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Pairing in nuclear systems: from neutron stars to finite nuclei
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This review treats several pairing-related phenomena in nuclear systems, ranging from superfluidity in
neutron stars to the gradual breaking of pairs in finite nuclei. It focuses on the links between
many-body pairing, as it evolves from the underlying nucleon-nucleon interaction into experimental
and theoretical manifestations of superfluidity in infinite nuclear matter, and pairing in finite nuclei.
The nature of pair correlations in nuclei and their potential impact on nuclear structure experiments
is discussed, as is recent experimental evidence that suggests a connection between pairing and phase
transitions (or transformations) in finite nuclear systems. Finally, the article considers recent
investigations of ground-state properties of random two-body interactions in which pairing plays a
minor role, although the interactions yield interesting nuclear properties such as 01 ground states in
even-even nuclei.
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I. INTRODUCTION

Pairing lies at the heart of nuclear physics and the
quantum many-body problem in general. In this review
we address some of the recent theoretical and experi-
mental studies of pairing phenomena in finite nuclei and
nuclear matter. In infinitely extended nuclear systems,
such as neutron star matter or nuclear matter, the study
of superfluidity and pairing has a long history (see, for
example, Cooper et al., 1959; Emery and Sessler, 1960;
Migdal, 1960), even predating the 1967 discovery of pul-
sars (Hewish et al., 1968), which were soon identified as
rapidly rotating magnetic neutron stars (Gold, 1969). In-
terest in nucleonic pairing has intensified in recent years,
owing primarily to experimental developments on two
different fronts. In the field of astrophysics, a series of
x-ray satellites (including Einstein, EXOSAT, ROSAT,
and ASCA) has produced a flow of data on thermal
emission from neutron stars, comprising both upper lim-
its and actual flux measurements. The recent launching
of the Chandra x-ray observatory provides further impe-
tus for theoretical investigations. In the laboratory, the
expanding capabilities of radioactive-beam and heavy-
ion facilities have stimulated a concerted exploration of
unstable nuclei, with a special focus on neutron-rich spe-
cies (Mueller and Sherril, 1993; Riisager, 1994). Pairing
plays a prominent role in modeling the structure and
behavior of these newly discovered nuclei.

Since the field is vast, we limit our discussion to sev-
eral recent advances. We shall focus in particular on two
©2003 The American Physical Society
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overlapping questions: (i) how does many-body pairing
evolve from the bare nucleon-nucleon interaction? and
(ii) what are the experimental (and perhaps theoretical)
manifestations of pairing in finite nuclei? Over 50 years
ago, Mayer (1950) pointed out that a short-range, attrac-
tive, nucleon-nucleon interaction would yield J50
ground states. The realistic bare nucleon-nucleon poten-
tial indeed contains short-range attractive parts (particu-
larly in the singlet-S and triplet-P channels) that give
rise to pairing in infinite nuclear matter and nuclei. In
this review, we discuss various calculations that demon-
strate this effect and examine the link between realistic
nucleon-nucleon interactions and superfluidity in
nuclear matter. We then consider the nature of pair cor-
relations in nuclei, their importance in nuclear structure
experiments, and the question of pairing generated by a
random two-body interaction. We conclude with a look
at recent experimental evidence for a pairing phase tran-
sition (or transformation) in finite nuclear systems.

Let us begin with a brief look at the historical devel-
opment of the concept of pairing in nuclear systems.

A. Theory of pairing in nuclear physics

In 1911 Kamerlingh Onnes discovered superconduc-
tivity in condensed-matter systems. It was not until 1957,
however, that a microscopic explanation for it was
proposed—the highly successful pairing theory of
Bardeen, Cooper, and Schrieffer (BCS, Cooper et al.,
1957). Applications to nuclear structure soon followed
(Bohr et al., 1958; Belyaev, 1959; Migdal, 1959). The
BCS theory also generalized the existing nuclear senior-
ity coupling scheme built on the concept of pairwise cou-
pling of equivalent nucleons to a state of zero angular
momentum (Racah, 1942; Mayer, 1950; Racah and
Talmi, 1953).

A straightforward application of BCS theory to
nuclear structure calculations has two main drawbacks.
First, the BCS wave function is not an eigenstate of the
number operator, so number fluctuation is an issue for
small systems such as nuclei. Second, in finite systems,
there is a critical value of the attractive pairing-force
strength for which no nontrivial solution exists. Several
approaches were proposed to overcome these problems:
calculating the random-phase approximation (RPA) in
addition to BCS (Unna and Weneser, 1965); projecting
particle number (Kerman et al., 1961) after variation,
which is valid for pairing strengths above the critical
pairing strength; and using a projection before variation
that works well for all pairing strength values. A simpli-
fied prescription for the last approach is a technique
known as the Lipkin-Nogami method (Lipkin, 1960;
Nogami, 1964). It has been quite successful in overcom-
ing some of the shortcomings of BCS in applications to
nuclei; see, for example, the recent works of Hagino
et al. (Hagino and Bertsch, 2000; Hagino et al., 2002),
and references therein. Of course, the BCS approxima-
tion assumes a specific form for the many-body wave
function. Even more drastic is the Hartree-Fock theory,
which describes the nuclear ground state by a single
Rev. Mod. Phys., Vol. 75, No. 2, April 2003
Slater determinant. To obtain meaningful results, this
mean-field solution to the many-body problem requires
an effective potential to describe the interaction of
nucleons. The first successful (and still popular) param-
etrization was the zero-range force proposed by Skyrme
(Skyrme, 1956, 1959; Vautherin and Brink, 1970, 1972).
Solutions of the Hartree-Fock equations, while they de-
scribe various nuclear ground-state properties rather
well (Quentin and Flocard, 1978), do not include an ex-
plicit pairing interaction. Finite-range interactions, such
as the Gogny interaction (Decharge et al., 1975), when
used in Hartree-Fock (HF) calculations, also have no
pairing by construction. A general way to include pair-
ing in a mean-field description generated, for example,
by a Skyrme interaction is to solve the Hartree-Fock-
Bogoliubov (HFB) equations (Bogolyubov, 1959). Re-
cent applications to both stable and weakly bound nuclei
may be found in, e.g., Dobaczewski et al. (1996) and Du-
guet et al. (2002a, 2002b). A renormalization scheme,
which allows the solution of the HFB equations, was
recently proposed by Bulgac and Yu for zero-range pair-
ing interactions (Bulgac, 2002; Bulgac and Yu, 2002).
Rather than solving the full HFB equations, one can
also calculate the Hartree-Fock single-particle wave
functions and use the single-particle energies as a basis
for solving the BCS equations (Nayak and Pearson,
1995; Tondeur, 1979). This is the HF1BCS method,
which has been shown to be valid for stable nuclei with
large one- or two-neutron separation energies but which
runs into problems for neutron-rich nuclei because it
generates an artificial neutron gas on or near the nuclear
surface.

While mean-field calculations using good-quality ef-
fective interactions are able to describe many nuclear
properties rather well, they are far from providing a
complete solution to the nuclear many-body problem.
Short of this (Pudliner et al., 1995), the interacting shell
model is widely regarded as one of the most powerful
alternatives for studying low-energy nuclear structure
and stands a fair chance of being ultimately linked to the
fundamental many-body problem. Nonetheless, applica-
tions of the shell model to finite nuclei encounter several
difficulties. Chief among these is the determination of an
interaction adjusted to the necessarily truncated Hilbert
space. The choice of this reduced Hilbert space is in
itself a problem, and a third, related problem is the di-
agonalization of extremely large matrices.

Skyrme and Gogny forces are parametrized nuclear
forces without a clear link to any bare nucleon-nucleon
interaction that reproduces the scattering phase shifts.
The same effective-force philosophy has been used for
some shell-model interactions, such as the USD
1s-0d-shell interaction (Wildenthal, 1984). While quite
successful, this type of interaction cannot be related di-
rectly to a bare nucleon-nucleon interaction. In such a
case, the shell model becomes a true model with many
parameters. Alternatively, many attempts have been
made to derive an effective nucleon-nucleon interaction
in a given shell-model space from the bare nucleon-
nucleon interaction using many-body perturbation
theory. [For a modern discussion of this difficult prob-
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lem, see Hjorth-Jensen et al. (1995) and references
therein.] While this approach appears to work quite well
for many nuclei, there are several indications (Pudliner
et al., 1995, 1997; Pieper et al., 2001) that an effective
interaction based only on a two-body force fails to re-
produce experimental data. As shown, for example, by
Pudliner et al. (1995, 1997) and Pieper et al. (2001), these
difficulties are essentially related to the absence of a real
three-body interaction. It should be noted, however, that
the deficiencies of the effective interactions are minimal
and affect the ground-state energies more than they af-
fect the nuclear spectroscopy. Thus understanding vari-
ous aspects of physics from realistic two-body interac-
tions, or their slightly modified yet more phenom-
enological cousins, is still a reasonable goal.

B. Outline

This work starts with an overview of pairing in infinite
matter, with an emphasis on superfluidity and supercon-
ductivity in neutron stars. In Sec. II we focus on the link
between superfluidity in nuclear matter and its origin
from realistic nucleon-nucleon interactions. We first dis-
cuss pairing in neutron star matter and symmetric
nuclear matter and then focus on various aspects of pair-
ing in finite nuclei, from spectroscopy in Sec. III to the
pairing content of random interactions in Sec. IV and
thermodynamical properties in Sec. V. Concluding re-
marks are presented in Sec. VI.

1. Pairing in neutron stars

The presence of neutron superfluidity in the crust and
the inner part of a neutron star is now considered to be
well established. To a first approximation, a neutron star
is described as a charge-neutral system of nucleons (and
possibly heavier baryons) and electrons (and possibly
muons) in beta equilibrium at zero temperature. The
central density of these compact stellar objects is several
times the saturation density r0 of symmetrical nuclear
matter (Shapiro and Teukolsky, 1983; Wiringa et al.,
1988; Lamb, 1991; Pethick, 1992; Alpar et al., 1995;
Heiselberg and Hjorth-Jensen, 2000). The overall struc-
ture of the star (mass, radius, pressure, and density
profiles) is determined by solving the Tolman-
Oppenheimer-Volkov general relativistic equation of hy-
drostatic equilibrium consistently with the continuity
equation and the equation of state (which embodies the
microscopic physics of the system). The star is made up
of (i) an outer crust of bare nuclei arranged in a lattice
within a relativistic electron bath; (ii) an inner crust in
which a similar Coulomb lattice of neutron-rich nuclei is
embedded in Fermi seas of neutrons and relativistic
electrons; (iii) a quantum fluid interior in which neutron,
proton, and electron fluids coexist; and finally (iv) a core
region of uncertain constitution and phase (possibly con-
taining hyperons, a pion or kaon condensate, and/or
quark matter). Figure 1 gives a schematic cross section
of such a neutron star.

In the low-density outer part of the star, neutron su-
perfluidity is expected mainly in the attractive singlet
Rev. Mod. Phys., Vol. 75, No. 2, April 2003
1S0 channel. At the relatively large average particle
spacing associated with the ‘‘low’’ densities involved in
this region, i.e., r;r0/10, where r0 is the saturation den-
sity of symmetrical nuclear matter, the neutrons experi-
ence mainly the attractive component of the 1S0 inter-
action. However, at higher densities, ;r0 and beyond,
the pairing effect is quenched due to the strong repulsive
short-range component of this interaction. Concurrently
for these densities the nuclei in the crust dissolve into a
quantum liquid of neutrons and protons in beta equilib-
rium. By similar reasoning, one expects 1S0 proton pair-
ing to occur in the quantum fluid of the interior, because
the small proton fraction (necessary for charge balance
and chemical equilibrium) reaches a partial density rp
;r0/10. In this region, one also expects neutron super-
fluidity, but this time mainly in the coupled 3P2-3F2 two-
neutron channel. Superfluidity from other baryons such
as, for example, hyperons may also arise. The possibility
of hyperon pairing is an entirely open issue; see, for ex-
ample, Balberg and Barnea (1997). Neutron, proton,
and possible hyperon superfluidity in the 1S0 channel,
and neutron superfluidity in the 3P2 channel, have been
seen with gaps of a few MeV or less (Baldo, Elgarøy,
et al., 1998); however, the density ranges in which gaps
occur remain uncertain. In the core of the star any stan-
dard nucleonic superfluid phase should finally disappear,
although the possibility of a new color superconducting
phase has been suggested. At large baryon densities for
which perturbative QCD applies, pairing gaps for like
quarks have been estimated to be a few MeV (Bailin
and Love, 1984). However, nonperturbative studies have
suggested that the pairing gaps of unlike quarks (ud ,
us , and ds) could range from several tens to hundreds
of MeV (Alford et al., 1999), stimulating interest in
quark superfluidity and superconductivity (Son, 1999)
and their effects on neutron stars.

An ab initio understanding of the microscopic physics
of nucleonic superfluid components in the interiors of
neutron stars is crucial to a quantitative evaluation not
only of magnetic properties, vortex structure, rotational
dynamics, and pulse timing irregularities, but also of the
neutrino cooling process (Friman and Maxwell, 1979;

FIG. 1. Possible structure of a neutron star (Color in online
edition).



610 D. J. Dean and M. Hjorth-Jensen: Pairing in nuclear systems
Tsuruta, 1979, 1998; Takatsuka and Tamagaki, 1997) im-
mediately after their birth in supernova events. In par-
ticular, when nucleons are in a superfluid state in one or
another region of the star, suppression factors of the
form exp(2DF /kBT) appear in the expression for the
emissivity, with DF an appropriate average measure of
the energy gap at the Fermi surface. Thus pairing thas a
major effect on the star’s thermal evolution through the
suppression of neutrino emission processes and the
modification of specific heats; see, for example, Page
et al. (2000).

2. Pairing phenomena in nuclei

Having looked briefly at the situation for pairing stud-
ies of infinite matter, we turn to the question of how to
obtain information on pairing correlations in finite nu-
clei from abundantly available spectroscopic data.

Apart from relatively weak electric forces, the inter-
actions between two protons are very similar to those
between two neutrons. This yields the idea of charge
symmetry of the nuclear forces. Furthermore the
proton-neutron interaction is also very similar. This led
very early to the idea of isotopic invariance of the
nucleon-nucleon interaction. A nucleon with quantum
number isospin t51/2 may be in one of two states, tz
521/2 (proton) or tz511/2 (neutron). This symmetry,
although not exact, has proven to be a very useful tool
for nuclear studies. Nuclear states can be labeled with a
quantum number T called isospin, whose third compo-
nent is its projection Tz5(N2Z)/2, for a nucleus N
(Z) with N neutrons and Z protons.

For a two-nucleon system, two distinct isospin states
can be defined. A T51 nucleon-nucleon system can
have spin projection Tz51,0,21. Here Tz51 corre-
sponds to a neutron-neutron system, Tz50 to a proton-
neutron system, and Tz521 to a proton-proton system.
The nucleons in this case have total spin J50 in order to
ensure antisymmetry of the total nucleon-nucleon wave
function. For the same reason, T50 proton-neutron sys-
tems can have only Tz50 and J51. Thus two different
types of elementary-particle pairs exist in the nucleus,
and they depend on both the spin and isospin quantum
numbers of the two-particle system.

This brief discussion of the general quantum numbers
of a two-nucleon system is a natural starting point for a
discussion of pairing found in nuclei. All even-even nu-
clei have a ground state with total angular momentum
quantum number and parity, p, Jp501. Postulating a
pairing interaction that couples particles in time-
reversed states, one can understand this general result as
well as the fact that in even-even nuclei the ground state
is well separated from excited states, while in the even-
odd neighbor nucleus, several states exist near the
ground state.

The behavior of the even-even nuclei ground state is
usually associated with isovector (T51) pairing of the
elementary two-body system. Simplified models of the
nucleon-nucleon interaction, such as the seniority model
(Talmi, 1993), predict a pair condensate in these sys-
Rev. Mod. Phys., Vol. 75, No. 2, April 2003
tems. Experimental evidence for isoscalar (T50) pair-
ing in nuclei is still inconclusive. In nuclei with N5Z ,
neutrons and protons occupy the same shell-model or-
bitals. Consequently the large spatial overlaps between
neutron and proton single-particle wave functions are
expected to enhance neutron-proton (np) correlations,
especially np pairing.

At present, the specific experimental fingerprints of
np pairing, whether the np correlations are strong
enough to form a static condensate, nor their main
building blocks are all not clear. Most of our knowledge
about nuclear pairing comes from nuclei with a sizable
neutron excess where the isospin T51 neutron-neutron
(nn) and proton-proton (pp) pairing dominate. Now,
for the first time, there is an experimental opportunity to
explore nuclear systems in the vicinity of the N5Z line
with many valence np pairs, that is, to probe the inter-
play between the like-particle and neutron-proton (T
50,1,Tz50) pairing channels. One piece of evidence re-
lated to T50 pairing involves the Wigner energy, de-
fined as the extra binding of N5Z nuclei. We shall dis-
cuss this in greater detail in Sec. III.

One possible way to detect pair correlations in nuclei
is by means of neutron pair transfer (see, for example,
Yoshida, 1962). Simply stated, if the ground state of a
nucleus is made up of BCS pairs of neutrons, then two-
neutron transfer should be enhanced when compared
with one-neutron transfer. In particular, collective en-
hancement of pair transfer is expected if nuclei with
open shells are brought into contact (Peter et al., 1999).
Pairing fluctuations are also expected in rapidly rotating
nuclei (Shimizu et al., 1989). In lighter systems, such as
6He, two-neutron transfer has been used for studying
the wave function of the ground state (Oganessian et al.,
1999).

Finally, using shell-model studies of the pair structure
of the ground state and its variation with the number of
valence nucleons, we can analyze the validity and micro-
scopic foundations of the interacting-boson model,
which represents the nuclear ground state and its low-
lying excitations in terms of bosons. In this model,
L50 (S) and L52 (D) bosons are identified with
nucleon pairs having the same quantum numbers
(Iachello and Arima, 1988), and are used to describe the
ground state and the excited states of nuclei, with the
ground state being viewed as a condensate of such
pairs. These studies can therefore shed light on the va-
lidity and microscopic foundations of these boson ap-
proaches.

3. Thermodynamic properties of nuclei and level densities

The theory of pairing in nuclear physics has many par-
allels with the field of ultrasmall metallic grains in solid-
state physics. Metallic grains and nuclei both have a
quantized energy spectrum characteristic of particles
confined to a small region. Recently, through a series of
experiments by Tinkham et al. (Ralph et al., 1995; Black
et al., 1996, 1997), spectroscopic data on discrete energy
levels from ultrasmall metallic grains (with sizes of the
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order of a few nanometers and mean level spacings less
than millielectron volts) have been obtained by way of
single-electron-tunneling spectroscopy. Measurements in
solid-state physics have been much more elusive due to
the size of the system. In particular, the discrete spec-
trum could not be resolved due to the energy scale set
by temperature. On the other hand, Tinkham et al.
(Ralph et al., 1995; Black et al., 1996, 1997) were able to
observe the number parity (odd or even) of a given
grain by studying the evolution of the discrete spectrum
in an applied magnetic field. These effects were also ob-
served in experiments on large Al grains. It was noted
that an even grain had a distinct spectroscopic gap,
whereas an odd grain did not. This strongly supports the
presence of superconducting pairing correlations in
these grains. The spectroscopic gap was driven to zero
by means of an applied magnetic field; hence the para-
magnetic breakdown of pairing correlations could be
studied in detail. For theoretical interpretations, see, for
example, Mastellone et al. (1998); Balian et al. (1999);
Dukelsky and Sierra (1999); von Delft and Ralph
(2001).

In the smallest grains with sizes less than 3 nm, dis-
tinct spectroscopic gaps could not be observed. This re-
sult revived an old issue: what is the smallest-size system
for which superconductivity might exist in such small
grains?

Although the statistical physics of the above experi-
ments on ultrasmall grains could be well described
within the canonical formalism, i.e., a system in contact
with a heat bath, this formalism does not apply for the
nucleus in the laboratory, which is a small, isolated sys-
tem with no heat exchange with the environment. The
appropriate ensemble for its description is the microca-
nonical one (Balian et al., 1999). This poses significant
problems in the interpretation of results, for instance, in
determining the signature of a phase transition in an
isolated quantal system such as a nucleus.

In Sec. V we discuss this issue using recent experimen-
tal evidence of pairing from studies of level densities in
rare-earth nuclei. The nuclear level density, the density
of eigenstates of a nucleus at a given excitation energy, is
the important quantity that may be used to describe
thermodynamic properties of nuclei, such as the nuclear
entropy, specific heat, and temperature. Bethe (1936)
first described the level density using a noninteracting
Fermi-gas model for the nucleons. Modifications to this
picture, such as the backshifted Fermi gas, which in-
cludes pair and shell effects (Newton, 1956; Gilbert and
Cameron, 1965) not present in Bethe’s original formula-
tion, are still in wide use. These modifications emulate
long-range pair correlations, which play an important
role in the low-excitation region. On the experimental
front, recently developed methods (Henden et al., 1995;
Tveter et al., 1996) have made possible the extraction of
level densities at low spin from measured g spectra.

There is evidence for the existence of paired nucleons
(Cooper pairs) at low temperature, i.e., small excitation
Rev. Mod. Phys., Vol. 75, No. 2, April 2003
energy.1 In high-spin nuclear physics, the backbending
phenomenon, in which Coriolis forces tend to align
single-particle angular momenta along the nuclear rota-
tional axis (Johnson et al., 1971; Stephens and Simon,
1972; Faessler et al., 1976; Riedinger et al., 1980), is a
striking manifestation of pair breaking. Theoretical
models also predict a reduction in the pair correlations
at higher temperatures (Mottelson and Valantin, 1960;
Muhlhans et al., 1983; Døssing et al., 1995). In nuclei it is
the Coriolis force which acts on pairs of nucleons and
thus plays a role similar to that of the magnetic field
acting on Cooper pairs of electrons. In particular, there
is an interesting connection between the quasiparticle
spectrum of metallic grains in a magnetic field and the
high-spin spectra of nuclei.

The breaking of pairs is difficult to observe as a func-
tion of intrinsic excitation energy. Recent theoretical
(Døssing et al., 1995) and experimental (Tveter et al.,
1996; Melby et al., 1999) works indicate that this process
takes place over several MeV of excitation energy, show-
ing that finite nuclei behave somewhat differently from
what would be expected of nuclear matter. In nuclear
systems, the critical temperature is measured to be Tc
;0.5 MeV/kB (Schiller et al., 2001), where kB is Boltz-
mann’s constant. Recent work has evaluated the entropy
of 161,162Dy and 171,172Yb isotopes versus excitation en-
ergy and deduced the number of excited quasiparticles
as a function of excitation energy. We describe this result
in more detail in Sec. V.

II. PAIRING IN INFINITE MATTER AND THE NUCLEON-
NUCLEON INTERACTION

Pairing correlations and the phenomenon of super-
conductivity and superfluidity are intimately related to
the underlying interaction, whether it is, for example,
the nucleon-nucleon (NN) interaction or the interaction
between 3He atoms. In this section we discuss, using
simple examples, some of the connections between pair-
ing correlations as they arise in nuclear systems and the
bare NN interaction itself, that is, the interaction of a
pair of nucleons in free space. The latter is most conve-
niently expressed in terms of partial waves (and their
corresponding quantum numbers such as orbital angular
momentum and total spin) and phase shifts resulting
from nucleon-nucleon scattering experiments. In Sec.
II.A we single out selected features of the NN
interaction-partial waves and interaction properties ex-
pected to be crucial for pairing correlations in both nu-
clei and neutron stars. Without specifying particular fer-

1The concept of temperature in a microcanonical system such
as the nucleus is highly nontrivial. Temperature itself is defined
by a measurement process, thereby involving the exchange of
energy, a fact that is in conflict with the definition of the mi-
crocanonical ensemble. It is only in the thermodynamic limit
that, for example, the caloric curves in the canonical and mi-
crocanonical ensembles agree. The word temperature in
nuclear physics should therefore be used with great care.
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mionic systems and interactions, it is possible to relate
the pairing gap and the BCS theory of pairing to the
experimental phase shifts. Some useful pairing gap
equations are given in Sec. II.B. These allow us, through
an inspection of experimental scattering data, to under-
stand which partial waves might yield a positive pairing
gap and eventually lead, for example, to a superfluid
phase transition in an infinite fermionic system. This ap-
proach, applied to nuclear interactions, is the subject of
Sec. II.C. A brief overview of superfluidity in neutron
stars and pairing in symmetric nuclear matter is pre-
sented in Sec. II.D.1, with an emphasis on those partial
waves of the NN interaction, which are expected to pro-
duce a finite pairing gap. Features of neutron-proton
pairing in infinite matter are reviewed in Sec. II.D.2.
Concluding remarks, open problems, and perspectives
are presented in Sec. II.E.

