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Past surveys have revealed that the large-scale distribution of galaxies in the universe is far from
random: it is highly structured over a vast range of scales. Surveys being currently undertaken and
being planned for the next decades will provide a wealth of information about this structure. The
ultimate goal must be not only to describe galaxy clustering as it is now, but also to explain how this
arose as a consequence of evolutionary processes acting on the initial conditions that we see in the
cosmic microwave background anisotropy data. In order to achieve this we need to build
mathematically quantifiable descriptions of cosmic structure. Identifying where scaling laws apply and
the nature of those scaling laws is an important part of understanding which physical mechanisms have
been responsible for the organization of clusters of galaxies, superclusters, and the voids between
them. Finding where these scaling laws are broken is equally important since this indicates the
transition to different underlying physics. In describing scaling laws it is helpful to make analogies with
fractals, mathematical constructs that can possess a wide variety of scaling properties. We must
beware, however, of saying that the universe is a fractal on some range of scales: it merely exhibits a
specific kind of fractal-like behavior on those scales. The richness of fractal scaling behavior is an
important supplement to the usual battery of statistical descriptors. This article reviews the history of
how we have learned about the structure of the universe and presents the data and methodologies that
are relevant to an understanding of any scaling properties that structure may have. The ultimate goal
is to have a complete understanding of how that structure emerged. We are getting close!
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I. PHYSICAL COSMOLOGY

With the discovery of the cosmic background radia-
tion by Penzias and Wilson s1965d, cosmology became a
branch of physics: there was a well-defined framework
within which to formulate models and confront them
with observational data. Prior to that there had been a
few important observations and a few important solu-
tions to the Einstein field equations for general relativ-
ity. We suspected that these were somehow connected:
that the Friedmann-Lemaitre solutions of the Einstein
field equations described the cosmological redshift law
discovered by Hubble.

With the discovery of the background radiation we
were left in no doubt that the universe had a hot singular
origin a finite time in our past. That important discovery
also showed that our universe, in the large, was both
homogeneous and isotropic, and it also showed the ap-
propriateness of the Friedmann-Lemaitre solutions.

The establishment of the big bang paradigm led to a
search for answers, in terms of known physical laws, to
key questions: why was the universe so isotropic? how
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did the structure we observe originate? and so on. Cos-
mologists built models involving only known physics, al-
though the present standard cosmological model in-
cludes dark matter and dark energy, whose nature is still
unknown sPeebles and Ratra, 2003d. Cosmology became
a branch of physics with a slight difference: we cannot
experiment with the subject of our discussion, the uni-
verse, we can only observe it and model it.

With the current round of cosmic microwave back-
ground anisotropy maps we are able to see directly the
initial conditions for galaxy formation and for the for-
mation of large-scale structure. That observed structure
is thought to reflect directly the fluctuations in the gravi-
tational potential that gave birth to cosmic structure,
and it is a consequence of the physics of the early uni-
verse. The goal is to link those initial conditions with
what we see today.

The aim of this article is to show how the paradigm of
a homogeneous and isotropic universe with a hot singu-
lar origin has emerged, and to explain how, within this
framework, we can quantify and understand the growth
of the large-scale cosmic structure.

A. Cross-disciplinary physics

Gravitation is the driving force of the cosmos, and so
Einstein’s general theory of relativity is an appropriate
tool for modeling the universe. However, that alone is
not enough: other branches of physics have played a key
role in building what has emerged as a “Standard
Model” for cosmology.

Nucleosynthesis played an early role in defining how
the light elements formed sAlpher et al., 1948d: the abun-
dances of helium and deuterium play a vital part in con-
fronting our models with reality. In following how the
cosmic medium cooled sufficiently to enable gravita-
tional collapse to form galaxies and stars we need to
understand some exotic molecular chemistry.

Today, our understanding of high-energy physics plays
a key role: some have even defined a new discipline re-
ferred to as “astro-particle physics.” We have strong evi-
dence that there is a substantial amount of dark matter
in galaxies and clusters of galaxies. So far we have not
been able to say what is the nature of this dark matter.
There is also growing evidence that the expansion of the
universe is accelerating: this would require an all-
pervading component of matter or energy that effec-
tively has negative pressure. If this were true we would
have to resurrect Einstein’s cosmological constant or in-
voke some more politically correct “fifth force” concept
such as quintessence.

B. Statistical mechanics

The statistical mechanics of a self-gravitating system is
a nontrivial subject. Most of the difficulty arises from the
fact that gravitation is an always attractive force of infi-
nite range: there is no analog to the Debye shielding in

plasma physics. Perhaps the most outstanding success
was the discovery by Jeans in the 1920s of equilibrium
solutions to the Liouville equation for the distribution
function of a collection of stars sthe Jeans theoremd.
This has led to a whole industry in galaxy dynamics, but
it has had little or no impact on cosmology, where we
might like to view the expanding universe with galaxies
condensing out as a phase transition in action.

The brave have not been deterred from tackling the
statistical mechanics or thermodynamics of self-
gravitating systems, but it is perhaps fair to say that so
far there have been few outstanding successes. The dis-
cussion by Lynden-Bell and Wood s1968d, extending the
original work of Antonov s1962d on the so-called gra-
vothermal collapse of a stellar system in a box, is prob-
ably as close as anyone has come. It was only in the
1970s that cosmologists discovered the two-point-
clustering correlation function for the distribution of gal-
axies, and it was not until the late 1980s with the discov-
ery by de Lapparent et al. s1986d of remarkable large-
scale cosmic structure that we even knew what it was we
were trying to describe.

The early work of Saslaw s1968, 1969d on “gravither-
modynamics” predated the knowledge of the correlation
function. Following the discovery of the correlation
function we saw the work of Fall and Severne s1976d,
Kandrup s1982d, and Fry s1984bd, providing models for
the evolution of the correlation function in various ap-
proximations.

One major problem was how to describe this struc-
ture. By 1980, it was known that the two-point correla-
tion function looked like a power law on scales1

,10h−1 Mpc. It was also known that the three-point
function, too, had a power-law behavior and that it was
directly related to sums of products of pairs of two-point
functions srather like the Kirkwood approximationd.
However, N-point correlation functions were not really
evocative of the observed structure and were difficult to
measure past N=4.

Two suggestions for describing large-scale cosmic
structure emerged: void probability functions, proposed
by White s1979d and measured first by Maurogordato
and Lachieze-Rey s1987d, and multifractal measures sPi-
etronero, 1987; Jones et al., 1998d, the latter being
largely motivated by the manifest scaling behavior of the
lower-order correlation functions on scales ,10h−1 Mpc.
Both of these descriptors encapsulate the behavior of
high-order correlation functions.

C. Scaling laws in physics

The discovery of scaling laws and symmetries in natu-
ral phenomena is a fundamental part of the methodol-

1The natural unit of length to describe the large-scale struc-
ture is the megaparsec sMpcd: 1 Mpc=106 pc.3.08631022 m
.3.263106 light years. h is the Hubble constant in units of
100 Mpc−1 km s−1.
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ogy of physics. This is not new: we can think of Galileo’s
observations of the oscillations of a pendulum, Kepler’s
discovery of the equal-area law for planetary motion,
and Newton’s inverse square law of gravitation. Some
authors claim that the actual discovery of the scaling
laws is attributable to Galileo in the context of the
strength of materials, as discussed in his book Two New
Sciences sPeterson, 2002d.

The establishment of a scaling relationship between
physical quantities reveals an underlying driving mecha-
nism. It is the task of physics to understand and to pro-
vide a formalism for that mechanism.

The self-affine Brownian motion is a good example
for visual illustration of a scaling process ssee Fig. 1d. In
this case scaling is nonuniform, because different scaling
factors have to be applied to each coordinate to keep
the same visual appearance.

The breaking of symmetries and of scaling laws is
equally important and has played a key role in 20th-
century physics. Scale invariance is typically broken
when some new force or phenomenon comes into play,
and the result can look far more significant than it really
is. Dubrulle and Graner s1994d and Graner and Du-
brulle s1994d have suggested that this may be the case
for the Titius-Bode law swhich is, of course, not a law,

and can be traced back before Titius and Bode at least
to David Gregory in 1702d.2 Their point is that, if the
primordial protoplanetary disk had a power-law distri-
bution of density and angular momentum, then any pro-
cess that forms planets will give them something like the
Titius-Bode distribution of orbit sizes. Thus the distribu-

2First put forward by David Gregory in his Astronomiae
Elementa s1702d and later by Titius in 1766 and Bode in 1772,
the so-called law connects sizes of planetary orbits with inte-
gers. They and many later astrophysicists have thought of it as
a fundamental fact about the solar system that must be
explained by any theory of planetary formation. Rather similar
relations obtain for the moons of the outer planets and
for families of three to four planets orbiting other stars. It is a
mnemonic device for remembering the approximate distances
of planets from the Sun. Take the series 0, 3, 6, 12…, add
4 to each member of the series, and divide by 10. The resulting
sequence, 0.4, 0.7, 1.0, 1.6… gives the approximate distance
from the Sun in AU of Mercury and the other planets out
to Uranus. No planet was found at 2.8 AU in the gap
between Mars and Jupiter, where Giuseppe Piazzi discovered
the asteroid Ceres in 1801. The “law” fails at Neptune and
beyond.

FIG. 1. sColor in online editiond Scaling relations in one-dimensional Brownian motion xstd. In successive zooms the vertical
coordinate sxd is multiplied by 2, while the horizontal coordinate sthe time td is multiplied by 4 to properly rescale the curve.
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tion cannot be used as a test for any particular formation
mechanism.

Fractal geometry sMandelbrot, 1982; Feder, 1988;
Takayasu, 1989d has provided the appropriate language
to deal with many scaling phenomena in nature, and its
application has been rather successful not only in phys-
ics, but also in chemistry, biology, medicine, geology, etc.

Within cosmology, some of the examples of quantized
redshifts reported over the years sBurbidge and Bur-
bidge, 1967; Burbidge, 1968; Tifft, 1976d may have been
analogous cases, where the “new phenomenon of phys-
ics” was an observational selection effect resulting when
strong emission lines passed into and out of the standard
observed wavelength bands.

As we shall see, there are important scaling relation-
ships in the spatial distribution of galaxies. This scaling
is almost certainly a consequence of two factors: the na-
ture of the initial conditions for cosmic structure forma-
tion and the fact that the gravitational force law is itself
scale-free.

This scaling is observed to break down at very large
distance. This breakdown is a consequence of the large-
scale homogeneity of the universe and of the fact that
the universe has a finite age: gravitational agglomeration
of matter has only been able to spread over a limited
domain of scales, leaving the largest scales unaffected.

The scaling is also expected to break down for small
objects where nongravitational forces have played a
role: gas-dynamic processes play an important role in
the later stages of galaxy formation. There are important
scaling relationships among the properties of galaxies
which provide clues to the mechanisms of their forma-
tion. We do not deal with these in detail here, although
the main scaling laws in the galaxy properties are sum-
marized in Sec. VII.A.5.

D. Some psychological issues

Cosmology presents physics with a formidable chal-
lenge. The universe is not a bounded and isolated sys-
tem. The universe is far from being in any form of dy-
namical equilibrium. The gravitational force is of infinite
range and always attractive. Nor can we experiment on
the subject of interest; we are mere observers. Thus the
usual concepts from statistical physics cannot be simply
imported, they have to be redefined to suit these special
circumstances.

This process of redefinition is apt to misdirect the
struggle for understanding the issues involved and is in-
evitably frustrating to those who work in statistical phys-
ics or who seek to use techniques from statistical phys-
ics. Indeed there have been occasions in which the
notions of the Standard Model have been abandoned
simply in order to exploit standard concepts that would
otherwise be invalid se.g., model universes having one
spatial dimension or model universes that have zero
mean density in the larged. Those papers may be inter-
esting, but they have little or nothing to do with the
universe as we know it.

II. THE COSMIC SETTING

The establishment of a definitive cosmological picture
has been one of the triumphs of 20th-century physics.
From Einstein’s first investigations into relativistic cos-
mological models, through Hubble’s discovery of the
cosmic expansion, to the discovery of the cosmic micro-
wave background radiation in 1965, most physicists
would now agree on the basic ingredients of what might
as well be called “the Standard Cosmological Model.”
The astrophysics of the 21st century will consist largely
of filling in and understanding the details of this model:
a nontrivial process that will consume substantial hu-
man, technical, and financial resources.

While there are suggestions that the Standard Model
may not be complete, the data as a whole do not as yet
demand any further parametrization such as quintes-
sence. Of course, as our understanding of fundamental
physics deepens, the Standard Model might be recast in
a new, wider, more profound framework such as that
offered by brane cosmologies.

A. Key factors

There are several important factors in support of our
current view of cosmic structure formation:

• The discovery by Hubble in 1928 of the linear
velocity-distance relationship for galaxies sHubble,
1929d. This relationship was soon interpreted by
Robertson s1928d as being due to the expansion of
the universe in the manner described by the
Friedmann-Lemaitre cosmological solutions of the
Einstein field equations for gravitation. These solu-
tions described a homogeneous and isotropic uni-
verse emerging from a singular state of infinite den-
sity, the big bang. Later on, Bondi and Gold s1948d
and Hoyle s1948d provided an alternative homoge-
neous and isotropic expanding model that avoided
the initial singularity, the steady-state theory.

• The discovery in 1965 of the cosmic microwave back-
ground radiation. This tells us the cosmological
framework within which we have to work. Our uni-
verse is, in the large, homogeneous and isotropic; it
was initially hot enough to synthesize the element
helium. This is the hot big bang theory promoted
early on by Gamow. This discovery signaled the end
of the steady-state theory.

• The observation in 1992 by the COBE satellite of the
large-scale structure of the universe at very early
times. This provides us with precise information
about the initial conditions for structure formation.
Ongoing research will lead to detailed knowledge of
the fundamental parameters of our Standard Model
and to detailed knowledge of the initial conditions in
the big bang that resulted in the currently observed
structure.

We know a great deal about our universe. Studies of
cosmic structure must fall within the precepts set by our
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Standard Model or they will simply be dismissed at best
as being academic curiosities or at worst as being totally
irrelevant.

B. Some caveats

The most important caveat in all of this is the fact that
when studying cosmic structure we observe only the lu-
minous constituents of the universe. It is true that we
can observe cosmic structure over an enormous range of
the electromagnetic spectrum, but, nevertheless, we face
the prospect that about 85% of what there is out there
may forever remain invisible except indirectly through
its gravitational influence.

Fortunately, we can directly study the gravitational in-
fluence of the dark component in a number of ways. If it
is uniformly distributed it has an influence on the overall
cosmic expansion and on the physics of the early uni-
verse. We can detect its influence by studying the cosmic
expansion law or by studying the nature of the spatial
inhomogeneities seen in the cosmic microwave back-
ground radiation. If it is not uniformly distributed it will
influence the dynamics of the large-scale structure as
seen in the velocity maps for large samples of galaxies
and it may reveal itself through studies of gravitational
lensing.

Our numerical simulations of the evolution of struc-
ture can in principle take account of several forms of
matter. While this has been a successful program, the
lack of detailed knowledge about the nature of the dark
matter is nevertheless a serious impediment. Some as-
trophysicists would turn the problem around and argue
that those simulations that best reproduce what is seen
will provide important information about the nature of
the dark matter.

III. EARLY IDEAS ABOUT GALAXY DISTRIBUTION

A. Cosmogony

In the 4th century BCE, Epicurus taught that there
are an infinite number of worlds like sand unliked ours,
while Aristotle taught that there is only one. Neither
hypothesis can currently be falsified, and indeed we may
see the continuation of this metaphysical battle in the
so-called inflationary cosmological models.

Philosophers since Anaximander sKahn, 1994d have
long debated the true nature of the universe, presenting
often remarkably prescient ideas notwithstanding the
lack of any real data. Given the lack of data, the only
basis for constructing a universe was symmetry and sim-
plicity or some more profound cosmological principle.

The ancients saw nested crystalline spheres fitting
neatly into one another: this was a part of the culture of
thinking of mathematics si.e., geometry in those daysd as

being somehow a fundamental part of nature.3 Later
thinkers such as Swedenborg, Kant, and Descartes envi-
sioned hierarchies of nested whirls ssee also Baryshev
and Teerikorpi, 2002d. While these ideas generally ex-
ploited the scientific trends and notions of their time,
none of them were formulated in terms of physics. Many
are reviewed by Jones s1976d, giving detailed references
to the classical works.

Perhaps the first detailed presentation of cosmogonic
ideas in the modern vein was due to Poincaré in his
Leçons sur les Hypothèses Cosmogoniques sPoincaré,
1894d, some of which was to be echoed by Jeans in his
texts on astronomy and cosmogony sJeans, 1928d. Jeans’s
work is said to have had a profound effect on Hubble’s
own thoughts about galaxy evolution and structure for-
mation sChristianson, 1995d.

B. Galaxies as “island universes”

Once upon a time there was a single galaxy. William
and Caroline Herschel had drawn a map of the Galaxy
sHerschel, 1785d on the basis that the Sun was near the
center of the Galaxy, and this image persisted into the
20th century with the “Kapteyn universe” sKapteyn,
1922d, which depicted the Milky Way as a relatively
small flattened ellipsoidal system with the Sun at its cen-
ter, surrounded by a halo of globular clusters. Trumpler
s1930d recognized the role played by interstellar absorp-
tion; he provided a far larger view of the Galaxy and
moved the Sun outwards from the center of the Galaxy
to a position some 30 000 light years from the Galactic
center.

Competing with this view was the hypothesis of island
universes, though at least some astronomers 100 years
ago thought that had been completely ruled out. Re-
member that 100 years ago it was not known that the
“nebulae” were extragalactic systems: they were thought
of as whirlpools in the interstellar medium.

The controversy between the great galaxy and island
universe views culminated in the great debate between
Curtis and Shapley in 1920 sHoskin, 1976d. Shapley, who
had earlier placed our Sun in the outer reaches of the
great Galaxy by observing the distribution of globular
clusters,4 defended the great galaxy hypothesis and won
the day for all the wrong reasons.

However, it was left to Edwin P. Hubble to settle the
issue in favor of the island universes when he found
Cepheid variables in the galaxy NGC6822 and the An-
dromeda nebula sHubble, 1925a, 1925bd.

There was one anomaly that persisted into the early
1950s: our Galaxy seemed to be the largest in the uni-

3Einstein’s great intellectual coup was to geometrize the force
of gravity: we are governed on large scales by the geometry of
spacetime manifesting itself as the force of gravity.

4We should recall that at about this time Lindblad s1926d and
Oort s1928d showed that the stars in the Galaxy were orbiting
about a distant center, thus clearly placing the Sun elsewhere
than at the center.
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verse. This was resolved by Baade, who recognized that
there were in fact two populations of Cepheid variables
sBaade, 1956d. This doubled the distances to the external
galaxies, thereby solving the problem.

For Hubble and most of his contemporaries what had
been found were “field galaxies” largely isolated from
one another. This was in part due to the sorts of tele-
scope and their fields of view that Hubble was using
sHubble, 1934, 1936ad and also in part due to the linger-
ing effects of the phrase “island universe,” which evoked
images of isolation. Indeed, as late as the 1960s, astrono-
mers who should have known better said that galaxies
were the building blocks of the universe fe.g., McCrea
s1964d and Abell in undergraduate lectures at UCLA,
1961–1963g.

In fact, most galaxies are clustered. This is implicit in
images taken with smaller telescopes having larger fields
fShapley often said that large telescopes were overrated
sShapley, 1932d, perhaps in part because he had deliber-
ately cut himself off from them by moving to Harvardg
and explicit in the remarks of Zwicky s1938, 1952d, who
had begun to look at the universe through Schmidt-
colored glasses. sThe 18-in. Schmidt telescope on Palo-
mar Mountain came into use a couple of years before.d

C. Earliest impressions on galaxy clustering

In the 19th century William Herschel and Charles
Messier noted that the amorphous objects they referred
to as “nebulae” were more common in some parts of the
sky than others and in particular in the constellation of
Virgo.

However, clusters of galaxies were not described in
detail until the work of Wolf s1924d, who described the
Virgo and Coma clusters of galaxies. It was not known at
that time that the nebulae, as they were then called,
were in fact extragalactic systems of stars comparable to
our own Galaxy.

Hubble, using the largest telescopes, noted the re-
markable overall homogeneity and isotropy of the dis-
tribution of galaxies. The first systematic surveys of gal-
axy distribution were undertaken by Shapley and his
collaborators soften uncited and underacknowledged
wealthy Bostonian womend. This led to the discovery of
numerous galaxy clusters and even groups of galaxy
clusters.

D. Hierarchical models

The clustering together of stars, galaxies, and clusters
of galaxies in successively ordered assemblies is nor-
mally called a hierarchy, in a slightly different sense of
the dictionary meaning in which there is a one-way
power structure. The technically correct term for the
structured universes of Kant and Lambert is multilevel.
A complete multilevel universe has three consequences.
One is the removal of Olbers’s paradox sthe motivation
of John Herschel and Richard Proctor in the 19th cen-
turyd. The second, recognized by Kant and Lambert, is
that the universe retains a primary center and is there-

fore nonuniform on the largest cosmic scales. The third,
recognized by the Irish physicist Fournier d’Albe and
the Swedish astronomer Carl Charlier early in the 20th
century, is that the total amount of matter is much less
than in a uniform universe with the same local density.
d’Albe put forward the curious additional notion that
the visible universe is only one of a series of universes
nested inside each other like Chinese boxes. This is not
the same as multiple four-dimensional universes in
higher-dimensional space and does not seem to be a
forerunner of any modern picture.

1. Charlier’s hierarchy

The idea that there should be structure on all scales
up to that of the universe as a whole goes back to Lam-
bert s1961d, who was trying to solve the puzzle of the
dark night sky that is commonly called “Olbers’s para-
dox.” fIt was not formulated by Olbers and it is a riddle
rather than a paradox sHarrison, 1987d.g Simply put: if
the universe were infinite and uniformly populated with
stars, every line of sight from earth would eventually
meet the surface of a star and the sky would therefore
be bright. The idea probably originated with John Her-
schel in a review of Humboldt’s Kosmos, where the clus-
tering hierarchy is suggested as a solution to Olbers’s
paradox as an alternative to dust absorption.

At the start of the 20th century, the Swedish astrono-
mer Carl Charlier provided a cosmological model in
which the galaxies were distributed throughout the uni-
verse in a clustering hierarchy sCharlier, 1908, 1922d. His
motivation was to provide a resolution for Olbers’s para-
dox. Charlier showed that replacing the premise of uni-
formity with a clustering hierarchy would solve the
problem, provided the hierarchy had an infinite number
of levels ssee Fig. 2d.

Charlier’s idea was not new, though he was the first
person to provide a correct mathematical demonstration

FIG. 2. Hierarchical universe. This was very popular at the
end of the 19th century and the first half of the 20th century.
Courtesy of Edward Harrison, reproduced with permission.
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that Olbers’s paradox could indeed be resolved in this
way. It should be recalled that he was working at a time
before any galaxies had measured redshifts and long be-
fore the cosmic expansion was known.

It is interesting that the Charlier model had de Vau-
couleurs as one of its long-standing supporters sde Vau-
couleurs, 1970d.

More recently still there have been a number of at-
tempts to reincarnate such a universal hierarchy in terms
of fractal models. A regular hierarchical model was first
proposed by Fournier d’Albe s1907d and subsequently
more sophisticated fractal models were championed by
Mandelbrot s1982d and Pietronero s1987d. Several at-
tempts have been made to construct hierarchical cosmo-
logical models fa Newtonian solution was found by
Wertz s1971d, and general-relativistic solutions were pro-
posed by Bonnor s1972d, Wesson s1978d, and Ribeiro
s1992dg. All these solutions are, naturally, inhomoge-
neous with preferred positionssd for the observerssd, and
thus unsatisfactory. So the present trend to reconcile
fractal models with cosmology is to use the measure of
last resort and to assume that, although the matter dis-
tribution in the universe is homogeneous on large scales,
the galaxy distribution can be contrived to be fractal
sRibeiro, 2001d. Numerical models of deep samples con-
tradict this assumption.

2. Carpenter’s law

Edwin F. Carpenter spent his early days at Steward
Observatory sof which he was director for more than
20 years, from 1938d scanning zone plates to pick out
extragalactic nebulae for later study. In 1931, he found a
new cluster in the direction of Cancer sindependently
discovered by Hubble at about the same timed. He mea-
sured its size on the sky, estimated its distance, and
counted the number of galaxies, N, he could recognize
within its confines. This gave him a sample of seven clus-
ters with similar data, all from Mt. Wilson plates shis
most recent find, five in the Mt. Wilson director’s report
for 1929–1930, and one then just found by Lundmarkd.
He was inspired to graph logsNd versus the linear sizes
of the clusters sCarpenter, 1931d and found a straight-
line relation, that is, a power law in Nsdiameterd, no-
where near as steep as N,D3 or N proportional to vol-
ume. The then-known globular cluster system of the
Milky Way swith about 35 clusters within 105 pc d also fit
right on his curve.

