm214dmD02D0

2!.

(2.64)

Comparing Eqs. (2.63) and (2.64) we see that the solu-
tion (a) has lower V. Therefore, for dm,D0 /& , the
BCS superconductive state is stable (Clogston, 1962). At
dm5D0 /& it becomes metastable, as the normal state
has a lower free energy. This transition would be first
order, since the gap does not depend on dm.

The grand potentials for the two cases (a) and (b) and
for the gapless phase, Eq. (2.62), are depicted in Fig. 1,
together with the corresponding gaps.

A different proof is obtained by integrating the gap
equation written in the form
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]V

]D
50. (2.65)

Normalization can be obtained by considering the ho-
mogeneous case with dm50, when, in the weak-coupling
limit, from Eqs. (2.57) and (2.48) one gets

V52
r

4
D0

2 (2.66)

[see Eq. (2.71) below]. In this way one obtains again the
results of Eqs. (2.63) and (2.64).

This analysis shows that at dm5dm15D0 /& one
would pass abruptly from the superconducting (DÞ0)
to the normal (D50) phase. However, as we shall dis-
cuss below, the real ground state for dm.dm1 turns out
to be an inhomogeneous one, where the assumption in
Eq. (2.37) of a uniform gap is not justified.

Let us now consider the phase diagram of a homoge-
neous superconductor for small values of the gap param-
eter, which allows us to perform a Ginzburg-Landau ex-
pansion of the gap equation and grand potential. In
order to perform a complete study, we need to expand
the grand potential up to sixth order in the gap. As a
matter of fact, in the plane (dm ,T) there is a first-order
transition at (dm1,0), and a second-order one at (0,Tc)
(the usual BCS second-order transition). Therefore we
expect that second-order and first-order lines start from
these points and meet at a tricritical point, which by
definition is the meeting point of a second-order and a
first-order transition line. A tricritical point is character-
ized by the simultaneous vanishing of the D2 and D4

coefficients in the grand-potential expansion, which is
why we need to introduce the sixth-order term in the

FIG. 1. Gap and grand potential as functions of dm for the two
solutions (a) and (b) discussed in the text; see Eqs. (2.54),
(2.55), (2.63), and (2.64). Upper solid line, gap for solution (a);
upper dashed line, gap for solution (b). In the lower part we
plot the grand potential: solid line, for solution (a); dashed
line, for solution (b); dashed-dotted line for the normal gapless
state with dmÞ0. All the grand potentials are referred to the
value V0(0) (normal state with dm50)
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grand potential. For stability reasons the corresponding
coefficient should be positive; if not, we should also in-
clude the D8 term.

We consider the grand potential, as measured from
the normal state, near a second-order phase transition:

V5
1
2

aD21
1
4

bD41
1
6

gD6. (2.67)

Minimization gives the gap equation:

aD1bD31gD550. (2.68)

Expanding Eq. (2.40) up to fifth order in D and compar-
ing with the previous equation, we determine the coef-
ficients a, b, and g up to a normalization constant. We
get

D52grT Re (
n50

` E
0

d
djF D

~v̄n
21j2!

2
D3

~v̄n
21j2!2

1
D5

~v̄n
21j2!3 1¯G , (2.69)

with

v̄n5vn1idm5~2n11 !pT1idm . (2.70)

The grand potential can be obtained, up to a normaliza-
tion factor, by integrating the gap equation over D. The
normalization can be obtained by the simple BCS case,
considering the grand potential as obtained, in the weak-
coupling limit, from Eqs. (2.57) and (2.48):

V52
r

4
D0

2. (2.71)

The same result can be obtained by multiplying the gap
equation (2.45) by D0 and integrating the result, pro-
vided that we multiply it by the factor 2/g , which fixes
the normalization. Therefore

a5
2
g S 122grT Re (

n50

` E
0

d dj

~v̄n
21j2!D , (2.72)

b54rT Re (
n50

` E
0

` dj

~v̄n
21j2!2 , (2.73)

g524rT Re (
n50

` E
0

` dj

~v̄n
21j2!3 . (2.74)

In the coefficients b and g we have extended the inte-
gration in j up to infinity since both the sum and the
integral are convergent. To evaluate a is less trivial. We
can proceed in two different ways. We can sum over the
Matsubara frequencies and then integrate over j, or we
can perform the operations in the inverse order. Let us
begin with the former method. We get

a5
2
g H 12

gr

4 E
0

d dj

j F tanhS j2m

2T D1tanhS j1m

2T D G J .

(2.75)

Performing an integration by parts, we can extract the
logarithmic divergence in d. This can be eliminated using
the result (2.46), valid for dm5T50 in the weak-
coupling limit,
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15
gr

2
ln

2d

D0
. (2.76)

We find

a5rF ln
2T

D0
1

1
4 E0

`

dx ln xS 1

cosh2
x1y

2

1
1

cosh2
x2y

2
D G , (2.77)

where

y5
dm

T
. (2.78)

Defining

ln
D0

2Tc~y !
5

1
4 E0

`

dx ln xS 1

cosh2
x1y

2

1
1

cosh2
x2y

2
D ,

(2.79)

we get

a~v ,t !5r ln
t

tc~v/t !
, (2.80)

where

v5
dm

D0
, t5

T

D0
, tc5

Tc

D0
. (2.81)

Therefore the equation

t5tc~v/t ! (2.82)

defines the line of the second-order phase transition.
Performing the calculation in the reverse order brings us
to a more manageable result for tc(y) (Buzdin and
Kachkachi, 1997). In Eq. (2.72), we first integrate over j,
obtaining a divergent series which can be regulated by
cutting the sum at a maximal value of n determined by

vN5d⇒N'
d

2pT
. (2.83)

We obtain

a5
2
g S 12pgrT Re (

n50

N 1
v̄n

D . (2.84)

The sum can be performed in terms of the Euler func-
tion c(z):

Re (
n50

N 1
v̄n

5
1

2pT
ReFcS 3

2
1i

y

2p
1N D

2cS 1
2

1i
y

2p D G
'

1
2pT F ln

d

2pT
2Re cS 1

2
1i

y

2p D G .

(2.85)
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Eliminating the cutoff as we did before, we get

a~v ,t !5rF ln~4pt !1Re cS 1
2

1i
v

2pt D G . (2.86)

By comparing this with Eq. (2.77) we get the following
identity:

Re cS 1
2

1i
y

2p D52ln~2p!1
1
4 E0

`

dx ln xS 1

cosh2
x1y

2

1
1

cosh2
x2y

2
D . (2.87)

Equation (2.79) can be rewritten as

ln
D0

4pTc~y !
5Re cS 1

2
1i

y

2p D . (2.88)

In particular, at dm50, using

cS 1
2 D52ln~4g!, g5eC, C50.5777 . . . , (2.89)

where C is the Euler-Mascheroni constant, we find from
Eq. (2.86)

a~0,T/D0!5r ln
pT

gD0
, (2.90)

reproducing the critical temperature for the BCS case:

Tc5
g

p
D0'0.566 93D0 . (2.91)

The other terms in the expansion of the gap equation
are easily evaluated by integrating over j and summing
over the Matsubara frequencies. We get

b5prT Re (
n50

` 1

v̄n
3

52
r

16p2T2 Re c(2)S 1
2

1i
dm

2pT D , (2.92)

g52
3
4

prT Re (
n50

` 1

v̄n
5

5
3
4

r

768p4T4 Re c(4)S 1
2

1i
dm

2pT D , (2.93)

where

c(n)~z !5
dn

dzn c~z !. (2.94)

Let us now briefly review some results on the grand
potential in the Ginzburg-Landau expansion (2.67). We
shall assume g.0 in order to ensure the stability of the
potential. Minimization leads to the solutions

D50, (2.95)

D25D6
2 5

1
2g

~2b6Ab224ag!. (2.96)
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The discussion of the minima of V depends on the signs
of the parameters a and b. The results are the following:

(1) a.0, b.0. In this case there is a single minimum
given by Eq. (2.95) and the phase is symmetric.

(2) a.0, b,0. Here there are three minima, one
given by Eq. (2.95) and the other two degenerate
minima at

D56D1 . (2.97)

The line along which the three minima become equal is
given by

V~0 !5V~6D1!→b524Aag

3
. (2.98)

Along this line there is a first-order transition with a
discontinuity in the gap given by

D1
2 52

4a

b
52

3
4

b

g
. (2.99)

To the right of the first-order line we have V(0)
,V(6D1). It follows that to the right of this line there
is the symmetric phase, whereas to the left is the broken
phase (see Fig. 2).

(3) a,0, b.0. In this case Eq. (2.95) gives a maxi-
mum, and there are two degenerate minima given by
Eq. (2.97). Since for a.0 the two minima disappear, it
follows that there is a second-order phase transition
along the line a50. This can also be seen by noticing
that going from the broken phase to the symmetric one
we have

lim
a → 0

D1
2 50. (2.100)

(4) a,0, b,0. The minima and the maximum are as
in the previous case.

FIG. 2. First-order and second-order transition lines for the
potential of Eq. (2.67). We show the tricritical point and the
regions corresponding to the symmetric and the broken
phases. Also shown is the behavior of the grand potential in
the various regions. The thin solid line is the locus of the points
b224ag50. In the interior region we have b224ag,0.
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Notice also that the solutions D6 do not exist in the
region b2,4ag . This situation is summarized in Fig. 2,
where we show the behavior of the grand potential in
the different sectors of the plane (a/g,b/g), together with
the transition lines. In the quadrant (a.0,b,0) there
are metastable phases corresponding to nonabsolute
minima. In the sector included between the line b
522Aa/g and the first-order transition line the meta-
stable phase is the broken one, whereas in the region
between the first-order and the a50 lines the meta-
stable phase is the symmetric one.

Using Eqs. (2.86), (2.92), and (2.93), which give the
parameters a, b, and g in terms of the variables v
5dm/D0 and t5T/D0 , we can map the plane a and b
into the plane (dm/D0 ,T/D0). The result is shown in
Fig. 3. From this mapping we can draw several conclu-
sions. First, the region where the previous discussion ap-
plies in terms of the parameters a, b, and g is inside the
triangular part delimited by the lines g50. In fact, as
already stressed, our expansion does not hold outside
this region. This statement can be made quantitative by
noticing that along the first-order transition line the gap
increases when going away from the tricritical point as

D1
2 52

4a

b
5A3a

g
. (2.101)

Notice that the lines b(v ,t)50 and g(v ,t)50 are
straight lines, since these zeros are determined by the
functions c(2) and c(4), which depend only on the ratio
v/t . Calculating the first-order line around the tricritical
point one gets the result plotted as a solid line in Fig. 3.
Since we know that dm5dm15D0 /& is a first-order

FIG. 3. The point solutions of the equation D50 in the plane
(v ,t)5(dm/D0 ,T/D0). The tricritical point at (dm ,T)
'(0.61,0.32)D0 is also shown. The upper part of the curve
(solid line) separates the homogeneous phase from the normal
one. Along the dashed line D50, but this is not the absolute
minimum of the grand potential.
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transition point, the first-order line must end there. In
Fig. 3 we have simply connected the line and the point
with a gray dashed line. To obtain this line, a numerical
evaluation at all orders in D would be required. This is
feasible, but we shall skip it since the results will not be
necessary in the following (see Sarma, 1963). The loca-
tion of the tricritical point is determined by the intersec-
tion of the lines a50 and b50. One finds (Buzdin and
Kachkachi, 1997; Combescot and Mora, 2002)

dm

D0
U

tric

50.608 22,
T

D0
U

tric

50.318 33. (2.102)

The line a50 should cross the temperature axis at the
BCS point. In this way one reobtains the result in Eq.
(2.91) for the BCS critical temperature, as well as the
value for the tricritical temperature,

T tric

TBCS
50.561 49. (2.103)

The results given in this section are valid as long as
other possible condensates are neglected. In fact, we
shall see that close to the first-order transition of the
homogeneous phase the LOFF phase with inhomoge-
neous gap can be formed.

C. Gap equation for anisotropic superconductor: One
plane wave (Fulde-Ferrell state)

Let us now consider again the condensate wave func-
tion J(r) of Eq. (2.9):

J~r!5^vacuc~r,t !Cc~r,t !uvac&. (2.104)

Here uvac& is the ground state. We develop it as follows:

uvac&5 (
N50

`

cNuN&, (2.105)

where N is even, the state uN& contains N/2 quark pairs
of momenta

p151p1q, p252p1q, (2.106)

respectively, for up and down species, and the sum also
implies an integration over the p variables and sum over
spin. Clearly we have

J~r!5 (
N ,M

cN* cM^Nuc~r,t !Cc~r,t !uM&

5(
N

cN* cN12^Nuc~r,t !Cc~r,t !uN12&

5(
N

cN* cN12e2iqN•r^Nuc~0 !Cc~0 !uN12&.

(2.107)

The homogeneous solution discussed in the previous
subsection corresponds to the choice (Cooper pairs)

qN50 ~for all N !, (2.108)
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while qNÞ0 corresponds to the inhomogeneous state.
Let us now assume that the interaction favors the forma-
tion of pairs with nonzero total momentum and suppose
that the values q1 ,q2 , . . . ,qP are possible. Clearly this
hypothesis has to be tested by comparing the values of
the free energies for the normal, homogeneous, and in-
homogeneous states. In any event, under such hypoth-
esis, since the gap is proportional to J(r), we would get

D~r!5 (
m51

P

Dme2iqm•r. (2.109)

We shall call the phase with D(r) given by Eq. (2.109)
inhomogeneous or LOFF superconducting. At the mo-
ment we shall assume the existence of a single q and
therefore

D~r!5De2iq"r. (2.110)

This is the simplest hypothesis, the one considered by
Fulde and Ferrell (1964) (see Fig. 4). It is often called FF
state. The paper by Larkin and Ovchinnikov (1964) ex-
amines the more general case of Eq. (2.109); we shall
come to it below. The assumption of Eq. (2.106) with q
Þ0 produces a shift in energy:

jp6dm5vF•~p2pF!6dm→vF•~p7q2pF!6dm

5jp6 m̄p , (2.111)

with

m̄p5dm2q"vF5dm2qvF cos u , (2.112)

where the upper and lower signs refer to the d and u
quasiparticles, respectively. Using the analogous result
for a hole with field cc(2pW ), one can follow the same
steps leading to Eq. (2.44) from Eq. (2.38); therefore the
gap equation is still given by Eq. (2.44), but now the
quasiparticle occupation numbers are

nu~p!5
1

e(e1m̄p)/T11
and nd~p!5

1

e(e2m̄p)/T11
.

(2.113)

FIG. 4. Kinematics of the Larkin-Ovchinnikov-Fulde-Ferrell
(LOFF) state in the case of one-plane-wave behavior of the
condensate. The Cooper pair has a total momentum 2qÞ0.
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By Eq. (2.113), using the gap equation for a BCS su-
perconductor with gap D0 , one writes the gap equation
for the inhomogeneous superconductor as

gr

2
ln

D0

D
5

g

2 E d3p

~2p!3 @nu~p!1nd~p!# . (2.114)

In contrast to the case of equal chemical potentials
(dm50), when there is a phase space reduction at T
Þ0, now at T50 the blocking factors also reduce the
phase space available for pairing. As a matter of fact the
gap equation at T50 reads

gr

2
ln

D0

D
5

g

2 E d3p

~2p!3

1
e~p,D!

@u~2e2m̄p!1u~2e1m̄p!#

5
gr

2 E
BR

dVp

4p
arcsinh

C~u!

D
, (2.115)

where

C~u!5Aq2vF
2 ~zq2cos u!22D2 (2.116)

and

zq5
dm

qvF
5cos

c0

2
, (2.117)

where c0 is the angle depicted in Fig. 4. The angular
integration is not over the whole Fermi surface, but only
over the region defined by e(p,D),um̄pu, or

q2vF
2 ~zq2cos u!2.D2. (2.118)

Notice that there are no solutions to this inequality for
qvF1dm<D [compare with Eq. (2.52)]. Analyzing this
inequality in terms of cos u we see that there are three
regions, obtained by comparing qvF2dm to 6D . The
regions are characterized by different domains of angu-
lar integration. They are displayed in Table I. As
pointed out by Fulde and Ferrell (1964), the blocking
regions correspond to regions in momentum space
where fermions do not pair. In regions E and S fermions
of one type (for instance spin-up) do not pair, whereas in
region D fermions of both types do not pair. The effect
of the blocking regions is to reduce the phase space
where pairing is possible. The complementary phase
space, where pairing is possible, will therefore be called
the pairing region. It is formed by two rings that, loosely
speaking, are around the two circles of Fig. 4. Since pair-
ing is possible not only on the Fermi surface, but also for
modes just below and above it, each ring has a toroidal
shape. c052 arccos(zq) is the aperture of the cone, with
the vertex at the origin of the spheres, intersecting the
Fermi surfaces along the rings.

TABLE I. The three blocking regions, where we have defined
cos u65zq (16D/dm).

Region Definition Domain of integration in cos u

E qvF2dm<2D (21,11)
S 2D<qvF2dm<1D (21,cos u2)
D qvF2dm>1D (21,cos u2)ø(cos u1 ,11)
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Once the integration domain is fixed, the remaining
integral in cos u is trivial, and the result can be expressed
for the three cases in the following uniform way:

ln
D0

D
5

D

2qvF
FGS qvF1dm

D D1GS qvF2dm

D D G ,

(2.119)

where the function G(x) is defined as follows:

G~x !5x arccosh~x !2Ax221, uxu.1,

G~x !50, uxu,1,

G~x !52G~2x !, x,0. (2.120)

The reduction of the available phase space implies a
reduction of the gap, which leads us to expect in general
smaller gaps than in the homogeneous case. In particu-
lar, we see from Eq. (2.115) that with increasing dm the
effect of the blocking terms increases; eventually a phase
transition to the normal phase occurs when dm ap-
proaches a maximum value dm2 . Therefore the aniso-
tropic superconducting phase can exist only in a window:

dm1,dm,dm2 . (2.121)

We expect that dm1 is near the Chandrasekhar-Clogston
(Chandrasekhar, 1962; Clogston, 1962) limit D0 /& be-
cause Eq. (2.63) shows that near this point the difference
in energy between the isotropic superconducting and the
normal phases is small and we might expect the LOFF
state to correspond to the real ground state. This guess
and the gap equation will be discussed below. For the
moment we determine dm2 . For dm→dm2 the gap D
→0, and in blocking regions E and D the domain of
integration in cos u is (21,1) (the region S disappears in
the limit). Expanding the function G(x) for x→` we
get from Eq. (2.119)

ln
D0

D
5211

1
2

dm

qvF
ln

qvF1dm

qvF2dm
2

1
2

ln
D2

4~q2vF
2 2dm2!

,

(2.122)

which can be rewritten as

a~qvF ,dm!5211
1
2

dm

qvF
ln

qvF1dm

qvF2dm

2
1
2

ln
D0

2

4~q2vF
2 2dm2!

50. (2.123)

In terms of the dimensionless variables

y5
dm

D0
, z5

qvF

D0
, (2.124)

the condition a50 is equivalent to the equation

y1z5
e

2 S z1y

z2y D ~z2y !/2z

. (2.125)

The critical line is plotted in Fig. 5.
Notice that Eq. (2.122) can also be written in the form
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ln
D0

2dm
5

1
2

f0S qvF

dm D
5211

1
2

dm

qvF
ln

qvF1dm

qvF2dm
2

1
2

ln
dm2

~q2vF
2 2dm2!

,

(2.126)

where

f0~x !5E
21

11
du ln~11xu !. (2.127)

We can fix q by minimizing the function a with respect
to it. This is equivalent to minimizing the grand poten-
tial close to the second-order phase transition. The tran-
sition occurs at a value of x satisfying the equation

x5coth x , (2.128)

i.e., at

x5
qvF

dm2
51.1997[x2 . (2.129)

This result can also be obtained from Fig. 5, intersecting
the curve a50 at its maximum value dm2 /D0 with a
straight line passing through the origin.

The value of dm at which the transition occurs is ob-
tained by substituting this value into Eq. (2.126) and
solving for dm2 . One gets in this way

dm250.754D0 . (2.130)

Since dm2.dm1'0.71D0 , there exists a window of val-
ues of dm where LOFF pairing is possible. We shall
prove below, using the Landau-Ginzburg approach, that
the phase transition for the one-plane-wave condensate
at T50 and dm5dm2 is second order.

III. GINZBURG-LANDAU APPROXIMATION

The condensate wave function acts as an order param-
eter characterized by its nonvanishing value in the su-
perconducting phase. At the second-order phase transi-

FIG. 5. The critical line for the LOFF phase at T50 in the
plane (qvF /D0 ,dm/D0). The line determining qvF as a func-
tion of dm2 is also given.
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tion it vanishes and we can apply the general Ginzburg-
Landau approximation (Ginzburg and Landau, 1950).
We begin by performing the Ginzburg-Landau expan-
sion at T50 for a general inhomogeneous gap function
(Larkin and Ovchinnikov, 1964; Bowers and Rajagopal,
2002). From this we shall derive the grand potential
measured with respect to the normal state, and we shall
evaluate it explicitly for several cases. Next, in Sec. III.D
we shall perform an analogous expansion at TÞ0
around the tricritical point that we have shown to exist
in Sec. II.B (Alexander and McTague, 1978; Buzdin and
Kachkachi, 1997; Houzet et al., 1999, 2002; Houzet and
Buzdin, 2000; Combescot and Mora, 2002). In this dis-
cussion, we shall follow Combescot and Mora (2002).
These authors have made a rather general analysis with
the conclusion that in the generic case the favored state
corresponds to a pair of antipodal wave vectors.

A. Gap equation in the Ginzburg-Landau approach

We begin this section by considering the Ginzburg-
Landau expansion of the Nambu-Gor’kov equations.
Let us perform an expansion in D of the propagator F in
Eq. (2.28). This is depicted in Fig. 6. Formally it is writ-
ten

F51G0
2D* G0

12G0
2D* G0

1DG0
2D* G0

1

1G0
2D* G0

1DG0
2D* G0

1DG0
2D* G0

1 . (3.1)

The gap equation has an analogous expansion, schemati-
cally depicted in Fig. 7. It has the form

D* 52i
g

2
TrE dE

2p S E dr1G0
2~r,r1!D* ~r1!G0

1~r1 ,r!

2E )
j51

3

drjG0
2~r,r1!D* ~r1!G0

1~r1 ,r2!D~r2!

3G0
2~r2 ,r3!D* ~r3!G0

1~r3 ,r!

1E )
j51

5

drjG0
2~r,r1!D* ~r1!G0

1~r1 ,r2!D~r2!

3G0
2~r2 ,r3!D* ~r3!G0

1~r3 ,r4!

3D~r4!G0
2~r4 ,r5!D* ~r5!G0

1~r5 ,r!D . (3.2)

FIG. 6. Ginzburg-Landau expansion of the propagator. The
lines represent alternatively G0

2 and G0
1 , see Eq. (3.1). Full

and empty circles represent D* and D, respectively.

FIG. 7. Ginzburg-Landau expansion of the gap equation. The
lines represent alternatively G0

2 and G0
1 ; see Eq. (3.2). Full

and empty circles represent D* and D, respectively.
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Substituting Eq. (2.109) we get

Dn* 5S (
k

P~qk ,qn!Dk* d~qk2qn!

1 (
k ,, ,m

J~qk ,qø ,qm ,qn!Dk* D,Dm* d~qk2qø1qm2qn!

1 (
k ,, ,m ,j ,i

K~qk ,qø ,qmqj ,qi ,qn!Dk* D,Dm* D jD i*

3d~qk2qø1qm2qj1qi2qn! D . (3.3)

Here d(qk2qn) means the Kronecker delta: dn ,k and

P~q1 ,q2!

51
igr

2 E dŵ
4p E

2d

1d
djE

2`

1` dE

2p )
i51

2

f i~E ,dm ,$q%!,

(3.4)

J~q1 ,q2 ,q3 ,q4!

51
igr

2 E dŵ
4p E

2d

1d
djE

2`

1` dE

2p )
i51

4

f i~E ,dm ,$q%!,

(3.5)

K~q1 ,q2 ,q3 ,q4 ,q5 ,q6!

