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Exact dynamical mean-field theory of the Falicov-Kimball model
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The Falicov-Kimball model was introduced in 1969 as a statistical model for metal-insulator
transitions; it includes itinerant and localized electrons that mutually interact with a local Coulomb
interaction and is the simplest model of electron correlations. It can be solved exactly with dynamical
mean-field theory in the limit of large spatial dimensions, which provides an interesting benchmark for
the physics of locally correlated systems. In this review, the authors develop the formalism for solving
the Falicov-Kimball model from a path-integral perspective and provide a number of expressions for
single- and two-particle properties. Many important theoretical results are examined that show the
absence of Fermi-liquid features and provide a detailed description of the static and dynamic
correlation functions and of transport properties. The parameter space is rich and one finds a variety
of many-body features like metal-insulator transitions, classical valence fluctuating transitions,
metamagnetic transitions, charge-density-wave order-disorder transitions, and phase separation. At
the same time, a number of experimental systems have been discovered that show anomalies related
to Falicov-Kimball physics [including YbInCu4 , EuNi2(Si12xGex)2 , NiI2 , and TaxN].
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I. INTRODUCTION

A. Brief history

The Falicov-Kimball model (Falicov and Kimball,
1969) was introduced in 1969 to describe metal-insulator
transitions in a number of rare-earth and transition-
metal compounds [but see Hubbard’s earlier work (Hub-
bard, 1963) where the spinless version of the Falicov-
Kimball model was introduced as an approximate
solution to the Hubbard model; one assumes that one
species of spin does not hop and is frozen on the lattice].
The initial work by Falicov and collaborators focused
primarily on analyzing the thermodynamics of the
metal-insulator transition with a static mean-field-theory
approach (Falicov and Kimball, 1969; Ramirez et al.,
1970). The resulting solutions displayed both continuous
and discontinuous metal-insulator phase transitions, and
they could fit the conductivity of a wide variety of
transition-metal and rare-earth compounds with their
results. Next, Ramirez and Falicov (1971) applied the
model to describe the a2g phase transition in cerium.
Again, a number of thermodynamic quantities were ap-
proximated well by the model, but it did not display any
effects associated with Kondo screening of the f elec-
trons [and subsequently was discarded in favor of the
Kondo volume collapse picture (Allen and Martin,
1982)].

Interest in the model waned once Plischke (1972)
showed that when the coherent-potential approximation
(Soven, 1967; Velický et al., 1968) was applied to it, all
first-order phase transitions disappeared and the solu-
©2003 The American Physical Society3
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tions only displayed smooth crossovers from a metal to
an insulator [this claim was strongly refuted by Falicov’s
group (Gonçalves da Silva and Falicov, 1972) but inter-
est in the model was limited for almost 15 years].

The field was revitalized by mathematical physicists in
the mid 1980s, who realized that the spinless version of
this model is the simplest correlated electronic system
that displays long-range order at low temperatures and
for dimensions greater than one. Indeed, two groups
produced independent proofs of the long-range order
(Brandt and Schmidt, 1986, 1987; Kennedy and Lieb,
1986; Lieb, 1986). In their work, Kennedy and Lieb re-
discovered Hubbard’s original approximation that yields
the spinless Falicov-Kimball (FK) model, and also pro-
vided a new interpretation of the model for the physics
of crystallization. A number of other exact results fol-
lowed including (i) a proof of no quantum-mechanical
mixed valence (or spontaneous hybridization) at finite T
(Subrahmanyam and Barma, 1988) based on the pres-
ence of a local gauge symmetry and Elitzur’s theorem
(Elitzur, 1975); (ii) proofs of phase separation and of
periodic ordering in one dimension (with large interac-
tion strength; Lemberger, 1992); (iii) proofs about
ground-state properties in two dimensions (also at large
interaction strength; Kennedy, 1994, 1998; Haller, 2000;
Haller and Kennedy, 2001); (iv) a proof of phase sepa-
ration in one dimension and small interaction strength
(Freericks et al., 1996); and (v) a proof of phase separa-
tion for large interaction strength and all dimensions
(Freericks et al., 2002a, 2002b). Most of these rigorous
results have already been summarized in reviews (Gru-
ber and Macris, 1996; Gruber, 1999). In addition, a series
of numerical calculations were performed in one and
two dimensions (Freericks and Falicov, 1990; de Vries
et al., 1993, 1994; Michielsen, 1993; Gruber et al., 1994;
Watson and Lemański, 1995; Lemański, Freericks, and
Banach, 2002). While not providing complete results for
the model, the numerics do illustrate a number of impor-
tant trends in the physics of the FK model.

At about the same time, there was a parallel develop-
ment of the dynamical mean-field theory (DMFT),
which is what we concentrate on in this review. The
DMFT was invented by Metzer and Vollhardt (1989).
Almost immediately after the idea that in large spatial
dimensions the self-energy becomes local, Brandt and
collaborators showed how to solve the static problem
exactly (requiring no quantum Monte Carlo), thereby
providing the exact solution of the Falicov-Kimball
model (Brandt and Mielsch, 1989, 1990, 1991; Brandt
et al., 1990; Brandt and Fledderjohann, 1992; Brandt and
Urbanek, 1992). This work is the extension of Onsager’s
famous solution for the transition temperature of the
two-dimensional Ising model to the fermionic case (and
large dimensions). These series of papers revolutionized
Falicov-Kimball-model physics and provided the only
exact quantitative results for electronic phase transitions
in the thermodynamic limit for all values of the interac-
tion strength. They showed how to solve the infinite-
dimensional DMFT model, illustrated how to determine
the order-disorder transition temperature for a checker-
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board (and incommensurate) charge-density-wave
phase, showed how to find the free energy (including a
first study of phase separation), examined properties of
the spin-one-half model, and calculated the f-particle
spectral function.

Further work concentrated on static properties such
as charge-density-wave order (van Dongen and Voll-
hardt, 1990; van Dongen, 1991a, 1992; Freericks, 1993a,
1993b; Gruber et al., 2001; Chen, Jones, and Freericks,
2003) and phase separation (Freericks et al., 1999; Let-
fulov, 1999; Freericks and Lemański, 2000). The original
Falicov-Kimball problem of the metal-insulator transi-
tion (Chung and Freericks, 1998) was solved, as was the
problem of classical intermediate valence (Chung and
Freericks, 2000), both using the spin-one-half generali-
zation (Brandt et al., 1990; Freericks and Zlatić, 1998).
The ‘‘Mott-like’’ metal-insulator transition (van Dongen
and Leinung, 1997; Kalinowski and Gebhard, 2002) and
the non-Fermi-liquid behavior (Si et al., 1992) were also
investigated. Dynamical properties and transport have
been determined ranging from the charge susceptibility
(Freericks and Miller, 2000; Shvaika, 2000, 2001), to the
optical conductivity (Moeller et al., 1992), to the Raman
response (Freericks and Devereaux, 2001a, 2001b;
Freericks, Devereaux, and Bulla, 2001; Devereaux et al.,
2003a, 2003b), to an evaluation of the f spectral function
(Brandt and Urbanek, 1992; Si et al., 1992; Zlatić et al.,
2001). Finally, the static susceptibility for spontaneous
polarization was also determined (Subrahmanyam and
Barma, 1988; Si et al., 1992; Portengen et al., 1996a,
1996b; Zlatić et al., 2001).

These solutions have allowed the FK model to be ap-
plied to a number of different experimental systems
ranging from valence-change-transition materials (Zlatić
and Freericks, 2001a, 2001b, 2003a, 2003b) like YbInCu4
and EuNi2(Si12xGex)2 , to materials that can be doped
through a metal-insulator transition like TaxN [used as a
barrier in Josephson junctions (Freericks, Nikolić, and
Miller, 2001, 2002, 2003a, 2003b, 2003c; Miller and Fre-
ericks, 2001)], to Raman scattering in materials on the
insulating side of the metal-insulator transition (Freer-
icks and Devereaux, 2001b) like FeSi or SmB6 . The
model, and some straightforward modifications appro-
priate for double exchange, has been used to describe
the colossal magnetoresistance materials (Allub and
Alascio, 1996, 1997; Letfulov and Freericks, 2001;
Ramakrishnan et al., 2003).

Generalizations of the FK model to the static Holstein
model were first carried out by Millis et al. (1995, 1996)
and also applied to the colossal magnetoresistance ma-
terials. Later more fundamental properties were worked
out, relating to the transition temperature for the har-
monic (Ciuchi and de Pasquale, 1999; Blawid and Millis,
2000) and anharmonic cases (Freericks et al., 2000), and
relating to the gap ratio for the harmonic (Blawid and
Millis, 2001) and anharmonic cases (Freericks and Zla-
tić, 2001a). Modifications to examine diluted magnetic
semiconductors have also appeared (Chattopadhyay
et al., 2001; Hwang et al., 2002). A new approach to
DMFT, which allows the correlated hopping Falicov-
Kimball model to be solved has also been presented re-
cently (Schiller, 1999; Shvaika, 2003).
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B. Hamiltonian and its symmetries

The Falicov-Kimball model is the simplest model of
correlated electrons. The original version (Falicov and
Kimball, 1969) involved spin-one-half electrons. Here,
we shall generalize to the case of an arbitrary degen-
eracy of the itinerant and localized electrons. The gen-
eral Hamiltonian is then
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The symbols cis
† and cis denote the itinerant-electron

creation and annihilation operators, respectively, at site i
in state s (the index s takes 2s11 values). Similarly, the
symbols f ih

† and f ih denote the localized-electron cre-
ation and annihilation operators at site i in state h (the
index h takes 2S11 values). Customarily, we identify
the index s and h with the z component of spin, but the
index could denote other quantum numbers in more
general cases. The first term is the kinetic energy (hop-
ping) of the conduction electrons (with t denoting the
nearest-neighbor hopping integral); the summation is
over nearest-neighbor sites i and j (we count each pair
twice to guarantee hermiticity). The second term is the
localized-electron site energy, which we allow to depend
on the index h to include crystal-field effects (without
spin-orbit coupling for simplicity); in most applications
the site energy is taken to be h independent. The third
term is the Falicov-Kimball interaction term (of strength
U), which represents the local Coulomb interaction
when itinerant and localized electrons occupy the same
lattice site. We could make U depend on s or h, but this
complicates the formulas and is not normally needed.
The fourth term is the ff Coulomb interaction energy of
strength Uhh8

ff , which can be chosen to depend on h if
desired; the term with h5h8 is unnecessary and can be
absorbed into Efh . Finally, the fifth and sixth terms rep-
resent the magnetic energy due to the interaction with
an external magnetic field H , with mB the Bohr magne-
ton, g (gf) the respective Landé g factors, and ms (mh)
the z component of spin for the respective states.
Chemical potentials m and m f are employed to adjust the
itinerant- and localized-electron concentrations by sub-
tracting mN and m fNf , respectively, from H (in cases
where the localized particle is fixed independently of the
itinerant-electron concentration, the localized-particle
chemical potential m f can be absorbed into the site en-
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
ergy Ef ; in cases where the localized particles are elec-
trons, they share a common chemical potential with the
conduction electrons m5m f).

The spinless case corresponds to the case in which s
5S50 and there is no ff interaction term because of the
Pauli exclusion principle. The original Falicov-Kimball
model corresponds to the case in which s5S51/2, with
spin-one-half electrons for both itinerant and localized
cases (and the limit Uff→`).

The Hamiltonian in Eq. (1) possesses a number of
different symmetries. The partial particle-hole symmetry
holds on a bipartite lattice in no magnetic field (H
50), where the lattice sites can be organized into two
sublattices A and B , and the hopping integral only con-
nects different sublattices. In this case, one performs a
partial particle-hole symmetry transformation on either
the itinerant or localized electrons (Kennedy and Lieb,
1986). The transformation includes a phase factor of
(21) for electrons on the B sublattice. When the partial
particle-hole transformation is applied to the itinerant
electrons,

cis→cis
h†~21 !p(i), (2)

with p(i)50 for iPA and p(i)51 for iPB and h de-
noting the hole operators, then the Hamiltonian maps
onto itself (when expressed in terms of the hole opera-
tors for the itinerant electrons), up to a numerical shift,
with U→2U , Efh→Efh1U , and m→2m . When ap-
plied to the localized electrons,

f ih→f ih
h†~21 !p(i), (3)

the Hamiltonian maps onto itself (when expressed in
terms of the hole operators for the localized electrons),
up to a numerical shift with U→2U , m→m1U , Efh

→2Efh2(h8Uhh8
ff

2(h8Uh8h
ff , and m f→2m f .

These particle-hole symmetries are particularly useful
when Efh50, (h8Uhh8

ff does not depend on h, and we
work in the canonical formalism with fixed values of re
and r f , the total itinerant- and localized-electron densi-
ties. Then, one can show that the ground-state energies
of H are simply related,

Eg .s .~re ,r f ,U !5Eg .s .~2s112re ,r f ,2U !

5Eg .s .~re,2S112r f ,2U !

5Eg .s .~2s112re,2S112r f ,U ! (4)

(up to constant shifts or shifts proportional to re or r f),
and one can restrict the phase space to re<s1 1

2 and r f
<S1 1

2 .
When one or more of the Coulomb interactions are

infinite, there are additional symmetries to the Hamil-
tonian (Freericks et al., 1999, 2002b). When all UhÞh8

ff

5` , then we are restricted to the subspace r f<1. This
system is formally identical to the case of spinless local-
ized electrons, and we shall develop a full solution of
this limit using DMFT below. The extra symmetry is pre-
cisely that of Eq. (4), but now with S50 (regardless of
the number of h states). Similarly, when both UhÞh8

ff

5` and U5` , then Eq. (4) holds for s5S50 as well
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(regardless of the number of s and h states). These
infinite-U symmetries are also related to particle-hole
symmetry, but now restricted to the lowest Hubbard
band in the system, since all upper Hubbard bands are
pushed out to infinite energy.

The Falicov-Kimball model also possesses a local sym-
metry, related to the localized particles. One can easily
show that @H,f ih

† f ih#50, implying that the local occu-
pancy of the f electrons is conserved. Indeed, this leads
to a local U(1) symmetry, as the phase of the localized
electrons can be rotated at will, without any effect on
the Hamiltonian. Because of this local gauge symmetry,
Elitzur’s theorem requires that there be no quantum-
mechanical mixing of the f-particle number at finite tem-
perature (Elitzur, 1975; Subrahmanyam and Barma,
1988), hence the system can never develop a spontane-
ous hybridization (except possibly at T50).

There are a number of different ways to provide a
physical interpretation of the Falicov-Kimball model. In
the original idea (Falicov and Kimball, 1969), we think
of having itinerant and localized electrons that can
change their statistical occupancy as a function of tem-
perature (maintaining a constant total number of elec-
trons). This is the interpretation that leads to a metal-
insulator transition due to the change in the occupancy
of the different electronic levels, rather than via a
change in the character of the electronic states them-
selves (the Mott-Hubbard approach). Another interpre-
tation (Kennedy and Leib, 1986) is to consider the local-
ized particles as ions, which have an attractive
interaction with the electrons. Then one can examine
how the Pauli principle forces the system to minimize its
energy by crystallizing into a periodic arrangement of
ions and electrons (as seen in nearly all condensed-
matter systems at low temperature). Finally, we can map
onto a binary alloy problem (Freericks and Falicov,
1990), where the presence of an ‘‘ion’’ denotes the A
species, and the absence of an ‘‘ion’’ denotes a B species,
with U becoming the difference in site energies for an
electron on an A or a B site. In these latter two inter-
pretations, the localized particle number is always a con-
stant, and a canonical formalism is most appropriate. In
the first interpretation, a grand canonical ensemble is
the best approach, with a common chemical potential
(m5m f) for the itinerant and localized electrons.

In addition to the traditional Falicov-Kimball model,
in which conduction electrons interact with a discrete set
of classical variables (the localized electron-number op-
erators), there is another class of static models that can
be solved using the same kind of techniques—the static
anharmonic Holstein model (Holstein, 1959; Millis et al.,
1995). This is a model of classical phonons interacting
with conduction electrons and can be viewed as replac-
ing the discrete spin variable of the FK model by a con-
tinuous classical field. The phonon is an Einstein mode,
with infinite mass (and hence zero frequency), but non-
zero spring constant. One can add any form of local an-
harmonic potential for the phonons into the system as
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
well. The Hamiltonian becomes (in the spin-one-half
case for the conduction electrons, with one phonon
mode per site)

HHol52t (
^ij&s

cis
† cjs1gep(

is
xi~cis

† cis2res!

1
1
2

k(
i
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21ban(

i
xi

31aan(
i
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4 , (5)

where, for concreteness, we assumed a quartic phonon
potential. The phonon coordinate at site i is xi , gep is
the electron-phonon interaction strength (the so-called
deformation potential), and the coefficients ban and aan
measure the strength of the (anharmonic) cubic and
quartic contributions to the local phonon potential. Note
that the phonon couples to the fluctuations in the local
electronic charge (rather than the total charge). This
makes no difference for a harmonic system, where the
shift in the phonon coordinate can always be absorbed,
but it does make a difference for the anharmonic case,
where such shifts cannot be transformed away. The
particle-hole symmetry of this model is similar to that of
the discrete Falicov-Kimball model, described above,
except the particle-hole transformation on the phonon
coordinate requires us to send xi→2xi . Hence the pres-
ence of a cubic contribution to the phonon potential
banÞ0 breaks the particle-hole symmetry of the system
(Hirsch, 1993); in this case the phase diagram is not sym-
metric about half filling for the electrons. We shall dis-
cuss some results of the static Holstein model, but we
shall not discuss any further extensions (such as includ-
ing double exchange for colossal magnetoresistance ma-
terials or including interactions with classical spins to
describe diluted magnetic semiconductors).

C. Outline of the review

The Falicov-Kimball model and the static Holstein
model become exactly solvable in the limit of infinite
spatial dimensions (or equivalently when the coordina-
tion number of the lattice becomes large). This occurs
because both the self-energy and the (relevant) irreduc-
ible two-particle vertices are local. The procedure in-
volves a mapping of the infinite-dimensional lattice
problem onto a single-site impurity problem in the pres-
ence of a time-dependent (dynamical) mean field. The
path integral for the partition function can be evaluated
exactly via the so-called ‘‘static approximation’’ in an
arbitrary time-dependent field. Hence the problem is re-
duced to one of ‘‘quadratures’’ to determine the correct
self-consistent dynamical mean field for the quantum
system. One can next employ the Baym-Kadanoff con-
serving approach to exactly determine the self-energies
and the irreducible charge vertices (both static and dy-
namic). Armed with these quantities, one can calculate
essentially all many-body correlation functions imagin-
able, ranging from static charge-density order to a dy-
namical Raman response. Finally, one can also calculate
the properties of the f-electron spectral function, and
with that, one can calculate the susceptibility for spon-
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taneous hybridization formation. The value of the
Falicov-Kimball model lies in the fact that all of these
many-body properties can be determined exactly and
thereby form a useful benchmark for the properties of
correlated electronic systems.

In Sec. II, we review the formalism that develops the
exact solution for all of these different properties em-
ploying DMFT. Our attempt is to provide all details of
the most important derivations, and summarizing formu-
las for some of the more complicated results, which are
treated fully in the literature. We believe that this review
provides a useful starting point for interested research-
ers to understand that literature. Section III presents a
summary of the results for a number of different prop-
erties of the model, concentrating mainly on the spinless
and spin-one-half cases. In Sec. IV, we provide a number
of examples in which the Falicov-Kimball model can be
applied to model real materials, concentrating mainly on
valence-change systems like YbInCu4 . We discuss a
number of interesting new directions in Sec. V, followed
by our conclusions in Sec. VI.

II. FORMALISM

A. Limit of infinite spatial dimensions

In 1989, Metzner and Vollhardt demonstrated that the
many-body problem is simplified in the limit of large
dimensions (Metzner and Vollhardt, 1989); equivalently,
this observation could be noted to be a simplification
when the coordination number Z on a lattice becomes
large. Such ideas find their origin in the justification of
the inverse coordination number 1/Z as the small pa-
rameter governing the convergence of the coherent-
potential approximation (Schwartz and Siggia, 1972).
Metzner and Vollhardt (1989) introduced an important
scaling of the hopping matrix element,

t5t* /2Ad5t* /A2Z , (6)

where d is the spatial dimension. In the limit where d
→` , the hopping to nearest neighbors vanishes, but the
coordination number becomes infinite—this is the only
scaling that produces a nontrivial electronic density of
states in the large-dimensional limit. Since there is a
noninteracting ‘‘band,’’ one can observe the effects of
the competition of kinetic-energy delocalization with
potential-energy localization, which forms the crux of
the many-body problem. Hence this limit provides an
example of exact solution of the many-body problem,
and these solutions can be analyzed for correlated-
electron behavior.

Indeed, the central-limit theorem shows that the non-
interacting density of states on a hybercubic lattice
rhyp(e) satisfies (Metzner and Vollhardt, 1989)

rhyp~e!5
1

t* ApVuc

exp~2e2/t* 2!, (7)

which follows from the fact that the band structure is a
sum of cosines, which are distributed between 21 and 1
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for a ‘‘general’’ wave vector in the Brillouin zone (here
Vuc is the volume of the unit cell, which we normally
take to be equal to 1). Adding together d cosines will
produce a sum that typically grows like Ad , which is why
the hopping is chosen to scale like 1/Ad . The central-
limit theorem then states that the distribution of these
energies is in a Gaussian. [An alternate derivation rely-
ing on tight-binding Green’s functions and the properties
of Bessel functions can be found in Müller-Hartmann
(1989a).] Another common lattice that is examined is
the infinite-coordination Bethe lattice, which can be
thought of as the interior of a large Cayley tree. The
noninteracting density of states is (Economou, 1983)

rBethe~e!5
1

2pt* 2Vuc
A4t* 22e2, (8)

where we used the number of neighbors Z54d and the
scaling in Eq. (6).

The foundation for DMFT comes from two facts: first
the self-energy is a local quantity, possessing temporal
but not spatial fluctuations, and second it is a functional
of the local interacting Green’s function. These observa-
tions hold for any ‘‘impurity’’ model as well, where the
self-energy can be extracted by a functional derivative of
the Luttinger-Ward skeleton expansion for the self-
energy generating functional (Luttinger and Ward,
1960). Hence a solution of the impurity problem pro-
vides the functional relationship between the Green’s
function and the self-energy. A second relationship is
found from Dyson’s equation, which expresses the local
Green’s function as a summation of the momentum-
dependent Green’s functions over all momenta in the
Brillouin zone. Since the self-energy has no momentum
dependence, this relation is a simple integral relation
(called the Hilbert transformation) of the noninteracting
density of states. Combining these two ideas in a self-
consistent fashion provides the basic strategy of DMFT.

For the Falicov-Kimball model, we need to establish
these two facts. The locality of the self-energy is estab-
lished most directly from an examination of the pertur-
bation series, where one can show nonlocal self-energies
are smaller by powers of 1/Ad . The skeleton expansion
for the self-energy (determined by the functional deriva-
tive of the Luttinger-Ward self-energy generating func-
tional with respect to G), appears in Fig. 1 through
fourth order in U . This expansion is identical to the ex-
pansion for the Hubbard model, except we explicitly
note the localized and itinerant Green’s functions
graphically. Since the localized-electron propagator is lo-
cal, i.e., has no off-diagonal spatial components, many of
the diagrams in Fig. 1 are also purely local. The only
nonlocal diagrams through fourth order are the first dia-
grams in the second and third rows. If we suppose i and
j correspond to nearest neighbors, then we immediately
conclude that the diagram has three factors of Gij

}1/Ad3 (each 1/Ad factor comes from t ij). Summing
over all of the 2d nearest neighbors still produces a re-
sult that scales like 1/Ad in the large-dimensional limit,
which vanishes. A similar argument can be extended to
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all nonlocal diagrams (Brandt and Mielsch, 1989;
Metzner, 1991). Hence the self-energy is local in the
infinite-dimensional limit. The functional dependence
on the local Green’s function then follows from the skel-
eton expansion, restricted to the local self-energy (i
5j).

B. Single-particle properties (itinerant electrons)

We start our analysis by deriving the set of equations
satisfied by the single-particle lattice Green’s function
for the itinerant electrons defined by the time-ordered
product

Gijs~t!52
1

ZL
Trcf^e2b(H2mN2mfNf)Ttcis~t!cjs

† ~0 !&,

(9)

where b51/T is the inverse temperature, 0<t<b is the
imaginary time, ZL is the lattice partition function, N is
the total itinerant-electron number, Nf is the total
localized-electron number, and Tt denotes imaginary
time ordering (earlier times to the right). The time de-
pendence of the electrons is

FIG. 1. Skeleton expansion for the itinerant-electron self-
energy S ij through fourth order. The wide solid lines denote
itinerant-electron Green’s functions and the thin solid lines de-
note localized-electron Green’s functions; the dotted lines de-
note the Falicov-Kimball interaction U . The series is identical
to that of the Hubbard model, except we must restrict the
localized-electron propagator to be diagonal in real space
(which reduces the number of off-diagonal diagrams signifi-
cantly). The first diagrams in the second and third rows are the
only diagrams that contribute when iÞj for the Falicov-
Kimball model.
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cis~t!5et(H2mN)cis~0 !e2t(H2mN), (10)

and the trace is over all of the itinerant and localized
electronic states. It is convenient to introduce a path-
integral formulation using Grassman variables c̄ is(t)
and c is(t) for the itinerant electrons at site i with spin
s. Using the Grassman form for the coherent states then
produces the path integral

Gijs~t!52
1

ZL
Trfe

2b(Hf2mfNf)

3E Dc̄Dcc is~t!c̄ js~0 !e2SL
(11)

for the Green’s function, where Hf denotes the
f-electron-only piece of the Hamiltonian, corresponding
to the second, fourth, and sixth terms in Eq. (1). The
lattice action associated with the Hamiltonian in Eq. (1)
is

SL5(
ij

(
s51

2s11 E
0

b

dt8c̄ is~t8!

