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It is now widely accepted that the cuprate superconductors are characterized by a long-range order
similar to that present in the Bardeen-Cooper-Schrieffer (BCS) theory, that associated with the
condensation of Cooper pairs. The author argues that many physical properties of the cuprates require
interplay with additional order parameters associated with a proximate Mott insulator. A classification
of Mott insulators in two dimensions is proposed. Experimental evidence so far shows that the class
appropriate to the cuprates has collinear spin correlations, bond order, and confinement of neutral,
spin S51/2 excitations. Proximity to second-order quantum phase transitions associated with these
orders, and with the pairing order of BCS, has led to systematic predictions for many physical
properties. In this context the author reviews the results of recent neutron scattering, fluxoid
detection, nuclear magnetic resonance, and scanning tunneling microscopy experiments.
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I. INTRODUCTION

The discovery of high-temperature superconductivity
in the cuprate series of compounds by Bednorz and
Müller (1986) has strongly influenced the development
of condensed-matter physics. It stimulated a great deal
of experimental work on the synthesis and characteriza-
tion of a variety of related intermetallic compounds. It
also reinvigorated theoretical study of electronic systems
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with strong correlations. Technological applications of
these materials have also appeared, and could become
more widespread.

Prior to this discovery, it was widely assumed that all
known superconductors, or superfluids of neutral fermi-
ons such as 3He, were described by the theory of
Bardeen, Cooper, and Schrieffer (BCS) (Bardeen et al.,
1957). Certainly, the quantitative successes of BCS
theory in describing an impressive range of phenomena
in the lower temperature superconductors make it one
of the most successful physical theories ever proposed.
Soon after the discovery of the high-temperature super-
conductors, it became clear that many of their proper-
ties, and especially those at temperatures (T) above the
superconducting critical temperature (Tc), could not be
quantitatively described by the BCS theory. Overcoming
this failure has been an important motivation for theo-
retical work in the past decade.

One of the purposes of this Colloquium is to present
an updated assessment of the applicability of the BCS
theory to the cuprate superconductors. We will restrict
our attention to physics at very low temperature associ-
ated with the nature of the ground state and its elemen-
tary excitations. This will allow us to focus on sharp,
qualitative distinctions. In particular, we will avoid the
regime of temperatures above Tc , where it is at least
possible that any failure of the BCS theory is a symptom
of our inability to make accurate quantitative predic-
tions in a strong-coupling regime, rather than our having
missed a qualitatively new type of order. Also, while this
Colloquium will present a unified view of the important
physics of the cuprate superconductors, it is not a com-
prehensive review, and it does not attempt to reflect the
state of the field by representing the variety of view-
points that have been taken elsewhere in the literature.

The primary assertions of this Colloquium are as fol-
lows. At the lowest energy scales, the longest length
scales, in the absence of strong external perturbations,
©2003 The American Physical Society
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and at ‘‘optimal’’ carrier concentrations and above, all
experimental indications are that the cuprate supercon-
ductors can indeed be described in the framework of the
BCS theory: the theory correctly captures the primary
order parameter of the superconducting state, and the
quantum numbers of its elementary excitations. How-
ever, many experiments at lower doping concentrations
and at shorter length scales require one or more addi-
tional order parameters, either conventional (i.e., asso-
ciated with the breaking of a symmetry of the Hamil-
tonian) or ‘‘topological’’ (see Sec. III.B.2 below). These
order parameters are best understood and classified in
terms of the physics of ‘‘Mott insulators,’’ a topic which
will be discussed in greater detail below. The importance
of the Mott insulator was stressed by Anderson (1987).
Our understanding of Mott insulators, and of their clas-
sification into categories with distinct physical properties
has advanced greatly in the last decade, and a sharper
question of experimental relevance is: which class of
Mott insulators has its ‘‘order’’ present in the cuprate
superconductors? As we shall discuss below, the evi-
dence so far supports a class quite distinct from that
implied in Anderson’s proposal (Sachdev and Read,
1991).

How can the postulated additional order parameters
be detected experimentally? In the simplest case, there
could be long-range correlations in the new order in the
ground state: this is apparently the case in
La22dSrdCuO4 at low carrier concentrations, and we will
describe recent experiments which have studied the in-
terplay between the new order and superconductivity.
However, the more common situation is that there are
no long-range correlations in any additional order pa-
rameter, but the ‘‘fluctuating’’ order is nevertheless im-
portant in interpreting certain experiments. A powerful
theoretical approach for obtaining semiquantitative pre-
dictions in this regime of fluctuating order is provided by
the theory of quantum phase transitions: imagine that
we are free to tune parameters so that ultimately the
new order does acquire long-range correlations some-
where in a theoretical phase diagram. A quantum criti-
cal point will separate the phases with and without long-
range order: identify this critical point and expand away
from it towards the phase with fluctuating order, which is
the regime of experimental interest (Sachdev and Ye,
1992; Chubukov et al., 1994a); see Fig. 1. An illuminat-
ing discussion of fluctuating order near quantum critical
points (along with a thorough analysis of many recent
experiments that has some overlap with our discussion
here) has been provided recently by Kivelson, Fradkin,
et al. (2002).

An especially important class of experiments involves
perturbations which destroy the superconducting order
of the BCS state locally (on the scale a few atomic spac-
ings). Under such situations the theory outlined above
predicts that the order of the Mott insulator is revealed
in a halo surrounding the perturbation, and can, in prin-
ciple, be directly detected in experiments. Perturbations
of this type are Zn impurities substituting on the Cu
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sites, and the vortices induced by an applied magnetic
field. We shall discuss their physics below.

To set the stage for confrontation between theory and
experiment, we review some essential features of the
BCS theory in Sec. II, and introduce key concepts and
order parameters in the theory of Mott insulators in Sec.
III. We will combine these considerations in our discus-
sion of doped Mott insulators in Sec. IV, which will also
include a survey of some experiments. A theoretical
phase diagram which encapsulates much of the physics
discussed here appears in Sec. V, while Sec. VI con-
cludes with a discussion of possible directions for future
work.

II. BCS THEORY

In BCS theory, superconductivity arises as an instabil-
ity of a metallic Fermi liquid. The latter state is an adia-
batic continuation of the free-electron model of a metal,
in which all single-particle states, labeled by the Bloch
crystal momentum kW , inside the kW -space Fermi surface
are occupied by electrons, while those outside remain
empty. With c

kW s

†
the creation operator for an electron

with momentum kW and spin projection s5↑↓ , a reason-
able description of the Fermi liquid is provided by the
free-electron Hamiltonian

H05(
kW s

~«kW 2m!c
kW s

†
ckW s , (1)

where «kW is the energy-momentum dispersion of the
single-particle Bloch states and m is the chemical poten-
tial; the locus of points with «kW 5m defines the Fermi
surface. Changes in electron occupation numbers near
the Fermi surface allow low-energy processes which are
responsible for the conduction properties of metals.

FIG. 1. Our theoretical strategy for describing the influence of
a new order parameter in a BCS superconductor. Here g is
some convenient coupling constant in the Hamiltonian, and we
imagine that the superconductor of physical interest is a BCS
superconductor with g.gc . Theoretically, it is useful to imag-
ine that we can tune g to a value smaller than gc where there
are long-range correlations in a new order parameter. Having
identified and understood the quantum phase transition at g
5gc , we can expand away from it back towards the BCS su-
perconductor (as indicated by the thick arrow) to understand
the influence of quantum fluctuations of the new order param-
eter. This approach is most effective when the transition at g
5gc is second order, and this will usually be assumed in our
discussion. Note that the horizontal axis need not be the con-
centration of mobile carriers, and it may well be that the su-
perconductor of physical interest does not exhibit the g,gc

state at any carrier concentration.
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Bardeen, Cooper, and Schrieffer realized that an arbi-
trarily weak attractive interaction between the electrons
would induce the electrons near the Fermi surface
to lower their energy by binding into pairs (known as
Cooper pairs) (Cooper, 1956). Bardeen, Cooper, and
Schrieffer also proposed a mechanism for this attractive
interaction: the exchange of a low-energy phonon be-
tween two electrons, along with the rapid screening of
the repulsive Coulomb interaction by the other elec-
trons, leads to a residual attractive interaction near the
Fermi surface. We regard this mechanism of electron
pairing as a specific sidelight of BCS theory for good
metals, and not an essential characterization of the BCS
state. Indeed in liquid 3He, the pairing is believed to
arise from exchange of spin fluctuations (‘‘paramag-
nons’’), but the resulting superfluid state has many key
similarities to the superconducting metals.

In the BCS ground state, the Cooper pairs undergo a
process of condensation which is very closely related to
the Bose-Einstein condensation of noninteracting
bosons. Two well-separated Cooper pairs obey bosonic
statistics when adiabatically exchanged with each other,
but their behavior is not simply that of pointlike Bose
particles when their internal wave functions overlap—
the constituent electrons become important at these
short scales; however, it is the long-distance bosonic
character which is crucial to the appearance of a conden-
sate of Cooper pairs. In the original Bose-Einstein
theory, the zero-momentum boson creation operator can
be replaced by its c-number expectation value (due to
the occupation of this state by a macroscopic number of
bosons); similarly, the BCS state is characterized by the
expectation value of the creation operator of a Cooper
pair with zero center-of-mass momentum:

^c
kW ↑
†

c
2kW ↓
†

2c
kW ↓
†

c
2kW ↑
†

&}DkW [D0~cos kx2cos ky!. (2)

The functional form of Eq. (2) in spin and kW space car-
ries information on the internal wave function of the two
electrons forming a Cooper pair: we have displayed a
spin-singlet pair with a d-wave orbital wave function on
the square lattice, as is believed to be the case in the
cuprates (Scalapino, 1995; Tsuei and Kirtley, 2000).

Along with Eq. (2) as the key characterization of the
ground state, BCS theory also predicts the elementary
excitations. These can be separated into two types: those
associated with the motion of the center of mass RW , of
the Cooper pairs, and those in which a pair is broken.
The center-of-mass motion (or superflow) of the Cooper
pairs is associated with a slow variation in the phase of
the pairing condensate D0→D0eif(RW ): the superconduct-
ing ground state has f(RW )5a constant independent of
RW (and thus long-range order in this phase variable),
while a slow variation leads to an excitation with super-
flow. A vortex excitation is one in which this phase has a
nontrivial winding, while the superflow has a nonzero
circulation:

E
C

dRW •¹f52pnv , (3)
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where nv is the integer-valued vorticity, and C is a con-
tour enclosing the vortex core. A standard gauge invari-
ance argument shows that each such vortex must carry a
total magnetic flux of nvhc/(2e), where the 2e in the
denominator represents the quantum of charge carried
by the ‘‘bosons’’ in the condensate. Excitations which
break Cooper pairs consist of multiple S51/2 fermionic
quasiparticles with dispersion

EkW 5A~ekW 2m!21uDkW u2, (4)

and these reduce to the particle and hole excitations
around the Fermi surface when D0→0.

