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Quantum corrals are two-dimensional structures built atom by atom on an atomically clean metallic
surface using a scanning tunneling microscope (STM). These two-dimensional structures ‘‘corral’’
electrons in the surface states of noble metals, leading to standing-wave patterns in the electron
density inside the quantum corral. The authors review the physics of quantum corrals and relate the
signal of the STM to the scattering properties of substrate electrons from atomic impurities supported
on the surface. The theory includes the effects of incoherent surface-state electron scattering at the
impurities and quantitively describes nearly all of the current STM data on quantum corrals, including
the recent quantum mirage experiments with Kondo effect. The physics underlying the recent mirage
experiments is discussed, as are some of the outstanding questions regarding the Kondo effect from
impurities in nanoscale structures on metallic surfaces. The authors also summarize recent work on
variations of ‘‘quantum’’ corrals: Optical corrals and acoustical corrals.
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I. INTRODUCTION

Quantum corrals are the beautiful result of a marriage
between technology and basic science. They are built
atom by atom (using approximately 30–80 atoms) on
atomically smooth metallic surfaces using a scanning
tunneling microscope (STM).1 Once the corrals are

*Electronic address: fiete@cmt.harvard.edu
†Electronic address: heller@physics.harvard.edu
1The developers of the STM, Gerd Binnig and Heinrich

Rohrer, were awarded the Nobel Prize for Physics in 1986.
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built, the STM (footnote 2) can be used to study these
nanometer scale structures with atomic resolution in
space and better than meV resolution in energy. The
data of the STM can be rendered in false color to pro-
duce breathtaking images3 that reveal standing-wave
patterns of coherent electrons inside the corrals.

The history of quantum corrals begins with the pio-
neering work of Eigler and Schweizer (1990) who were
the first to demonstrate that the STM could be used to
controllably move atoms from place to place on the sur-
face of a substrate. Not long afterwards, Crommie et al.
(1993a) built the first quantum corrals from iron atoms
on the Cu(111) surface and imaged standing-wave pat-
terns inside them. In the early experiments it was
thought that ‘‘stadium’’-shaped corrals could be used as
a laboratory to study ‘‘quantum chaos’’ (Heller et al.,
1994, 1995; Crommie et al., 1995, 1996) but the walls
proved too leaky (and the states of the corrals too low in
energy) for the electrons to bounce around the (un-
stable) periodic orbits long enough to detect any ‘‘scar-
ring’’ effects (Heller, 1984). A very intriguing recent
STM corral experiment was done by Manoharan et al.
(2000) who combined the physics of quantum corrals
with the Kondo effect to achieve a beautiful ‘‘mirage’’
inside the corral of the spatially localized spectroscopic
response of a Kondo impurity where there was in fact no
Kondo impurity. The mirage experiment achieves this by
taking advantage of both the locally modified electron
density in the corral4 and the scattering properties of a
Kondo impurity.

2For a more detailed discussion of the STM see Chen (1993).
3For a stunning demonstration of the sorts of images that can

be produced with STM data see http://www.almaden.ibm.com/
vis/stm/catalogue.html

4Kliewer, Berndt, and Crampin (2000) studied the effect of
©2003 The American Physical Society
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In this Colloquium we review the scattering theory of
STM measurements of quantum corrals including the re-
cent mirage experiments with Kondo effect. We demon-
strate the success of the scattering theory in reproducing
every detail of the experiments including the electron
standing-wave patterns, the energies and widths of cor-
ral states, and all features of the quantum mirage. The
scattering theory we present is based on a single-particle
picture but takes the many-body physics of the Kondo
effect into account phenomenologically in a straightfor-
ward way. At the end of this Colloquium we discuss ex-
tensions of the quantum corrals to optical corrals and
acoustical corrals. We begin our discussion with a review
of the important physics of the substrate on which quan-
tum corrals are built.

II. THE IMPORTANCE OF SURFACE STATES

The beautiful standing-wave patterns observed in
STM corral experiments (Crommie et al., 1993a; Heller
et al., 1994; Kliewer, Berndt, and Crampin, 2000; Mano-
haran et al., 2000) result from the presence of Shockley
surface states5 on the metallic substrate. These are the
same surface states responsible for the standing-wave
patterns observed near a step edge (Hasegawa and
Avouris, 1993). Surface states are the result of a particu-
lar crystallographic cut of the material, usually a noble
metal, which places the Fermi energy in a band gap for
electrons propagating normal to the surface. The surface
states of Cu(111), Au(111), and Ag(111) are commonly
used in STM experiments. In the direction normal to the
surface (and in a range of angles around the normal),
Bloch states are forbidden at the Fermi energy. How-
ever, solutions to the Schrödinger equation exist with
exponentially decaying amplitude into both the bulk ma-
terial and the vacuum. For such solutions electrons are
still free to move in the plane of the surface and form a
type of two-dimensional electron gas there. Often, the
surface-state band is only partially filled, giving a low
density on the surface, and a nearly quadratic dispersion
relation with a constant effective mass.

The scattering theory that we develop for quantum
corrals in Sec. IV is based on these free two-dimensional
surface-state electrons. We will see that although the
quantum corrals are two-dimensional systems in many
respects, there are some important ways in which the
underlying bulk material makes its presence felt. This is
especially true with the quantum mirage experiments in

the corral-modulated surface-state electron density on the
spectroscopy of Mn on Ag(111), which did not display a
Kondo effect.

5For more details see Davison and Steslicka (1996) and for
experimental results for several materials see Kevan and Gay-
lord (1987). The surface states themselves are still a very active
area of research with many STM studies being reported in
recent years: Li, Schneider, Berndt, Bryant, and Crampin
(1998a); Bürgi et al. (1999); Kliewer, Berndt, Chulkov, Silkin,
Echenique, and Crampin (2000).
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which the bulk electrons play an important role in the
formation of the Kondo resonance (Knorr et al., 2002).

Before we leave our brief discussion of surface states
it is important to give some typical numerical values of
important quantities such as the wavelength of electrons
in the surface states, l, the effective mass of surface-
state electrons, m* , and the density of states of the
surface-state electrons, %surf . These three quantities are
all related through the dispersion relation

Esurf~k !2EF5E01
\2k2

2m*
, (1)

where %surf5m* /p\2 (for E.E0) includes both spin-up
and spin-down electrons. In the cases of Cu(111),
Au(111), and Ag(111) the surface-state band minimum,
E0 , is very close to the Fermi energy. Typical values are
fractions of an eV below the Fermi energy (Kevan and
Gaylord, 1987), EF , where EF is measured relative to
the bottom of the bulk state bands and is typically 5–10
eV. For Cu(111), E0'2450 MeV and m* 50.38me with
me the mass of the free electron. The surface-state elec-
tron density of Cu(111) is n'731013 cm22 which corre-
sponds to approximately one surface-state electron per
12 Å312 Å square.

There are three important physical consequences of
small E0 . The first is that it makes the dispersion rela-
tion quadratic and isotropic (in the plane of the surface)
to a very good approximation. An isotropic dispersion
relation is very convenient for the application of scatter-
ing theory because one does not need to know the ori-
entation of the underlying crystal lattice. Second, a small
E0 makes the filling of the surface-state band rather low
compared to bulk bands, which in turn makes the typical
wavelength of the surface-state electrons, l'lF
52p/kF , very large compared to the lattice spacing and
the size of atomic impurities on the surface. For
Cu(111), lF529.5 Å. Since lF is much larger than the
underlying Cu(111) lattice spacing, the standing-wave
patterns are easy to separate from atomic scale charge-
density variations and since lF is large compared to the
surface adatoms, we can make an s-wave approximation
in the scattering theory.6 Third, a small E0 makes the
electron filling small so the density of surface states is
small compared to bulk states at the same energy. This
has implications for the microscopic details of the
Kondo effect from a magnetic impurity such as Co on
the Cu(111) surface. We will return to this point in Sec.
VIII. We now turn to the STM measurement.