A. Selected features of the nucleon-nucleon interaction

The interaction between nucleons is characterized by
the existence of a strongly repulsive core at short dis-
tances, with a characteristic radius ;0.5–1 fm. The in-
teraction obeys several fundamental symmetries such as
translational, rotational, spatial reflection, time-reversal
invariance, and exchange symmetry. It also has a strong
dependence on quantum numbers such as total spin S
and isospin T ; through the nuclear tensor force that
arises, for example, from one-pion exchange, it also de-
pends on the angles between the nucleon spins and sepa-
ration vector. The tensor force thus mixes different an-
gular momenta L of the two-body system, that is, it
couples two-body states with total angular momentum
J5L21 and J5L11. For example, for a proton-
neutron two-body state, the tensor force couples the
states 3S1 and 3D1 , where we have used the standard
spectroscopic notation 2S11LJ .

Although there is no unique prescription for how to
construct an NN interaction, a description of the inter-
action in terms of various meson exchanges is at present
the most quantitative representation (see, for example,
Machleidt, 1989, 2001; Stoks et al., 1994; Wiringa et al.,
1995; Machleidt et al., 1996), in the energy regime of
nuclear structure physics. We shall assume that meson
exchange is an appropriate picture at low and interme-
diate energies. Further, in our discussion of pairing, it
suffices at the present stage to limit our attention to the
time-honored configuration-space version of the
nucleon-nucleon interaction, including only central,
spin-spin, tensor, and spin-orbit terms. In our notation
below, the mass of the nucleon MN is given by the aver-
age of the proton and neutron masses. The interaction
(omitting isospin) reads

V~r!5H CC
0 1CC

1 1Css1•s21CTF11
3

mar

1
3

~mar !2GS12~ r̂ !

1CSLF 1
mar

1
1

~mar !2GL•SJ e2mar

mar
, (1)
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where ma is the mass of the relevant meson and S12 is
the tensor term,

S12~ r̂ !5s1•s2r̂22s1• r̂•s2• r̂, (2)

where s is the standard operator for spin-1/2 particles.
Within meson-exchange models, we may have the ex-
change of p, h, r, v, s, and d mesons. As an example,
the coefficients for the exchange of a p meson are Cs

5CT5(gNNp
2 /4p)(mp

3 /12MN
2 ), and CC

0 5CC
1 5CSL50

with the experimental value for gNNp
2 '13214; see

Machleidt (2001) for a recent discussion.
The pairing gap is determined by the attractive part of

the NN interaction. In the 1S0 channel the potential is
attractive for momenta k<1.74 fm21 (or for interpar-
ticle distances r>0.6 fm), as can be seen from Fig. 2. In
the weak-coupling regime, where the interaction is weak
and attractive, a gas of fermions may undergo a super-
conducting (or superfluid) instability at low tempera-
tures, and a gas of Cooper pairs is formed. This gas of
Cooper pairs will be surrounded by unpaired fermions;
the typical coherence length is large compared with the
interparticle spacing, and the bound pairs overlap. By
weak coupling we mean a regime in which the coherence
length is larger than the interparticle spacing. In the
strong-coupling limit, the formed bound pairs have only
a small overlap, the coherence length is small, and the
bound pairs can be treated as a gas of point bosons. One
then expects the system to undergo a Bose-Einstein con-
densation into a single quantum state with total momen-
tum k50 (Nozières and Schmitt-Rink, 1985). For the
1S0 channel in nuclear physics, we may actually expect
to have two weak-coupling limits, namely, when the po-
tential is weak and attractive for large interparticle spac-
ings and when the potential becomes repulsive at r
'0.6 fm. In these regimes, the potential has values of
typically some few MeV. One may also loosely speak of
a strong-coupling limit in which the NN potential is
large and attractive. This takes place where the NN po-
tential reaches its maximum, with an absolute value of
typically ;100 MeV, at roughly ;1 fm (see again Fig.
2). We note that fermion pairs in the 1S0 wave in neu-
tron and nuclear matter will not undergo the above-

FIG. 2. Plot of the nucleon-nucleon interaction for the 1S0
channel employing the Argonne V18 interaction (Wiringa
et al., 1995).
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mentioned Bose-Einstein condensation, since, even
though the NN potential is large and attractive for cer-
tain Fermi momenta, the coherence length will always
be larger than the interparticle spacing, as demonstrated
by De Blasio et al. (1997). The inclusion of in-medium
effects, such as screening terms, is expected to further
reduce the pairing gap and thereby further enhance the
coherence length. This does not imply that such a tran-
sition is not possible in nuclear matter. A recent analysis
by Lombardo, Nozières, et al. (2001) and Lombardo and
Schuck (2001) of triplet- 3S1 pairing in low-density sym-
metric and asymmetric nuclear matter indicates that
such a transition is indeed possible.

Hitherto we have limited our attention to one single
partial wave, the 1S0 channel. Our discussion about the
relation among the NN interactions, its pertinent phase
shifts, and the pairing gap can be extended to higher
partial waves as well. An inspection of the experimental
phase shifts for waves with J<2 and total isospin T51,
(see Fig. 3) reveals that there are several partial waves
that exhibit attractive (positive phase shifts) contribu-
tions to the NN interaction. Such attractive terms are in
turn expected to yield a possible positive pairing gap.
This means that the energy dependence of the nucleon-
nucleon phase shifts in different partial waves offers
some guidance in judging what nucleonic pair-
condensed states are possible or likely in different re-
gions of a neutron star. A rough correspondence be-
tween baryon density and NN bombardment energies
can be established through the Fermi momenta assigned
to the nucleonic components of neutron star matter. The
lab energy relates to the Fermi energy through E lab
54eF54\2kF

2 /2MN . This is demonstrated in Fig. 4 for
various NN interaction models that fit scattering data up
to E lab'350 MeV. For comparison, we include results
for older potential models such as the Paris (Lacombe
et al., 1980), V14 (Wiringa et al., 1984), and Bonn B
(Machleidt, 1989) interactions. Note, as well, that be-
yond the point where these potential models have been
fit there is considerable variation. This has important
consequences for reliable predictions of the 3P2 pairing
gap.

In pure neutron matter, only T51 partial waves are

FIG. 3. Phase shifts for J<2 partial waves as a function of the
incoming energy of two T51 nucleons in the lab system.
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allowed. Moreover, one need consider only partial
waves with L<4 in the range of baryon density—
optimistically, r,(324)r0—where a nucleonic model
of neutron star material is tenable, and where r0
50.16 fm23 is the saturation density of nuclear matter.
We have already seen that the 1S0 phase shift is positive
at low energy (indicating an attractive in-medium force)
but turns negative (repulsive) at around 250-MeV lab
energy. Thus, unless the in-medium pairing force is dra-
matically different from its vacuum counterpart, the
situation suggested above should prevail: S-wave pairs
should form at low densities but should be inhibited
from forming when the density approaches that of ordi-
nary nuclear matter.

The next-lowest T51 partial waves are the three trip-
let P waves 3PJ , with J50,1,2. For the 3P0 state, the
phase shift is positive at low energy, turning negative at a
lab energy of 200 MeV. The attraction is, however, not
sufficient to produce a finite pairing gap in neutron star
matter. The 3P1 phase shift is negative at all energies,
indicating a repulsive interaction. The 3P2 phase shift is
positive for energies up to 1 GeV and is the most attrac-
tive T51 phase shift at energies above about 160 MeV.
Whereas the 1S0 partial wave is dominated by the cen-
tral force contribution of the NN interaction [see Eq.
(1)], the main contribution to the attraction seen in the
3P2 partial wave stems from the two-body spin-orbit

FIG. 4. 3P2 phase-shift predictions of different potentials up
to E lab51.1 GeV, compared with the phase-shift analysis of
Arndt et al. (1997) (Color in online edition).
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force for intermediate ranges in Eq. (1), i.e., the term
proportional with L•S. This is demonstrated in Fig. 5,
where we plot the coordinate-space version of the Ar-
gonne V18 interaction (Wiringa et al., 1995) with and
without the spin-orbit contribution. Moreover, there is
an additional enhancement due to the 3P2-3F2 tensor
force. A substantial pairing effect in the 3P2-3F2 chan-
nel may be expected at densities somewhat in excess of
r0 , again assuming that the relevant in-vacuum interac-
tion is not greatly altered within the medium.

The remaining T51 partial waves with L<4 are both
singlets: 1D2 and 1G4 . However, the phase shifts of
these partial waves, although positive over the energy
domain of interest, do not provide any substantial con-
tribution to the pairing gap. Thus only the 1S0 and 3P2
partial waves yield enough attraction to produce a finite
pairing gap in pure neutron matter. Singlet and triplet
pairing are hence synonomous with 1S0 and 3P2-3F2
pairing, respectively.

B. Pairing gap equations

The gap equation for pairing in nonisotropic partial
waves is, in general, more complex than in the simplest
singlet S-wave case, in particular, in neutron and nuclear
matter, where the tensor interaction can couple two dif-
ferent partial waves (Tamagaki, 1970; Takatsuka and
Tamagaki, 1993; Baldo et al., 1995). This is indeed the
situation for the 3P2-3F2 neutron channel or the
3S1-3D1 channel for symmetric nuclear matter. For the
sake of simplicity, we disregard for the moment spin de-
grees of freedom and the tensor interaction. Starting
with the Gorkov equations (Schrieffer, 1964), which in-
volve the propagator G(k,v), the anomalous propaga-
tor F(k,v), and the gap function D(k), we have

Fv2e~k! 2D~k!

2D†~k! v1e~k!
G S G

F† D ~k,v!5S 1
0 D , (3)

where e(k)5e(k)2m , m is the chemical potential and
e(k) the single-particle spectrum. The quasiparticle en-
ergy E(k) is the solution of the corresponding secular
equation and is given by

FIG. 5. Plot of the Argonne V18 (Wiringa et al., 1995) 3P2
partial-wave contribution with and without the spin-orbit con-
tribution.
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E~k!25e~k!21uD~k!u2. (4)

The anisotropic gap function D(k) is to be determined
from the gap equation

D~k!52(
k8

^kuVuk8&
D~k8!

2E~k8!
. (5)

The angle-dependent energy denominator in this equa-
tion prevents a straightforward separation into the dif-
ferent partial-wave components by expanding the poten-
tial,

^kuVuk8&54p(
L

~2L11 !PL~ k̂•k̂8!VL~k ,k8!, (6)

and the gap function,

D~k!5 (
L ,M

A 4p

2l11
YLM~ k̂!DLM~k !, (7)

with L and M the total orbital momentum and its pro-
jection, respectively. The functions YL ,M are the spheri-
cal harmonics. However, after performing an angle-
average approximation for the gap in the quasiparticle
energy,

uD~k!u2→D~k !2[
1

4p E dk̂uD~k!u2

5 (
L ,M

1
2L11

uDLM~k !u2, (8)

the kernels of the coupled integral equations become
isotropic, and the different m components become un-
coupled and all equal. One obtains the following equa-
tions for the partial-wave components of the gap func-
tion:

DL~k !52
1
p E

0

`

k8dk8
VL~k ,k8!

Ae~k8!21@(L8DL8~k8!2#
DL~k8!.

(9)

Note that there is no dependence on the quantum num-
ber M in these equations; however, they still couple the
components of the gap function with different orbital
momenta L ( 1S0 , 3P0 , 3P1 , 3P2 , 1D2 , 3F2 , etc., in
neutron matter) via the energy denominator. Fortu-
nately in practice the different components VL of the
potential act mainly in nonoverlapping intervals in den-
sity, and therefore this coupling can usually be disre-
garded.

The addition of spin degrees of freedom and those of
the tensor force do not change the picture qualitatively
and this is explained in detail in Baldo et al. (1995) and
Takatsuka and Tamagaki (1993). The only modification
is the introduction of an additional 232 matrix structure
due to the tensor coupling of the 3P2 and 3F2 channels.
Such coupled-channel equations can be written as
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S DL

DL8
D ~k !52

1
p E

0

`

dk8k82
1

E~k8!

3S VLL 2VLL8

2VL8L VL8L8
D ~k ,k8!S DL

DL8
D ~k8!,

(10)

E~k !25@e~k !2e~kF!#21D~k !2, (11)

D~k !25DL~k !21DL8~k !2. (12)

Here e(k)5k2/2m1U(k) are the single-particle ener-
gies of a neutron with momentum k , and kF is the Fermi
momentum. The orbital momenta L and L8 could rep-
resent the 3P2 and 3F2 channels, respectively. Restrict-
ing our attention to only one partial wave, it is easy to
get the equation for an uncoupled channel such as the
1S0 wave—we obtain

D~k !L52
1
p E

0

`

dk8k82VLL~k ,k8!
D~k8!

E~k8!
, (13)

where VLL(k ,k8) is now the bare momentum-space NN
interaction in the 1S0 channel and E(k) is the quasipar-
ticle energy given by E(k)5A@e(k)2e(kF)#21D(k)L

2 .
The quantities

VLL8~k ,k8!5E
0

`

drr2jL8~k8r !VLL8~r !jL~kr ! (14)

are the matrix elements of the bare interaction in the
different coupled channels, e.g., (T51; S51; J52;
L ,L851,3). It has been shown that the angle-average
approximation is an excellent approximation to the true
solution that involves a gap function with ten compo-
nents (Takatsuka and Tamagaki, 1993; Kodel et al.,
1996), as long as one is only interested in the average
value of the gap at the Fermi surface, DF[D(kF), and
not the angular dependence of the gap functions DL(k)
and DL8(k).

Recently Kodel, Kodel, and Clark (Kodel et al., 1998,
2001) proposed a separation method for the triplet pair-
ing gap, based on the approach of Kodel et al. (1996),
which allows a generalized solution of the BCS equation
that is numerically reliable, without employing an angle-
average approach. We refer the reader to Kodel et al.
(1996, 1998, 2001) for more details. In this approach, the
pairing matrix elements are written as a separable part
plus a remainder that vanishes when either momentum
variable is on the Fermi surface. This decomposition ef-
fects a separation of the problem of determining the de-
pendence of the gap components in a spin-angle repre-
sentation on the magnitude of the momentum
(described by a set of functions independent of magnetic
quantum number) from the problem of determining the
dependence of the gap on angle or magnetic projection.
The former problem is solved through a set of nonsin-
gular, quasilinear equations (Kodel et al., 1998, 2001).
There is in general good agreement between their ap-
proach and the angle-average scheme. However, the
general scheme of Kodel, Kodel, and Clark offers a
much more stable algorithm for solving the pairing gap
Rev. Mod. Phys., Vol. 75, No. 2, April 2003
equations for any channel and starting with the bare in-
teraction itself. In nuclear physics the interaction typi-
cally has a strongly repulsive core, a fact that can signifi-
cantly complicate the iterative solution of the BCS
equations.

An important ingredient in the calculation of the pair-
ing gap is the single-particle potential U(k). The gap
equation is extremely sensitive to both many-body
renormalizations of the interaction and the similar cor-
rections to the single-particle energies. Many-body
renormalizations of the interaction will be discussed in
Sec. II.E. In our discussion below, we shall present re-
sults for various many-body approaches to U(k), from
U(k)50 to results with different Brueckner-Hartree-
Fock calculations, a discontinuous choice, a model-
space Brueckner-Hartree-Fock approach, and the
‘‘continuous-choice’’ scheme (Jeukenne et al., 1976).

The single-particle energies appearing in the quasipar-
ticle energies (4) and (12) are typically obtained through
a self-consistent Brueckner-Hartree-Fock calculation,
using a G matrix defined through the Bethe-Brueckner-
Goldstone equation as

G5V1V
Q

v2H0
G , (15)

where V is the nucleon-nucleon potential, Q is the Pauli
operator which prevents scattering into intermediate
states prohibited by the Pauli principle, H0 is the unper-
turbed Hamiltonian acting on the intermediate states,
and v is the starting energy, the unperturbed energy of
the interacting particles. Methods for solving this equa-
tion are reviewed by a Hjorth-Jensen et al. (1995). The
single-particle energy for state ki (i encompasses all rel-
evant quantum numbers such as momentum, isospin
projection, spin, etc.) in nuclear matter is assumed to
have the simple quadratic form

eki
5

ki
2\2

2MN*
1d i , (16)

where MN* is the effective mass. The terms MN* and d,
the latter being an effective single-particle potential re-
lated to the G matrix, are obtained through the self-
consistent Bruecker-Hartree-Fock procedure. The
model-space Bruecker-Hartree-Fock method for the
single-particle spectrum has also been used (see, for ex-
ample, Hjorth-Jensen et al., 1995), with a cutoff momen-
tum kM53.0 fm21.kF . In this approach the single-
particle spectrum is defined by

eki
5

ki
2\2

2MN
1ui , (17)

with the single-particle potential ui given by

ui5H (
kh<kF

^kikhuG~v5eki
1ekh

!ukikh&AS , ki<kM

0, ki.kM ,
(18)

where the subscript AS denotes antisymmetrized matrix
elements. This prescription reduces the discontinuity in
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the single-particle spectrum as compared with the stan-
dard Bruecker-Hartree-Fock choice kM5kF . The self-
consistency scheme consists of choosing adequate initial
values of the effective mass and d. The obtained G ma-
trix is then used to calculate the single-particle potential
ui , from which we obtain new values for m* and d. This
procedure continues until these parameters vary little.

Recently, Lombardo et al. (Lombardo, Schuck, and
Zuo, 2001; Lombardo and Schulze, 2001) reanalyzed the
importance of the various approaches to the single-
particle energies. In particular, they demonstrated that
the energy dependence of the self-energy can deeply af-
fect the magnitude of the energy gap in a strongly cor-
related Fermi system (see also the recent works of
Bozek, 1999, 2000, 2002). We shall discuss these effects
in Sec. II.E.

C. Simple relations between the interaction and the
pairing gap for identical particles

1. The low-density limit

A general two-body Hamiltonian can be written in the
form Ĥ5Ĥ11Ĥ2 where

Ĥ15(
a

«aaa
† aa , (19)

Ĥ25 (
abgd

Vabgdaa
† ab

† adag , (20)

where a† and a are fermion creation and annihilation
operators, and V are the uncoupled matrix elements of
the two-body interaction. The sums run over all possible
single-particle quantum numbers.

We limit the discussion in this section to a Fermi-gas
model with twofold degeneracy and a pairing-type inter-
action as an example; the degeneracy of the single-
particle levels is set to 2s1152, with s51/2 being the
spin of the particle. We specialize to a singlet two-body
interaction with quantum numbers l50 and S50, that
is, a 1S0 state, with l the relative orbital momentum and
S the total spin. For this partial wave, the NN interac-
tion is dominated by the central component in Eq. (1),
which, within a meson-exchange picture, can be por-
trayed through 2p (leading to an effective s meson) and
higher p correlations in order to yield enough attraction
at intermediate distances.

At low densities, the interaction can be characterized
by its scattering length only in order to get expansions
for the energy density or the excitation spectrum. For
the nucleon-nucleon interaction, the scattering length is
a05218.860.3 fm for neutron-neutron scattering in the
1S0 channel. If we first assume discrete single-particle
energies, the scattering length approximation leads to
the following approximation of the two-body Hamil-
tonian of Eq. (20):

H5(
i

« iai
†ai1

1
2

G (
ij.0

ai
†a

ī
†
a j̄aj . (21)
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The indices i and j run over the number of levels L , and
the label ī stands for a time-reversed state. The param-
eter G is now the strength of the pairing force, while « i
is the single-particle energy of level i . Introducing the
pair-creation operator Si

15aim
† ai2m

† , one can rewrite
the Hamiltonian in Eq. (21) as

H5d(
i

iNi1
1
2

G (
ij.0

Si
1Sj

2 , (22)

where Ni5ai
†ai is the number operator and « i5id so

that the single-particle orbitals are equally spaced at in-
tervals d . The latter commutes with the Hamiltonian H .
In this model, quantum numbers such as seniority S are
good quantum numbers, and the eigenvalue problem
can be rewritten in terms of blocks with good seniority.
In general, the seniority quantum number S is equal to
the number of unpaired particles; see Talmi (1993) for
further details. Equation (21) lends itself to shell-model
studies. Furthermore, in a series of papers, Richardson
(1963, 1965a, 1965b, 1966a, 1966b, 1967a, 1967b) ob-
tained the exact solution of the pairing Hamiltonian,
with semianalytic (since there is still the need for a nu-
merical solution) expressions for the eigenvalues and
eigenvectors. The exact solutions have had important
consequences for several fields, from Bose condensates
to nuclear superconductivity.

We shall return to this model in our discussion of level
densities and thermodynamical features of the pairing
Hamiltonian in finite systems in Sec. V.

Here we are interested in features of infinite matter
with identical particles. Using (k→V/(2p)3*0

`d3k , we
rewrite Eq. (21) as

H5V (
s56

E d3k

~2p!3 eksaks
† aks

1GV2E d3k

~2p!3 E d3k8

~2p!3 ak1
† a2k2

† a2k82ak81 .

(23)

The first term represents the kinetic energy, with eks

5k2/2m . The label s561/2 stands for the spin, while V
is the volume. The second term is the expectation value
of the two-body interaction with a constant interaction
strength G . The energy gap in infinite matter is obtained
by solving the BCS equation for the gap function D(k).
For our simple model we see that Eq. (13) reduces to

152
GV

2~2p!3 E
0

`

dk8k83
1

E~k8!
, (24)

with E(k) the quasiparticle energy given by E(k)
5A@e(k)2e(kF)#21D(k)2, where e(k) is the single-
particle energy of a neutron with momentum k and kF is
the Fermi momentum. Medium effects should be in-
cluded in e(k), but we shall use free single-particle en-
ergies e(k)5k2/2MN .

Papenbrock and Bertsch (1999) obtained an analytic
expression for the pairing gap in the low-density limit by
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combining Eq. (24) with the equation for the scattering
length a0 and its relation to the interaction

2
MNGV

4pa0
1152

GV

2~2p!3 E d3k
1

A@e~k !2e~kF!#2
,

(25)

which is divergent. However, Papenbrock and Bertsch
(1999) showed that by subtracting Eq. (24) and Eq. (25),
one obtains

MNG

4pa0
52

G

2~2p!3 E d3kF 1
E~k !

2
1

A@e~k !2e~kF!#2G , (26)

which is no longer divergent. Moreover, we can divide
out the interaction strength and obtain

MN

4pa0
52

1
2~2p!3 E d3kF 1

E~k !
2

1

A@e~k !2e~kF!#2G .

(27)

Using dimensional regularization techniques, Papen-
brock and Bertsch (1999) obtained the analytic expres-
sion

1
kFa0

5~11x2!1/4P1/2~21/A11x2!, (28)

where x5D(kF)/e(kF) and P1/2 denotes a Legendre
function. With a given Fermi momentum, we can thus
obtain the pairing gap. For small values of kFa0 , we
obtain the well-known result (Gorkov and Melik-
Barkhudarov, 1961; Kodel et al., 1996)

D~kF!5
8
e2 l expS 2p

2kFua0u D . (29)

This comes about by the behavior of P1/2(z), which has
a logarithmic singularity at z521 (see Erdelyi, 1953).
For large values of kFa0 , the gap is proportional to
e(kF), approaching D'1.16e(kF). The large value of
the scattering length (a05218.860.3 fm) clearly limits
the domain of validity of the Hamiltonian in Eq. (21).
However, Eq. (29) provides us with a useful low-density
result to compare with results arising from numerical
solutions of the pairing gap equation. The usefulness of
Eq. (29) cannot be underestimated: one experimental
parameter, the scattering length, allows us to make
quantitative statements about pairing at low densities.
Polarization effects arising from renormalizations of the
in-medium effective interaction can, however, change
this behavior, as was demonstrated recently by Heisel-
berg et al. (2000) and Schulze et al. (2001); see the dis-
cussion in Sec. II.E.

2. Relation to phase shifts

Can we obtain information about the pairing gap at
higher densities, without resorting to a detailed model
for the NN interaction?
Rev. Mod. Phys., Vol. 75, No. 2, April 2003
Here we show that this is indeed the case. Through
the experimental phase shifts, one can determine fairly
accurately the 1S0 pairing gap in pure neutron matter
without needing an explicit model for the NN interac-
tion. It ought to be mentioned that this was demon-
strated long ago by Emery and Sessler (1960). Their ap-
proach however, is slightly different from ours.

