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Smectic membranes are perfect model systems for studying low-dimensional phase transitions and the
associated fluctuations. During the last two decades we have seen important progress in the
understanding of the structure and fluctuation behavior of these systems, driven by both new
experimental techniques and theoretical developments. Phase transitions are reviewed involving
liquid, hexatic, and crystalline layers, which provide several types of model system for
low-dimensional melting. The authors discuss the influence of the surfaces on the physical properties
of the membranes as well as the crossover from three- to two-dimensional behavior. The
layer-displacement fluctuations in smectic membranes have been investigated by specular and diffuse
x-ray reflectivity. Theoretical and experimental aspects of the displacement-displacement correlation
function are discussed. Of special interest is the quenching or enhancement of fluctuations at surfaces,
which is directly related to the phenomenon of surface ordering. The authors consider the conditions
under which fluctuations are conformal throughout a membrane, and then the dynamic aspects of the
layer-displacement correlation function, which include the effects of finite size, surface tension, and
viscous dissipation. This leads in smectic membranes to a discrete spectrum of elastic and viscous
relaxation modes, which have been studied experimentally with coherent x rays at third-generation
synchrotron sources. The fluctuating character of crystalline-B membranes is also considered. Finally,
the article looks briefly at thinning transitions, smectic membranes of chiral molecules, smectic films
on substrates, and applications to biologically relevant systems. Open questions and future trends in
the field are discussed.
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I. MOTIVATION AND SCOPE

Although liquid crystals have been known since the
end of the 19th century, they continue to provide us with
scientific surprises due to their variety of low-
dimensional phases and phase transitions. Interest in the
field seems undiminished and experimental work over
the past 50 years has produced a vast literature (see, for
example, Vertogen and de Jeu, 1988; de Gennes and
Prost, 1993). An important stimulus to research is the
application of liquid crystals in displays. However, liquid
crystals are also of considerable interest for more funda-
mental reasons. They have been studied extensively as
model systems of specific types of ordering, as they pro-
vide a variety of different phases and phase transitions
(see, for example, Pershan, 1988). The simplest type of
smectic phase is smectic-A (Sm-A), in which the elon-
gated molecules are organized in stacks of liquid layers
in which the long molecular axes are, on average, paral-
lel to the layer normal. Hence a periodic structure exists
in one dimension: the rodlike molecules form a density
wave along the layer normal, while the system remains
fluid in the other two directions. Higher-ordered smectic
phases are characterized by an additional degree of or-
dering within the smectic planes.

In this review we discuss the structural aspects and the
fluctuation behavior of smectic membranes (freely sus-
pended smectic films). There are several good reasons
for the interest in these systems. In the first place, smec-
tic phases are systems at their lower marginal dimen-
sionality, which means that the ordering of the layers is
not truly long range. This can be contrasted with three-
dimensional solids, which exhibit full long-range order.
Second, the availability of films of variable thickness al-
lows us to study the crossover from three- to two-
dimensional behavior as well as the influence of the sur-
faces on the morphology and the phase behavior. The
experimental study of such effects has been strongly
stimulated by the availability of powerful light sources,
such as lasers and synchrotron radiation facilities. Both
experiments and theory have reached a level of maturity
that makes a review timely.

In a three-dimensional crystal the particles vibrate
around well-defined lattice positions with an amplitude
that is small compared to the lattice spacing. As the di-
mensionality is decreased, fluctuations become increas-
ingly important. As a result long-range translational or-
der cannot exist in either one or two dimensions; it
would be destroyed by thermal fluctuations (Landau
et al., 1980). The spatial dimension at which thermal
fluctuations just prevent the existence of long-range or-
der is called the lower marginal dimensionality, which
for solids has the value 2. In this case, the positional
correlation decays algebraically as a function of dis-
tance. Sm-A liquid crystals are an example of a three-
dimensional system that exists at its lower marginal di-
mensionality. The correlation function describing the
periodicity of the smectic layers decays algebraically as
r2h, where the exponent h is small and positive. It can
be studied by x-ray scattering. Instead of delta-function-
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type Bragg peaks with diffuse tails characteristic of
three-dimensional crystal periodicity, power-law singu-
larities corresponding to the smectic layering have been
observed (Als-Nielsen et al., 1980; Safinya et al., 1986).
The thermal fluctuation modes in smectics correspond to
bending and compression of the layers as shown in Fig.
1, characterized by elastic constants K and B , respec-
tively. Defining u(r) as the layer displacement from its
equilibrium position, ^u2(r)& is found to diverge loga-
rithmically with the sample size (Landau-Peierls insta-
bility), as will be discussed in detail in Sec. II.A:

^u2~r!&5
kBT

8pAKB
lnS L

d D . (1)

Here L is the thickness of the system, d the smectic
layer periodicity, and kBT the thermal energy. A similar
divergence due to long-wavelength modes makes two-
dimensional crystals unstable. The long-range order is
destroyed by the thermal fluctuations of the system: al-
though the algebraic decay is slow, the mean-square
layer displacement diverges with the sample size.

A unique property of smectic liquid crystals is their
ability, due to the layered structure, to form films that
are freely suspended or free-standing over an aperture
in a frame. This property has been known since the be-
ginning of the last century. Friedel (1922) used it in his
monograph on liquid crystals as an argument in favor of
the existence of layers in the smectic phase. However, it
was not until the 1970s that smectic membranes found
extensive usage in experimental studies (Young et al.,
1978; Moncton and Pindak, 1979; Rosenblatt et al.,
1979). In such films the smectic layers align parallel to
the two air-film surfaces, which are flat because the sur-
face tension minimizes the surface area of the film.
Apart from the edges such films can be considered as
substrate-free. Thus in essence they can be seen as mem-
branes consisting of stacks of smectic layers, and in this
review we shall consistently use the term smectic mem-
branes. They have a high degree of uniformity: the align-
ment of the smectic layers is almost perfect, allowing us
to study single-domain samples of various thicknesses.
The surface area can be as large as a thousand mm2,
while the thickness can be easily varied from thousands
of layers (tens of mm) down to two layers (about 5 nm).
Membranes thicker than several hundred layers can be
considered as bulk systems. Thin membranes approach
two-dimensional behavior. In addition, in liquid crystals
(and thus in smectic membranes) a free surface may sta-
bilize a higher-ordered phase that is only observed at

FIG. 1. Undulation and compression of smectic layers with
corresponding wave vector.
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lower temperatures in the bulk or not observed in the
bulk at all. This is in contrast to solids, which exhibit
surface-induced disorder that can lead to surface melting
(see, for example, Dosch, 1992). In the case of liquid
crystals, surface freezing occurs instead. Outside the
field of liquid crystals surface freezing is a rare phenom-
enon found only in some long-chain alkanes and alco-
hols (Gang et al., 1998).

When a Sm-A phase is cooled a hexatic smectic-B
phase (Sm-B) may occur. In this case the molecules in
the smectic planes are locally positioned on a triangular
‘‘lattice,’’ but the positional order decays over distances
not larger than a few tens of nm. From the positional
point of view each layer is still a two-dimensional liquid.
In addition bond-orientational order exists (see, for ex-
ample, Vertogen and de Jeu, 1988; de Gennes and Prost,
1993): the orientations of the local clusters are corre-
lated over a large scale. The three-dimensional hexatic
structure consists of stacks of such layers leading to
long-range three-dimensional bond-orientational order.
Finally, at lower temperatures a crystalline-B (Cr-B)
phase can be found possessing long-range three-
dimensional positional order. The in-plane triangular
lattices in each of the layers are locked together. They
are true crystals even though it is relatively easy to im-
pose elastic deformations along the layers. The transfor-
mation from Cr-B to Sm-A provides an interesting ex-
ample of low-dimensional melting, including the
occurrence of an intermediate hexatic phase with bond-
orientational order.

Smectic membranes can be controlled to an extent
that is rare for physical systems. In combination with the
properties mentioned this makes them ideal model sys-
tems for studying low-dimensional fluctuation behavior
and phase transitions, which have almost no equivalent
in any other type of system. This review concentrates on
studies using x rays, which are the main tool for this type
of investigation. Results from other methods will be
mentioned where appropriate. Emphasis will be on the
orthogonal phases with hexatic and crystalline ordering,
and we shall touch only in passing on transitions be-
tween phases with liquid in-plane order. These points
make this review complementary to some existing re-
views of smectic membranes (Pieranski et al., 1993;
Bahr, 1994; Demikhov 1995; Stoebe and Huang, 1995;
Sonin, 1998; Oswald and Pieranski, 2002). We restrict
ourselves to ‘‘classical’’ liquid-crystalline systems and do
not consider related systems like phases of non-rod-
shaped and amphiphilic molecules, modulated smectic
phases (Ostrovskii, 1999), or Langmuir monolayers
(Als-Nielsen et al., 1994; Kaganer, Möwald, and Dutta,
1999).

Following this introductory section, Sec. II discusses
smectic phases in some detail, including the main fea-
tures of the x-ray patterns, regarding both the layering
and the in-plane structure within the layers. The section
ends with a discussion of the experimental realization
and stability of smectic membranes. The main focus of
Sec. III will be theoretical and experimental aspects of
phase transitions in smectic membranes. In combination
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with the difference in phase behavior between the bulk
layers and the surface layers in smectic membranes, this
allows us to investigate in some detail low-dimensional
melting transitions. Hence special attention will be given
to phase transitions Sm-A–Sm-B–Cr-B, both in the bulk
of the films and at the surfaces.

Section IV concentrates on layer-displacement fluc-
tuations in smectic membranes. The tools used are
specular and diffuse x-ray reflectivity. Knowledge of the
resolution function is of crucial importance to interpret
experimental results quantitatively. The main body of
this section is devoted to a theoretical and experimental
discussion of the displacement-displacement correlation
function, which is intimately connected with the
Landau-Peierls instability. Of special interest is the
quenching or enhancement of the fluctuations at the sur-
faces of smectic membranes. Furthermore we consider
the conditions under which the fluctuations are confor-
mal throughout the membrane. In this field diffuse
x-ray-scattering experiments provide information on
scales from macroscopic to molecular dimensions. At
small wave-vector transfer the (elastic) material param-
eters can be determined; at large wave-vector transfer
the hydrodynamic theory breaks down and in principle
information on the form factor of the layers is obtained.

Section V can be considered as the dynamic equiva-
lent of Sec. IV. It concerns fundamental questions re-
garding the behavior of the dynamic layer-displacement
correlation function and the effects of finite sizes in
smectic membranes, including nonzero surface tension
and viscous dissipation. The finite size of smectic mem-
branes leads to a discrete spectrum of elastic and viscous
relaxation modes. Their study has been triggered by new
experimental possibilities using coherent x rays at third-
generation high-brilliance synchrotron sources. Finally,
the last section considers thinning transitions, smectic
membranes of tilted chiral molecules, thin smectic films
on a substrate, and applications to biologially relevant
systems.

II. SMECTIC MEMBRANES

A. Smectic liquid-crystal phases

Liquid crystals are composed of relatively large or-
ganic molecules that possess a strongly anisometric
shape (in this review of the rod type). A list of the
liquid-crystalline (mesogenic) molecules that occur more
than once in this review is given in the Appendix. On
melting, liquid-crystalline compounds do not pass from
the crystalline state directly into an isotropic liquid, but
form one or several intermediate phases possessing dif-
ferent degrees of orientational (nematic) or translational
(smectic) order. In the nematic phase long-range orien-
tational order of the long molecular axes persists, while
the positional order is short range as in an isotropic liq-
uid. The local preferred direction of the long molecular
axes is given by a unit vector n referred to as the direc-
tor; n and 2n are equivalent. Smectic liquid-crystal
phases possess, in addition to the nematiclike orienta-
tional order, some degree of translational order.
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Smectic-A and smectic-C phases are characterized by
translational order in one dimension and liquidlike po-
sitional order in the other two directions. In the Sm-A
phase the director is oriented orthogonal to the layers,
whereas in the Sm-C phase n is tilted with respect to the
layer normal. The density distribution along the normal
to the smectic layers (the z direction) can be developed
in a Fourier series:

r~z !5r01 (
n51

`

rn cos$qn@z1u~r!#%, (2)

where qn52pn/d5nq0 , d is the layer spacing, and
u(r)5uz(r) is the layer displacement from the equilib-
rium position z5nd with the origin chosen at z50. This
density profile can be considered as a convolution of the
form factor of a single layer and the molecular distribu-
tion function of the centers of gravity (see, for example,
Vertogen and de Jeu, 1988). The form factor depends on
the average conformation and orientation of the mol-
ecules. The distribution function depends on both the
collective (hydrodynamic) displacement of the layers
and the individual motion of molecules, as will be dis-
cussed in Sec. IV.C.3. The distribution function can gen-
erally be written as a Fourier series,

f~z !5
2
d (

n51

`

tn cos~nq0z !, (3)

where tn5^cos(nq0z)& are the translational order pa-
rameters. The lowest order parameter t1 is related to
the amplitude of the sinusoidal harmonic of the density
modulation. In a more phenomenological approach the
smectic order parameter is defined as (see, for example,
de Gennes and Prost, 1993)

C~z !5c~z !exp@2if~z !# , (4)

where c(z) is the amplitude and f(z)5q0u(z) is a
phase proportional to the layer displacement u(z).
Comparing with Eq. (2) one notes that r1 cos$q0@z
1u(r)#%5Re@c exp(iq0z)#. Though both c and f fluctu-
ate, the latter fluctuations are much stronger. This is eas-
ily understood by realizing that a uniform shift of the
layers does not require any energy. As a consequence,
long-wavelength fluctuations of layer displacements are
well developed. In the following we shall concentrate on
these types of fluctuation, but one should keep in mind
that, close to a phase transition to a more symmetric
nematic or isotropic phase, fluctuations of c must also
be taken into account.

The deformational free energy of the stacked two-
dimensional fluid layers is described by the displacement
field u(r)5u(r' ,z). Terms entering the free energy
must be invariant to operations that leave the system
unchanged. Thus the free energy can only depend on
derivatives of u(r). In the harmonic approximation the
layers are neither much tilted from the x ,y plane nor
strongly compressed. Symmetry considerations lead to
the so-called Landau–de Gennes free energy F (see, for
example, de Gennes and Prost, 1993; Chaikin and
Lubensky, 1995):
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FB5
1
2 E d3rH BS ]u~r!

]z D 2

1KF]2u~r!

]x2 1
]2u~r!

]y2 G2J ,

(5)

where B and K are elastic constants. The integration is
carried out over the volume of the system. FB can be
rewritten as a sum of contributions from fluctuations
with different wave vectors,

FB5
1

2~2p!3 E d3q@Bqz
21Kq'

4 #uu~q!u2, (6)

which allows the use of the equipartition theorem. Ac-
cordingly each independent quadratic term in the free
energy has on average 1

2 kBT of energy and therefore

^u2~r!&5
kBT

~2p!3 E d3q

Bqz
21Kq'

4 . (7)

Wavelengths larger than the sample size L normal to the
layers and W in the plane of the layers are not possible.
Similarly, modes with wavelengths shorter than the layer
spacing d or lateral molecular spacing a0 are not al-
lowed. Hence the integration boundaries are 2p/W
<q'<2p/a0 and 2p/L<qz<2p/d . As W@L and a0
,d , the limits of integration can be expanded: W→`
and a0→0. Consequently,

^u2~r!&5
kBT

4p2 E E dqzdq'

q'

Bqz
21Kq'

4

5
kBT

8pAKB
lnS L

d D . (8)

A similar expression but with cutting by W and a0 can
be obtained by first integrating over qz (without cutting)
and then over q' . We see that ^u2(r)& diverges logarith-
mically with L , which is called the Landau-Peierls insta-
bility (Peierls, 1934; Landau, 1937). As a result, for suf-
ficiently large L , the fluctuations become of the order of
the layer spacing, which means that the layer structure
would be wiped out. However, in all practical circum-
stances the layer-displacement amplitude is significantly
smaller than the layer spacing: the smectic layers are still
well defined.

The quasi-long-range order in Sm-A systems is to be
distinguished from true long-range order by the pair-
correlation function:

^r~r!r~0 !&2^r~r!&^r~0 !&}^exp$iq0@u~r!2u~0 !#%&.
(9)

In the harmonic approximation this can be written as

G~r!5^exp$iq0@u~r!2u~0 !#%&5expF2
1
2

q0
2 g~r!G ,

(10)

where

g~r!5^@u~r!2u~0 !#2& . (11)

In the case of true long-range order G(r) approaches a
constant value for r→` . If G(r) shows an algebraic de-
cay with r , we speak of quasi-long-range order. The
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smectic pair-correlation function has been calculated to
be (Caillé, 1972; Als-Nielsen, 1980)

G~r!5G~r' ,z !}exp~22hgE!S 2d

r'
D 2h

3expF2hE1S r'
2

4lz D G . (12)

The exponent h is given by

h5
q0

2kBT

8pAKB
, (13)

while gE50.5772 is Euler’s constant, E1(x) the expo-
nential integral, and l5AK/B is the so-called penetra-
tion depth, which is of the order of the layer spacing d .
Using the asymptotic expressions for the exponential in-
tegral, Eq. (12), leads to

G~r' ,z !}z2h for r'!Alz ,

G~r' ,z !}r'
22h for r'@Alz . (14)

Within the layers of the Sm-A and Sm-C phase the
positional order is short range. Thus the positional cor-
relations decay exponentially: G(r')}exp(2kr'), where
k is an inverse correlation length. The other known
smectic phases all possess so-called bond-orientational
(hexatic) order. In that situation correlations of the ori-
entations of local hexagons persist over large distances,
even in the absence of positional order. For smectic lay-
ers this leads to a sixfold rotational symmetry and the
orientational correlations are described in terms of the
two-component bond-orientational ordering field:

C6~r'!5c6 exp@i6u6~r'!# . (15)

The phase is given by the angle u6 of the intermolecular
direction with respect to a reference axis. Such an aniso-
tropic two-dimensional liquid has been called a hexatic
phase (Halperin and Nelson, 1978). The bond-
orientational correlation function decays at large dis-
tances algebraically as

G6~r'!5^C6~r'!C6~0 !&

5c6
2^exp$i6@u6~r'!2u6~0 !#%&}r

'

2h6, (16)

with an exponent h6518kBT/(pKA), where KA is the
effective stiffness of the bond-orientational field. The
hexatic phase is characterized by quasi-long-range bond-
orientational order, while the positional order is still
short range. Similarly to the displacement of the smectic
layers, the algebraic decay of the bond-orientational cor-
relations leads to a long-wavelength divergence of the
mean-square amplitude ^du6

2& of the fluctuations in the
bond angles:

^du6
2&5

kBT

~2p!2KA
E d2q'

q'
2 5

kBT

2pKA
lnS W

a D . (17)

The Sm-B phase is the hexatic counterpart of the or-
thogonal Sm-A phase. The Sm-I and Sm-F phases are
hexatic similar to the Sm-B phase, but, as in the Sm-C
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phase, n makes a nonzero tilt angle with the layer nor-
mal. In the Sm-I phase the projection of n onto the
smectic plane (the so-called c director) points towards a
nearest neighbor in a local hexagon, while for the Sm-F
phase c points to the next-nearest neighbor. In addition
a Sm-L phase also exists in which the tilt azimuth is
intermediate between these two situations (Chao et al.,
1997).

The scenario outlined so far applies to two-
dimensional systems. Birgeneau and Litster (1978) sug-
gested that some of the more ordered smectic phases
might actually be the three-dimensional analog of the
bond-ordered hexatic phase of Halperin and Nelson.
Then each smectic layer is a two-dimensional hexatic
system with additional angular correlations from layer to
layer. In such a three-dimensional case the mean-square
fluctuations of the bond angles remain finite (Prost,
1984), in contrast to the situation in two dimensions.
Thus a three-dimensional (or stacked) hexatic phase ex-
hibits true long-range bond-orientational order. At the
same time the in-plane positional correlations remain
short range and decay exponentially with distance.

An increase in the positional order leads to phases
with a hexagonal in-plane lattice. These Cr-B, Cr-J, and
Cr-G phases are crystalline versions of the orthogonal
Sm-B and tilted Sm-I and Sm-F phases, respectively.
Two-dimensional crystals are at their lower critical di-
mensionality of two and therefore are unstable relative
to long-wavelength phonons (see, for example, Chaikin
and Lubensky, 1995). Consequently, the positional cor-
relations should decay algebraically with distance
G(r');r

'

2hcr with a power-law exponent hcr . The bond-
orientational correlations are long range: G6(r') re-
mains constant in the limit r'→` . When the two-
dimensional crystal planes are locked together into a
three-dimensional structure, true long-range positional
as well as bond-orientational order is found. Finally, fur-
ther crystalline phases, Cr-E, Cr-K, and Cr-H, result
from a distortion of the hexagonal in-plane lattice. This
is due to the ordering of the backbone planes of the
molecules in a herringbone packing. These phases pos-
sess a centered rectangular in-plane lattice. Cr-E is
orthorhombic while Cr-K and Cr-H are monoclinic with
a tilt direction corresponding to the Sm-I and Sm-F
phases, respectively. Table I summarizes the different
smectic and related lamellar crystalline phases. More de-
tails are presented in the books by Gray and Goodby
(1984) and Pershan (1988).

B. Main features of x-ray patterns

In this section we shall summarize the basic x-ray fea-
tures of smectics in general and smectic membranes in
particular. Complementary information has been ob-
tained by optical measurements (microscopy, reflectivity,
ellipsometry, light scattering) (Pindak, 1992; Pieranski
et al., 1993; Bahr, 1994), heat-capacity studies (Stoebe
and Huang, 1995), and mechanical measurements (Pin-
dak and Moncton, 1982). In general an x-ray experiment
determines the Fourier image of the density-density cor-
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TABLE I. Structure and symmetry properties of three-dimensional smectic and crystalline phases.
(Note that a two-dimensional hexatic phase has QLR bond-orientational order; two-dimensional
crystals possess QLR positional order.) LRO, QLRO, and SRO refer to long-range, quasi-long-range
and short-range order, respectively. NN and NNN indicate tilt in the direction of the nearest neighbor
and next-nearest neighbor of the local hexagon.

Type of positional and
bond-orientational order

Phase

Orthogonal Tilted to
NN

Tilted to
NNN

Tilted between
NN and NNN

Interlayer positions QLRO Sm-A Sm-C
In-plane positions SRO (random tilt)

Interlayer positions QLRO
In-plane positions SRO Sm-B Sm-I Sm-F Sm-L
Bond orientations LRO

Hexagonal in-plane lattice Cr-B Cr-J Cr-G Cr-M
All ordering LRO

Rectangular in-plane lattice
(Herringbone order)

Cr-E Cr-K Cr-H Cr-N
relation function G(r). This is expressed as the structure
factor S(q), which is given by

S~q!5E d3r G~r!exp~ iq"r!. (18)

Hence a reconstruction of G(r) from S(q) yields infor-
mation on the character of the translational order. Three
types of positional order can be distinguished (Fig. 2).
Long-range translational order in an ideal three-
dimensional crystal results in delta-function-type diffrac-
tion peaks. In systems with reduced dimensionality ther-
mal fluctuations destroy the long-range translational
order and cause power-law singularities instead of delta-
function peaks. In a conventional liquid the positional
correlations decay exponentially with distance, giving a
Lorentzian scattering profile. A similar type of short-
range positional order is observed within smectic and
hexatic layers.

Any diffraction experiment is defined by a specific
variation of the wave-vector transfer q5qout2qin with
q5uqu5(4p/l)sin u, where u and l are the scattering
angle and the wavelength of the radiation, respectively.
The general feature of all smectic phases is a set of sharp
(00n) quasi-Bragg peaks in the direction along the layer
normal at wave-vector transfer q5qn52pn/d . The in-
plane order is short range and can be determined from
the width of the in-plane (hk0) peaks. This type of dif-
fraction pattern represents the rare situation in which
quasi-Bragg peaks in one direction of reciprocal space
(along the layer normal) are combined with liquidlike
in-plane peaks.

1. X-ray diffraction normal to the layers

To study smectic layering, one must set the wave-
vector transfer along the layer normal. For bulk samples
this is accomplished by an incident x-ray beam approxi-
., Vol. 75, No. 1, January 2003
mately perpendicular to a magnetic field that aligns the
director. In the case of smectic membranes a reflectivity
setup can be used (see Sec. IV.A.1). The algebraic decay
of the positional correlations in the smectic layers given
by Eq. (14) implies that the x-ray structure factor has a

FIG. 2. Correlation function and resulting diffraction pattern
for various types of positional order.
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power-law rather than a delta-function singularity
(Caillé, 1972; Gunther et al., 1980):

S~q'50,qz!}~qz2qn!221hn,

S~q' ,qz5qn!}q
'

2412hn, (19)

where hn5n2h with h given by Eq. (13). This type of
anisotropic line shape was first observed in smectics by
Als-Nielsen et al. (1980) and then confirmed for various
thermotropic (Zisman et al., 1987; Kaganer et al., 1991;
Nachaliel et al., 1991) and lyotropic lamellar phases
(Safinya et al., 1986; Roux and Safinya, 1988; Wack and
Webb, 1989). There are a finite number of power-law
singularities of the type of Eq. (19); when hn.2 they are
replaced for large qn by cusplike peaks. This singular
behavior of the structure factor in smectics can be con-
trasted to the Bragg peaks with diffuse tails found in
three-dimensional crystals. Thermal vibrations in three-
dimensional crystals reduce the intensities of the Bragg
peaks by a Debye-Waller factor exp(22M), but intro-
duce no line broadening. In the limit of infinite-size
smectic samples, the Bragg peaks are absent due to the
divergence of the Debye-Waller factor:

exp~22Mn!5exp@2qn
2^u2~r!&#}S L

d D 2hn

. (20)

Now all scattering is concentrated in the power-law
wings, Eq. (19), and is due to the layer fluctuations. For
samples of finite thickness the situation is different. In
this case the Debye-Waller factor is not divergent and
the x-ray intensity consists of thermal diffuse scattering
given by Eq. (19) with a true, albeit weakened, Bragg
peak on top (Gunther et al., 1980). The form factor of a
domain of thickness L leads to a Bragg peak of width
;L21 and height ;LW222hn, W being the lateral size.
This peak is accompanied by wings decreasing (on aver-
age) as q22 (Gunther et al., 1980; Kaganer et al., 1991).
Note that according to Eq. (20) the maximum intensity
of the finite-size Bragg peak decreases rapidly with n ,
leading to a drastically diminishing intensity of the
higher-order harmonics. For typical values h.0.1 and
L.20 mm the contribution ;(L/d)2hn of the Bragg
peak to the total intensity is ;0.4 for the first diffraction
maximum (001) and ;0.01 for the next reciprocal-lattice
point (002).

In most thermotropic low-molecular-mass smectics
only the first quasi-Bragg peak is clearly present, the
intensity of the others being orders of magnitude less.
The only exceptions are mesogens with perfluorinated
or siloxane terminal groups (Ostrovskii, 1999). Poly-
meric smectics (Nachaliel et al., 1991; Davidson and
Levelut, 1992) and lyotropic smectics (Smith et al., 1987;
Roux and Safinya, 1988) are less compressible (the elas-
tic modulus B is larger) and thus higher-order harmonics
are more pronounced. The intensity of the successive
harmonics is also modified by the wave-vector depen-
dence of the molecular form factor F(q). The latter has
a maximum value at q50 and decays nonmonotonically
as q increases. For example, the molecular form factor
Rev. Mod. Phys., Vol. 75, No. 1, January 2003
favors more intense higher harmonics for lyotropic
smectics with a bilayer structure as well as for polymeric
smectics with side chains.