6The scattering theory we describe below is a two-
dimensional theory. The dynamics in the direction normal to
the surface is assumed to be energetically inaccessible, much
like the case of a two-dimensional electron gas that forms at
the interface of GaAs/AlGaAs. Electron scattering out of the
plane of the surface (into the bulk) is taken into account in a
phenomenological way in the scattering theory by adding an
imaginary component to the phase shift. This is discussed in
detail in Sec. IV.
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III. STM THEORY: TOPOGRAPHIC IMAGES AND
SPECTROSCOPIC MEASUREMENT

In this section we briefly review the physics of the
tunneling measurement. The basic tunneling geometry
and energy diagram is shown in Fig. 1. The STM tip
usually sits a few Å above the surface. The STM data
can be taken in two ways: (i) A feedback loop can be

FIG. 1. Geometry of the scanning tunneling microscope mea-
surement and energy diagram. (a) Schematic of the STM tip
above the substrate. The STM tip states are labeled c t and the
eigenstates of the substrate are labeled cn . The current is ex-
ponentially sensitive to the tip-surface distance, d . (b) Energy
diagram of the tunneling process. Electrons must tunnel across
a vacuum barrier of thickness d from occupied states of the tip
to unoccupied states of the surface (energies EF

n ,e,EF
t ). The

total current, Eq. (5), is given by the sum of all such processes,
while the conductance, Eq. (6), just measures the tunneling
rate for electrons at a particular energy in this window.
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used to control the height of the tip above the surface so
that the total tunneling current is kept constant as the
tip is scanned over the surface. This is called a ‘‘topo-
graphic’’ image and, as we soon see, at each point it is a
measure of the energy-integrated local density of surface
states. (ii) In the second type of measurement the feed-
back loop is opened so that the tip height is kept roughly
constant with respect to the surface and the voltage is
swept to measure the local spectroscopy at the tip posi-
tion.

Tunneling measurements of quantum corrals are typi-
cally done at small voltage biases, V,0.3 V, and low
temperatures, T,70 K. In such a situation perturbation
theory can be applied to compute the tunneling current
in terms of the unperturbed tip states and surface states.
According to Fermi’s golden rule, the current at position
r and STM bias voltage V is (Tersoff and Hamann, 1985;
Bracher et al. 1997)

I~r!5
2pe

\ (
t ,n

uMt ,n~r!u2f~e t!

3@12f~en!#d~e t1eV2en!, (2)

where e is the charge of the electron, t (n) labels the tip
(surface) states, f is the Fermi function, and Mt ,n(r) is
the matrix element from the tip state t to the surface
state n at position r. The expression, Eq. (2), has a
simple physical interpretation. It says that the tunneling
current is proportional to the square of the matrix ele-
ment connecting the various tip states to the various sur-
face states times a factor which gives the probability of
an occupied tip state and an empty surface state. The
delta function enforces energy conservation. Finally all
tip states and surface states are summed over. When the
tip is treated as a point source, then uMt ,n(r)u2

}ucn(r)u2 (Tersoff and Hamann, 1985), where cn(r) are
the eigenfunctions of the surface. Assuming also that the
temperature is low enough to replace the Fermi func-
tions by step functions, using the relation *dvd(e t
1eV2v)d(v2en)5d(e t1eV2en) and converting the
sum over tip states to an integral, we obtain

I~r!}E
0

eV
% t~e!LDOS~r,e!de , (3)

where % t(e) is the density of states of the tip and the
local density of states (LDOS) is given by

LDOS~r,e!5(
n

ucn~r!u2d~e2En!. (4)

Usually the density of states of the tip is assumed con-
stant so that it can be pulled out of the integral,

I~r!}E
0

eV
LDOS~r,e!de , (5)

and
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dI

dV
~r,e!}LDOS~r,e!. (6)

The last three equations above, Eqs. (4)–(6), are the
most important formulas for the interpretation of the
quantum corral experiments. The central quantity to cal-
culate is Eq. (4) since the current, Eq. (5), and the con-
ductance, Eq. (6), depend on it. The LDOS is expressed
in terms of the eigenstates, labeled by n, of the surface.
It is through the calculation of these eigenstates from
scattering theory that Eq. (4) provides the bridge be-
tween scattering theory and the tunneling measurement
of the STM. We develop this connection fully in Sec. IV.
From Eqs. (5) and (6) it is evident that the STM signal is
related to the square of the surface-state wave functions
at a given location. If the wave function has large (small)
amplitude at a particular location, the current and con-
ductance will tend to be larger (smaller) there.

A topographic measurement corresponds to Eq. (5) in
which a feedback loop is used to modulate the tip height
to keep the current constant. This is usually the type of
measurement used to produce data such as the standing-
wave patterns in quantum corrals. Typical bias voltages
are on the order of 10 meV so that the current at posi-
tion r is an integral over approximately 10 meV of en-
ergy. In most experiments, the density of states at any
given position r does not vary much over 10 meV. How-
ever, in the mirage experiments the Kondo effect actu-
ally produces strong variations in the local density of
states over 10 meV (Manoharan et al., 2000)

In the spectroscopic measurement the STM tip-
surface distance is held fixed by turning off the feedback
loop. The voltage is swept (at a given position) to reveal
the energy dependence of the LDOS, Eq. (6). This is the
type of measurement that reveals the energies and
widths of resonances in quantum corrals which appear
as peaks in a plot of dI/dV vs V . The Kondo resonance
at a Kondo impurity also has a strong signature in
dI/dV (Li, Schneider, Berndt, and Delley, 1998; Madha-
van et al., 1998; Manoharan et al., 2000). The quantum
mirage is most easily probed in this way (Manoharan
et al., 2000; Fiete et al., 2001).

IV. SCATTERING THEORY FOR SURFACE-STATE
ELECTRON DENSITY

In this section we develop a scattering theory for the
electron density in quantum corrals. In Sec. II we em-
phasized the importance of the surfaces states on the
(111) surfaces of noble metals and gave the important
properties for the development of scattering theory:
two-dimensional electron states on the surface, isotropic
and parabolic dispersion of the energy, and long electron
wavelength compared to the lattice spacing and the size
of the adatoms. We now describe the way in which the
quantities of the STM measurement given in Sec. III,
namely, Eq. (4), are obtained from scattering theory.
The physical picture to have in mind is of a circularly
symmetric electron amplitude emanating from the STM
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
tip into the surface states of the substrate.7 This ampli-
tude spreads radially outward from the tip until it en-
counters a defect (such as an impurity) on the surface or
a step edge, at which time it scatters. Part of this ampli-
tude is reflected back to the STM tip8 (possibly scatter-
ing several more times along the way from different im-
purities) and interferes with the outgoing amplitude
leading to fluctuations in the LDOS, and hence the tun-
neling current, as a function of position. Note that the
fluctuations are a result of the coherent part of the back-
scattered amplitude.

Let the Hamiltonian of an electron on the surface be
Ĥ5Ĥ01V̂ , where Ĥ0 is the Hamiltonian describing
free propagation in the surface states and V̂ accounts for
the spatially local and separate potential perturbations
due to the impurities on the surface. The amplitude to
propagate from point r to point r8 in time t on the sur-
face is given by the retarded Green’s function,

Gret(r8,r,t)52iu(t)^r8ue2iĤt/\ur&, where u(t) is the step
function. The eigenstates of Ĥ are the scattering eigen-
states of the particle in the presence of the potential V̂ .
Inserting a complete set of eigenstates,

Gret~r8,r,t !52iu~ t !(
n

^r8ue2iEnt/\ucn&^cnur&, (7)

and taking the Fourier transform of this,

Gret~r8,r,e!5(
n

cn* ~r!cn~r8!

e2En1id
. (8)

Here cn(r) are the eigenstates of the Hamiltonian Ĥ
and d is an infinitesimal positive quantity. For the STM
measurements, we are interested in the part of the am-
plitude that backscatters to the tip. Thus, we are inter-
ested in r85r. The imaginary part of the diagonal am-
plitude is proportional to the local density of states,

LDOS~r,e![2
1
p

Im@Gret~r,r,e!#

5(
n

ucn~r!u2d~e2En!. (9)

What we have established is a relationship between
the full Green’s function, Eq. (8), the scattering eigen-
states of the Hamiltonian Ĥ , cn(r), and the local den-
sity of states. What remains is to develop a method for
calculating the Green’s function, Eq. (8).

7By measuring the change in the differential conductance
when the voltage is swept from below surface-state band ener-
gies to above the lowest surface-state band energy, the relative
fraction of flux into the surface states and bulk states can be
determined. It is typically around 50% (Bürgi et al., 1998;
Knorr et al., 2002).

