Publisher's Note: Report of the American Physical Society Study Group on Boost-Phase Intercept System for National Missile Defense: Scientific and Technical Issues [Rev. Mod. Phys. 76, S1 (2004)]

David K. Barton, Roger Falcone, Daniel Kleppner, Frederick K. Lamb, Ming K. Lau, Harvey L. Lynch, David Moncton, David Montague, David E. Mosher, William Priedhorsky, Maury Tigner, and David R. Vaughan

(Published 2 March 2005)

This Report was published online on 5 October 2004 with an oversight in the Acknowledgments and an error in the pagination in the Tables of Contents (both the full-article Table of Contents on p. vii and the section Tables of Contents at the beginning of each section). There was also an error in the pagination of the Lists of Tables and Figures following the full-article Table of Contents. The second sentence in the first paragraph of the Acknowledgments should have read, "We express our deep appreciation to APS Presidents James Langer (2000), George Trilling (2001), William Brinkman (2002), Myriam Sarachick (2003), and Helen Quinn (2004) and especially to APS Executive Officer Judy Franz, who have all played essential roles in advising and encouraging the study and Study Group." The page associations in the Tables of Contents and the Lists of Tables and Figures were out of synchronization with the actual pages of the Report. The Report has been corrected as of 16 February 2005. The Report is incorrect in the printed version of the journal. The corrected full-article Table of Contents and Lists of Tables and Figures are reprinted in the back of this issue as an aid to the print readers.

Contents

Pr	eface		iii
Ac	know	ledgments	v
Ex	ecuti	ve Summary	xxi
Fi	nding	s	xxix
1	Intr	oduction to the Report	S1
	1.1	Boost-Phase Intercept	S1
	1.2	The American Physical Society Call for the Study	S3
	1.3	Scope of the Study	S3
	1.4	Issues Not Addressed	S3
	1.5	The Varieties of Boost-Phase Intercept Systems	S4
	1.6	Requirements for Success	S4
	1.7	Challenges	S4
	1.8	A Guide to the Report	S5
Pa	art A	. Boost-Phase Missile Defenses	S9
2	Ove	rview of the Analysis of Boost-Phase Intercept Systems	S11
	2.1	Boost-Phase Intercept Compared to Alternative Approaches	S11
	2.2	Overview of the Analysis of Hit-to-Kill Systems	S13
	2.3	Overview of the Analysis of the Airborne Laser	S21
	2.4	Key Issues	S22
	2.5	Summary of Assumptions	S25
3		istic Missile Threats to the United States	S29
	3.1	Ballistic Missile Capabilities of Selected States	S32
	3.2	Historical Patterns of ICBM Development	S34
	3.3	The Changing Context of Missile Development Programs	S35
	3.4	Implications for the Study	S39
4		etic-Kill Engagement Fundamentals	S47
	4.1	ICBM Characteristics Key to This Analysis	S48
	4.2	Effect on Impact Range of Terminating Missile Thrust	S52
	4.3	Surface-Based Interceptors	S53
	4.4	Engagement Timelines	S54