51
igr

2 E dŵ
4p E

2d

1d
djE

2`

1` dE

2p )
i51

6

f i~E ,dm ,$q%!.

(3.6)

We have put w[vFŵ and

f i~E ,dm ,$q%!

5
1

E1ie sgn E2dm1~21 ! i@j22(k51
i ~21 !kw•qk#

.

(3.7)

Moreover, the condition

(
k51

M

~21 !kqk50 (3.8)

holds, with M52,4,6, respectively, for P, J , and K .
For P(q)[P(q,q) one gets

P~q !5
igr

2 E dŵ
4p E

2d

1d
djE

2`

1` dE

2p

3
1

~E1ie sgn E2m̄ !22j2 , (3.9)

where m̄5dm2vFq•ŵ is defined in Eq. (2.112) and is
identical to the function C(u) of Eq. (2.116) with D
50. In performing the energy integration in Eq. (3.9) we
use the fact that there are contributions only for uju
.um̄u. Using the gap equation for the homogeneous
pairing to get rid of the cutoff d we obtain the result
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P~q !511
gr

2 F11
1
2

ln
D0

2

4u~qvF!22dm2u

2
dm

2qvF
lnUqvF1dm

qvF2dmUG . (3.10)

P(q) can be rewritten in terms of the function a intro-
duced in Eq. (2.123) as follows:

a~q !52
12P~q !

gr
. (3.11)

Clearly the gap equation in the Ginzburg-Landau
limit, 15P(q), coincides with Eq. (2.123), which was
obtained in the one-plane-wave hypothesis. The reason
is that, since P depends only on uqu, it assumes the same
value for all the crystalline configurations; therefore P
does not depend on the crystalline structure of the con-
densate, and the transition point we determined in Sec.
II.C is universal.

For the evaluation of J and K we have to specialize to
the different LOFF condensate choices. This will be dis-
cussed below.

B. Grand potential

The grand potential V is given in the Ginzburg-
Landau approximation by

V52
1
g S (

k ,n51

P

@P~qk ,qn!21#Dk* Dndqk2qn

1
1
2 (

k ,, ,m ,n51

P

J~qk ,qø ,qm ,qn!Dk* D,Dm* Dn

3dqk2qø1qm2qn
1

1
3 (

k ,, ,m ,j ,i ,n51

P

K~qk ,qø ,qm ,qj ,qi ,qn!

3Dk* D,Dm* D jD i* Dndqk2qø1qm2qj1qi2qnD , (3.12)

where P is the number of independent plane waves in
the condensate. Let us assume that

Dk5Dk* 5D ~for any k !, (3.13)

so that we can rewrite Eq. (3.12) as

V

r
5P

a

2
D21

b

4
D41

g

6
D6, (3.14)

where a is related to P(q) through Eq. (3.11) and

b52
2

gr (
k ,, ,m ,n51

P

J~qk ,qø ,qm ,qn!dqk2qø1qm2qn
,

(3.15)

g52
2

gr (
k ,, ,m ,j ,i ,n51

P

K~qk ,qø ,qm ,qj ,qi ,qn!

3dqk2qø1qm2qj1qi2qn
. (3.16)
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It follows from the discussion in Sec. II.C that, at dm
5dm2 , a vanishes; moreover, a,0 for dm,dm2 [see
Eq. (3.23) below]. Exactly as we did in Sec. II.B, we
distinguish different cases:

(1) b.0, g.0. In this case D50 is a maximum for V ,
and the minima occur at the points given in Eq.
(2.96), which now reads

D25
2b1Ab224Pag

2g
. (3.17)

Near the transition point one has

D2'2
Pa

b
. (3.18)

A phase transition occurs when a50, i.e., at dm
5dm2 . The transition is second order since the gap
goes continuously to zero at the transition point.

(2) b,0, g.0. Both for a,0 and for a.0, D2 in Eq.
(3.17) is a minimum for V. In the former case it is
the only minimum, as D50 is a maximum; in the
latter case it competes with the solution D50.
Therefore the LOFF phase can persist beyond dm2 ,
the limit for the single-plane-wave LOFF conden-
sate, up to a maximal value dm* . At dm5dm* the
free energy vanishes and there are degenerate
minima at

D50, D25
23b

4g
. (3.19)

The critical point dm* is obtained by Eq. (2.98),
which in the present case can be written as

a~qvF51.1997dm* ,dm* !5
3b2

16Pg
. (3.20)

The phase transition from the crystalline to the nor-
mal phase at dm* is first order.

(3) b,0, g,0. In this case the Ginzburg-Landau ex-
pansion (3.14) is inadequate, since V is not bounded
from below, and another term O(D8) is needed.

In the case b,0, g.0 we can select the most favored
structure by computing the free energy at a fixed value
of dm . We choose dm5dm2 where the Fulde-Ferrell
state has a second-order phase transition and a50.
There one has

D252
b

g
,

V

r
5

b3

12g2 . (3.21)

C. Crystalline structures

For any crystalline structure the function a in the first
term of the Ginzburg-Landau expansion is given by
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a5212
1
2

ln
D0

2

4u~qvF!22dm2u
1

dm

2qvF
lnU qvF1dm

qvF2dm U
52ln

D0

2dm
1

1
2

f0S qvF

dm D , (3.22)

where we have used Eqs. (2.126), (3.10), and (3.11); a
vanishes for dm5dm2 , which characterizes the second-
order transition point at T50, see Eq. (2.123) or Eq.
(3.18). Therefore we can write

a52
h

dm2
, (3.23)

where

h5dm22dm , (3.24)

and we have expanded a around dm2 and used the prop-
erty of a minimum of f0(x) at dm5dm2 . We observe
that, for dm,dm2 , a is negative; therefore the transition
at T50 is always second order if b.0.

As for the other terms, we can use the results of Ap-
pendix A to get the first terms of the Ginzburg-Landau
expansion for any crystal structure. The exception is the
one-plane-wave case, in which the free energy can be
computed to any desired order.

1. One plane wave

Using the results of Appendix A for the Fulde-Ferrel
one-plane-wave condensate we get

FIG. 8. Rhombic and hexagonal configurations for the vectors
qi . The vectors are assumed to be of the same length q and
such that q12q21q32q450 for the rhombus and q12q21q3
2q41q52q650 for the hexagon. The vectors need not be all
in the same plane.

FIG. 9. The two rhombic structures corresponding to the inte-
grals J0 and Jc of Eqs. (3.30). The indices a and b refer to the
vectors qa and qb , respectively.
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J5J0[2
gr

8
1

~qvF!22dm2 ,

K5K0[2
gr

64
~qvF!213dm2

@~qvF!22dm2#3 . (3.25)

From Eq. (3.25) we get (x25qvF /dm251.1997)

b5
1

4dm2
2~x2

221 !
51

0.569

dm2
2 ,

g5
31x2

2

8dm2
4~x2

221 !3 51
1.637

dm2
4 . (3.26)

Since b.0, the g term is ineffective near the transition
point and Eq. (3.18) gives

D254h~x2
221 !dm2'1.757hdm2 . (3.27)

We can get V from Eq. (3.14) with P51 and using Eqs.
(3.23) and (3.26). The result is

V52
a2r

4b
520.439r~dm2dm2!2. (3.28)

The same result could also be obtained using Eqs. (2.59)
and (2.62).

2. Generic crystals

In the general case PÞ1, and the evaluation of J and
K is more complicated. First, we introduce Feynman pa-
rametrizations, then the energy, longitudinal momenta,
and angles integrations are performed along the lines
sketched in Appendix A, which are based mainly on
Bowers and Rajagopal (2002). Next, we have to perform
the integration over the Feynman parameters. To do this
it is useful to draw two pictures: a rhombus with lines
formed by the four vectors appearing in J(qk ,qø ,qm ,qn)
implementing the condition qk2qø1qm2qn50, and a
hexagon with lines formed by the six vectors appearing
in K(qk ,qø ,qm ,qj ,qi ,qn) that satisfy qk2qø1qm2qj1qi
2qn50, see Fig. 8. Note that the rhombus and the hexa-
gon need not be in a plane. The simplest example is
provided by two plane waves.

3. Two plane waves

In this case P52; let the two vectors be qa , qb , form-
ing an angle c; a simpler case is provided by an antipo-
dal pair, qa52qb5q and c5p , with

D~r!52D cos 2q•r. (3.29)

To get b from Eq. (A5) we note that the integral J as-
sumes two different values:

J05J~qa ,qa ,qa ,qa! and Jc5J~qa ,qa ,qb ,qb!, (3.30)

corresponding to Fig. 9. J0 has already been computed
[see Eq. (3.25)]; on the other hand,
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Jc52
gr

2dm2 Re

arctan
x2Acos c21

A22x2
2~11cos c

2x2A~cos c21 !@22x2
2~11cos c!#

,

(3.31)
which for c5p gives

Jp52
gr

8dm2
2 . (3.32)

Using rotation and parity symmetry of the integrals one
gets

b~c!52
2

gr
~2J014Jc!. (3.33)

The result for b(c) as a function of c is reported in Fig.
10. In the case of the antipodal pair (q,2q), when c
5180°, one gets

b52
2

gr
~2J014Jp!5

1

dm2
2 S 1

2~x2
221 !

21 D
51

0.138

dm2
2 . (3.34)

For K we have three possibilities (see Fig. 11):

K05K~qa ,qa ,qa ,qa ,qa ,qa!,

K1~c!5K~qa ,qa ,qa ,qa ,qb ,qb!,

K2~c!5K~qa ,qa ,qb ,qb ,qb ,qb!. (3.35)

Therefore we have

g~c!52
2

gr
@2K0112K1~c!16K2~c!# . (3.36)

K0 has been already computed in Eq. (3.25), whereas K1
and K2 can be evaluated using the results given in Ap-
pendix A. g(c) is plotted in Fig. 12. In the case of the
antipodal pair, when c5180°, the result for g is shown
in Table II.

Figures 10 and 12 show a divergence at

c5c0567.07°52 arccos
dm2

qvF
. (3.37)

Here c0 is the opening angle depicted in Fig. 4. In this

FIG. 10. b̄5b dm2
2 as a function of the opening angle c be-

tween the two plane-wave vectors qa and qb ; c5c0567.07° is
the angle defining the LOFF ring; b̄(c0)521.138.
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FIG. 11. The three hexagonal
structures corresponding to the
integrals K0 , K1 , and K2 of
Eqs. (3.35). The indices a and b
refer to the vectors qa and qb ,
respectively.
case, unlike the one-plane-wave situation, we have two
different rings for each Fermi surface. For c.c0 the
two rings do not intersect, at c5c0 they are contiguous,
while for c,c0 they overlap. The structure with c,c0
is energetically disfavored because, when b is large and
positive the free energy would be smaller according to
Eq. (3.18). According to the discussion of Bowers and
Rajagopal (2002), this behavior seems universal, i.e.,
structures with overlapping rings are energetically disfa-
vored in comparison with structures without overlaps.
We shall use this result in Sec. V.D.

For c0,c,132°, b is negative. Therefore according
to the discussion above we are in the presence of a
second-order phase transition (g is always positive as
can be seen from Fig. 12). As is clear from Eq. (3.21),
the most favorable case from the energetic point of view
occurs when g assumes its smallest value and ubu its larg-
est, i.e., at c5c0 when the rings are tangent. The values
for this case are reported in Table II.

For comparison, at c590° we have dm2
2b(90°)

520.491 and dm2
4g(90°)51.032; the first-order transi-

tion takes place at dm* 50.771D0 , which is only margin-
ally larger than dm2 , and the dimensionless free energy
V̄5V/(rD0

2) assumes the value V̄520.005 at dm

FIG. 12. ḡ5g dm2
4 as a function of the opening angle c be-

tween the two plane-wave vectors qa and qb ; c5c0567.07° is
the angle defining the LOFF ring; ḡ(c0)50.249.
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5dm2 , which is larger than the value obtained for c
5c0 (see Table II).

4. Other structures

One could continue in the same way by considering
other structures. An extensive analysis was performed
by Bowers and Rajagopal (2002), who considered 23 dif-
ferent crystalline structures. We refer the interested
reader to Table I in this paper, as well as to Appendix A,
where the technical aspects of integration over the Feyn-
man parameters of the K integrals for more complicated
structures are worked out. From our previous discussion
we know that the most energetically favored crystals are
those which present a first-order phase transition be-
tween the LOFF and the normal phase. Among the
regular structures, with g.0, examined by Bowers and
Rajagopal (2002) the favored one seems to be the octa-
hedron (P56), with dm* 53.625D0 . Special attention,
however, should be given to the face-centered cube; we
have reported the values of its parameters, as computed
by Bowers and Rajagopal (2002), in Table II. We note
that g,0 for this structure. The condensate in this case
is given by

D~r!5 (
k51

8

Dk~r!5 (
k51

8

D exp~2iqn̂k"r!, (3.38)

where n̂k are the eight unit vectors defining the vertices
of the cube:

n̂15
1

)
~11,11,11 !, n̂25

1

)
~11,21,11 !,

n̂35
1

)
~21,21,11 !, n̂45

1

)
~21,11,11 !,

n̂55
1

)
~111 ,1,21 !, n̂65

1

)
~11,21,21 !,
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TABLE II. Candidate crystal structures with P plane waves. b̄5dm2
2b , ḡ5dm2

4g , V̄5V/(rD0), with r5pF
2 /(p2vF), is the (di-

mensionless) minimum free energy computed at dm5dm2 , obtained from Eq. (3.21). The phase transition (first order for b̄,0 and
ḡ.0, second order for b̄.0 and ḡ.0) occurs at dm* , given by Eq. (3.20) for first-order transitions.

Structure P b̄ ḡ V̄min
dm* /D0

Fulde-Ferrell state 1 0.569 1.637 0 0.754
Antipodal plane waves 2 0.138 1.952 0 0.754

Two plane waves (c5c0) 2 21.138 0.249 21.126 1.229
Face-centered cube 8 2110.757 2459.242
n̂75
1

)
~21,21,21 !, n̂85

1

)
~21,11,21 !. (3.39)

Strictly speaking, since both b and g are negative, noth-
ing can be said about the cube and one should compute
the eighth order in the Ginzburg-Landau expansion,
given by dD8/8; the transition would be first order if d
.0. However, Bowers and Rajagopal (2002) argue that,
given the large value of g, this structure would necessar-
ily dominate. Reasonable numerical examples discussed
by the authors confirm this guess.

D. The LOFF phase around the tricritical point; Larkin-
Ovchinnikov subspace

The LOFF phase can be studied analytically around
the tricritical point that we considered in Sec. II.B (Buz-
din and Kachkachi, 1997; Combescot and Mora, 2002).
Here we shall follow the treatment of Combescot and
Mora (2002). The tricritical point is the place where one
expects the LOFF transition line to start. Close to it one
also expects the total pair momentum to vanish. There-
fore one can perform simultaneous expansions in the
gap parameter and in the total momentum. Starting
from the expressions given in Sec. III [see Eqs. (3.4),
(3.5), and (3.6)] and proceeding as in Sec. II.B we find

V5(
q

ã~q!uDqu21
1
2 (

qi

b̃~qi!Dq1
Dq2

* Dq3
Dq4

*

1
1
3 (

qi

g̃~qi!Dq1
Dq2

* Dq3
Dq4

* Dq5
Dq6

* . (3.40)

Here we have used momentum conservation in the
fourth- and sixth-order terms,

q11q35q21q4 , q11q31q55q21q41q6 , (3.41)

with

ã~q!5a1
2
3

bQ21
8
15

gQ4,

b̃~qi!5b1
4
9

g~Q1
21Q2

21Q3
21Q4

21Q1•Q31Q2•Q4!,

g̃~qi!5g , (3.42)

where a, b, and g were defined in Eqs. (2.86), (2.92), and
(2.93), and
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Q5qvF . (3.43)

In Appendix B we show, as an example, how ã can be
obtained from the expansion of P(q) around Q50. In
order to get a coherent expansion we have to consider
the modulus of the pair total momentum of the same
order as the gap. In fact, as we shall see, the optimal
choice for Q turns out to be of order D. Correspondingly
we have to expand the coefficient of the quadratic term
in the gap up to the fourth order in the momentum and
the fourth-order term in the gap up to the second order
in the momentum. In the form given in Eq. (3.40) we
can easily apply the general analysis used around the
tricritical point in Sec. II.B. In particular, for vanishing
total momenta of the pairs, we are back to the case of
the homogeneous superconductor studied in Sec. II.B.

It is interesting to write the expression for the grand
potential in configuration space because it shows that
around the critical point the minimization problem boils
down to solving a differential equation, whereas at a
generic point the Ginzburg-Landau equations are inte-
gral ones. By Fourier transformation we get from Eq.
(3.40)

V5E d3rFauD(r)u21
2
3

bu¹W D(r)u21
8
15

gu¹W 2D(r)u2G
1E d3rFbuD(r)u41

2
9

g[2~¹W uD(r)u2#2

13@¹W D2~r!#@¹W D* 2~r!#G1
1
8

gE d3ruD~r!u6.

(3.44)

We recall from Sec. II.B [see Eq. (2.98)] that the first-
order phase transition is given by

bfirst524Aag

3
, (3.45)

with a discontinuity in the gap given by

D2524
a

b
52

3
4

b

g
(3.46)

[see Eq. (2.99)]. Let us now consider the possibility of a
second-order transition in the general LOFF case. Only
the quadratic term in the gap is necessary for the discus-
sion, and we have to look at its zero, given by ã50.
Since we are considering only the quadratic term we can
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choose an optimal value for Q2 by minimizing this term
with respect to uQu. We find

Q252
5
8

b

g
, (3.47)

requiring b,0. The corresponding value for a turns out
to be

a5
5
24

b2

g
, (3.48)

or

bsecond52A24
5

ag . (3.49)

The LOFF second-order transition line is higher than
the first-order transition line of the homogeneous case,
since bsecond.bfirst [see Fig. 13, which shows the relevant
lines in the plane (dm/D0 ,T/D0)]. Therefore the second-
order transition to the LOFF case overcomes the first-
order transition to the homogeneous symmetric phase,
as can be checked by evaluating the grand potential for
the LOFF state along the first-order transition line.

The situation considered above corresponds to the
physics of the problem only when the second-order tran-
sition is a true minimum of the grand potential. This is
not necessarily the case, as we shall explore below.

The second-order term in the grand potential requires
that all of the vectors Q have the same length along the
second-order transition line. It is natural to consider the
Larkin-Ovchinnikov subspace spanned by plane waves
corresponding to momenta with the same length Q0 :

D~r!5 (
uQu5Q0

Dqe2iq•r. (3.50)

Larkin and Ovchinnikov (1964) restricted their consid-
erations to periodic solutions, but this is not strictly nec-
essary, although the solution found by Combescot and

FIG. 13. Transition lines in the plane (dm/D0 ,T/D0): dashed
line, the first-order transition line from the homogeneous bro-
ken phase to the symmetric phase; solid line, the second-order
transition from the LOFF phase to the symmetric one. The
lines start from the tricritical point and end when the Landau-
Ginzburg expansion is no longer valid.
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Mora (2002) is indeed periodic. We shall see that within
this subspace the usual LOFF transition (the one corre-
sponding to a single plane wave) is not a stable one.
Moreover, there is a first-order transition that over-
comes the second-order line. In order that the LOFF
line, characterized by Eqs. (3.47) and (3.48), be a true
second-order transition, the coefficient of the fourth-
order term should be positive. However, in the actual
case, the mixed terms in the scalar products of the vec-
tors Q could change this sign. Combescot and Mora
(2002) studied the mixed terms by defining the following
quantity:

2bQ0
2(

qi

Dq1
Dq2

* Dq3
Dq4

*

5(
qi

Dq1
Dq2

* Dq3
Dq4

* ~Q1•Q31Q2•Q4!. (3.51)

Clearly

21<b<1, (3.52)

where b51 is reached in the case of a single plane wave.
With this definition and for the optimal choice of Q0
[see Eq. (3.47)], for the coefficients appearing in the ex-
pression of the grand potential [see Eqs. (3.40) and
(3.42)] we get

ã5a2
5
24

b2

g
, b̃52

1
9

b~5b11 !, g̃5g . (3.53)

Therefore, for any order parameter such that

b,2
1
5

, (3.54)

it follows that

b̃,0 (3.55)

and the LOFF line becomes unstable (we recall that
close to the second-order line b,0). In fact, since ã

50 along this line and b̃,0, a small order parameter is
sufficient to make V negative. In other words, we gain
by increasing the order parameter as long as the sixth-
order term does not grow too much. But then we can
make V50 (equal to its value in the symmetric phase)
by increasing a. Therefore we have a new transition line
in the plane (a,b) [which is the same in the plane
(dm/D0 ,T/D0)] to the right of the LOFF line. Combes-
cot and Mora (2002) also shows that necessarily

b>2
1
3

. (3.56)

Equality is reached for any real order parameter D̄(r).
In order to get a better feeling for the parameter b it is
useful to consider the quantity.

2cQ0
2(

qi

Dq1
Dq2

* Dq3
Dq4

* 5(
qi

~Q12Q̄2!2Dq1
Dq2

* Dq3
Dq4

* .

(3.57)

Expanding the right-hand side of this equation and using
Q1•Q25Q3•Q4 we find



282 R. Casalbuoni and G. Nardulli: Inhomogeneous superconductivity in condensed matter and QCD
c512b . (3.58)

Minimizing b is equivalent to maximizing c . To this end,
it is convenient to have opposite Q1 and Q2 because
then (Q12Q2)2 reaches its maximum value equal to
4Q0

2. In this case we have

Dq* 5D2q . (3.59)

This is equivalent to requiring that the order parameter
be real in configuration space. Of course, it is not neces-
sary that the amplitudes of the different pairs of plane
waves be equal.

To proceed further we can introduce a measure of the
size of the order parameter,

1
p3 E d3ruD~r!u25(

qi

Dq1
Dq2

* [N2D̄2 (3.60)

and

1
p3 E d3ruD~r!u45(

qi

Dq1
Dq2

* Dq3
Dq4

* [N4D̄4, (3.61)

1
p3 E d3ruD~r!u65(

qi

Dq1
Dq2

* Dq3
Dq4

* Dq5
Dq6

* [N6D̄6.

(3.62)

In the case of a single plane wave we get

N25N45N651. (3.63)

For a real gap the set of the vectors Qi is made of N/2
pairs. If all the plane waves have the same amplitude
one can show (Combescot and Mora, 2002) that the
quantities N2 , N4 , and N6 assume the values

N252N , N453N~N21 !,

N655N~3N229N18 !. (3.64)

With these notations the grand potential becomes

V5N2S a1
2
3

bQ0
21

8
15

gQ0
4D D̄2

1
1
2

N4S b1
8
3

agQ0
2D D̄41

1
3

N6gD̄6, (3.65)

where

a5
b12

3
,

1
3

<a<1. (3.66)

Minimizing this expression with respect to Q0 we find

Q0
252

5
8

b

g
2

5
4

a
N4

N2
D̄2. (3.67)

Therefore a nonzero solution for Q0 is obtained if

D̄2<2
1

2a

b

g

N2

N4
5D̄max

2 . (3.68)

The corresponding expression for V becomes
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V5aN2S 12
5
24

b2

ag D D̄21
1
2

bN4S 12
5
3

a D D̄4

1
1
3

gN6S 12
5a2

2

N4
2

N2N6
D D̄6. (3.69)

In order to have a transition from the symmetric phase
we must allow V/D̄2 to become negative. The zero of V
is reached for

a5
5
24

b2

g
1

3
16

b2

g

S 12
5a

3 D 2

S N2N6

N4
2 2

5
2

a2D . (3.70)

The value of D̄ corresponding to the zero of V is given
by

D̄252
3
2

b

g

N2

N4

S 12
5a

3 D
S N2N6

N4
2 2

5
2

a2D , (3.71)

showing that this is a first-order transition. We have
shown that it is convenient to have b as small as possible
and that the minimum is reached for b521/3 or a
55/9. In correspondence with this value we have D̄2

>0 and

a.
5
24

b2

g
. (3.72)

We get

a5
5
24

b2

g
1

1
972

b2

g

1
N2N6

N4
2 2

125
162

. (3.73)

We see that it is convenient to take N2N6 /N4
2 as small as

possible. However, notice that

N2N6

N4
>1 (3.74)

as follows from the Schwartz inequality

F E d3r D̄2~r!GF E d3rD̄6~r!G
F E d3rD̄4~r!G 2 >1. (3.75)

Let us look, for example, at the case of pairs of plane
waves with opposite q but without any further con-
straints. In this case we get

N2N6

N4
2 5

5
9

3N229N18

~N21 !2 . (3.76)

This expression has a minimum at N52 (here N is
even), where Eq. (3.76) equals 10/9 and then it increases
monotonically with N up to the value 15/9. Note that for
crystalline structures the situation could be different.
For instance, in the case of a cube, the value of N4 is not
the one given by Eq. (3.64), i.e., not 168, but rather 216.
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However, Combescot and Mora (2002) showed that this
expression indeed gets its minimum value for N52. This
result is obtained assuming that the plane waves form a
generic set of antipodal vectors, which means that the
only way to satisfy momentum conservation is through
the cancellation of each momentum with the opposite
one in the same pair. This excludes special configura-
tions in which other arrangements of vectors could give
a zero result. Combescot and Mora (2002) argue that
this result should hold in general, but a complete proof
is lacking.