8The exponential decay of the surface states into the vacuum
can affect the details of the topographic measurements due to
the feedback loop (Kliewer et al., 2001).
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We first consider the case in which V̂ represents a
single scatterer. Dyson’s equation can be written

Ĝret5Ĝ0
ret1Ĝ0

retV̂Ĝret, (10)

where Ĝret is the full retarded Green’s function and Ĝ0
ret

is the free retarded Green’s function. When V̂50, Ĝret

5Ĝ0
ret . The Ĝret on the right-hand side of Eq. (10) can

be formally eliminated by iterating the equation. In op-
erator notation,

Ĝret5Ĝ0
ret1Ĝ0

retV̂Ĝ0
ret1Ĝ0

retV̂Ĝ0
retV̂Ĝ0

ret1¯

5Ĝ0
ret1Ĝ0

ret~V̂1V̂Ĝ0
retV̂1¯ !Ĝ0

ret . (11)

The terms in the series have the physical interpretation
of a particle that (i) does not scatter at all from the
potential, (ii) scatters once and leaves, (iii) scatters once,
propagates, scatters again, and then leaves, and so on to
infinite order. Truncation of the series at V̂ , for example,
is just the first Born approximation. The terms within
parentheses can be grouped into a single object called
the t matrix. The t matrix is defined by

T̂5V̂1V̂Ĝ0
retV̂1¯ . (12)

When the spatial extent of the scattering potential is
small compared to the wavelength of the incoming par-
ticle, as is the case for adatoms on the Cu(111) surface,
the scattering is s wave (isotropic) because the wave-
length of the incident particle is too large to ‘‘feel’’ the
spatial structure of the target. In the s-wave approxima-

FIG. 2. (Color in online edition) Schematic of the scattering
geometry of multiple-scattering theory. The scattering centers,
shown as little beads, are adatoms on the surface of a noble
metal such as Cu(111). In the approximation that the STM tip
is pointlike, a circularly symmetric electron amplitude,
G0(r8,r,e), emanates from the tip into the surface states of the
metal and encounters the impurities on the surface. Since the
wavelength of the electrons in the surface states is much larger
than the size of the scatterers, one can treat the scatterers as
s-wave scatterers and ignore all higher orbital channels. Be-
cause the scatterers are far apart compared to their size, we
assume that electrons propagate freely between impurities. i
and j label different impurities.
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tion, the t matrix takes a particularly simple form in po-
sition representation (Rodberg and Thaler, 1967):

Gret~r,r!5G0
ret~r,r!1E E d2r8d2r9G0

ret~r,r8!

3sd~r02r9!d~r02r8!G0
ret~r9,r!, (13)

where s(k)5 (4i\2/m* ) @e2id(e)21# , r0 is the position
of the impurity, and d(e) is the energy-dependent phase
shift @e(k) is given by Eq. (1)] in the s-wave orbital
channel [which can be computed once V(r) is known or
determined directly from experiment]. The integral can
then be done trivially to yield

Gret~r,r!5G0
ret~r,r!1sG0

ret~r,r0!G0
ret~r0 ,r!. (14)

Note that when V(r) goes to zero, d(e) goes to zero and
one obtains Gret(r,r)5G0

ret(r,r). That is, the full Green’s
function reduces to the free Green’s function.

The extension to several scatterers is straightforward.
The schematic situation is shown in Fig. 2. The new in-
gredient in the many-scatterer case is an extra self-
consistency condition on the scattered amplitude. Im-
posing this self-consistency condition is equivalent to
calculating the scattering among all the impurities to in-
finite order. This is the heart of multiple-scattering
theory. (The t matrix gives the result of scattering from a
single impurity to infinite order.)

In the presence of N scatterers the t-matrix equation
( i51

N T̂iĜi
ret5( i51

N V̂iĜ
ret (V̂i are nonoverlapping scatter-

ing potentials and the T̂ i are the corresponding t matri-
ces for these potentials) generalizes Eq. (13) to

Gret~r,r!5G0
ret~r,r!1(

i51

N E E d2r8d2r9G0
ret~r,r8!

3sid~ri2r9!d~ri2r8!Gi
ret~r9,r!

5G0
ret~r,r!1(

i51

N

siG0
ret~r,ri!Gi

ret~ri ,r!, (15)

where the Gi
ret are the self-consistently calculated values

of the Green’s functions at the locations of the scatter-
ers,

Gi
ret~ri ,r!5G0

ret~ri ,r!1(
jÞi

N

siG0
ret~ri ,rj!Gj

ret~rj ,r!,

(16)

and

si~e!5
4i\2

m* @e2id i(e)21# , (17)

for the ith scatterer. The solution of Eq. (16) is given by
the equation

G5A21G0 , (18)

where A is an N3N matrix with elements Aij5d ij
2siG0(ri ,rj), containing all the information about the
propagation between the impurities, and G0 and G are
N-dimensional column vectors of elements G0i
5G0(ri ,r) and Gi5G(ri ,r), respectively, containing the
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information about propagation from the STM tip to the
impurities and from the impurities to the STM tip.

The STM signal is then calculated from scattering
theory by specifying the s-wave scattering phase shifts
d i(e), the locations $ri% of the N impurities on the sur-
face, and the incident electron amplitude. Given the dis-
persion relation, Eq. (1), the free Green’s function,
G0

ret(r8,r,e), is determined from Eq. (8) in the case of
V̂50. In two dimensions, the outgoing Green’s function
from a point source is G0

ret(r8,r,e)52i (m* /
2\2) @J0(kur82ru)1iY0(kur82ru)# , where J0 (Y0) is the
Bessel function of the first (second) kind. The final step
is to fix the energy and then solve the system of equa-
tions, Eqs. (15) and (16), by means of Eq. (18) at the
particular chosen energy. (All three of these equations
depend on the energy and must be resolved for each
new energy.) The solution is then substituted into Eq.
(9), which directly gives the STM signal through Eqs. (5)
and (6).

The theory just developed applies equally well to elec-
trons or holes near the Fermi energy. Although the STM
tip is the source (or sink in the case of positive bias, i.e.,
the tip has larger voltage) of electrons (or holes), we
have not included one correction that, in principle, is
present, namely, any residual unscreened potential felt
by an electron near the STM tip. In fact the tip itself can
be thought of as a source of scattering, causing distur-
bances to any electron passing under it. However, we
have so far not seen any experimental evidence indicat-
ing this correction is needed at small bias voltages.9

V. APPLICATION TO QUANTUM CORRALS

The scattering theory of Sec. IV may be directly ap-
plied to quantum corrals. Here we discuss the case of Fe
atoms on Cu(111) (Heller et al., 1994) which do not
show a Kondo effect at 4 K. Our goal is to calculate the
standing-wave patterns and corral spectroscopy of the
type first observed by Crommie et al. (1993a). To do so
we pull together the results of Secs. II–IV. Since we
know the dispersion relation, Eq. (1), for the Cu(111)
surface as well as the positions of the iron impurities
from STM measurements, all that remains to determine
the current and conductance at a given position is a de-
termination of the phase shift, d(e), of the Fe atoms.
Once d(e) is determined, the LDOS(r,e) is determined
everywhere by the scattering theory except within 7 Å of
an adatom, where there is extra charge density not ac-
counted for in the theory. Electron amplitude from the
STM tip is assumed to emanate in a circularly symmetric
fashion into the surface states, so we use the out-
going free Green’s function, G0

ret(r8,r,e)52i (m* /
2\2) @J0(kur82ru)1iY0(kur82ru)# , as the incident am-
plitude.