VIII

	4.5	Terrestrial Planar Engagements	. S55
	4.6	Non-planar Engagements and Interceptor Basing Areas	. S58
	4.7	Space-Based Engagement of ICBMs	
	4.8	Summary	. S61
5	Defe	ending the United States Using Surface-Based Interceptors	S63
	5.1	Key Assumptions for the Basing Analysis	S65
	5.2	Analysis of Options for Basing Interceptors	. S70
	5.3	Basing Analysis Conclusions	. S77
	5.4	Defending Against ICBMs Launched from North Korea	. S79
	5.5	Defending Against ICBMs Launched from Iraq	. S85
	5.6	Defending Against ICBMs Launched from Iran	. S90
	5.7	Other Engagements Considered	. S94
	5.8	Avoiding Harming Other Countries	. S96
	5.9	Sensitivity to Other Assumptions	. S99
6	Defe	ending the United States Using Space-Based Interceptors	S103
	6.1	Coverage by a Single Interceptor	. S105
	6.2	Operational Altitudes for SBIs	. S106
	6.3	Calculating the Number of Interceptors for Earth Coverage	. S108
	6.4	Sizing the SBI Satellite: Kill Vehicle, Interceptor, and Life Jacket	. S110
	6.5	Optimizing System Mass-in-Orbit	. S114
	6.6	The Effect of Decision and Intercept Time on System Mass	. S116
	6.7	The Effect of High-Acceleration Interceptors on System Mass	. S117
	6.8	Space-Launch Requirements for SBIs	. S124
	6.9	The Effect of Reducing Kill-Vehicle Mass	. S125
	6.10	The Expense of Operating in Space	. S126
	6.11	Summary	. S127
7	Airb	orne Laser Engagement Fundamentals	S131
	7.1	Differences Between Laser and Hit-to-Kill Intercepts	. S131
	7.2	ABL Engagement Geometry	. S132
	7.3	ABL Performance Parameters	. S132
8	Defe	ending the United States Using the Airborne Laser	S135
	8.1	Geometrical Considerations	. S136
	8.2	Determining the Flying Area	. S137
	8.3	Defending Against Missiles Launched from North Korea	. S137
	8.4	Defending Against Missiles Launched from Iraq	
	8.5	Defending Against Missiles Launched from Iran	
	8.6	Discussion	
	8.7	Controlling Shortfall	
9	Cou	ntermeasures to Boost-Phase Intercept	S145
	9.1	Countermeasures to Kinetic Kill	. S146
	0.2	Countermassures to the ARI	S150

CONTENTS ix

Part B. Requirements to Hit an Accelerating Missile	S155
10 Detecting and Tracking Missiles in Powered Flight	S157
10.1 Space-Based Detection and Tracking	
10.2 Radar Tracking	
10.3 Sensors on the Kill Vehicle	S185
10.4 Applications of Missile Detection and Tracking	
11 Kill Vehicles for Boost-Phase Defense	S203
11.1 Background: The Evolution of Kill Vehicles	
11.2 Three Kill-Vehicle Configurations	
11.3 Endoatmospheric Kill Vehicles	
11.4 Kill Mechanisms Other than Body-to-Body Hit	
11.5 Key Requirements for Boost-Phase Kinetic Kill Above the Atmospher	e . S209
11.6 Summary	
12 Hitting the Target	S211
12.1 Overview of the Analysis	
12.2 Guidance Laws	
12.3 Required Velocity Change Capability	
12.4 The Endgame	
12.5 Summary of Requirements for Hitting the Target	
13 Disabling the Target	S239
13.1 Damage Caused by Collision with a Booster	
13.2 Warhead Destruction	S241
13.3 Effects of Incomplete Warhead Kill on Other Layers of a Defense	S243
13.4 Enhancing the Lethality of the Kill Vehicle	S243
13.5 Summary of Conclusions	
14 Size of the Kill Vehicle	S247
14.1 Performance Requirements for Boost-Phase Kill Vehicles	
14.2 Natural and Induced Environmental Considerations	
14.3 Design Concept for a Notional Kill Vehicle	
14.4 Final Kill-Vehicle Sizing	S249
Part C. Supporting Analysis for Hit-to-Kill Engagements	S257
15 Ballistic Missile and Trajectory Models	S259
15.1 ICBM Models	
15.2 ICBM Trajectories	
15.3 Models of Medium-Range Ballistic Missiles	S274
16 Terrestrial-Based Interceptor Models	S277
16.1 Analytical Approach	
16.2 Models of Unconstrained Interceptors	S279
16.3 Models of Constrained Interceptors	
16.4 Summary of Interceptor Models	

