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Fifty years of developments in nuclear magnetic resonance (NMR) have resulted in an unrivaled
degree of control of the dynamics of coupled two-level quantum systems. This coherent control of
nuclear spin dynamics has recently been taken to a new level, motivated by the interest in quantum
information processing. NMR has been the workhorse for the experimental implementation of
quantum protocols, allowing exquisite control of systems up to seven qubits in size. This article
surveys and summarizes a broad variety of pulse control and tomographic techniques which have been
developed for, and used in, NMR quantum computation. Many of these will be useful in other
quantum systems now being considered for the implementation of quantum information processing

tasks.
CONTENTS 2. Numerical optimization 1056
C. Average-Hamiltonian theory 1057
I Introduction 1037 1. The Magnus expansion. 1057
I The NMR System 1039 2. Multlpl'e—pulse decoupling 1058
A. The system Hamiltonian 1039 3. .Reversmg errors due to decoherence 1059
. . V. Evaluation of Quantum Control 1059
1. Single SI_)mS . 1039 A. Standard experiments 1059
2 Inferactmg SPmS 1040 1. Coherent oscillations driven by a resonant
a. Direct coupling 1040 field 1059
b. Indirect coupling 1040 2. Coherent oscillations initiated by a kick 1060
B. The control Hamiltonian 1041 3. Ramsey interferometry 1060
1. Radio-frequency fields 1041 4. Measurement of T, 1060
2. The rotating frame 1042 5. Measurement of T, 1061
C. Relaxation and decoherence 1043 6. Measurement of T, 1061
I Elementary Pulse Techniques 1043 B. Measurement of quantum states and gates 1062
A. Quantum control, quantum circuits, and pulses 1043 1. Quantum state tomography 1062
1. Quantum gates and circuits 1043 2. Quantum process tomography 1063
2. Implementation of single-qubit gates 1044 C. Fidelity of quantum states and gates 1064
3. Implementation of two-qubit gates 1044 1. Quantum state fidelity 1064
4. Refocusing: Turning off undesired I'Z, 2. Quantum gate fidelity 1065
couplings 1045 D. Evaluating scalability 1065
5. Pulse sequence simplification 1047 VI. Discussion and Conclusions 1065
6. Time-optimal pulse sequences 1048 References 1067
B. Experimental limitations 1049
1. Cross-talk 1049
2. Coupled evolution 1050 I. INTRODUCTION
3. Instrumental errors 1050
IV. Advanced Pulse Techniques 1051 Precise and complete control of multiple couplpd
A. Shaped pulses 1051 q_uantqm syst_ems is expected to lead t.o profound in-
1. Amplitude profiles 1051 sights in physics as yvell as to novel apphc?mons, such as
2. Phase profiles 1053 qgantum computation (Bennett anq DiVincenzo, ZOQO;
B. Composite pulses 1054 Nielsen and Chuang, 2000; Gahndo anq Martlp-
1. Analytical approach 1054 Delgado, 2002). Such coherent control is a major goal in

*Electronic address: lieven@qt.tn.tudelft.nl
Electronic address: ichuang@mit.edu

0034-6861/2004/76(4)/1037(33)/$40.00

atomic physics (Wieman et al, 1999; Osborne and
Coontz, 2002; Leibfried et al, 2003), quantum optics
(Zeilinger, 1999; Osborne and Coontz, 2002) and
condensed-matter research (Clark, 2001; Maklin et al.,
2001; Osborne and Coontz, 2002; Zutic et al., 2004), but
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surprisingly, many of the leading experimental results
are coming from one of the oldest areas of quantum
physics: nuclear magnetic resonance (NMR).

The development of NMR control techniques origi-
nated in a strong demand for precise spectroscopy of
complex molecules: NMR is the premier tool for protein
structure determination, and in modern NMR spectros-
copy, often thousands of precisely sequenced and phase-
controlled pulses are applied to molecules containing
hundreds of nuclear spins. More recently, over the past
seven years, a wide variety of complex quantum infor-
mation processing tasks have been realized using NMR,
on systems ranging from two to seven quantum bits (qu-
bits) in size, on molecules in liquid (Chuang, Vander-
sypen, et al., 1998; Jones et al., 1998; Nielsen et al., 1998;
Somaroo et al., 1999; Knill et al., 2000; Vandersypen et
al., 2001), liquid crystal (Yannoni et al., 1999), and solid-
state samples (Zhang and Cory, 1998; Leskowitz et al.,
2003). These demonstrations have been made possible
by application of a menagerie of new and previously
existing control techniques, such as simultaneous and
shaped pulses, composite pulses, refocusing schemes,
and effective Hamiltonians. These techniques allow con-
trol and compensation for a variety of imperfections and
experimental artifacts invariably present in real physical
systems, such as pulse imperfections, Bloch-Siegert
shifts, undesired multiple-spin couplings, field inhomo-
geneities, and imprecise system Hamiltonians.

The problem of control of multiple coupled quantum
systems is a signature topic for NMR and can be sum-
marized as follows: given a system with Hamiltonian H
=Hsys+ Heontrol» Where Hyg is the Hamiltonian in the ab-
sence of any active control, and H ,no describes terms
that are under external control, how can a desired uni-
tary transformation U be implemented, in the presence
of imperfections, and using minimal resources? Similar
to other scenarios in which quantum control is a well-
developed idea, such as in laser excitation of chemical
reactions (Walmsley and Rabitz, 2003), H.onuol arises
from precisely timed sequences of multiple pulses of
electromagnetic radiation, applied phase-coherently,
with different pulse widths, frequencies, phases, and am-
plitudes. However, importantly, in contrast to other ar-
eas of quantum control, in NMR H,y is composed from
multiple distinct physical pieces, i.e., the individual
nuclear spins, providing the tensor product Hilbert-
space structure vital to quantum computation. Further-
more, the NMR systems employed in quantum compu-
tation are better approximated as being closed, as
opposed to open, quantum systems.

Nuclear spins and NMR provide a wonderful model
and inspiration for the advance of coherent control over
other coupled quantum systems, as many of the chal-
lenges and solutions are similar across the world of
atomic, molecular, optical, and solid-state systems (see,
for example, Steffen, 2003). Here, we review the control
techniques employed in the field of NMR quantum com-
putation, focusing on methods that are robust under ex-
perimental implementation, and including experimental
prescriptions for evaluation of the efficacy of the tech-
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niques. In contrast to other reviews of NMR quantum
computation which have appeared in the literature
(Cory et al., 2000; Jones, 2000; Vandersypen, 2001), and
introductions to the subject (Gershenfeld and Chuang,
1998; Jones, 2001; Steffen et al., 2001; Vandersypen et al.,
2002), we do not assume prior knowledge of, or give
specialized descriptions of quantum computation algo-
rithms, nor do we review NMR quantum computing ex-
periments. And although we do not assume prior de-
tailed knowledge of NMR, a self-contained treatment of
several advanced topics, such as composite pulses, and
refocusing, is included. Finally, because the primary pur-
pose of this article is to elucidate control techniques
which may generalize beyond NMR, we also assume a
regime of operation in which relaxation and decoher-
ence mechanisms are simple to treat and physical evolu-
tion is dominated by closed-system dynamics.

The organization of this article is as follows. In Sec. I,
we briefly review the physics of NMR, using a Hamil-
tonian description of single and interacting nuclear spins
1/2 placed in a static magnetic field, controlled by radio-
frequency fields. This establishes a foundation for the
first major part of this review, Sec. III, which discusses
the ways in which the control Hamiltonian can be used
to construct all the elementary quantum gates, and the
limitations that arise from the given system and control
Hamiltonian, as well as from instrumental imperfec-
tions. The second major part of this review, Sec. IV, pre-
sents three classes of advanced techniques for tailoring
the control Hamiltonian, which permit accurate quan-
tum control despite the existing limitations: the methods
of amplitude and frequency shaped pulses, composite
pulses, and average Hamiltonian theory. Finally, in Sec.
V, we describe a set of standard experiments, derived
from quantum computation, which demonstrate coher-
ent qubit control and can be used to characterize deco-
herence. These include procedures for quantum state
and process tomography, as well as methods for evaluat-
ing the fidelity of quantum states and gates.

For further reading on NMR, we recommend the text-
books of Abragam (1962), Ernst, Bodenhausen, and
Wokaun (1987) and Slichter (1996) for their rigorous dis-
cussions of the nuclear-spin Hamiltonian and standard
pulse sequences; Freeman (1997) for an intuitive expla-
nation of advanced techniques for control of the spin
evolution; and Levitt (2001) for an intuitive understand-
ing of the physics underlying the spin dynamics. Many
useful reviews on specific NMR techniques are compiled
in the Encyclopedia of NMR (Grant and Harris, 2001).

For additional reading on quantum computation, we
recommend the book by Nielsen and Chuang (2000) for
the basic theory of quantum information and computa-
tion; Bennett and DiVincenzo (2000); and Braunstein
and Lo (2000) for reviews of the state of the art in ex-
perimental quantum information processing; and Lloyd
(1995), for a simple introduction to quantum computa-
tion. Excellent presentations of quantum algorithms are
given by Ekert and Jozsa (1996) and Steane (1998).

The original papers introducing NMR quantum com-
puting are those of Cory et al. (1996, 1997; Cory, Price,
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FIG. 1. Energy diagram for a single spin-1/2 particle.

and Havel, 1998), and Gershenfeld and Chuang (1997).
Gershenfeld and Chuang (1998) and Steffen et al. (2001)
give elementary introductions to NMR quantum com-
puting, while introductions geared towards NMR spec-
troscopists are presented by Jones (2001) and Vander-
sypen et al. (2002). Summaries of NMR quantum
computing experiments and techniques are given by
Cory et al. (2000), Jones (2000), and Vandersypen (2001).

Il. THE NMR SYSTEM

We begin with a description of the NMR system,
based on its system Hamiltonian and the control Hamil-
tonian. The system Hamiltonian gives the energy of
single and coupled spins in a static magnetic field, and
the control Hamiltonian arises from the application of
radio-frequency pulses to the system at, or near, its reso-
nant frequencies. A rotating reference frame is em-
ployed, providing a very convenient description.

A. The system Hamiltonian
1. Single spins

The time evolution of a spin-1/2 particle (we shall not
consider higher-order spins in this paper) in a magnetic

field éo along 7 is governed by the Hamiltonian

—fhwy2 0
, (D
0 fiwy2

where v is the gyromagnetic ratio of the nucleus, wy/2m
is the Larmor frequency,1 and 7, is the angular momen-
tum operator in the Z direction. I, I, and / , relate to the
well-known Pauli matrices as

o,=2I,, o,=21, (2)
where, in matrix notation,
1 0
o, = { 0 -1 } . (3)

fo1]l  Jo-i]
=l ol T oo

The interpretation of Eq. (1) is that the |0) or |1) en-
ergy (given by (0|H|0), the upper left element of H) is
lower than the |1) or ||) energy ((1|#|1)) by an amount
haw, as illustrated in the energy diagram of Fig. 1. The
energy splitting is known as the Zeeman splitting.

We can pictorially understand the time evolution U
=e ™M ynder the Hamiltonian of Eq. (1) as a precessing

HO:_h’yBOIz:_ﬁw()Iz=|:

oy, = 21y,

'We shall sometimes leave the factor of 27 implicit and call
wy the Larmor frequency.
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FIG. 2. Precession of a spin-1/2 particle about the axis of a
static magnetic field.

motion of the Bloch vector about B, as shown in Fig. 2.
As is conventional, we define the Z axis of the Bloch
sphere as the quantization axis of the Hamiltonian, with
|0) along +Z and |1) along —Z.

For the case of liquid-state NMR, which we shall
largely restrict ourselves to in this article, typical values
of By are 5—15 T, resulting in precession frequencies wy
of a few hundred MHz, the radio-frequency range.

Spins of different nuclear species (heteronuclear spins)
can be easily distinguished spectrally, as they have very
distinct values of y and thus also very different Larmor
frequencies (Table I). Spins of the same nuclear species
(homonuclear spins) which are part of the same mol-
ecule can also have distinct frequencies, by amounts
known as their chemical shifts a;.

The nuclear-spin Hamiltonian for a molecule with »
uncoupled nuclei is thus given by

Ho=— 2 k(1 - G)yBol. = - 2 hwhl., (4)
i=1 i=1

where the i superscripts label the nuclei.

The chemical shifts arise from partial shielding of the
externally applied magnetic field by the electron cloud
surrounding the nuclei. The amount of shielding de-
pends on the electronic environment of each nucleus, so
like nuclei with inequivalent electronic environments
have different chemical shifts. Pronounced asymmetries
in the molecular structure generally promote strong
chemical shifts. The range of typical chemical shifts &,
varies from nucleus to nucleus, e.g., =10 parts per mil-
lion (ppm) for 'H, =200 ppm for '’F, and ~200 ppm for
BC. At By;=10 T, this corresponds to a few kHz to tens
of kHz (compared to wy’s of several hundred MHz). As
an example, Fig. 3 shows an experimentally measured
spectrum of a molecule containing five fluorine spins
with inequivalent chemical environments.

TABLE 1. Larmor frequencies (MHz) for some relevant nu-
clei, at 11.74 T.

Nucleus 'H ’H B¢ BN F 3p

wyl 2 500 77 126 =51 470 202
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FIG. 3. (Color in online edition) Fluorine NMR spectrum (ab-
solute value) centered around =470 MHz of a specially de-
signed molecule, shown in (b). The five main lines in the spec-
trum correspond to the five fluorine nuclei in the molecule.
The two small lines derive from impurities in the sample. The
NMR spectra were acquired by recording the oscillating mag-
netic field produced by a large ensemble of precessing spins
and by taking the Fourier transform of this time-domain signal.
The precession motion of the spins is started by applying a
radio-frequency pulse (Sec. I1.B.1), which tips the spins from
their equilibrium position along the Z axis into the x-y plane.
(b) From Vandersypen, Steffen, Breyta, Yannoni, Cleve, and
Chuang, 2000.

In general, the chemical shift can be spatially aniso-
tropic and must be described by a tensor. In liquid solu-
tion, this anisotropy averages out due to rapid tumbling
of the molecules. In solids, the anisotropy means that
the chemical shifts depend on the orientation of the mol-

ecule with respect to 5’0.

2. Interacting spins

For nuclear spins in molecules, nature provides two
distinct interaction mechanisms which we now describe,
the direct dipole-dipole interaction, and the electron-
mediated Fermi contract interaction known as J cou-

pling.

a. Direct coupling

The magnetic dipole-dipole interaction is similar to the
interaction between two bar magnets in each other’s vi-
cinity. It takes place purely through space—no medium
is required for this interaction—and depends on the in-
ternuclear vector r;; connecting the two nuclei i and j, as
described by the Hamﬂtoman
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HD 2 M% Iz I]
i<j 47T| l]|

Py iR |, ()
Tij

where u, is the usual magnetic permeability of free

space and I' is the magnetic moment vector of spin i.
This expression can be progressively simplified as vari-
ous conditions are met. These simplifications rest on av-
eraging effects and can be explained within the general
framework of average-Hamiltonian theory (Sec. IV.C).

For large w)=vyB, (i.e., at high By), Hp can be ap-
proximated as

Hp=3 BN (| 3 coo300-F- 11, (6)

i<j 877| ]|3

where 6 is the angle between B, and r;. When |}
—w))| is much larger than the coupling strength the
transverse coupling terms can be dropped, so H p simpli-
fies further to

Hp=3 %(1 3 cos2O)I 1, (7)
i<j rz]

which has the same form as the J coupling we describe
next [Eq. (9)].

For molecules in liquid solution, both intramolecular
dipolar couplings (between spins in the same molecule)
and intermolecular dipolar couplings (between spins in
different molecules) are averaged away due to rapid
tumbling. This is the case we shall focus on in this ar-
ticle. In solids, similarly simple Hamiltonians can be ob-
tained by applying multiple-pulse sequences which aver-
age out undesired coupling terms (Haeberlen and
Waugh, 1968), or by physically spinning the sample at an
angle of arccos(1/v3) (the “magic angle”) with respect to
the magnetic field.

b. Indirect coupling

The second interaction mechanism between nuclear
spins in a molecule is the J coupling or scalar coupling.
This interaction is mediated by the electrons shared in
the chemical bonds between the atoms and due to the
overlap of the shared electron wave function with the
two coupled nuclei, a Fermi contact interaction. The
through-bond coupling strength J depends on the respec-
tive nuclear species and decreases with the number of
chemical bonds separating the nuclei. Typical values for
J are up to a few hundred Hz for one-bond couplings
and down to only a few Hz for three- or four-bond cou-
plings. The Hamiltonian is

Hy=h 2wyl =1 2l (ILF, + LI +ILI), (8)

i<j i<j

where Jj; is the coupling strength between spins i and ;.
Similar to the case of dipolar coupling, Eq. (8) simplifies
to
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FIG. 4. Energy-level diagram for (dashed lines) two uncoupled
spins and (solid lines) two spins coupled by a Hamiltonian of
the form of Eq. (7) or Eq. (9) in units of 7.

