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This article provides an overview of the basic principles of the physics of quantum halo systems,
defined as bound states of clusters of particles with a radius extending well into classically forbidden
regions. Exploiting the consequences of this definition, the authors derive the conditions for
occurrence in terms of the number of clusters, binding energy, angular momentum, cluster charges,
and excitation energy. All these quantities must be small. The article discusses the transitions between
different cluster divisions and the importance of thresholds for cluster or particle decay, with
particular attention to the Efimov effect and the related exotic states. The pertinent properties can be
described by the use of dimensionless variables. Then universal and specific properties can be
distinguished, as shown in a series of examples selected from nuclear, atomic, and molecular systems.
The neutron dripline is especially interesting for nuclei and negative ions for atoms. For molecules, in
which the cluster division comes naturally, a wider range of possibilities exists. Halos in two
dimensions have very different properties, and their states are easily spatially extended, whereas
Borromean systems are unlikely and spatially confined. The Efimov effect and the Thomas collapse
occur only for dimensions between 2.3 and 3.8 and thus not for 2. High-energy reactions directly probe
the halo structure. The authors discuss the reaction mechanisms for high-energy nuclear few-body
halo breakup on light, intermediate, and heavy nuclear targets. For light targets, the strong interaction
dominates, while for heavy targets, the Coulomb interaction dominates. For intermediate targets these
processes are of comparable magnitude. As in atomic and molecular physics, a geometric
impact-parameter picture is very appropriate. Finally, the authors briefly consider the complementary
processes involving electroweak probes available through beta decay, electromagnetic transitions, and
capture reactions.
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I. INTRODUCTION

Many scientific disciplines speak of halos: meteorol-
ogy, astrophysics, and accelerator physics, to name a few.
In very general terms a halo is a diluted or less intense
component surrounding a stronger or more massive cen-
tral object. Quite a few quantum systems could fit this
general description, but the way the term has been ap-
©2004 The American Physical Society
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plied for the last 15 years on the quantum level has been
more restrictive, namely, to denote systems in which a
wave-function component has an unusually large spatial
extension. If this were used as the sole criterion, many
systems with widely differing properties could be
counted as halos, e.g., Rydberg states in atoms, and the
term would lose its scientific usefulness. The tradition
has been to restrict the name to a more exclusive set of
structures. We shall in Sec. II consider a more precise
definition of the quantum halo; it suffices here to note
that tunneling into a classically forbidden region should
be a pronounced feature.

The interest in halo systems started with the study of
light atomic nuclei, but the concept has now been ex-
tended to atomic and molecular physics. Several reviews
of specific aspects of halos are available, but there has
been no attempt to cover the basic principles of the
physics of halo systems. Our aim is to provide such an
overview and give a variety of examples of experimen-
tally investigated and theoretically predicted halos.
There is already a sizable literature in nuclear physics
and one can expect the interest in halo systems to re-
main high with the help of the next generation of large-
scale facilities for unstable nuclear beams and the con-
tributions of other branches of physics. In this
introductory section we shall recount briefly the history
of the subject and some of the reasons for the interest in
halo physics, offer perspectives, and present the goals of
this review.

A. How the halo concept developed

The halo concept is quite simple and has appeared
many times in the literature. An old example is the deu-
teron, in which the neutron and proton are more likely
than not to be found outside the range of their interac-
tion in the classically forbidden region. The energy
needed for breakup into two nucleons is relatively small
compared to nucleon separation energies. A necessary
condition for halo formation is that the binding energy
between clusters be small. In an overview paper Baz’
et al. (1960) considered bound states close to such
thresholds. They noted that the relative cluster motion
can be described by a spatially extended Yukawa wave
function and that this is most pronounced for s-wave
neutrons due to the absence of centrifugal and Coulomb
barriers. They also suggested that such systems of large
radii should be easily detectable due to their high
breakup probability. Soon after the work on nucleon
halos, direct radiative proton capture was found to occur
preferentially at distances several times the nuclear ra-
dius (Christy and Duck, 1961; Thomas and Tanner,
1963). The ‘‘leaking out’’ of the proton could thus be
measured and the tail of the Coulomb wave function
explicitly expressed as a function of the binding energy,
e.g., in proton collisions with 7Be (Riisager et al., 1992).
The first excited state in 17F was by then already identi-
fied as an exceptional case and its proton halo nature
was soon established (Rolfs, 1973). These examples em-
phasize the spatial structure of the wave function.
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Gamma decay offers a complementary way of probing
the large extension of the wave function, as, for instance,
in the case of the E1 transition in 11Be (Millener et al.,
1983).

The cluster idea has often been used to describe light
nuclei. For example, 6He or 6Li, may be treated as an
alpha particle bound to a dineutron or a deuteron (Bay-
man et al., 1985). This model explains the variation in
the radius by the difference in the two-body binding en-
ergies as for these two nuclei; see also the early com-
ment (Ellis and Tang, 1986) on the surprisingly large
radius of 11Li measured by Tanihata et al. (1985a,
1985b). The binding energy was also the main ingredient
in the interpretation of the 11Li structure in terms of a
‘‘dineutron’’ weakly bound to the 9Li core (Hansen and
Jonson, 1987).

The Faddeev equations (Faddeev, 1961), which pro-
vide the correct description of the large-distance
asymptotic wave function of three interacting particles,
were used by Efimov (1970) to show that three-body
states of large spatial extension (Efimov states) exist
when the unbound two-body subsystems are close to the
binding threshold. At present, the best candidate for an
Efimov state is that predicted in the atomic helium tri-
mer by Cornelius and Glöckle (1986), but it still awaits
an experimental confirmation. In a related development,
Migdal (1972) has proved that a potential containing
two interacting unbound particles allows many bound
states if the particles are sufficiently close to the thresh-
old. When this principle is applied to two neutrons
loosely bound to a nucleus, the resulting states can be
interpreted as dineutrons at the nuclear surface.

Extended states have also been discussed in atomic
and molecular physics, where the interactions are rather
well known and various power-law potentials arise at
large distances. One class of weakly bound states is that
of multipole-bound molecular negative ions. For in-
stance, the potential associated with a charged particle
in the field of a permanent electric dipole has a 1/r2

behavior. Mathematically such a potential produces infi-
nitely many deeply bound states (see Landau and Lif-
shitz, 1958). Under physical conditions, the size of the
dipole moment must exceed a critical lower limit to bind
the charged particle (Fermi and Teller, 1947). Such
bound states, although not necessarily classically forbid-
den, are spatially very extended.

B. How halos came into focus

On average nuclear radii increase as the 1/3 power of
the nucleon number A. This behavior expresses the ap-
proximate incompressibility of nuclear matter and the
saturation property of the nuclear interaction. It was
therefore surprising that the measured interaction cross
sections of Li isotopes colliding with ordinary nuclear
targets displayed a very large increase for 11Li (Tanihata
et al., 1985a, 1985b).

This discovery was soon followed by an interpretation
of the structure of this nucleus in terms of a ‘‘neutron
halo,’’ a ‘‘dineutron’’ weakly bound in an s state to the
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9Li core (Hansen and Jonson, 1987). The large radius
was explained by the weak binding of 295635 keV be-
tween 9Li and the two neutrons (Young et al., 1993). The
effect is larger for 11Li than for the deuteron due to the
larger deuteron binding energy of 2.2 MeV. The non-
standard use of an unbound dineutron as a building
block in this model is the only option leading to a two-
body problem.

Soon after a narrow 9Li momentum distribution was
measured after breakup of 11Li on a light target (Koba-
yashi et al., 1988). The width, about an order of magni-
tude smaller than the Fermi momentum of 300 MeV/c
found for ordinary fragmentation reactions, is consistent
with the dineutron model, in which the large radius,
through the uncertainty principle, is reflected in a nar-
row relative momentum distribution.

The same model implies that the two-neutron removal
cross section is large because the nucleus can be easily
broken by a distant, relatively small Coulomb push on
the charged 9Li core. Such a Coulomb dissociation may
be viewed as an excitation to a dineutron-9Li continuum
state, followed by a decay into two components. This
predicted cross-section enhancement was soon verified
experimentally (Kobayashi et al., 1989).

Traditional nuclear physics models fail to explain
these observations. In fact, 11Li turns out to be even
more complicated than is suggested by the dineutron
model. The three particles, two neutrons and 9Li, form a
Borromean system (Zhukov et al., 1993), i.e., a bound
three-body system in which each pair of particles, two
neutrons and neutron 9Li, is unbound. An extension of
this description to the more appropriate three-body sys-
tem with two neutrons and 9Li (Johannsen et al., 1990)
accurately explains the bulk of the data involving this
nucleus.

After the discovery of the new structure of 11Li, the
simpler two-body nuclear structures of both ground and
excited states of 11Be came into focus. Here also the
neutron separation energy is small, the size is large, the
momentum distributions after breakup are narrow, and
the interaction and Coulomb dissociation cross sections
are large. A number of other nuclei, in which the one- or
two-neutron separation energies are small, are expected
to exhibit similar halo features. Examples could be two-
body (19C), three-body (6He,14Be), and many-body
(8He) neutron halos. As heavy systems with small neu-
tron separation energies are so far unexplored, more dis-
coveries can be expected.

In atomic and molecular physics, experimental inves-
tigations of multipole-bound charged particles were ini-
tiated by Lykke et al. (1984). By now the stability of
several systems has been established and the minimum
dipole moment that ensures binding is rather accurately
determined (Abdoul-Carime et al., 2002). Another class
of systems arises without any permanent multipoles of
the particles. However, the accuracy needed for spatially
extended systems is extremely high because the corre-
sponding binding energy is extremely low. The proto-
type here is the atomic helium dimer 4He2 , whose very
existence was for a long time disputed due to its ex-
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tremely small binding energy, now believed to be around
1027 eV (Grisenti et al., 2000). Only about ten years ago
was experimental evidence provided for stability and a
size of about ^r&'52 Å (Schöllkopf and Toennies, 1994).
These experiments are extremely difficult, and the sta-
bility of the predicted first (and only) excited Efimov
state of the atomic helium trimer, 4He3 , is not yet con-
clusively demonstrated.

An effect called quantum proximity resonances was
discussed in theoretical work by Heller (1996). Peculiar
scattering states may appear in scattering of a particle on
two (or more) identical potentials separated by much
less than one wavelength, provided the scattering length
is much larger than the range of the potential. Then a
broad s-wave resonance in one potential produces an
extremely narrow p-wave proximity resonance for scat-
tering on two potentials. Examples of analogous wave
mechanical effects are sound waves incident on air
bubbles in water, and resonant light scattering on iden-
tical molecular dipoles. Efimov states, the Thomas ef-
fect, and proximity resonances fall into a larger class of
problems in which the ‘‘quantum size’’ is much larger
than both potential range and distance between particles
(Heller, 1996).

C. Perspectives

The most extended halo system experimentally
known today is the atomic helium dimer (4He2), which
is about 10 times larger than typical diatomic molecules.
Both 4He-3He and 3He2 are unbound, but when suffi-
ciently many atoms are added, even 3Hex becomes
bound. Similar transitions occur for other more compli-
cated molecular systems possibly with extreme proper-
ties but much less understood. Negative ions may also
reveal some features related to halo physics like small
binding energy, but possibly without the dominant non-
classical aspect. A small but growing number of
multipole-bound negative ions exhibit universal scaling
properties characteristic of halos. None of these systems
is well studied.

An open question is the occurrence of the three-body
giant halos called Efimov states. These states could play
a role within many-body systems as generalized Efimov
states, as static correlated substructures, or as mediators
of dynamic processes. One example is the stability of
Bose-Einstein condensates governed by decay into
bound dimer or trimer structures. In the same vein, cata-
lytic processes within media may involve three-body re-
combination processes in which one of the particles re-
mains unchanged. Schematic examples are some of the
following steps: a1b1c→(ab)* 1c→(abc)* 1g→a
1(bc), where the * indicates excitation. When some of
these states are spatially extended, the rates should be
enhanced as in the case of radiative proton capture of
16O. The involvement of three particles may increase
the rates by as much as 106 as in the course of antihy-
drogen production via the reaction of positronium with
antiprotons rather than the capture of a positron.

In nuclear physics a comprehensive description of nu-
clei with small neutron separation energies requires a
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full understanding of the structural evolution with re-
spect to an increasing number of neutrons. Indeed, the
structures are expected to range from the well-known
ordinary stable nuclei, to those with excess neutrons at
the surface, to neutron halo systems, to possibly
quantum-stabilized systems developing beyond the neu-
tron dripline where the neutron separation is zero, and
eventually to neutron matter as encountered in neutron
stars. Halos may also appear in ordinary nuclei as ex-
cited states.

Experimentally, the halo region of nuclei at small neu-
tron separation energy has so far only been explored for
the lightest nuclei. Theorists are working to incorporate
continuum structures allowing more reliable predictions.
Still, we are not yet assured that the relevant degrees of
freedom have been identified for systems at the edge of
stability. Many types of structures exist in nuclei, partly
due to the strong interaction, partly due to the unique
two-fermion structure of this mesoscopic system.

D. The goals of this review

This review aims at presenting the essential features
that define a quantum halo system and at describing its
properties in universal terms suitable for application in
all subfields of physics. This assumes that our under-
standing has reached a level at which an overall picture
can be painted that explains all the specific examples. It
is fair to say that our subject has not yet fully developed
beyond the stage of a phenomenological description.
Still we believe that it is already possible to extract some
universal features. Our representation will focus on
qualitative features and physics content rather than on
mathematical formulations and questions of experimen-
tal accuracy. In some parts of the exposition we make
use of earlier overviews of parts of the field and in par-
ticular on the few available general reviews (Bertulani
et al., 1993; Riisager, 1994; Hansen et al., 1995; Tanihata,
1996; Jonson and Riisager, 1998; Jensen and Zhukov,
2001).

The description of halos inevitably requires a separa-
tion of the (few) active degrees of freedom from the
many which are essentially inactive. Then few-body
techniques can be used to provide the main contribu-
tions to most observables. This is the starting point in
our description. Of course, the precision which can be
expected from a few-body description depends on the
observable. Further improvement requires an under-
standing of the contributions from the neglected degrees
of freedom. The selected examples provide testing
grounds for both precision and contributing degrees of
freedom. It is important to stress that many issues are
not yet resolved, especially the contributions from the
inactive degrees of freedom, few-body continuum struc-
ture, and reaction mechanisms (Glöckle et al., 1996).

This review is divided into seven sections. In Sec. II
we discuss the general structure of quantum halos, in-
cluding conditions for their existence, characteristic
properties, and quantities that establish whether a state
is a quantum halo or not. In Sec. III we turn toward
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specific examples of halo systems. In Sec. IV we survey
the properties of halos in two dimensions. These differ
both qualitatively and quantitatively from those of three
dimensions. High-energy breakup reactions, providing
most of the information about halos, are discussed in
Sec. V, where we focus mainly on three-body nuclear
halos. We shall not discuss low-energy reactions, which
are more sensitive to dynamical properties and are cur-
rently less exploited as probes of halo features. In Sec.
VI we survey studies of halos using the electromagnetic
and weak interactions, typically decay experiments. Fi-
nally, Sec. VII contains a summary and the conclusions.

II. ANATOMY OF QUANTUM HALOS

To describe halos merely as spatially extended objects
is not very useful in a scientific context. A precise defi-
nition of the scale of the extension has to be made first.
For this, the relevant degrees of freedom must be speci-
fied and halo characteristics formulated. Then quantita-
tive analysis of spatial extension in connection with the
binding energy and other quantum numbers of the states
can be made. As we shall see, testing whether a state
qualifies as a halo relies on the knowledge of a few de-
cisive observables.

A. Characteristics

The analysis of a quantum system in terms of a halo
structure begins with the identification of the important
degrees of freedom and an understanding of their hier-
archy. Quarks, gluons, and leptons are important at the
subatomic level, nucleons and mesons form nuclei, nu-
clei and electrons are building blocks of atoms, which
combine into molecules, which in large numbers in turn
produce organic materials like proteins, etc. As an illus-
tration of quantum halos and clusters, consider the
three-body systems consisting of an electron (e2) and
the helium (He) and hydrogen (H) atoms, i.e., He1H
1e2 (Fig. 1). The two-body subsystems He1H and He
1e2 are unbound, while H1e2 has one weakly bound
state, which can be crudely described as an effective
two-body system although much better as a three-body
system, i.e., p1e21e2. The hydrogen and helium at-
oms are two- and three-body systems, i.e., p1e2 and
a1e21e2, where the a particle is a four-body system
of p1p1n1n . The nucleons (n) and (p) are themselves
in turn three-body systems made of three quarks. These
structures are essentially completely uncoupled, and
each of them may be studied without any knowledge of
the substructures. A full and deep understanding, how-
ever, requires all degrees of freedom.

The prototypes of nuclear two- and three-body halos
are often taken as 11Be (10Be1n), 8Be (a1a), L

3 H
(L1d) and 6He (a1n1n), 11Li (9Li1n1n), 9Be (a
1a1n), and L

3 H (L1n1p). Clearly further division of
the individual cluster particles into nucleons and quarks
is possible. Whether the hypertriton is most suitably de-
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scribed by two or three clusters depends on the point of
view and on the required accuracy.

Let us now introduce a general definition of quantum
halo states. We must first specify the involved ‘‘particles’’
or clusters which in the combined system may form a
bound state with an energy close to the threshold for
breakup into its constituents. The corresponding cluster
component in the many-body wave function may then
dominate the structure as it eventually would above
threshold for binding. However, the presence of a
weakly bound cluster structure does not guarantee a
spatially extended system. Furthermore, a length unit
must be defined to measure whether a system is large or
small. One approach would be to use the size of the
clusters as this unit. Halo states would then be structures
in which distances smaller than the combined cluster
sizes occur with small probability in the relative wave
function. This attempt fails miserably, as is evident from
the hydrogen atom, whose electron is essentially always
outside the proton radius. Hydrogen and all other atoms
would also have to be classified as halos, and the defini-
tion would become meaningless.

Instead we choose to define halos as structures with
large probability of configurations within classically for-
bidden regions of space. For two-body systems the clas-
sical turning point of the quantum state is then the mea-
suring unit. This choice is such that halos are insensitive
to details of the two-body effective interactions and owe
their existence entirely to quantum mechanics. Because
most of the probability is found outside these potentials,
the only crucial ingredient is the large-distance tail be-
havior of the relative wave function. The implication is
that halos now obey universal scaling laws independent
of the potentials and the unit of length.

Our definition of a halo state thus combines the two
conditions (Riisager et al., 2000):

(i) There must be a large probability fc for finding a
cluster component in the total many-body wave func-
tion.

FIG. 1. The hierarchy of degrees of freedom illustrated by the
three-body system He1H1e2 (He and H atoms and an elec-
tron) and subdivisions first into an a particle and nucleons and
eventually into quarks.
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(ii) A large fraction fh of the probability must be in
the nonclassical region outside the cluster potentials.

The fractions fc and fh should both be substantial, for
example, larger than 1/2. Other definitions can of course
also be formulated, but the condition of a strong non-
classical wave-function component is a strong constraint.
The present definition has only rather recently been pro-
posed. Previous criteria based on light nuclei properties
use the ratio of moments of the potentials (Fedorov
et al., 1993, 1994b). They have only qualitative signifi-
cance, and extrapolations to heavier systems can be very
misleading; see Vogt (2002). The universal scaling prop-
erties are lost because classical turning points do not
scale in the same way as nuclear radii scale with nucleon
number.

The above definition does not imply that cluster sys-
tems with fh,0.5 are without interest. For instance, the
astrophysical S factor for 8B is determined by very-
large-distance properties where the probability is very
small (Riisager and Jensen, 1993; Grigorenko et al.,
1999; Davids et al., 2001).

Our definitions imply that correlated structures com-
bined into fewer ‘‘particles’’ than in the original many-
body system give a way to form halos. Normally the
importance of correlations can be ordered into two-
body, three-body, etc. This is essentially also true for the
present structures. However, one remarkable exception
is provided by Borromean systems, in which the three-
body correlations are responsible for the binding while
the two-body correlations are too weak to bind any pair
of particles.

Halos are threshold phenomena. To understand this,
consider the various approaches to the limit for stability,
e.g., adding more particles, increasing the energy, or
changing the interaction. The initial structure could per-
haps be reasonably well described by mean-field models
without correlations. Moving closer to the edge of sta-
bility the system responds by rearranging into energeti-
cally more favorable structures. Correlations which far
from the threshold contributed very little to the total
binding become decisive for stability. The energy gain is
first of all due to formation of few-body clusters and
second to rearrangement of the intrinsic cluster struc-
ture, perhaps by excitation or polarization.

B. Size versus binding energy

Since our definition of quantum halos involves both
spatial extension and clusterization, we must first choose
the appropriate cluster division within the total many-
body system. The lowest threshold for breaking into spe-
cific fragments usually indicates the dominating cluster
structure. In principle there could be several close-lying
thresholds, and details about the cluster-cluster coupling
and the relative state would then determine the most
important configuration. Equally important partition
schemes introduce additional complications. Here we
consider the usual case of one dominating cluster com-
ponent.
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For a given cluster structure we must now determine
whether there is a substantial probability to be in the
classically forbidden regions. For two-body systems with
attractive potentials this implies evaluating the amount
of density distribution located beyond the classical turn-
ing point. If the distance associated with this point is
small compared to the size of the system, a halo is
present. The radial moments characterize the density
distribution, and when the second moment is somewhat
larger than the square of the radius of the classical turn-
ing point, the system is a halo corresponding roughly to
fh.1/2. The above definition assumes both that the size
is strongly correlated with the binding energy and that
universal scaling relations can be obtained independent
of the details of the potential.

For many-body clusters, in order to extend the simple
two-body measure of the classical forbidden regions, we
shall use the second moment of an average size coordi-
nate measured in terms of a similar average of classical
two-body turning points. Measures other than the sec-
ond radial moment could be designed and may be
needed in some cases.

1. Two-body systems

The radial coordinate is the relative distance between
the clusters. We assume spherically symmetric poten-
tials, but the discussion is general and also valid for de-
formed potentials (Riisager et al., 1992; Misu et al.,
1997). In the nonclassical region details of the potential
become less unimportant, and the relevant tail proper-
ties of the wave function are determined mostly by the
binding energy.

The probability distribution corresponding to the two-
body wave function can be characterized by its radial
moments. Often the second moment is assumed to be
the most important. Let us first compare the spatial ex-
tension defined from different radial moments in the
simplest case of a bound s state where the large-distance
part of the radial wave function is used for all distances.
For short-range interactions the r dependence of the tail
is given by A2k exp(2kr)/r, B5\2k2/(2m), while we
can use the exact wave function for the Coulomb poten-
tial. We then obtain for the nth radial moments

^rn&2/n
8mB

\2 5H @n!#2/n short,

@n!~11n/2!~n11 !#2/n Coul,
(1)

where m is the reduced mass and B the binding energy.
These moments are thus determined by mB/\2. Equa-
tion (1) is correct to the extent that the density distribu-
tion is found in the large-distance nonclassical region of
the potential.

Let us first concentrate on short-range potentials and
consider nonzero angular momenta ,. The nth non-
normalized moment diverges as (mB)(2l212n)/2 for n
.2l21 and converges for n,2l21 (Riisager et al.,
1992). When n52l21 the moment diverges as ln(mB).
Thus the probability distribution itself (n50) diverges
only for l<1/2, i.e., for s waves. The second moment
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(n52) only diverges for l<3/2, i.e., for s and p waves.
The fourth moment (n54) only diverges for s, p, and d
waves, and so forth.

We can construct dimensionless measures of size and
binding energy by the appropriate use of a scaling length
R. We choose this radius as the classical turning point, in
keeping with our definition of quantum halos. For
square-well potentials R is well defined independent of
energy. The nth moment must be larger than Rn if the
nonclassical region dominates the probability distribu-
tion. Then the dimensionless measures of size and bind-
ing energy are related through universal angular-
momentum-dependent functions.

In Fig. 2 we use the second radial moment for light
nuclei to illustrate these scaling relations. When
^r2&/R2.2 the probability outside the classical turning
point R is roughly 50% for s and p waves. For higher
orbital angular momenta this probability never reaches
50% even for zero binding energy. Thus halos can only
exist in s and p waves. Higher moments (n.2) could
instead be used to define when the nonclassical contri-
bution exceeds 50%. The criteria must then be changed
accordingly.

For n52 and l50 the halo occurrence condition
^r2/R2&.2 is, through Eq. (1), equivalent to mBR2/\2

,1/8. However, a finite range of the square well in-
creases the relative content outside R, especially for
larger binding energy. Instead the condition ^r2/R2&.2
corresponds to mBR2/\2,0.27 or 0.15 for s and p states,
as indicated in Fig. 2. If both the dimensionless size and
binding-energy combinations are measured with good
accuracy, a necessary and sufficient condition for a halo
state is then simply that ^r2&/R2.2 and that the binding-
energy measure correspondingly be less than 0.2. In

FIG. 2. Scaling plot for two-body halos. The ratio of the halo
and the potential square radii as a function of the scaled sepa-
ration energy. The dashed line corresponds to a pure s-wave
Yukawa wave function. The solid and dash-dotted lines are
results for square-well and r22 potentials, respectively. The
thin horizontal lines indicate where 50% of the wave function
is outside the potential. Filled and open symbols are derived
from experimental data or from theoretical calculations.
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principle one of these conditions is sufficient, but if both
are fulfilled, the consistency of the assumed cluster divi-
sion and the interpretation and accuracy of the corre-
sponding measurements are simultaneously tested.