× CONTENTS

	16.5 Interceptor Basing Options	S285
Pa	rt D. Supporting Analysis for Airborne Laser Engagements	S291
17	Overview of the Airborne Laser Analysis	S29 3
18	Technology of the Airborne Laser	S297
	18.1 Overview of the Airborne Laser	S297
	18.2 Description of COIL	S299
	18.3 Chronology of the Airborne Laser	S300
	18.4 Airborne Laser Performance	S301
19	Airborne Laser Beam Propagation	S 303
	19.1 Vacuum Propagation	S303
	19.2 Atmospheric Effects	S304
	19.3 Characterization of Turbulence	S305
	19.4 Adaptive Optics	S306
	19.5 Benchmarking Adaptive Optics Hardware and Algorithms	S307
	19.6 Other Issues	S309
	19.7 Engagement Envelope	S309
20	Disabling Missiles Using the Airborne Laser	S313
	20.1 Effects of Laser Beams on Boosters and Warheads	S314
	20.2 Kill Assessment	S316
21	Airborne Laser Engagements	S319
	21.1 Engagement Steps	S320
	21.2 Parameter Choices and Constraints	S322
	21.3 Optical Engagement	S324
	21.4 Limiting Cases	S326
	21.5 Missile Intercepts	S329
22	Deployment Considerations for the Airborne Laser	S339
	22.1 Parameters of Operations	S339
	22.2 Operating Altitude and Cloud Cover	S340
	22.3 ABL Defense Against Short-Range Missiles	S340

CONTENTS xi

Αį	pendices	S342
A	Ballistic Missile Types and Phases of Flight A.1 Classes of Ballistic Missiles	S343 S343 S345
В	Calculating Missile Trajectories	S349
	B.1 Forces	S350
	B.2 Computing Trajectories	S352
	B.3 Simple Scaling Relations	S354
	B.4 Discussion	S355
C	Boost-Phase Tracking Simulations	S359
	C.1 Engagement of ICBM S1 and the 10-km/s Interceptor I-5	S360
	C.2 Engagement of ICBM L and the 5-km/s Interceptor I-5 $\dots \dots$	S381
D	Beam Propagation and Corrections	S391
	D.1 Atmospheric Effects	S392
	D.2 Characterization of C_n^2	S394
	D.3 Characterizing the Wavefront Aberrations	S396
	D.4 Anisoplanatic Effects	S397
	D.5 Strehl Ratio Details	S405
	D.6 Minor Issues	S408
GI	ossaries	S415
	Acronyms	S415
	Technical Terms	S420

List of Tables

3.1	Ballistic Missiles of Selected States of Concern	S32
3.2	Characteristics of Early ICBMs	S35
4.1	Model Interceptors	S53
5.1	Model ICBMs Considered	S65
5.2	Great-Circle Ranges and Azimuths to Various U.S. Cities	S68
5.3	Interceptors Considered	S69
5.4	Range and Velocity for Early Thrust Termination	S71
5.5	Available Decision Times for Defending All 50 States	S78
5.6	Intercept Times and ICBM Ground Ranges from North Korea	S81
5.7	Ground Ranges of Interceptors Fired Against ICBMs Launched from North	
	Korea to the United States	S81
5.8	Ground Ranges of Interceptors Fired Against ICBMs Launched from Iraq	
	or Iran to the United States	S88
5.9	Model Medium-Range Ballistic Missiles	S95
5.10	Ground Speed and Increment in Range	S97
6.1	Components of an SBI Life Jacket	S113
6.2	Number of Interceptors as a Function of $v_{\rm flyout}$, Decision Time, and Geog-	
	raphy against Solid-Propellant ICBM S1	S116
6.3	Mass-in-Orbit as a Function of $v_{\rm flyout}$, Decision Time, and Geography against	
	Solid-Propellant ICBM S1	S117
6.4	Number of Interceptors as a Function of $v_{\rm flyout}$, Decision Time, and Geog-	
	raphy against Liquid-Propellant ICBM L	S118
6.5	Mass-in-Orbit as a Function of $v_{\rm flyout}$, Decision Time, and Geography against	
	Liquid-Propellant ICBM L	S118
6.6	Effect of Possible Mass Reduction Strategies for Kill Vehicles	S126
10.1	ICBM Trajectory Parameters for Land- and Ship-Based Radars	S174
10.2	Theater High-Altitude Area Defense (THAAD) Radar Characteristics .	S175
10.3	THAAD Performance Requirements for ICBM Searches	S175
10.4	AN/SPY-1B Radar Characteristics	S177
10.5	AN/SPY-1B Performance Requirements for ICBM Searches	S177
10.6	AN/APY-2 Radar Characteristics	S178
10.7	AN/APY-2 Performance Requirements for ICBM Searches	S178
10.8	AN/APY-2 Performance Requirements for Searches at 300 km	S179
10.9	A Phased-Array AWACS Radar	S179
10.10	Phased-Array AWACS Performance Requirements for ICBM Searches	S180