H, = ﬁE 2ml LD )

ytz Z’
i<j

when |w;— w;|>27]J;, a condition easily satisfied for het-
eronuclear spins and which can also be satisfied for small
homonuclear molecules.

The interpretation of the scalar coupling term of Eq.
(9) is that a spin “feels” a static magnetic field along +Z
produced by the neighboring spins, in addition to the

externally applied B, field. This additional field shifts

the energy levels as in Fig. 4. As a result, the Larmor

frequency of spin i shifts by —/;;/2 if spin j is in |0) and by
J;;/2 if spin j is in [1).

In a system of two coupled spins, the frequency spec-
trum of spin i therefore actually consists of two lines
separated by J;; and centered around wf), each of which
can be associated with the state of spin j, |0) or |1). For
three pairwise coupled spins, the spectrum of each spin
contains four lines. For every additional spin, the num-
ber of lines per multiplet doubles, provided all the cou-
plings are resolved and different lines do not lie on top
of each other. This is illustrated for a five-spin system in
Fig. 5.

The magnitude of all the pairwise couplings can be

Sipk S BE = =BT o
© - - S 5o o
= O O = O =O =
g S o0& o = =l==
S 8 833822 S O «
o I
25 11l I
a4 ||l ‘\
[} r I | I
E ‘ I “ I “ ‘ ‘
= I
= 2 il I A
g' ‘f“\\l\ | I “‘ i
'u‘ Y ‘~ ]
<L Qpeeni ¥ A4 iy k

-50 0 50
Relative frequency [Hz]

FIG. 5. (Color in online edition) The spectrum of spin Fj in the
molecule of Fig. 3. This is an expanded view of the left line in
the spectrum of Fig. 3. Frequencies are given with respect to
w(l). The state of the remaining spins is as indicated, based on
J12< 0 and J13,J14,J15 >0; furthermore,
From Vandersypen, Steffen, Breyta, Yannoni,
Chuang, 2000.

Cleve, and
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found by looking for common splittings in the multiplets
of different spins. The relative signs of the J couplings
can be determined via appropriate spin-selective two-
pulse sequences, known in NMR as two-dimensional
correlation (soft-COSY) experiments (Briischweiler et
al., 1987) or via line-selective continuous irradiation;
both approaches are related to the CNOT gate (Sec.
III.A.3). The signs cannot be obtained from just the
simple spectra.

In summary, the simplest form of the Hamiltonian for
a system of n coupled nuclear spins is thus [from Egs. (4)
and (9)]

E hobll + 7, 27l (10)

SyS ytzrz
l<]

In almost all NMR quantum computing experiments
performed to date, the system is well described by a
Hamiltonian of this form.

B. The control Hamiltonian
1. Radio-frequency fields

We turn now to physical mechanisms for controlling
the NMR system. The state of a spin-1/2 particle in a

static magnetic field éo along Z can be manipulated by

applying an electromagnetic field él(t) which rotates in
the %-y plane at w,; at or near the spin precession fre-
quency wy. The single-spin Hamiltonian corresponding
to the radio-frequency (RF) field is, analogous to Eq. (1)
for the static field B,

H,p=—hyBi[cos(w,t + P)I, —sin(w,t + H)I,],  (11)

where ¢ is the phase of the RF field, and B its ampli-
tude (the minus sign in front of the sine term makes the
RF field evolve in the same sense as the spin evolution
under H,). Typical values for w;=yB; are up to
~50 kHz in liquid NMR and up to a few hundred kHz in
solid NMR experiments. For n spins, we have

Hyp=— 2 hyiBi[cos(w,t + P)I, - sin(w,d + )] (12)

In practice, a magnetic field is applied which oscillates
along a fixed axis in the laboratory, perpendicular to the
static magnetic field. This oscillating field can be decom-
posed into two counter-rotating fields, one of which ro-
tates at w,in the same direction as the spin and so can
be set on or near resonance with the spin. The other
component rotates in the opposite direction and is thus
very far off-resonance (by about 2wg). As we shall see,
its only effect is a negligible shift in the Larmor fre-
quency, called the Bloch-Siegert shift (Bloch and Siegert,
1940).

Note that both the amplitude B; and phase ¢ of the
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FIG. 6. Nutation of a spin subject to a transverse RF field (a)
observed in the rotating frame and (b) observed in the lab
frame.

RF field can be varied with time,2 unlike the Larmor
precession and the coupling terms. As we shall shortly
see, it is the control of the RF field phases, amplitudes,
and frequencies which lies at the heart of quantum con-
trol of NMR systems.

2. The rotating frame

The motion of a single nuclear spin subject to both a
static and a rotating magnetic field is rather complex
when described in the usual laboratory coordinate sys-
tem (the lab frame). It is much simplified, however, by
describing the motion in a coordinate system rotating
about Z at w, (the rotating frame):

|4)*" = exp(= i, t1,)|1). (13)

Substitution of |¢) in the Schrodinger equation
if(d|y)/ dt)="H|y) with

H =~ fhwyl, — hwy[cos(w, g + P) I, — sin(w, g + h)1,]
(14)
gives ifi(d|)"" di)="H""|p)"*", where
H™' =~ h(wy — 0PI, — hwy[cos ¢l —sin ¢l,]. (15)

Naturally, the RF field lies along a fixed axis in the frame
rotating at o, Furthermore, if =y, the first term in
Eq. (15) vanishes. In this case, an observer in the rotat-

ing frame will see the spin simply precess about él [Fig.
6(a)], a motion called nutation. The choice of ¢ controls
the nutation axis. An observer in the lab frame sees the
spin spiral down over the surface of the Bloch sphere
[Fig. 6(b)].

If the REF field is off-resonance with respect to the spin
frequency by Aw=wy—w,; the spin precesses in the ro-
tating frame about an axis tilted away from the Z axis by
an angle

a = arctan(w;/Aw), (16)

and with frequency

For example, the Varian Instruments Unity Inova 500 NMR
spectrometer achieves a phase resolution of 0.5° and 4095 lin-
ear steps of amplitude control, with a time base of 50 ns. Ad-
ditional attenuation of the amplitude can be done on a loga-
rithmic scale over a range of about 80 dB, albeit with a slower
time base.
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FIG. 7. Axis of rotation (in the rotating frame) during an off-
resonant radio-frequency pulse.

o] = VAo’ + w%, 17)

as illustrated in Fig. 7.

It follows that the RF field has virtually no effect on
spins that are far off resonance, since « is very small
when |Aw|>w; (see Fig. 8). If all spins have well-
separated Larmor frequencies, we can thus in principle
selectively rotate any one qubit without rotating the
other spins.

Moderately off-resonance pulses (|Aw|= w;) do rotate
the spin, but due to the tilted rotation axis, a single such
pulse cannot, for instance, flip a spin from |0) to |1) (see
again Fig. 8). Of course, off-resonance pulses can also be
useful, for instance, for direct implementation of rota-
tions about an axis outside the X-y plane.

We could also choose to work in a frame rotating at
wy (instead of w,y), where

H' =~ ﬁw1{cos[(w,f— wo)t + ¢]Ix
- sin[(wrf— wo)t + ¢]Iy} (18)

This transformation does not give a convenient time-
independent RF Hamiltonian (unless w,=ay), as was
the case for H™" in Eq. (15). However, it is a natural
starting point for the extension to the case of multiple

=
NIAN |

FIG. 8. (Color in online edition) Trajectory in the Bloch
sphere described by a qubit initially in |0) (along +Z), after a
250-us pulse of strength w;=1 kHz is applied off-resonance by
0,0.5,1,...,4 kHz. On-resonance, the pulse produces a 90° ro-
tation. Far off-resonance, the qubit is hardly rotated away
from |0).
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spins, where a separate rotating frame can be introduced
for each spin:

[y = [H exp(~ iwétli)] ). (19)

In the presence of multiple RF fields indexed r, the RF
Hamiltonian in this multiply rotating frame is

Hmt — E _ ﬁw’i{cos[((gif— wé)l‘ + ¢V]I;

= sin[(w);— wp)t + ¢}, (20)

where the amplitudes w] and phases ¢" are under user
control.

The system Hamiltonian of Eq. (10) is simplified, in
the rotating frame of Eq. (19); the I; terms drop out,

leaving just the J, ,-jlilé couplings, which remain invariant.

Note that coupling terms of the form -7 do not trans-
form cleanly under Eq. (19).

Summarizing, in the multiply rotating frame, the
NMR Hamiltonian H = Hy+Heonirol takes the form

Hogs=h 2, 2 1L 1. (21)

— ytzhze
1<j

Heontrol = 2 — hafcos[(wlp— wh) + ¢

ir

= sin[(w},— wp)t + ¢'11}. (22)

C. Relaxation and decoherence

One of the strengths of nuclear spins as quantum bits
is precisely the fact that the system is very well isolated
from the environment, allowing coherence times to be
long compared with the dynamical time scales of the
system. Thus our discussion here focuses on closed-
system dynamics, and it is important to be aware of the
limits of this approximation.

The coupling of the NMR system to the environment
may be described by an additional Hamiltonian term
Heny» whose magnitude is small compared to that of Hy
or Heontrol- 1t 18 this coupling which leads to decoherence,
the loss of quantum information, which is traditionally
parametrized by two rates: 7T, the energy relaxation
rate, and T,, the phase randomization rate (see also
Secs. V.A.4 and V.A.S).

T, originates from spin-spin couplings which are im-
perfectly averaged away, or unaccounted for in the sys-
tem Hamiltonian. For example, in molecules in liquid
solution, spins on one molecule may have a long-range,
weak interaction with spins on another molecule. Fluc-
tuating magnetic fields, caused by spatial anisotropy of
the chemical shift, local paramagnetic ions, or unstable
laboratory fields, also contribute to 7,. Nevertheless, in
well-prepared samples and in a good experimental appa-
ratus at reasonably high magnetic fields, the 7, for mol-
ecules in solution is easily on the order of 1 s or more.
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This decoherence mechanism can be identified with elas-
tic scattering in other physical systems; it does not lead
to loss of energy from the system.

T, originates from couplings between the spins and
the “lattice,” that is, excitation modes that can carry
away energy quanta on the scale of the Larmor fre-
quency. For example, these may be vibrational quanta,
paramagnetic ions, chemical reactions such as ions ex-
changing with the solvent, or spins with higher-order
magnetic moments (such as ’H, 'Cl, or *Br), which re-
lax quickly due to their quadrupolar moment’s interact-
ing with electric field gradients. In well-chosen mol-
ecules and liquid samples with good solvents, 7 can
easily be tens of seconds, while isolated nuclei embed-
ded in solid samples with a spin-zero host crystal matrix
(such as *'P in ?%Si) can have T, times of days. This
mechanism is analogous to inelastic scattering in other
physical systems.

The description of relaxation in terms of only two pa-
rameters is known to be an oversimplification of reality,
particularly for coupled spin systems, in which coupled
relaxation mechanisms appear (Redfield, 1957; Jeener,
1982). Nevertheless, the independent spin decoherence
model is useful for its simplicity and because it can cap-
ture well the main effects of decoherence on simple
NMR quantum computations (Vandersypen et al., 2001),
which are typically designed as pulse sequences shorter
in time than 7.

lll. ELEMENTARY PULSE TECHNIQUES

This section begins our discussion of the main subject
of this article, a review of the control techniques devel-
oped in NMR quantum computation for coupled two-
level quantum systems. We begin with a quick overview
of the language of quantum circuits and its important
universality theorems, then connect this with the lan-
guage of pulse sequences as used in NMR, and indicate
how pulse sequences can be simplified. The main ap-
proximations employed in this section are that pulses
can be strong compared with the system Hamiltonian
while selectively addressing only one qubit at a time,
and can be perfectly implemented. The limits of these
approximations are discussed in the last part of the sec-
tion.

A. Quantum control, quantum circuits, and pulses

The goal of quantum control, in the context of quan-
tum computation, is the implementation of a unitary
transformation U, specified in terms of a sequence U
=U,U;_---U,U,; of standard “quantum gates” U,;, which
act locally (usually on one or two qubits) and are simple
to implement. As is conventional for unitary operations,
the U; are ordered in time from right to left.

1. Quantum gates and circuits

The basic single-qubit quantum gates are rotations,
defined as
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R;(0) = exp{— i'gﬁz' ‘;], (23)

where 7 is a (three-dimensional) vector specifying the
axis of the rotation, 6 is the angle of rotation, and &
=0 X+0,y+0,Z is a vector of Pauli matrices. It is also
convenient to define the Pauli matrices [see Eq. (3)]
themselves as logic gates, in terms of which o, can be
understood as being analogous to the classical NOT gate,
which flips [0) to |1) and vice versa. In addition, the
HADAMARD gate H and /8 gate T

H—L{l 1} T= ! 0 (24)
T2l -1 T 0 explin/4)

are useful and widely employed. These and any other
single-qubit transformation U can be realized using a
sequence of rotations about just two axes, according to
Bloch’s theorem: for any single-qubit U, there exist real
numbers «, B, v, and & such that

U= "R (BIR,(DR(S). (25)

The basic two-qubit quantum gate is a controlled-NOT
(cNOT) gate,

Ucnor= ) (26)

[
o = O
o o O
—_ o O

0010

where the basis elements in this notation are |00), [01),
[10), and |11) from left to right and top to bottom. Ucnor
flips the second qubit (the target) if and only if the first
qubit (the control) is |1). This gate is the analog of the
classical exclusive-OR gate, since Ucnorlx,y)=|x,x®y),
for x,y €{0,1} and where & denotes addition modulo
two.

A basic theorem of quantum computation is that up to
an irrelevant overall phase, any U acting on n qubits can
be composed from Uqyor and R;(6) gates (Nielsen and
Chuang, 2000). Thus the problem of quantum control
can be reduced to implementing Uqnor and single-qubit
rotations, where at least two nontrivial rotations are re-
quired. Other such sets of universal gates are known, but
this is the one that has been employed in NMR.

These gates and sequences of such gates may be con-
veniently represented using quantum circuit diagrams,
employing standard symbols. We shall use a notation
commonly employed in the literature (Nielsen and
Chuang, 2000) in this article.

2. Implementation of single-qubit gates

Rotations on single qubits may be implemented di-
rectly in the rotating frame using RF pulses. From the
control Hamiltonian, Eq. (22), it follows that when an
RF field of amplitude w; is applied to a single-spin sys-
tem at -, the spin evolves under the transformation

U = expliwy(cos ¢l —sin ¢l\)t,,], (27)
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where 1, is the pulse width (or pulse length), the time
duration of the RF pulse. U describes a rotation in the
Bloch sphere over an angle 6 proportional to the prod-
uct of #,, and w;=vyB;, and about an axis in the £-y
plane determined by the phase ¢.

Thus a pulse with phase ¢=m and wt,,,=m/2 will per-
form R,(90) [see Eq. (23)], which is a 90° rotation about
X, denoted for short as X. A similar pulse but twice as
long realizes a R,(180) rotation, written for short as X2.
By changing the phase of the RF pulse to ¢=m/2, Y and
Y? pulses can similarly be implemented. For ¢=0, a

negative rotation about X, denoted R,(-90) or X, is ob-

tained, and similarly ¢p=—/2 gives Y. For multiqubit
systems, subscripts are used to indicate on which qubit

the operation acts, e.g., Z% is a 180° rotation of qubit 3
about —Z.

It is thus not necessary to apply the RF field along
different spatial axes in the lab frame to perform x and y
rotations. Rather, the phase of the RF field determines
the nutation axis in the rotating frame. Furthermore,
note that only the relative phase between pulses applied
to the same spin matters. The absolute phase of the first
pulse on any given spin does not matter in itself. It just
establishes a phase reference against which the phases of
all subsequent pulses on that same spin, as well as the
read-out of that spin, should be compared.