3F d ij

]

]t8
2

t ij*

2Ad
1d ij~UNfi2m2gmBHms!G

3c js~t8!, (12)

with Nfi the total number of f electrons at site i . Since
the Grassman variables are antiperiodic on the interval
0<t<b , we can expand them in Fourier modes, in-
dexed by the fermionic Matsubara frequencies ivn
5ipT(2n11):

c is~t!5T (
n52`

`

e2ivntc is~ ivn! (13)

and

c̄ is~t!5T (
n52`

`

eivntc̄ is~ ivn!. (14)

In terms of this new set of Grassman variables, the lat-
tice action becomes SL5T(n52`

` Sn
L , with

Sn
L5(

ij
(
s51

2s11 F ~2ivn2m2gmBHms1UNfi!d ij

2
t ij*

2Ad
G c̄ is~ ivn!c js~ ivn! (15)

and the Fourier component of the local Green’s function
becomes

Giis~ ivn!5E
0

b

dteivntGiis~t!

52
T

ZL
Trfe

2b(Hf2mfNf)

3E Dc̄Dcc is~ ivn!c̄ is~ ivn!e2T(n8S
n8
L

.

(16)
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Now we are ready to begin the derivation of the
DMFT equations for the Green’s functions. We start
with the many-body-variant of the cavity method
(Georges et al., 1996; Gruber et al., 2001), where we
separate the path integral into pieces that involve site i
only and all other terms. The action is then broken into
three pieces: (i) the local piece at site i , Sn(i ,i); (ii) the
piece that couples to site i , Sn(i ,j); and the piece that
does not involve site i at all, Sn(cavity), called the cavity
piece. Hence

Sn
L5Sn~ i ,i !1Sn~ i ,j !1Sn~cavity! (17)

with

Sn~ i ,i !5 (
s51

2s11

~2ivn2m2gmBHms1UNfi!

3c̄ is~ ivn!c is~ ivn!, (18)
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Sn~ i ,j !52 (
j ,t ij* Þ0

(
s51

2s11 t ij*

2Ad

3@c̄ is~ ivn!c js~ ivn!1c̄ js~ ivn!c is~ ivn!# ,

(19)

and

Sn~cavity!5Sn
L2Sn~ i ,i !2Sn~ i ,j !. (20)

Let Zcavity and ^2&cavity denote the partition function
and path-integral average associated with the cavity ac-
tion Scavity5T(nSn(cavity) (the path-integral average
for the cavity is divided by the cavity partition function).
Then the Green’s function can be written as
Giis~ ivn!52T
Zcavity

ZL
Trfe

2b(Hf2mfNf)E Dc̄ iDc ic is~ ivn!c̄ is~ ivn!e2T(
n952`

`
Sn9(i ,i)

3K expH T (
n852`

`

(
j ,t ij* Þ0

(
s851

2s11 t ij*

2Ad
@c̄ is8~ ivn8!c js8~ ivn8!1c̄ js8~ ivn8!c is8~ ivn8!#J L

cavity

. (21)
A simple power-counting argument shows that only the
second moment of the exponential factor in the cavity
average contributes as d→` (Georges et al., 1996),
which then becomes

Giis~ ivn!52T
Zcavity

ZL
Trfe

2b(Hf2mfNf)

3E Dc̄ iDc ic is~ ivn!c̄ is~ ivn!

3expFT (
n852`

`

(
s851

2s11

$ivn81m

1gmBHms82UNfi

2l is8~ ivn8!%c̄ is8~ ivn8!c is8~ ivn8!G ,

(22)

with l is(ivn) the function that results from the second-
moment average that is called the dynamical mean field.
On a Bethe lattice, one finds l is(ivn)5t* 2Giis(ivn),
while on a general lattice, one finds l is(ivn)
5( jkt ijt ik@Gjks(ivn)2Gjis(ivn)Giks(ivn) / Giis(ivn)#
(Georges et al., 1996). But the exact form is not impor-
tant for deriving the DMFT equations. Instead we sim-
ply need to note that after integrating over the cavity, we
find an impurity path integral for the Green’s function
(after defining the impurity partition function via Zimp
5ZL /Zcavity),
Giis~ ivn!52
] ln Zimp

]l is~ ivn!
,

Zimp5Trfe
2b(Hf2mfNf)E Dc̄ iDc i

3expFT (
n52`

`

(
s51

2s11

$ivn1m1gmBHms

2UNfi2l is~ ivn!%c̄ is~ ivn!c is~ ivn!G . (23)

The impurity partition function is easy to calculate be-
cause the effective action is quadratic in the Grassman
variables. Defining Z0s(m) by

Z0s~m!52ebm/2 )
n52`

`
ivn1m2lns

ivn
, (24)

where we used the notation lns5l is(ivn) and adjusted
the prefactor to give the noninteracting result, allows us
to write the partition function as

Zimp5Trf exp@2b~Hfi2m fNfi!#

3 )
s51

2s11

Z0s~m1gmBHms2UNfi!. (25)

Here Z0s(m1gmBHms) is the generating functional for
the U50 impurity problem and satisfies the relation
Z0s5DetG0s

21 , with G0s
21 defined below in frequency

space in Eq. (29) and a proper regularization introduced
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to reproduce the l50 partition function. It is cumber-
some to write out the trace over the fermionic states in
Eq. (25) for the general case. The spin-one-half case ap-
pears in Brandt et al. (1990). Here we consider only the
strong-interaction limit, where UhÞh8

ff →` , so that there
is no double occupancy of the f electrons. In this case we
find

Zimp5 )
s51

2s11

Z0s~m1gmBHms!

1 (
h51

2S11

e2b(Efh2mf2gfmBHmh)

3 )
s51

2s11

Z0s~m1gmBHms2U !. (26)

Evaluating the derivative yields

Gns5
w0

ivn1m1gmBHms2lns

1
w1

ivn1m1gmBHms2lns2U
, (27)

with

w05 )
s51

2s11

Z0s~m1gmBHms!/Zimp , (28)

and w1512w0 . The weight w1 equals the average
f-electron concentration r f . If we relaxed the restriction
UhÞh8

ff →` , then we would have additional terms corre-
sponding to wi , with 1,i<2S11. Defining the effective
medium (or bare Green’s function) via

@G0s~ ivn!#215ivn1m1gmBHms2lns (29)

allows us to reexpress Eq. (27) as

Gns5
w0

G0s
21~ ivn!

1
w1

G0s
21~ ivn!2U

, (30)

which is a form that often appears in the literature. Dy-
son’s equation for the impurity self-energy is

Sns5Ss~ ivn!5@G0s~ ivn!#212@Gs~ ivn!#21. (31)

This impurity self-energy is equated with the local self-
energy of the lattice (since they satisfy the same skeleton
expansion with respect to the local Green’s function).
We can calculate the local Green’s function directly from
this self-energy by performing a spatial Fourier trans-
form of the momentum-dependent Green’s function on
the lattice:

Gns5(
k

Gns~k!

5(
k

1
ivn1m1gmBHms2Sns2ek

5E der~e!
1

ivn1m1gmBHms2Sns2e
, (32)
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where ek is the noninteracting band structure. This rela-
tion is called the Hilbert transformation of the noninter-
acting density of states. Equating the Green’s function in
Eq. (32) to that in Eq. (30) is the self-consistency rela-
tion of DMFT. Substituting Eq. (31) into Eq. (30) to
eliminate the bare Green’s function produces a qua-
dratic equation for the self-energy, solved by Brandt and
Mielsch (1989, 1990),

Sns5
1
2 FU2

1
Gns

6AS U2
1

Gns
D 2

14w1

U

Gns
G ,

(33)

which is the exact summation of the skeleton expansion
for the self-energy in terms of the interacting Green’s
function (the sign in front of the square root is chosen to
preserve the analyticity of the self-energy). Note that,
because w1 is a complicated functional of Gn and Sn ,
Eq. (33) actually corresponds to a highly nonlinear func-
tional relation between the Green’s function and the
self-energy.

There are two independent strategies that one can
employ to calculate the FK-model Green’s functions.
The original method of Brandt and Mielsch is to substi-
tute Eq. (33) into Eq. (32), which produces a transcen-
dental equation for Gns in the complex plane (for fixed
w1 ; Brandt and Mielsch, 1989, 1990). This equation can
be solved by a one-dimensional complex root-finding
technique, typically Newton’s method or Mueller’s
method, as long as one pays attention to maintaining the
analyticity of the self-energy by choosing the proper sign
for the square root. For large U , the sign changes at a
critical value of the Matsubara frequency (Freericks,
1993a). The other technique is the iterative technique
first introduced by Jarrell (1992), which is the most com-
monly used method. One starts the algorithm either with
Sns50 or with it chosen appropriately from an earlier
calculation. Evaluating Eq. (32) for Gns then allows one
to calculate G0 from Eq. (31). If we work at fixed chemi-
cal potential and fixed Ef , then we must determine w0
and w1 from Eq. (28); this step is not necessary if w0 and
w1 are fixed in a canonical ensemble. Equation (30) is
employed to find the new Green’s function, and Eq. (31)
is used to extract the new self-energy. The algorithm
then iterates to convergence by starting with this new
self-energy. Typically, the algorithm converges to eight
decimal points in less than 100 iterations, but for some
regions of parameter space the equations can either con-
verge very slowly or not converge at all. Convergence
can be accelerated by averaging the last iteration with
the new result for determining the new self-energy, but
there are regions of parameter space where the iterative
technique does not appear to converge.

Once w0 , w1 , and m are known from the imaginary-
axis calculation, one can employ the analytic continua-
tion of Eqs. (30)–(32) (with ivn→v1i01) to calculate
Gs(v) on the real axis. In general, the convergence is
slower on the real axis than on the imaginary axis, with
the spectral weight slowest to converge near correlation-
induced ‘‘band edges.’’ A stringent consistency test of
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this technique is a comparison of the Green’s function
calculated directly on the imaginary axis to that found
from the spectral formula

Gs~z !5E dv
As~v!

z2v1i01 , (34)

with

As~v!5E der~e!As~e ,v!, (35)

and

As~e ,v!52
1
p

Im
1

v1m1gmBHms2Ss~v!2e1i01

(36)

[the infinitesimal 01 is needed only when Im Ss(v)50].
Note that this definition of the interacting density of
states has the chemical potential located at v50.

In zero magnetic field, one need perform these calcu-
lations only for one s state, since all Gns’s are equal, but
in a magnetic field one must perform 2s11 parallel cal-
culations to determine the Gns’s.

Our derivation of the single-particle Green’s functions
has followed a path-integral approach throughout. One
could have used an equation-of-motion approach in-
stead. This technique has been reviewed by Zlatić et al.
(2001).

The formalism for the static Holstein model is similar
(Millis et al., 1996). Taking h to be a continuous variable
(x) and H50, we find

Zimp5E
2`

`

dx )
s51

2s11

Z0s~m2gepx !

3expF2bS 1
2

kx21banx31aanx4D G , (37)

Gns5E
2`

`

dx
w~x !

ivn1m2gepx2lns
, (38)

and

w~x !5 )
s51

2s11

Z0s~m2gepx !

3expF2bS 1
2

kx21banx31aanx4D G Y Zimp .

(39)

Equations (37)–(39) and Eqs. (31) and (32) are all that
are needed to determine the Green’s functions by using
the iterative algorithm.

The final single-particle quantity of interest is the
Helmholtz free energy per lattice site FHelm . . We re-
strict our discussion to the case of zero magnetic field
H50 and to Efh5Ef (no h dependence to Ef). There
are two equivalent ways to calculate the free energy. The
original method uses the noninteracting functional form
for the free energy, with the interacting density of states
A(e) replacing the noninteracting density of states r(e)
(Ramirez et al., 1970; Plischke, 1972),
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FHelm .~ lattice!5~2s11 !E def~e!A~e!~e1m!

1Efnf1~2s11 !TE de$f~e!ln f~e!

1@12f~e!#ln@12f~e!#%A~e!

1T@w1 ln w11w0 ln w0

2w1 ln~2S11 !# , (40)

where f(e)51/@11exp(be)# is the Fermi-Dirac distribu-
tion function. This form has the itinerant-electron en-
ergy (plus interactions) and the localized-electron en-
ergy on the first line [the shift by m is needed because
A(e) is defined to have e50 lie at the chemical poten-
tial m], the itinerant-electron entropy on the second and
third lines, and the localized-electron entropy on the
fourth and fifth lines. Note that the total energy does not
need the standard many-body correction to remove
double counting of the interaction because the localized
particles commute with the Hamiltonian (Fetter and
Walecka, 1971).

The Brandt-Mielsch approach is different (Brandt and
Mielsch, 1991) and is based on the equality of the impu-
rity and the lattice Luttinger-Ward self-energy generat-
ing functionals F. A general conserving analysis (Baym,
1962) shows that the lattice free energy satisfies

FHelm .~ lattice!5TF latt2T(
ns

SnsGns

1T(
ns

E der~e!

3lnF 1
ivn1m1gmBHms2Sns2eG

1mre1m fw1 (41)

while the impurity (or atomic) free energy satisfies
(Brandt and Mielsch, 1991)

FHelm .~ impurity!5TF imp2T(
ns

SnsGns

1T(
ns

ln Gns1mre1m fw1 .

(42)

The first two terms on the right-hand side of Eqs. (41)
and (42) are equal, so we immediately learn that

FHelm .~ lattice!52T ln Zimp2T(
ns

E der~e!

3ln@~ ivn1m1gmBHms2Sns

2e!Gns#1mre1m fw1 (43)

since FHelm .(impurity)52T ln Zimp1mre1m fw1 . The
equivalence of Eqs. (40) and (43) has been explicitly
shown (Shvaika and Freericks, 2003). When calculating
these terms numerically, one needs to use caution to en-
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sure that sufficient Matsubara frequencies are employed
to guarantee convergence of the summation in Eq. (43).

C. Static charge, spin, or superconducting order

The FK model undergoes a number of different phase
transitions as a function of the parameters of the system.
Many of these transitions are continuous (second-order)
transitions that can be described by the divergence of a
static susceptibility at the transition temperature Tc .
Thus it is useful to examine how one can calculate dif-
ferent susceptibilities within the FK model. In this sec-
tion, we shall examine the charge susceptibility for arbi-
trary value of spin and then consider the spin and
superconducting susceptibilities for the spin-one-half
model. In addition, we shall examine how one can per-
form an ordered phase calculation when such an or-
dered phase exists. Our discussion follows closely that of
Brandt and Mielsch (1989, 1990) and Freericks and
Zlatić (1998) and we consider only the case of vanishing
external magnetic field H50 and the case in which Efh
has no h dependence.

We begin with the static itinerant-electron charge sus-
ceptibility in real space (our extra factor of 2s11 makes
the normalization simpler) defined by

xcc~Ri2Rj!5
1

2s11
E

0

b

dtFTrcf

^e2bHni
c~t!nj

c~0 !&

ZL

2Trcf

^e2bHni
c&

ZL

Trcf

^e2bHnj
c&

ZL
G , (44)
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where ZL is the lattice partition function, ni
c

5(s51
2s11cis

† cis and

ni
c~t!5exp@t~H2mN !#ni

c~0 !exp@2t~H2mN !# .

If we imagine introducing a symmetry-breaking field
2( ih̄ ini

c to the Hamiltonian, then we can evaluate the
susceptibility as a derivative with respect to this field, in
the limit where h̄50,

xcc~Ri2Rj!5
T

2s11
(

n
(
s

dGjjs~ ivn!

dh̄i

52
T

2s11
(

n
(
s

(
kl

Gjks~ ivn!

3
dGkls

21 ~ ivn!

dh̄i

Gljs~ ivn!. (45)

Since Gkls
21 5@ ivn1m1h̄k2Skks(ivn)#dkl2tkl* /2Ad , we

find
xcc~Ri2Rj!5
T

2s11
(

n
(
s

F2Gijs~ ivn!Gjis~ ivn!

1(
k

(
s8

(
m

Gjks~ ivn!Gkjs~ ivn!
dSkks~ ivn!

dGkks8~ ivm!

dGkks8~ ivm!

dh̄i
G , (46)
where we used the chain rule to relate the derivative of
the local self-energy with respect to the field to a deriva-
tive with respect to G times a derivative of G with re-
spect to the field (recall, the self-energy is a functional of
the local Green’s function). It is easy to verify that both
GijsGjis and dGjjs /dh̄i are independent of s (indeed,
this is why we set the external magnetic field to zero). If
we now perform a spatial Fourier transform of Eq. (46),
we find Dyson’s equation,

xn
cc~q!5xn

cc0~q!2T(
m

xn
cc0~q!Gnm

cc xm
cc~q!, (47)

where we have defined

xn
cc~q!5

1

V
(

Ri2Rj

1

2s11
(
s

dGiis~ ivn!

dh̄j

eiq•(Ri2Rj),
xn
cc0~q!52

1
V (

Ri2Rj

1
2s11 (

s
Gijs~ ivn!Gjis~ ivn!

3eiq•(Ri2Rj),

Gnm
cc 5

1
T

1
2s11 (

ss8

dSs~ ivn!

dGs8~ ivm!
, (48)

V is the number of lattice sites, and xcc(q)
5T(nxn

cc(q). The fact that we have taken a Fourier
transform implies that we are considering a periodic lat-
tice here (like the hypercubic lattice); we shall discuss
below where these results are applicable to the Bethe
lattice. Note that it seems as if we have made an assump-
tion that the irreducible vertex is local. Indeed, the ver-
tex for the lattice is not local, because the second func-
tional derivative of the lattice Luttinger-Ward functional
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with respect to G does have nonlocal contributions as
d→` . These nonlocal corrections are only for a set of
measure zero of q values (Zlatić and Horvatić, 1990;
Georges et al., 1996; Hettler et al., 2000), and one can
safely replace the vertex by its local piece within any
momentum summations, which is why Eqs. (47) and (48)
are correct.

The local irreducible vertex function G can be deter-
mined by taking the relevant derivatives of the skeleton
expansion for the impurity self-energy in Eq. (33). The
self-energy depends explicitly on Gn and implicitly
through w1 . It is because w1 has G dependence that the
vertex function differs from that of the coherent-
potential approximation (in which the derivative of w1
with respect to G would be zero). The irreducible vertex
becomes

Gnm
cc 5

1

~2s11 !T (
ss8

H S ]Sns

]Gns
D

w1

dss8dmn

1S ]Sns

]w1
D

Gns

S ]w1

]Gms8
D J . (49)

Substituting the irreducible vertex into the Dyson equa-
tion [Eq. (47)] then yields
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xn
cc~q!5xn

cc0~q!
12~]Sns1

/]w1!Gns1
g~q!

11xn
cc0~q!~]Sns1

/]Gns1
!w1

, (50)

with the function g(q) defined by

g~q!5(
n

xn
cc~q!(

s
S ]w1

]Gns
D . (51)

We have chosen a particular spin state s1 to evaluate the
derivatives in Eq. (50) since they do not depend on s1 .
Multiplying Eq. (50) by (s(]w1 /]Gns) and summing
over n yields an equation for g(q). Defining Zns5ivn
1m2lns5Gns

211Sns and noting that ]w1 /]Gn
5(m@]w1 /]Zm#@]Zm /]Gn# allows us to replace
]w1 /]Gn by

]w1

]Gn
52

]w1

]Zn F12Gn
2 S ]Sn

]Gn
D

w1
G

Gn
2F12(

m

]w1

]Zm
S ]Sm

]w1
D

Gn
G (52)

and solve the equation for g(q), to yield
g~q!5
(ns]w1 /]Zns@12Gn

2~]Sn /]Gn!w1
#/@11Gnhn~q!2Gn

2~]Sn /]Gn!w1
#

12(ns]w1 /]ZnsGnhn~q!~]Sn /]w1!Gn
/@11Gnhn~q!2Gn

2~]Sn /]Gn!w1
#

, (53)
with hn(q) defined by

hn~q!5GnF2
1

Gn
2 2

1

xn
cc0~q!G , (54)

where we have dropped the explicit s dependence for G
and S. The full charge-density-wave susceptibility then
follows,

xcc~q!52T(
n

@12g~q!~]Sn /]w1!Gn
#Gn

2

11Gnhn~q!2Gn
2~]Sn /]Gn!w1

.

(55)

The derivatives needed in Eqs. (53) and (55) can be
determined straightforwardly:

(
s51

2s11
]w1

]Zns
5

~2s11 !w1~12w1!UGn
2

~11GnSn!@11Gn~Sn2U !#
, (56)

12Gn
2 S ]Sn

]Gn
D

w1

5
~11GnSn!@11Gn~Sn2U !#

11Gn~2Sn2U !
,

(57)

and

Gn
2 S ]Sn

]w1
D

Gn

5
UGn

2

11Gn~2Sn2U !
. (58)
The final expression for the susceptibility and for g(q)
appears in Table I.

The mixed cf susceptibilities can be calculated by tak-
ing derivatives of w1 with respect to h̄ i as shown in
Brandt and Mielsch (1989) and Freericks and Zlatić
(1998). We shall not repeat the details here, just the end
result in Table I. The calculation of the ff susceptibilities
is similar. By recognizing that we could have calculated
the cf susceptibility by adding a local f-electron chemi-
cal potential and taking the derivative of the itinerant
electron concentration with respect to the local field, we
can derive a relation between the cf and ff susceptibili-
ties. These results are also summarized in the table.

In addition to charge susceptibilities, we can also cal-
culate spin and pair-field susceptibilities for s.0. We
consider the spin-one-half case in detail. The spin sus-
ceptibility vertex simplifies, since the off-diagonal terms
now cancel, and one finds a relatively simple result. The
mixed cf spin susceptibility vanishes (because the
Green’s function depends only on the total f-electron
concentration). The ff spin susceptibility is difficult to
determine in general, but it assumes a Curie form for q
50. The pair-field susceptibility is determined by em-
ploying a Nambu-Gor’kov formalism and taking the
limit where the pair field vanishes. There is an off-
diagonal dynamical mean field analogous to ln , and w1
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TABLE I. Static charge, spin, and pair-field susceptibilities for the Falicov-Kimball model. The charge susceptibility is given for
the general case, the spin susceptibility for spin-one-half (and only q50 for the ff spin susceptibility), and the pair-field suscep-
tibility only for spin-one-half in the cc channel. Note that the cf charge susceptibility is equal to g(q).

Charge

xcc~q!52T (
n52`

`
@11Gn~2(n2U !2g~q!U#Gn

2

@11Gn~2(n2U !#Gnhn~q!1~11Gn(n!@11Gn~(n2U !#

xcf(q)5g(q)

5

(
n52`

`

~2s11!w1~12w1!UGn
2/$@11Gn~2(n2U!#Gnhn~q!1~11Gn(n!@11Gn~(n2U !#%

12(n52`
` ~2s11 !w1~12w1!U2Gn

3hn~q!/~11Gn(n!@11Gn~(n2U !#$@11Gn~2(n2U !#Gnhn~q!1~11Gn(n!@11Gn~(n2U !#%

x ff~q!5
w1~12w1!/T

12(n52`
` ~2s11 !w1~12w1!U2Gn

3hn~q!/~11Gn(n!@11Gn~(n2U !#$@11Gn~2(n2U !#Gnhn~q!1~11Gn(n!@11Gn~(n2U !#%

Spin

x8cc~q!52T (
n52`

`
Gn

2@11Gn~2(n2U !#

@11Gn~2(n2U !#Gnhn~q!1~11Gn(n!@11Gn~(n2U !#

x8cf(q)50

x8ff(q50)5w1/2T

Pair-field

x̄cc~q!5T (
n52`

`

x̄n
cc0~q!H 12

w1~12w1!U2u11Gn(nu2u11Gn~(n2U !u2

u11Gn~(n2@12w1#U !u2@~12w1!u11Gn~(n2U !u21w1u11Gn(nu2# J
depends quadratically on this off-diagonal field. Hence,
in the normal state, the irreducible pair-field vertex is
diagonal in the Matsubara frequencies, just like the spin
vertex. This means the susceptibility is easy to calculate
as a function of the bare pair-field susceptibility

x̄n
cc0~q!5

1
V (

Ri2Rj

Gij↑~ ivn!Gji↓~2ivn!eiq•(Ri2Rj).