2. In-plane x-ray diffraction

Using diffraction in a transmission geometry q lies in
the plane of smectic layers. Thus any positional ordering
that satisfies the condition q5q'0 , where q'0 is an in-
plane reciprocal-lattice vector, gives rise to a peak of
scattered intensity. Transmission electron diffraction is a
very appropriate method for studying bond-
orientational order in thin hexatic membranes (Cheng
et al., 1987, 1988; Chou, Ho, and Hui, 1997). Positional
correlations can be advantageously obtained using trans-
mission and grazing-incidence x-ray diffraction. The lat-
ter technique also allows us to probe surface-induced
ordering (Dosch, 1992; Als-Nielsen et al., 1994).

In the Sm-A phase the in-plane structure is liquidlike
due to the short-range positional order. The structure
factor of a two-dimensional liquid has the form of a
broad cylindrical tube with its axis parallel to the layer
normal. It has a width ;2k , where j5k21 is a charac-
teristic length over which positional correlations be-
tween the molecules decay exponentially. The form fac-
tor of rodlike molecules is large only in a plane normal
to the long axis, which is called the reciprocal disc of the
molecule. The intersection of the cylindrical tube with
the reciprocal disc gives rise to a diffuse ring of scatter-
ing in the q' plane (see Fig. 3). The radius of the ring
corresponds to q'0.4p/(a)), where a is the average
molecular separation.

The structure factor of a simple liquid can be obtained
on the basis of the phenomenological Ornstein-Zernike
model (Stanley, 1971; Landau et al., 1980) and can be
expressed as

S~q'!5^ur~q'!u2&;@~q'2q'0!21k2#21. (21)

The scattering profile is a Lorentzian with a full width at
half maximum (FWHM) of 2k centered at the preferred
wave vector q'0 . The Fourier transform of Eq. (21) in
three dimensions gives the well-known result for the
asymptotic behavior of the pair-correlation function
(Landau et al., 1980),

G~r'!;r'
21 exp~2kr'!. (22)

FIG. 3. Schematic illustration of the in-plane scattering of a
smectic membrane: (a) isotropic smectic layers; (b) bond-
orientational (hexatic) ordering. After Brock et al., 1989.
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The short-range positional order described by this equa-
tion is typical for conventional three-dimensional liquids
and many other disordered systems. However, a priori it
is not obvious that the same type of correlation function
also applies to stacks of two-dimensional liquids. The
Fourier transform of the Lorentzian structure factor, Eq.
(21), in two dimensions results in a correlation function
that decays with distance as

G~r'!;K0~kr'!, (23)

where K0 is the modified Bessel function of zero order.
For positional correlations in a two-dimensional liquid
this latter function seems to be a better approximation.
Note that if Eq. (22) is back-Fourier-transformed in two
dimensions, we obtain a line shape @(q'2q'0)2

1k2#21/2 that is hardly comparable with experimental
data for the Sm-A phase. Thus the interpretation of the
diffuse liquidlike peak in Sm-A is somewhat ambiguous:
a different correlation function is found depending on
whether a three-dimensional or a two-dimensional Fou-
rier transformation is preferred.

In the hexatic Sm-B phase the presence of bond-
orientational order breaks the angular isotropy of the
structure factor. This leads to a sixfold modulation of the
scattering in the q' plane (see Fig. 3). A Fourier expan-
sion of the azimuthal scattering profile gives

S~x!5(
n

C6n cos~6nx!, (24)

where x is the rotation angle of the sample. The coeffi-
cients C6n can be considered as order parameters that
measure the amount of 6n-fold bond ordering in the
film. In combination with this orientational anisotropy,
hexatics display a diffuse scattering profile in the radial
direction, corresponding to short-range positional order.
When the temperature is decreased, the width of the
radial peak diminishes simultaneously with the further
development of the bond-orientational order. This indi-
cates a coupling between the positional correlations and
the bond-orientational order.

A line-shape analysis in the hexatic Sm-B phase is
complex due to the coupling between the liquid density
and the bond-orientational order parameter (Bruinsma
and Nelson, 1981). The evolution of the liquid structure
factor in the vicinity of the hexatic-isotropic transition
was studied in the framework of the phenomenological
XY model. In this approach the radial line shape takes
the form (Aeppli and Bruinsma, 1984; Brock et al., 1989)

S~q'!;E
2p/6

p/6
du6

expS 2
1
2

u6
2/^du6

2& D
k21q'

2 1q'0
2 22q'q'0 cos~f2u6!

,

(25)

where f is the angle between the in-plane components
of q' and q'0 . The bond-orientational fluctuations ^du6

2&
cause a broadening of the azimuthal intensity distribu-
tion producing a mosaic averaging of the initial
Lorentzian-like profile. As a result, the radial line shape
can be approximated by
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S~q'!;@~q'2q'0!21k2#2 1/2. (26)

Because the bond-orientational order is quasi-long-
range in two-dimensional hexatics [see Eq. (17)], the
x-ray-diffraction pattern from an infinite hexatic sample
should consist of an isotropic ring. However, finite-size
effects modify this pattern, so that a sixfold modulation
is observed in experiments on thin monodomain hexatic
membranes (Brock et al., 1986; Cheng et al., 1988). Since
thermodynamic stability requires KA /kBT>72/p (see
Sec. III.A.2), according to Eq. (17), the bond-angle fluc-
tuations can be as large as ^du6

2&1/2.16° (W550 mm,a
50.5 nm). This causes significant azimuthal broadening
of the diffraction pattern in the vicinity of the Sm-A–
Sm-B transition. Alternatively, a uniform diffuse ring of
the type of Eq. (26) can also be due to averaging over
multiple domains with different orientations within the
illuminated area.

Experimentally square-root Lorentzian line shapes fit
in-plane hexatic radial scans quite well over a broad in-
terval of temperatures and thicknesses (Davey et al.,
1984; Brock et al., 1986). However, in the case of thick
monodomain hexatic Sm-B films (*10 mm) of the com-
pounds RFL6 and PIR5, the radial line shape was re-
ported to be closer to a simple Lorentzian (Górecka
et al., 1994). The in-plane reflections exhibit an almost
perfect sixfold symmetry, which points to strong inter-
layer bond-orientational correlations. Similar observa-
tions have been made with electron diffraction in
hexatic membranes of various compositions and thick-
nesses. Clearly the hexatic phase, originally expected to
exist in two-dimensional systems (Halperin and Nelson,
1978), could be a three-dimensional phase with true
long-range bond-orientational order.

At lower temperatures the hexatic phase crystallizes,
as signaled by condensation of the modulated ring of
scattering into sharp (hk0) reflections from the two-
dimensional hexagonal lattice. As two-dimensional crys-
tals are characterized by quasi-long-range positional or-
der with a pair-correlation function G(r');r

'

2hcr , their
structure factor has the form

S~q'!}uq'2qhk0u221hcr. (27)

The exponent hcr5(kBT/4pm)@(l13m)/(l12m)#qhk0
2

depends on the elastic Lamé coefficients l and m. For a
finite lattice with size W the singular behavior of Eq.
(27) is valid only for q'@W21, while the central part of
the diffraction profile is dominated by a Bragg peak with
a width ;W21 (Imry and Gunther, 1971). Both the lat-
tice fluctuations and the molecular form factor cause the
peak intensities to decay rapidly with increasing q' .
Thus only the first-order (020) and (110) peaks of the
hexagonal lattice are visible. Power-law singularities of
the type of Eq. (27) have been observed in a two-layer
Cr-B film of the compound 14S5 (Moncton et al., 1982)
and in a five-layer membrane of the compound 8OSI in
the Cr-J phase (Noh et al., 1991).

Three-dimensional crystals are characterized by delta-
function-type Bragg peaks, accompanied by diffuse tails
of the form uq'2qhk0u22 resulting from nondivergent
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phonon excitations. This type of behavior was observed
in relatively thick Cr-B films of the compound 4O.8
(Moncton and Pindak, 1979; Pershan et al., 1981) and in
some other compounds (Leadbetter et al., 1979). Thus
the Cr-B phase in thick films has three-dimensional po-
sitional order. This is in agreement with bulk samples
that show sharp in-plane diffraction peaks, indicating
long-range periodicity within the layers. Combined
Bragg reflections of the type (hkn) are also found, in-
dicating that the layers are locked together in a three-
dimensional periodic structure. Scans along qz taken at
the positions of the in-plane reciprocal-lattice vectors
q'0 reveal different types of layer stacking AAA . . . ,
ABAB . . . , or ABCABC . . . (Pershan, 1988).

The tilted phases are more complex as, due to the tilt
of molecules, the reciprocal disc is tilted with respect to
the plane of the smectic layers. As a result the diffuse
ring in the Sm-C, Sm-I, and Sm-F phase is also inclined.
In this situation the reciprocal disc of the molecules in-
tersects the modulated tube of the hexatic structure fac-
tor at points lying outside the plane of the layers. As a
result, the diffuse peaks move out of the q' plane (Smith
et al., 1990; Kaganer et al., 1995). Smectic-I and Sm-F
hexatic phases were first observed by x-ray diffraction of
bulk smectic samples (Benattar et al., 1979) and later
studied systematically in smectic membranes of variable
thickness (Collett et al., 1984; Sirota et al., 1987b). If the
tilt azimuth is intermediate between the nearest neigh-
bors and the next-nearest neighbors, in lowest order
three distinct diffraction peaks exist (Kaganer et al.,
1995). This type of tilted smectic phase has been ob-
served both in lyotropic (Smith et al., 1988) and in ther-
motropic (so-called Sm-L phase) smectic membranes
(Chao et al., 1997).

C. Stability of smectic membranes

Smectic membranes can be drawn manually by wet-
ting the edges of an opening in a glass or metal holder
with the mesogenic compound in the smectic phase and
then moving a spreader across the hole (Young et al.,
1978; see Fig. 4). By varying the amount of smectic ma-
terial, the temperature and the speed of drawing, one
can produce membranes ranging from 5 nm (two layers)
to tens of mm (thousands of layers). Alternatively a
frame with a variable area can be used (Pieranski et al.,
1993; Bahr, 1994). Such a rectangular frame possesses

FIG. 4. Spreading a smectic membrane: (a) using a fixed frame
and a separate wiper; (b) by means of a frame of variable size.
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one or two movable parts with sharp edges, the distance
of which can be changed by a micrometer screw. The
advantage of the latter technique is that a series of mem-
branes with progressively decreasing thickness can be
produced upon increasing the area of the frame. Di-
rectly after preparation a film usually consists of regions
of different thickness, from which it equilibrates to a
uniform situation. The equilibration time varies from
minutes to days depending on the specific compound,
the temperature, and the type of frame. Usually the
thinnest region grows at the expense of the thicker ones.

Since the early work of Pieranski et al. (1993), the
(meta)stability of smectic membranes has been dis-
cussed by several authors (Geminard et al., 1997; Picano
et al., 2000, 2001). A review has been given by Oswald
and Pieranski (2002). As is well known, across a flat
liquid interface in equilibrium no pressure difference
can exist (see, for example, Rowlinson and Widom,
1982). This is no longer true for a smectic surface be-
cause the layers are elastic and can support a normal
stress that will equilibrate any small pressure difference
Dp5pair2psm . In addition to the surface tension g, this
pressure difference contributes to the tension G along
the smectic membrane:

G52g1DpL . (28)

The contribution of the stress to Dp depends on the
shape of the meniscus between the membrane and its
support. The pressure in the meniscus can be influenced
by the amount of material near the edges or by the
speed with which the film is stretched during the prepa-
ration. Geminard et al. (1997) studied the meniscus sur-
rounding a needle in a smectic film by observing the
fringes in monochromatic light. The results show that a
smectic meniscus is composed of a collection of steps
due to edge dislocations repelled from the free surfaces.
Further experiments indicate that the smectic meniscus
contains a thick part with a large density of dislocations,
and a thinner part adjacent to the membrane in which
dislocations remain elementary (Picano et al., 2000,
2001). The latter has a circular profile with radius of
curvature R , which for thick films matches tangentially
the free surface of the membrane. The value of R fixes
the pressure difference inside both the meniscus and the
film via Dp5g/R , which is of the order of 0.1–1 N/m2.
For membranes less than about 50 layers this behavior
changes and an apparent ‘‘contact’’ angle appears.

For optical and x-ray measurements in a transmission
geometry the film area can be restricted to a few mm2.
For x-ray reflectivity studies a large footprint of the in-
cident x-ray beam must be accommodated. Therefore
membranes are typically spanned over a 10325 mm2

rectangular hole in a polished plate with sharp top
edges. This brings the membrane as close to the top of
the holder as possible and reduces shadowing of the
beam. The two surfaces of a membrane induce an al-
most perfect alignment of the smectic layers: the re-
sidual curvature of the film is due mainly to the nonpla-
narity of the edges of the holder. The resulting mosaicity,
expressed as the angular spread of the surface normal,
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can be as small as 0.002° at a footprint of about 3
33 mm2 (Mol et al., 1996). The membrane thickness can
be easily determined by optical reflectivity, which for
sufficiently thin films scales as the square of the thick-
ness (Rosenblat and Amer, 1980; Pieranski et al., 1993).
The number of smectic layers in a film can be precisely
determined from specular x-ray reflectivity. Reflection
occurs at both the front and the back interface, leading
to constructive or destructive interference depending on
the incoming angle (Kiessig or interference fringes; see
Fig. 5). The period of the fringes is inversely propor-
tional to the film thickness L . In addition the internal
periodic structure generates finite-size Bragg-like peaks
centered at qn . Thus the number of smectic layers N
5L/d can be determined unambiguously. Smectic mem-
branes are stable over many days or even months de-
spite the fact that they are homogeneously compressed
over their surface. Their thickness can be modified by
variation of the tension G, for example, by changing the
surface area using the variable area frame. The thickness
variation usually proceeds via nucleation of edge-
dislocation loops (Geminard et al., 1997; Picano et al.,
2000; Oswald et al., 2002) and the final state depends on
the way the film has been created. Though the basic
features of the meniscus and the role of the tension are
now established, several other aspects still remain to be
explored.

III. STRUCTURE AND PHASE TRANSFORMATIONS

A. Theoretical aspects of phase transitions

The in-plane structure of smectic membranes can vary
as a function of temperature, film thickness, etc., from
liquid (Sm-A) to hexatic (Sm-B) and crystalline (Cr-B).
In addition surface-induced phases may occur. This mul-
tiplicity of crystallization (melting) transitions in smectic
films differing in composition and thickness makes their
theoretical description rather complicated. The defect-
unbinding theory (Kosterlitz and Thouless, 1973; Hal-

FIG. 5. X-ray reflectivity of a 33-layer smectic membrane of
7AB.
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perin and Nelson, 1978) predicts that the melting of a
two-dimensional crystal involves two continuous transi-
tions separated by an intermediate hexatic phase. Alter-
natively, the melting transition might be of the usual
first-order type observed in three-dimensional crystals.
The observation of hexatic phases in smectic liquid crys-
tals is compatible with the defect-mediated melting sce-
nario. However, the mere existence of a hexatic phase
does not by itself necessarily provide proof of a specific
melting mechanism. In other cases the hexatic phase is
preempted by a direct first-order Cr-B–Sm-A phase
transition (Moncton et al., 1982).

Bulk hexatic smectic phases can be considered as
three-dimensional systems of stacked hexatic layers. The
coupling between the layers leads—even in the absence
of interlayer positional correlations—to true long-range
bond-orientational order, and changes the nature of the
corresponding transitions (Aharony et al., 1986). Be-
cause the two-dimensional limit can be approached in
sufficiently thin films, smectic membranes are perfect
model systems for studying the true nature of the
Kosterlitz-Thouless transition. Additional theoretical
predictions indicate that the hexatic order is reduced by
out-of-plane layer-displacement fluctuations. As the
fluctuations are often quenched at the surfaces, the sta-
bility of the hexatic phase is enhanced at these positions
compared to the interior of a film (Selinger, 1988;
Hołyst, 1992). Hence surface-induced crystallization in
the top layers of smectic membranes can occur, which
provides another way to probe the two-dimensional
melting sequence. The theory of two-dimensional melt-
ing and the effects of bond-orientational order on the
phase sequences in low-dimensional systems have been
reviewed by Nelson (1983), Strandburg (1988), and Gla-
ser and Clark (1993). In the following sections we re-
strict ourselves to a description of the basic ideas and
the attendant results as relevant to smectic membranes.

1. Landau approach

In discussing the development of translational and
bond-orientational order in smectic membranes, we start
from a Landau theory of crystallization. Crystallization
of a liquid leads to the appearance of a spatial density
modulation r(r)5^r&1dr(r), which can be expanded
in a Fourier series: dr(r)5(krk exp(ik"r). Let us con-
sider first the common case in which the amplitudes of
the density waves alone represent the ordering field of
the liquid-to-crystal transition (Landau, 1937). The free
energy can be expanded in powers of rk , each term con-
taining wave vectors forming a closed polygon ( iki50
to ensure translational invariance. The expansion starts
with the term (karrkr2k , in which the coefficient ar

depends on temperature, pressure, and the length of the
vector k. The crystallization transition is driven by a
change of sign of ar at the transition point Tc . The ac-
tual wave vector of the crystallization is the one that
realizes this condition first. The next term is
;(krk1

rk2
rk3

, and the condition k11k21k350 selects
equilateral triangles of wave vectors. The crystallization
transition is first order due to the presence of this cubic
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term in the free-energy expansion. The free energy is
minimized by maximizing the number of equilateral tri-
angles of wave vectors. In three dimensions this is
achieved by the formation of a tetrahedron, which gives
rise to crystallization into a body-centered-cubic struc-
ture (Alexander and McTague, 1978). Other structures
arise depending on the angular contribution from the
fourth-order term (Kats et al., 1993a). It should be noted
that the amplitude of the density wave is not the only
possible crystallization order parameter in the Landau
theory. In the case of nonspherical organic molecules of
the liquid-crystal type, long-chain amphiphilics, and
n-alkanes, the crystallization scenario also depends on
the ordering of the short axes of the molecules (the
‘‘backbone plane’’) with respect to the bond directions
(Kaganer and Loginov, 1995).

In two dimensions only one equilateral triangle can be
formed, giving rise to a transition into a two-dimensional
hexagonal crystal. In such a crystal the bond-
orientational ordering field is determined by the two-
component order parameter C6 . Its contribution to the
free energy of the system can be described by powers of
uC6u with leading term ;a6

2uC6u2. Inclusion of a cou-
pling term ;(kurku2@C6 exp(2iuk)1C6* exp(iuk)# en-
sures that the bond-orientational order parameter C6 is
phase locked to k (the asterisk denotes complex conju-
gation). If a6 is large and positive when ar changes sign,
one expects a direct transition into a crystal. If a6
changes sign before ar does, the Landau theory de-
scribes a continuous transition into an orientationally or-
dered hexatic phase. Unlike the crystalline phase, order-
ing in C6 does not require any of the rk to become
finite. Thus the hexatic phase remains positionally disor-
dered. Since C6 is a complex order parameter, this tran-
sition belongs to the universality class of the two-
dimensional XY model. A more sophisticated Landau
theory is required to describe the hexatic-crystal transi-
tion (Nelson, 1983). The presence of a third-order term
in the free-energy expansion again implies that the tran-
sition is first order.

Two-dimensional crystals at their lower marginal di-
mensionality exhibit an algebraic decay of the density
correlation function. The fluctuations in the phase of the
translational order parameter rk5urkuexp(ik"u), where
u(r) represents the displacement field, are strong enough
to destroy the long-range positional order. A
renormalization-group analysis performed within the
framework of the Kosterlitz-Thouless theory indicates
that fluctuations depress the transition temperatures
well below their Landau values and change the charac-
ter of the melting transition (Nelson and Halperin,
1979). In particular, the hexatic-crystal transition need
not be first order in two dimensions. The hexatic phase
is characterized by quasi-long-range orientational order
and melts into the liquid phase via a mechanism of dis-
clination unbinding. Hence the transition from crystal to
liquid can occur either directly via a first-order transition
or through a two-step process with an intermediate
hexatic phase. The latter approach will be discussed in
some detail in the next section.
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2. Defect-mediated phase transitions

Berezinskii (1972) and Kosterlitz and Thouless (1973)
proposed a theory for transitions in XY models, based
on topological defects called vortices. Typical examples
are two-dimensional superfluids and superconductors.
The mechanism for the Berezinskii-Kosterlitz-Thouless
(BKT) transition is the unbinding of a dilute gas of vor-
tex pairs. The theory predicts a continuous transition
from the low-temperature phase, characterized by quasi-
long-range order, to the high-temperature disordered
phase. Two-dimensional crystals belong to the same uni-
versality class as the XY model, and the relevant topo-
logical point defects responsible for the order-disorder
transitions are dislocations and disclinations. The theory
of defect-mediated melting of two-dimensional crystals
was generalized by Halperin and Nelson (1978), Nelson
and Halperin (1979), and Young (1979). The extended
BKT mechanism assumes that in a two-dimensional
crystal below the melting temperature Tm , in addition
to conventional thermal phonon excitations, a finite con-
centration of dislocation pairs also exists. These pairs
have equal and opposite Burgers vectors and are ther-
mally generated even at low temperatures. The elastic
energy of a bound pair of dislocations with a character-
istic size R can be estimated as

Fd

kBT
5K lnS R

ac
D1Ec , (29)

in which Ec is the energy of the dislocation core with
radius ac , and the dimensionless dislocation coupling
coefficient K is related to the Lamé elastic constants by
K5 4m(l1m)a2/(l12m)kBT . As a consequence of
the reduced dimensionality of the system the pair inter-
action of Eq. (29) varies logarithmically with the core
separation. The average size of a pair of dislocations is
given by

^R2&;E R2 expS 2
Fd~R !

kBT DdV , (30)

in which the integration is performed over all orienta-
tions. Thus the average size of a pair is determined by
Fd(R), while the concentration is governed mainly by
the core energy Ec . The melting transition corresponds
to the unbinding of dislocation pairs into free disloca-
tions once their size increases sufficiently to screen the
interaction between dislocations of opposite sign.

A renormalization-group analysis of the BKT mecha-
nism leads to a single continuous transition from a crys-
tal to a liquid phase with a correlation length that di-
verges as T approaches Tm from above: ln j}(T
2Tm)2n with n50.369. This is very different from the
power-law divergence of the correlation length associ-
ated with a conventional second-order transition. The
specific heat exhibits at Tm an unobservable essential
singularity: Cp}j22. However, there is a small bump in
the specific heat above Tm due to the gradual unbinding
of dislocation pairs. Throughout the crystal phase, there
will be an algebraic decay of spatial correlations which
leads to the power-law singularities in the structure fac-
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tor equation (27). Due to the universal value of the
renormalized coupling constant K at the melting point,
the exponent hcr attains for a hexagonal lattice a maxi-
mum value hcr

max51/3 at Tm (Nelson and Halperin,
1979).

The above results are similar to the BKT predictions
for vortex-unbinding transitions in two dimensions. Hal-
perin and Nelson found, however, that the dissociation
of dislocation pairs, which destroys the quasi-long-range
translational order, does not necessarily produce an iso-
tropic liquid. In such an anisotropic (hexatic) liquid the
bond-orientational correlation function decays algebra-
ically G6(r);r2h6 with the exponent given below Eq.
(16). The hexatic phase is characterized by quasi-long-
range bond-orientational order, while the positional or-
der is short range and the shear modulus zero. The rea-
son for the bond-orientational ordering being retained
while the positional correlations are destroyed is that
free dislocations are less disruptive of the bond direc-
tions. A free dislocation in a hexagonal lattice is com-
posed of a tightly bound pair of sevenfold and fivefold
disclinations. The subsequent unbinding of the disclina-
tion pairs has a profound influence on the decay of the
bond-orientational order. A renormalization-group
analysis of this mechanism predicts a continuous
disclination-unbinding transition at a temperature Ti
.Tm into an isotropic liquid. The renormalized stiffness
of the bond-orientational field KA /kBT has a universal
discontinuity at Ti from a value 72/p to zero above the
transition. As T approaches Tm from above, KA di-
verges proportional to the square of the positional cor-
relation length. As in the dislocation-unbinding transi-
tion, the specific heat should exhibit a peak above Ti
due to the gradual unbinding of disclination pairs.
Above Ti a conventional isotropic liquid exists: all cor-
relation functions decay exponentially.

Several computer simulations have been performed to
determine the nature of the melting of two-dimensional
crystals. Early studies are reviewed by Strandburg (1988,
1992) and Glaser and Clark (1993). For more recent re-
sults see, for example, Jaster (1999) and Bates and Fren-
kel (2000). Even for the case of hard discs, the most
simple two-dimensional model system, the situation is
not at all clear. Simulations provide inconsistent results,
claiming either a weakly first-order or a continuous
crystal-isotropic transition. This discrepancy may be a
natural result of the limited size of the system as well as
the running time in simulation experiments. A recent
study by Jaster (1999) using extremely large systems (up
to 65 536 hard discs) contradicts a one-stage continuous
crystal-isotropic transition. In addition it is not possible
to rule out either a one-step weakly first-order crystal-
isotropic liquid transition or a two-step continuous
crystal-hexatic-isotropic pathway. The behavior of the
susceptibility and the bond-orientational correlation
length in the isotropic phase coincides with the predic-
tions of the BKT theory. Additionally, a finite-size scal-
ing analysis in the transition region allowed Jaster to
locate a disclination-unbinding transition point compat-
ible with the BKT scenario. Similar results have been
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obtained for a two-dimensional system of classical point
particles interacting via an r212 repulsive potential (Bag-
chi et al., 1996). The important conclusion from com-
puter simulations is that small differences in the poten-
tial can drastically change the phase behavior. This
suggests that the melting scenario in two dimensions is
not universal but depends on the specific properties of
the system, such as the energy of the dislocation core Ec
and the interparticle potential.

Compelling evidence for the BKT theory in systems
with long-range interparticle potentials stems from work
on electrons on the surface of helium (Glattli et al.,
1988), on charged polymer colloids confined between
glass plates (Murray and van Winkle, 1987), and on a
confined monolayer of colloidal particles with dipole in-
teractions (Kusner et al., 1994). For a long time the melt-
ing of xenon adsorbed on graphite was considered to be
a true example of a BKT transition. Precision heat-
capacity and vapor-pressure isotherm measurements
(Jin et al., 1989), however, indicate that there is a weakly
first-order crystal-liquid transition with no intermediate
hexatic phase. There is strong evidence for the existence
of a hexatic phase in some other two-dimensional sys-
tems, for example, hard-core discs with very narrow at-
tractive potentials (Bladon and Frenkel, 1995; Chou and
Nelson, 1996), although in these cases it does not neces-
sarily occur as part of the melting process. A hexatic
phase showing first-order liquid-hexatic and hexatic-
crystal transitions has also been observed for sterically
stabilized uncharged colloidal spheres (Marcus and
Rice, 1996).

3. Weak-crystallization theory

The transition sequence crystal-hexatic-isotropic can
be preempted by a first-order melting transition of a dif-
ferent origin. An example of this was given by Glaser
and Clark (1990). In their model the melting transition is
due to condensation of localized thermally generated
geometrical defects (polygons having four or more
sides) into grain-boundary-like structures. We note that,
according to Eqs. (29) and (30), the dislocation-
unbinding melting mechanism will be inefficient if, due
to specific properties of the material, the nucleation en-
ergy of dislocation pairs is large (Fd@kBT). In this case
the amplitudes of the density waves rk , which are the
signature of a crystal, become zero before the dissocia-
tion of dislocation pairs starts. If this transition is weakly
first order it can be described within the framework of
the fluctuation theory of weak crystallization, which we
shall now discuss briefly.