9At larger biases, there may be some Stark shifting of the
states due to the electric field of the STM tip: There are dif-
ferences in the surface-state band-edge energies for STM and
photoemission experiments.
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Early measurements (Crommie et al., 1993b) of single
iron impurities on the surface of Cu(111) pointed to a
phase shift near 280°. However, from Eq. (17), it is
clear that the Green’s function is invariant with respect
to a phase shift of p, so the phase shift could equally
well have been near 1100°. When the scattering theory
was applied with a phase shift of 1100° to circular cor-
rals to compute dI/dV , Eq. (6), the widths of the reso-
nances were far too narrow compared to experiment,
indicating a longer electron confinement than was actu-
ally inferred from the broader, measured linewidths. The
important insight (Heller et al., 1994) was that the reso-
nances could be broadened if one allows electron ampli-
tude to be absorbed from the surface states at the Fe
impurities. A phase shift of nearly 1100° is quite close
to 190°. This leads to

si~e!5
4i\2

m* @e2id i(e)21# →
d5 p/2 4i\2

m* ~22 !. (19)

On the other hand, if the Fe atoms were assumed to be
maximally absorbing ‘‘black dots’’ (Heller et al., 1994)
d5i` , then

si~e!5
4i\2

m* @e2id i(e)21# →
d5i` 4i\2

m* ~21 !, (20)

so that the overall scattering amplitude has the same
phase but is reduced by a factor of 2. Thus, the two
phase shifts, d5p/2 and d5i` , are equivalent except
that the ‘‘black dot’’ approximation, d5i` , leads to an
attenuation of the scattered wave and a broadening of
corral resonance widths. When d5i` is used to evaluate
the LDOS(r,e), at the center of a circular quantum cor-
ral, the agreement with experiment is excellent. Figure 3
shows a direct comparison between theoretical and ex-
perimental dI/dV curves for an 88.7-Å-radius, 60-atom

FIG. 3. The experimental and theoretical voltage dependence
of dI/dV , with the tip of the STM located at the center of an
88.7-Å-radius, 60-atom circular corral of Fe atoms on a
Cu(111) surface. A smooth background has been removed
from the experimental data.
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circular corral of Fe atoms on a Cu(111) surface. Note
that except for the first peak10 the agreement with ex-
periment is excellent. Both the resonance energies and
the widths of the resonances are remarkably alike and
scale together except for the highest-energy peak.11 Fig-
ure 4 shows a comparison between theory and experi-
ment for a ‘‘topographic’’ image for a cut across the di-
ameter of the same circular corral. Note again the
excellent agreement: Every experimental oscillation is
quantitatively reproduced by the scattering theory. Fi-
nally, the full standing-wave patterns for both theory and
experiment for a ‘‘stadium’’-shaped quantum corral are
shown in Fig. 5.

The Fe adatoms can be located only at the available
triangular lattice sites in the Cu(111) surface. This lattice
allows arcs, ellipses, and other shapes to be only ap-
proximated. The locations at which one can place atoms
can be seen in Fig. 6, for the case of a 48-atom stadium,
where the smooth boundary is drawn for comparison. It
is important to use the correct atomic positions for the
best agreement with the experiments. The corral walls,

10The first peak has been investigated in more detail by
Crampin and Bryant (1996).

11The scattering theory can be brought into nearly perfect
agreement with even the highest-energy peak by allowing for a
quartic correction to the parabolic dispersion, Eq. (1) (Chan,
1997).

FIG. 4. The experimental data and theoretical curves for the
tip height as a function of position across the diameter of a
circlular corral (88.7 Å radius, 60 atoms) for low bias voltages.
Various voltages are given (in volts, V); they are measured
relative to the bottom of the surface-state band. Note that all
theory voltage values are shifted by 0.01 V relative to experi-
ment.
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while acting like smooth (although absorbing) bound-
aries for some purposes, still reveal their roughness and
granularity.

We now turn to a physical interpretation of the ‘‘black
dot’’ approximation. If electron flux is absorbed at the
Fe atoms where does it go? We believe that much of the
lost surface-state amplitude goes into the bulk.12 This
idea has been supported by theoretical studies of
Crampin et al. (1994) and Hormandinger and Pendry
(1994). Shortly after the work of Heller et al. (1994),
Harbury and Porod (1996) developed an elastic-
scattering theory of quantum corrals. The elastic theory
is able to qualitatively reproduce the standing-wave pat-
terns inside the corrals but does relatively poorly com-
pared to the inelastic-scattering theory for dI/dV . [See
Fig. 3 in Harbury and Porod (1996).] The inelastic-
scattering theory presented here accounts well (at ener-
gies higher than the first one or two peaks) for the
widths and heights of the resonances in corrals com-
pared to the elastic theory of Harbury and Porod (1996).
However, at lower energies there is disagreement due to
the intrinsic lifetime of the surface states that saturates
the linewidths (Crampin and Bryant, 1996). This effect
can be exploited in quantum corrals and near step edges
to study many-body effects in the surface states
(Crampin and Bryant, 1996). We return to this point in
Sec. IX.

It is important to summarize what we have learned
from the application of scattering theory to quantum
corrals thus far: (i) Corrals do confine electrons in sur-
face states, but do so rather poorly (resonance widths
are broad) because the adatoms tend to couple surface
states quite strongly to bulk states. A host of studies
(Crampin et al., 1994; Hormandinger and Pendry, 1994;
Bürgi et al., 1998; Fiete et al., 2001; Knorr et al., 2002;
Schneider et al., 2002) suggest that it is quite generic for

12Spin-flip processes at the Fe impurities would also appear as
a loss of coherent amplitude.

FIG. 5. Local density of electron states (LDOS) near EF for a
76-Fe-atom ‘‘stadium’’ of dimensions 1413285 Å. Right-hand
side: experiment, bias voltage 0.01 V (e50.45 eV); left-hand
side: theory (e50.46 eV). The density at the locations of the
Fe adatoms is not accounted for in the theory and appears
black.



940 Fiete and Heller: Colloquium: Theory of quantum corrals and quantum mirages
adatoms to strongly couple surface states to bulk states.
(ii) The standing-wave patterns in corrals depend on co-
herent electron propagation in the surface states to give
interference effects. For temperatures below 70 K, the
coherence length of surface-state electrons on noble
metals is hundreds of angstroms (Jeandupeux et al.,
1999), while the corrals typically have maximum dimen-
sions on the order of a hundred angstroms thus allowing
coherent electron propagation across the corrals. (iii)
‘‘Particle-in-a-box’’ models (Crommie et al., 1993a) may
qualitatively agree with the observed resonance energies
of closed structures, but they have no predictive power
for resonance widths or standing-wave patterns in open
structures. For example, consider the arc in Fig. 7; it
shows predicted STM data with a variety of features that
certainly could not be modeled with a box, or even, for
some of the features, with a smooth arc imposing some
boundary condition. Scattering theory works equally
well for one atom as for any arbitrary arrangement of
any number of atoms (provided the structure is small
enough to allow coherent electron propagation across
it). (iv) The only place the scattering theory fails to
agree with experiment is within 7 Å of an atom. Here
the assumptions of the theory break down because the
extra charge density at the impurity is not properly ac-
counted for.

One comment is in order on the multiple-scattering
theory. As simple as it is to invert a matrix of the dimen-
sion equaling the total number of atoms to obtain the
Green’s function, it is still perhaps curious to do a
multiple-scattering expansion in terms of 0,1,2, . . . scat-
tering events. It turns out that this fails for typical con-
figurations, due to the presence of closely spaced pairs,
triplets, etc., of atoms. Even though the Q factor of the

FIG. 6. (Color in online edition) Shown is a grid of the under-
lying lattice of the Cu(111) surface. Adatoms cannot sit at ex-
act positions of an ideal stadium, ellipse, or circular-shaped
corral, but must sit on the nearest site of the underlying lattice.
When the exact positioning of the adatoms is taken into ac-
count in the theoretical calculations, the agreement with ex-
periment is enhanced. At one site, four dark circles are shown.
The lighter circles represent possible positions for the darker,
central adatom. Obviously the central position is best for the
geometry given by the solid line shown.
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cavity, as indicated, for example, by the linewidths of the
dI/dV resonances, is only around 2, suggesting that
about two bounces are important before leakage occurs,
the Q factor and the low order of scattering is an appro-
priate concept only for walls perceived as smooth scat-
tering units, with the local multiple internal scattering
between neighboring atoms included to infinite order.

The scattering theory does not have to confine itself
only to atomic surface impurities. The experiments
abound with step edges (Bürgi et al., 1998, 1999; Jean-
dupeux et al., 1999; Morgenstern et al., 2002), for ex-
ample, even though one looks for regions as far away as
possible from such defects to build corrals. The step
edges affect the images, although not so much inside
closed corrals, which have enough attenuation at the
wall to prevent those paths that begin inside the corral,
get out, hit an edge, and come back inside, preventing
them from having any important weight.