(59)

The result appears in Table I.
The cc charge susceptibility diverges whenever g(q)

diverges, which happens when the denominator in Table
I vanishes. Since this denominator is identical for the cc ,
cf , and ff susceptibilities [due to the g(q) factor in the
cc susceptibility], all three diverge at the same transition
temperature as we would expect. This yields the same
result as found in Brandt and Mielsch (1989, 1990) for
the spinless case, except there is an additional factor of
2s11 multiplying the sum in the denominator arising
from the 2s11 derivatives of w1 , which are all equal.
This factor ‘‘essentially’’ increases Tc by 2s11 over that
found in the spinless case. The existence of a Tc is easy
to establish, since the summation in the denominator
goes to zero like 1/T4 for large T and diverges like C/T
for small T . If C.0, then there is a transition.

The q dependence of the charge susceptibility comes
entirely from hn(q) and hence from the bare suscepti-
bility
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xn
cc0~q!52(

k
Gn~k1q!Gn~k!

52
1

A12X2 E2`

`

de
r~e!

ivn1m2Sn2e

3F`F ivn1m2Sn2Xe

A12X2 G , (60)

where all of the q dependence can be summarized in a
single parameter X(q)5limd→`( i51

d cos qi /d (Müller-
Hartmann, 1989a) and we use F`(z)5*der(e)/(z2e)
to denote the Hilbert transform. The results for xn

cc0(q)
and hn(q) simplify for three general cases (Brandt and
Mielsch, 1989): X521, which corresponds to the
‘‘checkerboard’’ zone-boundary point Q5(p ,p ,
p , . . . ); X51, which corresponds to the uniform zone-
center point q50; and X50, which corresponds to a
general momentum vector in the Brillouin zone [since
the value of the cosine will look like a random number
for a general wave vector and the summation will grow
like Ad , implying X→0; only a set of measure zero of
momenta have X(q)Þ0]. The results for xn

cc0(q) and
hn(q) appear in Table II for the hypercubic lattice. Both
the uniform (X51) and the ‘‘checkerboard’’ (X521)
susceptibilities can be defined for the Bethe lattice, but
there does not seem to be any simple way to extend the
definition to all X . Indeed, higher-period ordered phases
on the Bethe lattice seem to have first-order (discontinu-
ous) phase transitions (Gruber et al., 2001) so such a
generalization is not needed.
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We shall find that near half filling, the X521 charge
susceptibility diverges, and far away from half filling the
X51 charge susceptibility diverges. The X50 suscepti-
bility never diverges at finite T . This is also true for the
spin and pair-field susceptibilities. They are always finite

TABLE II. Values of xn
cc0(q) and hn(q) for the special X

points 1, 0, and 21 on the hypercubic lattice.

X(q) xn
cc0(q) hn(q)

21 2Gn /(ivn1m2(n) ln

0 2Gn
2 0

1 2@12(ivn1m2(n)Gn# 2
1

Gn
1

1
2ln
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at finite T . One can easily understand why the spin sus-
ceptibility does not diverge—it arises simply from the
fact that the spins are independent of each other and do
not interact. Similarly, one can understand why the pair-
field susceptibility does not diverge—Anderson’s theo-
rem (Anderson, 1959; Bergmann and Rainer, 1974)
states that one cannot have superconductivity with a
static electron-electron interaction; the interaction must
be dynamic.

Since the (X521) checkerboard charge susceptibil-
ity diverges, we can also examine the ordered state
(Brandt and Mielsch, 1990). In this case, we have a
charge-density wave with different electronic densities
on each of the two sublattices of the bipartite lattice.
Hence both Gns

A (Gns
B ) and Sns

A (Sns
B ) are different on

the two sublattices. Evaluating the momentum-
dependent Green’s functions yields
Gns
A ,B~q!5

ivn1m1gmBHms2Sns
B ,A1eq

~ ivn1m1gmBHms2Sns
A !~ ivn1m1gmBHms2Sns

B !2eq
2 , (61)

which can be summed over q to yield

Gns
A 5E de

r~e!

Z̄ns2e

ivn1m1gmBHms2Sns
B

Z̄ns

, Gns
B 5E de

r~e!

Z̄ns2e

ivn1m1gmBHms2Sns
A

Z̄ns

,

Z̄ns5A~ ivn1m1gmBHms2Sns
A !~ ivn1m1gmBHms2Sns

B !. (62)
The algorithm to solve for the Green’s functions is modi-
fied to the following: (i) start with a guess for Sns

A and
Sns

B (or set both to zero); (ii) evaluate Eq. (62) to find
Gns

A and then determine G0s
A (ivn) from Eq. (31) evalu-

ated on the A sublattice @Sns
A 5$G0s

A (ivn)%21

2(Gns
A )21# ; (iii) determine w0

A and w1
A from the appro-

priate A-sublattice generalization of Eq. (28); (iv) evalu-
ate Eq. (30) on the A sublattice to find Gns

A and Eq. (31)
to find Sns

A ; (v) now find Gns
B from Eq. (62) and

G0s
B (ivn) from Eq. (31); (vi) determine w0

B and w1
B

from Eq. (28) on the B sublattice; and (vii) evaluate Eq.
(30) on the B sublattice to find Gns

B and Eq. (31) to find
Sns

B . Now repeat steps (ii)–(vii) until convergence is
reached. We shall need to adjust Ef2m f until (w1

A

1w1
B)/25w1 . The calculations are then finished and the

order parameter is (w1
A2w1

B)/2. A similar generaliza-
tion can be employed for the static Holstein model (Ciu-
chi and de Pasquale, 1999). Since the skeleton expansion
for the self-energy in terms of the local Green’s function
is unknown for the static Holstein model (and hence it is
not obvious how to determine G), this is the most direct
way to search for the ordered checkerboard phase.

D. Dynamical charge susceptibility

We now examine the dynamical charge susceptibility
(Freericks and Miller, 2000; Shvaika, 2000, 2001), de-
fined by
xcc~q,in l!5
1

2s11 E0

b

dtein lt
1
V (

Ri2Rj

eq•(Ri2Rj)

3FTrcf

^e2bHni
c~t!nj

c~0 !&
ZL

2Trcf

^e2bHni
c&

ZL
Trcf

^e2bHnj
c&

ZL
G , (63)

with in l52iplT the bosonic Matsubara frequency. Once
again we assume we are in zero magnetic field H50 and
the f-electron site energy is h independent, Efh5Ef .
Our analysis follows the path-integral approach—one
can also employ a strong-coupling perturbation theory
to derive these formulas (Shvaika, 2000, 2001). The dy-
namical susceptibilities of the FK model have some
subtle properties that arise from the fact that the local
f-electron number is conserved. In particular, the iso-
thermal susceptibilities (calculated by adding an exter-
nal field to the system and determining how it modifies
the system in the limit where the field vanishes) and the
so-called isolated (Kubo) susceptibilities [which assume
the system starts in equilibrium at zero field, then is re-
moved from the thermal bath (isolated) and the field is
turned on slowly] differ from each other (the response
of the isolated system to the field is the isolated suscep-
tibility) due to the conserved nature of the f electrons
(Wilcox, 1968; Shvaika, 2001). In particular, the isolated
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susceptibility vanishes for the ff and mixed cf suscepti-
bilities, due to the fact that the local f-electron number
is conserved, i.e., @H,ni

f#50, but is nonzero for the cc
susceptibility. The divergence of the static charge sus-
ceptibility arises entirely from the coupling between the
itinerant and localized electronic systems; the pure
itinerant-electron response (isolated susceptibility)
never diverges. Hence the isothermal susceptibility is
discontinuous at zero frequency (i.e., it is not analytic).
The continuous (analytic) susceptibility is the isolated
susceptibility, and we shall focus on it for the conduction
electrons.

If we express the susceptibility as a matrix in Matsub-
ara frequency space, we find the following Dyson equa-
tion:

xcc~q,ivm ,ivn ;in l!

5xcc0~q,ivm ;in l!dmn2T(
n8

xcc0~q,ivm ;in l!

3G~ ivm ,ivn8 ;in l!x
cc~q,ivn8 ,ivn ;in l!, (64)

and the susceptibility is found by summing over
the Matsubara frequencies xcc(q,in l)
5T(mnxcc(q,ivm ,ivn ;in l). Once again, the bare sus-
ceptibility depends only on the momentum parameter X
and takes the form

xcc0~X ,ivm ;in l!52
1

2s11 (
ks

Gms~k!Gm1ls~k1q!

52
1

A12X2 E2`

`

de
r~e!

ivm1m2Sm2e

3F`F ivm1l1m2Sm1l2Xe

A12X2 G . (65)
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The bare dynamical susceptibility simplifies in three
cases that are summarized in Table III. Note that one
needs to evaluate xcc0 with l’Hôpital’s rule whenever the
denominator vanishes and also that we dropped the spin
subscripts in the table. The irreducible charge vertex is
calculated for the impurity, and it satisfies

G~ ivm ,ivn ;in l!5
1

2s11 (
s

1
T

dSs~ ivm ,ivm1l!

dGs~ ivn ,ivn1l!
,

(66)

where we now have both a self-energy and a Green’s
function that depend on two Matsubara frequencies be-
cause these functions are not time-translation invariant
in imaginary time. This occurs because we need to add a
time-dependent charge field 2*0

bdtx(t)(scs
† (t)cs(t)

to the action in order to evaluate the dynamic charge
susceptibility, and this time-dependent field removes
time-translation invariance from the system (it does not
depend on the time difference of the arguments of the
fermionic variables).

It is not easy to perform calculations for Green’s func-
tions that depend on two time variables. The original
work by Brandt and Urbanek (1992) illustrates how to
proceed. We start with the definition of an auxiliary
Green’s function,

TABLE III. Values of xcc0(X ,ivm ;in l) for the special X
points 1, 0, and 21 on the hypercubic lattice.

X(q) xcc0(X ,ivm ;in l)

21 2(Gm1Gm1l)/(ivm1ivm1l12m2(m2(m1l)
0 2GmGm1l

1 2(Gm2Gm1l)/(in l1(m2(m1l)
gs
aux~t ,t8!52

TrcT tK e2bH0 expF(
s̄

E
0

b

d t̄x~ t̄ !c s̄
† ~ t̄ !c s̄~ t̄ !Gcs~t!cs

† ~t8!L
H 11ebm expF E

0

b

d t̄x~ t̄ !G J 2s11 , (67)
where H052m(scs
† cs and the time dependence is with

respect to H0 [the auxiliary time-dependent field x(t)
5( lx(in l)exp(2inlt) should not be confused with any
susceptibility]. It is easy to show that this auxiliary
Green’s function is antiperiodic with respect to either t
variable being increased by b. Hence we can perform a
double Fourier transform to yield

gs
aux~ ivm ,ivn!

5TE
0

b

dtE
2b1t

t

dt8eivmtgs
aux~t ,t8!e2ivnt8, (68)

and this is the same Matsubara-frequency dependence
as in Eq. (66). Substituting in the fermionic Grassman
variables from Eq. (13) and restricting ourselves to x
fields that satisfy x(in0)50 produces the following path-
integral form for the auxiliary Green’s function:

gs
aux~ ivm ,ivn!52

T

Z aux E Dc̄Dccmsc̄ns

3expFT (
m8n8

(
s8

$~ ivm81m!dm8n8

1x~ ivn82ivm8!%c̄n8s8cm8s8G , (69)

where Z aux5@11ebm#2s11 is the auxiliary partition
function for x(in0)50. We calculate the Green’s func-
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tion by adding an infinitesimal field Tx̄mnsc̄nscms and
noting that gs

aux(ivm ,ivn)5] ln Z aux/]x̄mns . We shall
restrict our discussion to the case in which only one Fou-
rier component x(in l) is nonzero. The matrix then has a
nonzero diagonal and one nonzero off-diagonal, whose
elements are all equal to x(in l). Now the partition func-
tion is the determinant of the matrix that appears in the
action of Eq. (69), which assumes the simple form of the
product of all diagonal elements (multiplied by a con-
stant to assure the correct limiting behavior),

Z aux5F2ebm/2 )
n52`

`
ivn1m

ivn
G 2s11

. (70)

When we add the extra field x̄s to the action, the eigen-
values of the matrix change only for m5n , m1l5n ,
and the s value of the x̄s field. The former case is the
diagonal matrix element, which is simply shifted by
x̄mms . The shift in the latter case can be worked out via
perturbation theory to lowest order in x̄ . We find that
the mth and (m1l)th eigenvalues change to ivm1m
2x̄m1lmx(in l)/in l and ivm1l1m1x̄m1lmx(in l)/in l , re-
spectively. Taking the relevant derivatives to calculate
the auxiliary Green’s function then yields

gs
aux~ ivm ,ivn!5

dmn

ivm1m
1

dm1lnx~ in l!

in l

3S 1
ivm1l1m

2
1

ivm1m D . (71)

As before, we define G0 by adding a ls field to the
action in Eq. (69), Tlnsc̄nscns (and change the parti-
tion function normalization accordingly). It is easy to
show (Brandt and Urbanek, 1992; Zlatić et al., 2001)
that due to the fact that one can write the partition func-
tion of a path integral with a quadratic action as Z
5det g21, with g the corresponding Green’s function,

G0
215@gaux#212l1. (72)

The full Green’s function involves an additional trace
over f states. The ‘‘itinerant-electron’’ piece of the im-
purity Hamiltonian equals 2m(scs

† cs when nf50 and
equals (U2m)(scs

† cs when nf51. It is a straightfor-
ward exercise to then show that

Gs~ ivm ,ivn!5w0G0s~ ivm ,ivn!1w1@G0s
212U1#mn

21 ,
(73)

with w0 given by Eq. (28) for H50 and w1512w0 .
Note that all of the Green’s functions in Eq. (73) are
matrices, and the 21 superscript denotes the inverse of
the corresponding matrix.

Equation (73) can be rearranged by multiplying on
the left or the right by matrices like G21, G0

21, and
G0

212U to produce the following two matrix equations
(with matrix indices and spin indices suppressed):

G0
222~U1G21!G0

211~12w1!UG2150, (74)

G0
222G0

21~U1G21!1~12w1!UG2150. (75)
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Adding these two equations together and collecting
terms results in

FG0
212

1
2

~U1G21!G2

2
1
4

~U1G21!2

1~12w1!UG2150. (76)

Now we substitute the matrix self-energy S for G0 , with
the self-energy defined by Dyson’s equation,

S~ ivm ,ivn!5@G0
21#mn2@G21#mn , (77)

to yield a matrix quadratic equation,

FS1
1
2

~G212U !G2

5
1
4

@U212~2w121 !UG211G22# ,

(78)

that relates the self-energy to the Green’s function.
When only one Fourier component lÞ0 of x is nonzero,
both the self-energy and the Green’s function are non-
zero on the diagonal m5n and on the diagonal shifted
by l units m1l5n . Substituting into the quadratic equa-
tion and solving for the shifted diagonal component of
the self-energy [to first order in x(in l)] yields the amaz-
ingly simple result

S~ ivm ,ivm1l!5G~ ivm ,ivm1l!
Sm2Sm1l

Gm2Gm1l
, (79)

after some tedious algebra. In Eq. (79), the symbols Sm
and Gm denote the diagonal components of the self-
energy and the Green’s function, respectively, which are
equal to the results we already calculated for the self-
energy and Green’s function when x(in l)50.

We can now calculate the irreducible dynamical
charge vertex from Eq. (66), which yields

G~ ivm ,ivn ;in lÞ0!5dmn

1
T

Sm2Sm1l

Gm2Gm1l
. (80)

The dynamical charge vertex is then a relatively simple
object for lÞ0 [the static vertex is much more compli-
cated, as can be inferred from Eqs. (48), (49), and (52)].
The original derivation, based on the atomic limit
(Shvaika, 2000, 2001), produced a much more
complicated-looking result for the vertex, but some al-
gebra shows that the two forms are indeed identical
(Freericks and Miller, 2000). Using this result for the
vertex, we immediately derive the final form for the dy-
namical charge susceptibility on the imaginary axis,

xcc~X ;in lÞ0!5T(
m

xcc0~X ,ivm ;in l!

11xcc0~X ,ivm ;in l!
Sm2Sm1l

Gm2Gm1l

.

(81)

Note that if we evaluate the uniform, dynamical charge
susceptibility q50 (X51), we find

xcc~X51,in lÞ0!52T(
m

Gm2Gm1l

in l
50, (82)

which is what we expect, because the total conduction-
electron charge commutes with the Hamiltonian and
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TABLE IV. Dynamical charge susceptibility on the real axis for X521 and X50 (the dynamical susceptibility vanishes for X
51).

X Dynamical susceptibility xcc(X ,n)

21 i

2p E2`

`

dvHf~v!
@G~v!1G~v1n!#/@2v12m1n2(~v!2(~v1n!#

12@G~v!1G~v1n!#@(~v!2(~v1n!#/@2v12m1n2(~v!2(~v1n!#@G~v!2G~v1n!#

2f~v1n!
@G* ~v!1G* ~v1n!#/@2v12m1n2(* ~v!2(* ~v1n!#

12@G* ~v!1G* ~v1n!#@(* ~v!2(* ~v1n!#/@2v12m1n2(* ~v!2(* ~v1n!#@G* ~v!2G* ~v1n!#

2@f~v!2f~v1n!#
@G* ~v!1G~v1n!#/@2v12m1n2(* ~v!2(~v1n!#

12@G* ~v!1G~v1n!#@(* ~v!2(~v1n!#/@2v12m1n2(* ~v!2(~v1n!#@G* ~v!2G~v1n!# J
0 i

2p E2`

`

dvHf~v!
G~v!G~v1n!

12G~v!G~v1n!@(~v!2(~v1n!#/@G~v!2G~v1n!#

2f~v1n!
G* ~v!G* ~v1n!

12G* ~v!G* ~v1n!@(* ~v!2(* ~v1n!#/@G* ~v!2G* ~v1n!#

2@f~v!2f~v1n!#
G* ~v!G~v1n!

12G* ~v!G~v1n!@(* ~v!2(~v1n!#/@G* ~v!2G~v1n!# J
hence has no t dependence, implying only the static re-
sponse can be nonzero. Note that xcc0(X51)Þ0; the
vertex corrections are needed to produce a vanishing
total susceptibility.

In general, one is interested in the dynamical charge
response on the real axis. To find the real (dynamical)
response, we need to perform an analytic continuation
of Eq. (81) to the real axis. Since the isothermal suscep-
tibility is discontinuous at n l50, we can perform the
analytic continuation only for the isolated susceptibility.
The procedure is straightforward: we divide the complex
plane into regions where the Green’s functions, self-
energies, and susceptibilities are all analytic, and we ex-
press the Matsubara summations as contour integrals
over the poles of the Fermi-Dirac distribution function.
Then, under the assumption that there are no poles in
the integrands other than those determined by the
Fermi factors, we deform the contours until they are
parallel to the real axis. After replacing any Fermi fac-
tors of the form f(v1in l) by f(v), we can make the
analytic continuation in l→n1i01. The final expressions
are straightforward, but cumbersome. We summarize
them for X521 and X50 in Table IV. Only the X
521 result is meaningful for the Bethe lattice. Note that
one could just as easily calculate the incommensurate
dynamical charge response, but the equations become
significantly more complicated. We shall calculate a simi-
lar result when we examine inelastic x-ray scattering be-
low.

One can test the accuracy of the analytic continuation
by employing the spectral formula for the dynamical
charge susceptibility and calculating the charge suscepti-
bility at each of the bosonic Matsubara frequencies.
Comparing the spectral form with the result found
directly from Eq. (81) is a stringent self-consistency
test. In most calculations, these two forms agree to at
least one part in a thousand. In addition, there is a
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
sum rule for the dynamical charge susceptibility
*0

`dnnIm xcc(X,n)5(X21)T(n(kekGn(k) proportional
to the average kinetic energy. We find this sum rule
holds for all cases, also verifying the accuracy of the
analytic continuation.

E. Static and dynamical transport

Some of the most important many-body correlation
functions to determine are those related to transport
properties via their corresponding Kubo formulas
(Kubo, 1957; Greenwood, 1958). Transport can also be
solved exactly in the FK model, and we illustrate here
how to determine the optical conductivity, the ther-
mopower, the thermal conductivity, and the response to
inelastic light scattering.

The Kubo formula relates the response function to
the corresponding current-current correlation functions.
Before we discuss how to calculate such correlation
functions, it makes sense to describe the different trans-
port currents that we consider. Each current (except the
heat current) takes the generic form

ja~q!5 (
s51

2s11

(
k

ga~k1q/2!ck1qs
† cks , (83)

with ga(k) the corresponding current vertex function.
The heat-current operator takes the form

jQ~0 !5 (
s51

2s11 H(k
gQ~k!cks

† cks1(
kk8

ḡQ~k,k8!cks
† ck8sJ ,

(84)

with gQ(k) the vertex that arises from the kinetic energy
and ḡQ(k,k8) the vertex from the potential energy. For
conventional charge, and thermal transport, we are in-
terested only in the q→0 (uniform) limit of the current
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operators, but the finite-q dependence is important for
inelastic (Raman) scattering of x-ray light. The current
vertex functions are summarized in Table V.

The Dyson equation for any current-current correla-
tion function takes the form shown in Fig. 2, which is
similar to that given by Eq. (64), but the bare and inter-
acting susceptibilities are now different due to the cor-
responding ga factors. Note that there are two coupled
equations illustrated in Figs. 2(a) and (b); these equa-
tions differ by the number of ga factors in them (of
course, there is only one equation when ga51, as we
saw for the dynamical charge susceptibility). Note fur-
ther that one could evaluate mixed current-current cor-
relation functions where there is a ga on the left vertex
and a gb on the right vertex, but we do not describe that

FIG. 2. Coupled Dyson equations for current-current correla-
tion functions described by the vertex function ga . Panel (a)
depicts the Dyson equation for the interacting correlation
function, while panel (b) is the supplemental equation needed
to solve for the correlation function. The symbol G stands for
the local dynamical irreducible charge vertex given in Eq. (80).
In situations where Eq. (85) is satisfied, there are no charge
vertex corrections, and the correlation function is simply given
by the first diagram on the right-hand side of panel (a).

TABLE V. Current vertex functions for use in Eqs. (83) and
(84). The symbols ea

I and ea
O are the polarization vectors for

the incident and outgoing light, respectively, and a denotes the
lattice spacing. An overall factor depending on properties of
the incident and outgoing light is neglected for the inelastic
light-scattering vertex.

Current type Vertex function ga(k)

Charge gn(k)5ea¹e(k)/\
Heat gQ(k)5a¹e(k)@e(k)2m#/\

ḡQ(k,k8)5aU@¹e(k)1¹e(k8)#W(k2k8)/2\

W(k)5( j exp(2ik"Rj)(hf jh
† f jh /V

Inelastic
light
scattering

gL~k!5(abea
I ]2e~k!

]ka]kb
eb

O*
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case in detail here. The irreducible vertex function G is
the dynamical charge vertex of Eq. (80), which has the
full symmetry of the lattice. If the vertex factor ga does
not have a projection onto the full symmetry of the lat-
tice, then there are no vertex corrections from the local
dynamical charge vertex (Khurana, 1990). This occurs
whenever

(
k

gaS k1
q
2 DGns~k!Gn1ls~k1q!50. (85)

If Eq. (85) is satisfied, then the corresponding current-
current correlation function is given by the bare bubble
depicted by the first diagram on the right-hand side of
Fig. 2(a).

One case in which there are no vertex corrections is
the optical conductivity, which is constructed from a q
50 current-current correlation function. We consider
the case in which the only effect of the magnetic field is
from the Zeeman splitting of the states, which is accu-
rate in large dimensions because the phase factors in-
duced in the hopping matrix occur only in one dimen-
sion. We illustrate here how to calculate the optical
conductivity on the hypercubic lattice (Moeller et al.,
1992; Pruschke et al., 1993a, 1993b, 1995). The starting
point is the current-current correlation function on the
imaginary axis, which is equal to the bare bubble dia-
gram in Fig. 2(a):

xnn~ in l!5
e2

4dad22\2

3(
s

(
n

(
k

sin2~k1!Gns~k!Gn1ls~k!. (86)

Here we have chosen the 1 direction for the velocity
operator and the n superscript denotes the particle-
number (charge) current operator (note our energy unit
t* equals 1 so it is suppressed). The average of sin2(k1)
(times a function of ek) is equal to 1/2 times the integral
over e of the function times the density of states. Hence
the current-current correlation function becomes

xnn~ in l!5
e2

8dad22\2 (
s51

2s11

(
n52`

` E
2`

`

der~e!

3
1

ivn1m1gmBHms2Sns2e

3
1

ivn1l1m1gmBHms2Sn1ls2e
. (87)

Note that the optical conductivity is a 1/d correction.
The analytic continuation is performed in the same fash-
ion as was done for the dynamic charge susceptibility.
The optical conductivity is defined to be s(v)
5Im xnn(n)/n, so the final result is

s~n!5
s0

2 (
s51

2s11 E
2`

`

der~e!E
2`

`

dvAs~e ,v!As~e ,v1n!

3
f~v!2f~v1n!

n
, (88)
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with s05e2p2/2hdad22 (which is approximately 2.2
3103 V21 cm21 in d53 with a'331028 cm). Note
that one factor of \ is needed to construct the dimen-
sionless energy unit when multiplied by n in the denomi-
nator, which is why only one factor of h appears in s0 .

