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Magnetohydrodynamic sMHDd turbulence has been employed as a physical model for a wide range of
applications in astrophysical and space plasma physics. This Colloquium reviews fundamental aspects
of MHD turbulence, including spectral energy transfer, nonlocality, and anisotropy, each of which is
related to the multiplicity of dynamical time scales that may be present. These basic issues are
discussed based on the concepts of sweeping of the small scales by a large-scale field, which in MHD
occurs due to effects of counterpropagating waves, as well as the local straining processes that occur
due to nonlinear couplings. These considerations give rise to various expected energy spectra, which
are compared to both simulation results and relevant observations from space and astrophysical
plasmas.
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I. INTRODUCTION

Much of the matter in space and astrophysical systems
is in the plasma state, an electrically conducting gas or
fluid that evolves in response to both mechanical and
electromagnetic forces. These plasmas are usually found
to be in complex motion, involving structure across a
wide range of spatial scales. Hydrodynamic turbulence,
a long studied but incompletely understood fundamental
physical process, is clearly a first step in examining these
systems, but in view of the pronounced role that mag-
netic fields play in astrophysical plasmas one is quickly
led to the related but more complex study of magneto-
hydrodynamic sMHDd turbulence. In particular, MHD
turbulence differs from its hydrodynamic antecedent in
that large-scale magnetic fields play a significant role,
even in influencing much smaller scale turbulence pro-
cesses. Related to this is the greater number of time
scales that influence the dynamics of MHD turbulence.
For these reasons the MHD “cascade,” which transfers
energy between structures of various sizes due to non-
linear dynamical couplings, is much more complex and
can exist in more forms than the simpler hydrodynamic
cascade. The goal of the present Colloquium is to dis-
cuss the various forms that the MHD energy cascade can
take, due to the large-scale magnetic fields and the mul-
tiplicity of time scales that enter into the basic physics of
the problem.

The focus will be mainly on the concepts and ideas
behind MHD turbulence, the cascades and time scales
involved, without going into too much detail regarding
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the computations. Frequent references will be made to
applications in astrophysical and space plasmas as well
as to numerical simulations, to illustrate the concepts
discussed.

We shall briefly review in Sec. II some basic concepts
of fluid turbulence and introduce the ideas of straining
and sweeping in that context. We then proceed in Sec.
III to examine the more complex subject of MHD tur-
bulence. We shall argue that the key to understanding
MHD turbulence in its various possible forms is to iden-
tify the relevant time scales, how they are influenced by
anisotropy associated with a large-scale magnetic field,
and how a balance is struck between nonlinear distor-
tions and the sweep-like dynamics associated with wave
propagation. Section IV contains conclusions and discus-
sion. For completeness, more detailed applications of
these ideas about MHD turbulence time scales are pro-
vided in two Appendixes. Different regimes of MHD
turbulence are discussed in Appendix A and the form of
the energy spectrum in each of them is addressed. Ap-
pendix B discusses the time correlations of MHD turbu-
lence.

II. FUNDAMENTAL CONCEPTS IN FLUID TURBULENCE

A turbulent flow satisfies the Navier-Stokes equation
sBatchelor, 1970d which is the momentum evolution of
an element of fluid,

]u
]t

+ u · ¹ u = −
1

r
¹ p + n¹2u . s1d

Here u is the velocity field, which is a fluctuating quan-
tity in time t and space x, ¹ is the gradient with respect
to x, r is the density, p is the pressure, and n is the
kinematic viscosity smolecular viscosity/densityd. We
consider an incompressible flow with constant density, so
the continuity equation reduces to a divergence-free
condition ¹ ·u=0, and so the pressure is determined by
the constraint that emerges by computing the divergence
of Eq. s1d.

The macroscopic Reynolds number R=uL /n, where u
is a typical flow velocity fthe root-mean-square srmsd of
the fluctuating velocity fieldg and L a typical slarged
scale, is a measure of the strength of the nonlinear con-
vective term u · ¹u against the dissipative term n¹2u in
Eq. s1d. Turbulent flows are characterized by high Rey-
nolds numbers: For example, pipe flow becomes turbu-
lent around R=2000, while for meteorological flows,
typically R@1010.

In the absence of viscosity, the flow conserves the glo-
bal kinetic energy shere u2= kuuu2l is twice the energy per
unit mass, where k¯l denotes a volume averaged. How-
ever, even with a small value of the viscosity the energy
will decay, and the properties of decaying turbulent
flows are particularly distinctive.

A. Global decay of energy

The global decay of incompressible homogeneous iso-
tropic turbulence was considered in detail by Taylor
s1935, 1938d and by von Karman and Howarth s1938d
prior to Kolmogorov’s s1941a, 1941bd ground-breaking
work on the smaller-scale inertial range. The energy
changes in response to viscous effects according to
du2 /dt=−nku¹ 3uu2l. Based upon empirical results, Tay-
lor understood that the decay of energy behaves as
du2 /dt~u3, and von Karman and Howarth s1938d pro-
vided the first theoretical justification of the simple de-
cay law du2 /dt=−au3 /l, which has long enjoyed empiri-
cal support in hydrodynamics ssee, for example, the
reviews by Batchelor, 1970; George, 1992; Speziale and
Bernard, 1992; Zhou and Speziale, 1998d.

A crucial element is l, the similarity scale or energy-
containing scale,1 which behaves as dl /dt=bu. The con-
stants a and b are both of the order of unity, and specific
values can be adopted based upon such physical assump-
tions as permanence of large eddies sKolmogorov,
1941cd, constant turbulent Reynolds number svon Kar-
man and Lin, 1949d, and others ssee Orszag, 1970; Mat-
thaeus et al., 1996d. This phenomenology of the energy-
containing eddies gives a reasonable approximate
picture of global energy decay and makes clear how the
energy reservoir at the large scales s,l,Ld controls the
process. Usually one defines the eddy turnover or non-
linear time scale as teddy=l /u sRose and Sulem, 1978d so
that the energy decay occurs at the rate du2 /dt
,−u2 /teddy. The eddy turnover time scale is the funda-
mental time scale in turbulence, and its role in global
hydrodynamic decay foreshadows the role of nonlinear
time scales in the energy cascades of both hydrodynam-
ics and MHD.

B. Locality of energy transfer and Kolmogorov spectrum

For a high-Reynolds-number fluid turbulence, the as-
sumption regarding the triadic interaction and energy
transfer process leads to the famous Kolmogorov −5/3
scaling law sKolmogorov, 1941a; Batchelor, 1970d.
Briefly, Kolmogorov assumed that both the energy
transfer and interacting scales are local.2 This picture of
the energy transfer process can be viewed as follows:
force is applied to a fluid flow at a large-scale L, inject-

1The similarity scale is often associated with the outer scale
or correlation length of turbulence in observational work. See
Batchelor s1970d.

2The energy content at sor neard a scale , may be defined
more or less formally. For example, energy per unit mass at
scale , might be expressed by u,

2,kuusxd−usx+,du2l. Alterna-
tively in wave-number k space one can compute first the cor-
relation function Rijsrd= kuisxdujsx+rdl. Then the spectral ten-
sor Sijskd is the Fourier transform of Rij, and, summing over
directions of k to get the omnidirectional spectrum, for isotro-
pic turbulence, Eskd=4pk2Siiskd. Finally the energy per unit
mass associated with the scale ,,1/k is uk

2 ,ÎkEskd. See
Batchelor s1970d.
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ing energy into the flow. The fluid motion at scale L
becomes unstable and loses its energy to neighboring
smaller scales without directly dissipating it into heat
slocal energy transferd. This process repeats itself until
one reaches a dissipation scale ld sthe Kolmogorov
scaled, where the energy transfer is directly dispersed
into heat by viscous action. The rate of energy input at
the large scales and that of the energy dissipation sde-
noted ed at the Kolmogorov scale are on average equal
to each other and thus so is the energy transfer rate
across the spectrum at intermediate scales. The range of
intermediate scales is commonly called the inertial range
in turbulence terminology. The anisotropy and inhomo-
geneity at large scales are thought to diminish with de-
creasing scales, so that scales far smaller than L become
statistically isotropic and homogeneous showever, see
Zhou et al., 1996d.

Although the energy-containing eddies exert a domi-
nant control over the rate of transfer in decaying turbu-
lence, this control is indirect, and excitations in the
energy-containing range do not directly affect energy
transfer within the inertial range. Therefore the average
rate of energy dissipation is identified with the rate of
spectral energy transfer and the rate of energy produc-
tion e. In order to infer the form of the inertial-range
spectrum, it is necessary to estimate the magnitude of
the transfer function correlations sthe so-called “triple
correlations” involving triple products of velocity com-
ponentsd, which are responsible for inducing energy
transfer. The time scale for decay of the transfer func-
tion correlations, tTskd, may depend on any relevant tur-
bulence parameters and the wave number k ssee foot-
note 2 for the concepts of wave number and length
scales in turbulenced. On general theoretical grounds
sBatchelor, 1970; Monin and Yaglom, 1975; see Sec. II.D
belowd one may argue that the energy transfer flux Pskd
is explicitly proportional to tTskd and depends on the
wave number and on the power of the omnidirectional
energy spectrum Eskd. In the inertial range, because en-
ergy is conserved by the nonlinear interactions and a
local cascade has been assumed, the energy flux P be-
comes independent of the wave number k ssee Zhou,
1993a, 1993b for numerical studiesd. By dimensional ar-
guments one can obtain

e = C̄tTskdk4E2skd , s2d

where C̃ is an order one constant.
The well-known Kolmogorov spectrum can be recov-

ered within this framework for homogeneous, isotropic,
statistically steady turbulence. For this case the nonlin-
ear dynamical time scale is

tnlskd ; ,/uk = fk3Eskdg−1/2, s3d

where ,~1/k is a length scale in the inertial range and
uk= fkEskdg1/2 is the characteristic velocity of eddies with
wave number k. In Kolmogorov analysis, this is the only
time scale available, and therefore tTskd=tnl. It follows
immediately from Eqs. s2d and s3d that

Eskd = CKe2/3k−5/3, s4d

which is the Kolmogorov spectrum. Note that tnlskd
,e−1/3k−2/3. Here CK is the Kolmogorov constant sfor a
collection of recent results on the Kolmogorov constant,
see Sreenivasan, 1995 and Yeung and Zhou, 1997d.

C. Straining and sweeping

The classical Kolmogorov spectrum is based on a
“cascade picture” in which the energy transfers between
scales much like a series of waterfalls, each one filling a
pool that overflows into the next one below sTennekes
and Lumley, 1972d. This cascade occurs mainly as a con-
sequence of interactions between eddies of nearly equal
size slocality in wave-number spaced. The interactions
consist of straining motions in which a vortex produces
gradients in the velocity that distort other vortices. On
the other hand, a large-scale flow will carry the small-
scale vortices but will not induce much distortion on
their internal dynamics. The direct interactions of the
large and small scales consists then of sweeping motions
which do not involve significant energy transfer in wave-
number space and will not change the form of the hy-
drodynamic energy spectrum. This is sketched in Fig.
1sad. Later sSec. III.Ad we shall discuss how the influ-
ence of wave propagation in MHD may be viewed as a
generalization of nonlocal sweeping effects, but with
somewhat different consequences.