All indications from experiments so far are that the
cuprate superconductors do have a ground state charac-
terized by Eq. (2), and the elementary excitations listed
above. However, BCS theory does make numerous
other predictions which have been successfully and thor-
oughly tested in the low-temperature superconductors.
In particular, an important prediction is that if an exter-
nal perturbation succeeds in destroying superconductiv-
ity by sending uD0u→0, then the parent Fermi surface,
which was swallowed up by the Cooper instability, would
reappear. This prediction is quite different from the per-
spective discussed earlier, in which we argued for the
appearance of a halo of order linked to the Mott insula-
tor.

III. MOTT INSULATORS

The Bloch theory of metals also specified conditions
under which crystalline materials can be insulating: if,
after filling the lowest energy bands with electrons, all
bands are either fully occupied or completely empty,
then there is no Fermi surface, and the system is an
insulator. However, some materials are insulators even
though these conditions are not satisfied, and one-
electron theory would predict partially filled bands:
these are Mott insulators. Correlations in the motion of
the electrons induced by their Coulomb interactions are
crucial in preventing metallic conduction.

One of the parent compounds of the cuprate super-
conductors, La2CuO4 , is a simple example of a Mott
insulator. The lowest energy electronic excitations in this
material reside on the Cu 3dx22y2 orbitals, which are
located on the vertices of a square lattice. The crystal
has a layered structure of stacked square lattices, with
only a weak amplitude for electron hopping between
successive layers. (We shall neglect the interlayer cou-
pling and focus on the physics of a single square lattice
in the remainder of this Colloquium.) After accounting
for the ionization states of the other ions in La2CuO4 ,
there turns out to be exactly one electron per unit cell
available to occupy the Cu 3dx22y2 band. With two
available spin states, this band can accommodate two
electrons per unit cell, and so is half filled, and should
have a metallic Fermi surface. Nevertheless, La2CuO4 is
a very good insulator. The reason for this insulating be-
havior can be understood quite easily from a simple clas-
sical picture of electron motion in the presence of the
Coulomb interactions. Classically, the ground state con-
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sists of one electron localized on each of the 3dx22y2

orbitals: this state minimizes the repulsive Coulomb in-
teraction energy. Any other state would have at least
one orbital with two electrons, and one with no elec-
trons: there is a large energetic penalty for placing two
electrons so close to each other, and this prohibits mo-
tion of electrons across the lattice: hence the Mott insu-
lator.

Let us now look at the quantum theory of the Mott
insulator more carefully. While charge fluctuations on
each site are expensive, it appears that the spin of the
electron can be rotated freely and independently on
each site. However, in the quantum theory virtual charge
fluctuations do occur, and these lead to residual ‘‘super-
exchange’’ interactions between the spins (Anderson,
1959). We represent the spin on the Cu site j by the S
51/2 spin operator Sj ; the effective Hamiltonian that
describes the spin dynamics then takes the form

H5(
i,j

J ijSi•Sj1¯ , (5)

where the Jij are short-range exchange couplings and
the ellipses represent possible multiple spin couplings,
all of which preserve full SU(2) spin rotation invariance.
Because the Pauli principle completely prohibits charge
fluctuations between two sites if they have parallel spin
electrons, while they are only suppressed by the Cou-
lomb repulsion if they have opposite spins (see Fig. 2),
we expect an antiferromagnetic sign Jij.0, so that
nearby spins prefer opposite orientations. Classifying
quantum ground states of models like Eq. (5) is a prob-
lem of considerable complexity, and has been the focus
of extensive research in the last decade. We summarize
the current understanding below.

In keeping with the spirit of this Colloquium, we char-
acterize ground states of H by a number of distinct or-
der parameters. We only discuss states below which have

FIG. 2. Motion of the two ferromagnetically aligned spins in
(a) is prohibited by the Pauli principle. In contrast, the antifer-
romagnetically aligned spins at the top and bottom in (b) can
access a high-energy intermediate state [shown in the middle
of (b)] and so undergo an exchange process.
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
long-range correlation in a single order parameter; in
most cases, coexistence of multiple order parameters is
also allowed (Balents et al., 1999; Senthil and Fisher,
2000), but we will ignore this complexity here. Our list
of order parameters is not exhaustive, and we restrict
our attention to the most plausible candidates (in the
author’s opinion) for short-range Jij .1

Although our discussion below will refer mainly to
Mott insulators, we will also mention ground states of
noninsulating systems with mobile charge carriers: the
order parameters we use to characterize Mott insulators
can be applied more generally to other systems, and this
will done in more detail in Sec. IV.

A. Magnetically ordered states

Such states are obtained by examining H for the case
of large spin S on each site: in this limit, the Sj can be
taken as classical c numbers, and these take a definite
nonzero value in the ground state. More precisely, the
SU(2) spin rotation symmetry of H is spontaneously
broken in the ground state by the nonzero values of ^Sj& ,
which are chosen to minimize the energy of H . We con-
sider only states without a net ferromagnetic moment
(S j^Sj&50), and this is expected because Jij.0. The
pattern of nonzero ^Sj& can survive down to S51/2, and
this is often found to be the case, although quantum
fluctuations do significantly reduce the magnitude of
^Sj&.

An especially important class of magnetically ordered
states2 is characterized by a single ordering wave vector
KW :

^Sj&5N1 cos~KW •rW j!1N2 sin~KW •rW j!, (6)

where rW j is the spatial location of the site j , and N1,2 are
two fixed vectors in spin space. We list two key subcat-
egories of magnetically ordered Mott insulators which
obey Eq. (6).

1An order that has been much discussed in the literature,
which we do not discuss here, is that associated with the stag-
gered flux state (Affleck and Marston, 1988), and the related
algebraic spin liquid (Rantner and Wen, 2001; Wen, 2002a).
The low-energy theory of these states includes a gapless U(1)
gauge field, and it has been argued (Sachdev and Park, 2002)
that instantons, which are allowed because the underlying lat-
tice scale theory has a compact gauge symmetry, always prolif-
erate and render these states unstable towards confining states
(of the type discussed in Sec. III.B.1) in two spatial dimen-
sions. However, states with a gapless U(1) gauge field are al-
lowed in three spatial dimensions (Motrunich and Senthil,
2002; Wen, 2002b).

2Magnetically ordered states with the values of ^Sj& noncopla-
nar (i.e., three-dimensional spin textures) are not included in
this simple classification. Their physical properties are ex-
pected to be similar to those of the noncollinear case discussed
in Sec. III.A.2 in that quantum fluctuations of such a state lead
to a paramagnet with topological order. However, this para-
magnet is likely to have also a broken time-reversal symmetry.
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1. Collinear spins, N13N250

In this situation, the mean values of the spins in Eq.
(6) on all sites j are either parallel or antiparallel to each
other. The undoped insulator La2CuO4 is of this type3

with KW 5(p ,p); see Fig. 3(a). Insulating states with
static holes appeared in Machida (1989), Poilblanc and
Rice (1989), Schulz (1989), and Zaanen and Gunnarsson
(1989) with ordering wave vectors which move continu-
ously away from (p,p). Another important illustrative
example is the case KW 5(3p/4,p). Such a wave vector
could be preferred in a Mott insulator by longer-range
Jij in Eq. (5), but in practice it is found in a noninsulat-
ing state obtained by doping La2CuO4 with a suitable
density of mobile carriers (Tranquada et al., 1995; Kivel-
son and Emery, 1996; Seibold et al., 1998; White and
Scalapino, 1998a, 1998b, 1999; Wakimoto et al., 1999,
2001; Martin et al., 2000)—we can crudely view the mo-
bile carriers as having induced an effective longer range
exchange between the spins. Two examples of states
with this value of KW are shown in Fig. 3, a site-centered
state with N250 in Fig. 3(b), and a bond-centered state
with N25(&21)N1 in Fig. 3(c). (The states have planes
of reflection symmetry located on sites and the centers

3For this special value of KW on the square lattice, and with the
origin of r co-ordinates on a lattice site, Eq. (6) is actually
independent of N2 .

FIG. 3. States with collinear magnetic order on a square lattice
with unit lattice spacing and wave vectors (a) KW 5(p ,p), (b)
and (c) KW 5(3p/4,p). Shown are the values of Eq. (6) on the
square lattice sites rj . A single unit cell is shown for the latter
two states; they are crystographically inequivalent and have
different reflection planes: in (b) the reflection planes are on
certain sites, while in (c) they are at the midpoint between two
sites.
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of bonds, respectively, and so are crystallographically in-
equivalent. Also, these inequivalent classes are only
present if the wave vector K is commensurate with the
underlying lattice.)

2. Noncollinear spins, N13N2Þ0

Now the spin expectation values in Eq. (6) lie in a
plane in spin space, rather than along a single direction.
For simplicity, we will only consider the simplest, and
most common, case of noncollinearly ordered state, in
which

N1•N250; N1
25N2

2Þ0, (7)

and then the values of ^Sj& map out a circular spiral
(Shraiman and Siggia, 1988, 1989), as illustrated in
Fig. 4.

B. Paramagnetic states

The other major class of states comprises those having

^Sj&50, (8)

and the ground state is a total spin singlet.4 Loosely
speaking each spin Sj finds a partner, say Sj8 , and the
two pair up to form a singlet valence bond

1

&
~ u↑& ju↓& j82u↓& ju↑& j8). (9)

Of course, there are many other choices for the partner
of spin Sj , and in the Feynman path integral picture we
imagine that the pairing configuration fluctuates in
quantum imaginary time; this is the ‘‘resonating valence
bond’’ picture of Pauling (1949), Fazekas and Anderson
(1974), and Anderson (1987). However, there is a great
deal of structure and information contained in the man-
ner in which this fluctuation takes place, and research
dilineating this structure (Read and Sachdev, 1991;

4In a finite system with an even number of spins, the magneti-
cally ordered ground state also has total spin zero. However, to
obtain a state which breaks spin rotation symmetry as in Eq.
(6), it is necessary to mix in a large number of nearly degen-
erate states which carry nonzero total spin. The paramagnetic
state does not have such higher spin states available at low
energy in a finite system.

FIG. 4. A state with noncollinear magnetic order on the
square lattice defined by Eqs. (6) and (7) with wave vector KW

5(3p/4,p).
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Sachdev and Read, 1991; Chubukov et al., 1994a, 1994b)
has led to the following classification of paramagnetic
Mott insulators.