The classical turning point is, in general, dependent
on the binding energy. This can be illustrated with a
Woods-Saxon potential of strength 2U0 and radius and
diffusivity parameter R0 and a. When R is the corre-
sponding classical turning point we obtain with ^r2&
5\2/(4mB)

^r2/R2&'
\2

4mR0
2B

1

@11a ln~U0 /B !/R0#
,

\2

4mR0
2B

,

(2)

where the additional logarithmic binding-energy depen-
dence increases the radius R. Compared to the square
well of radius R0 the nonclassical region is less popu-
lated but dependent on B and the Woods-Saxon param-
eters. Smaller binding energy is required to fulfill the
halo condition and to obey the universal scaling rela-
tions.

The sloping edge of the Woods-Saxon potential per-
mits states that have a high probability outside the ra-
dius R0 but that are still inside the classical turning point
(Vogt, 2002). Such states would lead to points in the
lower right corner of Fig. 2, which would move upwards
and to the left when R is changed into R0 , but would
still not follow the scaling curve. Thus these states,
which do not obey universal scaling relations (their
properties depend on the characteristics of the Woods-
Saxon potential), are not halo states.

For nuclei we estimate the classical turning point R of
the appropriate square well from the mean-square radii
of the constituent particles, i.e., 3/5R25(^r2&11^r2&2
13.3 fm2) where we used a Gaussian interaction range
of 1.41 fm, resulting in the mean-square radius of 3.3
fm2. This estimate does not change very much unless B
is several orders of magnitude smaller than U0 .

Short-range power-law potentials, r2n (n.2), pro-
duce a classical turning point with even stronger energy
dependence. The tendency is the same as for a Woods-
Saxon potential, and the right-hand side of Eq. (2)
should only be multiplied by a factor proportional to
B2/n. The effect becomes increasingly important as n ap-
proaches 2.

Let us now consider attractive r21 potentials. The ef-
fect of an energy-dependent turning point is well known
from atomic states: ^r2/R2& is always less than unity. The
states reside mainly in the classical region even though
their mean radii increase towards infinity. Not surpris-
ingly the moments given in Eq. (1) are larger for Cou-
lomb than for short-range potentials. The transition be-
tween these two types of moments was investigated with
a potential alternating between attractive long-range
and repulsive short-range behavior (Lombard and
Volpe, 2002).

For a long-range repulsive potential, \2S/(2mrn), 0
,n,2 combined with an attractive short-range poten-
tial, the wave function at intermediate distances behaves
as exp@2(12n/2)21S1/2r12n/2# . For a Coulomb potential
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(n51) we have exp@22ASr# which is a slower falloff
than at large distances, where the potentials are negli-
gible compared to the energy and we get the usual ex-
ponential decrease, exp(2kr). All moments remain fi-
nite for all binding energies for long-range potentials.

When the binding is provided by an attractive long-
range Coulomb potential the mean-square radius is six
times larger than for short-range potentials [see Eq. (1)],
but the turning point is also at a large distance, resulting
in points in the nonhalo region in the lower right corner
of Fig. 2. In general, for any potential, the universal
curve in Fig. 2 is either approximately followed or the
points show up in the nonhalo region. If the classical
turning points are changed, due to an inaccurate deter-
mination, the points would either slide along the curve
or move into the strong-binding region where scaling
does not apply.

The division between short and long range is the r22

potential, with the same scaling properties as the kinetic-
energy operator. The generic form is

V~r !52
\2

2m

n211/4
r2 , (3)

which has infinitely many bound states at small distances
without any lower energy bound; see Landau and Lif-
shitz (1958) for details. To avoid this divergence prob-
lem we assume an infinite wall at some short distance.
Still, when n2.0, infinitely many bound states labeled n
are present at large distance, whose rms radius is given
by

^r2&n5
2
3

~n211 !
\2

2mBn
, (4)

can become arbitrarily large.
With R defined again as the classical turning point

radius associated with state n, we get

^r2/R2&n'
2
3

n211
n211/4

,
8
3

(5)

independently of n. The halo condition ^r2/R2&.2 is
then fulfilled only for n2,1/8. For large n2 the classical
turning point radius increases faster than ^r2& with de-
creasing binding energy, so that the structure cannot be
classified as a quantum halo. Various scaling relations
still exist as in Eq. (4) but they are specifically related to
the r22 behavior. Analogously the states located in the
surface of a sloping short-range Woods-Saxon potential
do not obey universal scaling laws unless they lie outside
the classical turning point or, equivalently, unless the
central expression in Eq. (2) is larger than 2.

The strong correlation between size and binding en-
ergy has been further extended for weakly bound two-
body systems by Lassaut and Lombard (1997, 1999) and
Lombard (2001a), who approximate the mean-square
radius of an s wave as ^r2&53\2w/(2mB), where w
'(112Ae12e)/6P@1/6,1# is a universal function of e
5B/Bmax . The lower limit 1/6 is obtained in the weak-
binding limit when B50. The maximum binding energy
Bmax occurs at the threshold for binding the second s
state.
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A peculiar behavior is found for the oscillating long-
range von Neumann–Wigner potential (Stahlhofen,
1996; Lombard, 2001b) where one bound-state solution
corresponds to a positive energy E0 . The terminology of
positive-energy bound states is appropriate, since the
wave function is an exponentially vanishing solution of
the Schrödinger equation. This falloff is due to the infi-
nitely many oscillations which confine the wave function
to finite distances for one discrete positive energy. The
mean-square radius of this state is given by ^r2&
50.3376\2/(mE0). The dependence on energy is of the
same form as in Eq. (1), but the constant differs from
0.25. Thus the spatial properties of extended systems dif-
fer depending on the side from which the zero energy is
approached. The same class of long-range potentials
also produces positive-energy bound states of nonzero
angular momenta (Lombard, 2001b). However, the
mean-square radius for an l51 state is inversely propor-
tional to the energy in contrast to the square-root de-
pendence for negative-energy bound states. Further-
more, an l51 positive-energy bound state may exist
even when there is no bound l50 states.

2. Three-body systems

We now consider a three-cluster division and with in-
dividual masses, momenta, and coordinates denoted mi ,
pi , and ri , respectively, describe the relative motion by
means of hyperspherical coordinates (i51,2,3). The to-
tal mass is M5m11m21m3 , while the average radial
coordinate, the hyper-radius r, is given by

mr2[
1
M (

i,k
mimk~ri2rk!2, (6)

where m is an arbitrary mass unit. The remaining five
intrinsic coordinates are dimensionless angles (Zhukov
et al., 1993). The hyperspherical harmonics are the
eigenfunctions of the angular part of the three-body
kinetic-energy operator (excluding the center-of-mass
motion). The eigenvalues are proportional to K(K
14), where K50,1,2,... . In the hyper-radial equation
there appears a diagonal generalized centrifugal barrier
potential }(K13/2)(K15/2)r22, which never vanishes
even for K50 when all relative angular momenta are
zero.

The large-distance asymptotic behavior of the wave
function is r25/2 exp(2kr) where k is related to the bind-
ing energy by B5\2k2/(2m) (Merkuriev, 1974). It is
possible to compute the radial moments ^rn& for short-
range interactions in the limit where only the large-
distance behavior is important. Although for interacting
particles. K is not conserved, the components in an ex-
pansion in hyperspherical harmonics are still character-
ized by K. Using the two-body results with the substitu-
tion l→K13/2 we find that the non-normalized nth
moment of r diverges for B→0 as B(2K122n)/2 when n
.2K12 and as ln B when n52K12. Even for K50
the probability distribution remains at finite distances
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due to the finite centrifugal barrier. The second moment
only diverges for K50 and then only logarithmically as
ln B.

Let us include an additional long-range repulsive po-
tential which depends on the hyper-radius as
\2S/(2mrn) with 0,n,2. Again asymptotic behavior,
exp(2kr), is reached at large distances where the poten-
tial can be neglected. At intermediate distances beyond
the short-range attraction, as for two-body systems, the
wave function behaves as exp@2(12n/2)21S1/2r12n/2# .
All moments of the hyper-radius remain finite for any
binding energy.

In order to formulate existence conditions for three-
body quantum halos we must determine the quantum
probability in the nonclassical region of the phase space,
where the energy is smaller than the sum of all potential
energies. We note first that this region is not determined
by the classical turning points of the diagonal hyper-
radial potential. Indeed, it is entirely possible to have
classical motion in the hyper-radial coordinate while the
system is nonclassical. To scale hyper-radial moments we
thus need a unit of length related to the two-body for-
bidden regions. Therefore we generalize the scaling con-
siderations from two- to three-body systems by defining
a scaling parameter r0 as suggested from Eq. (6), i.e.,

mr0
2[

1
M (

i,k
mimkRik

2 , (7)

where Rik is the two-body scaling length of the system i
and k. To appreciate the content of Eq. (7) let us assume
that particle 1 is far from identical particles 2 and 3. If
(R23 /R12)

2!2m1m2 we obtain ^r12
2 &/R12

2 '^r2&/r0
2 as for

three identical bosons. Thus in this case the classical
two-body regions can be measured in hyper-radial space
with r0 as the unit.

Compressing the information on the nonclassical re-
gion into just one length is a simplification that can at
best be expected to provide a good average for the three
two-body subsystems. In addition, we face the same
problem of energy dependence as for isolated two-body
systems when it comes to defining the quantities Rik .
The choice we make remains the same, i.e., define Rik
for an appropriate square well when short-range inter-
actions produce most of the two-body binding. When
only long-range interactions are present we can use the
two-body bound-state energy to define Rik for attractive
potentials and Rik equal to zero for repulsive potentials.

The definition of three-body quantum halos can now
be formulated in terms of two-body quantities and of the
classical turning points. The definition of r0 in Eq. (7)
differs by the mass weights from that used by Fedorov
et al. (1994c). Using Eq. (7) facilitates comparisons be-
tween two- and three-body systems, since their binding
energies then are the main difference.

The energy scaling variable is then analogously de-
fined as Bmr0

2/\2 independent of m. The resulting
three-body plot is shown in Fig. 3. The condition for a
halo is now ^r2&/r0

2.2, corresponding to the two-body
criterion of ^r12

2 &/R12
2 .2, which was given by Fedorov
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et al. (1993). Clearly only structures with dominating
configurations of K50 and 1 can classify as halo states.

The three-body binding energy B in Fig. 3 can be di-
vided into contributions from the different two-body
subsystems. If one or more of these contribute signifi-
cantly compared to the total B due to a bound sub-
system, the system is most likely not a three-body halo.
If one subsystem dominates, the main structure is prob-
ably one particle bound to the pair and together perhaps
forming a two-body halo. There is a strong tendency for
three-body systems to be either predominantly two-
body systems or without bound states in any subsystem.

In states with one and only one bound subsystem the
bound particles move in phase and were therefore
named tango states by Robicheaux (1999); see also Li
and Lin (1999) and Vallet et al. (2001). The states in the
other limit in which none of the three subsystems is
bound are named Borromean systems; see Zhukov et al.
(1993). They provide the best examples of three-body
correlation as two-body halos are excluded by definition.

The existence of Borromean systems formed by three
pointlike particles can be related to kinetic and potential
effects. Let us assume that the relative two-body states
between all pairs of particles remain unchanged. Then a
comparison of reduced masses shows that the (positive)
kinetic energy is smaller for the three-body than for the
free two-body systems. The additional potential energy
of one pair in the three-body system may be sufficient to
bind this system when the subsystems are only margin-
ally unbound.

Borromean systems exist only when the strength g of
the attractive two-body potential for a symmetric (bo-
son) system belongs to the interval @g3 ,g2# determined
by the threshold strengths for binding the three- and
two-body systems. For ordinary radial shapes, the ratio

FIG. 3. Scaling plot for three-body halos. The ratio of the halo
and effective-potential square radii is plotted vs the scaled
separation energy. The solid lines are theoretical, scaled curves
for different hypermomentum K. The dashed lines show the
Efimov states for a symmetric system, n51.012 51, and for
minimum attraction, n50. Filled symbols are derived from ex-
perimental data and open symbols are from theoretical calcu-
lations.
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of the strengths is g3 /g2'0.8. The lower limit of 2/3 is
almost reached when a repulsive barrier is added,
whereas a repulsive core increases this ratio towards the
upper limit 1 (Richard and Fleck, 1994; Goy et al., 1995;
Moszkowski et al., 2000). This interval @g3 ,g2# tends to
become larger when the constituents have an intrinsic
structure, since rearrangements provide additional bind-
ing energy for the three-body system.

A Borromean system in which one subsystem is
bound (g.g2) becomes a tango state. When two or
three subsystems simultaneously approach their respec-
tive thresholds for binding in relative s states, a new
class of (Efimov) states appears. This can be understood
from the behavior of the hyper-radial potential. For
zero-range two-body potentials the only energy avail-
able through combination of parameters is \2/(2mr2),
where m is a combination of reduced masses. The poten-
tial must then have the intermediate (between short and
long ranges) r22 form given in Eq. (3).

The strength determines the number of solutions from
none, for n2,0, to infinitely many, for n2.0. For three
identical bosons with s states at zero energy, n
51.012 51 and infinitely many Efimov states are present,
although none of the subsystems have even one bound
state (Efimov, 1970, 1990). The total angular momentum
should be low, preferably zero; higher values allow the
Efimov effect but decrease the possible mass combina-
tions (Nielsen et al., 2001).

The finite-range interactions provide additional length
parameters. Then the hyper-radial potentials approach
zero faster than r22 at hyper-radii larger than a mass
weighted average of the two-body scattering lengths.
The number of Efimov states is therefore finite unless at
least two scattering lengths are infinitely large. Another
essential exception preventing infinitely many states is
the presence of a long-range attractive interaction in at
least one of the two subsystems (or two out of three)
with a zero-energy s state. In general infinitely many
states appear for a symmetric system in which the ratio
of the two-body scattering length (a) and the effective
range (Re) is infinitely large. This occurs both for Re
50 (the Thomas effect) and when a5` (the Efimov
effect; Adhikari et al., 1995; Amorim et al., 1997; Nielsen
et al., 2001).

At the threshold (g5g2) of binding in two-body sys-
tems, for ordinary short-range attractive potentials, the
three-body ground state is relatively well bound, i.e.,
about 1 MeV for nuclei (Fedorov et al., 1994a). Then the
Efimov states appear (Efimov, 1970) as excited states
with size and energy related as in Eq. (4), i.e.,

Bn5B0 exp@22pn/n# , ^r2&n5^r2&0 exp@2pn/n# ,
(8)

where the scaling parameter is obtained from the
strength of the effective radial potential of the form in
Eq. (3). Even for very low n the states are broadly ex-
tended and very weakly bound.

These states then appear parallel to the lines labeled
by n in Fig. 3. For nuclei in which the neutron-core mass
ratio is less than 1, the states must be in the region be-
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tween the two dashed lines. For molecules, the states
would most likely be above the upper dashed line. The
ground state would be an ordinary nonhalo state,
whereas the excited states would be giant halos. The
ground state can only be a halo when the ratio g3 /g2
'1, which only happens with a repulsive core and a
sharp attractive pocket (Moszkowski et al., 2000).

3. Transitions from two- to three-body systems

For a two-body system the scattering length a mea-
sures the interaction sphere, i.e., the cross section is }a2.
Furthermore, zero s-state binding energy is equivalent
to infinite a, and this threshold is then determined by
1/a50. Weakly bound or slightly unbound systems are
then parametrized by small values of 1/uau, where a.0
corresponds to unbound states and a,0 to bound states.

The different structures are schematically shown in
Fig. 4 for weakly bound systems with at most one bound
state in each two-body subsystem. For sufficiently weak
potentials no bound states are possible. For decreasing
1/uau the Borromean region appears before any sub-
system is bound. Moving horizontally to the left on the
figure we cross the threshold for binding subsystem 1–2
and enter the region of one and only one bound sub-
system. This region is divided into regions of bound and
unbound three-body systems with respect to the two-
body system and particle 3.

FIG. 4. Sketch of the different regions of stability for a three-
body system as a function of the inverse s-wave two-body scat-
tering lengths aik . The central point corresponds to aik5` ,
which is the threshold for binding of the first state. All poten-
tials are attractive or vanishing. The upper part assumes no
interaction between particles 1 and 3 and the lower part as-
sumes the same interaction between 1–3 and 2–3.
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The definition of r0 in Eq. (7) allows a direct expla-
nation of the lone point corresponding to the tango state
of the hypertriton in Fig. 3. The point belongs to the
lower part of Fig. 4 well into the tango region. The
three-body binding energy consists of about 2.2 MeV
from the deuteron plus about 137 keV from the
deuteron-L binding. In the corresponding two-body
scaling plot in Fig. 2 the binding energy of the
deuteron-L particle would be only 137 keV, which would
bring this point back to the l50 curve. The hypertriton
is a two-body halo and not a three-body halo in spite of
the rather suggestive number of three particles.

In Fig. 5 we follow the hypertriton point as we vary
the neutron-proton interactions corresponding to a
change from the tango to the Borromean region in Fig.
4. This is first achieved for a model including only
neutron-proton relative s waves (s). Then L becomes
unbound before the deuteron (we do not reach the Bor-
romean region), and the size of this L-deuteron effective
two-body system increases as the binding approaches
the threshold. Another path is followed in Fig. 5 by
maintaining the tensor term in the complicated, but re-
alistic, neutron-proton interaction and only reducing the
central s-wave attraction (d). Then the Borromean re-
gion is reached and the path merges at small binding
energies with the curve (j) obtained by using s waves
and varying the l-nucleon (not binding) attraction.

The transition from the Borromean to the Efimov re-
gion is also illustrated in Fig. 5 by using 11Li with in-
creasing s-wave neutron- 9Li attraction (m). The interac-
tions are varied vertically from the Borromean region in
Fig. 4 across the Efimov strip. Approaching infinite scat-
tering length increases the three-body binding energy
and the bound state moves into the lower right corner in

FIG. 5. Scaling plot for three-body halos as in Fig. 3: dashed
line, the Efimov curve for n50 [see Eq. (8)]; ,, m, * , masses
corresponding to 11Li (9Li1n1n); h, j, s, d, L

3 H (L1n
1p); realistic points are indicated by a large closed triangle
and circle; 1, 3, three different particles with two fixed scat-
tering lengths while the third is varied. The arrows indicate
transitions between Borromean, tango, and bound-state re-
gions. We used r0 from Eq. (10). See text for further discus-
sion.
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the nonhalo region of Fig. 5. As this n-9Li s-wave attrac-
tion is decreased, the points (m) follow a curve like that
of three bosons (3), eventually merging with the previ-
ously defined universal curve (3, m, j).

In Fig. 5 we also show calculations for three bosons,
11Li and L

3 H including only K50 components in the
wave functions (1, h, ,). They basically follow a uni-
versal curve determined by the hyper-radial potential at
large distance (Jensen et al., 2003)

V~r!52
\2

2mr2 pA8
r0

r
, (9)

where the scaling parameter is given by

r0[
&

3 (
i,k

RikA mimk

m~mi1mk!
(10)

as a linear average of classical turning points compa-
rable to Eq. (7). This K50 curve is in the asymptotic
weak-binding region almost an order of magnitude be-
low a similar but realistic curve obtained without the
K50 restriction. Both curves clearly converge for small
binding towards a similar universal behavior, i.e., de-
pend logarithmically on binding energy, but with differ-
ent proportionality factors. The K50 approximation se-
verely underestimates the sizes of halos.

The realistic curve corresponds for Borromean sys-
tems to hyper-radial potentials at large distance behav-
ing as 2\248aav /(2mpr3&), where aav is a weighted
average of the scattering lengths aik (Jensen et al., 1997),

aav[
&

3 (
i,k

aikA mimk

m~mi1mk!
. (11)

This radial potential is approximately obtained numeri-
cally from Eq. (9) by substituting aav for r0 . Unfortu-
nately, the three-body binding energy cannot be found
from the large-distance behavior alone. Some knowl-
edge of the short-distance properties is also necessary
(Amorim et al., 1997; Frederico et al., 1999; Fedorov and
Jensen, 2001a, 2001b). The simplest prescription is to
use a renormalized unit of length as in Fig. 5, where r0 is
this length.

Then aav /r0 should determine a universal behavior
reached for small binding. Such a simple dependence is
not very precise in all cases, but a value of aav /r0'3.0
seems to be correct within 20% in the validity region
where all two-body scattering lengths are substantially
larger than the effective ranges. These criteria are not
easily fulfilled for all three subsystems simultaneously,
since this basically means that the individual terms in aav
and r0 must obey aik@Rik , while the averages are only
allowed to differ by a factor of about 3. Thus universal
scaling is only present when the subsystems are rather
similar.

When the attraction is increased until the neutron- 9Li
system has an s state at zero energy, infinitely many Efi-
mov states appear. They are equally spaced along the
dashed (Efimov) line in Fig. 5, but unfortunately sepa-
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rated by a huge distance as obtained from Eq. (8) with
the appropriate value of n'0.074. Thus only the first of
these is seen in the figure close to the Efimov line in the
upper left corner (* ). With larger binding energy (B2)
of the two n-9Li subsystems the size of this excited state
at first decreases and then turns around to increase as B2
approaches and overtakes the three-body binding en-
ergy (Efimov, 1970, 1990; Fedorov et al., 1994a). This im-
plies that non-Borromean three-body systems could
have such spatially extended, excited states with ener-
gies close to the two-body threshold.

The position in the scaling plot in Fig. 3 indicates halo
structure, Efimov states, or two- or three-body scaling
properties. Also strong rearrangement effects may be
seen to result in nonstandard scaling parameters and po-
sitions in the plot. The qualitative behavior of the scal-
ing results are intuitively easy to understand (Fedorov
et al., 1994c). For example, in the vicinity of the
Borromean-tango border the system approaches a two-
body system with a loosely bound third particle. The size
and the scaling properties are then necessarily deter-
mined by the third particle relative to the two-body en-
tity, i.e., two-body scaling.

Crossing the different thresholds in Fig. 4 does not
cause any computational problem provided the Faddeev
equations are used. The three Faddeev components de-
scribed in different Jacobi coordinates efficiently ac-
count for the proper asymptotic behavior of the wave
function (Fedorov and Jensen, 1993; Fedorov et al.,
1994c). Use of only one component is insufficient to de-
scribe the structure.

4. Many-body systems

The relative motion of a system of N particles may be
described by hyperspherical coordinates derived from a
set of N21 Jacobi vectors (Barnea, 1999a, 1999b). In
analogy to Eq. (6), the hyper-radius is defined by mr2

5S i,kmimkrik
2 /M , where M is the total mass. The re-

maining 3(N21)21 coordinates are dimensionless. The
wave function C is multiplied by r(3N24)/2 and the
kinetic-energy operator for the new Schrödinger equa-
tion has the form

\2

2m S 2
]2

]r2 1
~f21 !~f23 !

4r2 1
1
r2 D~angles! D , (12)

where f53(N21) is the number of degrees of freedom
and D(angles) is a function containing first- and second-
order derivatives with respect to the angles. The gener-
alized centrifugal barrier term may be rewritten as

\2

2m

~f21 !~f23 !

4r2 [
\2

2m

l* ~ l* 11 !

r2 , (13)

where l* [(f23)/2 is a generalized angular momentum
quantum number, which, however, is only conserved for
two particles in spherical potentials.

Let us now first consider an isotropic wave function
without any angular dependence or equivalently only
consisting of s waves in all relative partial waves. Then
no clusterization of groups of particles takes place. The
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contribution from the function D in Eq. (12) is then zero
and we have effectively a two-body system with a cen-
trifugal barrier corresponding to l* . Halo formation de-
fined in terms of the moments of r is therefore only
possible for l* <3/2. This in turn implies f<6 and N
<3, which under these assumptions is the maximum
number of clusters possible in a halo.

For a halo to exist with more than three particles the
severe constraint imposed by the spatially confining cen-
trifugal barrier must be circumvented. This requires
higher partial waves for the relative motion between
some particles or groups of particles. However, the
states are then necessarily correlated in the angular
space and some clusterization must take place. If the
angular dependence becomes too strong, the resulting
pronounced correlations effectively reduce the number
of clusters below N. This is analogous to the reduction
from three-body to two-body structure observed in the
hypertriton. This reduced number of clusters would then
be more isotropic, and we can repeat the argument of
halo occurrence demanding either a low centrifugal bar-
rier or a correlated structure attempting to avoid this
barrier. Clearly the number of independent halo par-
ticles has to be relatively small.

The potential energy gained as a consequence of cor-
relations could be an advantage. Let us use the example
of identical particles outside a core. The core plus one
particle is unbound by the resonance energy «. The ad-
ditional energy associated with N21 particles is «(N
21)1v(N21)(N22)/2, where v is the (negative) aver-
age potential gain from the interaction. This energy is
negative when «,2v(N22)/2, which becomes possible
for large N if v remains constant. This simple estimate
illustrates that contributions may be combined from
many individually insufficient particles. Reaching an
N-body bound state then seems easy, but the opposite
effect of the kinetic energy should also be included.

Assume now that two identical fermions and a core
form a Borromean system. Adding more pairs of these
fermions often leads to unbound systems due to the
Pauli principle. However, specific numbers of these pairs
may form configurations of special stability, in analogy
to the magic numbers in atoms and nuclei. Such addi-
tional quantum stabilization, due to generalized shell
structure, may produce fragile but bound states owing
their existence to correlations. Magic numbers corre-
sponding to new cluster combinations could arise. Even
if these correlations did not lead to positive binding they
might still produce relatively stable continuum struc-
tures (Jensen and Riisager, 1991, 1992).