Instead, the time correlations or equivalently the form
of the frequency spectrum sobtained from time series of
the velocity at a fixed pointd can be strongly influenced
by the sweeping effect, since any small-scale fluctuations
swhich come from the straining motionsd will be ad-

FIG. 1. Comparison of hydrodynamics and magnetohydrody-
namics: sad In hydrodynamics a mean or large-scale flow
sweeps the small-scale eddies without affecting the energy
transfer between length scales; sbd in magnetohydrodynamics a
mean or large-scale magnetic field B sweeps oppositely propa-
gating fluctuations z− and z+, which affects the energy transfer
sillustrated as distortions after the two types of fluctuation
have passed through each otherd.
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vected and passed through the probing point, thus intro-
ducing strong fluctuations in the time series.

The Taylor s1938d frozen-turbulence approximation
assumes that a large-scale flow, with velocity U, sweeps
the turbulence by the point of observation. This approxi-
mation, with a large constant speed U s@ the fluctuation
speed ud, is used in wind-tunnel studies and in single-
spacecraft studies of solar wind turbulence sJokipii,
1973d to convert time-lagged correlations into spatial
correlations. The underlying idea is that the large-scale
flow at speed U sweeps the spatial fluctuations past the
observation point faster than local nonlinearities can
produce distortions. Then the frequency spectrum has
the form Esvd,e2/3U2/3v−5/3. Sweeping by random flows
swith large scale but random Ud gives a similar result
sTennekes, 1975; Chen and Kraichnan, 1989d. In con-
trast, when sweeping is negligible compared to straining
motions, the spectrum can be predicted by dimensional
analysis, by requiring that the spectral density in fre-
quency depend only upon the energy cascade rate and
the frequency sTennekes, 1975; Nelkin, 1994d. This im-
plies that Esvd,ev−2. As can be seen, the presence or
absence of a large-scale flow U is relevant for the fre-
quency spectrum if a sweeping hypothesis is assumed.

On the other hand, it seems rather certain that sweep-
ing does not enter directly into the form of the hydrody-
namic wave-number energy spectrum in Eq. s4d ssee
Chapman, 1979; Saddoughi and Veeravalli, 1994; Yeung
and Zhou, 1997d. However, there is a clearly established
relationship sNelkin and Tabor, 1990d between sweeping
and the higher-order moments se.g., structure functions
and kinetic-energy spectrad. In particular, the controlling
influence that random sweeping exerts on frequency
spectra sChen and Kraichnan, 1989d can directly trans-
late into a similar influence on the sfourth-orderd spec-
trum of kinetic-energy density.3 Heuristically, the fre-
quency spectrum at a fixed point is a direct consequence
of the large-scale flow sweeping a spatially nonuniform
sintermittentd distribution of fluctuation energy past the
observation point ssee Fig. 1d. Evidently Kolmogorov
scaling, with its single nonlinear time scale tnlskd, does
not immediately extend to higher-order moments, which
may include the influence of the sweeping and other
time scales. This view is supported by experiments sVan
Atta and Wyngaard, 1975; Zhou et al., 1993; see also
Dutton and Deaven, 1972d that show that higher-order
inertial-range spectra have the same power-law expo-
nents as the energy spectrum, rather than the values that
would be implied by a pure straining argument. These
experiments demonstrate the importance of the sweep-
ing effect, the multiplicity of turbulence time scales, and
the role of nonlocality.

D. Time scales, cascade, and closures

How can additional time-scale effects be built into a
simple theory of turbulence spectra? One possibility is
to look further into the physical underpinnings of Eq.
s2d. Suppose we write the transfer rate or energy flux in
the suggestive form

e = Pskd =
uk

2

tsp
. s5d

Here uk
2 is stwiced the energy per unit mass associated

with the velocity at scales near 1/k. For compatibility
with Eqs. s2d and s3d, we can identify the spectral trans-
fer time as tspskd=tnl

2 skd /tTskd. Thus, by developing dif-
ferent approximations for the triple correlation time tT,
we can arrive at a variety of models of turbulence spec-
tra.

The deeper significance of this rather symbolic proce-
dure can be seen by examining how relationships akin to
Eqs. s2d and s5d emerge in more formal mathematical
treatments of turbulence and how precisely defined time
scales that enter these theories become associated with
the terms that appear in the phenomenological treat-
ments.

A particularly revealing form of the evolution equa-
tion for the energy spectrum emerges from the closure
known as the eddy-damped, quasinormal Markovian
sEDQNMd approximation. As a brief background
sOrszag, 1970, 1977; Monin and Yaglom, 1975; McComb,
1990; Lesieur, 1997d, let us consider the structure sand
not the detailsd of this approach. Consider, in a highly
symbolic notation, the wave-number space Navier-
Stokes equation, that is, ]tûskd= ûû−nk2ûskd. The nota-
tion û refers to the Fourier representation of the velocity
field and reminds us that we are suppressing Cartesian
indices, summations over indices, wave-vector argu-
ments, and time arguments ssee Lesieur, 1997d. The
equation for the modal spectrum Eskd /4pk2,kûûl is
symbolically of the form

S ]

]t
+ nk2Dkûûl = kûûûl . s6d

This involves the third-order moments s“triple correla-
tions”d ûûû, which obey an equation of the form

S ]

]t
+ nsk2 + p2 + q2dDkûskdûspdûsqdl = kûûûûl , s7d

where k, p, and q each denote wave vectors. The “clo-
sure problem” refers to the occurrence of the fourth-
order correlations in the equation for the third-order
correlation, and so on. Closure methods adopt approxi-
mations for higher-order moments in terms of lower-
order moments. The quasinormal approximation sQNAd
sMillionschikov, 1941d represents the fourth-order mo-
ment in Eq. s7d as a sum over products of second-order
moments. This allows a solution for the third-order mo-
ments, which are then substituted into Eq. s6d, which
becomes a closed equation for the second-order mo-
ments, thereby also giving the energy spectrum. Orszag

3The energy spectrum in Eq. s4d is related by a Fourier trans-
form to a correlation of the form kuu8l, where the prime de-
notes a spatially lagged variable. The spectrum of kinetic en-
ergy is related to ku2u82l and is therefore a fourth-order
moment of the underlying probability distribution function.
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s1970d and others introduced additional refinements and
approximations4 that have become known as the
EDQNM approximation. This is in many ways an ac-
ceptable approximate model for turbulence, and it leads
to an equation for the spectrum that can be written as

S ]

]t
+ nk2DEsk,td =E E

D

dpdqQkpqEsq,td

3fAsk,p,qdEsp,td

− Bsk,p,qdEsk,tdg . s8d

Here the integrals are over values of the wave vectors
restricted to q=k−p, and A and B are coupling coeffi-
cients having the dimension of wave number. The
inertial-range energy flux can then be calculated from
the integral Pskd=−] /]te0

kEsk , tddk by using the
EDQNM expression on the right-hand side of Eq. s8d.
Finally, by estimating that the dominant contributions to
the integrals are from p<q<k, we can arrive at the
estimate e=Pskd=tTskdk4E2skd previously obtained by
dimensional analysis in the inertial range. Notably, the
“triple decay time” tTskd that earlier we assumed to ap-
pear on heuristic grounds is now identified with the
eddy-damping time Qkkk that emerges as the key time
scale in the evaluation of the EDQNM energy flux. It is
very reassuring that this can be done, because now the
dimensional result acquires a context within an analyti-
cal theory. However, it is very important to keep in mind
that the role played by the “eddy-damping rate” of the
triple correlations, on physical grounds, is to restore, in
an approximate way, the decorrelation effect of the
third-order cumulants5 that were already neglected in
the QNA. In effect, the choice of eddy-damping rate
“rigs” the EDQNM approximation to yield a particular
spectral law. Thus, in spite of its algebraic elegance, the
EDQMN closure requires that we correctly understand
the physics that determines time decorrelation. Even so,
the identification tTskd=Qkkk gives us confidence about
how such time scales act in more formal theories, while
providing a chain of reasoning that connects the dimen-
sional analysis with the mathematical structure of turbu-
lence. This is a useful background when we extend the
use of the cascades phenomenology to include other
time-scale effects in MHD.

An additional point of contact with formal theories
warrants mention. Another very well known closure
theory, Kraichnan’s s1957d direct interaction approxima-

tion sDIAd, perhaps the archetype for statistical closure
theories of turbulence, proceeds through a formal per-
turbation expansion in which the lowest-order velocity
field obeys exactly Gaussian statistics. The DIA seeks a
solution to the turbulence closure problem by expanding
in a parameter d, letting the nonlinear terms in the evo-
lution equation be of order d, a parameter eventually set
equal to unity. To facilitate solution, a propagator

sGreen’s functiond G̃sk , t , t8d is defined, which is the sys-
tem response to a delta-correlated Gaussian forcing
function. A key step is to arrive at coupled renormalized

equations for the averaged propagator G= kG̃l and for
the time-lagged spectral function Qsk , t , t8d, which deter-
mines how rapidly correlations decay in time.6 While the
details are unimportant here ssee, Leslie, 1973; Mc-
Comb, 1990d, it is clear from the structure of the theory
that the simultaneous solution for Q and G establishes
the nature of the two time decorrelations at each wave
number. Accordingly, through the propagator formal-
ism, the time dependence of third-order correlations is
established in terms of the second-order correlations.

In general the EDQNM and DIA models are quite
distinct, but McComb s1990; p. 308d argues that there is
an interesting ad hoc modification to the DIA that
shows a structural connection between those models.
Suppose that instead of solving the isotropic DIA equa-
tions for Q and G in the usual way, one departs from the
DIA and makes the very simple approximation, for t

. t8, that Qsk , t , t8d=Ssk , t8de−gskdst−t8d and Gsk , t , t8d
=e−gskdst−t8d where the decorrelation rate is taken to be
the reciprocal of the nonlinear time, gskd=1/tnlskd
,e1/3k2/3. Then this “pseudo-DIA” equation for spectral
evolution becomes identical to the EDQNM spectral
equation, Eq. s8d. This identification should not be taken
too seriously, as the DIA prescribes the time decorrela-
tion in its own way. However, to the extent that Mc-
Comb’s limit is realizable, the EDQNM approximation,
the above-modified DIA procedure, and the phenom-
enological approach are in agreement with one another:
All quantities of interest are determined by the wave-
number-dependent correlation damping rate, just as in
the successful EDQNM closures sOrszag, 1970; Lesieur,
1997d, the spectral power law is determined by the
choice of the time scale Qkpq. In this light, it seems rea-
sonable to pursue a phenomenological treatment of
MHD spectra to understand the variety of conclusions
that may be applicable in space and astrophysical plas-
mas.

4The “eddy-damping approximation” consists of inserting a
time dependence of the triple correlations sOrszag, 1970d that
is associated with nonlinear distortions sstraind. In a formal
sense this amounts to letting nk2→nk2+gskd with the rate of
decay of triple correlations enhanced by the nonlinear rate of
strain, gskd= ftnlskdg−1. The “Markovian” approximation fur-
ther simplifies the theory by asserting that the spectra are es-
sentially unchanged during a triple decay time sLeith, 1971d.

5A cumulant is the contribution to a moment of the probabil-
ity distribution that is due to departure of the distribution from
that of a Gaussian distribution.

6Two-point correlations that involve both a spatial lag r and a
time lag t= t− t8 may be defined as Rijsr ,td= kuisx , tdujsx+r , t
+tdl. The time-lagged spectral tensor Sijsk ,td is the Fourier
transform of Rij with respect to space, the time lag now denot-
ing the time-decorrelation of each spectral element. The DIA
spectral function Q is essentially the trace S=Siisk ,td.
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III. MAGNETOHYDRODYNAMIC TURBULENCE

A. MHD equations and basic physical concepts

Having established a baseline understanding of how
various time scales enter hydrodynamic turbulence, we
now turn to the magnetohydrodynamic case, in which
things are more complicated, but, as we shall see, some
of the same ideas can be applied to understand what
spectra are expected.