Equation (88) can be simplified further by performing
the integral over e. This is done by using Eq. (36) to
rewrite both spectral functions as an imaginary part of a
Green’s function and noting that the imaginary part of z
is (z2z* )/2i . The integral over e can then be performed
after expanding each integrand by partial fractions to
yield

s~n!5
s0

4p2 (
s51

2s11 E
2`

`

dv ReH Gs~v!2Gs* ~v1n!

n1Ss~v!2Ss* ~v1n!

2
Gs~v!2Gs~v1n!

n1Ss~v!2Ss~v1n! J f~v!2f~v1n!

n
.

(89)

On another lattice, the optical conductivity takes the
form of Eq. (88) but with an extra factor of v2(e). En-
forcing the optical sum rule, which relates the integral of
the optical conductivity to the average kinetic energy
(Maldague, 1977; Chattopadhyay et al., 2000), produces
a differential equation for v2(e),

d

de
@v2~e!r~e!#1er~e!50, (90)

with the boundary condition that v2(e)→0 at the band
edges (where appropriate). On the hypercubic lattice
one needs to sum the optical conductivity over all d-axis
directions to be able to use the above form; solving the
differential equation gives v2(e)51/2 as expected. For
the infinite coordination Bethe lattice, one finds v2(e)
5(42e2)/3. This agrees with the conjectured result
(Velický, 1969; Chung and Freericks, 1998), but it relies
on enforcing the sum rule for the Bethe lattice, which
has not been established independently (Blümer and
van Dongen, 2003).

If we take the limit n→0 on the hypercubic lattice, we
find

sdc5s0E
2`

`

dvS 2
df~v!

dv D (
s51

2s11

ts~v!, (91)

with the spin-dependent relaxation time equal to

ts~v!5 H Im Gs~v!

Im Ss~v!
1222 Re$@v1m1gmBHms

2Ss~v!#Gs~v!%J Y 4p2. (92)

In addition, one is often interested in thermal transport
quantities such as the thermopower S and the electronic
contribution to the thermal conductivity ke . These
quantities are usually expressed in terms of three differ-
ent transport coefficients L11 , L125L21 , and L22 as fol-
lows:

sdc5e2L11 , (93)
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S52
kB

ueuT
L12

L11
, (94)

and

ke5
kB

2

T FL222
L12L21

L11
G , (95)

with kB the Boltzmann constant and T is measured in
units of t* . The individual transport coefficients are de-
termined by the zero-frequency limit of the analytic con-
tinuation of the relevant polarization operators Lij

5limn→0 Re@iL̄ij(n)/n# with

L̄11~ in l!5E
0

b

dtein ltTrcf
^Tte2bHjn~t!jn~0 !&

ZL
, (96)

L̄12~ in l!5E
0

b

dtein ltTrcf
^Tte2bHjn~t!jQ~0 !&

ZL
, (97)

and

L̄22~ in l!5E
0

b

dtein ltTrcf
^Tte2bHjQ~t!jQ~0 !&

ZL
, (98)

where the subscripts n and Q denote the number
(charge) and heat currents, respectively, and where we
suppressed the Cartesian vector indices. All of these cor-
relation functions are determined by their correspond-
ing bare bubbles because there are no vertex corrections
for any of them. Note that our sign convention for the
thermopower is that of Ashcroft and Mermin (1976), in
which the coefficient multiplying L12 /L11 is negative for
negatively charged carriers. This leads to the situation in
which electronlike transport has a negative ther-
mopower, and holelike transport has a positive ther-
mopower at low temperature. A theorem by Jonson and
Mahan (1980, 1990) says that, even in a correlated sys-
tem, there is a simple relation between these different
transport coefficients, namely, that they reproduce the
so-called Mott noninteracting form (Chester and Thel-
lung, 1961),

Lij5
s0

e2 E
2`

`

dvS 2
df~v!

dv D (
s51

2s11

ts~v!v i1j22. (99)

What is remarkable is that in the case of the FK model
one can explicitly calculate the relevant correlation func-
tions and verify directly the Jonson-Mahan theorem
(Freericks and Zlatić, 2001b, 2002). The derivation is too
long to reproduce here. Note that we have used the
more modern definitions of the Lij coefficients here,
which have one less power of T than the normalization
used by Freericks and Zlatić (2001b, 2002; Jonson and
Mahan 1980, 1990).

The final transport property we determine is the scat-
tering of inelastic light. When optical photons are used,
this corresponds to conventional electronic Raman scat-
tering: inelastic light scattering off of the charge excita-
tions of the many-body system. When higher-energy
photons (x rays) are employed, one scatters the photon
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TABLE VI. Response functions for inelastic x-ray scattering by a photon of momentum q5(q ,q ,q , . . . ) along the zone diagonal
described by the parameter X(q)5cos q for the A1g and B1g sectors. The symbols with x0 appear in Table VII, and * denotes
complex conjugation.

Scattering response function

xA1g
~q,n!5

i

2p E
2`

`

dvH f~v!

x̄0~v ;X ,n!1
(~v!2(~v1n!

G~v!2G~v1n!
@x0~v ;X ,n!x̄0~v ;X ,n!2x08

2~v ;X ,n!#

11
(~v!2(~v1n!

G~v!2G~v1n!
x0~v ;X ,n!

2f~v1n!

x̄0* ~v ;X ,n!1
(* ~v!2(* ~v1n!

G* ~v!2G* ~v1n!
@x0* ~v ;X ,n!x̄0* ~v ;X ,n!2x08*

2~v ;X ,n!#

11
(* ~v!2(* ~v1n!

G* ~v!2G* ~v1n!
x0* ~v ;X ,n!

2@f~v!2f~v1n!#

x! 0~v ;X ,n!1
(* ~v!2(~v1n!

G* ~v!2G~v1n!
@x̃0~v ;X ,n!x! 0~v ;X ,n!2x̃08

2~v ;X ,n!#

11
(* ~v!2(~v1n!

G* ~v!2G~v1n!
x̃0~v ;X ,n!

J
xB1g

~q,n!5
i

4p E
2`

`

dv$f~v!x0~v ;X ,n!2f~v1n!x0* ~v ;X ,n!2@f~v!2f~v1n!#x̃0~v ;X ,n!%
off of the momentum- and frequency-dependent charge
excitations of the system. The Raman-scattering limit re-
sults in the limit q→0. For simplicity, we consider only
the spinless case, with H50.

Inelastic light scattering depends on the polarizations
of the incident and outgoing light. As such, it provides
some additional symmetry resolution over and above
the elastic scattering of an optical conductivity measure-
ment. There are traditionally three main symmetries
considered in Raman-scattering experiments: (i) A1g ,
which has the full symmetry of the lattice; (ii) B1g ,
which has a d-wave symmetry, and (iii) B2g , which is
another d-wave symmetry. Each symmetry is chosen by
different polarizations for the incident and scattered
light. Here we concentrate on nonresonant Raman scat-
tering, in which the vertex functions are not functions of
the photon energies. If we sum over the d pairs of po-
larizations, where eI5eO and each vector points along
each of the different Cartesian axes, then we have the
A1g sector. If we choose eI5(1,1,1, . . . ) and eO

5(1,21,1,21, . . . ), then we have the B1g sector. And if
we choose eI5(1,0,1,0, . . . ) and eO5(0,21,0,21, . . . ),
then we have the B2g sector. If we have just nearest-
neighbor hopping, then the B2g response vanishes be-
cause gB2g

50. Following the form given in Table V, we
find gA1g

(q)52e(q) and gB1g
(q)5t* ( j51

` cos qj(21) j/
Ad .

A straightforward calculation, using Eq. (85), shows
that the B1g response has no vertex corrections on the
zone diagonal q5(q ,q ,q ,q , . . . ). Hence the zone-
diagonal B1g response is the bare bubble. The A1g re-
sponse (and the B1g off of the zone diagonal), on the
other hand, does have vertex corrections and is more
complicated. The calculation of each response function
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
is straightforward, but tedious. One needs first to solve
the coupled equations depicted in Fig. 2 on the imagi-
nary axis and then to perform the analytic continuation
as we have done previously for other response functions.
The end result is quite long and is summarized in Tables
VI and VII.

It is interesting to take the limit of conventional Ra-
man scattering with optical photons, where q→0 (X
→1). In this case, one finds x052*der(e)/@v1m
2S(v)2e#@v1n1m2S(v1n)2e# , and the B1g re-
sponse simplifies to

xB1g
~n!5

i

4p E
2`

`

dvE
2`

`

der~e!

3H f~v!
1

v1n1m2S~v1n!2e

3F 1
v1m2S~v!2e

2
1

v1m2S* ~v!2eG
2f~v1n!

1
v1m2S* ~v!2e

3F 1
v1n1m2S* ~v1n!2e

2
1

v1n1m2S~v1n!2eG J . (100)

Now using the definition of the spectral function in Eq.
(36) and taking the imaginary part of Eq. (100) produces
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TABLE VII. Symbols x0 , x08 , x̄0 , x̃0 , x̃08 , and x! 0 that appear in Table VII.

Symbol

x0~v;X,n!52E
2`

`

der~e!
1

v1m2(~v!2e

1

A12X2
F`S v1n1m2(~v1n!2Xe

A12X2 D
x̃0~v ;X ,n!52E

2`

`

der~e!
1

v1m2(* ~v!2e

1

A12X2
F`S v1n1m2(~v1n!2Xe

A12X2 D
x08~v ;X ,n!52A11X

8 E
2`

`

der~e!H 1

@v1m2(~v!2e#2

1

A12X2
F`S v1n1m2(~v1n!2Xe

A12X2 D
1

1
v1m2(~v!2e

2
12X2 F211

v1n1m2(~v1n!2Xe

A12X2
F`S v1n1m2(~v1n!2Xe

A12X2 D G J
x̃08~v ;X ,n!52A11X

8 E
2`

`

der~e!H 1

@v1m2(* ~v!2e#2

1

A12X2
F`S v1n1m2(~v1n!2Xe

A12X2 D
1

1
v1m2(* ~v!2e

2
12X2 F211

v1n1m2(~v1n!2Xe

A12X2
F`S v1n1m2(~v1n!2Xe

A12X2 D G J
x̄0~v ;X ,n!5

1
2

x0~v ;X ,n!2
11X

4 E
2`

`

der~e!X 1

@v1m2(~v!2e#3

1

A12X2
F`S v1n1m2(~v1n!2Xe

A12X2 D
1

1

@v1m2(~v!2e#2

2
12X2 F211

v1n1m2(~v1n!2Xe

A12X2
F`S v1n1m2(~v1n!2Xe

A12X2 D G
1

1
v1m2(~v!2e

1

~12X2!3/2 F2F`S v1n1m2(~v1n!2Xe

A12X2 D 1
2$v1n2(~v1n!2Xe%

A12X2

3H 211
v1n1m2(~v1n!2Xe

A12X2
F`S v1n1m2(~v1n!2Xe

A12X2 D J G C
x! 0~v ;X ,n!5

1
2

x̃0~v ;X ,n!2
11X

4 E
2`

`

der~e!X 1

@v1m2(* ~v!2e#3

1

A12X2
F`S v1n1m2(~v1n!2Xe

A12X2 D
1

1

@v1m2(* ~v!2e#2

2
12X2 F211

v1n1m2(~v1n!2Xe

A12X2
F`S v1n1m2(~v1n!2Xe

A12X2 D G
1

1
v1m2(* ~v!2e

1

~12X2!3/2 F2F`S v1n1m2(~v1n!2Xe

A12X2 D 1
2$v1n2(~v1n!2Xe%

A12X2

3H 211
v1n1m2(~v1n!2Xe

A12X2
F`S v1n1m2(~v1n!2Xe

A12X2 D J G C
the so-called Shastry-Shraiman relation (Shastry and
Shraiman, 1990, 1991), which relates the imaginary part
of the nonresonant B1g Raman response function to the
optical conductivity as

Im xB1g
~n!}ns~n!; (101)

this was first proved by Freericks and Devereaux
(2001b).

Another interesting limit is the q5(p ,p ,p , . . . ) (X
521) limit, where we find x085x̃0850, x̄05x0/2, and
x! 05x̃0/2. In this case, the renormalization due to the
dynamical charge vertex exactly cancels in the numera-
tor and denominator, and one finds the same result for
the inelastic x-ray scattering in the A1g and B1g sectors
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
(Devereaux et al., 2003a, 2003b). Hence a polarized
measurement of the inelastic x-ray scattering at the zone
boundary determines the relative importance of nonlo-
cal charge fluctuations to the strongly correlated system.
This is quantified by comparing the scattering in the two
different symmetry sectors; the difference in the results
is a measure of the nonlocal correlations.

We have produced results for inelastic x-ray scattering
only along the zone diagonal. One could choose other
directions as well. In general, we find that the symme-
tries from different channels then mix, and both A1g and
B1g channels are renormalized by the irreducible dy-
namic charge vertex. The formulas in that case are com-
plicated and will not be presented here. A sum rule simi-
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lar to that of the dynamical charge susceptibility also
holds for inelastic x-ray scattering, but it is too cumber-
some to present here.

One could also study resonant (or mixed) Raman re-
sponse functions. The formalism is similar to that for the
nonresonant case, except the analytic continuation is
more complicated. These calculations have not yet been
completed by anyone. But a simple power-counting
analysis of the different symmetry sectors can be per-
formed (Freericks and Devereaux, 2001b). What is
found is that the A1g sector has contributions from the
nonresonant diagrams, the mixed diagrams, and the
resonant diagrams. The B1g sector is either nonresonant
or resonant, but the mixed contributions disappear as
1/d . The B2g response is purely resonant.

F. Single-particle properties (localized electrons)

We now study f-electron properties. Since the local
f-electron number is conserved, one might believe that
the localized particle dynamics are trivial. Indeed, this is
true for the particle number, but the fermionic electron
degrees of freedom are nontrivial, even if they are re-
stricted to be local. As a first step in our analysis, we can
imagine writing the statistical factor for the f occupancy
in terms of an effective f level Ef* (Czycholl, 1999),

w15
1

11exp@2b~Ef* 2m f!#
, (102)

which we have written explicitly for the spinless case,
with suitable generalizations for higher-spin cases. No-
tice that, in many cases, either w1 changes as a function
of T , or m f changes as a function of T , or both. Hence
Ef* typically has temperature dependence. If we view
this energy as the centroid of the f spectral function, we
can immediately learn about how the f spectral function
may change as a function of T . Of course one can only
learn so much from a single number.

What is more interesting is to evaluate the local
f-electron Green’s function following the work of
Brandt and Urbanek (1992) and Zlatić et al. (2001; see
also Janis, 1994, which examined the corresponding
x-ray edge problem). The local f-electron Green’s func-
tion on the imaginary axis is defined by

Fh~t!52Trcf

^e2bHimpS~l!fh~t!fh
† ~0 !&

Zimp
, (103)

for t.0 in the interaction representation, where Zimp is
given by Eq. (26) with H50. The impurity Hamiltonian
in zero magnetic field is Himp52mnc1(h(Efh2m f)nh

f

1Uncnf and the evolution operator satisfies

S~l!5Tt expF2E
0

b

dtE
0

b

dt8(
s

cs
† ~t!ls~t2t8!cs~t8!G ,

(104)

with ls(t)5T(n exp(2ivnt)lns . The field lns is the
discrete function that satisfies Eqs. (27)–(32). Since
fh(t)5exp(tHimp)fh(0)exp(2tHimp), we find
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d

dt
fh~t!5F2~Efh2m f!2U(

s
cs

† ~t!cs~t!G fh~t!,

(105)

which can be integrated to yield

fh~t!5e2(Efh2mf)t

3Tt expS 2U(
s

E
0

t

dt8cs
† ~t8!cs~t8! D fh~0 !.

(106)

If we define a time-dependent field

xt~t8,t9!52Uu~t2t8!d~t82t9!, (107)

then the f-electron Green’s function becomes

Fh~t!52
1

Z imp
e2(Efh2mf)tTrcT t^e2bH0S~l2xt!&,

(108)

with H052mnc, because the trace over f states is re-
stricted to nf50 for t.0 propagation [the operator
f(0)f†(0) projects onto nf50 and all of the remaining
operators are composed of f†f pairs, which do not
change the total f-electron number].

The strategy for evaluating the trace over itinerant-
electron states is the same as in Sec. II.D. The trace
involves operator averages that are not time-translation
invariant because the xt field is not a function of t8
2t9 only. We start with the auxiliary Green’s function in
Eq. (69) and note that the double Fourier transform of
the xt field [analogous to Eq. (68)] becomes

xt~ in l!5TE
0

b

dt8ein lt8xt~t8!

5H U

in lb
~12ein lt!, lÞ0

2
Ut

b
, l50.

(109)

Here our choice for normalizing the Fourier transform
has an extra factor of T for convenience [in other words,
xt(in l) has dimensions of energy] and the bosonic Mat-
subara frequency arises from the difference of two fer-
mionic Matsubara frequencies. Since xt(in0)Þ0, we
now have Z aux(2xt)5@11exp(bm2Ut)#2s11. The par-
tition function can also be expressed as the determinant
of the matrix that appears in the exponent in Eq. (69). In
the general case, we can write the partition function as
an infinite product,

Z aux~2xt!5F2eb(m1x0)/2 )
n52`

`
ivn1m1x0

ivn
G 2s11

,

(110)

which is equal to the product of the diagonal elements of
the corresponding matrix,

Mmn5~ ivm1m!dmn1xm2n , (111)

up to an overall normalization factor. Hence the determi-
nant of the matrix in Eq. (111) is simply a product of the
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diagonal elements! This is surprising, since one would
naively expect that the determinant depended on the
higher Fourier modes of x. We can show this result ex-
plicitly by checking that

fm
(m8)5TE

0

b

dte(ivm2ivm8)t expH E
0

t

dt8@x~t8!2x0#J
(112)

is the m8th eigenvector, with eigenvalue ivm81m1x0 .
The verification is straightforward, provided one first
writes xm2n in terms of the integral over t and notes
that x(t)2x0 times the last exponential factor in Eq.
(112) is equal to the negative t derivative of the expo-
nential factor. The eigenvalue can then be determined
by evaluating the integral by parts; one needs to subtract
the x0 factor from the exponent in order for the bound-
ary terms to vanish when one performs the integration
by parts.

Knowing an explicit form for the eigenvectors allows
us to determine the auxiliary Green’s function in the
general case. As before, we imagine adding an infinitesi-
mal field x̄mn5x̄dmm0

dnn0
to the matrix Mmn . The aux-

iliary Green’s function is determined by taking the loga-
rithmic derivative of the partition function with respect
to x̄ : gs

aux(ivn0
,ivm0

)5] ln Z aux(2xt)/]x̄ . This deriva-
tive is easy to calculate because it says we need only
determine the shift in each of the eigenvalues for
Z aux(2xt) to first order in x̄ . In the presence of x̄ , it is
easy to show that

E(m8)5ivm81m1x01x̄fm0

(m8)* fn0

(m8)1O~ x̄2!,
(113)

which leads to

gs
aux~ ivn ,ivm!5 (

m852`

` fm
(m8)* fn

(m8)

ivm81m1x0

5TE
0

b

dtE
0

b

dt8eivnt2ivmt8

3e*0
td t̄[x( t̄)2x0]e*0

t8d t̃[x* ( t̃)2x0* ]

3T (
m852`

` e2ivm8(t2t8)

ivm81m1x0
. (114)

Note that if we choose x(t)5x(in l)exp(2inlt), with
x(in l) real, then evaluating Eq. (114) to first order in
x(in l) reproduces Eq. (71), as it must. For our case, we
are interested in the real x field of Eq. (107). Substitut-
ing this field into Eq. (114) and performing some tedious
algebra then yields the results for the diagonal and off-
diagonal auxiliary Green’s function shown in Table VIII.
These results generalize those of Brandt and Urbanek
(1992) off of half filling and correct some typos in Zlatić
et al. (2001).

Once gs
aux is known, we follow the same procedure as

before to calculate the relevant averages. The object of
interest is TrcTt^exp(2bH0)S(l2xt)&, which can be
viewed as the partition function corresponding to a par-
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ticle moving in both the l and xt fields. Since the parti-
tion function is the determinant of the inverse of the
Green’s function, and since the Green’s function
gs(ivn ,ivm) associated with the l2xt field is related to
the auxiliary Green’s function via

@gs#215@gs
aux#212lnsdnm , (115)

we immediately conclude that

TrcTt^exp~2bH0!S~l2xt!&

5Z aux~2xt! )
s51

2s11

Det@dnm2gs
aux~ ivn ,ivm!lms# .

(116)

Substituting into Eq. (108), yields our final result for the
f-electron Green’s function,

TABLE VIII. Auxiliary Green’s function gs
aux(ivn ,ivm)

5Tj0Anm1T(j021)Bnm for nÞm and gs
aux(ivn ,ivn)

5Tj0Cnn1T(j021)Dnn for n5m . Here j051/@11exp(Ut
2bm)#.

Anm

1
i~vm2vn!~ivm1m2U!

2
ei(vn1m)t2bm

~ivm1m!~ivn1m!

1
~e2(ivm1m)t1e2bm!~e(ivn1m)t2eUt!

~ivm1m!~ivn1m2U!

2
1

i~vm2vn!~ivn1m!
1

e2i(vm2vn)t

i~vm2vn!~ivm1m!

1
e2(ivm1m)t@i~vm2vn!eUt2~ivm1m2U!e(ivn1m)t#

i~vm2vn!~ivm1m2U!~ivn1m2U!

Bnm

21
i~vm2vn!~ivn1m2U!

2
e2i(vm2vn)t

i~vm2vn!~ivn1m!

2
2eivnt~e2ivmt2e(m2U)t!2ebm~e2(ivm1m)t2e2Ut!

~ivm1m2U!~ivn1m!

1
ivn1m2i~vm2vn!ebm2(ivm1m)t

i~vm2vn!~ivm1m!~ivn1m!

1
e2i(vm2vn)t@ivn1m2U1i~vm2vn!e(ivm1m2U)t#

i~vm2vn!~ivm1m2U!~ivn1m2U!

Cnn

~ivn1m2U!t211e2(ivn1m2U)t

~ivn1m2U!2

1
12e2(ivn1m2U)t1e2bm~e(ivn1m)t2eUt!

~ivn1m!~ivn1m2U!

1
~ivn1m!~b2t!212e2bm1(ivn1m)t

~ivn1m!2

Dnn

2~ivn1m2U!t211e(ivn1m2U)t

~ivn1m2U!2

1
12e(ivn1m2U)t1ebm~e2(ivn1m)t2e2Ut!

~ivn1m!~ivn1m2U!

1
~ivn1m!~t2b!212ebm2(ivn1m)t

~ivn1m!2
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Fh~t!52
1

Z imp
e2(Efh2mf)tZ aux~2xt!

3 )
s51

2s11

Det@dnm2gs
aux~ ivn ,ivm!lms# .

(117)

Recall that Z aux(2xt) changes with t because the xt
field depends on t. One can easily verify, in the case
where Efh has no h dependence, and in the limit where
t→01, that gs

aux→dnm /(ivn1m) and the f-electron
Green’s function can be evaluated explicitly, producing
Fh(01)52w0 , as it must. Similarly, for t→b2 one finds
gs

aux→dnm /(ivn1m2U) and Fh(b2)52w1 .
One is also interested in the f-electron Green’s func-

tion on the real axis. Unfortunately, there is no obvious
way to continue Eq. (117) analytically from the imagi-
nary to the real axis. Instead, one is forced to reevaluate
the f-electron Green’s function directly on the real axis.
Since there is no time-translation invariance to the effec-
tive fields, it is most convenient to employ a Keldysh
formalism, even though the f electron is in equilibrium.
In the Keldysh formalism, we need to perform the path
integral in the time domain over the contour illustrated
in Fig. 3 to determine the contour-ordered Green’s func-
tion. The Keldysh (greater) Green’s function for real
time t becomes

Fh
.~ t !52Trcf

^e2bHimpSc~l!fh~ t !fh
† ~0 !&

Zimp
, (118)

with fh(t)5exp(itHimp)fh(0)exp(2itHimp) and

Sc~l!5Tc expF E
c
d t̄ E

c
d t̄ 8(

s
cs

† ~ t̄ !l~ t̄ , t̄ 8!cs~ t̄ 8!G .

(119)
One can directly determine l(v) on the real axis. Using
this function one then finds

l~ t̄ , t̄ 8!52
1
p E

2`

`

dv Im l~v!exp@2iv~ t̄ 2 t̄ 8!#

3@f~v!2uc~ t̄ 2 t̄ 8!# , (120)

where uc( t̄ 2 t̄ 8)50 if t̄ 8 is in front of t̄ on the contour c
and 1 if it is behind.

FIG. 3. Contour c used in integrating the action in the Keldysh
formalism.
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Using an equation of motion similar to Eq. (105) leads
us to introduce a time-dependent field

x t~ t̄ , t̄ 8!52iUuc~ t2 t̄ !dc~ t̄ 2 t̄ 8!. (121)

The derivation of the Green’s function follows as before,
resulting in the analog of Eq. (117),

Fh
.~ t !52

1
Z imp

e2i(Efh2mf)tZ aux~2x t!