xiv LIST OF TABLES

	Characteristics of Space Lasers	S191 S192
12.1	ICBM Engagements Simulated in the Study	S215
12.2	Uncertainties in Estimates of the State of the Target ICBM	S225
14.1	Properties of a surface-based kill vehicle	S251
14.2	Properties of terrestrial- and space-based kill vehicles	S253
14.3	Surface-based kill vehicles	S253
15.1	Model ICBMs Considered in the Study	S261
15.2	Single-Stage Model MRBMs Considered in the Study	S261
15.3	Characteristics of Liquid-Propellant ICBM L	S262
15.4	Characteristics of Solid-Propellant ICBM S1	S262
15.5	Characteristics of Solid-Propellant ICBM S2	S263
15.6	Characteristics of 1300-km M1	S275
15.7	Characteristics of 600-km M2	S276
16.1	Characteristics of the 6.7-km/s Interceptor I-3	S279
16.2	Characteristics of the 6.5-km/s Interceptor I-4	S281
16.3	Characteristics of the 10-km/s Interceptor I-5	S282
16.4	Characteristics of the VLS 5-km/s Interceptor I-2	S284
16.5	Interceptor Models Used in the Study	S284
20.1	Summary of Missile Properties	S313
20.2	Some Material Properties of Threat Missiles	S315
C.1	Summary of state-estimate uncertainties for the different sensors used dur-	
	ing the target-tracking problem	S372
D.1	Zernike Functions	S398

List of Figures

2.1	Great circles from North Korea and Iraq or Iran to the United States	S17
2.2	Timelines for engaging liquid- and solid-propellant ICBMs launched from	
	Iran against cities on the East Coast of the United States	S23
4.1	Liquid-propellant ICBM model L maximum-range boost-phase trajectory	
	in the altitude-range plane	S49
4.2	Solid-propellant ICBM model S1 maximum-range and lofted boost-phase	
	trajectories in the altitude-range plane	S50
4.3	Solid-propellant ICBM model S2 maximum-range and lofted boost-phase	
	trajectories in the altitude-range plane	S50
4.4	Examples of possible planar trajectories for solid-propellant ICBM model S1	S51
4.5	Payload range of model ICBMs as a function of the number of seconds	
	before burnout that their thrust is terminated	S52
4.6	Interceptor models used in the Study	S54
4.7	Flyout fan of trajectories and the acceleration profile for the 6.5-km/s in-	
	terceptor I-4	S55
4.8	Geometry of a planar engagement	S56
4.9	Engagement diagrams for planar engagements, 1000-km standoff distance	S57
4.10	Geometry of a non-planar engagement	S59
4.11	Projection of the trajectories of a non-planar engagement onto the Earth's	
	surface	S59
4.12	Coverage provided by a single space-based interceptor	S60
5.1	Great circles from North Korea and Iraq or Iran to U.S. cities	S67
5.2	Payload range of model ICBMs as a function of the number of seconds	
	before burnout that their thrust is terminated	S71
5.3	Ground tracks of illustrative trajectories of liquid- and solid-propellant	
	ICBM models from North Korea to U.S. cities	S73
5.4	Planar missile and interceptor trajectories and feasible interceptor basing	
	area for an idealized boost-phase engagement	S74
5.5	Ground range vs. time for the liquid and solid-propellant ICBM models and	
	candidate interceptors at a standoff distance of 1000 km	S75
5.6	The effects of uncertainties in azimuth, launch location, and missile trajec-	
	tory on basing areas	S76
5.7	Map of North Korea and adjacent countries and azimuths for missiles launched	
	from North Korea to the United States	S79