The value obtained for a for the two-plane-wave case
is

a5
b2

g S 5
24

1
1

330D5
b2

g S 5
36

1331023D . (3.77)

In this case we have three lines, the first-order line just
found, the second-order LOFF transition for a
55b2/(24g), and the first-order transition to the homo-
geneous broken phase for a53b2/(16g). The distance
of these two last lines is given by

b2

g S 3
16

2
5
24D52

1
48

b2

g
522.131022

b2

g
. (3.78)

We know that these two lines stay close together up to
zero temperature. It turns out that the same is true for
the new first-order line as was shown by Matsuo et al.
(1998). These results are illustrated in Fig. 13. We notice
that whereas in the expansion around the tricritical
point the favored state seems to correspond to a pair of
plane waves, with a first-order transition between the
LOFF and the normal state, at zero temperature one has
a second-order phase transition. Therefore the first-
order transition line must change into a second-order
line at low temperatures. Matsuo et al. (1998) showed
that this happens at a temperature T/TBCS50.075.

It is also interesting to see how things change when
the spatial dimensions are varied. In fact it was found by
Burkhardt and Rainer (1994) that the first-order transi-
tion found previously is second order in two spatial di-
mensions. This result was confirmed by Buzdin and Tu-
gushev (1983), Buzdin and Polonski (1987), Machida
and Nakanishi (1989), and Buzdin and Kachkachi
(1997), who showed that the transition is second order in
one spatial dimension and can be given an exact solution
in terms of the Jacobi elliptic functions. This solution
has the property that along the second-order transition
line it reduces to the two-plane-wave case considered
here. It is very simple to obtain the dependence on the
number of dimensions. In fact, the only place where the
dimensions enter is in the angular integration as, for in-
stance, in Eq. (B2). In general, this is an average over
the D-dimensional sphere and we need the following
equations for the terms of order Q2 and Q4, respec-
tively:

E dŵ
SD

ŵiŵj5
d ij

D
,
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E dŵ
SD

ŵiŵjŵkŵl5
1

D~D12 !
~d ijdkl1d ikd jl1d ild jk!,

(3.79)

where SD is the surface of the sphere with unitary radius
in D dimensions,

SD5
2pD/2

G~D/2!
. (3.80)

Therefore terms proportional to Q2 are multiplied by
3/D and those proportional to Q4 by 15/D(D12). We
get

ã~q!5a1
2
D
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gQ4,

b̃~qi!5b1
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21Q3
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g̃~qi!5g . (3.81)

Proceeding as before, we find the grand potential evalu-
ated at the optimal value of Q2,
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N2N6
D D̄6. (3.82)

We see from here that the critical dimension for the
transition to change from first to second order is at the
zero of the second term, that is,

D5
2a

12a
, (3.83)

and for a55/9, D52.5. This means that we have a first-
order transition for D.2.5 and a second-order one for
D,2.5 (remember that b,0). The location of the tran-
sition is at a55/9:

a5
D12
8D

b2

g
1

3
20

b2

g

~2D25 !2

D~7D210!
. (3.84)

The value of the gap along the transition line is given by

D252
6
5

b

g

2D25
7D210

. (3.85)

We see that D2.0 for D.2.5.
Combescot and Mora (2002) also considered the pos-

sibility that solutions around the tricritical point did not
belong to the LOFF subspace. In fact, the antipodal so-
lution does not satisfy the Euler-Lagrange equation ob-
tained from Eq. (3.44), due to the nonlinear terms. If
these are small it is reasonable to look for solutions
close to D cos(q•r). This assumption simplifies the prob-
lem because the antipodal solution is essentially one di-
mensional, characterized by the direction of q. Combe-
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scot and Mora (2002) found that the corrections at
D cos(q•r), expressed in terms of higher harmonics, are
indeed very small. Of course this is only a consistency
argument, but it is an indication that the choice of the
LOFF subspace is a good approximation to the full
problem.

To conclude this section, let us say that in our opinion
the status of the LOFF phase is not yet settled. Up to
now we have considered the Ginzburg-Landau expan-
sion both at T50 and at the tricritical point. The results
in the three-dimensional case can be summarized as fol-
lows:

• Zero-temperature point: Larkin and Ovchinnikov
(1964) found that the favored phase has a gap with a
phase modulation cos(q•r) corresponding to a struc-
ture with two antipodal vectors. This phase and the
normal one are separated by a second-order transition
line. However, Bowers and Rajagopal (2002) carried
out a rather complete study of the possible crystalline
structures and argue that the most favorable structure
would be the face-centered cube. The transition be-
tween the corresponding phase and the normal one
should be first order.

• Tricritical point: Buzdin and Kachkachi (1997) studied
the nonuniform phase in different dimensions with the
result that the space modulation related to a single
wave vector [i.e., exp(2iq•r)] is always unfavored.
These authors also found that the solution with two
antipodal wave vectors is the preferred one. In one
and two space dimensions, the transition to the nor-
mal state is second order, whereas it is first order in
three space dimensions. Analogous results were found
by Houzet et al. (1999; see also Agterberg and Yang,
2001), who extended the study to space modulations
such as cos(qx)1cos(qy) or cos(qx)1cos(qy)
1cos(qz). These authors argue that there could be
various transition lines at temperatures lower than the
tricritical point. Finally, as thoroughly discussed in this
section, Combescot and Mora (2002) confirmed the
results of Buzdin and Kachkachi (1997).

There have also been numerical investigations of the
full phase space. In particular, Burkhardt and Rainer
(1994) proved that in the two-dimensional case (layered
superconductors) the phase transition from the normal
phase to that characterized by two antipodal vectors is
second order. The second-order transition line from the
phase with a single plane wave to the normal phase was
studied by Sarma (1963) and Saint-James et al. (1969).
The two-dimensional case for type-II superconductors
was studied by Shimahara (1998a), who considered
states corresponding to single wave vectors and antipo-
dal pairs together with configurations corresponding to
triangular, square, and hexagonal states. It was found
that, depending on the temperature, all these states may
play a role. Finally, Matsuo et al. (1998), as already men-
tioned, performed a numerical analysis based on the use
of quasiclassical Green’s functions. They found that in
three dimensions the transition line between the normal
Rev. Mod. Phys., Vol. 76, No. 1, January 2004
phase and the antipodal vectors phase becomes first or-
der at the tricritical point and becomes second order at
T50.0075TBCS . The two-dimensional case will be dis-
cussed again in Sec. VI.D.

In conclusion, the question of the preferred nonuni-
form state cannot yet be considered resolved. The three-
dimensional case offers a good example. We have seen
that there are strong indications that the favored state
around the tricritical point is the one corresponding to
two antipodal vectors. This being the case, the natural
question is: how does the transition line extend down to
zero temperature? If at T50 the preferred state were
the antipodal pair, then a further tricritical point in the
plane (dm ,T) would arise. Recall that the transition is
first order at the tricritical point and second order at T
50. However, if the conjecture of Bowers and Rajago-
pal (2002) is correct, the cubic phase would emerge in
the path going to T50. A possibility is that one goes
from one structure to another in analogy to what was
suggested by Shimahara (1998a) for the two-
dimensional case. The other logical possibility is that the
Combescot and Mora result at the tricritical point might
be evaded by an exceptional arrangement of the wave
vectors as, for instance, in the case of the face-centered
cube. Therefore we think that more theoretical work is
necessary in order to fill in these gaps in our understand-
ing of the nonuniform superconducting phase.

IV. SUPERCONDUCTIVITY IN QUANTUM
CHROMODYNAMICS

Color superconductivity is an old subject (Collins and
Perry, 1975; Barrois, 1977; Frautschi, 1978; Bailin and
Love, 1984) that has recently become one of the most
fascinating research fields in quantum chromodynamics
(QCD).3 It offers a clue to the behavior of strong inter-
actions at high baryonic densities, an issue of paramount
importance both for the understanding of heavy-ion col-
lisions and for the physics of compact stars. Color super-
conductivity arises because, for sufficiently high baryon
chemical potential m and low temperature, the color in-
teraction favors the formation of a quark-quark conden-
sate in the color-antisymmetric channel 3̄. In the
asymptotic regime it is also possible to understand the
structure of the condensates. In fact, consider the matrix
element

^0uc ia
a c jb

b u0&, (4.1)

where a ,b51,2,3 are color indices, a ,b51,2 are spin

3The literature of these developments includes Alford et al.
(1998, 2000), Rapp et al. (1998), Agasian et al. (1999), Alford,
Berges, and Rajagopal (1999), Alford, Rajagopal, and Wilczek
(1999), Carter and Diakonov (1999), Pisarski and Rischke
(1999a, 2000a), Schafer and Wilczek (1999a, 1999b, 1999c,
1999d), Hong et al. (2000), and Shuster and Son (2000); for
reviews, see Hsu (2000), Alford (2001), Hong (2001), and Ra-
jagopal and Wilczek (2001).
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indices, and i ,j51,.. . ,N are flavor indices. Its color, spin,
and flavor structure are completely fixed by the follow-
ing considerations:

• Antisymmetry in color indices (a,b) in order to have
attraction.

• Antisymmetry in spin indices (a ,b) in order to get a
spin-zero condensate. The isotropic structure of the
condensate is favored since a larger portion of the
phase space around the Fermi surface is available.

• Antisymmetry in flavor indices (i ,j), which, given the
structure in color and spin, the Pauli principles re-
quires.

Since the quark and spin momenta in the pair are oppo-
site, it follows that the left-handed quarks can pair only
with left-handed quarks and right-handed with right-
handed. In the case of three flavors, the favored conden-
sate is

^0uc iL
a c jL

b u0&52^0uc iR
a c jR

b u0&5D (
C51

3

eabCe ijC .

(4.2)

This gives rise to the so-called color-flavor-locked (CFL)
phase (Alford, Rajagopal, and Wilczek, 1999; Schafer
and Wilczek, 1999a). However, at moderate densities
other less attractive channels could play a role (Alford
et al., 2003). The reason for the name is that simulta-
neous transformations in color and flavor leave the con-
densate invariant. In fact, the symmetry-breaking pat-
tern turns out to be

SU~3 !c ^ SU~3 !L ^ SU~3 !R ^ U~1 !B

→SU~3 !c1L1R ^ Z2 ,

where SU(3)c1L1R is the diagonal subgroup of the
three SU(3) groups. Both the chiral group and the color
symmetry are broken, but a diagonal SU(3) subgroup
remains unbroken. The Z2 group arises from the invari-
ance of the condensate when the quark fields are multi-
plied by 21. We have 17 broken generators: since there
is a broken gauge group, eight of these correspond to
eight longitudinal degrees of the gluons, while because
the gauge bosons acquire a mass, there are nine Nambu-
Goldstone bosons organized in an octet associated with
the breaking of the flavor group and a singlet associated
with the breaking of the baryonic number. The effective
theory describing the Nambu-Goldstone bosons for the
CFL model was studied by Casalbuoni and Gatto
(1999).

This is the typical situation when the chemical poten-
tial is much larger than the quark masses mu , md , and
ms (in these considerations one should discuss density-
dependent masses). However, one can ask what happens
when the chemical potential is decreased. At intermedi-
ate densities asymptotic freedom is no longer supported,
but all the model calculations show that one still has a
sizable color condensation. In particular, if the chemical
potential m is much less than the strange-quark mass,
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one expects the strange quark to decouple, and the cor-
responding condensate should be

^0uc iL
a c jL

b u0&5Deab3e ij , (4.3)

since due to the antisymmetry in color the condensate
must necessarily choose a direction in color space. No-
tice that now the symmetry-breaking pattern is com-
pletely different from the three-flavor case. In fact, we
have

SU~3 !c ^ SU~2 !L ^ SU~2 !R ^ U~1 !B

→SU~2 !c ^ SU~2 !L ^ SU~2 !R ^ U~1 ! ^ Z2 .

The chiral group remains unbroken, while the original
color symmetry group is broken to SU(2)c , with gen-
erators TA corresponding to the generators T1,T2,T3 of
SU(3)c . As a consequence, three gluons remain mass-
less, whereas the remaining five acquire a mass. Even
though the original U(1)B is broken, there is an unbro-
ken global symmetry that plays the role of U(1)B . As
for U(1)A , this axial symmetry is broken by anomalies,
so that in principle there is no Goldstone boson associ-
ated with its being broken by the condensate. However,
at high densities, explicit axial symmetry breaking is
weak, and therefore there is a light would-be Goldstone
boson associated with the breaking of the axial U(1)A .
One can construct an effective-field theory to describe
the emergence of the unbroken subgroup SU(2)c and
the low-energy excitations, much in the same way as one
builds up a chiral effective Lagrangian with effective
fields at zero density. For the two-flavor case, such a
theory was developed by Casalbuoni et al. (2000) and
Rischke et al. (2001).

It is natural to ask what happens in the intermediate
region of m. It turns out that the interesting case is for
m'Ms

2/D . To understand this point, let us consider the
case of two fermions, one massive, m15Ms , and the
other one massless, both at the same chemical potential
m. The Fermi momenta are of course different:

pF1
5Am22Ms

2, pF2
5m . (4.4)

The grand potential for the two unpaired fermions is

Vunpair.52E
0

pF1 d3p

~2p!3 ~Ap21Ms
22m!

12E
0

pF2 d3p

~2p!3 ~ up u2m!. (4.5)

For the two fermions to pair they have to reach some
common momentum pcomm

F , and the corresponding
grand potential is

Vpair.52E
0

pcomm
F d3p

~2p!3 ~Ap21Ms
22m!

12E
0

pcomm
F d3p

~2p!3 ~ upW u2m!2
m2D2

4p2 , (4.6)

where the last term is the energy necessary for the con-
densation of a fermion pair [see Eq. (2.71)]. The com-
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mon momentum pcomm
F can be determined by minimiz-

ing Vpair. with respect to pcomm
F . The result (expanding in

Ms) is

pcomm
F 5m2

Ms
2

4m
. (4.7)

It is now easy to evaluate the difference Vunpair.2Vpair. at
the order Ms

4 , with the result

Vpair.2Vunpair.'
1

16p2 ~Ms
424D2m2!. (4.8)

We see that in order to have condensation the condition

m.
Ms

2

2D
(4.9)

must be realized. The problem of one massless and one
massive flavor has been studied by Kundu and Rajago-
pal (2002). One can simulate this situation by letting the
two quarks both be massless, but with two different
chemical potentials, which is equivalent to having two
different Fermi spheres. The big advantage here is that
one can use the LOFF analysis discussed in Sec. II.C

Color superconductivity due to the nonvanishing of
the condensates of Eqs. (4.1) or (4.3) is the result of a
mechanism analogous to the formation of an electron
Cooper pair in a BCS superconductor, and, as in BCS
superconductivity, the only relevant fermion degrees of
freedom are those near the Fermi surface. Therefore a
two-dimensional effective-field theory has been devel-
oped to describe it. We shall briefly review it below, but
our main interest is to delineate another development of
color superconductivity, i.e., the presence of a LOFF su-
perconducting phase. In this case, the condensation is
generated by the attractive color interaction in the anti-
triplet channel. This phase of QCD has been mainly
studied at low temperatures (see, for example, Alford
et al., 2001a, 2001b; Bowers et al., 2001; Leibovich et al.,
2001; Rajagopal, 2001; Bowers and Rajagopal, 2002).
Like the color-flavor-locked and two-flavor supercon-
ducting phases, the QCD LOFF phase can be studied by
effective-field theory.4 This description is useful for de-
riving the effective Lagrangian for the Goldstone bosons
associated with the breaking of space symmetries, i.e.,
phonons. It is based on an analogy with the heavy-quark
effective-field theory and is called the high-density
effective-field theory. To describe these developments
we organize this section as follows. In Sec. IV.A we give
an outline of the high-density effective-field theory. We
specialize the formalism to the color-flavor-locked phase
in Sec. IV.B and to the two-color superconducting phase
in Sec. IV.C. The final subsections are devoted to the
LOFF phase in QCD. In Sec. IV.D, after a general in-
troduction to the subject, we consider a Nambu-Jona-
Lasinio coupling for a QCD liquid formed by quarks

4See Casalbuoni, Gatto, Mannerelli, and Nardulli (2001,
2002a); Casalbuoni, Fabiano, et al. (2002); Casalbuoni, Gatto,
and Nardulli (2002); Nardulli (2002b).
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with two flavors. Given the similarities with the BCS
four-fermion interaction arising from the electron-
phonon interactions in metals, we can apply the same
formalism discussed in previous sections. In the present
case, however, the two species we consider are quarks of
different flavors, up and down, with different chemical
potentials mu , md . We limit our analysis to the Fulde-
Ferrell one-plane-wave state. However, the results of
Sec. III.C are also valid for the QCD LOFF state. In
particular, the guess on the favored structure at T50
discussed by Bowers and Rajagopal (2002) and reviewed
in Sec. III.C.4 should point to the cubic structure as the
most favored LOFF crystal. In Sec. IV.E, we discuss the
differences induced by considering the one-gluon inter-
action instead of the effective four-fermion interaction.
LOFF superconductivity in QCD can be induced not
only by a difference in the quark chemical potential but
also by mass differences among the quarks. This situa-
tion is discussed in Sec. IV.F, which shows the role the
strange quark mass can play in favoring the LOFF
phase.

A. High-density effective-field theory

At very high baryonic chemical potential m and very
low temperature (T→0), it is useful to adopt an
effective-field description of QCD known as high-
density effective-field theory (see Beane et al., 2000;
Hong, 2000a, 2000b; Casalbuoni, Gatto, and Nardulli,
2001; and, for reviews, Casalbuoni, 2001; Nardulli,
2002a). Let us consider the fermion field

c~x !5E d4p

~2p!4 e2ip•xc~p !. (4.10)

Since the relevant degrees of freedom are those near the
Fermi surface, we decompose the fermion momentum as

pm5mvm1,m, (4.11)

where vm5(0,v), v being the Fermi velocity (for mass-
less fermions uvu51), and ,m is a residual momentum.
We also use Vm5(1,v), Ṽm5(1,2v).

We now introduce the velocity-dependent, positive-
energy cv and negative-energy Cv , left-handed fields via
the decomposition

c~x !5E dv
4p

e2imv•x@cv~x !1Cv~x !# . (4.12)

Here

cv~x !5eimv•xP1c~x !5E
u,u,d

d4,

~2p!4 e2i,•xP1c~, !

(4.13)

and

Cv~x !5eimv•xP2c~x !5E
u,u,d

d4,

~2p!4 e2i,•xP2c~, !.

(4.14)

P6 are projectors that for massless quarks are defined
by
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P6[P6~v!5
1
2

~16a•v!. (4.15)

The extension to massive quarks is discussed by Casal-
buoni, De Fazio, et al. (2002) and Casalbuoni, Gatto,
et al. (2003). The cutoff d satisfies d!m while still being
much larger than the energy gap.

Using the identities

c̄vg
mcv5Vmc̄vg

0cv , C̄vg
mCv5ṼmC̄vg

0Cv ,

c̄vg
mCv5c̄vg'

mCv , C̄vg
mcv5C̄vg'

mcv , (4.16)

and substituting them into the Dirac part of the QCD
Lagrangian, we obtain

LD5E dv
4p

@cv
†iV•Dcv1Cv

†~2m1iṼ•D !Cv

1~ c̄viD” 'Cv1H.c.!# . (4.17)

Here D” '5Dmg'
m and Dm is the covariant derivative,

Dm5]m1igAm. We note that here all of the quark fields
are evaluated at the same Fermi velocity. Off-diagonal
terms are subleading due to the Riemann-Lebesgue
lemma, as they are canceled by the rapid oscillations of
the exponential factor in the m→` limit (the Fermi ve-
locity superselection rule). A similar behavior occurs in
QCD in the mQ→` limit, when one uses the heavy-
quark effective-field theory (see Isgur and Wise, 1989,
1990; Eichten and Hill, 1990; Georgi, 1990, and for re-
views, Neubert, 1994; Casalbuoni et al., 1997; Manohar
and Wise, 2000).

We can get rid of the negative-energy solutions by
integrating out the Cv fields in the generating functional.
At tree level this corresponds to solving the equations of
motion,

iV•Dcv50 (4.18)

and

Cv52
i

2m1iṼ•D
g0D” 'cv , (4.19)

which shows the decoupling of Cv in the m→` limit. In
the resulting effective-field theory for cv , only the en-
ergy and the momentum parallel to the Fermi velocity
are relevant, and the effective-field theory is two dimen-
sional.

It is useful to introduce two separate fields;

c6[c6v , (4.20)

so that the average over the Fermi velocities is defined
as

(
v

5E dv
8p

. (4.21)

The extra factor of 1/2 occurs here because, after the
introduction of the field with opposite velocity c2 , one
doubles the degrees of freedom, which implies that the
integration is only over half of a solid angle.
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In conclusion, if L0 is the free-quark Lagrangian and
L1 represents the coupling of quarks to one gluon, the
high-density effective Lagrangian can be written as

LD5L01L11L21~L→R !, (4.22)

where

L05(
v

@c1
† iV•]c11c2

† iṼ•]c2# , (4.23)

L15ig(
v

@c1
† iV•Ac11c2

† iṼ•Ac2# , (4.24)

and

L252(
v

PmnFc1
† 1

2m1iṼ•D
DmDnc1

1c2
† 1

2m1iV•D
DmDnc2G . (4.25)

L2 is a nonlocal Lagrangian arising when one integrates
over the Cv degrees of freedom in the functional inte-
gration. It contains couplings of two quarks to any num-
ber of gluons and gives contribution to the gluon Meiss-
ner mass. We have put

Pmn5gmn2
1
2

@VmṼn1VnṼm# . (4.26)

This construction is valid for any theory describing
massless fermions at high density, provided one excludes
degrees of freedom far from the Fermi surface.

B. Color-flavor-locked phase

Even though we shall consider the LOFF phase for
only two flavors, for completeness we present the high-
density effective-field theory for the three-flavor color-
flavor-locked phase as well. In the CFL phase the sym-
metry breaking is induced by the condensates

^c ia
LTCc jb

L &52^c ia
RTCc jb

R &5
D

2
eabIe ijI , (4.27)

where cL ,R are Weyl fermions and C5is2 . Equation
(4.27) corresponds to the invariant coupling (c[cL):

2
D

2 (
I51,3

cTCeIceI2~L→R !1H.c., (4.28)

and (eI)ab5eIab . Neglecting the negative energy com-
ponents, for the Dirac fermions c6 we introduce the
compact notation

x5
1

&
S c1

Cc2*
D (4.29)

in a way analogous to Eq. (2.11). We also use a different
basis for quark fields:

c6v,ia5 (
A51

9
~lA! ia

&
c6

A . (4.30)

The CFL fermionic Lagrangian therefore has the form
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LD5L01L11LD5(
W

(
A ,B51

9

xA†S iTr@TAV•DTB# 2DAB

2D iTr@T Ṽ•D* T #
D xB1~L→R !, (4.31)
v AB A B
where

DAB5DTr@eITA
T eITB# (4.32)

and

TA5
lA

&
. (4.33)

Here l95l05A 2
3 31. We use the identity

eIg
TeI5g2Tr g , (4.34)

where g is any 333 matrix and obtain

DAB5DAdAB , (4.35)

where

D15¯5D85D (4.36)

and

D9522D . (4.37)

The CFL free-fermionic Lagrangian therefore assumes
the form

L01LD5(
v

(
A51

9

xA†S iV•] 2DA

2DA iṼ•]
D xA1~L→R !.