1. Bond-ordered states: Confined spinons

This class of states can be easily understood by the
caricature of its wave function shown in Fig. 5: here each
spin has chosen its valence bond partner in a regular
manner, so that there is a long-range ‘‘crystalline’’ order
in the arrangement of valence bonds. This ordering of
bonds clearly breaks the square lattice space-group sym-
metries under which the Hamiltonian is invariant. Of
course, the actual wave function for any realistic Hamil-
tonian will have fluctuations in its valence bond configu-
ration, but the pattern of lattice symmetry breaking im-
plied by Fig. 5 will be retained in the true bond-ordered
ground state. We can make this precise by examining
observables which are insensitive to the electron-spin di-
rection: the simplest such observables we can construct
from the low-energy degrees of freedom of the Mott
insulator are bond variables, which are a measure of the
exchange energy between two spins:

Qa~rW j![Sj•Sj1a . (10)

Here a denotes displacement by the spatial vector rWa ,
and so the spins above are at the spatial locations rW j and
rW j1rWa . We will mainly consider bond order with rWaÞ0,
but note that the on-site variable Q0(rW j), with rWa50, is a
measure of the charge density5 on site rW j , and so this
special case of Eq. (10) measures the ‘‘charge order.’’

The state introduced in Fig. 5 can be characterized by
the pattern of values of ^Qa(rW j)& with rWa a nearest-
neighbor vector, as shown in Fig. 6(a): notice that there
are three distinct values of ^Qa(rW j)& and symmetries of
the states in Figs. 5 and 6(a) are identical. While these
three values are quite different in the trial state in Fig. 5,

5By Eq. (10), Q0(rW j)5Sj
2 . A site with a spin has Sj

253/4,
while a site with a hole has Sj

250, and we assume that doubly
occupied sites are very rare. Thus Sj

2 , and hence Q0(rW j), is
seen to be linearly related to the charge density on site j .

FIG. 5. A crude variational wave function of a bond-ordered
paramagnetic state. The true ground state will have fluctua-
tions of the singlet bonds about the configuration shown here,
but its pattern of lattice symmetry breaking will be retained. In
other words, each bond represented by an ellipse above will
have the same value of ^Qa(rW j)&, and this value will be distinct
from that associated with all other bonds. This pattern of sym-
metry breaking is represented more abstractly in Fig. 6(a).
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their values in the actual ground state may be quite close
to each other: it is only required that they not be exactly
equal.

Another closely related bond-ordered state, which has
appeared in some theories (Dombre and Kotliar, 1989;
Read and Sachdev, 1989a; Sachdev and Read, 1996; Alt-
man and Auerbach, 2002), is shown in Fig. 6(b): here the
bonds have a plaquettelike arrangement rather than co-
lumnar, but, as we shall discuss below, the physical prop-

FIG. 6. Pattern of the bond variables ^Qa(rW j)&, for rWa a
nearest-neighbor vector, in a number of paramagnetic states
with ^Sj&50. For each state, the values of ^Qa(rW j)& are equal
on bonds represented by the same type of line, and unequal
otherwise. The number of distinct values of ^Qa(rW j)& are (a) 3,
(b) 2, (c) 5, and (d) 5. The unit cells of the ground states have
sizes (a) 231, (b) 232, (c) 431, and (d) 434.
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erties of all the states in Fig. 6 are quite similar to each
other.

We can also consider patterns of bond order with
larger unit cells, and two important structures which
have appeared in theories of doped Mott insulators
(Vojta and Sachdev, 1999; Vojta, 2002) are shown in
Figs. 6(c) and 6(d) [related bond orders also appear in
studies of quasi-one-dimensional models appropriate to
organic superconductors (Mazumdar et al., 2000; Clay
et al., 2002)]. Again, as in Sec. III.A.1, such states could,
in principle, also appear in Mott insulators with longer-
range exchange in Eq. (5). An interesting property of
these states is that, unlike the states in Figs. 6(a) and
6(b), not all sites are crystallographically equivalent.
This means that on-site spin-singlet observables, such as
the site charge density, will also have a spatial modula-
tion from site to site. A subtlety is that the Hamiltonian
(5) acts on a Hilbert space of S51/2 spins on every site,
and so the charge density on each site is fixed at unity.
However, it must be remembered that Eq. (5) is an ef-
fective model derived from an underlying Hamiltonian
which does allow virtual charge fluctuations, and the site
charge modulations in the states of Figs. 6(c) and 6(d)
will appear when it is properly computed in terms of the
microscopic degrees of freedom. At the same time, this
argument also makes it clear that any such modulation is
suppressed by the repulsive Coulomb energy, and could
well be difficult to observe, even in the doped antiferro-
magnet. So the on-site variable, ^Q0(rW j)&5^Sj

2&, will
have a weak modulation in the states of Figs. 6(c) and
6(d) when computed in the full Hilbert space of the
model with charge fluctuations. Note, however, that the
modulation in bond orders associated with Qa(rW j), with
rWaÞ0, need not be small in the states in Fig. 6, as such
modulations are not suppressed as effectively by the
Coulomb interactions.

The physical mechanism inducing bond-ordered states
such as those in Fig. 6 is illustrated in Fig. 7. More de-
tailed computations rely on a semiclassical theory of
quantum fluctuations near a magnetically ordered state
(Read and Sachdev, 1990). Remarkably, very closely re-
lated theories also appear from a very different starting
point—from duality mappings (Fradkin and Kivelson,
1990; Read and Sachdev, 1990) of ‘‘quantum dimer mod-
els’’ (Rokhsar and Kivelson, 1988) of the paramagnetic
state. These computations show that spontaneous bond
order invariably appears in the ground state in systems
with collinear spin correlations in two spatial dimensions
(Read and Sachdev, 1990; Sachdev and Park, 2002). We
will have more to say about this connection between
bond and collinear spin order in Sec. III.C.1.

We also mention here the ‘‘nematic’’ states of Kivel-
son et al. (1998) in the doped Mott insulator. These can
also be characterized by the bond order variables in Eq.
(10). The symmetry of translations with respect to rW j is
not broken in such states, but the values of ^Qa(rW j)& for
symmetry-related values of rWa become unequal. For ex-
ample, ^Qa(rW j)& has distinct values for rWa5(1,0) and (0,
1). Such states also appear in certain insulating antifer-
romagnets (Read and Sachdev, 1989a, 1989b, 1990).
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It also interesting to note here that the bond order
variables Qa(rW j) also have spatial modulations in some
of the magnetically ordered states considered in Sec.
III.A (Zachar et al., 1998). It is clear from Eq. (10) that
any broken lattice symmetry in the spin-rotation invari-
ant quantity ^Sj&•^Sj1a& will generate a corresponding
broken symmetry in the bond variable ^Qa(rW j)&. Evalu-
ating the former using Eq. (6) we can deduce the follow-
ing: (i) the KW 5(p ,p) state in Fig. 3(a) and the spiral
state in Fig. 4 have ^Qa(rW j)& independent of rW j , and
hence no bond order; (ii) the bond-centered magneti-
cally ordered state in Fig. 3(c) has precisely the same
pattern of bond order as the paramagnetic state in Fig.
6(c); (iii) the site-centered magnetically ordered state in
Fig. 3(b) has bond order with ^Qa(rW j)& rW j dependent, but
with a pattern distinct from any shown here—this pat-
tern of bond order is in principle also allowed for para-
magnetic states, but has so far not been found to be
stable in various studies. Finally, note that in (ii) and (iii)
the period of the bond order (four) is half that of the
spin modulation (eight)—this is easily seen to be a gen-
eral relationship following from the correspondence
^Qa(rW j)&;^Sj&•^Sj1a&1¯ in magnetically ordered
states, which with Eq. (6) implies an rW j-dependent
modulation of the bond order with wave vector 2KW . It is
worth reiterating here that this last relationship should
not be taken to imply that there are no modulations in
^Qa(rW j)& when ^Sa&50: there can indeed be bond modu-
lations in a paramagnet, as discussed in the other para-
graphs of this subsection. As is already clear from the
simple wave function in Fig. 5, these will be important
later for physical applications.

FIG. 7. Bond order induced by quantum fluctuations. Valence
bonds gain energy by ‘‘resonating’’ in pairs (Pauling, 1949;
Fazekas and Anderson, 1974; Anderson, 1987; Rokhsar and
Kivelson, 1988); shown are resonances around the plaquette
(i.e., square loop) marked with a star. For the regular bond-
ordered configuration of valence bonds in (a), such resonance
can occur not only around the plaquette marked with a star,
but around five additional plaquettes. In contrast, in (b), such a
resonance is possible only around the plaquette marked with a
star. This additional quantum ‘‘entropy’’ associated with (a)
selects regular bond order in the ground state. More sophisti-
cated considerations (which also allow valence bonds that do
not connect nearest-neighbor sites) show that this mechanism
is especially effective in two dimensions (Read and Sachdev,
1990; Sachdev and Park, 2002).
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We continue our exposition of paramagnetic bond-
ordered states by describing excitations with nonzero
spin. These can be understood simply by the analog of
wave-function pictures drawn in Fig. 5. To create free
spins we have to break at least one valence bond, and
this initially creates two unpaired, neutral, S51/2 de-
grees of freedom (the ‘‘spinons’’). We can ask if the
spinons can be moved away from each other out to in-
finity, thus creating two neutral S51/2 quasiparticle ex-
citations. As illustrated in Fig. 8, this is not the case:
connecting the two spinons is a line of defect valence
bonds which are not properly aligned with the global
bond order, and these defects have a finite energy cost
per unit length. This linearly increasing potential is quite
analogous to that between a quark and an antiquark in a
meson, and the spinons (quarks) are therefore perma-
nently confined (Read and Sachdev, 1989b). Moving two
spinons apart from each other will eventually force the
breaking of the defect line by the creation of another
pair of spinons. The only stable excitation with nonzero
spin therefore consists of a pair of spinons and carries
spin S51. We will refer to this quasiparticle as a spin
exciton as its quantum numbers and observable charac-
teristics are quite similar to spin excitons found in semi-
conductors and metals. The spin exciton is clearly the
analog of a meson consisting of a quark and antiquark
pair.

A similar reasoning can be used to understand the
influence of static spinless impurities, i.e., the conse-
quences of removing a S51/2 spin from a fixed site j in
Eq. (5). Experimentally, this can be conveniently done
by substituting a spinless Zn21 ion in place of an S
51/2 Cu ion. The main physical effect can be under-
stood from the wave function illustrated in Fig. 9: it is
convenient to imagine placing two Zn impurities, and
then moving them apart out to infinity to deduce the
physics in the vicinity of a single impurity. As in our
discussion above for spinons, note that there will initially
be a line of defect valence bonds connecting the two Zn
impurities, but it will eventually pay to annihilate this
defect line by creating two spinons and binding each to a
Zn impurity. Thus each Zn impurity confines a free

FIG. 8. Linear confining potential between two neutral S
51/2 spinons in a bond ordered state. The line of valence
bonds with dashed lines is out of alignment with the global
bond order, and it costs a finite energy per unit length.
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S51/2 spinon in its vicinity, and this can be detected in
experiments (Finkelstein et al., 1990).6

2. Topological order: Free spinons

This type of paramagnet is the ‘‘resonating valence
bond’’ (RVB) state (Pauling, 1949; Fazekas and Ander-
son, 1974; Anderson, 1987; Kivelson et al., 1987; Baska-
ran and Anderson, 1988; Moessner and Sondhi, 2001) in
which the singlet pairings fluctuate in a liquidlike
configuration,7 in contrast to the crystalline arrangement
in Fig. 5. Despite the apparent ‘‘disorder’’ in the valence
bond configuration in the ground state, there is actually
a subtle topological order parameter which characterizes
this type of Mott insulator (Thouless, 1987; Rokhsar and
Kivelson, 1988; Bonesteel, 1989; Kivelson, 1989; Read
and Chakraborty, 1989; Read and Sachdev, 1991; Wen,
1991) and which plays an important role in determining
its excitation spectrum. The reader can see this in the
context of the illustration shown in Fig. 10. Count the
number of singlet valence bonds cutting the dashed line
in this figure: this number will clearly depend upon the
particular valence bond configuration chosen from the
many present in the ground state, and one such is shown
in Fig. 10. However, as argued in the figure caption, the

6In principle the Zn impurity could also bind an electron
(with or without a spinon), but this is suppressed by the charge
gap in a Mott insulator. Later, in Sec. IV.C when we consider
Zn impurities in d-wave superconductors, a related phenom-
enon appears in the form of the Kondo effect.