As we saw in the previous section, a characteristic fea-
ture of 1S0 NN scattering is the large, negative scatter-
ing length, indicating the presence of a nearly bound
state at zero scattering energy. Near a bound state,
where the NN T matrix has a pole, it can be written in
separable form; this implies that the NN interaction it-
self to a good approximation is rank-one separable near
this pole (Kodel et al., 1996; Kwong and Köhler, 1997).
Thus, at low energies, we approximate

V~k ,k8!5lv~k !v~k8!, (30)

where l is a constant. It is then easily seen from Eq. (13)
that the gap function can be rewritten as

152
1
p E

0

`

dk8k82
lv2~k8!

E~k8!
. (31)

Numerically the integral on the right-hand side of this
equation depends very weakly on the momentum struc-
ture of D(k), so in our calculations we could take
D(k)'DF in E(k). Then Eq. (31) shows that the energy
gap DF is determined by the diagonal elements lv2(k)
of the NN interaction. The crucial point is that in scat-
tering theory it can be shown that the inverse scattering
problem, that is, the determination of a two-particle po-
tential from the knowledge of the phase shifts at all en-
ergies, is exactly and uniquely solvable for rank-one
separable potentials (Chadan and Sabatier, 1992). Fol-
lowing the notation of Brown and Jackson (1976), we
have

lv2~k !52
k21kB

2

k2

sin d~k !

k
e2a(k), (32)

for an attractive potential with a bound state at energy
E52kB

2 . In our case kB'0. Here d(k) is the 1S0 phase
shift as a function of momentum k , while a(k) is given
by a principal-value integral:

a~k !5
1
p

PE
2`

1`

dk8
d~k8!

k82k
, (33)

where the phase shifts are extended to negative mo-
menta through d(2k)52d(k) (Kwong and Köhler,
1997).

From this discussion we see that lv2(k), and there-
fore also the energy gap DF , is completely determined
by the 1S0 phase shifts. However, there are two obvious
limitations to the practical validity of this statement.
First, the separable approximation can only be expected
to be good at low energies, near the pole in the T ma-
trix. Second, we see from Eq. (33) that knowledge of the
phase shifts d(k) at all energies is required. This is, of
course, impossible, and most phase-shift analyses stop at
a laboratory energy E lab5350 MeV. The 1S0 phase shift
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changes sign from positive to negative at E lab
'248.5 MeV; however, at low values of kF , knowledge
of v(k) up to this value of k may actually be enough to
determine the value of DF , since the integrand in Eq.
(31) is strongly peaked around kF .

The input in our calculation is the set of 1S0 phase
shifts taken from the recent Nijmegen nucleon-nucleon
phase-shift analysis (Stoks et al., 1993). We then evalu-
ated lv2(k) from Eqs. (32) and (33), using methods de-
scribed by Brown and Jackson (1976) to evaluate the
principal-value integral in Eq. (33). Finally, we evaluated
the energy gap DF for various values of kF by solving
Eq. (31), which is an algebraic equation due to the ap-
proximation D(k)'DF in the energy denominator.

The resulting energy gap obtained from the experi-
mental phase shifts only is plotted in Fig. 6. In the same
figure we also report the results (dot-dashed line) ob-
tained using the effective range approximation to the
phase shifts:

k cot d~k !52
1
a0

1
1
2

r0k2, (34)

where a05218.860.3 fm and r052.7560.11 fm are the
singlet neutron-neutron scattering length and effective
range, respectively. In this case an analytic expression
can be obtained for lv2(k), as shown by Chadan and
Sabatier (1992):

lv2~k !52
1

Ak21
r0

2

4
~k21a2!2

Ak21b2
2

k22b1
2, (35)

with a2522/ar0 , b1'20.0498 fm21, and b2
'0.777 fm21. The phase shifts using this approximation
are positive at all energies, and this is reflected in Eq.
(35) where lv2(k) is attractive for all k . From Fig. 6 we
see that below kF50.5 fm21 the energy gap can, with
reasonable accuracy, be calculated with the interaction
obtained directly from the effective range approxima-

FIG. 6. 1S0 energy gap in neutron matter with the CD-Bonn,
Nijmegen I, and Nijmegen II potentials. In addition, we show
the results obtained from phase shifts only, Eqs. (31)–(33), and
the effective range approximation of Eq. (35). From Elgarøy
and Hjorth-Jensen, 1998.
Rev. Mod. Phys., Vol. 75, No. 2, April 2003
tion. One can therefore say that, at densities below kF
50.5 fm21 and at the crudest level of sophistication in
many-body theory, the superfluid properties of neutron
matter are determined by just two parameters, namely,
the free-space scattering length and the effective range.
At such densities, more complicated many-body terms
are less important. It is also interesting that the phase
shifts predict the position of the first zero of D(k) in
momentum space, since we see from Eq. (35) that
D(k)5DFv(k)50 first for d(k)50, which occurs at
E lab'248.5 MeV (pp scattering) corresponding to k
'1.74 fm21. This is in good agreement with the results
of Kodel et al. (1996). Kodel et al. (1996) also show that
this first zero of the gap function determines the Fermi
momentum at which DF50. Our results therefore indi-
cate that this Fermi momentum is in fact given by the
energy at which the 1S0 phase shifts become negative.

In Fig. 6 we also show results obtained with recent
NN interaction models parametrized to reproduce the
Nijmegen phase-shift data. Here we have employed the
CD-Bonn potential (Machleidt et al., 1996) and the
Nijmegen I and Nijmegen II potentials (Stoks et al.,
1994). The results are virtually identical, with the maxi-
mum value of the gap varying from 2.98 MeV for the
Nijmegen I potential to 3.05 MeV for the Nijmegen II
potential. As can be seen, the agreement between the
direct calculation from the phase shifts and the CD-
Bonn and Nijmegen calculations of DF is satisfying, even
at densities as high as kF51.4 fm21. The energy gap is
to a remarkable extent determined by the available 1S0
phase shifts. Thus the quantitative features of 1S0 pair-
ing in neutron matter can be obtained directly from the
1S0 phase shifts. This happens because the NN interac-
tion is very nearly rank-one separable in this channel
due to the presence of a bound state at zero energy, even
for densities as high as kF51.4 fm21.2 This explains why
all bare NN interactions give nearly identical results for
the 1S0 energy gap in lowest-order BCS calculations.
Hence we have a first approximation to the pairing gap
using only experimental inputs—phase shifts, and scatter-
ing length—combined with Eq. (29).

It should be mentioned, however, that this agreement
is not likely to survive in a more refined calculation, for
instance, one including the density and spin-density fluc-
tuations in the effective pairing interaction or renormal-
ized single-particle energies. Other partial waves will
then be involved, and the simple arguments employed
here will, of course, no longer apply.

D. Superfluidity in neutron star matter and nuclear matter

1. Superfluidity in neutron star matter

As we have seen, the presence of two different super-
fluid regimes is suggested by the known trend of the

2This is essentially due to the fact that the integrand in the
gap equation is strongly peaked around the diagonal matrix
elements.
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nucleon-nucleon phase shifts in each scattering channel.
In both the 1S0 and 3P2-3F2 channels the phase shifts
indicate that the NN interaction is attractive. In particu-
lar for the 1S0 channel, the occurrence of the well-
known virtual state in the neutron-neutron channel
strongly suggests the possibility of a pairing condensate
at low density, while for the 3P2-3F2 channel the inter-
action becomes strongly attractive only at higher energy,
which therefore suggests a possible pairing condensate
in this channel at higher densities. In recent years, the
BCS gap equation has been solved with realistic interac-
tions, and the results confirm these expectations.

The 1S0 neutron superfluid is relevant for phenomena
that can occur in the inner crust of neutron stars, such as
the formation of glitches, which may be related to vortex
pinning of the superfluid phase in the solid crust (Sauls,
1989). The results of different groups are in close agree-
ment on the 1S0 pairing gap values and on their density
dependencies, which show a peak value of about 3 MeV
at a Fermi momentum close to kF'0.8 fm21 (Baldo
et al., 1990; Kodel et al., 1996; Schulze et al., 1996; El-
garøy and Hjorth-Jensen, 1998). All of these calculations
adopt the bare NN interaction as the pairing force, and
it has been pointed out that the screening by the me-
dium of the interaction could strongly reduce the pairing
strength in this channel (Chen et al., 1986; Ainsworth
et al., 1989, 1993; Schulze et al., 1996). The issue of the
many-body calculation of the pairing effective interac-
tion is a complex one, still far from a satisfactory solu-
tion (see also the discussion in Sec. II.E).

Precise knowledge of the 3P2-3F2 pairing gap is of
paramount relevance for, e.g., the cooling of neutron
stars; different values correspond to drastically different
scenarios for the cooling process. Generally the gap sup-
presses the cooling by a factor ;exp(2D/T) (where D is
the energy gap), which is severe for temperatures well
below the gap energy. Unfortunately, few calculations of
the 3P2-3F2 pairing gap exist in the literature, and these
are partly contradictory even at the level of the bare NN
interaction (Amundsen and Østgaard, 1985; Baldo et al.,
1992; Takatsuka and Tamagaki, 1993; Elgarøy et al.,
1996a; Kodel et al., 1996). However, when comparing
the results one should note that the NN interactions
used in these calculations are not phase-shift equivalent,
i.e., they do not predict exactly the same NN phase
shifts. Furthermore, for the interactions used by
Amundsen and Østgaard (1985), Baldo et al. (1992), El-
garøy et al. (1996a), and Takatsuka and Tamagaki
(1993), the predicted phase shifts do not agree accu-
rately with modern phase-shift analyses, and the fit of
the NN data typically has x2/datum'3.

Figure 7 shows our collected results for the 3P2-3F2
pairing gaps with different potential models. At the top
are displayed the results calculated with free single-
particle energies. Differences between the results are
therefore solely due to differences in the 3P2-3F2 matrix
elements of the potentials. The plot shows results ob-
tained with the old as well as with the modern poten-
tials. The results (with the notable exception of the Ar-
gonne V14 interaction model) are in good agreement at
Rev. Mod. Phys., Vol. 75, No. 2, April 2003
densities below kF'2.0 fm21, but differ significantly at
higher densities. This is in accordance with the fact that
the diagonal matrix elements of the potentials are very
similar below kF'2.0 fm21, corresponding to a labora-
tory energy for free NN scattering of E lab'350 MeV.
This indicates that within this range the good fit of the
potentials to scattering data below 350 MeV makes the
ambiguities in the results for the energy gap quite small,
although there is, in general, no unique relation between
phase shifts and gaps.

We would also like to calculate the gap at densities
above kF52.0 fm21. For this we need the various poten-

FIG. 7. Top panel: The angle-averaged 3P2-3F2 gap in neutron
matter depending on the Fermi momentum, evaluated with
free single-particle spectrum and different nucleon-nucleon
potentials. Middle panel: The gap evaluated with Brueckner-
Hartree-Fock spectra. Bottom panel: The gap with the CD-
Bonn potential in different approximation schemes. From
Baldo, Elgarøy, et al., 1998.
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tials at higher energies, outside the range of which they
are fitted to scattering data. Thus there is no guarantee
that the results will be independent of the model chosen,
and in fact the figure shows that there are considerable
differences among the predictions at high densities, fol-
lowing precisely the trend observed in the phase-shift
predictions: the Argonne V18 is the most repulsive of the
modern potentials, followed by the CD-Bonn
(Machleidt et al., 1996) and Nijmegen I and II (Stoks
et al., 1994). Most remarkable are the results obtained
with Nijmegen II: we find that the predicted gap contin-
ues to rise unrealistically even at kF'3.5 fm21, where
the purely nucleonic description of matter surely breaks
down.

Since the potentials fail to reproduce the measured
phase shifts beyond E lab5350 MeV, the predictions for
the 3P2-3F2 energy gap in neutron matter cannot be
trusted above kF'2.0 fm21. Therefore the behavior of
the 3P2-3F2 energy gap at high densities should be con-
sidered as unknown; it cannot be obtained until poten-
tial models that fit the phase shifts in the inelastic region
above E lab5350 MeV are constructed. These potential
models need the flexibility to include both the flat struc-
ture in the phase shifts above 600 MeV, due to the NN
→ND channel, and the rapid decrease to zero at E lab
'1100 MeV.

We proceed now to the middle panel of Fig. 7, where
the results for the energy gap using Brueckner-Hartree-
Fock single-particle energies are shown. For details on
the Brueckner-Hartree-Fock calculations, see, for ex-
ample, Jeukenne et al. (1976). From this figure, two
trends are apparent. First, the reduction of the in-
medium nucleon mass leads to a sizable reduction in the
3P2-3F2 energy gap, as observed in earlier calculations
(Amundsen and Østgaard, 1985; Baldo et al., 1992;
Takatsuka and Tamagaki 1993; Elgarøy et al., 1996a).
Second, the new NN interactions again give similar re-
sults at low densities, while beyond kF'2.0 fm21 the
gaps differ, as in the case with free single-particle ener-
gies.

The single-particle energies at moderate densities ob-
tained from the new potentials are rather similar, par-
ticularly in the important region near kF . This is illus-
trated by a plot, Fig. 8, of the neutron effective mass,

m*

m
5S 11

m

kF

dU

dk U
kF

D 21

, (36)

as a function of density. Up to kF'2.0 fm21 all results
agree satisfactorily, but beyond that point the predic-
tions diverge in the same manner as observed for the
phase-shift predictions. The differences in the
Brueckner-Hartree-Fock gaps at densities slightly above
kF'2.0 fm21 are mostly due to the differences in the
3P2-3F2 waves of the potentials, but at higher densities
the differences between the gap are enhanced by differ-
ences in the single-particle potentials. An extreme case
is again the gap obtained by Nijmegen II. It is caused by
the very attractive 3P2 matrix elements, amplified by the
Rev. Mod. Phys., Vol. 75, No. 2, April 2003
fact that the effective mass starts to increase at densities
above kF'2.5 fm21 with this potential.

Finally, in the lower panel of Fig. 7, we illustrate the
effects of different approximation schemes with an indi-
vidual NN potential (CD-Bonn)—that is, we compare
the energy gaps obtained with the free single-particle
spectrum, the Brueckner-Hartree-Fock spectrum, and
an effective-mass approximation,

e~k !5U01
k2

2m*
, (37)

where m* is given in Eq. (36). In addition, the gap in the
uncoupled 3P2 channel, i.e., neglecting tensor coupling,
is shown.

It becomes clear from the figure that the Brueckner-
Hartree-Fock spectrum forces a reduction of the gap by
about a factor of 2–3. However, an effective-mass ap-
proximation should not be used when calculating the
gap, because details of the single-particle spectrum
around the Fermi momentum are important for obtain-
ing a correct value. The single-particle energies in the
effective-mass approximation are too steep near kF . We
also emphasize that it is important to solve the coupled
3P2-3F2 gap equations. By eliminating the 3P2-3F2 and
3F2 channels, one obtains a 3P2 gap that is considerably
lower than the 3P2-3F2 one. The reduction varies with
the potential, due to different strengths of the tensor
force. For more detailed discussions of the importance
of the tensor force, the reader is referred to Amundsen
and Østgaard (1985); Elgarøy et al. (1996a); Kodel et al.
(1998, 2001); Takatsuka and Tamagaki (1993).

We end this section with a discussion of pairing for
b-stable matter, which is of relevance for neutron star
cooling (see, for example, Pethick, 1992; Tsuruta, 1998).
We shall omit a discussion on neutron pairing gaps in the
1S0 channel, since these appear at densities correspond-
ing to the crust of the neutron star (see, for example,
Barranco et al., 1997). A gap in the crustal material is
unlikely to have any significant effect on cooling pro-
cesses (Pethick and Ravenhall, 1995), though it is ex-
pected to be important in the explanation of glitch phe-
nomena. Therefore the relevant pairing gaps for neutron

FIG. 8. Effective masses derived from various interactions in
the Brueckner-Hartree-Fock approach. From Baldo, Elgarøy,
et al., 1998.
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star cooling should stem from the proton contaminant in
the 1S0 channel and from superfluid neutrons yielding
energy gaps in the coupled 3P2-3F2 two-neutron chan-
nel.

To obtain an effective interaction and pertinent
single-particle energies at the Brueckner-Hartree-Fock
level, we can easily solve the Brueckner-Hartree-Fock
equations for different proton fractions. The conditions
for b equilibrium require that

mn5mp1me , (38)

where m i is the chemical potential of particle i , and that
charge is conserved,

np5ne , (39)

where ni is the particle number density for particle i . If
muons are present, the condition for charge conserva-
tion becomes

np5ne1nm , (40)

and conservation of energy requires that

me5mm . (41)

We assume that neutrinos escape freely from the neu-
tron star. The proton and neutron chemical potentials
are determined from the energy per baryon, calculated
self-consistently in the model-space Brueckner-Hartree-
Fock approach. The electron chemical potential, and
thereby the muon chemical potential, is then given by
me5mn2mp . The Fermi momentum of lepton l5e ,m is
found from

kFl
5m l

22ml
2, (42)

where ml is the mass of lepton l , and we get the particle
density using nl5kl

3/3p2. The proton fraction is then
determined by the charge-neutrality condition (40).

Since the relevant total baryonic densities for these
types of pairing will be higher than the saturation den-
sity of nuclear matter, we shall take into account relativ-
istic effects, as well, in the calculation of the pairing
gaps. As an example, consider the evaluation of the pro-
ton 1S0 pairing gap using a Dirac-Brueckner-Hartree-
Fock approach (see Elgarøy et al., 1996a, 1996b for de-
tails). In Fig. 9 we plot as a function of the total baryonic
density the pairing gap for protons in the 1S0 state, to-
gether with the results from a standard nonrelativistic
BCS approach. These results are all for matter in b equi-
librium. In Fig. 9 we also plot the corresponding relativ-
istic results for the neutron energy gap in the 3P2 chan-
nel. For the 3P0 and the 1D2 channels, the
nonrelativistic and the relativistic energy gaps vanish.

As can be seen from Fig. 9, there are only small dif-
ferences (except for higher densities) between the non-
relativistic and relativistic proton gaps in the 1S0 wave.
This is expected, since the proton fractions (and their
respective Fermi momenta) are rather small; however,
for neutrons, the Fermi momenta are larger, and we
would expect relativistic effects to be important. At
Fermi momenta that correspond to the saturation point
of nuclear matter, kF51.36 fm21, the lowest relativistic
Rev. Mod. Phys., Vol. 75, No. 2, April 2003
correction to the kinetic energy per particle is of the
order of 2 MeV. At densities higher than the saturation
point, relativistic effects should be even more important.
Since we are dealing with very small proton fractions, a

FIG. 9. Upper box: Proton pairing in b-stable matter for the
1S0 partial wave. Lower box: Neutron pairing in b-stable mat-
ter for the 3P2 partial wave. From Elgarøy et al., 1996b.
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Fermi momentum of kF51.36 fm21 would correspond
to a total baryonic density of ;0.09 fm23. Thus, at
larger densities, relativistic effects for neutrons should
be important. This is also reflected in Fig. 9 for the pair-
ing gap in the 3P2 channel. The maximum of the rela-
tivistic 3P2 gap is less than half the corresponding non-
relativistic one, and the density region over which it
does not vanish is also much smaller; see Elgarøy et al.
(1996b) for further details.

This discussion can be summarized as follows.

• The 1S0 proton gap in b-stable matter is <1 MeV,
and polarization effects may further reduce it by a
factor of 2–3 (Schulze et al., 1996).

• The 3P2 gap is also small, of the order of ;0.1 MeV
in b-stable matter. If relativistic effects are taken into
account, it is almost vanishing. However, there is some
uncertainty as to the value for this pairing gap for
densities above ;0.3 fm23 due to the fact that the
NN interactions are not fitted for the corresponding
lab energies.

• Higher partial waves give essentially vanishing pairing
gaps in b-stable matter.

Thus the 1S0 and 3P2 partial waves are crucial for our
understanding of superfluidity in neutron star matter.

As an exotic aside, at densities greater than two to
three times the nuclear matter saturation density, model
calculations based on baryon-baryon interactions
(Baldo, Burgio, and Schulze, 1998, 2000; Stoks and
Rijken, 1999; Stoks and Lee, 2000; Vidaña et al., 2000)
or relativistic mean-field calculations (Glendenning,
2000) indicate that hyperons such as S2 and L are likely
to appear in neutron star matter. The size of the pairing
gaps arising from these baryons is, however, still an open
question, as it depends entirely on the parametrization
of the interaction models (see Balberg and Barnea,
1997; Schaab et al., 1998; Takatsuka, 2002 for critical dis-
cussions). Preliminary calculations of the pairing gap for
L hyperons using recent meson-exchange models for the
hyperon-hyperon interaction (Stoks and Rijken, 1999)
indicate a vanishing gap, while the S2 hyperon has a gap
of several MeV’s (Elgarøy and Schulze, 2001). At large
baryon densities for which perturbative QCD applies,
pairing gaps for like quarks have been estimated to be a
few MeV (Bailin and Love, 1984). However, it has been
suggested by nonperturbative studies (Alford et al.,
1999), that the pairing gaps of unlike quarks (ud , us ,
and ds) are several tens to hundreds of MeV.

The cooling of a young (age ,105 yr) neutron star is
mainly governed by neutrino emission processes and the
specific heat (Schaab et al., 1996, 1997; Page et al., 2000).
Due to the extremely high thermal conductivity of elec-
trons, a neutron star becomes nearly isothermal within a
time tw'12100 yr after its birth, depending upon the
thickness of the crust (Pethick and Ravenhall, 1995). Af-
ter this time, its thermal evolution is controlled by en-
ergy balance:

dEth

dt
5CV

dT

dt
52Lg2Ln1F , (43)
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where Eth is the total thermal energy and CV is the spe-
cific heat. Lg and Ln are the total luminosities of pho-
tons from the hot surface and neutrinos from the inte-
rior, respectively. Possible internal heating sources—
due, for example, to the decay of the magnetic field or
friction from differential rotation—are included in F.
Cooling simulations are typically performed by solving
the heat transport and hydrostatic equations including
general relativistic effects (see, for example, the work of
Page et al., 2000).

The most powerful energy losses are expected to be
given by the direct Urca mechanism3

n→p1e1 n̄e , p1e→n1ne . (44)

However, in the outer cores of massive neutron stars and
in the cores of not-too-massive neutron stars (M
,1.3M(21.4M(), the direct Urca process is allowed at
densities where the momentum conservation kF

n,kF
p

1kF
e is fulfilled. This happens only at densities r several

times the nuclear matter saturation density r0
50.16 fm23.

Thus for a long time the dominant processes for neu-
trino emission have been the modified Urca processes.
See, for example, Pethick (1992) and Tsuruta (1998) for
a discussion in which the two reactions

n1n→p1n1e1 n̄e , p1n1e→n1n1ne (45)

occur in equal numbers. These reactions are just the
usual processes of neutron b decay and electron capture
on protons of Eq. (44), with the addition of an extra
bystander neutron. They produce neutrino-antineutrino
pairs, but leave the composition of matter constant on
average. Equation (45) is referred to as the neutron
branch of the modified Urca process. Another branch is
the proton branch

n1p→p1p1e1 n̄e , p1p1e→n1p1ne . (46)

Similarly, at higher densities, if muons are present, we
may also have processes in which the muon and the
muon neutrinos ( n̄m and nm) replace the electron and
the electron neutrinos ( n̄e and ne) in the above equa-
tions. In addition, there is the possibility of neutrino-pair
bremsstrahlung, processes with baryons more massive
than the nucleon participating, such as isobars, hyper-
ons, or neutrino emission from more exotic states such
as pion and kaon condensates or quark matter.

There are several cooling calculations including both
superfluidity and many of the above processes (see, for
example, Schaab et al., 1997, 1996; Page et al., 2000).
Both normal neutron star matter and exotic states such
as hyperons are included. The recent simulation of Page
et al. (2000) seems to indicate that available observa-
tions of thermal emissions from pulsars can aid in con-

3The Urca process is a cycle of nuclear reactions in stellar
interiors whose net result is that energy slowly leaks out, car-
ried away by neutrinos. It was named by George Gamow after
a casino in Rio de Janeiro, where the patrons’ money similarly
drained away.



623D. J. Dean and M. Hjorth-Jensen: Pairing in nuclear systems
straining hyperon gaps. However, all these calculations
suffer from the fact that the microscopic inputs, pairing
gaps, composition of matter, emissivity rates, etc. are not
computed at the same many-body theoretical level. As a
consequence, no definite conclusions can as yet be
drawn.