A plasma, described here as an electrically conducting
gas or fluid, evolves in response to both mechanical and
electromagnetic forces. For simplicity, as we did in hy-
drodynamics, we focus upon the constant-density incom-
pressible model, which provides an adequate context for
the issues of MHD turbulence that are of primary con-
cern here ssee Biskamp, 2003d. The incompressible
MHD model, in terms of the fluid velocity u and the
magnetic field B, includes a momentum equation,

]u
]t

+ u · ¹ u = −
1

r
¹ p +

1

4pr
s¹ 3 Bd 3 B + n¹2u ,

s9d

and a magnetic induction equation,

]B
]t

= ¹ 3 su 3 Bd + m¹2B . s10d

The plasma density r, the kinematic viscosity n, and the
magnetic diffusivity m, are assumed to be uniform con-
stants. The velocity and magnetic field are solenoidal,
¹ ·u= ¹ ·B=0, and the pressure p is determined by tak-
ing the divergence of Eq. s9d. The dimensionless Rey-
nolds number R=uL /n swhere u is a typical velocity and
L a typical length scaled and magnetic Reynolds number
Rm=uL /m are measures of the relative strength of the
nonlinear terms and linear sdissipatived terms in the dy-
namical equations. Highly turbulent MHD occurs at
high values of R and Rm.

Before continuing, let us recall that MHD is fre-
quently applied to space and astrophysical plasmas for
which the derivation of the model is not so clear as one
would like. This stands in contrast to the rather more
firm conceptual status of hydrodynamics or gas dynam-
ics for which well-established methods, either macro-
scopic or perturbative ssuch as the Chapman Enskog ex-
pansiond, exist and are given in standard texts on
statistical mechanics. For low-collisionality plasmas, the
basic structure of MHD emerges from conservation of
mass, momentum, and energy, along with the Maxwell-
Ampère and Faraday laws, upon ignoring displacement
current and adopting a suitable form of Ohm’s law.
However, for most applications there is usually not a
clear path to closing the system with a single isotropic
pressure field, nor is there usually a convincing calcula-
tion of viscosity, resistivity, and other transport coeffi-
cients such as thermal conductivity.

A customary approach in numerical work is to adopt
scalar dissipation coefficients, choosing values based on
numerical limitations of spatial resolution rather than on

physical realism. For turbulent MHD this may be justi-
fied in part by assuming that the nonlinear cascade is
mainly from large to small scales, and the role of the
specific dissipation mechanism is simply to absorb what-
ever energy arrives at small scales through spectral
transfer. This is only partially satisfactory, and a more
comprehensive theoretical understanding of the nature
of dissipation in low-collisionality MHD applications is
desirable, though it may be neither simple in nature nor
of universal form. On the bright side, when observations
are available, as they are in the solar wind, one can see
that the inertial range is broadband, and therefore the
energy-containing range is well separated in scale from
the dissipation range, where the spectrum steepens
sLeamon et al., 1998d. On this basis one can infer a kind
of effective Reynolds number for the solar wind, or by
analogy, for any turbulent plasma for which the extent of
the inertial range is known. For example, ignoring the
difference between viscous and resistive dissipation, one
might employ the hydrodynamic estimate of the dissipa-
tion wave number kd= se /n3d1/4. Using the Taylor–von
Karman estimate of the decay rate e=u3 /l, this can be
cast in the form kdl=R3/4, or R= skdld4/3 where R is the
Reynolds number. The quantity kdl is approximately
the bandwidth of the inertial range. Therefore for a
three-to-four-decade inertial range se.g., the solar wind,
approximatelyd, one has R<105. For the lower solar co-
rona, a five-to-six-decade inertial range is estimated, so
R<108.

In general, whenever there is a broadband inertial
range extending over decades in scale, one can infer that
the effective large-scale Reynolds number is very large,
even when a formal theory for the dissipation mecha-
nism is not yet available.

The magnetic field may contain a uniform part B0 sbe-
low, the dc magnetic fieldd or a smoothly varying part
swhich we identify as a local mean magnetic fieldd plus
small-scale fluctuations b, that is, B=B0+b. The large-
scale magnetic field supports propagation of hydromag-
netic waves; here, for the incompressible case, we call
these Alfvén waves. These waves are fluctuations trans-
verse to the mean magnetic field, propagating along the
mean magnetic field direction at the Alfvén speed VA

=B0 /Î4pr.
Even the simplest MHD case, assuming incompress-

ibility, isotropy, stationarity, and homogeneity, is more
complex than hydrodynamics. There are two distinct
fields to deal with, the magnetic and velocity field, and
additional complexity due to Alfvén wave propagation
effects. There are at least two classes of time scales in-
volved, the nonlinear time and the Alfvén time sthe time
for a fluctuation to propagate a given length scaled.
Moreover, the large-scale magnetic field introduces a
preferred direction, and anisotropic effects on the fluc-
tuations are present.

Here we arrive at a major difference between fluid
and MHD turbulence. Unlike fluid turbulence, the non-
local effect of large scales upon the small scales, de-
scribed above as “sweeping,” is an important issue for
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MHD turbulence. Beginning with the work of Iroshni-
kov s1963d and Kraichnan s1965d, it has been argued that
such effects play a significant role in MHD turbulence,
even when dc magnetic fields are absent. If there is a
strong, large-scale magnetic field, the small-scale fluc-
tuations are subject to a sweep-like effect due to Alfvén
wave propagation. To discuss this it is useful to write
MHD in a more symmetric form, in terms of the so-
called Elsässer fields sElsässer, 1956d, z+=u+b /Î4pr and
z−=u−b /Î4pr,

]z±

]t
7 VA · ¹ z± = − z7 · ¹ z± −

1

r
¹ P + m¹2z±, s11d

where we have explicitly separated a term involving the
large-scale magnetic field swritten here in terms of the
Alfvén velocity VAd. For simplicity, we have assumed n
=m. The total pressure P=p+B2 /8p acts to enforce the
constraints ¹ ·z±=0.

Setting either z+=0 or z−=0 provides exact solutions
of the ideal swithout dissipationd MHD equations. The
nonzero field is often said to correspond to wave packets
that propagate along the mean field direction. This de-
scription can be misleading because the “packets” may
not be localized and also may not propagate. Nonpropa-
gating fluctuations with wave vectors strictly perpen-
dicular to the mean magnetic field have zero phase
speed. In any case, one sees from the MHD equations
that both types of fluctuations z± are needed for the non-
linear terms to be nonzero and to sustain turbulence.
That fact was pointed out by Kraichnan s1965d and dis-
cussed in the context of space physics applications sDo-
browolny et al., 1980d and more recently in solar coronal
heating models sDmitruk et al., 2001d.

Kraichnan s1965d noted that the mean magnetic field
sweeps the small-scale structures which interact, and
during that time nonlinear transfer of energy between
length scales occurs sin the Kraichnan picture the “wave
packets” suffer brief “collisions” during which energy
transfer occursd. This is illustrated in Fig. 1sbd. One can
see then that the mean magnetic field induces an inhibi-
tion of the nonlinear energy cascade sChen and Kraich-
nan, 1997d.

For high-Reynolds-number MHD turbulent flows in
astrophysical and space environments, there is scale
separation to distinct physical processes at large and
small scales. Specifically, one divides the dynamics into a
small-scale part that contains “small-small” and “large-
small” couplings, and a large-scale part ssee Zhou and
Matthaeus, 1990ad. When the small-scale fields are
broadband, one tends to treat the “small-small” cou-
pling as turbulent, involving couplings that are princi-
pally local in wave-number space.

Studies of MHD turbulence in space and astrophysical
contexts often become tractable at some level when one
introduces some form of scale separation. In the sim-
plest approximation a small part of an inhomogeneous
MHD system might be treated as “locally homoge-
neous.” Turbulence in the solar wind is a case in point,
one in which the wealth of observational data has made

possible a productive interplay between theory and ob-
servation. sSee Tu and Marsch, 1995 and Goldstein et al.,
1995 for reviewsd. Early observational studies se.g.,
Coleman, 1968d found that spacecraft-frame temporal
fluctuations of the plasma fluid velocity admitted a
power-law wave-number spectrum ssee Fig. 2d, reminis-
cent of the Kolmogorov description of fluid turbulence
sBatchelor, 1970; Tennekes and Lumley, 1972; Monin
and Yaglom, 1975; Pope, 2000d. Observations sColeman,
1968; Belcher and Davis, 1971; Jokipii, 1973d also re-
vealed a distinctive correlation between velocity and
magnetic field that suggests outward-traveling large-
amplitude Alfvén waves sFig. 3d.

The solar wind, like most real astrophysical systems in
which turbulence is found, is compressible and inhomo-
geneous at the larger scales. Large-scale inhomogene-
ities, such as velocity shear or temperature and density
gradients, can supply energy to the small-scale turbu-
lence. In the solar wind the observed fluctuations are
broadband with correlation scales sl,0.02 AU, astro-
nomical unit, at Earth orbitd that are much smaller than
the scale of the system s1 AU or mored. The MHD tur-
bulence inertial range extends roughly from l down to
scales 1000 times smaller, near the thermal ion gyroscale.
Thus turbulence activity of interest is well separated in
length scale from the large-scale solar wind inhomoge-
neities. Moreover, the large-scale properties, such as
mean flow and mean magnetic field, are relatively coher-
ent and reproducible. Therefore the solar wind is often
described in terms of a canonical average flow and
magnetic-field properties, such as low-speed, quiet solar
wind at low latitudes, a hotter, less dense, and faster
wind at high latitudes, an Archimedean spiral magnetic
field, and other idealized large-scale features. Even
when dynamic large-scale structures se.g., interaction re-

FIG. 2. The trace of the power spectral matrix of the magnetic
field fluctuations snT=nanoteslad from a 74-min sample of data
values, each of which is an average value taken over 0.12 sec of
data from the Mariner 10 magnetometer on March 20, 1974.
The solar wind data indicate a −5/3 Kolmogorov scaling for
the slope of the spectrum. Adapted from Goldstein et al., 1995.
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gions between streamsd are present, these features can
be viewed to some degree as reproducible.

In contrast, the observed small-scale solar wind fluc-
tuating fields are generally viewed as random and locally
homogeneous. These fluctuations were treated originally
sParker, 1965; Hollweg, 1973, 1974, 1986; Barnes and
Hollweg, 1974; Jacques, 1977; Barnes, 1979; Heinemann
and Olbert, 1980d using linearized weakly inhomoge-
neous MHD s“WKB” theoryd, which describes the
propagation of short-wavelength Alfvénic fluctuations in
an inhomogeneous flow. The present perspective is that
the medium is locally incompressible sMatthaeus et al.,
1990d and is described to an acceptable degree of ap-
proximation as MHD turbulence.

The basic dichotomy between the nonlinear “turbu-
lence” picture and the linear “wave” picture pervades 40
years of studies of the solar wind and mirrors the basic
theme of the present Colloquium: the observable fea-
tures of MHD turbulence emerge as a balance between,
on the one hand, wave-propagation or sweeping effects,
and on the other hand, nonlinear distortions or straining
effects.