7In recent years, Anderson (2002) has extended the RVB
concept to apply to doped Mott insulators at temperatures
above Tc . This extension is not in consonance with the classi-
fication of the present Colloquium. The topological order dis-
cussed in this subsection can only be defined at T50 in two
spatial dimensions. The description at T.Tc requires solution
of a problem of quantitative difficulty, and with incoherent ex-
citations, but without sharp distinctions between different
states.

FIG. 9. Wave function for two static spinless Zn impurities in a
confining, bond ordered state. It we attempt to construct a
wave function using only singlet valence bonds, then, just as in
Fig. 8, there will be defect line of singlet bonds which are not
aligned with the global bond order, which will cost a finite
energy per unit length. When the two Zn impurities are suffi-
ciently far apart, it will pay to restore the bond order in be-
tween the impurities, at the price of unpaired S51/2 moments,
one near each impurity.
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number of bonds cutting the dashed line is conserved
modulo 2 between any two configurations which differ
only by local rearrangements of valence bonds: the
quantum number associated with this conservation is the
topological order in the ground state.

A convenient and powerful description of this topo-
logical order is provided by an effective model of the
singlet sector formulated as Z2 gauge theory (Read and
Sachdev, 1991; Sachdev and Read, 1991; Wen, 1991;
Senthil and Fisher, 2000).8 We postpone a self-contained
derivation of this Z2 gauge theory to Sec. III.C.2 (see
especially Fig. 11): here, we show that such a gauge
theory has similar topological properties. In a system
with periodic boundary conditions (with the topology of
a torus), the Z2 gauge theory has different sectors de-
pending upon whether there is a Z2 flux piercing any of
the holes of the torus [following Senthil and Fisher

8Readers not familiar with Z2 gauge theories may understand
them by analogy to electromagnetism. The latter is a U(1)
gauge theory in which the physics is invariant under the trans-
formation z→eifz , Am→Am2]mf where z is some matter
field, Am is a gauge field, and f is an arbitrary spacetime-
dependent field which generates the gauge transformation.
Similarly, in a Z2 gauge theory, matter fields transform as z
→hz , where h is a spacetime-dependent field which generates
the gauge transformation, but is now allowed to take only the
values h561. The Z2 gauge field s ij resides on the links of a
lattice, and transforms as s ij→h is ijh j .

FIG. 10. Topological order in a resonating valence bond state.
Shown is one component of the wave function, with a particu-
lar pairing of the spins into local singlets: the actual wave func-
tion is a superposition over a very large number of such pairing
configurations. The number of valence bonds cutting the
dashed line is an invariant modulo 2 over these pairing con-
figurations, as shown by the following simple argument. Any
rearrangement of the valence bonds can be reached by re-
peated application of an elementary rearrangement between
four spins: (1,2)(3,4)→(1,3)(2,4) [here (i ,j) denotes a singlet
bond between Si and Sj]. So it is sufficient to check this con-
servation law for four spins: this is done easily by explicitly
considering all different possibilities among spins 1,2,3,4 resid-
ing to the left/right of the dashed line. If the system has peri-
odic boundary conditions along the horizontal direction, then
this conservation law is violated, but only by rearrangements
associated with loops which circumnavigate the systems; these
only occur with a probability which becomes exponentially
small as the circumference of the system increases.
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(2000), this Z2 flux is now commonly referred to as a
‘‘vison’’]. In the valence bond picture discussed in the
previous paragraph, a vison changes the sign associated
with every valence bond cutting a line traversing the
system in the vison direction (the dashed line in Fig. 9);
in other words, the even and odd valence bond sectors
mentioned above now have their relative signs in the
wave function changed.

In addition to appearing in the holes of the torus, the
vison can also appear as a singlet excitation within the
bulk (Kivelson, 1989; Read and Chakraborty, 1989;
Read and Sachdev, 1991; Senthil and Fisher, 2000). It is
now a vortex excitation in the Z2 gauge theory that re-
quires a finite energy for its creation. We will see below
in Sec. III.C.2 that there is an alternative, and physically
revealing, interpretation of this vortex excitation in
terms of the order parameters used earlier to character-
ize the magnetically ordered state, and that the topologi-
cal order is intimately connected to the vison energy
gap.

Finally, we can describe the spin-carrying excitations
of this topologically ordered state using the crude, but
instructive, methods used in Sec. III.B.1. As there is no
particular bond order associated with the ground state,
the spinons have no confining force between them, and
are perfectly free to travel throughout the system as in-
dependent neutral S51/2 quasiparticles. Similarly, there
is no confining force between Zn impurities and the
spinons, and so it is not required that an S51/2 moment
be present near each Zn impurity (Sachdev and Vojta,
2000; Fendley et al., 2002).

C. Connections between magnetically ordered and
paramagnetic states

A central ingredient in the reasoning of this Collo-
quium is the claim that there is an intimate connection

FIG. 11. A vison (Senthil and Fisher, 2000). On the left we
show a circular path in real space; this path could be entirely
within the bulk of the system (in which case it defines a local
vison excitation) or it encircles the entire system, which obeys
periodic boundary conditions (so that now it defines a global
topological excitation). On the right is the space of magneti-
cally ordered states represented by the complex spinor (z↑ ,z↓)
up to an overall sign. As we traverse the real space circle, the
path in order parameter space connects polar opposite points
on S3 (A and B), which are physically indistinguishable. A key
point is that this vison excitation can be defined even in a state
in which magnetic order is lost: the path on the right will fluc-
tuate all over the sphere in quantum imaginary time, as will the
location of the points A and B, but A and B will remain polar
opposites.
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between the magnetically ordered states in Sec. III.A
and a corresponding paramagnetic state in Sec. III.B. In
particular, the collinear states of Sec. III.A.1 are linked
to the bond-ordered states in Sec. III.B.1, while the non-
collinear states of Sec. III.A.2 are linked to the topologi-
cally ordered states of Sec. III.B.2. The reader will find a
more technical discussion of the following issues in a
companion review article by the author (Sachdev, 2003).

Before describing these links in the following subsec-
tions, we discuss the meaning of the ‘‘connectedness’’ of
two states. The magnetically ordered phases are charac-
terized by simple order parameters that we have dis-
cussed in Sec. III.A. Now imagine a second-order quan-
tum phase transition in which the magnetic long-range
order is lost, and we reach a state with fluctuating mag-
netic correlations, which is ultimately a rotationally in-
variant, spin-singlet paramagnet at the longest length
scales. We will review arguments below which show that
this ‘‘quantum disordered’’ state (Chakravarty et al.,
1989) is characterized by the order parameter of the
connected paramagnetic state, i.e., fluctuating collinear
magnetic order leads to bond order, while fluctuating
noncollinear magnetic order can lead to topological or-
der. So two connected states are generically proximate
to each other, without an intervening first-order transi-
tion, in a generalized phase diagram drawn as a function
of the couplings present in the Hamiltonian.

1. Collinear spins and bond order

It should be clear from Sec. III.A.1 that collinear spin
states are characterized by a single vector N1 . The sec-
ond vector N2 is pinned to a value parallel to N1 by
some short-distance physics, and at long distances we
may consider a theory of the fluctuations of N1 alone. In
a phase with magnetic order, the dominant spin-wave
fluctuations occur in configurations with a fixed nonzero
value of uN1u. In the transition to a nonmagnetic phase,
the mean value of uN1u will decrease, until the fluctua-
tions of N1 occur about N150 in a paramagnetic phase.
There are three normal modes in this fluctuation spec-
trum, corresponding to the three directions in spin
space, and the resultant is an S51 gapped quasiparticle
excitation in the paramagnetic state. This we can easily
identify as the S51 spin exciton of the bond-ordered
state: this identification is evidence supporting our
claimed connection between the states of Secs. III.A.1
and III.B.1.

Further evidence is provided by detailed computa-
tions which show the appearance of bond order in the
regime where N1 fluctuations have lost their long-range
order. We have already seen a simple example of this
above in that the magnetically ordered state in Fig. 3(c)
already had the bond order of the paramagnetic state in
Fig. 6(c): it is completely natural for the bond order in
the magnetically ordered phase in Fig. 3(c) to persist
across a transition in which spin rotation invariance is
restored, and this connects it to the state in Fig. 6(c). A
nontrivial example of a related connection is that be-
tween the KW 5(p ,p) Néel state in Fig. 3(a), and the
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paramagnetic bond-ordered states in Figs. 6(a) and (b),
which was established by Read and Sachdev (1989b,
1990) and Sachdev and Park (2002): Berry phases asso-
ciated with the precession of the lattice spins were
shown, after a duality mapping, to induce bond order in
the phase in which long-range order in N1 was lost.

2. Noncollinear spins and topological order

The first argument of Sec. III.C.1, when generalized to
noncollinear spins, leads quite simply to a surprisingly
subtle characterization of the associated paramagnetic
phase.

Recall from Sec. III.A.2 that the noncollinear mag-
netic phase is characterized by two orthogonal, and
equal length, vectors N1,2 . It takes six real numbers to
specify two vectors, but the two constraints in Eq. (7)
reduce the number of real parameters required to
specify the ordered state to 4. There is a useful param-
etrization (Chubukov et al., 1994a, 1994b) which explic-
itly solves the constraints (7) by expressing N1,2 in terms
of two complex numbers z↑ ,z↓ (which are equivalent to
the required four real numbers):

N11iN25S z↓
22z↑

2

i~z↑
21z↓

2!