In a simple intuitive picture the stable configurations
of a system approaching a threshold of instability should
exploit correlations in an optimal way. The gain in cor-
relation energy might be relatively small, and for
strongly bound states hardly visible, but at the edge of
stability this marginal energy difference could result in a
bound state. The rearranged bound structure might be
rather exotic although still made out of the same con-
stituent particles. Quantum halos stabilized by shell
structure are an interesting possibility.
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5. Transitions between mean field and clusters

The mean field is the simplest approximation to the
structure of a many-body system, but correlations that
are treated most easily in the cluster model may be im-
portant. These two opposite starting points are not eas-
ily combined without undertaking the enormous task of
a full-scale treatment of the many-body problem. A
mean-field approximation is by definition accurate when
the correlations are negligible, whereas cluster models
are accurate when the intrinsic cluster structure can be
neglected. The intrinsic and relative degrees of freedom
cannot be separated when the relative cluster configura-
tions have significant spatial overlap, resulting in compa-
rable interactions between clusters and between par-
ticles within the clusters.

The self-consistent mean-field Hartree-Fock approxi-
mation is a good starting point for stable nuclei, atoms,
and electrons in solids. The full spectrum of structure
and difficulties can be illustrated by moving from beta
stability to zero neutron separation energy (dripline) in
the nuclear chart. At first, mean-field computations are
successful when modified to include pairing correlations
and deformations. The neutron skin develops as the
neutron excess increases (Mizutori et al., 2000). As the
dripline is approached, the system responds by develop-
ing correlations to postpone decay. Other thresholds of
instability than the neutron dripline also favor corre-
sponding clusterization.

These rearrangements are not easy to predict, but
pronounced cluster structure may appear and eventually
develop into a halo or even into an Efimov state. The
new low-lying structures in unstable systems may then
be linked to excited states of exotic structure in ordinary
stable systems.

The transition from a mean-field to a cluster descrip-
tion, or equivalently how clusters develop in a many-
body system, has been investigated in many different
ways. Let us first note that a Hartree-Fock solution can
exhibit strong two-body halo features whenever an oc-
cupied state has sufficiently small binding energy and
orbital angular momentum equal to 0 or 1 (Bertsch
et al., 1988). The corresponding cluster division is into a
particle and a core consisting of the remaining particles
in the total system. The only difference from our two-
body description is the antisymmetrization (if required)
and the self-consistent origin of the potential.

The correlations needed for many-body halos and in
particular for three-body halos are not available in the
space of Slater determinants. However, a mean-field so-
lution with a doubly degenerate highest-lying occupied
(s or p) state close to the threshold could be spatially
very extended (Bertsch et al., 1988), while the correla-
tion between two nucleons and the remaining core can-
not be a stable three-body halo configuration. The space
is insufficient.

The structure changes when nucleons are added and
the nuclear dripline is approached. Staying within the
(relativistic) mean-field model and moving from stability
to the neutron dripline in the nuclear chart, we find that
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three overlapping regions appear, normal, neutron skin,
and halo regions (Meng and Ring, 1998; Mizutori et al.,
2000). In the first, for ordinary stable systems, the neu-
tron and proton densities have similar radii. In the sec-
ond region, the neutrons extend beyond the protons, re-
vealing a neutron skin with nuclear-matter-like high
density and a rapid falloff outside the neutron radius.
Finally a neutron halo may appear with an exponentially
decreasing density distribution outside the bulk density
region. A quantitative measure of the corresponding
structure can be designed as differences of specific radii,
i.e., the root-mean-square radius and the so-called Helm
radius defined as the radius corresponding to the first
zero point of the Fourier transform of the density (see
Mizutori et al., 2000). The Helm radius is very similar to
the sharp cutoff radius of Myers and Swiatecki (1969,
1974) describing the extension of the bulk density.

The pairing correlations are included by the BCS ap-
proximation or by full (relativistic) Hartree-Fock-
Bogoliubov computations. These correlations do not
prevent diverging radii for odd-N nuclei, whereas
even-N radii, although they can become large, remain
finite even for s states of zero energy (Bennaceur et al.,
2000). Furthermore, the coupling to other states spreads
this unusually large radius to the neighboring nuclei, and
halos seem to appear more often. These phenomena oc-
cur because the asymptotic behavior of the two-neutron
wave function, being determined by the nonvanishing
quasiparticle energy, is roughly equal to the pairing gap
for the state closest to the Fermi energy (Bennaceur
et al., 2000; Mizutori et al., 2000).

In a Borromean system where the two-body threshold
is above the three-body threshold, the correct
asymptotic description cannot be given by the quasipar-
ticle energy. The two-particle plus core large-distance
behavior of the three-body asymptotics is obtained from
the Faddeev equations. The corresponding logarithmic
divergence of the mean-square radius could then easily
be destroyed by a small change of the available Hilbert
space. The limitation imposed by the Cooper pairs in the
Bogoliubov computation is sufficient to remove the di-
vergence but still allows large sizes.

The relativistic Hartree-Bogoliubov mean-field com-
putations (Ring, 1996) reported by Meng and Ring
(1996, 1998) show halo structures of even numbers of
neutrons. The calculated extended wave function for
two loosely bound particles is understandable within the
mean field as explained above, even without the proper
asymptotic three-body behavior. The many-particle ha-
los obtained for zirconium isotopes (Meng and Ring,
1998) are more surprising. They arise because the high-
est occupied single-particle states (p3/2 , p1/2 , f7/2 , and
f5/2) for a number of isotopes simultaneously appear
very close to threshold. The Cooper pairs are then dis-
tributed within these orbits. In a sufficiently large Hil-
bert space allowing the proper asymptotic behavior, the
valence particles would redistribute into spatially more
confined structures and reduce the number of particles
in the halo.
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The origin of the stability of a Borromean nucleus like
11Li is attributed by Barranco et al. (1999, 2001) to an
enhanced pairing interaction obtained through couplings
to low-lying surface vibrations. The single-particle s1/2
and p1/2 states are, respectively, shifted down and up
from their mean-field positions. This then allows the
strong correlation found between s1/2

2 and p1/2
2 configura-

tions. The particle-vibrational coupling generates a
density-dependent pairing interaction essentially only
active outside the 9Li core. This supports the use of a
renormalized effective neutron-neutron interaction as
done by Bertsch and Esbensen (1991). On the other
hand, most models use the free neutron-neutron interac-
tion, since the spatial extension is large and the influence
of any surrounding nuclear matter is very small. The two
interactions could then in principle agree outside the
core, but in practice the renormalization must be signifi-
cant to account for the binding of 11Li.

The validity of the cluster description can be extended
by adjusting the interaction parameters to experimental
two-body scattering properties. Subsequent smaller pa-
rameter changes reproducing specific observables could
then be acceptable, while other computed observables
are left as independent tests or predictions. Such renor-
malizations are assumed to account for the effects of the
missing degrees of freedom, i.e., excitations of the intrin-
sic clusters, polarization beyond that of the free two-
body effective interaction, contributions from other clus-
ter configurations, off-shell effects, (anti)symmetrization
between particles in different clusters, and perhaps
other contributions. The cluster description then re-
quires that only small effects be allowed from these de-
grees of freedom.

Low-energy scattering properties are identical for
phase-equivalent potentials that only differ by the num-
ber of bound states (Baye, 1987). This mathematical fact
can be used to account rather well for the exclusion of
fermionic clusters from states already occupied by iden-
tical fermions within the clusters. For example, the two
valence neutrons in 11Li are not allowed in the occupied
neutron states within 9Li (Garrido et al., 1999a).

Only Pauli and pairing correlations can be investi-
gated with the zero-range Skyrme force often used in
mean-field calculations (Bennaceur et al., 2000; Mizutori
et al., 2000). The reason is that zero-range attractive po-
tentials introduce an instability with infinitely many
bound states of arbitrary low energy at small distances.
This collapse of the many-body wave function is not pre-
vented by the repulsive density-dependent term in the
Skyrme interaction (Fedorov and Jensen, 2001a, 2001b).
This corresponding regularization problem is well
known in field theory (see, for example, Amorim et al.,
1997 and Bedaque et al., 1999).

Direct inclusion of additional degrees of freedom has
been attempted, but to be efficient the choice must be
very dependent on the system. Cluster configurations
like two tritons, on top of two neutrons and an a par-
ticle, are significant in the 6He structure (Csótó, 1993;
Arai et al., 1999). Excitation of the cluster particles can
also make significant contributions, as in nuclear drip-
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line systems (Nunes et al., 1996; Arai et al., 1999) and for
the hypertriton (Miyagawa and Glöckle, 1993, 1995).

An elaborate microscopic multicluster model has
been successfully applied to halo nuclei (Descouvemont,
1995). It is based on one or more cluster divisions, pa-
rameters chosen as generator coordinates, full antisym-
metrization, conserved quantum numbers, and use of
basic two-particle interactions. Bound and excited states
as well as scattering states have been investigated, de-
spite the heavy numerical tasks involved.

The antisymmetrized molecular-dynamics model has
provided a good description of the structure of light nu-
clei (Kanada-En’yo et al., 1995; Kanada-En’yo and
Horiuchi, 2001; Sugawa et al., 2001). The method is
variational and based on Slater determinants built from
single-particle Gaussian wave packets distributed at
various points in space. The cluster structure is then fol-
lowed as it develops as a function of neutron number.
The Gaussian wave function is a severe limitation on the
halo description.

Mean-field and cluster models can be combined by
treating the intrinsic cluster motion in the mean-field
approximation and the valence particles as in the shell
model (Bertsch et al., 1988) or placed in cluster configu-
rations (Tosaka and Suzuki, 1990; Tosaka, Suzuki, and
Ikeda, 1990; Itagaki et al., 2001). To allow different
mean fields for core and valence particles, the varia-
tional shell model was formulated (Otsuka et al., 1993).
The quantum Monte Carlo method deals accurately with
the valence particles (Koonin et al., 1997; Otsuka et al.,
2001) while leaving the inert core to produce the ener-
gies of the single-particle states in which the correlations
are allowed. The full many-body solution is possible for
relatively few particles (Carlson and Schiavilla, 1998;
Wiringa et al., 2000; Arai et al., 2001; Mezei et al., 2001;
Pieper, 2002). All these methods provide a variety of
structures including excited states. Unfortunately they
are not good enough at describing the large-distance be-
havior of loosely bound systems such as quantum halos.

C. Halo occurrence

We shall accept a state as a quantum halo if the two
conditions specified in Sec. II.A are fulfilled, i.e., there is
a sufficiently large cluster configuration with a suffi-
ciently large spatial extension.

Halo occurrence depends of course on the definition
adopted. This is worth emphasizing, since the selection
of appropriate observables may be strongly influenced
by the definition. It would be better if different observ-
ables contained the same information about halo prop-
erties, but this can hardly be expected. For example, the
fourth radial moment emphasizes tail properties more
than the probability distribution. A small component of
halo character in a nonhalo state could therefore still
produce a very strong signal if the observable is suffi-
ciently sensitive.

An observable strongly sensitive to tail properties or
to halo features, while ignoring the main parts of the
wave function, could be used to detect the occurrence of
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halo states. Such a magnifying glass effect must be re-
lated to the halo definition. This is not a question of
subjective judgment concerning interesting physics con-
tent, but simply a matter of specifying the notation. Dif-
ferent definitions could be considered as correct if they
are consistent and serve the purpose.

The recent results of relatively small spectroscopic
factors obtained by analyzing nucleon knockout reac-
tions (Brown, 2001; Enders et al., 2002) are interesting in
this context. Such factors imply small single-particle
components in the many-body wave function. Since our
first condition for single-particle halos requires that the
spectroscopic factors be larger than 0.5, halo candidates
are expected to have large spectroscopic factors, as mea-
sured for 8B (Brown et al., 2002).

Turning to molecular systems, the mean-field is not
very useful for describing the relative motion of parts of
the system. Instead mean-field models are good approxi-
mations for the much more mobile valence electrons.
Here again halo formation is favored for few-body sys-
tems (small molecules). However, the electron motion
must be approximately decoupled from the cluster mo-
tion to allow sufficiently large cluster components.

Addition of an electron to an atom or a small mol-
ecule may produce halo structure. The distinction be-
tween intrinsic and halo degrees of freedom is now less
obvious and may not be possible at all. One electron and
one or two molecules form a halo; the added electron
may strongly couple to the other electrons; another mo-
lecular cluster division may provide a better description.

Small binding energy in an s state favors two-body
halo occurrence. An intuitive conclusion is then that a
three-body halo is formed if we add another particle
identical to one of the constituents. However, then the
three-body system is probably rather well bound with a
small radius. On the other hand, the Efimov states may
appear as one or more excited states. To form a three-
body ground-state halo the initial two-body system
should be unbound, since zero binding results in a nor-
mal ground state and the Efimov (excited) states, and
even more binding excludes halo formation.

1. Excitation energy dependence

A many-body system may have a finite excitation en-
ergy E* . The binding energy B of the cluster is the sepa-
ration energy required to move the clusters in their
ground states infinitely far apart from each other. The
total excitation energy can essentially all be deposited in
the relative cluster motion, i.e., B'E* , but other quan-
tum states of the same energy may exist with B!E* .
This corresponds to intrinsic excitations of the clusters.
It is still possible to define halos, Borromean systems,
and tango states in terms of the degrees of freedom of
the relative cluster as long as they remain independent
of intrinsic structure.

Quantum halos are not characterized by a conserved
quantum number. Strong coupling to other more com-
plicated states dilute the component of the halo and
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might effectively prevent its occurrence. To investigate
this we construct a model in which the many-body states
are spanned by the direct product of the two Hilbert
spaces built by the halo and all other degrees of free-
dom. This separation is reflected in a Hamiltonian con-
sisting of three terms, two acting only within their re-
spective spaces and one coupling V(c). We choose a
basis in which the Hamiltonian is diagonal when V(c)

50. We furthermore assume only one state uh& of energy
Eh in the halo space. We denote the many-body basis
states spanning the other space by ua& and their energy
by Ea .

The full Hamiltonian in the space spanned by the
product basis is then diagonal except for the row and the
column of the halo basis containing the coupling terms
denoted Vha . Diagonalization of this Hamiltonian ma-
trix gives the eigenvalue equation (Bohr and Mottelson,
1969)

Eh2Ei5(
a

Vha
2

Ea2Ei
, (14)

where Ei is the energy of the eigenstate ui&. The prob-
ability ch

2(i) of finding the halo state uh& in ui& is

ch
2~ i !5S 11(

a

Vha
2

~Ea2Ei!
2D 21

. (15)

There is one solution Ei of Eq. (14) between each pair
of the successive (ordered) energies Ea . One state ui&
exhibits halo character provided ch

2(i) is larger than 0.5,
requiring that each of the terms in the sum in Eq. (15)
be smaller than one. Thus all interaction matrix ele-
ments Vha must be smaller than the difference between
Ea and Ei .

In the schematic model, with equidistant level spacing
D between the ordered Ea energies and constant matrix
elements V[Vha , the condition for halo occurrence is
D.pV (Bohr and Mottelson, 1969; Jensen and Riis-
ager, 2000). In other words, the distance between non-
halolike many-body states must be larger than the cou-
pling to the halo state.

The coupling of a halo state to a large number of
other states can often be described by an optical poten-
tial having real and imaginary parts. Then only halo de-
grees of freedom are treated explicitly.

An explicit relation between the matrix elements of
the coupling and the imaginary potential W can be
found in Satchler (1983),

Whh
2 'p(

a

Vha
2

D
, (16)

where D is the average level spacing of the many-body
states. Using the approximation uEa2Eiu'D/2 and the
definition in Eq. (16) we obtain from Eq. (15) that
ch

22(i)'114Whh /(pD) and ch
2(i) then exceeds 0.5

roughly when D.Whh .
The condition is now expressed in terms of phenom-

enological optical potentials and level distances. Only
states coupling to the halo basis state contribute to the
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optical potential in Eq. (16), and D is the average dis-
tance between those levels. The coupling could as well
be explained as proceeding via doorway or hallway
states of special structure (Gadioli and Hodgson, 1992),
for example, two-particle/one-hole states which in turn
couple to more complicated states. This description
eliminates many of the coupling matrix elements in Eq.
(16), but a consistent counting of levels leading to D
must be introduced. The condition, D.Whh , is ex-
pected to remain valid with both sides of the inequality
redefined. However, fewer levels and detailed knowl-
edge of the couplings could reduce the uncertainties, es-
pecially those related to shell structure.

2. Nuclear ground-state halos

Well-defined single-particle states imply spectroscopic
factors close to unity. At the lowest limit of 0.5, where
halo formation may occur, other components in the
many-body wave function are as important. Still the
single-particle s and p states close to threshold are es-
sential for the occurrence of two- and three-body halos.
The general properties are most easily illustrated by us-
ing the square-well potential with realistic depth and ra-
dius parameters appropriate for neutrons, i.e., V'V0@1
2(N2Z)/(2A)# , R'r0A1/3, where r0'1.35 fm, V0
'250 MeV, N and Z are neutron and proton numbers,
and A5N1Z . The wave numbers inside and outside
the well, respectively, are K252m(V01E)/\2 and k2

522mE/\2. The wave function inside is the spherical
Bessel function j l(r) while that outside is the related
outgoing Hankel function hl

(1)(ikr). The conditions for
zero-energy solutions for given l then become
j l21(KR)50, which reduces to cos(KR)50 and
sin(KR)50 for l50, 1, respectively. The solutions for s
waves are

S 12
N2Z

2A DA2/35
\2p2~n21/2!2

2mr0
2~2V0!

(17)

and p waves are analogously obtained by replacing n
21/2 by n, where n51,2,3,... is a nonzero integer.

The solutions of Eq. (17) appear as curves in the N
2Z nuclear chart. Along the beta stability line we find
A0'0.4, 11, 55, 164 for s states and A1'4, 31, 112 for p
waves. The spin-orbit interaction would affect the
p-wave results. From Siemens and Jensen (1987) it is
numerically found that A152, 28, 105 and A154, 34,
116 for p3/2 and p1/2 states, respectively. The square-well
results agree fairly well with the weighted p-wave aver-
ages obtained from these values. The numbers change as
the neutron dripline is approached, i.e., A0'1, 14, 69,
196 and A1'5, 39, 136 for the s and p waves, respec-
tively. These extrapolations are in fair agreement with
Hartree-Fock-Bogoliubov computations using the
SKM* interaction (Dobaczewski et al., 1994) while devi-
ating substantially from relativistic mean-field computa-
tions (Sharma et al., 1994).

The possible halos for beta-stable nuclei must occur as
excited states with energies close to the neutron separa-
tion energy. Otherwise the halo binding energy would be
too large. Moving towards the dripline, halos may occur
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as low-lying excitations or as the nuclear ground state.
The square-well estimates reveal the overall behavior
but cannot be correct in detail for several reasons, e.g.,
bad radial shape, lack of self-consistency, large extrapo-
lations in nucleon numbers, and possible strong configu-
ration mixing.

The approach to the threshold of zero s-state energy is
interesting since halos would occur before the extreme
limit. The behavior with energy and nucleon number
along the beta stability line can be found in many text-
books (Bohr and Mottelson, 1975; Siemens and Jensen,
1987) for realistic potentials. The first observation is that
the single-particle levels cross each other. This implies a
change of shell structure, as the chemical potential in-
creases or as the dripline is approached (Dobaczewski
et al., 1996; Utsuno et al., 1999). Furthermore, the s
states approach zero energy with changing nucleon num-
ber much more slowly than the higher angular momenta.
Thus occupation of an s state close to zero energy be-
comes possible for more nuclei than expected from just
counting s states crossing 27 MeV as a function of A
along the beta stability line (Hamamoto, 2001). The
same tendency, though less pronounced, is also seen for
p states, but almost absent for higher l values.

These observations imply that nuclear halos may oc-
cur in heavy as well as light nuclei. The distribution of
single-particle energies as a function of N, Z, and energy
remains crucial for localizing halo candidates. These are
the same pieces of information needed to study the spe-
cial stability arising for some nucleon numbers away
from the well-known beta stability line (Utsuno et al.,
1999).

Detailed study of the configuration interactions in the
shell model are necessary to determine whether halos in
heavy nuclei are likely to be seen. If the energy of, for
example, a p state remained close to zero as its neutron
occupation increased, then many-body halos would
seem possible, as suggested by Meng and Ring (1998).
However, the particles would not remain uncorrelated as
assumed in the mean-field approximation. Clusters
would be formed and halo features would disappear
when all correlations were allowed between many va-
lence particles.

The total single-particle level density g increases lin-
early with the volume and the nucleon number A. The s
and p single-particle level density gs ,p increases on aver-
age only as A1/3. The number of halos as a function of
nucleon numbers is then equal to gs ,p measured at the
Fermi energy times the size sw of the window allowing
halos. This window size probably decreases in inverse
proportion to the square of the nuclear radius, which
usually increases as A2/3, and the number of halos,
gs ,psw , would vary as A21/3. However, this scaling of
radii is not valid for very unstable nuclei, and in addition
the slow variation of s and p single-particle energies
close to the threshold must increase the window size.
The number of halos would then on average be more
abundant than indicated by this estimate, which in any
case is unreliable due both to specific shell structure and
to large fluctuations of the number of low-lying single-
particle levels.
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3. Nuclear halos in excited states

The single-particle s or p components of a given state
determine the halo properties. The coupling to other
many-body states due to the finite excitation energy E*
can be estimated from the imaginary part of the optical
potential W (Siemens and Jensen, 1987),

W~r !5S W024W1aW

]

]r D 1
11exp@~r2Rw!/aw#

, (18)

where Rw5rwA1/3, rw'1.25 fm, aw'0.5 fm, and

W0'
~B1EF!21p2T2

60 MeV
, (19)

W1'WsS 16
N2Z

A D . (20)

Here 1 refers to protons and 2 to neutrons, EF(,0) is
the Fermi energy, T is the effective temperature related
to E* 'aT2, and the level-density parameter a
'A/(7.5 MeV). The expression for W0 is taken from
Baym and Pethick (1978) and Jeukenne et al. (1976),
and its numerical value is negligibly small for small E* .

The expectation value for the radial wave function f
of the single-particle state is then

Whh5E uf~r !u2W~r !r2dr'2k~RwW012.4awW1!,

(21)

where the approximation assumes an s-wave halo state
with r2uf(r)u2'2k exp(22kr) valid for negligible Cou-
lomb contribution (Jensen and Riisager, 2000). The con-
dition D.Whh with D'D0 exp(22AaE* ) for neutrons
then becomes

Z

A
AB exp~2AaE* !,0.1

D0

Ws
A \2

2maw
2 '

1
2
AMeV,

(22)

where we used D0'7 MeV from Jensen and Riisager
(2000) and W0!Ws'12 MeV from Siemens and Jensen
(1987). If the particle is a proton we should replace Z by
the number of neutrons N.

For a p-wave neutron halo state we assume 3kR
,1 MeV and obtain analogously the condition

Z

A4/3 exp~2AaE* !,0.3
D0

Ws

rw

aw
'0.5, (23)

which is independent of binding energy, reflecting that
the p-wave probability remains at finite distance even
for B50, in contrast to the diverging s waves (Riisager
et al., 1992; Hamamoto et al., 2001). The condition in
Eq. (23) is always fulfilled for dripline nuclei for E*
50, but finite excitations quickly prevent p-wave halo
formation. For protons N is replaced by Z.

In Eqs. (22) and (23), the only somewhat less well
known parameter is D0 /Ws , which enters linearly in
contrast to the exponential excitation energy depen-
dence. Although for small E* the precise value can be
important, it hardly matters for finite E* . Rewriting
Eqs. (22) and (23) we find
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B,250 keV
A2

Z2 exp~24AaE* ! for s states, (24)

Z,0.5 A4/3 exp~22AaE* ! for p states. (25)

The replacement Z↔N for protons is valid only when
the tail of the wave function is unaffected by the Cou-
lomb interaction. The upper limit of B decreases expo-
nentially with E* from 1 MeV at E* 50 to fractions of
an eV at high E* . The chances of seeing excited-state
halos close to stability are negligible, in agreement with
the comprehensive information about neutron s states
close to threshold coming from low-energy neutron scat-
tering experiments (Lynn, 1968; Allen and Musgrove,
1978).

The neutron single-particle s-wave strength is large
for A'55 and A'164, but this does not imply that halo
structures exist. The corresponding largest measured
s-wave neutron-scattering lengths anc are 15 and 47 fm
(Koester et al., 1991). The energy of the virtual state is
then about \2/(2manc

2 )'92 and 9.4 keV, which is at
least ten orders of magnitude larger than the upper lim-
its obtained from Eq. (24) with an excitation energy of
around the neutron separation energy of 7 MeV. The
virtual-state energy measures the energy distance from
the threshold of the possible halo state and as such it is
compared with the estimate of the upper binding-energy
limit. Although these are the most favorable cases
among stable nuclei (apart from very light nuclei), they
do not appear very promising; only low-lying states can
be expected to have s-wave halo features.

The two-body halo occurrence condition is equivalent
to a large anc . Adding another neutron would produce a
smaller nonhalolike three-body ground state, but with
the help of the already large ann the first excited Efimov
state is now possible. It must occur when the neutron-
core halos are extremely pronounced. Large scattering
lengths are the conditions for both two- and three-body
halos, and in general they must therefore appear in the
same regions of the nuclear chart.