VI. THE MIRAGE EXPERIMENT

A recent and interesting variation of the original
quantum corral experiments were the ‘‘quantum mi-
rage’’ experiments13 of Manoharan et al. (2000). The
quantum mirage experiments make use of the low-
temperature physics associated with a magnetic ion (e.g.,
Fe, Co, Mn) in electrical contact with a bulk metal (e.g.,
Cu, Au, Ag): the so-called Kondo effect. In the quantum

13For a more detailed description of the experiments we rec-
ommend that readers consult the original paper, Manoharan
et al. (2000).

FIG. 7. A theoretical calculation of STM data that could not
be modeled with a ‘‘particle-in-the-box’’ approximation (be-
cause it is ‘‘open’’) or any type of smooth arc (note the circular
‘‘wavelets’’ near the impurities).
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mirage experiments, Manoharan et al. (2000) built an el-
liptical corral with magnetic atoms (Co) which exhibit a
Kondo effect at 4 K on Cu(111).

The Kondo effect is the many-body response of the
free electrons in the Fermi sea to the magnetic impurity;
it is intimately related to spin-flip scattering events of
free conduction electrons from the magnetic ion. To un-
derstand the problem in detail takes a substantial invest-
ment of time, but fortunately the results of a detailed
analysis relevant to the quantum mirage can be stated
quite simply and succinctly: (i) The spin of the conduc-
tion electrons tend to become anticorrelated (oppositely
aligned) with the spin of the magnetic impurity so that at
low temperatures (when the Kondo effect is present) the
local spin of the magnetic ion is fully or at least partially
screened. An important case occurs when the spin of the
ion is 1/2. Then, the Kondo effect completely screens it
at sufficiently large distances.14 In the scattering ap-
proach that we are using, this means that spin-flip scat-
tering is ‘‘frozen out’’ and we can treat the scattering as
purely potential scattering (i.e., we neglect spin-flip scat-
tering processes). We discuss in Sec. VII how this ‘‘freez-
ing out’’ of the spin might be understood. (ii) The impu-
rity density of states (the density of states of the atomic
d or f levels that give rise to the magnetic moment)
develops a narrow resonance near the Fermi energy that
is often termed the ‘‘Kondo resonance.’’ This resonance
is picked up in the STM measurement and is the main
spectroscopic signature of Kondo atoms.

The narrow Kondo resonance [whose width is related
to the Kondo energy scale, TK;50 K for Co on

14Larger spins can also be completely screened, but require
more than one orbital channel of the conduction electrons to
couple to them. See Nozieres and Blandin (1980) for a discus-
sion.

FIG. 8. Local-moment regime of the Anderson model. The
Kondo effect occurs when the impurity level energies are situ-
ated as shown. The spin degenerate singly occupied level has
energy ed,EF . The cost for adding the second electron of
opposite spin to the impurity level is ed1U.EF . Thus, the
impurity ground state has only one electron on the local level,
giving it a net spin.
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Cu(111)] appears in dI/dV near a Kondo atom. It had
been observed near (within 10 Å) isolated atoms (Li,
Schneider, Berndt, and Delley, 1998b; Madhavan et al.,
1998) earlier, but Manoharan et al. (2000) used the
modification of the surface-state electron density in an
elliptical quantum corral to produce a spectroscopic
‘‘mirage’’ inside the corral of a Kondo atom where there
was in fact no Kondo atom (the ‘‘source’’ of the mirage
was a Co atom inside the corral more than 70 Å away).15

In order to fully understand the mirage experiment, we
must first review some details and essential results of the
theory of the Kondo effect. We will need these results
for the application of our scattering theory to adatoms
which show a Kondo effect.

VII. ESSENTIALS OF KONDO PHYSICS

A. The Anderson model

The Kondo effect16 is the name given to the low-
energy response of the Fermi sea of a metal to a mag-

15The experimental and theoretical spectroscopic signature is
shown in Fig. 13 below.

16For an overview of Kondo effect and a list of references see
Hewson (1997). For a brief survey of the Kondo effect in me-
soscopics see Újsághy et al. (2001), and references therein.

FIG. 9. Density of states of the Anderson impurity model in
the Kondo regime. The figure is not an actual calculation but
illustrates the central features of the density of states in the
Kondo regime. Both axes are in arbitrary units, but for a real
system energy units of eV would not be unrealistic. The broad
upper and lower peaks (at energies ed and ed1U) have width
G'2pV2%0 . These peaks are due to single-particle energy
levels of the impurity. They are broadened by coupling to the
Fermi sea. The central peak is a many-body resonance some-
times called the ‘‘Kondo peak.’’ It arises from correlations be-
yond a mean-field calculation such as Hartree Fock, and its
width is exponentially small in the coupling parameter J%0 ,
TK;De2 1/2J%0.
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netic impurity. In the mirage experiments, the magnetic
impurity (Co) sat on the surface of Cu(111). The canoni-
cal (and simplest) model17 of a local magnetic moment
in a metallic host was given by Anderson (1961),

ĤAnderson5(
k ,s

eksn̂ks1(
s

edn̂ds1Un̂d↑n̂d↓

1(
k ,s

~Vĉks
† d̂s1H.c.!. (21)

The first term represents the energy of the electrons of
the Fermi sea (assumed to be noninteracting), the sec-
ond term represents the energy of a single localized site
(an approximation to the d or f atomic level of an
atom), the third term represents an on-site repulsion if
two electrons try to occupy the localized level, and the
last term represents hybridization between the local mo-
ment and the conduction electrons. Here eks (n̂ks) is
the energy (number operator) of an electron of the
Fermi sea with wave vector k and spin s, and ed (n̂ds) is
the spin degenerate energy (number operator, not gen-
erally spin degenerate) of an electron in the localized d
or f level with spin s. Here U represents the charging
energy of doubly occupying the localized level. In the
fourth term, V is the hopping matrix element connecting
the electrons of the Fermi sea to the localized impurity
level and vice versa, and ĉks

† (d̂s
† ) is the creation opera-

tor for an electron in the state with wave vector k (d or
f level) with spin s.

In the case V50, Eq. (21) can be solved exactly. The
states are just direct products of the local-moment states
and the Fermi sea. The energy is just the sum of the
energy of the Fermi sea and the energy of the elec-
tron(s) on the localized level. The energy cost for having
one electron on the localized level is ed and the cost for
adding the second is ed1U . If one considers a small
nonzero V , the Hamiltonian is no longer exactly solv-
able. The singly and doubly occupied states of the local
level will be broadened (by an amount that can be esti-
mated by Fermi’s golden rule, G'2pV2%0 , where %0 is
the density of states of the Fermi sea at the Fermi en-
ergy, or more precisely, at the energy ed , if the density
of states varies with energy). For the Kondo problem
one particular regime of Eq. (21) is of central impor-
tance: the case in which ed,EF and ed1U.EF . This is
shown in Fig. 8. Anderson (1961) showed that Eq. (21)
will lead to local-moment formation at low enough tem-
peratures when G'2pV2%0!uedu, ed1U .

The impurity (d-level) density of states in the Ander-
son model in the local-moment regime we have just dis-
cussed is shown in Fig. 9. The peak in the density of
states at zero bias is sometimes referred to as the

17The Anderson model applies to a spin S51/2 impurity.
However, it can be shown (Újsághy et al., 2000) that impurities
of higher spin can be treated with an effective spin S51/2
model. For a discussion of the Kondo effect for spin S.1/2 see
Nozieres and Blandin (1980).
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‘‘Kondo’’ peak (Hewson, 1997). The Kondo peak always
sits near the Fermi energy and corresponds to the for-
mation of the many-body Kondo state. It is this peak
that shows up in the form of a ‘‘Fano resonance’’ in the
dI/dV spectra near (within 10 Å) a Kondo atom on the
surface of a metal (Li, Schneider, Berndt, and Delley,
1998; Madhavan et al., 1998; Manoharan et al., 2000;
Schiller and Hershfield, 2000; Újsághy et al., 2000; Plihal
and Gadzuk, 2001). Although the Kondo resonance is
associated with many-body correlations of the Fermi sea
and has no single-particle level analogous to the two
spectral peaks corresponding to the bare levels at ed and
ed1U in Fig. 9, it still behaves as a single-particle reso-
nance when it is fully formed at T!TK (Nozieres, 1974;
Újsághy et al., 2000; Plihal and Gadzuk, 2001). It is this
single-particle-like behavior or ‘‘local Fermi-liquid
theory’’ (Nozieres, 1974) of the Kondo resonance that
allows us to use a single-particle scattering theory for the
mirage experiments. The density of states of Fig. 9 trans-
lates into a strongly energy-dependent phase shift for
electrons of the Fermi sea near the Fermi energy (Hew-
son, 1997). For a single impurity in a host (or on the
surface) the density of states is (to a good approxima-
tion) just the sum of the two: %(e)5%0(e)1% imp(e).
Therefore, the change in the density of states due to the
impurity is D%(e)[%(e)2%0(e)5% imp(e). It can be
shown to equal (Hewson, 1997),

% imp~e!5
1
p

]d~e!