We noted earlier that the ability to implement arbi-
trary rotations about X and y is sufficient for performing
arbitrary single-qubit rotations [Eq. (25)]. Since Z rota-
tions are very common, two useful explicit decomposi-
tions of R (6) in terms of X and y rotations are

R,(0)=XR,(0)X=YR (- 0)Y. (28)

3. Implementation of two-qubit gates

The most natural two-qubit gate is the one generated
directly by the spin-spin coupling Hamiltonian. For
nuclear spins in a molecule in liquid solution, the cou-
pling Hamiltonian is given by Eq. (9) (in the lab frame as
well as in the rotating frame), from which we obtain the
time evolution operator U J(t):exp[—iZTrJIiIgt], or in
matrix form

e—iﬂ']l‘/Z 0 0 0
e+i7TJr/2 0 0
U,(1) = 0 0 etmi2 (29)
0 0 0 e*l‘ﬁ./[/z

Allowing this evolution to occur for time t=1/2J gives a
transformation known as the controlled phase gate, up to
a 90° phase shift on each qubit and an overall (and thus
irrelevant) phase

100 O
—_ - 010 0

Ucpnase = \=iZ,Z,U,(1/2])) = 001 0 . (30)
000 -1
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0] Y, delay(1/2J Xa
V i ﬂy “y
113
FIG. 9. Bloch-sphere representation of the operation of the
CNOT), gate between two qubits 1 and 2 coupled by ﬁ277][11§.
Here, qubit 2 starts off in |0) (along ) and is depicted in a
reference frame rotating about 7 at w3/2. Solid and dashed

arrows correspond to the case where qubit 1 is |0) and |1},
respectively. Adapted from Gershenfeld and Chuang, 1997.

This gate is equivalent to the well-known CNOT gate up
to a basis change of the target qubit and a phase shift on
the control qubit

Ucnor = iZ%)}z UcphaseY2
= iZ2Y,[\-iZ,Z,U,(112))]Y,

=\iZ,Z,X,U,(1/2))Y, = (31)

[

000

100

001
0010
The core of this sequence, X,U,;(1/2J)Y,, can be graphi-
cally understood via Fig. 9 (Gershenfeld and Chuang,
1997), assuming the spins start along +Z. First, a spin-
selective pulse on spin 2 about y (an rf pulse centered at
wg/2m and of a spectral bandwidth such that it covers
the frequency range wé/ZwiJu/Z but not wé/ZwiJu/Z)
rotates spin 2 from Z to £. Next, the spin system is al-
lowed to freely evolve for a duration of 1/2J;, seconds.
Because the precession frequency of spin 2 is shifted by
+J1,/2 depending on whether spin 1 is in [1) or |0) (see
Fig. 4), spin 2 will arrive in 1/2J seconds at either +y or
-y, depending on the state of spin 1. Finally, a 90° pulse
on spin 2 about the X axis rotates spin 2 back to +zZ if
spin 1 is |0, or to —Z if spin 1 is in [1).

The net result is that spin 2 is flipped if and only if
spin 1 is in |1), which corresponds exactly to the classical
truth table for the CNOT. The extra Z rotations in Eq.
(31) are needed to give all elements in Uqyor the same
phase, so the sequence works also for superposition in-
put states.

An alternative implementation of the CNOT gate, up
to a relative phase factor, consists of applying a line-
selective 180° pulse at w%+] 12/2 (see Fig. 4). This pulse
inverts spin 2 (the target qubit) if and only if spin 1 (the
control) is |1) (Cory, Price, and Havel, 1998). In general,
if a spin is coupled to more than one other spin, half the
lines in the multiplet must be selectively inverted in or-
der to realize a CNOT. Extensions to doubly controlled
NOT’s are straightforward: in a three-qubit system, for
example, this can be realized through inversion of one
out of the eight lines (Freeman, 1998). As long as all the
lines are resolved, it is in principle possible to invert any
subset of the lines. Demonstrations using very long mul-
tifrequency pulses have been performed with up to five
qubits (Khitrin et al., 2002). However, this approach can-
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(b)

BUS )
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FIG. 10. Three possible coupling networks between five
qubits. (a) A full coupling network. Such networks will in prac-
tice always be limited in size, as physical interactions tend to
decrease with distance. (b) A nearest-neighbor coupling net-
work. Such linear chains with nearest-neighbor couplings or
two-dimensional variants are used in many solid-state propos-
als. (c) Coupling via a “bus.” This network is used in ion-trap
schemes, for example. As in case (a), the bus degree
of freedom will in reality couple well to only a finite number of
qubits.

not be used whenever the relevant lines in the multiplet
fall on top of each other.

If the spin-spin interaction Hamiltonian is not of the
form I’ZI’Z but contains also transverse components [as in
Egs. (5), (6), and (8)], other sequences of pulses are
needed to perform the CPHASE and CNOT gates. These
sequences are somewhat more complicated (Bremner et
al., 2002).

If two spins are not directly coupled to each other, it is
still possible to perform a CNOT gate between them, as
long as there exists a network of couplings that connects
the two qubits. For example, suppose we want to per-
form a CNOT gate with qubit 1 as the control and qubit 3
as the target, CNOT,;, but 1 and 3 are not coupled to each
other. If both are coupled to qubit 2, as in the coupling
network of Fig. 10(b), we can first swap the states of
qubits 1 and 2 (via the sequence CNOT,, CNOT,; CNOT},),
then perform a CNOT,;, and finally swap qubits 1 and 2
again (or relabel the qubits without swapping back). The
net effect is CNOTy;. By extension, at most O(n) SWAP
operations are required to perform a CNOT between any
pair of qubits in a chain of n spins with just nearest-
neighbor couplings [Fig. 10(b)]. SWAP operations can
also be used to perform two-qubit gates between any
two qubits that are coupled to a common “bus” qubit
[Fig. 10(c)].

Conversely, if a qubit is coupled to many other qubits
[Fig. 10(a)] and we want to perform a CNOT between just
two of them, we must remove the effect of the remaining
couplings. This can accomplished using the technique of
refocusing, which has been widely adopted in a variety
of NMR experiments.

4. Refocusing: Turning off undesired IQI"Z couplings

The effect of coupling terms during a time interval of
free evolution can be removed via so-called “refocusing”
techniques. For coupling Hamiltonians of the form Ii]é,
as is often the case in liquid NMR experiments [see Eq.
(9)], the refocusing mechanism can be understood at a
very intuitive level. Reversal of the effect of coupling
Hamiltonians of other forms, such as in Egs. (5), (6), and
(8), is less intuitive, but can be understood within the
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FIG. 11. Bloch-sphere representation of the operation of two
simple schemes to refocus the coupling between two coupled
qubits. The diagram shows the evolution of qubit 1 (in the
rotating frame) initially along —, when qubit 2 is in |0) (solid)
or in [1) (dashed). The refocusing pulse can be applied to either
(a) qubit 2 or (b) qubit 1.

framework of average Hamiltonian theory (Sec. IV.C).

Let us first look at two ways of undoing I’I’ in a two-
qubit system. In Fig. 11(a), the evolution of qub1t 1 in
the first time interval 7 is reversed in the second time
interval, due to the 180° pulse on qubit 2. In Fig. 11(b),
qubit 1 continues to evolve in the same direction all the
time, but the first 180° pulse causes the two components
of qubit 1 to be refocused by the end of the second time
interval. The second 180° pulse ensures that both qubits
always return to their initial state.

Mathematically, we can see how refocusing of J cou-
plings works using the fact that for all =

XiU/nX; = Uy (-1 =X3U,(nX3, (32)
which leads to
XU (DXiU,(D) =1= X3U(DX3U,(7). (33)

Replacing all X2 with Y2 the sequence works just the
same. However, if we sometimes use X7 and sometimes
le, we get the identity matrix only up to some phase
shifts. Also, if we applied pulses on both qubits simulta-
neously, e.g., X%X% U ,(T)X%Xg U,(7), the coupling would
not be removed.

Figure 12 gives insight into refocusing techniques in a
multiqubit system. Specifically, this scheme preserves the
effect of Jy,, while effectively inactivating all the other
couplings. The underlying idea is that a coupling be-
tween spins i and j acts “forward” during intervals where
both spins have the same sign in the diagram, and acts

gt sk

A PSS IS IS IS 'S S P
S EEEREN R

P+ o+
B BN e
4: T o T T T o T d

3
FIG. 12. Refocusing scheme for a four-spin system, designed
to leave J, active the whole time but to neutralize the effect of
the other J;;. The interval is divided into slices of equal dura-
tion, and the “+” and “-” signs indicate whether a spin is still
in its original position, or upside down. The black rectangles
represent 180° pulses, which flip the corresponding spin.
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“in reverse” whenever the spins have opposite signs.
Whenever a coupling acts forward and in reverse for the
same duration, it has no net effect.

Systematic methods for designing refocusing schemes
for multiqubit systems have been developed specifically
for the purpose of quantum computing. The most com-
pact scheme is based on Hadamard matrices (Jones and
Knill, 1999; Leung et al., 2000). A Hadamard matrix of
order n, denoted by H(n), is an n X n matrix with entries
+1 such that

Hmn)H(n)" =nl. (34)

The rows are thus pairwise orthogonal, and any two
rows agree in exactly half of the entries. Identifying +1
and -1 with + and - as in the diagram of Fig. 12, we see
that H(n) gives a valid decoupling scheme for n spins
using only n time intervals. An example of H(12) is

- -
+ 0+ + + + + + + + + 4+ 4+
+ o+ + - -+ - =+ - - 4+
+ 4+ + + - - -+ -+ = -
+ -+ o+ + - = =+ =+ =
- -+ + + - - - 4+ - 4+
+ + - - + + - + - - 4+ -
(35)
+ - - - - - — 4 + + + +
+ - 4+ - -+ + - - 4 4+ -
e
- o+ -+ -+ + = = = 4+
+ - - 4+ - + + 4+ - - -
+ o+ - -+ -+ - + 4+ = -
L -

If we want the coupling between one pair of qubits to
remain active while removing the effect of all other cou-
plings, we can simply use the same row of H(n) for those
two qubits.

H(n) does not exist for all n, but we can always find a
decoupling sequence for n qubits by taking the first n
rows of H(n1), with 77 the smallest integer that satisfies
n=n with known H(77). From the properties of Had-
amard matrices, we can show that 71/n is always close to
1 (Leung et al., 2000). So decoupling schemes for n spins
require 7 time intervals and no more than nn 180°
pulses.

Another systematic approach to refocusing sequences
is illustrated via the following four-qubit scheme (Lin-
den, Barjat, et al., 1999):

+ + + +

(36)

+ o+ +

- - - - 4

+ 4+ + +

For every additional qubit, the number of time intervals
is doubled, and 180° pulses are applied to this qubit after
the first, third, fifth, ... time interval. The advantage of
this scheme over schemes based on Hadamard matrices
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1> E

FIG. 13. Simplification rules for quantum circuits, drawn using
standard quantum gate symbols, where time goes from left to
right, each wire represents a qubit, boxes represent simple
gates, and solid black dots indicate control terminals.

is that it does not require simultaneous rotations of mul-
tiple qubits. The main drawback is that the number of
time intervals increases exponentially.

We end this subsection with three additional remarks.
First, each qubit will generally be coupled to no more
than a fixed number of other qubits, since coupling
strengths tend to decrease with distance. In this case, all
refocusing schemes can be greatly simplified (Jones and
Knill, 1999; Linden, Barjat, et al., 1999; Leung et al.,
2000).

Second, if the forward and reverse evolutions under J;
are not equal in duration, a net coupled evolution takes
place corresponding to the excess forward or reverse
evolution. In principle, therefore, we can organize any
refocusing scheme such that it incorporates any desired
amount of coupled evolution for each pair of qubits.

Third, refocusing sequences can also be used to re-
move the effect of I; terms in the Hamiltonian. Of
course, these terms vanish in principle if we work in the
multiply rotating frame [see Eq. (21)]. However, there
may be some spread in the Larmor frequencies, for in-
stance, due to magnetic-field inhomogeneities. This ef-
fect can then be reversed using refocusing pulses, as is
routinely accomplished in spin-echo experiments (Sec.
V.A4).

5. Pulse sequence simplification

There are many possible pulse sequences which in an
ideal world result in exactly the same unitary transfor-
mation. Good pulse sequence design therefore attempts
to find the shortest and most effective pulse sequence
that implements the desired transformations. In Sec. IV,
we shall see that the use of more complex pulses or

PRY ay
N D

T R

FIG. 14. Commutation of unitary operators can help simplify
quantum circuits by moving building blocks around such that
cancellation of operations as in Fig. 13 becomes possible. For
example, the three segments (separated by dashed lines) in
these two equivalent realizations of the TOFFOLI gate (doubly-
controlled NOT) commute with each other and can thus be ex-
ecuted in any order.
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FIG. 15. Choosing one of several equivalent implementations
can help simplify quantum circuits, again by enabling cancella-
tion of operations as in Fig. 13. For instance, the two control
qubits in the TOFFOLI gate play equivalent roles, so they can be
interchanged.

pulse sequences may sometimes increase the degree of
quantum control. Here, we look at three levels of pulse
sequence simplification.

At the most abstract level of pulse sequence simplifi-
cation, careful study of a quantum algorithm can give
insight into how to reduce the resources needed. For
example, a key step in both the modified Deutsch-Jozsa
algorithm (Cleve et al., 1998) and the Grover algorithm
(Grover, 1997) can be described as the transformgtion
|x)[y)— |[x)|x®y), where |y) is set to (|0)—|1))/2, so
that the transformation in effect is |x)(|0)—|1))/\2
— (=1)@[x)(J0)=|1))/+2. Thus we might as well leave
out the last qubit as it is never changed.

At the next level, that of quantum circuits, we can use
simplification rules such as those illustrated in Fig. 13. In
this process, we can fully take advantage of commuta-
tion rules to move building blocks around, as illustrated
in Fig. 14. Furthermore, gates that commute with each
other can be executed simultaneously. Finally, we can
take advantage of the fact that most building blocks
have many equivalent implementations, as shown, for
instance, in Fig. 15.

Sometimes, a quantum gate may be replaced by an-
other quantum gate, which is easier to implement. For
instance, refocusing sequences (Sec. I1I.A.4) can be kept
simple by examining which couplings really need to be
refocused. Early on in a pulse sequence, several qubits
may still be along +Z, in which case their mutual Iilé
couplings have no effect and thus need not be refocused.
Similarly, if a subset of the qubits can be traced out at
some point in the sequence, the mutual interaction be-
tween these qubits does not matter anymore, so only
their coupling with the remaining qubits must be refo-
cused. Figure 16 gives an example of such a simplified
refocusing scheme for five coupled spins.

AW =

+ |+ |+ [+ [+

5

FIG. 16. Simplified refocusing scheme for five spins, designed
such that the coupling of qubits 1-2 with qubits 3-5 is switched
off, i.e., Ji3, J14, J15, J23, Jo4, and Jps are inactive whereas
J12, Ja4, J35, and Jy5 are active.
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More generally, the relative phases between the en-
tries in the unitary matrix describing a quantum gate are
irrelevant when the gate acts on a diagonal density ma-
trix. In this case, we can, for instance, implement a CNOT
simply as X,U,(1/2J)Y, rather than the sequence of
Eq. (31).

At the lowest level, that of pulses and delay times,
further simplification is possible by taking out adjacent

pulses which cancel out, such as X and X (an instance of
the first simplification rule of Fig. 13) and by converting
“difficult” operations to “easy” operations.