(4.38)

Clearly the equations of motion following from this La-
grangian are of the same type as the Nambu-Gor’kov
equations [see Eq. (2.15)]. For applications of high-
density effective-field theory to the CFL phase we refer
the reader to Casalbuoni, Gatto, and Nardulli (2001).
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C. Two-flavor superconducting phase

For the two-flavor case, which encompasses both the
superconducting model and the existing calculation in
the LOFF phase, we follow a similar approach. The sym-
metry breaking is induced by the condensates

^c ia
LTCc jb

L &52^c ia
RTCc jb

R &5
D

2
eab3e ij3 , (4.39)

and the invariant coupling is (c[cL)

LD52
D

2
cTCece2~L→R !1H.c., (4.40)

where

e5is2 . (4.41)

We use a different basis for the fermion fields by writing
the positive-energy effective fields c6v,ia as follows:

c6v,ia5 (
A50

5
~ l̃A! ia

&
c6

A . (4.42)

The l̃A matrices are defined in terms of the usual l
matrices as

l̃05
1

)
l81A2

3
l0 , l̃A5lA ~A51,2,3 !,

l̃45
l42i5

&
, l̃55

l62i7

&
. (4.43)

We also define ẽ5il2 . After the introduction, analo-
gously to Eq. (4.29) for the fields xA, the two-flavor su-
perconducting fermionic Lagrangian assumes the form
LD5L01L11LD5(
v

(
A ,B50

5

xA†S iTr@T̃AV•DT̃B# 2DAB

2DAB iTr@T̃AṼ•D* T̃B#
D xB1~L→R !. (4.44)
Here

DAB5
D

2
Tr@ ẽl̃A

T ẽ l̃B# ~A ,B50, . . . 3 !,

DAB50 ~A ,B54,5!, (4.45)

and

T̃A5
l̃A

&
~A50, . . . ,5 !. (4.46)

Analogously to Eq. (4.34), we use the identity
ẽgTẽ5g2Tr g ; (4.47)

we obtain

DAB5DAdAB , (4.48)

where DA is defined as

DA5~1D ,2D ,2D ,2D ,0,0 !. (4.49)

Therefore the effective Lagrangian for free quarks in
the two-flavor superconducting model can be written
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L01LD5(
v

(
A50

5

xA†S iV•] 2DA

2DA iṼ•]
D xA1~L→R !.

(4.50)

D. LOFF phase in QCD

We shall assume here that in the most interesting phe-
nomenological applications, i.e., in compact stars (see
Sec. VI.G), there is a significant difference between the
Fermi momenta of different flavors. Since this produces
a difference in the densities, the BCS phase may be dis-
rupted (Alford, Berges, and Rajagopal, 1999; Schafer
and Wilczek, 1999c), and a phase analogous to the
LOFF phase might arise. The case of a LOFF phase in
QCD was also discussed by Son and Stephanov (2001)
and Splittorff et al. (2001) in the context of quark matter
at large isospin density. Differences in the Fermi mo-
menta in these examples arise both from differences be-
tween chemical potentials, due to the weak equilibrium,
and from mass differences between the strange and the
up and down quarks. A complete study requires that we
take both effects into account. This has been done by
Kundu and Rajagopal (2002). We shall discuss this paper
below. Here we shall consider a simpler case, in which
all the quarks are massless but have different chemical
potentials (Alford et al., 2001b). To further simplify the
problem, we shall restrict ourselves to the case of two
massless quarks with chemical potentials mu and md
given by

mu5m1dm , md5m2dm . (4.51)

These equations are the same as Eq. (2.2), but now up
and down refer to flavor.

Everything goes according to the discussion of Secs.
II.B and II.C, except that now the density of the gapped
states at the Fermi surface is multiplied by a factor of 4,
which comes from the two colors and the two flavors. In
fact, the condensate has the form

^c i
ac j

b&}eab3e ij , (4.52)

where a ,b51,2,3 and i ,j51,2 are, respectively, color
and flavor indices. Other differences are in the value of
the Fermi velocity, which is vF51, since we are dealing
with massless fermions, and in the Fermi momentum,
which is given by pF5m . As a consequence, the density
of states is now

r54
m2

p2 . (4.53)

It follows that the first-order transition from the homo-
geneous phase to the normal one, in the weak-coupling
limit and using Eq. (2.63), is given by

VD~dm!2V0~dm!5
r

4
~2dm22D0

2!

5
m2

p2 ~2dm22D0
2!

50. (4.54)
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Applying the results obtained in Sec. II.C to color super-
conductivity requires some care. For instance, although
only two colors are gapped, in order to describe the
mixed phase we need a proper treatment of the two
ungapped quarks (Bedaque, 2002). Another situation
that can be present in QCD but not in condensed matter
is the case of equal chemical potentials with different
Fermi momenta due to unequal masses. This is discussed
by Alford, Berges, and Rajagopal (1990) and Schafer
and Wilczek (1999c). However, in the realistic case, dif-
ferent chemical potentials must be considered.

We shall also describe the LOFF phase using the for-
malism of fields close to the Fermi surface, although in
the present case the corrections to leading order are ex-
pected to be larger since we are not considering
asymptotic values of the chemical potential. This formal-
ism is very close to the Nambu-Gor’kov formalism de-
veloped in Sec. II. We consider a four-fermion interac-
tion modeled on a one-gluon exchange, that is,

LI52
3
8

Gc̄gmlacc̄gmlac , (4.55)

where la are Gell-Mann matrices. We then introduce
the fields c i1

a through the procedure outlined in Sec.
IV.C. We perform the same transformation,
exp(2imv•x), for both flavors. For simplicity, in the rest
of this section we shall denote the fields c i1

a by c i
a .

Separating the left-handed and the right-handed modes,
the previous interaction can be written as

LI52
G

2
~3dd

adb
g2db

add
g!e ȧ ċebdca ȧ

†i cg ċ
†j c ib

b c jd
d

[Vbd
agca

†icg
†jc i

bc j
d , (4.56)

where, in the last expression, the sum over the spin in-
dices ȧ , ċ ,b ,d is understood and

Vbd
ag52

G

2
~3dd

adb
g2db

add
g!. (4.57)

In obtaining this result we have used the identities

(
a51

8

~la!ab~la!dg5
2
3

~3dagdbd2dabdgd! (4.58)

and

~sm! ȧb~ s̃m!dċ52e ȧ ċebd . (4.59)

Here

sm5~1,s!, s̃m5~1,2s!, (4.60)

with s the Pauli matrices. As in Sec. II, we divide LI into
two pieces,
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Lcond5Vbd
ag~ca

†icg
†j^c i

bc j
d&1c i

bc j
d^ca

†icg
†j&!1~L→R !

(4.61)

and

Lint5Vbd
ag~ca

†icg
†j2^ca

†icg
†j&!~c i

bc j
d2^c i

bc j
d&!

1~L→R !. (4.62)

The first piece can be written as

Lcond52
1
2

eab3e ij~c i
ac j

bDe2iq"r1c.c.!1~L→R !,

(4.63)

where we have defined
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GSe2iq•r52
1
2

eab3e ij^ca
i cb

j & (4.64)

and

D5GGS . (4.65)

The quadratic part of the Lagrangian Lcond in terms of
the Nambu-Gor’kov fields can be written as

L cond
(2) 5

1
2 (

a ,i
x i

†a~S21!aj
bixb

j , (4.66)

where, in momentum space,
~S21!aj
bi5S dab@d ijV•,1dm~s3! ijd~,2,8!# 2eab3e ijDd~,2,812q !

2eab3e ijDd~,2,822q ! dab@d ijṼ•,1dm~s3! ijd~,2,8!#
D , (4.67)
and qm5(0,q). Using this expression and performing
the same derivation as in Sec. II, we find the gap equa-
tion

D52iGDE dv

4p

d,0

2p
d, i

m2

2p2

3Tr
1

@V•~,1q !1dms3#@Ṽ•~,2q !1dms3#2D2
.

(4.68)

Comparing this result with Eq. (2.39), one notices a fac-
tor of 2 coming from the trace on the color; the remain-
ing trace is on the flavor indices where the matrix s3
acts. Performing the trace and making explicit the ie
prescriptions for the energy integration, we find

D5i
Gr

2
DE dv

4p E
2d

1d
dj

dE

2p

3
1

~E2m̄1ie sgn E !22j22D2 , (4.69)

where r54m2/p2 is the relevant density at the Fermi
surface and we have defined E5,0 and j5, i to empha-
size the similarity with the original LOFF equation (see
Sec. II.C). Moreover,

m̄5dm2v•q. (4.70)

Performing the integration over the energy we get

15
Gr

2 E dv
4p E

0

d dj

Aj21D2
u~e2um̄u!. (4.71)

Since

u~e2um̄u!512u~2e2m̄ !2u~2e1m̄ !, (4.72)

we get exactly the LOFF gap equation [compare with
Eq. (2.115)], except for the different definition of the
density of states.
We have already shown that in the present case there
is a first-order transition in dm, between the homogenous
state (which from now on will be referred to as the BCS
state) and the normal state. Furthermore, from Sec. II.C
we know that there is a second-order transition between
the LOFF state and the normal one. These results are
also valid in the present case with the only change in the
density of gapped states at the Fermi surface, which, as
already stressed, is now a factor of 4 larger than the one
for electrons. We recall from that analysis that around
the second-order critical point dm250.754D0 (with D0
the BCS gap) we have [see Eq. (3.27)]

DLOFF5A1.757dm2~dm22dm!

51.15D0Adm22dm

D0
. (4.73)

As for the grand potential, we have from Eq. (2.63)

VBCS2Vnormal5
1
4

r~2dm22D0
2!, (4.74)

and from Eq. (3.28)

VLOFF2Vnormal520.439r~dm2dm2!2. (4.75)

These results are summarized in Fig. 14, where we plot
the grand potentials for the different phases.

Since the interval (dm1 ,dm2) is rather narrow, there is
practically no difference between the values of dm cor-
responding to the BCS-normal transition (dm1
5D0 /&) and the value corresponding to the BCS-
LOFF transition. This can be seen easily in Figs. 14 and
15. The figures were obtained by using the previous
equations in the Ginzburg-Landau expansion around
dm2 , but they are a very good approximation to the
curves obtained numerically (Takada and Izuyama,
1969; Alford et al., 2000)

All the discussion here has used the weak-coupling
limit. For a more correct treatment see Alford et al.
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(2000) where the results from the numerical integration
of the gap equation are given. In particular, we want to
stress the results obtained by these authors for the size
of the window. If dm1 and dm2 are evaluated for a gen-
eral coupling, and at the same time one takes into ac-
count corrections from the chemical potential in the
measure of integration, the windows get smaller and
smaller for increasing BCS gap D0 . The corrections in
the chemical potential arise from the momentum inte-
gration, which is made on a shell of height 2d but with an
integration measure given by p2dpdV , rather than
pF

2 dpdV as is usually done in the treatment of the BCS
gap in the weak-coupling limit. The results are illus-
trated in Fig. 16, where the behavior of the critical
points vs the BCS gap is shown. The curves are plotted
for a range of values of the cutoff L ranging from 0.8 to

FIG. 14. Differences between the grand potential for the BCS
and the normal state and that between the LOFF and the nor-
mal state, plotted vs dm. The grand potentials are normalized
to rD0

2. The inset shows the intersection of the two curves
close to dm1 : solid lines, the LOFF case; dotted lines, the BCS
case.

FIG. 15. The condensates of the BCS and LOFF phases vs dm.
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1.6 GeV. The cutoff dependence is not very strong, in
particular, for dm2 ; moreover, the window closes for D0
between 80 and 100 MeV, according to the chosen value
of L.

Alford et al. (2000) also discuss the presence of a vec-
tor condensate in the QCD LOFF phase. The reason
why this condensate can be formed in QCD but not in
condensed matter is the following: Both in the BCS and
in the LOFF phases the coupling is between fermions of
the same helicity. In the BCS phase the fermions also
have opposite momentum, giving rise to a J50 pair. On
the other hand, in the LOFF phase momenta are not
aligned exactly. Therefore a small component of J51
condensate may arise. A spin-1 state is symmetric in the
spin indices, and therefore Fermi statistics forbids it for
electron pairing. On the other hand, in QCD with two
flavors one can form a state that is antisymmetric in
color and symmetric in flavor, and the Pauli principle is
satisfied. Therefore the structure of the vector conden-
sate is (Alford et al., 2000)

^~s1! ijeab3c iL
a s0ic jL

b &522i
qi

uqu
GVe2iq•r. (4.76)

The ratio GV /GS is practically constant within the LOFF
window, varying between 0.121 at dm1 and 0.133 at dm2 .
However, this condensate does not contribute to the
grand potential in the present case (Alford et al., 2000);
therefore it does not change the original LOFF results.
The situation is different if, instead of using the Nambu-
Jona-Lasino interaction (4.55), one uses the interaction

LI52
3
8

@GE~ c̄g0lac!~c̄g0lac!2GM~ c̄g ilac!

3~ c̄g ilac!# . (4.77)

This expression is not Lorentz invariant, but since we
are trying to model QCD at finite density, there is no
reason to use a Lorentz-invariant effective action. For

FIG. 16. The critical points dm1 (solid lines) and dm2 (dashed
lines), in D0 units vs D0 , for cutoff values L5m1d ranging
from 0.8 GeV up to 1.6 GeV and for m50.4 GeV. From Al-
ford et al., 2001b.
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instance, at high density the electric gluons are expected
to be screened, whereas the magnetic ones are Landau
damped. In particular, it has been shown by Son (1999)
that at high density the magnetic gluon exchange domi-
nates the pairing mechanism, which can be simulated
assuming GE!GM .

For the following discussion it is convenient to intro-
duce the quantities

GA5
1
4

~GE13GM! and GB5
1
4

~GE2GM!. (4.78)

For GE5GM5G , as discussed above one has

GA5G , GB50. (4.79)

At zero density we expect GB50, whereas at high den-
sity we expect GE50 or GB /GA521/3. Therefore the
relevant physical region for GB /GA should be given by

2
1
3

<
GB

GA
<0. (4.80)

The gap parameters are now defined by

D5GAGS , DV5GBGV . (4.81)

Since the grand potential and the quasiparticle energy
are determined by the gap, for the Lorentz-invariant
case, GB50, there is no contribution from the vector
condensate. For GBÞ0, one has to solve two coupled
gap equations (Alford et al., 2000). The most interesting
result found by Alford et al. concerns the LOFF window,
which is modified by the presence of the J51 gap. The
result is shown in Fig. 17.

The LOFF window closes at GB /GA523 and in-
creases with increasing GB /GA . For GB /GA inside the
physical region [see Eq. (4.80)] the maximal opening is
for GB50. However, inside the physical region the
variation of the window is rather small. Since dm1 is
essentially defined by the BCS-normal-state transition, it
is given by D0 /& , and is independent of the vector con-
densate. However, the second-order critical point dm2 is
rather sensitive to GB /GA , the reason being that, for

FIG. 17. Variation of the critical points dm1 /D0 (dotted line),
and dm2 /D0 (solid line) with GB /GA . From Alford et al.,
2001b.
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GA50, the J51 channel is attractive for GB.0 and re-
pulsive for GB,0. Therefore the stability of the LOFF
state is reinforced by the vector condensate in the region
GB.0.

Let us close this section by considering a different
pairing discussed by Deryagin et al. (1992), Park et al.
(2000), Shuster and Son (2000), and Rapp et al. (2001).
It is a quark-hole pairing with nonzero momentum at
large baryon density. This produces a ^q̄q& condensate
varying in space with a wave number 2m, to be con-
trasted with 2uqu'2udmu. This state is energetically fa-
vored only for very large values of the number of colors
(Deryagin et al., 1992). Park et al. (2000) and Shuster
and Son (2000) found that Nc should be larger than
about 1000.

E. One-gluon exchange approximation

The foregoing results were obtained in the case of a
Nambu-Jona-Lasinio interaction. The case of the one-
gluon exchange interaction has been studied by Leibo-
vich et al. (2001). Of course this would be a realistic case
only at very high densities (Rajagopal and Shuster, 2000)
where, presumably, the CFL phase dominates over the
LOFF phase. However, the study of different interac-
tions allows us to understand the model dependence of
the LOFF window. Leibovich et al. (2001) used the stan-
dard QCD vertex in conjunction with the following
propagator for the gluon:

Dmn5
Pmn

T

p22G~p !
1

Pmn
L

p22F~p !
, (4.82)

where

Pij
T5d ij2

pipj

upu2 , P00
T 5P0i

T 50,

Pmn
L 52gmn1

pmpn

p2 2Pmn
T . (4.83)

Here

G~p !5
p

4
m2

p0

upu
(4.84)

describes the Landau damping, and

F~p !5m2, (4.85)

where m2 is the Meissner mass evaluated for two flavors,

m25g2
m2

p2 . (4.86)

The expressions for F(p) and G(p) are obtained in the
hard-loop approximation (Le Bellac, 1996) and evalu-
ated here for p0!upu'm (we recall that m is the average
chemical potential). Solving the gap equation, we find
that the LOFF window is enlarged by about a factor of
10 at the average chemical potential m5400 MeV. In
fact, as already noted, whereas dm1 is essentially fixed by
the BCS-normal-state transition at the value dm1
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5D0 /&, dm2 increases dramatically. At m5400 MeV,
Leibovich et al. (2001) found

dm251.24D0⇒dm22dm150.55D0 , (4.87)

to be compared with the Nambu-Jona-Lasinio case, in
which

dm250.754D0⇒dm22dm150.05D0 . (4.88)

At m5103 MeV the window is about 60 times larger
than the window for the pointlike case. In general, when
m is increased, dm2 increases as well. The interpretation
of these results, according to Leibovich et al. (2001),
goes as follows: For weak coupling, the q-q scattering
via one-gluon exchange is mostly in the forward direc-
tion. This implies that, after the scattering has taken
place, quarks remain close to the angular position they
possessed before the scattering, meaning that the theory
is essentially 111 dimensional. In fact, in this case the
only possible value for 2uqu is md2mu52dm . This is not
the case in 311 dimensions. In fact, as can be seen from
Fig. 4, 2uqu is generally bigger than 2dm. Furthermore, it
is known from the 111-dimensional case (Buzdin and
Tugushev, 1983; Buzdin and Polonski, 1987) that in the
weak-coupling limit dm2 /D0→` . Both these features
have been found by Leibovich et al. (2001).

A similar analysis was carried out by Giannakis et al.
(2002). The results were somewhat different from those
discussed above. In particular, it was found that at weak
coupling

dm250.968D0⇒dm22dm150.26D0 , (4.89)

with an enhancement of the window by a modest factor
of 5 with respect to the pointlike interaction. However,
the evaluation made in this paper consists of an expan-
sion around the tricritical point (called don by Giannakis
et al.) implying, in particular, an expansion in uqu. In or-
der to compare the results of Giannakis et al. with those
of Leibovich and co-workers, one should extrapolate the
results of Giannakis et al. (2002) to zero temperature. It
is not evident, at least to us, that this can be safely done.
Of course, the physical interpretation is also different.
According to Giannakis et al. (2002), in 311 dimensions
increasing dm implies a reduction of the phase space and
therefore a smaller gap and a smaller dm2 . This reduc-
tion effect, according to these authors, overcomes the
enhancement due to the 111-dimensional effect dis-
cussed above.

In our opinion the case of the one-gluon exchange in
the LOFF phase deserves further study. In fact, a sizable
increase in the LOFF window would make the LOFF
state very interesting as far as the applications to com-
pact stellar objects are concerned.

F. Mass effects

Kundu and Rajagopal (2002) studied the combined
effect of having two quarks with different chemical po-
tentials when one of the two quarks was massive. In the
free case, the Fermi momenta are given (assuming that
the pair contains an up and a strange quark) by
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pF
u5m2dm , pF

s 5A~m1dm!22Ms
2. (4.90)

Assuming both dm/m and ms /m to be much smaller than
one, one finds

upF
u2pF

s u'2Udm2
Ms

2

4m
U . (4.91)

The effect of MsÞ0 amounts to something more than
the simple shift dm→dm2Ms

2/4m . In fact, let us recall
that at Ms50 the BCS condensate is not changed by dm
as long as dm,dm1 . However, D0 decreases with Ms
(see the results by Casalbuoni, De Fazio, et al., 2002 and
Kundu and Rajagopal, 2002). Furthermore, for Ms

2/m2

!1 the decrease is practically linear. This produces cor-
rections to the grand potential of order D0

2(0)Ms
2 . For

small values of dm2Ms
2/4m we have BCS pairing,

whereas for large values there is no pairing and the sys-
tem is in the normal phase. Therefore the BCS-normal
transition is Ms dependent and occurs for dm approxi-
mately given by

Udm2
Ms

2

4m
U5 D0~Ms!

&
. (4.92)

It can be noted that, unlike the case Ms50, this condi-
tion is not symmetric for dm→2dm , and the LOFF
phase can exist in two different windows in dm, above
(dm2.dm1) and below (dm2,dm1) the BCS region; in
any case, for Ms50 one gets back the Clogston-
Chandrasekar limit. In order to discuss the size of the
window the correct variable is

dm2~Ms!2dm1~Ms!

D0~Ms!
. (4.93)

At weak coupling [small D0(0)] it is found that the win-
dow is essentially the same as for the case Ms50. Oth-
erwise the window generally increases with Ms as shown
in Fig. 18 for various values of Ms . We have plotted
both the cases dm.0 (left panel) and dm,0. This shows
that the LOFF phase is rather robust for MsÞ0.

V. PHONON AND GLUON EFFECTIVE LAGRANGIANS

Translational and rotational invariance are spontane-
ously broken within a LOFF phase. The energy gap is
not uniform and actually is expected to vary according
to some crystalline structure, as a result of the analysis
developed in the previous sections. The crystal defined
by the space modulation of the gap can fluctuate, and its
local deformations define phonon fields f(i) that are the
Nambu-Goldstone bosons associated with the breaking
of translational symmetry. The number of phonon fields
is equal to the number of broken generators of the
translation group. The existence of long-wavelength os-
cillations with the phonon dispersion law was already
noted by Fulde and Ferrell (1964). More recently an ef-
fective Lagrangian for phonons in a QCD medium was
developed by Casalbuoni et al. (Casalbuoni, Gatto,
et al., 2001, 2002a; Casalbuoni, Fabiano, et al., 2002;
Casalbuoni, Gatto, and Nardulli, 2002), and we wish to
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FIG. 18. The width of the LOFF window above and below the BCS region. The four curves correspond to the following values of
D0(0) (MeV): solid line, 10; dotted line, 40; dashed line, 80; dash-dotted line, 100. From Kundu and Rajagopal, 2002.
review it in this section, dedicated predominantly to the
QCD LOFF phase. For color superconductivity only the
T→0 case is physically interesting and we shall consider
only this limit. However, the theory developed in this
section could be extended to TÞ0 as well as to other
physical cases in solid-state or nuclear physics.