These calculations, however, deal with the interior of
a neutron star. The thickness of the crust and an even-
tual superfluid state in the crust may have important
consequences for the surface temperature. The time
needed for a temperature drop in the core to affect the
surface temperature should depend on the thickness of
the crust and on its thermal properties, such as the total
specific heat, which is strongly influenced by the super-
fluid state of matter inside the crust.

It has recently been proposed that the Coulomb-
lattice structure of a neutron star crust may significantly
influence the thermodynamical properties of the super-
fluid neutron gas (Broglia et al., 1994). Pethick and
Ravenhall (1995) have proposed that in the crust of a
neutron star nonspherical nuclear shapes could be
present at densities ranging from r51.031014 g cm23 to
r51.531014 g cm23, a density region that represents
about 20% of the whole crust. The saturation density of
nuclear matter is r052.831014 g cm23. These unusual
shapes might (Pethick and Ravenhall, 1995) be disposed
in a Coulomb lattice embedded in an almost uniform
background of relativistic electrons. According to the
fact that the neutron drip point is supposed to occur at
lower density (r;4.331011 g cm23), and considering
the characteristics of the nuclear force in this density
range, we expect these unusual nuclear shapes to be sur-
rounded by a gas of superfluid neutrons.

To model the influence on the heat conduction due to
pairing in the crust, Broglia et al. (1994) studied various
nuclear shapes for nuclei immersed in a neutron fluid
using phenomenological interactions and employing a
local-density approach. They found an enhancement of
the fermionic specific heat due to these shapes over the
specific heat of uniform neutron matter. These results
seem to indicate that the inner part of the crust may play
a significant role in the heat diffusion time through the
crust. Calculations with realistic nucleon-nucleon inter-
actions were later repeated by Elgarøy, Engvik, Osnes,
et al. (1996), with qualitatively similar results.

2. Proton-neutron pairing in symmetric nuclear matter

The calculation of the 1S0 gap in symmetric nuclear
matter is closely related to the one for neutron matter.
Even with modern charge-dependent interactions, the
resulting pairing gaps for this partial wave are fairly
similar (see, for example, Elgarøy and Hjorth-Jensen,
1998).

The size of the neutron-proton 3S1-3D1 energy gap in
symmetric or asymmetric nuclear matter has, however,
been a much debated issue since the first calculations of
this quantity appeared. While solutions of the BCS
equations with bare nucleon-nucleon forces give a large
energy gap of several MeV’s at the saturation density
kF51.36 fm21 (r50.17 fm23) (Alm et al., 1990;
Rev. Mod. Phys., Vol. 75, No. 2, April 2003
Vonderfecht et al., 1991; Takatsuka and Tamagaki, 1993;
Baldo et al., 1995; Sedrakian et al., 1997; Sedrakian and
Lombardo, 2000; Garrido et al., 2001), there is little em-
pirical evidence from finite nuclei for such strong np
pairing correlations, except possibly for isospin T50
and N5Z (see also the discussion in Sec. III and the
recent work of Jenkins et al., 2002). One possible reso-
lution of this problem lies in the fact that all these cal-
culations have neglected contributions from the induced
interaction. Fluctuations in the isospin and the spin-
isospin channels will probably make the pairing interac-
tion more repulsive, leading to a substantially lower-
energy gap. One often-neglected aspect is that all
nonrelativistic calculations of the nuclear matter equa-
tion of state with two-body NN forces fitted to scatter-
ing data fail to reproduce the empirical saturation point,
seemingly regardless of the sophistication of the many-
body scheme employed. For example, a Brueckner-
Hartree-Fock calculation of the equation of state with
recent parametrizations of the NN interaction would
typically give saturation at kF51.6–1.8 fm21. In a non-
relativistic approach, it seems necessary to invoke three-
body forces to obtain saturation at the empirical equilib-
rium density (see, for example, Akmal et al., 1998). This
leads one to be cautious when talking about pairing at
the empirical nuclear matter saturation density when the
energy gap is calculated within a pure two-body force
model, since this density will be below the calculated
saturation density for this two-body force, and thus one
is calculating the gap at a density where the system is
theoretically unstable. One even runs the risk, as
pointed out by Jackson (1983), that the compressibility
is negative at the empirical saturation density, which
means that the system is unstable against collapse into a
nonhomogeneous phase. A three-body force need not
have dramatic consequences for pairing, which, after all,
is a two-body phenomenon, but still it would be of inter-
est to know what the 3S1-3D1 gap is in a model repro-
ducing the saturation properties of nuclear matter. If
one abandons a nonrelativistic description, the empirical
saturation point can be obtained within the Dirac-
Brueckner-Hartree-Fock (DBHF) approach, as first
pointed out by Brockmann and Machleidt (1990). This
might be fortuitous since, among other things, important
many-body effects are neglected in the DBHF approach.
Nevertheless it is interesting to investigate 3S1-3D1 pair-
ing in this model and compare our results with a corre-
sponding nonrelativistic calculation. Furthermore, sev-
eral groups have recently developed relativistic
formulations of pairing in nuclear matter (Kucharek and
Ring, 1991; Guimarães et al., 1996; Matera et al., 1997;
Serra et al., 2002) and have applied them to 1S0 pairing.
The models are of the Walecka type (Serot and Wa-
lecka, 1986) in the sense that meson masses and cou-
pling constants are fitted so that the mean-field equation
of state of nuclear matter meets the empirical data. In
this way, however, the relation of the models to free-
space NN scattering becomes somewhat unclear. An in-
teresting result found in Guimarães et al. (1996), Kucha-
rek and Ring (1991), and Matera et al. (1997) is that the
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1S0 energy gap vanishes at densities slightly below the
empirical saturation density. This is in contrast with non-
relativistic calculations, which generally give a relatively
small but nonvanishing 1S0 gap at this density (see, for
instance, Chen et al. (1983); Kucharek et al. (1989);
Baldo et al. (1990); Elgarøy et al. (1996c).

In Fig. 10 we show the equation of state obtained in
our nonrelativistic and relativistic calculations. The non-
relativistic one fails to meet the empirical data, while the
relativistic calculation very nearly succeeds. In these cal-
culations we employed the nonrelativistic and relativistic
one-boson exchange models from the Bonn A interac-
tion defined in Machleidt (1989). A standard Brueckner-
Hartree-Fock calculation was done in the nonrelativistic
case, whereas in the relativistic case we incorporate
minimal relativity in the gap equation, thus using DBHF
single-particle energies in the energy denominators and
modifying the free NN interaction by a factor m̃2/ẼkẼk8
(Elgarøy et al., 1996b). The resulting pairing gaps are
shown in Fig. 11. For the nonrelativistic calculation, we
see a large energy gap at the empirical saturation density
around 6 MeV at kF51.36 fm21, in agreement with ear-
lier nonrelativistic calculations (Alm et al., 1990;

FIG. 10. Equation of state for symmetric nuclear matter with
the nucleon-nucleon potentials and many-body methods de-
scribed in the text. From Elgarøy et al., 1998.

FIG. 11. 3S1- 3D1 energy gap in nuclear matter, calculated in
nonrelativistic (full lines) and relativistic (dashed line) ap-
proaches. From Elgarøy et al., 1998.
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Vonderfecht et al., 1991; Takatsuka and Tamagaki, 1993;
Baldo et al., 1995). In the relativistic calculation, we find
that the gap is vanishingly small at this density.

Since nonrelativistic calculations with two-body inter-
actions will in general give a saturation density that is
too high (an example is shown in Fig. 10), this implies
that in a nonrelativistic approach we are actually calcu-
lating the gap at a density below the theoretical satura-
tion density, and one may question the physical rel-
evance of a large gap at a density where the system is
theoretically unstable. If one considers the gap at the
calculated saturation density for a nonrelativistic ap-
proach with a two-body force only, it is in fact close to
zero. In the DBHF calculation, we come very close to
reproducing the empirical saturation density and bind-
ing energy, and when this is used as a starting point for a
BCS calculation we find that the gap vanishes, both at
the empirical and the calculated saturation densities.
That the DBHF calculation meets the empirical points is
perhaps fortuitous, since important many-body diagrams
are neglected and only medium modifications of the
nucleon mass are accounted for. An increased repulsion
in the nonrelativistic regime may reduce the gap dra-
matically.

We end this section with a comment on the interesting
possibility of a transition from BCS pairing to a Bose-
Einstein condensation in asymmetric nuclear matter at
low densities. For the singlet- 1S0 partial wave we do not
expect to see a transition, essentially because the coher-
ence length is much larger than the interparticle spacing.
The inclusion of medium effects such as screening terms
is expected to further reduce the pairing gap (see De
Blasio et al., 1997) and thereby increase the coherence
length. However, this does not imply that such a transi-
tion is not possible in nuclear matter or asymmetric
nuclear matter as present in a neutron star. A recent
analysis by Lombardo and Schuck (2001) [see also the
work of Baldo et al. (1995)] of triplet- 3S1 pairing in low-
density symmetric and asymmetric nuclear matter indi-
cates that such a transition is indeed possible. As the
system is diluted, the BCS state with large overlapping
Cooper pairs evolves smoothly into a Bose-Einstein con-
densation of tightly bound deuterons, or neutron-proton
pairs. A neutron excess in this low-density regime does
not affect these deuterons due to the large spatial sepa-
ration of the deuterons and neutrons. Even at large
asymmetries, these deuterons are only weakly affected.
This effect can have interesting consequences for the
understanding of, for example, exotic nuclei and asym-
metric and expanding nuclear matter in heavy-ion colli-
sions.

E. Conclusions and open problems beyond BCS

We have seen that pairing in neutron star matter is
essentially determined by singlet pairing in the 1S0
channel and triplet pairing in the 3P2 channel. These
two partial waves exhibit a contribution to the NN in-
teraction that is attractive for a large range of densities.
These partial waves are also crucial for our understand-
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ing of pairing correlations in finite nuclei. Whether it is
possible to have a strong neutron-proton pairing gap for
symmetric matter in the 3S1 channel is still an open
question. Relativistic calculations indicate a vanishing
gap at nuclear matter saturation density. The results we
have discussed have all been within the frame of a
simple many-body approach; however, the analyses that
have been performed are not contingent upon these sim-
plifications. Combined with, for example, the separation
analysis of Kodel et al. (1996, 1998, 2001), we believe the
calculation procedures will retain their validity when
more complicated many-body terms are inserted.

A complete and realistic treatment of pairing in a
given strongly coupled Fermi system such as neutron
matter demands ab initio calculation of both the single-
particle energies and the interaction in the medium. The
dependence of 3P2 pairing upon various approaches to
the single-particle energies is a clear signal of the need
for a consistent many-body scheme (see, for example,
Fig. 7). Whether we employ a density-dependent
effective-mass approach as in Eq. (36) or a standard
effective-mass approach as in Eq. (37), the results
present different contributions to the pairing gap. Re-
cently, Lombardo et al. (Lombardo, Schuck, and Zuo,
2001; Lombardo and Schulze, 2001) reexamined the role
played by ground-state correlations in the self-energy.
Solving the Gorkov equations [see Eq. (3)], they found a
substantial suppression of the 1S0 pairing due to
changes in the quasiparticle strength around the Fermi
surface. Their results are shown in Fig. 12 for a set of
different kF values.

FIG. 12. Energy gap in different approximations for the self-
energy. The upper line (dashes with crosses) stands for the free
single-particle spectrum with a standard Bardeen-Cooper-
Schrieffer approach, while the upper solid line arises from the
Brueckner-Hartree-Fock approach of Eq. (37) and the stan-
dard Bardeen-Cooper-Schrieffer approach. The lower lines
arise from solving Eq. (3) for the pairing gap with different
approaches to the self-energy; for further details see Lom-
bardo, Schuck, and Zuo (2001) and Lombardo and Schulze
(2001). From Lombardo, Schuck, and Zuo, 2001 and Lom-
bardo and Schulze, 2001.
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This figure shows that self-energy effects are an im-
portant ingredient in our understanding of the pairing
gap in infinite matter.

A correct treatment of the self-energy entails a self-
consistent scheme in which the renormalization of the
interaction is done on an equal footing. Of special inter-
est for the pairing interaction are polarization correc-
tions. At low densities we may expect that the dominant
polarization term stems from a second-order perturba-
tive correction with particle-hole intermediate states, as
depicted in Fig. 13.

For contributions around the Fermi surface, one can
evaluate Fig. 13(a) analytically and obtain a result in
terms of the Fermi momentum and the scattering length.
As shown by Heiselberg et al. (2000) and Schulze et al.
(2001), even the low-density expression of Eq. (29) is
reduced by a factor of '2.2 when polarization terms are
included.

To go beyond Fig. 13(a) and simple low-density ap-
proximations will require considerable effort and this
has not yet been accomplished. This means that there is
still a large uncertainty regarding the value of the pair-
ing gap in infinite matter. There are few ab initio calcu-
lations of the pairing gap.

One such scheme is that favored by Clark and co-
workers, based on correlated-basis theory (Chen et al.,
1983, 1986; Bishop, 1999). Within the correlated-basis
scheme, the following approach to pairing in extended
nucleonic systems has been undertaken:

(a) Dressing of the pairing interaction by Jastrow cor-
relations within correlated-basis theory
(Krotscheck and Clark, 1980; Krotscheck et al.,
1981).

(b) Dressing of the pairing interaction by dynamical
collective effects within correlated-basis theory
(Krotscheck et al., 1981; Chen et al., 1983, 1986),
including polarization effects arising from ex-
change of density and spin-density fluctuations, etc.

(c) Consistent renormalization of single-particle ener-
gies by short- and long-range correlations within
correlated-basis theory (see Krotscheck et al.,
1983).

This approach has already been explored in the 1S0 neu-
tron pairing problem (Chen, et al., 1983, 1986), although

FIG. 13. (a) The second-order diagram with particle-hole in-
termediate states. The external legs can be particles or holes.
(b) and (c) are examples of the third-order Tamm-Dancoff
approximation or the random-phase approximation diagrams.
The dotted lines represent the interaction vertex.
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the assumed Jastrow correlations were not optimized
and only a second-order correlated-basis perturbation
treatment is available for step (b). Application of this
scheme to 3P2-3F2 pairing in neutron star matter is still
an unexplored topic. Alternatively, the coupled-cluster
approach (Bishop, 1991) or an approach inspired by the
Fermi hypernetted chain could be used (Fabrocini et al.,
1998). Another approach, taken by Ainsworth et al.
(1989, 1993) and Schulze et al. (1996), departs from the
Landau-theory-inspired many-body approach to screen-
ing of Babu and Brown (Babu and Brown, 1973; Dick-
hoff et al., 1981, 1983; Jackson, Krotschek, et al., 1982;
Bäckmann et al., 1985; Dickhoff and Müther, 1987). This
microscopic derivation of the effective interaction starts
from the following physical idea: the particle-hole inter-
action can be considered to be made up of a direct com-
ponent containing the short-range correlations and an
induced component due to the exchange of the collec-
tive excitations of the medium.

Finally, another alternative is to solve the full set of
Parquet equations, as discussed by Hjorth-Jensen (2002)
and Jackson, Lande, and Smith (1982). This self-
consistent scheme entails summation to all orders of all
two-body diagrams with particle-particle and hole-hole
(ladder diagrams) and particle-hole (polarization and
screening diagrams) intermediate states, accompanied
by the solution of Dyson’s equation for the single-
particle propagator. Recently Bozek (2002) has studied
the generalized ladder diagram resummation in the su-
perfluid phase of nuclear matter. This is the first step
towards the solution of the Parquet diagrams.

Figure 14 summarizes the material we have consid-
ered in this section. This figure shows the influence of
various approaches that include screening corrections to
the pairing gap. The curve in the background is given by
a calculation with free single-particle energies and the
bare nucleon-nucleon interaction. These calculations are
similar, except for the potential model employed, to
those discussed, for example, in Fig. 6. This means that

FIG. 14. The 1S0 gap in pure neutron matter predicted in
several publications taking account of polarization effects.
From Lombardo and Schulze, 2001.
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the calculations of Sec. II.C, with only experimental in-
puts, phase shifts, and scattering length, yield an upper
limit for the 1S0 pairing gap. How such renormalizations
will affect the 3P2 gap is an entirely open question. This
gap is crucial, since it extends to large densities and can
reasonably be expected to occur at the centers of neu-
tron stars. Unfortunately, one cannot at present con-
strain the size of the pairing gap from data on thermal
emission from neutron stars (see also the discussion in
Sec. II.D).

III. PAIRING CORRELATIONS IN FINITE NUCLEI

A. Introduction to the nuclear shell model

Our tool for analyzing pairing correlations in finite
nuclei is the nuclear shell model, with appropriately de-
fined model spaces and effective interactions. In this sec-
tion we extract information on pairing correlations
through large-scale shell-model calculations of several
nuclear systems, from nuclei in the sd shell to heavy tin
isotopes.

We define the nuclear shell model by a set of spin-
orbit coupled single-particle states with quantum num-
bers ljm denoting the orbital angular momentum (l)
and the total angular momenta (j) and its z component,
m . In a rotationally invariant basis, the one-body states
have energies « lj that are independent of m . The single-
particle states and energies may be different for neu-
trons and protons, in which case it is convenient to in-
clude, as well, the isospin component tz561/2 in the
state description. We shall use the label a for the set of
quantum numbers ljm or ljmtz , as appropriate. These
orbits define the valence P space, or model space for the
shell model, while the remaining single-particle orbits
define the so-called excluded space, or Q space. We can
express these spaces through the operators

P5(
i51

n

uc i&^c iu, Q5 (
i5n11

`

uc i&^c iu, (47)

where n defines the dimension of the model space while
the wave functions c i could represent a many-body
Slater determinant built on the chosen single-particle
basis. As an example, if we consider the chain of tin
isotopes from 100Sn to 132Sn, the neutron single-particle
orbits 2s1/2 , 1d5/2 , 1d3/2 , 0g7/2 , and 0h11/2 could define
an eventual model space. We could then choose 132Sn as
a closed-shell core. Neutron holes from 131Sn to 100Sn
then define the valence-space or model-space degrees of
freedom. We could, however, have chosen 100Sn as a
closed-shell core. In this case, neutron particles from
101Sn to 132Sn define the model space.

The shell-model Hamiltonian Ĥ is thus built upon
such a single-particle basis. The shell-model problem
normally requires the solution of a real and symmetric
n3n matrix eigenvalue equation,

ĤuCk&5EkuCk& , (48)
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with k51,.. . ,n , where the size of this matrix is defined
by the actual shell-model space. The dimensionality n of
the eigenvalue matrix H is increasing with an increasing
number of valence particles or holes. As an example, for
116Sn with the above-mentioned single-particle basis, the
dimensionality of the Hamiltonian matrix is of the order
of n;108. For nuclei in the rare-earth region, this di-
mensionality can be of the order of n;101221014.

The shell-model Hamiltonian can be written in the
form Ĥ5Ĥ11Ĥ21Ĥ31 ¯ , where Ĥ1 is a one-body
term typically represented by experimental single-
particle energies [see Eq. (20)]. The two-body term [see
Eq. (20)] is given in terms of the uncoupled matrix ele-
ments V of the two-body interaction. These matrix ele-
ments must obey rotational invariance, parity conserva-
tion, and (when implemented) isospin invariance. To
make explicit the rotational and isospin invariances, we
rewrite the two-body Hamiltonian as
Rev. Mod. Phys., Vol. 75, No. 2, April 2003
Ĥ25
1
4 (

abgd
(
JT

@~11dab!~11dgd!#1/2VJT~ab ,gd!

3 (
MTz

ÂJT ;MTz

† ~ab!ÂJT ;MTz
~gd!, (49)

where the pair operator is

ÂJT ;MTz

† ~ab!5 (
ma ,mb ,ta ,tb

~ jamajbmbuJM !

3S 1
2

ta

1
2

tbuTTzD ajbmbtb
† ajamata

† . (50)

In these expressions (JM) are the coupled angular mo-
mentum quantum numbers and (TTz) are the coupled
isospin quantum numbers. The coupled two-body matrix
elements VJT define the valence particle interactions
within the given shell-model space. They are matrix el-
ements of a scalar potential V(rW1 ,rW2), defined as
^@c ja ,ta
~rW1!3c jb ,tb

~rW2!#JM ;TTzuV~rW1 ,rW2!u@c jd ,td
~rW1!3c jg ,tg

~rW2!#JM ;TTz& , (51)
and are independent of M and Tz . The antisymmetrized
matrix elements are VJT

A (ab ,gd) and are then given by

VJT
A ~ab ,gd!5@~11dab!~11dgd!#21/2@VJT~ab ,gd!

2~21 !J1ja1jb1T21VJT~ba ,gd!# .

(52)

We remark here that three-body or higher-body terms
such as Ĥ3 are normally not included in a shell-model
effective interaction, although shell-model analyses with
three-body interactions have been made in Müther et al.
(1985) and Engeland et al. (2002).

In the following subsections, we discuss how to extract
information about pairing correlations within the frame-
work of large-scale shell-model and shell-model Monte
Carlo calculations. In Sec. III.B, we discuss selected fea-
tures of the tin isotopes such as the near constancy of
the energy difference between the first excited state with
J52 and the ground state with J50 for the whole chain
of even isotopes from 102Sn to 130Sn. These are nuclei
whose excited states are well reproduced by the neutron
model space mentioned above. We relate this near con-
stancy to strong pairing correlations and the same par-
tial waves that contribute to superfluiditity in neutron
stars, namely, the 1S0 and 3P2 components of the
nucleon-nucleon interaction. The 1S0 component is gen-
erally the dominating partial wave, a well-known fact in
nuclear physics. We show also that a truncation scheme
like generalized seniority (Talmi, 1993) is a viable first
approximation to large-scale shell-model calculations.

In Sec. III.C, we discuss isoscalar and isovector pair-
ing correlations, whereas proton-neutron pairing and
Wigner energy are discussed in Sec. III.D. Various ther-
mal properties are discussed in the remaining sections.
These results are obtained through large-scale shell-
model Monte Carlo calculations (see, for example, Koo-
nin et al., 1997).

B. Tin isotopes, seniority, and the nucleon-nucleon
interaction

Nuclei far from the line of b stability are at present
receiving much attention in the nuclear structure physics
community. Both experimental and theoretical studies
are being devoted to nuclei near 100Sn, including the
chain of Sn isotopes up to 132Sn and nuclei near the
proton dripline like 105,106Sb.

Our scheme to obtain an effective two-body interac-
tion for shell-model studies starts with a free nucleon-
nucleon interaction V , which is appropriate for nuclear
physics at low and intermediate energies. Here we em-
ploy the charge-dependent version of the Bonn potential
models (see Machleidt, 2001) and the discussion in Sec.
II. The next step in our many-body scheme is to deal
with the fact that the repulsive core of the nucleon-
nucleon potential V is unsuitable for perturbative ap-
proaches. This problem is overcome by introducing the
reaction matrix G , which in a diagrammatic language
represents the sum over all ladder types of diagrams.
This sum is meant to renormalize the repulsive short-
range part of the interaction. The physical interpretation
is that the particles must interact with each other an
infinite number of times in order to produce a finite in-
teraction. We calculate G using the double-partitioning
scheme discussed by Hjorth-Jensen et al. (1995). Since
the G matrix represents just the summation to all orders
of particle-particle ladder diagrams, there are obviously
other terms that need to be included in an effective in-
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TABLE I. 21
1-01

1 excitation energy for the even tin isotopes 130–116Sn for various approaches to the effective interaction. See text
for further details. Energies are given in MeV.

116Sn 118Sn 120Sn 122Sn 124Sn 126Sn 128Sn 130Sn

Experiment 1.29 1.23 1.17 1.14 1.13 1.14 1.17 1.23
Veff 1.17 1.15 1.14 1.15 1.14 1.21 1.28 1.46
G matrix 1.14 1.12 1.07 0.99 0.99 0.98 0.98 0.97
1S0 G matrix 1.38 1.36 1.34 1.30 1.25 1.21 1.19 1.18
No 1S0 and 3P2 in G 0.15 20.32 0.02 20.21
teraction. Long-range effects represented by core-
polarization terms are also needed. In order to achieve
this, the G-matrix elements are renormalized by the so-
called Q̂-box method. The Q̂ box is made up of non-
folded diagrams that are irreducible and valence linked.
Here we include all nonfolded diagrams to third order in
G (Hjorth-Jensen et al., 1995). Based on the Q̂ box, we
compute an effective interaction H̃ in terms of the Q̂
box using the folded-diagram expansion method (see,
for example, Hjorth-Jensen et al., 1995, for further de-
tails).