Below the breakup threshold the fragmentation of the
halo state into many-body states is already substantial
for a relatively low excitation energy. Above the
breakup threshold when the states start to overlap, i.e.,
when the average width is comparable to the level spac-
ing and only a single decay channel is open, width col-
lectivization occurs (Rotter, 1991; Zelevinsky, 1996).
One state couples strongly to the continuum and thus
regains single-particle character, whereas the others es-
sentially decouple. This regime is reached about 1 MeV
above the channel threshold. Large (n ,g) radiative cap-
ture cross sections could arise due to enhanced single-
particle strength both below the threshold reached after
g emission and above the threshold populated before g
emission. These possibilities are not yet explored, but
most likely the properties of halos are not directly in-
volved.

As emphasized by Vogt (2002) one might expect that
the behavior of strength functions close to a (single-
neutron) threshold would be related to halo occurrence.
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The cluster fraction may be too small to allow halo for-
mation, but the small single-particle halolike compo-
nents in each many-body state would still be influenced
by proximity to the threshold. Such collective effects
might then be visible in appropriate strength functions.
However, as far as halos are concerned, qualitatively
new phenomena cannot be expected, since neutron
strength functions at the single-neutron threshold are
well described in detail from standard points of view
(see, for example, Lynn, 1968).

Establishing a connection would of course still be
valuable, and one could look for enhancements of spe-
cific effects, e.g., parity mixing in heavy nuclei (Mitchell
et al., 1999, 2001). Such an effect might be present for
halo states effectively due to a lower energy spacing be-
tween opposite parity states (Feshbach et al., 2000). Ex-
plicit calculations have so far only been done for 11Be
with low-lying bound 1/21 and 1/22 states, but other
halo states could also be affected through mixing with
low-lying continuum states. More calculations are
needed before a final picture can be drawn.

III. EXAMPLES OF HALO STRUCTURE

The general structures described in the previous sec-
tion can be illustrated by examples of two-, three-, and
many-body halos from nuclear, atomic, and molecular
physics. Dividing the many-body system degrees of free-
dom into (few) active and (many) frozen variables is the
first task. The accuracy of this approximation depends
on which observable is considered. On the other hand,
the frozen intrinsic degrees of freedom begin to contrib-
ute substantially to the value of any relevant observable,
the halo structure has most likely disappeared.

A. Common features

The deviation from the asymptotic s-wave two-body
relation between size and binding energy can be quanti-
fied by w defined as ^r2&53\2w/(2mB). The quantity w
can be approximated by a universal function of e
5B/Bmax (see Lombard, 2001a), which varies in the in-
terval [1/6, 1]. The interactions may vary from Coulomb-
like via power-law potentials to short-range potentials.
The radius decreases as a function of binding energy
from infinity for B50 or e50. This improved scaling
relation is valid independently of the details of the po-
tential only when the bulk of the wave function is in the
nonclassical region.

Some diatomic molecules almost reach the lowest pos-
sible value w(0)51/6, reflecting that these molecules are
in the nonclassical region and therefore also have pro-
nounced halo states. The decoupling from other degrees
of freedom is often much better verified for molecules
that clusterize in a natural way without overlap of their
individual density distributions. Halos could then be
very pronounced although their structure is relatively
simple.

Known halo nuclei correspond to values of w between
0.27 and 0.53. Even the zero binding limit is influenced
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by many-body effects from coupling of the different de-
grees of freedom. The density overlap is larger than for
molecules, and configuration mixing limits halo appear-
ance via the second occurrence condition. Molecular ha-
los should thus be more abundant. In nuclei where a
natural clusterization does not exist a priori halos should
be fewer and possibly have a more complicated struc-
ture.

1. Basic ingredients

The cluster division and the corresponding interac-
tions are first chosen. At this stage, some care must be
exercised. To illustrate, we consider a two-body system
with reduced mass m with a spherical Gaussian potential
\2/(2mre

2)(2v0)exp(2r2/re
2). We use a normalized

Gaussian wave function }exp@2r2/(2b2)# as the trial s
state with b as a variational parameter. The energy is
then E5\2/(2mre

2)@3/(2x)2v0(11x)23/2# , where x
[(b/re)2. The derivative of E vanishes for (11x)5

5v0
2x4, determining b and E5\2/(2mre

2)@3/(2x)
2(v0

2/x)1/5# . The solution E50 is obtained for x52 cor-
responding to the critical value v0535/2/4. The mean-
square radius is then also finite, ^r2&53re

2, in contrast to
the correct diverging result in Eq. (1). Thus the a priori
selected Hilbert space does not even allow the qualita-
tive divergent behavior.

The same analysis with an exponential wave function
instead of the Gaussian leads to a diverging mean-
square radius when the energy approaches zero. The ex-
ponential is thus more appropriate and gives the correct
asymptotic behavior. Extending to three-body systems,
we find that the Jacobi coordinates are the natural
choice, i.e., the relative coordinates between one pair of
particles (x) and between their center of mass and the
third particle (y). Parametrized wave functions with
Gaussians in x and y again produce a qualitatively wrong
behavior. Use of exponentials improves the asymptotic
behavior but mostly for the two-body subsystem related
to the x coordinate. For the remaining two-body sub-
systems the asymptotically correct relative motion can-
not be simultaneously reproduced. This is only achieved
through the Faddeev decomposition of the wave func-
tion, in which the two-body components are explicitly
introduced in their corresponding Jacobi coordinates.
Then the qualitatively correct energy-size behavior is re-
produced, even for the delicate structures arising from
the Efimov effect.

The lesson to be drawn is that the size of the basis is
less important than the shape of the functions. For halos
the large-distance asymptotics of a bound state are cru-
cial, and the space must allow the correct behavior. In
particular, Gaussians are in general not at all suited. This
explains why the elaborate cluster models based on lin-
ear combinations of Gaussians do not reproduce well-
pronounced halo structures (Kanada-En’yo et al., 1995).
Increasing the number of basis functions alleviates this
problem, and a good accuracy may be obtained with a
sufficiently large basis. However, the correct divergent
behavior possible for extreme cases requires bases with
the asymptotically correct shapes. Models like the inter-
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acting shell model often use harmonic-oscillator basis
functions (Koonin et al., 1997; Brown, 2001; Langanke
and Martı́nez-Pinedo, 2003). Because the primary goal
of these models is to explain the energies and transitions
many oscillator shells of moderate length parameter are
much more efficient at this than those required to repro-
duce the spatial extension of halos. Thus interacting
shell models are also not well suited for halo computa-
tions.

By definition the asymptotic behavior corresponds to
distances beyond the short-range interactions. It is inde-
pendent of the detailed structure of the potential and
can therefore be determined by using zero-range inter-
actions (Demkov and Ostrovskii, 1988). However, this
simplification requires a renormalization to avoid the
collapse of the ground state, an effect known as the Tho-
mas collapse (Thomas, 1935). Several techniques using
various physical parameters are now available (Bertsch
and Esbensen, 1991; Adhikari et al., 1995; Esbensen
et al., 1997; Bedaque et al., 1999; Fedorov and Jensen,
2002).

The reduction of the available space associated with
the division into inert and active degrees of freedom also
requires a renormalization of the interaction. This is a
major concern in shell-model theory where the interac-
tion is adjusted to the basis. The correct energy of the
state can be reproduced while the wave function is con-
strained within a smaller space. The operators corre-
sponding to observables also have to be renormalized.

For halos we want both the energy and the radial ex-
tension to be correct. It seems best to first select the
effective two-body interactions in agreement with the
available low-energy scattering data which determine
the large-distance behavior. A few parameters like scat-
tering length, effective range, and shape parameter, or
alternatively, resonance energies may be sufficient.
When known they can be used directly as input param-
eters. The active degrees of freedom must then be
treated to the accuracy required. No operator renormal-
ization should be used, reflecting the assumption that
halo properties can be fully described by these degrees
of freedom. Corrections from the neglected degrees of
freedom are treated at a later stage, providing a test of
the initial assumption.

Significant corrections may arise from the mixing of
configurations corresponding to several cluster divisions
when their thresholds are close. Such cases are rare. One
component usually dominates, and the effective interac-
tions can be adjusted to account for the remaining
pieces. Direct inclusion of several clusters may be nec-
essary at some level of accuracy or to provide a deeper
understanding (Csoto, 1993; Arai et al., 1999, 2001).

2. Lessons to be learned

For weakly bound systems the low-energy two-body
scattering properties account for the main part of the
structure. One example is the deuteron, in which widely
differing nucleon-nucleon potentials reproduce the prin-
cipal properties. Effective-range theory explains this
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fact. It also shows that the overall properties (binding
and radius) of the deuteron provide little information
about the details of the interaction. Only scattering
length and effective range are important. To learn more
it is necessary to have either more details or higher ac-
curacy.

Getting useful information about the nucleon-nucleon
interaction relevant to halos from dilute nuclear matter
properties is not straightforward. Matter so dilute that
only two particles can interact is found only in the free
nucleon-nucleon interactions. From matter at nuclear
saturation density, we learn about the effective nuclear
interaction within the nucleus. For intermediate densi-
ties there are most likely significant contributions from
the frozen degrees of freedom.

For few-body structure to be applicable, as in the case
of neutrons surrounding a core, the overlap of the con-
stituent particles must be relatively small. This is not far
from the limit where the free interaction is appropriate.
Deviations arising from the neutron probability at the
surface region of the core can be accounted for by
density-dependent effective interactions. However, this
goes against the few-body model assumptions by involv-
ing the intrinsic degrees of freedom. The cluster occur-
rence criterion is relevant in this connection. There may
be only a small window open for halo occurrence. How
small can be answered by understanding the transition
from ordinary nuclei via clusters to halos.

Since halos in s and p states necessarily have an over-
lap with the core, excitation of the core degrees of free-
dom is likely. At the two-body level this can be ac-
counted for by means of effective two-body potentials
reproducing two-body scattering. Polarization effects
beyond these two-body interactions must be included in
another way, e.g., three-body potentials or by directly
including excitations of the constituents.

Still the starting point has to be the completely decou-
pled approximation, providing a reference for improve-
ments beyond the few-body structure. However, the in-
escapable effects of the intrinsic degrees of freedom
have to be mocked up, for instance, by effective poten-
tials or direct couplings to selected states.

The situation is thus that of a nearly decoupled halo
structure, influenced to some degree by the substructure
of its constituents. Systems, in which a dominant struc-
ture is weakly perturbed by couplings to the intrinsic
structure of its building blocks, although not abundant
within nuclear physics, occur often, e.g., in the combina-
tions of degrees of freedom associated with atomic-
nuclear, nuclear-nucleonic, and atomic–solid-state de-
grees of freedom. An exotic example of possible mixing
of molecular and nuclear degrees of freedom is burning
water, in which the water molecule H2O within the mea-
sured accuracies has the same energy as a nuclear reso-
nance level in 18Ne (Belyaev et al., 2001).

From a decoupled approximation we can first of all
expect to learn about the properties of the systems, i.e.,
whether they are of halo structure or not. We can clas-
sify the states in groups with various universal features,
e.g., Borromean, tango, Efimov, s- or p-wave dominated,
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ground or excited states. We can characterize states in
neighboring systems as isobaric analogs or transitional
states between halos and other ordinary structures. The
characterization is conveniently found by using the scal-
ing plots for two- and three-body systems. The proper-
ties of these classes then allow predictions and concep-
tual connections between subfields.

The classification we propose is independent of the
details of the interactions. The necessary effective inter-
actions can sometimes be extracted from the results of
ab initio calculations, e.g., for atomic-molecular systems.
For nuclear systems this possibility is still more remote.
We can instead rely on phenomenology to learn about
the in-medium nucleon-nucleon or nucleon-nucleus in-
teractions and develop methods to bridge the gap from
zero to nuclear matter densities and the gap between
few-body and many-body problems.

B. Two-body systems

We shall concentrate on bound states below thresh-
olds for decays into other structures. States above such
thresholds are interesting but outside the scope of this
section.

1. Nuclei

The combined requirements of low excitation energy
and low Coulomb and centrifugal barriers strongly sug-
gest we look at the nucleon driplines. Thresholds for
simultaneous emission of several neutrons are above the
one-neutron binding energy although they become close
for increasing nucleon numbers. Thresholds for emission
of several charged particles could be lower than one-
proton emission but now the Coulomb barrier prevents
both decay and halo formation. An example of such a
cluster threshold could be 8Be, which is only 92 keV
above the energy of two free a particles. The a decay
width is about 10 eV, indicating that the Coulomb bar-
rier is substantial. This decay could also be called spon-
taneous fission, which otherwise is the dominating decay
mode only for stable nuclei heavier than uranium. This
illustrates that the division into binary fission fragments
does not allow significant halo structure even close to or
above the threshold. Rare-earth nuclei, in which fission
is energetically favored and only prevented by a large
barrier, do not form halos. This is not even possible for
the actinides, in which the fission barrier or cluster
threshold is relatively small. The decoupling of the cor-
responding degrees of freedom cannot be taken as a
good approximation. Thus the existence of close- or low-
lying thresholds is not a sufficient condition for forma-
tion of a halo.

We therefore return to the regions along the nucleon
driplines. The ground-state two-body candidates (neu-
tron plus core) are the heaviest isotopes with positive
neutron separation energy Sn . The tail of the radial
wave function is exp(2kr) where k21;5 –10 fm for ha-
los and ;1.5–2.0 fm for ordinary nuclei. We have col-
lected in Table I a number of established or suggested
one-nucleon halo candidates. The deuteron, 1

2H1 , with a
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TABLE I. Two-body halo candidates. The columns give cluster division of the system, excitation energy E* (MeV), separation
energy S (MeV), orbital angular momentum quantum number l of the dominating components and references.

System E* S l References

1
2H1 (n1p) 0.0 2.2 0 Audi and Wapstra, 1995

4
11Be7 ( 4

10 Be61n) 0.0 0.50 0 Audi and Wapstra, 1995

5
14B9 ( 5

13 B81n) 0.0 0.97 0 Ajzenberg-Selove, 1991

6
15C11 ( 6

16 C101n) 0.0 1.22 0 Ajzenberg Selove, 1991

6
19C13 ( 6

18 C121n) 0.0 0.53 0,2 Nakamura et al., 1999

10
31Ne21 (10

30Ne201n) 0.0 .0 1,3 Sakurai, 2002

11
34Na23 (11

33Na221n) 0.0 ? 1,3 Audi and Wapstra, 1995

12
35Mg23 (12

34Mg221n) 0.0 ? 1,3 Audi and Wapstra, 1995

13
40Al27 (13

39Al261n) 0.0 .0 1,3 Sakurai, 2002

14
43Si29 (14

42Si281n) 0.0 .0 1,3 Notani et al., 2002

2
4He2 (2

3He11n) 20.21 0.36 0 Tilley et al., 1992

4
10Be6 (4

9Be51n) 6.26 0.55 0 Ajzenberg-Selove, 1990

4
10Be6 (4

9Be51n) 5.96 0.85 0 Ajzenberg-Selove, 1990

4
11Be7 ( 4

10 Be61n) 0.32 0.18 1 Endt, 1990

5
12B7 ( 5

11 B61n) 2.62 0.65 0 Ajzenberg-Selove, 1990

5
12B7 ( 5

11 B61n) 2.72 0.55 1 Ajzenberg-Selove, 1990

5
14B9 ( 5

13 B81n) 0.74 0.23 1 Ajzenberg-Selove, 1991

6
17C11 ( 6

16 C101n) 0.29 0.44 0,2 Tilley et al., 1993

7
18N11 ( 7

17 N101n) 2.61 0.22 1 Tilley et al., 1995

8
21O13 ( 8

20 O121n) 3.08 0.73 ? Endt, 1990

10
25Ne15 (10

24Ne141n) 3.32 0.96 ? Endt, 1990

10
25Ne15 (10

24Ne141n) 4.07 0.11 ? Endt, 1990

1
2H1 (n1p) 0.0 2.2 0 Audi and Wapstra, 1995

5
8B3 (4

7Be31p) 0.0 0.138 1 Audi and Wapstra, 1995

7
12N5 ( 6

11 C51p) 0.0 0.60 1 Audi and Wapstra, 1995

13
22Al9 (12

21Mg91p) 0.0 '0.02 0,2 Audi and Wapstra, 1995

13
23Al10 (12

22Mg101p) 0.0 0.13 0,2 Audi and Wapstra, 1995

14
21Si7 (13

20Al71p) 0.0 ? 0,2

15
26P11 (14

25Si111p) 0.0 '0.1 0,2 Audi and Wapstra, 1995

15
27P12 (14

26Si121p) 0.0 0.90 0,2 Audi and Wapstra, 1995

17
31Cl14 (16

30S141p) 0.0 0.29 0,2 Audi and Wapstra, 1995

19
35K16 (18

34Ar161p) 0.0 0.078 0,2 Audi and Wapstra, 1995

2
4He2 (1

3H21p) 20.21 20.40 0 Tilley et al., 1992

9
17Fe8 ( 8

16 O81p) 0.50 0.105 0 Ajzenberg-Selove, 1991

11
21Na10 (10

20Ne101p) 2.42 0.007 0 Endt, 1990

L
3 H1 (d1L) 0.0 0.14 0 Gibson, 2001

L
6 He2 (L

5 He21n) 0.0 0.17 1 Hiyama et al., 1996 and 2001

4
8Be4 (2

4He212
4He2) 0.0 20.092 0 Audi and Wapstra, 1995
binding energy of 2.2 MeV can be classified as a (proton
and neutron) halo state (Hansen et al., 1995). Neglecting
the intrinsic nucleon structure, the system is a genuine
two-body system, and the only bound state is a relative s
state with a small d admixture caused by the tensor in-
teraction.

The helium isotopes display a very pronounced odd-
even mass variation. All odd isotopes heavier than 2

4He2
are neutron unstable, whereas all known even isotopes
are one-neutron bound. The heaviest, 2

10He8 , with Sn
'2.2 MeV is the first to be unbound with respect to two-
Rev. Mod. Phys., Vol. 76, No. 1, January 2004
neutron emission, with S2n'1.1 MeV (Korsheninnikov
et al., 1994; Ostrowski et al., 1994). Thus two-body halos
are prevented by a particle unstable core, since Sn is
larger than the two-neutron separation energy S2n of
these even isotopes.

This odd-even behavior is systematic along the drip-
line. Therefore in two-body neutron ground-state halos
the neutron number N should be odd, with 0,Sn(N)
,1 MeV and Sn(N12),0. If the last positive neutron
separation energy is larger than 1 MeV the halo is insuf-
ficiently developed as for 3

8Li5 , 6
22N15 , 8

23O15 , 9
26F17 ,
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10
29Ne19 , and 14

41Si27 . For 11
34Na23 (Sn'1.1 MeV) and

12
35Mg23 (Sn'0.23 MeV) the bindings are obtained by ex-
trapolation. Uncertainties are generally of the order of
the values themselves.

The neutron dripline is currently not known with cer-
tainty above Ne. Possible halos with low Sn are specified
in Table I. The valence neutron in 4

11Be7 is an s-state
halo, as seen in Fig. 2. The relatively large Sn for 5

14B9
indicates that even for the expected s state the halo
should not be much extended. In contrast, 6

19C13 satisfies
the halo criterion of Fig. 2 while 6

17C11 is too small, indi-
cating a dominating l52 component. Other candidates
are 10

31Ne21 and 13
40Al27 , in which the neutron bindings are

unknown but positive and probably very small.
The low binding energies in Table I must be accom-

panied by low orbital angular momentum. The ground-
state structures of carbon isotopes certainly include ad-
mixtures of l50 and 2 through couplings to core excited
21 states. These nuclei are only halos if s-state configu-
rations dominate. The stability of 11

34Na23 and 12
35Mg23 are

not known, but the neutron separation energies could be
very low or negative. These nuclei are thus potentially
good candidates, since l51 also might be the dominat-
ing structure.

In Fig. 2, 7
22N15 appears above the l50 curve at rela-

tively large binding with large radius. This does not in-
dicate a halo system, but rather signals either inconsis-
tency between core density and classical turning point R
or, as suggested by Kanungo et al. (2001), core modifica-
tion due to the presence of the last neutron.

Excited one-neutron halo states may also occur. To
find these we have to search for isotopes with excitation
energies below Sn by at most 1 MeV. If these are not
surrounded by many other excited states, they could
represent halos provided the quantum numbers and the
structure in general are correct. We list a number of
possibilities in Table I.

The first possibility is the 01 excited state of the a
particle at 20.21 MeV. It is not known whether a signifi-
cant component of n12

3He1 is present or whether a
more collective behavior like a breathing mode might be
a more suitable description. The p state in 4

11Be7 is usu-
ally referred to as a halo state. The first excited state in

6
15C9 would be a candidate if the d configuration in this
5/21 state had been less dominating. The nuclei 6

17C11 ,

7
18N11 , 8

21O13 , and 10
25Ne15 also have excited states close to

the neutron-emission threshold, but again the structure
is not established and the d components may be too
large.

The proton dripline could also support halo states, al-
though the Coulomb barrier tends to confine the charge-
density distribution. The odd-proton isotopes are again
most likely to form one-proton halo states, though in
this case the repulsive Coulomb interaction now rather
favors even numbers. We have collected in Table I the
cases along the dripline with Sp,1 MeV. The proton
dripline is roughly known for all elements below ura-
nium. It is likely the Coulomb potential prohibits proton
halos above 19

35K16 .
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The weakly bound 5
8B3 , with the proton in a p state,

well studied in connection with the solar neutrino prob-
lem (Riisager and Jensen, 1993; Grigorenko et al., 1999)
has recently been analyzed more carefully with few-
body techniques. The centrifugal and Coulomb barriers
together confine the spatial extension to almost normal
size, as expected for 7

12N5 . The binding energies of 9
17F8 ,

13
22Al9 , 13

23Al10 , 15
26P11 , 15

27P12 , 17
31Cl14 , and 19

35K16 are all
rather small, as also expected for 14

21Si7 . The s compo-
nents must dominate over the d component to overcome
Coulomb confinement. We would also include 14

21Si7 ,
which is not yet known but quite possibly could have a
very small proton binding energy.

Excited states below a few MeV and close to the pro-
ton separation energy are rather few for these light nu-
clei. Table I presents the two halo candidates in 9

17F8 and

11
21Na10 . Furthermore, it is perhaps interesting to note
that the excited state of the a particle is 0.40 MeV above
the proton threshold and 0.36 MeV below the neutron
threshold. Thus the possible halo could be a mixture of
neutron and proton halos, even though the proton is
unbound but held back by the Coulomb barrier.

In general many excited states exist above the proton
threshold. They are resonances in the continuum, al-
though their decay width may be so small that in prac-
tice they behave as bound states. However, halos may
result from tunneling far into the barrier. This clearly
becomes easier as the top of the Coulomb barrier is ap-
proached. However, simultaneously the width increases,
the structure deviates more and more from that of a
bound state, and the nonclassical region disappears. In
short the halo picture is no longer valid. Closer to the
threshold, tunneling is more difficult, the width is
smaller, and the states are more similar to bound states.
One example is provided by the different cluster divi-
sions of two a particles in 4

8Be4 .
The isobaric analog states (Bohr and Mottelson, 1969)

of a halo could be candidates for excited halo states,
since they have the same structure as the original state
except for the exchange of neutrons and protons. Thus a
one-neutron halo could transform into a one-proton
halo, which might be an excited state. In this case we
must consider the Coulomb energy shift DEC arising
from the charge of the added proton. An estimate is
DEC'Ze2/R , where Z is the charge of the core and R is
the radius of the halo particle. Using the s-state estimate
@R25\2/(4mB)# in Eq. (1) for the radius of a well-
pronounced one-neutron halo, we then get

DEC'
Z

3
AB 1 MeV,1 MeV or BZ2<9 MeV.

(26)

Since the binding energy of a halo state is less than
about 1 MeV, we conclude that Z<3. Thus for Z.3 the
analog of a neutron halo state would be above the
threshold for proton binding, or if the proton is close to
the threshold the initial state would not be a halo.

These considerations apply only for zero core isospin.
For finite core isospin the analog state has two compo-
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nents (Bohr and Mottelson, 1969), one similar to the
neutron core state and one equal to the analog of the
core and a neutron in the initial halo state. Both compo-
nents correspond to excited states in the frozen single-
particle basis. For halos to exist not only should the
threshold for both analog states be at the right energy
but the coupling between states should also not act de-
structively. Thus, except for the very lightest systems,
these states are not very likely halos.

Another class of two-body states are the hypernuclei,
in which the L particle is bound to a nucleus. The sim-
plest of these strange nuclei is the hypertriton L

3 H1 con-
sisting of a deuteron weakly bound to the L particle in a
pronounced s-state halo (Cobis et al., 1997; Gibson,
2001). The L-nucleus binding increases with the nuclear
mass, and strange two-body ground-state halos are not
possible, e.g., L

5 He2 in Table I. On the other hand, ex-
cited strange halo states may still occur.

More than one L particle can bind to an ordinary
nucleus and give a sequence of possible strange two-
body halos if the last L is in a sufficiently weakly bound
low-angular-momentum state. Then the core also has fi-
nite strangeness, but the general principles for occur-
rence and structure remain unchanged. Since the L par-
ticle binds strongly to nuclei above hydrogen, another
type of halo appears with nucleons surrounding a
strange core, as in L

6 He2 , with a very small neutron
binding energy.

2. Atoms and molecules

The nuclear strong interaction falls off exponentially
with distance. For atoms and molecular systems power-
law potentials r2m are the typical long-distance behav-
ior. The exponent m is then an integer arising from
corresponding electromagnetic multipole-multipole in-
teractions. The larger the value of m, the shorter the
range, and m52 is the threshold dividing short- from
long-range potentials.