2z↑z↓
D . (11)

It can also be checked from Eq. (11) that (z↑ ,z↓) trans-
forms like an S51/2 spinor under spin rotations. So in-
stead of dealing with a constrained theory of N1,2 fluc-
tuations, we can express the theory in terms of the
complex spinor (z↑ ,z↓), which is free of constraints.
There is one crucial price we have to pay for this simpli-
fication: notice that the parametrization (11) is double
valued and that the spinors (z↑ ,z↓) and (2z↑ ,2z↓)
both correspond to the same noncollinearly ordered
state. Indeed, we can change the sign of z independently
at different points in spacetime without changing the
physics, and so any effective action for the (z↑ ,z↓)
spinor must obey a Z2 gauge invariance. Here is our first
connection with the topologically ordered paramagnetic
state of Sec. III.B.2, where we had also discussed a de-
scription by a Z2 gauge theory.

In the magnetically ordered noncollinear state we ex-
pect dominant rotational fluctuations about some fixed
nonzero value N1

25N2
25(uz↑u21uz↓u2)2. The constraint

uz↑u21uz↓u25const defines the surface of a sphere in a
four-dimensional space (S3) of magnetically ordered
ground states defined by the real and imaginary compo-
nents of z↑ ,z↓ . However, we need to identify opposite
points on the sphere with each other, as (z↑ ,z↓) and
(2z↑ ,2z↓) are equivalent states: this identifies the or-
der parameter space with S3 /Z2 . This quotient form has
crucial consequences for the topological defect excita-
tions that are permitted in both the magnetically or-
dered and the paramagnetic phases. In particular, the
order parameter space [see the review article by Mermin
(1979)] allows stable Z2 vortices associated with the first
homotopy group p1(S3 /Z2)5Z2 : upon encircling such
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a vortex, we traverse a path in the order parameter
space from (z↑ ,z↓) to (2z↑ ,2z↓), as shown in Fig. 11.
As argued in the caption, a fundamental point is that
such vortices can be defined as sensible excitations even
in the paramagnetic phase, where (z↑ ,z↓) is strongly
fluctuating in quantum imaginary time: upon encircling
the vortex, the path in order parameter space will also
strongly fluctuate, but will always connect polar opposite
points on S3 . We identify these paramagnetic vortices
with the visons of Sec. III.B.2, thus firmly establishing a
connection between noncollinear magnetic order and
the topologically ordered paramagnet.

Finally, we wish to consider a Z2 gauge theory in
which magnetic order is lost continuously (Read and
Sachdev, 1991; Chubukov et al., 1994b), and we obtain a
paramagnetic phase in which the spinor (z↑ ,z↓) fluctu-
ates about 0. A pedagogical description of such a theory
was provided by Lammert et al. (1993, 1995) in an en-
tirely different context: they considered thermal phase
transitions in a nematic liquid crystal, with order param-
eter S2 /Z2 , in three spatial dimensions. However, their
results can be transposed to the quantum phase transi-
tion in two spatial and one imaginary time dimension of
interest here, with the primary change being in the order
parameter space from S2 /Z2 to S3 /Z2 : this change is
only expected to modify uninteresting numerical factors
in the phase diagram, as the global topologies of the two
spaces are the same. As shown by Lammert et al. (1993,
1995), the magnetically ordered state (with states la-
beled by points in S2,3 /Z2) does indeed undergo a con-
tinuous phase transition to a paramagnetic state in
which spin rotation invariance is restored and a topo-
logical order is present. This topological order arises be-
cause the Z2 visons discussed in Fig. 11 do not prolifer-
ate in the paramagnetic state; in this sense, the
topological order here is similar to the topological order
in the low-temperature phase of the classical XY model
in two dimensions, where point vortices are suppressed
below the Kosterlitz-Thouless transition (Thouless,
1998). We can also connect the nonproliferation of vi-
sons to our discussion in Sec. III.B.2, where we noted
that there was an excitation gap towards the creation of
Z2 visons (Senthil and Fisher, 2000). Indeed, an explicit
connection between the topological order being dis-
cussed here and the topological order noted in the cap-
tion to Fig. 10 was established by Read and Sachdev
(1991), Sachdev and Read (1991), and Chubukov et al.
(1994b).

Moreover, without the proliferation of visons in the
ground state, the (z↑ ,z↓) configurations can be defined
as single-valued configurations throughout the sample.
Normal-mode oscillations of (z↑ ,z↓) about zero can
now be identified as a neutral S51/2 particle. This is
clearly related to the spinon excitation of Sec. III.B.2;
this is our final confirmation of the intimate connection
between the noncollinear magnetic states of Sec. III.A.2
and the topologically ordered states of Sec. III.B.2.

This is a good point at which to mention, in passing,
recent neutron scattering evidence for a RVB state in
Cs2CuCl4 (Coldea et al., 2001); the measurements also
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show noncollinear spin correlations, consistent with the
connections being drawn here.

IV. ORDER IN STATES PROXIMATE TO MOTT
INSULATORS

We are now ready to discuss the central issue of order
parameters characterizing the cuprate superconductors.
These superconductors are obtained by introducing mo-
bile charge carriers into the Mott insulator of the square
lattice of Cu ions that was discussed at the beginning of
Sec. III. The charge carriers are introduced by substitu-
tional doping. For instance, in the compound
La22dSrdCuO4 , each trivalent La31 ion replaced by a
divalent Sr21 ion causes one hole to appear in the Mott
insulator of Cu ions: the concentration of these holes is d
per square lattice site.

For large enough d, theory and experiment both indi-
cate that such a doped Mott insulator is a d-wave super-
conductor characterized by the pairing amplitude (2).
The reader can gain an intuitive (but quite crude and
incomplete) understanding of this by the similarity be-
tween the real-space, short-range pair in Eq. (9) and the
momentum-space, long-range pairing in Eq. (2). The un-
doped Mott insulator already has electrons paired into
singlet valence bonds, as in Eq. (9), but the repulsive
Coulomb energy of the Mott insulator prevents motion
of the charge associated with this pair of electrons. It
should be clear from our discussion in Sec. III.B that this
singlet pairing is complete in the paramagnetic Mott in-
sulators, but we can also expect a partial pairing in the
magnetically ordered states. Upon introducing holes
into the Mott insulator, it becomes possible to move
charges around without any additional Coulomb energy
cost, and so the static valence bond pairs in Eq. (9)
transmute into the mobile Cooper pairs in Eq. (2); the
condensation of these pairs leads to superconductivity.
Note that this discussion is concerned with the nature of
the ground-state wave function, and we are not implying
a ‘‘mechanism’’ for the formation of Cooper pairs.

The discussion in the previous sections has laid the
groundwork for a more precise characterization of this
superconductor using the correlations of various order
parameters, and of their interplay with each other. The
proximity of the Mott insulator indicates that the Coo-
per pairs should be considered descendants of the real-
space, short-range pairs in Eq. (9), and this clearly de-
mands that all the magnetic, bond and topological order
parameters discussed in Sec. III remain viable candi-
dates for the doped Mott insulator. The motion of
charge carriers allows for additional order parameters,
and the most important of these is clearly the supercon-
ducting order of the BCS state noted below Eq. (2) in
Sec. II. In principle, it is also possible to obtain new
order parameters which are characteristic of neither the
BCS state nor a Mott insulator, but we shall not discuss
such order parameters here; discussions of one such or-
der may be found in Hsu et al. (1991), Wen and Lee
(1996), Chakravarty et al. (2001), Lee and Sha (2003),
and Schollwöck et al. (2003).
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The arsenal of order parameters associated with Mott
insulators and the BCS state permits a very wide variety
of possible phases of doped Mott insulators, and of
quantum phase transitions between them. Further
progress requires experimental guidance, but we claim
that valuable input is also obtained from the theoretical
connections sketched in Sec. III.C.

The simplest line of reasoning (Sachdev and Read,
1991) uses the fact that the undoped Mott insulator
La2CuO4 has collinear magnetic order, as sketched in
Fig. 3(a). The arguments above and those in Sec. III.C
then imply that the doped Mott insulator should be char-
acterized by the collinear magnetic order of Sec. III.A.1,
the bond order of Sec. III.B.1, along with the phase or-
der of BCS theory. This still permits a large variety of
phase diagrams, and some of these were explored in
Sachdev and Read (1991), Vojta and Sachdev (1999),
Vojta et al. (2000a), and Vojta (2002), with detailed re-
sults on the evolution of bond order and superconduc-
tivity with increasing doping. However, this reasoning
excludes phases associated with the noncollinear mag-
netic order of Sec. III.A.2 and the topological order of
Sec. III.B.2.

Some support for this line of reasoning came from the
breakthrough experiments of Tranquada et al. (1995,
1996, 1997) on La22y2dNdySrdO4 for hole concentra-
tions near d51/8: they observed static, collinear mag-
netic order near the wave vectors KW 5(3p/4,p) shown in
Figs. 3(b) and 3(c), which coexisted microscopically9

with superconductivity for most d. They also observed
modulations in the bond order Qa(rW j) [Eq. (10)] at the
expected wave vector 2KW . The experimentalists inter-
preted their observations in terms of modulations of the
site charge density—proportional to Q0(rW j)—but the ex-
isting data actually do not discriminate between the dif-
ferent possible values of rWa . As we noted earlier in Sec.
III.B.1, the physical considerations of the present Collo-
quium suggest that the modulation may be stronger with
rWaÞ0. [The existing data also cannot distinguish between
the magnetic orders in Fig. 3(b) (site centered) and Fig.
3(c) (bond centered), or between the bond orders in Fig.
6(c) (orthorhombic symmetry) and Fig. 6(d) (tetragonal
symmetry).] We also mention here the different physical
considerations in the early theoretical work of Machida
(1989), Poilblanc and Rice (1989), Schulz (1989), and
Zaanen and Gunnarsson (1989), which led to insulating
states with collinear magnetic order with wave vector
KW Þ(p ,p) driven by a large site-charge density modula-
tion in the domain walls of holes.

The following subsections discuss a number of recent
experiments which explore the interplay between the or-
der parameters we have introduced here. We argue that
all of these experiments support the proposal that the
cuprate superconductors are characterized by interplay

9The microscopic coexistence of magnetic order and super-
conductivity is not universally accepted, but strong arguments
in its favor have been made recently by Khaykovich et al.
(2002).
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between the collinear magnetic order of Sec. III.A.1, the
bond order of Sec. III.B.1 (these are connected as dis-
cussed in Sec. III.C.1), and the superconducting order of
BCS theory.

A. Tuning order by means of a magnetic field

In Sec. I, we identified a valuable theoretical tool for
the study of systems with multiple order parameters: use
a coupling g to tune the relative weights of static or
fluctuating order parameter correlations in the ground
state. Is such a coupling available experimentally? One
choice is the hole concentration d, and we can assume
here that g increases monotonically with d. However, d
is often difficult to vary continuously, and it may be that
sampling the phase diagram along this one-dimensional
axis may not reveal the full range of physically relevant
behavior. A second tuning parameter will be clearly
valuable; here we argue that, under suitable conditions,
this is provided by a magnetic field applied perpendicu-
lar to the two-dimensional layers.