Being long-wavelength oscillations of the crystalline
LOFF structure, phonons exist only if the quarks of the
Cooper pair are in the pairing region. This is a portion
of the phase space around the Fermi surface formed by
a few annular rings, which are likely to be contiguous,
according to Bowers and Rajagopal (2002); see also the
discussion in Sec. III.C. The effective-field theory for the
phonon fields f(i) must display this behavior, and there-
fore the phonon-quark coupling must vanish outside the
pairing region. The mathematical formalization of this
behavior is rather involved and some approximation is
needed. Casalbuoni, Fabiano, et al. (2002) and Casal-
buoni, Gatto, et al. (2002a) write the phonon-quark in-
teraction using the high-density effective-field theory
discussed in Sec. IV.A. They introduce effective velocity-
dependent fermion fields and the Lagrangian as a sum of
terms, each characterized by its own Fermi velocity v.
Also, the quark-phonon coupling constant becomes ve-
locity dependent and is proportional to

Deff}D(
k

(
v

p

R
dR@h~v•n̂k!# . (5.1)

Here n̂k are the vectors defining the LOFF crystal, R is
a parameter and dR@h(x)# is a function that vanishes
outside the pairing region. More precisely, it reaches its
maximum when the pairing quarks are on the Fermi sur-
face and decreases when they leave it. By this approxi-
mation an evaluation of the phonon effective Lagrang-
ian is possible. In Sec. V.A we consider the high-density
effective-field theory for the inhomogeneous LOFF
state and write the quark-phonon Lagrangian. Below,
we discuss two crystalline structures. First we consider
the Fulde-Ferrell one-plane-wave structure, which is the
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benchmark case for the whole LOFF theory. Then we
examine the cubic structure, already studied in Sec.
III.C.4, because this seems the most favored crystalline
structure according to Bowers and Rajagopal (2002). On
the basis of symmetry arguments, we can write down the
effective phonon Lagrangians for the two cases. This is
done in Secs. V.B and V.D, whereas in Secs. V.C and V.E
we show how the parameters of the effective Lagrangian
can be computed by the high-density effective-field
theory. Let us mention here that the parameter R ap-
pearing in Eq. (5.1) should be fixed by a comparison of
the gap equation computed in the high-density effective-
field theory and the approach discussed in Sec. II.C for
the Fulde-Ferrell state and in Sec. III for generic struc-
tures. This comparison has not yet been made and there-
fore, in the discussion below, we leave R as a parameter,
even though, in the case of a cubic structure, the re-
quirement that the annular rings be contiguous can be
used to fix its value. We conclude this section with a
discussion in V.F of the modifications induced by the
LOFF pairing of quarks on the gluon Lagrangian.

A. Effective Lagrangian for the LOFF phase

Let us begin by writing the gap term for the Lagrang-
ian in the presence of an inhomogeneous condensate. As
in Sec. II.C, we write the following formula for the
LOFF condensate:

D~r!5 (
m51

P

Dme2iqm•r. (5.2)

We shall consider only two cases below:

(a) one plane wave, P51,
(b) cubic structure, P58.

In the former case, we shall take into account the possi-
bility of having both a J50 and a J51 condensate, as
discussed above. In the case of the cubic structure, we
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shall consider only a spin-zero condensate, taking Dm
[D , real, qm5n̂m q with n̂m the eight unit vectors de-
fined in Eq. (3.39). To describe the quark condensate in
the case of the single plane wave, we consider the La-
grangian term

LD5L D
(s)1L D

(v)52
e2iq•r

2
eab3c ia

T ~x !C~D(s)e ij

1a•n̂D(v)s ij
1 !c ib~x !2~L→R !1H.c.,

(5.3)

which includes both the scalar and the vector conden-
sate.

We introduce velocity-dependent fields as in Eq.
(4.13), with factors exp(imivi•x), and we take into ac-
count only the positive-energy part, which we write as
cvi ;ia for a quark with flavor i and color a; we keep
track of the velocities of the two quarks that are not
opposite in the LOFF phase. We have

LD52
1
2 (

vi ,vj

exp$ir•f~vi ,vj ,qk!%eab3c2vi ;ia
T ~x !C~D(s)e ij

1a•n̂D(v)s ij
1 !c2vj ;jb~x !2~L→R !1H.c., (5.4)

where

f~vi ,vj ,q!52q2m ivi2m jvj . (5.5)

We also define

m5
m11m2

2
and dm52

m12m2

2
. (5.6)

Since q5O(D2sc)!m , the condition

p11p252q (5.7)

in the m→` limit gives

v11v25OS d

m D . (5.8)

Taking into account that P1(2v)CakP1(v)
5vkP1(2v)CP1(v), we can rewrite Eq. (5.4) as

LD52
1
2 (

vi ,vj

exp$ir•f~vi , vj , qk!%eab3cvj ;ia
T ~x !

3C~D(s)e ij2vj•n̂D(v)s ij
1 !c2vj ;jb~x !

2~L→R !1H.c. (5.9)

These equations can be easily generalized to the case
of a face-centered cube. We shall discuss this generaliza-
tion below.

B. One-plane-wave structure

Let us rewrite Eq. (5.9) as follows:

LD52
1
2

e2ir•q(
vi ,vj

e2i(m ivi1m jvj)•reab3cvj ;ia
T ~x !

3C~D(s)e ij2vj•n̂D(v)s ij
1 !c2vj ;jb~x !

2~L→R !1H.c. (5.10)
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There are two sources of space-time symmetry breaking
in Eq. (5.10), one arising from the exponential term
exp(2ir•q), which breaks both translation and rotation
invariance, and another in the vector condensate, which
breaks rotation invariance. The factor exp(2imivi
2im jvj) breaks no space symmetry, since it arises from a
field redefinition in a Lagrangian that was originally in-
variant. For definiteness, let us take the z axis pointing
along the direction of q. As a consequence of the break-
ing of translational invariance along the z axis, Gold-
stone’s theorem predicts the existence of one scalar
massless particle, the Nambu-Goldstone boson associ-
ated with spontaneous symmetry breaking. The symme-
try breaking associated with the vector condensate is not
independent of the spontaneous symmetry breaking
arising from the exponential term exp(2ir•q), because
the direction of q coincides with the direction n̂ of the
vector condensate. For this reason, while there are in
general three phonons associated with the breaking of
space symmetries, here one Nambu-Goldstone boson is
sufficient. The argument is sketched in Fig. 19 and fol-
lows from the fact that rotations and translations are not
independent transformations, because the result of a
translation plus a rotation is locally equivalent to a pure
translation.

The Lagrangian (5.10) induces a lattice structure
given by parallel planes perpendicular to n̂:

n̂•r5
pk

q
~k50,61,62, . . . !. (5.11)

We can give the following physical picture of the lattice
structure of the LOFF phase: Due to interaction with
the medium, the Majorana masses of the red and green
quarks oscillate in the direction n̂, reaching maxima and
minima on subsequent planes. The Nambu-Goldstone
boson is a long-wavelength, small-amplitude variation of
the condensate D(r); formally it is described by the sub-
stitution

FIG. 19. Effects of rotation and translation at the point P. The
effect of the rotation n→n8 and the effect of the translation r
→r1a tend to compensate each other.
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D~r!5e2iqn̂•rD→eiF/fD , (5.12)

with

F

f
52q~ n̂1dn!•~r1dr![

f

f
12qn̂•r (5.13)

and ^f&50. We assume

un̂1dnu51, (5.14)

^dn&050. (5.15)

Let us introduce the auxiliary functions R and T ,

R5n̂1dn, T52qR•dr. (5.16)

In the second quantization, the lattice fluctuation f de-
scribes the phonon field. Since it must be small, T and R
are not independent fields and T must depend function-
ally on R, i.e., T5F@R# , which means

F

f
52qR•r1F@R#[G@R,r# . (5.17)

The solution of this functional has the form

R5h@F# , (5.18)

where h is a vector built out of the scalar function F. By
this function one can only5 form the vector “F; there-
fore we get

R5
“F

u“Fu
, (5.19)

which satisfies Eq. (5.14). In terms of the phonon field f
the vector field R is given (up to the second order terms
in f) by the expression

R5n̂1
1

2 fq
@“f2n̂~ n̂•“f!#1

n̂
8f2q2 @3~ n̂•“f!2

2u“fu2#2
“f

4f2q2 ~ n̂•“f!. (5.20)

We stress that the only dynamical field is f; F is an
auxiliary field with a nonvanishing vacuum expectation
value ^F&052q"r. As to dn̂, R, and dr, they can all be
expressed in terms of f. In conclusion, the interaction
term with the Nambu-Goldstone boson field is con-
tained in

Lint52
1
2

eiF/f (
vi ,vj

e2i(m ivi1m jvj)•reab3cvj ;ia
T ~x !

3C~D(s)e ij2vj•RD(v)s ij
1 !c2vj ;jb~x !

2~L→R !1H.c., (5.21)

where the fields F and R have been introduced in such a

5In principle there is a second vector, r, on which R could
depend linearly, but this possibility is excluded because R is a
vector field transforming under translations as R(r)→R8(r8)
5R(r).
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way to reproduce Eq. (5.10) in the ground state. At first
order in the fields, one gets the following trilinear cou-
pling:

Lfcc52
if

2 f (
vi ,vj

eir•f(vi ,vj ,q)@D(s)e ij

2vj•n̂D(v)s ij
1 #eab3cvj ;ia

T Cc2vj ;jb

2
1

4fq (
vi ,vj

eir•f(vi ,vj ,q)~2vj!•@“f

2n̂~ n̂•“f!#D(v)s ij
1 eab3cvj ;ia

T Cc2vj ;jb

2~L→R !1H.c. (5.22)

We also write down the quadrilinear coupling:

Lffcc5
f2

4f2 (
vi ,vj

eir•f(vi ,vj ,q)@D(s)e ij

2vj•n̂D(v)s ij
1 #eab3cvj ;ia

T Cc2vj ;jb

2
if

2 f (
vi ,vj

eir•f(vi ,vj ,q)~2vj!•@“f

2n̂~ n̂•“f!#D(v)s ij
1 eab3cvj ;ia

T Cc2vj ;jb

2
1

8f2q2 (
vi ,vj

eir•f(vi ,vj ,q)F2
vj•n̂

2
@3~ n̂•“f!2

2u“fu2#1~vj•“f!~ n̂•“f!G
3D(v)s ij

1 eab3cvj ;ia
T Cc2vj ;jb2~L→R !1H.c.

(5.23)

Through a bosonization procedure, one can derive an
effective Lagrangian for the Nambu-Goldstone boson
field. This will be done below. For the moment we derive
the general properties of the phonon effective Lagrang-
ian. It must contain only derivative terms. Polynomial
terms are forbidden by translation invariance, since f is
not an invariant field. In order to write the kinetic terms,
it is better to use the auxiliary field F, which behaves as
a scalar under both rotations and translation. To avoid
the presence of polynomial terms in the phonon La-
grangian, one has to exclude polynomial terms in the
auxiliary field F as well; therefore the Lagrangian
should be constructed only with derivative terms. The
most general invariant Lagrangian will contain a tower
of space-derivative terms (Casalbuoni, Gatto, et al.,
2001). In fact, since ^“F&52q is not a small quantity, we
cannot limit the expansion in the spatial derivatives of F
to any finite order. Therefore we write

L~f ,]mf!5
f2

2 F Ḟ22 (
n51

`

cn~ u“Fu2!nG . (5.24)

In this Lagrangian, F must be thought of as a function of
the phonon field f, since
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u“Fu254q21
4q

f
n̂•“f1

1
f2 u“fu2, (5.25)

with similar expression for higher powers. At the lowest
order in the derivatives of the phonon field f we get,
neglecting a constant term,

L~f ,]mf!5
1
2

@ḟ22v i
2u“ ifu22v2~4qf“ if1u“fu2!# ,

(5.26)

where “ if5n̂•“f , and v i
2 , v2 are constants.

C. Parameters of the phonon effective Lagrangian: one
plane wave

In order to derive the parameters of the phonon La-
grangian (5.26) it is useful to make an approximation.
We assume that dm;D2sc!d!m . Clearly, we cannot
simply take the m→` limit in the exponential term
exp$ir•f(vi ,vj ,qk)% in Eq. (5.9); therefore we consider a
smeared amplitude as follows:

lim
m→`

exp$ir•f~vi ,vj ,qk!%

[ lim
m→`

E dr8 exp$ir8•f~vi ,vj ,qk!%g~r,r8!. (5.27)

We assume a smearing function

g~r,r8!5g~r2r8!5 )
k51

3 sinFpq~rk2rk8 !

R G
p~rk2rk8 !

(5.28)

and we evaluate Eq. (5.27) in the m→` limit by taking q
along the z axis, and using the identity

E d3r8 exp$ir8•f%g~r2r8!5exp$ir•f%S p

R D 3

dR
3 S f

2q D ,

(5.29)

where

dR~x !5H R

p
for uxu,

p

2R

0 elsewhere.
(5.30)

For the components x and y of f we get

u~m1v11m2v2!x ,yu,
pq

R
, (5.31)

i.e., approximately (for dm!m)

u~v11v2!x ,yu,
pq

Rm
. (5.32)

From this, in the high-density limit, it follows that

v152v21O~dm/m!. (5.33)

We have already used this result in Eq. (4.17) in connec-
tion with the Riemann-Lebesgue lemma and in Eq.
(5.8). A more accurate result is as follows. If u1 and u2
are the angles of v1 and v2 with respect to the z axis one
gets
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u15u21p1
2dm

m
tan u2 . (5.34)

For the z component we get

fz52qh~cos u2!, (5.35)

where

h~x !511
xm2

2q S 211A12
4mdm

m2
2x2 D , (5.36)

and, neglecting corrections of order dm/m,

h~x !512
cos uq

x
, cos uq5

dm

q
. (5.37)

Notice that uq5c0/2 where c0 is the angle depicted in
Fig. 4; see also Eq. (2.117). The two factors p/R arising
from the x and y components are absorbed into a wave-
function renormalization of the quark fields, in both the
kinetic and the gap terms. As for the z component, one
remains with the factor

p

R
ei2qhzdR@h~v•n̂!#'

p

R
dR@h~v•n̂!# (5.38)

in the gap term, whereas for the kinetic term one gets a
factor of 1. We have assumed exp@i2qhz#51 in Eq. (5.38)
owing to the presence of the dR function, which, in the
R/p→` limit, enhances the domain of integration
where h50. We shall discuss this approximation below.

Equation (5.30) defines a region where dRÞ0, i.e., a
domain where pairing between the two quarks can oc-
cur; it corresponds to the pairing region in the analysis of
Fulde and Ferrell (1964) and Bowers et al. (2001), in
contrast with the blocking region, where dR50. The
pairing region intersects the Fermi surface with a ‘‘ring’’
whose size depends on the value of R . As we noted
above, R5` implies the vanishing of the pairing region,
and therefore one expects R→` at the second-order
phase transition (Casalbuoni, Fabiano, et al., 2002). The
precise value of R should be fixed by the gap equation.
Since this calculation has not yet been made, for the
purpose of this paper we leave R as a parameter.

In conclusion we can approximate Eq. (5.9) as follows:

LD52
1
2 (

v

p

R
dR@h~v•n̂!#eab3cv;ia

T ~x !C~D(s)e ij

2v•n̂D(v)s ij
1 !c2v;jb~x !2~L→R !1H.c. (5.39)

Using the same notation as in Sec. IV.C, we can write
the effective Lagrangian as

L01L11LD5(
v

(
A ,B50

5

xA†

3S iTr@T̃A
† V•DT̃B# 2DAB

†

2DAB iTr@T̃A
† Ṽ•D* T̃B#

D
3xB1~L→R !. (5.40)

Here
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xA5
1

&
S c1

A

Cc2
A* D (5.41)

and

T̃A5
l̃A

&
~A50, . . . ,5 !. (5.42)

The matrix DAB vanishes for A or B54 or 5, while, for
A ,B50, . . . ,3, it is given by

DAB5~Deff
(s)tAB2v•n̂Deff

(v)sAB!, (5.43)

with

tAB5S 1 0 0 0

0 21 0 0

0 0 21 0

0 0 0 21
D ,

sAB5S 0 0 0 21

0 0 2i 0

0 1i 0 0

11 0 0 0
D , (5.44)

and

Deff
(s)5

D(s)p

R
dR@h~v•n̂!# ,

Deff
(v)5

D(v)p

R
dR@h~v•n̂!# . (5.45)

In the present approximation the quark propagator is
given by

DAB~, ,,9!5~2p!4d4~,2,9!

3(
C S Ṽ•,dAC

D̃CB~, !

DAC
†

DCB~, !

DAC

D̃CB~, !

V•,dAC

DCB~, !

D , (5.46)

where

DCB~, !5~V•,Ṽ•,2DD†!CB ,

D̃CB~, !5~V•,Ṽ•,2D†D!CB . (5.47)

On the other hand, the propagator for the fields x4,5

does not contain gap mass terms and is given by

D~, ,,8!5~2p!4d4~,2,8!S ~V•, !21 0

0 ~Ṽ•, !21D .

(5.48)

For the other fields xA, A50,.. . ,3, it is useful to go to a
representation in which DD† and D†D are diagonal. This
is accomplished by performing a unitary transformation
which transforms the basis xA into a new basis x̃A de-
fined by

x̃A5RABxB, (5.49)
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with

RAB5
1

& S 1 0 0 1

0 1 2i 0

0 1i 21 0

1 0 0 21
D . (5.50)

In the new basis we have

~DD†!AB5aAdAB ,

~D†D!AB5ãAdAB , (5.51)

where

a05a25ã25ã35~Deff
(s)2v•n̂Deff

(v)!2,

a15a35ã05ã15~Deff
(s)1v•n̂Deff

(v)!2. (5.52)

For further reference we also define

mC5~Deff
(s)2v•n̂Deff

(v) ,Deff
(s)1v•n̂Deff

(v) ,Deff
(s)2v•n̂Deff

(v) ,

Deff
(s)1v•n̂Deff

(v)!. (5.53)

In the basis x̃ the three-point and four-point couplings
of Eqs. (5.22) and (5.23) are written

L31L45(
v

(
A50

3

x̃A†S 0 2g3
†2g4

†

2g32g4 0 D x̃B.

(5.54)

Here

g35F ifDeff
(s)

f
tAB1Ô@f#sABG , (5.55)

g45F2
f2Deff

(s)

2 f2 tAB1S if

f
Ô@f#1Q̂@f# DsABG ,

(5.56)

with

Ô@f#5
1

2 fq
v•@“f2n̂~ n̂•“f!#Deff

(v) ,

Q̂@f#5
Deff

(v)

4f2q2 Fv•n̂
2

@3~ n̂•“f!22u“fu2#2~v•“f!

3~ n̂•“f!G . (5.57)

Terms in g3 and g4 that are proportional to tAB arise
from the expansion of exp if/f alone, whereas terms pro-
portional to sAB also get contributions from the expan-
sion of R in the vector condensate. The effective action
for the Nambu-Goldstone boson is obtained at the low-
est order as is shown by the diagrams in Fig. 20. The
result of the calculation of the two diagrams at second
order in the momentum expansion is
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P~p !s .e .5
im2

16p3f2 (
v

(
C50

3 E d2,F 4aC
2

DC
2 ~, !

2
4aCV•,Ṽ•,

DC
2 ~, !

24aC
2 V•pṼ•p

DC
3 ~, !

2S Deff
(v)

q D 2

v2~pW !S 2aC

DC
2 ~, !

1
1

DC~, ! D G ,

P~p ! tad5
im2

16p3f2 (
v

(
C50

3 E d2,

DC~, !
F4aC2

Deff
(v)

q2 mC

3~2px
22py

212pz
222p•vpz!G , (5.58)

where

DC~, !5,0
22, i

22aC1ie , (5.59)

with mc defined in Eq. (5.53) and

v~p!5p•v2~p•n̂!~v•n̂!. (5.60)

To perform the calculation we shall take the limit R
→` , when the dR function becomes the Dirac delta. We
handle the dR functions by using Fermi’s ‘‘golden rule’’;
in the numerator, in the presence of a product of two
dR , we replace one dR function with the Dirac delta and
for the other one we take

pdR@h~x !#

R
→ pdR~0 !

R
→1. (5.61)

A similar substitution is performed in the denominator.
Moreover, we use

E d2,

@DC~, !#3 52
ip

2aC
2 . (5.62)

Therefore we have

p

R
dR@h~v•n̂!#

p

R
dR@h~v•n̂!#→ p

R
d@h~v•n̂!#

5
p

R
dF12

dm

qv•n̂G
5kRdFv•n̂2

dm

q G , (5.63)

with

kR5
pudmu

qR
. (5.64)

FIG. 20. Diagrams of the Nambu-Goldstone boson: (a) Self-
energy; (b) tadpole.
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At second order in the momentum expansion we get

P~p !52
m2kR

2p2f2 (
v

dFv•n̂2
dm

q G@VmṼnpmpn1V(v)~pW !# .

(5.65)

Here

V(v)~p!52S D(v)

q D 2

v2~p!S 22
1
2 (

C50

3

arcsinh
d

umcu
D

1
D(v)

2q2 F~p! (
C50

3

mC3arcsinh
d

umcu

'22S D(v)

q D 2S 12ln
2d

D(s)D @v2~p!1v•n̂F~p!# ,

(5.66)

where we have used the result (Alford et al., 2001b)
D(v)!D(s) and

F~p!5~3pz
22p2!v•n̂22p•vpz . (5.67)

From

Leff~p !52
m2kR

2p2f2 (
v

dH v•n̂2
dm

q J VmṼnpmfpnf ,

(5.68)

after averaging over the Fermi velocities, we obtain

Leff5
1
2

@~ḟk!22v'
2 ~]xfk!22v'

2 ~]yfk!22v i
2~]zfk!2# .

(5.69)

We obtain canonical normalization for the kinetic term
provided

f25
m2kR

4p2 . (5.70)

On the other hand,

v'
2 5

1
2

sin2 uq1~123 cos2 uq!S 12log
2d

D0
D S D(v)

q D 2

,

v i
25cos2 uq . (5.71)

In conclusion, we get the anisotropic phonon dispersion
law:

E~pW !5Av'
2 ~px

21py
2!1v i

2pz
2. (5.72)

Besides the anisotropy related to v'Þv i , there is an-
other source of anisotropy, due to the fact that pz , the
component of the momentum perpendicular to the
planes (5.11), unlike px and py , is a quasimomentum
and not a real momentum. The difference can be better
appreciated in coordinate space, where the effective La-
grangian reads

L5
1
2 F ~ḟk!22v'

2 ~]xfk!2

2v'
2 ~]yfk!22v i

2S q

p D 2

~fk2fk21!2G . (5.73)
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The effective action for the field f, S@f# , is obtained by
the Lagrangian as follows:

S5E dt dx dy
p

q (
k52`

1`

L„f~ t ,x ,y ,kp/q !…. (5.74)

In the action, bilinear terms of the type fkfk8 with k
Þk8 may arise. These terms correspond in the con-
tinuum limit to derivatives with respect to the z direc-
tion. However, in the long-distance limit ,@p/q , the set
of fields fk(x ,y) becomes a function f(x ,y ,z) and the
last term in Eq. (5.73) can be approximated by
v i

2(]zf)2.

D. Cubic structure

The space dependence of the condensate correspond-
ing to a cubic lattice is

D~r!5D (
k51

8

exp$2iqn̂k•r%, (5.75)

where the eight unit vectors n̂k are given in Eq. (3.39)
and

q5p/a . (5.76)

In Fig. 21 some of the symmetry axes of this cube are
shown: they are denoted as C4 (the three fourfold axes),
C3 (the four threefold axes), and C2 (the six twofold
axes).

To describe the quark condensate, we add a term LD

completely analogous to Eq. (5.10). By the same proce-
dure used for the plane-wave condensate we have

LD52
D

2 (
k51

8

(
v

p

R
dR@h~v•n̂k!#e ijeab3cv;ia

T ~x !

3Cc2v;jb~x !2~L→R !1H.c. (5.77)

L01L11LD is still given by Eq. (5.40) but now

Deff5
Dp

R (
k51

8

dR@h~v•n̂k!# ; (5.78)

FIG. 21. Symmetry axes C2 , C3 , and C4 of the cube.
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the quark propagator is given by Eq. (5.46) with Deff
given by Eq. (5.78).