Cancellation of adjacent pulses can be maximized by
properly choosing the pulse sequences for subsequent
quantum gates. For this purpose, it is convenient to have
a library of equivalent implementations for the most
commonly used quantum gates. For example, two
equivalent decompositions of a CNOT,, gate (with Ji,
>(0) are

- 1
212, X,Up)l — |Y 37
14242 J<2 J) 2s (37)
as in Eq. (31), and
- - - 1)\-
Z1Z, XUl — | Y. 38
14245 J<2 J) 2 (33)
Similarly, two equivalent implementations of the
HADAMARD gate on qubit 2 are
X3Y, (39)
and
Y,.X5. (40)

Thus, if we need to perform a HADAMARD operation on
qubit 2 followed by a CNOT, gate, it is best to choose the
decompositions of Eqs. (37) and (40), such that the re-
sulting pulse sequence,

- 1 -
le2X2UJ<§) Y, Y,X;. (41)
simplifies to
- 1
ZIZZXZU,<Z) X;. (42)

An example of a set of operations that is easy to per-
form is the rotations about Z. While the implementation
of Z rotations in the form of three RF pulses [Eq. (28)]
takes more work than a rotation about X or y, rotations
about Z need in fact not be executed at all, provided the
coupling Hamiltonian is of the form Iilé, as in Eq. (21).
In this case, Z rotations commute with free evolution
under the system Hamiltonian, so we can interchange
the order of Z rotations and time intervals of free evo-
lution. Using equalities such as

ZY=XYXY=XZ, (43)

we can also move Z rotations across X and y rotations,
and gather all Z rotations at the end or the beginning of
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a pulse sequence. At the end, 7 rotations do not affect
the outcome of measurements in the usual |0), |1) “com-
putational” basis. Similarly, Z rotations at the start of a
pulse sequence have no effect on the usually diagonal
initial state. In either case, Z rotations do not then re-
quire any physical pulses and are in a sense “for free”
and perfectly executed. Indeed, Z rotations simply de-
fine the reference frame for X and y and can be imple-
mented by changing the phase of the reference frame
throughout the pulse sequence.

It is thus advantageous to convert as many X and Y
rotations as possible into Z rotations, using identities
similar to Eq. (28), for example,

XY=XYXX=ZX. (44)

A key point in pulse sequence simplification of any
kind is that the simplification process must itself be effi-
cient. For example, suppose an algorithm acts on five
qubits with initial state |00000) and outputs the final
state (|01000)+|01100)/+2. The overall result of the al-
gorithm is thus that qubit 2 is flipped and that qubit 3 is
placed in an equal superposition of |0) and |1). This net
transformation can obviously be obtained immediately
by the sequence X%Y3. However, the effort needed to
compute the overall input-output transformation gener-
ally increases exponentially with the problem size, so
such extreme simplifications are not practical.

6. Time-optimal pulse sequences

Next to the widely used but rather naive set of pulse
sequence simplification rules of the previous subsection,
there exist powerful mathematical techniques for de-
terming the minimum time needed to implement a
quantum gate, using a given system and control Hamil-
tonian, as well as for finding time-optimal pulse se-
quences (Khaneja et al., 2001). These methods build on
earlier optimization procedures for mapping an initial
operator onto a final operator via unitary transforma-
tions (Sgrenson, 1989; Glaser et al., 1998), as in coher-
ence or polarization transfer experiments, common tasks
in NMR spectroscopy.

The pulse sequence optimization technique expresses
pulse sequence design as a geometric problem in the
space of all possible unitary transformations. The goal is
to find the shortest path between the identity transfor-
mation / and the point in the space corresponding to the
desired quantum gate, U, while traveling only in direc-
tions allowed by the given system and control Hamil-
tonian. Let us call K the set of all unitaries k that can be
produced using the control Hamiltonian only. Next we
assume that the terms in the control Hamiltonian are
much stronger than the system Hamiltonian (as we shall
see in Sec. II1.B.2, this assumption is valid in NMR only
when using so-called hard, high-power pulses). Then,
starting from /, any point in K can be reached in a neg-
ligibly short time, and similarly, U can be reached in no
time from any point in the coset KU, defined by {kU|k
€ K}. Evolution under the system Hamiltonian for a fi-
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nite amount of time is required to reach the coset KU
starting from K. Finding a time-optimal sequence for U
thus comes down to finding the shortest path from K to
KU allowed by the system Hamiltonian.

Such optimization problems have been extensively
studied in mathematics (Brockett, 1981) and have been
solved explicitly for elementary quantum gates on two
coupled spins (Khaneja et al, 2001) and a three-spin
chain with nearest-neighbor couplings (Khaneja et al.,
2002). For example, a sequence was found for producing
the trilinear propagator exp(—i27rll[§l§) from the system
Hamiltonian A27J (Ii1§+lglg) in a time y3/2J, the short-
est possible time (Khaneja et al., 2002). This propagator
is the starting point for useful quantum gates such as the
doubly controlled NOT or TOFFOLI gate. The standard
quantum circuit approach, in comparison, would yield a
sequence of duration 3/2J/ (it uses only one coupling at a
time while refocusing the other coupling), and the com-
mon NMR pulse sequence has duration 1/J.

Clearly, the time needed to find a time-optimal pulse
sequence increases exponentially with the number of qu-
bits n involved in the transformation, since the unitary
matrices involved are of size 2" X 2". Therefore the main
use of the techniques presented here lies in finding effi-
cient pulse sequences for building blocks acting on only
a few qubits at a time, which can then be incorporated in
more complex sequences acting on many qubits by add-
ing appropriate refocusing pulses to remove the cou-
plings with the remaining qubits. While the examples
given here are for the typical NMR system and control
Hamiltonian, the approach is completely general and
may be useful for other qubit systems too.

B. Experimental limitations

Many years of experience have taught NMR spectros-
copists that while the ideal control techniques described
above are theoretically attractive, they neglect impor-
tant experimental artifacts and undesired Hamiltonian
terms which must be addressed in any actual implemen-
tation. First, a pulse intended to selectively rotate one
spin will to some extent also affect the other spins. Sec-
ond, the coupling terms 2/ ,-]-Iilé cannot be switched off
in NMR. During time intervals of free evolution under
the system Hamiltonian, the effect of these coupling
terms can easily be removed using refocusing techniques
(Sec. 1I1.LA.4), so long as the single-qubit rotations are
perfect and instantaneous. However, during RF pulses
of finite duration, the coupling terms also distort the
single-qubit rotations. In addition to these two limita-
tions arising from the NMR system and control Hamil-
tonian, a number of instrumental imperfections cause
additional deviations from the intended transformations.

1. Cross-talk

Throughout the discussion of single- and two-qubit
gates, we have assumed that we can selectively address
each qubit. Experimentally, qubit selectivity could be ac-
complished if the qubits were well separated in space or,
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FIG. 17. Simulation of the spin response to a 1-ms constant-
amplitude RF pulse as a function of the frequency offset Aw
between ) and w,.. The spin starts off in |0) (along +Z in the
Bloch sphere) and w;/27=500 Hz is chosen such that the ro-
tation angle amounts to 180° for an on-resonance pulse.

as in NMR, in frequency. In practice, there will usually
be some cross-talk, which causes an RF pulse applied on
resonance with one qubit to slightly rotate another qubit
or shift its phase. Cross-talk effects are even more com-
plex when two or more pulses are applied simulta-
neously.

The frequency bandwidth over which qubits are ro-
tated by a pulse of length ¢,, is roughly speaking of
order 1/1,,,. Yet, since the qubit response to an RF field
is not linear (it is sinusoidal in wit,,), the exact fre-
quency response cannot be computed using Fourier
theory.

For a constant-amplitude (rectangular) pulse, the uni-
tary transformation as a function of the detuning Aw is
easy to derive analytically from Egs. (16) and (17). Al-
ternatively, we can exponentiate the Hamiltonian of Eq.
(15) to get U directly. An example of a qubit response to
a rectangular pulse is shown in Fig. 17.

It is evident from Fig. 17 that short rectangular pulses
(known as “hard” pulses) excite spins over a very wide
frequency range. The frequency selectivity of a pulse can
of course be increased by increasing t,, while lowering
B accordingly (thus creating what is known as a “soft”
pulse), but decoherence effects become more severe as
the pulses get longer. Fortunately, as we shall see in Secs.
IV.A and IV.B, the use of shaped and composite pulses
can dramatically improve the frequency selectivity of the
RF excitation.

Even if a pulse is designed not to produce any net X or
y rotations of spins outside a specified frequency win-
dow, the presence of RF irradiation during the pulse still
causes a shift Awhy in the precession frequency of spins
i at frequencies well outside the excitation frequency
window (Emsley and Bodenhausen, 1990). As a result,
each spin accumulates a spurious phase shift during RF
pulses applied to spins at nearby frequencies.

This effect is related to the Bloch-Siegert shift men-
tioned in Sec. I1.B.1 and is known as the transient gener-
alized Bloch-Siegert shift in the NMR community. It is
related to the ac Stark effect in atomic physics. At a
deeper level, the acquired phase can be understood as
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FIG. 18. Simulation of the spin response to two simultaneous
pulses with carrier frequencies at 0 Hz and 3273 Hz (vertical
dashed lines) away from the spin-resonance frequency, with a
calibrated pulse length of 2650 us (as for an ideal 180°). The
amplitude profile of the pulses is Hermite shaped (Sec. IV.A)
in order to obtain a smooth spin response. For ideal inversion,
the solid line should be -1 at the two frequencies, and the
dashed line should be zero. From Steffen et al., 2000.

an instance of Berry’s phase (Berry, 1984): the spin de-
scribes a closed trajectory on the surface of the Bloch
sphere and thus returns to its initial position, but it ac-
quires a phase shift proportional to the area enclosed by
its trajectory.

The frequency shift is given by

2
W

—_— 45
2((‘)0 - wrf) ( )

A(,UBS =
(provided w;<|wy—w,/]), where wy/27 is the original
Larmor frequency (in the absence of the RF field). In
typical NMR experiments, the frequency shifts can eas-
ily reach several hundred Hz in magnitude. We see from
Eq. (45) that the Larmor frequency shifts up if wy> o,y
and shifts down if wy <,

Fortunately, the resulting phase shifts can be easily
computed in advance for each possible spin-pulse com-
bination, if all the frequency separations, pulse ampli-
tude profiles, and pulse lengths are known. The unin-
tended phase shifts R_(6) can then be compensated for
during the execution of a pulse sequence by inserting
appropriate R (—6), which can be executed at no cost, as
we saw in Sec. III.A.S.

Cross-talk effects are aggravated during simultaneous
pulses, applied to two or more spins with nearby fre-
quencies o} and o} (say wj<w}). The pulse at w) then
temporarily shifts the frequency of spin 2 to w(ZJ+AwBS.
As a result, the pulse on spin 2, if applied at w3, will be
off-resonance by an amount —Awgg. Analogously, the
pulse at w is now off the resonance of spin 1 by Awgs.
The resulting rotations of the spins deviate significantly
from the intended rotations.

The detrimental effect of the Bloch Siegert shifts dur-
ing simultaneous pulses is illustrated in Fig. 18, which
shows the simulated inversion profile for a spin subject
to two simultaneous 180° pulses separated by 3273 Hz.
The centers of the inverted regions have shifted away
from the intended frequencies and the inversion is in-
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complete, which can be seen most clearly from the sub-
stantial residual xX-y-magnetization (>30%) over the
whole region intended to be inverted. Note also that
since the frequencies of the applied pulses are off the
spin resonance frequencies, complete inversion cannot
be achieved no matter what tip angle is chosen (see Sec.
IL.B.2).

In practice, simultaneous soft pulses at nearby fre-
quencies have been avoided in NMR (Linden, Kupce,
and Freeman, 1999) or the poor quality of the spin rota-
tions was accepted. Pushed by the stringent require-
ments of quantum computation, several techniques have
meanwhile been invented to generate accurate simulta-
neous rotations of spins at nearby frequencies (see Secs.
IV.A2 and IV.B.2).

2. Coupled evolution

The spin-spin couplings in a molecule are essential for
the implementation of two-qubit gates (Sec. 111.A.3), but
they cannot be turned off and are thus also active during
the RF pulses, which are intended to be just single-qubit
transformations. Unless w; is much stronger than the
coupling strength, the interactions strongly affect the in-
tended nutation. For couplings of the form JI.Z, the
effect is similar to the off-resonance effects illustrated in
Fig. 7: the coupling to another spin shifts the spin fre-
quency to wy/27+J/2, so a pulse sent at wy/2 hits the
spin off-resonance by +J/2.

In practice, J coupling terms can only be neglected for
short, high-power pulses used in heteronuclear spin sys-
tems: typically /<300 Hz while w; is up to =50 kHz.
For low-power pulses, often used in homonuclear spin
systems, w; can be of the same order as J and coupling
effects become prominent. The coupling terms also lead
to additional complications when two qubits are pulsed
simultaneously. In general, the qubits become partially
entangled (Kupc¢e and Freeman, 1995).

As was the case for cross-talk, NMR spectroscopists
have developed special shaped and composite pulses to
compensate for coupling effects during RF pulses while
performing spin-selective rotations. In recent years, the
use of such pulses has been extended and perfected for
quantum computing experiments (Secs. IV.A and IV.B).

3. Instrumental errors

A number of experimental imperfections lead to er-
rors in the quantum gates. In NMR, the most common
imperfections are inhomogeneities in the static and RF
magnetic field, pulse length calibration errors, frequency
offsets, and pulse timing and phase imperfections.

The static field B, in modern NMR magnets can be
made homogeneous over the sample volume (a cylinder
5 mm in diameter and 1.5 cm long) to better than 1 part
in 10°. This amazing homogeneity is obtained by meticu-
lously adjusting the current through a set of so-called
“shim” coils, which compensate for the inhomogeneities
produced by the large solenoid. At w,=500-27 MHz,
linewidths of 0.5 Hz can thus be obtained, correspond-
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ing to a dephasing time constant 7, (see Sec. V.A.2) of
1/(270.5)=0.32 s. In the course of long pulse sequences
(of order 0.1-1 s), even the tiny remaining inhomogene-
ity would therefore have a large effect, so its effect must
be reversed using refocusing sequences (Sec. 111.A.4)

The RF field homogeneity is typically very poor, due
to constraints on the geometry of the RF coils: the en-
velope of Rabi oscillations (Sec. V.A.1) often decays by
as much as 5% per 90° rotation, corresponding to a
quality factor of only =5. In sequences containing only a
few pulses, this is not problematic, but in multiple-pulse
experiments, the RF field inhomogeneity is often the
dominant source of errors and signal loss.

Imperfect pulse length calibration has an effect similar
to B; inhomogeneity: the qubit rotation angle is differ-
ent than was intended. Only the correlation time for the
error is different. Miscalibrations are constant through-
out an experiment, whereas the RF field experienced by
any given molecule changes on the time scale of diffu-
sion through the sample volume.

Frequency offsets occur in different contexts. In tradi-
tional NMR experiments, the Larmor frequencies are
often not known in advance. RF pulses are then ex-
pected to rotate the spins over a wide range of frequen-
cies, quite the opposite case to that of quantum comput-
ing, where the Larmor frequencies are precisely known
and rotations should be spin selective. However, we
have seen earlier that I;IQ coupling terms act as a fre-
quency offset of one spin, which depends on the state of
the other spin. Qubit-selective rotations of qubit i thus
require a uniform rotation over a range wj=3;; [/;]/2.

Various approaches have been developed to reduce
the sensitivity of RF pulses and pulse sequences to these
instrumental errors, sometimes in combination with so-
lutions to cross-talk and coupling artifacts. These ad-
vanced techniques are the subject of the next section.

IV. ADVANCED PULSE TECHNIQUES

The accuracy of quantum gates that can be achieved
using the simple pulse techniques of the previous section
is unsatisfactory when applied to multispin systems,
where the given NMR system and control Hamiltonian
lead to undesired cross-talk and coupling effects. In ad-
dition, the available instrumentation can only imper-
fectly approximate ideal pulse amplitudes, timings, and
phases, for realistic sample geometries and coil configu-
rations, and any real molecule includes additional
Hamiltonian terms such as couplings to the environ-
ment, which are undesired. Nevertheless, extremely pre-
cise control can be achieved despite these imperfections,
and this is accomplished using the art of shaped pulses,
composite pulses, and average Hamiltonian theory, the
subject of this second major section of this review.

These advanced techniques are based on the assump-
tion that errors are, at least on some accessible time
scale, systematic, rather than random. This assumption
clearly holds for the terms in the ideal NMR Hamil-
tonian of Egs. (21) and (22), and applies also to most
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FIG. 19. (Color in online edition) Trajectory on the Bloch
sphere of a qubit initially in |0), when a so-called IBURP1 pulse
(Geen and Freeman, 1991) is applied, of duration 1 ms and
wy=3342 Hz, with a frequency offset (analogous to I’I, cou-
pling) of 0, 100, and 200 Hz. This pulse is intended to rotate
the qubit from |0) (+2) to |1) (=Z). We see that the effect of the
frequency offset is largely removed by the specially designed
pulse shape; all three trajectories terminate near —z.

instrumental errors. Then, by using the special proper-
ties of evolution in unitary groups, such as the SU(2")
which describes the space of operators acting on n qu-
bits, the systematic errors can in principle be canceled
out.