The order of magnitude of the masses is given either
by the electron mass me or by the nucleon mass mN .
The space dimensions are in the range of Å. For a halo
the energies should therefore be smaller than typical
values B'0.1\2/(mR2), i.e., with R510 Å in the two
cases given by B'7 meV or 4 meV. These estimates
must be quadratically rescaled if the classical turning
point is very different from the value used for R.

The pure Coulomb case corresponding to electrons in
atoms is m51. An m51 system could be very loosely
bound and very large, like an atomic Rydberg state, for
example. However, it is also well established that the
largest parts of the wave functions reside in the classi-
cally allowed region, and semiclassical descriptions are
rather accurate. Thus the wave functions may extend to
larger and larger distances but in complete harmony re-
main proportional to the increasing extension of the po-
tentials. These structures are excluded as halos by our
second condition.

The generic case producing Efimov states is m52. It is
realized in nature for a charged particle interacting with
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neutral molecules with permanent electric dipole mo-
ments. The dipole moment introduces a directional de-
pendence, and angular momentum is not conserved in
the body-fixed system. Still the strength of such poten-
tials must exceed a minimum value to allow binding, as
we learned in the discussion of the Efimov effect. This
strength corresponds to a critical value of 0.64ea0 (elec-
tron charge times Bohr radius), as already noted by
Fermi and Teller (1947). The finite size of the molecule
producing the dipole moment increases the critical value
to about 0.8ea0 (Abdoul-Carime et al., 2002). An effi-
cient computational method has been introduced by
Clary (1988) and recent ab initio calculations by Gu-
towski et al. (1998) and Skurski et al. (2000).

Experimentally information has been accumulating
about electrons in such dipole bound states (Desfran-
cois, 1995; Abdoul-Carime et al., 2002). The energies
typically vary between 1 and 100 meV. The halo features
could therefore be prominent. However, with decreasing
energy the classical turning point in the 1/r2 potential
increases dramatically and the mean-square radius of
the state cannot be substantially larger, as seen in Fig. 2,
where the scaled mean-square radius is always smaller
than about 3. Thus, in the weak-binding limit, the domi-
nance of the Yukawa tail prevents scaling, although r22

potentials have (different) scaling properties. The sys-
tems may be extremely large and the appropriate length
scale far exceeds 10 Å. As a consequence, binding ener-
gies much smaller than 7 meV are needed. The best halo
candidates are propanal and formaldehyde very close to
the limiting dipole moment for binding (Abdoul-Carime
et al., 2002).

The 1/r2 potential with sufficient attractive strength
produces infinitely many bound states with energies pre-
dicted by Eq. (8). With a dipole moment 530.64 ea0
(n'1) the second state should then appear at a binding
energy about three orders of magnitude smaller than
that of the first, i.e., in the range of meV. Dipole mo-
ments closer to the critical value decrease this estimate
to dramatically smaller energies far outside the range of
any experiment. However, an infinite series is not physi-
cal. The molecular deformation and the additional elec-
tron are coupled in their rotational motion in at least a
two-channel problem. This coupling effectively changes
the large distance of the potential and thereby rules out
the theoretically possible infinitely many one-channel
states of large spatial extension. To understand this ef-
fect one can imagine an electron far away for which one
is not able to distinguish details like its orientation. Then
the average over directions produces an interaction like
the long-distance tail for a spherical, neutral molecule,
i.e., 1/r4.

An increasing dipole moment increases the binding
and an electron added to an excited molecular rotational
state could then, after suitable couplings to other states,
give an energy closer to the threshold. This seems like a
mechanism that would produce a halo state, but then the
ground state would be of normal size and would not
explore the large-distance tail of the potential. The re-
quired binding energy of the excited state should be a
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fraction of a meV, and the coupling changing the poten-
tial tail should be very small. These systems obtained by
adding an electron to molecules with finite dipole mo-
ment provide interesting spatially extended structures,
although most of them are not halos.

In the case of m53, the large-distance behavior arises
from the interaction between neutral systems with per-
manent dipole moments (LeRoy and Bernstein, 1969;
Gao, 1999). At large distance the directional average
leads to an effective 1/r6 behavior of the potential. Scal-
ing properties can be formulated and exploited to pre-
dict energies of high-lying molecular vibrational states
near the threshold from energies of a few other such
states. Even more, the difference between the sixth root
of the energies of such levels is a universal constant mul-
tiplied by a specific function of reduced mass and poten-
tial strength. However, this prediction, based on semi-
classical assumptions, breaks down close to threshold,
where the halos could be formed. Many atomic dimers
as well as more complicated molecular systems have vi-
brationally excited states close to threshold (Gao, 1999).
For molecules the binding energies must be in the range
of meV.

Another origin of 1/r3 behavior could be a charged
particle interacting with a molecule with no dipole but a
permanent electric quadrupole moment (Gutowski and
Skurski, 1999; Abdoul-Carime et al., 2002). The long-
distance behavior is shifted to 1/r4 as for a negative ion
due to the effective directional average. Now the above
estimate of the limit of about 7 meV is appropriate,
since the potential tail vanishes much faster. A few can-
didates like the succinonitrile molecule and the forma-
mide dimer are described by Abdoul-Carime et al.
(2002) together with the related uncertainties. Measure-
ments have found them to be too bound to form a halo,
whereas the calculations in some cases would allow it.
The difference is thought to arise from correlation ef-
fects between valence electrons and molecular electrons.

The m54 behavior appears in two neutral systems,
one with a permanent dipole moment and the other with
a permanent quadrupole moment. Another less exotic
combination is a charged particle interacting with a neu-
tral system.

Negative atomic ions present the most obvious ex-
amples. Their binding energies should not exceed about
10 meV. The H2 system has too large an electron bind-
ing energy, 0.75 eV, and a size comparable to the neutral
atom. This implies existence of strong dynamic correla-
tions between the two electrons beyond those caused by
the Pauli principle. They repel each other and are most
likely found on opposite sides of the charged proton
core. This altogether excludes H2 from being a two-
body halo state. We know that H2 has no excited bound
states but a number of low-lying resonances (Balling
et al., 2000).

The binding energies of heavier negative atomic ions
are easily smaller, as can be seen for Ca2 with 24.6 meV
(Andersen et al., 1997). However, even in this extreme
case of small binding, the two-body structure is inappro-
priate. The correlations with the electrons in the neutral
Rev. Mod. Phys., Vol. 76, No. 1, January 2004
atom are very strong and the size is compatible with the
size of Ca. Thus Ca2 is not a two-body halo state. All
other known ground states are also excluded, but this
simultaneously opens the possibility of excited-state ha-
los.

For an electron bound to a neutral molecule, most
structures would consist of a spatially localized electron
either bound to one of the atoms or used as glue be-
tween two atoms. A truly ground-state electron-
molecule two-body system is not very likely. However, in
excited states an electron may be pushed to distances
outside the atoms, where only the molecule as a whole is
important. The binding energy should then be below a
few meV.

A two-body system consisting of a neutral and a nega-
tively charged molecule corresponds to a halo binding
energy of at most a few meV. The structure of such sys-
tems could as well be a (more complicated) molecule
and an attached electron. An illustration is found in
HeH2, i.e., helium bound to the negative hydrogen
atom (Li and Lin, 1999; Robicheaux, 1999). The electron
binding of about 50 meV is too large for halo formation.
This case clearly favors the suggested negative molecule-
molecule structure, since He2 is unbound. Combining
H2 with other closed-shell atoms leads to stronger bind-
ing. Again this opens the door for excited-state halos.
Which structure prevails cannot in general be decided a
priori.

The m55 behavior appears for two neutral systems,
both with permanent electric quadrupole moments, for
which all lower moments are zero. The large-distance
behavior is shifted to 1/r6 due to the inevitable coupled-
channel effects and direction averaging. For halos the
binding energies have to be below a few meV. Such sys-
tems have not yet been studied.

The case of m56 is the induced dipole-dipole inter-
action, always present at large distances for neutral po-
larizable systems and in particular for two neutral atoms.
The most prominent example is the atomic helium
dimer 4He2 , with a binding energy of about 0.13 meV
and a size of about 50 Å (Schollkopf and Toennies, 1996;
Nielsen et al., 1998b). This is a beautiful two-body halo,
the largest known, as seen in Fig. 2.

The critical stability of the helium dimer can be con-
trasted with the instability of 4He3He, in which the mass
of one of the nuclei is changed from four to three nucle-
ons, while the molecular interaction is left completely
unchanged. The corresponding increase in kinetic en-
ergy (the reduced mass is lowered by a factor 6/7) is
sufficient to decrease the binding beyond the threshold
of stability.

Another combination of helium isotopes, 3He6He,
maintains the reduced mass and therefore the binding
energy of about 0.13 meV, whereas 4He6He increases the
reduced mass and consequently also the binding. The
lightest elements in the Periodic Table are most affected
by isotopic variations, which can be very important for
such fragile structures.

A series of calculations of alkali-helium pairs resulted
in a number of very weakly bound states (Yuan and Lin,
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1998; Kleinekathofer et al., 1999). The system 4He6Li is
bound by about 0.13 meV and 4He7Li by 0.49 meV. The
isotopes 4HeAK (A539,40,41) are bound by about 1.0
meV, 4HeARb (A585,87) by 0.88 meV, and 4He133Cs by
0.41 meV. They are all very good examples of halo sys-
tems. Furthermore, 4He23Na is bound by 2.5 meV, leav-
ing enough room also to bind 3He23Na by 0.090 meV.
Both are halos. All the other examples come out as un-
bound when 4He is replaced by 3He.

C. Three-body systems

Using two-body effective potentials reproducing low-
energy scattering properties (phase shifts) one can com-
pute the three-body structure. If the three-body binding
energy is not precisely reproduced, it is necessary to
fine-tune, for example, by using a three-body interaction
to account for contributions from the intrinsic particle
degrees of freedom. This defines a basic model for ana-
lyzing the structure and reactions of three-body systems.

For attractive, short-range, two-body interactions the
three-body system is more bound than the subsystems.
Therefore a halo state arises only when the two-body
subsystems are unbound or very weakly bound. The
two-body systems could all be unbound (a Borromean
system) or perhaps only one subsystem might be bound
(a tango state). The Efimov effect is then close on the
ordinary scale of binding, although perhaps far on the
scale of the weak binding of these delicate structures.

Two-body subsystems must be either very weakly
bound or low-lying resonances, or virtual states must be
present, in order to support a halo state. There is a defi-
nite connection between the structure of the subsystems
and for the three-body system properties. This includes
the continuum spectrum of the three-body system
(Glöckle et al., 1996), which contains traces of some of
the Efimov states when the Efimov conditions are ap-
proximately fulfilled. Thus the continuum structure
could be very interesting even though not yet fully un-
derstood in terms of the structure of the two-body sub-
system (Cobis et al., 1998; Garrido et al., 2002).

1. Nuclei

The most obvious three-body halo candidates are
dripline nuclei with even numbers of neutrons or pro-
tons, in which the nucleus with one less neutron or pro-
ton is unbound or perhaps very weakly bound. We in-
clude in Table II Borromean systems with two neutrons,
two protons, and some exotic divisions of Borromean
and tango structure. The binding of non-Borromean
two-neutron systems being generally larger than 2 MeV,
we do not include them here as halo candidates. When
the neutron-core system has a two-body bound state
with zero energy, an additional neutron increases the
binding energy by 1–2 MeV for light nuclei. Thus a few
MeV is therefore an estimate of the smallest binding
energy of non-Borromean two-neutron systems.

The two nuclei 2
6He4 and 3

11Li8 are prototypes of
nuclear three-body halos. For 2

6He4 the two-body inter-
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actions are well known, and the p3/2 neutron core com-
ponent is dominant in the n-2

4He2 subsystem, which is
unbound, with a resonance energy at about 0.77 MeV.
Still the measured three-body binding energy is about 1
MeV. Favorable circumstances for a halo are a small
core radius and a repulsive s-wave interaction enlarging
the system. Moving the resonance down from 0.77 MeV
to zero would roughly add 1.5 MeV and produce a bind-
ing of about 2.5 MeV.

For 3
11Li8 the s- and p-wave probabilities in the neu-

tron core subsystem are roughly equal. The binding
would increase from 0.3 MeV to about 1 MeV if the
virtual s states and the p resonances were moved from
their average values of about 0.4 MeV to zero energy.
Spin splittings, conceptually of a hyperfine nature, arise
from the 3/2 spin of the core coupled to the neutron
angular momentum. These splittings appear to be rela-
tively small for p waves but substantial for s waves (Gar-
rido et al., 2002). Only the statistical average of the po-
sitions is important for most observables like the energy,
since the Pauli principle dictates corresponding popula-
tion of both these spin-split states.

Substantial spin-splitting effects can occur when only
one of the partners is occupied. This can be seen in 12

excitations of 3
11Li8 , where the two neutrons may occupy

the lowest of the spin-split s and p states, leaving the two
highest unoccupied. Then the 12 spectrum is lowered
compared to any zero-core-spin model prediction.

An effect of spin splitting is that the neutron core
states are different even for s states. Therefore if one of
these two-body states has zero energy the other energy
is different from zero. Thus the Efimov condition of two
simultaneous zero-energy s states is highly unlikely for
such systems with finite core spin (Fedorov et al., 1995).
The Coulomb interaction prevents the appearance of
Efimov states, and only two-neutron halo systems are
then possible. Candidates for Efimov states should
therefore be sought among systems where two neutrons
surround a spin-zero core, which automatically ensures
two identical subsystems. Then the ground state is most
likely bound by at least 1 MeV and the Efimov states
should appear as a sequence of excited states close to
the threshold energy.

The heaviest stable helium isotope is 2
8He6 , which,

like 2
6He4, is Borromean and which has an even stronger

two-neutron binding. The stronger binding is enhanced
by the closed-shell structure for helium, but such Bor-
romean pairs are quite common, as can be seen in Table
II, e.g., ( 5

17 B12 , 5
19 B14), ( 9

29 F20 , 9
31 F22), and

(11
35Na24 , 11

37Na26). Another pair could be (14
44Si30 , 14

46Si32)
if 14

45Si31 were established as unbound. The pair
(13

41Al28 , 13
43Al30) illustrates the discrete nature, since

13
40Al27 is just neutron bound whereas 13

42Al29 is probably
unstable. The heaviest of such pairs very likely have ad-
mixtures of more complicated states arising from the in-
trinsic structure of the Borromean constituent.

The other examples in Table II show the established
Borromean systems 4

14Be10 and 12
38Mg26, the almost cer-

tainly Borromean 6
22C16, and the established non-
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TABLE II. Three-body halo candidates. The columns give division of the system, separation energy S5S2n in MeV, orbital
angular momentum l of the dominating nucleon-core components, remarks (B for Borromean, T for tango) and references as in
Table I. Excited states are indicated by a star on the separation energy.

System S l R References

2
6He4 (2

4He21n1n) 0.97 1 B Audi and Wapstra, 1995

2
8He6 (2

6He41n1n) 2.13 1 B Audi and Wapstra, 1995

3
11Li8 (3

9Li61n1n) 0.30 0,1 B Audi and Wapstra, 1995

4
14Be10 ( 4

12 Be81n1n) 1.33 0,2 B Audi and Wapstra, 1995

5
17B12 ( 5

15 B101n1n) 1.4 0,2 B Audi and Wapstra, 1995

5
19B14 ( 5

17 B121n1n) '0.5 0,2 B Audi and Wapstra, 1995

6
22C16 ( 6

20 C141n1n) '1 0,2 B Audi and Wapstra, 1995; Sakurai et al., 1999

9
29F20 ( 9

27 F181n1n) '0.9 0,1,2 B Audi and Wapstra, 1995

9
31F22 ( 9

29 F201n1n) .0 0,1,2,3 B Sakurai, 2002

10
32Ne22 (10

30Ne201n1n) '1 0,1,2,3 T Audi and Wapstra, 1995

10
34Ne24 (10

32Ne221n1n) .0 0,1,2,3 B Notani et al., 2002

11
35Na24 (11

33Na221n1n) '0.5 0,1,2,3 B Audi and Wapstra, 1995

11
37Na26 (11

35Na241n1n) .0 0,1,2,3 B Notani, 2002

12
38Mg26 (12

36Mg241n1n) '1 0,1,2,3 B Audi and Wapstra, 1995;
Sakurai et al., 1997

13
41Al28 (13

39Al261n1n) .0 0,1,2,3 T Sakurai, 2002

13
43Al30 (13

41Al281n1n) ? 0,1,2,3 B

14
44Si30 (14

42Si281n1n) ? 0,1,2,3 ?

14
46Si32 (14

44Si301n1n) ? 0,1,2,3 ?

6
10C4 (4

8Be41p1p) 3.821 1 B Audi and Wapstra, 1995

10
17Ne7 ( 8

15 O71p1p) 0.950 0 B Audi and Wapstra, 1995

12
20Mg8 (10

18Ne81p1p) 2.325 0,2 B Audi and Wapstra, 1995

14
22Si8 (12

20M81p1p) '20.2 0,2 B Audi and Wapstra, 1995

15
24P9 (13

22Al91p1p) '0.76 0,2 T Audi and Wapstra, 1995

16
27S11 (14

25Si111p1p) '0.90 0,2 B Audi and Wapstra, 1995

17
29Cl12 (15

27P121p1p) '0.68 0,2 T Audi and Wapstra, 1995

18
31Ar13 (16

29S131p1p) '0.1 0,2 B Audi and Wapstra, 1995

19
33K14 (17

31Cl141p1p) '0.8 0,2 T Audi and Wapstra, 1995

20
35Ca15 (18

33Ar151p1p) '0.76 0,2 B Audi and Wapstra, 1995

3
6Li3 (2

4He21n1p) 3.70 1 T Audi and Wapstra, 1995

3
6Li3 (2

4He21n1p) 0.14* 1 T Audi and Wapstra, 1995

5
8B3 (2

4He212
3He11p) 1.725 1 T Audi and Wapstra, 1995

4
9Be4 (2

4He212
4He21n) 1.757 1 B Audi and Wapstra, 1995

L
3 H1 (L1n1p) 2.34 0 T Gibson, 2001

L
6 He3 (2

4He21L1n) 4.26 0,1 T Hiyama et al., 1996, 2001
Borromean (although very close) system 10
32Ne221n1n .

Although the present estimate is that 8
25O17 is neutron

unstable by only 0.160.48 MeV, leading one to hope
that 8

24O161n1n should be a Borromean system, this is
contradicted by the established instability of 8

26O18 .
Borromean two-proton halos are fewer due to the

confining Coulomb potential; see Table II for examples
lighter than calcium. Unlike the two-neutron cases the
three-body binding for an even-proton system is not
necessarily larger than the two-body p-core binding be-
cause now the repulsive Coulomb interaction also con-
tributes. The p-core system may even be more stable
than the p-p-core, depending on how far apart the two
Rev. Mod. Phys., Vol. 76, No. 1, January 2004
protons are spatially in the total system. In fact, the
three-body binding energy can be arbitrarily close to
zero. The even-proton systems listed in Table II are Bor-
romean, in contrast to the weakly bound odd-proton sys-
tems, of which we include a few with estimated negative
binding energy.

The few-body structure may be an appropriate ap-
proximation in some cases, even when the system is of
ordinary size. The core of 6

10C4 is the a-unstable 4
8Be4 .

However, the Coulomb barrier also stabilizes this state
in the continuum, allowing structure and reaction stud-
ies of the combined system. Actually, many properties
are known for nuclei beyond the proton dripline, since



240 Jensen et al.: Structure and reactions of quantum halos
they have sufficiently long lifetimes to be studied.
A few examples of less straightforward cluster divi-

sions are listed at the end of Table II. Two a particles are
only bound by 92 keV; using one neutron as glue leads
to the Borromean 4

9Be4 nucleus. The spatial extension is
confined by the Coulomb and centrifugal barriers, al-
though the additional neutron allows a larger size than

4
8Be4 . This nucleus could be considered the first in a
series of a number of a particles held together by an
appropriate number of neutrons (Wilkinson, 1986;
Kanada-En’yo et al., 1995; von Oertzen, 1997; Kanada-
En’yo and Horiuchi, 2001; Sugawa et al., 2001). Such
states may appear not only as ground states but as struc-
tures of specific excited states.

Both 5
8B3 and L

3 H1 are tango states in which one
bound subsystem, 4

7Be3, and the deuteron form a rela-
tively tight entity compared with distance and binding to
the third particle, proton, and L. The qualitatively domi-
nating structure and the scaling properties are then of
two-body nature. This is especially pronounced for the
hypertriton, as seen and explained in connection with
Figs. 3 and 5. For 5

8B3 the proton binding of 0.14 MeV is
small compared to the 1.59-MeV binding of the two he-
lium isotopes. Still the underlying three-body structure
is necessary for accurate computations.

The two-body scaling is also recovered for L
6 He3 , but

in contrast to the hypertriton the L particle is now
closely attached to the a particle as a strange skin while
the remaining neutron forms a halo weakly bound to
this strange two-layer core (Hiyama, 1996, 2001). This
strong binding of the L particle to ordinary nuclei ex-
tends the nucleon dripline, as witnessed by the weak
binding of a neutron to the bound L

5 He2 system. Adding
one more neutron produces a rather strongly particle-
bound L

7 He4 system. In the same way L
7 Be4 (L

5 He21p
1p) constitutes a Borromean system beyond the non-
strange proton dripline. It should be emphasized that
the two-body nature of these strange halos does not im-
ply that the systems effectively are two-body structures.

The structure of L
7 Li3 (2

4He21L1d) reveals an inter-
esting effect. The deuteron size is reduced substantially
due to the presence of the L particle. This is analogous
to the effect of impurities in solids which sometimes
drastically change the properties of the material
(Tamura, 2002). The corresponding gain in energy al-
lows strange excited states with halo properties
(Hiyama, 1996, 2001).

Another tango system is 3
6Li3 , in which the 3.7-MeV

binding energy seems to be too large for a halo state.
The deuteron alone is responsible for 2.2 MeV and the
remaining 1.5 MeV is also too large to allow a two-body
halo of a and deuteron. The special tight structure of the
a particle could, however, extend the halo region, as we
noted for 2

6He4 , but now both the deuteron charge and
the larger binding prevent a large radius.

The nuclei 2
6He4 and 3

6Li3 could have isobaric analog
halo states, since Z<3, as required by Eq. (26) if the
binding energy is sufficiently small. The known halo
state of 2

6He4 should then have an analog in 3
6Li3 which
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has a similar structure when one of the protons is
changed into a neutron in the same relative state
(Zhukov et al., 1995; Li et al., 2002). This is indeed pos-
sible and appears as the 01 state with E* 53.563 MeV,
i.e., 0.14 MeV from the threshold; see Table II. The state
is less bound than its analog in 2

6He4 due to the repulsive
Coulomb potential’s amounting to about 0.83 MeV.

Strange halo analog states may also exist. For ex-
ample, the T51/2, Jp512 state in L

6 He4 (2
4He31L

1n) has an analog in L
6 Li2 (2

4He21L1p). However,
this state is proton unbound due to the higher energy
from the additional Coulomb repulsion. Halo formation
would require more binding in the initial analog state.

The notion of halo analog states makes sense for sys-
tems in which the total isospin is carried by the two
nucleons, i.e., when the core has zero isospin. Generali-
zation to a finite core isospin was attempted for 3

11Li8
and 4

11Be7 by Zhukov et al. (1995), who defined a halo
analog state as the replacement of one valence neutron
by a proton in the same valence state. This definition is
in conflict with the definition of isospin, which implies
that in any decoupled two-component system, like a
halo and core, both parts must contribute coherently to
the analog state, as explained in detail by Bohr and Mot-
telson (1969). Including only one of these components is
in contradiction to the isospin analogy. Extending the
notion of halo analog states even further, to states of
deuteron core structure, is even more misleading, first
because the state is not an isobaric analog and second
because it is not analogous to any two-neutron halo
state.

The structure of an isobaric analog state is by defini-
tion similar to the original state. The small differences
are due to the Coulomb potential’s breaking the symme-
try, i.e., the energy of the state is changed by the differ-
ence in Coulomb repulsion (diagonal part), while its
structure is modified by the admixture of different iso-
spins (nondiagonal part). For halos these effects are en-
hanced by the presence of the binding threshold. One
more proton increases the energy and the binding
threshold is approached or exceeded. Then, the dimen-
sions of the state increase to minimize the additional p
core Coulomb repulsion. The relative weights of
nucleon core configurations are also shifted from p to s
waves to reduce the centrifugal barrier repulsion of the
spatially larger state (Millener, 1997).

These effects are analogous to the well-known
Thomas-Ehrmann shifts (Bohr and Mottelson, 1969).
For the weakly bound halo states the isospin mixing of
the isobaric-analog states may be substantially larger
than for the ordinary nuclei. This was investigated for
one-neutron halos (Hansen et al., 1993) but has so far
been studied only for specific examples of two-neutron
halos (Arai et al., 1995).