The effective two-particle interaction is then used in
large-scale shell-model calculations. For the shell-model
calculation, we employ the Oslo m-scheme shell-model
code (Engeland et al., 2002), which is based on the Lanc-
zos algorithm, an iterative method that gives the solu-
tion of the lowest eigenstates. The technique is de-
scribed in detail by Whitehead et al. (1977). The shell-
model space consists of the orbits 2s1/2 , 1d5/2 , 1d3/2 ,
0g7/2 , and 0h11/2 .

Of interest in this study is the fact that the chain of
even tin isotopes from 102Sn to 130Sn exhibits a near con-
stancy of the 21

1-01
1 excitation energy, a constancy that

can be related to strong pairing correlations and the
near degeneracy in energy of the relevant single-particle
orbits. As an example, we show the experimental 21

1-01
1

excitation energy from 116Sn to 130Sn in Table I.4 Our
aim is to see whether partial waves that play a crucial
role in superfluidity of neutron star matter, viz., 1S0 and
3P2 , are equally important in reproducing the near-
constant spacing in the chain of even tin isotopes shown
in Table I.

In order to test whether the 1S0 and 3P2 partial waves
are as important in reproducing the near-constant spac-
ing in the chain of even tin isotopes as they are for the
superfluid properties of infinite neutron star matter (re-
call the discussion of Sec. II), we study four different
approximations to the shell-model effective interaction,
viz.,

(1) Our best approach to the effective interaction, Veff ,
contains all one-body and two-body diagrams
through third order in the G matrix, as discussed
above (see also Holt et al., 1998).

4We limit the discussion to even isotopes from 116Sn to 130Sn,
since a qualitatively similar picture is obtained from 102Sn to
116Sn.
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(2) The effective interaction is given by the G matrix
only and includes all partial waves up to l510.

(3) We define an effective interaction based on a G ma-
trix that now includes only the 1S0 partial wave.

(4) Finally, we use an effective interaction based on a G
matrix that does not contain the 1S0 and 3P2 partial
waves, but all other waves up to l510.

In all four cases the same NN interaction is used, viz.,
the CD-Bonn interaction described by Machleidt (2001).
Table I lists the results.

We note from this table that the first three cases
nearly produce a constant 21

1-01
1 excitation energy, with

our most optimal effective interaction Veff closest to the
experimental data. The bare G-matrix interaction, with
no folded diagrams, results in a slightly more com-
pressed spacing. This is mainly due to the omission of
the core-polarization diagrams that typically render the
J50 matrix elements more attractive. Such diagrams are
included in Veff . Including only the 1S0 partial wave in
the construction of the G matrix [case (3)] yields, in
turn, a somewhat larger spacing. This can again be un-
derstood from the fact that a G matrix constructed with
this partial wave only receives no contributions from any
entirely repulsive partial wave. It should be noted that
our optimal interaction, as demonstrated by Holt et al.
(1998), reproduces rather well the experimental spectra
for both even and odd nuclei. Although the approxima-
tions made in cases (2) and (3) produce an almost con-
stant 21

1-01
1 excitation energy, they reproduce poorly

the properties of odd nuclei and other excited states in
the even Sn isotopes.

However, the fact that the first three approximations
result in a such a good reproduction of the 21

1-01
1 spac-

ing suggests that the 1S0 partial wave may be of para-
mount importance. If we now turn our attention to case
(4), i.e., omitting the 1S0 and 3P2 partial waves in the
construction of the G matrix, the results presented in
Table I exhibit a spectroscopic catastrophe.5 We also do
not list eigenstates with other quantum numbers. For
126Sn, the ground state is no longer a 01 state; rather it
carries J541, while for 124Sn the ground state has 61.
The first 01 state for this nucleus is given at an excita-
tion energy of 0.1 MeV with respect to the 61 ground

5Although we have singled out these two partial waves due to
their connection to infinite matter, it is essentially the 1S0 wave
that is responsible for the behavior seen in Table I.
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state. The general picture for other eigenstates is that of
an extremely poor agreement with data. Since the agree-
ment is so poor, even for the qualitative reproduction of
the 21

1-01
1 spacing, we refrain from performing time-

consuming shell-model calculations for 116,118,120,122Sn.
Since pairing is so prominent in such systems, we

present a comparison of the shell model with the gener-
alized seniority model (Talmi, 1993). The generalized se-
niority scheme is an extension of the seniority scheme,
i.e., from involving only one single j orbital, the model is
generalized to involve a group of j orbitals within a ma-
jor shell. The generalized seniority scheme is a simpler
model than the shell model since a rather limited num-
ber of configurations with a strictly defined structure are
included, thus allowing a more direct physical interpre-
tation. States with seniority v50 are by definition states
in which all particles are coupled in pairs. Seniority v
52 states have one pair broken, seniority v54 states
have two pairs broken, etc. The generalized seniority
scheme is suitable for describing semimagic nuclei for
which pairing plays an important role. The pairing pic-
ture and the generalized seniority scheme have been im-
portant for the description and understanding of the tin
isotopes. A typical feature of the seniority scheme is that
the spacing of energy levels is independent of the num-
ber of valence particles. For the tin isotopes, not only
the spacing between the ground state and the 21

1 state
but also the spacing between the ground state and the
41

1 and 61
1 states is fairly constant throughout the whole

sequence of isotopes. In fundamental works on general-
ized seniority by, for instance, Talmi (1993), the tin iso-
topes have been used as one of the major test cases. It is
also worth mentioning the classical work on pairing by
Kisslinger and Sorensen (1960; see also the analysis of
Sandulescu et al., 1997 and the review article of Bes and
Sorensen, 1969).

If, by closer investigation and comparison of the shell-
model wave function and the seniority states, we find
that the most important components are accounted for
by the seniority scheme, we can benefit from this and
reduce the shell-model basis. This would be particularly
useful when we want to do calculations on systems with
a large number of valence particles.

The operator for creating a generalized seniority (v
50) pair is

S†5(
j

1

A2j11
a j (

m>0
~21 ! j2mbjm

† bj2m
† , (53)

where bjm
† is the creation operator for holes. The gener-

alized seniority (v52) operator for creating a broken
pair is given by

DJ ,M
† 5 (

j<j8
~11d j ,j8!

21/2b j ,j8^jmj8m8uJM&bjm
† bj8m8

† .

(54)

The coefficients a j and b jj8 are obtained from the 130Sn
ground state and the excited states, respectively.

We calculate the squared overlaps between the con-
structed generalized seniority states and our shell-model
states:
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~v50 ! z^ASn~SM!;01u~S†!n/2u0̃& z2,

~v52 ! z^ASn~SM!;JiuDJM
† ~S†!n/2 21u0̃& z2. (55)

The vacuum state u0̃& is the 132Sn core and n is the num-
ber of valence particles. These quantities tell us to what
extent the shell-model states satisfy the pairing picture,
or in other words, how well generalized seniority is con-
served as a quantum number.

The squared overlaps are tabulated in Table II and
vary generally from 0.95 to 0.75. As the number of va-
lence particles increases, the squared overlaps gradually
decrease. The overlaps involving the 41 states show a
fragmentation. In 128Sn, the 41

1 (shell-model) state is
mainly a seniority v52 state. Approaching the middle
of the shell, the next state, 42

1 , assumes more and more
the structure of a seniority v52 state. The fragmenta-
tion of seniority over these two states can be understood
from the fact that they are rather close in energy and
therefore may have mixed structure.

In summary, these studies show clearly the promi-
nence of pairing correlations in nuclear systems with
identical particles as effective degrees of freedom. There
is a clear link between superfluidity in infinite neutron
star matter and the spectra of finite nuclei such as the
chain of tin isotopes. This link is provided especially by
the 1S0 partial wave of the nucleon-nucleon interaction.
Excluding this component from an effective interaction
yields spectra in poor agreement with experimental
data. Although the 1S0 partial wave plays an important
role, other many-body effects arising from low-lying col-
lective surface vibrations among nucleons can have im-
portant effects on properties of nuclei, as demonstrated
recently by Barranco et al. (1999) and Giovanardi et al.
(2002). In order to interpret the results of Table I one
needs to analyze the core-polarization diagrams that are
used to compute the effective interaction in terms of the
various partial waves.

Generalized seniority provides an explicit measure of
the degree of pairing correlations in the wave functions.
Furthermore, generalized seniority can serve as a useful
starting point for large-scale shell-model calculations
and is one of several ways of extracting information
about pairing correlations. In the next subsections, we
present further approaches.

TABLE II. Seniority v50 overlap (first row)
z^ASn;01u(S†)n/2u0̃& z2 and seniority v52 overlaps (remaining
rows) z^ASn;JfuDJM

† (S†)n/2 21u0̃& z2 for the lowest-lying eigen-
states of 128–120Sn.

A5128 A5126 A5124 A5122 A5120

01
1 0.96 0.92 0.87 0.83 0.79

21
1 0.92 0.89 0.84 0.79 0.74

41
1 0.73 0.66 0.44 0.13 0.00

42
1 0.13 0.18 0.39 0.66 0.74

61
1 0.81 0.85 0.83 0.79 0.64
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C. Isoscalar and isovector pair correlations

Numerous phenomenological descriptions of nuclear
collective motion describe the nuclear ground state and
its low-lying excitations in terms of bosons. In one such
model, the interacting-boson model, L50 (S) and L
52 (D) bosons are identified with nucleon pairs having
the same quantum numbers (Iachello and Arima, 1988),
and the ground state can be viewed as a condensate of
such pairs. Shell-model studies of the pair structure of
the ground state and its variation with the number of
valence nucleons can therefore shed light on the validity
and microscopic foundations of these boson approaches.

Generally speaking, nucleon-nucleon pairing may be
considered in several classes. A nucleon has a spin j
51/2, jz561/2 and an isospin t51/2, tz561/2. Two
protons (neutrons) are thus allowed to become paired to
total J ,T50,1 and Tz521 (Tz51). We shall call this
isovector pairing. Isoscalar pairing delineates proton-
neutron pairing for which J ,T51,0 and Tz50.

While we concentrate here on shell-model results, we
do wish to point out several recent developments in
other model studies of nucleon-nucleon pairing. Inter-
esting studies of nucleon-nucleon pairing have been un-
dertaken in several models, including pseudo-SU(4)
symmetry studies for pf-shell nuclei (Van Isacker et al.,
1999). These studies indicated that pseudo-SU(4) is a
reasonable starting point for the description of systems
within the pf shell larger than 56Ni. It is also the starting
point for generating collective pairs within the frame-
work of the interacting-boson model that incorporates
T50 and T51 bosons and a bosonic SU(4) algebra (El-
liott, 1958). This symmetry dictates that pairing
strengths be the same in both the T50 and T51 chan-
nels. Extensive studies of pairing in the framework of
Hartree-Fock-Bogoliubov theory have also been under-
taken (see, for example, Goodman, 2000). Recent work
in this direction indicates that T50 and T51 pairing
superfluids may develop near the midpoint of isotope
chains (i.e., near N5Z nuclei).

In the framework of the shell model, it appears suffi-
cient for many purposes to study the BCS pair structure
in the ground state. The BCS pair operator for protons
can be defined as

D̂p
†5 (

jm.0
pjm

† pjm̄
† , (56)

where the sum is over all orbitals with m.0 and pjm̄
†

5(2) j2mpjm
† is the time-reversed operator. Thus the ob-

servable D̂†D̂ and its analog for neutrons are measures
of the numbers of J50,T51 pairs in the ground state.
For an uncorrelated Fermi gas, we have simply

^D̂†D̂&5(
j

nj
2

2~2j11 !
, (57)

where the nj5^pjm
† pjm& are the occupation numbers, so

that any excess of ^D̂†D̂& in our shell-model Monte Carlo
calculations over the Fermi-gas value indicates pairing
correlations in the ground state.
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In this analysis, we move from tin isotopes to nuclei
that can be described by the single-particle orbits of the
pf shell, 1p3/2 , 1p1/2 , 0f5/2 , and 0f7/2 . As an effective
interaction, we employ the phenomenological interac-
tion of Brown and Richter (Richter et al., 1991). Figure
15 shows the shell-model Monte Carlo expectation val-
ues of the proton and neutron BCS-like pairs, obtained
after subtraction of the Fermi-gas value [Eq. (57)], for
three chains of isotopes. As expected, these excess pair
correlations are quite strong and reflect the well-known
coherence in the ground states of even-even nuclei. Note
that the proton BCS-like pairing fields are not constant
within an isotope chain, showing that there are impor-
tant proton-neutron correlations present in the ground
state. The shell closure at N528 is manifest in the neu-
tron BCS-like pairing. As is demonstrated in Fig. 16, the
proton and neutron occupation numbers show a much
smoother behavior with increasing A .

It should be noted that the BCS form [Eq. (56)] in
which all time-reversed pairs have equal amplitude is
not necessarily the optimal one and allows only the
study of S-pair structure. To explore the pair content of
the ground state in a more general way (Alhassid et al.,
1996; Langanke et al., 1996), we define proton pair-
creation operators

FIG. 15. Shell-model Monte Carlo expectation values of pro-
ton and neutron BCS-like pairs after subtraction of the Fermi-
gas value. From Langanke et al., 1995 (Color in online edi-
tion).
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ÂJm
† ~ jajb!5

1

A11dab

@aja

† 3ajb

† #Jm . (58)

These operators are bosonlike in the sense that

@ÂJm
† ~ jajb!,ÂJm~ jajb!#511O~ n̂/2j11 !; (59)

i.e., they satisfy the expected commutation relations in
the limit of an empty shell. We may also construct from
these operators a pair matrix

Maa8
J

5
1

A2~11d jajb
!
(
M

^AJM
† ~ ja ,jb!AJM~ jc ,jd!&.

(60)

We construct bosons B̂aJm
† as

B̂aJm
† 5(

jajb

cal~ jajb!Âlm
† ~ jajb!, (61)

FIG. 16. Proton and neutron occupation numbers for various
chains of isotopes. From Langanke et al., 1995.
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where a51,2,.. . labels the particular boson and the
‘‘wave function’’ c satisfies

(
jajb

caJ* ~ jajb!cbJ~ jajb!5dab . (62)

(Note that c is independent of m by rotational invari-
ance.)

To find c and naJ[(m^B̂aJm
† B̂aJm&, the number of

bosons of type a, and multipolarity J , we compute the
quantity (m^ÂJm

† (jajb)ÂJm(jcjd)& , which can be thought
of as a Hermitian matrix Maa8

J in the space of orbital
pairs (jajb); its non-negative eigenvalues define the naJ
(we order them so that n1J.n2J.¯), while the normal-
ized eigenvectors are the caJ(jajb). The index a distin-
guishes the various possible bosons. For example, in the
complete pf shell the square matrix M has dimension
NJ54 for J50, NJ510 for J51, and NJ513 for J
52,3.

The presence of a pair condensate in a correlated
ground state will be signaled by the largest eigenvalue
for a given J ,n1J , being much greater than any of the
others; c1J will then be the condensate wave function. In
Fig. 17 we show the pair matrix eigenvalues naJ for the
three isovector J501 pairing channels as calculated for
the iron isotopes 54–58Fe. We compare the shell-model
Monte Carlo results with those of an uncorrelated Fermi
gas, where we can compute ^Â†Â& using the factoriza-
tion

^aa
† ab

† agad&5nbna~dbgdad2dbddag!, (63)

where the nb5^ab
† ab& are the occupation numbers. Ad-

ditionally, Fig. 17 shows the diagonal matrix elements of
the pair matrix Maa . As expected, the protons occupy
mainly f7/2 orbitals in these nuclei. Correspondingly the
^Â†Â& expectation value is large for this orbital and
small otherwise. For neutrons, the pair matrix is also
largest for the f7/2 orbital. The excess neutrons in 56,58Fe
occupy the p3/2 orbital, signaled by a strong increase of
the corresponding pair matrix element M22 in compari-
son to its value for 54Fe. Upon closer inspection, we find
that the proton pair matrix elements are not constant
within the isotope chain. This behavior is mainly caused
by isoscalar proton-neutron pairing. The dominant role
is played by the isoscalar 11 channel, which couples pro-
tons and neutrons in the same orbitals and in spin-orbit
partners. As a consequence we find that, for 54,56Fe, the
proton pair matrix in the f5/2 orbital, M33 , is larger than
in the p3/2 orbital, although the latter is favored in en-
ergy. For 58Fe, this ordering is inverted, since the in-
creasing number of neutrons in the p3/2 orbital increases
the proton pairing in that orbital.

After diagonalization of M , the J50 proton pairing
strength is essentially found in one large eigenvalue.
Furthermore, we observe that this eigenvalue is signifi-
cantly larger than the largest eigenvalue on the mean-
field level (Fermi gas), supporting the existence of a pro-
ton pair condensate in the ground state of these nuclei.
The situation is somewhat different for neutrons. For
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FIG. 17. Content of isovector 01 pairs and
isoscalar 11 pairs in the ground states of the
isotopes 54–58Fe. The upper panel shows the
diagonal matrix elements of the pair matrix
Maa . The index a51, . . . ,4 refers to 01

pairs in the f7/2 , p3/2 , f5/2 , and p1/2 orbitals,
respectively. For the isoscalar pairs a51, 2,
and 3 refers to (f7/2)

2, (f7/2f5/2), and (f5/2)
2

pairs, respectively. The middle panel gives the
eigenvalues of the pair matrix; for the isosca-
lar pairs, only the three largest are shown.
The lower panel gives the eigenvalues of the
pair matrix for the uncorrelated Fermi-gas
case using Eq. (63). From Langanke et al.,
1996 (Color in online edition).
54Fe, only little additional coherence is found beyond
the mean-field value, reflecting the closed-subshell neu-
tron structure. For the two other isotopes, the neutron
pairing exhibits two large eigenvalues. Although the
larger one exceeds the mean-field value and signals no-
ticeable additional coherence across the subshells, the
existence of a second coherent eigenvalue shows the
shortcomings of the BCS-like pairing picture.

It has long been anticipated that J501 proton-
neutron correlations play an important role in the
ground states of N5Z nuclei. To explore these correla-
tions, we have performed shell-model Monte Carlo cal-
culations of the N5Z nuclei in the mass region A
548–56 (Langanke, Dean, et al., 1997). Note that for
these nuclei the pair matrix in all three isovector 01

channels essentially exhibits only one large eigenvalue,
related to the f7/2 orbital. We shall use this eigenvalue as
a convenient measure of the pairing strength. Since the
even-even N5Z nuclei have isospin T50, the expecta-
tion values of Â†Â are identical in all three isovector 01

pairing channels. This symmetry does not hold for the
odd-odd N5Z nuclei in this mass range, which have T
51 ground states, and ^Â†Â& can be different for
proton-neutron pairs than for like-nucleon pairs (the ex-
pectation values for proton pairs and neutron pairs are
identical). We find the proton-neutron pairing strength
significantly larger for odd-odd N5Z nuclei than for
Rev. Mod. Phys., Vol. 75, No. 2, April 2003
even-even nuclei, while the 01 proton and neutron pair-
ing shows the opposite behavior, in both cases leading to
an odd-even staggering, as displayed in Fig. 18. This
staggering is caused by constructive interference of the
isotensor and isoscalar parts of Â†Â in the odd-odd N
5Z nuclei, while they interfere destructively in the
even-even nuclei. The isoscalar part is related to the
pairing energy and is found to be about constant for the
nuclei studied here. Similar behavior was also demon-
strated in a simplified SO(5) senioritylike model (Engel
et al., 1996, 1998). This model is analytic but shows the
same trends as the shell-model results. Due to other cor-
relations present in the shell model, such as the inclusion
of several orbits, isoscalar pairing, spin-orbit splitting,
long-range correlations, deformation, etc., the shell-
model results are reduced in comparison to the simpli-
fied model. Pairing correlations have also been studied
in heavier systems that require the presence of the 0g9/2
orbital (Dean et al., 1997; Petrovici et al., 2000). In
heavier odd-odd N5Z nuclei the ground state becomes
a T51 (rather than a T50), as was found experimen-
tally in 74Rb (Rudolph et al., 1996). The lowest T50 and
T51 states in these systems are very close in energy.
Recently mean-field calculations that include both T
50 and T51 pairing correlations in odd-odd N5Z nu-
clei (Satula and Wyss, 2001) showed that the interplay
between quasiparticle excitations (relevant for the case
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FIG. 18. Largest eigenvalue for the various
isovector 01 pairs in the N5Z nuclei in the
mass region A548256. From Langanke,
Dean, et al., 1997 (Color in online edition).
of T50 states) and isorotations (relevant for the case of
T51 states) explains the near degeneracy of these
states.

D. Proton-neutron pairing and the Wigner energy

So far the strongest evidence for np pairing comes
from the masses of N5Z nuclei. An additional binding
(the so-called Wigner energy) found in these nuclei
manifests itself as a spike in the isobaric mass parabola
as a function of Tz5 1

2 (N2Z) (for a review see Zeldes,
1996, and references quoted therein). Rough estimates
of the magnitude of the Wigner energy come from a
large-scale fit to experimental binding energies with the
macroscopic-microscopic approach (Myers and Swiate-
cki, 1966; Krappe et al., 1979) and from the analysis of
experimental masses (Jensen et al., 1984). Several early
attempts were made to incorporate the effect of
neutron-proton pair correlations in light nuclei in quasi-
particle theory (for an early review see Goodman, 1979),
with varying success. Satula et al. (1997) presented a
technique for extracting the Wigner energy directly from
the experimental data and gave empirical arguments
that this energy originates primarily from the T50 part
of the effective interaction. To obtain deeper insight into
the structure of the Wigner term, they applied the
nuclear shell model to nuclei from the sd and fp shells.

The Wigner energy, EW , is believed to represent the
energy of collective np-pairing correlations. It enters the
semiempirical mass formula (see, for example, Krappe
et al., 1979) as an additional binding due to the np-pair
correlations. The Wigner energy can be decomposed
into two parts:

EW5W~A !uN2Zu1d~A !pnpdNZ . (64)

The uN2Zu dependence in Eq. (64) was first introduced
by Wigner (1937) in his analysis of the SU(4) spin-
isospin symmetry of nuclear forces. In the supermulti-
plet approximation, there appears a term in the nuclear
mass formula that is proportional to Tgs(Tgs14), where
Tgs denotes the isospin of the ground state. Empirically
Tgs5uTzu for most nuclei except for heavy odd-odd N
5Z systems (Jänecke, 1965; Zeldes and Liran, 1976).
Although the experimental data indicate that the SU(4)
symmetry is severely broken, and the masses behave ac-
cording to the Tgs(Tgs11) dependence (Jänecke, 1965;
Jensen et al., 1984), Eq. (64) for the Wigner energy is
Rev. Mod. Phys., Vol. 75, No. 2, April 2003
still very useful. In particular, it accounts for the nonana-
lytic behavior of nuclear masses when an isobaric chain
crosses the N5Z line. An additional contribution to the
Wigner term, the d term in Eq. (64), represents a cor-
rection for N5Z odd-odd nuclei. Theoretical justifica-
tion of Eq. (64) has been given in terms of basic prop-
erties of effective shell-model interactions (Talmi, 1962;
Zeldes, 1996) and also by using simple arguments based
on the number of valence np pairs (Myers, 1977; Jensen
et al., 1984). The estimates based on the number of np
pairs in identical spatial orbits suggest that the ratio d/W
is constant and equal to one (Myers, 1977). A different
estimate has been given by Jensen et al. (1984): d/W
50.5660.27.

In the work of Satula et al. (1997), the Wigner energy
coefficient W in an even-even nucleus Z5N5A/2 was
extracted by means of the indicator

W~A !5dVnpS A

2
,
A

2 D2
1
2 FdVnpS A

2
,
A

2
22 D

1dVnpS A

2
12,

A

2 D G . (65)

The d term in an odd-odd nucleus, Z5N5A/2 [Eq.
(64)], can be extracted using another indicator:

d~A !52FdVnpS A

2
,
A

2
22 D1dVnpS A

2
12,

A

2 D G
24dVnpS A

2
11,

A

2
21 D , (66)

where the double-difference formula from Zhang et al.
(1989) is

dVnp~N ,Z !5
1
4

$B~N ,Z !2B~N22,Z !

2B~N ,Z22 !1B~N22,Z22 !%

'
]2B

]N]Z
. (67)

Although the recipe for these third-order mass-
difference indicators is not unique, the results appear to
be very weakly dependent on the particular prescription
used.