]e
. (22)

The resonance at the Fermi energy in Fig. 9, for % imp(e),
can be approximated as a Lorentzian of width G cen-
tered near the Fermi energy (e0) and leads to a
tan21@(e2e0) /(G/2)# term in the phase shift d(e) [cf. Eq.
(27)] when Eq. (22) is integrated over energy. It is highly
nontrivial that one can treat a many-body problem such
as the Kondo effect phenomenologically with a single-
particle theory and a resonant phase shift. It is the single
most important reason for the success of our approach
to the quantum mirage.

B. The Kondo model

The Kondo model is a special limit of the Anderson
model, Eq. (21), valid in the local-moment regime
shown in Fig. 8. It was used by Kondo (1964) (hence the
name) to explain the minimum in the resistivity (as a
function of temperature) of metals with magnetic impu-
rities. The Kondo model can be derived by second-order
perturbation theory in V from the Anderson model.18

The Kondo Hamiltonian (including a purely potential
scattering term that also appears in second-order pertur-
bation theory) is

18This result was first derived by Schrieffer and Wolf (1966).
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† ĉk8s , (23)

where the first term is the same as in Eq. (21),
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K'2
V2

2 S 1
U1ed

1
1
ed
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Here Ŝ is the spin operator of the impurity and tW are the
Pauli spin matrices. The crucial feature of Eq. (23) is
that it leads to spin-flip scattering events19 through terms
such as Sxtx1Syty5(S1t21S2t1)/2. These terms turn
out to be related to the apparent low-temperature diver-
gence of the resistivity (as a function of temperature) in
some metals with a low concentration of magnetic impu-
rities (which are able to flip the spins of electrons). Kon-
do’s explanation of the divergence is a result of looking
at the effect of the second term of Eq. (23) in a second-

19These spin-flip scattering events can also be looked at from
the point of view of the Anderson model. A spin flip would
occur if, e.g., the initial electron on the local level were spin up,
a second spin-down electron hopped on in the intermediate
state, and then finally the original spin-up electron hopped off,
leaving behind the spin-down electron on the local level.

FIG. 10. A sketch from Wellenlehre (Wave Theory), an 1825
book published in Leipzig by two of the three Weber brothers/
scientists from Saxony, Ernst and Wilhelm, showing the wave
pattern of mercury waves when small amounts of mercury are
dropped in at one focus. Notice how the other, opposite focus
looks identical, indicating that from the point of view of the
wave, the two foci are excited equally.
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order perturbative calculation of the t matrix. It turns
out that because S1S2ÞS2S1 , one of the sums over
the intermediate states of the Fermi sea is cut off at the
Fermi surface, leading to a logarithmic divergence in the
resistivity (Kondo, 1964; Hewson, 1997).

Besides the features of the Kondo problem we have
already mentioned, one more result is worthy of note. In
order to understand the low-energy behavior of many
physical systems it is often useful to integrate out the
high-energy fluctuations and compensate for this by
‘‘renormalizing’’ the parameters of an effective low-
energy theory. This can be quite complicated in general,
but for the Kondo Hamiltonian a particularly simple
version known as ‘‘poor man’s scaling,’’ introduced by
Anderson (1970), can be used to identify the low-energy
properties (Hewson, 1997). The idea is to look again at
the second-order contributions to the t matrix from the
second term of Eq. (23). The sum over the intermediate
states of the conduction electrons contains electrons that
are at the band edges. Anderson suggested removing a
few states at the band edges and adjusting J so that the
scattering amplitude remains invariant (ignoring the po-
tential scattering terms). When this is done a set of
‘‘scaling equations’’ is generated for J which can then be
solved. It turns out that a ‘‘scaling invariant’’ appears
and it is generally denoted by TK and referred to as the
Kondo temperature:

TK5De2 1/2J%0. (26)

The quantity TK is invariant under a rescaling of J in
response to a shrinking of the bandwidth, D . As D
→0, J→` , which from the second term of Eq. (23) im-
plies that the spin-flip processes are ‘‘frozen out’’ in the
low-energy theory and the scattering becomes purely
potential scattering. As before, %0 is the density of states
of the host at the Fermi energy. The Kondo effect, in this
simplest of models, is thus characterized by only one
energy scale, TK . This is the width of the ‘‘Kondo peak’’
that appears in the low-temperature density of states of
the Anderson model in Fig. 9, the width of the Fano
resonance (Li, Schneider, Berndt, and Delley, 1998;
Madhavan et al., 1998; Kawasaka et al., 1999; Manoha-
ran et al., 2000; Schiller and Hershfield, 2000; Újsághy
et al., 2000; Plihal and Gadzuk, 2001), and the width of
the scattering resonance (Fiete et al., 2001), from Eq.
(22), of the Co atoms on the surface of Cu(111) (for
experimental temperatures lower than TK when the
Kondo resonance is well formed).

VIII. THEORY OF QUANTUM MIRAGES

In their fascinating quantum mirage experiment,
Manoharan et al. (2000) decided to use the unique scat-
tering properties of an ellipse in an attempt to project
the properties of an atom sitting at one focus of the
ellipse to the corresponding second (empty) focus of the
ellipse. The ellipse has been recognized for its properties
in the context of waves for a long time. For example, the
remarkable image showing surface waves of mercury in
an elliptical container (Fig. 10), drawn by two of the
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three scientifically inclined Weber brothers in 1825 (in-
cluding Wilhelm Weber, well known to physicists in con-
nection with electromagnetism), clearly shows the spe-
cial nature of the ellipse. This experiment almost
perfectly anticipates the Eigler group’s measurements of
matter waves 175 years later, since the image corre-
sponds to drops of mercury landing at one focus with the
other focus ‘‘empty.’’

Our theory of the quantum mirage (Fiete et al., 2001)
is based on a fairly straightforward modification of the
scattering theory originally presented by Heller et al.
(1994) (for non-Kondo atoms) to account for the Kondo
effect. As we emphasized at the end of Sec. VII.A, for
experimental temperatures below TK we are able to
take advantage of Nozieres’s (1974) ‘‘local Fermi-liquid’’

FIG. 11. Topographical standing-wave patterns of a Kondo
corral. Using the scattering theory and phase shifts described
in the text, these STM topographic images were computed us-
ing exact Co adatom positions on Cu(111) at 4 K. The agree-
ment between theory (a), (c), and (e) and experiment (b), (d),
and (f) is remarkable. All the experimental images have been
symmetrized by adding the image to itself after being reflected
about its major axis. Topographic images were calculated by
numerically integrating the LDOS(rW ,e) over e for EF<e<EF

110 mV. This corresponds to the topographic images taken
experimentally in (b) and (d) at a bias voltage of 10 mV. (e)
The difference of (a) and (c). (f) The difference of (b) and (d).
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picture to write down a phenomenological single-
particle theory with an energy-dependent phase shift.
Our theory of the quantum mirage involves the follow-
ing approximations, assumptions, and limitations: (i)
The scattering of electrons from the adatoms is deter-
mined by a single parameter, the s-wave phase shift, and
this must be determined from experiment or otherwise.
(ii) The internal degrees of freedom (spin) of the Kondo
adatoms are ‘‘frozen out’’ at the temperature of the ex-
periment (;4 K) so we may use the results of Nozieres
(1974) to treat the Kondo atom as a potential scatterer
with a phase shift. (iii) The adatoms are far enough
apart so that we may treat the electron propagation be-
tween them as free and that Ruderman-Kittel-Kasuya-
Yosida (RKKY) interactions are sufficiently weak that
the single-impurity Kondo physics is not altered. (iv)
The theory does not include any nonequilibrium effects
and does not treat the charge density within 7 Å of an
atom correctly.