The fluctuation theory of weak crystallization is based
on the assumption that the free energy can be expanded
in powers of the order parameter f(r)5dr/^r&, the ra-
tio of the density modulation to the average density
(Kats et al., 1993a), at least for f!1. To take into ac-
count the effects of fluctuations, a gradient term
(a/8q0

2)@(¹21q0
2)f#2 is added to the expansion, a being

a phenomenological coefficient. The structure of the
gradient term reflects the fact that crystallization occurs
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from a liquid and therefore the condensation of the or-
der parameter (which is a precursor of crystallization)
occurs in reciprocal space on the sphere uqu5q0 . In this
case the phase space occupied by fluctuations is large,
which leads to a renormalization of the correlation func-
tion (Kats et al., 1993a),

^f~q!f~2q!&5
kBT

D1a~q2q0!2 . (31)

Here D is the so-called gap in the correlation function,
which plays the role of controlling parameter for the
weak-crystallization transition: the gap is small near the
phase-transition point and possesses complex behavior.
Self-consistency of the theory requires D!aq0

2. The pre-
dictions of the weak-crystallization theory differ in many
aspects from the dislocation-unbinding concept. For ex-
ample, the specific heat shows a finite jump and a power-
law singularity of the form Cp(T)5a1b/D3/2, where a
and b can be considered as constant near Tm . Further-
more the shear modulus is proportional to D . Finally
there is no definite maximum value for the exponent h
of the power-law singularity in the structure factor.

Using the weak-crystallization approach, we can esti-
mate the elastic energy of a dislocation pair in a two-
dimensional crystal as

Ed

kBT
.q0Aa

D
lnS R

ac
D , (32)

which is much larger than unity. Thus dislocation pairs
remain bounded and the BKT mechanism does not
work. Schematically one can draw the phase diagram of
the system in two dimensions as shown in Fig. 6(a) (Kats
and Lajzerowicz, 1996). Along OA there is a first-order
weak-crystallization transition, while at OB and OC we
find continuous transitions that may be driven by a
defect-unbinding mechanism. O is the so-called bicritical
point. The BKT theory does not work at OA, while the
mechanism of weak crystallization is inefficient at OC
and OB, since due to the hexatic ordering the order pa-
rameter softens not at a circle but only near six points in
reciprocal space.

4. Smectic-hexatic phases

The ordering field of the Sm-A–Sm-B transition is a
two-component bond-orientational order parameter.

FIG. 6. Generic phase diagram near the Sm-A–Sm-B–Cr-B
triple point: (a) two-dimensional case (Kats and Lajzerowicz,
1996); (b) three-dimensional case (Aharony et al., 1986).
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This places this transition in the XY universality class
and allows it to be continuous in three dimensions.
However the Sm-A–Sm-B transition is strongly influ-
enced by fluctuations, since the energy of the fluctua-
tions does not depend on the orientation of q and the
phase space occupied by the fluctuations is large. As a
result, fluctuations can cause the transition to be first
order, even in the absence of a cubic term in the free-
energy expansion (Brazovskii, 1975). The Sm-A–Cr-B
transition in three dimensions is always first-order due
to long-range positional order and the presence of a cu-
bic term in the free-energy expansion. The same cubic
term is present for a Sm-B–Cr-B transition and gives
rise to a first-order transition in three dimensions. These
two first-order lines meet at a triple point with different
slopes, since the coupling between C6 and rk (;rk

2C6)
shifts the transition Sm-B–Cr-B relative to the continu-
ation of the Sm-A–Cr-B line [see Fig. 6(b)]. This discon-
tinuity in the slope at the triple point causes the Sm-A–
Sm-B transition to become first order in its vicinity
(Aharony et al., 1986). As in the nematic–Sm-A transi-
tion (de Gennes and Prost, 1993), this introduces a tri-
critical point on the Sm-A–Sm-B line [see Fig. 6(b)].

Two- and three-dimensional hexatic behavior in smec-
tic membranes of finite thickness can be distinguished by
the scaling behavior of the higher harmonics of the
bond-orientational order parameter C6n defined in Eq.
(24). In agreement with the experiments mentioned in
Sec. II.B, the scaling argument predicts that the coeffi-
cients C6n behave as C6n5C6

sn with sn5n1ln(n21),
where l50.3 in the three-dimensional case and l.1 in
two dimensions (Aharony et al., 1986; Aharony and Kar-
dar, 1988; Paczuski and Kardar, 1988).

For the tilted hexatic phases (Sm-I and Sm-F), the
ordering field associated with the tilt corresponds to the
two-component order parameter F5u exp(iw), where u
is a tilt magnitude and w is the azimuthal angle of the
director. As both the bond angle u6 and the azimuthal
angle w break the in-plane symmetry, the model Hamil-
tonian describing the tilted hexatic phase contains a six-
fold periodic coupling term: 2h cos(6u626w) (Nelson
and Halperin, 1980; Bruinsma and Nelson, 1981). Hence
the hexatic phase transition occurs in the presence of an
ordering (tilt) field, and the coupling induces a finite
hexatic order in a Sm-C phase, unless the coupling con-
stant h is negligibly small. Thus the Sm-C phase is not a
thermodynamically distinct phase. It differs from the
tilted hexatic phase only by the strength of the bond-
orientational order. This situation is similar to, for ex-
ample, the paramagnetic-ferromagnetic transition in the
presence of a small magnetic field. The twofold symme-
try of the tilt field also breaks the sixfold symmetry of
the hexatic axes, but this effect is rather weak (Brock
et al., 1989). The various two- and three-dimensional
melting transitions are summarized in Table II.

Still another mechanism can modify the hexatic order-
ing in smectic membranes and, more generally, affect the
whole melting (crystallization) scenario. The crucial
point is that the hexatic ordering takes place in a system
of strongly fluctuating layers. Nelson and Peliti (1987)
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TABLE II. Summary of order-parameter correlations in the various phases at large distances. Ab-
breviations are the same as in Table I.

Correlations Liquid (T.Ti)

Hexatic (Tm,T,Ti) Crystal (T,Tm)

2D 3D 2D 3D

G(r) ;exp(2r/j) ;exp(2r/j) ;r2h constant
Positions SRO SRO QLRO LRO

G6(r) ;exp(2r/j) ;r2h6 constant constant
Bond orientations SRO QLRO LRO LRO
showed that the Hamiltonian of a single curved hexatic
membrane must involve the covariant derivative of the
bond-angle field u6(r') to account for the frustration
due to the membrane curvature. This approach was gen-
eralized by Selinger (1988) for stacked hexatic layers
with layer fluctuations described by the displacement
field u(r'). The corresponding elastic Hamiltonian in-
cludes a coupling term between hexatic order and layer
fluctuations that may turn the Sm-A–Sm-B transition
first order. This is similar to the coupling between the
smectic order parameter and the nematic director fluc-
tuations that drive the Sm-A–N transition to be weakly
first order (Halperin et al., 1974).

The effects of the coupling of the bond-angle and
smectic layer curvature were later considered in a some-
what different way. Using the disclination-unbinding
theory of Nelson and Halperin (1979), Hołyst (1992) has
shown that out-of-plane layer fluctuations decrease the
disclination core energy and thus decrease the transition
temperature. Consequently, due to the layer fluctuation
profile over the film, the disclination core energy
changes accordingly. If the fluctuations are quenched at
the surface its value is larger at the surface than in the
bulk. Therefore the Sm-A–Sm-B transition temperature
will also be larger at the surface than in the interior of
the film. This situation applies if the ratio of hydrody-
namic parameters determining the layer fluctuation pro-
file fulfills g.AKB (see Sec. IV.B.1). For typical values
of the smectic elastic constants and the hexatic stiffness
modulus KA , the temperature difference between the
hexatic transitions in the first and second layers is a few
degrees; between the second and third layers it is an
order of magnitude smaller. This corresponds to the or-
der of magnitude found experimentally in certain cases
(see Sec. III.B.3). This analysis indicates that the
quenching of the smectic layer fluctuations at the surface
provides a mechanism for surface ordering.

5. Surface-induced ordering

In liquid crystals a free surface usually stabilizes a
higher-ordered phase. Naively one would expect a free
surface to be more disordered than the bulk material,
due to the breaking of molecular binding at the interface
(the ‘‘missing neighbor’’ effect). However, microscopic
interactions close to the surface may be quite different
from those deeper in the bulk. As a result, the surface
may order before the bulk, or may even exhibit ordering
., Vol. 75, No. 1, January 2003
phenomena of a different type than in the bulk material.
Examples can be found in many liquid crystals. At tem-
peratures somewhat above a nematic–Sm-A transition,
smectic layers are usually formed at a free surface (Als-
Nielsen et al., 1982; Gramsbergen et al., 1986; Pershan
et al., 1987). Approaching the Sm-A phase from above
in the isotropic phase, either a finite number of succes-
sive layering transitions is observed (Ocko et al., 1986)
or a continuous growth of the surface Sm-A phase oc-
curs (Lucht and Bahr, 1997b; Lucht et al., 2001). In the
case of a Sm-A–Sm-C transition a free surface usually
induces a tilt, causing the Sm-C phase to grow continu-
ously from the surface into the Sm-A interior of the film
as the bulk transition temperature is approached from
above (Heinekamp et al., 1984; Amador and Pershan,
1990; Bahr et al., 1996).

Two effects can be distinguished when discussing sur-
faces of smectic membranes. The first one is purely geo-
metrical and reflects the breaking of the translational
and rotational invariance of the medium at an interface.
As a consequence, near the surface the thermodynamic
averages of local order parameters will be different from
their bulk values. In the case of relatively thin smectic
films the influence of the long-range van der Waals
forces can be important too. Second, the conjunction of
‘‘missing neighbor’’ effects with the anisotropy of the
liquid-crystal intermolecular forces leads to an effective
surface field, which can induce surface ordering (Thur-
tell et al., 1985; Tjipto-Margo et al., 1989). The surface
interactions can either suppress or enhance the bulk or-
dering. Alternatively the surface can experience an in-
trinsic critical behavior. In the absence of a microscopic
theory of surface ordering in smectic films, surface tran-
sitions can be treated phenomenologically by a Landau
theory. This type of theory has proved its feasibility in
applications to magnetic systems, metal alloys, super-
conductors, and several other systems (Binder, 1986). In
this approach the free energy contains a bulk contribu-
tion of the order parameter m(r) up to some essential
power, together with a gradient term 1

2 C@¹m(r)#2 and
surface contributions 2Hsm(r) and @C/(2lex)#m2(r).
Here Hs is the surface field acting on the order param-
eter in the surface planes only, and lex is the so-called
extrapolation length, which was originally introduced in
the context of superconductivity (de Gennes, 1966). The
ratio C/lex determines the energy scale for the surface
contribution to the free energy. In the case of a negative
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surface energy (i.e., lex,0), the surface enhances the
ordering. For a smectic membrane the free energy is
integrated over the thickness L and the surface free-
energy contribution is determined by the boundary
value at ms5m(z50; z5L). For T.Tc , where Tc is
the bulk transition temperature, and a small enough sur-
face field, nonharmonic terms in m(r) can be neglected.
Minimization of the free energy leads to an order-
parameter profile of a rather simple form,

m~z !5ms

cosh@~2z2L !/2jb#

cosh~L/2jb!
, (33)

where jb is the bulk correlation length, and

ms5
Hslex /C

11~lex /jb!tanh~L/2jb!
. (34)

A surface transition occurs at a temperature Tcs.Tc

given by Tcs /Tc511(C/Tc)lex
22 . In the temperature

interval Tcs.T.Tc the interior of the film is disor-
dered. The surface-induced order occurs only near the
interfaces and penetrates exponentially into the interior
to a depth determined by jb,L . For sufficiently thin
membranes the exponential decay from both interfaces
will overlap, giving a nonzero value of the order param-
eter in the middle of the film. At T5Tc one finds a
nonexponential decay of the ordering induced by the
surface field. For T,Tc the bulk order parameter re-
tains a nonzero value mb . In this case the order param-
eter decays exponentially from the value ms at the sur-
face to the value mb in the bulk.

The Landau approach can successfully describe sur-
face ordering that penetrates continuously into the inte-
rior. When the order parameter refers to smectic
layering—the de Gennes (1990) theory of presmectic
ordering—these results have been applied to smectic
membranes to explain thinning transitions (see Sec.
VI.A). Another relevant example is found above the
Sm-A–Sm-C transition. In that case the order parameter
is the tilt-angle magnitude u. Tilt-angle profiles have
been determined using ellipsometry (Bahr and Fliegner,
1993), optically (Andreeva et al., 1999), and using x-ray
reflectivity (Tweet et al., 1990; Fera, Opitiz, et al., 2001),
and fit well to Eqs. (33) and (34). A similar approach has
been used to describe the dependence of the Sm-A–
Sm-C transition temperature on the film thickness
(Heinekamp et al., 1984). However, the Landau theory
presented cannot describe the situation when the surface
ordering develops via a series of successive layering
transitions. Such a scenario is quite common for transi-
tions in smectic membranes involving hexatic and crys-
talline phases.

An alternative description of surface ordering takes
the range of interactions between the molecules into ac-
count. The surface ordering is predicted to have univer-
sal critical behavior, which depends only on this range
and on the roughness of the interface between the
surface-ordered region and the interior (Dietrich, 1988;
Schick, 1990). If the dominant interactions are due to
the long-range van der Waals forces, the thickness L of
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the ordered surface domain is predicted to grow accord-
ing to a power law L;t21/3, in which t5uT2Tcu/Tc is
the reduced temperature. For systems dominated by
short-range exponential interactions, the predicted di-
vergence is logarithmic, L;ln(1/t). If the interface be-
tween the surface phase and the interior is smooth, the
growth of the ordered surface region is predicted to oc-
cur in a layer-by-layer sequence. For rough interfaces
the power-law or logarithmic growth is predicted to pro-
ceed continuously into the interior.

Surface ordering in liquid crystals can also be consid-
ered as a special case of interfacial wetting (Swanson
et al., 1989; Lucht and Bahr, 1997b). It occurs when a
more-ordered surface phase wets the less-ordered inte-
rior phase-vapor interface. A surface-ordering scenario
thus follows the corresponding wetting behavior, which
includes nonwetting, incomplete wetting, and complete
wetting. Crystallization transitions in smectic mem-
branes usually fall in the nonwetting category: the entire
interior of the film crystallizes abruptly. However, in sev-
eral cases smectic membranes exhibit incomplete wet-
ting. In that case two or more surface layers order above
the bulk transition, and the thickness of the ordered sur-
face domain remains finite until the rest of the film inte-
rior orders abruptly at the bulk transition temperature.
In the case of a second-order transition the thickness of
the ordered surface domain cannot stay finite at the bulk
transition temperature and the complete wetting sce-
nario is realized. In this case the growth of the ordered
surface area is determined by the growth of the bulk
correlation length, which diverges at the second-order
transition. From the Landau theory of wetting (Schick,
1990) one can expect either a continuous or a layer-by-
layer type of ordering.

B. Experimental studies of in-plane ordering

In this section we restrict ourselves to transitions in
smectic membranes involving hexatic and crystal phases.
The theoretical predictions for phase transitions in two
dimensions have strongly inspired experimental studies
in this field. In two dimensions for sufficiently thin films
the large-scale thermally excited positional fluctuations
tend to destabilize the more ordered phases. In contrast,
surface-enhanced ordering competes with the effects of
reduced dimensionality. As a result a rich variation of
smectic phase diagrams appear, depending on tempera-
ture, composition, and membrane thickness. Examples
include surface freezing, accompanied by either a con-
tinuous layer-by-layer development of hexatic or crystal-
line order, or by abrupt crystallization of the remaining
part of the film. Additionally, the director of the surface
layers of a membrane in an orthogonal smectic phase
may be tilted. A common characteristic of all these cases
is the simultaneous presence of at least two distinct
phases, one at the surface and one in the interior of the
film.

1. Hexatic and crystalline ordering

X-ray diffraction of a number of bulk liquid-crystal
materials by Leadbetter et al. (1979) indicated as early
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as 1979 the existence of different types of Sm-B phases.
However, it was not until 1981 that Pindak et al. (1981)
identified in the compound 65OBC the hexatic Sm-B
phase from its characteristic diffraction pattern of six
diffuse arcs. Subsequent transmission electron diffrac-
tion (Cheng et al., 1988) allowed the bond-orientational
order parameter C6n to be determined. Heat-capacity
studies (Huang et al., 1981) of the Sm-A–Sm-B transi-
tion in 65OBC indicated the transition to be continuous
with a divergent nearly symmetric peak. Such behavior
implies large hexatic fluctuations that couple to density
fluctuations, causing the sixfold symmetric x-ray scatter-
ing to become singular at T5Ti (Aeppli and Bruinsma,
1984). This critical behavior in the x-ray structure factor
has also been observed at the same transition in a simi-
lar compound, 46OBC (Davey et al., 1984). The position
and width of the diffuse x-ray peaks exhibit (T
2Ti)

12a singularities in the vicinity of Ti in agreement
with the heat-capacity results (Pitchford et al., 1985).
Here a.0.5 is the critical exponent for the specific heat
Cp . Measurements on two-layer films of 46OBC show a
continuous two-dimensional Sm-A–Sm-B transition,
even though the corresponding transition in the bulk
(three dimensional) was found to be weakly first order.
The phase behaviors of 65OBC and 46OBC have much
in common. However, they differ in one essential point:
mechanical measurements of 65OBC provide evidence
for freezing of the surface layers in the film well above
the bulk transition to the crystalline phase, later identi-
fied as a Cr-E phase. In contrast to 65OBC, in 46OBC
no indications of a crystalline surface-ordering transition
were found. However, in thin films the range of stability
of the hexatic phase is considerably enhanced. These
early measurements clearly indicate that in thin mem-
branes surface-enhanced ordering can drastically modify
the phase sequences and their range of stability.

Beginning in the late 1970s the tilted Sm-I and Sm-F
phases were extensively studied by x-ray diffraction in
bulk (Benattar et al., 1979; Diele et al., 1980; Gane et al.,
1981). These phases can be considered as the tilted ana-
logs of the orthogonal hexatic Sm-B phase (see Table I).
The hexatic nature of the Sm-I phase was unambigu-
ously demonstrated by x-ray diffraction on magnetically
oriented samples (Brock et al., 1986). The diffraction
pattern exhibited the characteristic sixfold arrangement
of diffuse arcs, from which the higher-order harmonics
of the hexatic order parameter C6n (n51 –7) were cal-
culated. From measurements in Sm-I films of variable
thickness a crossover from three- to two-dimensional be-
havior could be established (Brock et al., 1989). Addi-
tionally, in the limit of thin films, the ‘‘disappearance’’ of
the higher harmonics of the hexatic order parameter,
predicted by harmonic scaling theory, was observed.
Similar results were obtained for orthogonal hexatic
Sm-B films. For one-layer (Chou, Ho, and Hui, 1997)
and two-layer (Chou et al., 1996) membranes of
54COOBC and for a two-layer film of a hexatic mixture
on the basis of 65OBC (Cheng et al., 1988), transmission
electron diffraction yields C6n5C6

n2
in agreement with

the predictions of scaling theory of the two-dimensional
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XY model (Aharony and Kardar, 1988; Paczuski and
Kardar, 1988). These results imply that two-layer films
indeed approach the two-dimensional limit.

Pioneering ac heat-capacity experiments have been
performed by Huang and co-workers on various com-
pounds exhibiting an intermediate hexatic phase. The
results show that upon crystallization most of the en-
tropy is released by the system as it cools through the
liquid-hexatic phase transition, rather than at the lower
temperature hexatic-crystal transition (Stoebe and
Huang, 1995). This corresponds to a heat-capacity
anomaly showing divergent behavior at the upper tran-
sition. Fits to a power-law singularity typically give a
heat-capacity critical exponent a.0.3–0.6. These calo-
rimetric observations are very different from the predic-
tions of defect-mediated theory, which indicate a broad
bump at the high-temperature side of the transition.
This discrepancy remains unresolved.

The three-dimensional orthogonal Cr-B phase with
true long-range positional order was first identified in
membranes of the compound 4O.8 (Moncton and Pin-
dak, 1979). This interpretation was confirmed by the sol-
idlike shear response of a low-frequency torsional oscil-
lator in contact with the film (Pindak et al., 1980;
Tarczon and Miyano, 1981). These crystalline films are
in the two-dimensional limit characterized by an alge-
braic decay of the positional order that leads to a power-
law singularity in the structure factor [see Eq. (27)]. For
this power-law line-shape behavior of the diffuse scatter-
ing, an exponent hcr.0.13 was determined for a two-
layer Cr-B film of the compound 14S5 (Moncton et al.,
1982). Further experiments using the compound 8OSI in
the Cr-J phase (Noh et al., 1991) have been performed
on films from about 1000 to 5 layers at two degrees be-
low the transition to the hexatic Sm-I phase. This tran-
sition was found to be abrupt, suggesting first-order
character in agreement with earlier studies (Brock et al.,
1989). Analysis of the scattering profiles (see Fig. 7) pro-
vides evidence of a dimensional crossover: the thinnest
film (five layers) shows an effective two-dimensional
power-law exponent heff.0.18. With an increasing num-
ber of layers the in-plane line shape changes from (q
2q'0)221heff to (q2q'0)22. The value of heff ap-
proaching zero indicates a crossover from two- to three-
dimensional long-range positional order. The measured
exponents are within the limit hcr,hmax51/3, predicted
by the dislocation-unbinding theory for a two-
dimensional hexagonal crystal (see Sec. III.A.2). How-
ever, the two-dimensional limit corresponding to a two-
layer film was not reached.

The above results can be compared with the power-
law behavior of the structure factor in other two-
dimensional molecular crystalline systems. Data are
available for crystalline alcohol monolayers on the sur-
face of water (Zakri et al., 1997) and for crystalline
monolayers of Xe (Heiney et al., 1983) and Ar (Nielsen
et al., 1987) adsorbed on graphite. Interestingly, in both
cases the exponent varies from h.0.3 deep in the crystal
phase up to about 0.4–0.6 at Tm , which is beyond the
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limit hmax51/3. The large values might be due to the
high nucleation energy of dislocation pairs, making the
dislocation-mediated melting scenario irrelevant (Kats
and Lajzerowicz, 1996). The exponent hcr can also be
larger than hmax if in addition to the long-wavelength
thermal phonons other sources of positional disorder are
present. An example is provided by thermal elastic ex-
citations driven by a distortion of the unit cell from hex-
agonal to rectangular (so-called herringbone distor-
tions), which have been observed for Langmuir
monolayers of octadecanol (Kaganer, Brezesinski, et al.,
1999). More recently power-law behavior has been ob-
served for the scattering profiles of stacks of two-
dimensional crystalline arrays of the membrane protein
bacteriorhodopsin (Koltover et al., 1999). The exponent
hcr was found to increase as a function of temperature
and to approach hcr.0.15 at Tm . The melting of the
crystalline membrane occurs by a first-order transition,
which is manifested by a large hysteresis in the spacing
of the two-dimensional protein lattice.

2. Thickness dependence of phase diagrams

Drastic changes can be observed in the phase dia-
grams of liquid crystals when the film thickness is de-
creased. We shall discuss this topic by treating in some
detail the compound 7O.7. For further examples we re-
fer the reader to Pershan (1988). In the bulk 7O.7 does
not possess a hexatic phase, but in films a rich variety of
hexatic behavior is found (Collett et al., 1985; Sirota
et al., 1987b). The bulk phase sequence in 7O.7 is on
cooling: isotropic–N–Sm-A–Sm-C–Cr-B–Cr-G. With
decreasing film thickness, first restacking transitions oc-

FIG. 7. In-plane scans for 8OSI membranes of various thick-
nesses in the Cr-B phase. From Noh et al., 1991.
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cur in the Cr-B phase. In films thinner than about 175
layers a tilted hexatic Sm-F phase appears between the
Cr-B and Cr-G phases. The Sm-F phase transforms at
higher temperatures to the Sm-I phase in films thinner
than about 25 layers. All the stacking modifications of
the orthogonal Cr-B phase vanish completely below this
thickness. Pershan and co-workers (Sirota et al., 1987a;
Amador et al., 1989) studied thin 7O.7 membranes and
found below six layers two distinct Sm-C–Sm-I transi-
tions. Upon cooling from Sm-C the first Sm-I top layers
occur while the interior layers remain Sm-C, and only
about eight degrees lower the film changes fully to Sm-I.
In the intermediate temperature range the scattering
consists of a coexisting broad liquidlike peak from the
interior Sm-C phases and a sharper peak due to the po-
sitionally more correlated Sm-I top layers. Electron dif-
fraction of films of eight layers and less confirm this co-
existence (Chao et al., 1997). Thicker films up to 25
layers reveal a pair of short bright arcs and a pair of
longer arcs in the presence of a uniform diffuse ring. The
latter is indicative of a Sm-A interior, while the twofold
symmetry of the short and long arcs indicates the pres-
ence of both Sm-I and Sm-C ordering. Thus 7O.7 films
in the thickness range between eight and 25 layers show,
as a function of distance from the surface, three coexist-
ing phases: an outermost hexatic Sm-I layer, several Sm-
C-like layers, and a Sm-A interior.

At first sight the suppression of the Cr-B phase in thin
7O.7 films might be considered as the expected destabi-
lization of a more ordered phase by the reduced dimen-
sionality of the system. However, the presence of tilted
surface layers gives a hint that more probably surface
interactions stabilize the tilted structures. The latter ef-
fect would, however, not be restricted to thin films only.
Moreover, in other compounds of the same series (for
example, 4O.8) surface interactions stabilize the or-
thogonal Cr-B phase, which survives even in two-layer
films (Chou, Jin, et al., 1997). In the compound 5O.6 a
hexatic Sm-F phase appears at temperatures below the
Cr-B phase even in bulk samples. This all points to the
possibility that the Cr-B phase in 7O.7 is intrinsically
unstable with respect to tilted hexatic phases and that a
relatively small decrease in the dimensionality of the
sample is sufficient to drive a transition from Cr-B to
Sm-F or Sm-I.

In certain cases the effects of reduced dimensionality
and enhanced surface ordering can be separated. For
example, the Sm-A–Sm-B transition temperatures of
the interior layers in membranes of the compound
75OBC show nonmonotonic dependence on the film
thickness, as indicated by specific-heat measurements
(Geer et al., 1992). For membranes between about 70
and 15 layers, a small decrease of the transition tem-
peratures occurs as anticipated from the reduced dimen-
sionality. However, for films with fewer than 15 layers,
surface ordering leads to a pronounced increase in the
transition temperatures. This observation confirms the
general trend in smectic membranes that the effect of
surface interactions on the phase stability dominates in
the limit of thin films.
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3. Surface-ordering effects

The development of hexatic and/or crystalline order
in smectic membranes of various thicknesses upon cool-
ing from the Sm-A phase has been well documented by
combining information from x-ray scattering, electron
diffraction, optical reflectivity, and heat-capacity mea-
surements. To demonstrate the essential physics we shall
concentrate on surface transitions involving orthogonal
hexatic (crystalline) phases. This can be illustrated by
the phase behavior of the compounds 3(10)OBC and
75OBC. Upon cooling 3(10)OBC membranes from the
Sm-A phase, hexatic order is first established at the out-
ermost layers and then proceeds into the film in a layer-
by-layer fashion for at least four outer layers (Stoebe
et al., 1992). Even three- and four-layer films show two
well-separated transitions, corresponding to transforma-
tions to hexatic ordering in the top layers and in the
interior layers, respectively. This suggests very weak in-
terlayer coupling. Two-layer membranes possess two-
dimensional behavior. Precise calorimetry measure-
ments indicate that the Sm-A–Sm-B transitions in the
nm-OBC series are continuous, both in bulk and in thin
membranes (Stoebe and Huang, 1995). A similar layer-
by-layer development of surface hexatic order has been
detected for the Sm-A–Sm-B transition in the com-
pound 54COOBC (Jin et al., 1996) and for the Sm-A–
Sm-I transition in 9O.4 (Swanson et al., 1989). The se-
quence of transition temperatures corresponding to
layer-by-layer penetration of the surface hexatic order
into the film interior can be described by the power law

L5L0FTc~L !2Tc

Tc
G2n

, (35)

with an exponent n.1/3. Now L is the thickness of the
surface-ordered domain, determined by a number of
hexatic layer steps, and Tc(L) is the liquid-hexatic tran-
sition temperature corresponding to the last layer in
question (Swanson et al., 1989; Stoebe et al., 1992; Jin
et al., 1996). The value of the critical exponent n.1/3
indicates that simple van der Waals forces are respon-
sible for the interlayer angular interactions.