To visualize the influence of the T50 part of the ef-
fective nuclear interaction on the Wigner term, we have
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performed a set of shell-model calculations while switch-
ing off sequentially the J51,2, . . . ,Jmax , T50 two-body
matrix elements ^j1j2JTuĤuj18j28JT& of the shell-model
Hamiltonian Ĥ for different values of Jmax . Figure 19
shows a ratio «W /«W

total , where «W
total denotes the result of

full shell-model calculations versus Jmax . The calcula-
tions were performed for two representative examples,
namely, the fp-shell nucleus 48Cr and the sd-shell
nucleus 24Mg. The largest contribution to the Wigner
energy came from the part of the T50 interaction be-
tween deuteronlike (J51) and ‘‘stretched’’ @J55 (sd)
and 7 (pf )] pairs. The importance of these matrix ele-
ments is well known; it is precisely for J51 and
stretched pair states that experimentally determined ef-
fective np T50 interactions are strongest (Anataraman
and Schiffer, 1971; Schiffer, 1971; Molinari et al., 1975).
Note also that the deuteronlike correlations contribute
more strongly to «W in sd nuclei than in fp nuclei and
that matrix elements corresponding to intermediate val-
ues of J give non-negligible contributions. This reveals
the complex structure of the Wigner energy and suggests
that models that ignore high-J components of the np
interaction [e.g., by considering only J50,T51 and J

FIG. 19. Calculated displacement «W of the binding energy of
24Mg and 48Cr from the average parabolic (N2Z)2 behavior
along an isobaric chain. Shell-model calculations were per-
formed in the 0\v configuration space. The results of calcula-
tions for the binding energies of even-even nuclei along the
A548 chain (normalized to 48Cr) are shown in the inset. The
values of «W were obtained using the shell-model Hamiltonian
with the J51,2, . . . ,Jmax ,T50 matrix elements removed. For
instance, the result for Jmax53 corresponds to the variant of
calculations in which all the two-body matrix elements be-
tween states uj1j2JT50& with J51,2,3, were put to zero. The
results are normalized to the full shell-model value «W

total

(Jmax50). The Coulomb contribution to the binding energy
has been disregarded. From Satula et al., 1997 (Color in online
edition).
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51, T50 np pairs (Evans et al., 1981)] are not too use-
ful for discussing actual np-pair correlations.

E. Thermal properties of pf-shell nuclei

The properties of nuclei at finite temperatures are of
considerable experimental (for reviews, see Snover,
1986; Suraud et al., 1989) and theoretical (Alhassid,
1991; Egido and Ring, 1993) interest. How thermal ex-
citations influence the pairing properties will be the
main focus of this section. We address this topic in Sec.
V as well, but with an emphasis on analysis based on
experimental level-density data.

Theoretical studies of nuclei at finite temperature
have been based mainly on mean-field approaches and
thus consider only the temperature dependence of the
most probable configuration in a given system. These
approaches have been criticized for their neglect of
quantum and statistical fluctuations (Dukelsky et al.,
1991). The shell-model Monte Carlo method does not
suffer from this defect and allows the consideration of
model spaces large enough to account for the relevant
nucleon-nucleon correlations at low and moderate tem-
peratures.

Shell-model Monte Carlo calculations were per-
formed to study the thermal properties of several even-
even and odd-A nuclei in the mass region A550–60
(Dean et al., 1994; Langanke et al., 1996) in an fp-shell
model space using realistic interactions. More recently
Alhassid et al. (1999) carried out thermal calculations in
a larger model space that included the 0g9/2 shell. As a
typical example, in the following we discuss our shell-
model Monte Carlo results for the nucleus 54Fe, which is
very abundant in the presupernova core of a massive
star.

Our calculations include the complete set of
1p3/2,1/20f7/2,5/2 states interacting through the realistic
Brown-Richter Hamiltonian (Richter et al., 1991).
[Shell-model Monte Carlo calculations using the modi-
fied KB3 interaction (Poves and Zuker, 1981a, 1981b)
give essentially the same results.] Some 53109 configu-
rations of the eight valence neutrons and six valence
protons moving in these 20 orbitals are involved in the
canonical ensemble. The results presented below have
been obtained with a time step of Db51/32 MeV21 us-
ing 5000–9000 independent Monte Carlo samples.

The calculated temperature dependence of various
observables is shown in Fig. 20. In accord with general
thermodynamic principles, the internal energy U
steadily increases with increasing temperature (Dean
et al., 1994). It shows an inflection point around T
'1.1 MeV, leading to a peak in the heat capacity, C
[dU/dT , whose physical origin we shall discuss below.
The decrease in C for T*1.4 MeV is due to our finite
model space (the Schottky effect; Civitarese et al., 1989).
We estimate that limitation of the model space to only
the pf shell renders our calculations of 54Fe quantita-
tively unreliable for temperatures above this value (in-
ternal energies U*15 MeV). The same behavior is ap-
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parent in the level-density parameter a[C/2T . The
empirical value for a is A/8 MeV56.8 MeV21, which is
in good agreement with our results for T
'1.1–1.5 MeV.

More recent calculations confirm these basic findings.
Liu and Alhassid (2001) calculated the heat capacity for
iron isotopes in a complete 0f1p-g9/2 model space. They
used a phenomenological pairing-plus-quadrupole
model for the two-body interaction and found that the
pairing transition in the heat capacity is correlated with
the suppression of the number of spin-0 neutron pairs as
the temperature increases. The results were obtained us-
ing a novel method to calculate the heat capacity that

FIG. 20. Temperature dependence of various observables in
54Fe. Monte Carlo points with statistical errors are shown at
each temperature T . In the left-hand column, the internal en-
ergy U is calculated as ^Ĥ&2E0 , where Ĥ is the many-body
Hamiltonian and E0 is the ground-state energy. The heat ca-
pacity C is calculated by a finite-difference approximation to
dU/dT , after U(T) has been subjected to a three-point
smoothing, and the level-density parameter is a[C/2T . In the
right-hand column, we show the expectation values of the
squares of the proton and neutron BCS pairing fields. For
comparison, the pairing fields calculated in an uncorrelated
Fermi gas are shown by the solid curve. The moment of inertia
is obtained from the expectation values of the square of the
total angular momentum by I5b^ Ĵ2&/3. From Dean et al.,
1994 (Color in online edition).
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decreased the statistical error bars in the calculation. We
show the results of this calculation for Fe isotopes in Fig.
21. While the original calculations of Dean et al. (1994)
indicated a possible phase transition (along with a pair-
ing collapse in the measured ^D†D& pairing expectation),
in the calculations of Liu and Alhassid (2001) this effect
appears to be delayed to more neutron-rich nuclei. Sev-
eral factors are likely to contribute to this difference.
First, the interactions are obviously different. Second,
the extrapolation techniques used for realistic interac-
tions may overestimate the influence of pairing in the
region between 0.5 and 1.0 MeV. Finally, the model
space is smaller in the early calculation, although the
Schottky peak is seen to appear at about 1.4 MeV. This
makes the interpretation of the low-temperature peak
more difficult in Dean et al. (1994). Nevertheless, it
should be clear that both the original calculations with
realistic interactions and the more recent work of Liu
and Alhassid (2001) indicate interesting physics related
to pairing phenomena in the T51.0 MeV region.

We also show in Fig. 20 the expectation values of the
BCS-like proton-proton and neutron-neutron pairing
fields, ^D̂†D̂&. At low temperatures, the pairing fields are
significantly larger than those calculated for a noninter-
acting Fermi gas, indicating a strong coherence in the
ground state. With increasing temperature, the pairing
fields decrease, and both approach the Fermi-gas values
for T'1.5 MeV and follow it closely for higher tem-
peratures. Associated with the breaking of pairs is a dra-
matic increase in the moment of inertia, I[^J2&/3T , for
T51.0–1.5 MeV; this is analogous to the rapid increase
in magnetic susceptibility in a superconductor. At tem-
peratures above 1.5 MeV, I is in agreement with the
rigid-rotor value, 10.7\2/MeV; at even higher tempera-
tures, it decreases linearly due to our finite model space.

Although the results discussed above are typical for
even-even nuclei in this mass region (including the N
5Z nucleus 52Fe), they are not typical for odd-odd N
5Z nuclei. This is illustrated in Fig. 22, which shows the
thermal behavior of several observables for 50Mn (N
5Z525), calculated in a shell-model Monte Carlo
study within the complete pf shell using the KB3 inter-
action (Poves and Zuker, 1981a, 1981b). A closer inspec-
tion of the isovector J50 and isoscalar J51 pairing cor-
relations helps to explain these differences. The J50
isovector correlations are studied using the BCS pair op-

FIG. 21. The heat capacity of even-even (left panel) and odd-
even (right panel) iron isotopes. From Liu and Alhassid, 2001.
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FIG. 22. Temperature depen-
dence of various observables in
50Mn. The left panels show
(from top to bottom) the total
energy, the moment of inertia,
and the proton-neutron BCS
pairing fields, while the right
panels exhibit the expectation
values of the isospin operator

^T̂2&, the isovector J50
proton-proton BCS pairing
fields, and the isoscalar J51
pairing strength, as defined in
the text. For comparison, the
solid lines indicate the Fermi-
gas values of the BCS pairing
fields and J51 pairing strength.
erators, Eq. (56), with a similar definition for proton-
neutron pairing. For the isoscalar J51 correlations we
have interpreted the trace of the pair matrix MJ51 [de-
fined in Eq. (60)] as an overall measure for the pairing
strength,

Psm
J 5(

b
lb

J 5(
a

Maa
J . (68)

Note that at the level of the noninteracting Fermi gas,
proton-proton, neutron-neutron, and proton-neutron J
50 correlations are identical for N5Z nuclei. However,
the residual interaction breaks the symmetry between
like-pair correlations and proton-neutron correlations in
odd-odd N5Z nuclei. As is obvious from Fig. 22, at low
temperatures proton-neutron pairing dominates in
50Mn, while pairing among like nucleons shows only a
small excess over the Fermi-gas values, in strong con-
trast to even-even nuclei.

A striking feature of Fig. 22 is that the isovector
proton-neutron correlations decrease strongly with tem-
perature and have essentially vanished at T51 MeV,
while the isoscalar pairing strength remains about con-
stant in this temperature region (as it does in even-even
nuclei) and greatly exceeds the Fermi-gas values. We
also note that the pairing between like nucleons is
roughly constant at T,1 MeV. The difference between
isovector and isoscalar proton-neutron correlations with
temperature is nicely reflected in the isospin expectation
value, which decreases from ^T̂2&52 at temperatures
around 0.5 MeV, corresponding to the dominance of
isovector correlations, to ^T̂2&50 at temperature T
51 MeV, when isoscalar proton-neutron correlations
are most important.

The temperature dependence of the excitation energy
E5^H& in the odd-odd nucleus 50Mn is significantly dif-
ferent from that in even-even nuclei. The difference is
Rev. Mod. Phys., Vol. 75, No. 2, April 2003
due to the uniqueness of isospin properties in odd-odd
N5Z nuclei. It is only in these nuclei that one finds
states of different isospin, T51 and T50, which are
close to each other at low excitation energies. The 50Mn
ground state is T51, Tz50, and Jp501. In that state
pn pair correlations dominate and the like-particle cor-
relations are reduced (Langanke, Dean, et al., 1997).
However, at relatively low excitation energy these nuclei
exhibit a multiplet of T50 states with nonvanishing an-
gular momenta. These states contribute efficiently to
corresponding thermal averages. On the other hand, it
follows from isospin symmetry that in the T50 states all
three pairing strengths (in TZ) must be equal. Thus, at
temperatures at which the T50 states dominate the
thermal average, the pn-pair correlations are substan-
tially reduced when compared to ground-state values.
This argument appears to be a generic feature of odd-
odd N5Z nuclei beyond 40Ca. For a further discussion
see Langanke, Vogel, and Zheng (1997). For a different
point of view from the perspective of mean-field calcu-
lations, see, for example, Röpke et al. (2000).

F. Pair correlations and thermal response

All shell-model Monte Carlo calculations of even-
even nuclei in the mass region A550–60 show that the
BCS-like pairs break at temperatures around 1 MeV.
Three observables exhibit a particularly interesting be-
havior at this phase transition: (a) the moment of inertia
rises sharply; (b) the M1 strength shows a sharp rise, but
unquenches only partially; and (c) the Gamow-Teller
strength remains roughly constant (and strongly
quenched). Note that the B(M1) and B(GT1)
strengths unquench at temperatures larger than
'2.6 MeV and in the high-temperature limit approach
the appropriate values for our adopted model space.
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FIG. 23. Pair correlations, as defined in Eq.
(68), for isovector 01 and isoscalar 11 pairs
for 54258Fe and 56Cr, as functions of tempera-
ture. From Langanke et al., 1996.
Langanke et al. (1996) have studied pair correlations
in the four nuclei 54–58Fe and 56Cr for the various isovec-
tor and isoscalar pairs up to J54, tentatively interpret-
ing the sum of the eigenvalues of the matrix MJ 60 as an
overall measure for the pairing strength. Note that the
pairing strength, as defined in Eq. (68), is nonzero at the
mean-field level. The physically relevant pair correla-
tions Pcorr

J are then defined as the difference between
the shell-model Monte Carlo and mean-field pairing
strengths.

Detailed calculations of the pair correlations have
been performed for selected temperatures in the region
between T50.5 MeV and 8 MeV. Figure 23 shows the
temperature dependence of those pair correlations that
play an important role in the thermal behavior of the
moment of inertia and the total M1 and Gamow-Teller
strengths.

The most interesting behavior is found in the J50
proton and neutron pairs. There is a large excess of this
pairing at low temperatures, reflecting the ground-state
coherence of even-even nuclei. With increasing tempera-
ture, this excess diminishes and vanishes at around T
51.2 MeV. We observe further from Fig. 23 that the
temperature dependence of the J50 proton-pair corre-
lations are remarkably independent of the nucleus,
while the neutron-pair correlations show interesting dif-
ferences. At first the correlation excess is smaller in the
semimagic nucleus 54Fe than in the others. When com-
paring the iron isotopes, the vanishing of the neutron J
50 correlations occurs at higher temperatures with in-
creasing neutron number.
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The vanishing of the J50 proton- and neutron-pair
correlations is accompanied by an increase in the corre-
lations of the other pairs. For example, the isovector J
50 proton-neutron correlations increase by about a fac-
tor of 3 after the J50 proton and neutron pairs have
vanished. The correlation peak is reached at higher tem-
peratures with increasing neutron number, while the
peak height decreases with neutron excess.

The isoscalar proton-neutron J51 pairs show an in-
teresting temperature dependence. At low tempera-
tures, when the nucleus is still dominated by the J50
proton and neutron pairs, the isoscalar proton-neutron
correlations show a noticeable excess but, more interest-
ingly, they are roughly constant and do not directly re-
flect the vanishing of the J50 proton and neutron pairs.
However, at T.1 MeV, where the J50 proton and neu-
tron pairs have broken, the isoscalar J51 pair correla-
tions significantly increase and have their maximum at
around 2 MeV, with peak values of about twice the cor-
relation excess in the ground state. In contrast to the
isovector J50 proton-neutron pairs, the correlation
peaks occur at lower temperatures with increasing neu-
tron excess. We also observe that these correlations fade
rather slowly with increasing temperature.

A further discussion of thermal properties as revealed
by recent experiments on level densities will be given in
Sec. V.

IV. RANDOM INTERACTIONS AND PAIRING

We have seen that all even-even nuclei have a Jp

501 ground state. Pairing in even-even systems was also
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shown in previous sections to be a major contributor to
ground-state correlations. Furthermore, a property such
as the 01 nature of all even nuclei can be explained
within the simple seniority model, itself based on the
short-range nature of the effective interaction. It is
therefore interesting to see whether such a general prop-
erty is specific to this Hamiltonian or whether it could
also emerge from a random ensemble of rotationally
and isospin-invariant random two-body interactions.
This question was first posed by Johnson et al. (1998),
who studied the low-lying spectral properties of random
interactions from the shell-model perspective. Several
interesting results were obtained, including highly likely
01 ground states emerging from the random ensembles,
an enhanced phonon collectivity, strongly correlated
pairing phenomena (Johnson et al., 2000), odd-even
staggering (Papenbrock et al., 2002), and a likelihood of
generating rotational and vibrational spectra.

Similar results were also obtained in the interacting-
boson model (Bijker and Frank, 2000). The interacting-
boson Hamiltonian used in these calculations was given
by

H5en̂d2kQ̂~x!3Q̂~x!, (69)

Q̂m~x!5~s†d̃1d†s !m
(2)1x~d†d̃ !m

(2) , (70)

where only spin-0 (s , monopole) and spin-2 (d , quadru-
pole) bosons were considered. This interaction was ran-
domized by introducing a scaling parameter h5e/@e
14k(N21)# and x̄52x/A7, and choosing x̄ and h ran-
domly on the intervals @21,1# and [0,1], respectively.
The interacting-boson-model calculations also gave a
predominance of 01 ground states as well as strong evi-
dence for the occurrence of both vibrational and rota-
tional band structures. Within the shell model, these
structures appear within a continuum of rotational
bands, but the nature of the interacting-boson model re-
stricts the structures to these two particular forms. In
this section we shall briefly review the present status of
research into this interesting phenomenon.

For fermions, we define the two-body matrix elements
VJT(ab ,cd) through an ensemble of two-particle
Hamiltonians and require that the ensemble be invariant
under changes in the basis of two-particle states. This is
achieved by taking the matrix elements to be Gaussian
distributed about zero with the widths possibly depend-
ing on J and T such that

^Va ,a8
2 &5cJa ,Ta

~11da ,a8!v̄
2,

^Va ,a8Vb ,b8&50, ~a ,a8!Þ~b ,b8!. (71)

Here v̄ is an overall energy scale that we generally ig-
nore (except for scaling single-particle energies for the
random-quasiparticle ensemble with single-particle split-
ting defined below). The coefficients cJ then define the
ensemble. We emphasize that J ,T refer to quantum
numbers of two-body states and not of the final many-
body states (typically 4–10 valence particles).

Several basic ensembles may be defined by the choice
of the form of the cJ ,T coefficients and the single-particle
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Hamiltonian, if present. One ensemble is called the
random-quasiparticle ensemble (RQE). In this case
cJ ,T5@(2T11)(2J11)#21. This relation between the
cJ ,T , which was discussed by Johnson et al. (1998), came
from imposing on the ensemble the constraint that it
should remain the same for the particle-particle interac-
tion as for the particle-hole interaction. A different en-
semble in this class is called the two-body random en-
semble (TBRE) for which cJT5const. Historically this
was the first two-particle random ensemble to be em-
ployed in studying statistical properties of many-particle
spectra (French and Wong, 1970). These two ensembles
assume degenerate single-particle energies. Realistic in-
teractions have nondegenerate single-particle energies
that will, in principle, affect various spectral properties.
For calculations in the sd shell one uses single-particle
energies from the Wildenthal interaction (Wildenthal,
1984), scaling v̄53.84 MeV to best match the widths of
the two-particle matrix elements. The resulting interac-
tions with the single-particle energy (SPE) splitting in-
cluded are called the RQE-SPE and TBRE-SPE.

The first, and perhaps most striking, feature of all of
these random interactions is the preponderance of Jp

501 ground states. In Fig. 24 we show the distribution
of ground-state spins in the various ensembles for the
two systems 20Ne and 24Mg. We generated 1000 random
interactions from each ensemble. These results are typi-
cal and consistent with calculations with only one type of
particle (for example, neutrons only) or fermions in
which the lW•sW force is not present (Kaplan et al., 2001).

Figure 24 also shows that the even spins are preferred.
In some cases, higher even-spin states are preferred over
medium-spin states. For example, in 24Mg, the 81 state
is preferred over the 61. The single-particle splitting
tends to lower slightly the number of 01 ground states.

FIG. 24. The distribution of ground-state spins in the various
random ensembles. RQE, random quasiparticle ensemble;
TBRE, two-body random ensemble; RQE-SPE, random qua-
siparticle ensemble with single-particle energy splitting;
TBRE-SPE, two-body random ensemble with single-particle
energy splitting (Color in online edition).
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The random-quasiparticle ensemble clearly obtains the
highest number of 01 ground states in each case.

Various research efforts have been undertaken to un-
derstand the preponderance of the 01 ground state. En-
sembles of interactions derived from a Gaussian unitary
ensemble distribution are not time-reversal invariant,
but both the Gaussian orthogonal ensemble and the
Gaussian unitary ensemble yield 01 dominance (Bijker
et al., 1999). This apparent paradox was recently re-
solved (Velazques and Zuker, 2002) by noting that the J2

operator commutes with the T time-reversal operator for
either ensemble. For bosons, Kusnezov (2000) was able
to map the U(4) vibron model onto random polynomials
on the unit interval. Kusnezov was then able to show
analytically the origin of 01 ground states. While the
U(4) model is extremely simplified and describes only
bosons (rather than fermions), it points to an interesting
link between random polynomials and the two-body in-
teraction. The 01 predominance in the fermion case was
recently studied by Mulhall et al. (2000). These authors
used a single j shell to show that statistical correlations
of fermions in a finite system with random interactions
drive the ground-state spin to its minimum or maximum
value. The effect is universal and related to the geomet-
ric chaoticity, or the assumption of pseudorandom cou-
pling of angular momentum (Zelevinsky et al., 1996), of
the spin coupling of individual fermions. While a rigor-
ous derivation of these findings for general orbital
schemes is not yet available, the research is pointing to-
wards an understanding of why an ensemble of random
interactions possesses predominantly 01 ground states.

A second feature of the random interaction studies is
the likelihood of finding rotational or vibrational spectra
from the ensembles. The relevant measure for these
states is the ratio of the first 41 excitation energy
to the first 21 energy. This ratio, r5@E(41)
2E(01)#/@E(21)2E(01)# , is 2 for a vibrational spec-
trum and 10/3 for a rotational one. The results from the
random-quasiparticle ensemble show a broad distribu-
tion of various kinds of spectra peaked towards vibra-
tional spectra. Using random interactions in the
interacting-boson model, virtually all random interac-
tions yield a vibrational or rotational spectrum in nearly
equal proportions. The difference is due to the restricted
nature of the random interacting-boson-model interac-
tion in which only s and d boson pairs and couplings are
included in the Hamiltonian. Kusnezov et al. (2000)
compared the results of the interacting-boson model
with known experimental data and found two interesting
results. They found that both the interaction and the
number of relevant valence nucleons were key to under-
standing the distribution of rIBM . They also found that
experimental data favor rotational spectra over vibra-
tional spectra and were able to place limits on the choice
of random variables that would allow for a reproduction
of experimental data.

Of the three general properties of random interac-
tions we discuss here, the enhancement of the B(E2)
strength is not spontaneously produced by our choices
of random interactions (Horoi et al., 2001). This is par-
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ticularly true for strongly deformed nuclei. The problem
can be cured (Velazques and Zuker, 2002) by choosing a
constant displacement of all the matrix elements, which
is essentially the same as adding some coherence to the
choice of the random Hamiltonian. Velazques and
Zuker (2002) were able to do this and showed how one
may obtain good rotational spectra from the displaced
two-body random ensemble.

A third feature of the random shell-model interac-
tions is the pair content of the 01 ground-state wave
functions. The pairing content of the wave function was
measured by calculating the pair-transfer operator. In-
terestingly, for a given interaction, the same coherent
pair connected several even-even nuclei in a given iso-
topic chain. This feature appears to be robust. However,
studies (Mulhall et al., 2000) made in a single j shell re-
late the origin of regularities in the spectra to incoherent
interactions rather than to coherent pairing. When the
origin of order in the spectra is attributed to geometric
chaocity, the implication is that pairing plays a minimal
role. In order to better understand these two seemingly
conflicting observations, a further analysis of the pairing
properties of the system has been performed by Benna-
ceur et al. (2002), who compared shell-model results to
those obtained from Hartree-Fock-Bogoliubov (HFB)
calculations using the same set of random interactions.
The aim of this study was to determine whether the in-
teractions support static pairing or whether the effect is
more dynamical. Because the HFB solution generally
breaks all the symmetries required by the many-body
Hamiltonian, it is not a physical state, but an indicator of
the intrinsic structure in the many-body system.

In the HFB approach one does not explore the full
Hilbert space; the trial function is constrained to be a
superposition of pairs of single particles. Moreover, the
Hamiltonian of Bennaceur et al. (2002) omits the terms
that represent the residual interaction between quasipar-
ticles, and proton-neutron pairing is not taken into ac-
count. Finally, the HFB approach is an unprojected
variational method, so J is not a good quantum number
and neither are the particle numbers N and Z . In the
shell model the particle numbers are well defined, while
in HFB approximation, only the average particle num-
bers are constrained.