To make a direct comparison with experiment, we
must obtain the phase shift of the Kondo adatoms. We

FIG. 12. dI/dV standing-wave patterns of a Kondo corral us-
ing the same theoretical vs experimental arrangement as in
Fig. 11. dI/dV measurements were taken simultaneously with
topographic images at a 10-meV bias. Note that (e) and (f)
resemble an eigenstate of the ellipse. The ellipse was con-
structed to have large surface-state amplitudes at the two foci.
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do not have an ab initio calculation of the phase shift of
a single Co adatom. Rather, we fit the resonant form of
the phase shift, including inelasticity due to the coupling
of the surface states to bulk states, and calculated the
multiple-scattering problem with this single atom data.

Since the on-atom electron orbital density is not ac-
counted for in scattering theory, we used an on-atom fit
[from experimental data of a single, isolated Co atom on
Cu(111) at 4 K] involving only a renormalization of the
free-space Green’s function, G0

ret(r8,r,e), and a change
in the background phase shift to compute the STM sig-
nal on top of a Kondo adatom (Kawasaka et al., 1999;
Schiller and Hershfield, 2000; Plihal and Gadzuk, 2001;
Shimada et al., 2003). This on-atom fit is not part of our
theory, but only a means of setting a reference point
between on-atom density not accounted for in our
theory and the electron density anywhere more than 7 Å
away from an atom on the surface (which is accounted
for properly in our theory). This fit in no way compro-
mises our fundamental result that the mirage is due to
resonantly scattering electrons from the Kondo atoms of
the walls and focus. It is used only as a method for de-
termining as accurately as possible the phase shift of the
Co on Cu(111). Determining the phase shift this way
from experimental data constitutes a measurement of
the single Kondo atom phase shift. We find a good fit to
the s-wave phase shift to be given by

d~e!5dbg1id91tan21S e2e0

G/2 D , (27)

where dbg5(p/4) 6(p/10) , d95 3/2 61/4 , G5(9
61) MeV, and e05EF21 meV are determined by ex-
periment; dbg is a background phase shift (possibly due
to static charge screening at the impurity) that controls
the resonant line shape of the adatom scattering cross
section;20 and d9 is a measure of the inelasticity in ada-
tom scattering and controls the attenuation of the mi-
rage at the empty focus. tan21@(e2e0) /(G/2)# reflects
resonant scattering due to the presence of Kondo phys-
ics and can be seen to follow directly from Eq. (22) and
the density of states shown in Fig. 9. A similar phase
shift (without the inelastic piece, d9) would result from
the model of Újsághy et al. (2000). It is likely that both
bulk and surface states are participating in the Kondo
effect at an adatom,21 but the STM signal is more sensi-
tive to the surface-state Kondo effect in the regime of
validity of our theory (.7 Å away from an adatom).

Applying the scattering theory of Sec. IV and the
phase shift, Eq. (27), to elliptical corrals results in the
images shown in Figs. 11 and 12. The agreement with
experiment is excellent. Our calculation of the tunneling
spectrum at the two foci is compared with experiment in

20Recently Schneider et al. (2002) have determined the phase
shift of Co on Ag(111) (which has a TK of 92 K) and found
similar values to ours determined for Co on Cu(111).

21The most recent experiments by Knorr et al. (2002) suggest
that the Kondo effect at Kondo impurities on surfaces is in fact
dominated by bulk states.
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Fig. 13. Note that the signal at the unoccupied focus is
attenuated by approximately a factor of 8, both experi-
mentally and theoretically. The calculated spectroscopy
in Fig. 13 most clearly demonstrates that the Kondo mi-
rage is due only to resonant scattering of electrons from
the Co adatom at the opposite focus, even though the
electrons are also resonantly scattering from the wall
adatoms: Calculations performed with d5i` (Heller
et al., 1994) instead of d(e) from Eq. (27) for the wall
atoms show the Kondo resonances of the wall atoms
play no essential role in the projection of the mirage to
the empty focus since the signal in Fig. 13 is essentially
unchanged. Experimentally the same result is found
when the wall Co adatoms are replaced by CO (Mano-
haran et al., 2000).

Only certain ellipses will give a good mirage effect—
those which have large surface-state amplitudes at the
foci when the scattering problem is calculated—and this
depends on the relative dimensions of the ellipse and on
lF . Only then will there be appreciable surface-state
electron amplitude at the focal adatom to give a strong
signal of Kondo effect in the surface states of Cu(111) at
the opposite focus.22 Our theory predicts that the quan-

22The relative size of the surface-state amplitude at a given
position inside the ellipse also explains why the projection of
the Kondo mirage is insensitive to whether the walls are
Kondo (Co) or not (CO). Near the walls, this amplitude is
small in ellipses that have peak amplitudes at the foci.

FIG. 13. Tunneling into the focal atom and empty focus: the
mirage. Tunneling spectroscopy is calculated (dashed lines)
with the scattering theory and phase shift given in the text at
the empty focus (a). Tunneling spectroscopy at the occupied
focus is shown in (b). A constant background slope has been
removed from both the experimental data and the calculation.
The attenuation of the mirage is determined by inelasticity in
the scattering of electrons at the walls of the ellipse. The the-
oretical signal 5 Å away from the empty focus in (a) is lost in
the noise of the experiment and is not a breakdown of the
theory.
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tum mirage is not restricted to an ellipse or even a
‘‘closed’’ structure. Anytime one can construct an ar-
rangement of adatoms or other defects that lead to a
buildup of surface-state electron amplitude at two loca-
tions within the coherence length of the electron, a mi-
rage can be projected.

In conclusion, the quantum mirage reveals no infor-
mation about local polarization of the surface-state (or
bulk) electrons. The unpolarized STM cannot measure
the size of the Kondo ‘‘screening cloud’’ since it only
returns an average signal of spin-up and spin-down elec-
trons (or holes) tunneling into the surface. However,
there are still several important things that can be
learned from a combination of scattering theory and ex-
periment about Kondo impurities on the surfaces of
noble metals. First, Kondo impurities still act, to a large
extent, like ‘‘black dot’’ scatterers. This is clear from the
appreciable imaginary part of the scattering phase shift
given in Eq. (27). The Kondo effect does not ‘‘block’’ or
inhibit the scattering of surface-state electrons into the
bulk at the impurities.23 Second, the Fano line shape of
the quantum mirage can be understood from a reso-
nance in the scattering phase shift with a nonzero back-
ground phase shift. This complements the ‘‘on-atom’’
picture of the Fano resonance in dI/dV which can be
thought of as electrons tunneling into both the
conduction-electron states of the host (of surface and
bulk character) and electrons tunneling into the ‘‘d
level’’ of the impurity (Li, Schneider, Berndt, and Del-
ley, 1998b; Madhavan et al., 1998; Schiller and Hersh-
field, 2000; Plihal and Gadzuk, 2001). For an STM tip
initially above a Kondo impurity, one can think of the
Fano line shape from tunneling as ‘‘rolling over’’ to a
Fano line shape from scattering when the tip moves lat-
erally away from an impurity (Újsághy et al., 2000; Fiete
et al., 2001). Third, the fact that the atoms in corral walls
show a Kondo resonance much the same as the reso-
nance from an isolated impurity on the surface means
that the RKKY interaction between impurities is very
weak. Moreover, the mirage is independent (both theo-
retically and experimentally) of the character of the wall
atoms. In the corrals that show a strong mirage the
surface-state electron density is small near the walls, yet
the STM signal of the wall atoms is more or less un-
changed. This suggests that it is mostly the bulk elec-
trons that are involved in the Kondo effect. This is the
same conclusion that has been reached recently by
Knorr et al. (2002) from studies of a single Kondo impu-
rity.