xvi LIST OF FIGURES

5.8	ICBM model S1 launched from North Korea toward the central United States	S80
5.9	Interceptor basing areas for defending the contiguous United States against the liquid-propellant missile ICBM model L launched from North Korea	S83
5.10	Interceptor basing areas for defending the contiguous United States against the solid-propellant missile ICBM model S1 launched from North Korea	S84
5.11	Basing areas for defending Hawaii from the solid-propellant missile model S1 launched by North Korea	S85
5.12 5.13	Map showing Iraq and Iran and nearby countries and bodies of water Ground tracks of the trajectories of the liquid- and solid-propellant ICBM	S86
5.14	models from Iraq to U.S. cities	S87
5.15	ICBMs launched from Iraq	S89
5.16	Interceptor basing areas for defending the contiguous United States against ICBMs launched from Iran	S91
5.17	Defending all of the United States against missiles launched from Iran, using interceptors based at two sites	S93
5.18	Illustrative planar engagements of medium-range ballistic missiles by interceptor I-1 shown in the altitude-range plane	S96
6.1	The coverage of a single space-based interceptor	S106
6.2	Flyout range r_{flyout} as a function of time for a range of accelerations and burnout velocities	S107
6.3	Range, mass, and required number of hypothesized space-based interceptors as a function of flyout velocity for a kill vehicle with a total divert velocity	S109
6.4	capability of 2.5 km/s	S108
6.5	Total mass of an orbiting constellation for the baseline case, including life-jackets, for one- and two-stage SBIs against solid- and liquid-propellant	5110
6.6	missiles	S114
6.7	two-stage interceptor having an acceleration of 10 g Variation of the number of interceptors, mass of an individual SBI, and on-	S115
	orbit mass as a function of SBI burn time, including the estimated "divert penalty"	S120
6.8	Mass-on-orbit for a family of one- and two-stage interceptors carrying the baseline kill vehicle as a function of SBI burn time, including the estimated "divert penalty."	S121
6.9	The variation of SBI mass as a function of flyout velocity for different accelerations of an SBI with a 136-kg kill vehicle	S121
6.10	Variation of the required number of interceptors, the individual mass of an interceptor, and the mass-in-orbit for a one-stage, 3.5-km/s interceptor as a	~ 1 22
	function of SBI burn time, including the estimated "acceleration penalty"	S123

LIST OF FIGURES xvii

6.11	Mass-on-orbit for a family of one- and two-stage interceptors carrying the baseline kill vehicle as a function of SBI burn time, including the estimated "acceleration penalty"	S123
0 1	-	
8.1 8.2	Geometry of an ABL intercept	S136
8.3	Korea to the United States	S139
8.4	from Iraq and Iran to the United States	S141
	S2) launched from Iraq and Iran to the United States	S142
9.1 9.2	Illustration of concept of ejected decoys and jammers	S148 S149
10.1	Illustrative spectra of the IR emission from the exhaust plume of a rocket burning hydrazine fuels in a ground test	S160
10.2	Characteristic variation with altitude of the luminosity per unit solid angle of rocket exhaust plumes	S161
10.3	-	S163
10.4	Transmission of Earth's atmosphere from ground to space and from 10-km altitude to space as a function of wavelength in the 1–10 μm region for a	
10.5	Comparison of the IR spectral luminosity of a representative missile plume	S164
	at an altitude of 20 km with the equivalent intensity of Earth's atmosphere, clouds, and terrain, as viewed from space	S165
10.6	Single-pixel false alarm probability as a function of threshold luminosity for the IR scanner considered, when viewing the stressing background scene	S168
10.7	Outlines of the two ICBMs used to illustrate missile radar cross sections and analyze radar performance requirements	S173
10.8	Estimated average S-band radar cross sections of the liquid- and solid-propellant ICBM models as functions of aspect angle from the nose	S174
10.9	THAAD tracking errors vs. time for the liquid- and solid-propellant ICBM models	S183
10.10	Aegis tracking errors vs. time for the liquid- and solid-propellant ICBM models	S183
10.11	AWACS phased array radar tracking errors vs. time for the liquid- and solid-propellant ICBM models	S184
10.12	Contours of constant SWIR spectral radiance in the exhaust plume of a	
10.13	Titan IIIC at an altitude of 110 km	S187
10.14	LIDAR system on the kill vehicle	S191 S194
	The plume from a solid-propellant Pegasus rocket, just after first-stage sep-	
	aration	S195
11.1	Line-of-sight behavior in intercepts: illustration of the principle of proportional navigation	S205