B. Phenomenology of MHD decay

Whereas in hydrodynamic turbulence we deal with
one energy density u2 and one associated two-point cor-
relation tensor, the presence of two dynamical fields in
MHD introduces four types of correlations or energies
sper unit massd, the kinetic energy Eu= kuuu2l /2, the mag-
netic energy Eb= kubu2l /2, the cross helicity Hc= ku ·bl
= kuz+u2− uz−u2l /4 and the energy difference D= kuuu2
− ubu2l /2= kz+ ·z−l /2. sHere we are using Alfvén speed

units in which the magnetic field b→b /Î4pr has dimen-
sions of a velocity.d Note that the cross helicity is the
difference of the Elsässer energies Z+

2 = kuz+u2l /4 and Z−
2

= kuz−u2l /4. The most symmetric situation is when we
have equipartition, D=0 and zero cross helicity s“non-
Alfvénic”d Hc=0 turbulence. For this case neither the
velocity and magnetic field, nor the two Elsässer vari-
ables are correlated with one another. In this very
“plain” type of MHD, Z−

2 =Z+
2 ;Z2, and a simple exten-

sion to the hydrodynamic decay phenomenology works
well sHossain et al., 1995d for MHD decay at moderate
Reynolds numbers. In particular, dZ2 /dt=−aZ3 /l and
dl /dt=bZ, with a and b order-one constants and l a
similarity or energy-containing scale. The choice of con-
stants can be given a physical interpretation as in the
hydrodynamic case sMatthaeus et al., 1996d. This
hydrodynamic-like approach to MHD decay has been
used in transport modeling of turbulence in the solar
wind; such modeling provides a reasonably accurate ac-
count of the radial profile of the solar wind turbulence
level and temperature sSmith et al., 2001d from earth
orbit s1 AUd to beyond 60 AU.

More generally, zero cross helicity cannot be assumed,
and a decay phenomenology should take into account
asymmetry between Z+

2 and Z−
2. This introduces addi-

tional time scales. The basis for this is found, for ex-
ample, in the phenomenological discussions of Iroshni-
kov s1963d, Kraichnan s1965d, and Dobrowolny et al.
s1980d, and in the detailed treatment of MHD closures
by Pouquet et al. s1976d and Grappin et al. s1983d. Here
we adopt the phenomenological approximation sHossain
et al., 1995d that

dZ±
2

dt
= − a±

Z±
2

tsp
± s12d

in terms of constants a+ and a−. The simplest estimate
for the nonlinear time scales sPouquet et al., 1976; Grap-
pin et al., 1983d is that the spectral transfer time is iden-
tified with the eddy turnover or nonlinear time tsp

± =tnl
±

while the latter, taking into account the nature of the
interactions between z+ and z−, can be estimated as tnl

±

=l±/Z7 for similarity scales l±. For this choice the en-
ergy decay equation becomes

dZ±
2

dt
= − a±

Z±
2Z7

l±
. s13d

To close the system of decay equations one should
choose sand verify if possibled an evolution equation for
the similarity scales l±. One possibility is sHossain et al.,
1995d dl±/dt=b±sZ+Z−d1/2, but there remains some dif-
ficulty in verifying this behavior of the similarity scales.7

7One usually attempts in simulations of turbulence to allow
maximum possible spatial resolution at the small scales, in or-
der to capture an accurate direct cascade of energy. However,
to simulate the correct growth of the energy-containing scales
during decay also requires simulations with adequate large-
scale resolution.

FIG. 3. Twenty-eight hours of magnetic-field and plasma data
demonstrating the presence of nearly pure Alfvén waves. The
upper six curves are 5.04-min bulk velocity components and
magnetic-field components averaged over the plasma probe
sampling period. The vertical axes on the right are for the
Cartesian velocity components sR=radial, T=tangential, N
=normal, relative to ecliptic planed in km/sec; the vertical axes
on the left are for the magnetic-field components in nT. The
lower two curves are magnetic-field strength and proton num-
ber density sin cm−3d. From Belcher and Davis, 1971. Re-
printed with permission from Journal of Geophyscal Research,
American Geophysical Union.
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Another difficulty with MHD decay phenomenology
is the degree of certainty and generality with which one
makes the identification tsp

± →tnl
± that we used above to

arrive at Eq. s13d. Indeed one may question whether
another time scale enters into global decay, for example,
the Alfvén crossing time of the energy-containing ed-
dies, or some other sweeping-like scale that can decor-
relate the large-scale nonlinear interactions, thereby
modifying the global rate of energy decay. Such issues
are discussed at some length below in the context of the
inertial range of MHD turbulence, for the cases of both
isotropic and anisotropic MHD with a large-scale mag-
netic field.

However, for the energy-containing range of scales,
the issue remains ambiguous at present. For homoge-
neous periodic turbulence, Hossain et al. s1996d argue
that the development of anisotropy relative to a large-
scale magnetic field acts to saturate and minimize the
decorrelation effect on the energy range of scales. How-
ever this presupposes that the large-scale Alfvén cross-
ing time tA=l /VA is not too small. This may depend
upon the initial conditions or driving, as well as the
boundary conditions. A particularly sensitive issue in ap-
plications ssee Dmitruk et al., 2001d is whether the
boundary conditions permit the persistence of non-
propagating structures, such as 2D turbulence, that are
unaffected by the wave-sweeping time tA. Also, the in-
terplay between boundary conditions, wave propagation
effects, and nonlinear interactions can have an impact
on the turbulence level smeasured by the energy transfer
rated maintained by the system ssee Dmitruk and Mat-
thaeus, 2003 for a particular application in a coronal
heating modeld. For now, however, we note that the mul-
tiplicity of MHD time scales may pervade energy range
dynamics as well. In such cases the problem-specific de-
tails may influence the energy decay time. For certain
standard problems, such as periodic or homogeneous
MHD with band-limited initial conditions, numerical
evidence supports the statement that the global decay
time is associated mainly with nonlinear effects and that
sweeping or Alfvén time effects are not significant.
Clearly this conclusion would need to be readdressed in
other problems. For example, the case of initially spa-
tially localized Elsässer fluctuations under the influence
of a large-scale dc magnetic field sParker, 1979d may
present an interesting contrast to the case of homoge-
neous turbulence. With this background we now turn
our attention to summarizing the role of time scales in
the variety of possible MHD cascades in the inertial
range.

C. Isotropic MHD

1. When local straining is dominant: Kolmogorov
scaling

Montgomery and co-workers sFyfe et al., 1977d sug-
gested that the original Kolmogorov reasoning and its
associated k−5/3 spectrum are applicable to MHD. The
implicit assumption here seems to be that the nonlinear

distortion of eddies is faster than the decorrelation ef-
fects associated with wave propagation. This implies that
the relevant time scale is tnl and that the straining domi-
nates over random sweeping or propagation. This ap-
proach seems most reasonable when the cross helicity is
small, the velocity and magnetic fields are close to equi-
partition, and the large-scale magnetic field is not too
large.

One of the strongest sources of support for the k−5/3

scaling in MHD comes from in situ spacecraft observa-
tion of solar wind, in which the −5/3 spectral law is often
statistically distinguishable from other proposed power
laws. An example is shown in Fig. 2. Typically the mag-
netic energy spectrum Ebskd displays a near-power-law
behavior for some three decades in wave number. Mat-
thaeus and Goldstein s1982d report such power laws be-
tween 10−11/cm−1 and 3310−9 /cm−1, with spectral index
−1.73±0.08. The spectral decomposition of the total en-
ergy, Eskd=Ebskd+Euskd also typically follows a power
law and is nearly equipartitioned between kinetic and
magnetic energy in the inertial range. For the total en-
ergy, Matthaeus and Goldstein s1982d report a power-
law dependence of the form Eskd,k−1.69±0.08 at all but
the lowest wave numbers. The expectation of equiparti-
tion in inertial-range scales is known as the Alfvén effect
sKraichnan, 1965d. The frequent occurrence of Alfvénic
fluctuations in the inner heliosphere sFig. 3d is indicative
not only of near energy equipartition, but also of the
presence of cross helicity sColeman, 1968; Dobrowolny
et al., 1980; Grappin et al., 1982, 1983; Pouquet et al.,
1986d. Generally speaking the solar wind evolves in the
outer heliosphere toward less Alfvénic states but re-
mains nearly equipartitioned between kinetic and mag-
netic energy sRoberts et al., 1987, 1990d, and usually 1
,Euskd /Ebskd,2.

Simulations have also addressed the issue of MHD
spectral indices. The energy spectra obtained from ear-
lier MHD turbulence computations were inconclusive.
For example, at a numerical resolution of 1803180
3180 rectangular grid points sPolitano et al., 1995d could
not generate an extended inertial range. Recent high-
resolution direct numerical simulation of MHD turbu-
lence sBiskamp and Müller, 2000d provides strong sup-
port for the Kolmogorov −5/3 law ssee Fig. 4d. The
spectrum shown has been multiplied by k5/3, resulting in
a flat region that indicates a clearly discernible, although

short, inertial range Êsk̂dk̂5/3= k̂5/3EK / seh5d1/5= C̃KFsk̂d,
where C̃K is a constant and k̂=kld with ld= sm3 /ed1/4 the
Kolmogorov dissipation length sassuming m=nd.

Small-scale current sheets are the dominant high-
wave-number dissipative feature of MHD turbulence in
three dimensions sBiskamp and Müller, 2000d and in two
dimensions sMatthaeus and Lamkin, 1986d. An example
of the formation of small-scale current sheets in MHD
turbulence is shown in Fig. 5 for the 2D case. The crucial
role of current sheet formation and turbulence-driven
reconnection can also be seen sDmitruk et al., 2002d in
wave-driven reduced MHD models that conceptually lie
between purely 2D and purely 3D models. In three di-
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mensions, current sheets are much more distorted and
reconnection sites are harder to identify than in the 2D
case sPolitano et al., 1995d. As an example, Fig. 6 shows
a snapshot of the spatial distribution of magnetic-field

intensity in 3D MHD turbulence, which serves to illus-
trate the characteristic degree of spatial complexity. The
formation of current sheets associated with reconnection
of nearby magnetic structures is a fundamental aspect of
MHD turbulence that is related to nonlinear strain-type
motions.

The parallel dynamics of Alfvén waves do not control
the turbulence, which is instead governed by cross-field
eddy-type motions, which appear hydrodynamic-like.
Biskamp and Müller argue that in three dimensions the
swirling motion can easily dominate over Alfvén wave
dynamics; therefore random sweeping is weaker than
straining in 3D MHD turbulence in the absence of a dc
magnetic field. This in turn indicates that the local en-
ergy transfer and local interactions are dominant.

2. When random sweeping is dominant:
Iroshnikov-Kraichnan scaling

The simplest way to incorporate sweeping effects is to
assume isotropic statistics but with the decorrelation
time scale controlled by a characteristic Alfvén wave pe-
riod. In this way, Iroshnikov s1963d and Kraichnan
s1965d retain the basic Kolmogorov assumptions of isot-
ropy and locality in the wave numbers of nonlinear in-
teractions. Small-scale fluctuations are viewed as Alfvén
wave packets traveling along the large-scale magnetic
field and suffering brief collisions with oppositely propa-
gating packets swe have cautioned the reader before
about the limits of this pictorial view of the dynamicsd.
Specifically, Iroshnikov and Kraichnan suggested that
the triple velocity correlations in MHD turbulence de-
cay in a time of the order of an Alfvén wave period.

FIG. 4. Plot of the normalized angle-integrated energy spec-
trum of MHD turbulence vs k̂;k,d swhere ,d is the Kolmog-
orov dissipation lengthd. All curves are multiplied by k5/3. The
Kolmogorov scaling is strongly suggested by this direct nu-
merical simulation ssolid curved, from a run that does not have
magnetic helicity. The dashed line indicates the Iroshnikov-
Kraichnan spectrum k−3/2 ssee Sec. III.C.2d, and the dotted line
the Kolmogorov spectrum fsee. Eq. s4dg with CK=2.3. From
Biskamp and Müller, 2000.