Carpenter later considered a larger sample of clusters
and found that a similar curve then acted as an upper
envelope to the data sCarpenter, 1938d. If his numbers
are transformed to the distance scale with H0
=100 km s−1 Mpc−1, then the relations are sde Vau-
couleurs, 1971d

log10 Nsmaxd = 2.5 + 1.5 log10 RsMpcd s1d

or

log10 Nsmaxd = 2.19 + 0.5 log10 VsMpc3d , s2d

and the maximum number density in galaxies per Mpc3

is also proportional to 0.5 log10sVd. de Vaucouleurs
called this Carpenter’s law, though the discoverer him-
self had been somewhat more tentative, suggesting that
this sort of distribution swhich we would call scale-free,
though he did notd might mean that there was no funda-
mental difference among groups, clusters, and superclus-
ters of galaxies, but merely a nonrandom, nonuniform
distribution, which might contain some information
about the responsible process. It is, with hindsight, not
surprising that the first few clusters that Carpenter
s1931d knew about were the densest sort, which define
the upper envelope of the larger set sCarpenter, 1938d.
The ideas of a number of other proponents, both ob-
servers and theorists, on scale-free clustering and hierar-
chical structure are presented snone too sympatheti-
callyd in Chap. 2 of Peebles s1980d.

3. de Vaucouleurs hierarchical model

de Vaucouleurs first appears on the cosmological stage
doubting what was then the only evidence for galaxy
evolution with epoch, the Stebbins-Whitford effect,
which he attributed to observational error sde Vau-
couleurs, 1948d. He was essentially right about this, but
widely ignored. He was at other times a supporter of the
cosmological constant swhen it was not populard and a
strong exponent of a hierarchical universe, in which the
largest structures we see would always have a size com-
parable with the reach of the deepest surveys sde Vau-
couleurs, 1960, 1970, 1971d. He pointed out that esti-
mates of the age of the universe and of the sizes of the
largest objects in it had increased monotonically sand
perhaps as a sort of power lawd with time since about
1600, while the densities of various entities versus size
could all be plotted as another power law,

rsrd , r−x, with x between 1.5 and 1.9. s3d

By putting Carpenter’s law into modern units, de Vau-
couleurs showed that it described this same sort of scale-
free universe. A slightly more complex law, with oscilla-
tions around a mean, a falling line in a plot of density
versus size ssee Fig. 3d, could have galaxies, binaries,
groups, clusters, and superclusters as distinct physical
entities, without violating his main point that what you
see is what you are able to see.

de Vaucouleurs said that it would be quite remarkable
if, just at the moment he was writing, centuries of
change in the best estimate for the age and density of
the universe should stop their precipitous respective rise
and fall and suddenly level off at correct, cosmic values.
Thus he seemed to be predicting that evidence for a
universe older than 10–20 Gyr and for structures larger
than 100 Mpc should soon appear. sHe held firmly to a
value of H0 near 100 km s−1 Mpc−1 for most of his later
career, except for the 1960 paper where it was 75, but
thought of local measurements of H0 as being relevant
only locally.d Remarkable, but apparently true, instead
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of taking off again, estimates of the age of the universe
made since 1970 from radioactive decay of unstable nu-
clides, from the evolution of the oldest stars, and from
the value of the Hubble constant, increasingly concur.
And galaxy surveys have now penetrated a factor 10
deeper in space than the Shane-Wirtanen and Harvard
counts in which de Vaucouleurs saw his superclusters.

E. The cosmological principle

The notion that the Earth is not at the center of the
universe is generally referred to as the “Copernican
principle,” though it traces its origins back to

Aristarchus, who thought that the Sun and the stars
were in fact fixed, with the stars being at great distances.

The modern notion that the universe on the very larg-
est scales should be homogeneous and isotropic appears
to have originated with Einstein s1917d. At that time
there could have been no observational basis for this
assumption. However, homogeneity is a consequence of
the notion that we are not in a special place in the uni-
verse and the assumptions of homogeneity and isotropy
provide for easy solutions of the Einstein field equa-
tions. The first cosmological models of Einstein and of
de Sitter were based on this principle. Robertson and
Walker derived their famous solution of the Einstein
equations using only that principle.

It was frequently stated in the years that followed that
the universe in the large looked homogeneous and iso-
tropic. The first systematic study was done by Hubble
s1926d, who used a sample of 400 galaxies with known
magnitudes; the sample was thought to be complete to
magnitude 12.5. He found his counts fitted the relation-
ship

log10 Ns,md = 0.6m + const s4d

and concluded, importantly, that “The agreement be-
tween observed and computed log10 N over a range of
more than 8 mag. is consistent with the double assump-
tion of uniform luminosity and uniform distribution or,
more generally, indicates that the density function is in-
dependent of the distance.” He goes on to look at sys-
tematics in the residuals in this plot and concludes that
they may be due to “… clustering of nebulae in the vi-
cinity of the galactic system. The cluster in Virgo alone
accounts for an appreciable part.”

Hubble only had data to magnitude 12. Anyone look-
ing at the considerably fainter Shane and Wirtanen’s
isoplethic maps of galaxy counts based on the Lick Sky
Survey sShane and Wirtanen, 1967d, or the more recent
Center for Astrophysics sCfA-IId slice data sGeller and
Huchra, 1989d might be forgiven for questioning the ho-
mogeneity conjecture!

The first demonstration of homogeneity in the galaxy
distribution was probably the observation by Peebles
that the sprojectedd two-point correlation function esti-
mated from diverse catalogs probing the galaxy distribu-
tion to different depths followed a scaling law that was
consistent with homogeneity. The advent of automated
plate-measuring machines provided deeper and more re-
liable samples with which to confirm the uniform distri-
bution number-magnitude relationship. However, at the
faintest magnitude levels, these counts show significant
systematic deviations from what is expected from a uni-
form distribution: these deviations are due to the effects
of galaxy evolution at early times, and their interpreta-
tion depends on models for the evolution of stellar
populations in galaxies. Recent, very deep studies sMet-
calfe et al., 2001d show convincingly “… that space den-
sity of galaxies may not have changed much between z
=0 and z=3.”

The first incontrovertible proof of cosmic isotropy
came only as recently as the early 1990s from the COBE

FIG. 3. Idealized diagram by de Vaucouleurs, showing two
hierarchical frequency distributions of the number of clumps
per unit volume. In the top panel there are no characteristic
scales in the distribution. This is the model proposed by Kiang
and Saslaw s1969d. The bottom panel shows a more sophisti-
cated alternative in which the overall decrease in the number
of clumps per unit volume does not behave monotonically with
the scale, but it displays a series of local maxima corresponding
to the characteristic scales of different cosmic structures: gal-
axies, groups, clusters, superclusters, etc. Reproduced from de
Vaucouleurs s1971d, with permission of the Editors of the Pub-
lications of the Astronomical Society of the Pacific.
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satellite all-sky map of the cosmic microwave back-
ground radiation sSmoot et al., 1992d. This map is isotro-
pic to a high degree, with relative intensity fluctuations
only at the level of 10−5. With this observation, and with
the reasonable hypothesis that the universe looks the
same to all observers sthe Copernican principled, we can
deduce that the universe must be locally Friedmann-
Robertson-Walker, i.e., homogeneous as well as isotro-
pic sEhlers et al., 1968d.

IV. DISCOVERING COSMIC STRUCTURE

A. Early catalog builders

Observational cosmology, like most other physical sci-
ences, is technology driven. With each new generation of
telescopes and with each improvement in the photo-
graphic process, astronomers have probed further into
the universe, cataloging its contents.

Early on, Edward Fath used the Mount Wilson
60-in. telescope to photograph Kapteyn’s selected areas.
That survey showed inhomogeneities that were later
analyzed by Bok s1934d and Mowbray s1938d, who dem-
onstrated statistically, using counts in cells, that the gal-
axy distribution was nonuniform. About this time, Car-
penter s1938d noticed that small objects tend to be dense
while vast objects tend to be tenuous. He plotted a re-
markable relationship between scale and density ranging
all the way from the universe, through galaxies and stel-
lar systems to planets and rock, as was explained in Sec.
III.D.2. This was perhaps the first example of a scaling
relationship in cosmology.

By 1930, the Shapley/Ames catalog of galaxies re-
vealed the Virgo cluster5 as the dominant feature in the
distribution of bright galaxies. It was already clear from
that catalog that the Virgo cluster was part of an ex-
tended and rather flattened supercluster. This notion
was hardly discussed except by de Vaucouleurs, who
thought that this was indeed a coherent structure whose
flattening was due to rotation.

The Lick Survey of the sky provided extensive plate
material that was later to prove one of the key data sets
for studies of galaxy clustering. The early isoplethic
maps drawn by Wirtanen s1954d provided the first carto-
graphic view of cosmic structure. Their counts of galax-
ies in cells was to provide Rubin s1954d and Limber
s1954d with the stimulus to introduce the two-point clus-
tering function as a descriptor of cosmic structure.

But it was the Palomar Sky Survey using the new
48-in. Schmidt telescope that was to provide the key im-
petus in understanding the clustering of galaxies. Zwicky
and his collaborators at Caltech systematically cataloged
the position and brightness of thousands of brighter gal-
axies on these plates, creating what has become known

as the “Zwicky Catalog.” Abell s1958d made a system-
atic survey for rich clusters of galaxies and drew up a
catalog listing thousands of clusters. This has become
simply known as the “Abell catalog.” Figure 4 shows a
modern image of the cluster Abell 1689 obtained by the
Advanced Camera for Surveys aboard the Hubble Space
Telescope. A catalog of galaxy redshifts noting the clus-
ters to which galaxies belonged was published by Huma-
son et al. s1956d.

1. The Lick survey

The first map of the sky revealing widespread cluster-
ing and superclustering of galaxies came from the Lick
survey of galaxies undertaken by Shane and Wirtanen
s1967d using large field plates from the Lick Observatory.
This was, or should have been, the definitive database. It
was the subject of statistical analysis by Neyman et al.
s1953d, which was a major starting point for what have
subsequently become known as Neyman-Scott processes
in the statistics literature. Ironically, although these pro-
cesses have become a discipline in their own right, they
have since that time played only a minor role in as-
tronomy.

Scott in IAU Symposium 15 sScott, 1962d mentioned
that there are clearly larger structures to be seen in

5The Virgo cluster is the nearest large cluster of galaxies, with
more than 1000 members and a remarkably irregular shape. It
is the core of the Virgo supercluster, of whose outer regions
our Local Group is a member.

FIG. 4. The cluster of galaxies Abell 1689 at redshift z=0.18
seen by the Hubble Space Telescope with its recently installed
Advanced Camera for Surveys sACSd. The arcs observed
amongst hundreds of galaxies comprising the cluster are mul-
tiple images of far-away individual galaxies whose light has
been amplified and distorted by the total cluster mass svisible
and darkd acting as a huge gravitational lens. Image courtesy of
NASA, N. Benitez sJHUd, T. Broadhurst sThe Hebrew Univer-
sityd, H. Ford sJHUd, M. Clampin sSTScId, G. Hartig sSTScId,
G. Illingworth sUCO/Lick Observatoryd, the ACS Science
Team, and the European Space Agency.
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these counts, as Shane and Wirtanen s1954d had already
noted. They spoke of “larger aggregations” or “clouds”
as being rather general features. The Lick survey was
later to play an important role in Peebles’s systematic
approach to the problem of galaxy clustering. Peebles
obtained from Shane the notes containing the original
counts in 1083108 cells and computerized them for his
analysis. The counts in one-degree cells had been used
first by Vera Cooper-Rubin sas Vera Rubin was then
knownd to study galaxy clustering in terms of correlation
functions, a task set by her adviser George Gamow. Ru-
bin did this at a time when there were no computers. It
was Totsuji and Kihara s1969d who first did this on a
computer and published the first two-point correlation
function as we now know it with the power law that has
dominated much of cosmology for the past three de-
cades and more.6

2. Palomar Observatory Sky Survey

The two main catalogs of clusters derived from the
Palomar Observatory Sky Survey sPOSSd were that of
Abell s1958d and that of Zwicky and his collaborators
sZwicky et al., 1961–1968d.

Abell went on immediately to say that there was sig-
nificant higher-order clustering in his data, giving, in
1958, a scale for superclustering of 24 sH0 /180d−1 Mpc.
In 1961 at a meeting held in connection with the Berke-
ley IAU, Abell published sAbell, 1961d a list of these
superclusters, dropped the Hubble constant to
75 km s−1 Mpc−1, and estimated masses of 1016–1017M(

with velocity dispersions in the range 1000–3000 km s−1.
At about the same time, van den Bergh s1961d remarked
that Abell’s most distant clusters sdistance class 6 having
redshifts typically around 50 000 km s−1d show structure
on the sky on a scale of some 20°, corresponding to
100 Mpc, for his H0=180 km s−1 Mpc−1, or about
300 Mpc using current values.

Zwicky explicitly and repeatedly denied the existence
of higher-order structure sZwicky and Rudnicki, 1963,
1966; Zwicky and Berger, 1965; Zwicky and Karpowicz,
1966d. Some of his “clusters” were on the order of
80 Mpc across sfor H0 less than 100d, had significant sub-
structure, and would to any other person have looked
like superclusters! Herzog, one of Zwicky’s collaborators
on the cluster catalog, found large aggregates of clusters
in the catalog and had the temerity to say so publicly in
a Caltech astronomy colloquium. He was offered “politi-
cal asylum” at UCLA by George Abell. Karachentsev
s1966d also reported finding large aggregates in the
Zwicky catalog.

3. Analysis of POSS clusters

Up until about 1960 most of those involved seemed to
envisage a definite hierarchy of structures: galaxies sper-
haps binaries and small groupsd, clusters, and superclus-
ters. Kiang remarked that the existing data were best
described by continuous, “indefinite” clustering: quite
different from the clustering hierarchy as understood at
the time sKiang, 1961; Kiang and Saslaw, 1969d. Kiang,
incidentally, bridged a critical era in data processing, us-
ing “computers” si.e., poorly paid non-Ph.D. labor,
mostly women after the style of Shapleyd and later on
real computers sAtlasd. Flin et al. s1974d came indepen-
dently to the same conclusion, and in Flin’s presentation
at IAU Symposium 63 was scolded by Kiang for not
having read the literature.

The later investigation by Peebles and Hauser s1974d
using the power spectrum of the cluster distribution
showed superclustering quite conclusively: clusters of
galaxies are not randomly distributed and as they are
correlated they are themselves clustered. Later analyses
revealed a variation of cluster clustering with cluster
richness.

Nevertheless, there still remained mysteries to be
cleared up: the level measured for clustering of clusters
was far in excess of what would be expected on the basis
of the measured clustering of the galaxies from which
they are built. Many solutions have been proposed to
explain this anomaly, including the argument that the
Abell catalog is too subjective and biased. However, the
phenomenon still persists in cluster catalogs constructed
by machine scans of photographic plates.

B. Redshift surveys

1. Why do this?

Those early catalogs simply listed objects as they ap-
peared projected onto the celestial sphere. The only in-
dication of depth or distance came from brightness
and/or size. These catalogs were, moreover, subject to
human selection effects, and these might vary depending
on which human did the work, or even what time of the
day it was.

What characterizes more recent surveys is the ability
to scan photographic plates digitally se.g., the Cam-
bridge Automatic Plate Machine, APMd, or to create the
survey in digital format se.g., the Infrared Astronomical
Satellite, IRAS, Sloan Survey, and so ond. Moreover, it is
now far easier to obtain radial velocities sredshiftsd for
large numbers of objects in these catalogs.

Having said that, it should be noted that handling the
data from these supercatalogs requires teams of dozens
of astronomers doing little else. Automation of the data
gathering does little to help with the data analysis.

Galaxy redshift surveys occupy a major part of the
total effort and resources spent in cosmology research.
Giving away hundreds of nights of telescope time for a
survey, or even constructing purpose-built telescopes is
no light endeavor. We have to know beforehand why we
are doing this, how we are going to handle and analyze

6Bernard Jones “discovered” this paper at the time of writing
his Reviews of Modern Physics article sJones, 1976d while pe-
rusing the Publications of the Astronomical Society of Japan in
the Institute of Theoretical Astronomy Library in Cambridge.
There do not appear to be any citations prior to that time.
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the data, and most importantly, what we want to get out
of it. The early work, modest as it was by comparison
with the giant surveys being currently undertaken,
served to define the methods and goals for the future,
and in particular served to highlight potential problems
in the data analysis.

We have come a long way from using surveys just to
determine a two-point correlation function and wonder
at what a fantastically straight line it is. What is probably
not appreciated by those who say we have got it all
wrong is how much effort has gone into obtaining and
understanding these results by a large army of people.
This effort has come under intense scrutiny from other
groups: that is the importance of making public the data
and the techniques by which they were analyzed. The
analysis of redshift data is now a highly sophisticated
process leaving little room for uncertainty in the meth-
odology: we do not simply count pairs of galaxies in
some volume, normalize, and plot a graph.

The prime goals of redshift surveys are to map the
universe in both physical and velocity space sparticularly
the deviation from uniform Hubble expansiond with a
view to understanding the clustering and the dynamics.
From this we can infer things about the distribution of
gravitating matter and the luminosity, and we can say
how they are related. This is also important when deter-
mining the global cosmological density parameters from
galaxy dynamics: we are now able to measure directly
the biases that arise from the fact that mass and light do
not have the same distribution.

Mapping the universe in this way will provide infor-
mation about how structured the universe is now and at
relatively modest redshifts. Through the cosmic micro-
wave background radiation we have a direct view of the
initial conditions that led to this structure, initial condi-
tions that can serve as the starting point for N-body
simulations. If we can put the two together we will have
a pretty complete picture of our universe and how it
came to be the way it is.

Note, however, that this approach is purely experi-
mental. We measure the properties of a large sample of
galaxies, we understand the way to analyze this through
N-body models, and on that basis we extract the data we
want. The purist might say that there is no understand-
ing that has grown out of this. This brings to mind the
comment made by the mathematician Russell Graham
in relation to computer proofs of mathematical theo-
rems: he might ask the all-knowing computer whether
the Riemann hypothesis sthe last great unsolved prob-
lem of mathematicsd is true. It would be immensely dis-
couraging if the computer were to answer “Yes, it is true,
but you will not be able to understand the proof.” We
would know that something is true without benefiting
from the experience gained from proving it. This is to be
compared with Andrew Wiles’s proof of the Fermat con-
jecture sWiles, 1995d, which was merely a corollary of
some far more important issues he had discovered on his
way: through proving the fundamental Taniyama-
Shimura conjecture we can now relate elliptic curves
and modular forms sHorgan, 1993d.

We may feel the same way about running parameter-
adjusted computer models of the universe. Ultimately,
we need to understand why these parameters take on
the particular values assigned to them. This inevitably
requires an analytic or semianalytic understanding of the
underlying processes. Anything less is unsatisfactory.

2. Redshift distortions

Viewed in redshift space, which is the only three-
dimensional view we have, the universe looks aniso-
tropic: the distribution of galaxies is elongated in what
have been called “fingers of god” pointing toward us sa
phrase probably attributable to Jim Peeblesd. These fin-
gers of god appear strongest where the galaxy density is
largest ssee Fig. 5d and are attributable to the extra “pe-
culiar” si.e., non-Hubbled component of velocity in the
galaxy clusters. This manifests itself as density-
correlated radial noise in the radial velocity map.

Since we know that the real three-dimensional map
should be statistically isotropic, this finger-of-god effect
can be filtered out. There are several techniques for do-
ing that: it has become particularly important in the
analysis of the vast two-Degree Field s2dFd and Sloan
Digital Sky Survey sSDSSd surveys sTegmark et al.,
2002d. The earliest discussion of this was probably that
of Davis and Peebles s1983d.

There is another important macroscopic effect to deal
with resulting from large-scale flows induced by the
large-scale structure so clearly seen in the CfA-II slice
sde Lapparent et al., 1986d. Matter is systemically flowing
out of voids and into filaments; this superposes a
density-dependent pattern on the redshift distribution
that is not random noise as in the finger-of-god phenom-
enon and that distorts the map sSargent and Turner,
1977; Kaiser, 1987; Hamilton, 1998d. As this distortion
enhances the visual intensity of galaxy walls, which are
perpendicular to the line of sight, it is called the bull’s-
eye effect sPraton et al., 1997d.

3. Flux-limited surveys and selection functions

Whenever we see a cone diagram of a redshift survey
ssee Fig. 6d, we clearly notice a gradient in the number of
galaxies with redshift sor distanced. This artifact is a con-
sequence of the fact that redshift surveys are flux lim-
ited. Such surveys include all galaxies in a given region
of the sky exceeding an apparent magnitude cutoff. The
apparent magnitude depends logarithmically on the ob-
served radiation flux. Thus only a small fraction of in-
trinsically very-high-luminosity galaxies are bright
enough to be detected at large distances.

For the statistical analyses of these surveys there are
two possible approaches:

s1d Extracting volume-limited samples. Given a distance
limit, one can calculate, for a particular cosmological
model, the minimum luminosity of a galaxy that still
can be observed at that distance, considering the
flux limit of the sample. Galaxies in the whole vol-
ume fainter than this luminosity will be discarded.
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The remaining galaxies form a homogeneous
sample, but the price paid—ignoring much of the
hard-earned amount of redshift information—is too
high.

s2d Using selection functions. For some statistical pur-
poses, such as measuring the two-point correlation
function, it is possible to use all galaxies from the
flux-limited survey provided that we are able to as-
sign a weight to each galaxy inversely proportional
to the probability that a galaxy at a given distance r
is included in the sample: this is dubbed the selection
function wsrd. This quantity is usually derived from
the luminosity function, which is the number density
of galaxies within a given range of luminosities. A
standard fit to the observed luminosity function is
provided by the Schechter function sSchechter,
1976d,

fsLddL = f*S L

L*
Da

expS−
L

L*
DdS L

L*
D , s5d

where f* is related to the total number of galaxies
and the fitting parameters are L*, a characteristic
luminosity, and the scaling exponent a of the power

law dominating the behavior of Eq. s5d at the faint
end.

The problem with that approach is that the luminosity
function has been found to depend on local galaxy den-
sity and morphology. This is a recent discovery and has
not been modeled yet.

4. Corrections to redshifts and magnitudes

The redshift distortions described earlier can be ac-
counted for only statistically sTegmark et al., 2002d; there
is no way to improve individual redshifts. However, in-
dividual measured redshifts are usually corrected for our
own motion in the rest frame determined by the cosmic
background radiation. This motion consists of several
components—the motion of the solar system in the Gal-
axy, the motion of the Galaxy in the Local Group sof
galaxiesd, and the motion of the Local Group with re-
spect to the cosmic microwave background rest frame. It
is usually lumped together under the label “LG peculiar
velocity” and its value is vLG=627±22 km s−1 toward an
apex in the constellation of Hydra, with galactic latitude
b=30° ±3° and longitude l=276° ±3° fsee, for example,
Hamilton s1998dg. If not corrected for, this velocity

FIG. 5. A view of the three-dimensional distribution of galaxies in which the members of the Coma cluster have been highlighted
to show the characteristic “finger-of-god” pattern. From Christensen, 1996.
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causes a so-called “rocket effect” sKaiser, 1987d, an ap-
parent dipole density enhancement in redshift space.
Application of this correction has several subtleties; see
Hamilton s1998d.

Most corrections to measured galaxy magnitudes are
usually made during construction of a catalog, and are
specific to a catalog. There is, however, one universal
correction: galaxy magnitudes are obtained by measur-
ing the flux from the galaxy in a finite-width bandpass.
The spectrum of a far-away galaxy is redshifted, and the
flux responsible for its measured magnitude comes from

different wavelengths. This correction is called the K
correction sHumason et al., 1956d; the main problem in
calculating it is insufficient knowledge of the spectra of
far-away sand youngerd galaxies. In addition, directional
corrections to magnitudes have to be considered due to
the fact that the sky is not equally transparent in all
directions. Part of the light coming from extragalactic
objects is absorbed by the dust of the Milky Way. Due to
the flat shape of our galaxy, the more obscured regions
correspond to those of low galactic latitude, the so-
called zone of avoidance, although the best way to ac-

FIG. 6. Redshift slices: sad two
slices of 4° width and depth z
=0.25 from the 2dF galaxy red-
shift survey. From Peacock et
al., 2001; sbd the first CfA-II
slice from de Lapparent et al.
s1986d, shown to scale; scd circu-
lar diagram with radius corre-
sponding to redshift z=0.2,
showing 53 965 galaxies from
the Sloan Digital Sky Survey
sSDSSd. Courtesy of Jon Love-
day.
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count for this effect is to use the extinction maps elabo-
rated from the observations sSchlegel et al., 1998d.