Other excited states may have interesting properties
as well. The two-proton Borromean states, and in gen-
eral cluster states in which the Coulomb interaction con-
tributes, already start with a disadvantage. The excita-
tion energy would further hinder formation of quantum
halos. The two-neutron Borromean nuclei are more
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likely to have excited states of halo character. If the ex-
cited states arise from core excitations they are clearly
not predictable from the original three-cluster structure.
The frozen degrees of freedom must be activated.

Also of interest are the three-body states built on a
ground-state cluster configuration. Since the binding en-
ergy for Borromean nuclear systems can be several
MeV, there may be room for an excited state. Such
states, including the ground state, could be the first in
the series of Efimov states. The sequence is terminated
when the effective radial potential falls off faster than
the second power of the size coordinate. This happens
when the hyper-radius is a few times the average of the
three s-wave scattering lengths; see Eq. (11).

An Efimov state would, according to Eq. (8), be
exp(p/n) larger than the size of the previous state, and
its energy would correspondingly be reduced by a factor
of exp(22p/n). The value of n is 0.074 when two masses
are nine times smaller than the third mass and only two
subsystems have s states at zero energy, which is the case
for 3

11Li8 (Jensen and Fedorov, 2003). The radius then
increases from one state to the next by a factor of 3
31018. Since two-neutron halos are the only candidates,
it is therefore extremely unlikely to find a second Efi-
mov state in nuclei.

We want to emphasize that the first, in contrast to the
second, Efimov state is not excluded in nuclei. We can
illustrate this by increasing the n core scattering length
for 3

11Li8 to about 18 000 fm, where the first excited state
appears (Fedorov et al., 1994a). This is about 14 orders
of magnitude smaller than the estimate obtained if the
first excited state is 331018 larger than the ground state.
This state is therefore not localized at distances where
the hyper-radial potential behaves as 1/r2 (aav,r). The
characteristic scaling features require at least two Efi-
mov states, but the first could also be the last.

2. Atoms and molecules

The combination of electrons (charged particles) and
molecules to form bound three-body systems can be
achieved in three different ways, each of which contains
as many possibilities as combinations of the number of
molecules. We do not here distinguish between mol-
ecules and neutral atoms. If the system is effectively a
two-body system with an electron as one of the particles,
the energy scale is a few meV. In genuine three-body
halo systems the energy scale is rather a few meV, corre-
sponding to 10 mK. Experimental investigations are
therefore very demanding and only a few results are
available. In some of these combinations a large number
of halos is possible, especially when excited states are
included. In contrast to nuclei, excited states are prob-
ably less mixed with other configurations and the halo
features could then survive to larger excitation energies.
We shall only give examples for illustration.

The first three-body system on the atomic level is the
neutral helium atom (a1e1e). This is a well-bound
Coulombic system far from any halo structure. Another
similar system is the negative hydrogen atom H2 (p
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1e1e), also too strongly bound to form a halo. A similar
system is the positive hydrogen molecule H2

1 with two
protons and one electron, which is even more bound
than H2. Here accurate computations are available for
the binding as a function of the screening parameter for
a statistically screened Coulomb potential (Bressanini
et al., 2002). At some point the threshold for binding the
hydrogen atom is reached. Bressanini et al. are able to
simulate the manipulation of systems either by the ex-
ternal fields created by thermal ionization in plasmas or
by the effective potentials acting on electrons in metals.
Close to threshold, halos may arise.

The next type is two electrons and a neutral atom,
corresponding to doubly charged negative ions. These
particles are probably all unbound, although this has not
been proved rigorously to date. This does not necessar-
ily imply the absence of structure in the continuum, al-
though no low-lying resonances in electron scattering on
H2 and D2 are found (Andersen et al., 1995). Such dou-
bly charged negative atomic ions probably do not form
halos.

Two electrons added to a neutral molecule could form
bound states, for example, when the molecule is large
and two well-separated atoms each bind one electron.
This could very easily happen when the molecule con-
sisted of many atoms. In smaller molecules with few at-
oms, the two additional electrons repel each other, and
therefore lead to a more likely formation of halos. Re-
cently the stability of the doubly charged small mol-
ecules BeF4

22 (BeF41e1e) and MgF4
22 (MgF41e

1e) was established (Middleton and Klein, 1999). Such
systems, however, cannot be classified as three-body sys-
tems. Indeed restructuring and many-body effects due to
the presence of the two electrons involve the intrinsic
degrees of freedom (Weikert and Cederbaum, 1993).
For example, the division of BeF4

22 into BeF4
21F2

could be more advantageous to form a two-body halo.
The two-electron plus molecular or atomic systems are
either unbound, very likely not forming halos, or re-
structure into a different clusterization.

Two molecules (or atoms) combined with a negatively
charged particle can form weakly bound states. The
charged particle could be a muon or an antiproton, but
we shall here only consider the electron. Examples are
the negative hydrogen atom plus closed-shell atoms. The
lightest are A1H1e1A2He with different isotopic com-
binations corresponding to A151, 2 and A253, 4. These
tango systems become unbound by removal of the elec-
tron that can bind to H but not to He.

The potential between H and He decreases as 1/r6 at
large distance, while addition of the electron changes the
effective radial potential to 1/r4, corresponding to the
dipole-induced potential of He by the bound H2 system.
The pocket in the effective potential becomes much
wider and appears at a larger distance (Li and Lin,
1999). Two bound states are established theoretically for
each isotopic combination. The angular momenta are J
50, 1 and the energies vary in the range between 1 and
100 meV. The sizes are about 10–20 Å. They are prom-
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ising halo candidates, especially the weakest bound J
51 state in 1H1e13He (Bendazzoli et al., 1997).

Using the hydrogen molecule instead of He we also
get a system, H1e1H2 , with a few bound, but poten-
tially rather extended, states (Robicheaux, 1999). Re-
placing He with other noble gases, e.g., H1e1Ne, leads
to many more bound states, in which excited states
might be close to threshold and exhibit halo features.
The stronger bindings between the noble gas and H, as
well as between the noble gas and the electron, are re-
sponsible. If one used, instead, two helium atoms in
4He1e14He, the three-body system would be unbound
with respect to 4He2 . A number of tango states involv-
ing two atoms and an electron have been proposed (Ro-
bicheaux, 1999). Examples containing Mg are Mg2

2,
Mg1e1Ne, Mg1e1Ar, Mg1e1Kr, and Mg1e1Xe,
where any of these systems could form a halo state.

Combining three atoms or molecules can produce
very weakly bound systems. The best known is the sym-
metric helium trimer 4He3 with a bound ground state of
almost normal size and one excited state, often referred
to as a good candidate for an Efimov state with binding
of about 0.18 meV and size around 52 Å. The only
bound asymmetric helium trimer, 3He4He2 , has one
pronounced halo state with binding and radius around 1
meV and 13 Å (Nielsen et al., 1998b; Yuan and Lin,
1998).

Two-body properties suggest that the replacement of
one helium atom by an alkali atom produces halo can-
didates (Yuan and Lin, 1998; Kleinekathofer et al.,
1999). A few examples of molecular three-body halos
are 7Li4He3He and 23Na3He2 , with binding energies and
radii around (0.18 meV, 68 Å) and (0.5 meV, 50 Å), re-
spectively. Furthermore, 6Li4He3He could in the end
prove to be even more weakly bound. Other combina-
tions with heavier alkali atoms can also be envisaged.
3He2 or 3He4He could be combined with an alkali atom
to achieve pronounced halo structure.

Excited states with an Efimov structure would appear
along the dashed line in Fig. 3. However, if the interac-
tion only allowed one Efimov state, it could appear any-
where above the Efimov line. This can be understood if
we imagine decreasing the scattering length from infinity
until only the ground state and one Efimov state are left,
as for the atomic helium trimer system (Nielsen et al.,
1998b, 2001). Continuing even further, we would find
that the size of the excited state kept increasing and at
some point moved into the nonclassical region in hyper-
radius, where the potential no longer would behave as
1/r2. The state would then be a halo state in hyper-
radius, which is only possible for the last Efimov state.
When the second excited state disappears, the energy of
the first moves towards zero from a value strongly de-
pendent on the shape of the two-body potential and
completely independent of the Efimov scaling condition.

Efimov states could appear as the result of an appro-
priate combination of particles. The smallest factors re-
lating neighboring states are found for the largest values
of n [see Eq. (8)]. Three examples illustrate this behav-
ior (Jensen and Fedorov, 2003), i.e., 1.01 for three iden-
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tical bosons, 0.499 for three equal masses with only two
subsystems with s states at zero energy, and 0.074 when
two masses are nine times smaller than the third mass
and only two subsystems have s states at zero energy
( 3

11 Li8). From one state to the next radii increase by
factors of exp(p/n)522, 542, and 331018, respectively.

The most favorable condition is obtained when one
mass is much smaller than the other two. For example,
3He23Na2 and 4He133Cs2 give n'1.2, 2.4 corresponding
to radii increasing by about 20 and 4.5, respectively. An
even more favorable case is that of an electron and two
identical molecules or atoms (Pen’kov, 1999). Then n
could be as large as 100 (electron-molecule mass ratio
'1025) and the number of Efimov states within practi-
cal reach would increase substantially. However, this re-
quires a large electron-atom scattering length or equiva-
lently a binding energy very close to zero. The needed
match may be difficult to find but, on the other hand, it
does not have to be precise due to the large n. The most
difficult part is probably to find systems in which the
three-body structure is maintained.

One interesting possibility, the tuning of effective in-
teractions by magnetic fields, has been exploited to ma-
nipulate Bose-Einstein condensates (Cornish et al., 2000;
Roberts et al., 2001). Another suggestion, to use an ex-
ternal electric field, was discussed in connection with the
Efimov effect for helium trimers (Nielsen et al., 1998a).
Sweeping across such resonances would allow the for-
mation and subsequent investigation of these giant halos
(Nielsen et al., 2002).

D. Multibody systems

Halo formation seems to be strongly favored for two-
and three-body clusterization. However, multibody ha-
los are not excluded altogether, especially if they are
enhanced by quantum shell effects or a particularly
stable configuration, for example, of macroscopic geo-
metric origin. The question of which degrees of freedom
are active is again decisive.

1. Nuclei

The low cluster charge in a halo state suggests combi-
nations of neutrons, protons, and a particles as sources
of halo structure. The most favored is several neutrons
surrounding a core, and here most likely four neutrons
plus a core would be preferred, since three neutrons lose
out due to the odd-even effect. If six or a larger even
number of neutrons plus a core could form a halo, a
special quantum-mechanical shell effect stabilizing such
systems would have to be rather strong. This is unlikely.
Good candidates for five-body halos seems to be the
Borromean nuclei, in which removal of two neutrons
also produces a Borromean system.

We list in Table III pairs of such neighboring Bor-
romean systems located earlier. Their possible halo
structure is not well established, although all systems
seem to be more complicated than the two-neutron Bor-
romean structure suggested in Table II. These cases
show the importance of a good selection of the degrees
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TABLE III. Multibody halo candidates. The columns give division of the system, four- and two-neutron separation energies (in
MeV) S4n , S2n , indication with B if Borromean property is known, and references as in Tables I and II.

System S4n S2n B? References

2
8He6 (2

4He214n) 3.10 2.13 B Audi and Wapstra, 1995

4
14Be10 ( 4

10 Be614n) 4.00 1.33 B Audi and Wapstra, 1995

5
19B14 ( 5

15 B1014n) '1.9 '0.5 B Audi and Wapstra, 1995

6
22C16 ( 6

18 C1214n) '4.7 '1 B Sakurai et al., 1999

9
31F22 ( 9

27 F1814n) .0 .0 B Sakurai, 2002

10
34Ne24 (10

30Ne2014n) .0 .0 ? Lukyanov et al., 2002; Notani et al., 2002

11
37Na26 (11

34Na2214n) .0 .0 ? Lukyanov et al., 2002; Notani et al., 2002

13
43Al30 (13

39Al2614n) ? ? ?

14
46Si32 (14

42Si2814n) ? ? ?
of freedom, i.e., two or four valence neutrons and the
corresponding (different) Borromean cores.

The next type of system necessarily contains two
charged components. Replacing one or more neutrons
with protons immediately allows deuteron substructures
that are rather loosely bound, but sufficiently bound to
prevent such halos. The quantum gain from additional
shell effects is probably not sufficient to bind several
deuteron clusters (Jensen and Riisager, 1991, 1992).

Using a particles as building blocks is a step up in
charge but the tight structure of large binding and small
radius is an advantage. Furthermore, both the a par-
ticles and the neutron-a system are unbound. Possibili-
ties are nuclei such as 2x

4x1yX2x1y with x a particles
bound by the y neutrons, which decrease the Coulomb
repulsion by keeping the positive charges apart and
which simultaneously provide additional attraction. The
Borromean nucleus 4

9Be5 , in its ground state or an ex-
cited state, could be considered the simplest example of
such a system.

At the dripline a-neutron clusters are more favored
than at beta stability because at the edge of stability the
stablest such structures must be exploited optimally to
obtain a stable solution. The absolute energy gain,
achieved in this way, although small, makes the differ-
ence between stability or decay. These cluster states may
then even become the ground state.

The stability of 8
24O16 matches full d5/2 and s1/2 shells

and an empty d3/2 shell. Two more neutrons make the
system unstable. However, adding one proton instead
supplies binding for six additional neutrons, i.e., two
more than the d3/2 shell can hold. The first four of these
neutrons are naturally accounted for since the d3/2 level
is slightly unbound in 8

25O17 while slightly bound in

9
26F17 . In the shell-model description the last two neu-
trons require occupation of higher-lying levels. The
change of stability or the occurrence of new magic num-
bers as the dripline is approached has been investigated
in shell-model computations (Otsuka et al., 2001).

It is tempting to attribute the surprisingly different
number of neutrons at the dripline for 8

24O16 and 9
31F22 to

a different cluster structure. The nucleus 8
24O16 would

then be explained as four 2
6He4 clusters. Furthermore,

the following neutron dripline nuclei with even proton
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numbers, 10
32Ne22 , 12

38Mg26 , and 14
44Si30 , would be obtained

from each other by adding 2
6He4 , whereas the first,

10
32Ne22 , is constructed with 8

24O16 plus 2
8He6 . These may

be cluster components providing extra stability and per-
haps eventually producing halos.

Clusters with higher charges are less likely, although
exotic structures like two 2

6He4 or 3
11Li8 bound into 4

12Be8

or 6
22C16 have been suggested as possible bound states.

Such cluster states and related phenomena have been
intensively studied (see, for example, Kanada-En’yo and
Horiuchi, 2001; Sugawa et al., 2001).

2. Atoms and molecules

Unlike nuclei in which odd-even effects are strong,
four-body halos are favored for electrons combined with
molecules. The decoupling of different degrees of free-
dom is more pronounced for molecules. This is demon-
strated by the long series of collective rotational and
vibrational states, providing a larger number of possible
excited states close to the threshold of binding.

Combining neutral molecules with electrons in gen-
eral allows each molecule or atom to bind the electron
and therefore prohibit the cluster structure necessary for
halo formation. An even simpler example of this effect
is seen for Ca2, in which the electron binding energy of
24.6 meV is rather small (Andersen et al., 1997), but the
radius is also expected to be small because the electron
is rather strongly correlated with both valence and
closed-shell electrons. This is a problem relevant for
many-body physics not halo physics.

The most attractive combinations are the neutral mol-
ecules. We have already discussed atomic helium trimers
and concluded that 4He3 has an Efimov excited state
and 3He4He2 is a halo. The system of mixed atoms 4Hen
3He2 is unbound for n51 and bound for n>2 (Bressa-
nini et al., 2002). When one 3He atom is added to the
system, 4Hen

3He3 is unbound for n,4 in the calcula-
tions while bound for n>32. For any given number of
3He atoms the complex can be bound by some number n
of 4He. Deciding whether some of these systems qualify
as halos requires more than such a global analysis, but
systems with the lowest number of atoms are certainly
the most likely candidates, i.e., 4He2

3He2 .
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The addition of a 3He atom always has two effects. On
the one hand, it reduces the stability due to the weaker
two-body binding and the Pauli exclusion principle. On
the other hand, it provides more pair binding. It has
been predicted theoretically that 3Hen is stable at least
for n.35 (Guardiola and Navarro, 2000). Other combi-
nations with alkali atoms can be readily drawn from the
results reported by Kleinekathöfer et al. (1999), e.g.,
3Hen with alkali atoms, where stability may be achieved
for n52.

Excited states allow a completely new class of multi-
body halo states, as recently suggested in connection
with Bose-Einstein condensates (Sørensen et al., 2002a,
2002b). A description in terms of effective two-body po-
tentials and a Faddeev-type wave-function decomposi-
tion leads to a number of spatially extended bound
many-body states. These appear for very large two-body
scattering length within the size of the external ion trap.
They are metastable and would decay by recombination
into lower-lying dimer and trimer states. They are also
to a large extent independent of the specific two-body
potential and carry all the characteristics of Efimov
states as given in Eq. (8). Their large size, extending far
beyond the range of the two-body interaction, indicates
a strong decoupling. While these molecules may not ap-
pear directly in nature, the two-body scattering length
can be tuned by use of external fields. The existence
conditions for such states can in principle be controlled,
allowing an easier study of their properties.

IV. TWO-DIMENSIONAL STRUCTURE

Many physical phenomena depend on the spatial di-
mension d. Beyond the case d53 (the ordinary three-
dimensional world) the most interesting case is d52,
which can also be directly studied experimentally. Quali-
tative differences with respect to d53 can be seen from
Eq. (12), which in fact is applicable for all dimensions
provided f is redefined as f5d(N21).

The centrifugal barrier is still proportional to
(f21)(f23)/4. This same barrier (same value of f ) is
found for different combinations of dimension and par-
ticle number, e.g., f56 for (d ,N)5(2,4), (3,3) and f
530 for (d ,N)5(2,16), (3, 11). When f is the decisive
parameter for halo formation, the number of particles
has to be larger in two dimensions than in three. In par-
ticular, the limit is N<4 for d52 compared to N<3 for
d53.

For N53 we have f52d , and the centrifugal barrier
is proportional to (2d21)(2d23)/4, as can be seen
from Eqs. (12) and (13). The Efimov effect occurs when
the effective radial potential is of the form in Eq. (3)
with positive n2. Then the potential energy must con-
tribute a term of the form \2l/(2mr2) with a strength
l,2(2d21)(2d23)/421/452(d21)2. This only
happens when 2.3,d,3.8 (Nielsen et al., 2001).

Thus the Efimov and Thomas effects do not occur for
d52. This is consistent with the general theorem that
few-body systems with finite-range potentials in one and
two dimensions can have only a finite number of bound
Rev. Mod. Phys., Vol. 76, No. 1, January 2004
states (Vugal’ter and Zhislin, 1983). Other authors have
also argued that there are no Efimov and Thomas effects
in d52 dimensions (Adhikari et al., 1988).

An especially interesting value is f52, leading to a
negative centrifugal barrier. This only occurs for two
particles in two dimensions, namely, (d ,N)5(2,2). The
lowest positive barrier in two dimensions is obtained for
N53. We shall concentrate on these cases in this sec-
tion.

A. Two-body systems in d dimensions

The behavior of two-body systems in two dimensions
is interesting in itself as a possible halo system. How-
ever, it is also a necessary component of halos with more
than two particles. The full importance of the two-body
component becomes evident when d is a parameter and
d52.

The s-wave (no angular dependence) scattering length
a is defined for d.2 in terms of the asymptotic behavior
of the wave function at large distances for zero energy,

c0~r !}F12S a

r D d22G , (27)

which shows that the scattering length a is the node in
the zero-energy wave function outside the potential. For
d52 this behavior must be replaced by

c0~r !}lnS r

a D , (28)

where the scattering length must now be positive and
still be the node of the wave function.

If a is larger than the effective range Re , the zero-
energy wave function has a node and the system must
have at least one bound state of s-wave character. Thus,
if the system does not have a bound state, the scattering
length must be smaller than Re .

The wave function at large distance outside the poten-
tial for a bound state of negative energy E is

c0~r !5r ~22d !/2K ~d22 !/2~kr !, (29)

where Kn is a modified Bessel function of the second
kind and k5A22mEd /\2. In the limit of very weak
binding, kRe!1, the logarithmic derivative at Re of the
bound-state wave function in Eq. (29) and the zero-
energy wave function in Eqs. (27) and (28) must ap-
proximately be equal. Assuming equality we get

Ed52
4\2

2ma2 FG2~d/2!sin@p~d/221 !#

p~d/221 ! G2/~d22 !

, (30)

which for d52 becomes

E2524 exp~22g!
\2

2ma2 , (31)

where g is Euler’s constant. These expressions for the
energy of the bound state are independent of Re and
thus exactly valid for zero-range potentials, where Re
[0.

The mean-square radius of a two-body system is then
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6
\2

2m~2Ed!
(32)

in the zero-range approximation. This expression is valid
in the limit of very weakly bound systems, where
2m(2Ed)\22Re

2!1 implying that the mean-square ra-
dius is much larger than the effective range. The system
is in a quantum halo state. For all Ed and m the root-
mean-square size has a maximum at d52.

The relation in Eq. (32) between size and binding en-
ergy for weakly bound systems in d dimensions is a gen-
eralization of Eq. (1) for three dimensions. This expres-
sion is the same except for the dimension-dependent
proportionality factor, and the previous discussion about
quantum halos applies directly. Specifically, all weakly
bound systems should appear on the universal curve de-
duced from Eq. (32), with both sides divided by the
square of the classical turning point to use dimensionless
quantities. When two-body systems do not obey this re-
lation, either they are not effectively two-body systems
or the mean-square radius is comparable to the range of
the attractive interaction and the system is not a quan-
tum halo.

A major difference between three and two dimensions
is revealed by the behavior resulting from a zero-range
attractive potential. For d52 the number of bound
states is finite (no Thomas effect). Even if an overall
attractive potential is infinitesimally small, at least one
bound state exists.

B. Three-body systems in two dimensions

For three particles in three dimensions one interesting
limit is when the hyper-radius is much larger than the
effective ranges and much smaller than the s-wave scat-
tering lengths. Then the (Efimov) states characterized
by Eq. (4) depend only on the shape of the two-body
potentials through a cutoff at small distances, which
must necessarily be present to define the energy of the
lowest state of the series.

The occurrence of a halo state in three dimensions is
based on the strength [multiplying \2/(2m)] arising
from the potentials for three identical particles being l
525.01, while the centrifugal barrier is 15/4, producing
an effective radial potential behaving as 21.26/r2 in this
r interval (Nielsen et al., 2001).

In two dimensions, d52, the strength of the radial
potential arising from the two-body potentials is zero
when r is much larger than the effective ranges. The
repulsive centrifugal barrier 3/4r22 then pushes the low-
energy wave functions to distances outside the effective
ranges, where the scattering lengths are the only decisive
parameters. Therefore in the limit of large scattering
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lengths and low energy, the total bound-state wave func-
tion is independent of the shapes of the two-body poten-
tials.

To illustrate we consider three identical bosons in two
dimensions with total angular momentum zero. We use
the zero-range approximation, i.e., we assume that r
@Re , and obtain a universal plot of the effective radial
potential in Fig. 6. The small-distance repulsive behavior
1 3

4 r22 is now dominant, in contrast to the 21.26r22

behavior in three dimensions.
With the potential in Fig. 6 we find two bound three-

body states, ground state (g) and excited state (ex), with
energies E and root-mean-square radii R,

E ~g !516.52E2 , E ~ex !51.267E2 ,

R ~g !50.111a , R ~ex !50.927a , (33)

expressed in terms of the scattering length a and the
two-body energy in Eq. (31). Thus the properties of the
weakly bound states depend only on a, in contrast to the
Efimov states in three dimensions, where the range of
the two-body potentials also enters in the length scale.
In other words, potentials with the same scattering
length produce approximately identical states in two di-
mensions.

The expressions in Eq. (33) are accurate as soon as
a/R (R is the classical two-body turning point here as-
sumed to be the effective range) is larger than one. The
large or small proportionality factor between two- and
three-body energy or root-mean-square radius is a re-
sidual resemblance to the Thomas effect for d53, where
the number is infinitely large or zero, respectively.
Analogously the corresponding value for the excited
state closely resembles those for the first Efimov state.

Using Eqs. (6) and (7) we find for three pointlike
identical bosons that

^r2&/r0
25^r12

2 &/R12
2 53^r2&/R2,2, (34)

where the index ‘‘12’’ refers to one two-body subsystem
and the halo condition is the last inequality. From Eq.
(33) we then get halos when a*1.5R for the three-body
excited state and a.12R for the ground states.

FIG. 6. The lowest diagonal hyper-radial effective potential
Ueff [in units of \2/(2ma2)] and the wave functions for the two
bound states for three identical bosons in d52 dimensions for
zero-range two-body potentials. The total angular momentum
is L50 and the s-wave scattering length is a.
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Thus the excited state is already a quantum halo for a
relatively small a, whereas the ground state must have a
much larger scattering length.

In contrast to the 3d case, here the scattering length
completely determines the structure (both size and en-
ergy) for d52. This model independence in two dimen-
sions may be demonstrated in more detail by choosing a
family of ‘‘double Gaussian’’ potentials of the simple
form

V~r !5
\2

2m F s1 expS 2
1
2

r2/b2D1s2 exp~22r2/b2!G .

(35)
By construction, the signs of s1 and s2 determine the

characteristic behavior of the potentials, i.e., purely at-
tractive, with a repulsive core or with a repulsive barrier
outside an attractive core. By adjusting the magnitude of
one of the parameters si we can find systems with very
large scattering length and therefore with two-body
binding energy E2 very close to 0. Three of these quali-
tatively different potentials are shown in Fig. 7.