The layer-by-layer ordering at the Sm-A–Sm-B tran-
sition in thin films of 75OBC (Geer et al., 1993) is ac-
companied by additional distinct surface transitions of
Sm-B to Cr-E. The Sm-B–Cr-E transition in surface lay-
ers occurs very close to the Sm-A–Sm-B transition in
the interior layers. This surface transition is first order
and shows a pronounced thermal hysteresis. This allows
us to study the continuous Sm-A–Sm-B transition in the
film interior with and without Cr-E surface layers, by
carrying out the measurements during heating or cool-
ing, respectively. The presence of Cr-E surface layers
strongly reduces the height of the interior Sm-A–Sm-B
heat-capacity peak (Geer et al., 1993). In films of fewer
than nine layers it is completely suppressed. A possible
explanation is that the surface crystal layers modify the
in-plane structure of the neighboring Sm-A layers in
such a way that the hexatic fluctuations (the main source
of entropy at the Sm-A–Sm-B transition) are sup-
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pressed. Electron diffraction indicates that the Cr-E sur-
face layers in 75OBC exist in twin domains in which the
orientation of the rectangular lattice is rotated by 2° –3°
with respect to the underlying Sm-B bond-orientational
axes (Cheng et al., 1991). Such a rotation possibly re-
leases the strain caused by the two incommensurate
types of structures: the hexagonal hexatic ‘‘substrate’’
and the rectangular overlayer, and can be considered a
special case of orientational epitaxy.

The compound 4O.8 has long been considered a pro-
totypical liquid-crystal material which possesses in the
bulk a direct first-order transition from the Sm-A to the
Cr-B phase at 48.5 °C (Moncton and Pindak, 1979; Per-
shan et al., 1981). However, early mechanical measure-
ments with a low-frequency torsional oscillator in con-
tact with the film indicated two anomalies in the shear
response: at the bulk Sm-A–Cr-B transition and about
6 °C above this temperature [Pindak et al., 1980; Tarc-
zon and Miyano, 1981; see Fig. 8(a)]. Later Jin et al.
(1994) detected via heat-capacity and optical reflectivity
measurements, a whole cascade of phase transitions, at-
tributed to step-by-step surface crystallization [see Fig.
8(b)]. Subsequently transmission electron diffraction
(Chao et al., 1996) provided evidence of a novel crystal-
lization scenario: the Cr-B phase proceeds into the
Sm-A phase in a layer-by-layer fashion involving an in-
termediate hexatic Sm-B phase, which does not exist in
the bulk.

Upon cooling 4O.8 membranes of six layers or more
from the Sm-A phase, one finds the typical sequence of
diffraction patterns shown in Fig. 9 (Chao et al., 1996).

FIG. 8. Evidence for surface layer transitions in an eight-layer
4O.8 membrane: (a) shear response, after Pindak et al. (1980)
and Tarczon and Miyano (1981); (b) heat capacity-(crosses)
and optical reflectivity (solid squares) (Jin et al., 1994).
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FIG. 9. Electron diffraction
pattern of a ten-layer 4O.8
membrane (Chao et al., 1996).
Above 62 °C the film is in the Sm-A phase and shows a
diffuse ring. At about 62°C the surface layers undergo a
transition to the Sm-B phase, while the interior layers
remain in the Sm-A phase (six diffuse arcs on top of a
diffuse ring). Interestingly, the directions of the hexatic
axes in the top layers at both sides of the film appear to
be correlated, though there are liquid Sm-A layers in
between them. At about 55 °C the top layers freeze into
the Cr-B phase and we note two sets of sixfold spots on
top of a diffuse ring. The presence of two sets of Bragg
spots with equal intensity but arbitrary relative orienta-
tion implies that the orientations of the crystalline axes
in the top and bottom surface layers are not fully corre-
lated. At about 51 °C the second set of exterior layers
transforms into the Sm-B phase. The 12 diffraction spots
have now collapsed into six, which suggests that the sub-
top Sm-B layers serve to lock in the crystalline axes of
the top and bottom surface layers. In addition we still
observe six diffuse arcs from the Sm-B sub-top layers
and a diffuse ring from the liquid interior. At 50.4 °C the
second exterior layers also freeze into the Cr-B phase
and we are left with six spots on top of a diffuse ring.
This interpretation is confirmed by the fact that the in-
tegrated intensity of the diffraction spots now is about
twice that of the crystalline pattern at T.51 °C. Finally,
after additional layer-by-layer transitions, the entire film
transforms into the Cr-B phase (six spots only).

The above interpretation fits very well with other
measurements on 4O.8 films. First, at Ti.62 °C, the
heat capacity shows a distinct phase transition, but there
is no shear response [see Fig. 8(b)]. This is consistent
with this phase transition’s being a surface transition to a
hexatic phase, which does not support a shear deforma-
tion. The divergent heat-capacity anomaly at the Sm-A–
Sm-B transition in the surface layers is consistent with
similar observations in other materials (Stoebe and
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Huang, 1995). Second, at about 55 °C, mechanical mea-
surements detected the onset of a shear response of the
film. This is consistent with the observation of a Sm-B–
Cr-B transition in the surface layers. No detectable heat-
capacity signal was observed at this transition (Jin et al.,
1994). The second anomaly observed in heat capacity at
about T551 °C corresponds to the Sm-A–Sm-B transi-
tion in the second set of exterior layers. Finally, below
49 °C the results are all consistent with the entire film’s
freezing into the Cr-B phase.

X-ray reflectivity studies of the layer-by-layer crystal-
lization in 4O.8 films reveal clear changes in the layer-
displacement fluctuation profile across the film (Fera
et al., 1999). The corresponding transition temperatures
for an eight-layer film as displayed in Fig. 10(a) are in
good agreement with the results from electron-
diffraction and specific-heat measurements. The fluctua-
tion profiles presented in Fig. 10(b) indicate in the Sm-A
phase quenched fluctuations at the surfaces. Following
the first Sm-A–Sm-B and Sm-B–Cr-B transitions in the
top layers, a considerable damping of the layer-
displacement fluctuations occurs. The new profile pro-
vides the basis for the second series of crystallization
transitions in the next-nearest top layers. Once two lay-
ers are crystallized on each side, the fluctuations of the
remaining four Sm-A layers are such that the total pro-
file over the film is approximately flat. In agreement
with this behavior the differences in transition tempera-
tures between the ‘‘new’’ Sm-A surface layers and those
in the center of the film converge rapidly. In this picture
the cascade of successive Sm-A–Sm-B–Cr-B phase tran-
sitions is triggered off by the changing fluctuation profile
in successive layers.

The fluctuation scenario in 4O.8 also helps us to un-
derstand another phenomenon. Electron diffraction of
4O.8 films indicates a coupling of the bond-order direc-
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FIG. 10. Layer-by-layer crystallization in an eight-layer 4O.8 membrane (Fera et al., 1999): (a) transition temperatures; the layer
number is indicated at the left. (b) Fluctuation profiles: h, Sm-A phase at 62.5 °C; d, one Cr-B top layer at 52.5 °C; s, two Cr-B
top layers at 50.3 °C; m, two Sm-A layers left in the middle at 49.7 °C; 3 , Cr-B phase at 47.0 °C.
tions of the top and bottom layers (Chao et al., 1996).
This is rather counterintuitive, as the intermediate Sm-A
layers still have a liquid in-plane structure. However,
earlier x-ray reflectivity studies of smectic membranes
(Mol et al., 1997) indicate that for thin films the hydro-
dynamic fluctuations in the Sm-A phase are fully confor-
mal (see also Sec. IV.C.2). As a consequence, any direc-
tional interaction between the fluctuation amplitude and
the local hexatic lattice (Hołyst, 1992) will be the same
on both sides of the film. Hence conformal fluctuations
provide a natural mechanism for correlating the lattice
directions in the surface hexatic layers at the top and
bottom of a membrane.

The melting in 4O.8 films is unique in the sense that
the two-stage melting process occurs successively in one
smectic layer after another [Fig. 10(a)]. Such a melting
behavior implies that the interaction between neighbor-
ing layers is very small. In the limit of a two-layer 4O.8
film, the whole film attains hexatic order and the Sm-B
phase is stabilized in a temperature range of about 5 °C
between the Sm-A and Cr-B phases (Chou, Jin, et al.,
1997). It is evident that the hexatic phase is an important
component of the melting process, which supports the
two-stage melting scenario predicted by defect-mediated
melting theory in two dimensions. Besides the two-layer
4O.8 film mentioned, the surface top layers in thicker
membranes may also serve as a model system for study-
ing the liquid-hexatic-crystal sequence in two dimen-
sions. For such studies of surface crystallization in 4O.8,
see the next section.

A further interesting example of dimensional cross-
over by surface-enhanced order was observed in Cr-B
films of another compound (14S5), studied by x-ray dif-
fraction (Moncton et al., 1982) and with a low-frequency
torsional oscillator (Bishop et al., 1982). In a two-layer
film a single hysteretic transition from Cr-B to Sm-A was
observed. Films of three layers and more present two
first-order transitions: first to films with Cr-B top layers
and Sm-A interior layers, and second, about ten degrees
higher, to the Sm-A phase. In the three-layer film the
single interior layer was originally thought to possess
some hexatic type of order. However, later heat-capacity
and electron-diffraction measurements rule out such a
possibility (Chao et al., 1996, 2001).

Another type of melting behavior associated with the
Cr-B phase was observed in films of 54COOBC (Jin
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et al., 1996). This compound differs from 4O.8 by the
presence of an intermediate hexatic Sm-B phase in be-
tween Sm-A and Cr-B in the bulk. Similarly to
3(10)OBC and 75OBC, when cooled from Sm-A the
hexatic order first appears in the top layers and then
proceeds into the film’s interior in a layer-by-layer fash-
ion. However, the freezing into Cr-B occurs abruptly
through a single first-order transition. The surface
hexatic order exhibits a pronounced heat-capacity
anomaly which can be seen in films down to two layers.
At the same time a heat-capacity step is associated with
the onset of the Cr-B order. This can be observed in
thick membranes but not in those with fewer than seven
layers, similar to the situation in 4O.8. The specific-heat
measurements also indicate that the Sm-A–Sm-B tran-
sition in the top layers is weakly first order.

Finally we shall touch upon the surface ordering in
smectic membranes of tilted phases that may also show
multiple surface-freezing transitions. For example, the
compound FTE1, studied with electron diffraction by
Chao et al. (1997), exhibits a unique sequence of melting
transitions involving novel hexatic (Sm-L) and crystal
(Cr-N) phases (see Table I). First the surface layers un-
dergo a transition to the Sm-I phase, while the interior
layers remain in the Sm-C phases. Subsequently the
Sm-L surface layers replace the Sm-I layers on top of
the Sm-C interior. On further cooling a continuous
change in the tilt direction of the Sm-L top layers in the
direction of the Sm-F-like structure occurs, and the en-
tire film transforms to the Sm-F phase. Such behavior
was predicted theoretically by Selinger and Nelson
(1989). Meanwhile, radial scans of the scattered intensity
have indicated that the in-plane positional correlation
length increases by a factor of 3. On further cooling the
outermost layers of the Sm-F film freeze into a crystal-
line phase, which was identified as Cr-H (see Table I).
The diffraction patterns show a single set of diffraction
spots from the Cr-H layers, indicating perfect lattice ep-
itaxy between the rectangular Cr-H surface lattice and
the hexagonal Sm-F interior. Finally, the entire film
changes its tilt direction to the Sm-L symmetry while the
outermost layers transform into the Cr-N phase. Now
the tilt direction of both the surface Cr-N and interior
Sm-L phases are locked in at an intermediate azimuthal
angle, which is independent of temperature. Compared
to the surface ordering of the orthogonal phases, the
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FIG. 11. In-plane ordering of the single
hexatic Sm-B top layers in a seven-layer 4O.8
membrane: (a) x-ray scattering profile at
60.0 °C; solid line is a fit to the sum of a
Lorentzian and a square-root Lorentzian; (b)
temperature dependence of the in-plane posi-
tional correlation length; (d), five inner liquid
layers; (s), two hexatic top layers.
presence of a molecular tilt clearly introduces further
complications leading to multiple-phase behavior.

To finish this section we want to emphasize that the
physical origin of the enhanced surface order in smectic
membranes is not yet clear. Since many phases of differ-
ent structures can be stabilized at the free surface, the
microscopic details of surface interactions appear to be
less important. What do the tilted Sm-C phase (with liq-
uid in-plane order) and the orthogonal hexatic Sm-B
phase, have in common that stabilizes them on a free
Sm-A surface under appropriate conditions? A possible
answer—that applies equally well to orthogonal and
tilted phases—might be the quenching of the layer-
displacement fluctuations at the Sm-A surface, which ac-
cording to theoretical arguments (Selinger, 1988; Holyst,
1992) enhances hexatic order.

4. Crystallization of a single top layer

In membranes of the compound 4O.8 the outermost
layers undergo separate Sm-A–Sm-B and Sm-B–Cr-B
transitions before the second set of layers start their own
freezing transitions [see Fig. 10(a)]. Neither positional
nor angular (bond-orientational) correlations exist be-
tween the surface layers and the interior Sm-A layers
that act as a substrate. Hence the top layer at each side
of the membrane may serve as a perfect model system
for studying crystallization of a liquid in two dimensions.
When discussing this situation we disregard the subse-
quent further crystallization steps in the interior layers.
Calorimetric measurements for an eight-layer film indi-
cate that the top layer isotropic-hexatic transition is con-
tinuous with a divergent, nearly symmetric, specific-heat
anomaly (Jin et al., 1994; Chao et al., 1996). At the Sm-
B–Cr-B transition no anomaly was found. These results
contradict defect-mediated theory, which predicts in
both cases a broad bump on the high-temperature side
of the transition, which results from the increased den-
sity of unbound defects.

de Jeu et al. (2003) performed grazing-incidence x-ray
diffraction on the top layers of 4O.8 membranes with a
thickness of 7 and 43 layers. The angle of incidence and
the exit angle were symmetrically set at 0.6°. As this
value is well above the critical angle of total reflection,
the refracted wave penetrated through the whole film,
and the in-plane structure of all layers was measured.
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Figure 11(a) shows for the seven-layer film the diffrac-
tion peak at q'0.14.3 nm21, corresponding to local in-
plane hexagonal packing with a54pq'0 /).0.51 nm.
It consists of a relatively narrow diffraction peak origi-
nating from the outermost hexatic Sm-B layers fitted by
a square-root Lorentzian on top of a broad Lorentzian
liquid peak from the five Sm-A interior layers. The in-
tegrated intensity Isurf of the former part is essentially
independent of the membrane thickness, which proves
its origin in the two surface layers. In contrast, the I int of
the latter part scales linearly with the number of liquid
interior layers. This leads to a constraint on I int /Isurf ,
which equals 2.5 and 21.5 for the 7-layer and 43-layer
membranes, respectively.

After deconvolution from the instrumental resolution,
the fitting yields the temperature dependence of j
5k21 shown in Fig. 11(b). The Lorentzian width of the
interior Sm-A layers is independent of the temperature
and corresponds to in-plane positional correlations of
about 1 nm. Indeed any interaction between the freezing
outermost layers and the liquid interior layers must be
very small. With decreasing temperature the positional
correlation length j of the hexatic top layers increases
between 62.5 and 60 °C continuously from about 2.5 nm
to more than 40 nm, and then saturates. Clearly a pre-
transitional growth of j is present above the hexatic-
isotropic transition at Ti561.5 °C. This behavior implies
large hexatic fluctuations that couple to the density fluc-
tuations, causing the x-ray scattering to become singular
at Ti (Aeppli and Bruinsma, 1984). Such critical behav-
ior in the x-ray structure factor has also been observed
in membranes of the compounds 65OBC (Pindak et al.,
1981) and 46OBC (Davey et al., 1984), which exhibit a
Sm-A–Sm-B transition through the whole film. We have
not observed any thermal hysteresis in the hexatic line-
width, which indicates that the hexatic-isotropic transi-
tion in a 4O.8 surface layer is second order. These results
are in agreement with the heat-capacity measurements
in an eight-layer 4O.8 film. We conclude that the
grazing-incidence x-ray-diffraction results for the
isotropic-hexatic transition in a 4O.8 top layer are in
qualitative agreement with the BKT theory.

Chao et al. (2000) performed transmission electron-
diffraction studies of 4O.8 membranes between 3 and 12
layers. They report somewhat surprisingly an intermedi-
ate ‘‘phase’’ between isotropic and hexatic Sm-B, associ-
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ated with the absence of a modulated ring of scattering
between 62 and 59 °C. We speculate that this observa-
tion is due to the occurrence of multiple hexatic domains
of random orientations over the area probed, whose size
becomes larger with decreasing temperature. The en-
hanced two-dimensional hexatic bond-angle fluctuations
also introduce a line broadening in the direction along
the arc in the vicinity of Ti (see Sec. II.B.2).

Upon cooling the seven-layer 4O.8 membrane further,
one observes at 55.5 °C another surface transition in the
top layers. In the x-ray diffraction this is signaled by
condensation of the diffuse hexatic peak into the sharp,
resolution-limited peak of the Cr-B phase. Simulta-
neously, the rather uniform in-plane mosaic of the Sm-B
phase becomes discrete. The well-defined order in the
orientation of the lattice sites is revealed by narrow
peaks with a mosaicity of about 1° (FWHM) as mea-
sured in x scans. No thermal hysteresis was observed at
the hexatic-crystal transition in a surface top layer. The
evolution of the hexatic linewidth above the Sm-B–Cr-B
transition indicates no pretransitional growth within the
resolved temperature accuracy &0.05 °C. This suggests
that the hexatic-crystal transition in a 4O.8 top layer is
abrupt and belongs to the class of weakly first-order
transitions.

C. Conclusions and outlook

Experimentally it is clear that smectic liquid crystals
provide definite examples of hexatic phases with bond-
orientational order. The hexatic phase can be fully de-
scribed on the basis of symmetry considerations, which
does not imply any specific melting mechanism. In spite
of extensive experimental work there is no conclusive
evidence for the dislocation-unbinding mechanism pro-
posed in the BKT theory. The defect-mediated theory
predicts rather specific types of singularities, which have
not been observed in smectic membranes. Instead a
nearly symmetrical specific-heat anomaly showing diver-
gent behavior has been found at the hexatic-isotropic
transition. In many cases the crystal-hexatic phase tran-
sition in thin films is first order, which may preempt a
continuous melting transition. In agreement with recent
computer simulations, the melting scenario in two di-
mensions may not be universal but depends on specific
properties of the system, such as the energy of the dis-
location core and the interparticle potential.

Smectic membranes as thin as one or two layers rep-
resent true two-dimensional systems. More data are
needed for the power-law singularities in the structure
factor in these systems. Especially reliable measure-
ments of the power-law exponent hcr in the vicinity of
the melting point would enhance our understanding of
two-dimensional melting. An alternative way to study
the structure factor of two-dimensional smectics is to
exploit further grazing-incidence x-ray diffraction of sur-
face crystalline ordering in smectic membranes.

Surface ordering in smectic phases is a common be-
havior and has been investigated in some detail. The
basic features can be described in terms of the Landau
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theories of surface ordering and wetting. Nevertheless,
no clear microscopic model exists for the enhanced or-
dering at surfaces and its influence in the surface phase
behavior. The latter often involves two phases, one at
the surface and one in the interior, that are simulta-
neously present. The quenching or enhancement of the
fluctuations at a surface seems to play a crucial role in
this behavior. However, it is not clear how this drives
different ordering scenarios like continuous layer-by-
layer or abrupt growth of the surface phase. X-ray re-
flectivity is the tool that can provide the necessary infor-
mation on fluctuation profiles, which should be further
explored.

IV. LAYER-DISPLACEMENT FLUCTUATIONS

A. X-ray reflectivity as a tool

In the last decade x-ray reflectivity has emerged as a
powerful nondestructive technique for studying the
properties of surfaces and interfaces. Experiments in-
clude solid-vapor interfaces (Zabel and Robinson,
1992), liquid interfaces (Als-Nielsen et al., 1994; Daillant
and Gibaud, 1999), polymer films (Russell, 1990; Tolan,
1998) and multilayer systems (Holý et al., 1999). In the
context of this review liquid-crystalline surfaces are of
particular interest and have an extensive literature.1 The
first x-ray reflectivity applications to smectic membranes
were those of Gierlotka et al. (1990) and Tweet et al.
(1990). Since then this technique has evolved as a major
tool for obtaining information on the fluctuation behav-
ior of smectic systems. Extensions to soap films have
also been made, both experimentally (Daillant and Bé-
lorgey, 1992; Sentenac and Benattar, 1998) and theoreti-
cally (Kats et al., 1993b). Moreover free-standing films
of lyotropic systems (Smith et al., 1988), of smectic poly-
mers (Decher et al., 1993; Reibel et al., 1995), and of as-
sociating polyelectrolytes (Millet et al., 1999) have been
investigated.

X-ray reflectivity provides information on the thick-
ness of a film, the electron-density gradients perpendicu-
lar to the interfaces, and the roughness (fluctuations) of
the interfaces. During the last decade diffuse scattering
from surfaces has also attracted much interest (Sinha
et al., 1988; Sinha, 1991; Daillant and Gibaud, 1999), in-
cluding the study of fluctuations of smectic membranes
(Shindler et al., 1995; Mol et al., 1996) and those associ-
ated with capillary waves on liquid surfaces (Sanyal
et al., 1991; Tidswell et al., 1991; Ocko et al., 1994; Doerr
et al., 1999; Fradin et al., 2000). While specular scattering
is sensitive to the laterally averaged electron-density
profile, diffuse scattering provides information on the
height-height correlations of an interface, i.e., on the in-

1Work on liquid-crystalline surfaces includes that of Als-
Nielsen et al., 1982; Pershan and Als-Nielsen, 1984; Als-
Nielsen, 1986; Gramsbergen et al., 1986; Ocko et al., 1986,
1987; Pershan et al., 1987; Pershan, 1988; Ocko, 1990; Olbrich
et al., 1993; Kellogg et al., 1995; and Lucht et al., 2001.
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plane correlations. As several excellent books on x-ray
reflectivity have recently become available (Tolan, 1998;
Daillant and Gibaud, 1999; Holý et al., 1999), we shall
restrict ourselves here to a short summary of the results
needed in the remaining part of this review.

1. Specular reflectivity

Two major theoretical approaches exist to treating the
scattering process. The kinematical or first Born approxi-
mation is based on the assumption that for a given x ray,
the scattering process in the sample occurs at most once.
This assumption is correct if the scattering represents a
weak disturbance of the transmitted wave and if the
probability of a scattered wave to be scattered again is
low. The other theoretical approach, the dynamic scat-
tering theory, takes multiple scattering processes into ac-
count. As we shall see, in the case of smectic membranes
we can usually rely on the kinematical approximation
(Als-Nielsen, 1986; Sinha et al., 1988).

The scattering of a plane x-ray wave incident on a
single flat interface can be described in terms of an index
of refraction n.12d1ibabs . Here d5rerel

2/2p , in
which re is the electron density and re the classical ra-
dius of the electron, and babs5ml/4p with 1/m repre-
senting the absorption length of x rays in the medium.
For x rays the index of refraction is usually slightly less
than 1, with typical values for d and babs of the order of
1026 and 1028, respectively. Figure 12 pictures an inter-
face in the xy plane separating air with n51 and a liquid
crystal with n . X rays with an incoming wave vector ka
with uku5k52p/l are incident at a glancing angle a.
The x-ray beam is partly reflected at an angle b and
partly transmitted at an angle a t . The total scattering
angle is given by 2u5a1b . Hence for specular reflec-
tivity u5a5b , and we shall use u to denote this situa-
tion. The outgoing wave vector kb of the reflected wave
is in the plane of ka and the surface normal. For elastic
scattering, ukau5ukbu5k and the wave-vector transfer is
given by q5kb2ka with q52k sin u. For specular reflec-
tivity, the wave-vector transfer is parallel to the surface
normal (z axis) and q5(0,0,qz5q).

As for x rays n,1, a critical angle of total reflection uc
exists. For liquid-crystalline materials uc.0.15° at l
.0.1 nm. When u,uc , the incident wave is totally re-
flected from the interface and only an evanescent wave
is traveling parallel to the surface. In this situation the

FIG. 12. Scattering geometry for x-ray reflectivity measu-
ments; specular reflectivity is defined by b5a .
Rev. Mod. Phys., Vol. 75, No. 1, January 2003
1/e penetration depth of the x rays is, neglecting absorp-
tion, (2kAuc

22u2)21.5 –40 nm. For small angles and
since 1@d@babs , according to Snell’s law cos uc512d,
which can be approximated by uc.A2d5lArere /p .
The wave-vector transfer q8 in the medium can be ob-
tained using Snell’s law and l85l/n and is given by
q825q22qc

2 , in which qc.2kuc .
The Fresnel reflectivity RF is defined as the ratio of

the intensities of the reflected and the incoming beam
(Born and Wolf, 1959). In the limit q@qc refraction is
negligible, q8.q , and neglecting higher orders we get

RF.S qc

2q D 4

5
16p2re

2re
2

q4 . (36)

At large angles the reflected intensity decays as q24.
Owing to the rapid falloff in intensity with increasing
angle, the range of q in reflectivity measurements is
small, typically qmax.6 nm21 [Fig. 13(a)]. In this situa-
tion corrections for polarization and absorption can be
neglected.

The above considerations can be extended to the case
of a flat film of thickness L and uniform density. The
reflectivity can be calculated using the recursive matrix
method, also known as the box or slab model, derived by
Parrat using optical methods (Parrat, 1954). The reflec-
tances at an interface between media j and (j11) are
given by the Fresnel coefficients:

rj ,j115
qj112qj

qj111qj
, (37)

where q0 and q1 can be identified with q and q8 as de-
fined above. For a single slab the ratio of reflected to
incident intensity from the total film becomes RF(q)
5rr* in which

r5
r0,11r1,2 exp~2iq1L !