An interesting point should be noted. This equation
shows that the pairing region for the cubic LOFF con-
densate is formed by eight distinct rings, each associated
with one vertex of the cube and having as its symmetry
axis one of the threefold axes C3 . According to the
analysis of Bowers and Rajagopal (2002), the LOFF
vacuum state corresponds to a situation in which these
domains have at most one common point. Given the
symmetry of the cubic structure, we can limit the analy-
sis to one pair of rings, for example, those associated
with the vertices n1 ,n5 . The common point between
these two rings lies on the C2 axis and has v
51/&(1,1,0). Since it must also belong to the boundary
of the two pairing regions, we have the condition

uh~v•n̂1!u5
p

2R
, (5.79)

which implies

R5
p

2h~A2/3!
. (5.80)

Using Eq. (5.36) one gets

R'18. (5.81)

The condensate (5.75) breaks both translations and
rotations. It is, however, invariant under the discrete
group Oh , the symmetry group of the cube. This can be
seen by noticing that the condensate is invariant under
the following coordinate transformations:

R1 : x1→x1 , x2→x3 , x3→2x2 ,

R2 : x1→2x3 , x2→x2 , x3→x1 ,

R3 : x1→x2 , x2→2x1 , x3→x3 ,

I : x1→2x1 , x2→2x2 , x3→2x3 , (5.82)

that is, rotations of p/2 around the coordinate axes, and
inversion with respect to the origin. Since the group Oh
is generated by the previous four elements, the invari-
ance follows at once.

The crystal defined by the condensate (5.75) can fluc-
tuate, and its local deformations define three phonon
fields f(i) that are the Nambu-Goldstone bosons associ-
ated with the breaking of translational symmetry. They
can be formally introduced following the same proce-
dure discussed for the single-plane-wave case. One ef-
fects the substitution in Eq. (5.75)

2qxi→ F(i)~x !

f
5

2p

a
xi1

f(i)~x !

f
, (5.83)

where the three auxiliary scalar fields F(i) satisfy

K F(i)

f L
0

5
2p

a
xi , (5.84)

whereas for the phonon fields one has

^f(i)~x !&050. (5.85)
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One therefore has three fluctuating fields fk1k2k3

(i) for any

elementary cube defined by discrete coordinates

xk1
5

k1p

q
, yk2

5
k2p

q
, zk3

5
k3p

q
, (5.86)

i.e.,

fk1k2k3

(i) [f(i)~ t ,xk1
,yk2

,zk3
!. (5.87)

The interaction term with the Nambu-Goldstone boson
fields is therefore given by an equation similar to Eq.
(5.74):

Sint52E dtS p

q D 3

(
k1 ,k2 ,k352`

1`

(
v

(
m51

8

D

3exp$iwk1k2k3

(m) /f%e ijeab3cv;ia
T Cc2v;jb

2~L→R !1H.c., (5.88)

where

wk1k2k3

(m) 5(
i51

3

e i
(m)fk1k2k3

(i) (5.89)

and the eight vectors e(m) are given by

~ei
(m)![)n̂m . (5.90)

The complete effective action for the Nambu-Goldstone
boson fields f(i) will be of the form

S5E dtS p

q D 3

3 (
k1 ,k2 ,k352`

1`

L„f(i)~ t ,k1p/q ,k2p/q ,k3p/q !…. (5.91)

In the low-energy limit, i.e., for wavelengths much
longer than the lattice spacing ;1/q , the fields fk1 ,k2 ,k3

(i)

vary almost continuously and can be imagined as con-
tinuous functions of the three space variables x , y , and
z .

The coupling of the quark fields to the Nambu-
Goldstone boson fields generated by the condensate can
be written as

DcTCc (
e i56

exp$i~e1F(1)1e2F(2)1e3F(3)!%,

(5.92)

making the theory invariant under translations and rota-
tions. These symmetries are broken spontaneously in
the vacuum defined by Eq. (5.84). In order to write
down the effective Lagrangian for the phonon fields
f(i), it is useful to start with the effective Lagrangian for
the auxiliary fields F(i) which must have rotational and
translational invariance and Oh symmetry on the fields
F(i). The last requirement follows from the invariance
of the coupling (5.92) under the group Oh acting upon
F(i). The phonon fields f(i)(x) and the coordinates xi

must transform under the diagonal discrete group ob-
tained from the direct product of the rotation group act-
ing over the coordinates and the Oh group acting over
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F(i)(x). This is indeed the symmetry left after the
breaking of translational and rotational invariance. The
most general low-energy effective Lagrangian displaying
these symmetries is

L5
f2

2 (
i51,2,3

~Ḟ(i)!2

1Ls„I2~“F(i)!,I4~“F(i)!,I6~“F(i)!…, (5.93)

where

I2~Xi!5X1
21X2

21X3
2 ,

I4~Xi!5X1
2X2

21X2
2X3

21X3
2X1

2 ,

I6~Xi!5X1
2X2

2X3
2 (5.94)

are the three basic symmetric functions of three vari-
ables. At lowest order in the fields f(i), and at second
order in the derivatives, one gets (Casalbuoni, Gatto,
and Nardulli, 2002)

L5
1
2 (

i51,2,3
~ḟ(i)!22

a

2 (
i51,2,3

u“f(i)u2

2
b

2 (
i51,2,3

~] if
(i)!22c (

i,j51,2,3
] if

(i)] jf
(j),

(5.95)

which depends on three arbitrary parameters.

E. Parameters of the phonon effective Lagrangian: cubic
crystal

The parameters a , b , and c appearing in Eq. (5.95)
are computed by a method similar to that used in Sec.
V.C. One puts

w(m)~ t ,rW !5(
i51

3

e i
(m)f(i)~ t ,rW !, (5.96)

which allows one to write the three-point and four-point
couplings as follows:

L31L45(
vW

(
A50

3

x̃A†S 0 2g3
†2g4

†

2g32g4 0 D x̃B.

(5.97)

Here

g35 (
m51

8
pD

R
dR@h~v•n̂m!#

iw(m)

f
tAB ,

g452 (
m51

8
pD

R
dR@h~v•n̂m!#

~w(m)!2

2 f2 tAB , (5.98)

to be compared with Eqs. (5.55) and (5.56), which are
valid for the one-plane-wave form of the condensate (we
have here neglected the vector condensate). To perform
the calculation, one employs the propagator given in Eq.
(5.46) with Deff given in Eq. (5.78) and the interaction
vertices in Eq. (5.97). The result of the calculation of the
two diagrams in Fig. 20 at second order in the momen-
tum expansion is
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Leff~p !s .e .5i
434m2

16p3f2 (
v

(
m ,k51

8 1
2 S pD

R D 2

dR@h~v•n̂m!#

3~ iw(m)!dR@h~v•n̂k!#~ iw(k)!

3E d2,

D~, !D~,1p !

3@22Deff
2 1V•,Ṽ•~,1p !

1Ṽ•,V•~,1p !# , (5.99)

Leff~p ! tad5i
434m2

16p3f2 (
v

(
m51

8 E d2,

D~, !

pDDeff

R

3dR@h~v•n̂m!#~w(m)!2, (5.100)

where

D~, !5,0
22, i

22Deff
2 1ie , (5.101)

and, analogous to Eq. (5.45),

Deff5
Dp

R (
k51

8

dR@h~v•n̂k!# . (5.102)

From Eqs. (5.99) and (5.101), one can easily check that
the Goldstone theorem is satisfied and the phonons are
massless. As a matter of fact one has

Lmass5Leff~0 !s .e .1Leff~0 ! tad

5i
434m2

16p3f2

pD

R (
v
E d2,

D~, !

3F2 (
m ,k51

8
pD

R
dR@h~v•n̂m!#

3w(m)dR@h~v•n̂k!#w(k)

1Deff (
m51

8

dR@h~v•n̂m!#~w(m)!2G . (5.103)

In the double sum of the rhs of Eq. (5.103), only the
terms with m5k survive and one immediately verifies
the validity of Goldstone’s theorem, i.e., the vanishing of
Eq. (5.103). Note that in this approximation the masses
of the Goldstone bosons vanish because the pairing re-
gions are not overlapping, signaling that when they do
overlap it is not at the minimum of the free energy (see
Bowers and Rajagopal, 2002).

At second order in the momentum expansion one has

Leff~p !5i
434m2

16p3f2 (
v

(
m ,k51

8 1
2 S pD

R D 2

dR@h~v•n̂m!#

3~ iw(m)!dR@h~v•n̂k!#~ iw(k)!

3E d2,
2Deff

2 V•pṼ•p

@D~, !#3 . (5.104)

Using the result

E d2,

@D~, !#3 52
ip

2Deff
4 , (5.105)
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and the absence of off-diagonal terms in the double sum,
one obtains the effective Lagrangian in the form

Leff~p !52
m2

2p2f2 (
v

S pD

R D 2

(
k51

8
$dR@h~v•nk!#%2

Deff
2

3~V•p !w(k)~Ṽ•p !w(k). (5.106)

To perform this calculation one can exploit the large
value found for R and use the same approximations as
in Sec. V.C. The sum over k in Eq. (5.106) gives

(
k51

8

dR@h~v•nk!#w(k)dR@h~vW •nk!#w(k)

→ R

p (
k51

8

d@h~v•nk!#~w(k)!2

5
R

p (
k51

8

dF12
dm

qv•nk
G~w(k)!2

5
R2

p2 kR (
k51

8

dFv•nk2
dm

q G~w(k)!2, (5.107)

with

kR5
pudmu

qR
. (5.108)

Therefore one gets

Leff~p !52
m2kR

2p2f2 (
i ,j51

3

(
k51

8

(
v

dH v•nk2
dm

q J
3VmṼne i

(k)e j
(k)pmf(i)pnf(j). (5.109)

The integration over the Fermi velocities requires spe-
cial attention. We use the result

(
k51

8

e i
(k)e j

(k)58d ij ; (5.110)

this fixes the constant multiplying the time-derivative
term in the effective Lagrangian [taking into account
Eq. (4.21)] at the value

8m2kR

234p2f2 . (5.111)

Therefore we obtain canonical normalization for the ki-
netic term, provided

f25
8m2kR

4p2 . (5.112)

The parameters a , b , and c of the effective Lagrangian
(5.95) can now be evaluated and we find (Casalbuoni,
Fabiano, et al., 2002)
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FIG. 22. Plots of the functions
f(R) and g(R). See Eqs.
(5.124) and (5.125).
Leff~p !5
1
2 S p02

f(i)2
2

1
8

b lm
ij plpmf(i)f(j)D

5
1
2 S p02

f(i)2
2

upu2

12
f(i)2

2
3 cos2 uq21

6 (
i,j51,2,3

pif(i)pjf(j)D ,

(5.113)

i.e., comparing with Eq. (5.95),

a5
1
12

, b50, c5
3 cos2 uq21

12
. (5.114)

F. Gluon dynamics in the LOFF phase

1. One-plane-wave structure

In this section and in the subsequent one we wish to
derive the effective Lagrangian for the gluons of the un-
broken SU(2)c subgroup of the two-flavor LOFF phase.
To begin with, we assume the crystal structure given by a
plane wave and we neglect the vector condensate, so
that we write

Deff5
Dp

R
dR@h~v•n̂!# . (5.115)
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The effective action allows the evaluation of the one-
loop diagrams with two external gluon lines and internal
quark lines similar to those in Fig. 20. If we write

Pab
mn~p !5Pab

mn~0 !1dPab
mn~p !, (5.116)

then the Meissner mass vanishes,

Pab
ij ~0 !50, (5.117)

and the Debye screening mass is nonvanishing,

mD5
gm

p
A11

cos ua2cos ub

2
, (5.118)

where cos ua and cos ub (21<cos ua<cos ub<1) are the
solutions of the equation

uh~cos u!u5
p

2R
. (5.119)

Next we consider dPab
mn(p). The only nonvanishing

contribution to dPab
mn(p) comes from the pairing region,

i.e., where DeffÞ0. In the approximation of small mo-
menta (upu!D) one finds (Casalbuoni, Gatto, et al.,
2002a)
2dPab
mn~p !5dab

m2g2

12p2 (
v; pairing

VmVn~Ṽ•p !22ṼmVn~V•pṼ•p !1V↔Ṽ

Deff
2 . (5.120)

That is,

2dPab
00 ~p !5dab

g2m2

3p2 (
v; pairing

v iv j

Deff
2 pipj5dab

g2m2R2

3D2p4 E
pairing

d cos udf

8p

v iv j

$dR@h~cos u!#%2 pipj , (5.121)
where v5(sin u cos f,sin u sin f,cos u). The integration
domain is defined by cos ua,cos u,cos ub . Therefore
one gets

2dPab
00 ~p !5dabk@f~R !p'

2 1g~R !p i
2# , (5.122)

where k is given by (D0 is the homogeneous conden-
sate)
k5
g2m2

18p2D0
2 , (5.123)

and

f~R !5
3
4 Epairing

d cos u~12cos2 u!, (5.124)
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g~R !5
3
2 Epairing

d cos u cos2 u (5.125)

are functions of the parameter R , shown in Fig. 22.
It is interesting to note the anisotropy of the polariza-

tion tensor exhibited by these results. We always have
g.f ; for large R , and neglecting dm/m corrections, we
find approximately

g~R !

f~R !
→ 2

S q

dm D 2

21
. (5.126)

Let us finally write down the remaining components
of the polarization tensor. From Eq. (5.120) we get

2Pab
ij ~p !5dab

g2m2

3p2 (
v; pairing

v iv j

D2 p0
2

5kp0
2@f~R !~d i1d j11d i2d j2!

1g~R !d i3d j3# (5.127)

and

2Pab
0i ~p !5kp0pj@f~R !~d i1d j11d i2d j2!

1g~R !d i3d j3# . (5.128)

These results complete the analysis of the LOFF model
in the one-plane-wave approximation. From Pab

mn we get
the dispersion law for gluons at small momenta. The
Lagrangian at one loop is6

L52
1
4

Fa
mnFmn

a 2
1
2

Pab
mnAm

a An
b (5.129)

(sum over the repeated color indices a ,b51,2,3). Intro-
ducing the fields Ei

a[F0i
a and Bi

a[i« ijkFjk
a , and using

Eqs. (5.122), (5.127), and (5.128), we can rewrite the La-
grangian (5.129) as

L5
1
2

~e ijEi
aEj

a2Bi
aBi

a!1
1
2

mD
2 Aa

0Aa
0 , (5.130)

where

e ij5S 11kf~R ! 0 0

0 11kf~R ! 0

0 0 11kg~R !
D . (5.131)

This means that the medium has a nonisotropic dielectric
tensor e and a magnetic permeability l51. These results
were obtained by taking the total momentum of the
Cooper pairs along the z direction. Therefore we distin-
guish the dielectric constant along the z axis, which is

e i511kg~R !, (5.132)

and the dielectric constant in the plane perpendicular to
the z axis,

6We do not include here the three- and four-gluon vertices,
which can be handled as was done by Casalbuoni, Gatto, et al.
(2002b), with the result that the local gauge invariance of the
one-loop Lagrangian is satisfied.
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e'511kf~R !. (5.133)

This means that the gluon speed in the medium depends
on the direction of propagation of the gluon. Along the
z axis the gluon velocity is

v i.
1

Akg~R !
, (5.134)

while for gluons that propagate in the x-y plane we have

v'.
1

Akf~R !
, (5.135)

and in the limit of large R , and neglecting dm/m correc-
tions,

v i→
1

&
tan uqv' , (5.136)

with cos uq defined in Eq. (5.37).

2. Cubic structure

The condensate in the cubic-structure case is given by
Eq. (5.75), so we shall use the results of Sec. V.A with
Deff given by Eq. (5.78). The calculations are similar to
the previous case and, similarly, the SU(2)c gluons have
vanishing Meissner mass and exhibit partial Debye
screening. However, the dispersion law of the gluons is
different.

As a matter of fact, we write the one-loop Lagrangian
for the SU(2)c gluons as

L5
1
2

~Ei
aEi

a2Bi
aBi

a!1dL, (5.137)

with

dL52
1
2

Pab
mnAm

a An
b . (5.138)

In the approximation upu!D , dPab
mn is again given by Eq.

(5.120), but now Deff is given by Eq. (5.78). One gets

dL[Ei
aEj

bdab

g2m2

6p2 E
pairing

d cos u df

8p

v iv j

Deff
2

1A0
aA0

b dab

g2m2

4p2 E
blocking

d cos u . (5.139)

Evaluating the integrals one finds

L5
1
2

~ ẽ ijEi
aEj

a2Bi
aBi

a!1
1
2

MD
2 A0

aA0
a , (5.140)

with the tensor ẽ ij given by

ẽ ij5d ij@11k t~R !# (5.141)

and

MD5
gm

p
A118

cos ua2cos ub

2
, (5.142)
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where cos ua,b are solutions to Eq. (5.119). The tensor ẽ ij

is isotropic. This result can be easily explained by notic-
ing that the Lagrangian should be a quadratic function
of the field strengths and should also satisfy cubic sym-
metry. Therefore it must be constructed by the invari-
ants I2(Ei) and I2(Bi

a), which are isotropic. As shown
by Casalbuoni, Gatto, et al. (2002a), t(R) is given by

t~R !5
8
3

@2 f~R !1g~R !# . (5.143)

It should also be noted that the values of the parameter
R for the cube and the plane wave can be different. A
plot of the function t(R) is given in Fig. 23.

Even if the crystalline structure is not isotropic, the
dielectric properties of the medium will be isotropic and
the velocity of propagation of the gluons will be the
same in all directions.

VI. INHOMOGENEOUS SUPERCONDUCTIVITY IN
CONDENSED MATTER, NUCLEAR PHYSICS, AND
ASTROPHYSICS

As observed in the Introduction, the main focus of
this review is on the theoretical methods rather than
phenomenological consequences. However, for com-
pleteness, in this section we review the different ap-
proaches developed thus far to detect the inhomoge-
neous phase in superconductors. The LOFF phase is
expected to be ubiquitous. Therefore one might expect
to find it in completely different physical systems. For
obvious reasons, research in solid-state physics is much
more advanced and, indeed, signals of formation of the
LOFF phase have been reported in the literature. We
review them in the first part of this section. In order to
produce the effective exchange interaction of Eq. (2.1),
a sufficiently high magnetic field is needed to produce an
appreciable difference between the chemical potentials.
This could be done in type-I superconductors, but the
required fields are likely to destroy superconductivity
altogether. This issue is discussed in Sec. VI.A. To over-
come this difficulty, type-II superconductors must be
used; moreover, they should be free of impurities and
have a large electron mean free path; the needed re-
quirements and the associated phenomenology are dis-

FIG. 23. Plot of the function t(R). See Eq. (5.143).
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cussed in Secs. VI.B and VI.C. Another way to over-
come the effects of high magnetic fields that are
detrimental to electron superconductivity is to use lay-
ered superconductors and magnetic fields parallel to the
layers. Superconductors of this type are rather different
from the ones considered in the original LOFF papers;
in particular, organic superconductors are compounds
with these features and are therefore good candidates.
They will be discussed in Sec. VI.D, while in Sec. VI.E
we briefly discuss future possible developments in the
area of atomic physics. The final part of this section is
devoted to phenomenological implications of the LOFF
phase in nuclear physics (Sec. VI.F) and QCD (Secs.
VI.G and VI.H). In particular, in this last subsection we
discuss a possible role of the QCD LOFF phase in a
peculiar phenomenon of pulsars, i.e., the periodic
glitches in their angular velocity.

A. Type-I superconductors

In the original LOFF papers (Fulde and Ferrell, 1964;
Larkin and Ovchinnikov, 1964) the difference in chemi-
cal potentials between spin-up and spin-down electrons
arises from the interaction of a magnetic field with the
electron magnetic dipole moments. The magnetic field
can hardly be the external field Hext . , which exerts a
stronger influence on the orbital motion than on the
electron spin. Therefore the inhomogeneous phase was
thought to arise in nonmagnetic metals in the presence
of paramagnetic impurities. Under an external field, the
host impurities display ferromagnetic alignment. With
decreasing temperature the material becomes a super-
conductor while the ferromagnetic alignment persists,
leading to a constant self-consistent exchange field, pro-
portional to the average spin of the impurities. This field
is at the origin of the modulated order parameter. The
value dm1'D0 /& , above which the LOFF phase can
exist, corresponds to a critical value of the magnetic field
that can be derived as follows (Chandrasekhar, 1962;
Clogston, 1962): The susceptibility of an electron gas in
the normal phase at T50 is

xn5mB
2 r , (6.1)

where r5gpF
2 /(2p2vF) is the density of states at the

Fermi surface, mB is the Bohr magneton, and g52 is the
electron degeneracy factor. On the other hand, the sus-
ceptibility in the superconducting phase at T50 van-
ishes: xs50 because, in order to polarize the supercon-
ductor, one has to break the Cooper pair, which costs
energy. The free energy per unit volume fs of the super-
conductor, in the absence of paramagnetic effects, is

fs5fn2
Hc

2~T !

8p
, (6.2)

where fn is the free energy of the normal phase and
Hc(T) is the critical field. Including the Pauli paramag-
netism implies adding to the Hamiltonian a term

2mBc†s•Hc , (6.3)

while Eq. (6.2) becomes
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fs5fn1
~xn2xs!H2

2
2

Hc
2~T !

8p
. (6.4)

Therefore BCS superconductivity will survive at T50
for magnetic fields satisfying

H<AHc
2~0 !

4pxn
[HP~0 !. (6.5)

Now Hc
2(0)/8p5rD0

2/4 and therefore the Pauli limiting
field at T50 is

HP~0 !5
D0

&

1
mB

. (6.6)

From a comparison of Eqs. (6.3), (6.6), and (2.1), we see
that dm15mBHP(0).

For a type-I superconductor it is difficult to reach the
Pauli limit (6.6) because, while HP(0) is typically of the
order of 300 kOe, Hc(0) is of the order of 1 kOe. There-
fore superconductivity will be broken by the magnetic
field well before the Clogston-Chandrasekhar limit is
reached. This implies that the LOFF phase is unlikely to
be produced by these materials, and one has to turn to
type-II superconductors (Saint-James et al., 1969) be-
cause for some of these superconductors the upper criti-
cal field Hc2 can be very high.

B. ‘‘Clean’’ and strongly type-II superconductors

To evaluate the possibility of the LOFF state one has
to take into account not only Pauli paramagnetism of
the electrons but also orbital effects (Ginzburg, 1957).
Before doing that, let us first distinguish between
‘‘clean’’ and ‘‘dirty’’ superconductors (Anderson, 1959).
One calls ‘‘clean’’ the superconductors, in which the
electron mean free path l is much larger than the super-
conducting coherence length j0 ,

l@j0 , (6.7)

while ‘‘dirty’’ superconductors are characterized by the
opposite condition, l!j0 . In clean superconductors,
electrons at the Fermi surface move with velocity vF ,
while in dirty superconductors the electron motion is
described by a diffusion equation. Dirty superconduct-
ors are characterized by the presence of impurities,
which can narrow and even destroy the LOFF state
(Aslamazov, 1969; Takada, 1970). Therefore materials
with small l , e.g., PbMo6S8 , should not display the
LOFF phase (see, for example, Decroux and Fischer,
1982). On the other hand, the so-called heavy-fermion
superconductors are favored: these materials are indeed
characterized by the small Fermi velocity of their quasi-
particles (Rauchschwalbe, 1982); since

j05
\vF

pD
, (6.8)

for small enough vF the condition (6.7) is satisfied. For
example, in the heavy-fermion compound UPd2Al3 , the
superconducting coherence length is j0'85 Å, which is
Rev. Mod. Phys., Vol. 76, No. 1, January 2004
much smaller than the electron mean free path l
5700 Å; therefore it can be considered a clean super-
conductor.

To evaluate the possibility of the LOFF state in
type-II superconductors, one has to take into account
not only Pauli paramagnetism of the electrons, but also
orbital effects. This analysis was first performed by
Gruenberg and Gunther (1966). These authors followed
the variational method of Werthamer et al. (1966) by
making an ansatz for the condensate. In general, there is
competition between orbital and paramagnetic effects,
the former trying to organize a structure of Abrikosov
vortices and the latter a periodic LOFF structure. Or-
bital effects therefore reduce the possibility of a LOFF
state which can exist only for sufficiently high Hc2 . At
T50 for clean type-II superconductors with an isotropic
dispersion law, the LOFF state can persist provided

a5&
Hc2~0 !

HP~0 !
.1.8. (6.9)

Here a is the parameter first introduced by Maki (1964),
Hc2(0) is the Gor’kov upper critical field at T50 in the
absence of paramagnetic effects (Gor’kov, 1960), and
HP(0) is the Pauli limiting field defined in Eq. (6.6).