C. The first generation of redshift surveys

1. Center for Astrophysics surveys

The first CfA redshift survey was undertaken by
Huchra et al. s1983d, who mapped some 2400 galaxies
down to m.14.5 taken from the Zwicky catalog. This
survey was too sparse to show definite structure.

The first survey to truly reflect the cosmic structure
was the first CfA-II slice of de Lapparent et al. s1986d,
the “Slice of the Universe” fFig. 6sbdg. The slice showed
very clearly the “bubbly” nature of the large-scale struc-
ture, as the authors defined it. This important discovery
generated a lot of publicity: cartoons appeared in news-
papers depicting females with their arms in a sink full of
soap bubbles, and the Encyclopaedia Britannica was up-
dated to include a picture of the slice.

Prior to that there had been smaller surveys, such as
the Perseus-Pisces region survey of Giovanelli and
Haynes s1985d and the Coma-A1367 survey of Chin-
carini et al. s1983d. These surveys had revealed rich
structures in the distribution of galaxies, similar to
Zel’dovich’s predicted pancakes and voids. But since
they were restricted to a volume around a major cluster
of galaxies they could not be thought of as being repre-
sentative of the universe as a whole.

At first glance it may seem that a similar critique also
applies to the CfA surveys, since the first CfA slice sde
Lapparent et al., 1986d was indeed centered on the Coma
cluster. However, the breadth of the slice ssome 120° on
the skyd samples a far greater volume, and it was very
deep for that time, extending to about 150h−1 Mpc. The
slice also contains an unusual number of rich galaxy
clusters. Subsequent surveys, the next CfA slices and the
European Southern Observatory survey sde Costa et al.,
1991d, amply confirmed the impression given by the CfA
slice.

The main source for redshifts during those years was
“Zcat,” a heterogeneous compilation of galaxy redshifts
by J. Huchra. It took many years before the data from
the CfA slices entered the public domain. This was un-
fortunate, since many other groups would have liked to
try their own analysis techniques on such a well-defined
sample. By the time that the data became available
there already existed more substantial surveys with pub-
licly available data and much of the impetus of the CfA
slices, apart from the fine work done by the Harvard
group itself, was lost.

The work to improve and extend the CfA surveys has
continued. The Century Survey sGeller et al., 1997d cov-
ers the central 1° region of the famous CfA-II slice, but
is much deeper, extending to R=16.1 in apparent mag-
nitude and to 450h−1 Mpc in space. The final CfA cata-
log is the Updated Zwicky Catalog sFalco et al., 1999d,
which includes uniform measurements of almost all
sabout 19 000d galaxies of the Zwicky catalog swith the
magnitude limit of mZw<15.5d in the northern sky.

Nowadays catalogs are made public as soon as possible;
the CfA redshift catalogs can be obtained from the web
page of the Smithsonian Astronomical Observatory
Telescope Data Center shttp://tdc-www.harvard.edu/d.

2. Southern Sky Redshift Survey and Optical Redshift
Survey

The Southern Sky Redshift Survey sSSRS; da Costa et
al., 1991d was meant to complement the original CfA
survey, mapping galaxies in the southern sky. It includes
almost 2000 redshifts; the followup survey, the Extended
SSRS sda Costa et al., 1998d; with about 5400 redshifts,
mirrored the second CfA survey for the southern sky.
These catalogs were mostly used for comparison with
the CfA survey results; they were made public at once
and produced many useful results. Presently they are
available from the Vizier database shttp://vizier.u-
strasbg.frd.

The Optical Redshift Survey sSantiago et al., 1995d
had a depth of 80h−1 Mpc, similar to the first CfA sur-
vey, but attempted a complete coverage of the sky sex-
cept for the dusty avoidance zone around the galactic
equatord. It measured about 1300 new redshifts, includ-
ing about 8500 redshifts in total. This survey was heavily
exploited to describe the nearby density fields, to esti-
mate the luminosity functions, galaxy correlations, ve-
locity dispersions, etc. The catalog and the publications
can be found at http://www.astro.princeton.edu/
;strauss/ors/.

3. Stromlo-Automated Plate Machine and Durham/UK
Schmidt Telescope redshift surveys

The Stromlo-APM redshift survey sLoveday et al.,
1996d is a sparse survey s1 in 20d of some 1800 optically
selected galaxies brighter than the apparent magnitude
limit B<17 taken from the APM survey of the Southern
sky. Like the APM survey sMaddox et al., 1990ad itself,
the Stromlo-APM survey was an important data source
and generated several important results on correlation
functions in real and redshift space, power spectra, red-
shift distortions, cosmological parameters, bias, and so
on. It was eventually put into the public domain, al-
though rather too late to be of much use to any third-
party investigators.

The APM survey was also used to generate a galaxy
cluster catalog. The APM cluster redshift catalog sDal-
ton et al., 1997d was the first objectively defined cluster
catalog. It not only provided important data on the dis-
tribution of clusters, it also provided an assessment of
the reliability of the only cluster source available before
that, the Abell cluster catalog.

The Durham/UK Schmidt Telescope redshift survey
sRadcliffe et al., 1998d measured redshifts for about 2500
galaxies around the south Galactic pole. The depth of
the survey was similar to that of the Stromlo-APM sur-
vey, and it was also a diluted survey, sampling one galaxy
in three.

These catalogs can be found now at the Vizier site
ssee aboved.
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4. IRAS redshift samples: Point Source Catalog z

The story of the IRAS sInfrared Astronomical Satel-
lited redshift catalogs stresses the importance of having a
good base photometric catalog before starting to mea-
sure redshifts. As galactic absorption in the infrared is
much smaller than in the optical bands, the IRAS Point
Source Catalog sPSCd covers uniformly almost all of the
sky. This catalog was used to select galaxies for redshift
programs, which extended down to successively smaller
flux limits: the 2-Jy survey7 of Strauss et al. s1992d with
2658 galaxies; the 1.2-Jy survey of Fisher et al. s1995d,
which added 2663 galaxies; and the 0.6-Jy sparse-
sampled s1 in 6d QDOT sQueen Mary and Westfield
College, Durham, Oxford, and Torontod survey of
Lawrence et al. s1999d with 2387 galaxies. This culmi-
nated in the PSCz survey of some 15 000 galaxies by
Saunders et al. s2000d, which includes practically all
IRAS galaxies within the 0.6-Jy flux limit.

The IRAS redshift catalogs have been used for the
usual battery of large-scale studies, but their main ad-
vantage is their full-sky coverage sabout 84%d. This al-
lows use of the Wiener-type reconstruction methods to
derive the true density and velocity fields and to get an
independent estimate of the biasing parameter. The first
fields to be studied were taken from the 2-Jy survey by
Yahil et al. s1991d, the last fields came from the PSCz
survey by Branchini et al. s1999d and Schmoldt et al.
s1999d.

The PSCz survey has also been used for fractal stud-
ies. Although the IRAS samples are not too deep sPSCz
extends to about 200h−1 Mpcd, Pan and Coles s2000d
found that multifractal analysis already shows a definite
crossover to homogeneity before this scale.

5. The European Southern Observatory Slice Project and
the Las Campanas Redshift Survey

The European Southern Observatory sESOd Slice
Project sVettolani et al., 1998d measured redshifts of
3300 galaxies down to the blue magnitude bJ=19.4 in the
BJ, R, I photometric system sGullixson et al., 1995d. The
surveyed region is a 1° 322° strip of depth about
600h−1 Mpc. One of the most interesting discussions that
these data caused was about the fractal nature of the
large-scale galaxy distributions. Guzzo s1997d and Scara-
mella et al. s1998d found a transition to a correlation
dimension D2=3 at large scales. On the other hand,
Joyce et al. s1999d obtained a fractal D2=2 correlation
dimension to the largest explored scales; however, they
did not apply the K correction to galaxy magnitudes.8

The Las Campanas Redshift Survey sShectman et al.,
1996d had a similar geometry, six thin parallel slices

s1.5° 390° d with the depth about 750h−1 Mpc sz<0.25d.
The survey team measured redshifts of about 24 000 gal-
axies in these slices. This was the first deep survey of
sufficient volume to test whether our knowledge of the
nearby universe was sufficient to describe more distant
regions. The usual tests included the luminosity func-
tions sthese were found to depend on galaxy density and
morphologyd, second- and third-order correlation func-
tions, power spectra, and fractal properties. A catalog of
groups of galaxies was generated. The survey results
were quickly made public: the general interest in the
data was high and close to a hundred papers have been
published using these data.

D. Recent and ongoing surveys

1. Two-Degree Field galaxy redshift survey

The Two-Degree Field s2dFd multifiber spectrograph
on the 3.9-m Anglo-Australian Telescope is capable of
observing up to 400 objects simultaneously over a field
of view some two degrees in diameter, hence the name
of the survey. The sample of galaxies targeted for having
their redshifts measured consists of some 250 000 galax-
ies located in extended regions around the north and
south Galactic poles. The source catalog is a revised
APM survey. The galaxies in the survey go down to the
magnitude bJ=19.45. The median redshift of the sample
is z=0.11 and redshifts extend to about z.0.3 fFig.
6sbdg. In mid-2001 the survey team released the data on
the first 100 000 galaxies and also published an interim
report on the analysis of some 140 000 galaxies, Peacock
et al. s2001d and Percival et al. s2001d.

The survey is already complete, and the resulting cor-
relation functions, redshift distortions, and pairwise ve-
locity dispersions sHawkins et al., 2003d demonstrate the
quality of the data set. The 2dF galaxy redshift survey
currently provides us with the best estimates for a large
number of cosmological parameters describing the
population of galaxies. Not only can we determine clus-
tering properties of the sample as a whole, but the
sample can be broken down by galaxy absolute bright-
ness or by morphological type sPercival et al., 2004d. The
survey’s web page is http://www.mso.anu.edu.au/
2dFGRS/.

2. Sloan Digital Sky Survey

Hot on the heels of the 2dF survey is an even larger
survey, the Sloan Digital Sky Survey sSDSSd. The survey
team has close to two hundred members from 13 insti-
tutions in the U.S., Europe, and Japan, and uses a dedi-
cated 2.5-m telescope. The initial photometric program
is measuring the positions and luminosities of about 108

objects in p steradians of the northern sky, and the fol-
lowup spectroscopy is planned to give redshifts of about
106 galaxies and 105 quasars. Good descriptions of the
survey can be found in Loveday s2002d and on the sur-
vey’s web page shttp://www.sdss.org/d.

The first official data release was in 2003, but the as-
tronomical community had already had the chance to

71 Jy sjanskyd=10−26 W m−2 Hz−1.
8The K correction has to be applied because there is a

redshift-dependent apparent dimming of galaxies due to the
band shift between the emitted and observed radiation. It de-
pends not only on the redshift, but also on the galaxy morphol-
ogy and observed waveband.
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see and use the data from a preliminary early data re-
lease sStoughton et al., 2002d. These data and the data
from the commissioning phase of the project have
served as a basis for more than 100 papers on such di-
verse subjects as the study of asteroids, brown dwarf
stars in the vicinity of the Sun, remnants of destroyed
satellites of our Galaxy, star formation rates in galaxies,
galaxy luminosity functions, and, of course, the statistics
of the galaxy distribution.

The main difference between the 2dF and the SDSS
surveys, apart from their data volume and sky coverage,
is the fact that they are based on different selection
rules. While the 2dF survey is a blue-magnitude-limited
survey with blim=19.45, the limiting magnitude of the
SDSS survey is red, rlim=17.77. This causes considerable
differences in galaxy morphologies of the two surveys.
Also, while the depths of the main surveys are similar
sz<0.25d fFig. 6scdg, a part of the SDSS survey, including
about 105 luminous red galaxies, will reach redshifts z
<0.5.

3. Two-Micron All-Sky Survey and Six-Degree Field
Survey

The Two-Micron All-Sky Survey s2MASSd has
scanned the whole sky in three different near-infrared
bands. The Extended Source Catalog is the 2MASS gal-
axy catalog sJarrett, 2004d and contains more than 1.5
million galaxies, mapping rather well the zone of avoid-
ance. The view of our local universe provided by
2MASS is shown in Fig. 7.

The Six-Degree Field s6dFd galaxy survey sJones et al.,
2004d targeted on the 2MASS galaxy catalog will encom-
pass twice the volume of the Point Source Catalog z and

will contain ten times more galaxies, allowing combined
knowledge of galaxy masses and redshift. It will be the
best sample for studies of the peculiar velocity field, al-
lowing a better understanding of the relation of galaxy
clustering to mass and thereby providing important clues
to understanding how bias depends on the scale.

4. Deep spectroscopic and photometric surveys

Deep spectroscopic surveys such as the Canadian Net-
work for Observational Cosmology sYee et al., 2000d,
Deep Extragalactic Evolutionary Probe sDEEP2; Davis
et al., 2003d, and the Visible Imaging Multi-Object Spec-
trograph survey sLe Fevre et al., 2003d have allowed the
study of the evolution of clustering with redshift and
with various morphological properties of galaxies sCarl-
berg et al., 2000; Coil and DEEP2 Team, 2003d. Never-
theless, it is extremely difficult to measure redshifts of
very faint objects. The present limit reached making use
of the largest ground-based telescopes is about I.24.
An alternative to spectroscopy is the poor man’s z ma-
chine sKoo, 1985d, provided by multiwavelength imag-
ing.

Following the pioneering work of Baum s1962d and
Koo s1985d, Fernández-Soto et al. s1999d have shown
that it is possible to reliably estimate redshifts using
charge-couple device sCCDd images at different
wavebands—the so-called photometric redshifts. This
technique is particularly useful when mapping the very
distant universe because galaxies in deep surveys could
not be spectroscopically observable. Bayesian tech-
niques have been introduced to improve the accuracy of
the photometric redshift estimate sBenítez, 2000d.

FIG. 7. The near-infrared view of the local universe provided by the 2MASS survey. Beyond the Milky Way lying at the Galactic
equator, more than 1.5 million galaxies are depicted using a gray-scale code based on their photometrically deduced redshift. From
Jarret, 2004, reproduced with permission from the Astronomical Society of Australia and CSIRO Publishing.
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Different surveys reaching extremely large depths are
providing us with the possibility of analyzing the evolu-
tion of clustering with cosmic time. We can mention the
COMBO17 survey sClassifying Objects by Medium-
Band Observationsd, which lists photometry in 17 pass-
bands sWolf et al., 2004d, the Calar Alto Deep Imaging
Survey sCADISd, used by Phleps and Meisenheimer
s2003d to show how the clustering strength grows from
z=1 to the present epoch and its dependence on mor-
phological type, and the recently released Great Obser-
vatories Origins Deep Survey sGOODSd described by
Giavalisco et al. s2004d. The SDSS also provides photo-
metric information in five bands, allowing the measure-
ment of photometric redshifts for a volume-limited
sample containing more than two million galaxies within
the range 0.1,z,0.3. Analyzing the angular two-point
correlation function of this survey, Budavári et al. s2003d
have found an interesting bimodal behavior between red
elliptical-like galaxies and blue galaxies.

The recent project named the ALHAMBRA survey
sAdvanced Large, Homogeneous Area Medium-Band
Redshift Astronomical surveyd is being carried out by
Moles and collaborators using the 3.5-m Calar Alto tele-
scope. The photometric survey will cover an area of
eight square degrees. Imaging will be performed using
20 optical filters plus three standard bands in the near
infrared. It is expected to collect about 600 000 photo-
metric galaxy redshifts with an accuracy of Dz
,0.014s1+zd, being about 90% complete up to IAB
,23.5. This photometric survey, midway between the
wide-angle spectroscopic surveys and the narrow imag-
ing surveys, is deep enough and wide enough to be ex-
tremely useful for all kinds of studies involving cosmic
evolution.

E. The radio, x-ray and g-ray skies

The 1950s was a great era for cataloging radio sources,
much of the work being done at Cambridge in England
sthe Second Cambridge or 2C survey, Third Cambridge
or 3C survey, etc.d and at Parkes in Australia. The sur-
veys were done at considerably different frequencies
and gave disparate views of the source counts. This had
a strong influence on the steady-state versus big bang
debate, each survey being used to support a different
cosmological hypothesis.

The sources in early surveys were randomly distrib-
uted over the sky, for instance, on the Third Cambridge
Catalog sHolden, 1966d and on the southern counterpart
sPayne, 1967d. This remained true for later surveys at
low frequencies, which found, for the most part, intrin-
sically very bright sources at somewhat larger distances
fsee, for instance, Webster s1976d analyzing the Fourth
Cambridge and Greenbank surveys, and Masson s1979d
on the Sixth Cambridge Catalogg. Indeed, it remains
true down to the present day sTrimble and Aschwanden,
2001d for the low-frequency surveys that pick out large,
bright, steep-spectrum, extended double sources sAr-
tyukh, 2000d. Venturi et al. s2000d reported that they did

not even identify the Shapley concentration.9 What this
means is that, on average, there is only one of these
sources in each of the largest-scale structures to be
found in the local universe. The absence of clustering is
therefore in some sense evidence for the existence of
“largest structures,” though Artyukh and Venturi et al.
note that mergers of small groups into large clusters and
supercluster may well turn off fainter radio sources that
would otherwise reveal intermediate structure.

In contrast, higher-frequency surveys that yield intrin-
sically fainter radio galaxies find that they are clustered
very much like radio-quiet galaxies of the same Hubble
types fCress et al., 1996, commenting on the Faint Im-
ages of the Radio Sky at Twenty cm sFIRSTd survey
from the Very Large Array, and Magliocchetti et al.,
1998, further analyzing FIRST, show that the distribu-
tion of those radio sources in space is consistent with
their having grown by gravitational instabilities from
Gaussian initial conditionsg. Returning to the Shapley
concentration, Venturi et al. s2002d found no fewer than
124 radio sources there.

Distant radio sources sof which quasars are an impor-
tant sortd are rather sparsely distributed throughout the
universe and are consequently not good indicators of
large-scale structure. It is therefore not surprising that
radio-source catalogs provide little evidence for large-
scale clustering.

Galaxy clusters are prominent features of the x-ray
sky that can provide a good measure of the large-scale
clustering. X-ray-selected samples of clusters are less
prone to bias than catalogs for clusters selected from
maps of the galaxy distribution. One problem, however,
is that the selection criteria for galaxy clusters selected
from x-ray surveys sBorgani and Guzzo, 2001d are quite
different from the selection criteria for clusters selected
from optically scanned photographic plates sDalton et
al., 1997d and it is not so easy to relate studies based on
the two sources of data.

The REFLEX sROSAT-ESO Flux-Limited x-rayd
cluster survey contains 449 clusters, covering an area of
4.24 steradians in the southern hemisphere sd,2.5° d. It
is complete at ù90%, down to a nominal flux limit
of 3310−12 erg s−1 cm−2 in the 0.1–2.4-keV band.
REFLEX, like other cluster samples, shows unambigu-
ously very-large-scale inhomogeneities that appear when
the clustering power is measured and compared with
that of galaxies at the same scales sGuzzo, 2002d.

F. Distribution of quasars and Ly-a clouds

The spectra of quasars are populated by narrow ab-
sorption lines from intervening gas clouds along the line
of sight, the Ly-a forest. Owing to the great redshift of
most quasars these absorption clouds provide an impor-
tant probe of clustering at large distances and at times
long in our past.

9This is the most populated supercluster of galaxy clusters in
our neighborhood sZucca et al., 1993d.
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Wu et al. s1992d used the large-scale uniformity of the
Ly-a forest to argue against fractal distribution of mat-
ter. Recently, Croft et al. s2002d showed that it is possible
to estimate the full 3D power spectrum of density fluc-
tuations Pskd from the sone-dimensionald Ly-a flux
power spectrum. This is extremely important, as it al-
lows us to check for theoretical predictions at large red-
shifts sz<2–4d. It also allows us to recover the linear
spostrecombinationd power spectrum for small scales,
which have turned nonlinear by now.

Lines of sight to quasar pairs, be they optical pairs or
pairs that are a consequence of gravitational lensing,
provide additional clues to the clustering transverse to
the line of sight sWu et al., 1999d.

The statistical analysis of the distribution of quasars
and Ly-a clouds has provided additional evidence for
large-scale homogeneity in the universe sAndreani et al.,
1991; Carbone and Savaglio, 1996d.

G. The cosmic microwave background

The importance of the cosmic microwave background
anisotropy measurements cannot be overemphasized
and would warrant an entire review by itself. From the
point of view of this article we are concerned with know-
ing the initial conditions for galaxy formation and the
parameters of the cosmological framework within which
galaxy formation takes place. Given that data, the task is
to derive the currently observed clustering properties of
galaxies in the universe.

1. Structure before our eyes

Arguably the most important observation in the study
of clustering is the recent measurement of the structure
in the cosmic microwave background radiation at the
time of recombination. This structure was predicted in-
dependently by Silk s1967d and by Sachs and Wolf
s1967d, although the phenomenon is generally referred
to as the Sachs-Wolfe effect. Understanding the details
of how the structure in the microwave background arises
in any of a vast number of cosmological models has been
a cosmic folk industry spanning some 30 years. The re-
sults are encapsulated in a run-it-yourself computer pro-

gram of Zaldarriaga and Seljak s2000; see http://
physics.nyu.edu/matiasz/CMBFAST/cmbfast.htmld.

The structure was first seen at about 7° in angular
resolution in the data of the COBE satellite Differential
Microwave Radiometer sDMRd experiment sBennett et
al., 1996d. Smaller structure has been detected in recent
high-angular-resolution experiments with names like
DASI sDegree Angular Scale Interferometer; Leitch et
al., 2002; Pryke et al., 2002d, MAXIMA-1 sMillimeter
Anisotropy Experiment Imaging Array; Balbi et al.,
2000; Hanany et al., 2000; Lee et al., 2001d and
BOOMERANG-98 sBalloon Observations of Millimet-
ric Extragalactic Radiation and Geophysics; de Bernar-
dis et al., 2000; Lange et al., 2001; Netterfield et al., 2002d,
and in the Wilkinson Microwave Anisotropy Probe
sWMAPd first-year full-sky data sBennett et al., 2003d.
An analysis of the cosmological conclusions to be drawn
from the combination of these is given by Jaffe et al.
s2001d and by Spergel et al. s2003d; an example of
present data sets and the curves fitted to them is shown
in Fig. 8 where, in addition to the WMAP power spec-
trum, several other recent experiments are shown fVSA
sVery Small Arrayd, analyzed by Dickinson et al. s2004d,
CBI sCosmic Background Imager; Mason et al., 2003d
and ACBAR sArcminute Cosmology Bolometer Array
Receiver; Kuo et al., 2004dg, having similar sensitivity,
but being different in the frequency range and observing
techniques.

Here we observe unambiguously the structure in the
gravitational potential that will lead to the birth and
clustering of galaxies and clusters of galaxies as we see
them today. We also observe structure on scales far
larger than can be traced by galaxies.

The units in Fig. 8 could use a little bit of explanation.
Because the sky we see can be thought of as the surface
of a sphere, the distribution of temperature on the sky is
analyzed into scales using Legendre polynomials
Y,

msu ,fd. A polynomial of order , picks out structure on
an angular scale that is roughly, in degrees,

u ° <
180°

,
. s6d

This corresponds to structure on a linear scale today of

FIG. 8. sColor in online edi-
tiond The agreement between
the estimated power spectrum
of the cosmic microwave back-
ground anisotropies from four
different experiments with simi-
lar sensitivity. Reproduced
from Dickinson et al., 2004,
with permission from Blackwell
Science Ltd.
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L =
2pc

H0Vm
0.4,

<
19000

,
Vm

−0.4h−1 Mpc s7d

for a flat universe with Vm+VL=1 sVittorio and Silk,
1992d. The , values covered by current experiments
range over about two decades,

10 , , , 1500, s8d

with the limit of higher , values being pushed upward all
the time. The low-resolution end is from the COBE and
WMAP data sBennett et al., 1996, 2003d and reveals in-
homogeneities on scales in excess of 100h−1 Mpc.

Notice that the highest-resolution data still only cover
linear scales in excess of around 30h−1 Mpc and so we do
not yet see the initial condition for the scales over which
the two-point galaxy clustering correlation function is
significantly greater than zero. We are just seeing the
scales where rich-cluster clustering may be significant.
The prominent peak in the spectrum at ,,250 corre-
sponding to scales of around 50h−1 Mpc is intriguing. We
must not forget, however, that this is a peak in a normal-
ized spectrum; in real matter Pskd these peaks are much
less pronounced. There is evidence of oscillations in the
observed power spectra of clusters and galaxies, but cur-
rent surveys are not yet able to detect such structure
with confidence sElgarøy et al., 2002; Miller, Nichol, and
Chen, 2002d.