11r0,1r1,2 exp~2iq1L !
. (38)

The results are shown in Fig. 13(b). Now constructive
and destructive interference of x rays reflected from the
top and bottom of the film occurs with a period 2p/L .
As a result the reflectivity curve exhibits a series of os-
cillations, the so-called Kiessig fringes. The amplitude of
these oscillations depends on the contrast in electron
density between the film and the surrounding material.
The next step is to include an internal structure in the
membrane. Figure 13(c) shows a model calculation of
the reflectivity of a smooth periodic film in a vacuum
with thickness L5Nd , N being the number of layers.
This figure can be compared with the experimental re-
sults shown in Fig. 5. The Kiessig fringes and the finite-
size Bragg peaks determine L and d , respectively. Inter-
ference between Fresnel reflection and Bragg scattering
enhances and extinguishes the scattered intensity at q
values lower and higher than the Bragg positions, re-
spectively. In fact this involves phase information about
the layering, and the situation depicted describes a low-
density termination at the interfaces (see further Sec.
IV.C.3).
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More generally, an electron-density variation along
the film normal can be described by a series of slabs of
different constant density. Neglecting refraction and
multiple scattering (first Born approximation) and tak-
ing the limit of an infinite number of infinitesimally thin
slabs, one can derive the so-called master formula for
the specular x-ray reflectivity:

I~qz!5RFU E
2`

` dr~z !

dz
exp~2iqzz !dzU2

. (39)

The first Born approximation is valid in the weakly in-
teracting limit but diverges in the regime of total reflec-
tion. This can be corrected for by replacing q in the
exponent of Eq. (39) by the average wave-vector trans-
fer q85Aq22qc

2 inside the membrane (Sinha et al.,
1988). Thus refraction corrections are still neglected for
individual slabs, but the major refraction at the air/film
interface is taken into account. This expression behaves
well over the entire q range.

FIG. 13. Model x-ray reflectivity calculations: (a) Fresnel re-
flectivity of a single smooth interface; (b) reflectivity from a
smooth structureless film with L590 nm, d5331026 and b
5131028; (c) as (b) with an internal structure of 30 layers
with alternating between d and d85231026.
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2. Diffuse scattering and roughness

So far we have assumed the interfaces to be perfectly
smooth, while in all practical cases roughness is found
over a range of in-plane length scales. This contributes
lateral modulations to the electron-density profile of the
sample and causes x rays to be scattered in nonspecular
or diffuse directions. The refractive index profile n(z),
which so far has been treated as a sharp step, can be
calculated by replacing the rough interface by a se-
quence of smooth interfaces along z , weighted by a
probability density P(z). A simple and convenient
choice for P(z) is a Gaussian function with a width s
corresponding to the mean-square roughness. This leads
to an error function for the refractive index profile.
Within this approximation roughness can be incorpo-
rated into the reflectance at an interface by multiplying
the Fresnel coefficient Eq. (37) with a Gaussian factor,
leading to

ri ,j5
qi2qj

qi1qj
exp~22qiqjs i ,j

2 !. (40)

This expression has been used in the literature both for
qi5qj5q and for qi5q and qj5q8. Note that an ex-
pression similar to Eq. (40) is found for a flat graded
interface. On the basis of specular reflectivity alone one
cannot discriminate between these two cases. However,
a rough surface also scatters diffusely while a graded
interface does not.

Different lateral roughness profiles can give rise to the
same mean-square value s, and specular reflectivity can-
not distinguish between these cases. The statistical prop-
erties of a rough interface are fully characterized by the
height-height correlation function H(r')5^z(0)z(r')&
(Sinha et al., 1988; Tolan, 1998; Daillant and Gibaud,
1999). As the diffuse scattering originates from these lat-
eral inhomogeneities, it can be used to retrieve the be-
havior of H(r'). The diffuse scattering averages over
large lateral distances, which might extend to hundreds
of microns depending on the diffraction geometry and
coherent properties of the beam. The transverse coher-
ence length j t is defined as the maximum in-plane dis-
tance over which waves still interfere coherently at the
detector. The resulting intensity can be seen as the inco-
herent sum of intensities that are scattered from various
regions of the sample whose sizes coincide with the co-
herence domain. The variation of the off-specular com-
ponent of the diffraction vector q' allows us to probe
the scattering associated with different lateral length
scales.

It should be realized that the situation in smectic
membranes is fundamentally different from that of clas-
sical diffuse x-ray scattering from a solid surface. In the
first place the roughness is not static, but arises from
displacement-displacement correlations between the
thermal fluctuations. This is similar to capillary waves on
a liquid surface. However, the diffuse scattering is not
only due to the surface, but originates from the whole
film, in which all the smectic layers are subjected to ther-
mal fluctuations (see Sec. IV.C.3). More importantly,
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compared to solid surfaces the range of correlations of
smectic membranes is much larger: the layer-
displacement correlation function Cmn(r'), which is
analogous to H(r'), diverges logarithmically with r'

(see Sec. IV.B).

3. Types of scans and their resolution

The scattering geometry for surfaces and films is de-
picted in Fig. 14. Various types of scans allow mapping
of the scattered intensity in different cuts through recip-
rocal space. In a specular reflectivity scan a and b are
kept equal and varied together in the plane defined by
c5d50. Specular scans probe the scattered intensity
along qz with qy5qx50. In rocking scans v5a2b is
varied keeping the total scattering angle 2u5a1b fixed.
In such a scan mainly qx is probed while in addition a
small variation of qz is introduced. In a rocking scan the
in-plane range of qx is limited by v56u ; the accessible
range before the sample surface blocks either the inci-
dent or the scattered beam. To avoid this restriction one
can make a transverse diffuse scan out of the scattering
plane. In such a scan a5b is kept constant with respect
to the surface and the detector is moved out of the scat-
tering plane over an angle d, while rotating the sample
over c5d/2. Hence the scattered intensity is measured
mainly along qy at fixed qz , while a small component qx
is introduced. Finally, in longitudinal diffuse scans qz is
varied at constant finite offset qy while qx50. In this
case a and b are varied together with respect to the
surface at a fixed angle c5d/2.

In principle a rocking scan should show so-called
Yoneda peaks when either a or b is equal to the critical
angle (Yoneda, 1963; Dosch, 1992). In that situation the
electric field of the evanescent wave at the surface
reaches a maximum of twice the incident field, resulting
in a larger diffuse scattering. In smectic membranes
Yoneda peaks have not been reported so far. Originating
at the surface, they might be hidden in the large kine-
matic diffuse scattering which stems from all layers.
Hence the best chance to observe them would be in thin
membranes of just a few layers.

The intensity measured experimentally is always
found as a convolution of the structure factor Eq. (18)
with the resolution function R(q8):

FIG. 14. General scattering geometry. The incident plane is
defined by ka and the surface normal Oz , the scattering plane
by ka and kb .
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I~q!5E d3q8S~q2q8!R~q8!, (41)

where S is the scattering intensity in the first Born ap-
proximation given by Eq. (18), q8 denotes the stochastic
deviation from the ideal wave vector q, and R(q8) de-
scribes the distribution of q8. Hence it is essential to
calculate the resolution for the various types of scans.
The experimental resolution accounts for the divergence
and size of the incoming beam, the solid angle defined
by the finite aperture of the detector, and the wave-
length dispersion. Usually the x-ray beam is highly
monochromatic and the wavelength dispersion can be
disregarded.

To describe the dispersions relative to ka and kb ran-
dom deviations a8,c8 and b8,d8 are introduced around
the angles a, c, b, and d, respectively. Suitable analytical
approximations for R(q8) have been derived assuming
these deviations to be small, statistically independent
and described by Gaussian distributions (Sentenac,
Fera, et al., 2000; Sentenac, Shalaginov, et al., 2000). In
that situation linear relations can be given between the
mean-square deviations of q and of the angles: Da2

5^(a8)2& and similarly for Db2, Dc2, and Dd2. The re-
sulting equations define the elements of the matrix Â
5Aij5^qi8qj8& where i ,j5x ,y ,z . To calculate R(q8) in
Eq. (41) we can resort to a simplified form using the
eigenvalues of Â , denoted as Dqx

2 , Dqy
2, and Dqz

2 . Re-
ferring now (O ,x ,y ,z) to the corresponding eigenvector
coordinate system, R(q8) reduces to (Sentenac, Shalagi-
nov, et al., 2000)

R~q8!5
~2p!22/3

DqxDqyDqz
expS 2

1
2

qx
2

Dqx
2D

3expS 2
1
2

qy
2

Dqy
2D expS 2

1
2

qz
2

Dqz
2D . (42)

For the small angles involved in reflectivity experiments
the eigenvector coordinate system does not differ much
from the original system. For that situation first-order
approximations of the resolution parameters for both
the rocking geometry and diffuse scans out of the plane
of incidence were given by Sentenac, Shalaginov, et al.
(2000). The final step consists of calculating the scat-
tered intensity by carrying out the integration in Eq.
(41) using the relevant approximation for the resolution
function of Eq. (42). This will be done for diffuse scat-
tering from smectic membranes in Sec. IV.C.1.

B. Theory of the static structure factor

In this section we shall summarize the theory of the
static structure factor of smectic membranes in which
the layer displacement-displacement fluctuations play an
essential role. According to the kinematic approxima-
tion, the scattering intensity S(q) is given by Eq. (18).
For the present purpose this can be generalized to

S~q!5E d3r1d3r2^r~r1!r~r2!&exp@iq•~r12r2!# . (43)
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Using r5(r' ,z) the electron density can be expressed in
terms of the layer displacements as

r~r,t !5(
n

rs@z2nd2un~r' ,t !#

5E dz8(
n

rs~z8!d@z2z82nd2un~r' ,t !# .

(44)

The summation is carried over the layers indexed by n ,
while rs is the electron density of a single layer. We
assume rs to be independent of n ; in other words, we
neglect any possible profile. This assumption may break
down close to a phase transition. If the random displace-
ments un of the layers are Gaussian, the structure factor
is given by

S5urs~qz!u2E d2r'

3(
m ,n

expS iqz~m2n !d1ir'•q'2
1
2

qz
2gmn~r'! D ,

(45)

where rs(qz) is the molecular form factor, the Fourier
transform of the density rs(z). Furthermore, in agree-
ment with Eq. (11), the correlation function is given by

gmn~r'!5^@um~0 !2un~r'!#2&

5^um
2 ~0 !&1^un

2~r'!&22^um~0 !un~r'!&

52sm
2 ~0 !22Cmn~r'!. (46)

A central consideration is the displacement-
displacement correlation function gmn(r'), or in a con-
tinuous representation, g(r' ,z ,z8). Theoretical models
of thin smectic membranes have been developed that
include the effect of surface tension at the interfaces
(Hołyst et al., 1990; Hołyst, 1991; Romanov and Shalagi-
nov, 1992). The original formulation by Hołyst (1991)
uses discretized fluctuations as a function of z . Later
continuous versions (Poniewierski and Hołyst, 1993;
Shalaginov and Romanov, 1993) have been shown to be
equivalent.

1. The displacement-displacement correlation function

In order to calculate the displacement-displacement
correlation function for smectic membranes we have to
include the effect of the outer surfaces. The free energy
for a smectic membrane can be written as the sum of the
bulk and a surface contribution:

F5FB1FS . (47)

FB has been given in Eq. (5), FS can be written as
(Hołyst, 1991)

FS5
1
2

gE d2r$@¹'u~r' ,z5L/2!#2

1@¹'u~r' ,z52L/2!#2%. (48)
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The surface terms, which are proportional to the surface
tension g, describe the energy cost associated with an
increase in the surface area of the two free surfaces lo-
cated at z5L/2 and z52L/2. Within the framework of
the present theory bulk elastic constants are used; the
values of B and K are independent of layer number and
film thickness. Hence the possibility of an increased
smectic order parameter and thus a larger value of B at
the surfaces will be disregarded. Furthermore, we shall
not take the surface elastic constant for bending Ks
(Shalaginov and Romanov, 1993) into account. The in-
troduction of Ks , which does not have to be related to
K (Poniewierski and Hołyst, 1993), would lead to a res-
caling of the surface tension to geff5g1q'

2 Ks .
In this section we shall summarize the continuous ver-

sion of the theory as developed by Shalaginov and Ro-
manov (1993). The most convenient approach is to cal-
culate C(r' ,z ,z8) in the (q' ,z ,z8) representation and
subsequently take the inverse Fourier transform with re-
spect to q' . Using

u~q' ,z !5E dr' exp~2iq'•r'!u~r' ,z ! (49)

we arrive at

F5
1

~2p!2 E d2q'F~q'!, (50)

where F(q') is the contribution from fluctuations with
wave vector q' :

F~q'!5
1
2 E2L/2

L/2
dz@Bu]zu~q' ,z !u2

1Kq'
4 uu~q' ,z !u2#1

1
2

q'
2 g@ uu~q' ,z5L/2!u2

1uu~q' ,z52L/2!u2# . (51)

The surface term vanishes if the fluctuations u(q' ,z)
satisfy the following boundary conditions:

gq'
2 u~q' ,6L/2!6B]zu~q' ,6L/2!50. (52)

Using partial integration Eq. (51) can be transformed
into a quadratic form,

F~q'!5
1
2 E2L/2

L/2
dzu* ~q' ,z !Âu~q' ,z !, (53)

where the operator Â is defined as

Â5B~2¹z
21l2q'

4 ! (54)

and l5AK/B has been introduced. Â is self-adjoint so
that an arbitrary function can be expanded into its com-
plete series of eigenfunctions fn(q') (fluctuation
modes). The use of the boundary conditions does not
impose restrictions, because any given fluctuation can be
approximated by a linear combination of eigenfunctions
fn(q' ,z) [see also Valkov et al. (2001)]. Using the
equipartition theorem we can now write

^u~q' ,z !u* ~q' ,z8!&5kBT(
n

1
Gn

fn~q' ,z !fn* ~q' ,z8!,

(55)
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where the Gn(q') are the corresponding eigenvalues.
This is the conventional approach to calculating the cor-
relation function. However, the analysis is not straight-
forward because the eigenfunctions remain unknown.
The sum in Eq. (55) is equal to the inverse operator
Â21, which in turn is the resolvent of the operator 2¹z

2

defined as

RG~z ,z8!5B@2¹z
22G#21~z ,z8!, (56)

calculated at G52l2q'
4 . Therefore we find

^u~q' ,z !u* ~q' ,z8!&5kBT R2l2q
'
4 ~q'!~z ,z8!. (57)

Here we shall just present the expression for the resol-
vent R and refer the reader for analytical details of the
derivation to Shalaginov and Romanov (1993):

R2l2q
'
4 ~z ,z8!5

L

2v@~v1w !21~v2w !2e22v#

3$~v1w !2exp~2vuz2z8u/L !

12~v22w2!exp~2v !cosh~vuz1z8u/L !

1~v2w !2exp~22v1vuz2z8u/L !% ,

(58)

with v and w defined as

v5lq'
2 L , w5gq'

2 L/B . (59)

Carrying out the Fourier transform and introducing

n5g/AKB , %5r' /AlL , (60)

we finally arrive at the correlation function:

g~r' ,z ,z8!5
kBT

8pAKB

3E
j1

j0
dj

1
j@~11n!21~12n!2exp~22j!#

3@f~j ,2z ,z0!1f~j ,2z8,z0!

22J0~%Aj!f~j ,z1 ,z2!# , (61)

where j5Llq'
2 , j05Ll(2p/a0)2, j15Ll(2p/W)2,

with a0 and W defined near Eq. (8), z15z1z8 and z2

5uz2z8u (with minimal cutoff value z0). J0 is the Bessel
function of order zero, while the function f is given by

f~j ,z1 ,z2!52~12n2!exp~2j!cosh~jz1 /L !

1~11n!2exp~2jz2 /L !

1~12n!2exp@2j~22z2 /L !# .

Equation (61) for the correlation function will be used in
the analysis of the experimental results. A cutoff chosen
as z0.d/4 reproduces essentially the results from the
discrete model of Hołyst (1991). Such a cutoff is reason-
able as the layers have a finite thickness and there is
smearing of the layers due to the thermal motion of the
molecules. For r'50 the displacement-displacement
correlation function C(0,z ,z8) and the mean-square
layer displacements ^u2(0,z)& reveal information about
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the compressional modes that depend on B . By studying
C(r' ,z5z8), one can obtain information about the un-
dulations (and thus K).

The fluctuation profile depends upon n , as defined in
Eq. (60). For n.1 surface damping of the fluctuations is
expected, while for n,1 the fluctuation amplitudes will
be enhanced at the surfaces (see Fig. 15). ‘‘Cutting’’ a
smectic membrane out of the bulk by introducing two
interfaces would increase the fluctuation amplitude at
the free surfaces because of the absence of an elastic
response from the missing material at the outside. For
g5ABK the surface tension exactly compensates for
this effect and the hydrodynamic fluctuation profile is
flat. Aksenova et al. (2001) derived from the present
theory an analytical expression for the fluctuations away
from the surfaces:

^u2~0 !&5
kBT

8pAKB
Fn21

n
lnS L

d D1
2
n

lnS W

a D G . (62)

This result is valid for Ld!W2. In the opposite case the
perpendicular dimension takes over and the divergence
takes the form 2 ln(W/a). An interesting consequence of
Eq. (62) is that for n,1 the fluctuations in the middle of
the membrane no longer diverge with L , but continue
decreasing. In other words, in this situation the bound-
ary conditions at z56L/2 remove the Landau-Peierls
instability [cf. Eq. (8)]. This scenario has been observed
in thin films of the compound FPP (Mol et al., 1996).

2. Conformal and nonconformal fluctuations

Fluctuations in a smectic membrane are called confor-
mal if they are uniform across the film, i.e., all layers
fluctuate in unison. For L→` one anticipates the fluc-
tuations at the surfaces to become independent; hence

FIG. 15. Layer displacement fluctuation profile for a 30-layer
membrane calculated with g50.025 N/m, K510211 N, and d
52.94 nm: solid line, n,1 (B5109 N/m2); dashed line, n51
(B56.33107 N/m2); dotted line, n.1 (B553106 N/m2).
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with increasing thickness conformality is somewhere
lost. Before this threshold is reached, at large wave-
lengths all the layers still fluctuate conformally and
C(r' ,z ,z8) decays logarithmically with increasing r' .
In contrast, at short wavelengths a strong dependence of
C(r' ,z ,z8) on the layer position r' will be found. In
this section we shall calculate the threshold r'c of the
wavelength above which a membrane undulates uni-
formly and that separates the two regimes for the r'

dependence of C(r' ,z ,z8). A distortion with in-plane
wave number q'52p/r' decays slowly from one layer
to the other, due to the small compressibility of the sys-
tem in the z direction. The characteristic decay length of
the distortion is given by l(q')51/(lq'

2 ) (de Gennes
and Prost, 1993). Therefore, within this approximation
and taking a maximum value lmax(q'c)5L at a critical
wavelength q'c , a smectic membrane is expected to
fluctuate conformally for r'.r'c.2pALl . This argu-
ment explains in principle the two regimes and gives r'c
for thick membranes. However, it does not provide the
proper value of r'c for a thin membrane, in which case
the surface tension must be taken into account.

To work out how the surface tension affects r'c we
consider the first principal mode of the fluctuations,
which gives the main contribution to the correlation
function [see Eq. (55)]. It corresponds to the smallest
eigenvalue of the operator defined by Eq. (54). A gen-
eral solution to

Âf~z !5Gf~z ! (63)

reads f(z)5a cos(kz)1b sin(kz) where k25(G
2Kq'

4 )/B . The symmetry of the system allows us to
treat odd and even eigenfunctions separately, and the
mode with the lowest eigenvalue is cos(kz). Higher
modes can be disregarded when the difference between
the second and the first eigenvalue is larger than the first
eigenvalue itself. As this difference is proportional to
L22 (Shalaginov and Romanov, 1993), the present con-
siderations are only valid for thin membranes. The lay-
ers can be expected to fluctuate conformally if cos(kz)
does not change considerably across the film, i.e., if kL
!2p . A general solution has been specified above, for
which k has to be found from the boundary conditions,
Eq. (52). Taking in this equation f(z)5a cos(kz) instead
of u(z) we arrive at

gq'
2

Bk
5tan~kL/2!.kL/2 . (64)

Hence in real space the boundary of the region of con-
formality can be obtained using r'52p/q' as

r'@r'c.A2gL/B . (65)

If we take L5200 nm (N.65), K510211 N, B52.5
3106 N/m2, and g50.03 N/m, Eq. (65) gives r'c
.70 nm. In the limiting cases of B→` we find that
r'c50 as expected. A fully incompressible film fluctu-
ates conformally at all length scales.

In the particular case of g5AKB , the integral in Eq.
(61) can be evaluated analytically, leading to
Rev. Mod. Phys., Vol. 75, No. 1, January 2003
g~r' ,z ,z8!5
kBT

4pg F lnS r'
2

4lz0
D 1E1S r'

2

4lz2
D 1gEG .

(66)

The right-hand side does not depend on z1z8 and
therefore the fluctuation profile over the membrane is
completely flat; see also Shalaginov and Romanov
(1993). As a consequence information about the film
thickness is lost; Eq. (66) does not contain L . This result
coincides with Eq. (12) for bulk Sm-A for z0
5(d2/l)exp(gE). It is also similar to an equation de-
rived by Gunther et al. (1980) for an infinite sample,
with the assumption z2@d . A proper choice of z0
makes them identical. The exponential decay of the ex-
ponential integral E1 makes the second term in Eq. (66)
negligible if the argument is larger than 1. For this range
of r' we find that g(r' ,z ,z8) depends neither on z nor
on z8 and varies logarithmically with r' . Since z2,L ,
this range can be estimated as

r'@r'l52ALl , (67)

still for n51. The length r'l is a second characteristic
in-plane distance besides r'c .

A uniformly undulating film can be taken as incom-
pressible. To develop this approximation we take the
limit B→` in Eq. (61) and arrive at

g~r' ,z ,z8!5g~r'!5
kBT

2pg E
0

qmax
dq'

12J0~r'q'!

q'~11q'
2 r'0

2 !
,

(68)

where qmax52p/a0 and r'05ALK/(2g). For a thin film
of four layers with d53 nm, K510211 N, g50.03 N/m,
and a050.4 nm, we find r'0qm.10. Thus, keeping in
mind that the integrand decays as v23, the upper limit
can be replaced by infinity. The integration can be car-
ried out analytically and gives

g~r'!5
kBT

2pg
@ ln~r' /r'0!1K0~r' /r'0!1gE2ln 2# .

(69)

Due to rapid decay of the Bessel function K0 , in this
situation of B→` we find r'c50. In addition r'l now
coincides with r'0 , and Eq. (67) can be replaced by

r'l.ALK

2g
. (70)

In summary we find that in general two characteristic
in-plane lengths are needed to describe the fluctuations:
r'l and r'c . For r'.r'l the correlation function has a
logarithmic dependence on r' and for r'.r'c the layers
undulate conformally throughout the film. In the case of
a thin film the surface tension strongly affects the fluc-
tuations, and r'c5A2gL/B [Eq. (65)]. If g.AKB we
find r'l.r'c.2ALl . If B tends to infinity, r'c tends to
zero, but r'l remains finite. Equation (70) gives the
functional dependence of r'l on the physical parameters
when g!AKB . The prefactor kBT/(2pg) in the loga-
rithmic region of the correlation function does not de-
pend on the elastic parameters K and B , but is affected
only by the surface tension.
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C. Comparison with experiments

1. Interpretation of diffuse reflectivity

The diffusely reflected intensity is given by Eq. (45),
which we shall write for the present purpose in the form

S~q!5RFE d2r' exp~iq'•r'!G~qz ,r'!, (71)

where the correlation function G(qz ,r') is given by

G~qz ,r'!5(
m ,n

N

expS iqz~m2n !d2
1
2

qz
2gmn~r'! D .

(72)

Convoluting Eq. (71) with the resolution Eq. (42) leads
to the final equation

I~q!5RF

DqxDqy

2p F E dxdy G~qz ,r'!

3expS i~qxx1qyy !2
1
2

x2Dqx
22

1
2

y2Dqy
2D G

3expS 2
1
2

qz
2

Dqz
2D . (73)

In the reflectivity geometry the convolution in the xy
plane (' direction) and in the z direction can be carried
out separately.

In order to discuss the general behavior of Eq. (73) we
assume for the moment that the membranes fluctuate
conformally, which means that gmn(r') does not depend
on n ,m and is given by Eq. (69). The usual procedure
for discussing x-ray reflectivity is to separate the specu-
lar and the diffuse parts. The specular reflectivity is gen-
erated at q'50 and is due to G(qz ,`); the diffuse scat-
tering is determined by @G(qz ,r')2G(qz ,`)# . This
procedure is generally valid for systems with a finite cor-
relation distance, in which G(qz ,r') decays exponen-
tially to a constant value G(qz ,`);exp@2qz

2^u(0)2&#. In-
tegration of this constant with exp(ir'•q') provides a
delta function. In the case of smectics, G(qz ,r') decays
algebraically to zero and ^u(0)2&→` . However, r' can-
not be larger than the sample size and ^u(0)2& cannot
reach infinity. The resolution factor forces the integral in
Eq. (73) to converge to a finite value and the accessible
range of the fluctuation spectrum depends on the pa-
rametrization of the resolution function (Sentenac,
Shalaginov, et al., 2000).

Rocking scans and diffuse scans out of the plane of
incidence are compared for smectic membranes of the
compound 4O.8 in Fig. 16. The data at the high-q' range
(curve c) relate to the qy part of a delta scan, those on
the left follow a rocking scan, and those at the lowest q'

range the qx part of the same delta scan (cf. Sec.
IV.A.3). All curves exhibit a large plateau region at low
q' , followed by an abrupt falloff at q'.Dq' and a
smooth negative slope at higher q' . The falloff sepa-
rates specular and off-specular dominated regions. The
diffuse region is influenced both by the resolution, which
depends on the specific geometry chosen, and by the
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correlation function. This leads to a further division into
two parts. First, there is a region where the logarithmic
term in g(r') is dominant (in between the plateau and
high-q' regions). In this range the intensity follows a
law close to an algebraic decay of the form

I~q'!;E dr'exp~iq'•r'!r'
2h;q'

2D12h . (74)

We estimate h.0.02 while D51 or 2 depending on
whether the experimental setting requires a one- or a
two-dimensional integration. In curve c of Fig. 16 the
transverse diffuse qy scan out of the plane of incidence
follows a law according to q'

2212h as a result of the two-
dimensional integration needed. For the rocking scan
(curve b) the diffuse part shows a slope of 21 corre-
sponding to a one-dimensional integration and thus a
behavior as q'

2112h . However, to achieve this situation
the predetector slit should be wide open in the direction
out of the scattering plane. If this is not the case the
integration over y can no longer be fully disregarded,
and an intermediate slope of 21.25 is found (Sentenac,
Shalaginov, et al., 2000). This situation also applies to the
qx part of the delta scan, curve a of Fig. 16. Finally, for
values of q'*0.01 nm21, there is a nonlinear deviation
from the algebraic decay. This higher-order effect is due
to the bending modulus K in the correlation function. It
can be understood from the simplified development of
g(qz ,r') in Eq. (69). For the present choice of qz at the
first Bragg position, this deviation can only be seen
clearly in diffuse delta scans out of the plane of inci-
dence.