FIG. 5. Magnetic-field lines from a spectral-method simulation
of 2D MHD turbulence, and associated randomly occurring
electric current sheets and filaments that are oriented so that
the current is perpendicular to the magnetic-field activity. The
magnitudes of the currents are indicated by gray shading, with
the most intense levels being white for out-of-the-plane cur-
rents and black for into-the-plane currents.

FIG. 6. sColord Color map of the spatial distribution of
magnetic-field intensity in a spectral-method simulation of 3D
MHD turbulence. Spatial resolution is 25632563256 rectan-
gular grid points. The mechanical and magnetic Reynolds
numbers are 1000.
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Therefore tT=tA, tA= sVAkd−1, and e= C̃2tTskdk4E2skd.
As a result, the well-known Iroshnikov-Kraichnan k−3/2

spectrum is obtained.
Grappin et al. s1982d examined the properties of the

Iroshnikov-Kraichnan cascade using the 3D EDQNM
approximation and found, after a few large eddy turn-
over times, a quasistationary state that exhibits a −3/2
inertial range with zero correlation between velocity and
magnetic fields. Two-dimensional direct numerical simu-
lations sBiskamp and Welter, 1989; Biskamp, 1993;
Galtier et al., 1999d offer support for Iroshnikov-
Kraichnan scaling. Biskamp and Müller s2000d pointed
out that in two dimensions the swirling motions are
weak, as manifested by the steep energy spectrum in 2D
fluid turbulence. Hence straining is weakened and
Alfvén-wave-induced sweeping is the dominant decorre-
lation effect.

3. Extended phenomenology

Matthaeus and Zhou s1989d and Zhou and Matthaeus
s1990bd have developed a framework in which both time
scales, tnl and tA, coexist, in a fashion analogous to the
composition of triple decay times in the EDQNM clo-
sures sPouquet et al., 1976d. The viewpoint is that the
lifetime of transfer function correlations tTskd is more
accurately treated by taking into account the influences
of both the external agent and turbulent nonlinear inter-
actions. Composing the associated rates leads to

1

tTskd
=

1

tnlskd
+

1

tAskd
. s14d

Note that in general, but within the approximation of
local nonlinear transfer, the nonlinear time may be a
function of the vector k. This reduces to the expected
limiting cases when the effective magnetic-field strength
goes either to zero or to infinity and therefore tT ap-
proaches either tnl or tA. Accordingly, for the classical
case of isotropic turbulence, the energy spectra, Eskd
,k−m, as illustrated in Fig. 7, have a scaling exponent
3/2ømø5/3 and reduce to either the Iroshnikov-
Kraichnan or the Kolmogorov forms in the appropriate
limit. This case may be difficult to realize, because, as we
shall discuss in the next section, anisotropy, both global
and local, may act to further reduce the Alfvén wave
propagation effect.

D. Anisotropic MHD

Kraichnan was aware that the presence of a large-
scale magnetic field that supports the propagation of
Alfvén waves could result in inducing anisotropy
sGaltier et al., 2000d. Alfvénic sweeping diminishes non-
linear interaction, in the Iroshnikov-Kraichnan view, be-
tween the Elsässer fluctuations z±, which appear sym-
metrically in the MHD Eq. s11d. A large-scale magnetic
field suppresses the growth of gradients parallel to the
magnetic field, but since the perpendicular gradients are
not affected in this way, nonlinear sstraind effects con-

tinue to pump smaller scales, but anisotropically. Under
some circumstances this leads to quasi-two-dimensional
states.

When the turbulence is sufficiently two dimensional,
the sweep time scale due to propagation parallel to B0 is
no longer short compared with the intrinsic strain inter-
action times of the fluctuations, and the dynamics of z+
and z− become similar to those of purely 2D MHD tur-
bulence and are therefore almost independent of B0
sHossain et al., 1995; Chen and Kraichnan, 1997d. This
explains why all major conclusions of 3D MHD simula-
tions, with an externally imposed dc magnetic field
sOughton et al., 1994d, are consistent with the two-
dimensional studies of Shebalin et al. s1983d.

The structure of the spectrum is expected to be highly
anisotropic in the presence of a dc field, as was originally
suggested on the basis of experimental measurements in
the Culham Zeta Device sRobinson and Rusbridge,
1971d. Two-dimensional MHD, which is unaffected by
the presence of a strong perpendicular dc field, was in-
tensively studied in the 1970s and it was suggested sFyfe
and Montgomery, 1976; Fyfe et al., 1977d that the Kol-
mogorov analysis, and its associated −5/3 spectral slope,
would be applicable to the 2D inertial range associated
with a direct energy cascade to small scales. This result
stimulated theoretical debate that has continued for
more than 20 years.

Unlike the 2D case considered by Fyfe et al. s1977d, in
which the dc field defines a perpendicular plane, Sheba-
lin et al. s1983d studied 2D MHD in a plane containing
the dc field. This defines an additional preferred direc-
tion, and anisotropy can develop within the 2D plane.
The 2D incompressible simulations of Shebalin et al.
s1983d revealed the development of a strong and distinc-
tive anisotropy. The energy preferentially builds up in
wave vectors k perpendicular to B0 relative to modes
with k parallel to B0. Oughton et al. s1994d confirmed the

FIG. 7. Omnidirectional energy spectrum vs wave number,
computed from a generalized energy spectrum sMatthaeus and
Zhou, 1989d. Three values of the magnetic-field strength B0
=0, 1, 10, and 100 are shown. The slope flattens and the spec-
tral level increases as the field strength is increased, indicating
a smooth transition from the Kolmogorov −5/3 scaling sB0
=0d to a spectrum B0=100 that approaches the Iroshnikov-
Kraichnan −3/2 scaling. From Mathaeus and Zhou, 1989.
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result of Shebalin et al. s1983d in three dimensions, find-
ing that, with a dc magnetic field, energy transfer to per-
pendicular modes is enhanced, relative to a parallel one.
Oughton et al. s1994d found that the anisotropy tends to
increase with sid the strength of B0 swith saturation oc-
curring for values of B0ù3bd; siid wave number k; siiid
mechanical and magnetic Reynolds numbers; sivd time
swith a saturation depending on the Reynolds numbersd;
and svd decreasing cross correlation.

The manifestation of spectral anisotropy in real space
is the emergence of gradients across the mean magnetic-
field direction that are stronger than the gradients along
the field. As a result correlation lengths are longer along
the field, and structures are expected to appear elon-
gated in the mean-field direction. This feature is illus-
trated using numerical simulation results in Fig. 8.

Anisotropy is also found in solar wind turbulence.
Evidence for spectral anisotropy in the solar wind is at

this point indirect but has nonetheless gained consider-
able weight as consistent indications of anisotropy have
come from various types of studies sMatthaeus et al.,
1995d. Direct observations suggest that solar wind fluc-
tuations are anisotropic sCarbone et al., 1995d and con-
tain a significant admixture of excitations at near-
perpendicular wave vectors sMatthaeus et al., 1990;
Bieber et al., 1996d. In addition sBelcher and Davis,
1971; Roberts et al., 1991d the inertial range of solar
wind turbulence admits a distinctive component vari-
ance anisotropy, with a suppressed parallel variance. In
simulations the appearance of this feature appears to
require weak compressibility sMatthaeus et al., 1996d.

To offer a simple and physically appealing interpreta-
tion of the observed development of anisotropy in the
direction perpendicular to the applied dc magnetic field,
Shebalin et al. s1983d appeal to a three-wave resonance
interaction argument. This interpretation is based
loosely on a weak-turbulence theory ssee, for example,
Zakharov et al., 1992d, which only computes the first-
order corrections to the solutions of the linearized MHD
equations. Within this framework, the nonlinear terms in
MHD equations exactly cancel for Alfvén wave solu-
tions, so waves propagating in the same direction do not
generate additional modes. Two excited Fourier modes
can exchange energy efficiently with a third mode only if
the triad obeys the standard resonance condition sMont-
gomery and Matthaeus, 1995d: k1+k2=k3, and vsk1d
−vsk2d= ±vsk3d. Here k1 and k2 are the wave vectors
associated with two excited Fourier modes that are reso-
nantly exciting the third wave vector k3. In the linear
limit, all three modes are assumed to have an associated
exps−ivtd time dependence and satisfy a relation be-
tween frequency and wave vector vskd=k ·VA, where
VA=B0 / s4prd1/2 is the vector Alfvén velocity associated
with the mean dc magnetic field. For nonvanishing cou-
pling strength, interacting waves must propagate in op-
posing directions, which accounts for the sign difference
on the left-hand side of the frequency-matching condi-
tion. The triads of waves satisfying k1 ·VA−k2 ·VA
= ±k3 ·VA will have nonzero coupling only if either
k1 ·VA=0 or k2 ·VA=0. Therefore either k1 or k2 has a
zero component along B0.

The physical consequences of the dominance of the
three wave couplings can be summarized as follows: To
leading order there is no transfer parallel to an imposed
dc magnetic field. Transfer in the perpendicular direc-
tion is not impeded by the Alfvénic wave couplings that
suppress parallel transfer. Consequently MHD perpen-
dicular transfer proceeds very much as it does in 2D
MHD sFyfe et al., 1977d. On this basis one expects a k'

−5/3

spectrum for perpendicular wave vectors. In the parallel
direction, weak transfer occurs, but for each step in
ki, much of the energy is diverted into higher k'. Thus
the parallel spectrum is expected to be exponential
,exps−kid. The first explicit suggestion of this appears
to have been given by Montgomery s1987d. See also Gol-
dreich and Sridhar s1995d and Kinney and McWilliams
s1998d.

FIG. 8. sColord Color maps of the current density jz in cross
sections x, y and x, z from 3D simulations of MHD turbulence
with an applied dc magnetic field B0ẑ: top, B0=0; middle,
B0 /dB=1; bottom, B0 /dB=8d.
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Although the physical justifications for the occurrence
of spectral anisotropy have been given in wave-number
space, one would expect that this phenomenon should
have a real-space manifestation that possesses some de-
gree of locality. A sufficiently large-scale magnetic field
should induce effects locally that are indistinguishable
from a strictly uniform dc field. Consequently one ex-
pects to be able to understand the occurrence of aniso-
tropy entirely in the context of a system having localized
electric current and magnetic fields that have strictly fi-
nite scale. Recent numerical studies sCho and Vishniac,
2000; Milano et al., 2001d address this issue and conclude
that the spectral anisotropy described above indeed does
possess a purely local analog. The basic point goes back
to the zeta measurements sRobinson and Rusbridge,
1971d that found that the correlation of magnetic fluc-
tuations falls off much faster in directions perpendicular
to a large-scale applied field than it does in the parallel
direction. Application of these ideas to simulation data
indicates that anisotropy does indeed occur locally. Cor-
relations fall off more rapidly in directions transverse to
the locally computed mean magnetic field. The aniso-
tropy is found to be greater at small scales sCho and
Vishniac, 2000d and greater where the local mean-field
strength is larger.