2. Defining the “Standard Model”

The presence of significant peaks in the angular distri-
bution of the cosmic microwave background strongly
constrains the global parameters that describe our uni-
verse. If these data are combined with data from other
sources, such as local determinations of the Hubble con-
stant and observations of very distant supernovae sRiess
et al., 1998; Perlmutter et al., 1999d, we arrive at the so-
called concordance model sTegmark et al., 2001d. We
hasten to add that this is not a term we invented: it
might have been OK to use the term standard model,
but the high-energy physicists got there first. The actual
values of the parameters in the concordance model de-
pend on whose paper we read: there is a little disagree-
ment here, though it would seem to be relatively minor.
It all depends on what prior knowledge is assumed when
fitting the model to the data. The error bars are impres-
sively small.

3. Initial conditions for galaxy formation

One of the best-determined parameters is the slope n
of the power spectrum of the pre-recombination inho-
mogeneities. It was suggested by Harrison and by
Zel’dovich that n=1 on the grounds that sad the spec-
trum had to be a power law swhat else could it be?d and
that sbd this value of the slope was the value that did the
minimal violence to the geometry of spacetime on either
the large or small scales. Following Guth’s brilliant no-
tion of inflationary cosmology sGuth, 1981d, many sub-
sequent revisions of the inflationary model and theories

for the origin of cosmic fluctuations gave physical rea-
sons why we should have n=1 fe.g., Guth and Pi s1982d;
Linde s1982, 1983, 1994d; Starobinskii s1982dg.

The DASI experiment sPryke et al., 2002d gives

n = 1.01−0.06
+0.08, s9d

where the error bars are 68% confidence limits. This
result comes from fitting the DASI data alone, making
typical prior assumptions about such things as the
Hubble constant. The recent WMAP data give a value

n = 0.99 ± 0.04 s10d

sSpergel et al., 2003d. sThis latter value comes from the
WMAP data alone; no other data are taken into ac-
count.d Other similar numbers come from Wang et al.
s2002d and Miller, Nichol, et al. s2002d.

It is perhaps appropriate to point out that this fit
comes from data on scales bigger than the scale of sig-
nificant galaxy clustering and that it is a matter of belief
that the primordial power law continues in the same
manner to smaller scales. In fact, more complex infla-
tionary models predict a slowly varying exponent sspec-
tral indexd fsee, for example, Kosowsky and Turner
s1995dg; this is in accordance with the WMAP data. The
scales that are relevant to the clustering of galaxies are
just those scales where the effects of the recombination
process on the fluctuation spectrum are the greatest. We
believe we understand that process fully sHu et al., 1997,
2001d and so we have no hesitation in saying what the
consequences are of having an initial n=1 power spec-
trum. That and the success of the N-body experiments
provide a good basis for the belief that n<1 on galaxy-
clustering scales. Anyway, it is probable that the
Sunyaev-Zel’dovich effect sSunyaev and Zel’dovich,
1980d will dominate on the scales we are interested in, so
we may never see the recombination-damped primordial
fluctuations on such scales.

We therefore have a classical initial-value problem:
the difficulty lies mainly in knowing what physics, subse-
quent to recombination, our solution will need as input
and knowing how to compare the results of the conse-
quent numerical simulations with observation. Cosmic
microwave background measurements can also give us
valuable clues for these later epochs in the evolution of
the universe. A good example is the discovery of signifi-
cant large-scale microwave background polarization by
the WMAP team sKogut et al., 2003d that pushes the
secondary reionization sformation of the first generation
of starsd back to redshifts z<20.

V. MEASUREMENTS OF CLUSTERING

A. The discovery of power-law clustering

The pioneering work of Rubin s1954d and Limber
s1954d has already been mentioned. These early authors
were limited by the nature of the catalogs that existed at
the time and the means to analyze the data—there were
no computers!
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It was Totsuji and Kihara s1969d and, independently,
Peebles s1974bd who were first to present a computer-
based analysis of a complete catalog of galaxies. Totsuji
and Kihara used the published Lick counts in cells from
Shane and Wirtanen s1967d, while Peebles and co-
workers analyzed a number of catalogs: the Reference
Catalog of Bright Galaxies, the Zwicky catalog, the Lick
catalog, and later on the very deep Jagellonian Field10

sPeebles and Hauser, 1974; Peebles, 1975; Peebles and
Groth, 1975d. All this work was done on the projected
distribution of galaxies, since little or no redshift infor-
mation was available.

The central discovery was that the two-point correla-
tion function, describing the deviation of the galaxy dis-
tribution from homogeneity, scales like a simple power
law over a substantial range of distances. This result has
stood firm through numerous analyses of diverse cata-
logs over the subsequent decades.

The amplitudes of the correlation functions calculated
from the different catalogs were found to scale in accor-
dance with the nominal depth of the catalog. This was
one of the first direct proofs that the universe is homo-
geneous. Before that we knew about the isotropy of the
galaxy distribution at different depths and could only
infer homogeneity by arguing that we were not at the
center of the universe.

B. The correlation function: Galaxies

1. Definitions and scaling

The definition of the correlation function used in cos-
mology differs slightly from the definition used in other
fields. In cosmology we have a nonzero mean field sthe
mean density of the universed superposed on which are
the fluctuations that correspond to the galaxies and gal-
axy clusters. Since the universe is homogeneous on the
largest scales, the correlations tend to zero on these
scales.

On occasion, people have tried to use the standard
definition and in doing so have come up with anomalous
conclusions.

The right definition is as follows: In cosmology, the
two-point galaxy correlation function is defined as a
measure of the excess probability, relative to a Poisson
distribution, of finding two galaxies at the volume ele-
ments dV1 and dV2 separated by a vector distance r:

dP12 = n2f1 + jsrdgdV1dV2, s11d

where n is the mean number density over the whole
sample volume. When homogeneity11 and isotropy are
assumed, jsrd depends only on the distance r= uru. From
Eq. s11d it is straightforward to derive the expression for
the conditional probability that a galaxy lies at dV at
distance r given that there is a galaxy at the origin of r:

dP = nf1 + jsrdgdV . s12d

Therefore jsrd measures the clustering in excess fjsrd
.0g of a random Poisson point distribution, for which
jsrd=0 or in defect fjsrd,0g of it. It is worth mentioning
that in statistical mechanics the correlation function nor-
mally used is gsrd=1+jsrd, which is called the radial dis-
tribution function sMcQuarrie, 1999d. Statisticians call
this quantity the pair correlation function sStoyan and
Stoyan, 1994d. The number of galaxies, on average, lying
at a distance between r and r+dr from a given one is
ngsrd4pr2.

A similar quantity can be defined for projected cata-
logs, that is, surveys compiling the angular positions of
the galaxies on the celestial sphere. The angular two-
point correlation function wsud can be defined by means
of the conditional probability of finding a galaxy within
the solid angle dV lying at an angular distance u from a
given galaxy sarbitrarily chosend:

dP = Nf1 + wsudgdV . s13d

N is the mean number density of galaxies per unit area
in the projected catalog. Since the first available catalogs
were two dimensional, with no redshift information,
wsud was measured before any direct measurement of
jsrd was possible. Nevertheless, jsrd can be inferred from
its angular counterpart wsud by means of the Limber
equation sLimber, 1954; Rubin, 1954d, which provides an
integral relation between the angular and spatial corre-
lation functions for small angles,

wsud = E
0

`

y4f2syddyE
0

`

jsÎx2 + y2u2ddx . s14d

Here y is the comoving distance and fsyd is the radial
selection function normalized such that efsydy2dy=1. If
jsrd follows a power law, jsrd= sr /r0d−g, it is straightfor-
ward to see that the angular correlation function is also
a power law, wsud=Au1−g sPeebles, 1980d. Totsuji and
Kihara s1969d were the first to derive a power-law model
for jsrd on the basis of the angular data. Their canonical
value for the scaling exponent, g=1.8, has remained un-
altered for more than 30 years.

Equation s14d provides the basis for an important scal-
ing relation. Peebles s1980d has shown that, in a homo-
geneous universe, wsud must scale with the sample depth
D* as

wsud =
1

D*
WsuD*d , s15d

where the function W is an intrinsic angular correlation
function that does not depend on the apparent limiting
magnitude of the sample. The characteristic depth D* is
the distance at which a galaxy with intrinsic luminosity
L* is seen at the limiting flux density f, which is in the
Euclidean geometry sneglecting expansion and curva-
tured

10A catalog of 15 650 galaxies in a field of 6° 36°, prepared
by Rudnicki et al. s1973d.

11This property is called stationarity in point field statistics.
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D* =Î L*

4pf
, s16d

or, in terms of magnitudes,

D* = 100.2sm0−M*d−5h−1 Mpc, s17d

where m0 is the apparent limiting magnitude of the
sample. The scaling relation in Eq. s15d can be deduced
from the Limber equation s14d assuming that distribu-
tion of galaxies is homogeneous on average and there-
fore N~D*

3. Peebles s1993d has shown that the analysis
of the deep catalogs of galaxies on the basis of the scal-
ing law fEq. s15dg argues strongly against an unbounded
self-similar fractal distribution of galaxies. In the 1970s
and early 1980s a number of catalogs going to a variety
of magnitude limits were available and analyzed by
Peebles and his collaborators. Because of the way the
galaxy luminosity function works, most of the galaxies in
a catalog fall within a relatively narrow range of distance
that depends on the limiting magnitude of the catalog:
catalogs reaching to fainter magnitudes are probing the
universe at greater distances.

As the distance increases, the angular scale subtended
by a given physical distance decreases. Hence, if the uni-
verse is homogeneous, for catalogs with varying charac-
teristic distance w~D*

−1 at a given angular separation
uD* the two-point angular correlation function of one
catalog should look like a rescaled version of the two-
point angular correlation function of a deeper catalog
fsee Eq. s15dg. In other words, if we calculate the angular

correlation function on two samples, with characteristic
depths D* and D*8, Eq. s15d implies that w8fsD* /D*8dug
= sD* /D*8dwsud. The scaling relationship can be predicted
precisely, though for catalogs that probe to very great
depths it is necessary to be careful of K corrections and
geometric effects due to the cosmological model sCo-
lombo and Bonometto, 2001d.

The earliest catalogs available were the de Vau-
couleurs catalog of bright galaxies, the Zwicky catalog,
the Shane-Wirtanen catalog, and the Jagellonian Field.
Matching their correlation functions provided the first
direct evidence for large-scale cosmic homogeneity
sGroth and Peebles, 1977, 1986d. The scaling relation has
been confirmed with more recent catalogs. In particular,
the APM galaxy survey has provided the strongest ob-
servational evidence yet supporting this law sMaddox et
al., 1990b, 1996; Baugh, 1996d.

Now we can do much better since we have bigger and
better catalogs with partial or complete redshift infor-
mation. Such catalogs can be divided into magnitude
slices and the same test performed on the two-point an-
gular correlation functions of the slices. The result sCon-
nolly et al., 2002d reproduced in Fig. 9 is as good a vin-
dication of the homogeneity of the universe as one could
wish for. More data will be forthcoming from the 2dF
and SDSS surveys.

The scaling properties of the correlation function are
usually shown in the form of the correlation integral.
For a point distribution the integral expresses the num-

FIG. 9. sColor in online editiond The angular
correlation function from the SDSS as a func-
tion of magnitude. The correlation function is
determined for the magnitude intervals 18
,r* ,19, 19,r* ,20, 20,r* ,21, and 21
,r* ,22. The fits to these data, over angular
scales of 18–308, are shown by the solid lines.
From Connolly et al., 2002.
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ber of neighbors, on average, that an object has within a
sphere of radius r. It is given by

Ns,rd = nE
0

r

4ps2f1 + jssdgds . s18d

The distribution is said to follow fractal scaling if within
a large range of scales the behavior of Ns,rd can be well
fitted to a power law,

Ns,rd ~ rD2, s19d

or, alternatively,

1 + jsrd ~ rD2−3, s20d

where D2 is the so-called correlation dimension. The
scaling range has to be long enough to talk about fractal
behavior. However, the term has been used very often
for describing scaling behaviors within rather limited
scale ranges sAvnir et al., 1998d. In Sec. V.B.4 we show
recent determinations of D2 for several galaxy samples
at different scale ranges.

2. Estimators

The two-point correlation function jsrd can be esti-
mated in several ways from a given galaxy sample. For a
discussion of these see, for example, Pons-Bordería et al.
s1999d; Kerscher et al. s2000d; Martínez and Saar s2002d.
At small distances, nearly all the estimators provide very
similar performance. However, at large distances, their
performance is no longer equivalent and some of them
could be biased. Considering galaxy distribution as a
point process, one estimates the two-point correlation
function at a given distance r by counting and averaging
the number of neighbors each galaxy has at a given
scale. It is clear that the boundaries of the sample have
to be considered, because as no galaxies are observed
beyond the boundaries, the number of neighbors is sys-
tematically underestimated at larger distances. If we do
not make any assumption regarding the kind of point
process that we are dealing with, the only solution is to
use the so-called minus estimators, the kind of estima-
tors favored by Pietronero and co-workers sSylos Labini
et al., 1998d: The averages of the number of neighbors at
a given distance are taken omitting those galaxies lying
closer to the border than r. At large scales only a small
fraction of the galaxies in the sample enters in the esti-
mate, increasing the variance. To make full use of the
surveyed galaxies, the estimator has to incorporate an
edge correction. The most widely used estimators in cos-
mology are those of Davis and Peebles s1983d, Hamilton
s1993d, and Landy and Szalay s1993d. Here we provide
their formulas when applied to a complete galaxy
sample in a given volume with N objects. A Poisson
catalog, a binomial process with Nrd points, has to be
generated within the same boundaries:

ĵDPsrd =
Nrd

N

DDsrd
DRsrd

− 1, s21d

ĵHAMsrd =
DDsrd · RRsrd

fDRsrdg2 − 1, s22d

ĵLSsrd = 1 + SNrd

N
D2DDsrd

RRsrd
− 2

Nrd

N

DRsrd
RRsrd

, s23d

where DDsrd is the number of pairs of galaxies with
separation within the interval fr−dr /2g, r+dr /2, DRsrd
is the number of pairs between a galaxy and a point of
the Poisson catalog, and RRsrd is the number of pairs
with separation in the same interval in the Poisson cata-
log. At large scales the performance of the Hamilton
and Landy and Szalay estimators have proven to be bet-
ter sPons-Bordería et al., 1999; Kerscher et al., 2000d.

3. Recent determinations of the correlation
function

Earlier estimates of the pairwise galaxy correlation
function were obtained from shallow samples, and one
could suspect that they were not finding the true corre-
lation function. The first sample deep enough to get
close to solving that problem was the Las Campanas
Redshift Survey sLCRSd. The two-point correlation
function for LCRS was determined by Tucker et al.
s1997d and by Jing et al. s1998d ssee Fig. 10d. Jing et al. get
slightly smaller values for the correlation length sr0
=5.1h−1 Mpcd than Tucker et al. sr0=6.3h−1 Mpcd. When
making comparisons, it is necessary to take care that the
length scales have been interpreted in the same under-
lying cosmological model. Older papers tend to set L
=0 whereas more recent papers are often phrased in
terms of a flat-L plus cold-dark-matter cosmology.

Using data from the first batch of the SDSS, Zehavi et
al. s2002d analyzed 29 300 galaxies covering a 690-
square-degree region of sky, made up of a number of
long narrow segments s2.5°–5°d. They arrived at an av-
erage real-space correlation function of

FIG. 10. The correlation function 1+jsrd for different samples
calculated with different estimators. We can see that the small-
scale fractal regime is followed by a gradual transition to ho-
mogeneity.
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jsrd = S r

6.1 ± 0.2h−1 Mpc
D−1.75±0.03

s24d

for 0.1h−1,r,16 h−1 Mpc. This comes close to the
LCRS result of Tucker et al. s1997d. More recently, the
same group sZehavi et al., 2004d has updated the result,
using a more complete sample with 118 149 galaxies ssee
Fig. 11d, and the best power-law fit is

jsrd = S r

5.77h−1 Mpc
D−1.80

. s25d

This is a remarkable scaling law covering some three
orders of magnitude in distance although the main point
of this paper is to unambiguously show systematic de-
partures from a power law, showing a subtle change of
slope at 1.5h−1 Mpc. The smallest scale measured
s100h−1 kpcd is barely larger than a typical galaxy. Inter-
estingly, this lower scale is set, in the Zehavi et al. s2002d
analysis, by the requirement that, at the outer limit of
the survey scorresponding to a radial velocity of
39 000 km s−1d, pairs of galaxies should be no closer than
can be reached by two neighboring fibers on the multi-
fiber system. There would be some interest in looking at
nearer galaxies and tracing the correlation function to
even smaller scales to see whether the old and remark-
able extrapolation of Gott and Turner s1979d12 is valid in
this newer data set fsee also Infante et al. s2002dg. The
largest distance s16h−1 Mpcd is larger than the size of a
great cluster. It should be emphasized that this is a real-
space correlation function: the finger-of-god effects have
been filtered.

There is a substantial luminosity effect seen in the
scale length sZehavi et al., 2002d. The absolute magni-

tude M! of the “knee” of the Schechter galaxy luminos-
ity function sSchechter, 1976d is taken as a reference
point sbeing a “typical” galaxy luminosity, whatever that
meansd. For galaxies with absolute magnitudes centered
on M!−1.5, the scale length is r0<7.4h−1 Mpc. For
samples centered on M!, the scale length is r0
<6.3h−1 Mpc. And for samples centered on M!+1.5, the
scale length is r0<4.7h−1 Mpc. The slope for these
samples is essentially the same. A similar strong depen-
dence of the correlation function on the color, morphol-
ogy, and redshift of galaxies was found before, in the
Canadian Network for Observational Cosmology Field
Galaxy Redshift Survey by Shepherd et al. s2001d.

The angular correlation function for the SDSS sCon-
nolly et al., 2002d is independent of redshift distortions
and agrees well with the value inferred from the redshift
survey. This encourages one to believe that the redshift
corrections are being handled effectively.

However, the latest careful analysis of the salmostd full
2dF survey sHawkins et al., 2003d gives the correlation
length r0=5.05h−1 Mpc, substantially smaller than the
SDSS result. Hawkins et al. s2003d ascribe this to the
different galaxy content of the two surveys: the SDSS is
a red-magnitude-selected survey and the 2dFGRS is a
blue-magnitude-selected survey.

4. Correlation dimension

Recently, many authors have measured the correla-
tion dimension of the galaxy distribution at different
scales using all available redshift catalogs. Wu et al.
s1999d and Kurokawa et al. s2001d summarized these re-
sults in a table. A more complete and updated version,
including more references and new catalogs, is pre-
sented here ssee Table Id. The estimates of the correla-
tion dimension have been performed using different
methods depending on the authors’ preferences. It is
worthwhile to mention the elegant technique introduced
by Amendola and Palladino s1999d based on radial cells
that maximizes the scale at which the minus estimator
can be applied. The table shows unambiguously that the
correlation dimension is a scale-dependent quantity, in-
creasing gradually from values D2.2 for scales less than
20–30h−1 Mpc sand even larger values of D2 in IRAS-
based redshift surveysd to values approaching D2.3 for
larger scales.

5. Correlation length as a function of sample depth

The first indication that correlation length might de-
pend on the sample depth was found in the CfA-I data
sEinasto et al., 1986d. The correlation length increased
when deeper samples were chosen. Although the au-
thors explained the effect by the specific geometry of the
mass distribution in shallow samples, this paper moti-
vated the early campaign to explain the galaxy distribu-
tion as fractals sPietronero, 1987; Calzetti et al., 1988d,
because for a fractal r0 increases proportionally with the
sample depth sColeman and Pietronero, 1992; Guzzo,
1997d. The Ruffini group realized from the beginning

12Gott and Turner estimated the small-scale end of the corre-
lation function down to a scale of 30h−1 kpc from the distribu-
tion of projected distances between isolated galaxy pairs
sdouble galaxiesd. As strange as it may seem, this correlation
function fitted neatly the general galaxy correlation function.

FIG. 11. The sprojectedd real-space two-point correlation func-
tion of the SDSS data. The solid and the dashed lines show
different fits corresponding to using the full covariance matrix
or just the diagonal, respectively. From Zehavi et al., 2004.
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that fractal scaling cannot extend to very large scales
and started to look for crossover to homogeneity
sCalzetti et al., 1991d but the Pietronero group has con-
tinued supporting the idea of fractal correlations up to
the present observational limits sfrom 1 to 1000h−1 Mpc,
although recognizing that the statistical solidity of their
results is stronger up to 150h−1 Mpcd. Their position is
summarized by Sylos Labini et al. s1998d.

The deep samples now at our disposal have solved this
problem once and for all—the galaxy correlation func-
tions may depend on their intrinsic properties sluminos-
ity, morphology, etc.d, but not on the sample size sMar-
tínez et al., 2001; Kerscher, 2003d. As an example, Fig. 12
shows the results of a recent study.

C. Galaxy-galaxy and cluster-cluster correlations

Having rediscovered the power of the two-point cor-
relation function as a tool for measuring clustering, the
Princeton group went on to analyze every available cata-
log of extragalactic objects they could lay their hands on.
One of these catalogs was the Abell catalog of rich gal-
axy clusters identified in the Palomar Sky Survey
sHauser and Peebles, 1973d. The technique used was
power-spectrum analysis, since it was felt this would give
a better method of dealing with the incomplete sky cov-
erage.

It came as somewhat of a surprise to discover sad that
these Abell clusters were themselves clustered and sbd
that, on a given scale, they were more clustered than the
galaxies. The former was a surprise because serious
doubts had previously been expressed about the reality

of superclustering. Here was direct evidence that clus-
ters were likely to be found in pairs and even in groups.
The latter was a surprise because it had been snaivelyd
expected that clusters identified from a set of points
would necessarily have the same correlation function as
the set itself. The galaxy clusters were themselves clus-
tered on scales where the galaxy-galaxy correlation was
so small as to be immeasurable.

Both the galaxy and cluster correlation functions are
approximately power laws jsrd= sr /r0d−g with the same
exponent g<1.8, but the correlation amplitudes for clus-

TABLE I. The correlation dimension estimated in different redshift surveys at different scale ranges. For abbreviations, see List
of Abbreviations for Sky Surveys and Survey Instruments.

Reference Sample Range of scales sh−1 Mpcd D2

Martínez and Jones, 1990 CfA-I 3–10 1.15−1.40
Lemson and Sanders, 1991 CfA-I 1–30 2
Domìnguez-Tenreiro et al., 1994 CfA-I 1.5–25 2
Kurokawa et al., 1999 CfA-II 7–27 1.89±0.06
Guzzo et al., 1991 Perseus-Pisces 1–3.5 1.25±0.10

Perseus-Pisces 3.5–27 2.21±0.06
Perseus-Pisces 27–70 .3

Martínez et al., 1998 Perseus-Pisces 1–20 1.8−2.3
Martínez and Coles, 1994 QDOT 1–10 2.25

QDOT 10–50 2.77
Martínez et al., 1998 Stromlo-APM 30–60 2.7−2.9
Hatton, 1999 Stromlo-APM 12–55 2.76
Amendola and Palladino, 1999 LCRS ø20–30 2

LCRS .30 →3
Kurokawa et al., 2001 LCRS 5–32 1.96±0.05

LCRS 32–63 .3
Pan and Coles, 2000 PSCz ,10 2.16

PSCz 10–30 2.71
PSCz 30–400 2.99

FIG. 12. The correlation length as a function of the sample
depth for the CfA-II catalog. The observed plateau argues
against the fractal interpretation of the galaxy distribution.
From Martínez et al., 2001.
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ters are much larger than those for galaxies.
There is a simple reason why the cluster-cluster corre-

lation function might have an amplitude exceeding that
of the galaxy-galaxy correlation function: it arises be-
cause of the way clusters are identified as regions where
groups of points have a substantially higher than aver-
age density. Such regions contain most of the close pairs
that go into defining the value of the galaxy-galaxy cor-
relation function. Moreover, eliminating the points that
are not in such clusters biases the expected number of
pairs that would have been found had this been a Pois-
son distribution containing the same number of points.
The boost in the value of the correlation function
achieved from such censorship depends directly on the
volume of space occupied by these clusters.

This entirely obvious point was made in a preprint by
Jones and Jones s1985d: the paper was never published.
As with many useful ideas, it became common knowl-
edge and moved into the realm of folklore.

There remained some important questions:

sad Does the Abell catalog provide a sufficiently good
sample for this purpose: is it free from systematic
biases that may prejudice the result? Abell identi-
fied clusters by eye, a procedure which would lack
the objectivity of an automatic plate scanning ma-
chine.

sbd If in the cluster sample we reject the least impres-
sive ones, would this change the correlation func-
tion? This corresponds to selection by cluster rich-
ness.

scd How would changing the selection threshold affect
the correlation function? This is not quite the same
as selecting by cluster richness: less rich clusters are
still included, though they would appear as smaller
objects on increasing the discrimination threshold.

sdd If clusters were selected other than by virtue of
their contrast with the background, e.g., from iden-
tifying clusters in an x-ray survey, would we still see
enhanced clustering?

sed What does the galaxy-cluster cross correlation tell
us?