Figure 17 shows transverse diffuse delta scans for
4O.8 membranes of varying thickness, both in the Sm-A
and in the Cr-B phase. The results in the Sm-A phase
were interpreted using Eq. (73), incorporating the aver-
age z component qz8 of the wave-vector transfer inside
the membrane, as discussed below Eq. (39). Equation
(73) was also smeared with a Gaussian of width s loc to

FIG. 16. Diffuse reflectivity scans of an eight-layer membrane
of 4O.8. For the rocking scan (curve b) qx is effectively varied,
while for the delta scan both qy (curve c) and qx (curve a) are
changed. Curve b has been shifted down for clarity.
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FIG. 17. Diffuse delta scans for N-layer 4O.8 membranes: (a) experimental results in the Sm-A phase (open symbols) and the
Cr-B phase (filled symbols); (b) intensity calculation with the 4O.8 parameters from Table III. The vertical dotted lines indicate
2p/r'c .
approximate the local (short-wavelength) contribution
to the total fluctuations. This allows us in principle to
separate shyd and s loc , and to quantify to what extent
the full fluctuations can be described by hydrodynamic
theory. Assuming Gaussian fluctuations, the total fluc-
tuations are given by

s tot
2 5shyd

2 1s loc
2 . (75)

As s tot is measured directly by the specular reflectivity,
we shall postpone a further discussion of this relation to
Sec. IV.C.3. The final fitting results for the elastic param-
eters of 4O.8 are given in Table III. They lead to n.1:
the surface tension suppresses the fluctuations (cf. Fig.
15). In fact the values for B , K , and g are very similar to
those of other smectic compounds (Fisch et al., 1984;
Vertogen and de Jeu, 1988; Benzekri et al., 1990). An-
other interesting aspect of Fig. 17 is the similarity of the
diffuse reflectivity in the Sm-A and Cr-B phases. In
practice, the diffuse intensities could be fitted with the
Rev. Mod. Phys., Vol. 75, No. 1, January 2003
same Sm-A parameters. Only for the thickest film (107
layers) could the effect of the shear constant C44 be-
tween the crystalline layers be measured. As will be dis-
cussed in Sec. V.D this can be understood from the Cr-B
Hamiltonian in the so-called ‘‘easy-shear’’ approxima-
tion.

The diffuse scattering of the compound FPP has been
investigated in some detail (Mol et al., 1996, 1997), using
the same methods as discussed above for 4O.8. Figure 18
shows rocking scans of a thin and a thick FPP membrane
at various qz positions. In thin films the line shapes at
various qz are very similar, indicating conformality. For
the 150-layer film deviations occur at large qx values,
indicating an approach to loss of conformality at the cor-
responding in-plane distances. With the values obtained
for N and d , the transverse line shapes at fixed qz were
fitted for each film separately, varying only g, K , and B .
For the present rocking curves Eq. (73) can be simplified
by restricting the integration to the (x ,z) plane. As dif-
TABLE III. Typical parameters for some of the compounds discussed (at temperatures in the middle
of the smectic range).

Parameter FPP HPP 4O.8 7AB

d/nm 2.94 2.82 2.85 2.88
dcore /d 0.62 0.50 0.51 0.54
dcore /d tail 0.88 1.51 1.57 1.50
s tot /nm 0.46 0.30 0.2720.40a 0.3520.54a

s loc /nm 0.26 0.08 0.120.4a

B/(107 N/m2) 75625 3.061.5 1.0110
20.5 1.060.5

K/(10212 N) 1065 15b 25610 12c

g/(1023 N/m) 13.060.5 2561 2061d 25.060.5d

h3 /@103 N/(m s)# 0.015 0.04e

aAt surface–at center.
bEstimated from related compounds.
cde Jeu and Claassen (1977).
dMach, Huang, et al. (1998).
ePrice et al. (1999).
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FIG. 18. Rocking scans for FPP membranes of various thicknesses. Top and bottom curves were taken at the first and second
Bragg peak, middle curves at extrema of interference fringes in between. Crosses and circles refer to positive and negative qx ,
respectively (compare Mol et al., 1996).
fuse scans were made at various values of qz (in contrast
to the situation for 4O.8) for FPP s loc could also be
quantified. Best fits to the rocking curves of a whole
series of films, shown as solid lines in Fig. 18, occur for
the values of g, B , and K given in Table III.

For FPP the value of g51331023 agrees well with an
independent direct measurement (Mach et al., 1995). It
is about a factor of 2 smaller than the values reported
for nonfluorinated liquid crystals, which is due to a re-
duction of the surface energy due to fluorination of the
alkyl chain (Pang and Clark, 1994). The value obtained
for K is quite normal but the value of B is much larger
than the others in Table III. This can be attributed to the
increased stiffness of a fluorinated chain, which has an
average cross section approximately 30% larger than
that of a hydrocarbon chain (Rieker and Janulis, 1994).
In addition, gauche conformers can practically be ex-
cluded, leading to a rigid rodlike structure (Lobko et al.,
1993). Clearly our FPP system is nearly incompressible,
with layers fluctuating in unison down to the shortest
in-plane wavelengths measured. Using Eq. (65) this
leads to r'c.2 nm for a 34-layer film, which is of the
order of molecular dimensions. If the 150-layer mem-
brane is approximated as a bulk system, Eq. (66) gives
r'c.14 nm, which is just within experimental reach. In
fact, the upward curvature in the intensity at fringe po-
sitions between the Bragg peaks can be interpreted as
such. The relatively small surface tension in combination
with the large value of B leads for FPP to n50.15,1,
giving a stronger diffuse scattering than expected from
the theory for bulk systems (cf. Fig. 15).

2. Loss of conformality

To go beyond the crossover from conformal to inde-
pendent fluctuations requires specific choices for the
scattering geometry as well as for the experimental con-
ditions. According to Eq. (65) the required value of q'c
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can be lowered by choosing thick (large-L), easily com-
pressible films (small B). The compound 7AB that has
been investigated shows a second-order Sm-A–N phase
transition (Gramsbergen and de Jeu, 1988), at which B
is expected to vanish or to reach a small finite value
(Nelson and Toner, 1981; Lubensky, 1983; de Gennes
and Prost, 1993). Specular and diffuse longitudinal qz
scans for a 24-layer 7AB membrane are presented in
Fig. 19(a). At the specular ridge (qy50) fluctuations at
all length scales are probed, while for increasing qy the
long-wavelength side of the fluctuation spectrum is cut
off at an increasingly shorter wavelength 2p/qy . If the
fluctuations of the top and bottom interface are corre-
lated, the exponential term with qz(m2n)d in Eq. (72)
gives interference between the diffusely scattered ampli-
tudes. Now the diffuse scattering is the coherent super-
position of scattering from each layer, showing maxima
and minima, e.g., Bragg peaks and Kiessig fringes, at the
same positions in qz as the specular reflectivity (Sinha,
1991). For independent fluctuations the correlation func-
tion vanishes for mÞn and the diffuse scattering is an
incoherent superposition of the fluctuations of each in-
terface. From Fig. 19(a) we note that at small offset qy
the film is conformal. The disappearance of the interfer-
ence fringes at qy50.191 nm21 (r'.33 nm) indicates
that the top and bottom of the film no longer fluctuate in
unison. The persistence of the Bragg peak up to the larg-
est qy value measured, however, shows that lateral cor-
relation between adjacent layers still exists. The broad-
ening and weakening of the Bragg peak reveals that the
correlation length j i becomes smaller than the total film
thickness. With increasing q' more layers fluctuate inde-
pendently and thus fewer layers are contributing coher-
ently to the diffuse signal.

More direct information about the displacement-
displacement correlation function can be obtained from
the delta scans shown in Fig. 19(b). At small qy the



212 de Jeu, Ostrovskii, and Shaliginov: Structure and fluctuations of smectic membranes
FIG. 19. Loss of conformality in a 24-layer 7AB membrane: (a) qz scans with offsets from top to bottom, qy50, qy50.064, qy

50.191, and qy50.414 nm21. Fits are described in the text; curves have been shifted for clarity; (b) delta scans at from top to
bottom: qz5q0 , qz50.5q0 , and qz50.7q0 . Fits are described in the text, the vertical dashed line indicates 2p/r'c . Curves have
been shifted for clarity (Mol et al., 1997).
slopes of the transverse scans at different qz values are
approximately parallel. Therefore all the layers are fluc-
tuating in unison. The development of different slopes in
the various scans is the signature of loss of conformality
for fluctuations with increasing q' . For further details of
the quantitative analysis of the data using Eq. (73) we
refer the reader to Mol et al. (1996). The resulting values
for B , K , and g are given in Table III. Using these val-
ues and d , dcore , and dcore /d tail from Sec. IV.C.3 (see
again Table III), the longitudinal diffuse scans were fit-
ted as the solid line in Fig. 19(a). As no new parameters
were introduced, the agreement is satisfactory. The ver-
tical dashed line in Fig. 19(b) indicates the in-plane
wave-vector transfer where loss of conformality is ex-
pected according to Eq. (65), which agrees reasonably
well with the experimental observations. Nevertheless
the fitting at large q' values still presents a serious prob-
lem to the interpretation. With increasing q' the fluctua-
tions approach the bulk behavior described by Eq. (19)
and the intensity should vary as q'

24 . This transition is
clearly visible in the theoretical curves as a steep falloff
around q'.1 nm21 (r'.6 nm). Though one would ex-
pect the hydrodynamic theory still to be valid in this
region, the experimental data show no inclination to fol-
low this behavior!

3. Interpretation of specular reflectivity

Early work on the interpretation of specular reflectiv-
ity curves began with Eq. (39) and was augmented with
Eq. (40) in order to take a Gaussian roughness of the
interfaces into account. Nowadays Parrat’s recursive ma-
trix formalism (see Sec. IV.A.1) is usually incorporated
directly. In any case, a model is needed of the smectic
membrane in terms of an electron-density profile along
the normal. This profile is matched via an inverse Fou-
rier transformation (after convolution with the experi-
Rev. Mod. Phys., Vol. 75, No. 1, January 2003
mental resolution) to the reflected intensity curve. In
principle two approaches can be used to construct the
electron-density profile. Phenomenologically it can be
expressed as a Fourier series, retaining as many terms as
needed to fit the data (Gierlotka et al., 1990; Lambooy
et al., 1992). Here we shall take as a starting point the
form factor of a smectic layer, which for orthogonal
smectic phases is equal to the up-down averaged mo-
lecular form factor. The latter can be calculated by Fou-
rier transformation of the electron density obtained
from molecular modeling (Gramsbergen et al., 1986).
The results are in reasonable agreement with the simpli-
fied box model of Fig. 20 (Lobko et al., 1993). Usually
the central aromatic core has a larger electron density
than the aliphatic tails.

Using the box model without fluctuations, the
electron-density profile would be as shown in Fig. 21 for
a two-layer smectic membrane. At any finite tempera-
ture fluctuations occur, due both to hydrodynamic
modes of the layers (shyd) and to local movements of
the centers of mass of the molecules around their equi-
librium positions in the layers (s loc). In a Gaussian ap-
proximation the total fluctuations are determined by s tot
as given by Eq. (75). Hence the resulting density modu-
lation is obtained by convolution of the box function
with a Gaussian of width s tot . While s loc is obtained
from the diffuse scattering together with G(r' ,z ,z8),
the total fluctuations can be derived from the specular
x-ray reflectivity (see Fig. 20). The value of s tot can in
principle differ for each interface, leading to a fluctua-
tion profile across the membrane. The combination of
specular and diffuse reflectivity measurements allows us
to separate the extent of local smectic disorder and the
magnitude of the long-length-scale thermal fluctuations
and to test Eq. (75). Note that the Gaussian approxima-
tion fixes the distribution function of the centers of mass
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f(z) as defined in Sec. II.A and thus also the smectic
order parameters tn . This is not in agreement with ex-
periments and shows the limitations of this approach.
Software packages have been developed to calculate the
reflected intensity using the box model in combination
with the recursive matrix formalism, for example,
REFLAN (Samoilenko et al., 1996, 1999).

We shall now turn to some applications. Figure 22
shows reflectivities for the compounds HPP and FPP at
various thicknesses. We note a relatively strong second-
order Bragg peak for FPP. This is well known for fluori-
nated molecules and can be attributed to the relatively
high electron-density contrast due to the fluorinated tails
(Lobko et al., 1993; Rieker and Janulis, 1995; Takanishi
et al., 1995). The final fitting parameters using the box
model are given in Table III. In the block model obvi-
ously d5dcore12d tail , while the critical angle is deter-
mined by the average density d05(dcoredcore
12d taild tail)/d . Two parameters strongly influence the
fitting: d tail /dcore , which determines the strength of the
Bragg peaks, and d tail /d , which affects the relative
strength of the second to the first Bragg peak. These
parameters show very little interdependence. For N
520 the results for the two compounds can be directly
compared. Note the important difference between HPP
and FPP in the region around the first Bragg peak. For
HPP we have a low-density termination at the interfaces
(dcore /d tail.1) leading to a minimum in the intensity for
qz values just above the Bragg position. FPP has fluori-
nated tails leading to the reverse situation. Now
dcore /d tail,1 and the minimum in qz is shifted to the
opposite side of the first Bragg peak. For dcore50.5d the
form factor has a minimum at the second Bragg peak,

FIG. 20. Model for the smectic layer form factor: (a) box
model used to represent the electron density smeared with a
Gaussian function to take fluctuations into account; (b) two
4O.8 molecules with opposite up-down orientations.
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which will then be absent. This situation obviously ap-
plies to HPP. In the case of FPP the minimum is posi-
tioned at the low-q side of the second Bragg peak, indi-
cating a box model with dcore.0.5d .

FPP has been studied in depth by Mol et al. (1996),
who give details of the fitting. In short there is a remark-
able agreement with both the specular and diffuse ex-
periments for a single set of stable parameters (see
Table III), which are essentially independent of both
film thickness and layer position. From the specular re-
flectivity the total fluctuation amplitude varies from
s tot50.48 nm for a four-layer membrane and s tot
50.45 nm for a 34-layer film. The parameters from the
diffuse reflectivity include a value s loc50.26 nm for the
local fluctuations, independent of the film thickness. Us-
ing Eq. (75) we can now calculate shyd50.37 nm for the
hydrodynamic part of the fluctuations. Even though the
quantitative aspects of this calculation may be ques-
tioned, it is evident that for FPP both the hydrodynamic
and the local fluctuations give a non-negligible contribu-
tion. The result for shyd can be compared with a direct
calculation of the hydrodynamic fluctuations from the
correlation function. The value of A^u2(0)&5shyd in the
center of the thicker films is of the order of 0.36 nm. The
excellent agreement with the value calculated using Eq.
(75) gives some confidence in the reliability of the pro-
cedure used.

Specular reflectivities for membranes of various thick-
ness of the compound 4O.8 have been given by Fera,
Dolbnya, et al. (2001). The results of the final fitting are
summarized in Table III. In contrast to the rather flat
profiles of FPP, for 4O.8 a strong dependence on layer
position is observed [Fig. 23(a)]. The flat top in the
Sm-A profiles of the 38- and 80-layer membranes is an
artifact: the value of s i of the central layers was con-
strained to be constant in order to reduce the number of
parameters. For 7AB specular data are also available at
various temperatures (Mol et al., 1998); see Fig. 24 for a
24-layer membrane. They can again be fitted with stable
parameters (see Table III). For 7AB the s i values also
indicate a fluctuation profile over the membranes that
becomes more pronounced with increasing temperature.
The data for the highest temperature (56.2 °C) are well
above the bulk Sm-A–N transition temperature of
52.9 °C. It is evident that thin membranes can be stable
under these circumstances of increased smectic ordering
at the surfaces. This leads to the phenomenon of thin-
ning transitions (see Sec. VI.A).
FIG. 21. Electron-density
modulation in a two-layer
membrane: (a) without thermal
fluctuations; (b) including
smearing by fluctuations.
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FIG. 22. Specular x-ray reflectivity of membranes with a different number of layers N for two related compounds: (a) FPP; (b) its
hydrogenated analog HPP.
For both 4O.8 and 7AB the hydrodynamic profiles as
discussed so far do not suffice to explain the experimen-
tal profiles. This is demonstrated for a 15-layer 4O.8
membrane in Fig. 23(b). The curve that fits the data (n
56.5) is far outside the experimental range of ABK as
determined by the diffuse reflectivity: the hydrodynamic
profile is much weaker than the total one. Clearly a local
fluctuation profile with an appreciable curvature is re-
quired to complete the picture. The same applies to
7AB for which we calculate n52.2 from Table III. The
associated hydrodynamic fluctuation amplitudes of the
24-layer membrane are shyd50.34 nm and shyd
50.37 nm at the surface and center, respectively: again
the profile of the hydrodynamic fluctuations is weak. Us-
ing s tot from Fig. 24 we can use Eq. (75) to calculate a
profile for the local disorder with amplitudes s loc
50.1 nm and s loc50.5 nm at the surface and the interior
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of the membrane, respectively. This is supported by the
fitting of the results in Fig. 19(b). The original fit to the
data (solid line) was performed using s loc50.1 nm. In
fact the specular scan and the longitudinal diffuse scan
at qy50.6431023 nm21 can be better modeled when
s loc is varied from 0.1 to 0.4 nm from the surface to the
interior of the film (dashed line). For both 4O.8 and
7AB local fluctuations with a clear curvature have to be
introduced to explain the experiments.

D. Conclusions and outlook

The major results and problems from this central sec-
tion can be summarized as follows.

• The resolution problem that has hampered the inter-
pretation of the specular and diffuse reflectivity of
FIG. 23. Fluctuation profiles of 4O.8 membranes: (a) specular reflectivity at various thicknesses: solid line, Sm-A phase; dashed
line, Cr-B phase; (b) experimental profile of the 15-layer membrane compared with hydrodynamic profiles. Solid line, parameters
from Table III giving n51.3; dashed line, n52.1; and dotted line, n56.5.
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FIG. 24. Specular reflectivities of a 24-layer 7AB membrane with Tc(24)556.3 °C: (a) at 52.2 °C with the fluctuation profile as
inset; (b) density profiles at 45.0, 52.2, and 56.2 °C, top to bottom (Mol et al., 1998).
smectic membranes for some time has, in principle,
been solved. This allows us to arrive at a quantitative
interpretation of the fluctuation behavior. However,
the possible effects of (partial) coherence of the x-ray
beam still have to be further implemented.

• The occurrence of dynamic effects like Yoneda peaks
in smectic membranes still remains to be proven ex-
perimentally.

• The diffuse reflectivity can be used to establish nicely
the crossover from conformal to independent fluctua-
tions. However, the intensity at moderately large val-
ues of q' does not approach the theoretically pre-
dicted q'

24 bulk behavior.
• For several systems fluctuation profiles have been ob-

served in smectic membranes, which involve either
quenched or enhanced fluctuations at the surfaces. In
the latter case the fluctuations in the middle should
continue to decrease with increasing membrane thick-
ness and no Landau-Peierls divergence should occur.
It would be worthwhile to investigate this behavior for
a wide range of thicknesses.

• Theoretically the relative role of the hydrodynamic
and the local fluctuations is not clear. It is evident that
at values of q' approaching inverse molecular dimen-
sions hydrodynamic theory no longer applies. Inde-
pendent local fluctuations have been added in an ap-
proximate way using Gaussians to explain the
experimental fluctuation profiles. In other words, a
microscopic model that would correlate the positions
of the molecules along the director is missing.

• A fluctuation profile over a smectic membrane implies
in principle a profile of the smectic order parameter,
and thus of the layer compressibility B . The possible
effects of a nonconstant B on fluctuation behavior
have not yet been incorporated theoretically.

V. DYNAMICS OF SMECTIC FLUCTUATIONS

A. Introduction

If coherent radiation is incident on a material, the
scattered intensity shows a so-called speckle pattern that
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reflects the instantaneous configuration of the scatterers.
Movement of the scatterers causes a corresponding
change in this pattern and thus contains information on
the dynamics of the system. Photon correlation spectros-
copy or dynamic light scattering measures the time-
dependent intensity autocorrelation function of the
speckle pattern. Using visible light, it has developed into
a well-established technique since lasers became avail-
able (Chu, 1991). In contrast, correlation spectroscopy
with coherent x rays has been developed only recently at
third-generation high-brilliance synchrotron sources
(Dierker, 1995; Grübel and Abernathy, 1997; Abernathy
et al., 1998). Dynamic light-scattering studies of smectic
membranes were carried out by Böttger and Joosten
(1987) and Nallet et al. (1989). So far, the feasibility of
x-ray photon correlation spectroscopy has been demon-
strated for various hard (Brauer et al., 1995; Dierker
et al., 1995; Tsui and Mochrie, 1998) and soft (Mochrie
et al., 1997; Thurn-Albrecht et al., 1999; Grübel et al.,
2000; Lumma et al., 2000; Lurio et al., 2000; Riese et al.,
2000; Lal et al., 2001) condensed systems, including cap-
illary waves on liquid surfaces (Seydel et al., 2001). Em-
phasis has been on relatively slow dynamics (ms range)
like those of colloidal particles suspended in various liq-
uids. More recently applications to smectic membranes
have been made (Poniewierski et al., 1998; Price et al.,
1999; Fera et al., 2000; Sikharulidze et al., 2002) as well
as to liquid-crystalline surfaces (Madsen et al., 2003). A
considerable advantage of x rays is that they do not suf-
fer from multiple scattering problems, so that opaque
systems can also be studied. In the context of smectic
membranes other differences between the two methods
are important. Light-scattering experiments are sensitive
to either orientational fluctuations of the director asso-
ciated with layer undulations (Sprunt et al., 1992;
Shalaginov and Romanov, 1993) or to long-wavelength
fluctuations of the air-liquid interface (as in the case of
Böttger and Joosten, 1987). In contrast, x-ray photon
correlation spectroscopy is sensitive to the layer fluctua-
tions and gives a much better spatial resolution. In Fig.
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FIG. 25. Diagram of frequency vs wave vec-
tor comparing various dynamic techniques.
25 various dynamic scattering techniques are compared
in terms of the energy and wavelength scales involved.

The analysis of x-ray photon correlation spectroscopy
is more complicated than that of light-scattering studies.
In the latter case, it is often sufficient to calculate the
two-time displacement-displacement correlation func-
tion in the wave vector, frequency (q,v) representation.
X-ray photon correlation spectroscopy needs the posi-
tion, time (r,t) representation, which requires taking in-
verse Fourier transformations. For both light scattering
and x-ray scattering of smectic membranes, finite-size
and surface effects, depending on the surface tension
and perhaps other surface parameters, should be taken
into account. Most importantly, the finite thickness of a
smectic membrane leads to quantization, producing a set
of modes dependent on surface parameters, instead of a
continuous spectrum as in bulk systems.

B. Theory of the dynamic structure factor

To analyze x-ray photon correlation spectroscopy, the
two-time correlation function of the thermal displace-
ments of the layers is required. Recently, this has been
examined by a discrete model (Poniewierski et al., 1998,
1999; Romanov and Ulyanov, 2001) as well as by a con-
tinuous one (Chen and Jasnow, 2000; Shalaginov and
Sullivan, 2000). Both types of model are based on the
hydrodynamic equations for bulk systems, supple-
mented by boundary conditions, and give essentially the
same characteristic times. Here we concentrate on a
continuous model that directly yields a closed-form ex-
pression for the correlation function in the (q,v) repre-
sentation (Shalaginov and Sullivan, 2000) The relaxation
times of the modes correspond to the poles of this func-
tion.

A coherent x-ray beam enables one to measure
^I(t)I(0)& and to obtain information about dynamic
Rev. Mod. Phys., Vol. 75, No. 1, January 2003
processes in the system under consideration. Let us con-
sider in more detail the correlation between the intensi-
ties I(t) at different times. We recall that the intensity at
time t is proportional to E(t)E* (t), where E is the scat-
tered field. The measured correlation function is there-
fore proportional to ^E(0)E* (0)E(t)E* (t)&. The fluc-
tuations of the scattered field contain two contributions
that can be considered separately. The first one is due to
variations in the incoming field and thus comprises the
bunch structure of the storage ring. The second one
stems from the scattering amplitude of the sample (den-
sity fluctuations) and is our direct concern. If the fluc-
tuations of the field are Gaussian, then the intensity-
intensity correlation factorizes as

^E~0 !E* ~0 !E~ t !E* ~ t !&5^E~0 !E~ t !&^E~0 !* E* ~ t !&

1^E~0 !E* ~0 !&^E~ t !E* ~ t !&

1^E~0 !E* ~ t !&^E* ~0 !E~ t !&.

(76)

As the field changes with time as exp(ivt), the first term
becomes zero after averaging over the period 2p/v . The
second term does not depend on time, because the sys-
tem is stationary (i.e., the single-time correlation func-
tion does not depend on time). The third term contains
all the information about the dynamics of the sample
and is proportional to uSu2, where in the first Born ap-
proximation S is given by Eq. (45), with

gmn~r' ,t !5^@um~0,0!2un~r' ,t !#2&. (77)

Hence the time dependence in the displacements
un(r' ,t) is retained and incorporated in the
displacement-displacement correlation function
gmn(r' ,t), which is central to the following consider-
ations. The analysis of gmn(r' ,t) carried out by Po-
niewierski et al. (1998, 1999) is based on the following
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approach. First, they apply hydrodynamic equations for
bulk Sm-A liquid crystals written in terms of a continu-
ous displacement u(r' ,z ,t). Second, they replace the
derivative ¹zu by (un2un21)/d , taking into account ad-
ditional terms for interfacial effects (surface tension),
and obtain a set of coupled equations for the displace-
ments un(r' ,t). Here we use the same hydrodynamic
equations to calculate

g~r' ,z ,z8,t !5^@u~0,z8,0!2u~r' ,z ,t !#2&, (78)

where z remains a continuous variable. To calculate the
scattering we set

gmn~r' ,t !5g~r' ,zn ,zm ,t !, (79)

where zm and zn are the z coordinates of smectic layers
m and n , respectively.

1. Hydrodynamic equations

Full sets of hydrodynamic equations for a Sm-A liquid
crystal can be found, for instance, in the work of Martin
et al. (1972), Landau and Lifshitz (1986), de Gennes and
Prost (1993), and Kats and Lebedev (1993). Here we use
a simplified version. We note that three characteristic
time scales occur in the hydrodynamics of Sm-A (de
Gennes and Prost, 1993; Chaikin and Lubensky, 1995).
The first one is related to the permeation process, which
can be viewed as the penetration of flux through the
smectic layer structure. This process is very weak and its
characteristic time scale is very large. It will not be fur-
ther considered here. The second time is associated with
the viscous forces responding to inertia. This motion is
sometimes denoted in the literature as the fast mode and
its time scale is the shortest of the three. The final time
scale stems from the balance between viscous and elastic
forces. This is often referred to as the slow mode, al-
though its time scale is in fact intermediate between the
other two. The characteristic time scales of the slow and
the fast modes are related via the parameter r0K/h3

2 (de
Gennes and Prost, 1993), in which h3 is the sliding vis-
cosity of the smectic layers. This parameter, which can
be considered as the ratio of inertia to elastic forces, is
small in bulk smectics (of the order of 1026,) and one
can consider the slow and fast modes separately. This is
due to the absence of a term proportional to q'

2 in the
bulk elastic energy. In this situation, equations for the
slow mode can be obtained from the general hydrody-
namic equations neglecting inertial terms. However, one
should be cautious in the case of smectic membranes
because they involve a surface contribution proportional
to q'

2 due to the surface tension. If the layers undulate
conformally, then this contribution effectively acts like a
bulk one. For small q' this term may prevail over the
layer-bending term Kq'

4 and inertia can no longer be
disregarded.