IV. DISCUSSION AND CONCLUSIONS

On the basis of the physical properties discussed
above, it is possible to develop a simple and approxi-
mate methodology for estimating energy spectra and
correlation functions in various regimes of MHD turbu-
lence. The program is as follows: A spectral transfer time
scale is estimated, incorporating effects due to both non-
linear straining motions and the sweeping-like influence
of wave propagation. The relative influence of these ef-
fects will be closely related to the degree and type of
anisotropy expected, e.g., whether anisotropy is relative
to a strong externally supported dc magnetic field or is
relative to the local magnetic field. Accordingly, spectral
transfer is either isotropic, when large samples of plasma
are considered, or is anisotropic, when there is a strong
large-scale mean field. On this basis we can examine the
phenomenological steady energy transfer rate through a
physical assessment of the formula

e = Pskd = tTskd
kEskd

tnl
2 , s15d

which is a restatement of Eq. s5d. Several important el-
ements of the physics of MHD turbulence are brought
together in this relation:

sid The energy transfer rate must be proportional to
the lifetime of triple correlations, as in Eq. s2d.

siid The strength of nonlinear interactions is mea-
sured by an eddy turnover, or nonlinear time
scale, as in Eq. s3d.

siiid Finally, the spectral flux of energy must be defined
in a way fEq. s5dg that is compatible with sid and

siid. This is more than a formal relation, and in
fact it can be used to develop estimates of the
form of the spectrum in a variety of physically
interesting cases.

This procedure allows us easily to understand the
physics of, and the physical differences between, the
classical Kolmogorov and Iroshnikov-Kraichnan theo-
ries. No complex closure theories or perturbation
schemes are required. The approach is exploited in fur-
ther detail in Appendix A, for several additional physi-
cal situations. If, in addition, we wish to develop ap-
proximations for the time-dependent correlation
functions, such as the Eulerian ssingle spatial point, two-
timed correlation functions, or the two-time decorrela-
tions that appear in closure theories, we may proceed in
an analogous way: We adopt a reasonable functional
form for the time correlation function, depending upon
a single time scale, namely, the same spectral transfer
time. Appendix B catalogs some of the possibilities for
time correlation functions approximated in this way.

In this Colloquium we have attempted to give an over-
view of the influential role of distinct time scales in es-
tablishing energy transfer, cascade, nonlocality, and an-
isotropy in MHD turbulence. Like hydrodynamics, the
“native” time scales of the dynamics can be divided into
straining motions that are due to self distortion of ed-
dies, and sweeping motions that displace smaller-scale
structures under the influence of the large-scale fields. In
MHD, as in hydrodynamics, the straining motions are
dominantly local in scale, in that nonlinear distortions
are most effective for interactions between eddies of ap-
proximately the same size. In MHD, however, the
sweeping-type motions are more complex than in hydro-
dynamics because of the Alfvén propagation effect.
Alfvénic sweeping introduces a new level of nonlocality
in MHD and a strong tendency for spectral transfer to
occur anisotropically relative to the magnetic-field direc-
tion.

In the past much has been made of differences be-
tween Kolmogorov and Iroshnikov-Kraichnan spectra,
and the two possibilities are often compared in simula-
tions or interplanetary observations with the apparent
goal of drawing firm distinctions between these possibili-
ties. In the present view, in which the main effect that we
vary is the time scale for decay of the transfer correla-
tion functions, we emphasize that in MHD turbulence
there is a smooth variation between such limits. Obser-
vation of distinct spectral indices in various cases is in-
dicative of the enhanced effect of sweeping effects ver-
sus straining effects, or of local effects versus nonlocal
effects, in accordance with how the prevailing conditions
impact the relevant time scales. Anisotropy is controlled
by variation of the directed Alfvénic decorrelation time
in comparison to the local nonlinear time scale. This
leads to a wide range of possibilities for the spectral
anisotropy and for spectral indices that can emerge in
MHD.

As discussed above and elaborated upon in Appendix
A, a smooth variation from Kolmogorov to Iroshnikov-
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Kraichnan is expected in isotropic MHD turbulence as
the ratio of the Alfvén time to the nonlinear time is
changed. The ratio is also wave-number dependent, and
more wavelike decorrelation generally occurs at smaller
scales. With a strong uniform magnetic field, the result-
ing anisotropic energy spectrum can reduce to k'

−5/3

when resonant interactions and quasi-two-dimensional
strain is the dominant decorrelation effect, or to k'

−3/2

when large-scale quasi-2D Alfvénic decorrelation is
strong. When quasi-2D effects are weak ssee Appendix
Ad, the spectrum can become either k'

−2 s“weak turbu-
lence”d, when local interactions are dominant, or k'

−3

when nonlocal interactions are dominant. When both lo-
cal and nonlocal interactions are present, the spectrum
varies smoothly between these limits.

Similar considerations of time scales allows us to out-
line an approach to modeling the Eulerian correlation
functions that appear in MHD. Several possibilities are
suggested in Appendix B that may be useful in applica-
tions.

It should be noted that observational and simulation
evidence has thus far been identified and fully analyzed
for only some of the MHD regimes that we have dis-
cussed, and considerably more study is needed to exam-
ine all MHD parameter regimes, including widely rang-
ing Reynolds numbers, cross helicity, very strong
anisotropy, the transition between local and nonlocal
spectral transfer, MHD that greatly departs from equi-
partition of kinetic and magnetic energy, and the influ-
ence of various possible kinetic dissipation effects. Many
of these parametric investigations are ongoing in view of
the current high level of interest in MHD turbulence in
astrophysical settings ssee, for example, Maron and Gol-
dreich, 2001; Cho and Lazarian, 2002; Cho et al., 2002;
Schekochihin et al., 2002d. The availability of several
time scales makes MHD turbulence more complex and
multifaceted than its hydrodynamic counterpart, and it
is likely to remain an active area of study into the future.

Needless to say, the present format cannot accommo-
date an exhaustive review of the entire domain of MHD
turbulence theory and its applications, even with our
emphasis specifically on time scales. We mention a few
topics of interest that could represent interesting exten-
sions of the present discussion.

Perhaps the most glaring exclusion has been our focus
on the incompressible model. While incompressibility
captures most of the essential physics of classical hydro-
dynamic turbulence and its extensions to MHD, com-
pressibility can have important effects in various limits.
For example, remote sensing of the diffuse interstellar
medium indicates that electron density fluctuations ex-
hibit a turbulence-like power-law spectrum sArmstrong
et al., 1981d. This “Kolmogorov” −5/3 density spectrum
can be explained sMontgomery et al., 1987d based on
MHD turbulence, by assuming near incompressibility
and a density that is a linear response to the incompress-
ible pressure variations. This situation gives rise to a sta-
tistical balance of thermal and magnetic pressures, up to
the order of the turbulent Mach number squared. It is
noteworthy that approximate pressure balance is ob-

served frequently in the solar wind sBurlaga and Ogilvie,
1970; Matthaeus et al., 1990d. Montgomery et al. s1987d
showed that the density spectrum at sufficiently high
wave number k in the inertial range will have a k−5/3

spectrum whenever the inertial-range magnetic energy
spectrum also has this law. Using nearly incompressible
MHD equations, Zank and Matthaeus s1993d have ar-
gued that density fluctuations behave as a passive scalar
and follow a Kolmogorov-like spectrum. Clearly, there
seems to be an interesting and realizable range of
weakly compressible MHD in which features of the in-
compressible model are seen, with important additional
features.

Highly compressible MHD turbulence is also found in
nature. Several actively studied examples are found in
the interstellar medium. One such case is dense molecu-
lar clouds where the important process of star formation
occurs and where turbulent Mach numbers may be in
excess of ,15. In recent years compressible MHD tur-
bulence has been intensively studied in these regions
ssee, for example, Mac Low et al., 1998; Mac Low, 1999d,
in view of the importance that turbulent magnetic fields
may have in slowing gravitational collapse and therefore
contributing to the regulation of star formation rates.
Strongly compressible MHD turbulence remains an im-
portant area of study ssee Lithwick and Goldreich, 2001;
Cho and Lazarian, 2002d that may reveal features that
are not simple extensions of the incompressible model.

Finally, we would like to mention that many of these
considerations can be pursued in configuration space.
Instead of studying the wave-number spectra, one can
define the structure functions by various powers of two-
point velocity differences. However, this alternative ap-
proach is beyond the scope of this Colloquium.
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APPENDIX A: ENERGY SPECTRA OF MHD TURBULENCE

To estimate the energy spectrum in the various re-
gimes of MHD turbulence, we examine the phenomeno-
logical steady energy transfer rate

e = Pskd = tTskd
kEskd

tnl
2 sA1d

in several special cases. With this structure and some
additional physical reasoning we can construct specific
forms for the energy flux and thus deduce the steady
MHD inertial-range spectral behavior for a variety of
circumstances. We catalog some of these here.
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1. Isotropic MHD

a. Isotropic, strain-dominated MHD

Consider the case in which the dc magnetic field is
weak or absent and the straining effect is dominant. We
further assume that the MHD turbulence is isotropic
when viewed over a sample of turbulent plasma of suf-
ficiently large size si.e., large enough that the magnetic
field averages to zerod. The turbulence will be strain
dominated if the sweeping relative to the magnetic field
is not strong enough to displace straining as the domi-
nant source of decorrelation. These circumstances can
be realized even when there is moderately strong aniso-
tropy relative to the magnetic-field direction. This form
of MHD is then similar to fluid turbulence—energy
transfer is mainly local in wave number. This viewpoint
is supported by interplanetary and interstellar observa-
tions as well as high-resolution MHD simulations
sBiskamp and Müller, 2000d. In Eq. s15d we take tT
=tnl=1/kuk=k−3/2E−1/2, leading to the −5/3 scaling law.

b. Isotropic MHD with sweeping

In this case, the energy transfer of MHD turbulence is
suppressed by the sweeping effect, which rapidly moves
the smaller-scale components of z+ and z− past one an-
other under the influence of a large-scale magnetic field.
The turbulence is globally isotropic since the large-scale
magnetic field is randomly distributed in direction, but
the sweeping effect must be incorporated and the time
scale that determines the energy transfer is given by the
Alfvénic time scale. Accordingly the decay time of trans-
fer correlations is the Alfvén time tT=1/kVA and the
nonlinear time remains tnl=k−3/2E−1/2. Thus the spec-
trum is given by Iroshnikov-Kraichnan −3/2 scaling,
Eskd= sVAed1/2k−3/2 instead of the classical Kolmogorov
spectrum. This is supported by the EDQNM calcula-
tions of Grappin et al. s1983d and Galtier et al. s2000d as
well as 2D direct numerical simulation of Biskamp and
Müller s2000d.

c. Isotropic MHD with cross helicity

When the cross helicity is significantly far from zero,
the two Elsässer energies are no longer equal. The glo-
bal decay rates and the inertial-range energy fluxes must
take into account that nonlinearities involve interactions
of z+ with z−, but not of either Elsässer field with itself.
This is an essential feature of the phenomenologies dis-
cussed by Kraichnan s1965d, Dobrowolny et al. s1980d,
and Hossain et al. s1995d, and it is also central in the
closure and numerical simulation studies of Pouquet et
al. s1976d, Grappin et al. s1982, 1983d, and Politano et al.
s1989d. We may examine two corresponding energy
fluxes,

e± = P±skd = tT
±skd

kE±

tnl
s±d2 , sA2d

and proceed to estimate the spectral characteristics un-
der various assumptions.