In conclusion, good experimental conditions for ob-
serving the LOFF state should be provided by a clean
superconductor with a large a value. These features are
not easily found in the most common superconductors
and therefore experimental investigations consider un-
conventional superconductors, e.g., heavy-fermion, or-
ganic, or high-Tc superconductors. As a matter of fact,
many of these materials are strongly type-II supercon-
ductors, which means that the condition (6.9) can be
satisfied. Moreover, they often have a layered structure,
which implies that, if the magnetic field is applied paral-
lel to the layers, the orbital effect is minimum and the
Zeeman effect, on which the LOFF phase is based, is
dominant.

Very clean and simultaneously strong type-II super-
conductors should be more easily realizable in d-wave
materials like the high-Tc cuprates and organic super-
conductors like k-(ET)2 or l-(ET)2 salts. They will be
discussed in more detail below; suffice it to say here that
in d-wave superconductors the region of the LOFF
phase is much more extended than in s-wave supercon-
ductors. The analysis of Maki and Won (1996), where
this conclusion was drawn, has been extended by Won
and Maki (2002) to the calculation of the LOFF free
energy, specific heat, and magnetic susceptibility. In par-
ticular, for these layered d-wave superconductors the
energetically favored structure at T50 is found to be

D~x ,y !}cos qx1cos qy . (6.10)

Other materials in which the possible existence of
LOFF phases has been investigated are ferromagnetic
metals or alloys (Pickett et al., 1999; Dyugaev et al.,
2001). The study of the possible coexistence of ferro-
magnetism and superconductivity was initiated by Ginz-
burg (1957), who noted that, though the two orderings
can in principle coexist, their simultaneous presence is
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practically impossible under ordinary conditions. As a
matter of fact, the presence in ferromagnets of a spon-
taneous magnetization M0 produces at T50 an internal
magnetic induction B054pM0 even in the absence of an
external magnetic field. For superconductivity to exist,
B0 should be smaller than the lower critical field at T
50, in the absence of ferromagnetism:

B0<Hc1
0 ~0 !. (6.11)

However, the induction B0 at T50 is of the order of 10
kOe (e.g., 22, 18.5, 6.4, 24.8 kOe, respectively, for Fe,
Co, Ni, Gd), while the critical field is in general much
smaller, of the order of a few kOe or less. Superconduc-
tivity in ferromagnets is therefore difficult unless condi-
tion (6.11) is rendered possible by special situations such
as reduced size of the sample, with dimensions of the
order of the penetration depth, or formation of a vortex
phase in type-II superconductors, which locally screens
the internal magnetic induction, allowing an exception
to Ginzburg’s negative conclusion (Krey, 1973). As a
matter of fact, superconductivity was recently reported
in the ferromagnetic alloy RuSr2GdCu2O8 (Bernhard,
1999; Hadjiev et al., 1999; Pringle et al., 1999; Tallon
et al., 1999). This layered material first becomes ferro-
magnetic at T5132 K; superconductivity appears at T
535–40 K, and finally, at T52.6 K, Gd ions acquire an
antiferromagnetic order. The theoretical study of Pickett
et al. (1999) confirms these reports, but suggests that the
superconducting phase is of the LOFF type because the
coupling between ferromagnetism and superconducting
layers appears to be sufficiently weak to permit super-
conductivity, but strong enough to require the inhomo-
geneous phase. In a similar context, Dyugaev et al.
(2001) consider the possibility of creating the LOFF
phase using ferromagnetic materials instead of nonmag-
netic bulks with paramagnetic impurities as in the origi-
nal LOFF papers. The impurities create not only an ex-
change interaction, but also an electromagnetic
interaction. Using nuclear ferromagnetism, as they pro-
pose, would reduce the latter, since the effective field
would be proportional to the nuclear magneton and not
to the Bohr magneton. They show that in some metals,
e.g., Rh and W, the BCS condensate embedded in a ma-
trix of ferromagnetically ordered nuclear spins should
manifest the LOFF phase.

All the proposals we have discussed so far are rather
different from the one discussed in the original LOFF
papers. An extension of the LOFF analysis to these ma-
terials and to unconventional superconductors is beyond
the scope of the present review. We shall therefore limit
our presentation to a brief survey of the experimental
results, referring the interested reader to the specialized
literature (Murthy and Shankar, 1995; Gegenwart, 1996;
Shimahara et al., 1996; Samohkin, 1997; Shimahara,
1998b; Pickett et al., 1999; Agterberg and Yang, 2001;
Yang, 2001).

C. Heavy-fermion superconductors

The first experimental studies of the LOFF phase
used heavy-fermion compounds such as CeRu2 (Huxley
Rev. Mod. Phys., Vol. 76, No. 1, January 2004
et al., 1993), UPd2Al3 (Gloos et al., 1993), and UBe13
(Thomas et al., 1996). For all these materials the condi-
tions for the formation of the LOFF state are met. For
example, CeRu2 is in a metallurgically clean state; more-
over, it exhibits extreme type-II behavior because the
Ginzburg-Landau parameter, which discriminates be-
tween the two types of superconductors (Saint-James
et al., 1969), has the value k516. As another example,
the compound UPd2Al3 used by Gloos et al. (1993) is
characterized by a rather large value of the parameter a
in Eq. (6.9), i.e., a52.4, while also being a very clean
superconductor. To cite another result, in the analysis of
a high-quality single crystal of UBe13 (Thomas et al.,
1996), the very high value Hc2(0).140 kOe was
reached. All these experimental results are, however, in-
conclusive. In a critical analysis of the experiment of
Gloos et al. (1993), Norman (1993) shows that the com-
puted Gor’kov upper critical field does not correspond
to the experimental results reported there. For further
analysis of the compound UPd2Al3 see Yin and Maki
(1993) and Schimanski (1994). In the case of CeRu2 ,
Tenya et al. (1999) shows that the observed effects can
be explained by flux-pinning mechanisms involving dis-
order. Modler et al. (1996) makes a comparative study of
high-quality single crystals of UPd2Al3 and CeRu2 in the
mixed state. The order parameter exhibits a periodic ar-
ray of nodal planes perpendicular to the Abrikosov vor-
tex lines. In the mixed state, the pinning force is very
weak; however, the authors find, for H.10 kOe and T
,0.9Tc , a first-order transition to a state characterized
by strong pinning, which might be interpreted as the for-
mation of a LOFF state. The mechanism by which Abri-
kosov vortex lines in type-II superconductors are pinned
to the vortex cores is similar to the one that pins vortex
lines to nonsuperfluid neutrons in a rotating superfluid
within neutron stars. This will be explained in more de-
tail in Sec. VI.H in connection with the possible role of
the QCD LOFF state in the physics of pulsars.

D. Two-dimensional, quasi-two-dimensional, and organic
superconductors

As we already mentioned, the paramagnetic effect can
dominate if the superconducting bulk has a layered
structure and the magnetic field acts parallel to it, be-
cause in this case the orbital upper critical field can be
extremely high and the breaking due to the spin interac-
tion is most significant. The importance of two-
dimensionality in favoring the LOFF state was first ob-
served by Bulaevskii (1973, 1974), who took into
account both the orbital and the spin effect and who
calculated the upper critical field Hc2(T). Buzdin and
Kulic (1984) carried out the analysis near the tricritical
point. For the same reason, quasi-one-dimensional com-
pounds were also discussed (Buzdin and Tugushev, 1983;
Buzdin and Polonski, 1987; Dupuis et al., 1993; Dupuis,
1995), even though the results of Shimahara (1998a) in-
dicate that the 2D structures are favored over the 1D
ones.
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These results were generalized to arbitrary tempera-
ture and d-wave superconductivity by Shimahara and
Rainer (1997). The main result of this paper is that the
critical field curve Hc2(T) is nonmonotonic and consists
of different pieces corresponding to different Landau
levels, characterized by n.0. In contrast, the Ginzburg-
Landau theory would predict the pair wave function to
be in the lowest energy Landau level, with n50 at Hc2 .
Shimahara (1998a) studied the most favored structure
for a 2D LOFF crystal with a cylindrical Fermi surface.
First, the author found that, in general, 2D structures
are favored over 1D ones; second, he found that the
favored crystalline structure changes with T . For s-wave
superconductivity, the results are as follows: at high tem-
peratures, the antipodal pair condensate

D~r!}2 cos q•r (6.12)

is favored. This was the result found by Larkin and
Ovchinnikov (1964) in three dimensions at T50. With
decreasing temperature, other structures become fa-
vored: first the triangle, then the square, and finally, at
low temperatures, the hexagon. For d-wave pairing at
high temperature, again Eq. (6.12) is favored, while at
low temperature the square dominates; on the other
hand, at intermediate temperatures the phase transition
should be first order. The result at T50 has been con-
firmed by Won and Maki [2002; see Eq. (6.10)]. As
shown by Lebed’ (1986), the quasi-2D superconductors
can be treated as essentially 2D, and therefore the re-
sults of Shimahara (1998a) should also hold for quasi-2D
compounds, provided the external field is sufficiently
strong and is kept parallel to the superconducting layer.

Klein et al. (2000) consider a layered superconductor
in a magnetic field of arbitrary orientation with respect
to the conducting plane. The calculation is based on the
quasiclassical Eilenberger equations (Eilenberger, 1968;
Alexander et al., 1985) and allows elucidation of the
structure of the stable states below H2c , minimizing the
free energy. The stable states are neither pure LOFF
states nor pure Abrikosov vortex states, but are two-
dimensional periodic structures or quasi-one-
dimensional structures in which LOFF domains are
separated by vortex chains. Barzykin and Gor’kov
(2002) address 2D surface superconductivity in the pres-
ence of intense magnetic fields parallel to the surface.
The spin-orbit interaction at the surface changes the
properties of the LOFF state; they find that strong spin-
orbit interactions significantly broaden the range of pa-
rameters where the LOFF phase can exist and produce
periodic superconducting stripes running along the field
direction on the surface.

Organic superconductors are good candidates for the
formation of the LOFF state for the reasons mentioned
above: (i) they have narrow electron bands and there-
fore they are, in principle, clean type-II superconduct-
ors; and (ii) due to their low dimensionality, the orbital
pair-breaking effect is suppressed for magnetic fields
parallel to the layers they form. For these reasons, they
have been discussed by several authors, including
Lebed’ (1986), Gor’kov and Lebed’ (1987), Dupuis et al.
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(1993), Burkhardt and Rainer (1994), Shimahara (1994,
1997), and Dupuis (1995). It is interesting to note that, in
general, thermodynamic signatures are chosen to detect
the transition from the homogeneous BCS phase to the
LOFF phase. This, however, can give ambiguous results,
since the signatures can be produced by different kinds
of phase transitions. Therefore Yang and Agterberg
(2000) propose the use of the Josephson effect. Accord-
ing to this analysis, at the Josephson junction between
two superconductors, one in the BCS and the other in
the LOFF phase, the Josephson current is suppressed.

As discussed by Shimahara and Rainer (1997), the up-
turn of the upper critical field d2Hc /dT2.0 is a com-
mon feature in the LOFF state in quasi-2D systems and
is due to a Fermi-surface effect. Investigations of the
sensitivity of the LOFF state to the shape of the Fermi
surface include those of Aoi et al. (1974) and Shimahara
(1994, 1997). This upturn and a first-order transition be-
low the critical field have been observed in the organic
compound k-(BEDT-TTF)2Cu(NCS)2 , a quasi-two-
dimensional organic superconductor examined by a
number of authors (Nam et al., 1999; Houzet and Buz-
din, 2000; Ishiguro, 2000; Singleton et al., 2000, 2001;
Symington et al., 2001). A similar compound is studied
by Goddard et al. (2002). These studies give some evi-
dence of the formation of the LOFF state. For example,
Singleton et al. (2000) studied resistance and magnetic
behavior of single crystals of this superconductor in
magnetic fields up to 33 T and at temperatures between
0.5 and 11 K. When the magnetic field lies precisely in
the quasi-2D planes of the material, they find evidence
for a phase transition from the superconducting mixed
state into a LOFF state, manifested as a change in the
rigidity of the vortex system. Manalo and Klein (2000)
compare the theoretical anisotropic upper critical field
Hc of a quasi-two-dimensional d-wave superconductor
with recent Hc2 data for k-(BEDT-TTF)2Cu(NCS)2
and find agreement in both the angular and the tempera-
ture dependence of Hc . According to these authors, this
supports the suggestion that the LOFF phase exists in
this material for exactly plane-parallel orientation of the
magnetic field.

Uji (2001) reported field-induced superconductivity in
an organic superconductor, l-(BETS)2FeCl4 @BETS
5bis(ethylenedithio)tetraselenafulvalene# . A possible
mechanism to create field-induced superconductivity is
the Peter-Jaccarino effect (Jaccarino and Peter, 1962).
However, the upwards convex nature of the lower criti-
cal field as a function of the temperature casts doubts on
this interpretation. Therefore some authors, e.g., Balicas
et al. (2001), have proposed that these results can be in-
terpreted as evidence of the formation of the LOFF
state. These results were reviewed by Houzet et al.
(2002) and Shimahara (2002). In particular, in the latter
paper, an experimental phase diagram of the field-
induced superconductivity in this organic compound was
theoretically reproduced by a combination of the LOFF
state and the Jaccarino-Peter mechanism. Tanatar et al.
(2002) discuss whether the LOFF state has been ob-
served via thermal conductivity k(H) in the quasi-two-
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dimensional organic superconductor l-(BETS)2GaCl4 .
For clean samples the behavior of k(H) is similar to that
expected for a second-order phase transition and is con-
sistent with the formation of a LOFF phase.

E. Future developments

The superconducting LOFF phase might be realized
even if the difference in chemical potentials of two spe-
cies were not generated by a magnetic field acting on
electron spins. Apart from nuclear physics and pulsars,
to be discussed below, another context might be offered
by an ultracold quantum degenerate Fermi gas of atoms
comprising two hyperfine states. The experimental in-
vestigations of ultracold gases were first dedicated to the
study of Bose-Einstein condensation (Anderson et al.,
1995; Davis et al., 1995; Bradley et al., 1997; Fried et al.,
1998); subsequently these techniques were extended to
magnetically trapped ultracold alkali Fermi gases or to
gases with coexisting Bose-Einstein condensate and
Fermi gas (Schreck et al., 2001; Modugno et al., 2002;
Roati et al., 2002). In particular, two-state mixtures of
ultracold gases have been employed, with 40K vapors
(DeMarco and Jin, 1999; DeMarco et al., 2001), or 6Li
(O’Hara et al., 2001; Granade et al., 2002), or a mixture
of 6Li and 7Li (Mewes et al., 1999). Future developments
could lead to the observation of superconductivity and
Cooper fermion pair condensation in these systems. As
discussed by Combescot (2001), it is quite likely that the
two hyperfine states would have different atomic popu-
lations, since at the moment there are no known fast
relaxation mechanisms to equalize the two atomic popu-
lations. Therefore superconductivity for two-state ultra-
cold Fermi gases is likely to be of the LOFF type.
Combescot (2001) has performed a theoretical study of
6Li under the above-mentioned conditions; he considers
not only s-wave interactions, but also an anisotropic
term induced by density fluctuation exchange and shows
that the range where the LOFF phase is realized in-
creases with the increasing role of the anisotropic term.
This is an interesting theoretical development, which
adds new interest to the experimental investigations of
ultracold atomic Fermi gases. It remains to be seen,
however, if such a possibility is actually realized in Na-
ture.

F. LOFF phase in nuclear physics

Neutron-proton pair correlations and the possibility
of n-p Cooper-pair condensation are at present studied
in several different contexts, from heavy-ion collisions to
astrophysics. They have been investigated, using the
BCS theory, in infinite nuclear matter (Alm et al., 1990,
1993, 1996; Vonderfecht et al., 1991; Baldo et al., 1992;
Sedrakian et al., 1997) and by mean-field effective inter-
actions in finite nuclei. In several cases nuclear matter is
highly asymmetric, with proton concentration at most
30–40 % in supernova matter and 10% in neutron stars.
These asymmetries are detrimental to nucleon super-
conductivity; on the other hand, for weakly asymmetric
Rev. Mod. Phys., Vol. 76, No. 1, January 2004
states, fermion condensation is indeed possible. For ex-
ample, weakly isospin-asymmetric nuclear matter favors
the formation of Cooper pairs in the 3S1-3D1 channel,
due to the presence of a tensor force; gaps are of the
order of 10 MeV. Condensation in this channel might be
relevant for low-density bulk matter such as the dilute
nuclear matter in supernovas. On the other hand, there
is no evidence of large-gap isospin singlet pairing in or-
dinary nuclei, which might be explained by the presence
of a spin-orbit interaction (Goodman, 1999; Martinez-
Pinedo et al., 1999). Sedrakian and Lombardo (2000)
study the dependence of the gap on both the isospin
asymmetry anp5(rn2rp)/r and the temperature, using
realistic nuclear interactions. For small asymmetries the
gap develops a maximum at a certain intermediate tem-
perature; for large asymmetries the superconducting
phase exists only at finite temperature, because the
smearing effect of the temperature on the Fermi sur-
faces favors condensation. At higher values of anp
(.0.11 in their model), pairing is no longer possible.

Also in the context of isospin-asymmetric nuclear
matter, it is possible to have a transition from the BCS
state to a LOFF phase instead of to the normal state
(Sedrakian et al., 1997; Sedrakian, 2001; Isayev, 2002).
Sedrakian (2001) studies the possibility of a spatially in-
homogeneous condensate in asymmetric nuclear matter.
Condensation is possible in different channels. The
isospin-triplet channels are favored for large enough
asymmetries; more exactly, the channel 1S0 dominates
at low densities, and the channel 3P2-3F2 (or 1P2) at
high densities. For weak asymmetries the dominant
channels are the isospin singlets 3S1-3D1 (low density)
and 3D2 (high density). Sedrakian considers the case of
low density. As the isospin singlet 3S1-3D1 has a
strength much larger than the isospin triplet 1S0 , he ne-
glects the latter. The interaction is modeled by the Paris
nucleon-nucleon potential. The gap equations are solved
numerically and have nontrivial solutions for nonvanish-
ing total momentum of the pair P . The LOFF phase is
favored for anp.0.25 and P50.3pF , independent of
anp . For anp.0.37, pairing exists only in the presence
of nonvanishing P . The maximal values of anp and P
compatible with the LOFF state are 0.41 and 0.3pF , re-
spectively (the actual values are indicative, as a refine-
ment of the treatment of the nuclear interaction may
change them by a factor as large as 3). The results are
obtained at T53 MeV. From the BCS to the LOFF
phase, the phase transition is first order, while from the
LOFF to the normal state, it is second order. No attempt
is made to determine the most favored crystalline struc-
ture.

Under hypotheses similar to those of Sedrakian,
Isayev (2002) studied the effect of coupling between the
isospin singlet and isospin triplet, since at low densities
pairing between these two channels may be important
(Akhiezer et al., 1999). Isayev goes beyond the approxi-
mation of a ‘‘bare’’ nucleon interaction by using the
Fermi-liquid phenomenological approach (Akhiezer
et al., 1994) and thereby finds interesting peculiarities at
T50. First, the triplet-singlet channel turns out to be
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energetically favored; second, the phase transition from
the LOFF to the normal state can be of first order, de-
pending on the nature of the nucleon interaction. While
still model dependent, these investigations of the LOFF
phase in nuclear interactions are interesting, as they of-
fer, in principle, a different path to the LOFF phase. To
be closer to phenomenology, one should consider more
complicated structures, such as, for example, hyperon-
rich matter. Alternatively, the modulation of the order
parameter might be caused by Pauli paramagnetism due
to strong magnetic fields in highly magnetized neutron
stars (magnetars). In this case one could have a splitting
in the Fermi surfaces of a nucleon pair in the I51, L
50 channel (Sedrakian, 2001).

G. Why color LOFF superconductivity could exist in
pulsars

In this subsection and in the next we shall be inter-
ested in some numerical estimates of the values of the
parameters needed for the LOFF phase to occur in pul-
sars. In general, color superconductivity in quark matter
might be realized in compact stars. This expectation fol-
lows from the following two facts.

First, the BCS critical temperature is given by

Tc50.57DBCS (6.13)

and, in QCD, DBCS is expected to range between 20 and
100 MeV. This estimate arises from weak-coupling
calculations7 which are valid only at asymptotically high
chemical potentials m@108 MeV (Rajagopal and
Shuster, 2000), and from models with parameters ad-
justed to reproduce the physics at zero densities.8 None
of these calculations is valid at chemical potentials
around 400 MeV, which corresponds roughly to the den-
sity of the inner core of a neutron star, as we shall see
below. However, in all these cases one gets values of the
gaps of the order of those quoted above.

The second fact has to do with the thermal history of
a pulsar. The general belief is that compact stars such as
pulsars are formed in the core of a supernova explosion.
The temperature at the interior of a supernova is about
1011 K, corresponding to 10 MeV (1 MeV51.1065
31010 K). The star cools very rapidly by neutrino emis-
sion, with the temperature going down to 109 –1010 K in
about one day. Neutrino emission then dominates the
cooling for one thousand years. In this period the tem-

7See Pisarski and Rischke (1999a, 1999b, 2000a, 2000b); Scha-
fer and Wilczek (1999c); Shovkovy and Wijewardhana (1999);
Son (1999); Beane and Bedaque (2000); Brown et al. (2000a,
2000b, 2000c); Evans et al. (2000); Hong et al. (2000); Hsu and
Schwetz (2000); Rajagopal and Shuster (2000); Schafer (2000);
Beane et al. (2001).

8Examples include the works of Alford et al. (1998); Rapp
et al. (1998, 2000); Alford, Rajagopal, and Wilczek (1999);
Berges and Rajagopal (1999); Carter and Diakonov (1999);
Evans et al. (1999a, 1999b); Rajagopal (1999); Schafer and
Wilczek (1999b); Alford (2000); Wilczek (2000); Schafer
(2001).
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perature reaches about 106 K. After this period the star
cools down due to x-ray and photon emission and in a
few million years reaches a surface temperature of
around 105 K. Therefore, for the greatest part of its ex-
istence, a neutron star has a temperature lower than the
critical temperature, with the possibility of forming color
superconducting condensates. It follows that, in this con-
text, a compact star can be considered to be at zero
temperature because its temperature is much lower than
the typical BCS energy gap, Tn.s. /DBCS'1026 –1027.

We have seen previously that QCD favors the forma-
tion of BCS condensates in idealized cases, e.g., two or
three massless flavors of quarks. However, in realistic
cases the three quarks have different Fermi momenta
due to mass differences. It is interesting to have an idea
of the order of magnitude of the scales involved in the
description of a neutron star with a quark core. We be-
gin with a very crude example of a free gas of three
flavor quarks, taking up and down massless quarks, and
a strange quark with mass Ms (Alford et al., 2000). Re-
quiring that the weak interactions be in equilibrium al-
lows us easily to determine the chemical potentials and
the Fermi momenta for the quarks. We find

mu5m2
2
3

me , pF
u5mu ,

md5m1
1
3

me , pF
d5md ,

ms5m1
1
3

me , pF
s 5Ams

22Ms
2, (6.14)

where m is the average chemical potential

m5
1
3

~mu1md1ms! (6.15)

and me the chemical potential of the electrons. Notice
that

(
i5u ,d ,s

m iNi1meNe5mNq2meQ , (6.16)

where

Nq5 (
i5u ,d ,s

Ni , Q5
2
3

Nu2
1
3

~Nd1Ns!2Ne .

(6.17)

The chemical potential for the electrons is fixed by re-
quiring electrical neutrality, corresponding to the condi-
tion for the grand potential V at zero temperature,

Q5
]V

]me
50. (6.18)

V is obtained from Eq. (2.60) (omitting the volume fac-
tor):

V5
1

p2 E
0

pF
p2@E~p !2m#dp . (6.19)

In our case we get
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V5
3

p2 (
i5u ,d ,s

E
0

pF
i

p2@Ei~p !2m i#dp

1
1

p2 E
0

me
p2~p2me!dp , (6.20)

where

Eu ,d~p !5p , Es~p !5Ap21Ms
2. (6.21)

Although the integral is feasible, its expression is alge-
braically involved and it is easier to do all of the calcu-
lations numerically. In particular, the result for the
chemical potential of the electrons for different values
of m as a function of Ms is given in Fig. 24. We can get an
analytical expression by performing an expansion up to
the order Ms

4/m4. We get

me'
Ms

2

4m
(6.22)

and

V'2
3

4p2 m41
3

4p2 Ms
2m22

7212 ln~Ms/2m!