The model independence is most efficiently illustrated
by the use of dimensionless quantities in universal scal-
ing plots. Therefore we show in Fig. 8 the combination
(E32E2)/E2 (where E3 is the three-body binding en-
ergy) for the calculated bound states of four series of
potentials like those in Fig. 7. In the weak-binding limit
2muE2ub2\22!1, all the potentials have at least two
bound states in which the energies are given by Eq. (33).
This is in accordance with the conclusions of Bruch and
Tjon (1979) and Adhikari et al. (1993), who, however,
only discuss the ground state.

There is always a two-body bound state for the cases
in Fig. 8. Furthermore, there are two three-body bound
states in the limit of zero two-body binding. The ener-
gies of these two states are for all the potentials given by
Eq. (33). For s1512 an additional bound state appears
near the threshold at s2525.80, i.e., in total three
bound states of which the ground-state binding remains
finite across the threshold. This means that E3 /E2 be-
comes infinite for the state of lowest energy correspond-
ing to the diverging short-long dashed curve.

For potentials with a relatively high repulsive barrier,

FIG. 7. Three two-body potentials of the form in Eq. (35) [in
units of \2/(2mb2)] as a function of x5r/b . The values of the
parameters are given on the figure.
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a third bound state is present. The energy of this state
remains approximately constant, E3.20.34\2/(2mb2)
in the limit of vanishing two-body binding, and this state
does indeed remain bound even though the attraction is
so weak that no two-body bound state is present. The
spatial extension of the state is limited to relatively small
distances within the effective three-body potential,
whereas the two other, far less bound states are placed
far outside the potential.

All other types of short-range potentials (other than
central attraction and outer repulsive barrier) produce
no bound three-body state unless the corresponding
two-body system also has a bound state. This demon-
strates that it is very difficult to find bound three-body
systems in two dimensions when all the two-body sub-
systems are unbound. Thus Borromean systems are dif-
ficult to construct and their properties differ markedly
from those in three dimensions.

The generalization to systems with three different par-
ticles requires more parameters. However, a similar
model independence still arises in the limit of weak
binding, but the number of bound three-body states
could now be either one or two. The three-body binding
energies still depend only on the inverse square of a
scattering length }a22, but the exact combination could
be a complex function of the mass ratios and the ratios
of the three scattering lengths. Details on the two-
dimensional cases can be found in the work of Nielsen
et al. (1999).

C. Molecular three-body examples

Examples could be constructed from systems in three
dimensions by confining the systems to two dimensions

FIG. 8. Bound states of systems of three identical bosons in
d52 dimensions, with angular momentum L50 obtained for
two-body potentials of the type given in Eq. (35) and shown in
Fig. 7. On the x axis we plot the two-body binding energy in
dimensionless units, and on the y axis we plot the additional
three-body binding below the two-body threshold relative to
the two-body binding energy. The different curves correspond
to different types of potentials: solid curve, s250 and varying
(negative) s1 give a series of purely attractive potentials;
dashed curves, s253 and s1,20.64 give potentials with a re-
pulsive core; dotted curve, s151 or s152 give potentials with a
repulsive barrier; dot-dashed curve, s2,23.33 or s2525.80,
give a repulsive barrier but an attractive central part.
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while maintaining the established interactions. We
choose to investigate the atomic helium trimer systems
in this way. The two-body interactions are strongly re-
pulsive at short distances, and in three dimensions the
4He2 dimer is extremely weakly bound, while both the
3He-4He and the 3He2 dimer are unbound. We use the
LM2M2 potential described by Aziz and Slaman (1991)
in two dimensions, where all three dimers are bound in
agreement with the universal results. Furthermore,
when we treat the 3He atoms as spin-0 bosons, we find
that fully symmetric states exist for the 3He3 trimer.

Note that this exercise, meant to illustrate the impor-
tance of mass dependence, clearly violates the fermionic
nature of 3He. The three-dimensional properties of
these atomic dimers and trimers, as well as the corre-
sponding interactions, have already been discussed in
Sec. III.C.2.

The computed energies of the three-body bound
states reveal that both 4He3 and 3He3 have two bound
states in accordance with the general expectation. The
ratios between the three-body binding energies and the
two-body binding energies are smaller than predicted in
Eq. (33). This tells us that the scattering lengths of
4He4He and 3He3He are not large enough to fall into
the region where model-independent results are valid.

The asymmetric systems 3He4He2 and 4He3He2 each
have only one bound state with Lp501. When one of
the atoms in 4He3 is replaced by 3He the kinetic energy
is increased, whereas the potential energy is maintained
unchanged. Therefore the very weakly bound excited
state of 4He3 must move to an energy above the un-
changed two-body threshold. When an additional 4He
atom is replaced by a 3He atom, the most strongly
bound two-body subsystem is 3He4He, which is far less
bound than 4He2 . Thus there is still room for a bound
state in 4He3He2 although it lies above the two-body
breakup threshold in 3He4He2 .

The 3He3 system is symmetric and indeed has two
bound states. When one of the 3He atoms is replaced by
4He the two-body threshold decreases. The effective ra-
dial potential is then much lower at smaller distances,
but receives asymptotically only contributions from the
two configurations corresponding to the two identical
3He-4He subsystems. The last (symmetric) two-body
configuration has a much higher energy and therefore
no asymptotic contributions. In contrast a symmetric
system receives contributions from all three compo-
nents. Therefore the attractive pocket in the corre-
sponding effective radial potential has to be shallower
for asymmetric than for symmetric systems. This differ-
ence seems to be sufficient to eliminate the three-body
excited state.

V. HIGH-ENERGY BREAKUP REACTIONS

An efficient way of probing the halo structure is to
study scattering, reactions, or decay of the halo system.
Scattering is very often only elastic, since excited (few-
body) halo states are very fragile and excitations there-
fore cause fragmentation into the constituents of the
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halo. Elastic scattering, discussed in a recent review
(Thompson and Suzuki, 2001), provides first of all infor-
mation about the spatial extension, while forward scat-
tering is especially sensitive to the matter distribution
(Egelhof, 2001). It does not give information on the
probability in the classical forbidden region. The sensi-
tivity of computations for different halo wave functions
can be seen in Fig. 9 by comparison with accurately mea-
sured cross sections. Inelastic reactions often involve
breakup of the halo system, e.g., transfer processes like
stripping of halo particles. Other reactions are possible,
but these involve the nonhalo (intrinsic particle) degrees
of freedom, which are much less informative reactions in
connection with halo structure.

Breakup reactions carry information about the initial
state (halo structure), the reaction mechanism, and the
final state. These three ingredients are not easily disen-
tangled. The importance of the reaction mechanism in-
creases with decreasing relative collision energy, as more
complicated reactions are possible at lower energies.
High-energy reactions are best suited for studying initial
and final states and thereby the halo degrees of freedom.
This may seem strange because high energy is associated
with small distances, and halos are spatially extended.
However, high energies allow rapid transfer from initial
to final state. The instantaneous structure is then probed
for halos, since the time scale of the halo motion is much
longer than the reaction process. The sudden approxi-
mation basically applies.

The methods can be applied to nuclear, atomic, and
molecular halo systems, as the physics problems are
similar. However, for molecules there is at least one in-
teresting exception. The size of the atomic helium dimer
is measured in a conceptually simple experiment that, in
practice, is very difficult (Grisenti et al., 2000). The in-
tensity of the dimer beam is measured in transmission

FIG. 9. Differential cross sections for elastic scattering of 11Li
on protons as a function of the square of the invariant four-
momentum. The points are measured values and the curves
are from various theoretical computations, each using ex-
tended density distributions for the halo nucleus. From Egel-
hof, 2001.
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through a lattice, where the size of the holes are varied.
If the holes are too small, they do not allow transmis-
sion, and if they are too large, they do not disturb the
dimer beam. At a grid size up to about an order of mag-
nitude larger than the dimer size, transmission diffrac-
tion of the beam leaves an interference pattern with in-
formation about the size of the molecule. An analysis
for atoms and molecules in terms of effective slit sizes is
shown in Fig. 10, where the slit width difference between
the atom and the molecule is approximately the exten-
sion of 4He2 (Hegerfeldt and Köhler, 2000). Nuclei are
too small for this type of measurement.

Another technique is used for the dipole-bound elec-
tron states in molecules first observed by photoexcita-
tion and subsequent autodetachment (Lykke et al.,
1984). These states can be formed in cold collisions by
direct electron capture or by electron exchange from
laser-excited Rydberg atoms. Then the binding energy is
determined by external electric-field detachment or by
photodetachment (Desfrançois, 1995). This is a two-step
process, like that for nuclei, in which the halo state is
first created by fragmentation in a violent collision and
afterwards studied in a collision experiment.

We shall not discuss any more examples from atoms
and molecules, for which the analogous theoretical tech-

FIG. 10. Effective slit widths of He, Ne, and 4He2 as a function
of beam velocity. The points are obtained from measured in-
tensities transmitted in diffraction through a 100-nm period
grid. The solid curve is a best fit to 4He2 for a size of ^r&
'52 Å. From Grisenti et al., 2000.
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niques, such as the impulse approximation carried out in
the semiclassical impact-parameter picture, are well
tested and well known. Electron scattering on neutral or
charged atoms is briefly reviewed by Burke (1994), and
ion-atom collisions with suitable few-body formulations
involving a few active electrons are reviewed by Briggs
and Macek (1990). Theoretical concepts suitable for
knockout experiments on particles or clusters from sol-
ids, atoms, molecules, and nuclei are discussed by Mc-
Carthy and Weigold (1988, 1991).

Size information can also be obtained by the tech-
nique of intensity interferometry, originally used to de-
termine sizes of astronomical objects. The method was
recently applied to nuclear halos (Marques et al., 2001).
By taking proper account of the Pauli principle for iden-
tical fermions, one can determine the distance between
two halo particles at the time of breakup. The analysis is
intricate because both distances and emission times are
involved. Furthermore, the reaction mechanism and
final-state interactions may be intermixed in a nontrans-
parent way, producing distorted signatures of resonance
structures.

We shall from now on restrict ourselves to nuclear
high-energy reactions substantially above the Fermi en-
ergy, although some of the considerations may also be
valid at somewhat lower energies. We shall give qualita-
tive and semiquantitative descriptions of recently stud-
ied reactions involving nuclear halos. For a detailed dis-
cussion of the accuracy and reliability of the
experimental results, we refer the reader to Hansen
et al. (1995), Tanihata (1996), Hansen and Sherill (2001),
and Jonson (2004).

The theoretical formulation directly relevant for
nuclear halos and the related examples are new, but sev-
eral established models or computational schemes are
also available. First, the early Glauber models can be
used to relate the (large) measured reaction cross sec-
tions with the size of the system (Tanihata, 1996). Sec-
ond, halo models have been employed in which the few-
body wave function provides the density distribution
and the constituent particles are pointlike (no internal
excitations and describable by one point in space; Bertu-
lani et al. (1993); Hansen (1996); Banerjee et al. (1998a,
1998b); Tostevin et al. (1998). Third, there are Glauber
models in which both few-body granularity and spatial
density distributions of the halo particles are
incorporated.1 Fourth, in some cluster models the finite
size of the halo particles is treated by use of the optical
model and the geometry in the impact-parameter formu-
lation (Brooke et al., 1999; Garrido et al., 1999b; Gar-
rido, Federov, and Jensen, 2001b). A comparison of dif-
ferent theoretical formulations for these models was
recently attempted (Moro et al., 2001).

1See, for example, Yabana et al., 1992a, 1992b; Al-Khalili and
Tostevin, 1996; Hencken et al., 1996; Formanek and Lombard,
1997; Bertsch et al., 1998; Thompson and Suzuki, 2001;
Tostevin, 2001.



249Jensen et al.: Structure and reactions of quantum halos
A. Qualitative description of the reaction mechanism

The crudest possible approximation is to assume that
the observables directly reflect the structure of the wave
function, e.g., momentum distributions are given by the
Fourier transform of the halo wave function. Then the
reaction mechanism must be an instantaneous release of
the halo particles without disturbing their motion and
without further mutual interactions. This might appear
to be impossible, but statistical fragmentation models
are able to describe the qualitative features of heavy-ion
breakup reactions (Friedman, 1983). In the same way,
the halo Fourier transform shows a very narrow momen-
tum distribution, reflecting the spatial distribution and in
qualitative agreement with measurements (Zhukov and
Jonson, 1995; Aumann et al., 2000).

The large-distance behavior of both two- and three-
body halo wave functions is a Yukawa function. The
Fourier transform is easily computed, and the length and
momentum scales derived. The results are suggestive,
but otherwise only useful for extreme halos, where only
knockout processes contribute and the final-state inter-
actions are negligible. These approximations are all not
well fulfilled for nuclei generally, and representative ex-
amples accordingly cannot be found.

1. Dominant contribution

We first consider short-range interactions and breakup
reactions for beam energies above 50 MeV/nucleon, tak-
ing the projectile to be the halo nucleus. At these ener-
gies the reaction time is much shorter than the time
scale for the motion of the particles within the halo. Fur-
thermore, when the halo is spatially extended, the halo
particles interact with the target one at a time, and the
total reaction can be described as an incoherent sum of
individual two-body reaction cross sections (Bang and
Pearson, 1967). Multiple scattering events are very rare.
We shall first discuss the qualitative features using this
participant-spectator model, in which a classification of
reaction mechanism and reaction products is natural.

Inelastic features of two-body reactions can be de-
scribed by introducing a phenomenological optical po-
tential, which accounts for elastic scattering in detail,
and an imaginary part which lumps together all other
processes in an ‘‘absorption’’ cross section. Absorption
now includes all inelastic processes, of which the most
important are real absorption by the target and violent
large-angle scattering leading to target’s excitation or de-
struction.

This model allows classification of the breakup reac-
tions according to the halo particles appearing in the
final state (Barranco and Vigezzi, 1997), i.e., those
reaching the narrow forward range of detectable angles.
Some halo particles are absorbed and some continue
their motion essentially undisturbed. The participant-
spectator picture spells out the reaction mechanisms of
the breakup processes—one halo particle is either ab-
sorbed or elastically scattered by the target in a two-
body process, while all other halo particles remain un-
disturbed in their initial motion. The processes include
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fast removal or scattering of one particle and subsequent
breakup of the remaining halo system. A number of ex-
perimental facts are in agreement with this description
(see Zinser et al., 1997; Aleksandrov et al., 1998; Au-
mann et al., 1999).

Clearly the two most important features are the initial
structure of the halo system and the two-body differen-
tial cross sections. Quantitatively the resulting breakup
cross sections must directly reflect these properties, e.g.,
the beam energy dependence and the ratio of elastic
scattering to absorption where one particle is missing in
the final state. Furthermore, large contributions to the
breakup cross sections of a pronounced halo can be de-
scribed in the participant-spectator model.

The dominant process for high energies can schemati-
cally be described as a one-particle knockout process
that leaves all other halo particles essentially untouched,
and the subsequent process is then shakeoff of the sub-
system (without the knocked-out particle) as it existed
initially within the halo. This remaining state is normally
not an eigenstate, not the ground state, and not an ex-
cited state, but still the initial wave function with a well-
defined time dependence. The procedure is then to ex-
pand this initial wave function on positive-energy
distorted-wave eigenfunctions of the corresponding
Schrödinger equation. These solutions are characterized
by their relative energy when the particles are far apart
and do not interact. The variation of the squared ampli-
tudes with energy is the observable energy distribution.

A measured invariant-mass spectrum with resonance-
like structures corresponding to positions and widths is
obviously related to the remaining subsystem. However,
for the well-defined knockout process an analysis in
terms of the true resonances of the subsystem is concep-
tually wrong, since all continuum wave functions, not
only resonances, are involved in the process. The energy
dependence of the Breit-Wigner shape for a resonance is
not obtained. However, such an analysis would often
lead to reasonable numerical results, since the forces re-
sponsible for a possible resonance are precisely those
forming the initial halo bound state. The subsystem re-
maining after knockout often has a large overlap with
the resonance state of this subsystem. This does not
make the procedure correct, only less transparent.

Analyses of invariant-mass spectra are easily confused
with the procedure used in Dalitz plots, which refer to
reactions or decays of particles as functions of their rela-
tive energy. This is analogous to reactions sweeping the
energy of a resonance and revealing a large amplitude at
small distance. This resonance behavior is not a priori
present in the invariant-mass spectrum. Unfortunately,
Dalitz plots image resonances directly only when the
process proceeds via a resonance.

2. Multiple-collision corrections

The rather schematic knockout and shakeoff high-
energy reaction mechanism does not give a full and ac-
curate account of the breakup processes. Other pro-
cesses, arising from the scattering of the halo particle,



250 Jensen et al.: Structure and reactions of quantum halos
also contribute significantly, and corrections are needed
for a quantitative description. The most important modi-
fications arise from simultaneous interaction with the
target by more than one of the halo constituents. The
assumption of incoherent contributions from the differ-
ent particles is only correct when the halo particles (i)
do not move during the reaction, (ii) are sufficiently far
apart, and (iii) have sufficiently different impact param-
eters. The first assumption is valid for large beam en-
ergy. The second is valid for extreme halos, which, how-
ever, are not found in nuclei. The third assumption is
violated when one halo particle first destroys the target
and another geometrically is due to interact with that
missing target. The participant-spectator picture is not
valid for these parts of the initial wave function with a
predominance of contributions from small distances be-
tween the two halo particles. This bias then eliminates
large-momentum components resulting in more narrow
distributions. This is often called the shadow effect (Es-
bensen, 1996; Hansen, 1996; Hencken et al., 1996).

These corrections decrease with the size of the halo
and increase with the size of the constituent halo par-
ticles. Both effects are related to the accuracy of the
few-body cluster model, since an improved treatment of
a few-body cluster reaction with a target should be
matched by the accuracy of the structure model in-
volved. Details on the reaction treatment for distances
smaller than the particle radii cannot be expected when
the few-body model assumes pointlike structures. On
the other hand, the optical model treats the neglected
intrinsic degrees of freedom and thereby extends the va-
lidity to lower energies than appropriate for Glauber
models.

Another modification of this reaction model is neces-
sary when long-range interactions are also present, since
more than one halo particle then interacts simulta-
neously with the target at large distance. However, the
important case of neutron halos in nuclei, where only
one of the halo particles (the core) is charged, requires
much less modification. We can then maintain the pic-
ture of incoherent individual contributions, since only
the core-target interaction involves the Coulomb repul-
sion.

The modifications are then related to the two-body
Coulomb reaction with the well-known divergence and
the dominance of the large impact parameters. This re-
action process is no longer fast compared to the halo
motion, since the Coulomb interaction acts over large
distances all the way out to the adiabatic distance, out-
side which elastic scattering is the only possibility. The
Coulomb breakup process then occurs as a relatively
gentle push of the core away from its neutral compan-
ions. This excites states in the low-energy few-body con-
tinuum, possibly but not necessarily resonances. The
mechanism proceeds as for the knockout process, except
that the final-state positive-energy distorted wave should
describe the full halo system. The occupation probabili-
ties of these continuum states are given by the momen-
tum transfered in the Coulomb collision.
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The reaction mechanisms are very different when
Coulomb or short-range interactions dominate. For
nuclear halos the Coulomb interaction dominates for
heavy targets and is quite insignificant for light targets.
For medium-heavy targets, short- and long-range contri-
butions may be comparable and interference phenom-
ena occur.

The participant-spectator model provides an intuitive
description of the high-energy breakup reaction mecha-
nisms. The many observables can be semiquantitatively
explained within the same model, using only two-body
interaction information. This reaction model only goes
beyond the few-body structure model when required by
the finite size of the halo particles. Other models have so
far been exploited less in comprehensive simultaneous
calculations of many different observables.

B. Reaction models

The simplest Glauber model for computing total inter-
action cross sections is based on individual nucleon-
nucleon collisions arising when target and projectile
nuclear density distributions, nt and np , penetrate
through each other in a high-energy nucleus-nucleus col-
lision (Karoly, 1975; Al-Khalili and Tostevin, 1996). The
cross section is given by

sI52pE
0

`

@12T~b !#bdb , (36)

where T(b) is the probability for no interaction for the
impact parameter b. A simple folding prescription gives

T~b !5expS 2s̄E rp~ uxu!r t~ ub2xu!d2xD , (37)

where s̄ is a nucleon-nucleon interaction cross section
averaged over the involved neutrons and protons at the
corresponding relative energy, and

rk~b !5E nk~Ab21z2!dz with k5t ,p . (38)

Parametric forms of nt and np with free radial scale pa-
rameters then allow extraction of the size by fitting com-
putations to the measured cross sections.

This procedure, which is very simple and can certainly
give a semiquantitative indication of anomalies in the
cross sections, has a number of shortcomings. For neu-
tron halos the outer part of the density distribution does
not have the same isotopic mixture as the core and the
average s̄ value entering in the exponent is a bad ap-
proximation. The shape of the distributions are different
for core and tail parts. A better averaging procedure and
parametrization could cure these problems.

A deeper problem is the neglect of the few-body na-
ture of the halo density distribution in which only the
single-particle density enters to accounts for both the
halo and the finite size of the constituent particles (see
Takigawa et al., 1992; Yabana et al., 1992a, 1992b; Al-
Khalili and Tostevin, 1996). This excludes effects of the
very same correlations as those forming the few-body
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halo structure. Therefore Eq. (37) cannot account for
details such as the shadow effect arising from correla-
tions between halo particles. Incorporating these corre-
lations leads to smaller cross sections and larger halo
radii.

These few-body Glauber models are successful in de-
scriptions of high-energy nuclei colliding with nuclear
halo systems. Improvements beyond the eikonal ap-
proximation have also been attempted by allowing de-
viations from straight-line trajectories (Al-Khalili et al.,
1997). The other main assumption, slow internal motion
of the halo particles, always seems well fulfilled at least
for beam energies above about 30 MeV/nucleon.

An interesting development is reported by Brooke
et al. (1999), who treated each halo particle-target inter-
action independently as a function of impact parameter.
The two-body problem is then solved with optical poten-
tials. Again the frozen internal halo motion is main-
tained. Sufficient accuracy is found down to about 10
MeV/nucleon.

This method is most accurate for spatially extended
systems, for which simultaneous interactions between
two halo particles and the target can be neglected.
Therefore shadowing and similar finite-size effects are
not treated. The method is conceptually similar to the
participant-spectator model. Application to many-body
halos is formally straightforward in both cases, but the
smaller sizes of such systems make the methods less ac-
curate.

Another few-body Glauber model has successfully
been used to investigate neutron halo reactions
(Hencken et al., 1996; Bertsch et al., 1998). The basis is
again the eikonal approximation and the impact-
parameter picture. The two-neutron halo wave function
in its rest frame after interaction with the target is given
as

C~r,R!5Sn~bn1!Sn~bn2!Sc~bc!C0~r1 ,r2!, (39)

where C0 is the ground-state wave function, r1 and r2 are
intrinsic halo coordinates, R is the halo center-of-mass
coordinate, and bc and bni are impact parameters of the
core and the neutrons. The functions Sc and Sn are pro-
file functions determined during the reaction with the
target. They are expressed as

S~b!5expS 2
i

\v E V~b1z ẑ!dz D , (40)

where v is the beam velocity, ẑ is a unit vector along the
beam direction, and V is the optical potential including
the imaginary part and the nondiverging part of the
Coulomb interaction. The differential cross sections are
now obtained by projecting onto the final state specified
by relative momenta between the halo particles. Total
cross sections, for example, for survival of one and only
one neutron in the final state, are found by integration

sn52E ^@12uSn~bn1!u2#@12uSc~bc!u2#uSn~bn2!u2d2bcm&,

(41)
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where ^ & denotes the expectation value of the ground
state and bcm is the impact parameter for the halo center
of mass. The integration extends over directions of bcm
perpendicular to the beam. The factor 2 is due to the
two identical neutrons. Other cross sections in which
more halo particles are present in the final state can be
obtained by changing the absorption probability 1
2uSu2 into the survival probability uSu2. The numerical
results are qualitatively similar to those obtained in the
participant-spectator model.

The time-dependent Schrödinger equation is also
used in calculations of nuclear breakup of one-neutron
halos (Esbensen and Bertsch, 2001). It permits the study
of how important higher-order effects are and tests the
eikonal approximation. Similar calculations and tests are
carried out when both Coulomb and nuclear interactions
contribute (Esbensen and Bertsch, 2002). The conclu-
sion is that deviations from the eikonal approximation
increase with decreasing beam energy and especially the
Coulomb contribution has to be treated with care for
energies below 50 MeV/nucleon.

Many more details can be found in the review of few-
body reaction theories by Thompson and Suzuki (2001).

C. Participant-spectator model

The participant-spectator model provides both an in-
tuitive geometric description of halo reactions and a
number of different observables computed systemati-
cally with the same set of parameters. It is not much
discussed in previous reviews and we shall therefore
briefly sketch the model and its predictions. Such a
sketch was given earlier by Bang and Pearson (1967).
More details can be found in Garrido et al. (1997,
1999b). The fundamental assumption is that each halo
particle interacts independently with the target. The
general validity conditions are that (i) the system must
be spatially extended with little overlap between the
constituent particles and (ii) the reaction time must be
small compared to the time scale for the relative motion.
Thus the model is well suited for high-energy reactions
of quantum halos when only short-range interactions are
important. Furthermore, although violating (ii), the ba-
sic condition of independent two-body reactions also ap-
plies when long-range interactions only contribute sig-
nificantly to one of the two-body reactions.