Suppose first that the large-scale magnetic field is
strong sbut averages to zero to maintain isotropyd so that
the triple decay times are identical and Alfvénic. Then
tT

± =tAskd=1/kVA. Also assume that tnl
± =1/kzk

±

= sk3/2E7
1/2d−1 in accordance with the structure of the

Elsässer form of the nonlinear terms sPouquet et al.,
1976; Grappin et al., 1982d. Then we find that e+=e−

=e /2 and 2eVA=E+skdE−skdk3. Assuming power laws
for both Elsässer spectra with indices m+ and m−, respec-
tively, leads to

m+ + m− = 3. sA3d

This important and useful result for strong, isotropic
MHD with nonzero cross helicity was apparently first
stated by Grappin et al. s1982, 1983d and reduces to the
Iroshnikov-Kraichnan k−3/2 result when the two fields
become identical in the zero cross-helicity limit.

When the large-scale magnetic field is weaker, we can
find an analogous result for strain-dominated spectra
with cross helicity. Letting tT

±skd→tnl
s±dskd in Eq. sA2d,

equating the fluxes of Z+
2 and Z−

2, and again assuming
power laws m+ and m− for the two spectra, we find now
two equations for the unknown power-law indices. The
sole solution is m+=m−=5/3. The identical result is
found if, instead of assuming e+=e−, we allow for differ-
ent decay rates for the two Elsässer energies sGrappin et
al., 1983d, setting e+=CeC

− for a k-independent constant
Ce. Therefore we conclude that for a strain-dominated
phenomenology, E+skd and E−skd each vary as ,k−5/3,
and the dimensionless cross helicity scskd= fE+skd
−E−skdg / fE+skd+E−skdg is independent of k.

The contrast of the above two results suggests that the
behavior of the cross helicity in the inertial range is a
direct indicator of the relative dominance of strain- or
sweep-type decorrelation effects. In reality, neither
simulations nor solar wind observations sMatthaeus and
Goldstein, 1982; Tu and Marsch, 1995d typically show
pure power laws for the E±skd spectra, nor do they show
constant scskd in the inertial range ssee Fig. 9d. This sup-
ports the view sMatthaeus and Zhou, 1989d that for
many reasonable parameters, the low-k end of the iner-
tial range will be strain dominated, while the high-k end
becomes sweeping/propagation dominated. Pure power
laws are not expected in that event.

2. Anisotropic MHD

For anisotropic MHD turbulence the situation is more
complicated than the cases discussed above. The dc or
large-scale magnetic field imposes a preferred direction,
the sweeping effect is very strong, and energy transfer is
suppressed in the parallel direction. In order to properly
assess the spectral behavior it remains necessary, how-
ever, to identify the correct transfer decay time.

a. Anisotropic MHD with dominant resonant interactions

Suppose that MHD turbulence is highly anisotropic
relative to a strong large-scale field. Furthermore, sup-
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pose that there is considerable energy in 2D or quasi-2D
modes that satisfy tAskid.tnlskd. Such modes are either
nonpropagating or have very low frequency.8 The domi-
nant features are those of 2D MHD turbulence or
quasi-2D turbulence equivalent to the “mean mode” of
reduced MHD turbulence sZank and Matthaeus, 1992d.
However, some excitation may be in modes not lying in
the quasi-2D part of wave-number space, namely, exci-
tations having higher ki and smaller tAskid. Such Fourier
modes will experience substantial resonant nonlinear
coupling that involves quasi-2D modes. The triple corre-
lations associated with these dominant nonlinear cou-
plings will decay at a rate determined by the quasi-2D
turbulence, unless the energy in quasi-2D motions is
very small. In the latter case nonresonant triad couplings
can destroy the resonant triple correlations ssee “weak
turbulence” belowd. Assuming the former case, which
may be thought of as “strong” anisotropic MHD turbu-
lence, the parallel Alfvén time becomes essentially irrel-
evant in determining the perpendicular spectrum. How-
ever, there still remain two cases to consider depending
upon how the triple correlations are destroyed within
the set of quasi-2D modes themselves.

First, suppose the quasi-2D turbulence experiences
decay of triple correlations mainly due to propagation
effects in the 2D plane, due to the large-scale 2D mag-
netic field. This is a reasonable possibility since 2D tur-
bulence tends to build up large-scale structure in the

magnetic field. This effect is associated with a so-called
inverse cascade that rearranges the spectrum9 of the 2D
magnetic flux function, leading to a buildup of excita-
tions at the longest allowed scales ssee Fyfe and Mont-
gomery, 1976d. The net effect is the simultaneous
buildup of long-wavelength magnetic field and accompa-
nying transfer of energy to small scales. Indeed, it has
been argued on the basis of simulation studies sPolitano
et al., 1989; Biskamp 1995d that the steady inertial-range
spectrum for pure 2D MHD turbulence is determined
by these “transverse” propagation effects. For the case
at hand, which we call anisotropic sweep-dominated
resonant MHD, we choose the Alfvén time associated
with sweeping in the dynamically active 2D plane.
Therefore tTsk'd=1/k'dvA, where dvA is the Alfvén
speed associated with the large-scale quasi-2D magnetic
field, and tnlsk'd=k'

−3/2E−1/2sk'd. It follows that Esk'd
= sedvAd1/2k'

−3/2 which is simply the quasi-2D Iroshnikov-
Kraichnan spectrum.

As a second case, we assume that the quasi-2D mo-
tions are governed by strain sthe anisotropic strain-
dominated cased. This is expected to be appropriate
when the large-scale magnetic field lying in the 2D plane
is not very strong, for example, when the 2D inverse
cascade sFyfe and Montgomery, 1976d is not strong. This
occurs when the ratio of mean-square magnetic flux
function to total energy is small and the average mag-
netic island size is small compared to the system size.
Accordingly we choose tTsk'd=tnlsk'd. Now we find
that Esk'd=e2/3k'

−5/3. This is the quasi-2D sor 2Dd Kol-
mogorov spectrum for MHD. Upon inserting an appro-
priate parallel spectral dependence fsuch as an exponen-
tial in ki sMontgomery, 1987dg it is equivalent to the
spectral form constructed by Goldreich and Sridhar
s1995d using an anisotropic EDQNM closure.

b. Anisotropic MHD with dominant parallel sweeping:
“weak turbulence”

Another possibility for highly anisotropic MHD tur-
bulence is that the quasi-2D modes are not strong
enough to control the decorrelation of the more wave-
like modes. In that case neither the quasi-2D cascade
itself nor the resonant cascade it induces is the dominant
feature that determines the spectrum of non-quasi-2D
waves. For such a case, the transfer correlations should
decay due to higher-order wave propagation processes.
This is the domain of “weak MHD turbulence.”

Ng and Bhattacharjee s1997d and Galtier et al. s2000d
modified the argument by Kraichnan by taking into ac-
count the anisotropic feature in the characteristic Alfvén
time scale

8We reserve the designation “2D modes” for those Fourier
amplitudes having ki ;0 and therefore infinite tA. “Quasi-2D
modes” refer to ki small emough that the reduced MHD in-
equality tAskid.tnlskd is satisfied.

9“Inverse cascade” refers to a spectral transfer process that
preferentially transfers some types of excitations to low wave
number k, while the ordinary “direct cascade” proceeds to-
wards higher k. This “dual cascade” can occur in both 2D and
3D MHD and can lead to formation of long-lived, large-scale
structure. See Kraichnan and Montgomery, 1980.

FIG. 9. Observations in the inner heliosphere by the Helios
mission in time intervals associated with high-speed solar wind:
solid lines, one-dimensional spectra E+skd; dobted lines, E−skd.
While the larger Elsässer field has approximately a power-law
spectrum in both examples, the spectrum of the smaller field
does not run parallel to it sas would be expected in the strain-
dominated cased nor does it have a pure power-law spectrum
that extends into the dissipation range where it intersects the
spectrum of the larger field sas would be expected in the
sweep-dominated cased. Adapted from Marsch, 1991.
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tAskid , 1/fVAkig , sA4d

while still maintaining that the propagation effect is pri-
marily responsible for decay of the triple correlations
that limit the nonlinear couplings between oppositely
propagating Elsässer wave packets. In particular, assum-
ing that parallel transfer has frozen out and the spectral
cascade involves only k', one easily sees that the wave-
number dependence of the Alfvén time no longer di-
rectly influences the spectral law. That is, assuming
tTskd=tAskid=1/VAki and inserting this along with
tnl

2 sk'd= fk'
3 Eskdg−1 into Eq. s15d, one finds that VAkie

=k'
4 E2sk'd. It is now clear that for kiÞ0, the perpen-

dicular spectral law becomes Esk'd,k'
−2 ssee also

Dmitruk et al., 2003 for numerical simulations of
boundary-driven reduced MHD satisfying this power
lawd. This has become known as “weak turbulence”
sGaltier et al., 2000d.10

c. Anisotropic MHD with varying cross helicity and
energy partition

Nonzero cross helicity has an effect on anisotropic
spectra analogous to its effects in the Z+

2 =Z−
2 ;Z2 case.

For strong turbulence, in which decorrelation is con-
trolled by quasi-2D dynamics, there are again two cases,
associated with regulation either by 2D sweeping mo-
tions or by 2D straining motions. In the sweeping case,
assuming E±skd,k−m±, one again finds that the power-
law indices sum as m++m−=3. When straining in the per-
pendicular plane is the dominant source of decorrela-
tion, once again the power-law indices are determined to
be m+=m−=5/3 as in the isotropic case.

Things become different in the case of weak turbu-
lence swhich is of necessity dominated by sweepingd, be-
cause now the Alfvénic decorrelation depends upon par-

allel wave number. In that case one finds that kiVAe±

~k'
4 E+skdE−skd. The fluxes need not be equal, but pro-

vided they are proportional to one another indepen-
dently of k, the conclusion is that m++m−=4. This result
was discussed by Ng and Bhattacharjee s1997d using per-
turbation theory, and by Galtier et al. s2000d by exami-
nation of Kolmogorov-like solutions to the kinetic equa-
tion for weak turbulence.

There are accessible regimes in which the transfer be-
comes highly nonlocal. One such case occurs when the
Elsässer energies are highly asymmetric. Ng and Bhatta-
charjee s1997d discuss this possibility, leading to a k'

−3

spectrum, based upon perturbation theory for equiparti-
tion of velocity and magnetic field at zeroth order. Here
we describe two distinct cases in which a conclusion
similar to this emerges.

First, consider the equipartitioned case in which
kz+ ·z−l=0, which has been the focus of most of the
above considerations. Suppose that Z+

2 @Z−
2 and that the

smaller of the two energies is very flat, say E−sk'd
,1/k'. For this scale-invariant spectrum the notion of
local transfer become difficult to realize, since the char-
acteristic amplitude at scale 1/k' becomes independent
of k', that is, z−sk'd,fk'E−sk'dg1/2= z̃− is independent
of k'. This is simply the statement that a 1/k' spectrum
has equal energy per wave-number interval. For finite
bandwidth, z̃− is of the order of the total amplitude Z−.
As a consequence, using Eq. sA1d with E+→E, tT

=tAskid, k→k', and tnl= fk'
3/2E−sk'dg−1/2→1/ sk'z̃−d, we

find that VAkie= z̃−
2Esk'dk'

3 . This implies a steady spec-
trum of Esk'd,k'

−3. This is driven by a low level of Z−
fluctuations, corresponding to high cross helicity, and ex-
hibits features of nonlocality sNg and Bhattacharjee,
1997d. Note also that this −3 spectral slope is a special,
limiting case of the sum rule that m++m−=4, for aniso-
tropic Iroshnikov-Kraichnan phenomenology with cross
helicity.