A. Shaped pulses

The amplitude and phase profile of RF pulses can be
specially tailored in order to ease the cross-talk and cou-
pling effects discussed in Secs. III.B.1 and III.B.2. In
practice, the pulse is divided into a few tens to many
hundreds of discrete time slices; to achieve an arbitrarily
shaped pulse, it suffices to control the amplitude and
phase of the slices separately. Furthermore, multiple
shaped pulses applied at various frequencies can be
combined into a single pulse shape, since a linear vector
sum of pulse slices also results in a valid pulse. Here, we
consider simple amplitude and phase shaped pulses.

1. Amplitude profiles

The frequency selectivity of RF pulses can be much
improved compared to standard rectangular pulses with
sharp edges, by using pulse shapes that smoothly modu-
late the pulse amplitude with time. Such pulses are typi-
cally especially designed to excite or invert spins over a
limited frequency region, while minimizing X and y ro-
tations for spins outside this region (Freeman, 1997,
1998).

Furthermore, specialized pulse shapes exist which
minimize the effect of couplings during the pulses. Such
self-refocusing pulses (Geen and Freeman, 1991) take a
spin over a complicated trajectory in the Bloch sphere,
in such a way that the net effect of couplings between
the selected and nonselected spins is reduced (Fig. 19). It
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FIG. 20. (Left) Time profile for, from top to bottom, a 1-ms
Gaussian, Hermite 180, and REBURP shaped pulse. (Right)
Corresponding frequency response of a qubit initially along
+Z, displaying the Z and X-y components of the qubit after the
pulse.

is as if those couplings are only in part or even not at all
active during the pulse (couplings between pairs of non-
selected spins will still be fully active but their effect can
be removed using the standard refocusing techniques
described in Sec. II1.A.4). As a general rule, it is rela-
tively easy to make 180° pulses self-refocusing, but much
harder to do so for 90° pulses.

The self-refocusing behavior of certain shaped pulses
can be intuitively understood to some degree. Neverthe-
less, many actual pulse shapes have been the result of

numerical optimizations. Often, the pulse shape is ex-
pressed in a basis of several functions, for instance, a
Fourier series (Geen and Freeman, 1991),

2 . 27
A0+E A, cos\n—t |+ B, sin| n—t ,

pw [PW

(46)

and the weights of the basis functions, A, and B,, are
optimized using numerical routines such as simulated
annealing.

Comparison of the performance of various pulse
shapes is facilitated by computing the corresponding
spin responses. This is most easily done by concatenat-
ing the unitary operators of each time slice of the shaped
pulse, as the Hamiltonian is time independent within
each time slice. Figure 20 presents the amplitude profile
and pulse response for three standard pulse shapes of
equal duration, illustrating that different pulse shapes
produce strikingly different spin response profiles.

Properties relevant for choosing a pulse shape in-
clude:

e frequency selectivity: product of excitation band-
width and pulse length (lower is more selective),

e transition range: the width of the transition region
between the selected and nonselected frequency re-
gion,

e power: the peak power required for a given pulse
length and tip angle (lower is less demanding),

e self-refocusing behavior: degree to which the J cou-
pling between the selected spin and other spins is
refocused (the signature for self-refocusing behavior
is a flat top in the excitation profile),

e robustness to experimental imperfections such as
pulse length errors,

e universality: whether the pulse performs the in-
tended rotation for arbitrary input states or only for
specific input states.

TABLE II. Properties of relevant pulse shapes. The Gaussian (Bauer e al., 1984) and Hermite
(Warren, 1984) shapes are described by analytical functions and were identified early on. The BURP
family of pulses (Geen and Freeman, 1991) resulted from numerical optimization routines. Continued
work in this area has produced a large number of additional pulse shapes, such as the Av 90 (Abra-

movich and Vega, 1993).

Selectivity Transition range Power Self-refocusing Robustness
Rectangular poor very wide minimal no good
Gauss 90 excellent wide low fair good
Gauss 180 excellent wide low fair good
Hrm 90 moderate moderate average good fair
Hrm 180 good moderate average very good fair
UBURP 90 poor narrow high excellent poor
REBURP180 poor narrow high excellent poor
AV 90 fair moderate average good fair
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Table II summarizes these properties for a selection of
widely used pulse shapes. Only universal pulses (also
known as general-rotation pulses) are included in the
table, since quantum computations must work for any
input state.

Obviously, no single pulse shape optimizes for all
properties simultaneously, so pulse shape design consists
of finding the optimal tradeoff for the desired applica-
tion. For quantum computing experiments, we can select
molecules with large chemical shifts, so sharp transition
regions are not so important. Furthermore, the probe
and spectrometer can deal with relatively high powers.
The crucial parameters are the self-refocusing behavior,
the selectivity (short, selective pulses minimize decoher-
ence), and to some extent the robustness.

It is also possible to start from a desired frequency
response and invert the transformation to find the pulse
shape that produces this response. Again, given the non-
linear nature of the response, the inverse transformation
is not given by a Fourier transform, but it can neverthe-
less be computed directly (Pauly et al., 1991).

Even self-refocusing shaped pulses do not generally
remove the coupling terms completely. Furthermore,
when two spins are pulsed simultaneously with self-
refocusing pulses, the refocusing effects are often de-
stroyed (Kupc¢e and Freeman, 1995). In both cases, the
remaining coupled evolution that takes place during the
pulses must be reversed at an earlier and/or later stage
in the pulse sequence.

If we could decompose the evolution during an actual
pulse into an idealized, instantaneous X or Y rotation
with no coupling present, followed and/or preceded by a
time interval of free evolution, we could compensate for
the coupling effects simply by adjusting the appropriate
time intervals of free evolution in between the pulses
(Sec. III.A.4). However, H,; and H; do not commute, so
such a decomposition is not possible.

Nevertheless, the coupled evolution can still be un-
wound to first order (Knill ez al, 2000; Vandersypen et
al., 2001), when a time interval of reverse evolution both
before and after the pulse is used:

e+ ity b gt iHih o ity (47)
where 7 is chosen such that the approximations are as
good as possible according to some distance or fidelity
measure (see Sec. V.C). The optimal 7 is usually close to

but not equal to #,,/2. In comparison, a negative time
interval only before or after the pulse,

T =i R Mt p=iHyy 1yl
~ e—i(H,ﬁ—Hj)tpW/heHHjT/ﬁ’ (48)

is much less effective.

2. Phase profiles

An alternative to amplitude shaping that is often use-
ful is frequency or phase shaping. One specific phase-
shaping method utilizes fixed, small increments A¢ to
the phase of successive slices of a pulse to achieve an
excitation profile centered at a frequency that differs
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FIG. 21. Similar to Fig. 18 but with frequency shift correction.
From Steffen et al., 2000.

from the RF carrier frequency w,r by A¢/Az, where Az is
the duration of each time slice. This technique for shift-
ing the RF frequency is known as phase ramping (Patt,
1991). We can express the effect of phase ramping math-
ematically by replacing Eq. (11) by

Hyl(—hwy) = cos{wrft + <¢0 + i—ftﬂlx
_ sin{w,ft+ <¢0 + AA—(fl)]Iy
= cos{(w,f+ AA—(f)t+ qSO}IX

—sin[(w,f+ %)H ¢0}1y. (49)

The use of phase shifts thus permits us to obtain an RF
field at a different frequency than is generated by the
signal generator. Furthermore, the displaced frequency
can be chosen to be different for every pulse and can
even be varied in the course of a pulse.

A useful application of phase ramping lies in compen-
sation for Bloch-Siegert effects during simultaneous
pulses, where the RF applied at ) shifts the resonance
frequency of spin j to wj)+AQgg (Sec. ITLB.1). The rota-
tions of both spins can be significantly improved simply
by shifting the RF excitation frequencies via phase
ramping such that they track the shifts of the corre-
sponding spin frequencies (Steffen er al., 2000). In this
way, the pulses are always applied on-resonance with the
respective spins. The calculation of the frequency shift
throughout a shaped pulse is straightforward and needs
to be done only once, at the start of a series of experi-
ments.

Figure 21 shows the simulated inversion profiles for
the same conditions as in Fig. 18, but this time using the
frequency shift corrected scheme. The inversion profiles
are clearly much improved and there is very little left-
over x—y magnetization. Simulations of the inversion
profiles for a variety of pulse shapes, pulse widths, and
frequency separations confirm that the same technique
can be used to correct the frequency offsets caused by
three or more simultaneous soft pulses at nearby fre-
quencies. The improvement is particularly pronounced
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when the frequency window of the shaped pulse is two
to eight times the frequency separation between the
pulses (Steffen et al., 2000).

B. Composite pulses

Another practical method for compensating for sys-
tematic control errors in NMR experiments is the appli-
cation of a sequence of pulses instead of a single pulse.
This method of composite pulses arises from the obser-
vation that concatenation of several pulses can produce
more accurate rotations than is possible using just a
single pulse, due to strategic cancellation of systematic
errors and other unwanted systematic effects. Compos-
ite pulses work particularly well for compensating errors
arising from the RF field inhomogeneity, frequency off-
sets, imperfect pulse length calibration, and other instru-
mental artifacts introduced in Sec. I11.B.3. They leverage
the ability to control one parameter precisely to com-
pensate for the inability to control another parameter
well. We describe two approaches to construction of
composite pulses: an analytical method and one employ-
ing numerical optimization.

1. Analytical approach

The three parameters that characterize a hard pulse
are its frequency offset Aw, phase ¢, and area fiyB;i,,,
given by the product of the pulse amplitude B; and
pulse duration ¢, (Sec. I1.B.1). In terms of qubit opera-
tions, errors in these parameters translate directly into
errors in the axis 71 and angle 6 of rotation, such that the
actual operation applied is not the ideal R;(6) of Eq.
(23), but rather

Ry(6) = exp{— l%’} : (50)
where f(6,7) is a function which characterizes the sys-
tematic error. For example, under- and over-rotation er-
rors caused by pulse amplitude miscalibration or RF
field inhomogeneity may be described by f(8,7)=6(1
+e)n, while RF phase errors may be described by
f(0,7)= 67, cos e+7, sin €,A, cos -7, sin €,7_ ], where
€ is a fixed, but unknown parameter. The essence of the
composite pulses technique is that a number of errone-
ous operations are concatenated, varying 7 and 6, to ob-
tain a final operation which is as independent of e as
possible. This is done without knowing e.

This technique can be illustrated by considering the
specific case of linear amplitude errors, in which

N { i0(l+e)ﬁ'&]
p - |.

R;;(0) = ex 5 (51)

Let the goal be to obtain R (7/2). Using as a measure of
error the average gate fidelity, defined in Eq. (113),

we find that F(Rx(ﬂ-/2),ﬁx(w/Z))=[2+cos(err/2)]/3 ~1
— 1€ /24, so the error is quadratic in e for small e. Con-
sider, in contrast, the sequence
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FIG. 22. (Color in online editon) Comparison of gate fidelities
for average and composite unitary transforms: Lower curve,
plot of the average gate fidelity between the ideal R (7/2) and
actual unitary transforms R,(/2); upper curve, plot of fidelity
between the ideal R, (7/2) and the composite sequence BB1gj,
as a function of the fraction of over-rotation error e. Note how
much higher fidelity the BB1 sequence has (the best possible
fidelity is 1), over a wide range of errors.

BB1y=Ry(mR;3,2mR 4(m)R(6), (52)

where I%(-) denotes a rotation about the axis
[cos ¢,sin ¢,0], and the choice ¢=cos ! (—6/4m) is
made. This sequence gives average gate fidelity

F(R,(/2),BBly)) =~1-217°€°/16384, which is much
better than for the single pulse, even for relatively large
values of €, as shown in Fig. 22. The operation of the
BB1y, sequence is illustrated graphically in Fig. 23.

A few comments about this result are in order. This
result is the best that has been presented in the litera-
ture to date (Wimperis, 1994; Cummins and Jones, 2000;
Jones, 2003b). Currently, no pulse sequence that cancels
out errors to higher order (for all possible initial states)
has yet been published. It is also fairly general; BB1,
approximates R, (6). Also, while composite pulses have
been widely studied and employed in the art of NMR,
this sequence is special in that it is universal (also termed
fully-compensating or class A): the amount of error can-
cellation is independent of the starting state of the spin
(Tycko, 1983; Tycko et al., 1985). Other examples of such
universal composite pulses are the sequence

Ri0(180) R30(180) R(180), (53)

which performs a X? rotation with compensation for
pulse length errors, and

R,(385)R,(~ 320)R,(25), (54)

which performs a Y rotation compensating for off-
resonance errors and to some extent for pulse length
errors as well.

Earlier, in the original work which introduced the con-
cept of composite pulses into NMR (Levitt and Free-
man, 1979; Levitt, 1986), only limited pulse sequences
were known, which worked only for particular initial
states; for example, there is the common

Rx(w/Z)ﬁ_y(w)ﬁx(w/Z), used to approximate R, (). Fig-
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FIG. 23. (Color in online edition) Illustration of the trajecto-
ries of a spin as it transforms under the BB1 pulse sequence of
Eq. (52), starting initially in the |0) state. Three trajectories are
shown, in which the error is 50%: (a) under-rotation; (b) zero,
and (c) 50% over-rotation. Plotted symbols denote the end-
points of each pulse in the sequences.

ure 24 illustrates how this simple sequence removes the
effect of errors in either the rotation angle or the rota-
tion axis.

Systematic errors in the coupling strengths can also be
tackled using composite rotations, in order to obtain ac-
curate two-qubit gates. This was shown explicitly for the
case of Ising couplings (Jones, 2003a).

Similar compensation for slowly fluctuating errors can
be achieved during a train of pulses, separated by time
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FIG. 24. (Color in online edition) Trajectory in the Bloch
sphere described by a qubit initially in |0), when a composite
180° rotation is applied, consisting of three imperfect rotations,
RX(W/Z)ﬁ,y(w)ﬁx(w/z): (a) The tip angles are set 0,5, ...,20%
too short; (b) The pulse is applied off-resonance, with (wq
—w,f)/w1:0,0.05,...,0.20. In both cases, the effect of the er-
rors in the individual pulses is largely removed by the compos-
ite pulse.

intervals of free evolution. The simplest instance of such
a pulse train uses only 180° pulses. Off-resonance effects
in such pulses can be largely reversed by properly choos-
ing the phases of the pulses. For instance, and at first
sight surprisingly, the errors from off-resonant pulses

X2X? roughly add up, while they largely compensate
each other in X>X2. This cancellation can be appreciated
via a simple Bloch sphere picture (Fig. 25). The remain-
ing errors are further reduced for a properly chosen

train of four pulses, X2X?X?X?, which performs mark-

edly better than X2X2X2X? (Levitt et al., 1982). Further
reduction of the effect of off-resonance errors can be
obtained by using even longer trains of 180° pulses (Lev-
itt et al., 1982).

Evidently, quantum computing sequences are not as
transparent as just a train of 180° pulses. Even through-
out a quantum computing sequence, the effect of RF
inhomogeneities can be removed to a large extent
(Vandersypen, Steffen, Sherwood, Yannoni, Breyta, and
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(b)

FIG. 25. (Color in online edition) Trajectory in the Bloch
sphere of a qubit initially in |0), subject to two consecutive 180°
pulses, applied off-resonance with (wy—w,¢/ w1)=0.5: (a) If the
two pulses are applied with the same phase (X2X?), the qubit is
taken simply along a circular trajectory through |0), and
reaches a point near |0); to be precise, the 50% resonance
offset makes the rotation angle (22+1')/2%=15/4 larger than
360°. (b) In contrast, if the two pulses are applied with opposite

phases (X2X2), the qubit is left far from |0).

Chuang, 2000), as illustrated in Fig. 26. After completion
of a routine involving the equivalent of about 1350 90°
pulses, the measured amplitude was about 15% of the
full amplitude. Without removal of the effect of RF in-
homogeneity, the signal would have been buried in the
noise very rapidly.

This level of error cancellation was achieved partly
due to a judicious choice of the phases of the refocusing
pulses. Nevertheless, a more detailed description and
understanding of the error operators is needed in order
to fully exploit the potential for error cancellation in
arbitrary pulse sequences.