The HFB approximation describes only static pairing.
By contrast, in the shell-model picture, the wave func-
tions contain all the possible correlations inside a given
model space. For that reason, a shell-model ground-state
wave function can show some strong pairing properties
while the corresponding HFB solution can be totally un-
paired. In that case the pair structure could be due to
dynamical pairing, which cannot be described in the
HFB method but requires going beyond the mean field.

The three systems 24Mg, 22Ne, and 20O were consid-
ered. Only those interactions generated from the RQE-
SPE ensemble that lead to a shell-model ground state
with Jp501 were used, and the pairing properties of the
ground state wave functions were investigated. The si-
multaneous use of the shell model and the HFB approxi-
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FIG. 25. Distribution of the pair-transfer coefficient ^P00
1 &, pairing strength ^k&, and deformation Q2 for the random interactions

leading to a Jp501 ground state in the shell-model description. From left to right we report the results for N2Z54, 2, and 0. The
arrows indicate the number of results in a bin when it is out of scale (Color in online edition).
mation gives a better understanding of the pairing in-
duced by the random interactions.

In order to investigate the pairing properties of the
shell-model solutions, one introduces the pair-transfer
coefficient

^P1&[^AuP00
1 uA22&5(

a
^Au@aa

1a ā
1#0

0uA22&, (72)

where uA& and uA22& represent the ground states of the
A and A22 particle systems obtained from the shell
model (isospin T51 is understood). This quantity is
compared to the mean pairing strength in the HFB ap-
proximation ^k& defined by

^k&5Tr k . (73)
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The three systems considered correspond in the (sd)
shell to N2Z50, N2Z52, and N2Z54.

If the dominance of the Jp501 ground state is due to
the pairing properties of the system, then we would ex-
pect to obtain a significant value for ^k& in most cases.
Moreover, if pairing plays an important role for the
structure of the ground state, then it must be related to
the pair-transfer coefficient, and in that case one would
also expect a clear correlation between ^k& and ^P1&.

In Fig. 25, we show the distribution of the number of
interactions according to the results obtained for ^P1& ,
^k&, and Q2 (Bennaceur et al., 2002). In the case with
only one kind of active particle in the model space (N
2Z54), almost all the interactions lead to a strong
pair-transfer coefficient. This property can be explained
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by the fact that when we consider only one kind of par-
ticle, the deformation effects are (almost) zero, and pair-
ing can develop more easily. Nevertheless, for the three
sets we see once again that ^P1& has a significant value
in most cases. The distribution of the number of interac-
tions according to the static pairing strength, measured
via ^k&, follows the same evolution (i.e., the number of
interactions that give a significant value of ^k& increase
with N2Z), but the number of interactions for which
^k& is small is always important. It is thus highly unlikely
that the origin of the spin 0 of the ground states is con-
nected with the static pairing created by the interactions.

It is also instructive to consider the evolution of the
plots when one changes the asymmetry of the system
from N2Z54 to N2Z50. In the mean-field descrip-
tion (center and lower parts of Fig. 25), the pairing
strength is concentrated into regions ^k&;0 and ^k&
;0.5–2. This property does not change dramatically as a
function of N2Z . Nevertheless, we notice that ^k& is
more often close to zero, and the nonzero values are less
scattered when N5Z . This effect can probably be at-
tributed to deformations, which play a more important
role when N;Z . When the pairing is weak, deformation
effects prevail and so decrease the pairing strength in
the region between 0 and 1.5.

In the shell-model description (upper part of Fig. 25),
we notice a clear evolution of the pair-transfer coeffi-
cient with the asymmetry of the system. This property
seems to be mainly due to deformation effects. Indeed,
for the system with N2Z54, the coefficient ^P1& is
peaked at around 2.5, and no interactions give a value
close to zero. The cases with N2Z52 and N2Z50 are
similar and indicate that the T50 part of the pairing
interaction does not play a crucial role in these systems.
This last remark further suggests that the T50 part of
the pairing interaction, like the T51 part, does not play
a significant role for the relative abundance of 01

ground states. This conclusion is in agreement with that
of Mulhall et al. (2000), who see the origin of the abun-
dance of the 01 states in the even fermion systems as
related to geometric chaocity rather than to the pairing
properties of the system.

V. THERMODYNAMIC PROPERTIES AND PAIRING
CORRELATIONS IN NUCLEI

A. Introduction

One of the most interesting problems in the study of
small-system phase transitions is the possible existence
of a phase transition from a hadronic phase to a quark-
gluon plasma in high-energy physics. Whether such a
phase transition exists, and how to classify it if it does,
are questions that have far-reaching implications for
many other fields of research such as cosmology, since it
has been argued that hadronization of the quark-gluon
plasma should be a first-order phase transition in order
to allow for possible supercooling and the consequent
emergence of large-scale inhomogeneities in the cosmos
within the inflationary big-bang model.
Rev. Mod. Phys., Vol. 75, No. 2, April 2003
In nuclear physics, different phase transitions have
been discussed in the literature. A first-order phase tran-
sition has been reported in the multifragmentation of
nuclei (D’Agostino et al., 2000), thought to be the analo-
gous phenomenon in a finite system to a liquid-gas phase
transition in the thermodynamical limit. A pivotal role
in these studies is played by the presence of a convex
intruder in the microcanonical entropy curve (Gross,
1997; Gross and Votyakov, 2000). This leads to a nega-
tive branch of the microcanonical heat capacity, which
has been taken as an indicator of a first-order phase
transition in small systems. Negative heat capacities
have indeed been observed in the multifragmentation of
atomic nuclei, though the heat-capacity curve has not
been derived directly from the caloric curve, but by
means of energy fluctuations (Chomaz et al., 2000;
D’Agostino et al., 2000). Another finding of a negative
branch of the heat-capacity curve has been in sodium
clusters of 147 atoms (Schmidt et al., 2001), indicating a
possible first-order phase transition. However, it is not
clear whether the observed negative heat capacities are
simply due to the changing volume of the system under
study, which is progressively evaporating particles (Mor-
etto et al., 2001). In general, great care should be taken
in the proper extraction of temperatures and other ther-
modynamical quantities of a multifragmenting system.

Another transition, discussed for atomic nuclei, has
been the anticipated transition from a phase with strong
pairing correlations to one with weak pairing correla-
tions (Sano and Yamasaki, 1963). Early schematic calcu-
lations have shown that pairing correlations can be
quenched by temperature as well as by the Coriolis force
in rapidly rotating nuclei (Tanabe and Sugawara-
Tanabe, 1980, 1982; Goodman, 1981a, 1981b; Shimizu
et al., 1989). This makes the quenching of pairing corre-
lations in atomic nuclei very similar to the breakdown of
superfluidity in 3He (due to rapid rotation and/or tem-
perature) or of superconductivity (due to external mag-
netic fields and/or temperature). Recently structures in
the heat-capacity curve related to the quenching of pair-
ing correlations have been obtained within the relativis-
tic mean-field theory (Agrawal et al., 2000, 2001), the
finite-temperature random-phase approximation (Dinh
Dang, 1990), the finite-temperature Hartree-Fock-
Bogoliubov theory (Egido et al., 2000), and the shell-
model Monte Carlo approach (Dean et al., 1995; Nakada
and Alhassid, 1997; Rombouts et al., 1998; White et al.,
2000; Liu and Alhassid, 2001). An S-shaped structure in
the heat-capacity curve could also be observed experi-
mentally (Schiller et al., 2001) and has been interpreted
as a fingerprint of a second-order phase transition in the
thermodynamic limit from a phase with strong pairing
correlations to one with no pairing correlations. For fi-
nite systems there will be a gradual transition from
strong pairing correlations to weak pairing correlations,
implying a finite order parameter, here the pairing gap
D. Indeed, the analogy of the quenching of pairing cor-
relations in atomic nuclei with the breakdown of super-
fluidity in 3He and the breakdown of superconductivity
suggests a second-order phase transition, and a sche-
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matic calculation might support this assumption (see the
discussion below). Interestingly, structures of the heat-
capacity curve similar to those observed for atomic nu-
clei by Schiller et al. (2001) have been seen in small me-
tallic grains undergoing a second-order phase transition
from a superconductive to a normal conductive phase
(Lauritzen et al., 1993; Ralph et al., 1995; Black et al.,
1996, 1997; von Delft and Ralph, 2001), thereby support-
ing the analogous findings for atomic nuclei. On the
other hand, breaking of nucleon pairs has been experi-
mentally shown to cause a series of convex intruders in
the microcanonical entropy curve of rare-earth nuclei
(Melby et al., 1999, 2001), leading to several negative
branches of the microcanonical heat capacity. This find-
ing might, in analogy to the discussion of nuclear multi-
fragmentation, be taken as an indicator of several first-
order transitions. Another possible phase-transition-like
behavior is a change of shape from a collective to an
oblate aligned-particle structure at higher temperatures
(see, for example, the recent work of Ma et al., 2000).

For a finite isolated many-body system such as a
nucleus, the correct thermodynamical ensemble is the
microcanonical one. In this ensemble, the nuclear level
density, the density of eigenstates of a nucleus at a given
excitation energy, is the important quantity that should
be used to describe thermodynamic properties of nuclei,
such as nuclear entropy, specific heat, and temperature.
Bethe (1936) first described the level density using a
noninteracting Fermi-gas model for the nucleons. Modi-
fications to this picture, such as a backshifted Fermi gas
that includes pair and shell effects (Gilbert and Cam-
eron, 1965) not present in Bethe’s original formulation,
are in wide use. We note that several approaches based
on mean-field theory have recently been developed to
investigate nuclear level densities, including a recent
method that incorporates BCS pairing into the mean-
field picture to derive level densities for nuclei across the
Periodic Table (Demetriou and Goriely, 2001). Other
mean-field applications based on the Gogny effective
nucleon-nucleon interaction (which includes pairing due
to the finite range of the interaction) have also been
developed recently (Hilaire et al., 2001).

The level density6 r defines the partition function for
the microcanonical ensemble and the entropy through
the well-known relation S(E)5kB ln@r(E)#. Here kB is
Boltzmann’s constant and E is the energy. In the micro-
canonical ensemble, this relation allows us to extract ex-
pectation values for thermodynamical quantities such as
temperature T or heat capacity C . The temperature in
the microcanonical ensemble is defined as

T5FdS~E !

dE G21

. (74)

It is a function of the excitation energy, which is the
relevant variable of interest in the microcanonical en-
semble. However, since the extracted level density is

6Hereafter we use r for the level density in the microcanoni-
cal ensemble.
Rev. Mod. Phys., Vol. 75, No. 2, April 2003
given only at discrete energies, the calculation of expec-
tation values such as T , involving derivatives of the par-
tition function, is not reliable unless a strong smoothing
over energies is performed. This case is discussed in de-
tail by Melby et al. (1999) and below. Another possibility
is to perform a transformation to the canonical en-
semble. The partition function for the canonical en-
semble is related to that of the microcanonical ensemble
through a Laplace transform,

Z~b!5E
0

`

dEr~E !exp~2bE !. (75)

Here we have defined b51/kBT . Since we shall deal
with discrete energies, the Laplace transform of Eq. (75)
takes the form

Z~b!5(
E

DEr~E !exp~2bE !, (76)

where DE is the energy bin used. With Z we can evalu-
ate the entropy in the canonical ensemble using the defi-
nition of the free energy

F~T !52kBT ln Z~T !5^E~T !&2TS~T !. (77)

Note that the temperature T is now the variable of in-
terest and the energy E is given by the expectation value
^E& as a function of T . Similarly, the entropy S is also a
function of T . For finite systems, fluctuations in various
expectation values can be large. In nuclear and solid-
state physics, thermal properties have mainly been stud-
ied in the canonical and grand-canonical ensemble. In
order to obtain the level density, one normally uses the
inverse transformation

r~E !5
1

2pi E2i`

i`
dbZ~b!exp~bE !. (78)

Compared with Eq. (75), this transformation is rather
difficult to perform, since the integrand exp@bE
1ln Z(b)# is a rapidly varying function of the integration
parameter. In order to obtain the density of states, ap-
proximations such as the saddle-point method, viz., an
expansion of the exponent in the integrand to second
order around the equilibrium point and subsequent in-
tegration, have been used widely (see, for example,
Koonin et al., 1997; Alhassid et al., 1999; White et al.,
2000). For an ideal Fermi gas, this gives the following
density of states:

rFG~E !5
exp~2AaE !

EA48
, (79)

where a in nuclear physics is a factor typically of the
order a5A/8 with dimension MeV21, A being the mass
number of a given nucleus.

To obtain an experimental level density is a rather
hard task. Ideally we would like an experiment to pro-
vide us with the level density as a function of excitation
energy and thereby the ‘‘full’’ partition function for the
microcanonical ensemble. It is only rather recently that
experimentalists have been able to develop methods
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(Henden et al., 1995; Tveter et al., 1996) for extracting
level densities at low spin from measured g spectra.
These measurements were performed at the Oslo Cyclo-
tron Laboratory, where gamma rays were detected with
the CACTUS multidetector array (Melby et al., 1999)
using the (3He,ag) and (3He, 3He8) reactions on sev-
eral rare-earth nuclei. If the experimental analysis is cor-
rect, the resulting microcanonical level density reveals
structures between 1 and 5 MeV of excitation energy,
which were interpreted as indications of pair breaking in
these systems.

The Oslo experimental results lead us to ask whether
we can simultaneously understand the thermodynamic
and pairing properties of a nuclear many-body system.
We are also led to questions concerning the nature of
phase transitions in a finite many-body system. In Sec.
V.B we present experimental level densities for several
rare-earth nuclei together with a thermodynamical
analysis and possible interpretations. In Sec. V.C the
simple pairing model of Eq. (21) is used in a similar
analysis in order to see whether such a simplified pairing
Hamiltonian can mimic some of the features seen in the
experimental level densities. Since this is a simplified
model, we also present results from shell-model Monte
Carlo calculations of level densities in the rare-earth re-
gion with pairing-plus-quadrupole effective interactions
in realistic model spaces.

B. Level densities from experiment and thermal properties

The Oslo cyclotron group has developed a method to
extract nuclear level densities at low spin from measured
g-ray spectra (Henden et al., 1995; Tveter et al., 1996;
Melby et al., 1999; Schiller, Bergholt, et al., 2000, 2001).
The main advantage of utilizing g rays as a probe for
level density is that the nuclear system is likely thermal-
ized prior to the g emission. In addition, the method
allows for the simultaneous extraction of level density
and g-strength function over a wide energy region.

The experiments were carried out with 45-MeV 3He
projectiles accelerated by the MC-35 cyclotron at the
University of Oslo. The experimental data were re-
corded with the CACTUS multidetector array using the
(3He,ag) reaction on several rare-earth nuclei such as
149Sm, 162Dy, 163Dy, 167Er, 172Yb, and 173Yb, yielding
the nuclei 148Sm, 161Dy, 162Dy, 166Er, 171Yb, and 172Yb.
The (3He, 3He8) reaction was used to obtain the nuclei
149Sm and 167Er. For a critical discussion of the last re-
action see Schiller, Guttormsen, et al. (2000). The
charged ejectiles were detected with eight particle tele-
scopes placed at an angle of 45° relative to the beam
direction. Each telescope comprises one Si DE front and
one Si(Li) E back detector with thicknesses of 140 and
3000 mm, respectively.

From the reaction kinematics, the measured a-particle
energy could be transformed to excitation energy E .
Thus each coincident g ray could be assigned to a g
cascade originating from a specific excitation energy.
The data were sorted into a matrix of (E ,Eg) energy
pairs. The resulting matrix P(E ,Eg), which described
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the primary g spectra obtained at initial excitation en-
ergy E , was factorized according to the Brink-Axel hy-
pothesis (Brink, 1955; Axel, 1962) by

P~E ,Eg!}r~E2Eg!s~Eg!, (80)

where the level density r and the g energy-dependent
function s are unknown. The iterative procedure for ob-
taining these two functions and the assumptions behind
the factorization of this expression are described in
more detail by Henden et al. (1995) and Schiller, Berg-
holt, et al. (2000). The experimental level density r(E)
at excitation energy E is proportional to the number of
levels accessible in g decay. For the present reactions,
the spin distribution is centered on ^J&;4.4\ with a
standard deviation of sJ;2.4\ . Hence the entropy7 can
be deduced within the microcanonical ensemble using

S~E !5kB ln N~E !5kB ln
r~E !

r0
, (81)

where N is the number of levels in the energy bin at
energy E . The normalization factor r0 can be deter-
mined from the ground-state band in the even-even nu-
clei, where one has N(E);1 within a typical experi-
mental energy bin of ;0.1 MeV.

The extracted entropies for the 161,162Dy and 171,172Yb
nuclei are shown in Figs. 26 and 27. In the transforma-
tion from level density to entropy, r0 was set to r0
;3 MeV21 in Eq. (81). The entropy curves are rather

7The experiment reveals the level density and not the state
density. Thus the observed entropy also reveals the number of
levels. The state density can be estimated by rstate;(2J
11)r level;9.8 r level .

FIG. 26. Observed entropy for 161,162Dy as a function of exci-
tation energy E . From Guttormsen et al., 2000.
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linear, but with small oscillations or bumps superim-
posed. The curves terminate around 1 MeV below their
respective neutron binding energies due to the experi-
mental cut’s excluding g rays with Eg,1 MeV. All four
curves reach S;13kB , which by extrapolation corre-
spond to S;15kB at the neutron binding energy Bn .

FIG. 27. Observed entropy for 171,172Yb as a function of exci-
tation energy E . From Guttormsen et al., 2000.
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Note that there is an entropy excess for the odd sys-
tems, since many low-lying states can be reached with-
out needing to break a pair. The experimental level den-
sity can be used to determine the canonical partition
function Z(T). However, in the evaluation of Eq. (76),
one needs to extrapolate the experimental r curve to
;40 MeV. The backshifted level-density formula of von
Egidy et al. (1988) and Gilbert and Cameron (1965) was
employed (for further details see Schiller, Bergholt,
et al., 2000). From this semiexperimental partition func-
tion, the entropy can be determined from Eq. (83). The
results are shown in Fig. 28. The entropy curves show a
splitting at temperatures below kBT50.520.6 MeV,
which reflects the experimental splitting shown in the
microcanonical plots of Figs. 26 and 27.

The merging together of the entropy curves at roughly
kBT50.520.6 MeV can also be seen in the analysis of
the heat capacity in the canonical ensemble. The extrac-
tion of the microcanonical heat capacity CV(E) gives
large fluctuations, which are difficult to interpret (Melby
et al., 1999). Therefore the heat capacity CV(T) is calcu-
lated within the canonical ensemble as a function of
temperature T and is given by

CV~T !5
]^E&
]T

. (82)

The deduced heat capacities for the 161,162Dy and
171,172Yb nuclei are shown in Fig. 29. All four nuclei ex-
hibit similarly S-shaped CV(T) curves with a local maxi-
mum relative to the Fermi-gas estimate at Tc
'0.5 MeV. The S-shaped curve is interpreted as a fin-
FIG. 28. Semiexperimental entropy S for
161,162Dy and 171,172Yb calculated in the ca-
nonical ensemble as a function of tempera-
ture kBT . From Guttormsen et al., 2000.
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gerprint of a phase-transition-like behavior in a finite
system, from a phase with strong pairing correlations to
a phase without such correlations. Due to the strong
smoothing introduced by the transformation to the ca-
nonical ensemble, we do not expect to see discrete tran-
sitions between the various quasiparticle regimes, but
only the transition where all pairing correlations are
quenched as a whole. In the right panels of Fig. 29, we
see that CV(^E&) has an excess in the heat capacity dis-
tributed over a broad region of excitation energy and
does not give a clear signal for quenching of pairing cor-
relations at a certain energy (Melby et al., 1999).

In passing, we note that the results displayed in Fig. 29
are similar to those of Liu and Alhassid (2001) shown in
Fig. 21.

C. Thermodynamics of a simple pairing model

In this section we shall try to analyze the results from
the previous section in terms of the simple pairing model

FIG. 29. Semiexperimental heat capacity as a function of tem-
perature (left panels) and energy ^E& (right panels) in the ca-
nonical ensemble for 161,162Dy and 171,172Yb: dashed lines, the
approximate Fermi-gas heat capacity; arrows, in the first local
maxima of the experimental curve relative to the Fermi-gas
estimates; dash-dotted lines, extrapolated estimates of the
critical temperature Tc ; vertical lines, Tc . From Schiller et al.,
2001.
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presented in Eq. (21). As stated in Sec. II, seniority is a
good quantum number, which means that we can subdi-
vide the full eigenvalue problem into minor blocks with
given seniority and diagonalize these separately. If we
consider an even system of N512 particles distributed
over L512 twofold-degenerate levels, we obtain a total
of 2 704 156 states. Of this total, for seniority S50, i.e.,
no broken pairs, we have 924 states. Since the Hamil-
tonian does not connect states with different seniority S,
we can diagonalize a 9243924 matrix and obtain all ei-
genvalues with S50. Similarly, we can subdivide the
Hamiltonian matrix into S52, S54, . . . , and S512 (all
pairs broken) blocks and obtain all 2 704 156 eigenvalues
for a system with L512 levels and N512 particles. This
gives us the exact density of levels, so that we can com-
pute observables such as the entropy, heat capacity, etc.
This numerically solvable model enables us to compute
exactly the entropy in the microcanonical and the ca-
nonical ensembles for systems with odd and even num-
bers of particles. In addition, varying the relation d
5d/G between the level spacing d and the pairing
strength G may reveal features of the entropy that are
similar to those of the experimentally extracted entropy
discussed in the previous section. Recall that the experi-
mental level densities represent both even-even and
even-odd nucleon systems.

Here we study two systems in order to extract differ-
ences between odd and even systems; we fix the number
of doubly degenerated single-particle levels at L512,
whereas the numbers of particles are set to N511 and
N512.

These two systems result in a total of ;33106 eigen-
states. In the calculations we choose a single-particle
level spacing of d50.1 MeV, which is close to what is
expected for rare-earth nuclei. We select three values of
the pairing strength, namely, G51, 0.2, and 0.01 (d
5d/G50.1, d5d/G50.5, and d5d/G510), respec-
tively. The first case represents a strong pairing case,
with almost degenerate single-particle levels. The sec-
ond is an intermediate case in which the level spacing is
of the order of the pairing strength, while the last case
results in a weak pairing case. As shown below, the re-
sults for the latter resemble to a certain extent those for
an ideal gas.

1. Entropy

The numerical procedure is straightforward. First we
diagonalize the Hamiltonian matrix (which is subdivided
into seniority blocks) and obtain the eigenvalues E for
the odd and even particle cases. This also defines the
density of levels r(E), the partition function, and the
entropy in the microcanonical ensemble. Thereafter we
can obtain the partition function Z(T) in the canonical
ensemble through Eq. (76) and the entropy S(T) by

S~T !5kB ln Z~T !1^E~T !&/T . (83)

Since this is a model with a finite number of levels and
particles, unless a certain smoothing is done, the micro-
canonical entropy may vary strongly from energy to en-
ergy (see, for example, the discussion in Guttormsen
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et al., 2000). Thus, rather than performing a certain
smoothing of the results in the microcanonical en-
semble, we shall choose to present further results for the
entropy in the canonical ensemble, using the Laplace
transform of Eq. (76).

The results for the entropy in the canonical ensemble
as functions of T for the above three sets of d5d/G are
shown in Fig. 30. For the two cases with strong pairing,
we see a clear difference in entropy between the odd
and the even systems. This difference can be easily un-
derstood from the fact that the lowest-lying states in the
odd system involve simply the excitation of one single
particle to the first unoccupied single-particle state,
which is interpreted as a single-quasiparticle state. These

FIG. 30. Entropy in the canonical ensemble as a function of
temperature kBT for odd and even systems for d50.1 (upper
panel), d50.5 (middle panel), and d510 (lower panel). If we
wish to make contact with experiment, we can assign units of
MeV to kBT . The entropy S/kB is dimensionless. From Gut-
tormsen et al., 2000.
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states are rather close in energy to the ground state and
explain why the entropy for the odd system has a finite
value even at low temperatures. Higher-lying excited
states also include breaking of pairs and can be de-
scribed as three-, five-, and more-quasiparticle states.
For d510, the odd and even systems merge at low tem-
peratures, indicating that pairing correlations play a neg-
ligible role. For a small single-particle spacing, the dif-
ference in energy between the first excited state and the
ground state for the odd system is also rather small.