Consider the case where both phases in Fig. 1 are su-
perconducting; the phase with g,gc then has co-
existence of long-range order in superconductivity and a
secondary order parameter. We also restrict attention to
the case where the transition at g5gc is second order
(related results apply also to first-order transitions, but
we do not discuss them here). Imposing a magnetic field
H on these states will induce an inhomogeneous state,
consisting of a lattice of vortices surrounded by halos of
superflow (we assume here that H.Hc1 , the lower criti-
cal field for flux penetration). In principle, we now need
to study the secondary order parameter in this inhomog-
enous background, which can be a problem of some
complexity. However, it was argued by Demler et al.
(2001) and Zhang et al. (2002) that the problem simpli-
fies considerably near the phase boundary at g5gc . Be-
cause of the diverging correlation length associated with
the secondary order parameter, we need only look at the
spatially averaged energy associated with the relevant
order parameters. Evidence that the primary effect of a
magnetic field is a spatially uniform modification of the
magnetic order has appeared in recent muon spin reso-
nance experiments (Sonier et al., 2003; Uemura, 2003).
We know from the standard theory of the vortex lattice
in a BCS superconductor (Parks, 1969) that the energy
density of the superconducting order increases by the
fraction ;(H/Hc2)ln(Hc2 /H), where Hc2@Hc1 is the
upper critical field above which superconductivity is de-
stroyed. Let us make the simple assumption that this
change in energy of the superconducting order can also
be characterized by a change in the coupling constant g .
We can therefore introduce an effective coupling geff(H)
given by

geff~H !5g2C8S H

Hc2
D lnS Hc2

H D , (12)

where C8 is some constant of order unity. As g is linearly
related to d, we can also rewrite this expression in terms
of an effective doping concentration deff(H),

deff~H !5d2CS H

Hc2
D lnS Hc2

H D , (13)
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where C is some other constant. These expressions imply
that we tune through different values of g or d simply by
varying the applied magnetic field.

The sign of C is of some physical importance, and can
be deduced by a simple argument. It is observed that in
the lightly doped cuprates, decreasing d leads to a stabi-
lization of an order associated with the Mott insulator at
the expense of the superconducting order. (There is a
nonmonotonic dependence on d from commensurability
effects near d51/8, but here too the magnetic order is
stabilized at the expense of superconductivity.) As in-
creasing H clearly suppresses the superconducting order,
it must be the case that deff(H) decreases with increasing
H . This implies that C.0, and indicates a competition
(Tranquada et al., 1997) between the two ground states,
or order parameters, on either side of the quantum criti-
cal point (Chubukov, Sachdev, and Ye, 1994; Zhang,
1997; Sachdev, 2000).

The relationships (12) and (13) can be combined with
Fig. 1 to produce a phase diagram in the (g ,H) [or
(d ,H)] plane. This is shown in Fig. 12. Notice that the
phase boundary comes into the g5gc ,H50 point with
vanishing slope. This implies that a relatively small field
is needed in the g.gc region to tune a BCS supercon-
ductor across a quantum phase transition into a state
with long-range correlations in the secondary order pa-
rameter. There are also some interesting modifications
to Fig. 12 in the fully three-dimensional model which
accounts for the coupling between adjacent CuO2 layers;
these are discussed by Kivelson, Lee, et al. (2002).

A number of neutron scattering studies of the physics
of Fig. 12 in doped La2CuO4 have recently appeared.
The secondary order parameter here is the collinear
magnetic order of Figs. 3(b) and 3(c), which is also
observed in La22y2dNdySrdO4 as discussed above. Ear-
lier, a series of beautiful experiments by Lee et al. (1999)
and Wakimoto et al. (1999, 2001) established that

FIG. 12. Phase diagram in the g ,H plane deduced from Eq.
(12). The phase boundary is determined by setting geff(H)
5gc , which leads to a phase boundary at a critical field H
;(g2gc)/ln@1/(g2gc)# . We assume that g is a monotonically
increasing function of d. The collinear magnetic order of Figs.
3(b) and 3(c) is the secondary order parameter investigated in
recent neutron-scattering experiments in doped La2CuO4 : the
observations of Lake et al. (2001) are along the arrow A, and
those of Katano et al. (2000), Khaykovich et al. (2002), Lake
et al. (2002), and Khaykovich et al. (2003) are along the arrow
B. The STM experiments of Hoffman, Hudson, et al. (2002),
Hoffman, McElroy, et al. (2002), Howald et al. (2002), Howald
et al. (2003) are along arrow C, and will be discussed in Sec.
IV.D.
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La22dSrdCuO4 has long-range, collinear magnetic order
coexisting with superconductivity for a range of d values
above d50.055. Moreover, the anomalous frequency
and temperature dependence of the dynamic spin struc-
ture factor (Sachdev and Ye, 1992; Chubukov, Sachdev,
and Ye, 1994) in neutron-scattering experiments by
Aeppli et al. (1997) gave strong indications of a second-
order quantum phase transition near d'0.14 at which
the magnetic order vanished. We identify this transition
with the point g5gc ,H50 in Fig. 12. Recent studies
have explored the region with H.0: Lake et al. (2001)
observed a softening of a collective spin excitation mode
at d50.163 in the presence of an applied magnetic field.
We interpret this as a consequence of the low H ap-
proach to the phase boundary in Fig. 12 in the g.gc
region, as indicated by the arrow labeled A . Notice that
the field was not large enough to cross the phase bound-
ary.

A separate set of experiments have examined the H
dependence of the static magnetic moment in the super-
conductor with g,gc in La22dSrdCuO4 (Katano et al.,
2000; Lake et al., 2002) and La2CuO41y (Khaykovich
et al., 2002, 2003), along the arrow indicated by B in Fig.
12. The theoretical prediction (Demler et al., 2001;
Zhang et al., 2002) for these experiments is a simple con-
sequence of Eqs. (12) and (13). Let I(H ,d) be the ob-
served intensity of the static magnetic moment associ-
ated with the order in Figs. 3(b) and 3(c) at a field H and
doping d. If we assume that the dominant effect of the
field can be absorbed by replacing d by the effective
deff(H), we can write

I~H ,d!'I@H50,deff~H !#

'I~H50,d!1DS H

Hc2
D lnS Hc2

H D , (14)

where in the second expression we have used Eq. (13)
and expanded in powers of the second argument of I .
Reasoning as in the text below Eq. (13) for C, we use the
experimental fact that a decrease in d leads to an in-
crease in the magnetic order, and hence D.0. The re-
sults of recent experiments (Khaykovich et al., 2002,
2003; Lake et al., 2002) are in good agreement with the
prediction (14), with a reasonable value for D obtained
by fitting Eq. (14) to the experimental data.

B. Detecting topological order

The magnetic and bond orders break simple symme-
tries of the Hamiltonian, and, at least in principle, these
can be detected by measurement of the appropriate two-
point correlation function in a scattering experiment.
The topological order of Secs. III.B.2 and III.C.2 is a far
more subtle characterization of the electron wave func-
tion, and can only be observed indirectly through its
consequences for the low-energy excitations. We review
here the rationale behind some recent experimental
searches (Bonn et al., 2001; Wynn et al., 2001) for topo-
logical order.
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The searches relied on a peculiar property of a super-
conductor proximate to a Mott insulator with topologi-
cal order: there is a fundamental distinction in the inter-
nal structure of vortices in the superconducting order,
specified by Eq. (3), which depends on whether the in-
teger nv is even or odd. This difference was noted (Na-
gaosa and Lee, 1992; Sachdev, 1992) in the context of a
simple mean-field theory of a superconductor near an
insulating spin gap state. However, the significance and
interpretation of the mean-field result, and in particular
its connection with topological order, did not become
apparent until the far-reaching work of Senthil and
Fisher (2000, 2001a, 2001b). The arguments behind the
dependence on the parity of nv are subtle, and only an
outline will be sketched here—the reader is referred to
Senthil and Fisher (2001a, 2001b) for a complete expo-
sition. Although the superconducting order of BCS
theory in Eq. (2) and the topological order of the Mott
insulator are quite distinct entities, there is an important
connection between them in the superconducting state:
each vortex with nv odd in Eq. (3) has a vison attached
to it. The vison gap in the proximate Mott insulator then
increases the energy required to create nv odd vortices,
while this extra energy is not required for nv even.

The connection between nv odd vortices and visons is
most transparent for the case where the spinons in the
Mott insulator obey fermionic statistics. We considered
bosonic spinons zs in Sec. III.C.2, but they can trans-
mute into fermions by binding with a vison (Kivelson,
1989; Read and Chakraborty, 1989; Demler et al., 2002):
we represent the fermionic spinon by f js . In the doped
Mott insulator, each electron annihilation operator cjs
must create at least one neutral S51/2 spinon excitation,
along with a charge e hole (Kivelson et al., 1987), and we
can represent this schematically by the operator relation

cjs5bj
†f js , (15)

where bj
† creates a bosonic spinless hole. In this picture

of the doped Mott insulator, the presence of supercon-
ductivity as in Eq. (2) requires both the condensation of
the bj , along with the condensation of ‘‘Cooper pairs’’
of the spinons f js . We can deduce this relationship from
Eqs. (2) and (15) which imply, schematically

D05D fb
2, (16)

where we have ignored spatial dependence associated
with the internal wave function of the Cooper pair
[hence there are no site subscripts j in Eq. (16)], and
D f;^f j↑f j8↓& is the spinon pairing amplitude. From Eq.
(16) we see that if the phase of bj increases by 2p upon
encircling some defect site, then the phase of D0 will
increase by 4p , and this corresponds to a vortex in the
superconducting order with nv52 in Eq. (3). Indeed, the
only way Eq. (16) can lead to an elementary vortex with
nv51 is if the phase of the spinon pair amplitude D f
increases by 2p upon encircling the vortex: the latter is
another description of a vison (Senthil and Fisher, 2000).
This argument is easily extended to show that every odd
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nv vortex must be associated with at least an elementary
vortex in the phase of D f , thus establishing our claimed
connection.

Sufficiently close to the Mott insulator, and near a
second-order superconductor-insulator transition, the
energy required to create a vison raises the energy of
nv51 vortices, and the lowest energy vortex lattice state
in an applied magnetic field turns out to have vortices
with flux hc/e , which is twice the elementary flux (Sach-
dev, 1992). This should be easily detectable, but such
searches have not been successful so far (Wynn et al.,
2001).

More recently Senthil and Fisher (2001a) have pro-
posed an ingenious test for the presence of visons, also
relying on the binding of a vison to a vortex with flux
hc/(2e). Begin with a superconductor in a toroidal ge-
ometry with flux hc/(2e) penetrating the hole of the
torus. By the arguments above, a vison is also trapped in
the hole of the torus. Now by changing either the tem-
perature or the doping level of the superconductor, drive
it into a normal state. This will allow the magnetic flux
to escape, but the topological order in the bulk will con-
tinue to trap the vison. Finally, return the system back to
its superconducting state, and, quite remarkably, the vi-
son will cause the magnetic flux to reappear. An experi-
mental test for this ‘‘flux memory effect’’ has also been
undertaken (Bonn et al., 2001), but no such effect has
yet been found.