In the following we neglect thermodiffusion as being a
slow process. Compressibility is disregarded because B
is much smaller than the compressibility coefficient. Fur-
thermore, we take ¹•v50 in the calculation of viscous
forces; v is the velocity, which only has a z component
Rev. Mod. Phys., Vol. 75, No. 1, January 2003
with vz5]u/]t . We also neglect rolls, and finally assume
that the temperature is constant (¹T50). The dynamic
equation then reads

r0

]vz

]t
52

dF

du
2

dRdis

dvz
, (80)

in which Rdis is a dissipation function and F the free
energy. The first term on the right-hand side of Eq. (80)
is the elastic force and the second term the viscous force.
The dissipation function is given by

Rdis5
1
2 E d3rh3~¹'vz!2 . (81)

The elastic and viscous forces acting in the z direction
can be expressed as the derivatives of F and Rdis with
respect to u and vz , respectively. The free energy of a
Sm-A membrane has been given in Eq. (47), and the
elastic force is equal to the variational derivative

dF

du
5~2B¹z

21KD'
2 !u . (82)

Using these results in Eq. (80) and taking the Fourier
transform over r' , we get

r0

]2u~q' ,z ,t !
]t2 5F2h3q'

2 ]

]t
1B¹z

22Kq'
4 Gu~q' ,z ,t !.

(83)

We shall apply the same boundary conditions as in the
static case, Eq. (52), which can be obtained by minimiz-
ing F with respect to the surface displacements u(r' ,z
56L/2,t). These conditions represent the balance of
elastic forces at the interfaces and implicitly assume that
relaxation at the interfaces is much faster than in the
bulk (i.e., the viscosity at z56L/2 is negligible). The
same boundary conditions were employed by Chen and
Jasnow (2002). Although they appear different from
those used in the discrete dynamic model, the same
characteristic times of the relaxation modes are ob-
tained.

2. Two-time correlation function

The correlation function gmn(r' ,t) can be expressed
as

gmn~r' ,t !5
1

~2p!2 E d2q'@C~q' ,zm ,zm,0!

1C~q' ,zn ,zn,0!2C~q' ,zm ,zn ,t !

3exp~ir'•q'!2C~q' ,zn ,zm ,2t !

3exp~2ir'•q'!# , (84)

where

C~q' ,z ,z8,t ![^u* ~q' ,z8,0!u~q' ,z ,t !&. (85)

To calculate C we use the method developed by Shalagi-
nov and Romanov (1993), which is based on the resol-
vent of the operator 2¹z

2 . Mathematically this method
is formulated as follows. Multiplying Eq. (83) by
u* (q' ,z8,0) and averaging, we get the equation
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r0

]2C~q' ,z ,z8,t !
]t2 52h3q'

2 ]C~q' ,z ,z8,t !
]t

2@2B¹z
21Kq'

4 #C~q' ,z ,z8,t !,

(86)

with boundary conditions equivalent to Eq. (52):

gq'
2 C~q' ,z56L/2,z8,t !6B¹zC~q' ,z56L/2,z8,t !

50 , (87)

and the initial conditions

C~q' ,z ,z8,0!5C~q' ,z ,z8!, (88a)

]

]t
C~q' ,z ,z8,t50 !50. (88b)

The last condition assumes that u and vz are statistically
independent (see also Poniewierski et al., 1999).
C(q' ,z ,z8) is the single-time correlation function that
coincides with Eq. (57).

To solve the dynamic equations we make the follow-
ing transformation:

C1~q' ,z ,z8,v!5E
0

`

dt exp~ivt !C~q' ,z ,z8,t !. (89)

Applying this to Eq. (86), integrating by parts, and tak-
ing into account that the correlation function vanishes
for t→` , we obtain

B@2¹z
22G#C1~q' ,z ,v!5~h3q'

2 2ir0v!C~q' ,z ,z8!,
(90)

in which G is now given by

BG~q' ,v!5ivh3q'
2 1r0v22Kq'

4 . (91)

The solution to this equation can be expressed in terms
of the resolvent RG(z ,z8) defined by Eq. (56). We recall
that the single-time correlation function can also be ex-
pressed in terms of the resolvent as in Eq. (57). Then C1

can be expressed as

C1~q' ,z ,z8,v!5
~h3q'

2 2ir0v!kBT

B2

3~RG(q' ,v)•RG(q',0)!~z ,z8!, (92)

and the full correlation function is

C~q' ,z ,z8,v!5C1~q' ,z ,z8,v!1C1~q' ,z ,z8,2v!,
(93)

where we have used time-reversal symmetry. The prod-
uct on the right-hand side of Eq. (92) can be calculated
using the first formula for resolvents of self-adjoint op-
erators (Reed and Simon, 1972):

~Rm•Rn!~z ,z8!5
1

m2n
@Rm~z ,z8!2Rn~z ,z8!# . (94)

Then one obtains

C~q' ,z ,z8,v!5
2kBT

vB
Im RG(q' ,v)~z ,z8!. (95)
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The displacement-displacement correlation function in
the real-space and real-time representation is obtained
from the Fourier transform

C~q' ,z ,z8,t !5^u~0,z8,0!u~r' ,z ,t !&

5
1

~2p!3 E
2p/L

2p/a
dvd2q'

3exp~2ivt1iq'•r'!C~q' ,z ,z8,v!.

(96)

The integration over q' is cut off in the short- and long-
wavelength limits by the intermolecular distance a and
an in-plane dimension of the system L, respectively.
However, for coherent x-ray experiments the cutoff L is
usually taken equal to the in-plane footprint, which is in
practice much smaller than the system size (Hołyst,
1991; Mol et al., 1996).

3. Eigenmodes and their characteristic times

The singularities of the resolvent R as a complex func-
tion of v have a crucial physical significance. According
to Eq. (56), the singularities of R correspond to values
of G(q' ,v) which are eigenvalues of the operator 2¹z

2 .
Since this operator is self-adjoint for the given boundary
conditions, its eigenvalues must be real. Hence, accord-
ing to Eq. (91), the frequencies v corresponding to these
singularities of R must be complex. From its definition,
Eq. (89), the function C1 is regular in the region Im v
.0, and therefore each singular value of v can be writ-
ten as 2i/t . Evaluating the Fourier transform over v in
Eq. (96), these singularities yield contributions with a
time dependence exp(2utu/t), indicating that the set of t’s
are the relaxation times of the various modes. In the
case of an infinite system one would obtain a continuous
spectrum, with the relaxation times t(qz) being continu-
ous functions of qz . The finiteness of the smectic mem-
brane in the z direction leads to quantization and as a
result produces a discrete spectrum.

To calculate the characteristic times, one needs to find
the roots of the denominator in Eq. (58). The denomi-
nator is zero if

tan~wZ !5
2Z

Z221
, (97)

where v5lq'
2 L and w5gq'

2 L/B were defined in Eq.
(59) and Z52iv/w . The singular values of v define the
singular values of G, which in turn determine via Eq.
(91) the corresponding singular values of v. The relax-
ation times are now the roots of the equation

r0

1
t2 2h3q'

2 1
t

1Kq'
4 1

g2q'
4

B
Zm

2 50, (98)

where the Zm are the roots of Eq. (97) and will be or-
dered as Z1,Z2,Z3, ¯ . Hence, for any Zm , we find
two characteristic times. The larger one corresponds to
the slow mode, the other to the fast mode. Expanding
Eq. (97) in powers of w leads to
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Z1
2.

2
w

2
1
3

5
2B

gLq'
2 2

1
3

. (99)

Inserting this result in Eq. (98) gives

r0

1

t1
2 2h3q'

2 1
t1

1KS 12
g2

3KB Dq'
4 1S 2g

L Dq'
2 50.

(100)

As a starting point we shall neglect inertia, which means
disregarding the first quadratic term in t. In this no-
inertia approximation the lowest-order solution is

t1.h3F2g

L
1S 12

g2

3KB DKq'
2 G21

. (101)

This expression is valid only for q'
2 !B/gL . For q'50 it

agrees with the result of Poniewierski et al. (1998):

t15
h3L

2g
. (102)

Note that, in this range of q' , t1 decreases with q' if
g2,3KB and increases if g2.3KB . The first situation
always applies in the limit B→` . A more detailed con-
sideration shows that for q'50 only the first relaxation
time is nonzero, while all the others vanish in the no-
inertia approximation. Figure 26 shows the first few
characteristic times versus q' .

As stressed above, in the long-wavelength limit the
inertia term has to be taken into account. Expanding the
roots of Eq. (100) in powers of q' , we obtain

1
t1

.7i
1
2
A 8g

r0L
q'1

h3

2r0
q'

2 . (103)

As we can see, the relaxation time becomes complex.
Moreover, in this approximation t is no longer finite for
q'→0. The relaxation times depend on the wave num-
ber q' , and are real only for sufficiently large q' . For

q'
2 ,q'fs

2 5
8r0g

L~h3
224r0K !

.
8r0g

Lh3
2 , (104)

the roots of Eq. (103) are complex. Again using the 4O.8

FIG. 26. Relaxation times tm , m51,2,3,4 vs in-plane wave-
vector transfer for a 50-layer membrane in the noninertial ap-
proximation (calculated for 4O.8 parameters from Table III).
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parameters from Table III, this criterion yields
q'fs,1.331023 nm21. For q',q'fs we can write
t5t86it9 with real and positive values of t8 and t9.
The value (t821t92)/t8 is the characteristic time for ex-
ponential decay, while t9/(t821t92) determines the fre-
quency of the oscillations.

4. High-compressibility approximation

In the case of thin films that undulate conformally we
can neglect the layer compressibility and assume B to be
infinitely large. In this limit the correlation function does
not depend on z and z8, and the film can be considered
as a two-dimensional system. Taking the limit B→` in
Eq. (95), which requires some cumbersome calulations,
we arrive at

C~q' ,v!5
2kBT

Lv
ImF2g

L
q'

2 1Kq'
4 2r0v22ivh3q'

2 G21

.

(105)

As before the singular points of this function define the
characteristic times. Using v52i/t we obtain Eq. (100)
with B→` . For small q' this yields the same relaxation
times as Eq. (103): the real parts of the roots are posi-
tive, while their imaginary parts are equal but of oppo-
site sign. Let us denote the roots as ts and t f , in which
the indices stand for slow and fast, respectively. Fourier
transformation of Eq. (105) yields

C~q' ,t !5
1

2p E
2`

`

dve2ivtC~q' ,v!

5
2kBTtst f

Lr0~ts2t f!
@tsexp~2utu/ts!

2t fexp~2utu/t f!# . (106)

The relaxation times ts and t f depend on the wave num-
ber q' and, for sufficiently large q' , both relaxation
times are real. In the range of large q' values Eq. (106)
describes relaxation with a single characteristic time ts .

To find out how the result affects the x-ray scattering,
we calculate the time-dependent part of the intensity.
We recall that for a thin conformally undulating film the
displacement-displacement correlation function is inde-
pendent of the layer numbers m and n . Therefore Eq.
(73) becomes

S~q,t !}E E dxdy expS 2i~qxx1qyy !2
1
2

~Dqxx !2

2
1
2

~Dqyy !2D expS 2
1
2

qz
2g~r' ,t ! D . (107)

As the resolution Dqy is usually an order of magnitude
larger than Dqx , the corresponding exponential can be
approximated by a delta function, which reduces the in-
tegration in Eq. (107) to the x direction only. Finally the
correlation function is calculated from
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g~r' ,t !5
1
p E

2p/L

2p/a
dq'q'@C~q',0!

2J0~r'q'!C~q' ,t !# , (108)

in which C(q' ,t) is given by Eq. (96). Equations (106),
(107), and (108) allow us to calculate the intensity-
intensity correlation function measured in coherent
x-ray experiments.

C. Dynamic x-ray experiments

1. X-ray photon correlation spectroscopy

Let us start with a discussion of the coherent proper-
ties of synchrotron radiation. The longitudinal coher-
ence length j l associated with electromagnetic radiation
is the distance along the direction of propagation at
which two plane waves with wavelength l and l2Dl
are in phase (Als-Nielsen and McMorrow, 2000; Len-
geler, 2001). Expressed in wavelength units, this length is
inversely proportional to the degree of monochromatic-
ity Dl/l5DE/E of the beam. Hence we find

j l.
l

2~DE/E !
. (109)

The transverse coherence length j t is defined in the
plane perpendicular to the direction of propagation. It is
related to the deviations from a perfectly planar wave
front and is thus inversely proportional to the source
size s scaled to the distance R . Hence we find

j t.
lR

2s
. (110)

Clearly the sample to be studied should be effectively
positioned inside the coherence volume thus defined.
The coherent intensity is proportional to the second
power of the wavelength (Attwood et al., 1985):

Icoh}l2B~DE/E !, (111)

where B is the brilliance of the source. The equations for
the coherence volume and intensity are quite general.
The ‘‘problem’’ of applying these results to x rays lies in
the resulting numbers for the small wavelengths in-
volved. At the Troika undulator beamline at the ESRF
(Grenoble, France), typically the following values for
the coherence of the beam can be reached for l
.0.1 nm (Grübel and Abernathy, 1997). The longitudi-
nal coherence length is j l.1.7 mm for a relative band-
width DE/E.631025 set by a Si(220) monochromator.
At a distance R546 m from the anisotropic effective
source, the transverse coherence lengths are about 4 and
150 mm in the horizontal and the vertical directions, re-
spectively. From Eq. (111) it will be clear that soft x rays
(say l.1 nm) can be used advantageously, but their ap-
plication is limited by the attendant increased absorp-
tion.

An x-ray beam impinging on a smectic membrane de-
fines an illuminated volume and a coherence volume
(Lengeler, 2001), which in general will be anisotropic. A
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transverse coherence area is defined by the product of
the two transverse coherence lengths projected on the
sample surface. Along the beam, coherent illumination
means that the maximum path-length difference D has
to be smaller than j l . The ratio between the dimensions
of the coherence volume and those of the illuminated
volume of the sample determines what is measured.
When in a particular situation the coherence volume is
smaller than the illuminated one, the total scattered in-
tensity is the sum of the intensities scattered from each
‘‘coherence domain’’ (cf. Sec. IV.A.2). In the reverse
case, the signal results from the sum of the amplitudes of
the scattered photons. In the z direction perpendicular
to a smectic membrane, the maximum path-length dif-
ference D is reached for reflections from the top and
bottom interfaces. This difference depends on the thick-
ness of the membrane and on the incoming angle via D
52L sin a. For the value j l.1.7 mm given above and
a.1.5°, a typical Bragg position, this gives a maximum
thickness Lmax.30 mm. Up to a thickness of this order
of magnitude, Kiessig fringes due to the interference of
x rays from the top and bottom of a film can be observed
(compare Sec. IV.A.1). Real experiments will also de-
pend on the detector resolution, which has here been
assumed to be sufficient.

Along the surface of a smectic membrane the illumi-
nated area is in general much larger than the coherence
area. To observe interference effects in this direction, it
is necessary to reduce the dimensions of the beam to a
size comparable to j t . The coherently reflected waves
then interfere, creating a speckle pattern. Motion of the
scatterers is observed by analyzing the intensity varia-
tion of a single speckle in time. At delay times t short
compared to a typical time scale t0 of the membrane,
the intensity is correlated with the initial intensity. Con-
versely, for large delay times the position of the scatter-
ers will be independent of the initial one. At intermedi-
ate time scales a transition is observed corresponding to
t0 . More formally the intensity-intensity autocorrelation
function is measured, which is defined as ^I(q,t)I(q,t
1t)&. Normalizing this function and setting the time
axis such that the origin coincides with the beginning of
the experiment, we can write

g2~q,t!5
^I~q,0!I~q,t!&

^I~q,0!&2 . (112)

In practice the required reduction of the illuminated
area is realized by positioning a pinhole of dimensions
comparable to j t in the beam before the sample. The
situation can be compared with a single-slit experiment
in visible optics. The pinhole acts as a secondary coher-
ent source, creating the well-known Fraunhofer pattern
on a far-field screen, but now on the scale of x-ray wave-
lengths (Robinson et al., 1995; Vlieg et al., 1997). Clearly
this procedure cuts down the emitted intensity consider-
ably, while the small size of the pinhole creates at the
same time a very high resolution. One of the virtues of
smectic membranes as model systems for x-ray photon
correlation spectroscopy is that they combine an appro-
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priate thickness L&D with a small mosaic comparable
to the experimental resolution.

In the experiments to be discussed (Fera et al., 2000;
Sikharulidze et al., 2002) at beamline ID10A (Troika I,
ESRF), at about 46 m from the storage ring a pinhole of
approximately 10 mm diameter was placed 0.25 m up-
stream of the sample to provide a collimated and par-
tially coherent beam (see Fig. 27). Typically this reduced
the intensity from about 1014 cts/s to about 108 cts/s.
Smectic membranes were mounted vertically in a reflec-
tion geometry and illuminated with 8-keV radiation.
Most experiments so far have been done at the Bragg
position on the specular ridge, but some measurements
have also been made at off-specular positions (qxÞ0)
by rocking the sample.

Fundamentally the time scales that can be reached by
x-ray photon correlation spectroscopy are limited by the
pulsed structure of the synchrotron source, in which the
electrons or positrons go around in very narrow
bunches. At the ESRF the revolution time is 2.8 ms, and
the minimum time that can be correlated depends on the
bunch structure of the ring, in particular the bunch-to-
bunch interval. Constant spacings are required to avoid
spurious signals generated by the revolution time and its
higher harmonics. In the so-called uniform-filling mode
992 bunches are equally spaced in the storage ring at
2.8-ns intervals, which sets the fundamental lower limit.
Using avalanche photodiodes as detectors, which can
have an intrinsic time response down to a few ns (Baron,
2000), this limit can be reached. In practical experiments
a final limit is determined by the availability of fast cor-
relators. Standard commercial correlators nowadays al-
low a minimum lag time of about 10 ns, but certainly this
can be improved. An alternative way to determine the
auto-correlation function is to store the arrival times of
all individual pulses from the detector in a buffer
memory (Fera et al., 2000). Subsequently the stored data
can be used to construct the autocorrelation function
using appropriate software.

2. Results for smectic-A membranes

Sorensen and co-workers (Price et al., 1999) per-
formed the first measurements of smectic membranes by
x-ray photon correlation spectroscopy employing soft x

FIG. 27. Scheme of the experimental setup for x-ray photon
correlation spectroscopy.
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rays at a wavelength of 4.4 nm. The measurements were
centered on the specular ridge at the Bragg position. For
several compounds a single exponential decay was ob-
served in the range of tens of ms, which depends linearly
on the membrane thickness (see Fig. 28). The fluctua-
tions can be expected to be dominated by the lowest-
order surface mode, in which case the decay time is
given by Eq. (102). The results are consistent with the
theoretically expected linear dependence of the decay
time on the thickness. The slope h3 /g for each of the
linear relations in Fig. 28 can be compared with inde-
pendent measurements of h3 and g. As far as these val-
ues are available, the results are in good agreement. The
largest wavelength in a finite-size membrane is deter-
mined by the size of the frame. In coherent x-ray experi-
ments the largest wavelength detected would be deter-
mined instead by the footprint, or projected coherence
length, at the given qz position (Hołyst, 1991; Shalagi-
nov and Sullivan, 2000). For the soft x rays used, j t
.35 mm. At the Bragg angle this gives a coherent foot-
print along the beam of about 50 mm, and the dominat-
ing wavelengths in the fluctuation spectrum can be ex-
pected around this value.

de Jeu and co-workers have shown the feasibility of
performing x-ray photon correlation spectroscopy using
standard x rays with a wavelength around 0.1 nm (Fera
et al., 2000; Sikharulidze et al., 2002). They could realize
film mosaics as low as 2 mdeg, which matches the high
resolution in the experiments that results from the small
pinhole. As a consequence at the Bragg position count
rates as high as 100 MHz were obtained, allowing a con-
siderable increase in the quality of the measurement.
The results for a few moderately thick films are in agree-
ment with those of Fig. 28. More interestingly a rather
different behavior was found in thin films. Figure 29
shows experimental data for 4O.8 membranes of various
thicknesses. For the thinnest membranes the correlation
function shows a decay of the layer fluctuations in the
time scale of ms and oscillatory behavior in the range of

FIG. 28. Fundamental relaxation time as a function of film
thickness for various compounds (Price et al., 1999). The
straight lines are fits to Eq. (102).
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tens of ms. The oscillations become less pronounced and
finally disappear with increasing membrane thickness.
This can be contrasted with membranes of the com-
pound FPP, which show oscillations up to the largest
thickness (15 mm) reached experimentally. Figure 30
shows a series of off-specular measurements of this com-
pound. At the specular ridge (curve 1) the data show
oscillatory behavior, but even for a small offset in qx
corresponding to 25 mdeg the oscillations disappear. The
relaxation times have also moved to values well below 1
ms.

The normalized experimental intensity-intensity cor-
relation functions were fitted for both 4O.8 and FPP to
the expression aS2(t)1b , where a and b are constants
indicating contrast and offset, and S(t) is the dynamic
structure factor. For a thin uniformly undulating film the

FIG. 29. Autocorrelation function at q0 for 4O.8 membranes
of various thicknesses; d, L50.3 mm; m, L54.0 mm; j,
L57.0 mm. Solid lines are fits with the parameters
g50.021 N/m, K55310212 N, h350.05 kg/(m s),
r05103 kg/m3, Dqx5531025 nm21. L values are 180, 160,
and 50 mm, for the curves 1, 2, and 3, respectively. Curves 2
and 3 have been shifted for clarity. From Sikharulidze et al.,
2002.

FIG. 30. Autocorrelation functions of a 2.83-mm-thick FPP
membrane at q0 ; d, specular Bragg position at qx50; m, at an
offset qx50.9531023 nm21; j, at qx53.831023 nm21. Solid
lines are fits with the parameters g50.013 N/m, K510211 N,
h350.015 kg/(m s), r05103 kg/m3, Dqx5931025 nm21. L
has been fitted to 90 mm. Curves 2 and 3 have been shifted by
0.25 and 0.50, respectively (Sikharulidze et al., 2002).
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displacement-displacement correlation function is inde-
pendent of layer numbers m and n and for S(t) Eq.
(107) can be used. In Eq. (108) for g(r' ,t) the short-
wavelength cutoff is defined by the intermolecular dis-
tance a , taken as 0.4 nm. The long-wavelength cutoff L
influences the damping time and the form of the corre-
lation function. In fitting the experimental curves L var-
ies around 100 mm, which is compatible with the inter-
pretation as a projected coherence length given above.
Fluctuations with larger wavelengths could nevertheless
still be important, as they also disturb the position of the
scatterers. A proper implementation of the coherence
and the resolution in the theory would probably intro-
duce some weight function in Eq. (108), which would
suppress the contribution of the longer wavelengths
more smoothly. The fitting parameters for FPP agree
very well with those in Table III from static measure-
ments, those for 4O.8 less so. This reflects the large
value of B for FPP, which makes the high-
compressibility approximation used more appropriate
than in the case of 4O.8.

The relaxation times can be found from Eq. (100) for
B→` ; the relevant solutions are displayed in Fig. 31
using FPP parameters. Two roots, t1s and t1f , are found
and the relaxation times are given by @Re(1/t1s)#21 and
@Re(1/t1f)#21, respectively. For small values of q' the
roots are complex-conjugate numbers, and both relax-
ation times coincide. This implies oscillatory damping of
the fluctuations (complex mode). If q' exceeds a cross-
over value q'fs , t1s and t1f are different real numbers
corresponding to a slow and a fast relaxation. In this
regime the correlation function shows simple exponen-
tial decay. The fast relaxation is related to the presence
of the inertia term in Eq. (83). From Fig. 31 one notes
that this relaxation time decreases rapidly with increas-
ing q' and will not be accessible experimentally. The
crossover wave number q'fs is determined by Eq. (104).
The total signal measured at a specular position corre-
sponds to the superposition of fluctuations with different
wave vectors. The observed relaxation behavior depends
strongly on the fluctuations with the longest wavelength
detectable. If the crossover wave vector q'fs is within
the integration interval of Eq. (108), the correlation
function exhibits oscillatory damping. This situation cor-

FIG. 31. Calculation of the lowest-order relaxation times of
the FPP membrane of Fig. 30; B57.53108 N/m2. The arrows
correspond to the off-specular positions of curves 2 and 3.
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responds to curve 1 of Fig. 30. As soon as q'fs is outside
this integration interval, an exponential decay is ob-
served. This region corresponds to curves 2 and 3 of Fig.
30. The slow relaxation branch in Fig. 31 exhibits a pla-
teau for q'.q'fs between 1023 and 1022 nm21. Indeed,
in Fig. 30 no change in the experimental relaxation time
is observed for the different off-specular positions in qx .
Larger offset positions could not be measured because
of the rapidly decreasing count rate.

As q'fs scales with the membrane thickness as 1/AL
we can use the parameter L to determine a cutoff thick-
ness:

Lc5
2r0g

p2h3
2 L2. (113)

For membranes with L,Lc oscillatory behavior will be
pronounced. As the membrane thickness approaches Lc
the oscillatory behavior starts to vanish and for L.Lc
only an exponential decay is observed. This is in agree-
ment with the results for the 4O.8 membranes presented
in Fig. 29. For FPP the viscosity h3 , as determined from
the fits, is several times smaller than for 4O.8. According
to Eq. (113) then Lc is an order of magnitude larger for
FPP than for 4O.8. This is outside the experimental
range of thicknesses studied and explains why the cross-
over was not observed.

In conclusion, the complex behavior predicted theo-
retically for the dynamics of smectic fluctuations has
been observed for membranes of different types of
liquid-crystalline molecules. A crossover is found be-
tween an oscillatory and an exponential regime of fluc-
tuation damping, as a function both of membrane thick-
ness and of the off-specular wave-vector transfer.

D. Crystalline-B membranes as fluctuating systems

Crucial for our present understanding of the Cr-B
phase is the existence of a (small) coupling between the
crystalline layers leading to three-dimensional positional
order (see Sec. II.A). According to the elastic theory for
solid plates (Landau and Lifshitz, 1986), undulation of a
thin plate gives rise to extension of one side (top or
bottom) and compression of the other side. The bending
rigidity in this case is on the order of L2E , where L is
the film thickness and E is Young’s modulus. Estimating
the order of magnitude of the bending rigidity using the
value of E expected for a hexagonal two-dimensional
crystal (Zakri et al., 1997), one finds that the crystalline
rigidity should drastically affect the diffuse x-ray scatter-
ing. However, in transverse diffuse scans, only small
changes are seen between the results for Sm-A and Cr-B
membranes [see Fig. 17(a)], which indicates that the ri-
gidity remains nearly the same. The observed small
bending rigidity is due to well-developed shear deforma-
tions in a Cr-B plate (Fera, Dolbnya, et al., 2001).

Although the Cr-B phase has a finite shear modulus
C44 , mechanical (Cagnon and Durand, 1980; Dubois-
Violette et al., 1993) and ultrasonic (Thiriet and Marti-
noty, 1982) studies indicate that its value is very small.
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Hence the conventional analysis of bending ignoring
shear is not valid. Instead the easy-shear approximation
can be used in which all in-plane deformations are ne-
glected while shear deformations are large. The corre-
sponding elastic energy can be written as (Shalaginov
and Sullivan, 2000)

F5
1
2 E d3rFC33~¹zu !21K~D'u !21

1
4

C44~¹'u !2G ,

(114)

where the elastic modulus C33 is equivalent to the smec-
tic compressibility B . However, the value of C33 may
differ from that of B in the Sm-A phase. As the shear
elastic coefficient C44 is finite but small, it is justified to
keep the next-order term with respect to in-plane de-
rivatives (the bending term), which is dominant in the
smectic phase. A crucial consequence of shear elastic
deformations is that they produce a bulk term propor-
tional to (¹'u)2, which is forbidden for smectic phases
in which the layers slide freely. The absence of such a
term leads to the Landau-Peierls instability of bulk
smectics. Any finite value of C44 makes the mean-square
fluctuations converge independently of the size of the
system. This point has been demonstrated in Fig. 23(a),
Sec. IV.C.3, for Sm-A and Cr-B membranes of different
thickness. Specular reflectivity scans show that in the
Cr-B phase the amplitude of the fluctuations in the inte-
rior of the film does not depend on the thickness.