2. Numerical optimization

The composite pulses we discussed in the previous
subsection are designed to compensate for certain types
of errors (mostly over- or under-rotations and frequency
offsets), and work even when the exact Larmor frequen-
cies, spin-spin coupling strengths, and the magnitude of
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Relative amplitude
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# iterations

FIG. 26. Experimental (error bars) and ideal (circles) ampli-
tude of || 1]), as a function of the number of iterations of a
quantum search algorithm (Nielsen and Chuang, 2000), for
three qubits, executed on *CHFBr,. Each iteration contains
the equivalent of almost 50 90° pulses. The dotted lines serve
to guide the eye. Dashed line: the signal decay for 1*C due to
decoherence, which represents a lower bound on the decay
rate. Solid line: the signal strength retained after applying a
continuous RF pulse of the same cumulative duration per
search iteration as the pulses in the actual experiment (aver-
aged over three spins, measured up to four iterations and then
extrapolated). Similar observations have been reported in
Vandersypen et al. (1999). From Vandersypen, Steffen, Sher-
wood, Yannoni, Breyta, and Chuang, 2000.

the errors are unknown. This is the usual case in NMR
spectroscopy. However, in quantum computing experi-
ments, detailed knowledge of the system Hamiltonian is
usually available and can be used to tailor the composite
pulses to the system specifics, taking the degree of quan-
tum control one step further.

Following the notation of Fortunato et al. (2002), we
consider the concatenation of a number of rectangular
pulses, each described by four parameters: the pulse du-
ration 7", a constant amplitude ', the transmitter fre-
quency w,;, and the initial phase ¢, where m indexes
the pulse. These parameters may be strongly modulated
from one pulse to the next.’ Via a numerical optimiza-
tion procedure, the values of 77, ', w’:}, and ¢ are
chosen such that the resulting net unitary evolution U,,,,
is as close as possible to the ideal unitary transformation
U, jear» according to some fidelity measure (Sec. V.C).

In practice, the number of time slices in the composite
pulse is increased starting from one, until a satisfactory
solution is found. While the fidelity function may have
many local maxima, and finding the global maximum
may therefore take a long time, suitable algorithms such
as the Nelder-Mead Simplex algorithm (Nelder and
Mead, 1965) often succeed in finding a reasonably good
solution. Furthermore, the optimization routine can in-
corporate penalties on high powers, large frequencies,

3Jumps in the transmitter frequency can be conveniently re-
alized with phase-ramping techniques. As discussed in Sec.
IV.A.2, this is done by phase shifting the raw RF excitation in
fixed increments per time so that a different RF frequency is
obtained.
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and negative or very long time periods, in order to pre-
vent the algorithm from returning infeasible solutions.
Computation of U,, uses the fact that the Hamil-
tonian during a fixed-amplitude RF pulse can be made
time independent by transforming into a reference
frame rotating at the transmitter frequency, as we have
seen in Sec. I1.B.2. We shall call H). the effective
Hamiltonian in the frame rotating at w’f; during segment
m. Given that w,t may be different for every segment of
the pulse, it is most convenient to transform back to a
common reference frame at the end of every time slice.
This can be the frame of the raw RF frequency, or the
laboratory frame of the n-spin system. In the lab frame,
the time evolution during segment m is described by

rot

. k .
U™ = e”‘”:?‘EZ:I Izr’”e—ﬂ-tm r’"' (55)

Since all U™ are expressed in the same reference
frame, we can simply multiply them together to get
U,.=11,, U" and compare the result directly with U,
expressed in the laboratory frame as well.

Two representative examples of composite pulses de-
signed for spin-selective rotations in homonuclear spin
systems are given in Fig. 27. The gate fidelity (Sec. V.C.2)
obtained with these two pulses is displayed in Fig. 28.
Naturally, the fidelity is close to unity only near the reso-
nance frequencies for which the gate was designed to
work.

Composite pulses can thus effectively generate accu-
rate single- and multiple-qubit Hamiltonians, using de-
tailed knowledge of the system Hamiltonian and only
limited knowledge about the errors. Often, however, full
knowledge of the system parameters is not available,
and thus methods beyond composite pulses must be em-
ployed.

C. Average-Hamiltonian theory

The average-Hamiltonian formalism offers a versatile
framework for understanding how to effectively create
or remove arbitrary terms in the Hamiltonian by peri-
odic perturbations, without requiring full knowledge of
the system dynamics. The refocusing sequences pre-
sented in Sec. III.A.4 and more general multiple-pulse
sequences designed to neutralize the effect of dipole-
dipole couplings can be explained within this frame-
work. Reduction of full dipole-dipole coupling given by
Eq. (5) to the simplified forms of Egs. (6) and (7) can
also be understood with average-Hamiltonian theory.

Following Ernst er al. (1987), we first introduce the
Magnus expansion and then see how we can modify a
time-independent Hamiltonian via a time-dependent
perturbation. We use two concrete examples to illustrate
the concepts.

1. The Magnus expansion

The essence of average-Hamiltonian techniques is
that the evolution U(¢) under a time-dependent Hamil-
tonian H(f) can be described by an effective evolution
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a) Three-spin 1t/2]3 pulse
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Pulse Parameters: 1 2 3

Time (us) [ 77.3 78.2 56.9
Power (kHz) | 8.96 462 4.06
Initial Phase (°) | 145 68 144
Frequency (kHz) | 1.81 459 9.03

b) Four-spin 7c])1(2 pulse
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RF Amplitude (kHz)

Pulse Parameters: 1 2 3 4 5 6 7 8 9
Time (us) | 44.3 |1 33.3|30.1 (169 | 34.7 [ 409|379 |42.7 | 454
Power (kHz) | 9.06 | 0.31 [ 1.36 | 3.45 | 3.99 [ 0.94 | 168 | 4.21 | 6.42
Initial Phase (°) | 6 9 85 | 115 | 164 | 126 | 166 | 92 | -34
Frequency (kHz) | 5.66 | 0.07 |-5.29| 6.98 [ 9.30 |-0.04 | 0.96 | 0.99 |-0.19

FIG. 27. The ideal RF waveform for two examples of strongly
modulated pulses: solid lines, amplitude of the waveform;
dashed lines, phase. Details of the pulse parameters, as in Eq.
(55) are listed below each wave form. The 6-us time interval
with zero RF power before and after the composite pulses is
needed due to experimental implementation issues. The com-
posite pulse in (a) performs a 90° rotation on one of the e
nuclei of *C-labeled Alanine and the pulse in (b) performs a
simultaneous 180° rotation on two *C nuclei of *C-labeled
Crotonic acid. Courtesy of D. G. Cory. Reproduced from For-
tunato et al., 2002.

under a time-independent average Hamiltonian H, un-
der two conditions (Haeberlen and Waugh, 1968; Ernst
et al., 1987): (i) H(¢) is periodic and (ii) the observation is
stroboscopic and synchronized with the period ¢, of H(z).

We can then calculate H exactly from

U(t.) = exp(- iHt,), (56)

by diagonalizing U(t,) and taking the logarithm of the
resulting eigenvalues (Nielsen and Chuang, 2000).

In practice, it is often more convenient to compute H
approximately. Let us assume that H(¢) is piecewise con-
stant [the analysis can be easily generalized to the case
of continuously changing Hamiltonians (Ernst et al,
1987)]: H(t)="H, for S§'r,<t<Zkr, and t,=307, so
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a) Three-spin n/2]i pulse
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FIG. 28. (Color in online edition) Gate fidelity of the two ex-
ample pulses of Fig. 27 as the resonance frequency of a test
spin is varied. The solid (dashed) line is calculated with identity
(desired transformation) as the intended transformation. The
vertical dotted lines denote the actual chemical shifts for each
spin. Courtesy of D. G. Cory. Reproduced from Fortunato et
al., 2002.

U(t,) =exp(- iH,7,) - - exp(— iHym)- (57)

Repeated application of the Baker-Campbell-Hausdorff
relation,

1 1
eBeA = exp{A +B+ E[B’A]+ E([B,[B,A]]

+[[B,ALA] +-- } (58)
gives
H=HO 7O L7 .. (59)
where

“ A+ H, Tt (60)

HWD = ;_;{[HlTpHoTo] +[Hym, Horo) + [Homo, Hy ]

and so forth. This expansion, called the Magnus expan-
sion (Magnus, 1954), forms the basis of average-
Hamiltonian theory.

2. Multiple-pulse decoupling

Let us consider a pulse sequence of n infinitesimally
short pulses U, separated by time intervals 7, of free
evolution under the system Hamiltonian H,, and such
that U,---U,U, =1 (for pulses of finite length, the dura-
tion of the pulses must also be included in the average).
The pulses correspond to basis transformations, and we
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can thus describe the system evolution via a sequence of
time intervals 7, of free evolution under the Hamil-

tonian H,y(k), with

How) = Hos (62)
How = Ur"Ho Uy, (63)
7:'(0(2): UilUilHQUzUl, (64)

and so forth. Note that the order in which the U, are
applied to H, is reversed and that the U, themselves are
reversed as well. If we let 7.=2{r, then the overall
transformation U(z.) is given by

U(t,) = exp(= iHou ) - - exp(= iHoo)7)- (65)
We can now use the Magnus expansion of Eq. (59) and
Egs. (60) and (61), where we replace H; by 7:[0(k), to

obtain the average Hamiltonian H, which describes the
net time evolution during ¢.. The zeroth-order average
Hamiltonian is given by

n

_ 1 B
Hiy =~ 2 nUy' -+ Uy HoUy -+ Uy (66)
c k=0

The crux of average-Hamiltonian theory is that, by

properly choosing the pulse U, we can ensure that Héo)
contains only the desired terms.

Sophisticated pulse sequences (Mehring, 1983) can
also remove undesired contributions from the higher-
order terms in the expansion, although this is generally

harder since 7:{(()1> ,7:[52)’ yenn

the various 7:(0(k)- The commutators involved in the

higher-order terms do become smaller for shorter cycle

times, though, so fast cycles result in better averaging.
We also point out that pulse sequences which satisfy

contain cross-terms between

How) = Mot (67)
or equivalently
U= Uiy (68)

contain no contributions of odd orders to H,,
Hiy=0 for k=135, ..., (69)

and thus perform significantly better than other se-
quences.

Let us now illustrate the operation of multiple-pulse
decoupling via two examples. First, the original
multiple-pulse sequence for removal of dipole-dipole in-
teractions is the WAHUHA-4 sequence (Waugh et al,
1968),

TX7Y27Y X7, (70)

where the pulses are applied to all qubits involved, 7
stands for free evolution under the system Hamiltonian
for a duration 7, and the unitaries are ordered from right
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to left, as usual. The pulses rotate the Zeeman terms in
the Hamiltonian from —Z to —y, —x, —y, and back to —Z
[see Egs. (62)-(64)] for a duration 7, 7, 27, 7, and 7, re-
spectively. The zeroth-order average Zeeman term is
thus oriented along —(£+y+Z), with strength scaled
down by a factor 1/ V3. The dipolar Hamiltonian of Eq.
(6) goes through the forms [31.F.—I'-I], [3I,0,~1I"T],
and [3I.F —I'- I'] for equal durations, and is thus zero on
average.

By selectively not pulsing specific qubits, it is also pos-
sible to reintroduce some of the couplings as desired. In
Fig. 12, we already saw explicitly how to do this for I;IQ
couplings.

A second example is an extension of the conventional
spin-echo sequence (Sec. V.A.4) to three-component
spin echoes (Augustine and Hahn, 1997). In conven-
tional echo sequences, 180° pulses about X or y remove
the effect of a Hamiltonian of the form c,o,. Now we
ask ourselves what sequence of pulses would freeze the
evolution under a Hamiltonian of the form

H=co+cyo, + 0, (71)

where ¢,,c,,c, are arbitrary coefficients. We can use Eq.
(66) to verify that the sequence

XZT)_(2Y27'I_/2ZZTZZT, (72)
or equivalently, after simplification,
X122 tX1 2T, (73)

gives a zeroth-order average Hamiltonian H(?=0, and
thus in effect corresponds to a three-component echo
sequence. Another way to show this is to note that

X*HX*= +c, 00— )0, .0, (74)
Y*HY?=-c,0,+c,0,— .0, (75)
Z’HZ?=-c, 0, c,0, + C.0,. (76)

Clearly, H+X?*HX?+Y?*HY?+Z*HZ?=0, and so the se-
quence of Eq. (72) gives, to zeroth order, no net evolu-
tion. Again, if 7 is sufficiently short, the higher-order
contributions will be negligible.

3. Reversing errors due to decoherence

Can we apply multiple-pulse sequences to reverse the
effect of interactions of a qubit with degrees of freedom
in the environment? It is not clear a priori that this is
possible: standard average-Hamiltonian theory assumes
that we can manipulate both interacting particles in-
volved, for instance, via RF pulses. However, we have
no control of degrees of freedom in the environment.

Remarkably, it is actually possible to remove the ef-
fect of unwanted interactions with degrees of freedom in
the environment, even when applying operations to the
system only (Viola and Lloyd, 1998; Viola et al., 1998,;
Duan and Guo, 1999; Vitali and Tombesi, 1999), pro-
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vided the control operations are applied faster than the
fluctuations. Knowledge about the nature of the interac-
tions can be applied to simplify the sequence of decou-
pling operations, and such knowledge can even be ex-
perimentally extracted (Byrd and Lidar, 2003), in part
using a procedure known as process tomography, de-
scribed in Sec. V.B.2.

If the fluctuations are faster than the accessible con-
trol operations, errors can be corrected using quantum
error correction (Shor, 1995; Steane, 1996; Nielsen and
Chuang, 2000), or they can be prevented by encoding
the qubits in a subspace that is not affected by decoher-
ence (Zanardi and Rasetti, 1997; Lidar et al., 1998). This
is discussed further in Sec. V.D.

V. EVALUATION OF QUANTUM CONTROL

The pulse control methods presented in the last two
sections can have impressive performance, but this is
very much contingent on having an accurate model of
the system under control. A variety of techniques have
been used in NMR to characterize the system dynamics
and to evaluate the performance of control sequences.
In this section, we review some of these techniques, be-
ginning with a set of standard experiments to determine
how quantum a qubit system is, then proceeding to to-
mographic methods for fully characterizing system dy-
namics, and concluding with fidelity metrics for control
and their implications for scalability to large systems.

A. Standard experiments

In NMR spectroscopy as in atomic physics, a number
of standard experiments serve to test the quantum-
mechanical behavior of a given system and to determine
the extent of its isolation from the environment (see Sec.
I1.C), in terms of its phase coherence time 7, and its
energy relaxation time 7, as well as the decay time in
the rotating frame T,

1. Coherent oscillations driven by a resonant field

The dynamics of a single spin, driven resonantly by a
coherent field, were presented in Secs. II1.B.1 and 11.B.2.
From Eq. (27), we have that in the ideal case the RF
field induces transitions from |0) to |1), where a qubit
initially in |0) will be found in [1) after an RF pulse of
duration 7, with probability

Pr[|1)] = sin®(yB 1,,/2) = sin*(w;1,,,,/2). (77)

The probability initially increases over time, until it
reaches a maximum Pr[|1)]=1 and then decreases again,
by stimulated emission, a cycle which keeps repeating
itself.

Such oscillations of a two-level quantum system
driven by a resonant field are known as Rabi oscillations
(Rabi, 1937), and the Rabi frequency w,/27 is propor-
tional to the amplitude of the control field. Observation
of Rabi oscillations is usually accepted as a signature of
quantum coherent behavior.
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In reality, the envelope of the Rabi oscillation signal is
always damped, due to decoherence as well as instru-
mental imperfections; measurement of this decay time is
useful, and known as a nutation experiment. In NMR,
the Rabi decay time is often much shorter than the in-
trinsic phase randomization time constant 75, due to the
inhomogeneity across the macroscopic sample of the RF
field driving the Rabi oscillation. In other systems, the
Rabi decay time may be longer than 75, because (i) a
long pulse can be seen as a concatenation of many 180°
pulses, which can have a refocusing effect (see Sec.
III.A.4), and (ii) the qubit is near +Z, where phase ran-
domization has no effect, for roughly half the time dur-
ing Rabi oscillations.