It was well known that there were systematic biases in
the Abell Catalog. The subsample of low-richness clus-
ters was incomplete, and the more distant clusters were
systematically richer than nearby counterparts. This was
not in itself enough to remove the discrepancy between
the galaxy-galaxy correlation function and the cluster-
cluster correlation function, but it might prejudice con-
clusion about richness dependence of the discrepancy.

It was not until 1992 that a sufficiently good alterna-
tive to the Abell Catalog became available: this was the
APM cluster catalog sDalton et al., 1992, 1997d derived
from the Cambridge APM sAutomatic Plate Measuring
Machined Galaxy Survey of UK Schmidt Telescope
plates. Now we await results from the large 2dF and
SDSS redshift catalogs, which have already provided de-

tailed information about the galaxy-galaxy correlation
function.

1. Analysis of recent catalogs

Currently the best data on galaxy-cluster clustering
come from redshift surveys of clusters identified in
machine-generated galaxy catalogs and of clusters ob-
served in x-ray surveys. The 2dF and SDSS surveys will
undoubtedly settle this matter once and for all, since
they contain a large number of clusters that can be se-
lected on the basis of redshift. However, it is already
apparent fas in the Shepherd et al. s2001d study of the
CNOC2 sample, for the Zehavi et al. s2002d study of the
Early SDSS Data, for Madgwick et al. s2003d, and the
Norberg et al. s2001d correlation analysis of the 2dF gal-
axy redshift surveyg that talking about the galaxy-galaxy
correlation function is somewhat of an oversimplifica-
tion in the first place: the galaxy-galaxy correlation de-
pends strongly on absolute magnitude, galaxy color, and
galaxy spectral type. Galaxies are clearly not unbiased
tracers of the underlying mass distribution.

In automated cluster searching, clusters are generally
discovered via a nearest-neighbor, friends-of-friends
type of analysis. They are discovered by virtue of their
central concentration, and so catalogs contain clusters
that are defined in terms of a distance-to-nearest-
neighbor threshold length. If the threshold length is in-
creased the catalog contains more clusters: the number
of poorer, less centrally dense clusters increases. It is not
a priori obvious how the mean density of galaxies within
a cluster so found relates to its central density: there will
clearly be a correlation. It might well be that selecting
clusters by virtue of their mean galaxy density rather
than their peak density would yield different catalogs
and lead to different conclusions about the systematics
of cluster clustering.

2. Theoretical expectations

It is easier to build theoretical sanalyticd models based
on selection by mean cluster density, i.e., clusters se-
lected via a density threshold, than it is to build models
based on clusters selected by peak density. The latter
requires an understanding of how the cluster dynamics
works to produce the density profile of the galaxy distri-
bution. This may contribute to some of the confusion
that exists when looking for trends in the clustering of
clusters.

The earlier theoretical models sKaiser, 1984; Jones
and Jones, 1985; Bahcall and West, 1992d for the cluster-
ing of clusters were based on threshold selection. The
same is true of more recent hierarchical models based
on multifractal models for the distribution of galaxies
sMartínez et al., 1990; Paredes et al. 1995d. Most of the
conclusions about superclustering in which the clusters
are defined via the peak-density excursion come from
N-body simulations of various sizes and sophistication
sBahcall and Cen, 1992; Croft and Efstathiou, 1994; Col-
berg et al., 1998d.
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Since clusters found in x-ray surveys are found by vir-
tue of their gas temperature, that is, total potential,
these surveys should agree rather well with the conclu-
sions based on N-body experiments.

3. Richness dependence of the correlation length

The seminal paper on the effect of cluster richness on
the cluster-cluster correlation function was that of Szalay
and Schramm s1985d. They suggested that the scaling
length for clustering should itself depend on the cluster
density. Which cluster density, peak or mean, was never
stated.

The formula for the cluster two-point correlation
function jsr ;nd is usually written as sKaiser, 1984d

jsr ;nd =
n2

s2jsrd , s26d

where n is the height of the peaks in units of the rms
error s of the galaxy density field, and jsrd is the corre-
lation function of the galaxy field.13

The empirical determination of the the cluster-cluster
correlation function jccsrd is much more uncertain than
the galaxy-galaxy correlation function jggsrd. The selec-
tion effects associated with the cluster identification
method sEke et al., 1996d are the major source for this
uncertainty. The possible dependence of clustering prop-
erties on cluster richness makes the issue still more dif-
ficult. Nevertheless, jccsrd is usually fitted to a power law,

jcc = S r

rc
Dgc

. s27d

Equation s26d holds if gc=g, where g is the exponent of
the power-law galaxy-galaxy correlation function. As al-
ready mentioned, this seems to be the case. See, for ex-
ample, in Fig. 13 the remarkable agreement between the
slopes of the correlation function of the REFLEX clus-
ter catalog and the Las Campanas Galaxy Redshift Sur-
vey sBorgani and Guzzo, 2001; Guzzo, 2002d. Neverthe-
less, depending on the analyzed cluster sample and
cluster identification procedure, the scatter of the re-
ported values for the slope of the correlation function is
very high, with gc=1.6–2.5. For the correlation length
the values go from 13h−1 Mpc to 40h−1 Mpc sBahcall
and West, 1992; Nichol et al., 1992; Postman et al., 1992;
Dalton et al., 1994; Borgani and Guzzo, 2001d. Figure 14
illustrates this variability, displaying the differences be-
tween the correlation function of the Abell and APM
cluster samples.

Rich clusters have many members and are rare.
Therefore the distance between them, dc=nc

−1/3, is larger.
Bahcall and West s1992d derived a linear relation be-
tween the cluster correlation length rc and the mean in-
tercluster separation dc, rc=0.4dc from power-law fits
sconstrained to have a fixed value of gc=1.8d to correla-

tion functions calculated on cluster samples with differ-
ent richness. Figure 15 shows that this relation is not
confirmed by the new data. In fact, at large values of dc
the relation must level off, and a weaker dependence of
rc versus dc agrees better with the observations sPost-

13As the correlation functions and s are defined for the den-
sity contrast d= sr− r̄d / r̄, all quantities in Eq. s26d are dimen-
sionless; there is no dimensionality conflict.

FIG. 13. sColor in online editiond The two-point correlation
function for P, the x-ray selected clusters from the ROSAT-
ESO Flux-Limited X-ray sREFLEXd survey and j, the Las
Campanas galaxy redshift survey. The solid and dashed lines
are the expected results for a similar x-ray survey in a L cold-
dark-matter model with different values for the cosmological
parameters. From Borgani and Guzzo, 2001.

FIG. 14. sColor in online editiond The two-point correlation
functions for the Abell clusters and two subsamples of the
APM survey. The best power-law fits are shown in the plot.
From Postman, 1999. Abell data from Postman, Huchra, and
Gelter s1992d. APM data from Dalton et al. s1994d.
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man, 1999d, for example rc=2.6Îdc as shown in the figure
sBahcall et al., 2003d.

Since rc and gc are not independent, the slope is usu-
ally constrained to a fixed value, gc=1.8. Dependence of
gc on cluster richness has been proposed sMartínez et al.,
1995d, although this dependence is better parametrized
by the correlation dimension—the exponent of the
power law fitting the correlation integral Nsrd=ArD2 fsee
Eq. s16dg. Multiscaling is the term used for scaling laws
in which D2 displays a slowly varying behavior with the
density threshold that characterizes the richness of clus-
ters. The higher the threshold, the richer the clusters,
and the smaller the value of D2. Within the multiscaling
framework, the relation r0 versus dc gets a more compli-
cated form, flattening for large values of dc as the obser-
vations confirm sMartínez et al., 1995d.

D. The pairwise velocity dispersion

The pairwise velocity dispersion of galaxies is a mea-
sure of the temperature of the “gas” of galaxies. By en-
ergy conservation, the kinetic energy of this gas has to
be balanced by its gravitational energy, which depends
mainly on the mean mass density of the universe. Thus
measuring the pairwise velocity dispersion gives us a
handle on the density. This is, however, more easily said
than done, since we measure only the radial component
of the velocity, and that is biased by larger density inho-
mogeneities than a linear theory can handle.

The following short argument shows how the velocity
dispersion relates to the fluctuations in the density field.
The non-Hubble component of a galaxy velocity
through the universe sits peculiar velocityd is due to the
acceleration caused by clumps in the matter distribution.
This is easy to estimate during the phase of linear evo-
lution of cosmic structure, since linear perturbation
theory applies.

A particle that has experienced a peculiar acceleration
gp for a time t would have acquired a peculiar velocity
vp,gpt. If this acceleration is due to a mass fluctuation
dM at distance r, we have

gp = GdM/r2 = s4p/3dGdrr = 0.5V0H0vH, s28d

which leads to

vp/vH . s1/3dfsVdd, fsVd = s3/2dH0t . V0.6. s29d

For a more general approximation including the cosmo-
logical constant, see Lahav et al. s1991d. As one can see,
the ratio of the peculiar to Hubble velocity is the quan-
tity that gives a direct measure of the amplitude of pri-
mordial density fluctuations on a given scale for a given
value of V. If we have a scaling law for the density fluc-
tuations, we should also see a scaling law in the peculiar
velocity field.

A more detailed calculation, still using linear theory,
gives a direct relation between the rms amplitude of the
peculiar velocity and the power spectrum of primordial
density fluctuations sStrauss and Willick, 1995d:

kvpsRd2l =
H0

2f2

2p2 E PskdW̃2skRddk , s30d

where W̃skRd is the Fourier transform of a spherical
window function of radius R , WsRd. This equation also
works quite well for rather high d, well beyond the linear
regime. The main problem then becomes dealing with
the redshift distortion of the observed velocity field.

This equation, however, contains information only
about the rms magnitude of vp on a given scale. More
information about peculiar motions in different cosmo-
logical scenarios can be obtained from other types of
velocity correlation functions that can be estimated from
data sets.

As direct data on peculiar velocities of galaxies are
hard to obtain, the pairwise galaxy velocity dispersion is
measured from ordinary redshift surveys by modeling its
effect on the redshift space correlation function. This
modeling is not very certain, as it depends on the choice
both of the adopted mean streaming-velocity model and

FIG. 15. The correlation length
of different cluster samples as a
function of the intercluster dis-
tance. The solid line shows the
relation rc=2.6Îdc that fits well
the observations and the L
cold-dark-matter sLCDMd
model. From Bahcall et al.,
2003.
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of the model for the pairwise velocity distribution itself.
The latter is usually modeled as an exponential distribu-
tion sPeebles, 1980d.

The first determination of the pairwise velocity disper-
sion s12

2 was made by Davis and Peebles s1983d, who
found s12<340 km s−1. Subsequent determination from
the IRAS data sFisher et al., 1994; Fisher, 1995d gave a
similar value ss12<317 km s−1d. These values were much
lower than those predicted for the standard cold-dark-
matter model ss12<1000 km s−1d and served as an argu-
ment for discarding the model.

Later determinations have given larger values for this
dispersion: the estimates of Marzke et al. s1995d, Jing et
al. s1998d, and Zehavi et al. s2002d all converge at the
value s12<550–600 km s−1; not enough for the standard
cold-dark-matter model, but in concordance with the
present standard, the L cold-dark-matter model.

In the stable clustering model the pairwise velocity
dispersion should scale with pair distance as r0.2; this
scaling has not been observed. Also, it is well known
that the value of s12 is sensitive to the presence of rich
clusters in the sample. Davis et al. s1997d and Landy et
al. s1998d propose alternative schemes for estimating the
pairwise velocity dispersion, which again lead to small
values of s12.

The galaxy velocity field is also rather inhomoge-
neous; a well-known fact is the extreme coldness of the
flow in our neighborhood, out to 5h−1 Mpc, where s12
=60 km s−1 sSchlegel et al., 1994d.

E. Light does not trace mass

It has long been realized that there is a difference
between the distribution of light in the universe and the
distribution of mass. The first clues came with the appar-
ent systematic increase of mass-to-light ratios with scale
determined from galaxies, binary galaxies, groups and
clusters of galaxies: this was later made more explicit by
Einasto et al. s1974d, Ostriker et al. s1974d, and Joeveer
and Einasto s1978d. It was also known that galaxy mor-
phology is related to the clustering environment
sHubble, 1936b; Zwicky, 1937; Abell, 1958; Davis and
Geller, 1976; Dressler, 1980; Einasto et al., 1980; Guzzo
et al., 1997d.

The recognition that clustering depends on galaxy lu-
minosity is more recent sHamilton, 1988; White et al.,
1988; Domínguez-Tenreiro and Martínez, 1989; Mar-
tínez et al., 1993; Loveday et al., 1995; Willmer et al.,
1998; Benoist et al., 1999; Kerscher, 2003d. It is not diffi-
cult to understand why this should be so. We may be
even surprised that the results were in any way surpris-
ing! There was the early work of Bahcall and Soneira
s1983d, Bardeen et al. s1986d, and Melott and Fry s1986d.
However, it has not been easy to model these
luminosity-dependent and type-dependent phenomena
since we have only the barest understanding of the gal-
axy formation process, and it is probably fair to say that
our knowledge of what causes galaxies to have vastly
different morphologies is still rather incomplete.

The recent advances in augmenting N-body simula-
tions with semianalytic models and computational hy-
drodynamics is promising, though at a relatively early
stage sCen and Ostriker, 1992; Katz et al., 1992; Blanton
et al., 1999; Colín et al., 1999; Kauffmann et al., 1999;
Pearce et al., 1999; Benson et al., 2000; White et al., 2001;
Yoshikawa et al., 2001d. Modeling the formation of indi-
vidual galaxies shows just how many physical processes
must be taken into account, quite apart from trying to
fold in our ignorance of the star formation process sand
that is what gives rise to the luminosityd. A brave at-
tempt is exemplified by the paper of Sommer-Larsen et
al. s2003d.

1. Mass distribution and galaxy distribution: biasing

The concept of biasing was introduced by Kaiser
s1984d in order to explain the observed relation between
the correlation functions of galaxies and galaxy clusters.
Using the high-peak approximation to a Gaussian den-
sity field, he obtained formula s26d showing that the two
correlation functions were proportional.

The same idea was later applied to galaxy distribu-
tions: as different types of galaxies have different clus-
tering properties, they cannot all follow directly the
overall density field. Thus we normalize the correlations
by writing

sgal
2 = b2stotal

2 s31d

fnote that s2=js0dg and call b the bias factor. As bary-
onic matter comprises about four percent of the total
matter plus energy content of the universe, we can also
say that the above relation connects the galaxy and
dark-matter distributions.

Bias cannot be measured directly, and indirect obser-
vational determinations of bias values have not yet con-
verged to a single value for a given type of galaxy. More-
over, Dekel and Lahav s1999d showed that bias is, in
general, nonlinear and stochastic. Later determinations
have found that bias is also scale dependent sHamilton
et al., 2000d. Such bias can easily destroy scaling relations
that could be inherent in the matter distribution.

2. Mass and light fluctuations

An alternative measure of the scale dependence of
clustering is to plot the variance of the mass or light
density fluctuations on a variety of scales. This is little
more than what Carpenter did in the 1920s, and was first
formalized by Peebles s1965d in his remarkable paper on
galaxy formation.14 It is relatively easy to calculate a
density fluctuation spectrum: sample the density field in

14Several things are remarkable about Peebles’s 1965 paper. It
was his first paper on galaxy formation and its submission to
the Astrophysical Journal preceded the announcement of the
discovery of the microwave background. In that paper we see
the entire roadmap for the following decades of galaxy forma-
tion theory, albeit in terms of initial isothermal fluctuations.
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windows of different sizes, for each window, size cal-
culate the mean and variance of the contents of the win-
dow, and plot the result. This works equally well in two
or three dimensions. Some important technical ques-
tions arise, such as what to do at the boundaries and
what the shape and profile of the window should be. The
profile is the weight attached to an object occurring at a
given location in the window. The “top hat” profile
counts a weight of one if the object is in the window and
zero if it is outside: this is the simplest choice, though
not a particularly good one. Fuzzy-edged windows are to
be preferred, since they reduce the effects of shot noise.

This process is analogous to two other methods of
analyzing a density field: counts in cells and wavelet
analysis. Counts in cells statistics do precisely what has
just been described, using various coverings of the data
set, and are most often hard edged. The wavelet analysis
does the same, but the choice of the analyzing wavelet
determines how “hard” the sampling volume is. Simple
Haar wavelets are a bad choice, since they too are hard
edged, but there are many fine alternatives. This is an
area that requires more research, since wavelets are par-
ticularly good at sniffing out scaling relationships.

The density fluctuation spectrum is in some sense a
halfway house on the way towards the power spectrum:
the variance of the mass fluctuations is referred to a
physical variable, mass scale, rather than the k-space
wave number swhich is itself an inverse length scaled.
The problem with the mass spectrum is that its ampli-
tudes are correlated and depend on the adopted mass
profile filter; the conventional power spectrum sspectral
densityd has independent amplitudes as will be explained
in Sec. VI.C.

VI. FURTHER CLUSTERING MEASURES

A. Higher-order correlation functions

The two-point correlation function is not a unique de-
scriptor of clustering; it is merely the first of an infinite
hierarchy of such descriptors describing the distribution
of galaxies taken N at a time. Two quite different distri-
butions can have the same two-point correlation func-
tion. In particular, the fact that a point distribution gen-
erated by any random walk fe.g., a Lévy flight as
proposed by Mandelbrot s1975dg has the correct two-
point correlation function does not mean much unless
other statistical measures of clustering are tested.

The present-day galaxy distribution is manifestly not a
Gaussian random process: there is, for example, no sym-
metry about the mean density. This fact alone tells us
that there is more to galaxy clustering than the two-
point correlation function.

So what kind of descriptors should we look for? Gen-
eralizations of the two-point functions to three-point,
four-point, and higher-order functions are certainly pos-
sible, but they are difficult to calculate and not particu-
larly edifying. However, they do the job of providing
some of the needed extra information and through such

constructs as the BBGKY hierarchy15 they do relate to
the underlying physics of the clustering process. We shall
describe the observed scaling of the three-point correla-
tion function below.

One alternative is to go for different clustering mod-
els: anything but correlation functions. These may have
the virtue of providing immediate gratification in terms
of visualization of the process, but they are often diffi-
cult to relate to any kind of dynamical process.

If we knew all higher-order correlation functions we
would have a complete description of the galaxy cluster-
ing process. However, calculating an estimate of a two-
point function from a sample of N galaxies requires tak-
ing all pairs from the sample of N, while calculating a
three-point function requires taking all triples from N.
The amount of computation escalates rapidly and re-
strictions have to be imposed on what is actually being
calculated.

Nevertheless, calculating restricted N-point functions
may be useful: these functions may be related to one
another and have interesting scale dependence. Gaz-
tañaga s1992d has calculated restricted N-point functions
and showed that these have power-law behavior over
the range of scales where they can be determined.

B. Three-point correlation functions

The simplest high-order correlation function is the
three-point correlation function zsx1 ,x2 ,x3d. It appears
to be simply related to the two-point function through a
Kirkwood-like relationship fsee Peebles s1980dg:

zsx1,x2,x3d = zsr12,r23,r31d

= Qfjsr12djsr23d + jsr23djsr31d + jsr31djsr12dg ,

s32d

where Q<1 is a constant, and the first equality is due to
the usual assumption of homogeneity and isotropy. This
scaling law is called the hierarchical model in cosmology,
and it agrees rather well with observations. The full
Kirkwood law sIchimaru, 1992d would require an addi-
tional term on the right-hand side of Eq. s32d, propor-
tional to jsr12djsr23djsr31d.

As observations show sPeebles, 1980, 1993; Meiksin et
al., 1992d, there is no intrinsic three-point term, either
Kirkwood-type or more general. If this term were
present the three-point function would be enormous at
small scales. Therefore it makes no contribution. The
absence of such a three-point term is probably a conse-
quence of the fact that gravity is a two-body interaction
and is the only force that plays a role in the clustering
process.

15The BBGKY hierarchy safter Bogolyubov, Born, Green,
Kirkwood, and Yvond is an infinite chain of equations adapted
from plasma physics sIchimaru, 1992d to describe self-
gravitating nonlinear clustering. See, for example, Fall and
Severne s1976d, Peebles s1980d, and Saslaw s2000d.
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C. The power spectrum

The power spectrum Pskd is the description of cluster-
ing in terms of wave numbers k that separates the effects
of different scales. If Fskd is the Fourier transform of a
random field, then

Pskd = EfFskdFskdg , s33d

where E denotes the statistical expectation value.
The Fourier modes of a Gaussian random field sour

basic model for the matter distribution in the universe at
early timesd are independent, and the only function that
defines the field is the power spectrum. As the initial
fluctuations from the inflationary period are described
naturally in terms of Fourier modes, the power spectrum
is the best descriptor of the matter distribution for these
times.

Inflationary models predict a power-law power spec-
trum Pskd,kn fsee Peebles and Ratra s2003d for a re-
cent reviewg, with the most popular exponent n=1. This
simple scaling is, however, broken once the wavelength
of a mode gets smaller than the horizon; interactions
between matter, radiation, and gravity deform the power
spectrum in a computable, but complex manner sEisen-
stein and Hu, 1998, 1999d.

Nevertheless, if we restrict ourselves to a smaller-scale
interval ssay, two orders of magnituded, the power spec-
trum remains close to a power law. For the scales of the
observed structure the exponent of this power law is
negative, ranging from n=−1 for larger scales to nù−3
for galaxy scales.

If we combine a scale-free power spectrum P,kn

with a scale-free expansion law astd, ta we should get a
perfect scaling regime for evolution of structure. Unfor-
tunately, this is not true, as there are two completely
different regimes of evolution of gravitating structures:
the linear regime, when every Fourier mode grows at
the same rate, and the nonlinear regime, when we can
assume that objects are virialized and their physical
structure does not change. The latter assumption is
called stable clustering sPeebles, 1974bd.

The linear regime is characterized by small density
amplitudes and large scales ssmall wave numbersd, the
stable clustering regime has large density amplitudes
and occurs at small scales slarge wave numbersd. The
scaling solution for the correlation function in the stable
clustering regime was found by Peebles s1974bd: jsrd
,r−g, where g= s9+3nd / s5+nd. The first attempt to get a
solution that would interpolate between the two regimes
was made by Hamilton et al. s1991d. For that they re-
scaled the distances r, assuming no shell crossing during
the evolution of objects, and found an empirical relation
between the nonlinear and linear correlation functions,
using N-body models. This is known as the HKLM
sHamilton, Kumar, Lu, and Matthewsd scaling solution.
Peacock and Dodds s1996d found a similar relation for
power spectra. These results have been used frequently
for likelihood searches in large volumes of cosmological

parameter space, which could not be covered by time-
consuming N-body modeling.

However, nowadays it seems that the stable-clustering
hypothesis does not describe well either the observed
structure or present-day numerical simulations, mostly
because of the merging of objects in the later stages of
evolution of structure. A scaling solution in terms of a
nonlinearity wave number that does not assume stable
clustering is described by Smith et al. s2003d. Let us de-
fine the nonlinearity wave number kNL by

s2skNL,ad , E
0

kNL

Psk,adk2dk = 1;

it separates the linear regime k,kNL from the nonlinear
regime k.kNL. One then expects the scaling solution to
have the form

Psk,ad = Fsk/kNLd .

As an example, for the Einstein–de Sitter cosmological
model astd, t2/3, the scale-free power spectrum can be
written as Psk ,ad=a2kn, and the nonlinearity wave num-
ber kNL,a−2/sn+3d. Numerical experiments confirm that
scaling solutions exist.

The latest real-space power spectrum of the SDSS sur-
vey sTegmark et al., 2004d clearly shows curvature, de-
parting from a single power law, providing, as the au-
thors say, “another nail in the coffin of the fractal
universe hypothesis.”

D. The bispectrum

The power spectrum fEq. s33dg is a quadratic descrip-
tor of a random field: it contains information about the
amplitudes of the Fourier components, but not about
any phase relationships that might have evolved through
nonlinear processes. The power spectrum characterizes
fully a Gaussian field. Since the present-day high-
amplitude fluctuating density field is not Gaussian sthere
cannot be any region with negative densityd, the power
spectrum by itself provides only a partial description.
There are several ways of providing further information
in Fourier space, one of which is to look at higher-order
correlations among Fourier components.

The next-order descriptors are cubic, the three-point
correlation function and its Fourier counterpart, the
bispectrum. The bispectrum is the third moment of the
Fourier amplitudes of a random field, depending on
three wave numbers. If we denote the Fourier ampli-
tudes of a random field by Fskd, the bispectrum of the
field is defined as

Bsk1,k2,k3d = EfFsk1dFsk2dFsk3dg ,

where E denotes the statistical expectation value. For
homogeneous random fields the bispectrum is nonzero
only for closed triangles of vectors k1, k2, k3 ssee, for
example, Martínez and Saar, 2002d. Consequently, for
real-valued homogeneous random fields the bispectrum
can be calculated by
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Bsk1,k2d = EfFsk1dFsk2dFsk1 + k2dg ,

where the overline denotes conjugation. In the signal
processing world the bispectrum is known as the bico-
herence spectrum and it is used to measure the phase
coherence among triples of spectral components that
arise as a consequence of nonlinear wave coupling.