3 )
s51

2s11

DetFdc~ t̄ 2 t̄ 8!

1E
c
d t̄ 9gs

aux~ t̄ , t̄ 9!ls~ t̄ 9, t̄ 8!G , (122)

except now, the determinant is of a continuous matrix
operator (the plus sign comes from the fact that the in-
tegral is over the contour rather than just the imaginary
time axis).

The function gs
aux( t̄ , t̄ 8) can be found directly from its

operator definition,

gs
aux~ t̄ , t̄ 8!52

1
Z aux~2x t!

3Trc^Tce2bH0Sc~2x t!cs~ t̄ !cs
† ~ t̄ 8!&,

(123)

noting that we order the times along the contour c and
that Z aux(2x t)5@11exp(bm2iUt)#2s11. The result is
shown in Table IX for the six different possible order-
ings of t , t̄ , and t̄ 8 along the contour c . Brandt and
Urbanek (1992) show how to calculate the discretized
determinant in an efficient manner. If we use a quadra-
ture rule,

E
c
dtI~ t !5(

i
WiI~ t i!, (124)

with weights Wi for the discrete set of times $t i% on the
contour c , then the continuous determinant can be ap-
proximated by the discrete determinant

DetFWiS d ij

Dtc
1(

k
gs

aux~ t i ,tk!Wkls~ tk ,t j! D G (125)

for each s. Here 1/Dtc is the approximation to the delta
function on contour c , with Dtc the width of the interval
that includes the delta function; for a (midpoint) rectan-
gular quadrature rule, one takes Dtc5Wi .

TABLE IX. gs
aux( t̄ , t̄ 8) for different orderings of t , t̄ , and t̄ 8

along the contour c . The symbol j̄0 satisfies j̄051/@1
1exp(iUt2bm)#.

j̄0 exp@im( t̄2 t̄8)# t, t̄ , t̄ 8

j̄0 exp@iUt1i(m2U) t̄2im t̄8# t̄ ,t, t̄ 8

j̄0 exp@i(m2U)( t̄2 t̄8)# t̄ , t̄ 8,t

( j̄021)exp@im( t̄2 t̄8)# t, t̄ 8, t̄

( j̄021)exp@2iUt1im t̄2i(m2U) t̄8# t̄ 8,t, t̄

( j̄021)exp@i(m2U)( t̄2 t̄8)# t̄ 8, t̄ ,t
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Now the Keldysh Green’s function satisfies the spec-
tral formula

Fh
.~ t !5E

2`

`

dve2ivt@f~v!21#Ah
f ~v! (126)

because it involves the product of the spectral function
Ah

f (v) with the relevant distribution function @f(v)
21# . The (greater) Green’s function obviously satisfies

Fh
.~ t !5Fh

.* ~2t !. (127)

We break the spectral density into its even and odd
pieces: Ah

fe(v)5@Ah
f (v)1Ah

f (2v)#/2 and Ah
fo(v)

5@Ah
f (v)2Ah

f (2v)#/2. Then we use Eq. (127) to show
that

Ah
fe~v!52

1
p E

0

`

dt@~cosh bv11 !Re$Fh
.~ t !%cos~vt !

2sinh~bv!Im$F.~ t !%sin~vt !# (128)

and

Ah
fo~v!52

1
p E

0

`

dt@2sinh~bv!Re$Fh
.~ t !%cos~vt !

1~cosh bv11 !Im$F.~ t !%sin~vt !# . (129)

At half filling, we have Ah
fo(v)50, so that Eqs. (128)

and (129) reduce to

Ah
f ~v!52

2
p E

0

`

dt Re$Fh
.~ t !%cos~vt !. (130)

This then determines the localized-electron spectral
function on the real axis.

G. Spontaneous hybridization

Sham and co-workers proposed that correlations can
lead to a spontaneous ferroelectricity via the creation of
a dynamically correlated hybridization in the FK model
(Portengen et al., 1996a, 1996b). Such an effect is neces-
sarily a subtle one, because it is well known that Elitzur’s
theorem (Elitzur, 1975) applies to the FK model (Sub-
rahmanyam and Barma, 1988) and no such spontaneous
hybridization can occur at any finite temperature. Nu-
merical and analytical calculations in finite dimensions
(Farkasovšký, 1997, 1999, 2002; Sarasua and Continen-
tino, 2002) and in infinite dimensions (Czycholl, 1999)
have indicated that such spontaneous hybridization does
not occur in the FK model, but they did not cover all of
the available parameter space. An alternate way to test
these ideas is to directly calculate the susceptibility to-
ward spontaneous hybridization formation (Zlatić et al.,
2001).

Because the f-electron dynamics are local, only the
local susceptibility toward spontaneous hybridization is
relevant. We shall restrict ourselves to the spinless case
for simplicity. The local spontaneous hybridization sus-
ceptibility is defined by
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xhyb52E
0

b

dt
1

Zimp

3Trcf^Tt exp~2bHimp!S~l!f~t!d†~t!d~0 !f†~0 !&.

(131)

If we introduce the time-dependent field l(t ,t8) that
couples the itinerant electron at t8 to its Hermitian con-
jugate at time t [in equilibrium, we have l(t ,t8)5l(t
2t8)], then we can express the susceptibility in terms of
a functional derivative

xhyb52E
0

b

dt
dF~t!

dl~t ,0!

5E
0

b

dt
e2(Ef2mf2U)tZ aux~2xt!

Zimp

d Det@12gauxl#

dl~t ,0!
.

(132)

Noting that Det A5exp@Tr(ln A)# allows us to immedi-
ately compute

d Det@12gauxl#

dl~t ,0!

52Det@12gauxl#@~12gauxl!21gaux#0t , (133)

where matrix multiplication is understood. Substituting
Eq. (133) into Eq. (132) then yields

xhyb5E
0

b

dtE
0

b

dt8F~t!~12gauxl!0t8
21 gt8t

aux , (134)

where we recall that gaux must be recomputed for each t
value, since it depends explicitly on xt . Reexpressing
Eq. (134) in terms of Fourier-transformed quantities
produces

xhyb5E
0

b

dtF~t!T(
mn

~12gauxl!mn
21gaux~ ivn ,t!,

(135)

where the partial Fourier transform of the auxiliary
Green’s function satisfies

gaux~ ivn ,t!5T(
m

gaux~ ivn ,ivm!eivmt. (136)

Note that this final result for the spontaneous hybridiza-
tion susceptibility in Eq. (135) requires the matrix in-
verse of @12gauxl# , which is straightforward to com-
pute numerically for a finite truncation of the matrix.

III. ANALYSIS OF SOLUTIONS

A. Charge-density-wave order and phase separation

The first problem examined in the FK model with
DMFT was the problem of ordering into a two-
sublattice charge-density wave (CDW) at half filling on
a hypercubic lattice (Brandt and Mielsch, 1989). Be-
cause the hypercubic lattice is bipartite, we expect a
transition at finite temperature for all U (Kennedy and
Lieb, 1986), and indeed this is true. Since the original
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work, a number of other studies of CDW order and
phase separation followed (Brandt and Mielsch, 1990,
1991; van Dongen and Vollhardt, 1990; van Dongen,
1992; Freericks, 1993a, 1993b; Freericks et al., 1999; Let-
fulov, 1999; Freericks and Lemański, 2000; Gruber et al.,
2001; Chen, Jones, and Freericks, 2003) on both the hy-
percubic and the Bethe lattices. We concentrate on the
spinless FK model here.

Since the DMFT is in the thermodynamic limit, we
can determine the transition temperature for a continu-
ous transition simply by finding the temperature at
which the susceptibility diverges. Using the results of
Table I, we find that the susceptibility diverges whenever
the denominator of g(q) vanishes. In Fig. 4, we plot the
Tc for checkerboard CDW order (X521) and the spin-
odal temperature for phase separation (X51) near half
filling (a) and near the band edge (b). Note that the
transition temperature has a maximum that is about 1/40
of the effective bandwidth ('4t* ) and at half filling for
large U it behaves like Tc't* 2/4U [as expected for the
equivalent (Ising) spin model]. For small U it appears to
grow like Tc'U2uln Uu, which is different from the ex-
pected exponentially growing behavior that occurs in
most nested systems at weak coupling] (van Dongen and
Vollhardt, 1990; van Dongen, 1992). As we move away
from half filling, the checkerboard phase is suppressed,
disappearing at small and large U , and the phase sepa-

FIG. 4. Tc for CDW order in the spinless FK model (a) near
half filling and (b) near the band edge. The solid lines denote
checkerboard order and the dashed lines denote the spinodal
decomposition temperature for phase separation (the true
first-order transition temperature is always higher than the
spinodal temperature). The labels denote the electron filling re

[which runs from top to bottom for the dashed lines in panel
(a) as 0.3, 0.35, 0.4, and 0.45, the spinodal temperature for 0.5
vanishes; in panel (b) the lines are for 0.05, 0.1, 0.15, and 0.2—
note how the curves cross as a function of U]; the localized
electron filling is fixed at r f50.5.
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ration is enhanced, especially at large U . Near the band
edge [Fig. 4(b)], there is no checkerboard instability, but
the phase separation becomes even stronger. We see that
the spinodal temperature for phase separation does not

FIG. 5. Tc for CDW order in the spinless FK model (a) for
small U and (b) for large U . The solid lines denote checker-
board order and the dashed lines denote the spinodal decom-
position temperature for phase separation (the true first-order
transition temperature is always higher than the spinodal tem-
perature). The labels denote the value of U ; the localized elec-
tron filling is fixed at r f50.5.

FIG. 6. Projected phase diagram for the spinless FK model
with r f50.5. The shaded region near half filling denotes the
region of stability of the checkerboard phase (X521), the
shaded region near the band edge denotes the region of stabil-
ity for the segregated phase (as determined by the spinodal
decomposition temperature), and the white region shows the
incommensurate phases at small U (the solid lines are lines of
constant X).
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depend too strongly on the electron filling, and surpris-
ingly the curves cross as a function of U .

We can also examine the transition temperature for
fixed U as a function of electron concentration (with r f
50.5 again) as shown in Fig. 5. For small U [panel (a)],
we see that the region of the checkerboard phase in-
creases as U increases, as does the region of phase sepa-
ration. For large U [panel (b)], we see that the Tc curve
for the checkerboard phase develops a cusp at half filling
(Freericks and Lemański, 2000) and that the region of
stability shrinks as U increases further. Phase separation
dominates for large U , as expected.

It turns out that, for small U , the system also has in-
stabilities to CDW phases with incommensurate values
of X (i.e., X changes continuously with the electron con-
centration). These results are summarized with a pro-
jected phase diagram (Freericks, 1993a) in Fig. 6, which
plots the regions of stability for different CDW phases
as determined by the ordering wave vector of the initial
ordered phase as T is lowered to the first (continuous)
instability at Tc (as determined by the divergence of the
relevant susceptibility). This is an approximation of the
zero-temperature phase diagram—the phase boundaries
may change as one reduces the temperature from Tc to
zero, but we are not able to study the ordered phase of
incommensurate states. They may also change if there
are first-order phase transitions. Note how the system
segregates at large U for all fillings except re50.5,
where it is degenerate with the checkerboard phase.

In order to understand the incommensurate order bet-
ter, we plot Tc(X) for different electron fillings at U
50.5 in Fig. 7. Near half filling, these curves are peaked
at X521, but as the system is doped sufficiently far
from half filling, the curves develop a peak at an inter-
mediate value of X which evolves towards X50 as Tc
→0 (re50.35 and 0.3). Then, if doped further from half
filling, Tc rises again and the ordering wave vector
evolves smoothly toward X51 (re50.2 and 0.15). Note
that the region of stability for positive (incommensu-
rate) X is much smaller than that of negative (incom-

FIG. 7. CDW transition temperature as a function of the or-
dering wave vector described by X . The numbers label the
electron filling with the filling changing in steps of 0.05 (U
50.5 and r f50.5). The results for re50.25 are too low to be
seen on this figure.
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mensurate) X . In the large-U case, the maximum always
appears at X521 or X51 and the incommensurate or-
der disappears (see Fig. 6).

It is interesting also to examine the dynamical charge
susceptibility (Freericks and Miller, 2000; Shvaika, 2000,
2001). We do not expect the dynamical susceptibility to
show any signs of the CDW instability because it is an
isolated susceptibility, and the divergence of the static
susceptibility arises solely from the coupling to the static
electrons which produced an additional contribution to
the (isothermal) static susceptibility. Indeed this is the
case, as can be seen for the checkerboard (X
521) dynamical charge susceptibility at U54 shown in
Fig. 8. We plot the imaginary part of the susceptibility
only. Note how at high temperature there is a low-
energy peak and a charge-transfer peak (centered at n
'U54), but as the temperature is lowered, the low-
energy peak rapidly disappears and the susceptibility has
little further temperature dependence in the homoge-

FIG. 8. Imaginary part of the dynamical charge susceptibility
at X521 and U54. Note the low-energy spectral weight
which rapidly disappears as T is lowered, and note further that
there is no signal of the CDW order (which sets in at Tc

50.0547) in the isolated susceptibility.

FIG. 9. Density of states above and below Tc50.066 14 in the
spinless FK model at half filling on a Bethe lattice with U
51. The DOS is plotted for T50.07, T50.065, T50.06, T
50.045, T50.03, and T50. Note that in the ordered phase,
there are two DOS plots, one for each sublattice (solid and
dotted lines); these DOS’s are mirror images of each other.
The inset plots the ‘‘normalized’’ order parameter as a function
of temperature, which has a BCS-like shape. The exact form is
known for U→` and U→0 (van Dongen, 1992), and for
U,0.25 the shape begins to change dramatically since the or-
der parameter becomes very small in the range 0.5Tc,T,Tc

for small U (Chen, Jones, and Freericks, 2003).
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neous phase, even though we have passed through Tc ,
which occurs at 0.0547. We also find that, as we move
from the zone corner toward the zone center, the higher-
energy (charge-transfer) peak loses spectral weight but
does not have much dispersion or peak narrowing, while
the low-energy peak shows an appreciable dispersion to-
ward lower energy and narrows as we approach the zone
center (not shown). At the zone center, the dynamical
charge susceptibility vanishes due to conservation of the
total conduction electron charge.

The results on the Bethe lattice are similar to those on
the hypercubic lattice except for the incommensurate or-
der. We shall concentrate on discussing the Bethe lattice
case for the remainder of this section. We begin by ex-
amining the ordered checkerboard phase at half filling.
In Fig. 9, we plot the electronic density of states for U
51 above Tc , and below Tc in steps down to T50. The
inset in the figure is a plot of the ‘‘normalized’’ order
parameter w1

A2w1
B as a function of temperature. The

order parameter takes a BCS-like form, being flat for
low temperatures and having a square-root dependence
as Tc is approached [this behavior changes as U→0; see
van Dongen (1992) and Chen, Jones, and Freericks
(2003)]. The density of states evolves with temperature
in the ordered phase because of this temperature depen-
dence in the order parameter. Each sublattice has a
sharp peak in the density of states (which becomes sin-
gular at T50), as expected. Note the interesting behav-
ior of the subgap states, which split into two subbands,
then shrink and disappear as T is reduced. In the limit as
U→` , the bandwidth of the subbands goes to zero, and
the density of states becomes a delta function on each
sublattice (van Dongen, 1992).

In addition to the checkerboard phase, we can also
examine the phase-separated (segregated) phase, in
which the itinerant electrons avoid the localized ions. If
we take the limit U→` , where the phase separation is
the strongest, we find the plot projected onto the w1
5(12re)/2 plane (which corresponds to relative half
filling of the lower Hubbard band) shown in Fig. 10. The
solid line denotes the first-order phase-transition line
calculated by performing a Maxwell construction on the
free energy (Freericks et al., 1999). The dotted line is the

FIG. 10. Phase diagram for the first-order phase-separation
transition on a Bethe lattice with w15(12re)/2 and U→` .
The solid line is the first-order transition temperature and the
dotted line is the spinodal temperature.
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
spinodal decomposition temperature calculated from the
divergence of the susceptibility. Note how the two tem-
peratures track well with one another and how they
meet at the maximal Tc , as they must, because that is
the temperature where the first-order phase transition
becomes second order.

Finally, we examine higher-period ordered phases on
the Bethe lattice (Gruber et al., 2001). Since the Bethe
lattice does not have the same periodicity properties as
regular lattices, one must construct higher-period or-
dered phases with care. This is done by working directly
in real space and repeating quasi-one-dimensional pat-
terns of charge-density waves according to the different
levels of the tree that forms the Bethe lattice. A period-
two phase is the conventional checkerboard phase with
alternating charge densities on each level. There is a re-
gion of parameter space where the period-three phase
has been shown to be stable. This is illustrated in Fig.
11(a), which is a restricted phase diagram for T→0 that
compares the ground-state energy of the segregated
phase, the period-two phase, the period-three phase,
and the homogeneous phase. Note the wide region of
stability for the period-three phase (this region can
shrink as additional phases are added to the phase dia-
gram; in particular, we conjecture that the homogeneous

FIG. 11. Stability of the period-three phase: (a) restricted
phase diagram on the Bethe lattice for r f52/3 and (b) free
energy vs temperature for m50.848 61. Note the large region
of stability of the period-three phase in (a) and how the shape
of the free-energy curves in (b) suggest that phase transitions
to higher-period phases will be first order; note the unphysical
‘‘loop’’ in the period-three free energy indicates higher period
phases must be stable for at least 0.006,T,0.03 to produce a
continuous and convex free energy.
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phase stability will disappear as higher-period phases are
added to the diagram). To examine this in more detail,
we plot the free energy of the homogeneous phase, the
period-two phase, and the period-three phase for U53,
r f52/3, and m50.848 61 (re'0.332). Note how at low
temperature the period-three phase is lowest in energy,
but how there must be a higher-period phase that inter-
venes between the period-two and period-three phases
for the free energy to be continuous. We expect the
phase transition from the period-three phase to be first
order. Note further how the period-two phase free en-
ergy smoothly joins the homogeneous-phase free energy,
as expected for a continuous (second-order) phase tran-
sition.

B. Mott-like metal-insulator transitions

The FK model is not a Fermi liquid (Si et al., 1992)
whenever r f is not equal to 0 or 1 (when r f50 or 1, the
FK model is a noninteracting Fermi gas). This is because
the f electrons appear like disorder scatterers (with an
annealed averaging rather than the conventional
quenched averaging). These scatterers always produce a
finite lifetime at the Fermi surface, so rigorously quasi-
particles do not exist and the system is a non-Fermi-
liquid. If U is small, one can still view the system as a
‘‘dirty Fermi liquid,’’ but the system rapidly changes
character as U increases further. The non-Fermi-liquid
character can also be seen in the self-energy on the real
axis. The imaginary part does have a quadratic behavior,
but the curvature is the wrong sign and the intercept at
v50 does not go to zero as T→0, as it must in a Fermi
liquid. Similarly, the real part of the self-energy is linear,
but the slope has the wrong sign near v50.

It is known that in a Fermi liquid with a local self-
energy the Fermi surface and the density of states
(DOS) at the Fermi level (at T50) is unchanged as the
correlations increase (Müller-Hartmann, 1989b). But be-
cause the FK model is not a Fermi liquid, there is no
restriction on the DOS. van Dongen and Leinung (1997)
studied the Mott-like metal-insulator transition on the
Bethe lattice in detail; in that study, the homogeneous

FIG. 12. Itinerant-electron DOS for the spinless FK model on
the Bethe lattice for different values of U ranging from 0.5 to
3.0 in steps of 0.5 (re5r f50.5). The metal-insulator transition
occurs at U52. It is preceded by a pseudogap phase for (1
,U,2).
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phase was continued down to T50, and any possible
CDW phases were ignored. They found a simple cubic
equation for the interacting DOS on the Bethe lattice
which produced the results shown in Fig. 12. One can
see that, for weak coupling, the DOS is essentially un-
changed from the noninteracting case, but as U is in-
creased further, the DOS first develops a pseudogap,
where spectral weight is depleted near the chemical po-
tential, and then it gets fully reduced to zero. As U is
increased further, the system splits into lower and upper
Hubbard bands, and the bandwidth of each subband de-
creases as U increases, while the separation increases
between the two bands. This is precisely the kind of
metal-insulator transition that Mott envisioned, with the
DOS within a single band suppressed to zero, but unlike
Mott’s prediction that the transition would generically
be a discontinuous first-order transition, here it is a con-
tinuous second-order transition.

At half filling, the metal-insulator transition occurs
precisely at the point where the self-energy develops a
pole and diverges at v50. This forces the DOS at the
chemical potential to equal 0 on any lattice. On lattices
where the noninteracting DOS has band edges, the in-
teracting DOS can remain zero within a correlation-
induced gap. But on the hypercubic lattice, which has an
infinite bandwidth, with an exponentially small DOS for
large frequency, there is no precise gap, rather the DOS
is exponentially small in the ‘‘gap region’’ and then be-
comes of order one within the Hubbard subbands. In-
deed, on the hypercubic lattice, the DOS looks much
like that in Fig. 12, but the metal-insulator transition
occurs at U5A2 for re5r f50.5. Away from half filling,
the metal-insulator transition occurs when the pole
forms on the hypercubic lattice, but occurs before a pole
forms on the Bethe lattice.

The DOS of the FK model does have a curious
property—it is independent of temperature in the homo-
geneous phase when r f is held constant (van Dongen,
1992), which was proved by mapping the FK model onto
a coordination-three noninteracting Bethe lattice prob-
lem, which then has a temperature-independent DOS.
The temperature independence holds only in canonical

FIG. 13. Single-particle DOS of the f electrons for the spinless
FK model at half filling on a Bethe lattice with U52.5. Note
how the gap opens up as T is reduced even though the calcu-
lations are above the CDW transition temperature (which oc-
curs at T50.113 746). The DOS is symmetric due to particle-
hole symmetry.
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formulations, where both re and r f are separately fixed
as functions of T [ignoring the trivial shift of the DOS
with m(T)]. When the total electron concentration is
fixed, but can vary between itinerant and localized elec-
trons, the DOS will vary with T , since r f generally varies
with T .

One can also examine the spectral function of the lo-
calized electrons (Brandt and Urbanek, 1992), which is
temperature dependent. The DOS shares similar behav-
ior with the conduction-electron DOS, having a gap
when the correlation energy is large. We plot results for
U52.5 in Fig. 13 where the localized-electron DOS de-
velops a pseudogap and then a gap region as T is low-
ered. Note how the gap develops as T is reduced below
0.4.

C. Falicov-Kimball-like metal-insulator transitions

The original work of Falicov, Kimball, and Ramirez
(Falicov and Kimball, 1969; Ramirez et al., 1970) studied
a different type of metal-insulator transition—one in
which the character of the electronic states was un-
changed, but their statistical occupancy fluctuated with
temperature or pressure. As occupancy shifted from the
itinerant to localized bands, the system underwent a
charge-transfer metal-insulator transition. One of the
main points of interest of this model was that the pres-
ence of a Coulomb interaction U between the two types
of electrons could make the transition become discon-
tinuous (first order). The original approximations used a
mean-field theory which showed these first-order transi-
tions. Later, Plischke (1972) proposed that when the
coherent-potential approximation was applied to the FK
model, the first-order transitions disappeared. This was
refuted by Gonçalves da Silva and Falicov (1972).

In the Falicov and Kimball approach to the metal-
insulator transition, one works with spin-one-half elec-
trons and fixes the total electron concentration (usually
at r total5re1r f51). Alternatively, one can perform a
partial particle-hole transformation on the f electrons,
and have a system where re5r f and U is negative (at-
tractive). There is a gap D to creating an electron-hole
pair. We shall concentrate on the electronic picture here
(where one has Ef5U2D22t* ) and the choice D5t* ,

FIG. 14. Conduction-electron density as a function of 1/T for
the spin-one-half FK model on a Bethe lattice with D51. The
different curves correspond to different values of U .
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
which most closely represents the original FK problem.
We work on an infinite-coordination Bethe lattice.

This model for metal-insulator transitions was solved
in infinite dimensions by Chung and Freericks (1998). It
requires a fine-tuning of the Coulomb interaction in or-
der to have a first-order phase transition. This is illus-
trated in Fig. 14, where we plot the conduction-electron
density re versus inverse temperature 1/T for different
values of U (recall Ef also varies with U , since D is fixed
at 1). The states that have re→0 as T→0 are insulators,
while those with finite re are metallic. We say a metal-
insulator transition occurs when there is a discontinuous
jump in the electron density, which goes from the metal-
lic phase at high temperature to the insulating phase at
low T . This occurs for 2.12,U,2.155 when D51. The
shape of these curves is remarkably similar to those
found in the mean-field-theory solution of Ramirez et al.
(1970) and verifies that first-order metal-insulator tran-
sitions do occur within the coherent-potential approxi-
mation.