Coherent oscillations driven by a resonant field have
been observed in NMR and in many atomic systems for
a long time. Recently, however, observations of such co-
herent dynamics have been made in other qubit systems,
including systems made from Josephson junctions (Na-
kamura et al., 1999), molecular vibrational states (Tesch
and de Vivie-Riedle, 2002; Vala et al., 2002), and exci-
tons in semiconductor quantum dots (Stievater et al.,
2001).

2. Coherent oscillations initiated by a kick

A quantum system starting off in a state that is not an
eigenstate of the (static) system Hamiltonian will precess
about the quantization axis of the system Hamiltonian, a
motion known as Larmor precession (see Sec. IL.A.1).
Such a situation could be realized by abruptly changing
the system Hamiltonian, e.g., by suddingly applying a
strong static field along X instead of along Z. Alterna-
tively, and more realistically in NMR, Larmor precession
can be initiated by suddenly kicking the qubit out of the
Hamiltonian eigenbasis. For a nuclear spin with Hamil-
tonian —%iwyl,, as in Eq. (1), this is done by applying a
90° RF pulse, causing a transition for instance from |0)
to (0)+]1))/V2, which initiates the time evolution

eiw()t/2|0> + e—iw()t/2|1>

(1)) = 2 ; (78)

as illustrated in Fig. 2. Like Rabi oscillations, the obser-
vation of Larmor precession is also a signature of quan-
tum coherent behavior.

The Larmor precession is also damped, but in contrast
to the Rabi decay time, the Larmor decay time, termed
T,, is never longer than T,. Usually, 7, < T>; in particu-
lar, for NMR,

1 1 1

=+,
T, T, T}

(79)

where T3 is the dephasing time constant due to static
magnetic-field inhomogeneities or other instrumental
imperfections.

Larmor oscillations initiated by a kick have been ob-
served recently in a variety of systems, including those
driven resonantly mentioned earlier, and in addition a
system of charges in coupled quantum dots (Hayashi et
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al.,2003). The oscillations can be observed directly if the
measurement basis lies in the X-y plane, as is the case in
NMR. If the measurement takes place along +Z, we
must first change the basis via a second 90° pulse.

3. Ramsey interferometry
The double-pulse experiment
X71X, (80)

where time goes from right to left (as always, for unitary
transformations given in this article) and 7 denotes a free
evolution period, under the evolution operation e~ ss7%
is known as a Ramsey interference experiment (Ramsey,
1950). Originally, this “method of separated oscillatory
fields” was applied to electronic states of molecular
beams traversing through two microwave excitation
zones. In NMR, two pulses are involved, separated by a
delay time 7. Ramsey interference is most naturally de-
scribed in the rotating frame of the RF field driving the
transition. If the qubit starts off along Z, the first X pulse
rotates it to —y. Then the qubit precesses about Z for a
time 7. Finally the second X pulse rotates the £y com-
ponent of the qubit state to =Z. Components along +x at
the end of the interval 7 remain along +X after the sec-
ond X pulse.

If only a single qubit is considered and the RF field is
exactly on-resonance with the qubit precession, the qu-
bit stays in place in the rotating frame during the time
interval in between the two pulses, and the final state
does not vary with 7. However, if the RF and the qubit
are detuned in frequency by Aw, both the X and the Z
components of the final state display a beating pattern as
a function of Awr, the so-called Ramsey fringes. The
decay time of the envelope of the Ramsey fringes is T;,
the same as that for Larmor precession.

For coupled qubits, the beating pattern contains infor-
mation on the coupling strengths. This fact forms the
basis for two-dimensional correlation spectroscopy
(Jeener, 1971; Ernst et al., 1987), a widely used range of
two-pulse techniques for molecular structure determina-
tion.

4. Measurement of T,

The intrinsic 7, time can be extracted in an experi-
ment that is based on Larmor or Ramsey experiments.
Certain imperfections which cause the Ramsey or Lar-
mor decay time T; to be smaller than T, can be removed
by applying refocusing sequences.

The simplest instance of such a refocusing sequence
consists of a single 180° pulse applied halfway through
the time interval of free evolution initiated by a 90°
pulse. The entire sequence is thus

?%X (81)

A second X pulse should be added at the end if the
measurement takes place in the +Z basis. In multispin
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systems, the pulses must be applied selectively to one
spin, in order to measure the 7, of that spin.

The X? refocusing pulse not only removes simple sca-
lar spin-spin couplings, as described in Sec. 111.A.4, but
also undoes the effect of spatial variations of the static
magnetic field along Z. Such field inhomogeneities cause
spins in different regions of the sample to become pro-
gressively out of phase with each other during the first
time interval 7/2. As a result, their magnetic moments
cancel each other out and the NMR signal vanishes. Pro-
vided the magnetic-field variations are constant through-
out the experiment, all the spins come back into phase
again (now along +y) by the end of the second time
interval 7/2, because of the 180° refocusing pulse. As a
result, the signal recovers, producing the well-known
spin-echo. A generalization of this technique known as
three-component refocusing (Sec. IV.C.2) undoes effects
from any static spin Hamiltonian terms.

The echo signal decays as a function of 7, and the
decay time constant is a measure of 7,. However, terms
in the Hamiltonian fluctuating on a time scale shorter
than 7 are not removed by a single refocusing pulse.
Their effect can still be removed if the fluctuations are
slow compared to 7/n and a train of n refocusing pulses
is applied, each preceded and followed by a time inter-
val 7/2n of free evolution. This so-called Carr-Purcell
sequence (Carr and Purcell, 1954),

lX2I ... XzIleX, (82)
2n n n 2n

produces a first echo along +y after 7/n, a second echo
along —y after 27/n, a third along +y after 37/n, and so
forth. The magnitude of the echo signal decays exponen-
tially throughout this sequence, and the echo signal left
at the end of this sequence decreases exponentially as a
function of the total time 7. To the extent that slow fluc-
tuations in the Hamiltonian have been refocused, the
decay time constant is the intrinsic 7.

As we have seen in Sec. III of this review, small but
fixed errors in the pulse amplitude or duration may ac-
cumulate throughout a multiple-pulse sequence such as
the Carr-Purcell sequence. However, if the phase of the
refocusing pulses is shifted by 90° with respect to the
initial 90° pulse, pulse length errors are compensated on
even-numbered echoes and are thus not cumulative. In
this sequence,

—vy2_... YZIYZLX, (83)
2n n n 2n
known as the Carr-Purcell-Meiboom-Gill or CPMG se-
quence (Meiboom and Gill, 1958), the echoes appear all
along —-y. Again, the decay time constant of the echo
signal gives T5.

Since T, indicates how long a qubit can remain phase
coherent, it is usually called the coherence time, al-
though the terms phase randomization time, dephasing
time, and transverse relaxation time are also used. In
NMR, T, is also known as the spin-spin relaxation time.
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In any case, 7, is an important number for evaluating
the potential of quantum computers, as the ratio of T,
over the typical duration of a quantum logic gate ex-
presses the number of operations that can be completed
coherently.

5. Measurement of T;

Energy exchange with the environment makes a qubit
that is out of equilibrium gradually return to thermal
equilibrium. In thermal equilibrium, the qubit is in a
statistical mixture of |0) and |1), with probabilities set by
the temperature and the energy difference between |0)
and [1). The time constant of this equilibration process,
T,, is often called the energy relaxation time, the longi-
tudinal relaxation time, or simply the relaxation time. In
NMR, T is often termed the spin-lattice relaxation time.

Two standard experiments for measuring 77 are inver-
sion recovery and saturation recovery. The sequence for
the inversion recovery experiment is

X7X2. (84)

The 180° pulse inverts the |0) and |1) probabilities, then
during time 7, relaxation takes place, and finally a 90°
read-out pulse is applied if necessary (i.e., when the
measurement basis is in the X-y plane). In saturation re-
covery, a strong RF field is applied for a long enough
time that it saturates the qubit transition and equalizes
the |0) and |1) probabilities. As in inversion recovery, the
original |0) and [1) populations are altered, and we can
monitor the populations’ return to their equilibrium
value as a function of 7. The time constant of this equili-
bration process is T;.

Note that both the inversion recovery and saturation
recovery experiments bring the qubit out of equilibrium,
but to a state that has no coherence. As a result, phase
randomization does not affect the equilibration
process—we measure purely the effect of energy ex-
change with the bath. In contrast, Ramsey and spin-echo
experiments for measuring 7; and T, pick up contribu-
tions from phase randomization both without and with
energy exchange with the bath. If energy exchange
dominates phase randomization, the measured 7 is 277.

The relevance of T is twofold. First, it sets an upper
bound for T, and second, it tell us how much time we
have to perform a measurement in the {|0),|1)} basis.
Phase randomization does not change the [0) and [1)
probabilities, so T, is irrelevant during such a measure-
ment. In many cases, 7> 7,, in which case we have
more time to measure than to perform coherent opera-
tions.

6. Measurement of Ty,

A third decay time useful to characterize the degree
of isolation between a qubit and the environment is 77,
This time constant can be measured via a technique
called spin locking, in which the spin is first rotated into
the xX-y plane, say, by a Y pulse, and next continuous
irradiation is applied, phase shifted by 90° with respect
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to the pulse, so it is aligned with the spin state (along the
X axis):

R (continuous)Y. (85)

The continuous irradiation along X locks the spin to the
X axis, in the following sense. Whenever the spin starts
to diverge from the X axis due to interactions with the
environment, the RF field rotates it to the opposite side
of the X axis within a time 7/ w;. Provided that the spin is
still moving in the same direction after this time, it will
thus return to the X axis (note that spin locking thus also
inhibits evolution due to J couplings and moderate fre-
quency offsets). Only if the spin moves in the opposite
direction after 7/ w; will it continue to depart from the £
axis due to the rotation by the RF field. So the ampli-
tude along X decays, and the decay time constant is
termed 7', known in NMR as the spin-lattice relaxation
time in the rotating frame.

We see thus that, whereas T, is governed by low-
frequency fluctuations in the environment and 77 de-
pends on fluctuations at the Larmor frequency, the de-
cay during spin locking arises from fluctuations at the
Rabi frequency used during spin locking. The spin-
locking experiment thus gives additional information on
the spectral density of the interactions with the environ-
ment.

B. Measurement of quantum states and gates

The standard experiments presented in the previous
section give only partial information on the system dy-
namics. Here we show that in fact the full relaxation
superoperator can be determined systematically by a
procedure known as process tomography, which builds
upon state tomography, as described below.

1. Quantum state tomography

The density matrix p completely describes our knowl-
edge of the state of a system. Measurement of the den-
sity matrix is therefore extremely helpful when testing
or claiming the preparation of specific quantum states.

One-time measurement of each of n qubits, in a given
basis of 2" states |m), gives very little information on p.
All that can be inferred from a measurement outcome m
is that Pr[|m)]#0.

Repeated measurements of n qubits, each time pre-
pared in the same state and measured in the same basis,
reveals the probability distribution for the measurement
basis states,

Pr[|m)] = (m|p|m) = Tr(p|m)(m|) = Tr(pM), (86)

where M is an observable or measurement operator. If
we repeatedly measure each qubit in the {|0),|1)} basis,
we thus obtain all the diagonal entries of p, p;;.
Quantum state tomography (Chuang, Vandersypen, et
al., 1998; Chuang et al., 1998a, 1998b) is a method that
allows all the elements of the density matrix p to be
determined. This method consists of repeating the mea-
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surement of the same state in various measurement
bases, until all the elements of p can be determined, by
solving a set of linear equations. In practice, it is often
more convenient to first rotate the qubits via a unitary
transformation and then perform the measurement in a
fixed basis. This is equivalent to measuring in different
bases, since

Tr{p(UMU")] = T (U pU)M]. (87)

Specifically, we can expand the density matrix of a
single qubit p as

[Poo Po1

} = P00|0><0| + P01|0><1| + P10|1><0| + P11|1><1|-
P10 P11

(88)

Measurements of a single qubit in the {|0),|1)} basis give
us pgo and py=1-pgo. However, after changing basis via
a 90° rotation about £, transforming p to XpX', we ob-
tain access to Im(p;o) =—Im(py;). Similarly, measurement
after transformation by Y reveals Re(p;g)=Re(pg).
Thus, by measuring the qubit state first directly, then
measuring the same state again after an X read-out
pulse, and then again after a Y read-out pulse, we can
reconstruct p completely.
Similarly, for n qubits, we can expand p as

21121
p=2 > pifl (89)
=0 j=0
and choose a set of basis changes that gives access to all
4"—1 degrees of freedom in p.

However, it is much easier to find a suitable set of
basis changes if we use the Pauli expansion of p instead
of Eq. (89). The Pauli expansion for a single-qubit state
is

p=Cy0n+ €101+ Cr0p + C3073, (90)

where cy=1 for normalization, and we use oy=1/2, oy
=0,/2, 0,=0,/2, 03=0,/2. Measurement in the compu-
tational basis, described by the observables o+ 03, gives
us Pr(|0))=(cy+c3)/2, and Pr(|1))=(cy—c3)/2 so we can
extract c3. Since

XPXT:COO'0+C10'1—C3O'2+C20'3, (91)

YPY‘ =)0\ + C301 + CL0p — C103, (92)

we indeed obtain (cyxc,)/2 after applying X and
(co*c¢1)/2 after using Y.
For n qubits, Eq. (90) generalizes to

3 3 3

P:EE'”ECZ']‘“-/(UI‘@U/'@"'®Uka (93)
i=0 j=0 k=0

where c...o=1. Measurement in the computational basis
is described by observables of the form

(00i0'3)®(0'0i0'3)® ®(0'0i0'3) (94)

and returns the probabilities
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Cii...
- —2;" (95)
ij....ke{03}

For example, for two qubits, these are

Pr(|00)) = (cqo + co3 + €30 + €33)/4, (96)
Pr(|01)) = (coo — co3 + €30 — €33)/4, 97)
Pr(|10)) = (cqo + co3 — €30 — €33)/4, (98)
Pr(|11)) = (coo — o3 — €30 + €33)/4- (99)

After measurement of the four Pr[|m)], we can solve for
C03,C30,C33 from this overdetermined set of linear equa-
tions. Again, we can determine the other ¢;;.., by trans-
formation of the corresponding oy;..., to an observable,
for instance,

X1Yy(0p+ 03) ® (09 + UI)XIYE

= (0 + 03) ® (09— 03). (100)

We end this discussion of state tomography with three
additional comments:

First, in order to obtain all the basis-state probabilities
as in Egs. (96)—(99), we must each time read out all the
qubits. If it is only possible to read out any one single
qubit in each experiment, we obtain n bit-wise probabili-
ties instead of 2" basis-state probabilities, giving spin-
spin correlations. The measurement operators are then
of the form

2"71[0'0® O'Q® (0'0"_‘0'3) X -+ ® 0'0] (101)
and we measure probabilities

1

E(Co- -000-0 £ €C0--030-:0) - (102)

It is now no longer possible to rotate arbitrary compo-
nents of p into observable positions using just single-
qubit rotations. Two-qubit gates are necessary to obtain
all Cij"'k‘

Second, the measurement basis obviously need not be
the computational basis. In NMR experiments, for in-
stance, the single-qubit measurement operator can be
written as —io — 0,. For two coupled spins, the measure-
ment operators are

2(— iO'l - 0'2) ® (0'0 + (7'3), (103)

(oo 03) @2(—io) — 0y), (104)

and so forth. Since NMR experiments are normally per-
formed on a large ensemble of molecules, the expecta-
tion value of the observables can be read out by acquir-
ing a single spectrum. The four operators in Eq. (104)
correspond to the four lines in the spectrum of a two-
spin system (two doublets). Phase-sensitive detection
permits us to separately record the real and imaginary
component of each spectral line and distinguish o and
o, contributions.
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Third, errors in the gates used for changing basis dur-
ing state tomography lead to a measured density matrix
which differs from the actual state of the system. If the
errors are known and can be modeled accurately, they
can be incorporated in the state tomography procedure
and the actual state can nevertheless be determined ac-
curately.

Quantum state tomography has been experimentally
implemented in many atomic systems, notably the early
work mapping out photon states (Smithey et al., 1993)
and vibrational cat states of trapped atoms (Meekhof et
al., 1996). Recently, it has become a common tool used
to evaluate NMR states (Chuang, Vandersypen, et al.,
1998; Chuang et al., 1998b), states of optical photon qu-
bits (Thew et al., 2002), and even vibrational states of
molecules (Skovsen et al., 2003).