32p2 Ms
4.

(6.23)

The baryon density is obtained as

rB52
1
3

]V

]m
5

1
3p2 (

i5u ,d ,s
~pF

i !3. (6.24)

The plot of the ratio of the baryon density to the nuclear
baryon density is given in Fig. 25. The nuclear baryon
density has been assumed to be the inverse of the vol-
ume of a sphere of radius about 1.2 fm. Within the same
approximation as before, one finds

rB'
m3

p2 F12
1
2 S Ms

m D 2G . (6.25)

We note that densities in the core are of the order of
1015 g/cm3, corresponding to a chemical potential of the
order of 400 MeV, as shown in Fig. 25. In particular, let

FIG. 24. The chemical potential m of the electrons vs Ms for
three values of the average chemical potential.
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us discuss the range of values around 400 MeV of the
average chemical potential, with a strange mass of the
order 200–300 MeV (the strange mass here is not the
current mass, but an effective density-dependent mass).
With Ms5300 MeV one finds me553 MeV (56 MeV
from the approximate equation) with Fermi momenta

pF
u5365 MeV, pF

d5418 MeV, pF
s 5290 MeV,

(6.26)

and a baryon density about 4.4 times the nuclear matter
density. With Ms5200 MeV the result is me524 MeV
(25 MeV from the approximate equation) and

pF
u5384 MeV, pF

d5408 MeV, pF
s 5357 MeV,

(6.27)

and a baryon density about 5.1 times the nuclear matter
density. To go to baryon densities relevant to the central
core of the star, i.e., densities from six to eight times the
nuclear matter density, one needs to go to higher values
of m and lower values of Ms , where the difference
among the Fermi momenta is lower. This can be seen
from Fig. 26, or using our approximate expression for
me :

pF
u'm2

Ms
2

6m
, pF

d'm1
Ms

2

12m
, pF

s 'm2
5Ms

2

12m
,

(6.28)

FIG. 25. The ratio of the baryon density of the free-quark gas
rB to the nuclear baryon density rn .m . vs Ms , for three values
of the average chemical potential.

FIG. 26. The Fermi momenta Pf of the three quarks vs Ms .
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with

pF
d2pF

u'pF
u2pF

s '
Ms

2

4m
. (6.29)

The previous results are rather general, but in order to
discuss the possible astrophysical applications we need
to fix a value for the BCS gap D0 . Notice that we can
trade the coupling constant G [see Eq. (4.55)] for D0
since G is fixed once we give the cutoff d. On the other
hand, the equation for the chiral gap (Rajagopal and
Wilczek, 2001) gives a relation between the Nambu-
Jona-Lasinio cutoff L5d1m , the coupling G , and the
constituent quark mass. By taking the constituent mass
around 300–400 MeV and fixing L, one still has a pa-
rameter to play around with, and it is possible to get
values of D0 from about 20 MeV up to about 100 MeV.
In the present case, since the typical value of dm inside
the LOFF window is 0.7D0 and

dm5
1
2

~md2mu!5
1
2

me , (6.30)

we can reproduce approximately the situation illustrated
at the beginning of this subsection with Ms5300 MeV
by choosing D0540 MeV. With this choice the LOFF
grand potential at dm5dm1 is of the order 1027 GeV4,
which, as we shall see in Sec. VI.H, is of the right order
of magnitude to give rise to the glitch phenomenon (Al-
ford et al., 2000). Notice also that the LOFF condensate
evaluated at dm1 ,

DLOFF~dm1!'0.25D0510 MeV, (6.31)

is much larger than the typical temperature of a neutron
star, of the order of keV.

H. Astrophysical implications of the QCD LOFF phase

While much experimental effort is devoted to the
search for the LOFF phase in condensed matter, so far
there has been no comparable search in the crystalline
phase of QCD. The reason is that it is difficult to create
the experimental conditions of high density and low
temperature for hadronic matter. The crystalline super-
conducting phase of quarks may, however, have results
relevant for astrophysical dense systems, in particular
for the explanation of pulsar glitches. Pulsars are rapidly
rotating stellar objects, characterized by the presence of
strong magnetic fields and by an almost continuous con-
version of rotational energy into electromagnetic radia-
tion. The rotation periods can vary from 1023 sec up to
a few seconds; these periods never decrease but rather
increase slowly except for occasional glitches, i.e., sud-
den increases of the rotational frequencies of the order
of dV/V'1026 or smaller, where V is the angular veloc-
ity. Glitches are a typical phenomenon of pulsars—
probably all pulsars experience them.

Pulsars are commonly identified with neutron stars;
which are characterized by a complex structure compris-
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ing a core, an intermediate region with superfluid neu-
trons, and a metallic crust. With a chemical potential of
the order of 400 MeV, as we have seen, the conditions
for color superconductivity in the color-flavor-locked
(CFL) or the LOFF scenarios might be reached in the
core. Before examining this possibility, however, let us
describe the standard explanation of glitches, in the
form originated by Anderson and Itoh (1973) and Alpar
et al. (1984a). This model is based on the idea that the
sudden jumps of V are due to the outward movement of
rotational vortices in the neutron superfluid, and the in-
teraction of these vortices with the crust. Crucial ingre-
dients of the model are therefore the existence of a su-
perfluid and a crystal (the metallic crust). This is one of
the main reasons for the identification of pulsars with
neutron stars, as only neutron stars are thought to have
a metallic crust. The LOFF state can be relevant in this
context because, if there is a LOFF phase inside the
pulsar, the superfluid might interact with the LOFF crys-
tal instead of the crust, thus providing an alternative or
complementary mechanism for the glitches. Thus far,
there is no developed model for the pinning of the su-
perfluid vortices to the QCD LOFF crystals within com-
pact stars. Therefore we limit our survey to an introduc-
tion to the subject, along the lines of Alford (2000),
Alford et al. (2001b), and Nardulli (2002c).

Let us consider a compact star whose metallic crust
rotates with angular velocity V. The superfluid inside
the star should not rotate because, in the absence of
friction, the crust cannot communicate its rotation to the
superfluid component. The velocity of the superfluid is
vs5\“F/m , where F is the phase of the superfluid con-
densate wave function. The consequence of this formula
would be rgvs•dø50. This would imply the absence of
rotation in the superfluid, which, however, does not cor-
respond to the state of minimal energy (for a discussion
see Landau et al., 1980). The correct condition is

R
g
vs•dø52pnk , (6.32)

where k is the quantum of vorticity: k5\/m . For Eq.
(6.32) to hold, the curve g must wind around a singular
point; the integer n is the winding number, which counts
the number of times the curve goes around the singular
point; the most energetically favorable condition is real-
ized by n51. If g is in a plane, the condition (6.32) holds
for any plane and the locus of the singular points is a
vortex line. In the absence of rotation there are no vor-
tex lines. The minimal angular velocity Vmin for the for-
mation of the first vortex line is

Vcrit5
\

mR2 ln
R

a
. (6.33)

Here we are assuming a cylindrical configuration with
radius R ; a is a cutoff of the order of the interatomic
distances. When V is increased, the number N of vortex
lines per unit area in the superfluid increases according
to the formula
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N5
mV

p\
(6.34)

and one gets, instead of Eq. (6.32),

R
g
dø"vs5NA2pk , (6.35)

where A is the area encircled by g. Eventually the vor-
tex lines tend to fill in the entire space. As a numerical
example one can estimate N for the pulsar in the Crab
nebula. Here m52mN (the condensate is formed by
neutral bosons: pairs of neutrons) and V5Vpulsar gives
N.1.93105 cm22 with an average distance between
vortex lines d;N21/2;1022 cm. If the vortex line is a
straight line, vs is perpendicular both to the vortex line
and to the radius joining the singular point and the point
at which we compute vs . At a distance r from the sin-
gular point one has

vs5
nk

r
, (6.36)

as can be immediately seen from Eq. (6.32). More gen-
erally,

vs5
k

2 E
v .l .

dø∧R
R3 , (6.37)

where R is the distance vector from the vortex line to
the point at which we compute the superfluid velocity.

During the rotation, the vortex lines follow the rota-
tional motion of the vessel, which is clear because they
are pinned at the boundary of the superfluid. In particu-
lar, for rotations around an axis, the vortex lines are, by
symmetry, straight lines parallel to the rotation axis.
Their motion imitates the motion of the liquid as a
whole and, as a consequence, for the superfluid one can
also use the hydrodynamical formula

V5
1
2
“∧vs , (6.38)

which, in principle, would be valid only for the normal
component of the fluid.

Let now n(r) be the number of vortices per unit area
at a distance r from the rotation axis; if v5vs is the
superfluid velocity, one gets

R
g
dø•v5E

0

r
dS•“∧v52pkE

0

r
2pr8n~r8!dr8.

(6.39)

We put k52pk5h/2mn and write Eq. (6.39) as

2pr2V~r !5kE
0

r
2pr8n~r8!dr8, (6.40)

which implies

kn~r !52V~r !1r
]V

]r
. (6.41)
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Since the total number of vortex lines is conserved, one
has

]n/]t1“•~nvr!50, (6.42)

where vr is the radial component of the superfluid veloc-
ity. We write Eq. (6.40) as

2pr2V~r !5kE
0

r
ndS (6.43)

and take the time derivative, using Eq. (6.42), to get

2pr2
]V

]t
52kE

0

r
dS“•~nvr!. (6.44)

Using the Gauss theorem we get 2pr2]V/]t
52k2prnvr , i.e.,

]V

]t
52

knvr

r
52S 2V~r !1r

]V

]r D vr

r
. (6.45)

Equation (6.45) shows that the only possibility for the
superfluid to change its angular velocity (V̇Þ0) is by
means of a radial motion, i.e., vrÞ0.

Let us now consider a rotating superfluid in contact
with rotating normal matter on which an external torque
is acting (Alpar et al., 1984a). We denote by Ic and Vc
the moment of inertia and angular velocity of the nor-
mal components, which, in a neutron star, includes the
crust and possibly other components. The equation of
motion of the normal component is

IcV̇c~ t !5Mext1Mint . (6.46)

Besides the external torque Mext , basically related to
the spin down of the pulsar (or the steady accretion in
binary pulsars), we have included the internal torque
Mint due to interaction with the superfluid,

Mint52E dIpV̇~r ,t !, (6.47)

where dIp is the infinitesimal moment of inertia of the
superfluid component. Equations (6.45)–(6.47) are the
equations of motion for the angular velocities V and Vc
(superfluid and crust). The two velocities are coupled
not only through Mint , but also by vr because, as we
shall show below, vr depends on the difference V2Vc .
We note again that fundamental to this model is the
existence of radial motion, for, if vr50, then V5const,
and only Vc changes, due to the external torque alone.

In a neutron star, superfluid neutrons (in Cooper
pairs) coexist with nuclei in the crust. Also in the crust
are superfluid neutrons, but they are characterized by a
different (and smaller) D. Computing the difference in
the free energies between the two phases one obtains
the difference of pressures and, consequently, the force
per unit length of vortex line. Let b be the average dis-
tance between the nuclei; b is also the average distance
between two consecutive pinning centers. Let us assume
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2j0,b , (6.48)

where j0 is the superconducting coherence length, which
also gives the dimension of the vortex core, since j0 is of
the order of the spatial extension of the Cooper pair.
The maximum pinning force is obtained when the vortex
passes through one layer of the lattice; therefore the
maximum force per unit length of vortex line is

fp.
dEp

bj
, (6.49)

where

dEp5Fs2Fc}rDs
2, (6.50)

where Fs and Fc are the free energies of the superfluid
neutrons and the nucleons in the crust. Ds is the gap for
superfluid neutrons, and one can neglect Dc , the gap of
superfluid neutrons in the crust, since Dc!Ds . Equation
(6.50) implies that neutrons tend to remain in the vol-
ume V of the vortex core because they experience a
force repelling them from the superconducting phase (if
neutron-rich nuclei are present, the repulsion will be less
important). Typical values for the pinning energy per
nucleus dEp at densities 331013–1.231014 g/cm3 are

dEp51 –3 MeV, (6.51)

while b525–50 fm and j054 –20 fm give

fp540–1200 MeV3. (6.52)

On the basis of these considerations, let us now sketch
a possible mechanism for the formation of glitches
(Anderson and Itoh, 1973; Alpar, 1977; Alpar et al.,
1984a, 1984b; for further references see below). We con-
sider a rotating neutron star with superfluid neutrons in
its interior and a metallic crust, which is a simplified
model, but adequate for our purposes. As stressed al-
ready, we distinguish between the superfluid velocity V
and the crust velocity Vc . Let us suppose that they are
initially equal, as a consequence of pinning. Due to the
spinning down of the star, Vc decreases; as long as the
vortex cores are pinned to the crust lattice, the neutron
superfluid cannot spin down, because the radial motion
is forbidden. There is therefore a relative velocity of the
superfluid with respect to the pinned vortex core be-
cause V.Vc :

dv5~V2Vc!∧r. (6.53)

The interaction between the normal matter in the core
of the vortex line and the rest of the normal matter (nu-
clei in the lattice, electrons, etc.) produces a Magnus
force per unit length given by

f5rk∧dv, (6.54)

where the direction of k coincides with the rotation axis
and its modulus is equal to the quantum of vorticity. f is
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the force exerted on the vortex line; as it cannot be
larger than fp there is a maximum difference of angular
velocity that the system can maintain:

vcr5~V2Vc!max5
fp

rkr
5

Ep

rkjb
. (6.55)

If v,vcr the vortices remain pinned at the lattice sites
instead of flowing with the superfluid as they generally
do inside it (see discussion above). In contrast, if v
.vcr , the hydrodynamical forces arising from the mis-
match between the two angular velocities ultimately
break the crust and produce the conditions for a glitch.
A possible way to get it is by the observation following
Eq. (6.45). If a bunch of vortex lines are unpinned and
move outwards then Eq. (6.45) implies that the angular
velocity (and the angular momentum) of the superfluid
decreases, and therefore the angular momentum of the
crust increases, which is revealed from outside as a spin
up of the star, i.e., a glitch. A numerical analysis would
require solving the set of equations (6.45)–(6.47), but
this is outside the scope of the present review.9 Let us
instead discuss the possible role of the LOFF phase in
this context. The QCD LOFF phase provides a lattice
structure independently of the crust. Therefore it meets
one of the two requirements of the model for glitches in
pulsars we have outlined above, the other being the
presence of a superfluid. The only existing calculations
for the inhomogeneous phase in color superconductivity
have been performed for the case of two flavors, which,
however, in the homogeneous case, does not present su-
perfluidity, since there are no broken global symmetries.
Superfluidity is, on the other hand, manifested by the
CFL phase of QCD. Therefore a realistic application to
QCD superfluid has to wait until a calculation of the
LOFF phase with three flavors is completed. For the
time being, one can make some order-of-magnitude es-
timates (Alford et al., 2001b). Let us assume the follow-
ing choice of parameters: D2SC540 MeV, DLOFF
'8 MeV, corresponding to the Fulde-Ferrell state; since
q'1.2dm'0.7D2SC , one would get for the average dis-
tance between nodal planes b5p/(2uqu)'9 fm and for
the superconducting coherence length j056 fm. From
Eq. (3.28), with dm5dm1 and an extra factor of 4 to take
into account the two flavors and the two colors, we get
the free energy per unit volume10 uFLOFFu58
3(10 MeV)4 and therefore, from Eq. (6.50), the pinning
energy of the vortex line is

9Models differ in the mechanism by which angular momen-
tum is released; instead of moving outwards, for example, vor-
tex lines might break the crust or rearrange it. For reviews see
Pines and Alpar (1985); Alpar (1995); and, more recently, Ru-
derman (1991); Epstein and Baym (1992); Alpar et al. (1993);
Link and Epstein (1996); Ruderman et al. (1998).

10Using the exact expression instead of Eq. (3.28), which is
valid only in the weak-coupling limit, one would get uFLOFFu
553(10 MeV)4.
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dEp5uFLOFFu3b356 MeV. (6.56)

To get the pinning force we cannot use Eq. (6.49) since
Eq. (6.48) does not hold in this case. For an order-of-
magnitude estimate one can use

fp.
dEp

b2 , (6.57)

giving a pinning force per unit length of the vortex of the
order of

fp'33103 MeV3. (6.58)

Comparing these numerical values with Eqs. (6.51) and
(6.52), one can see that these order-of-magnitude esti-
mates give similar figures, and therefore some of the
glitches in neutron stars may be generated well inside
the star by vortices related to the LOFF phase of QCD.

As we already stated, these conclusions are tentative
because the analysis of the QCD LOFF phase needs to
be extended to the three-flavor case; moreover, the true
ground state is likely to be different from the Fulde-
Ferrel one-plane-wave structure. Nevertheless, they are
encouraging and leave open the possibility that neutron
stars might provide another laboratory where the inho-
mogeneous superconducting phase can be studied. It is
useful to note that even in quark stars, in the QCD su-
perconducting LOFF phase, one would get a crystal
structure with a lattice characterized by a geometric ar-
ray in which the gap parameter varies periodically. This
would overcome the objection that pulsars cannot be
strange stars. This objection is based on the following
observation: if strange matter exists there, quark stars
should be rather common; however, in absence of metal-
lic crusts, strange stars can hardly develop vortices, at
least by the model we have described here. On the con-
trary, if color superconductivity is able to produce a crys-
talline structure, it could also give rise to glitches, and
the argument in favor of the existence of strange stars
would be reinforced.

VII. CONCLUSIONS

Inhomogeneous crystalline superconductivity was pre-
dicted 40 years ago by Larkin, Ovchinnikov, Fulde, and
Ferrell, but realistic conditions for its experimental in-
vestigation became available only a few years ago. In
condensed matter the existence of the LOFF phase, with
its characteristic space modulation of the energy gap,
still awaits complete confirmation. This is due to the fact
that it is indeed a subtle effect. It arises when the Fermi
surfaces of the two species participating in the Cooper
pairing are different. However, for large separation,
pairing is not possible at all and superconductivity dis-
appears altogether. In condensed matter the separation
of the Fermi surfaces is obtained by a Zeeman splitting
due to an exchange interaction caused by a magnetic
field. However, the needed field strength is such as to
Rev. Mod. Phys., Vol. 76, No. 1, January 2004
destroy superconductivity due to diamagnetic effects. As
we discussed in this paper, the way to avoid the problem
is to use unconventional superconductors such as or-
ganic compounds. These materials have a layered struc-
ture and therefore, if the magnetic field is parallel to the
layers, orbital effects can be controlled.

New opportunities have recently arisen for detecting
the LOFF phase in atomic physics (ultracold atomic
gases), nuclear physics, and especially quark matter. This
last development is a consequence of the recent excite-
ment generated by the study of QCD at high density and
low temperature. Inhomogeneous crystalline supercon-
ductivity in this context could be generated by the dif-
ference in quark chemical potentials induced by weak
interactions in the inner core of pulsars. Their main phe-
nomenological effect might be to provide a mechanism
for the explanation of glitches in pulsars. If pulsars are
neutron stars with a core made up by color supercon-
ducting matter, this mechanism would be complemen-
tary to the standard models of glitches. If pulsars are
strange stars, then the crystalline structure of the con-
densate would provide the possibility of pinning the su-
perfluid vortices and eventually creating glitches.

This paper has aimed to present a unified formalism
to describe the LOFF phase in both condensed and had-
ronic matter. The simplest way, in our opinion, to de-
scribe superconductivity effects, including the LOFF
state, is by the effective Lagrangian approach. Since
they are based on the general mathematical ground of
the renormalization group, effective Lagrangians allow
the conditions for this unification. The existence of a
common mathematical basis should allow experts from
one side to fully appreciate and take advantage of the
progresses made on the other. We would be gratified if
this paper turned out to be useful to this end.
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APPENDIX A: CALCULATION OF J AND K

We give here an outline of the calculation of the inte-
grals J and K appearing in the Ginzburg-Landau expan-
sion at T50. Using the definition of J , Eq. (3.5), and K ,
Eq. (3.6), we have
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J[J~q1 ,q2 ,q3 ,q4!51
igr

2 E dŵ
4p E

2d

1d
djE

2`

1` dE

2p )
i51

4

f i~E ,dm ,$q%!

51
igr

2 E dŵ
4p E
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djE
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1` dE
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K5K~q1 ,q2 ,q3 ,q4 ,q5 ,q6!5
igr

2 E dŵ
4p E
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djE
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1` dE
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djE

2`

1` dE
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i51

3 H 1
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J
(A2)
where we have defined

k150, k25q12q2 , k35q12q21q32q4 ,

ø15q1 , ø25q12q21q3 , ø35q12q21q32q41q5 ,
(A3)

with the conditions q12q21q32q450 and q12q21q3
2q41q52q650 for J and K , respectively. We introduce
the Feynman variables xj , yj (j51,2 for J and j51,2,3
for K) to form the vectors k5( ixiki and ø5( iyiøi . Af-
ter rotation of the energy integration contour E→ip4
we get

E dE

2p )
i

1
E1j2dm12w•ki

5E idp4

2p

d~12(xk!

@ ip41j2dm12w•k#2 )
n

dxn ,

E dE

2p )
i

1
E2j2dm22w•øi

5E idp4

2p

d~12(yk!

@ ip42j2dm22w•ø#2 )
n

dyn . (A4)

Next, we perform the j integration by the residues
method, and the angular integration. For J the result is

J52
igr

8 E dp4e~p4!~dm2ip4!

3E F )
n51

2

dxndynG dS 12( xk D dS 12( yk D
@~dm2ip4!22vF

2 uk2øu2#2 .

(A5)

After the energy integration, we have

J52
gr

8 E F )
n51

2

dxndynGdS 12( xk D
3dS 12( yk D 1

vF
2 uk2øu22dm2 . (A6)
Rev. Mod. Phys., Vol. 76, No. 1, January 2004
This expression is general; we can specialize it to the
various crystal structures, as explained in the text.

For K we get, instead of Eq. (A5), the result

K52
3igr

8 E dp4e~p4!E F )
n51

3

dxndynG
3dS 12( xk D dS 12( yk D ~dm2ip4!

3
~dm2ip4!21vF

2 uk2øu2

@~dm2ip4!22vF
2 uk2øu2#4 , (A7)

which, after energy integration, becomes

K52
gr

16 E F )
n51

3

dxndynGdS 12( xk D
3dS 12( yk D 3dm21vF

2 uk2øu2

@vF
2 uk2øu22dm2#3 . (A8)

APPENDIX B: EXPANSION OF P AROUND THE
TRICRITICAL POINT

Let us consider the expansion of P(q) in Q5qvF , at
finite T and m, which can be obtained from Eq. (3.4)
after introducing the Matsubara frequencies:

P~q !52
1
2

grTE dŵ
4p E

2d

1d
dj

3 (
n52`

1` 1

~ ivn2dm2j22ŵ•qvF!~ ivn2dm1j!
.

(B1)

Expanding the first denominator in the momentum q we
find

P~q !5
1
2

grT (
n52`

1` E dŵ
4p E

2`

1`

dj

3 (
m50

` 1

v̄n
21j2

~2ŵ•qvF!2m

~ iv̄n2j!2m , (B2)
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where, as in Eq. (2.70),

v̄n5vn1idm . (B3)

Notice that we have inverted the sum over the Matsu-
bara frequencies with the integration over j. In this way,
as we did for the homogeneous case, we are converting
the divergence in j into a divergence in the series, which
can be treated as before by introducing a cutoff in the
sum. Performing the angular integration and the integra-
tion over j with the help of the integral,

E
2`

1`

dj
1

v̄n
21j2

1

~ iv̄n2j!2m 5~21 !m
p

22mv̄n
2m11 ,

(B4)

we get eventually

P~q !5
1
2

gprT (
n52`

1`

(
m50

`
~21 !m

2m11
Q2m

v̄n
2m11 . (B5)

By using the definition of the first term in the grand
potential as 12P(q) multiplied by 2/g , we easily re-
cover the expression (3.42) for ã . Analogously, to get b̃
and g̃ , we expand J [see Eq. (3.5)] and K [see Eq. (3.6)].
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