The interacting electronic DOS is plotted in Fig. 15
for four different values of U (Chung and Freericks,
1998). In panel (a) we show the metallic case, U52.16,
where the DOS is large at the chemical potential (v
50) and does not depend strongly on T . As U is re-
duced to 2.15 in panel (b), there is a discontinuous
metal-insulator phase transition as a function of T . The
density of states changes radically at the transition,
where the DOS at the chemical potential suddenly be-
comes small (due to a discontinuous change in r f) and
smoothly decreases to zero as T→0. In panel (c), we see
the evolution of the insulating phase for the strongly
correlated insulator U52.12. Here the conduction-

FIG. 15. Conduction-electron DOS for the spin-one-half FK
model on a Bethe lattice with D51. The different panels are
for different values of U , and the results are plotted for a
number of different temperatures [the dashed lines are used in
panel (b) for clarity]. The DOS has T dependence because r f

varies with T . In (a) U52.16, in (b) U52.15, in (c) U
52.12, and in (d) U50.5.
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electron occupation does not evolve in a simple expo-
nential fashion, but has a much sharper increase as T
increases. The DOS has upper and lower Hubbard
bands, with the lower band losing spectral weight as T
→0. Finally, in panel (d), we show the DOS for a weakly
correlated insulator (U50.5). Here the conduction-
electron density evolves in an exponential fashion and
there is no DOS at the chemical potential, since all of
the electronic occupation is thermally activated.

D. Intermediate valence

The FK model does not have any hybridization be-
tween the itinerant and localized electrons, so it cannot
have any quantum-mechanical mixed valence at finite
temperature (Subrahmanyam and Barma, 1988), which
is quantified by having a nonzero average ^c†f&. Never-
theless, one can have a classical intermediate-valence
state, where the average f-electron occupancy lies be-
tween 0 and 1 for T→0. In many such cases, one would
expect CDW order (or phase separation) to take over in
the ground state, but there are regions of parameter
space where the system appears to remain in a homoge-
neous classical intermediate-valence state all the way to
T50. We study such systems here.

The intermediate-valence problem and the possibility
of the FK model having an instability to a spontaneously
generated hybridization was first proposed by Portengen
et al. (1996a, 1996b). Calculations in infinite dimensions
(Czycholl, 1999) and one dimension (Farkasovšký, 1997,
1999; Sarasua and Continentino, 2002) showed that a
spontaneously generated hybridization was unlikely
over a wide range of parameter space, but they did not
rule out the possibility everywhere.

The first step in examining the intermediate-valence
problem is to study the phase diagram of the FK model
to see what different types of phases occur. We pick the
spin-one-half model on the Bethe lattice again. We also
pick re1r f51 for the total electron concentration.
Since the conduction-electron Fermi level is at 0 when
there are no f electrons, if we pick 22,Ef,0, then the
Fermi level is pinned to Ef at U50, and one of two

FIG. 16. Intermediate-valence phase diagram for the spin-one-
half FK model on a Bethe lattice with re1r f51. Note how the
classical intermediate-valence state occupies only a small part
of the phase diagram, being taken over by phase-separated,
metallic, and insulating phases over most of the phase diagram.
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things can occur as U is increased: (i) either the classical
intermediate-valence state survives, or (ii) it phase sepa-
rates into a mixture of a state with r f50 and one with
r f51. The former occurs for Ef.21 and the latter for
Ef,21. As the interaction strength is increased further,
we find only two different stable solutions, a metallic
phase in which r f50, and an insulating phase in which
r f51. The zero-temperature phase diagram is summa-
rized in Fig. 16 (Chung and Freericks, 2000). In the
phase-separated region, there are more possibilities: ei-
ther the system remains phase separated in mixtures of
two integer-valent states, or the phase separation has at
least one intermediate-valence state in its mixture. The
line of circles represents an approximate crossover line
between these two possibilities (the intermediate-
valence mixtures lie above the circles). Note how the
metallic and insulator phases take over the phase dia-
gram as U increases. In fact, the classical intermediate-
valence state only occupies a small region of phase space
because it is unstable to phase separation over a wide
region. This could explain why there are not too many
classical intermediate-valence states seen in real materi-
als.

We conclude this section with a discussion on the pos-
sibility of spontaneous hybridization (Zlatić et al., 2001).
We confine our discussion to the spinless model with
re1r f50.5 for simplicity. If we repeat the above analy-
sis, then the region of stability for intermediate valence
at small U is the same as above, 21,Ef,0. But as U is
increased, it appears that the intermediate-valence state
should be stable for all U when Ef520.75 (we have not
performed a free-energy analysis to rule out the possi-
bility of phase separation). We plot the inverse of the
hybridization susceptibility from Eq. (135) in Fig. 17.
Note that it remains finite for all T . But we can get an
analytic form when U50 (Zlatić et al., 2001), which says
that the susceptibility has a term proportional to uln Tu,
which does diverge at T50. But this divergence does not
guarantee that the ground state has spontaneous hybrid-
ization; in fact, it is known in this case that the ground
state has ^c†f&50 (Farkasovšký, 2002), even though the
susceptibility diverges. Here we find, down to the lowest
temperature that we can calculate, that the hybridization

FIG. 17. Inverse of the hybridization susceptibility for the
spinless FK model on a Bethe lattice with re1r f50.5 and Ef

520.75. Note how the susceptibility monotonically increases
with increasing U which suggests that it continues to diverge at
T50.
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susceptibility increases with U , which would imply that
it continues to diverge at T50 for all U . In this case, we
do not know whether the ground state would possess a
spontaneous hybridization or not, but the results of Si
et al. (1992) suggest that spontaneous hybridization is in-
deed possible. In any case, since a real material will al-
ways have a nonzero hybridization (although it may be
quite small), one could expect a quantum-mechanical
intermediate-valence transition to occur at low tempera-
ture in regions of parameter space where the hybridiza-
tion susceptibility is large for the FK model. Alterna-
tively, spontaneous hybridization may also occur if the f
electrons are allowed to hop (Batista, 2002).

E. Transport properties

The optical conductivity, calculated from Eq. (89), is
plotted in Fig. 18 for the spinless FK model on the hy-
percubic lattice with w150.5. Panel (a) is the half filled
case (re50.5) and panel (b) shows the behavior for dop-
ing away from half filling. Both calculations are at low
temperature, T50.005, in the homogeneous phase (ig-
noring any possible CDW phases).

At half filling, the data behave as expected. For small
U , the system has a Drude-like peak, whose width is
determined by the scattering rate at low temperature
(note the scattering rate does not vanish even at T50
because the FK model is not a Fermi liquid). As U in-
creases, we see a charge-transfer peak develop, centered
at n'U , and the low-energy spectral weight is sup-

FIG. 18. Optical conductivity of the spinless FK model with
w150.5 on a hypercubic lattice at T50.005. Panel (a) is the
half filling case (re50.5) with different values of U , and panel
(b) is the U52 case doped away from half filling. The numbers
in panel (a) label the value of U , while the numbers in panel
(b) show re .
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pressed because the system becomes a correlated (Mott-
like) insulator (the metal-insulator transition occurs at
U'1.5 here). One can see that the transition is continu-
ous, with sdc smoothly approaching zero as the correla-
tions increase.

We concentrate on the U52 case as we dope away
from half filling. One can see that, as the system is
doped, it becomes metallic because the chemical poten-
tial now lies within the lower Hubbard band. As a result,
there is a transfer of spectral weight from the charge-
transfer peak down to a Drude-like feature as the sys-
tem is doped. What is remarkable is that there is an
isosbestic point present, which is defined to be a point
where the optical conductivity is independent of doping
and all the curves cross. Such isosbestic points typically
occur at n'U/2. and are found in a wide variety of mod-
els, but their origin in Fig. 18 is not well understood.

We also plot in Fig. 19 the dc conductivity, ther-
mopower, and electronic contribution to the thermal
conductivity, as derived in Eqs. (93)–(98) for a corre-
lated system (U52, solid line) with re512w1 and five
different w1 values (Freericks, Demchenko, et al., 2003).
For these parameters, there is always a region of expo-
nentially small DOS near the chemical potential at low
temperature [but in this region t(v) decreases only as a
power law]. As the localized-electron concentration w1
moves away from 0.5, the high-temperature ther-
mopower increases in magnitude due to the asymmetry
in the DOS (it must vanish at 0.5 due to particle-hole
symmetry) and the low-temperature thermopower
shows a sharp peak for fillings close to half filling (the
sign is holelike, because the DOS from the lower Hub-
bard band dominates the transport coefficients at low
temperature); the dc conductivity and thermal conduc-

FIG. 19. Transport coefficients: (a) dc conductivity, (b) ther-
mopower, and (c) electronic contribution to the thermal con-
ductivity, for the spinless FK model with re512w1 and U
52. Five fillings are shown: (i) solid line, w150.5; (ii) dashed
line, w150.4; (iii) chain-dotted, w150.3; (iv) dotted, w150.2;
and (v) chain-triple-dotted, w150.1.
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tivity both vanish at low T due to the ‘‘gap’’ as well. The
thermoelectric figure of merit, ZT5TsdcS2/kel , is plot-
ted in Fig. 20—we find it is larger than one at high T for
w1,0.22, and for fillings close to half filling, there is a
low-temperature spike in ZT that can become larger
than one over a narrow temperature range. The spike at
low T is due to the large peak in S and the small thermal
conductivity; but the phonon contribution to the thermal
conductivity can sharply reduce ZT if the phonon ther-
mal conductivity is much larger than the electronic ther-
mal conductivity (this all-electronic calculation provides
only an upper bound to ZT). The Lorenz number is also
plotted in Fig. 20. It becomes huge at half filling, but
becomes more metallic ('p2/3) as the filling moves fur-
ther away from half filling. It is not a constant even at
low temperature because the system is not a Fermi liq-
uid.

F. Magnetic-field effects

The magnetic field brings new features to the solution,
which we illustrate for the model with a fixed total num-
ber of particles and relatively large Falicov-Kimball in-
teraction on a hypercubic lattice. We restrict the number
of f particles per site to fewer than one, taking the limit
UhÞh8

ff →` , and choose the position of the f level such
that there is a rather sharp crossover from the high-
temperature state with a large concentration of f elec-
trons and a gap in the single particle DOS to the low-
temperature state with a metallic conduction band (i.e.,
a Fermi gas) and no f electrons. That is, model param-
eters are such that the renormalized f electron level is
slightly above the chemical potential at T50. This is the

FIG. 20. Dimensionless transport coefficients: (a) Lorenz num-
ber LkB

2 /e25kel /sdcT and (b) electronic thermoelectric figure
of merit ZT5TsdcS2/kel for the spinless FK model with re

512w1 and U52. Five fillings are shown: (i) solid line, w1
50.5; (ii) dashed line, w150.4; (iii) chain-dotted, w150.3; (iv)
dotted, w150.2; and (v) chain-triple-dotted, w150.1.
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regime that yields an anomalous magnetic response
(Freericks and Zlatić, 1998) and is closely related to ex-
perimental materials like YbInCu4 which exhibit a
valence-change transition.

The average of the z component of the f electron
magnetization is

^mf
z&5Trcf

~e2b[H2mN2mfNf]mf
z!

ZL
, (137)

where only the states with one f electron in the presence
of the magnetic field are considered. This lattice trace
can be evaluated by using the cavity method again,
where the lattice trace becomes equal to an impurity
trace in the presence of an additional time-dependent
dynamical mean field,

^mf
z&5

Zcavity

ZL
Trcf@e2b[Himp2mN2mfNf]S~l!mf

z# ,

(138)

where S(l) is defined in Eq. (104). The trace is per-
formed by using the basis set uh& which diagonalizes si-
multaneously Himp and mf

z . Since mf
z has no matrix el-

ements in the subspace without the f particles and
Zimp5ZL /Zcavity , we obtain

^mf
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)
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(
h

^humf
zuh&e2b[Efh(H)2mf], (139)

where Zf5(h exp@2b$Efh(H)2mf%# is the partition func-
tion of an isolated f ion, Efh(H) are the field-dependent
eigenstates, and m f5m is the common chemical poten-
tial for the itinerant and localized electrons. The average
magnetization is the product of a single-ion response
and the average f filling 0<r f<1, i.e., the magnetic re-
sponse of independent f ions (Dzero et al., 2000, 2002;

FIG. 21. The effect of the magnetic field on the f-electron
concentration is shown for the spin-1/2 FK model with r total
51.5, U53, and Ef520.5, with dotted line, gmBH50.07, and
chain-dotted line, gmBH50.17.
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Dzero, 2002) is modified by the interaction between the
f electrons and the conduction sea. This reduces the
high-temperature Curie constant and introduces addi-
tional temperature and field dependences.

We illustrate these features for the spin-1/2 model (s
5S51/2) on the hypercubic lattice and plot in Fig. 21
the temperature dependence of r f as a function of vari-
ous parameters (including the magnetic field). The re-
sults can be explained by noting that the renormalized f
level is just above the chemical potential and that a finite
temperature induces an entropy-driven ‘‘transition’’ (or
crossover) into the magnetically degenerate state (the
crossover temperature is denoted Tv). The field pushes
the renormalized f level closer to the chemical potential,
which enhances the f occupation, reduces the crossover
temperature and makes the transition sharper. For large
enough fields, the concentration of f electrons remains
finite down to T50, i.e., the system goes through a field-
induced metamagnetic transition. This is shown in Fig.
22, where the magnetization obtained from Eq. (139) is
plotted versus magnetic field for various temperatures.
Below the crossover temperature, the low-field response
is negligibly small (the Pauli susceptibility of the conduc-
tion electrons is neglected), but at large enough fields
the magnetization curves go through an inflection point,
which indicates a crossover to a magnetic state and is a

FIG. 22. Localized-electron magnetization for the spin-1/2 FK
model with r total51.5, U54, and Ef520.5 plotted as a func-
tion of magnetic field for various values of temperature, as
indicated in the figure.

FIG. 23. Magnetoresistance as a function of magnetic field
plotted for several values of temperature.
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metamagnetic transition. Above the crossover, the cur-
vature of the magnetization is positive and typical of a
well-defined local moment. The effect of the magnetic
field on transport properties is equally drastic. The mag-
netoresistance is plotted as a function of field for the
same parameters in Fig. 23, and it shows that the low-
temperature metallic state is destroyed above some criti-
cal field Hc . Thus the metamagnetic transition in the f
subsystem is accompanied by a metal-insulator transi-
tion in the conduction band. Taking the inflection point
of the magnetization or the magnetoresistance, calcu-
lated for several values of U and Ef as an estimate of
Hc(T), we obtain the phase boundary shown in Fig. 24,
together with the analytic form Hc(T)/Hc(0)
5A12(T/Tv* )2. The crossover temperature is renor-
malized by Tv* 5Tv/2. Note that the Tv* values in Fig. 24
differ by more than an order of magnitude, while the
ratio kBTv* /mBHc(0) is only weakly parameter depen-
dent.

G. Static Holstein model

The static Holstein model (Holstein, 1959; Millis et al.,
1995, 1996) can be viewed as a generalization of the FK
model to the continuous-spin case. Like the FK model, it

FIG. 24. Normalized critical field plotted as a function of re-
duced temperature T/Tv* for several values of Ef and U . The
solid line represents the analytic form A12(T/Tv* )2 with Tv*
5Tv/2.

FIG. 25. Plot of the electronic DOS (per spin) for the har-
monic static Holstein model at half filling on the hypercubic
lattice at T50. Different values of gep have different thick-
nesses of the lines. Note how the metal-insulator transition is
continuous here too.
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also displays metal-insulator transitions and CDW-order
phase transitions. We discuss both possibilities here.

The phonon distribution function w(x) in Eq. (39)
becomes sharply peaked as T→0. If gep is small enough,
it approaches d(x), and the ground state is a noninter-
acting Fermi gas (at half filling, the critical gep is 0.8432
on the hypercubic lattice and 1.0854 on the Bethe lat-
tice). Beyond this critical value of gep , the phonon dis-
tribution function shows a double-peaked structure, be-
coming two delta functions at T50, and the
‘‘quasiparticles’’ scatter off of the local phonon even at
T50. This creates a non-Fermi-liquid state, and the
DOS develops a pseudogap. As gep is increased further,
the pseudogap phase becomes fully gapped, and a metal-
insulator transition takes place. These results are illus-
trated for the spin-one-half model on the hypercubic lat-
tice in Fig. 25 [similar to what was done in Millis et al.
(1996)].

The other area of interest is the CDW-ordered phase
at half filling. Since a static model does not supercon-
duct, we need not worry about that order at all. One
interesting puzzle in real materials is that the ratio of
twice the CDW gap to the transition temperature is sur-
prisingly large, usually much larger than the BCS predic-
tion of 3.5 (Blawid and Millis, 2001). The CDW transi-
tion temperature can be calculated by performing
ordered-phase calculations and extrapolating them to
the point where the order disappears to produce Tc
(Ciuchi and de Pasquale, 1999). These calculations show

FIG. 26. Scaling plot of (a) the CDW transition temperature
and (b) the CDW gap ratio vs the wave function renormaliza-
tion extrapolated at Tc for the static Holstein model at half
filling on the hypercubic lattice. In panel (a) we have also in-
cluded some results for a quantum Holstein model, with a pho-
non frequency equal to 0.5, and for the attractive Hubbard
model (which is the infinite-phonon-frequency limit).
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that even in the weak-coupling limit, one finds a large
ratio of 2D/kBTc . Since CDW systems involve a distor-
tion of the lattice to produce the ordered phase, one
expects that anharmonic terms may play an important
role in describing the physics behind them, so it is im-
portant also to examine what happens in the presence of
anharmonic interactions.

A surprising result was found when this system was
analyzed on the hypercubic lattice. There was a univer-
sal scaling law for the transition temperature when Tc
was plotted against an extrapolated approximation to
the wave function renormalization parameter (also
called the quasiparticle Z factor, when one is in a Fermi
liquid), which is defined on the imaginary axis by

Z~0 !512
3
2

Im S~ ipT !

pT
1

1
2

Im S~3ipT !

3pT
. (140)

The scaling law is plotted in Fig. 26(a) (Freericks et al.,
2000). The results for Tc for a variety of coupling
strengths and even for the case of quantum-mechanical
phonons all collapse onto the same curve. The results
for an attractive Hubbard model (X symbols) do not,
indicating that this scaling curve breaks down when the
phonon frequency is made large enough.

The other quantity of interest to examine is the ratio
of the CDW order parameter at T50 to the transition
temperature. Since one might have expected the scaling
theory for Tc to produce a universal plot there, that re-
sult might not have been so surprising. But, when anhar-
monicity is included, its effects should be stronger at low
temperature, since the phonon distortion will not be al-
lowed to be as large in the anharmonic case, and hence
one would naively expect a smaller order parameter.
But, as shown in panel (b), we see that the ratio of
2D/kBTc still satisfies an approximate scaling law when
anharmonicity is included (Freericks and Zlatić, 2001a).
Hence one should expect, generically, that this ratio will
be much larger than 3.5 except in extremely-weak-
coupling cases (since it does approach 3.5 as gep→0).

IV. COMPARISON WITH EXPERIMENT

A. Valence-change materials

The FK model can be used to describe the anomalous
features of rare-earth intermetallic compounds that have
an isostructural valence-change transition, as observed
in the YbInCu4 and EuNi2(Si12xGex)2 family of com-
pounds. These intermetallics have been attracting a lot
of attention recently (Felner and Novik, 1986; Levin
et al., 1990; Wada et al., 1997; Figueroa et al., 1998; Sar-
rao, 1999; Garner et al., 2000; Zhang et al., 2002) and we
describe their most typical features briefly.

The temperature-dependent properties of YbInCu4 ,
which have been studied most thoroughly and which we
take as our example, are dominated at ambient pressure
by a first-order valence-change transition at about 40 K.
The valence of Yb ions changes abruptly from Yb31

above the transition temperature Tv , to Yb2.851 below
Tv (Felner and Novik, 1986; Dallera et al., 2002). The
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specific-heat data shows at Tv a first-order transition
with an entropy change of about DS.R ln 8 correspond-
ing to a complete loss of magnetic degeneracy in the
ground state (Sarrao, 1999). Neutron scattering does not
provide any evidence for long-range order below Tv
(Lawrence et al., 1997). At the transition, the f occupa-
tion becomes nonintegral (Dallera et al., 2002) and the
lattice expands by about 5%. The crystal structure re-
mains in the C15(b) class and the volume expansion es-
timated from the known atomic radii of Yb31 and Yb21

ions is compatible with the valence change estimated
from the LIII-edge data (Felner and Novik, 1986; Cor-
nelius et al., 1997).

The low-temperature phase shows anomalies typical
of a fluctuating-valence intermetallic compound. The
electronic specific heat and the susceptibility are en-
hanced (Sarrao, 1999), the electrical resistance and the
Hall constant are small and metallic, and the low-
temperature slope of the thermoelectric power is large
(Očko and Sarrao, 2002). The optical conductivity is
Drude-like, with an additional structure in the mid-
infrared range which appears quite suddenly at Tv (Gar-
ner et al., 2000). The electron-spin resonance data (Ret-
tori et al., 1997) indicate a large density of states at the
Fermi level EF . Neither the susceptibility, nor the resis-
tivity, nor the Hall constant show any temperature de-
pendence below Tv , i.e., the system behaves as a Fermi
liquid with a characteristic energy scale TFL@Tv . The
magnetic moment of the rare-earth ions is quenched in
the ground state by the f2d hybridization, but the onset
of the high-entropy phase cannot be explained by the
usual Anderson model in which the low- and high-
temperature scales are the same and the spin degen-
eracy is not expected to be recovered below TFL . The
valence-change systems, however, recover the f moment
at Tv , which is a much lower temperature than TFL .

The high-T phase of YbInCu4 sets in at Tv and is also
anomalous. The Yb ions are in the stable 31 configura-
tion with one f hole and with the magnetic moment
close to the free-ion value gLAJ(J11)mB54.53mB ,
where gL58/7 is the Landé factor and J57/2 is the total
angular momentum of the 4f13 hole. The magnetic re-
sponse is Curie-Weiss-like with a small Curie-Weiss tem-
perature Q, which does not seem to be connected with
Tv in any simple way (Felner and Novik, 1986; Sarrao,
1999). Of course, one does not expect a first-order tran-
sition temperature to be related to the Curie-Weiss tem-
perature, but this observation shows that the two phe-
nomena are not governed by the same microscopic
physics. The dynamical susceptibility obtained from
neutron-scattering data (Goremychkin and Osborn,
1993) is typical of isolated local moments, with well-
resolved crystal-field excitations (Murani et al., 2002).
However, neither the line shape of the dynamical re-
sponse nor the temperature dependence of the static
susceptibility can be explained by the Kondo model as-
suming TK.Tv . The Hall constant is large and nega-
tive, typical of a semimetal (Figueroa et al., 1998), the
electrical resistance is also very large and not changed
much by the magnetic field up to 30 T (Immer et al.,
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
1997). In typical Kondo systems, on the other hand, one
expects a logarithmic behavior on the scale T/TK and
large negative magnetoresistance. The high-temperature
optical conductivity (Garner et al., 2000) shows a pro-
nounced maximum of the optical spectral weight at a
charge-transfer peak near 1 eV and a strongly sup-
pressed Drude peak. The high-temperature electron-
spin resonance data for Gd31 embedded in YbInCu4
resemble those found in integer-valence semimetallic or
insulating hosts (Altshuler et al., 1995).

The anomalous properties of the high-temperature
phase become most transparent if the fluctuating va-
lence phase is suppressed completely by pressure or
doping, as in Yb12xYxInCu4 , where a substitution of
15% Y ions stabilizes the high-temperature phase down
to T50 K (Mitsuda et al., 2002; Očko and Sarrao, 2002;
Zhang et al., 2002). The experimental results for the re-
sistivity, susceptibility, and the thermopower (Očko and
Sarrao, 2002) are shown in Fig. 27. The susceptibility
data show that the Curie-Weiss temperature for all the
samples is about the same and much less than Tv , i.e.,
the magnetic response of the high-temperature phase
can be represented by a single universal curve, provided
one scales the data by an effective concentration of mag-
netic f ions r f , which is always smaller than the nominal
concentration of f ions. The functional form of the sus-
ceptibility above 10 K agrees well with the ‘‘single-ion’’

FIG. 27. Experimental transport in Yb-based valence-change
materials: Panel (a) shows the resistivity and the magnetic sus-
ceptibility of Yb12xYxInCu4 as functions of temperature for
various concentrations of Y ions (Očko and Sarrao, 2002).
Note, all the ‘‘high-temperature’’ data can be collapsed onto a
single universal curve by normalizing the susceptibility with
respect to an effective Yb concentration (not shown). Panel
(b) shows the thermopower of Yb12xYxInCu4 as a function of
temperature for various concentrations of Y ions (Očko and
Sarrao, 2002).
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crystal-field theory. At lower temperatures the suscepti-
bility deviates appreciably from the crystal-field theory
and shows a significant reduction of the Curie constant
r f , which is not of the Kondo type.

The resistivity in the high-temperature phase of
Yb12xYxInCu4 exhibits a weak maximum, and the ther-
mopower has a minimum above 100 K, but neither
quantity shows much structure at low temperatures,
where the susceptibility drops below the single-ion
crystal-field values. That is, despite the presence of the
well-defined local moments, there are no Kondo-like
anomalies in transport or thermodynamic properties of
the high-temperature phase. On general grounds, one
can argue that the discontinuity of the thermoelectric
power at the valence transition is a trivial consequence
of the different thermoelectric properties of the two
phases: the thermopower of the fluctuating valence
phase has an enhanced slope and grows rapidly up to
Tv , where it suddenly drops to the values characteristic
of the high-temperature phase.