The hierarchical ansatz that we wrote for the three-
point correlation function can also be written for the
bispectrum:

Bsk1,k2,k3d = QfPsk1dPsk2d + Psk1dPsk3d

+ Psk2dPsk3dg .

A similar expression is predicted by perturbation
theory sFry, 1984bd, but with different coefficients for
every term.

It is not easy to determine the bispectrum from obser-
vations, as its argument space is large sthe set of all tri-
anglesd, and it is strongly modified by galaxy bias. The
estimates so far have confirmed that the bispectrum fol-
lows approximately the predictions of perturbation
theory sBernardeau et al., 2002d. As it depends on the
bias parameters, it can be used to estimate galaxy bias.
An example is provided by a recent study sVerde et al.,
2002d that found that the bispectrum of the 2dF survey is
compatible with no bias; these galaxies seem to faithfully
trace the total matter distribution.

E. Fractal descriptors of clustering

None of the previous descriptors is motivated by the
requirement that the galaxy distribution be, in some
sense, scale-free, which might be expected on the
grounds that the gravitational force which drives the
clustering is scale-free. What one would like to do is to
generate a set of scaling indices that describes, say, the
scaling of the moments of the galaxy counts distribution
with cell size.

This was in a sense achieved by Gaztañaga s1992,
1994d when he determined the scaling laws of restricted
N-point correlation functions. However, one might ar-
gue that the scaling of some high-order correlation func-
tion has less immediate intuitive appeal than the scaling
of the moments of cell counts.

There is a formalism for describing moments of cell
counts that is commonly used when describing fractal
point sets. It was adopted as a clustering descriptor by
Martínez et al. s1990d. If it is possible to determine a set
of such scaling indices, we can turn the argument around
and say that, over the range of scales where scaling is
observed, the galaxy clustering can be represented by a
fractal of a given type.

One should be aware that having a power-law corre-
lation function is not necessarily an indication of scale
invariance! Conversely, the fractal description implies no
particular underlying physical process: it is merely a
statement of how moments of counts in cells behave as a
function of cell size.

It is an interesting question of physics to formulate the
physical process that might generate this distribution of
scaling indices. This has been attempted by Jones s1999d
for a simple nonlinear gravitational clustering model.

1. A cautionary word

There is a considerable difference between using the
concept of fractal measure to describe a statistical pro-
cess in some particular regime and saying “this distribu-
tion is such-and-such a fractal.” There have been several
papers observing scaling of the two-point correlation
function and jumping to the conclusions that sad this
scaling law holds up to 1000h−1 Mpc or even larger
scales sSylos Labini et al., 1998d16 or sbd this scaling law
must be a consequence of some exotic phenomenon
sBak and Chen, 2001d.

In the first case scaling laws can only be expected to
hold over scales where nonlinear gravitational clustering
has been at work. In the linear regime we merely see a
reflection of the initial conditions: these have been re-
vealed to us by the COBE experiment and by other mi-
crowave background anisotropy measurements. Indeed,
it is a prediction of gravitational clustering theory that
there should be a break in the scaling laws that reflects
the transition between the linear and nonlinear regimes.
We expect to see this as the transition to homogeneity
that must occur on large scales.

There is no way out of this: the COBE results tell us
that there will be large scales where the universe is al-
most homogeneous.

In the second case there is absolutely no indication
that anything more exotic than the force of gravitation is
involved in the growth of clustering. On the contrary, the
manifest successes of gravitational N-body experiments
testify to the adequacy of gravity. We are not observing a
critical phenomenon, nor are we on the verge of some
marginal instability.

2. Structure from counts in cells

The first analyses of galaxy sky maps were done by
dividing the sky into cells and counting the cell occu-
pancy. As mentioned earlier, Bok s1934d and Mowbary
s1938d established the nonuniformity of the galaxy dis-
tribution by counting galaxies in cells, and later Rubin
s1954d, Limber s1954d, and Totsuji and Kihara s1969d
used the Lick catalog published as cell counts in 1° cells.
Peebles used the unpublished higher-resolution data
from the original notes of Shane and Wirtanen. Today,
cell counts still provide an important mechanism for
analyzing point distributions since they are easier to deal
with than the raw, unbinned data.

16Sylos Labini et al. s1998d did recognize that the statistical
quality and solidity of the results were stronger up to
150h−1 Mpc and weaker for larger scales due to the limited
data.
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3. Scaling properties of counts in cells

Whether we evolve a model numerically or make
some analytic approximation it is necessary to character-
ize the clustering that develops in a quantitative manner.
Conventionally, this is done by presenting the two-point
correlation function jsrd for the mass distribution. How-
ever, by itself this does not fully characterize the distri-
bution of points. An important alternative is to look at
the distribution of counts in cells as a function of cell
size.

The relationship between the probability PNsVd of
finding N galaxies in a sample volume V and the corre-
lation functions of all orders was given by White s1979d.
The expression is not of any real use unless all correla-
tion functions are known or there is a known relation-
ship between them. Fry s1984ad and Balian and Schaef-
fer s1989ad computed the properties of the counts-in-
cells distribution PNsVd on the hypothesis that the
correlation functions of all orders form a particular scal-
ing hierarchy in which the qth order correlation function
jsqd based on a q-agon of points ri scales as

jsqdsr1, . . . ,rqd = lgsq−1djsqdslr1, . . . ,lrqd . s34d

The hierarchy is described by a single scaling index g.
The data available at the time, the CfA survey, appeared
to support both the form of PNsVd and this scaling hy-
pothesis.

The special case of P0sVd is the void probability func-
tion, that is, the probability of a volume V’s containing
zero galaxies. One can construct the probability distribu-
tion for having a void V of a given size in a distribution
of galaxies with given correlation properties sFall et al.,
1976d. It is given by White s1979d:

P0sn0Vd = e−n0Va s35d

with

a = 1 + o
i=2

`

s− n0di−1E widV1 ¯ dVi−1. s36d

Here n0 is the mean space density of galaxies sor clus-
tersd, and wi is the i-point correlation function of si−1d
coordinates and is determined on linear scales by
samong other thingsd the power spectrum of the primor-
dial density fluctuations. For purely Gaussian fluctua-
tions the sum in a is cut off beyond the second term.
However, gravitational evolution destroys the Gaussian
character of fluctuations and we are thus forced to make
an ansatz regarding the relationship between second-
and higher-order correlation functions either through
BBGKY hierarchies sFry, 1984bd or by pure guess.

White s1979d showed the relation between P0sVd and
the cell count probabilities PNsVd. Different clustering
models have been proposed based on particular choices
for the counts in cells sColes and Jones, 1991; Borgani,
1993; Saslaw, 2000d. A particular—and rather popular—
way of analyzing the statistical properties of point sets is
through the possible scaling of the moments of the

counts in cells as explained in next section. Alterna-
tively, one can consider the scaling of moments of counts
of neighbors sMartínez and Coles, 1994d.

4. Quantifying structure using multifractals

Given a model for the development of galaxy cluster-
ing we might like to predict the resulting distribution of
cell counts, since this provides a straightforward way of
confronting the model with data.

Denote by psX ;Ld the probability that some quantity
x takes on the value X when measured in a cell of size L.
The distribution p can be characterized by its moments:

mqsLd = o
cells

psX ;LdXq. s37d

If for some monotonic function Dsqd the moments scale
with cell size L as

o
cells

psX ;LdXq ~ Lsq−1dDsqd s38d

the point distribution is said to have scaling properties
characterized by dimensions Dsqd. The exponent is writ-
ten in this way since the case q=1 corresponds to the
total number of particles in the sample volume, which is
obviously independent of the cell size. The case q=2 is
related to the variance of the cell counts and to the two-
point correlation function.

Equation s38d does not describe arbitrary point distri-
butions, but it does describe a large and important set of
such distributions that have the property of multifractal
scaling sBorgani, 1995d. It has been argued that the ob-
served galaxy distribution and the distribution of par-
ticles in an evolved N-body simulation exhibit multifrac-
tal scaling.

There is a slightly different way of getting at the scal-
ing exponents Dsqd: via the partition function Zsq ,rd.
Zsq ,rd is related to the qth statistical moment of the
distribution of points as viewed in cells of size r. Suppose
the sample is drawn from a probability distribution
psn ;rd for finding n galaxies in a randomly chosen cell of
scale r. The qth moment of the cell occupancy is defined
as

mq = o
n=0

`

psn ;rdnq. s39d

The partition function is then defined as

Zsq,rd =
Nr

Nqmq. s40d

If nisrd denotes the occupancy of the ith cell in a parti-
tion of the sample space into Nr cells of scale r, the
sample estimate for the partition function is

Z̄sq,rd = o
i=1

Nr Fnisrd
N

Gq

, s41d

where N is the total number of points fonisrdg. Note that
the ordering of the cells is not important and so the
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information on the relationship between neighboring
cells appears through the r dependence of Zsq ,rd.

The situation of interest is where, for all values of q,
Zsq ,rd is found to scale as a power law in r:

Zsq,rd ~ rsq−1dDsqd ~ rtsqd, s42d

where tsqd is the scaling index of the partition function;
see, for example, Martínez et al. s1990d. The function
Dsqd defined in this way is a measure of some general-
ized dimension of order q for the distribution. This is
simply a restatement of Eq. s38d. Since Eq. s40d tell us
Z~mq, Eqs. s37d and s39d are essentially the same.

Dsqd is the logarithmic slope of the moment generat-
ing function and of the partition function:

Dsqd =
1

sq − 1d
d ln mqsrd

d ln r
s43d

=
1

sq − 1d
d ln Zsq,rd

d ln r
, q Þ 1. s44d

In computing Dsqd for a sample we would therefore ex-
pect to be able to see a reasonably straight line of data
points in a plot of either mq or Zsq ,rd against r. Several
aspects of the finite-size data sample mitigate against
this.

It should be noted that, technically, Eq. s42d need be
valid only in the limit r→0. This limit is impossible to
take in the case of a discrete sample which is dominated
by shot noise at distances much smaller than the mean
particle separation. We can only ask for scaling over
some well-observed range. Likewise, we are unable to
reliably compute Eq. s41d for large q, since at large val-
ues of q the sum is dominated by whatever happens to
be the single largest cluster of points in the sample.

5. Intermittency

An important feature of many statistical distributions
is the phenomenon known as intermittency. Mathemati-
cally this describes a situation in which the higher mo-
ments of the spatial distribution of some quantity domi-
nate over the lower moments in a special way: there is
an anomalous ratio between successive statistical mo-
ments as compared with a Gaussian process. The physi-
cal manifestation of this is that the quantity becomes
spatially localized.

It is important to realize that, although we tradition-
ally characterize the galaxy distribution via its two-point
and three-point correlation functions, these have little or
nothing to do with the visual appearance of the cluster-
ing pattern: voids, walls, and filaments. These macro-
scopic features are manifestations of the fact that the
higher-order moments of the density distribution are
dominant: the statistical distribution of galaxies is inter-
mittent.

Intermittency can be quantified through a simple non-
dimensional function involving higher-order statistical
moments of the distribution. Consider some random

function of position csxd having a nonzero mean and a
statistical distribution whose moments kcql are known.
The intermittency exponent mq is defined in terms of the
scaling properties of the moments by

kcql
kclq , SL

l
Dmq

, s45d

where l is some fiducial length scale. The spatial inter-
mittency pattern is characterized by the q dependence of
this ratio of moments. It is well known that a quadratic q
dependence of mq corresponds to a lognormal distribu-
tion of c ssee Jones et al., 1992d.

Notice that kcql is simply the moment generating
function for the process csxd, and so the property of
intermittency is a feature of the underlying statistics.

The assumption that the individual moments scale as
per Eq. s38d guarantees the existence of mq, and in this
case we have

mq = − sq − 1dDsqd . s46d

Since the quantity kcql for q=1 has no scale depen-
dence sit is the mean value for the fieldd, Eqs. s45d and
s46d provide the scaling law of the moments in the case
of multifractal scaling:

kcql ~ lsq−1dDsqd. s47d

mq is the standard notation for the intermittency expo-
nent and is also called −tsqd in the multifractal litera-
ture, as in Eq. s42d, although in turbulence theory the
intermittency exponents are frequently defined in d di-
mensions as sd−Dsqddsq−1d.

6. Multifractality

People are generally familiar with the notion of
simple scaling in which a function of one variable is in-
dependent of the scale of the variable. A power law is
the prototypical example: if nsrd~ra then rescaling r
→s=lr recovers the same power-law behavior, nssd~sa.
Only the amplitude and scale of the function have
changed; the shape is the same.

This kind of scaling can be expressed mathematically
in a way that is particularly relevant to the current dis-
cussion. Suppose that psX ,Ld is the probability of mea-
suring a value X for some property of a system when the
sample volume has been binned into cells of size L.
Then the property X is said to exhibit simple or finite
scaling when for some constants b and n

psX,Ld = L−bgS X

LnD s48d

for some function gsxd. In the jargon of fractals we say
that the quantity X is distributed on a fractal with a
single scaling index.

Following Kadanoff et al. s1989d we can define a more
complicated kind of scaling, multifractal scaling, in which
we have
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ln psX,Ld

ln
L

L0

= − f1 ln
X

X0

ln
L

L0

2 . s49d

Here X0 and L0 can be thought of as physical units in
which the quantities X and L are to be measured.

It is, at first glance, not easy to comprehend what this
equation is telling us about how the distribution of X
looks. Define a local scaling index a by the equation

a =
ln

X

X0

ln
L

L0

. s50d

Since a depends on the realization of the value of X in a
cell of scale L, a is a possibly random function of posi-
tion. This is why it is referred to as a local scaling index.
With this, the probability of finding a value X in a cell of
size L is just

psX,Ld = S L

L0
D−fsad

. s51d

We have power-law scaling with cell size, but the scaling
index a is an arbitrary function of the quantity X and
the cell size L.

These two forms of scaling, Eq. s48d and Eq. s49d,
agree only when gsxd is a power law and fsxd is linear.

If we look only at points such that a in Eq. s51d has
some specific value, the distribution psX ,Ld has the
form of Eq. s48d: the set of points with a=const is a
simple fractal. Since the set consists of a range of values
of a it can be called a multifractal, a set of intertwined
simple fractals having different dimensions ssee Fig. 16d.

Note, however, this caveat. A set of points distributed
in power-law clusters is not necessarily a multifractal. It
is only a multifractal if the scaling indices a are them-
selves constant on a homogeneous fractal set. Thus not
all point distributions are multifractals, even if they are
distributed in power-law clusters. A modified version of
the scaling indices formalism, the weighted scaling indi-
ces, has been recently introduced by Räth et al. s2002d.
This method allows us to statistically quantify the local
morphological properties of the galaxy distribution.

It can be shown that the descriptions of a point set via
its statistical moments fEq. s38dg or via the distribution
of its scaling indices fEq. s51dg are totally equivalent.
The functions fsad and tsqd are related to one another
for a specific class of processes—such as certain
cascades—via a Legendre transform sJones et al., 1992d:

tsqd = aq − fsad, asqd =
dt

dq
.

VII. CLUSTERING MODELS

A. Cosmological simulations

1. Aarseth

The simplest way to explain the observed clustering is
to do nonlinear numerical simulations of the galaxy clus-
tering process. Although such simulations provide no
deep explanations for what is going on, the ability to
reproduce cosmic clustering simply by using a distribu-
tion of particles moving under their mutual gravitational
interactions is quite striking.

N-body models have served to disprove several popu-
lar hypotheses on the evolution of large-scale structure,
and have been the motivation for new assumptions. The
downfall of the “standard cold-dark-matter model”
started with N-body models that gave top-heavy large-
scale structure and too large pairwise velocity dispersion
compared to the observations. Another example is the
present controversy over cuspy centers of dark halos,
which were found in high-resolution N-body simula-
tions, but which are not observed. This motivated inten-
sive study of warm-dark-matter models.

The origin of N-body experiments as we know them
today is the work of Sverre Aarseth at Cambridge Uni-
versity sAarseth, 1978d. Aarseth was a student of Fred
Hoyle, whose visionary insight foresaw as long ago as
1965 the role that computers would play in astronomical
research. Aarseth not only developed a series of N-body
codes tailor-made for different problems, he made these
codes available to all and never even asked to be named
as a collaborator.

The particle-particle codes developed by Aarseth
were originally aimed at simulating problems in stellar
dynamics. The particles were point masses, and integrat-
ing of tight binaries was through two-body regulariza-
tion. This was adapted to the cosmological problem by
making the particles soft rather than pointlike, and so
avoiding the need for the time-consuming calculation of
binary encounters. The first papers using this modified
code sAarseth et al., 1979; Gott et al., 1979d used a mere
1000 equal-mass particles and simple Poisson initial con-
ditions. Yet they were able to reproduce a power-law
correlation function for the clustering of these points.

2. Subsequent developments

During the 1970s the application of N-body codes to
the problem of gravitational clustering mushroomed.
Faster computers and improved numerical techniques
drove particle numbers up. Following on from that work
there has been a gradual growth in the number of par-
ticles used in simulations: 30 000 by the 1980s sEf-
stathiou et al., 1985d, 1 000 000 by the 1990s sBertsch-
inger and Gelb, 1991; Couchman et al., 1995d fsee also
the review by Bertschinger s1998dg and now more than
1 000 000 000 by the “Virgo Consortium” sEvrard et al.,
2002d.
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The N-body models cover a wide range of cosmic pa-
rameters and have enough particles to be used in trying
to discriminate the clustering properties of the different
models. We show in Fig. 17 a recent 109-point lightcone
simulation of the “Virgo Consortium,” a deep wedge
40h−1 Mpc thick and 3.5h−1 Gpc deep, extending to z
=4.8 sthe universe was then about one-eleventh of its
present aged. The upper sector of the “necktie” shows a
picture that we hope to get from the SDSS survey, a
wider wedge reaching z=0.25. Progressing in time from
the largest redshift until the present, we see how the
structure gradually emerges. This simulation is described
by Evrard et al. s2002d.

3. Confronting reality

Sometimes we might get the impression that N-body
simulations are better than the real thing, as in the game
of “Better than Life” played by some of the characters
in the BBC TV program Red Dwarf. In the early 1970s
people were enthusiastic about a mere 1000 particles
swhich reproduced the correct two-point correlation
function so “it had to be right”d. They got even more
enthusiastic with a million particles in the 1990s and now
it is indeed better than life, especially with reality-
enhancing graphics, and ready-to-play PowerPoint pre-
sentation movies.

FIG. 16. sColor in online editiond A multifractal mass distribution over a square of side L0. The distribution was generated
following a multiplicative cascade process. The gray scale represents the quantity of mass sXd in each pixel. Successive enlarge-
ments of two different regions of the original plot illustrate the inhomogeneity of the mass distribution.
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Is this enthusiasm justified? N-body simulations are
certainly a success story, and they certainly make a huge
contribution to our understanding of cosmology. The
models are nevertheless extremely limited simply be-
cause they lack any real gas dynamics, and star forma-
tion which must be important, or other things that we
know little about ssuch as magnetic fields, which one
hopes are not importantd. There are some salutary les-
sons, such as the effects of discreteness in pure N-body
models fSplinter et al. s1998dg, but there is little or no
response to such points from the N-body community at
large. So perhaps we should not worry and just bask in
what is after all better than life.

Up until now, most comparisons between the results
of numerical experiments and the data have been made
simply in terms of the galaxy clustering correlation func-
tion. Even this is fraught with difficulty, since the ob-
served data concern the distribution of light, whereas
the numerical models most readily yield the clustering
properties of the gravitating matter, most of which may
well be dark and invisible. The key ingredient that has to
be added is star formation, and it is perhaps true to say
that attempts at doing this have so far been simple heu-
ristic first steps.

Another popular model result, the mass function sdis-
tribution of massesd of rich galaxy clusters, depends less
on star formation problems, but knowledge of formation
of galaxies and clusters is certainly necessary to compare
the simulated and observed mass functions.

Some measures, such as the distribution of velocity
dispersion of galaxies and the distribution of halo
masses are independent of the mass-to-light problem,
but it is only recently that the large-scale redshift sur-
veys and surveys of real gravitational lenses have begun
to yield the kind of data that are required.

4. Scaling in dark-matter halos

N-body simulations have revealed fascinating scaling
problems of their own, mostly for smaller scales than
those described in this review. As the initial power spec-
trum of perturbations is almost a power law for comov-
ing scales less than 10h−1 Mpc, and cold dark matter and
gravitation do not bring in additional scales, the evolu-
tion of structure on these scales and the final structure of
objects should be similar.

As a proof of this conjecture, N-body simulations
show that dark-matter halos have well-defined universal
density profiles. There is slight disagreement between
the practitioners on the exact form of this profile, but
the most popular density profile by far is that found by
Navarro, Frenk, and White s1996d and named for its co-
authors the NFW profile:

rsrd/rc =
dc

ys1 + yd2 , y = r/rs, s52d

where rc is the critical cosmological density, dc is a char-
acteristic density contrast, and rs is a scale radius. The
masses of N-body halos are usually defined as the mass
contained within the virial radius r200, the radius of a
sphere of mean density contrast 200. Then the only pa-
rameter describing the NFW profile for a halo of given
mass is the concentration ratio c=r200/rs.

There have been many studies with differing conclu-
sions on the exact properties of dark halo profiles; we
shall refer the reader to the latest accurate analysis by
Navarro et al. s2004d. The main difficulty is in eliminat-
ing a multitude of possible numerical artifacts, but no-
body seems to doubt that universal profiles exist. Con-
centration ratios depend on the mass of a halo, but this
seems to be the main difference.

In connection with observations, the main problem
has been the existence of a density cusp in the center of

FIG. 17. sColor in online editiond A deep simulated wedge of
the universe. Figure by Gus Evrard and Andrzej Kudlicki,
courtesy of the Virgo Consortium; details in text.
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a halo, and the value for the logarithmic slope. As this
demands probing the very central regions of galaxy clus-
ters and galaxies, the problem is still open.

5. Scaling in galaxy properties

While the notion of the universal density profile arose
from N-body simulations, other scaling laws for cluster-
and galaxy-sized objects have an observational origin.
The best established law is called the fundamental plane.
This scaling law was discovered simultaneously by Djor-
govski and Davis s1987d and Dressler et al. s1987d. It is
rather complex, meaning that elliptical and S0 searly-
typed galaxies form a plane in the 3-space of
slog L , log rc , log sd, where L is the total luminosity of
the galaxy, rc is its characteristic radius, and s2 its stellar
velocity dispersion. sAs L and rc can be combined to
give kIlc, the mean surface brightness of the galaxy, the
latter is frequently chosen as one of the three variables.d
These properties of elliptical galaxies are tightly corre-
lated and are thought to describe the process of their
formation. Similar correlations have been discovered for
galaxy clusters sLanzoni et al., 2004d. Their existence de-
mands special scaling for the mass-luminosity ratio of
cluster galaxies with the mass of the cluster.

As the fundamental plane relation contains the size of
a galaxy, it can be used for estimating the distance to a
galaxy. Having a distance estimate, we can disentangle
the proper velocity of a galaxy from that of the Hubble
flow. Dressler et al. s1987, also known as “the Seven
Samurai”d used the newly discovered fundamental plane
relation to derive for the first time the nearby large-scale
galaxy velocity field. In this way the Great Attractor, a
large supercluster complex partly hidden by the Milky
Way, was predicted by Lilje et al. s1986d from a relatively
local sample of galaxies and discovered by Lynden-Bell
et al. s1988d using a larger sample of elliptical galaxies. A
recent example of a similar project is the NOAO Fun-
damental Plane Survey, a survey of 100 rich x-ray-
selected clusters within 200h−1, in which the fundamen-
tal plane of early-type cluster galaxies is used to
determine cluster distances and therefore large-scale
cluster flows fNelan et al. s2003dg.

When talking about scaling laws at galaxy and cluster
scales, one cannot bypass the well-known Tully-Fisher
sTully and Fisher, 1977d and Faber-Jackson sFaber and
Jackson, 1976d scalings, which declare that the luminosi-
ties sor massesd of galaxies are tightly correlated with
their velocity spread. These scalings can be written as

L , Vmax
a , Tully-Fisher, spiral galaxies,

L , sa, Faber-Jackson, elliptical galaxies,

where Vmax is the maximum rotation velocity of a spiral
galaxy, and s2 is the stellar velocity dispersion of an el-
liptical galaxy sin fact, the fundamental plane relation
previously explained is a refinement of the Faber-
Jackson relationd. The power-law exponent a<4, which
can be easily explained if there are no dark-matter halos
around galaxies, is difficult to explain for the cold-dark-

matter paradigm. This difficulty has been offered as
strong support for the MOND theory smodified New-
tonian dynamics; Milgrom, 1983d, which substitutes for
the Newtonian theory in the limit of small accelerations
an empirical formula that explains the flat rotating
curves of galaxies without invoking the notion of dark
matter, and explains naturally the Tully-Fisher scaling.
MOND does not fit into the present picture of funda-
mental physics, as the cold-dark-matter assumption
does, but it has found a number of followers. A critical
sbut well-meantd assessment of MOND can be found in
a recent review by Binney s2004d.