So despite some innovative and valuable experimental
tests, no topological order has been detected so far in
the cuprate superconductors.

C. Nonmagnetic impurities

We noted in Sec. III.B.1 that one of the key conse-
quences of the confinement of spinons in the bond or-
dered paramagnet was that each nonmagnetic impurity
would bind a free S51/2 moment. In contrast, in the
topologically ordered RVB states of Sec. III.B.2, such a
moment is not generically expected, and it is more likely
that the ‘‘liquid’’ of valence bonds would readjust itself
to screen away the offending impurity without releasing
any free spins.

Moving to the doped Mott insulator, we then expect
no free S51/2 moment for the topologically ordered
case. The remaining discussion here is for the confining
case; in this situation the S51/2 moment may well sur-
vive over a finite range of doping, beyond that required
for the onset of superconductivity. Eventually, at large
enough hole concentrations, the low-energy fermionic
excitations in the d-wave superconductor will screen the
moment (by the Kondo effect) at the lowest tempera-
tures. However, unlike the case of a Fermi liquid, the
linearly vanishing density of fermionic states at the
Fermi level implies that the Kondo temperature can be
strictly zero for a finite range of parameters (Withoff
and Fradkin, 1990; Gonzalez-Buxton and Ingersent,
1998; Vojta and Bulla, 2002). So we expect each non-
magnetic impurity to create a free S51/2 moment that
survives down to T50 for a finite range of doping in a
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d-wave superconductor proximate to a confining Mott
insulator. The collinear magnetic or bond order in the
latter insulator may also survive into the superconduct-
ing state, but there is no fundamental reason for the
disappearance of these long-range orders (bulk quantum
phase transitions) to coincide with the zero-temperature
quenching of the moment (an impurity quantum phase
transition).

A very large number of experimental studies of non-
magnetic Zn and Li impurities have been carried out.
Early on, in electron paramagnetic resonance experi-
ments Finkelstein et al. (1990) observed the trapping of
an S51/2 moment near a Zn impurity above the super-
conducting critical temperature; they also noted the im-
plication of their observations for the confinement of
spinons, in the spirit of our discussion above. Subse-
quent specific heat and nuclear-magnetic-resonance ex-
periments (Alloul et al., 1991; Julien et al., 2000; Sisson
et al., 2000; Bobroff et al., 2001) have also explored low
temperatures in the superconducting state, and find evi-
dence of spin moments, which are eventually quenched
by the Kondo effect in the large doping regime. Espe-
cially notable is the recent nuclear-magnetic-resonance
evidence (Bobroff et al., 2001) for a transition from a
T50 free moment state at low doping, to a Kondo
quenched state at high doping.

We interpret these results as strong evidence for the
presence of an S51/2 moment near nonmagnetic impu-
rities in the lightly doped cuprates. We have also argued
here, and elsewhere (Sachdev and Vojta, 2000), that the
physics of this moment formation is most naturally un-
derstood in terms of the physics of a proximate Mott
insulator with spinon confinement.

The creation of a free magnetic moment (with a local
magnetic susceptibility which diverges as ;1/T as T
→0) near a single impurity implies that the cuprate su-
perconductors are exceptionally sensitive to disorder.
Other defects, such as vacancies, dislocations, and grain
boundaries, which are invariably present even in the
best crystals, should also have similar strong effects. We
speculate that it is this tendency to produce free mo-
ments (and local spin order which will be induced in
their vicinity) which is responsible for the frequent re-
cent observation of magnetic moments in the lightly
doped cuprates (Sidis et al., 2001; Sonier et al., 2001).

D. Scanning tunneling microscopy studies of the vortex
lattice

Section IV.A discussed the tuning of collinear mag-
netic order by means of an applied magnetic field, and
its detection in neutron-scattering experiments in doped
La2CuO4 . This naturally raises the question of whether
it may also be possible to detect the bond order of Sec.
III.B.1 somewhere in the phase diagram of Fig. 12.
Clearly the state with coexisting collinear magnetic and
superconducting order (explored by experiments along
the arrow B) should, by the arguments of Sec. III.C.1,
also have coexisting bond order. However, more inter-
esting is the possibility that the BCS superconductor it-
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self has local regions of bond order for HÞ0 (Park and
Sachdev, 2001). As we have argued, increasing H in-
creases the weight of the Mott insulator order parameter
correlations in the superconducting ground state. The
appearance of static magnetic order requires breaking of
spin rotation invariance (in the plane perpendicular to
the applied field), and this cannot happen until there is a
bulk phase transition indicated by the phase boundary in
Fig. 12. In contrast, bond order only breaks translational
symmetry, but this is already broken by the vortex lattice
induced by a nonzero H . The small vortex cores can pin
the translational degree of freedom of the bond order,
and a halo of static bond order should appear around
each vortex core (Demler et al., 2001; Park and Sachdev,
2001; Polkovnikov et al., 2001; Polkovnikov, Vojta, and
Sachdev, 2002; Zhang et al., 2002). Notice that this bond
order has appeared in the state which has only supercon-
ducting order at H50, and so should be visible along the
arrow labeled C in Fig. 12. Recall also our discussion in
Sec. III.B.1 that site charge order is a special case of
bond order [with rWa50 in the bond order parameter
Qa(rW)].

Many other proposals have also been made for addi-
tional order parameters within the vortex core. The ear-
liest of these involved dynamic antiferromagnetism (Na-
gaosa and Lee, 1992; Sachdev, 1992), and were discussed
in Sec. IV.B in the context of topological order. Others
(Arovas et al., 1997; Zhang, 1997; Anderson et al., 2002;
Chen and Ting, 2002; Chen et al., 2002; Franz et al., 2002;
Ghosal et al., 2002; Ichioka and Machida, 2002; Zhu
et al., 2002) involve static magnetism within each vortex
core in the superconductor.10 This appears unlikely from
the perspective of the physics of Fig. 12, in which static
magnetism only appears after there is a co-operative
bulk transition to long-range magnetic order, in the re-
gion above the phase boundary; below the phase bound-
ary there are no static ‘‘spins in vortices,’’ but there is
bond order as discussed above (Park and Sachdev, 2001;
Zhang et al., 2002). [Static spins do appear in the three
space dimensional model with spin anisotropy and inter-
planar couplings considered in Kivelson, Lee, et al.
(2002).] A separate proposal involving staggered current
loops in the vortex core (Kishnine et al., 2001; Lee and
Wen, 2001; Lee and Sha, 2003) has also been made.

Nanoscale studies looking for signals of bond order
along the arrow C in Fig. 12 would clearly be helpful.
Scanning tunneling microscopy (STM) is the ideal tool,
but requires atomically clean surfaces of the cuprate
crystal. The detection of collinear magnetic order in
doped La2CuO4 makes such materials ideal candidates
for bond order, but they have not been amenable to
STM studies so far. Crystals of Bi2Sr2CaCu2O81d have
been the focus of numerous STM studies, but there is
little indication of magnetic order in neutron-scattering
studies of this superconductor. Nevertheless, by the rea-
soning in Fig. 12, and using the reasonable hypothesis

10Also, Ichioka et al. (2001) studied the vortex lattice in a
state with pre-existing long-range collinear spin order.
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that a common picture of competing superconducting,
bond, and collinear magnetic order applies to all the cu-
prates, it is plausible that static bond order should ap-
pear in Bi2Sr2CaCu2O81d for large enough H along the
arrow C in Fig. 12.

A number of atomic resolution STM studies of
Bi2Sr2CaCu2O81d surfaces have appeared recently
(Hoffman, Hudson, et al., 2002; Hoffman, McElroy,
et al., 2002; Howald et al., 2002, 2003). Hoffman, Hud-
son, et al. (2002) observed a clear signal of modulations
in the local density of electronic states, with a period of
four lattice spacings, in a halo around each vortex core.
There was no corresponding modulation in the surface
topography, implying there is little modulation in the
charge density. However, a bond order modulation, such
as those in Figs. 6(c) and 6(d), could naturally lead to
the required modulation in the local density of states.
Other studies have focused on the H50 region (Hoff-
man, McElroy, et al., 2002; Howald et al., 2002, 2003):
here the modulations appear to have significant contri-
butions from scattering of the fermionic S51/2 quasipar-
ticles of the superconductor (Byers et al., 1993; Wang
and Lee, 2003) (Sec. II), but there are also signals of a
weak residual periodic modulation in the density of
states, similar to those found at HÞ0 (Howald et al.,
2002, 2003). Theoretically, it is quite natural that these
quasiparticle and order parameter modulations coexist
(Kivelson, Fradkin, et al., 2002; Polkovnikov, Sachdev,
and Vojta, 2002; Howald et al., 2003). Howald et al.
(2002, 2003) also presented results for the energy depen-
dence of this periodic modulation, and these appear to
be best modeled by modulations in microscopic bond,
rather than site, variables (Vojta, 2002; Zhang, 2002;
Podolsky et al., 2003).

This is a rapidly evolving field of investigation, and
future experiments should help settle the interpretation
of the density of states modulations both at H50 and
HÞ0. It should be noted that because translational sym-
metry is broken by the vortices or the pinning centers,
there is no fundamental symmetry distinction between
the quasiparticle and the pinned-fluctuating-order con-
tributions; nevertheless, their separate spectral and spa-
tial features should allow us to distinguish them.

V. A PHASE DIAGRAM WITH COLLINEAR SPINS, BOND
ORDER, AND SUPERCONDUCTIVITY

We have already discussed two experimental possibili-
ties for the coupling g in Fig. 1, which we used to tune
the ground state of the doped Mott insulator between
various distinct phases: the doping concentration d and
the strength of a magnetic field H , applied perpendicu-
lar to the layers. A simple phase diagram in the small H
region as a function of these parameters was presented
in Fig. 12, and its implications were compared with a
number of experiments in Secs IV.A and IV.D. However,
even though it is experimentally accessible, the field H
induces a large scale spatial modulation associated with
the vortex lattice, and is consequently an inconvenient
choice for microscopic theoretical calculations. Here we
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follow the strategy of introducing a third theoretical
axis, which we denote schematically by g̃ , to obtain a
global view of the phase diagram. As we argue below,
information on the phases present as a function of g̃
sheds considerable light on the physics as a function
of H .

The crucial role of order parameters characterizing
Mott insulators in our discussion suggests that we should
work with a coupling, g̃ , which allows exploration of
different ground states of Mott insulators already at d
50. The range of this coupling should obviously include
regimes where the Mott insulator has the magnetically
ordered ground state of Fig. 3(a), found in La2CuO4 .
Now imagine adding further neighbor couplings in Eq.
(5) which frustrate this magnetic order, and eventually
lead to a phase transition to a paramagnetic state.11 As
discussed in Sec. III.C.1, it has been argued (Read and
Sachdev, 1989b, 1990; Sachdev and Park, 2002) that any
paramagnetic state so obtained should have bond order,
most likely in the patterns in Figs. 6(a) and 6(b).