xviii LIST OF FIGURES

11.2 11.3 11.4	Kill-vehicle designed by Raytheon for use in a midcourse intercept system and interceptor rocket designed by Boeing	S206 S206 S207
12.1 12.2	Block diagram of an idealized proportional navigation scheme for a two- dimensional engagement, formulated in terms of the zero effort miss (ZEM) The time evolution of an engagement in which a kill vehicle using propor-	S218
12.2 12.3 12.4	tional navigation attempts to hit a target with a time-varying acceleration Block diagram of an idealized augmented proportional navigation scheme Block diagram of the guidance scheme used in simulating the engagements	S219 S220 S222
12.5	Illustration of estimates of target acceleration using polynomial filters, with and without sensor noise	S225
12.6 12.7	Overview of the engagement of ICBM model S2 by interceptor model I-4 in the range-altitude plane	S226
12.8	change with and without sensor noise	S227
12.9	tion of the uncertainty in the measurements of the target's position Guidance signal and kill-vehicle response to an 8-g lunge maneuver by the target missile $0.9~\mathrm{s}$ before the predicted intercept time, in the absence of	S228
12.10	sensor noise	S232
12.11	sensor noise	S233
12.12	before the predicted intercept time with sensor noise included Target acceleration and response of the kill vehicle to a 1-Hz, 2-g target jinking maneuver with and without sensor noise	S234 S235
13.1	Artist's conception of a lethality enhancement device on the ERIS experiment	S244
14.1	Assumed KV structure	S250
15.1	Maximum-range boost-phase trajectory and acceleration profiles of liquid-propellant ICBM model L in the altitude-range plane	S267
15.2	Maximum-range and lofted boost-phase trajectories and acceleration profiles of solid-propellant ICBM model S1 in the altitude-range plane	S268
15.3	Maximum-range and lofted boost-phase trajectories and acceleration pro- files of solid-propellant ICBM model S2 plotted in the altitude-range plane	S268
15.4	Comparison of the missile's altitude as a function of its range for the maximum-range boost-phase trajectories of the three primary ICBM mod-	
15.5	els	S269
15.6	range boost-phase trajectories of the three primary ICBM models Examples of the variety of planar trajectories that are possible for solid-	S270
	propellant ICBM model S1	S271

LIST OF FIGURES xix

15.7	Illustrative GEMS maneuver for solid-propellant ICBM S2 third stage .	S272
15.8	Components of the acceleration of the third stage of ICBM model S2 during	
	an illustrative GEMS maneuver	S272
15.9	Maximum-range trajectories of the two medium-range missile models	S275
16.1	A fan of planar flyout trajectories computed for the notional 6.7-km/s interceptor I-3	S278
16.2	Notional profiles of the interceptor models used in the Study	S280
16.3	A flyout fan of planar trajectories and the acceleration profile computed for the 6.5-km/s interceptor I-4	S281
16.4	A flyout fan of planar trajectories and the acceleration profile computed for the 10-km/s interceptor I-5	S283
16.5	A flyout fan of planar trajectories and the acceleration profile computed for the 5-km/s interceptor I-2	S285
16.6	Comparison of model interceptors with various existing missiles	S286
18.1	Schematic drawing of ABL engagement, showing the four laser beams onto the target	S298
18.2	Elements of the High Energy Laser	S301
21.1	Estimated Strehl ratio vs. σ_R^2 achievable for adaptive optics	S323
21.2	Schematic of steps of an optical engagement	S324
21.3	Effect on maximum slant range by applying various limits to the optical engagement of a liquid-propellant missile vs. altitude of the target	S328
21.4	Effect on maximum slant range by applying various limits to the optical	5020
	engagement of a solid-propellant missile vs. altitude of the target Acceleration vs. altitude for liquid-propellant ICBM L and solid-propellant	S329
21.5	ICBM S2	S330
21.6	Speed versus altitude for liquid-propellant ICBM L and solid-propellant	5550
	ICBM S2	S331
21.7	Engagement of liquid- and solid-propellant ICBMs for $t_e = 20$ s, for laser	0001
21.8	powers of 6 MW, 3 MW, and 1.5 MW	S331
	powers of 6 MW, 3 MW, and 1.5 MW	S332
21.9	Altitude vs. time since launch for the liquid-propellant ICBM L and the solid-propellant ICBM S2	S332
21.10	Engagement of liquid- and solid-propellant missile boosters for $t_e = 20 \text{ s}$	S334
21.11	Engagement of liquid- and solid-propellant missiles for $t_e = 5$ s	S335
21.12	Typical engagement geometries for a liquid-propellant missile, ICBM L, and	200
	a solid-propellant missile, ICBM S2, for a planar engagement	S335
C.1	Engagement of ICBM S1 by multiple 10-km/s interceptors	S361
C.2	Downrange and vertical velocities and accelerations of ICBM S1	S362
C.3	Downrange and vertical velocities and accelerations of the 10-km/s interceptor	S363
C.4	Five target missile trajectories	S363
C.5	Estimated average S-band radar cross sections of the liquid-propellant ICBM model L and the solid-propellant ICBM model S1, as functions of aspect	_
		S364