IX. RELATED WORK AND RECENT DEVELOPMENTS

Recently there have been several important develop-
ments in the study of quantum corrals, especially related

23In principle, the Kondo effect should lessen the incoherent
scattering at the atoms because it tends to ‘‘freeze out’’ the
spin, when compared to Fe impurities, for example. (This as-
sumes, of course, that spin-flip scattering is indeed important
at the Fe impurities.)
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to the recent mirage experiments and studies of the life-
times of quasiparticles in the surface states. While our
scattering theory explains nearly all of the observed fea-
tures of quantum corrals, including the mirage experi-
ments, it is phenomenological and based on a single-
particle model. A full understanding of the surface-state
response to magnetic impurities requires more detailed
studies: experimentally with spin-resolved STM and
theoretically with first-principles and many-body calcu-
lations. It is necessary to go beyond the single-particle
theory, for example, to accurately calculate quantities
such as spin-spin correlation functions of impurities in
quantum corrals, details of the Kondo effect itself, or the
way in which surface-state lifetimes can be modified by
quantum corrals. Some of these studies have already
been undertaken and we briefly describe them below.

A. Experiments

Since the mirage experiments, there have been few
experimental studies specific to corrals reported; how-
ever, Kliewer, Berndt, and Crampin (2000) have studied
the effect of the modification of surface-state electron
density by corrals on the spectroscopy of Mn on Ag(111)
and Kliewer et al. (2001) and Braun and Rieder (2002)
have used quantum corrals and related structures to ob-
tain information about the many-body lifetime effects in
the surface states. Most STM studies have focused on
the Kondo effect from the impurities themselves. Chen
et al. (1999) reported the disappearance of the Kondo
resonance for Co dimers on Au(111). Jamneala et al.
(2000) carried out a systematic study of elements with
atomic 3-d orbitals on Au(111). Odom et al. (2000) re-
ported Kondo effect from Co clusters adsorbed on single
wall metallic nanotubes.24 Madhavan et al. (2001) stud-
ied Co on Au(111) as a function of impurity coverage
from isolated impurities up to one monolayer. Nagoaka
et al. (2002) looked at the temperature dependence of
the broadening of the Kondo resonance of Ti on
Ag(100). Schneider et al. (2002) measured the scattering
phase shift from isolated Co atoms on Ag(111) and
Knorr et al. (2002) studied the role of surface and bulk
state contributions to the Kondo effect for Co on
Cu(100) and Cu(111).

B. Theory

On the theoretical side, much more work has focused
on the quantum mirage in corrals rather than on the
single impurities. Agam and Schiller (2001), Porras et al.
(2001), and Weissmann and Bonadeo (2001) have also
developed theories for the quantum mirage based on a
single-particle picture. More recently, Aligia (2001) and
Shimada et al. (2002) developed a many-body theory of
the quantum mirage. Chiappe and Aligia (2002) and

24The Kondo effect generated by a ferromagnetic cluster
turns out to have several interesting and nontrivial new fea-
tures compared to a single impurity (Fiete et al., 2002).
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Correa et al. (2002) have undertaken studies of the in-
teraction between two magnetic impurities in a quantum
corral. A model of interactions between two impurities
in states confined to the surface of a sphere was studied
by Hallberg et al. (2002). A recent renormalization-
group study carried out by Cornaglia and Balseiro
(2002) for Kondo impurities in nanoscale systems also
makes contact with the mirage experiments. A recent
work by Morr and Stavropoulos (2003) looks at the
quantum mirage from non-Kondo impurities in a quan-
tum corral built on a superconductor.

While there are now several theories addressing the
physics of the mirage, we feel the least addressed ques-
tion is that of the relative role of surface and bulk states
in the formation of the Kondo effect at a single impurity.
Many theories tend to neglect the bulk states and treat
the quantum corral as a confined two-dimensional sys-
tem. We believe theory should now move beyond this
and include the role of both surface states and bulk
states in Kondo resonance. It remains clear, however,
that the mirage effect is dominated by a Kondo effect
that involves the surface-state electrons because the
phase shift, Eq. (27), demands it.

X. VARIATIONS OF ‘‘QUANTUM’’ CORRALS: OPTICAL
CORRALS AND ACOUSTICAL CORRALS

Recently there have been several interesting varia-
tions of ‘‘quantum’’ corrals. Most notably, there are now
both theory (de Francs et al., 2001; Wubs and Lagendijk,
2002) and experimental realizations (Chicanne et al.,
2002) of optical quantum corrals and related structures.
The theory of optical corrals is quite similar to quantum
corrals, the main difference being that the electric field
is a vector field while the wave function is a scalar field.
In the optical corrals the adatoms are replaced by
‘‘posts’’ of a different dielectric constant to confine the
electric field.

The same basic physics of quantum corrals also ap-
plies to acoustical corrals in which one can define a
LDOS of states that is a local acoustical impedance
function. The impedance is of course determined by the
same ‘‘in-phase’’ vs ‘‘out-of-phase’’ condition of the re-
turning wave relative to the outgoing wave. A map of
acoustical impedance as a function of position in the
room should show exactly the same type of oscillation
with distance as does the STM dI/dV data. This serves
to again remind us that the STM images are not ‘‘snap-
shots’’ of a wave caught in a cavity, such as water waves
in a bathtub at some moment. In fact the analogy of the
quantum corrals and room acoustics is quite close, since
a Q factor of 2 is not unusual for relatively ‘‘quiet’’
rooms.

XI. CONCLUSIONS

In this Colloquium we have reviewed the basic physics
of quantum corrals, including the more recent experi-
ments involving the Kondo effect. A single-particle scat-
tering theory with only an s-wave phase shift is able to
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account quantitatively for nearly all of the experimental
observations to date, including the quantum mirage. It is
a generic feature of adatoms on the surfaces of the noble
metals that they strongly couple the surface states to the
bulk states. This appears in the scattering theory as an
imaginary part of the phase shift. When the adatoms are
magnetic and below their Kondo temperature, the
many-body Kondo resonance can be taken into account
phenomenologically with a resonance in the phase shift,
Eq. (27).

The scattering theory that we have presented is valid
anywhere more than ;7 Å away from an adatom since
this is the scale over which an adatom strongly disturbs
the local charge density. From Kondo impurities there is
Fano resonance in dI/dV that persists as the STM tip is
moved from directly over a Kondo atom to a location
where it is 10 Å or more laterally away. For Kondo im-
purities, the ;10-Å spatial extent of the Fano line shape
in dI/dV is not a measure of the Kondo screening cloud.
To date all reported STM studies of Kondo impurities
have been unpolarized and hence they are insensitive to
local spin polarization. What the ;10-Å spatial scale
most likely reflects is the scale over which the STM tip
can strongly couple to the atomic states of the impuri-
ties. Hence, it is a scale associated with charge rather
than spin. The mirage, therefore, reflects nothing about
local spin correlations at the empty focus of the elliptical
quantum corral. It is simply a way of probing the Kondo
resonance of the impurity at the opposite focus through
coherent electron propagation in the surface states. The
signal at the empty focus can be thought of as a ‘‘scat-
tering’’ Fano resonance originating from a resonance
piece and an energy-independent background piece in
the scattering phase shift of the Kondo atom.

The new frontiers in quantum corral experiments
clearly lie in two directions: (i) spin-polarized STM and
(ii) probes of many-body physics. There are already sev-
eral theories that predict strong spin correlations be-
tween impurities in corrals (Chiappe and Aligia, 2002;
Correa et al., 2002; Gyorffy, 2002) although none have
yet been experimentally reported. The relative role of
bulk and surface states in the Kondo effect is still an
open question, although experimental progress has been
made (Knorr et al., 2002) which suggests that the Kondo
effect is dominated by bulk states. Quantum corrals can
also provide tunable environments to study and even
modify the physics of the surface states themselves
(Kliewer et al., 2001; Braun and Rieder, 2002). With ever
improving experimental technology we expect to see
even more surprises and fascinating effects to appear in
these tiny, engineered laboratories of many-body phys-
ics.
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Újsághy, O., G. Zaránd, and A. Zawadowski, 2001, Solid State

Commun. 117, 167.
Weissmann, M., and H. Bonadeo, 2001, Physica E (Amster-

dam) 10, 44.
Wubs, M., and A. Lagendijk, 2002, Phys. Rev. E 65, 046612.