It would clearly be useful to have numerical studies
which tune a coupling g̃ acting in the manner described
above. Large scale computer studies of this type have
only appeared recently. The first results on a quantum
antiferromagnet which has a spin of S51/2 per unit cell,
whose Hamiltonian maintains full square lattice symme-
try, and in which it is possible to tune a coupling to de-
stroy the collinear magnetic order, were obtained re-
cently by Sandvik et al. (2002). Their model extended
Eq. (5) with a plaquette ring-exchange term, and had
only a U(1) spin rotation symmetry. Theoretical exten-
sions to this case have also been discussed (Lannert
et al., 2001; Park and Sachdev, 2002). Along with the
collinear magnetic state in the small ring-exchange re-
gion (small g̃), Sandvik et al. (2002) found the bond-
ordered paramagnetic state of Fig. 6(a) in the large ring-
exchange region (large g̃).

A second large scale computer study of the destruc-
tion of collinear magnetic order on a model with S
51/2 per unit cell was performed recently by Harada
et al. (2003). They generalized the spin-symmetry group
from SU(2) to SU(N); in our language, they used the
value of N as an effective g̃ . They also found the bond
order of Fig. 6(a) in the paramagnetic region.

These theoretical studies give us confidence in the
theoretical phase diagram as a function of g̃ and d
sketched in Fig. 13 (Sachdev and Read, 1991; Vojta and
Sachdev, 1999; Vojta et al., 2000a; Vojta, 2002). Phase
diagrams with related physical ingredients, but with sig-
nificant differences, appear in the work of Kivelson et al.
(1998) and Zaanen (1999).

Important input in sketching Fig. 13 was provided by
theoretical studies of the effects of doping the bond or-
dered paramagnetic Mott insulator at large g̃ . In this
region without magnetic order, it was argued that a sys-

11We assume that there is no intermediate state with noncol-
linear magnetic order, as this is not supported by observations
so far.
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tematic and controlled study of the doped system was
provided by a generalization of the SU(2) spin
symmetry12 to Sp(2N), followed by an expansion in
1/N . This approach directly gives a stable bond ordered
state at d50, a stable d-wave superconductor at large d,
and a region in which these two orders coexist at small
values of d (Sachdev and Read, 1991); all of these phases
are nicely in accord with the overall philosophy of the
present Colloquium. This analysis of a model with
purely short-range interactions also found a phase sepa-
ration instability at small values of d (Sachdev and Read,
1991), whose importance had been emphasized by oth-
ers on different grounds (Emery et al., 1990; Bang et al.,
1990). With long-range Coulomb interactions no macro-

12The group SU(2) is identical to the symplectic group Sp(2),
but the group SU(2N) is distinct from Sp(2N) for N.1. Con-
sequently, distinct 1/N expansions are generated by models
with SU(2N) or Sp(2N) symmetry. The Sp(2N) choice better
captures the physics discussed in this Colloquium, for reasons
explained in Sachdev and Read (1991).

FIG. 13. Zero-temperature, zero magnetic-field phase diagram
as a function of the doping d, and a coupling constant g̃ . Here
g̃ is, in principle, any coupling which can destroy the collinear
magnetic order at (p,p) in the undoped insulator, while the
Hamiltonian maintains full square lattice symmetry with spin
S51/2 per unit cell. The states are labeled by the orders which
exhibit long-range correlations: collinear magnetic (CM), bond
(B) and d-wave-like superconductivity (SC). At d50, the CM
order is as in Fig. 3(a), the B order is as in Figs. 6(a) or 6(b),
and we have assumed a coexisting CM1B region, following
Sushkov et al. (2001) and Sachdev and Park (2002). The
ground state will remain an insulator for a small range of d
.0 (induced by the long-range Coulomb interactions), and
this is represented by the shaded region. The CM order for d
.0 could be as in Figs. 3(b) or 3(c), and the B order as in Figs.
6(a), 6(b), 6(c), or 6(d), but a variety of other periods are also
possible (Vojta and Sachdev, 1999; Vojta, 2002). The dashed
line a indicates the path followed in Fig. 12 at H50, but the
physical situation could also lie along the line b. A number of
other complex phases are possible in the vicinity of the multi-
critical point M ; these are not shown but are discussed in
Zaanen et al. (2001), Zhang et al. (2002), and Zaanen and
Nussinov (2003), and also, briefly, in Sec. VI.
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scopic phase separation is possible, and we have to deal
with the physics of frustrated phase separation (Emery
et al., 1990) The interplay between bond order and
d-wave superconductivity has been studied in some de-
tail in this region (Vojta and Sachdev, 1999; Vojta et al.,
2000a; Vojta, 2002): more complex bond ordered struc-
tures with large periods can appear, usually coexisting
with superconductivity (as sketched in Fig. 13). Predic-
tions were made for the evolution of the ordering wave
vector with d, and the period four structures in Figs. 6(c)
and 6(d) were found to be especially stable over a wide
regime of doping and parameter space.

The phase diagram of Fig. 13 also includes a region at
small g̃ , with collinear magnetic order, which is not di-
rectly covered by the above computations. ‘‘Stripe phys-
ics’’ (Machida, 1989; Poilblanc and Rice, 1989; Schulz,
1989; Zaanen and Gunnarsson, 1989)—the accumulation
of holes on sites which are antiphase domain walls be-
tween Néel ordered regions—is associated with this re-
gion. However, these stripe analyses treat the magnetic
order in a static, classical manner, and this misses the
physics of valence bond formation that has been empha-
sized in our discussion here. A related feature is that
their domain walls are fully populated with holes and
are insulating. Upon including quantum fluctuations ac-
counting for valence bonds, it appears likely to us that
the stripes will have partial filling (Kivelson and Emery,
1996; Nayak and Wilczek, 1997) acquire bond order, and
coexist with superconductivity, as has been assumed in
our phase diagram in Fig. 13. Indeed, as we have empha-
sized throughout, it may well be that the modulation in
the site charge density—which is proportional to Qa(rW)
with rWa50 in Eq. (10)—is quite small, and most of the
modulation is for rWaÞ0.

The reader should now be able to use the perspective
of the phase diagram in Fig. 13 to illuminate our discus-
sion of experiments in Sec. IV. The phase diagram in Fig.
12, used to analyze neutron-scattering experiments in
Sec. IV.A and STM experiments in Sec. IV.D, has its
horizontal axis along the line labeled a in Fig. 13; the
phases that appear in Fig. 12 as a function of increasing
H should be related to those in Fig. 13 as a function of
increasing g̃ , although the detailed location of the phase
boundaries is surely different.13 The absence of topologi-
cal order in the experiments discussed in Sec. IV.B, is
seen in Fig. 13 to be related to the absence of states with
noncollinear spin correlations or topological order. The
formation of S51/2 moments near nonmagnetic impuri-
ties is understood by the proximity of confining, bond
ordered phases in Fig. 13. The possible signals of bond
order in a superconductor at H50 in the STM observa-
tions of Howald et al. (2002, 2003), may be related to the
B1SC phase along the line b in Fig. 13; similarly, the

13More precisely, generalizing the arguments leading to Eqs.
(12) and (13), we can state that the system is characterized by
an effective g̃ which increases linearly with Hln(1/H), and an
effective d which decreases linearly with Hln(1/H).
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observations of Hoffman, Hudson, et al. (2002) at H
Þ0 can be interpreted by the proximity of the B1SC
phase at H50.

VI. OUTLOOK

The main contention of this Colloquium is that cu-
prate superconductors are best understood in the con-
text of a phase diagram containing states characterized
by the pairing order of BCS theory, along with orders
associated with Mott insulators; the evidence so far sup-
ports the class of Mott insulators with collinear spins and
bond order. The interplay of these orders permits a rich
variety of distinct phases, and the quantum critical
points between them offer fertile ground for developing
a controlled theory for intermediate regimes character-
ized by multiple competing orders. This approach has
been used to analyze and predict the results of a number
of recent neutron scattering, fluxoid detection, NMR,
and STM experiments, as we have discussed in Secs.
IV.A, IV.B, IV.C, and IV.D. Further experimental tests
have also been proposed, and there are bright prospects
for a more detailed, and ultimately quantitative, con-
frontation between theory and experiment.

All of the experimental comparisons here have been
restricted to very low temperatures. The theory of cross-
overs near quantum critical points also implies interest-
ing anomalous dynamic properties at finite temperature
(Sachdev and Ye, 1992; Sachdev, 1999), but these have
not been discussed. However, we did note in Sec. IV.A
that the transition involving loss of magnetic order in a
background of superconductivity was a natural candi-
date for explaining the singular temperature and fre-
quency dependence observed in the neutron scattering
at d'0.14 (Aeppli et al., 1997).

There have also been several recent experimental pro-
posals for a quantum critical point in the cuprates at d
'0.19, linked to anomalous quasiparticle damping
(Valla et al., 1999), thermodynamic (Tallon and Loram,
2001), or magnetic (Panagopoulos et al., 2002, 2003)
properties. The study of Panagopoulous and collabora-
tors presents evidence for a spin-glass state below the
critical doping, and this is expected in the presence of
disorder at dopings lower than that of the point M in
Fig. 13.

Among theoretical proposals, a candidate for a quan-
tum critical point (Zaanen et al., 2001; Sachdev and
Morinari, 2002; Zhang et al., 2002) at large dopings is a
novel topological transition that can occur even in sys-
tems with collinear spin correlations. While the topo-
logical order present in systems with noncollinear spin
correlation leads to fractionalization of the electron (as
discussed in Sec. IV.B), the collinear spin case exhibits a
very different and much less disruptive transition in
which the electron retains its integrity, but the spin and
charge collective modes fractionalize into independent
entities. Note that this fractionalization transition was
not explicitly shown in Fig. 13, and is associated with an
additional intermediate state which may appear near the
point M . Other theoretical proposals for quantum criti-
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cal points are linked to the bond/charge order (Kivelson
et al., 1998; Seibold et al., 1998) in Fig. 13, to order asso-
ciated with circulating current loops (Varma, 1997;
Chakravarty et al., 2001), which has not been discussed
in this Colloquium, and to a time-reversal symmetry
breaking transition between dx22y2 and dx22y21idxy su-
perconductors (Laughlin, 1998; Vojta et al., 2000b;
Khveshchenko and Paaske, 2001; Sangiovanni et al.,
2001). This last proposal offers a possible explanation of
the quasiparticle damping measurements (Valla et al.,
1999). Note that this transition does not involve any or-
der associated with the Mott insulator. Indeed, the
dx22y21idxy order can be understood entirely within the
framework of BCS theory, and experimental support for
dx22y21idxy superconductivity in recent tunneling ex-
periments (Dagan and Deutscher, 2001) appears in the
overdoped regime, well away from the Mott insulator.
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