xx LIST OF FIGURES

C.6	Signal-to-noise ratio for acquisition and tracking Aegis radar for ICBM L and ICBM S1	S365
C.7	Aegis tracking errors vs. time for the liquid- and solid-propellant ICBM	COCC
C.8	models	S366
C.0	of the radar azimuth and elevation measurement errors	S370
C.9	Baseline case: Downrange, crossrange, and altitude errors in position and	5010
0.0	velocity and filter estimates of 1- σ values	S373
C.10	Baseline case: Downrange, crossrange, and altitude acceleration errors and	
	filter estimates of 1- σ values	S374
C.11	Poor-initial-estimates case: Downrange, crossrange, and altitude errors in	
	position and velocity and filter estimates of 1- σ values	S377
C.12	Poor-initial-estimates case: Downrange, crossrange, and altitude accelera-	
	tion errors and filter estimates of $1-\sigma$ values	S378
C.13	Large-measurement-errors case: Downrange, crossrange, and altitude errors	~~~
0.14	in position and velocity and filter estimates of 1- σ values	S379
C.14	Large-measurement-errors case: Downrange, crossrange, and altitude accel-	Caco
C.15	eration errors and filter estimates of 1- σ values	S380
C.15	Engagement between the target missile ICBM L and three 5-km/s interceptors	S382
C.16	Downrange and vertical velocities and accelerations of the ICBM L target	0304
0.10	missile	S383
C.17	Downrange and vertical velocities and acceleration of the 5-km/s intercep-	5000
0.2.	tor	S383
C.18	Downrange, crossrange, and altitude errors in position and velocity and	
	filter estimates of 1- σ values	S387
C.19	Downrange, crossrange, and altitude acceleration errors and filter estimates	
	of 1- σ values	S388
D.1	C_n^2 vs. target altitude in Clear-1 Night model	S394
D.1 D.2	Rytov variance vs. target altitude for ranges of 100, 200, 300, 400, and	2094
D.2	500 km	S395
D.3	Fried parameter vs. target altitude for ranges of 100, 200, 300, 400, and	5000
	500 km	S395
D.4	Root mean square tilt angle vs. target altitude for ranges of 100, 200, 300,	
	400, and 500 km	S396
D.5	Isoplanatic angle vs. target altitude for ranges of 100, 200, 300, 400, and	
	500 km	S397
D.6	Filter functions for Anisoplanatism, Piston, Tilt, Piston Removed, and	
D.=	Higher Order (beyond Tilt)	S399
D.7	Contributions to the anisoplanatic integrand of Eq. D.21	S400
D.8	Variance reduction factor vs. normalized variance for piston removed mode	S401
D.9	$\sigma_{\varphi c \ BW}^2$ for $n_f = 1$ vs. target altitude for ranges of 100, 200, 300, 400, and 500 km	S402
D.10	Variance correction factor vs. normalized variance for tilt mode	S402 S405