B. Statistical models

The earliest models of galaxy clustering were based
on Charlier’s simple notion that the system of galaxies
formed some kind of simple hierarchy. There was little
or no observational basis for such models. Later on, in
the 1950s when galaxy clusters were seen as objects in
their own right, the clustering distribution was seen as
aggregates of points sthe clustersd scattered randomly in
an otherwise uniform background.

It was not until the systematic analysis of galaxy cata-
logs and the discovery that the two-point clustering cor-
relation function is a power law that the distribution of
galaxies was seen as being a consequence of gravita-
tional aggregation on all scales. Galaxy clustering was a
general phenomenon, and rich galaxy clusters were seen
as something rather rare and special, but nevertheless a
part of the overall clustering process.

1. Neyman-Scott processes

One of the most important of the early attempts to
model the galaxy clustering process came from the Ber-
keley statisticians Neyman and Scott s1952d. They
sought to model the distribution of galaxy clusters as a
random spatial superposition of groups of galaxies of
varying size. The individual groups were to have their
galaxies distributed in a Gaussian density distribution,
and they found evidence of superclusters sNeyman et al.,
1953d.

Whereas the model in that early form had limited ap-
plication for cosmology, the Neyman-Scott process be-
came a discipline in its own right. It remains to be seen
whether a generalization of these processes might be
resurrected for present-day clustering studies. A recent
program in a similar vein is called the halo model. We
shall describe it below.

2. Simple fractal models

There has long been a strong interest in the theory of
random processes, which has had a strong impact on
many fields of physics. See, for example, the collection
of classic papers by Wax s1954d. Among the simplest of
random processes is the so-called random walk, in which
a particle continually moves a random distance in a ran-
dom direction subject to a set of simple rules. The col-
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lection of points at which the particle stops before mov-
ing on has a distribution that can often be calculated.

Many random walks result in distributions of points
that are clustered. The character of the clustering de-
pends on the conditions of the walk. It did not take long
before someone suggested that galaxy distribution could
be modeled by a random walk sFournier d’Albe, 1907;
Mandelbrot, 1975d.

What was of interest in these random-walk models is
that they could be characterized by a single parameter: a
power-law index that related to the mean density profile
of the point distribution.

It should be noted that these simple fractal models
have little direct interest in cosmology: they are merely
particularly simple examples of clustering processes
among many. In particular, they do not show the transi-
tion to cosmic homogeneity on large scales and have no
relevant dynamical content.

That is not to say that one cannot construct relevant
fractal models. By “relevant” we mean that the model
should at least be consistent with or derived from some
dynamical theory for the clustering: anything else is
merely descriptive. Some relevant models are described
below.

3. More complex clustering models

It was clear at an early stage that the two-point corre-
lation function for galaxy clustering was by itself an in-
complete descriptor of the galaxy distribution: quite dif-
ferent point distributions can have the same two-point
correlation function.

The obvious step was to compute three-point and
higher-order correlation functions and to seek a more
complete description of the clustering that way. The key
discovery was that the higher-order functions could all
be expressed as sums of products of two-point correla-
tion functions alone. This led to a quest to build cluster-
ing hierarchies that embodied these important scaling
properties.

It was evident at the outset that such models would
have to be more sophisticated than the simple fractal
hierarchy of Mandelbrot. The first such model was the
clustering hierarchy sa bounded fractald of Soneira and
Peebles s1978d. This model produced a galaxy distribu-
tion looking remarkably like the observed galaxy distri-
bution.

The observation that the galaxy distribution was a
clustering hierarchy in which all orders of correlation
function could be related to the basic two-point function
could be described in another way. Instead of using just
one power-law index, as in a simple fractal, to describe
the clustering process, it might be possible to use a dis-
tribution of power laws. This gave rise to the multifrac-
tal model of Jones et al. s1998d in which the distribution
could be generated by a set of simple scaling laws.

4. Voronoi tesselations

The Voronoi tessellation and the related Delaunay
tessellation provide well-known tools for investigations

into clustering in point processes. The construction of
such a tessellation starts from a set of seed points dis-
tributed randomly according to some rule soften Poisson
distributedd. A set of walls is constructed around each
point, defining a closed polyhedron. Every point in the
polyhedron has the original seed point as its nearest
point among the set of all seeds.

The polyhedron effectively defines a volume of influ-
ence for each seed point. The vertices of these polyhe-
dra define a set of points that is also randomly distrib-
uted, but in a way that is quite different from the
distribution of the original seeds.

These tessellations were introduced into astronomy
by Icke and Weygaert s1987d as a model for the galaxy
clustering process. Detailed description of two-
dimensional Voronoi tessellations can be found in the
work of Ripley s1981d. The best sources of information
on three-dimensional tessellations in general and in cos-
mology are the articles of van de Weygaert s1991, 2002d.

What is remarkable is that the two-point correlation
function for the Voronoi vertices generated from
Poisson-distributed seeds is a power law that is close to
the observed power law of the two-point galaxy correla-
tion function ssee Fig. 18d. This tessellation thereby pro-
vides a possible model for the observed galaxy distribu-
tion.

Galaxies appear to form on filaments and sheets that
surround void regions. If in the Voronoi model we re-
gard the original seeds as the centers of expansion of
cosmic voids, this model becomes a dynamically plau-
sible nonlinear model for the formation of large-scale
structure svan de Weygaert and Icke, 1989d. The result-
ing galaxy distribution has many interesting features that
seem to be in accord with the distribution of galaxies in
redshift surveys sGoldwirth et al., 1995d.

FIG. 18. sColor in online editiond The scaling of the two-point
correlation function, for different subsamples of a Voronoi ver-
tices model. The subsamples have been selected according to
given “richness” criteria that mimic that of real galaxy clusters.
From van de Weygaert, 2003.
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5. Lognormal models and the like

A rather simplistic yet effective model was presented
by Coles and Jones s1991d, who postulated that the origi-
nally Gaussian density field would evolve into a lognor-
mally distributed density field. The motivation for this
was simply that the hydrodynamic continuity equation
implied that log r would be normally distributed if the
velocity field remained Gaussian. The counts in cells of
various size for N-body models and for catalogs of gal-
axies are indeed approximately lognormal for a variety
of cell volumes.

Clearly, the contours where the density equaled the
mean would remain fixed: there are no dynamics in such
a model. Such a naive approach could never reproduce
the structure we see today.

There are several relatively simple generalizations of
the lognormal distribution, notably the Poisson lognor-
mal distribution sBorgani, 1993d and the negative bino-
mial distribution sElizalde and Gaztañaga, 1992;
Betancort-Rijo, 2000d.

6. Saslaw-Sheth models

A novel set of distribution functions was introduced
by Saslaw and Sheth s1993d and Sheth and Saslaw s1996d
derived from a thermodynamic description of the clus-
tering process. The distribution functions describe the
probability that a randomly chosen sample volume con-
tains precisely N galaxies. There is only one free param-
eter in terms of which the count distribution for arbi-
trary values of the volume can be fitted. The resulting fit
is quite remarkable for both N-body experiments and
the data sets that have been analyzed sSaslaw and
Crane, 1991d.

The distribution function has some interesting scaling
properties that are discussed by Saslaw s2000d. Given the
quality of the fit to the data, this is clearly a model in
which the underlying physical motivation deserves more
attention.

7. Balian and Shaeffer

An alternative approach is to create a model for the
evolution of some statistically important quantities.
Balian and Schaeffer s1989ad selected the void probabil-
ity function: the probability that a volume V chosen at
random would contain no points sgalaxiesd. This can be
generalized to discuss the probability distributions of
volumes containing one, two, or N galaxies.

Balian and Shaeffer were able to express many of the
details of the clustering hierarchy in terms of the void
probability function. In particular, they found a bifractal
behavior for the galaxy distribution sBalian and Schaef-
fer, 1989bd. Scaling of voids as a test of fractality has
been studied by Gaite and Manrubia s2002d.

The mass sluminosityd function was also derived from
similar scaling arguments by Bernardeau and Schaeffer
s1991d, who found the scaling between the galaxy and
cluster luminosity functions to support the theory of
Balian and Schaeffer s1989bd.

Vergassola et al. s1994d took on the problem of gravi-
tational evolution of hierarchical sfractald initial condi-
tions. They chose the adhesion approximation to de-
scribe the gravitational dynamics and demonstrated
swith much greater rigor than usual in cosmological pa-
persd that the mass function has two scaling regimes,
defined by the scaling exponent of the initial velocity
field. This is the only paper that explicitly describes the
evolution of structure on all, even infinitesimally small
scales.

C. Dynamical models

1. Stable clustering models

The earliest attempt to explain the apparent power-
law nature of the two-point galaxy correlation function
was due to Peebles s1974a, 1974bd and to Gott and Rees
s1975d. These models were based on the simple idea that
a succession of scales would collapse out of the expand-
ing background and then settle into some kind of virial
equilibrium. The input data for the model were from a
power-law spectrum of primordial inhomogeneities and
the output was a power-law correlation function on
those scales that had achieved virial equilibrium. There
would, according to this model, be another power law on
larger scales that had not yet achieved virial equilibrium.

For a primordial spectrum of the form Pskd~k−n, the
slope of the two-point galaxy correlation function would
be g= s3n+9d / sn+5d, which for n=0 gave a respectable
g=1.8, while n=1 gave an almost respectable g=2.

The apparent success of such an elementary model
gave great impetus to the field: we saw something we
had some hope of understanding. However, there were
several fundamental flaws in the underlying assump-
tions, not the least of which was that the observed clus-
tering power law extended to such large scales that virial
equilibrium was out of the question. There were also
complications arising out of the use of spherical collapse
models for calculating densities.

Addressing these problems gave rise to a plethora of
papers on this subject, too numerous to detail here. A
fine modern attempt at this is that of Sheth and Tormen
s1999d. The subject has since evolved into some of the
more sophisticated models for the evolution of large-
scale structure, which are discussed later sSheth and van
de Weygaert, 2004d.

2. BBGKY hierarchy

Cosmic structure grows by the action of gravitational
forces on finite-amplitude initial density fluctuations
with a given power spectrum. We see these fluctuations
in the COBE anisotropy maps and we believe they are
Gaussian. This means that the initial conditions are de-
scribed as a random process with a given two-point cor-
relation function. There are no other higher-order cor-
relations: these must grow as a consequence of
dynamical processes.

Given that, it is natural to try to model the initial
growth of the clustering via a BBGKY hierarchy of

1250 Jones et al.: Scaling laws in the distribution of galaxies

Rev. Mod. Phys., Vol. 76, No. 4, October 2004



equations which describe the growth of the higher-order
correlation functions. The first attempt in this direction
was made by Fall and Severne s1976d, though the paper
by Davis and Peebles s1977d has certainly been more
influential. The full BBGKY theory of structure forma-
tion in cosmology is described by Peebles s1980d and in a
series of papers by Fry s1982, 1984ad. Fry s1985d pre-
dicted the one-point density distribution function in the
BBGKY theory. He also developed the perturbation
theory of structure formation sFry, 1984bd which has be-
come popular again; see the recent review by Ber-
nardeau et al. s2002d.

In the perturbative approach, the main question is
how many orders of perturbation theory are required to
give sensible results in the nonlinear regime.

3. Pancake and adhesion models

Very early in the study of clustering, Zel’dovich s1970d
presented a remarkably simple, yet effective, model for
the evolution of galaxy clustering. In that model, the
gravitational potential in which the galaxies moved was
considered to be known at all times in terms of the ini-
tial conditions. The particles sgalaxiesd then moved kine-
matically in this field without modifying it. They were in
effect test particles with no self-gravity. The equations of
motion were arranged so as to give the correct initial,
small-amplitude, linear approximation result.

The Zel’dovich model provided a first glimpse of the
possible growth of large-scale cosmic structure and led
to the prediction that the galaxy distribution would con-
sist of narrow filaments of galaxies surrounding large
voids. Nothing of the sort had been observed at the
time, but striking confirmation was later achieved by the
CfA-II slice sample of de Lapparent et al. s1986d, whose
redshift survey revealed for the first time remarkable
structures of the kind predicted by Zel’dovich.

In order to make further progress it was necessary to
correct one problem with the Zel’dovich model: the fila-
ments formed at one specific instance and then dis-
solved. The dissolution of the filaments happened be-
cause there was nothing to bind the particles to the
filaments: after the particles entered a filament, they left.
The solution was simple: make the particles sticky. This
gave rise to a new series of models, referred to as adhe-
sion models sGurbatov et al., 1989a; Kofman et al., 1992d.
They were based on the three-dimensional Burgers
equation. In these models structure formed and once it
formed it stayed put: the lack of self-gravity within these
models prevented taking them any further.

It was, however, possible to compute the scaling indi-
ces for various physical quantities in the adhesion
model. This was achieved by Jones s1999d using path
integrals to solve the relevant version of the Burgers
equation.

4. Renormalization group

Peebles s1985d first recognized that power-law cluster-
ing might be described by a renormalization-group ap-
proach in which each part of the universe behaves as a

rescaled version of the large part of the universe in
which it is embedded. This allows for a recursive method
of generating cosmic structure, the outcome of which is
a power-law correlation function that is consistent with
the dynamics of the clustering process.

Peebles s1985d used this approach for numerical simu-
lations of the evolution of structure, hoping that the
renormalization approach would complement the usual
N-body methods, improving the usually insufficient spa-
tial resolution and helping to get rid of the transients
caused by imperfect initial conditions. The first numeri-
cal renormalization model had only 1000 particles and
suffered from serious shot noise.

This was later repeated on a much larger scale by
Couchman and Peebles s1998d. As before, they found
that the renormalization solution produced a stable cor-
relation function. However, the spatial structures gener-
ated by the renormalization algorithm differed from
those obtained by the conventional test simulation. The
relative velocity dispersion was smaller, and the mass
distribution of groups was different. As a rule, the renor-
malization solution described small scales better, and the
conventional solution was a better description of the
large-scale structure. As both approaches, the conven-
tional and the renormalization procedures, suffer from
numerical difficulties, the question of a true simulation
remains open.

5. The halo model and perturbation-theory halo model

The early statistical model sNeyman and Scott, 1952d
for the galaxy distribution assumed Poissonian distribu-
tion of clusters of galaxies. This model was resurrected
by Scherrer and Bertschinger s1991d and has found wide
popularity in recent years; see the review by Cooray and
Sheth s2002d. In its present incarnation, the halo model
describes nonlinear structures as virialized dark-matter
halos of different mass, placing them in space according
to the linear large-scale density field that is completely
described by the initial power spectrum. Such substitu-
tion is shown in Fig. 19, where the exact nonlinear
model matter distribution is compared with its halo-
model representation.

Once the model for dark-matter distribution has been
created, the halos can be populated by galaxies, follow-
ing different recipes. This approach has been surpris-
ingly fruitful, allowing calculation of the correlation
functions and power spectra, prediction of gravitational
lensing effects, etc. This also tells us that low-order sor
any-orderd correlations cannot be the final truth, as the
two panels in Fig. 19 are manifestly different.

The success of the sstatisticald halo model motivated
the creation of a new dynamical model to describe the
evolution of structure sScoccimarro and Sheth, 2002d.
The perturbation-theory halo or PT halo formalism, as it
is called, creates the large-scale structure using a second-
order Lagrangian perturbation theory to derive the po-
sitions and velocities of particles, and then collects par-
ticles into virialized halos, just as in the halo model. As
this approach is much faster than the conventional
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N-body simulations, it can be used to sample large pa-
rameter spaces—a necessary requirement for applica-
tion of maximum-likelihood methods.

6. More advanced models

Two analytic models in the spirit of the Press-
Schechter density patch model are particuarly notewor-
thy: the “peak-patch” model of Bond and Myers sBond
and Myers, 1996a, 1996b, 1996cd and the very recent
“void hierarchy” model of Sheth and van de Weygaert
s2004d.

Both of these models attempt to model the evolution
of structure by breaking down the structure into ele-
ments whose individual evolution is understood in terms
of a relatively simple model. The overall picture is then
synthesized by combining these elements according to
some recipe. This last synthesis step is in both cases
highly complex, but it is this last step that extends these
works far beyond other like-minded approaches and
that lends these models their high degree of credibility.

The peak-patch approach is to look at density en-
hancements, while the void hierarchy approach focuses
on the density deficits that are likely to become voids or
are embedded in regions that will become overdensities.
It somewhat surprising that the peak-patch model did
not stimulate further work since, despite its complexity,
it is obviously a good way to go if one wishes to under-
stand the evolution of denser structures.

The void hierarchy approach seems to be particularly
strong when it comes to explaining how large-scale
structure has evolved: it views the evolution of large-
scale structure as being dominated by a complex hierar-
chy of voids expanding to push matter around and so
organize it into the observed large-scale structures. At
any cosmic epoch the voids have a size distribution that

is well peaked about a characteristic void size which
evolves self-similarly in time.

D. Hydrodynamic models for clustering

Let the physical position of a particle at some sNew-
toniand time t be r. It is useful to rescale this by the
background scale factor astd and label the particle with
its comoving coordinate

x =
1

astd
r s53d

relative to the uniform background. Formation of struc-
ture means that, viewed from a frame that is coexpand-
ing with the background, particles are moving and the
values of their coordinates x are changing in time.

There is another coordinate system that can be used:
the Lagrangian coordinate q of each particle can be
taken to be the value of the comoving coordinate x at
some fiducial time, usually at t=0 sthe big bangd or a
little later, and so remains fixed for each particle. The
transformation between the Lagrangian coordinate q
and the proper sEuleriand coordinate x is achieved via
the equations of motion fsee, for example, Buchert
s1996dg.

In a homogeneous universe, the particle velocity in
physical coordinates is ṙ=Hr, where H= ȧ /a is the
Hubble expansion rate. In this situation the comoving
coordinate x of a particle is fixed and there is no peculiar
velocity relative to the coexpanding background coordi-
nate system.

In an inhomogeneous universe, the displacement of
the particles relative to the coexpanding background co-
ordinate system x is time dependent. The velocity rela-
tive to these coordinates is just ẋ, and this translates

FIG. 19. sColor in online editiond The halo model. The simulated dark-matter distribution sleft paneld and its halo model sright
paneld. Reproduced from Cooray and Sheth, 2002, with permission from Elsevier.
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back to a physical “peculiar” velocity v=aẋ. We can
therefore write the total physical velocity of the particle
sincluding the cosmic expansiond as

V = v + Hr, v = aẋ ,

where here the dot derivative is the simple time deriva-
tive taken at a fixed place in the coexpanding frame.

1. Cosmological gas dynamics

As usual, we work in the standard comoving coordi-
nates hxj defined by rescaling the physical coordinates
hrj by the cosmic scale factor astd, as described above.

The motion of a particle is governed by the equations
of momentum conservation, the continuity equation,
and the Poisson equation. Expressed relative to the co-
moving coordinate frame and in terms of density fluc-
tuation d relative to the mean density r0std

dsx,td =
rsx,td − r0std

r0std
. s54d

These equations are sMunshi and Starobinsky, 1994;
Peebles, 1980d

]

]t
savd + sv . ¹ dv = −

]f

]x
,

momentum conservation, s55d

]d

]t
+

1

a
¹ . fs1 + ddvg = 0, continuity, s56d

]2f

]x2 = 4pGr0a2dsx,td, Poisson. s57d

Here fsx , td is the part of the gravitational potential field
induced by the fluctuating part of the matter density
rsx , td relative to the mean cosmic density r̄std. G is the
Newtonian gravitational constant.

Note that here the source of the gravitational poten-
tial is the same density fluctuations that drive the motion
of the material with velocity usxd.

2. The cosmic Bernoulli equation

It can be assumed throughout that the cosmic flow is
initially irrotational; this is justified by the fact that ro-
tational modes decay during the initial growth of struc-
ture or from cosmic microwave background data. This
assumption makes it possible to take the next step of
introducing a velocity potential that completely de-
scribes the fluid flow and then going on to get the first
integral of the momentum equation: the Bernoulli equa-
tion.

Introduce a velocity potential V such that

v = − ¹ V/a . s58d

Recalling that the gradient operator is taken with re-
spect to the comoving x coordinates, we see that V is the
usual velocity potential for the real flow field v. The first
integral of the momentum equation becomes

]V
]t

−
1

2a2 s¹Vd2 = f . s59d

This is referred to as the Bernoulli equation, though in
fluid mechanics we usually find an additional term: the
enthalpy w defined by ¹w= s¹pd /r. This vanishes in the
postrecombination cosmological context by virtue of ne-
glecting pressure gradients.

As a matter of interest, for a general snonpotentiald
flow we have an integral of the momentum equation that
is a constant only along flow streamlines. Different
streamlines can have different values for this constant. It
is only in the case of potential flow such as is supposed
here that the constant must be the same on all stream-
lines.

The Bernoulli equation s59d is a simple expression of
the way in which the velocity potential sdescribed by Vd
is driven by a gravitational potential f in a uniform ex-
panding background fdescribed by the expansion scale
factor astdg. Despite its simplicity it has several draw-
backs, the most serious of which is the fact that an ad-
ditional equation fthe Poisson equation in the form of
Eq. s57dg or simplifying assumption is needed to deter-
mine the spatially fluctuating gravitational potential
fsxd.

Another drawback of the Bernoulli equation as pre-
sented here is that it describes a dissipationless flow:
there is no viscosity. Dissipation, be it viscosity or ther-
mal energy transfer, is an essential ingredient of any
theory of galaxy formation, since there has to be a
mechanism for allowing the growth of extreme density
contrasts. Galaxy formation is not an adiabatic process!

A difficulty that presents itself with Eq. s59d is that the
term involving the spatial derivative of the velocity po-
tential ¹V is multiplied by a function of time astd. This
can be removed by a further transformation of the ve-
locity potential:

U =
V

a2ȧ
. s60d

Now, the potential U is related to the comoving peculiar
velocity field u by u=−aȧ¹U. In terms of this rescaled
potential the Bernoulli equation takes on a form that is
more familiar in hydrodynamics:

]U
]a

−
1
2

s¹Ud2 =
3

2a
sAf − Ud . s61d

Here we have used the scale factor a~ t2/3 as the time
variable and noted that A=−s3ȧa2d−1=const in an
Einstein–de Sitter universe sKofman and Shandarin,
1988, 1990; N.B.: in these papers the velocity potential
has the opposite sign from oursd.

3. Zel’dovich approximation

The Zel’dovich approximation sZel’dovich, 1970;
Shandarin and Zel’dovich, 1989d to the cosmic fluid flow
was a remarkable first try at describing the appearance
of the large-scale structure of the universe in terms of

1253Jones et al.: Scaling laws in the distribution of galaxies

Rev. Mod. Phys., Vol. 76, No. 4, October 2004



structures referred to as “pancakes” and “filaments”
that surround voids. Indeed, one might say that through
this approximation Zel’dovich predicted the existence of
the structures mapped later by de Lapparent et al.
s1986d.

The Zel’dovich approximation is recovered from the
last variant of the Bernoulli equation above Eq. s61d by
setting Af=−U. This latter relationship replaces the
Poisson equation in that approximation.

While predicting the qualitative features of large-scale
structure, the Zel’dovich approximation had a number
of shortcomings, notable among which was the fact that
particles passed through the pancakes rather than get-
ting stopped there and accumulating into substructures
sgalaxies and groupsd.

The last decade has seen a host of improvements to
the basic prescription, which are nicely reviewed by
Sahni and Coles s1995d, Buchert s1996d, and Susperregi
and Buchert s1997d. These improvements largely fall
into three categories: adhesion schemes in which particle
orbits are prevented from crossing by introducing an ar-
tificial viscosity, various “fixup” schemes in which simpli-
fying assumptions are made about the gravitational po-
tential or the power spectrum, and nonlinear schemes in
which the basic Zel’dovich approximation is taken to a
higher order. We defer the discussion of the adhesion
approach to the next section.

4. Super-Zel’dovich approximations

Several recipes have been given for improving on the
Zel’dovich approximation in its original nondissipative
form without introducing an ad hoc artificial viscosity. In
these approximations, the Poisson equation is replaced
with some ansatz regarding the gravitational potential: it
can be set, for example, equal to a constant or equal to
the velocity potential.