Let us consider three-body halos colliding with an or-
dinary nuclear target or with an electron. The cross sec-
tion is given in Fig. 11 by the incoherent sum of the
partial cross sections corresponding to all the possible
scenarios. The impact parameter b separates processes
in which different numbers of halo particles participate
in the reaction. If b is smaller than the sum of halo par-
ticle and target radii, the corresponding two-body reac-
tion contributes to the cross section. For larger b as in
Fig. 11(d) only the long-range interaction contributes.
The momentum transfer q connected to b is often more
conveniently used.
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FIG. 11. The impact-parameter scenario for three-body halo collisions. The three particles labeled ‘‘n,’’ ‘‘n,’’ and ‘‘c’’ are encircled
to indicate a two-neutron halo bound state. The horizontal lines indicate the interaction cylinder around the target. The particles
within this cylinder are going to interact strongly with the target, e.g., in the upper left corner the core and the target collide. The
number of particles within the interaction cylinder is 0, 1, 2, 3. For a core and two neutrons, either of the indistinguishable
neutrons can be inside the cylinder and the two lowest sketches in columns (a) and (b) are therefore identical.
1. Model description

Let us start with collisions in which the momentum
transfer to the halo is relatively large and the particles
only interact pairwise in the final state after the interac-
tion region [see Figs. 11(a) and 12]. Then the participant
i can be elastically scattered or absorbed by the target,
whereas j and k are the spectators continuing undis-
turbed in the final state. The transition amplitude T(i)

for elastic scattering is in the center-of-mass system of
the projectile given by (Garrido, Federov, and Jensen,
2001b)

T ~ i !5^fp0i8
~0i2 !

fpjk8
~ jk2 !eiP8•R8uV0iuCeiP•R&, (42)

where C is the initial three-body halo state, fp0i8
(0i2) and

fpjk8
(jk2) are the distorted-wave functions of the two inde-

pendent final-state two-body subsystems, and V0i is the
participant-target optical potential. The conjugate mo-
menta corresponding to the relative radial coordinates
specified in Fig. 12 are denoted by p’s with the same
indexes. The final-state momenta are denoted with
primes.

FIG. 12. The reaction scenario with two halo particles in the
final state and the related coordinates.
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The differential diffraction (elastic scattering) cross
section is then given by (Garrido et al., 1999b)

d9sel
~ i !5
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~ i ! , (43)

where dn f
(i) is the density of final states, v is the velocity

of the target seen from the projectile rest frame, and
E0i5p0i

2 /2m0i and E0i8 5p0i8
2/2m0i are the relative ener-

gies of particle i and the target in the initial and final
states. When the target has spin 0 or 1/2, Eq. (43) leads
to (Garrido et al., 1999b)
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where dq5(pi ,jk8 2pi ,jk)(mj1mk)/(mi1mj1mk) is the
momentum transfer into the relative motion of the inter-
acting particle and the other two halo particles. In this
expression the factor d3sel

(0i)(p0i→p0i8 )/dq is the differ-
ential cross section for elastic scattering of particle i. The
second factor is the probability for excitation of the halo
after transfer of the momentum dq, introduced to re-
move the probability of elastic scattering of the three-
body system as a whole arising from the nonorthogonal-
ity between initial and final states in Eq. (42). The third
factor, Ms(pi ,jk ,pjk8 ), is the normalized overlap between
the initial three-body halo ground state and the dis-
torted two-body final state of particles j and k.

Similarly, when particle i is absorbed by the target we
obtain, in analogy to Eq. (44),

d6sabs
~ i ! ~p0i ,jk8 ,pjk8 !

dp0i ,jk8 dpjk8
5sabs

~0i !~p0i !uMs~pi ,jk ,pjk8 !u2, (45)

where sabs
(0i) is the absorption cross section of particle i.
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When more than one halo particle simultaneously in-
teracts, one is selected as the participant while the oth-
ers are treated in the black-disk model, i.e., absorbed
inside and left untouched outside the interaction cylin-
der. In practice this is approximated by computing the
overlap function Ms(pi ,jk ,pjk8 ) including only those parts
of the initial three-body wave function in which the dis-
tances between the halo particles are consistent with the
geometries of the different reactions (Garrido, Federov,
and Jensen, 2001b).

The total cross sections for the processes are obtained
after integration of Eqs. (44) and (45) over momentum
transfer corresponding to distances smaller than the
short-range interaction radii. It is important to empha-
size that the participant should be chosen as the charged
particle in the halo. Then nuclear and Coulomb
participant-target interactions as well as interference be-
tween the particles are simultaneously included. If the
charged particle is treated in the black-disk (short-
range) approximation, all long-range features are omit-
ted.

Let us now discuss small momentum transfer or large
impact parameters caused by the Coulomb interaction.
These cause the halo to be excited very gently and the
breakup process proceeds via the three-body halo con-
tinuum states. This does not imply that three-body reso-
nance states are the doorway states, although they very
well may be. The final-state wave function is now the
continuum three-body distorted wave function popu-
lated by the momentum transfer to the participant
(charged halo particle) in the initial halo ground state.

For impact parameters outside the adiabatic distance
ba , only elastic scattering is possible. For this limiting
distance the reaction time is comparable to the period of
the relative motion of the halo particles. Furthermore,
the energy transferred from target to the charged par-
ticle has to be sufficiently large to allow breakup. This
corresponds to another limiting momentum transfer. In
the calculation of the cross section corresponding to the
reaction in Fig. 11(d) only momentum transfer larger
than the largest of these two momenta should be in-
cluded.

The cross section sC for Coulomb breakup of a two-
body halo is then

sC5E
qa

qmax
dq

ds

dq
P~qmn /mc!, (46)

where qmax corresponds to the short-range interaction
distance and mn and mc are the two masses. The prob-
ability P for breakup of the only bound state and the
differential cross section are given by

P~k!512 z^Cuexp~ ir•k/\!uC& z2, (47)

ds

dq
5

8p

v2

~Z0Zce2!2

q3 , (48)

where C is the halo ground-state wave function and Z0e
and Zce are target and core charges. The momentum
qmn /mc is the neutral-particle momentum after colli-
sion in the center of mass of the halo system. Assuming
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small momentum transfer, we can expand the exponen-
tial in Eq. (47) to second order and find that

sC5
16p

3
c2

v2

mc
2

mn
2 ^r2&Z0ZcS e2

\c D 2

lnS qmax

qa
D , (49)

which is proportional to the mean-square radius of the
halo. Thus a large halo implies a large Coulomb disso-
ciation cross section (Hansen and Jonson, 1987). This
Coulomb dissociation process is the dominating breakup
mechanism for heavy targets. The largest contribution is
from large impact parameters.

Replacing a nuclear target by electrons has the impor-
tant advantage that the interaction between the electron
and the nucleus is very well established. Therefore struc-
ture and reaction features are much easier to separate
from each other. However, the experimental challenge is
to achieve sufficient in-flight collisions of electrons and
the unstable radioactive halo nuclei. These kinds of ex-
periments are expected to be feasible in the near future.

The assumptions in the theoretical description are
now better fulfilled since the electron is a pointlike par-
ticle and therefore much less likely to interact with two
halo particles in the same process. For a sufficiently
large momentum transfer the reaction scenario is as
shown in Fig. 12, where the interaction between the
electron and the participant takes place through the ex-
change of a virtual photon carrying the energy and mo-
mentum transfer (v ,q). This impulse approximation is
especially good around the quasielastic peak, where the
energy transfer is approximately equal to q2/2mN
(where mN is the nucleon mass; Frullani and Mougey,
1984). The nine-dimensional differential electron
breakup cross section is again given by Eq. (44). The
corresponding differential cross section d3s(0i)/dp0i8 has
been computed assuming ultrarelativistic electrons (Gar-
rido and Moya de Guerra, 1999, 2000).

2. Numerical results

The participant-spectator model predicts absolute val-
ues for a large number of cross sections. We use 6He
(4He1n1n) and 11Li (9Li1n1n) as illustrative ex-
amples. The three-body projectile wave functions are
computed with two-body interactions that reproduce the
available two-body low-energy scattering data for
neutron-neutron, neutron- 4He, and neutron- 9Li. The
small underbinding of the three-body system is cor-
rected by a short-range three-body interaction account-
ing for polarization beyond that of the two-body inter-
actions. This fine-tuning is necessary since the correct
binding energy often is decisive. Global parameters are
used for the optical potentials describing the interaction
between halo particles and targets (Garrido, Federov,
and Jensen, 2001b).

Different processes can lead to the same reaction
product, which is denoted by s labeled by the number of
surviving halo particles. The reactions can first be di-
vided into absorption and scattering of particle i and
then into small or large impact parameters for the other
two particles. Small impact parameter (inside the cylin-
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der) means absorption in the black-disk model, while
use of optical model probabilities also allows scattering
(Garrido, Federov, and Jensen, 2001b). In this way, ab-
sorption of particle i and large or small impact param-
eters for both particles j and k contributes to s jk or s0 ,
while one small and one large impact parameter contrib-
ute to s j or sk . Similarly, scattering of particle i contrib-
utes to s ijk (s i) when j and k are outside (inside) the
cylinder or to s ij or s ik when one of j or k is inside and
the other is outside the cylinder.

The results carry the signature of the reaction mecha-
nisms. For light targets the nuclear interactions are
dominant, while for heavy targets the Coulomb interac-
tions predominate. Each contribution as well as the
nuclear-Coulomb interference term can be computed.
The cross sections for reaching the different final states
consisting of the nonabsorbed particles vary with target,
projectile, and beam energy (Garrido et al., 2000a,
2001a); see Fig. 13. For light targets, two surviving neu-
trons and core absorption is most probable, while sur-
vival of all three halo particles or the core alone is least
probable. For heavy targets, absorption of all three par-
ticles is most probable except at low beam energies,
where simultaneous survival of all three halo particles is
most probable. The smallest probability is found for sur-
vival either of the core alone or of the core and one
neutron.

FIG. 13. Breakup cross sections as a function of beam energy
for 11Li breakup on C, Cu, and Pb. The inset shows s22n

5sc1snc1snnc , s2c5s01sn1snn , sI5s22n1s2c . The
experimental data are from Tanihata (1988), Kobayashi et al.
(1989), Blank et al. (1993), Suzuki et al. (1994), Zinser et al.
(1997), and Aumann et al. (1999).
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In the insets of Fig. 13 we observe that core destruc-
tion or absorption is more probable than two-neutron
removal for all energies and targets. Core destruction
receives the largest contribution for heavy targets when
all halo particles are absorbed, while for light targets the
noninteracting two-neutron contribution is dominant for
core destruction (heavy long-dashed line in the upper
part of the figure). Two-neutron removal receives for
heavy targets the largest contributions from the core
participant, while for light targets the largest contribu-
tion is from the noninteracting core spectator. The rela-
tive sizes of these cross sections reflect the reaction
mechanisms, which in this way are open for experimen-
tal tests.

The momentum distributions are much more accu-
rately and systematically measured than absolute cross
sections. The core and neutron momentum distributions
differ significantly. The final-state interactions reduce
the widths of the distributions, more for the neutron
than for the core because of the mass. The transverse
distributions are broader than the longitudinal by 6–12
MeV/c .

The high-energy reaction mechanisms described here
imply that the dominant contribution to the two-neutron
removal cross section (s22n) on a light target is absorp-
tion of one neutron, leaving the final-state neutron core
system undisturbed. The reaction time is too short to
allow this system to adjust its relative state during the
reaction. An analysis of momentum distributions as aris-
ing from the decays of low-lying resonance states is
therefore inappropriate (Garrido, Federov, Jensen, and
Riisager, 2001). However, the difference can hardly be
detected for 6He; see Fig. 14. For 11Li the resonances
and virtual states used in the analysis allow good fits but
with very different parameters.

The computed participant-spectator-model result re-
produces the measurements as well as these fits. Never-
theless, measurement of the neutron-neutron invariant-
mass spectrum arising from breakup of both 6He and
11Li could distinguish between the two reaction mecha-
nisms, decay through the resonances or decay of the
wave packet formed instantaneously. The decay through
final-state resonances would produce the same spectrum
for both halos, while the participant-spectator model
would produce very different spectra; see Fig. 14.

The electron breakup processes have not yet been
measured, but predictions may still be useful. The inclu-
sive differential cross sections are again obtained by in-
tegrating over the nonmeasured variables. Leaving only
the energy E08 and momentum direction V08 of the elec-
tron in the final state, we show in Fig. 15 an example of
electron breakup of 6He as a function of the energy
transfer v.

The longitudinal contribution is mainly due to a
knockout (e ,e8a), while the transverse component is
from neutron knockout (e ,e8n). The total cross sections
are then at forward scattering angles [Fig. 15(a), ue
560°] and backward scattering angles [Fig. 15(b), ue
5170°] in practice fully given by the longitudinal
(e ,e8a) and the transverse (e ,e8n) processes, respec-
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tively. In contrast to nuclear breakup, where the cross
sections are fractions of barns, the absolute values are
now fractions of nanobarns. Thus high-intensity beams
are needed.

FIG. 14. Invariant-mass spectra from 300 MeV/nucleon 6He
and 11Li on carbon. Upper part is n-4He, middle part is n-9Li,
and bottom is n-n. The solid curves are computed and the
broken lines are R-matrix fits to the data from Zinser et al.
(1997) and Aleksandrov et al. (1998).

FIG. 15. Differential breakup cross section for electrons of
energy E05100 MeV colliding with 6He for (a) forward and
(b) backward scattering angles: solid lines, the total cross sec-
tion; fine dotted lines, the longitudinal contribution; long-
dashed lines, the transverse contribution; large-dotted lines full
plane-wave impulse approximation (PWIA) calculation. The
momentum transfer q corresponding to different values of v
are given in MeV/c along the x axis at the top of the figure.
Rev. Mod. Phys., Vol. 76, No. 1, January 2004
These results in Fig. 15 are in qualitative agreement
with those of the plane-wave impulse approximation
(PWIA), in which the interaction is neglected between
the two halo constituents (spectators) in the final state.
The differences are in general less than a factor of 3.

VI. ELECTROWEAK PROBES

The electromagnetic and weak interactions in nuclei
have been studied in great detail and can for our pur-
pose be regarded as well-understood probes of nuclear
structure. This section gives an overview of how these
probes are used to provide information about halo struc-
tures. For the case of electromagnetic interactions, infor-
mation comes from observations of static moments of
the nucleus, of electromagnetic transitions between dis-
crete nuclear states, and of radiative capture reactions.
(The important role of Coulomb dissociation in breakup
reactions is treated in Sec. V, since these processes also
involve the strong interactions.) For the case of weak
interactions we shall consider decays involving halo
states.

Well-known operators and interaction mechanisms al-
low one to focus more directly on the structure of the
initial state and on potential uncertainties in the final-
state interactions. Some disadvantages must also be
mentioned: beta decay and electromagnetic transitions
and moments provide only partial information on the
structure, and some of the interesting information must
be sought elsewhere, for instance, extracted from high-
energy nuclear reactions. Still, these probes give inde-
pendent and quite reliable tests of the structure and are
therefore of great value.

A. Beta decay

The topic of beta decay of (or into) halo states has
been reviewed recently (Nilsson et al., 2000; Jonson and
Riisager, 2001). We therefore refer the reader to these
papers for details and concentrate on the main physics
points here. The question of isospin, which often enters
in connection with beta decay, is also discussed in Secs.
III.B.1 and III.C.1.

Halo nuclei mainly occur close to the neutron drip-
line, and their beta decays will therefore typically take
place on time scales below 10 ms and with Qb values of
15–20 MeV. Beta-delayed particle emission is a promi-
nent feature in these nuclei (Jonson and Riisager, 2001)
and will complicate the experimental investigations. One
of these channels, beta-delayed deuteron emission from
two-neutron halo nuclei, is believed to be better de-
scribed by decays directly to continuum states than by
decay through intermediate states in the daughter; this
process is therefore of specific interest. In essence, the
two halo neutrons beta decay into a deuteron with the
core as a spectator. (This picture might be developed
further to include core decays; see Nilsson et al., 2000.)
The pattern seen in several light dripline nuclei (Borge
et al., 1991) with strong feeding to a state a few MeV
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below the mother nucleus could be a related phenom-
enon; see also Jeppesen et al. (2002) and references
therein.

As usual, the structure of the beta-decaying state can
be tested through the transition strength to states of
well-known structure. The overlap between the spatially
extended halo wave function and a daughter state of
normal size is of high interest. However, the size of the
signal here is typically moderate (Riisager et al., 1992)
and therefore requires reliable structure calculations.
An overlap effect might be seen not only in individual
transitions, but also in the total half-life. That individual
transitions can also give other types of information is
shown by the decay of 11Li to the first excited state in
11Be, from which the amount of (p1/2)

2 configuration in
the 11Li halo can be deduced to be about 50% (see Su-
zuki and Otsuka, 1994 and the references in Nilsson
et al., 2000).

B. Electromagnetic moments and transitions

It is instructive to consider the electric multipole op-
erator of order l for a two-body halo system with mass
numbers Ac and A for the core and the total system, and
charges Zc and Zh for the core and halo part (Riisager
et al., 1992):

M~El ,m!5FZceS A2Ac

A D l

1~21 !lZheS Ac

A D lGrlYlm . (50)

Here r is the core-halo distance. The factor rl enhances
the large-distance parts, and the charge Zh implies that
electric moments and transitions are good probes for
proton halos. For neutron halos the dipole moment still
gives a large signal, whereas sensitivity is lost rapidly for
higher moments. A similar situation holds for magnetic
multipoles, the main difference being that the radial fac-
tor here is rl21. The classic example of a halo seen in
this way is 11Be (Millener et al., 1983), although this was
not fully realized until several years later. See also the
discussion by Riisager et al. (1992) and the following
section.

The static electromagnetic moments can give impor-
tant information on halo structures in an indirect way,
through a comparison of their values for a two-neutron
halo nucleus and the corresponding core nucleus. Since
the two neutrons should couple to 01, the values should
be the same for the two nuclei provided the halo struc-
ture really is present. One example of this is the nucleus
11Li in which b-NMR spectroscopy could be used to
measure the magnetic moment as well as the electric
quadrupole moment (Arnold et al., 1992, 1994). Mea-
surements for one-neutron halo states are also of inter-
est, as shown by the recent (Geithner et al., 1999) mea-
surement of the magnetic moment of 11Be, which is
sensitive to the detailed structure of the state.
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C. Proton and neutron capture reactions

A special type of electromagnetic transition connects
continuum and bound states. Radiative proton capture
has been known since the early 1960s to be sensitive
mainly to the outer parts of the nuclear wave function
(see, for example, the references in the article of Riis-
ager et al., 1992). A very clear example is given by pro-
ton capture into the excited state in 17F, treated in detail
by Rolfs (1973). Radiative capture into the ground state
of 8B is also relevant in this respect.

Radiative neutron capture could be even more af-
fected than proton captures. However, the correspond-
ing experiments are much harder to do directly, and one
might have to rely on Coulomb dissociation experiments
instead. Although direct neutron capture reactions are
relevant for the astrophysical r process, or rapid process,
of neutron capture (Goriely, 1998), it is unlikely that
halo effects play an important role there (Jensen et al.,
2001).

D. Multipole response

The large spatial size of halo structures goes along
with an enhanced dipole response at low excitation en-
ergies. This is particularly noteworthy for nuclei in
which such strength normally is found in collective
states. It was noted already by Hansen and Jonson
(1987) that the electric dipole energy-weighted sum rule
reveals a very soft dipole mode in nuclei such as 11Li.
The question of electromagnetic dipole response and the
closely related Coulomb dissociation reactions were re-
viewed earlier (Hansen et al., 1995; Tanihata, 1996).
Here we therefore restrict ourselves to a few references
to the recent literature.

The results for electric dipole strength were soon gen-
eralized to other multipoles both through use of
random-phase approximation (RPA) calculations (Fay-
ans, 1991) and through the use of sum-rule techniques
(Sagawa et al., 1992). This line of theoretical work has
been successfully extended to include other unstable nu-
clei and has been reviewed recently (Sagawa, 2001; Sa-
gawa and Esbensen, 2001). At early stages there was
some discussion of the nature of the soft dipole mode. It
is now clear that it is a few-body effect not indicative of
any collective features. See Catara et al. (1996) for a
transparent explanation.

Experimentally only the E1 strength has been probed
so far. The challenge is to measure the breakup into
continuum states with energy resolution sufficient to re-
solve the soft dipole mode and with sufficient statistics.
This task has only been partially accomplished. Refer-
ences to the recent experimental literature can be found
in the articles of Meister et al. (2002) and Jonson (2004).

VII. SUMMARY AND CONCLUSIONS

We first gave a short history of the development lead-
ing to the by now established concept of halos. The dis-
cussion stressed the importance of the a priori assump-
tion of cluster division or equivalently of the definition
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of active degrees of freedom. The wave function must
contain a substantial amount of this cluster structure. As
soon as the principles were clarified, we formulated defi-
nitions of quantum halos and discussed the conditions
under which they occur. The basic condition is that the
cluster wave function extend substantially into the clas-
sically forbidden region where it essentially depends
only on the cluster binding energy. This structure is uni-
versal, and scaling properties arise allowing dimension-
less relations between size and energy. The halo concept
thereby becomes useful in several subfields of physics.

A halo is not defined by the value of a specific discrete
quantum number like strangeness. A continuum of
structures from none to pronounced halos exists. The
possible transitions and the intermediate structures are
also interesting. In particular, the intermediate struc-
tures are sometimes rather special, like the Borromean
systems and the extreme Efimov states.

After a discussion of the general properties, we pre-
sented some examples. We listed the established nuclear
cases and discussed a number of halo candidates, most
but not all are two- and three-body structures at the
driplines. Some combinations involving strange L par-
ticles were seen to produce novel structures, restructur-
ing of known systems, and extension of ordinary drip-
lines by addition of one or more L particles. The energy
scale allowing halos in nuclei is fractions of a MeV.

In atomic and molecular systems many combinations
are possible. Clusterization is more natural for mol-
ecules than for nuclei and the structures are more pure.
We discussed a number of examples characterized by the
asymptotic behavior of their effective two-body interac-
tions. The most important were the Coulomb-like 1/r
potentials, the 1/r2 potentials generating Efimov states,
and the 1/r6-induced dipole-dipole interactions. The mo-
lecular energy scale for halos is fractions of a meV. When
an electron is involved the energy scale is meV and the
size remains as for molecules larger than about 10 Å.

The properties of weakly bound structures in two di-
mensions are different from those discussed in three di-
mensions. Since these geometries can be realized in both
molecular and solid-state physics, we briefly reviewed
the possibilities. In two dimensions traces of the three-
dimensional structures remain, but the extreme Efimov
states and the Thomas collapse are not present. Bor-
romean systems are very difficult to construct, since a
surface repulsive barrier seems to be required. Thus
there may be many very large halos, but the extreme
divergences which exist in three dimensions cannot oc-
cur.

Halo structures can be probed by reactions. Currently
available high-energy beams are well suited for such in-
vestigations, because the interaction time is short com-
pared to the intrinsic motion of the nuclear halo. Thus a
snapshot can be obtained with minimal reaction dynam-
ics involved. Still experimentally the separation of struc-
tural effects from dynamics is not complete, and reliable
models are necessary. We concentrated on nuclear reac-
tions for which many new data have become available in
the last decade. We used the rather efficient geometric
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impact-parameter picture. This allowed a rough classifi-
cation of the different breakup processes and reaction
mechanisms appropriate for short-range and Coulomb
long-range potentials. Similar methods for the theoreti-
cal treatment of high-energy atomic and molecular col-
lisions are well advanced and described elsewhere.

The entanglement of initial state, reaction mechanism,
and final state can to some extent be circumvented by
studying decays of halo states. In decays, the quantum
number of the initial state is precisely given, and the
final state can be selected experimentally. Furthermore,
the operator responsible for the decays is known, for
example, for allowed beta decay. This cleaner mecha-
nism offers a complementary method for the study of
halos.

In conclusion, we have discussed an overall frame-
work for descriptions of halo properties. The established
facts are incorporated into a consistent picture. The for-
mulations extract the universal features, allowing appli-
cation in different subfields of physics ranging from
quantum chemistry to atomic, molecular, nuclear, and
particle physics. Structure and high-energy reactions are
considered. Many pieces of information are still lacking
and significant experimental and theoretical effort is un-
derway to obtain more details. Large facilities around
the world are being upgraded or under construction,
which will contribute to an improved picture. In some
cases the future directions can be predicted. Knowledge
of the neutron dripline is only available for light nuclei.
Heavier systems, also closer to beta stability than the
dripline, are completely unexplored experimentally. It is
necessary to better understand the various transitions
between two-, three- and many-body structures and be-
tween independent-particle and cluster descriptions. In
particular, unambiguous examples of Efimov states have
still to be found. Low-energy reactions are more sensi-
tive to the reaction mechanism and have so far not been
studied. The recent availability of low-energy beams is
an opportunity to study the dynamics of halo reactions.
Other unexplored directions are molecular halos, two-
dimensional structures, few-body (halo) effects within
N-body systems, for example, in Bose-Einstein conden-
sates, and more speculatively, the possible implications
for catalysts arising from reactions within a medium and
mediated by long-distance halo correlations.
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