The hydrostatic pressure, doping, and the magnetic
field also have, like the temperature, a strong effect on
the properties of the valence-change materials. The criti-
cal temperature of YbInCu4 decreases with pressure
(Immer et al., 1997) but the data are difficult to explain
with the Kondo volume collapse model (Sarrao, 1999).
Doping the Yb sites with Y31 or Lu31 ions reduces Tv
despite the fact that Y has a bigger and Lu a smaller
ionic radius (Zhang et al., 2002); doping the In sites by
smaller Ag ions enhances Tv as in YbIn12xAgxCu4 for
x<0.3 (Cornelius et al., 1997; Lawrence et al., 1999).
Thus doping cannot be explained in terms of a chemical
pressure. The low-temperature phase is easily destabi-
lized by an external magnetic field: a critical field Hc(T)
induces a metamagnetic transition, which is clearly seen
in the magnetoresistance and the magnetization data.
The experimental values of Hc(T) define the H2T
phase boundary, and the analysis of many systems
with different Tv

0 (zero-field transition temperature)
and Hc(0) (zero-temperature critical field) reveal
the following universal behavior: Hc(T)
5Hc(0)A12(2T/Tv

0)2. Despite the differences in Tv
and Hc , the data give a constant ratio kBTv

0/mBHc(0)
51.8.

In summary, the Yb systems switch at the valence-
change transition from a low-entropy fluctuating valence
phase to a high-entropy magnetic semimetallic phase.
The transition is accompanied by the transfer of holes
from the conduction band to the 4f shell and a metal-
insulator transition (or crossover). The high-
temperature phase has degenerate local moments which
interact with the conduction band (and hence, get re-
duced), but the interaction is not of the usual Kondo
type and no logarithmic anomalies are seen. Such a be-
havior can be qualitatively understood by assuming that
(i) the chemical potential of the metallic phase is close
to the location of the dip or gap in the DOS, which
arises from many-body interactions, and that (ii) the en-
ergy of the localized magnetic configuration is above the
nonmagnetic one as T→0. The metallic phase is desta-
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
bilized by magnetic fluctuations when the entropy gain
due to additional (localized) magnetic states overcomes
the energy loss due to the change of the ionic configu-
ration and the entropy loss due to the reduction of the
number of holes in the conduction band. Once the
chemical potential is brought close enough to the band
edge, by doping, pressure, temperature or magnetic
field, the entropy of the band states is suppressed and
the magnetic entropy of the localized states becomes
sufficient to compensate for the energy loss and destabi-
lize the metallic phase. This behavior is observed in
many systems, and it is not likely to be due to band-
structure effects alone. Rather, the gap or pseudogap,
which is a necessary ingredient of the above scenario,
seems to be due to many-body interactions.

The valence-change transition is also found in many
Eu-based systems, and EuNi2(Si12xGex)2 (Wada et al.,
1997) provides a typical and well-studied example. The
thermodynamic anomalies are similar to those in Yb sys-
tems, but the transition temperature is higher and Eu
ions undergo an almost complete valence change be-
tween the high-temperature f7 and the low-temperature
f6 configurations. That is, the transition is from a free-
spin system at high temperatures to a simple metal at
low temperatures. The electron transport is similar to
that in YbInCu4 but the intrinsic data are more difficult
to measure because the volume change at the transition
is large and samples typically crack when thermally
cycled. In EuNi2(Si12xGex)2 (Sakurai et al., 2000) the
sign of the thermopower is reversed with respect to Yb
systems, which indicates an electronlike rather than
holelike transport.

The high-temperature behavior of YbInCu4- and
EuNi2(Si12xGex)2-like compounds can be well de-
scribed by the FK model (Freericks and Zlatić, 1998;
Zlatić and Freericks, 2001b, 2003b; Zlatić et al., 2001).
We describe the f ions by two energetically close con-
figurations which differ in their f count by one. We take
a common chemical potential for the conduction and
localized electrons (which is adjusted at each tempera-
ture to conserve the total number of electrons), and we
take the FK Coulomb repulsion between the conduction
electrons (or holes) and the additional f electron (or
hole) large enough to open a gap in the conduction
band. For realistic modeling we should also take into
account the actual crystal-field structure, including the
splittings and the degeneracy of the ionic energy levels.
For Yb ions, the state with no f holes has unit degen-
eracy, while the single-hole case has a degeneracy of 8
(corresponding to J57/2). The two-hole case is forbid-
den due to the mutual repulsion of two holes being too
large. The eightfold degeneracy of a single f hole is fur-
ther reduced by crystal-field splittings, and in a cubic
environment we expect four doublets (unless there is
some accidental degeneracy). The external field further
splits these crystal-field states. For Eu ions, we take into
consideration the 4f6 (31) configuration with a nonmag-
netic ground state and two excited magnetic states, and
the magnetic 4f7 (21) configurations. Since these states
are pure spin states, there are Zeeman splittings but no
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crystal-field splittings. All other states of Eu ions are
higher in energy and neglected.

To find the thermodynamic and transport properties
we need the weights of the ionic 4f configurations, i.e.,
we need the partition function of a more general FK
model. Since the trace over f states still separates into a
sum over the states that differ by one f electron, the end
result can be written as

Zimp5Znf
0)

s
Z0s~m!1Znf

061)
s

Z0s~m2U !, (141)

where Z0s(m) is defined by Eq. (24) and Znf
0 and Znf

061

are the partition functions of an isolated f ion with nf
0

and nf
061 f electrons, respectively. In the case of Yb

ions, the nf
0514 configuration is nonmagnetic, so that

Znf
051451, and the nf

021 configuration has one magnetic

hole in the J57/2 spin-orbit state, so that the partition
function becomes

Znf
05135 (

h51

8

e2b[Efh(H)2mf]. (142)

The excitation energies Efh(H) of a single magnetic
hole are split into multiplets belonging to different irre-
ducible representations of the crystal.

In the case of Eu ions, the f6 configuration has a non-
magnetic ground state and two magnetic S51 and S
52 excitations. Assuming the usual Zeeman coupling
with the magnetic field gives the ionic partition function,

Znf
056511e2bES51 (

m521

1

e2bgmBHm

1e2bES52 (
m522

2

e2bgmBHm. (143)

The f7 configuration is the magnetic Hund’s rule state
(S57/2) and its partition function is simply

Znf
0575e2bES57/2 (

ms527/2

7/2

e2b[gmBHms2mf]. (144)

The weights of the two ionic configurations are given by

w05
Znf

0

Zimp
)
s

Z0s~m! (145)

and

w15
Znf

061

Zimp
)
s

Z0s~m2U !, (146)

which enter the Green’s-function formalism.
In what follows, we discuss a case that is similar to

that of Yb: the case of an S57/2 magnetic particle in the
high-temperature phase and of a magnetically inert un-
occupied state in the low-temperature phase; we neglect
crystal-field splitting but do consider Zeeman splitting
and we work on a hypercubic lattice (Freericks and Zla-
tić, 2003; Zlatić and Freericks, 2003a, 2003b). The gen-
eralization to Yb ions with the magnetic f13 states split
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by the cubic crystal field, or to Eu ions with excited mag-
netic states in the low-temperature f6 configuration, is
straightforward. We choose the Coulomb repulsion to be
U52, which is large enough to open a small gap in the
interaction DOS (see below) and we tune the bare f
level to bring the renormalized f level slightly above the
chemical potential. Thus, at T50, there are no f elec-
trons in the ground state, but as T increases, the f occu-
pancy increases, producing a local-moment response.
Since the filling of the f electrons is entropically driven,
the filling increases rapidly with T as the degeneracy
increases. In Fig. 28, we plot the average f occupation
and the spin susceptibility (normalized by the total mz

2

which equals 42 for spin-7/2). Panel (a) of Fig. 28 shows
that as Ef is reduced, the high-temperature value of r f
increases, the ‘‘transition temperature’’ decreases, and
the transition becomes sharper. Panel (b) shows the spin
susceptibility, which is Curie-like but with a
temperature-dependent concentration of local f mo-
ments. Hence it has a peaked form, with a sharp reduc-
tion of the magnetic response as T→0. Defining Tv as
the temperature at which the spin susceptibility drops to
half of the maximum value, we find Tv50.05, 0.03,
0.007, and 0.001 for Ef520.4, 20.5, 20.6, and 20.65,
respectively. In all these cases we are dealing with a
crossover rather than a sharp phase transition. In the
case Ef520.2 the peak is too broad for the transition to
be defined, and for Ef520.7 the occupation of f states
remains finite down to lowest temperatures. A first-
order phase transition is possible for Ef between 20.65
and 20.7, but details of this transition cannot be ob-
tained by the iterative numerical procedure, which be-

FIG. 28. Thermodynamic parameters for valence change sys-
tems: (a) localized-electron filling and (b) normalized spin sus-
ceptibility for eightfold degenerate (S57/2) Falicov-Kimball
model with r total51.5, U52, and various Ef .
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comes unstable. The effect of the f-level position on
transport properties is shown in Fig. 29. Panel (a) shows
that the resistivity has a maximum at an effective tem-
perature T* , which is much larger than Tv , and that the
peak sharpens and moves to somewhat lower tempera-
tures as Ef is reduced. Effects at Tv are not visible, ex-
cept for Ef520.65, which lies close to the first-order
transition. The thermopower results shown in panel (b)
are somewhat similar, except that the transition at Tv
cannot be detected. In addition, there is a sign change in
S that occurs at higher temperature. The transport
anomalies are due to the development of a gap and the
renormalization of the single-particle DOS at high tem-
perature, driven by the increased f-electron occupation
and the Falicov-Kimball interaction.

FIG. 29. Transport in valence-change models: (a) dc resistivity
and (b) thermopower for the (S57/2) Falicov-Kimball model
with r total51.5 and U52. The different curves correspond to
different values of Ef .

FIG. 30. Interacting DOS for the (S57/2) Falicov-Kimball
model with r total51.5, U52, Ef520.6, and for various tem-
peratures. The temperature dependence arises because r f

changes with T .
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The theoretical results shown in Figs. 28 and 29, ob-
tained for r total51.5, U52, and Ef close to 20.6, exhibit
most of the qualitative features seen in the experimental
data. However, the model parameters and the absolute
value of the temperature scale used for the static re-
sponse functions cannot be determined unless one com-
pares the dynamic properties of the model to experi-
mental data. The sign of S is the opposite of that in Eq.
(94) because we use a hole picture for all particles when
describing transport in YbInCu4 .

The interacting conduction DOS is plotted in Fig. 30
as a function of frequency, for the case r total51.5, U
52, Ef520.6, and for various temperatures. Note the
temperature-induced shift in the chemical potential
from the metallic region, with a high density of states,
into the gap region. Unfortunately, direct comparison
with the photoemission spectra is not possible because
the bulk and surface effects in fluctuating valence-
systems are difficult to separate.

Figure 31 shows the optical conductivity. We find a
characteristic high-frequency hump at n5U , which is al-
most Ef independent, and a temperature-induced trans-
fer of spectral weight between the high- and low-
frequency regions. A Drude peak grows as n→0 for T
<Tv . Thus, while the static transport is dominated by a
pseudogap on the order of T* , the optical conductivity
is sensitive to the valence-change transition. The high-
frequency peak in s(n) allows an estimate of the value
of the FK Coulomb interaction, yielding U'1 eV (Gar-
ner et al., 2000) for YbInCu4 . Using Tv542 K we find
U/Tv'250, which can be used to narrow the choice of
the model parameters. The experimental features can be
reproduced by taking the f-level position at Ef
520.6, but the procedure is not completely unique be-
cause U/Tv is not independent of the total number of
particles. As an additional constraint on the parameters
one should demand that the theory reproduces the
peaks in the high-temperature transport properties in
the right temperature range. Clearly, a proper quantita-
tive description should also incorporate the crystal-field
splittings of J57/2 Yb states, which would provide the
field-induced anisotropies of the magnetization. This has
not yet been worked out in detail for either the Yb or
the Eu compounds.

FIG. 31. Optical conductivity for the (S57/2) Falicov-Kimball
model with r total51.5, U52, Ef520.6, and for various tem-
peratures.
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B. Electronic Raman scattering

Experimental Raman-scattering data on a wide vari-
ety of different correlated insulators show three distinc-
tive features: (i) as the temperature increases, there is a
sudden transfer of spectral weight from a high-energy
charge-transfer peak to lower energies; (ii) there is an
isosbestic point, where the Raman response is indepen-
dent of temperature at a special frequency and all
Raman-scattering curves cross; and (iii) if one takes the
ratio of twice the spectral range where spectral weight is
depleted at low temperature (representative of the insu-
lating gap) to the temperature at which the low-energy
spectral weight is restored (representative of Tc), then
2D/kBTc@3.5. These features are shown in Fig. 32
where we plot the Raman response for (a) SmB6 (Ny-
hus, Cooper, and Fisk, 1995, 1997) and (b) FeSi (Nyhus
et al., 1995).

Using the results of Tables VI and VII at X51 allows
us to calculate the Raman response in the A1g and B1g
channels. Since the Raman response ultimately is a com-
plicated functional of the interacting density of states,
and since all insulators have the same qualitative feature

FIG. 32. Experimental Raman-scattering results for (a) SmB6
(Nyhus et al., 1995, 1997) and (b) FeSi (Nyhus, Cooper, and
Fisk, 1995). The labels mark the different temperatures.

FIG. 33. Theoretical calculation of the nonresonant Raman
response in the (a) A1g channel and the (b) B1g channel at T
50.5 and for various values of U .
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of a gap near the chemical potential, we expect the Ra-
man response to depend only weakly on the microscopic
features of the insulating phase. Hence we perform our
calculations for the simplest possible system that goes
through a Mott-like metal-insulator transition: the spin-
less FK model at half filling (re5w150.5) on a hyper-
cubic lattice (Freericks and Devereaux, 2001a, 2001b;
Freericks, Devereaux, and Bulla, 2001).

We begin with a plot of the Raman response at fixed
temperature T50.5 and for a variety of values of U in
the two symmetry channels (Fig. 33). Note how for weak
correlations we have a linear onset and a higher-energy
cutoff (from the band), as expected. As the correlations
increase, we see the response separate into a charge-
transfer peak centered at U and a low-energy peak (in
the B1g sector only). The vertex corrections in the A1g
sector suppress the low-energy features and we simply
see the evolution of the charge-transfer peak, which is
more asymmetric in shape.

We choose to examine the inelastic light scattering for
U52 in more detail because it is a correlated insulator
that lies close to the metal-insulator transition. We plot
in Fig. 34 the inelastic x-ray-scattering response function
along the zone diagonal for a variety of different tem-
peratures (Devereaux et al., 2003a, 2003b). The response
at the zone center is the Raman response. We find that it
displays all of the three features seen in experiment: (i)
there is a low-temperature depletion of low-energy spec-
tral weight, (ii) there is an isosbestic point, and (iii) the
ratio of 2D/kBTc (as extracted from the Raman re-
sponse curves) is on the order of 10–20. These three
features are generic to the plots at all X , except for X
51 in the A1g sector, where the low-energy spectral
weight disappears. This occurs because the finite-q vec-

FIG. 34. Theoretical calculation of nonresonant inelastic x-ray
scattering in the (a) A1g channel and the (b) B1g channel for
U52 along the zone diagonal for a range of different tempera-
tures. The thickness of the lines determines the temperature
which ranges from 1.0 to 0.5 to 0.25 to 0.1. The individual
curves for different X values have been shifted for clarity. The
X51 curves correspond to conventional electronic Raman
scattering.
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tor mixes the different symmetries and the low-energy
spectral weight is seen in the other symmetries. Note
that the results are independent of symmetry channel
for X521, which makes for the possibility of an inter-
esting experimental probe of nonlocal correlations. In
general, we see a small amount of dispersion of the
peaks and a generic broadening of the peaks as we move
from zone center to zone boundary, but the isosbestic
behavior remains for all q. So far resonant inelastic
x-ray-scattering experiments have been performed
mainly at room temperature and with polarizers only on
the incident beam of light, so direct comparison with
theory is not yet feasible.

C. Josephson junctions

Another area where the FK model has been applied
to real materials is in the field of Josephson junctions
[see Freericks, Nikolić, and Miller (2002) for a review].
A Josephson junction is a sandwich of two supercon-
ductors surrounding a barrier material that can be a nor-
mal metal, an insulator, or something in between (Jo-
sephson, 1962). In rapid single-flux quantum logic
(Likharev, 2000), one tries to maximize the switching
speed of the Josephson junction, while maintaining a
nonhysteretic (single-valued) I-V characteristic. Since
the integral of a voltage pulse over time is equal to a flux
quantum for a Josephson junction, the height of the
voltage pulse is inversely proportional to the width of
the pulse; hence one wants to maximize the characteris-
tic voltage to achieve the fastest switching speeds. The
characteristic voltage is a product of the critical current
at zero voltage Ic with the normal-state resistance Rn
(slope of the I-V characteristic at high voltage).

FIG. 35. Figure of merit as a function of the FK correlation
strength in a Josephson junction with a barrier of (a) one and
(b) five planes. The dotted line is the Ambegaokar-Baratoff
prediction for an ideal tunnel junction. The plots are at two
temperatures T5Tc/11 (open symbols) and T5Tc/2 (filled
symbols). D(0) is the superconducting gap at T50.
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In conventional tunnel junctions, the barrier material
is an insulator, so Ic is low and Rn is high; in proximity-
effect junctions, the barrier material is a normal metal,
so Ic is high and Rn is low. Is it possible that one can
maximize the product of IcRn by choosing a material to
lie close to the metal-insulator transition, where both Ic
and Rn can be large? We can examine this question by
describing the barrier material with the spin-one-half FK
model on a cubic lattice in the local approximation with
w150.5 and re51. This system has a metal-insulator
transition in the bulk at U'4.9t . To simulate the prop-
erties of a Josephson junction, we must solve an inho-
mogeneous DMFT problem as first done by Potthoff
and Nolting (1999) and generalized to the superconduct-
ing state by Miller and Freericks (2001). Using the FK
model to describe the barrier material was performed in
Freericks, Nikolić, and Miller (2001, 2003a, 2003b,
2003c) and has been reviewed elsewhere (Freericks, Ni-
kolić, and Miller, 2002).

In Fig. 35, we plot the figure of merit IcRn versus U
for two cases: (a) a single-plane barrier and (b) a five-
plane barrier. Notice how the IcRn is maximized in a
ballistic metal for N51 at low T , but then is maximized
in the tunnel junctions as T increases. The flatness of the
curves in panel (a) for U.5 is a verification of the Am-
begaokar and Baratoff (1963) analysis, which says IcRn
is independent of the properties of the barrier for thin
tunnel junctions. Our result is somewhat lower than the
Ambegaokar-Baratoff prediction due to Fermi-surface
effects, proximity, and inverse proximity effects, etc.
What is interesting is that in panel (b) there is a sharp
increase in the figure of merit at low temperature near
the metal-insulator transition. Indeed, we find IcRn is
maximized on the insulating side of the metal-insulator
transition, and the optimization remains for a wide
range of temperature. These results are consistent with
experiments performed on junctions made out of NbTiN
for the superconductor and TaxN for the barrier (Kaul
et al., 2001). As tantalum is removed from TaN, it cre-
ates tantalum vacancies, which are strongly interacting
with the conduction electrons and can trap them at the
vacancy site. Such physics is described well by the FK
model, with the tantalum vacancy sites serving as the ‘‘f

FIG. 36. Critical current as a function of temperature for a
variety of different Josephson junctions. Note how the corre-
lated insulator (solid triangles) is parallel to the thin insulator
(solid line) for a wide range of T .
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electrons’’ that scatter the conduction electrons.
In Fig. 36, we plot the critical current as a function of

temperature. Once again, our calculations produce the
Ambegaokar and Baratoff (1963) results for thin tunnel
junctions. As junctions are made more metallic, or
thicker, the critical current drops more rapidly as a func-
tion of temperature. But the correlated barrier, just on
the insulating side of the transition, has a thermal slope
dIc(T)/dT that is essentially equal to that of the thin
tunnel junction in the range 0.4Tc,T,0.7Tc , which is a
typical operating range for a junction. Hence these cor-
related metal barriers (or SCmS junctions) may be the
optimal choice for the barrier in a Josephson junction,
enabling ultrafast superconductor-based digital electron-
ics.

D. Resistivity saturation

The semiclassical Boltzmann equation approach to
transport indicates that the resistivity of a material
should continue to rise as the temperature rises. How-
ever, the theory breaks down once the mean free path of
the electrons becomes shorter than the interatomic spac-
ing. Hence there is an expectation for the resistivity to
slow its increase once the mean free path becomes too
small. An interesting set of materials that were investi-
gated a quarter century ago are the so-called A15 com-
pounds such as V3Si and Nb3Ge (Fisk and Webb, 1976).
These materials sparked much interest as being the
highest-temperature superconductors of their day, and
they were widely studied, but a number of features of
these materials remain unexplained.

In conventional electron-phonon scattering metals,
the resistivity behaves like

r~T !5ArT1Br (147)

at high temperature. Here Ar is proportional to the
electron-phonon coupling strength and Br is propor-
tional to the impurity concentration. What was found in
the A15 materials was that Ar was much smaller than
expected, given the known strength of the electron-
phonon coupling, and Br was sizable, even in very pure
samples. This behavior was called resistivity saturation,
since it implied a slow turnover of the high-temperature
resistivity.

In 1999 Millis et al. (1999) solved an important piece
of the puzzle in the resistivity saturation problem. They
examined the static harmonic Holstein model at high
temperature and saw the characteristic shape seen in re-
sistivity saturation for strongly coupled systems. This
analysis neglected the quantum-mechanical nature of
the phonons, since their kinetic energy was neglected,
but this should be a good approximation if the phonons
are at a temperature much higher than the Einstein fre-
quency of the Holstein model (estimated to be about the
Debye frequency of a real material). Note that the resis-
tivity formula used by Millis et al. (1999) does not prop-
erly have the velocity factors for the Bethe lattice. This
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does not change the results much near half filling, but
would have a larger effect for fillings closer to the band
edge.

We illustrate this phenomenon in Fig. 37, where we
plot the resistivity at half filling, re51, for the spin-one-
half static harmonic Holstein model on the hypercubic
lattice. We examine coupling strengths ranging from a
weakly coupled system (a Fermi gas at T50) to a
strongly coupled insulator that develops a gap in the
conduction electron DOS (see Fig. 25).

The theory behind the resistivity form in Eq. (147)
depends on three assumptions: (i) the temperature is
much higher than the phonon energy scale, so the ions
can be approximated by classical oscillators, and the eq-
uipartition theorem says ^xi

2&'T/k ; (ii) the electron-
phonon interaction can be treated in second-order per-
turbation theory so the scattering rate is gep

2 ^xi
2&; and

(iii) Boltzmann transport theory can relate the scattering
rate to the resistivity. Assumptions (i) and (ii) imply that
the scattering rate is linear in temperature. Millis et al.
(1999) find that the scattering rate actually increases like
AT due to the breakdown of second-order perturbation
theory for strong coupling. This is the key to resistivity
saturation, as can be seen in Fig. 37. Indeed, forcing the
square-root behavior to fit to a linear form necessarily
produces all of the observed resistivity saturation phe-
nomena. Note further that, even for an insulating phase,
we see the same kind of ‘‘resistivity saturation’’ at high
enough temperatures.

FIG. 37. Resistance saturation in the static harmonic Holstein
model: (a) resistivity as a function of temperature for the half-
filled static harmonic Holstein model on the hypercubic lattice
and (b) parameters Ar (solid line) and Br (dashed line) fit for
the range of temperature 0.2,T,1. Note how there is a wide
range of temperature where the resistivity appears linear, but
with a large intercept. Note further how Ar grows more slowly
than gep

2 }l .
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It is interesting as well that there are a variety of ma-
terials (mainly the doped fullerenes and the high-Tc su-
perconductors) in which the resistivity obeys the linear
form of Eq. (147) with small or vanishing Br up to very
high temperatures, where a naive estimate of the mean
free path is much less than a lattice spacing. The DMFT
analysis given here does not shed light on that puzzle,
but recent work using other techniques has made much
progress (Calandra and Gunnarsson, 2001).