Shalaginov and Sullivan (2000) have extended the
continuous dynamic model of Sm-A to make predictions
for the dynamic behavior of Cr-B membranes. Introduc-
ing boundary conditions to Eq. (114), one can still write
the resulting fundamental relaxation time as Eq. (103),
but with g replaced by

geff5g1LC44/8. (115)

As far as the fundamental relaxation is concerned, a thin
Cr-B film is in the easy-shear approximation equivalent
to a Sm-A membrane, the effect of C44 being essentially
a renormalization of g. Using g50.02 N/m (Mach,
Huang, et al., 1998) and C4450.123106 N/m2 (Cagnon
and Durand, 1980; Pindak et al., 1980), we calculate that
according to Eq. (115) the correction to g becomes ap-
preciable only for rather thick films and is equal to g for
about 450 layers. This explains the equivalence between
specular and diffuse reflectivity results on Sm-A and
Cr-B membranes in Fig. 17. The remaining difference
between the results can be accounted for by an increase
of the effective surface tension geff from 0.02 N/m to
about 0.03 N/m.

The dynamic nature of the fluctuations in Cr-B mem-
branes has been explicitly demonstrated by a measure-
ment of the intensity-intensity autocorrelation function
g(2)(q,t); see Fig. 32. The behavior of the correlation
function is very similar to that in Fig. 29 for Sm-A films.
In fact, the associated times hardly change upon heating
from the Cr-B into the Sm-A phase. As the thickness of
the investigated membrane (L50.27 mm,N595) is well
below the value of 450 layers calculated above, this is
indeed as expected. Like for Sm-A films (Sec. V.B.3) in
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the thin-film regime, inertia cannot be neglected and the
autocorrelation function of a Cr-B film also shows oscil-
latory behavior. Because the C44 term in geff is still
small, these oscillations result from inertial effects due
to surface tension rather than shear effects.

In conclusion, the main effect of the crystallinity of
Cr-B membranes can be incorporated for thin films by a
renormalization of the surface tension [see Eq. (115)].
This explains why Cr-B membranes, like Sm-A mem-
branes, can only exist when spanned on a frame. It also
allows the material to flow (slowly) under the influence
of external forces, so that the surface area can be
changed.

E. Conclusions and outlook

The study of the dynamics of smectic fluctuations is
still in its early stages. In Sm-A membranes only the first
fundamental surface mode has been observed, which de-
pends on the surface tension g. In addition the effects of
inertia, leading to complex behavior, have been seen in
thin films and at off-specular positions. Several problems
still remain to be investigated:

• Can the higher-order (elastic) modes, which also de-
pend on K and B , be observed? This requires further
measurements at off-specular positions, in which situ-
ation the intensity decreases steeply.

• Can the fast (inertial) mode be measured? This might
be possible by extending the time scale of x-ray pho-
ton correlation spectroscopy to a few ns, and then
continuing to faster times with neutron spin echo
techniques.

• What is the role of the long-wavelength cutoff L? Fur-
ther investigations are needed regarding its possible
relation to the projected coherence length. A proper
implementation of coherence and resolution in the
theory would probably introduce some weight func-
tion instead of a simple cutoff, which would suppress
the contribution of the longer wavelengths more
smoothly.

• How do thick membranes fit into the picture? The
theoretical model has so far been restricted to thin

FIG. 32. Normalized autocorrelation function at q0 of a 0.27-
mm-thick 4O.8 membrane in the Cr-B phase (Fera, Dolbnya,
et al., 2001).
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membranes. No expression is available for the limit
L→` , for which the relaxation spectrum is continu-
ous rather than discrete.

Thermally driven fluctuations in thin Cr-B films are
remarkably similar to those in Sm-A membranes. The
limits of this behavior for thicker films, for which the
shear elastic constant C44 becomes dominant, still have
to be investigated.

VI. MISCELLANEOUS TOPICS

A. Thinning transitions

Smectic membranes can in many cases be heated
above the bulk smectic disordering temperature without
immediately rupturing, and instead undergo successive
layer-by-layer thinning transitions as the temperature is
increased. Though the effect was observed relatively
early (Böttger et al., 1988), the field really started to de-
velop with the work of Huang and co-workers (Stoebe
et al., 1994; Johnson et al., 1997; Pankratz et al., 1998).
An example is shown in Fig. 33. Thinning transitions
have been found rather systematically at the Sm-A–
isotropic transition of fluorinated liquid-crystalline com-
pounds, and less so in their nonfluorinated counterparts.
However, the thinning phenomenon observed in
54COOBC (Jin et al., 1996) indicates that the nature of
this process must be more universal. Moreover, thinning
transitions have also been found at the Sm-A–nematic
phase transition (Demikhov et al., 1995; Mol et al.,
1998). A key experimental observable is the variation of
the layer-thinning transition temperature Tc(N) with
the number of film layers N , which is found to be well fit
by the power-law relation N}t2n, where t5@Tc(N)
2T0#/T0 , n.0.7060.10, and T0 is close to the bulk
transition temperature (see Fig. 33).

The persistence of smectic layering in an overheated
membrane can be attributed to enhanced ordering asso-
ciated with the free surfaces of the film, as is known to
occur in other contexts. As discussed at the end of Sec.
IV.B.1, in that situation one expects g/ABK.1. Such
fluctuation profiles have been given in Fig. 24 for the
compound 7AB near the Sm-A–nematic phase transi-
tion, where thinning occurs. This situation provides di-
rect evidence that melting during the thinning process
occurs at the innermost layers. Unfortunately the sur-
face damping behavior of the fluctuation profile has not
been investigated near the smectic-isotropic transition
temperature. In fact, FPP, the only fluorinated com-
pound for which the fluctuation profile has been mea-
sured, gives at lower temperatures g/ABK,1. Prelimi-
nary experiments indicate that this ratio might increase
to values larger than one upon approaching the isotropic
phase. Another observation is that layer thinning is not
a homogeneous process in the smectic plane, but in-
volves nucleation and development of dislocation loops
(Pankratz et al., 1999, 2000).

Theoretically there is no clear consensus about the
mechanism by which layer thinning occurs. According to
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one set of theories (Mirantsev, 1996; Martı́nez-Ratón
et al., 1997; Gorodetskii et al., 1999; Shalaginov and Sul-
livan, 2001), thinning takes place when the smectic layer
structure in the middle of a film vanishes. In an alterna-
tive theory (Pankratz et al., 1999), supported by experi-
mental studies (Pankratz et al., 2000), layer thinning oc-
curs by spontaneous nucleation of dislocation loops
prior to the melting of the layer structure in the film
interior. This inhomogeneous mechanism is not neces-
sarily unrelated to the former, since a sufficient reduc-
tion in the degree of interior smectic ordering is re-
quired for it to proceed. Various mathematical relations
(Gorodetskii et al., 1999; Pankratz et al., 1999; Picano
et al., 2001) and upper bounds (Shalaginov and Sullivan,
2001) for Tc(N) have been derived theoretically. With
appropriate fitting parameters, these alternative rela-
tions all agree well with the power-law expression and
thus are not able to distinguish between the various
mechanisms.

At present it is not clear whether the experimental
results on thinning at (first-order) smectic-isotropic tran-
sitions and (second- and first-order) smectic-nematic
transitions all can be treated within the same frame-
work. Another question is the special role of fluorinated
compounds. Although there is some progress in the un-
derstanding of static inhomogeneities (Picano et al.,
2001), a theoretical model that describes dynamic pro-
cesses in inhomogeneously thinning films has yet to be
developed. In practice, dislocation-mediated thinning of

FIG. 33. Thinning transitions of the compound
F3MOCPF6H5OB (Pankratz et al., 1998): (a) thinning se-
quence as obtained from the reflectance in the bulk isotropic
temperature range; (b) plot of N vs Tc(N) giving an exponent
z50.61.
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an overheated smectic membrane may preempt a uni-
form thinning mechanism. In this way for a given N
thinning occurs at a lower temperature than that pre-
dicted by considering a purely uniform film (Shalaginov
and Sullivan, 2001).

We conclude that, in spite of considerable theoretical
effort, no full understanding of the layer-thinning phe-
nomenon has been reached to date. Experimental data
on fluctuation profiles over smectic membranes at the
thinning transitions are very much needed.

B. Smectic membranes of chiral molecules

The structure and origin of the polar behavior of tilted
smectic liquid crystals formed by chiral molecules have
been intensely debated over the last decade; reviews
have been given by Goodby et al. (1991), Fukuda et al.
(1994), and Lagerwall (1999). These phases are of tech-
nological importance due to their potential as fast and
low-voltage electro-optical switches. In addition to
Sm-A a variety of tilted smectic phases exist in which
the average orientation of the long molecular axis with
respect to the layer normal z is described by a tilt angle
u(z) and an azimuthal angle w(z). In the case of the
classical Sm-C phase the azimuthal orientations in adja-
cent layers are in the same direction: w(z) is constant.
Such a synclinic ordering leads to ferroelectricity in a
Sm-C phase of chiral molecules (Sm-C* ). The symme-
try allows in each layer for a spontaneous electric polar-
ization P along n3z (perpendicular to the tilt plane;
Meyer et al., 1975). In addition, the molecular chirality
generates a helical twist with a pitch of the order of
microns due to the azimuthal angle’s varying slowly from
one layer to another. For opposite tilt directions of ad-
jacent layers, the resulting anticlinic ordering corre-
sponds to an antiferroelectric Sm-CA* phase in which the
polarization direction alternates from layer to layer.
Tilted phases with ferrielectric (Sm-Cg* ) and mixed
antiferroelectric–ferrielectric (Sm-Ca* ) properties have
also been identified (Fukuda et al., 1994). On the tem-
perature scale the order is usually

Sm-CA* ↔Sm-Cg* ↔Sm-C* ↔Sm-Ca* ↔Sm-A.

An alternative route to polar order has been discov-
ered in fluid smectic phases of achiral molecules with a
bent core (Niori et al., 1996) and in polymer-monomer
mixtures (Soto Bustamante et al., 1996). In these phases
the macroscopic ordering of molecular subunits results
in polar smectic layers, which can be arranged in tilted
synclinic or anticlinic assemblies (Brand et al., 1998;
Diele et al., 1998; Link et al., 1999; Link et al., 2000).

Smectic membranes have been extensively used to ob-
tain structural information from well-ordered samples.
The director field in the Sm-Cg* and the Sm-Ca* phase is
characterized by a complex distribution of the molecular
tilt, and the exact interlayer structure of these phases is
still subject to debate. A first structural model was based
on the one-dimensional Ising model (Isozaki et al., 1993;
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Fukuda et al., 1994). It predicted an infinitely large num-
ber of structural states (‘‘devil’s staircase’’) characterized
by various sequences of synclinic/anticlinic interfaces.
Alternative ‘‘clock models’’ assume a discrete variation
of the azimuthal angle Dw52p/k across the layers,
where k is an integer (Čepič and Žekš, 1995; Lorman,
1995). The integer value of k is 3 or 4 in the various
ferrielectric phases and varies continuously from 5 to
larger values in the Sm-Ca* phase.

Resonant x-ray scattering has proved to be a powerful
tool for discriminating between the various modulated
structures (Mach, Pin̂dak, et al., 1998; Levelut and
Pansu, 1999; Mach et al., 1999). In such an experiment
the x-ray energy is selected at the absorption edge of
one of the atoms of the molecule. Due to the anisotropic
environment of this resonant atom, both the polariza-
tion and the phase of the scattered radiation depend on
the orientation of the molecule with respect to the po-
larization of the incident beam. This leads to additional
satellite peaks not observed in conventional x-ray dif-
fraction. The results obtained so far with sulfur, bro-
mine, and selenium as resonant atoms, provide direct
evidence of three-layer and four-layer superlattices in
the ferrielectric phases, which is consistent with the
clock model. Figure 34 shows an example of resonant
scattering from a thick smectic membrane of the com-
pound 10OTBBB1M7 at the sulfur K-edge. Note the
peaks at 1/4, 1/3, and 1/2 integral values, characteristic of
a four-layer, three-layer, and two-layer (antiferroelec-
tric) superlattice periodicity, respectively. Because the
pitch of the induced helix is in the optical range, the
proposed structures are intrinsically uniaxial. In con-
trast, optical measurements (optical rotatory power, el-
lipsometry) indicate that the Sm-C* subphases are
highly biaxial (Akizuki et al., 1999; Johnson et al., 2000).
The latter observations rule out a simple uniaxial clock
model and favor a biaxial structure with out-of-plane
distortions. These different structural models for ferri-
electric phases can be reconciled by assuming three- and
four-layer superstructures with a nearly planar configu-
ration and azimuthal deviations of about twenty de-
grees.

The picture sketched so far is in practice more com-
plicated because the ordering is strongly influenced by
finite-size and surface effects. For example, as men-
tioned in Sec. III.A.5 for a Sm-A–Sm-C transition, a
free surface often induces a tilt, causing the Sm-C phase
to grow continuously from the surface into the Sm-A
interior of the film as TCA is approached from above. As
a consequence a tilt-magnitude profile u(z) appears
across the film. For Sm-C films this will be accompanied
by a tilt-direction profile w(z). The combination of
x-ray reflectivity and optical ellipsometry allows us to
determine both profiles (Fera, Opitz, et al., 2001).

The physics and chemistry of the different ferroelec-
tric phases, due either to intrinsic chirality or to the ba-
nana shape of the molecules, is at the time of this writing
still under development. Though important structural
conclusions have been reached regarding the different
Rev. Mod. Phys., Vol. 75, No. 1, January 2003
types of Sm-C* phases, one should not be surprised at
the observation of new variations.

C. Smectic films on a substrate

Ordered smectic films on a substrate can be obtained
by conventional techniques like spin coating (Olbrich
et al., 1993; Shi et al., 1993) or the Langmuir-Blodgett
method (Geer et al., 1995). In both cases the resulting
film will be aligned due to anchoring forces at the film-
air and film-substrate interfaces. Homeotropic anchor-
ing of the molecules at the air-film surface leads to smec-
tic layering parallel to that interface, which is quite
common for many classes of liquid crystals. The anchor-
ing at the film-substrate interface might be either ho-
meotropic or planar, or with an intermediate tilt of the
director (Blinov and Chigrinov, 1994). It can be modified
and controlled by mechanical and/or chemical treatment
of the substrate. In the case of conflicting anchoring at
the two interfaces, a complex director distribution is
found across the film.

Thin liquid-crystalline films on a solid substrate are
often unstable with respect to dewetting, like isotropic
liquid films. The dewetting proceeds via an increase of
the average roughness at the free surface. At a certain

FIG. 34. Anomalous x-ray scattering in the various types of
chiral C* phase (Mach, Pindak, et al., 1998).
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stage large-size holes can be formed, which may reach
the initial film thickness after prolonged annealing.
Dewetting of thin liquid and polymer films on solid sub-
strates has been attributed to two different mechanisms
(Herminghaus et al., 1998; Reiter et al., 1999). The first is
nucleation at defects and subsequent growth of the de-
wetted area. The second possibility is amplification of
the thermal fluctuations at the free surface, leading to
so-called spinodal dewetting. However, examples also
exist in which a restructuring of the molecules at the
substrate destabilizes the free surface (Demirel and
Jérôme, 1999; Ostrovskii et al., 2001). With regard to
these points, liquid-crystal films do not behave very dif-
ferently from organic films in general.

An alternative way to create smectic films on a sub-
strate is to transfer freely suspended smectic mem-
branes. In this way ultrathin and highly ordered sup-
ported molecular films can be produced on solid
substrates like glass, mica, or silicon (Decher et al., 1991;
Maclennan et al., 1991). This method is based on the
possibility of inflating smectic membranes by external
pressure to form bubbles similar to soap bubbles (Os-
wald, 1987; Stannarius and Cremer, 1998). The substrate
is then moved towards the top of the smectic bubble
until it touches and the film adheres. The preservation of
uniform smectic layering after transfer has been con-
firmed by x-ray reflectivity. A comparison of transferred
membranes and Langmuir-Blodgett films of the same
material, found the ordering in the former films to be
much more perfect than in the latter (Overney et al.,
1993). Nevertheless, for tilted Sm-C films characteristic
features of the c-director field are lost during the trans-
fer process. Examination of transferred films with an
atomic force microscope indicates many small holes with
a depth close to the total thickness of the film and a
lateral size of tenths of microns (Chikina et al., 1998). In
this context one should realize that after transfer the
meniscus is gone: the smectic ‘‘membrane’’ has changed
into a smectic ‘‘film’’ and the tension is reduced to G
5gsm-air1gsm-solid [compare Eq. (28)]. In addition the
curved shape of a membrane that does not perfectly
match a flat substrate may play a role during the trans-
fer. Transfer of a smectic membrane onto another mem-
brane in a different phase has also been accomplished
(Lucht and Bahr, 1997a).

In smectic membranes the lateral inhomogeneities are
due to thermally induced layer fluctuations. In smectic
films on a substrate another source of layer distortions is
the propagation of static substrate roughness into the
film. In this case the amplitude of the layer distortions
decays exponentially with distance from the substrate
(de Gennes and Prost, 1993). The characteristic decay
length of a distortion with lateral wave number q'

52p/r' is given by l(q')51/(lq'
2 ), where l5AK/B .

Because of the small compressibility of the system and
the remarkable q'

22 dependence of the decay length,
static layer undulations of long wavelengths penetrate
deeply into the film. For typical values l.0.1 nm and
q'.0.01, the decay length can be as large as tens of mm.
At wavelengths for which the film thickness is smaller
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than the decay length, the film-air interface will repro-
duce conformally the static roughness of the substrate,
and thermal fluctuations will be suppressed. In thicker
films thermal fluctuations gradually take over, starting at
short wavelength. The transition has been studied theo-
retically by de Boer (1999). The results account nicely
for the experimental behavior observed for multilayers
of smectic monomer-polymer mixtures by diffuse x-ray
scattering (Geer and Shashidar 1995; Geer et al., 1995).
A similar crossover from conformal substrate roughness
to capillary waves has been observed in thin liquid films
(Tidswell et al., 1991).

A vast literature exists on liquid and polymeric films,
which has only been touched upon here. Though smectic
films (monomeric and polymeric) have so far received
limited attention in this context, they seem to fit rather
well in the general pattern.

D. Surfactant and lipid membranes

Much of the discussion of the structure and fluctua-
tions of smectic membranes so far can be applied to
surfactant systems (lyotropic liquid crystals) and to
membranes of biologically relevant materials. Stacks of
surfactant membranes in solution can lead to a highly
swollen phase. Examples are hydrated phospholipids, in
which lipid bilayers alternate with water layers, and ter-
nary systems of surfactants, water and oil, in which sur-
factant monolayers separate layers of water and oil. A
wide range of periodicity can be found (1–100 nm),
which can be tuned by a proper adjustment of the dilu-
tion. The total interactions are usually understood as in-
volving several contributions. At small interlayer dis-
tances an exponentially decaying repulsive force (the
hydration force) occurs, which is related to the osmotic
pressure. In that situation it balances the attractive van
der Waals interactions (Rand and Parsegian, 1989; Pe-
trache et al., 1998). In addition neighbors limit the space
available for fluctuations, causing an entropic membrane
repulsion (undulation forces or Helfrich effect). This ef-
fect depends strongly on the intermembrane distance
(Safinya et al., 1989). At small dilution the membranes
may be rigid and flat, in which case thermal fluctuations
are not important. In contrast, for diluted systems the
undulation forces overwhelm the van der Waals interac-
tions and stabilize the membranes at large separations.
From x-ray measurements on uniformly aligned stacked
membranes both the bending constant and the
multilayer compressibility have been determined (Lei
et al., 1995).

Regarding the role of thermal fluctuations in mem-
brane systems, a large body of theoretical work exists
(Lipowsky, 1991; Ben-Shaul et al., 1994; Safran, 1994).
This work shows the importance of the dynamics to the
insertion of proteins as well as to the direct transport of
small molecules. The bending dynamics may extend
down to the millisecond range. Between this region and
the much smaller time scale of molecular movements,
collective mesoscopic motions emerge, which are to
some extent similar to those in smectic liquid crystals. In
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this intermediate regime the physical basis for important
biological properties may be found. Recently freely sus-
pended black lipid membranes have been investigated
by dynamic light scattering over time scales from nano-
seconds to over milliseconds (Hirn et al., 1999). These
first experiments indicate that significant changes occur
in the dynamic response upon tight binding of a protein
to the surface of the membrane. The mesoscopic undu-
lations and thickness fluctuations have also been studied
by Monte Carlo (Goetz et al., 1999) as well as by
molecular-dynamics simulations (Lindahl and Edholm,
2000). The results indicate that bending undulations are
already present as soon as the wavelength is slightly
larger than the membrane thickness.

Smectic ordering also plays a role in the organization
of DNA chains in lipid membranes. Linear DNA chains
and cationic liposomic mixtures can self-assemble into a
quasi-two-dimensional smectic phase of DNA embed-
ded between a three-dimensional smectic phase of lipid
layers (Rädler et al., 1997; Salditt et al., 1997; Wong
et al., 1998; see Fig. 35). These complexes are able to
carry (transfect) DNA across cell membranes for gene
therapy applications. In that sense they mimic certain
characteristics of natural viruses. Moreover, if the mem-
branes’ bending rigidity is lowered, an inverted hexago-
nal (columnar) phase can be found with a strong ten-
dency for membrane fusion (Koltover et al., 1998). New
theoretical models for the ordering in these DNA-
cationic complexes have been developed (Golubović
and Golubović, 1998; O’Hern and Lubensky, 1998) that
combine strong long-length-scale undulations of DNA
(two-dimensional smectic) with the conventional three-
dimensional undulations of the lipid bilayers. The pre-
dicted phase behavior depends on the transmembrane

FIG. 35. Schematic model of DNA ordering in a lipid mem-
brane. After Rädler et al., 1997.
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lattice interactions. It includes a new ‘‘sliding columnar’’
phase with quasi-long-range in-plane order and short-
range out-of-plane order. Some preliminary x-ray results
(Artzner et al., 1998) are consistent with this model.

In the above examples membranes were investigated
in thermodynamic equilibrium, i.e., the shape fluctua-
tions have a thermal origin. In contrast, biological mem-
branes of living cells are in a nonequilibrium steady state
with shape fluctuations governed by the activity of incor-
porated proteins. The embedded proteins serve as ion
pumps, translocating ions from one side of the mem-
brane to another. The activity of ion pumps creates
subtle undulations of the membranes, which have a non-
thermal origin. Nonequilibrium shape fluctuations in ac-
tive membranes have been studied both experimentally
(Manneville et al., 1999) and theoretically (Ramaswamy
et al., 2000). Coherent x rays could be used to investigate
the dynamics of these low-energy undulation modes.

Clearly a full discussion of the field of biomembranes
is outside the scope of this review. Nevertheless it seems
that much of the physics of smectic membranes is highly
relevant in describing the fluctuation behavior and asso-
ciated properties of biological systems.

VII. CONCLUDING REMARKS

This review has examined experimental studies
(mainly by x rays) and theoretical calculations of phase
transitions and fluctuations in smectic membranes, ac-
counting for the effects of film interfaces and reduced
dimensionality. In this context a crucial property of
smectic membranes is their thickness variation, from the
limit where the molecular interactions are three dimen-
sional to the thin-film limit where the interactions are
constrained to two dimensions. The central point with
respect to the in-plane structure is the nature of the
liquid-hexatic-crystalline phase transitions, or the devel-
opment of bond-orientational and positional correla-
tions. In spite of extensive experimental and theoretical
work, there is no definite conclusion yet regarding the
mechanism of these transitions.

Our present knowledge of the low-dimensional order-
ing and phase transitions in smectic membranes is pri-
marily based on x-ray and electron-diffraction studies.
The main features of the phases are fairly well under-
stood. Thanks to x-ray reflectivity techniques, much
progress has been made regarding the structure and dy-
namics of the layer fluctuations in smectic membranes.
However, a microscopic model that connects hydrody-
namic theory with the smectic distribution of the mo-
lecular centers of mass is still lacking. This is needed in
order to understand the behavior at large in-plane wave-
vector transfer. It would also allow a quantitative assess-
ment of the fluctuation profiles associated with
quenched or enhanced fluctuations at the surfaces of
smectic membranes.

X-ray photon correlation spectroscopy shows great
promise for increasing our knowledge of the dynamics
of smectic fluctuations. This method offers unique pos-
sibilities for studying fairly rapid dynamic processes in
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films and membranes of various types down to molecu-
lar length scales. Rapid processes at these length scales
in condensed media (107 –1012 Hz) are traditionally
studied by inelastic neutron scattering. X-ray photon
correlation spectroscopy allows us now to measure rou-
tinely rather slow processes (1022 –106 Hz) at length
scales of typically 1021 –103 nm. Recently the time
scales accessible by x-ray photon correlation spectro-
scopes have been brought down by two orders of mag-
nitude, creating overlap with neutron spin-echo meth-
ods. X-ray free-electron lasers, which are expected to be
operational within a decade, will significantly expand
upon these possibilities. Information on some of these
projects can be found on the websites http://tesla.desy.de
and http://www-ssrl.slac.stanford.edu/lcls/

The most interesting open question is probably the
applicability of the various methods (experimental and
theoretical) to membranes of biological materials. X-ray
photon correlation spectroscopy spans the time and
wave-vector range of collective mesoscopic motions that
provide a physical basis for several important biological
properties. Now that the statics and dynamics of simple
smectic systems are to some extent understood, the fluc-
tuations of related biologically relevant membrane sys-
tems provide a fascinating and still open field to be ex-
plored.
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APPENDIX: LIST OF SMECTIC COMPOUNDS

In the following we list the smectic liquid-crystalline compounds mentioned most frequently in this review, together
with the acronym used for indentification, the structural formula, and the phase sequence with transition tempera-
tures in °C. A full compilation of liquid-crystalline compounds and their phase behavior can be found in various
databases, for example, LiqCryst4.2, http://www.lci-publisher.com/liqcryst.html

1. nO.m

4O.8: Cr 33 Cr-B 48.5 Sm-A 63.5 N 78 I
5O.6: Cr 36 Cr-G 38 Sm-F 42 Cr-B 50 Sm-C 52 Sm-A 60 N 73 I
7O.7: Cr 33 Cr-G 55 Cr-B 69 Sm-C 72 Sm-A 83.7 N 84 I
9O.4: Cr 48 Cr-G 67 Sm-F 70 Sm-A 82 I

2. 7AB

Cr 32 Sm-A 53 N 70 I

3. 8CB

Cr 21.5 Sm-A 33.5 N 40.5 I
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4. nOCB

8OCB: Cr 55 Sm-A 67 N 80 I
10OCB: Cr 59 Sm-A 84 I

5. nmOBC

3(10)OBC: Cr 40 Sm-B 68 Sm-A 100 I
46OBC: Sm-B 67 Sm-A 92 I
65OBC: Cr-E 61 Sm-B 67 Sm-A 85 I
75OBC: Cr-E 59 Sm-B 67 Sm-A 81 I

6. 54COOBC

Cr-B 53 Sm-B 55 Sm-A 70 I

7. FPP

Cr 72 Sm-C 79 Sm-A 123 I

8. HPP

Cr 18 Sm-A 48 I
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