Matarrese et al. s1992d and Melott, Lucchin, et al.
s1994d introduced a variant called the frozen flow ap-
proximation in which the peculiar velocity field at any
point fixed in the background is frozen at its original
value: the flow is steady in the comoving frame. sThe
initial peculiar velocity field is chosen self-consistently
with the fluctuating potential and the initial density
field.d

In another approach Bagla and Padmanabhan s1994,
1995d and Brainerd et al. s1993d assume that the fluctu-
ating part of the gravitational potential at a point ex-
panding with the background remains constant sas it
does in linear theoryd. This is referred to as the frozen
potential approximation or linearly evolving potential.
The motivation for this as a nonlinear extension arises
from some special cases in which nonlinear calculations
have been done and from N-body simulations in which
the potential is seen not to change much in comparison
with other quantities.

Munshi and Starobinsky s1994d point out that the
standard Zel’dovich approximation is equivalent to the
assumption that V=ft, while the frozen flow approxima-
tion is V=f0t, and the frozen sor linear by evolvingd po-

tential approximation is F=f0. In any case, this last
equation provides an equation for the velocity potential
given a model for the gravitational potential.

More recently, we have seen the “truncated”
Zel’dovich approximation sColes et al., 1993; Melott,
Pellman, and Shandarin, 1994d, the “optimized”
Zel’dovich approximation sMellott, Shandarin, and
Weinberg, 1994d and the “completed” Zel’dovich ap-
proximation sBetancort-Rijo and López-Corredoira,
2000d. These correlate remarkably well with full N-body
simulations.

5. Nonlinear enhancements

Various authors have presented nonlinear versions of
the Zel’dovich approximation. Gramann s1993d and Sus-
perregi and Buchert s1997d used a second-order exten-
sion, while Buchert s1996d presented a perturbation
scheme that is correct to third order in small quantities.

E. Nonlinear dynamic models

The Zel’dovich approximation and its variations are
Lagrangian descriptions of the cosmic fluid flow. Their
importance lies in the fact that they capture the gross
elements of the nonlinear clustering while their weak-
ness lies in their sidestepping any real gravitational
forces. Consequently they have been used mainly as
short-cut simulators of the evolution of large-scale struc-
ture. Little analytic work has been done using these ap-
proaches.

It is the Lagrangian nature of those equations that
makes it difficult to perform analytic calculations that
might lead to an understanding of how, say, the two-
point correlation function evolves with time. In order to
make progress on an analytic front it is necessary to cast
the equations into analytically tractable Eulerian forms.
The basis for this was provided by the important adhe-
sion approximation of Gurbatov et al. s1989bd, though in
the form presented there it was only ever used for nu-
merical simulations.

1. Adhesion approximations

The paper by Gurbatov et al. s1989bd provided a ver-
sion of the Zel’dovich approximation in which particle
shell crossing was inhibited: the material was stopped as
it approached the pancakes by an artificial viscosity in-
troduced on a fairly ad hoc basis into the equations. The
underlying equation in this approximation turns out to
be the three-dimensional Burgers equation, and so the
approach has the virtues of being simple to use and very
easy to compute; see, for example, Weinberg and Gunn
s1990d.

The adhesion approximation is in a sense a linear ap-
proximation: it is allowed to evolve into the nonlinear
regime in the expectation that its behavior will mimic
the nonlinear behavior. This shortcoming has recently
been addressed by Menci s2002d.

Just as the simple Zel’dovich approximation tends to
diffuse the pancakes, the adhesion approximation en-
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sures that asymptotically they are infinitely thin and that
the particle velocity perpendicular to these surfaces is
zero. The slowing down of the particles as they approach
the pancakes, the notion of “viscosity” in dark matter,
and the lack of a full treatment of the gravitational field
fluctuations leaves some question as to just how good
the approximation is for studying, say, large-scale cosmic
flow fields.

It is remarkable how much can be done within the
framework of the adhesion model. Babul and Starkman
s1992d introduced structure functions based on the mo-
ments of inertia of the local particle distribution, to de-
scribe the local shape of the matter distribution. They
showed this to be a useful descriptor of the topology of
the galaxy distribution. The evolution of these structure
functions was studied analytically by Sathyaprakash et
al. s1996d, who analyzed the emergence of large-scale
filamentary and pancakelike structures and showed how
this might lead to large-scale coherence in the galaxy
distribution. Sahni et al. s1994d discussed the evolution
of voids using the adhesion approximation. In their
model, ever larger voids emerge at successive epochs,
eventually leaving the largest voids. According to this
model, voids contain some internal filamentary and pan-
cakelike substructures that dissolve as the voids get
older.

2. The random heat equation

The random heat equation was introduced into the
study of cosmic structure evolution by Jones s1999d. The
Bernoulli equation s59d, modified by introducing viscos-
ity fsee Jones s1999dg, can be linearized by means of the
Hopf-Cole transformation of variables in which we re-
place the velocity potential V with a logarithmic velocity
potential c:

V = − 2n ln c . s62d

If the gravitational potential is rescaled with the viscos-
ity,

fsxd = 2nesxd , s63d

Eq. s59d with the viscosity term reduces to

]c

]t
=

1

a2n
]2c

]x2 + esxdc . s64d

Again, it is worth stressing that n can depend on time,
but we see that invoking a time dependence in n means
that the new potential esxd gains an explicit time depen-
dence. This time dependence can be masked so as to
give the random heat equation in its standard form:

]c

]t
= n

]2c

]x2 + esxdc . s65d

It is now to be understood that either n or e sor bothd
may contain an explicit time dependence through a mul-
tiplying factor.

The renormalized potential field esxd is considered as
given and the task is to find the potential c. This equa-

tion is familiar in slightly different forms in a variety of
fields of physics where it has a variety of names: the
Anderson model, the Landau-Ginzburg equation, and—
with a complex time—the Schrödinger equation of
quantum mechanics. We may hope to benefit from the
extensive knowledge that already exists about this equa-
tion.

If we take the limit n→0 and use the definition V
=−2n ln c, we are led straight back to the familiar look-
ing dynamical equation

]savd
]t

= ¹ f ,

telling us that the gravitational potential drives the fluc-
tuating velocity field. Despite the circuitous route used
in deriving the random heat equation, it still remains
very close to the fundamental physical process that
drives the growth of the large-scale structure.

3. The solution of the random heat equation

We can formally solve the random heat equation fol-
lowing the discussion of Brax s1992d fbut see also
Zel’dovich et al. s1985, 1987dg. The solution is expressed
in terms of path integrals as was first given by Feynman
and Kac:

csx,td =E Ksx,t,x0,0dcsx0,0ddx0,

where the propagator K is

Ksx1,t,x0,0d = E
xs0d=x0

xstd=x1

eS„xstd,t…Dfxstdg s66d

and

S„xstd,t… = − E
0

t F 1

4n
Udxst8d

dt8
U2

− e„xst8d,t8…Gdt8

is the action. This is just the “free-particle” action with
an additional contribution to the action from the poten-
tial esx , td evaluated at appropriate places along the vari-
ous paths that contribute to the solution fBrax s1992dg.
The integrand is just the Lagrangian for a particle mov-
ing in a potential esx , td.

What is important here is that the potential esx , td con-
tributes to the sum over all paths through an exponen-
tial. Thus the additive contributions from each part of
the relevant paths result in a multiplicative contribution
to the final solution. It is this which creates the lognor-
mal distribution in csx , td if the potential esx , td is nor-
mally distributed.

4. Statistical moments

Zel’dovich et al. s1985, 1987d explain the solution
csx , td in straightforward terms. They point out that, of
all the paths that contribute to the integral, one might
expect the dominant contribution to come from those
paths that pass rapidly through high maxima of this po-
tential. However, there are rarer paths soptimal trajecto-
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riesd that are traversed more quickly and so probe a
greater volume, and these can encounter still larger sand
rarerd maxima of the potential. These latter paths in fact
make the main contribution to the integral. This is pre-
sented rigorously by Gärtner and Molchanov s1992d.

The outcome of the discussion is that the moments of
the distribution of c scale as

kcql ~ expFSqē +
1
2

q2s2DtG , s67d

where ē and s are the mean and variance of the process
e. This gives intermittency indices sBrax, 1992d

mq ~ sq2 − qd , s68d

where the constant of proportionality is determined by
the dimensional characteristics of the random process
esxd. Thus the solution of the random heat equation is
lognormally distributed for a Gaussian fluctuating gravi-
tational potential.

In view of the Hopf-Cole transformation, the velocity
potential is in fact the logarithm of the pseudopotential
c : V=−2n ln c. Since c is lognormally distributed, it fol-
lows that V is normally distributed, and we can compute
its rms error as

sV ~ sft1/2. s69d

Remember that the variance of the gravitational poten-
tial fluctuations sf

2 may itself have a time dependence.
This is one of the things that was assumed as given and
that in the single-component model is given by the ap-
proximation used to eliminate the Poisson equation.

5. The Schrödinger equation

Starting with the coupled Klein-Gordon and Einstein
field equations, Widrow and Kaiser s1993d produced an
ansatz for replacing the Euler and continuity equations
of hydrodynamics with a Schrödinger equation in the
form

iH]C

]t
= −

H2

2m

]2C

]x2 + mfsxdC s70d

fsee also Speigel s1980dg. H here is taken to be an ad-
justable parameter controlling spatial resolution. In this
model the gravitational potential and density fields are
given by

]2f

]x2 = 4pGCC * , r = uC2u . s71d

Widrow and Kaiser s1993d see this as a means for doing
numerical simulations of large-scale structure evolution
sthey use a Schrödinger solver based on an implicit
finite-differencing method called Cayley’s schemed.

The Schrödinger equation for C can be solved analyti-
cally by identical procedures to those described above
for solving the random heat equation, the difference be-
ing that the potential C being solved is complex. C is
directly related to the density field. This route is advo-
cated by Coles s2002d in his very clear discussion of

models for the origin of spatial intermittency. Coles and
Spencer s2003d have taken this approach further and
shown how to add effects of gas pressure corresponding
to a polytropic equation of state. They present this as a
useful approach for modeling the growth of fluctuations
in the mildly nonlinear regime, which is somewhat short
of the ambition of the original Jones s1999d program.

6. General comments

The relative merits of the random heat equation and
the Schrödinger equation approaches are yet to be as-
sessed. They are derived from quite different premises:
one pretends to be a derivation from the basic equations
while the other is an ansatz based on interpreting quan-
tum mechanics as a fluid process. Each has a level of
arbitrariness: one involves an unknown sunphysicald vis-
cosity that is allowed to tend to zero, while the other
involves a tuning parameter, the effective Planck con-
stant H that can probably be allowed to become vanish-
ingly small without changing any results.

In condensed-matter physics, generalizations of both
equations have played important roles as the basis of
analytic models for a diversity of physical phenomena.
They appear to offer an important jumping-off point for
further research based on well-established techniques.

More recently, Matarrese and Mohayaee s2002d have
presented a modification of the adhesion model that
they call the forced adhesion model. This is based on the
forced Burgers equation, which they transform into a
random heat equation and solve using path integrals. It
should be noted that this approach is in fact quite differ-
ent from that of Jones s1999d: Matarrese and Moyahaee
use different variables and they claim to model the self-
gravity of the system, thereby avoiding Jones’s external
field approximation.

Menci s2002d, in an approach rather similar to that of
Matarrese and Moyahaee, also avoids the external field
assumption. This is done by generalizing the simplistic
gravitational terms of the classical adhesion model to a
form that, it is claimed, extends the validity of the gravi-
tational field terms. Despite the greater complexity, a
solution can be achieved via path integrals.

The main shortcoming of the Jones s1999d model is
indeed the assumption of an externally specified random
gravitational potential field, though it is not clear that
the proposed alternatives are much better. In the Jones
model the intention had been to write two equations:
one collisionless representing dark matter and providing
the main contribution to the gravitational potential and
the other collisional, representing the baryonic sdissipa-
tived component. That program was never completed.

VIII. CONCLUDING REMARKS

A. About scaling

As we have demonstrated above, there are many scal-
ing laws that connect cosmological observables. The
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main reasons for this are the scale-free nature of gravi-
tation and the shopefullyd scale-free initial perturba-
tions.

The gravity scaling could, in principle, extend into
very small scales, if we had only dark matter in the uni-
verse. In the real world the existence of baryons limits
the scaling range from below by typical galaxy masses.

The scaling range starts from satellite galaxy dis-
tances, several tens of kpc, and it may extend up to clus-
ter sizes, ,10 Mpc; two to three decades is a consider-
able range. The scaling laws at supercluster distances
and larger are determined by the physics of initial fluc-
tuations.

The first scaling law characterizing the distribution of
galaxies is the power-law behavior of the two-point cor-
relation function at small scales: jsrd~r−g. Other authors
have tried to fit the quantity 1+jsrd to a power law
~rD2−3. Obviously the previous two power laws can only
hold simultaneously within the strong-clustering regime,
where jsrd@1 and therefore—only at those scales—the
equality g=3−D2 holds. At intermediate scales s3,r
,20h−1 Mpcd the correlation dimension D2 is ,2, in-
creasing at larger scales up to D2.3, indicating an un-
ambiguous transition to homogeneity. Moreover, statis-
tical analysis of the galaxy catalogs permits us to
conclude that, within the fractal regime, the scaling is
better described in terms of multifractal inhomogeneous
measures than it is using homogeneous self-similar scal-
ing laws.

Scaling of the galaxy correlation length r0 with the
sample size, r0~Rs, is a strong prediction for a fractal
distribution. Nevertheless, this behavior is clearly ruled
out by the currently available redshift catalogs of galax-
ies. The scaling of r0 for different kind of objects—from
galaxies to clusters, including clusters with different
richness—has been expressed as a linear dependence of
r0 with the intercluster distance dc. This law, however,
does not hold for large values of dc.

One successful scaling law found in the distribution of
galaxies is the scaling of the angular two-point correla-
tion function with the sample depth. In this case, how-
ever, the scaling argues against an unbounded fractal
view of the distribution of galaxies, supporting large-
scale homogeneity.

Finally, the hierarchical scaling hypothesis of the
q-order correlation function needs further confirmation
from the still-under-construction deep and wide redshift
surveys.

We have attempted here to provide an overview of
the mathematical and statistical techniques that might
be used to characterize the large-scale structure of the
universe in coordinate space, velocity space, or both,
with, we hope, enough reference to actual applications
and results to indicate the power of the various tech-
niques and where they are likely to fail. Of these meth-
ods, the ones that have been used most often and so are
needed for reading the current literature are the two-
point correlation function sSec. V.Bd, the power spec-
trum sSec. VI.Cd, counts in cells and the void probability

function sSec. VI.E.3d, and fractal and multifractal mea-
sures sSec. VI.E.4d. Those that we believe have the most
potential for future analysis of the very large redshift
databases currently becoming available are the Fourier
methods sSecs. VI.C and VI.Dd, although the reliable
determination of the two-point correlation function at
large scales is still very important for understanding the
large-scale structure sDurrer et al., 2003d.

Most of the techniques can be applied equally well to
real data sin two or three dimensionsd or to the results of
numerical simulations salso in two- or three-dimensional
projectionsd of how structure ought to form in universes
with various cosmological parameters, kinds of dark
matter, and so forth.

B. Future data gathering

It may well be that the 2dF and SDSS surveys are the
last great redshift surveys for some time to come. They
have yielded a phenomenal amount of new information,
which we have hardly had time to digest fully. It is not
clear what extra information another million redshifts
might yield: long-term funding issues may prevent us
from ever seeing that. However, the future may well lie
in the direction of deeper surveys probing those times
when the galaxies themselves were forming and the
large-scale structure was coming into existence.

A number of such surveys are currently under way:
2MASS, COMBO17, GOODS, DEEP2, CADIS, and
the recently funded ALHAMBRA. With these we will
be able to confront our models with real data, but only
provided we can filter out the effects of galaxy evolu-
tion, which will affect sample selection and data inter-
pretation sparticularly if there are luminosity-dependent
effectsd.

C. Understanding structure

We have tried and tested a number of descriptors of
the galaxy distribution with varying amounts of success.
The task has been made easier by ever growing data
sets, but it is, nevertheless, becoming clear that a some-
what different approach may be required if we are to
improve substantially on what we understand now.

What different approaches might we take? Our visual
impression of large-scale structure is that it is dominated
by voids, filaments, and clusters. This suggests that in-
stead of looking at sample-wide statistical measures such
as correlation functions, we might try to isolate the very
features that strike us visually and examine them as in-
dividual structures. Much effort has already been de-
voted to isolating clusters of galaxies, but there are cur-
rently few, if any, methods available for isolating either
voids or filaments.

Wavelet analysis and its generalizations such as beam-
lets and ridgelets, may prove useful in identifying these
structures sDonoho et al., 2002d. Other nonlinear analy-
sis methodologies exist but have not been tried in this
context. The fact that galaxies sor points in a simulationd
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provide a sparse Poisson sample of the underlying data
complicates the application of what might otherwise be
standard methods.

The power of having a clear mathematical descriptor
lies in being able to unambiguously identify and study
specific objects. This in turn provides a tool for confront-
ing simulations with data.

D. About simulations

Ever since the first simulations by Aarseth, Gott, and
Turner we have gazed upon and admired simulations
looking “as good as the real thing.” We were impressed
by the gravitational growth of clustering and we were
impressed by the fact that the two-point correlation
function exhibited a power law of approximately the
right slope.

Subsequent developments explored the dependency
of the results on initial conditions and extended signifi-
cantly the range of length scales over which we could
apply our value judgments. There has also been a
clearer discrimination between dark matter sthe stuff of
simulationsd and luminous matter sthe stuff we observed.
To this has been added exceptional computer graphics to
render the simulations as “observed samples.” They do
look as good as the real thing.

Several caveats, however, apply. First, simulations
provide three-space and three-velocity coordinates for
each mass point at each time. Data provide two sangu-
lard space coordinates and a redshift, which is made up
of two terms, one proportional to the third spatial coor-
dinate sdistanced and one representing motion of the
point sgalaxy or clusterd relative to uniform cosmic ex-
pansion. These can be separated only within some
model of what real srather than N-bodyd clusters ought
to be doing in the way of a virial theorem or some other
way of parceling out potential and kinetic energy among
the mass points.

Second, between the simulations of what the smostly
darkd matter is doing and data on what luminous galax-
ies are doing lies all of what one might call gaseous as-
trophysics sor even gastrophysicsd. The intermediate ter-
ritory includes inflow of baryons into potential wells,
star formation and wind energy input, supernovae
swhich add both kinetic energy and heavy elements,
which change how gas cools and condensesd, galactic
winds, ongoing infall into the wells, systematic gas flow
within galaxies, shocking of baryons plus heating and/or
triggered star formation when halos interact, collide, and
merge, energy input from black-hole accretion, and so
forth. Most of these currently defy real calculation and
are represented by parameters and proportionalities.
Thus the statement that some particular set of cosmo-
logical parameters, initial conditions, and prescriptions
for star formation evolve forward in time to “fit the
data” is not equivalent to being able to say that this is
the way nature did it.

E. Where we stand on theory

The evolution of cosmic structure is a complex non-
linear process driven mainly by the force of gravity. The
simplicity of the underlying driving mechanism, Newton-
ian attraction, and the fact that we see simple power-law
scaling, leads us to believe that the process of how large-
scale cosmic structure is organized can be understood.
What is missing is a clear methodology for this, and it is
certain that we shall need to borrow tools and methods
from other branches of physics. This is of course easier
said than done, since the driving force, gravity, has infi-
nite range and is always attractive.

Two approaches look promising at this time. There
are the numerical renormalization-group simulations of
Peebles and Couchman. Then there are the analytic
models: the void hierarchy models of Sheth and van de
Weygaert and the peak-patch model of Bond and Myers.
The random heat equation model of Jones and the
Schrödinger equation approach of Widrow and Kaiser
remain to be fully evaluated.

F. And finally…

We have good reason to believe that our data samples
are now good enough to unequivocally allow an unam-
biguous description of the clustering of galaxies in the
universe. This description is entirely consistent with the
view of the universe that has emerged from the theoret-
ical and observational research of the 20th century.
There are many details to fill in and there is much left to
understand. The details will come with future observa-
tional projects and understanding will come with further
exploitation of cross-disciplinary physics. It is the exis-
tence of scaling laws in the galaxy distribution that pro-
vides us with a ray of hope that it is possible to do more
than merely model the growth of cosmic structure: we
may be able to understand it.

Arguably the single greatest surprise is how well even
rather simple models appear to reproduce the hard-won
data.
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LIST OF ABBREVIATIONS FOR SKY SURVEYS AND
SURVEY INSTRUMENTS

ACBAR Arcminute Cosmology Bolometer
Array Receiver sinstrument designed
for the study of the cosmic micro-
wave background radiation, installed
at the South Pole Station in Antarc-
ticad

ACS Advanced Camera for Surveys son
Hubble Space Telescoped

APM sCambridged Automatic Plate Mea-
suring machine ssurvey based on digi-
tal scanning of photographic platesd

ALHAMBRA Advanced Large, Homogeneous
Area Medium-Band Redshift Astro-
nomical sphotometric survey that
makes use of the 3.5-m telescope at
Calar Alto, Spain, in progressd

BOOMERANG Balloon Observations of Millimetric
Extragalactic Radiation and Geo-
physics

CADIS Calar Alto Deep Imaging Survey
CBI Cosmic Background Imager sinstru-

ment designed for the study of the
cosmic microwave background radia-
tion, installed in the Chilean Andesd

CfA-II Center for Astrophysics ssecond red-
shift survey undertaken at the Smith-
sonian Astrophysical Observatory in
the late 1980s, using a 1.5-m tele-
scope in Arizonad

CNOC2 Canadian Network for Observational
Cosmology

COBE Cosmic Background Explorer ssatel-
lited

COMBO17 Classifying Objects by Medium-Band
Observations sspectrophotometric
survey made using 17 optical filters
with the Wield Field Imager at the
ESO 2.2-m telescope located in La
Silla, Chiled

DASI Degree Angular Scale Interferometer
shigh-angular-resolution instrument
designed for the study of the cosmic
microwave background radiation in-
stalled at the Amundsen-Scott South
Pole Stationd

DEEP Deep Extragalactic Evolutionary
Probe sprogram that makes use of the
twin 10-m Keck Telescopes in Hawaii
and the Hubble Space Telescope to

produce a very deep redshift survey
of galaxiesd

2DF Two-Degree Field fredshift survey
based on a revised Automatic Plate
Measuring sAPMd survey catalog,
built with the 3.9-m Anglo-
Australian Telescope at Siding Spring
in Australiag

6DF Six-Degree Field fsurvey based on
the Extended Source Catalog sXSCd
of the Two-Micron All-Sky Survey
s2MASSdg

DMR Differential Microwave Radiometer
son Cosmic Background Explorerd

ESP European Slice Project sredshift sur-
veyd

FIRST Faint Images of the Radio Sky at
Twenty cm sproject designed to make
radio images with the VLA over
10 000 square degrees of the North
and South Galactic capsd

GOODS Great Observatories Origins Deep
Survey ssurvey of about 300 square
arcmin split into two fields, that
makes use of the NASA Great Ob-
servatoriesd

HST Hubble Space Telescope
IRAS Infrared Astronomical Satellite
LCRS Las Campanas Redshift Survey
2MASS Two-Micron All-Sky Survey
MAXIMA Millimeter Anisotropy Experiment

Imaging Array sballoon-borne ex-
periment for measuring the aniso-
tropy of the cosmic background ra-
diation on degree-angular scalesd

ORS Optical Redshift Survey
POSS Palomar Observatory Sky Survey
PSC Point Source Catalog, based on the

all-sky photometric survey of the In-
frared Astronomical Satellite (IRAS)

QDOT Queen Mary and Westfield College,
Durham, Oxford, and Toronto sred-
shift survey of one-in-six randomly
selected galaxies from the PSCd

REFLEX ROSAT-ESO Flux-Limited X-ray
ssurvey of clusters of galaxiesd

SDSS Sloan Digital Sky Survey
SSRS Southern Sky Redshift Survey
Stromlo-APM Stromlo Automatic Plate Machine

sredshift survey of optically selected
galaxies in the Southern skyd

UKST United Kingdom Schmidt Telescope
ssurvey telescope with a wide-angle
field of viewd

VIRMOS-VLT Visible and Infrared Multi-Object
Spectrograph–Very Large Telescope
sconsortium that has produced two
spectrographs for the ESO Very
Large Telescope: VIMOS, the Visible
Imaging Multi-Object Spectrograph
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and NIRMOS, the Near-Infrared
Multi-Object Spectrographd

VLA Very Large Array, array of 27 radio-
antennas of 25-m diameter, located
50 miles from Socorro, New Mexico.

VSA Very Small Array, array of receivers
with horn-reflector antennas, de-
signed to study the cosmic back-
ground radiation, located at the Teide
Observatory in Tenerife.

WMAP Wilkinson Microwave Anisotropy
Probe ssatellited

XSC Extended Source Catalog based on
the Two-Micron All-Sky Survey
s2MASSd
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