2. Quantum process tomography

Now that we know how to determine experimentally
the state of a quantum system, it is only a short step to
the characterization of a quantum process, such as a
quantum logic gate, communication channel, storage de-
vice, and so forth. In general, let us consider a quantum-
mechanical black box whose input may be an arbitrary
quantum state, and whose output is the result of the
internal dynamics of the black box, as well as interac-
tions with the outside world. Then can we ascertain the
transfer function of this black box?

The answer is yes (Chuang and Nielsen, 1997; Poyatos
et al., 1997; D’Ariano and Lo Presti, 2001; Boulant et al.,
2003). The outline of the procedure is to first determine
the output state of the black box for a set of input states
which form a basis for the system Hilbert space, and
then to use the fact that quantum mechanics is linear to
compute the entire transfer function from this finite set
of input-output pairs.

An arbitrary quantum state transformation is a linear
map &,

E(p)

"~ e (0

p

where we can express £(p) in the operator-sum represen-
tation or Kraus representation (Kraus, 1983; Nielsen and
Chuang, 2000)

Elp) = 2 AypAj. (106)
k

This is an alternative to the superoperator formalism
widely used in NMR (Ernst et al., 1987). The A, are
operators acting on the system alone, yet £ completely
describes the possible state changes of the system, in-
cluding unitary operations, generalized measurements,
and decoherence (for trace-preserving processes,
S; AfA;=1). The expansion of Eq. (106) is in general
not unique. In fact, we can always describe £ using a
fixed set of operators A, which form a basis for the set

of operators on the state space, so that (Chuang and
Nielsen, 1997)
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E(p) = 2 XpgAppAy, (107)

pq

where x,, is a positive Hermitian matrix. Since the Ak
are fixed, £ is completely described by y. In general, y
will contain 16" —-4" independent real parameters, where
n is the number of qubits.

In order to determine y experimentally, we choose a
basis of 4" linearly independent density matrices p;
which span the system Hilbert space, and determine
&(p;) for each j. We can then write down a set of linear
equations of the form of Eq. (107), where we plug in the
measurement outcomes &(p;) and solve for the y,,,.

The most convenient choice for the p; depends on the
implementation of the qubits and on the observables, as
was the case for state tomography. Clearly, the effort
needed to perform quantum process tomography in-
creases even more rapidly with the number of qubits
than quantum state tomography. This procedure has
been used experimentally only for one- and two-qubit
NMR (Childs et al., 2001; Boulant et al., 2003) and
optical-photon systems (Altepeter et al., 2003; Mitchell
et al., 2003).

The operation elements A, in the operator sum rep-
resentation of Eq. (106) can describe arbitrary quantum
operations, but among these a select subset are useful to
identify. For example, when A is a unitary matrix, this
corresponds to perfect, closed-system Hamiltonian evo-
lution. Phase damping (7,) is described by

A 10| A 0 —0 (108)
()_—0 V,’_’y—v 1__0 \e"l—'y_’
and amplitude damping (7) by
- 1 O =1 » O V”;_l — y n
Ap= — 1, A= , 109
Loyl THlo o (109
where y~ e~"" parametrizes the strength of the damping,

for time ¢, in terms of a time constant 7. These and other
relaxation parameters (Nielsen and Chuang, 2000) can
be obtained by process tomography.

Such results can, in turn, be useful for approximate
numerical simulation of relaxation and decoherence
processes in spin systems. Phase damping and energy
relaxation can be simulated in alternation with unitary
evolution under the system and control Hamiltonian,
taking sufficiently short time slices to obtain a good ap-
proximation of the true dynamics. This permits an z-spin
system to be simulated using n4” steps, compared to 16"
for fully general quantum operations. Experimental re-
sults have shown this method to be predictive of the
system dynamics throughout sequences containing hun-
dreds of RF pulses (Vandersypen, 2001; Vandersypen et
al., 2001).

C. Fidelity of quantum states and gates

The methods of the previous section give us full
knowledge of the system state and dynamics, but some-
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times a more succinct measure for comparing theoretical
expectations with experimental measurements is useful.
This can be provided by quantum state fidelity and gate
fidelity.

1. Quantum state fidelity

One elementary goal of quantum control is to create
some pure state |). However, suppose the final output is
instead the pure state |¢p). Does |¢) represent |¢) with
high fidelity?

Classically, the fidelity of two probability distributions
{p.} and {q,} is given by F(p,.q,)=2, \p,q,; when they
are equal, the fidelity is one. The analogous quantum
measure of fidelity for two pure states |¢) and |¢) is

F(p).|¢) = K8l

which is simply the absolute value of the overlap be-
tween the two states.

More generally, the output state of a control sequence
is often described by a density matrix p; this is useful
because density matrices can describe classical statistical
mixtures of quantum states, arising from decoherence
processes, for example. The fidelity between a pure state
| and a mixed state p is

E([9).p) = \(Wpl 9,

which reduces to Eq. (110) when p=|@){d|.

The most general case is the fidelity between two den-
sity matrices, p and o, which is defined as (Nielsen and
Chuang, 2000)

F(o,p) =Try V/;'p\"';.

(110)

(111)

(112)

Despite the apparent asymmetry in this expression, it is
actually symmetric in p and o and, furthermore, reduces
properly to Eq. (111) when one density matrix is pure.

Note that in the literature, sometimes the square of
Eq. (110) is defined as the fidelity (Bowdrey et al., 2002);
this departs from the usual classical definition for fidel-
ity, but is convenient because F(|i),|$))? can be inter-
preted as the probability that a system in the state |¢) is
found to be in the state |) when measured in the
{l»,|¢r, )} basis. Such probabilities are meaningful in the
accuracy thresholds discussed in Sec. V.D.

Other metrics for comparing two states have been
used to quantify the relative error between theoretical
and experimental states, such as the simple two-norm
(Vandersypen et al., 2000) and other expressions (Fortu-
nato et al., 2002). These were used because the diagonal
elements of the density matrix were suppressed; such
metrics are inferior to the fidelity measure, which should
be used when possible, due to its direct connection to
quantum information measures and fault-tolerance
theorems.

It is worthwhile to consider a specific example relating
control precision to state fidelity. Suppose we desire
lyp=I1), but obtain |¢p)=R,(7+€)|0)=—sin €/2|0)
+cos €/2|1)=~—¢/2|0)+(1-€/8)|1). The resulting error
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probability is 1—|(¢|¢)|>=€>/4. This example makes the
point that, for small rotation angle errors e, the gate
failure probability goes as €.

2. Quantum gate fidelity

A more complex goal of quantum control is to accom-
plish a desired quantum operation. Perhaps the most
common scenario is one in which the desired operation
U is a unitary transform on a single qubit, whereas the
actual transform accomplished is some quantum opera-
tion & (given in the operator sum representation).

A natural way to evaluate control precision is through
the average gate fidelity

F(&U)=fF(|¢>,U"'5(|¢><¢|)U)2 dy (113)

- [ wivretoxsnuiv as (114
where the integral is over the uniform (Haar) measure
diy on the Hilbert space of the system. For a single qubit,
this formula can be reduced to a simple expression
(Bowdrey et al., 2002; Nielsen, 2002),

F(E,U) = E + 1 > TrH{Us UE(o))],

(115)
2 12,0003

where o are the three Pauli matrices. Similar simple
formulas can be obtained for higher-dimensional sys-
tems (Nielsen, 2002). Note that by convention (Nielsen
and Chuang, 2000), the average gate fidelity is defined
such that it goes as the square of the usual state fidelity;
thus it can be interpreted as a probability.

A more difficult quantity to calculate is the minimum
gate fidelity,

F(E,U) = miny, F(U|), E(| X))

the square of this quantity gives the worst-case gate fail-
ure probability that is relevant for fault-tolerance
threshold theorems.

(116)

D. Evaluating scalability

This article has been concerned with the control of
complex systems composed of multiple distinct physical
pieces. Given some degree of control over a few such
pieces, how controllable is a very large quantum system
composed of many pieces? Normally, one would expect
that a system composed of unreliable pieces would itself
be unreliable, and that the overall probability of failure
increases rapidly with the number of pieces. Unexpect-
edly, however, arbitrarily reliable quantum systems can
be built from unreliable parts as long as certain criteria
are met.

The main criterion for being able to construct a reli-
able system is that the probability of error per operation
p be below the “accuracy threshold” (Aharonov and
Ben-Or, 1997; Gottesman, 1997; Kitaev, 1997; Knill et al.,
1998a; Preskill, 1998) p,,. When p<p,, is satisfied, a

Rev. Mod. Phys., Vol. 76, No. 4, October 2004

1065

quantum error correction circuit [for instance, as dem-
onstrated by NMR experiments (Cory, Mass, et al., 1998;
Leung et al., 1999; Knill et al., 2001)] can be constructed
using the unreliable components; this circuit performs
computations on encoded qubits, such that a net de-
crease in error is achieved even when error correction
itself is done with the faulty gates.

The probability of failure per operation p must of
course be defined, and this is done in terms of the fidel-
ity metrics discussed in the previous section, which in-
corporate decoherence (e.g., Ty, T5, gate times, etc.) and
control imperfections. Thus, for example, p is bounded
from above by the gate fidelity p<1-F(&,U)>.

Remarkably, no reliable resources need be utilized for
the fault-tolerant construction. Through k levels of re-
cursive application of error correction, the device error

koo .

p can be reduced to p?, using physical resources (space,
time, and energy), which scale as d* for some constant d.
Thus a small increase in resources exponentially reduces
the overall error. Many assumptions are made in obtain-
ing p,,, such as the availability of local, fast, parallel clas-
sical control resources, but the generally accepted theo-
retical optimal value of p,, is about 10™* (Knill et al.,
1998a, 1998b), with optimistic estimates ranging as high
as 1073 with additional restrictions (Steane, 2002). As we
have seen at the end of Sec. V.C.1, this implies that, for
instance, rotation angles must be precise to order
~\V10%#=10"2. In principle, p,, can be experimentally
measured by implementing a recursive error correction
circuit and testing its probability of failure, but this has
not yet been accomplished.

The fault-tolerance threshold p,, and its relative value
compared with state and gate fidelities give a crisp crite-
rion for system scalability for specific implementations.
Modern classical systems are robust mainly because
component failures can be controlled; similarly, the fu-
ture of control over quantum systems hinges on our abil-
ity to evaluate p,, and to build components that fail with
probability p <py,.

VI. DISCUSSION AND CONCLUSIONS

In this review, we have presented a diverse set of tools
intended to compensate for undesired or uncontrolled
terms in the Hamiltonian of coupled qubits, as well as
for instrumental limitations. These tools are most pow-
erful and easiest to design when all the terms in the
system Hamiltonian commute with each other and the
control terms can be much stronger than the system
Hamiltonian. The common theme of the control tech-
niques is careful tailoring of the amplitude, phase, and
frequency of the time-dependent terms in the Hamil-
tonian, whether in the form of shaped pulses, composite
pulses, or multiple-pulse sequences. We now discuss the
effectiveness and applicability of these advanced control
techniques, with a look at where they could be used in
other quantum systems.

e Pulse shaping is particularly attractive because of the
modular and scalable design approach. Amplitude
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profiles are selected from a library of standard or
specially designed shapes in order to minimize cross-
talk (frequency-selective pulses) and coupling effects
(self-refocusing pulses). Robustness to experimental
imperfections can also be considered in the choice of
pulse shape. Once suitable amplitude profiles have
been chosen, the pulse lengths are set as short as
possible while maintaining qubit selectivity. The
same amplitude profiles and pulse lengths are then
used throughout the pulse sequence.

Remaining cross-talk effects can be further reduced
at a small cost (quadratic in the number of qubits).
From the amplitude profiles and pulse lengths, unin-
tended phase shifts produced by single RF pulses as
well as off-resonance effects during simultaneous
pulses can be precomputed, once for every pair of
qubits.

The main disadvantage of the standard pulse-shaping
techniques is that often the coupled evolution during
the pulses (in particular 90° pulses or simultaneous
pulses) cannot be completely frozen. The remaining
coupled evolution can be unwound to a large extent
during the time intervals before and after the pulse,
but such reversal is never perfect because the RF
terms in the Hamiltonian, Ii and I;, do not commute
with the coupling terms, I;IQ. Furthermore, shaped
pulses must often be quite long in order to remain
spin-selective, which means that decoherence has
more effect. This problem clearly gets worse as the
Larmor frequencies of the spins approach each other.
Nevertheless, the combination of pulse-shaping and
phase-ramping techniques has been very successful
in practice. It has enabled the implementation of the
most complex sequences of operations realized to
date, acting on up to seven nuclear spins.

Composite pulses have proven to be a versatile tool
in NMR spectroscopy, mostly for compensating sys-
tematic errors such as RF field strength variations
and frequency offsets. Another useful application of
composite pulses is the effective creation of unitary
operators which are otherwise not accessible or not
easily accessible. A good example is the composite 2
rotation, created from a sequence of X and y rota-
tions.

Even so, the use of (hard) composite pulses in NMR
quantum computing experiments has been limited so
far. Their main drawback is that in multispin homo-
nuclear molecules, single-frequency but high-power
and rectangular pulses will rotate spins in a large fre-
quency window, about an axis and over angles which
depend on RF field strength and the respective reso-
nance offsets. This severely limits straightforward ap-
plication of hard composite pulses in homonuclear
spin systems.

Nevertheless, it is in principle possible to take advan-
tage of the differences in resonance offsets in order
to rotate one spin while the other spins undergo no
net rotation. Such effective frequency selectivity de-
spite the use of hard pulses was demonstrated in a
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quantum computation on a homonuclear two-spin
system, first using single hard pulses (Jones and
Mosca, 1999) and later using composite hard pulses
(Cummins and Jones, 2000).

The same idea underlies the operation of composite
pulses tailored to achieve any rotation of one or
more spins about an independent axis, using detailed
knowledge of the system Hamiltonian. Furthermore,
short, high-power pulses can be used, so the effect of
decoherence is reduced compared to the case of the
long, low-power shaped pulses. Even more attractive
here is the fact that all the coupling terms can be
effectively frozen and that other types of cross-talk,
such as Bloch-Siegert effects, are automatically taken
care of, unlike the case of shaped pulses.

The main disadvantage of such strongly modulated
composite pulses is that the time needed to find near-
optimal pulse parameters increases exponentially
with the number of qubits #, as it involves computing
unitary matrices of size 2" by 2". Nevertheless, for
small numbers of qubits, this technique can be very
useful.

e Average-Hamiltonian techniques underlie the opera-

tion of widely used multiple-pulse refocusing se-
quences. In the context of liquid NMR quantum

computing, couplings are of the form I:Z, and refo-

cusing sequences consist simply of a train of 180°
pulses. Such refocusing sequences are an essential in-
gredient of all NMR quantum computing experi-
ments involving more than two spins.

More complex decoupling sequences exist to remove
the effect of coupling Hamiltonians of a different
form, as is the case of solid-state NMR and many
other qubit implementations. Even errors arising
from interactions with the environment, i.e., deco-
herence, can be removed using multiple-pulse se-
quences.

In all cases, the refocusing operations (e.g., the 180°
pulses) must be fast compared to the fluctuations
they are intended to cancel, and they must also be
repeated at a rate faster than the fluctuations.

Perspective. In early NMR quantum computing ex-
periments on heteronuclear spin systems, where
short, high-power RF pulses were used, errors in the
time evolution were usually dominated by various
instrumental limitations. Most experiments on
homonuclear systems, in contrast, made use of long,
low-power pulses, and were limited by cross-talk and
coupling effects. As the pulse techniques for coping
with limitations of the Hamiltonian and instrumenta-
tion became more advanced, the field reached the
point where errors due to imperfect quantum control
were smaller than errors caused by decoherence.

Reaching this point in many-qubit systems must be a
prime objective for any implementation of quantum
computers, along with reduction of decoherence it-
self. Quantum information and computation theory
offers a common language which can facilitate trans-
fer and translation of the techniques for coherent
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control of coupled nuclear spins to other fields of
physics. Such cross-fertilization has already started,
in systems as diverse as trapped ions (Gulde et al.,
2003), excitons in quantum dots (Chen et al., 2001),
and Cooper pair boxes (Collin et al., 2004), and is
likely to accelerate the progress towards the elusive
goal of complete control over quantum systems.
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