For d50.5, we note that at a temperature of kBT
;0.520.6, the even and odd systems approach each
other.8 The temperature at which this occurs corre-
sponds to an excitation energy ^E& in the canonical en-
semble of ^E&;4.7–5.0. This corresponds to excitation
energies at which we have 4–6 quasiparticles, seniority
S54 –6, in the even system and 5–7 quasiparticles, se-
niority S55 –7, in the odd system (see, for example, the
discussion in Guttormsen et al., 2000). For the two cases
with strong pairing (d50.1 and d50.5), Fig. 30 tells us
that at temperatures where we have 4–6 quasiparticles
in the even system and 5–7 quasiparticles in the odd
system, the odd and even systems tend to merge. This
reflects the fact that pairing correlations tend to be less
important as we approach the noninteracting case. In a
simple model with just pairing interactions, it is thus
easy to see where, at given temperatures and excitation
energies, certain degrees of freedom prevail. For the ex-
perimental results this may not be the case, since the
interaction between nucleons is much more complicated.
The hope, however, is that pairing may dominate at low
excitation energies and that the physics behind the fea-
tures seen in Fig. 30 is qualitatively similar to the experi-
mental information conveyed in Fig. 28.

2. The free energy

We may also investigate the free energy of the system.
Using the density of states, we can define the free energy
F(E) in the microcanonical ensemble at a fixed tem-
perature T (actually an expectation value in this en-
semble),

F~E !52T ln@VN~E !e2bE# . (84)

Note that here we include only configurations at a par-
ticular E .

The free energy was used by Lee and Kosterlitz (1990,
1991), based on the histogram approach for studying
phase transitions developed by Ferrenberg and Swend-
sen (1988a, 1988b) in their studies of phase transitions of
classical spin systems. If a phase transition is present, a
plot of F(E) versus E will show two local minima that
correspond to configurations characteristic of the high-
and low-temperature phases. At the transition tempera-
ture TC , the values of F(E) at the two minima are
equal, while at temperatures below TC , the low-energy

8If we wished to make contact with experiment, we could
assign units of MeV to kBT and E .
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minimum is the absolute minimum. At temperatures
above TC , the high-energy minimum is the largest. If
there is no phase transition, the system develops only
one minimum for all temperatures. Since we are dealing
with finite systems, we can study the development of the
two minima as a function of the size of the system and
thereby extract information about the nature of the
phase transition. If we are dealing with a second-order
phase transition, the behavior of F(E) does not change
dramatically as the size of the system increases. How-
ever, if the transition is first order, the difference in free
energy, i.e., the distance between the maximum and
minimum values, will increase with increasing size of the
system.

We calculate exactly the free energy F(E) of Eq. (84)
through diagonalization of the pairing Hamiltonian of
Eq. (21) for systems with up to 16 particles in 16 doubly
degenerate levels, yielding a total of ;43108 configura-
tions. The density of states hence defines the microca-
nonical partition function.

For d/G50.5 and 16 single-particle levels, the calcu-
lations yield two clear minima for the free energy. This is
seen in Fig. 31, where we show the free energy as a
function of excitation energy using Eq. (84) at tempera-
tures T50.5, T50.85, and T51.0. The first minimum
corresponds to the case in which we break one pair. The
second and third minima correspond to cases in which
two and three pairs are broken, respectively. When two
pairs are broken, corresponding to seniority S54, the
free-energy minimum is made up of contributions from
states with S50,2,4. It is this contribution from states
with lower seniority that contributes to the lowering of
the free energy of the second minimum. Similarly, with
three pairs broken, we have a free-energy minimum that
receives contributions from S50,2,4,6, yielding a new
minimum. At higher excitation energies, population in-
version takes place, and our model is no longer realistic.

We note that for T50.5, the minima at lower excita-
tion energies are favored. At T51.0, the higher-energy
phase (more broken pairs) is favored. We see also that
at T50.85 for our system with 16 single-particle states
and d/G50.5, the free-energy minima where we break
two and three pairs are equal. Where two minima coex-
ist, we may have an indication of a phase transition.
Note, however, that this is not a phase transition in the
ordinary thermodynamical sense. There is no abrupt
transition from a purely paired phase to a nonpaired
phase. Instead, our system develops several intermedi-
ate steps in which different numbers of broken pairs can
coexist. For example, T50.95, we again find two equal
minima. For this case, seniority S56 and S58 yield two
equal minima. This picture repeats itself for higher se-
niority and higher temperatures.

If we then focus on the second and third minima, i.e.,
where we break two and three pairs, respectively, the
difference DF between the minimum and the maximum
of the free energy can aid us in distinguishing between a
first-order and a second-order phase transition. If DF/N ,
with N being the number of particles present, remains
constant as N increases, we have a second-order transi-
Rev. Mod. Phys., Vol. 75, No. 2, April 2003
tion. An increasing DF/N is, in turn, an indication of a
first-order phase transition. It is worth noting that the
features seen in Fig. 31 apply to the cases with N510,
12, and 14 as well, with T50.85 being the temperature at
which the second and third minima are equal. This
means that the temperature at which the transition is
meant to take place remains stable as a function of the
number of single-particle levels and particles. This is in
agreement with the simulations of Lee and Kosterlitz
(1990, 1991). We find a similar result for the minima
developed at T50.95, where S56 and S58. However,
due to population inversion, these minima are seen
clearly only for N512, 14, and 16 particles. In Table III
we display DF/N for N510, 12, 14, and 16 at T
50.85 MeV.

Table III reveals that DF/N is nearly constant, with

FIG. 31. Free energy from Eq. (84) at T50.5, 0.85, and 1.0
MeV with d/G50.5 with 16 particles in 16 doubly degenerate
levels. All energies are in units of MeV and an energy bin of
1023 MeV has been chosen.
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DF/N'0.5 MeV, indicating a transition of second order.
This result is in agreement with what is expected for an
infinite system.

Before proceeding to the next method for classifying a
phase transition in a finite system, we note the important
result that for d/G.1.5, our free energy, for N<16, de-
velops only one minimum for all temperatures. That is,
for larger single-particle spacings, there is no sign of a
phase transition. This means that there is a critical rela-
tion between d and G for the appearance of phase-
transition-like behavior, reminiscent of the thermody-
namic limit. This also agrees with the results for
ultrasmall metallic grains (von Delft and Ralph, 2001).

3. Distribution of zeros of the partition function

Another way to classify the thermal behavior of finite
systems requires the analytic continuation of the parti-
tion function to the complex plane. Grossmann et al.
(Grossmann and Rosenhauer, 1967, 1969; Grossmann
and Lehmann, 1969) first introduced this technique for
infinite systems. In these early works, the authors were
able to indicate the nature of phase transitions by study-
ing the density of zeros of the partition function. Borr-
mann et al. (2000) recently extended this idea to finite
many-body systems. We implement the method by ex-
tending the inverse temperature to the complex plane
b→B5b1it . The partition function is then given by

Z~B!5E dEr~E !exp~2BE !. (85)

Since the partition function is an integral function, the
zeros Bk5B2k* 5bk1itk (k51,.. . ,N) are complex con-
jugated.

Different phases are represented by regions of holo-
morphy that are separated by zeros of the partition func-
tion. These zeros typically lie on lines in the complex
temperature plane. For a finite system, the zeros do not
fall exactly on lines (they can be quite distinguishable
depending on the size of the system), and therefore the
separation between two phases is more blurred than in
an infinite system. The distribution of zeros contains the
complete thermodynamic information about the system,
and all thermodynamic properties are derivable from it.
For example, in the complex plane, we define the spe-
cific heat as

Cv~B!5
]2 ln Z~B!

]B 2 . (86)

Hence the zeros of the partition function become poles
of Cv(B). A pole approaching the real axis infinitely
closely causes a divergence at a real critical temperature
TC . The contribution of a zero Bk to the specific heat

TABLE III. DF/N for T50.85 MeV. See text for further de-
tails.

N 10 12 14 16

DF/N (MeV) 0.531 0.505 0.501 0.495
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decreases with increasing imaginary part tk , so that
thermodynamic properties of a system are governed by
the zeros of Z lying close to the real axis.

The distribution of zeros close to the real axis is ap-
proximately described by three parameters. Two of
these parameters reflect the order of the phase transi-
tion, while the third indicates the size of the system. Let
us assume that the zeros lie on a line. We label the zeros
according to their closeness to the real axis. Thus t1
reflects the discreteness of the system. The density of
zeros for a given tk is given by

f~tk!5
1
2 S 1

uBk2Bk21u
1

1
uBk112Bku D , (87)

with k52,3,4,.. . . A simple power law describes the den-
sity of zeros for small t, namely, f(t);ta. If we use
only the first three zeros, then a is given by

a5
ln f~t3!2ln f~t2!

ln t32ln t2
. (88)

The final parameter that describes the distribution of
zeros is given by g5tan n;(b22b1)/(t22t1).

In the thermodynamic limit t1→0, in which case the
parameters a and g coincide with the infinite system lim-
its discussed by Grossman et al. (Grossmann and Rosen-
hauer, 1967, 1969; Grossmann and Lehmann, 1969). For
the infinite system, a50 and g50 yield a first-order
phase transition, while for 0,a,1 and g50 or gÞ0
they indicate a second-order transition. For arbitrary g
third-order transitions occur when 1<a,2. For systems
approaching an infinite particle number, a cannot be
smaller than zero since this causes a divergence of the
internal energy. In small systems with finite t1 , a,0 is
possible.

Continuation of the partition function to the complex
plane is best interpreted by invoking a quantum-
mechanical interpretation, namely,

Z~b1it!5T̂rA@exp~2itĤ !exp~2bĤ !# , (89)

where the quantum-mechanical trace of an operator,
projected on a specified particle number, is given by

T̂rAĵ5(
a

^auP̂Aĵua&. (90)

P̂A is the number projection operator and a runs over
all many-body states. Since b represents the inverse tem-
perature, the thermally averaged many-body state is a
linear combination of many-body states weighted by a
Boltzmann factor, uC(b ,t50)&5exp(2bEa)ua&, so that
the partition function may be compactly written as

Z~b1it!5^C~b ,t50 !uC~b ,t5t!& . (91)

Thus the zeros represent those times for which the over-
lap of the initial canonical state with the time-evolved
state vanishes. In the t direction, the zeros represent a
memory boundary for the system.

In Fig. 32 we show contour plots of the specific heat
uCv(B)u in the complex temperature plane for (a) N
511, (b) 14, and (c) 16 particles at normal pairing d/G
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50.5, and (d) N514 in the strong pairing limit, d/G
51.5. The poles are at the center of the dark contour
regions. We see evidence of two phases in these systems.
The first phase, labeled I in Fig. 32, is a mixed seniority
phase, while the second phase, II, is a paired phase with
zero seniority and exists only in even-N systems. No
paired phase exists in the N511 system, and no clear
boundaries are evident in the strong pairing case. We

FIG. 32. Contour plots of the specific heat in the complex
temperature plane for (a) N511, (b) N514, and (c) N516
particles. (d) shows the N514 case with weak pairing. The
spots indicate the locations of the zeros of the canonical parti-
tion function (Color in online edition).
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find that for Figs. 32(b) and 32(c) the density of zeros is
apparently distributed along two lines where the inter-
section occurs at t1 , which is the point closest to the real
axis. Since the pairing branch (for b.b1) only encom-
passes two points, we are unable to precisely determine
a along this branch while g.0. Based on our free-
energy results discussed above, we believe a along this
branch will be positive. In the mixed phase branch (for
b,b1) we find g,0, and a,0 in all normal-pairing
cases.

D. Level densities from shell-model Monte Carlo
calculations

We also applied shell-model Monte Carlo techniques
to survey rare-earth nuclei in the Dy region (White
et al., 2000). The goal of this extensive study was to ex-
amine how the phenomenologically motivated ‘‘pairing-
plus-quadrupole’’ interaction compares in exact shell-
model solutions with other methods. Additionally we
examined how the shell-model solutions compared with
experimental data.

We discuss here one particular aspect of that work,
namely, level-density calculations. Details may be found
in White et al. (2000). We used the Kumar-Baranger
Hamiltonian with parameters appropriate for this re-
gion. Our single-particle space included the 50-82 sub-
shell for the protons and the 82-126 shell for the neu-
trons. While several interesting aspects of these systems
were studied in shell-model Monte Carlo, we limit our
discussion here to the level densities obtained for 162Dy.

Shell-model Monte Carlo is an excellent way to calcu-
late level densities. E(b) is calculated for many values
of b which determine the partition function Z as

ln@Z~b!/Z~0 !#52E
0

b

db8E~b8!. (92)

Z(0) is the total number of available states in the space.
The level density is then computed as an inverse Laplace
transform of Z . Here the last step is performed with a
saddle-point approximation with b22C[2dE/db :

S~E !5bE1ln Z~b!, (93)

r~E !5~2pb22C !21/2exp~S !. (94)

The comparison of the shell-model Monte Carlo den-
sity in 162Dy with the Tveter et al. (1996) data is dis-
played in Fig. 33. The experimental method can reveal
fine structure, but does not determine the absolute den-
sity magnitude. The shell-model Monte Carlo calcula-
tion is scaled by a factor to facilitate comparison. In this
case the factor was chosen to make the curves agree at
lower excitation energies. From 1 to 3 MeV, the agree-
ment is very good. From 3 to 5 MeV, the shell-model
Monte Carlo density increases more rapidly than that of
the data. This deviation cannot be accounted for by sta-
tistical errors in either the calculation or the measure-
ment. Near 6 MeV, the measured density briefly flattens
before increasing, and this also appears in the calcula-
tion, but the measurement errors are larger at that point.
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The measured density includes all states from the the-
oretical calculation plus some others, so that one would
expect the measured density to be greater than or equal
to the calculated density and never smaller. We might
instead have chosen our constant to match the densities
for moderate excitations and let the measured density
be higher than the shell-model Monte Carlo density for
lower energies (1–3 MeV). Comparing the structure of
the shell-model Monte Carlo calculation and the data is
difficult for the lowest energies due to statistical errors
in the calculation, while comparison at the upper range
of the shell-model Monte Carlo calculation, i.e., E
'15 MeV, is unfortunately impossible since the data
only extend to about 8-MeV excitation energy.

VI. CONCLUSIONS AND OUTLOOK

Pairing is an essential feature of nuclear systems, with
several interesting and unsettled theoretical and experi-
mental consequences, such as superfluidity and neutrino
emission in neutron stars or pairing transitions in finite
nuclei.

This review is by no means exhaustive; rather, our fo-
cus has been on the link between the nuclear many-body
problem and the underlying features of the nuclear force
as well as on selected experimental interpretations and
manifestations of pairing in nuclear systems. Our pre-
ferred many-body tools have been the nuclear shell
model, with its effective interactions, and various many-
body approaches to infinite matter. The common start-
ing point for all of these many-body approaches is the
free nucleon-nucleon interaction.

Within this setting we have tried to present and exam-
ine several features of pairing correlations in nuclear
systems. In particular, we have shown that in neutron
star matter (Sec. II), pairing and superfluidity is synony-
mous with singlet- 1S0 and triplet- 3P2 pairing up to den-
sities two to three times the nuclear matter saturation

FIG. 33. Shell-model Monte Carlo density vs experimental
data in 162Dy.
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density. For singlet pairing it is the central part of the
nucleon-nucleon force that matters, which within a
meson-exchange picture can be described in terms of
multipion exchanges. For triplet pairing, it is the two-
body spin-orbit force that provides the attraction neces-
sary for creating a positive pairing gap. Hyperon pairing,
especially S2 pairing, is also very likely. However, the
actual size of these nucleon and/or hyperon pairing gaps
in infinite neutron star matter is an unresolved problem
and awaits further theoretical studies. A proper treat-
ment of both short-range and long-range correlations is
central to this problem. It will have significant conse-
quences for the emissivity of neutrinos in a neutron star.
Color superconductivity in the interior of such compact
objects is also an entirely open topic. A similarly un-
settled issue is the size of the triplet- 3S1 gap in symmet-
ric matter or asymmetric nuclear matter.

The partial waves mentioned above are also impor-
tant for our understanding of pairing properties in finite
nuclei. In Sec. III we showed, for example, that the near
constancy of the excitation energy between the ground
state with J50 and the first excited state with J52 for
the tin isotopes from 102Sn to 130Sn is essentially due to
the same partial waves that yield a finite pairing gap in
neutron star matter. Moreover, a seniority analysis of the
pairing content of the wave functions for these states
shows that we can very well approximate the ground
state with a seniority S50 state (no broken pairs) and
the first excited state in terms of a seniority S52 state
(one broken pair).

We have used results from large-scale shell-model
Monte Carlo and diagonalization calculations to extract
information about isoscalar and isovector pairing and
thermal response for fp-shell nuclei. One key result here
was the decrease of T51 pairing correlations as a func-
tion of increasing temperature (up to about 1 MeV) and
a commensurate buildup of structure in the specific-heat
curves at the same temperature. Information about
proton-neutron pairing and the Wigner energy was also
presented in Sec. III. The important result here was that
all J channels of the interaction contribute to the Wigner
energy and that the J51 and J5Jmax channels contrib-
uted most (see also Poves and Martinez-Pinedo, 1998).
Proton-neutron pairing is, however, a much more elusive
aspect of the nuclear pairing problem. Its actual extent is
an issue calling for further analysis, as is also the case for
infinite matter. Our results from Sec. IV may indicate
that the T50 part of the pairing interaction does not
play a crucial role. For more information, see Volya
et al. (2002) and Zelevinsky et al. (1996).

Finally, in Sec. V we analyzed recent experimental
data on nuclear level densities in terms of pairing corre-
lations. These data reveal structures in the level density
of rare-earth nuclei that can be interpreted as a gradual
breaking of pairs. The experimental level densities can
also be used to compute thermal properties such as the
entropy or the specific heat. The even systems exhibit a
clear bump in the heat capacity. The temperature at
which this bump appears can be interpreted as a critical
temperature for the quenching of pairing correlations.
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Similar features were also noted in Sec. III (see espe-
cially Figs. 20 and 21). More information was also ob-
tained by studying the experimental entropies of even
and odd nuclei compared with those extracted from a
simple pairing model with a given number of particles
and number of doubly degenerate particle levels. We
showed in Sec. V that the entropy of the odd and even
systems merges at a temperature that corresponds to the
observed bumps in the heat capacity. This temperature
typically occurs where we have two to three broken
pairs.

Within the framework of this simple pairing model,
we showed that for a finite system there is no sudden
and abrupt transition to another phase, like that in an
infinite system. Rather, there is a gradual breaking of
pairs as temperature increases. Studying systems with
different numbers of particles and levels, we presented
two possible methods for classifying the order of the
transition. All the eigenvalues from the simple pairing
model were used to compute thermodynamical proper-
ties. Although there have been several interesting theo-
retical developments in the solution of the model Hamil-
tonian of Eq. (22) or related models—see, for example,
Volya et al. (2001); Richardson (2002); Roman et al.
(2002); Volya (2002)—we would like to stress that the
investigation of thermodynamic properties requires a
knowledge of all eigenvalues.

An obvious deficiency of this simple pairing model in
nuclear physics is the lack of long-range correlations,
which could be expressed via quadrupole terms. A
pairing-plus-quadrupole model, as discussed in Sec. III,
would spoil the simple block-diagonalization feature in
terms of seniority as a good quantum number, but such a
model is necessary, since the nuclear force is particular
in the sense that the ranges of its short-range and long-
range parts are rather similar. This means that short-
range contributions arising from, for example, strongly
paired particle-particle terms and long-range terms from
particle-hole excitations are central for a correct many-
body description of nuclear systems, from nuclear mat-
ter to finite nuclei. The difficulty connected with these
aspects of the nuclear force means that further analysis
of the thermodynamics of rare-earth nuclei can at
present only be done in terms of large-scale shell-model
Monte Carlo methods.

Clearly we have been able to cover only a few aspects
of pairing in nuclear systems. We have limited our atten-
tion to stable systems. However, pairing correlations are
expected to play a special role in nuclei far from equi-
librium such as dripline nuclei (Dobaczewski et al.,
1996). Many unstable nuclei are weakly bound systems.
Hence, due to strong surface effects, the properties of
such nuclei are perfect laboratories for studies of the
density dependence of pairing interactions, and there is
currently a considerable experimental effort in nuclear
physics, to study them.

An experimental observable that may probe pairing
correlations is the pair-transfer factor, which is directly
related to the pairing density (see Dobaczweski and
Nazarewicz, 1998, for more details). The difference in
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the asymptotic behavior of the single-particle density
and the pair density in a weakly bound system can be
probed by comparing the energy dependence of one-
particle and two-particle transfer cross sections. Such
measurements, when performed on both stable and
neutron-rich nuclei, can hopefully shed some light on
the asymptotic behavior of pairing. An interesting sys-
tem here is the chain of tin isotopes beyond 132Sn. Vari-
ous mean-field calculations (Dobaczewski et al., 1996)
indicate that there is a considerable increase in the pair-
transfer form factors for nuclei between 150Sn and 172Sn
(Dobaczewski et al., 1996). As of this writing, b-decay
properties of nuclei such as 136Sn are just beginning to
be studied (Shergur et al., 2002).

From a many-body point of view, a correct treatment
of these weakly bound systems must include a proper
description of bound states and eventually features from
the continuum. Such calculations have recently been un-
dertaken within the framework of mean-field and
Hartree-Fock-Bogoliubov models (see Grasso et al.,
2001, 2002). A finite-range pairing interaction was in-
cluded explicitly in the calculations. We mention here
that the pairing terms in such mean-field calculations
can be parametrized from microscopic many-body calcu-
lations, as demonstrated by Smerzi et al. (1997). How-
ever, to include the continuum in a many-body descrip-
tion such as the shell model with an appropriate
effective interaction is highly nontrivial. Even the deter-
mination of the effective two-body interaction is an
open problem. Low-density studies of singlet- 1S0 pair-
ing in dilute Fermi systems (Heiselberg et al., 2000)
clearly demonstrate that polarization terms cannot be
neglected.

We conclude by noting once again the strong similari-
ties between pairing in the nuclear many-body problem
and pairing in systems of trapped fermions (see Bruun
and Mottelson, 2001 and Heiselberg and Mottelson,
2002 for recent examples). Experimental and theoretical
developments in the study of ultrasmall superconducting
grains (Ralph et al., 1995; Black et al., 1996, 1997; Mas-
tellone et al., 1998; Balian et al., 1999; Dukelsky and Si-
erra, 1999; von Delft and Ralph, 2001) also appear to
have much to teach us about the physics of pairing in
nuclear systems.
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Alex Brown, John Clark, Øystein Elgarøy, Jonathan En-
gel, Torgeir Engeland, Lars Engvik, Magne Guttormsen,
Henning Heiselberg, Anne Holt, Calvin Johnson, Steven
Koonin, Karlheinz Langanke, Umberto Lombardo, Ben
Mottelson, Witek Nazarewicz, Erich Ormand, Eivind
Osnes, Thomas Papenbrock, Chris Pethick, Alfredo
Poves, P. B. Radha, Nicolae Sandulescu, Andreas
Schiller, Peter Schuck, Hans-Joseph Schulze, Jody
White, and Andres Zuker. Research at Oak Ridge Na-



652 D. J. Dean and M. Hjorth-Jensen: Pairing in nuclear systems
tional Laboratory was sponsored by the Division of
Nuclear Physics, U.S. Department of Energy, under
Contract No. DE-AC05-00OR22725 with UT-Battelle,
LLC.

REFERENCES

Agrawal, B. K., S. Tapas, J. N. De, and S. K. Samaddar, 2000,
Phys. Rev. C 62, 044307.

Agrawal, B. K., S. Tapas, J. N. De, and S. K. Samaddar, 2001,
Phys. Rev. C 63, 024002.

Ainsworth, T. L., J. Wambach, and D. Pines, 1989, Phys. Lett.
B 222, 173.

Ainsworth, T. L., J. Wambach, and D. Pines, 1993, Nucl. Phys.
A 555, 128.

Akmal, A., V. R. Pandharipande, and D. G. Ravenhall, 1998,
Phys. Rev. C 58, 1804.

Alford, A., K. Rajagopal, and F. Wilczek, 1999, Nucl. Phys. B
558, 219.

Alhassid, Y., 1991, in New Trends in Nuclear Collective Dy-
namics, edited by Y. Abe, H. Horiuchi, and K. Matsuyanagi
(Springer, Berlin/New York), p. 41.

Alhassid, Y., G. Bertsch, D. Dean, and S. Koonin, 1996, Phys.
Rev. Lett. 77, 1444.

Alhassid, Y., S. Liu, and H. Nakada, 1999, Phys. Rev. Lett. 83,
4265.

Alm, T., G. Röpke, and M. Schmidt, 1990, Z. Phys. A 337, 355.
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