E. Pressure-induced metal-insulator transitions

Nickel iodide (NiI2) is a transition-metal halide that
undergoes an isostructural metal-insulator transition at
room temperature as a function of pressure (Pasternak
et al., 1990). Nickel iodide crystallizes in the CdCl2 struc-
ture, which consists of alternating hexagonal planes of
nickel and iodine. The nickel ions have a 21 valence
and the iodine ions have a 12 valence; the neutral sand-
wich I2-Ni21-I2 is stacked vertically to form the crystal.
In the insulating state, the S51 nickel spins order in a
helical spin-density wave that is closely approximated by
ferromagnetic nickel planes stacked in an antiferromag-
netic fashion. At ambient pressure TN575 K, and TN
increases by a factor of 4–310 K at 19 GPa, where the
system undergoes a metal-insulator transition and be-
comes metallic. The physical picture is as follows: the d
electrons in the nickel band are strongly correlated and
form a Mott-like insulating state (which can be approxi-
mated by dispersionless localized electrons), and the io-

FIG. 38. Mean-field-theory phase diagram for NiI2 calculated
within the Falicov-Kimball model picture (Freericks and Fali-
cov, 1992). The shaded region is the antiferromagnetic insula-
tor, the region above the chain-dotted line is the paramagnetic
insulator. The paramagnetic metallic phase lies to the right of
the nearly vertical solid line. The first-order transition line
from an insulator to a metal ends in a classical critical point
(above that temperature, one can continuously cross over from
the metal to the insulator). The symbol D denotes the differ-
ence in energy from the localized Ni electrons to the bottom of
the I bands. It varies with an external parameter like pressure.
The dotted lines denote the regions of phase space where three
solutions of the mean-field-theory equations are stabilized.
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dine p bands are completely filled by the transfer of an
electron to each iodine. As pressure increases, the rela-
tive position of the iodine p bands and the nickel d
bands changes, with the iodine p bands moving closer to
the Fermi level. Once the p bands reach the Fermi level,
electrons spill from the p bands to the nickel d bands,
quenching the magnetic moment (changing Ni21 to
Ni1), stopping the antiferromagnetic transition, and al-
lowing hole conduction within the p bands. Hence there
is a transfer of charge from the iodine to the nickel as
the pressure increases, causing a metal-insulator transi-
tion. This is precisely the kind of transition envisioned in
the original Falicov-Kimball model, and optical experi-
ments confirm this picture (Chen et al., 1993).

Indeed, one can add spin interaction terms to the FK
model to more accurately approximate this system, per-
form an analysis of the thermodynamics, and map out a
phase diagram. This has already been done with a static
mean-field-theory calculation (Freericks and Falicov,
1992), which shows antiferromagnetic insulating phases,
paramagnetic insulating phases, and metallic phases and
is depicted in Fig. 38. The phase diagram also shows a
classical critical point, where the first-order metal-
insulator transition disappears. Unfortunately, the criti-
cal point is estimated to lie around 1400 K, which is
beyond the disintegration temperature for NiI2 . It
would be interesting to repeat the analysis of NiI2 with
DMFT, to see if the estimate of the critical point is re-
duced in temperature and to examine properties like op-
tical conductivity which have already been measured.

V. NEW DIRECTIONS

A. 1/d corrections

The dynamical mean-field theory is exact in the
infinite-dimensional limit. But the real world is finite di-
mensional, and so it is important to understand how the
infinite-dimensional limit relates to finite dimensions.
The simplest approximation for finite dimensions that
one can take is the so-called local approximation, where
one performs the DMFT but uses the correct finite-
dimensional noninteracting DOS in the relevant Hilbert
transform. Such an approach was adopted for the FK
model by Freericks (1993b). Since we expect Hartree-
Fock theory to be asymptotically exact in the limit as
U→0 (for d.1), and since the DMFT uses the correct
noninteracting susceptibility in determining CDW order,
the local approximation is asymptotically exact at weak
coupling. Deviations are expected to be much stronger
in the large-coupling limit (where the model can be
mapped onto an effective Ising model at half filling), due
to the renormalization of Tc from spatial spin-wave fluc-
tuations that are neglected in the local approximation.
In fact, the situation at weak coupling is somewhat more
complicated because it is well known that the Hartree-
Fock approximation to the Hubbard model is renormal-
ized due to local quantum fluctuations by factors on the
order of 3–5 (van Dongen, 1991b, 1994). The 1/d correc-
tions to this renormalization are typically small for the
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Hubbard model (on the order of a few percent in two
and three dimensions). This weak-coupling perturbative
analysis has not been carried out for the FK model, and
there may be surprises there, because the DMFT Tc at
weak coupling does not take the conventional exponen-
tial form. But the general thrust of this analysis is that
one expects DMFT and the local approximation to be
reasonably good at weak coupling, with larger devia-
tions as the coupling is made stronger.

The first attempt at a systematic expansion in 1/d that
could include nonperturbative effects was made by
Schiller and Ingersent (1995). They constructed a ge-
neric self-consistent two-site impurity problem, which
had feedback into an auxiliary single-site impurity prob-
lem, to calculate both the local and nearest-neighbor
contributions to the self-energy (i.e., the self-energy is
allowed to have an additional momentum dependence
proportional to ek). This approach suffered from two
difficulties. First, their self-consistent equations encoun-
tered convergence problems when U was made large,
and they were only able to achieve converged results for
small U (where one does not expect there to be large
corrections). Second, one can immediately see that in
regions where the local contribution to the self-energy is
small, one might lose causality (the imaginary part of the
self-energy could have the wrong sign) if the coefficient
of the ek term was too large. Indeed, the numerical cal-
culations suffered from negative DOS at the band edges
as well.

A number of different approximate methods were
also attempted to improve upon the situation. The first
method is called the dynamical cluster approximation
(Hettler et al., 1998, 2000) and we shall describe it in
detail below. The second one is based on a truncation of
a memory function expansion, which uses the Liouville
operator space and continued-fraction techniques to de-
termine Green’s functions (Minh-Tien, 1998; Tran,
1999). This technique is approximate and it includes
static nonlocal correlations and dynamic local correla-
tions, which result in some pathologic behavior. For ex-
ample, the interacting DOS remains temperature inde-
pendent in the canonical ensemble, just like DMFT. The
third method is based on a moment analysis of the
Green’s function and uses a self-consistent feedback of
the f-electron charge susceptibility onto the conduction-
electron Green’s function (Laad and van den Bossche,
2000). This technique also requires a number of uncon-
trolled approximations in order to have numerical trac-
tability. One of the controversial predictions of the mo-
ment approach is that the FK model in two dimensions
has the Mott-like metal-insulator transition occur at U
50. The first two techniques predict that it occurs at a
finite value of U on the order of half of the bandwidth.

We shall concentrate our discussion here on the dy-
namical cluster approximation, which is a systematic
technique in the thermodynamic limit for incorporating
nonlocal correlations into the many-body problem. It is
not a formal expansion in 1/d , but rather an expansion
in 1/Nc , where Nc is the size of the self-consistent clus-
ter employed in the computational algorithm. From a
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physical point of view, one should view the dynamical
cluster approximation as an expansion in the spatial size
over which spatial fluctuations are included, so it allows
large-momentum (short-range) spatial fluctuations, but
does not properly describe long-wavelength fluctuations.
The basic idea is to allow the self-energy to have mo-
mentum dependence in a coarse-grained fashion. The
Brillouin zone is divided into Nc equally sized regions,
and the self-energy assumes constant values within each
of these regions (but can vary from region to region). It
turns out that one can guarantee that causality is pre-
served with this technique.

We now describe the dynamical cluster approximation
algorithm in detail. We begin by dividing the Brillouin
zone into Nc coarse-grained cells, labeled by the central
point of the cell K. In this fashion, every wave vector in
the Brillouin zone can be written as k5K1k̃ with k̃
ranging over the coarse-grained cell. The K points are
chosen to correspond to the wave vectors of the Nc-site
cluster with periodic boundary conditions. The algo-
rithm then proceeds as follows:

(i) we choose our initial guess for the coarse-grained
self-energy S(K,v);

(ii) we construct the coarse-grained Green’s function
via

Ḡ~K,v!5
Nc

N
(

k̃

1

v1m2S~K,v!2eK1k̃

; (148)

(iii) we extract the effective medium for the cluster
G0

21(K,v)5Ḡ21(K,v)1S(K,v);
(iv) we solve the cluster problem for the cluster

Green’s functions Gc given the effective medium
G0 and determine the cluster self-energy via
Sc(K,v)5G0

21(K,v)2Gc
21(K,v);

(v) we equate the cluster self-energy with the coarse-
grained self-energy S(K,v)5Sc(K,v) and sub-
stitute into step (ii) to repeat the process.

The algorithm is iterated until it converges. Once it has
converged, one can then evaluate the irreducible vertex
functions on the cluster using analogous Dyson equa-
tions. Equating the cluster irreducible vertex functions
to the coarse-grained irreducible vertex functions on the
lattice then allows one to compute susceptibilities.

Under the assumption that the technique used to
solve the cluster Green’s functions given the effective
medium G0 is a causal procedure, then the cluster
Green’s functions and self-energies are manifestly
causal. Forming the coarse-grained Green’s function on
the lattice from the causal cluster self-energy maintains
the causality of the Green’s function. The only place
where noncausality could enter the algorithm is in the
step where we extract the effective medium, if the imagi-
nary part of Ḡ21 is smaller in magnitude than the imagi-
nary part of the coarse-grained self-energy. But one can
prove that this never occurs, hence the algorithm is
manifestly causal.

The dynamical cluster approximation was applied to
the FK model using two different techniques. When the
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cluster size was small enough (Nc<16), one could use
exact enumeration to determine the weights for every
possible configuration of localized electrons on the lat-
tice, and since the action is quadratic in the fermions,
one can determine the partition function exactly. For
larger clusters, one needs to determine the weights via a
statistical sampling procedure, including the weights that
are largest in the partition sums and neglecting those
that are too small. We shall describe only the exact enu-
meration method here.

We let f denote a configuration $n1
f ,n2

f , . . . ,nNc

f % of
the localized electrons (we consider only the spinless FK
model for simplicity). Then the partition function for the
cluster becomes

Zc5(
$f%

2NcebmNc/2e2b(Ef2mf)Nc
f

3 )
n52`

` Det@G0
21~ i ,j ,ivn!2Uni

fd ij#

@ ivn#Nc
, (149)

where the symbol Nc
f denotes the total number of local-

ized electrons in the configuration f , and i and j are

FIG. 39. Many-body density of states for the half-filled FK
model on a square lattice using the DCA on a 434 cluster
with U54 (Hettler et al., 2000). Note how the DOS now has
temperature dependence, and how a pseudogap develops and
deepens as T is lowered. Once a CDW opens, the system will
open a true gap.

FIG. 40. Phase diagram for the half-filled FK model on a
square lattice with the DCA (Hettler et al., 2000). The differ-
ent lines correspond to different size clusters. The 232 cluster
determines Tc from the ordered phase, while the other clusters
employ a susceptibility analysis. Also included in the figure is
the Ising model Tc for the effective spin model with J
5t2/2U .
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spatial indices on the cluster. The determinant is over
the spatial indices i and j . The weight for the configura-
tion f is the corresponding term in Eq. (149) divided by
Zc ; we denote that weight by wf . The cluster Green’s
function on the imaginary or real axis is then simply

Gc~ i ,j ,z !5(
$f%

wf@G0
21~ i ,j ,z !2Uni

fd ij#
21. (150)

The weights are determined solely from the Green’s
functions evaluated on the imaginary axis, while the
Green’s functions on the real axis are trivial to deter-
mine once the weights are known. The convergence of
the iterative algorithm is much slower on the real axis,
though.

One of the interesting features of the dynamical clus-
ter approximation is that it restores temperature depen-
dence to the conduction-electron DOS. This is shown in
Fig. 39, where we plot the DOS at five different tem-
peratures (all above the CDW Tc) for an intermediate
value of U54t on a 434 square-lattice cluster at half
filling (Hettler et al., 2000). Note how the pseudogap
deepens as the temperature is lowered. Of course a true
gap will develop in the CDW phase at the lowest tem-
peratures.

We also plot the phase diagram in Fig. 40 at half filling
(Hettler et al., 2000). Included in the plot are the local
approximation, cluster calculations from susceptibilities
on clusters up to Nc536, and an Ising model Tc for J
52t2/U , which the FK model maps onto at strong cou-
pling; note that the 232 lattice result comes from an
ordered-phase calculation with exact enumeration,
rather than a susceptibility calculation. This phase dia-
gram has a number of interesting features. First, as ex-
pected, we find the Tc is hardly changed on the weak-
coupling side of the diagram, indicating that the local
approximation determines the majority of the many-
body correlations in this regime. In the large-U regime,
one can see that the dynamical cluster approximation
does converge towards the correct Ising model result,
albeit slowly. The 232 data are surprising, as they are
much lower than the results for other clusters, but one
can perhaps understand why this would be by realizing
that a four-site square lattice cluster with periodic
boundary conditions is identical to a four-site one-
dimensional chain cluster, except for a change in the
overall normalization of the hopping. Since the Tc for a
one-dimensional chain is equal to zero, the suppression
of Tc for the four-site cluster could be arising from the
two possible interpretations of the cluster. Hettler et al.
(2000) argue in a similar vein, where they observe that
the Fermi-surface points on a four-site cluster occur at
the van Hove singularities, which have uncommonly
large scattering rates and hence are unfavorable for
CDW order.

It is possible to explore dynamical susceptibilities
within the dynamical cluster approximation, as well.
One simply needs to extract the frequency and coarse-
grained momentum irreducible susceptibilities and use
the relevant Bethe-Salpeter equation to calculate the
full susceptibility. Unlike in the DMFT, where the irre-
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ducible vertex only renormalizes symmetry channels
that have the full symmetry of the lattice, the vertex now
renormalizes all channels because it contains momen-
tum dependence. This remains one of the open prob-
lems of interest for the dynamical cluster approximation.

B. Hybridization and f-electron hopping

The FK model in infinite dimensions admits a simple
solution because the Hilbert space of the impurity prob-
lem generated by the DMFT mapping is a direct product
of invariant subspaces with a fixed f occupation. In each
subspace we can easily find the itinerant-electron
Green’s function and the generalized partition function
[the generating functional of Kadanoff and Baym, Z
5Det(G0

21)]. In the absence of quantum fluctuations in
the f-particle number, each f state has an infinite life-
time, but the f spectral function acquires a finite width
due to f2c coupling, which acts as an effective time-
dependent potential for the f electrons, and the broad-
ening is due to the statistical averaging over all possible
states. In this respect the FK problem is a lattice gener-
alization of the x-ray edge problem. Actually, as long as
the coherent scattering of conduction electrons on f
electrons is neglected, we can drop the self-consistency
condition, Eq. (31), and use the x-ray edge model solu-
tion for the lattice problem (Si et al., 1992). At lower
temperatures, the system becomes coherent and the
single-site x-ray solution has to be replaced by the
DMFT self-consistency (effective medium), so as to
keep track of all the other f sites on the lattice. Despite
its simplicity, the DMFT solution of the FK model has
some interesting features and can be used to describe
physical systems in which quantum fluctuations can be
neglected, like the high-temperature phase of Yb and
Eu compounds with a valence-change transition or the
charge-transfer metal-insulator transition in NiI2 .

However, if the f-particle dynamics are important,
which is often the case at low enough temperature, one
should consider a more general model. For example, in
the Yb systems discussed in Sec. IV.A, the valence of Yb
ions below Tv is much larger than predicted by the FK
model, and the reduction of the local moment does not
follow from r f(T) but is due to quantum fluctuations
and lifetime effects. If the ground state is a mixture of
21 and 31 states, one should not neglect the f2c hy-
bridization, and a better description would be provided
by a periodic Anderson model with an additional FK
term. The actual situation pertaining to Yb ions is quite
complicated, as one should consider an extremely asym-
metric limit of the Anderson model, in which there is no
Kondo resonance (the ground state is not Kondo-like)
and there is no single universal energy scale which is
relevant at all temperatures (Krishnamurty et al., 1980).
We believe such a generalized model would behave as
the FK model at high temperatures and as a periodic
Anderson model at low temperatures. Indeed, incoher-
ent scattering of conduction electrons on the FK ions
favors the gap opening even in the presence of hybrid-
ization; and if the width of the f level is large due to the
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FK interaction, the additional effects due to quantum
mixing should be irrelevant. This is supported by the
scaling arguments (Withoff and Fradkin, 1990) and the
numerical renormalization-group analysis of various im-
purity models (Vojta and Bulla, 2002), which show that,
as long as the chemical potential is close to the gap and
the hybridization is below some critical value, the f level
decouples from the conduction sea. On the other hand,
at low temperature, the chemical potential shifts away
from the gap in the DOS. For a flat conduction band and
the f level close to the chemical potential, the hybridiza-
tion effects are important, and they can drive the system
towards a fluctuating valence fixed point. The most
likely effect of the FK correlation at low temperatures is
to renormalize the parameters of the Anderson model.

A generalized FK model might also be needed to de-
scribe the electronic ferroelectrics proposed by Porten-
gen et al. (1996a, 1996b). The Bose-Einstein condensa-
tion of f2c excitons and a spontaneous polarization can
be obtained by a mean-field treatment of the hybridized
model. This picture is further supported by the exami-
nation of the spontaneous hybridization for the spinless
FK model on the Bethe lattice, where it is found that as
the temperature is lowered the system appears to have a
logarithmic divergence in the spontaneous hybridization
susceptibility at T50. Normally we cannot reach such a
state because the system will have a phase transition to
either a phase-separated state or a charge-density wave,
but we can tune the system so that it remains in a clas-
sical intermediate-valence state down to T50. When
this occurs, effects of even a small hybridization will
take the system away from the FK fixed point at low
enough temperature.

Another generalization is obtained by allowing direct
f2f hopping, t ij

f , which leads, for t ij
f 5t ij

c , to the rich
physics of the Hubbard model (Hubbard, 1963). The
case t ij

f !t ij
c is also interesting because even a small f2f

hopping induces an f2c coherence and gives a ground
state (for large U) which is either a Bose-Einstein con-
densation of electron-hole pairs (f2c excitons) or an
orbitally ordered state (Batista, 2002). Unfortunately, as
soon as the f-electron dynamics is restored, the evolu-
tion operator connects all sectors of the Hilbert space,
and the resulting DMFT equations describe a two-level
system with each level coupled to an arbitrary external
field. This problem (or the equivalent Anderson impu-
rity problem) is much more difficult to solve than the FK
impurity problem with a single external field coupled to
an electron.

C. Nonequilibrium effects

Equilibrium properties in the DMFT have been stud-
ied extensively. Much less effort has been expanded on
nonequilibrium calculations, where the correlated many-
body system is driven away from equilibrium by large-
amplitude external fields or driving voltages. The for-
malism for DMFT in a nonequilibrium situation has
been addressed by Schmidt and Monien (2002). They
considered the case of a Hubbard model that interacts
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with a large-amplitude electromagnetic field with a con-
stant driving frequency v. The formalism employs
Keldysh techniques to derive the three Green’s functions
of relevance: the advanced, retarded, and so-called
lesser Green’s function. They find that in the steady
state, one can perform calculations in frequency space if
the driving frequency is uniform. They applied their cal-
culations to the Hubbard model and used the iterated
perturbation theory to evaluate the dynamics of the im-
purity problem. Nevertheless, their formalism is general
and can be used for FK-model problems, as well. In ad-
dition, one could choose to perform calculations purely
in the time domain. This would allow one to calculate
the response of the system to large-amplitude and fast
(i.e., femtosecond) electromagnetic pulses. In this case,
one would be interested in the transient response that
brings the system back to the equilibrium state after be-
ing disturbed.

There is another class of problems that are ideal for
being considered with Keldysh techniques, namely, the
problem of the steady-state current response to a volt-
age applied over an inhomogeneous device. One can
imagine stacking correlated planes (described by the FK
model) in between a semi-infinite number of noninter-
acting metallic planes (above and below) that form bal-
listic current leads for the device. One could enforce
current conservation from plane to plane, which then
determines the change in the voltage from plane to
plane in the device. In this fashion, one could calculate
the self-consistent current-voltage characteristic of a
nonlinear device that contained correlated materials
(and also the voltage profile throughout the device). The
leads could be described by a wide class of Hamilto-
nians, including the Hartree-Fock description of a ferro-
magnet, or a Bardeen-Cooper-Schrieffer supercon-
ductor, or a diffusive FK metal, and the barrier material
(of arbitrary width) could be described by the FK model
tuned through the metal-insulator transition. Then, since
the total action is quadratic in the fermionic variables
(although it is not time translation invariant), the path
integral over the Keldysh contour could be evaluated by
taking the determinant of the corresponding continuous
(matrix) operator. Discretizing the operator, as was done
when we described the localized-electron spectral func-
tion, would then allow for the response to be solved
exactly. We believe this would be the first example of a
correlated electronic system that can undergo a metal-
insulator transition and have its nonequilibrium re-
sponse determined exactly. The calculation is nontrivial,
but is likely to produce a series of interesting results.
One could apply such a formalism to a wide variety of
devices such as Josephson junctions, spin-valve transis-
tors, ballistic spin filters, or thermoelectric coolers. The
choices are endless, as long as one always requires the
effective actions to remain quadratic in the fermionic
variables. Generalization to more complicated systems is
also possible, but usually requires one to resort to ap-
proximate methods to solve the corresponding impurity
problems.
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VI. CONCLUSIONS

It has been over 30 years since Falicov and Kimball
introduced their model to describe the physics behind
rare-earth and transition-metal metal-insulator transi-
tions. The model has a rich history and much effort has
been devoted to solving it and illustrating its properties.
The field was dramatically advanced 14 years ago when
Brandt and Mielsch showed that the model could be
solved exactly in the limit of large dimensions. Since
then much work has been done on investigating the so-
lutions of the model.

In this review we have covered the exact solution of
the Falicov-Kimball model (and the related static Hol-
stein model) with dynamical mean-field theory. Our fo-
cus was on developing the formalism with a path-
integral approach that concentrated on the Matsubara
frequency representation of the fermions. Falicov-
Kimball-model physics is a mature field where nearly all
thermodynamic properties of the solutions have been
worked out in the limit of large spatial dimensions. This
includes charge-density-wave transitions, metal-
insulator transitions, phase separation, electrical and
thermal transport, inelastic light scattering, and so on.
The model has also been employed in more applied
problems such as investigating thermodynamic proper-
ties of Josephson junctions.

These exact solutions are useful for two reasons. First,
there is a growing list of materials that appear to be able
to be described by FK-model physics, including
YbInCu4 , EuNi2(Si12xGex)2 , TaxN, and NiI2 . Similar
models have also been applied to the doped manganites
and to diluted magnetic semiconductors. Second, exact
solutions are useful benchmarks for illustrating the phe-
nomena associated with strong correlations and for test-
ing different approximation methods for their accuracy.

The new frontiers that will be explored in the future
include equilibrium properties in finite-dimensional sys-
tems, the addition of hybridization or itineracy of the f
electrons, and nonequilibrium effects in all dimensions.
The success to date with this model indicates that the
time is ripe for more applications in the near future. It
seems likely the FK model can be employed to deter-
mine a number of interesting applications in correlated
devices, which can lay the ground work for later efforts
in more complicated correlated systems. We look for-
ward to seeing how the field will develop in the ensuing
years and hope that this review will encourage others to
enter the field and rapidly contribute to its future devel-
opment.
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M. Očko, Th. Pruschke, J. Rowell, J. Sarrao, D. Scala-
pino, J. Serene, L. Sham, S. Shastry, Z.-X. Shen, A.
Schiller, A. Shvaika, F. Steglich, N. Tahvildar-Zadeh, D.
Ueltschi, P. van Dongen, T. van Duzer, and D. Vollhardt.
We also thank P. van Dongen for a critical reading of this
manuscript.

LIST OF SYMBOLS

A1g , B1g , B2g symmetries for inelastic light scatter-
ing

Ar (Br) coefficients for resistivity saturation
As(v) interacting conduction-electron DOS
As(e ,v) spectral function
Det determinant
Efh localized-electron site energy
Ef* renormalized f level
FHelm Helmholz free energy
Fh(z) localized-electron Green’s function
F`(z) Hilbert transform
G(z) local conduction-electron Green’s

function
G0(z) effective medium
H magnetic field
K̄ cluster momentum
Lij transport coefficients
S thermopower
2S11 number of h states
SL (Simp) lattice (impurity) action
T temperature
xi phonon coordinate at site i
Gcc irreducible charge vertex
D superconducting gap at T50
S self-energy
Vuc unit-cell volume
aan anharmonic phonon potential (quar-

tic)
b 1/T
ban anharmonic phonon potential (cubic)
g(q) parameter in charge susceptibility
h(q) deviation from inverse local suscepti-

bility
j0 ( j̄0) parameters for Fh(z) calculation
k spring constant
l(z) dynamical mean field
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
m chemical potential, conduction elec-
trons

mB Bohr magneton
m f chemical potential, localized elec-

trons
in l5ipT2l bosonic Matsubara frequency
c (c̄) fermionic Grassman variable
r(e) bare conduction-electron DOS
rdc dc resistivity
re itinerant-electron density
r f localized-electron density
s(n) optical conductivity
s0 conductivity unit
sdc dc conductivity
t imaginary time
ts(v) relaxation time
x8 spin susceptibility
xcc conduction-electron charge suscepti-

bility
x̄cc pair-field susceptibility
xcf mixed charge susceptibility
x ff localized-electron charge susceptibil-

ity
xhyb hybridization susceptibility
x0 bare susceptibility
xt time-dependent conduction-electron

field
ivn5ipT(2n11) fermionic Matsubara frequency
H Hamiltonian
L Lorenz number
Tt time-ordering operator
Z partition function
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Zlatić, V., and B. Horvatić, 1990, Solid State Commun. 75, 263.