An analogous regime of k'
−3 behavior, also with a

strong nonlocal flavor, has been identified in very differ-
ent circumstances sDmitruk et al., 2003d, in a model of
solar coronal loops stirred by photospheric motions
sParker, 1972; Gómez and Ferro Fontán, 1988d. The rect-
angular box has periodic transverse sx ,yd coordinates
and field lines anchored on flat boundaries at the top
and bottom. The bottom is fixed with zero velocity, but
the top models photospheric motion by prescribing a
stream function that establishes a stirring pattern. This
deflects field lines at the base and low-frequency distur-
bances propagate into the box, exciting turbulence. For
strong driving, strong turbulence emerges, punctuated
by intermittent reconnection events. However, for very
slow forcing very little kinetic energy is injected. Nonlin-
ear effects persist however, and a power-law regime is
established in both magnetic and velocity spectra.

To explain this, we make use of Ebsk'd@Eusk'd and
moreover use the property, observed numerically
sDmitruk et al., 2003d, that Eusk'd is very flat and varies
approximately as ,1/k'. The leading-order effect is
spectral transfer of magnetic energy to higher wave

10Some of the controversy surrounding the anistropic MHD
spectrum derives from matters of terminology, but physical is-
sues are also involved. Sridhar and Goldreich s1994d originally
claimed that three wave couplings are empty and that the ar-
guments of Kraichnan s1965d and Shebalin et al. s1983d were
incorrect. It turns out that in certain formal perturbation theo-
ries ssee Goldreich and Sridhar, 1997d there is some substance
to that claim, since canonical weak-turbulence expansions have
formal restrictions against including zero-frequency modes. In
the present terminology that would require excluding the 2D
and quasi-2D modes, which precludes resonant-coupling-
dominated MHD. Both Ng and Bhattacharjee s1997d and
Montgomery and Matthaeus s1995d provided counterexamples
to the claim that three wave couplings are empty, and the pres-
ence of the 2D zero-frequency modes plays a central role in
this demonstration ssee also a recent retraction of the empty-
couplings argument in Lithwick and Goldreich, 2003d. The
work of Galtier et al. s2000d shows that the k'

−2 law supplants
both Kolmogorov k−5/3 and Iroshnikov-Kraichnan k−3/2 for
cases in which wavelike modes interact weakly in the absence
of strong low-frequency quasi-2D modes. The phenomenologi-
cal description given above ssee also Ng and Bhattacharjee,
1997d provides a less formal derivation of the weak-turbulence
spectrum.
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number under the influence of the weak velocity field.
The nonlinear time should therefore be computed in
terms of the velocity alone. Since Eusk'd,k'

−1, we
estimate the nonlinear time as tnl=1/ fk'sk'Ed1/2g
→1/ sk'ũd where ũ2 is the energy per unit mass in the
scale-invariant velocity-field spectrum. Transfer is now
due to nonlocal effects of the velocity field upon the
magnetic field, and the equation for energy transfer be-
comes e=tTEbskdtnl

−2→ sVAkid−1ũ2Ebsk'dk'
3 . Therefore a

k'
−3 spectral regime can emerge in the flux-tube problem

in the regime of very weak forcing. This has been seen in
the computations sDmitruk et al., 2003d and it will be
interesting to see if additional evidence for nonlocal
transfer accompanied by k−3 or other spectral laws
emerges in other problems.

APPENDIX B: TIME-CORRELATIONS OF MHD
TURBULENCE

So far we have focused on inertial-range spectra and
the influence that various time scales have on them.
While the time scale for decay of the energy transfer
correlations salso known as the lifetime of triple corre-
lationsd has entered this discussion, it is, in fact, an im-
portant topic in its own right. The two-point Eulerian
velocity autocorrelation Fustd= kusx , td ·usx , t+tdl de-
pends upon the relative importance of sweeping and
nonlocal effects sTennekes, 1975; Chen and Kraichnan,
1989d. The structure of Fu sNelkin and Tabor, 1990d re-
lates to intermittency and the higher-order statistics of
the kinetic-energy spectrum. In MHD the Eulerian
decorrelation is more complex, due to the multiplicity of
possible time scales, and is once again much less well
studied than its hydrodynamic counterpart.

For MHD there are several Eulerian correlation func-
tions that may be of interest, for example, Fbstd
= kbsx , td ·bsx , t+tdl, F+std= kz+sx , td ·z+sx , t+tdl, and
F−std= kz−sx , td ·z−sx , t+tdl. For symmetrical special
cases, these can become redundant or equivalent. For
Alfvénic fluctuations with 2Hc / sEu+Ebd→ ±1, we have
u= ±b and Fb→Fu. When z+→z− then b→0 and F+
=F−=Fu while Fb→0 and hydrodynamics is recovered.
When z+→−z− then u→0 and F+=F−=Fb while Fu→0
and a purely magnetic state is recovered. However, in
general, the Eulerian autocorrelations as well as the Eu-
lerian cross correlations such as FD= kz+sx , td ·z−sx , t+tdl
and Fc= kbsx , td ·usx , t+tdl, are constrained independent
quantities.

Consider one of these Eulerian correlations, say,
Fbstd. It is easy to see how Fb is related to the spectral
decomposition of the random field b, in that Fstd
=ed3kSsk ,td is a special case of the two-time two-
position correlation Rsr ,td=ed3ke−ik·rSsk ,td. We can in
addition let Ssk ,td=SskdGsk ,td where Sskd is the trace
of the spectral tensor Sijskd= s2pd−3ed3reik·rRijsr ,0d. The
quantity Gsk ,td is the dynamical decorrelation function,
representing the decay in time of the spectral informa-
tion at wave vector k. G and therefore the smagneticd
Eulerian correlation play important roles in cosmic-ray

scattering sBieber et al., 1994d. For low-energy particles,
G regulates the rate at which particles scatter through a
90° pitch angle. By controlling the rate of reversal of
particle velocity along the large-scale magnetic field, the
dynamical turbulence effect represented by G can in
some circumstances control the spatial diffusion of ener-
getic particles and cosmic rays in astrophysical plasmas.
However, the dynamical decorrelation function is also
integrally associated with turbulence properties. Indeed,
in the context of either EDQNM or other hydrodynamic
closures, the influence of time decorrelation on the triple
correlation lifetime becomes, through approximation,
embodied in the second-order Eulerian decorrelation.
Similar relationships exist in MHD sYoshizawa et al.,
2003d, but involving several time scales. For applications
in both turbulence and in energetic-particle transport it
is useful to model the form and physical content of the
MHD time correlations.

There are several features that enter into modeling
any of the MHD time correlations. First, a useful ansatz
can be given for the time correlation in the similarity
form

Gsk,td = rfgskdtg . sB1d

Here t is the time difference and g is the rate of the
triple decay, as we have discussed in earlier sections.11

We further simplify matters by estimating the decay rate
g in the same way as in earlier sections. If isotropic
Alfvénic sweeping is the dominant decorrelation, we
would let g→gsw=kdVA where dVA is the characteristic
magnitude of the large-scale magnetic field. If nonlinear
straining is the dominant factor, g→gnl=e1/3k2/3, accord-
ing to the standard estimate. More generally we can
write g=oigi for a set of independent decorrelation rates
hgij of various origins. As in the case of spectral transfer
time-scale estimation, we can accommodate anisotropy
relative to a large-scale magnetic field of strength VA by
changing the sweeping decay rate to gsw=kiVA while al-
lowing for full anisotropy of nonlinear strain by writing
gnl=e1/3k'

2/3 for components of wave vector parallel and
perpendicular to the large-scale magnetic field. When
necessary it is also reasonable to draw distinctions be-
tween strain rates associated with the two Elsässer fields,
or strain due to velocity or magnetic field separately. As
a rule of thumb it seems reasonable to us, for most cir-
cumstances, to let gskd=1/tTskd where the transfer de-
cay time tTskd is selected in accordance with the discus-
sion in previous sections.

It remains to adopt a reasonable functional form sor
formsd for rsgtd. One possibility, perhaps most appropri-
ate for strain-dominated decorrelation would be that
dSsk , td /dt=−gnlSsk , td so that the decorrelation takes on
an exponential form. For the isotropic case,

11This is an oversimplification for asymmetric MHD in which
there are distinct transfer correlation lifetimes for fields such
as u and b, or z+ and z−. For now we assume that one such
similarity variable is adequate.
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Gsk,td = e−t/tnl = e−Cee1/3k2/3t, sB2d

where Ce is an order one constant. Note that this is eas-
ily adapted for spectral anisotropy by the replacement
k→k'. This exponential form is compatible with the
EDQNM closure and the associated simplified form of
the direct interaction approximation described in Sec.
II.D. Kraichnan’s s1957d analysis of DIA correlations
gives rise to the alternative functional form

rsgtd =
J1s2gskdtd

gskdt
, sB3d

where J1 is a Bessel function of order one. The Bessel
function, in anisotropic form, also emerges from the an-
isotropic Eulerian DIA for MHD sNakayama, 1999d.

Analyses of the Lagrangian DIA for hydrodynamics
sKaneda, 1981d and for anisotropic MHD sNakayama,
2001d suggest a function form related to a Gaussian,

rfgskdtg = exph− Cgfgskdtg2j , sB4d

which was derived for a Lagrangian modification of the
DIA. For Kineda’s hydrodynamic analysis, Cg=0.81p /4.
Nakayama’s MHD analysis corresponds approximately
to a different value of Cg, which seems to us to be poorly
determined enough in MHD that it should be treated as
a fitting parameter. In particular, Nakayama’s arguments
suggest that the sweeping effect in MHD is stronger
than in hydrodynamics. An alternative way to arrive at a
Gaussian form of decorrelation is to employ Chen and
Kraichnan’s s1989d analysis of sweeping, in which case,
for isotropic velocity variance v0, one finds rskv0td
=expf−skv0td2 /2g. This suggests Cg=1/2 with the choice
that decorrelation is due to sweeping at a rate gsw=kv0.
For MHD with decorrelation due to a random large-
scale magnetic field of strength dVA=dB /Î4pr, the
analogous form is obtained by letting v0→dVA.

The influence of propagation along a large-scale uni-
form magnetic field of strength VA can be included by
multiplying the appropriate functional form above with
a factor cosskiVAd. This emerges in both Lagrangian and
Eulerian DIA for anisotropic MHD sNakayama, 1999,
2001d.

At present it is difficult to argue for any specific func-
tional form of the time decorrelation that would be valid
in all cases of interest. However, combining the perspec-
tives described above, one can construct a reasonable
proposed functional form, such as

Gsk,td = cosskiVAtde−gnlskdte−fgswskdtg2/2. sB5d

The basis for this suggestion seems to us to be reason-
able, although entirely without rigor. One might view
this as emerging from an appropriate generalization of
the frequency superposition method described by Chen
and Kraichnan s1989d. In the above it is envisioned that
VA is the strength of the large-scale dc magnetic field, gnl
is an appropriately selected nonlinear time scale sisotro-
pic or anisotropicd, and gsw is the sweeping time, which
may include either large-scale advective effects, large-
scale Alfvénic sweeping effects, or both. Here it is as-

sumed that the distribution of the sweep speeds is
Gaussian sChen and Kraichnan, 1989d, but in some
cases, especially for Alfvénic sweeping, another distribu-
tion may be more appropriate and this would modify the
functional form of the last term. It should be mentioned
that the above ansatz generalizes the previously sug-
gested functional forms of magnetic decorrelation that
have been employed in studies of cosmic-ray scattering
in dynamical turbulence sBieber et al., 1994; Matthaeus
and Bieber, 1999d. Physically motivated improvements
to the representation of the MHD Eulerian decorrela-
tion functions may be useful in these applications. Even-
tually this modeling needs to be examined critically us-
ing guidelines from observations and numerical
simulations.
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