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Self-consistent mean-field models for nuclear structure
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The authors review the present status of self-consistent mean-field (SCMF) models for describing
nuclear structure and low-energy dynamics. These models are presented as effective energy-density
functionals. The three most widely used variants of SCMF’s based on a Skyrme energy functional, a
Gogny force, and a relativistic mean-field Lagrangian are considered side by side. The crucial role of
the treatment of pairing correlations is pointed out in each case. The authors discuss other related
nuclear structure models and present several extensions beyond the mean-field model which are
currently used. Phenomenological adjustment of the model parameters is discussed in detail. The
performance quality of the SCMF model is demonstrated for a broad range of typical applications.
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I. INTRODUCTION

The remarkable experimental progress in producing
and analyzing exotic nuclei has ushered in a renaissance
of nuclear structure models. One very successful theo-
retical approach is with self-consistent mean-field mod-
els, perhaps the leading theory for describing and pre-
dicting properties of heavy nuclei.

Intense research in recent years has produced a large
body of new material and insights. It is time to sort
through and to review this work. This article tries to
provide an up-to-date view of the self-consistent mean-
field (SCMF) models for nuclear structure and excita-
tions. In order to stay within the limits of a review ar-
ticle, we have reduced the material to the essentials and
tried to provide extensive citations to sources where
more details can be found. And yet we are sure that we
are missing some references which might be equally use-
ful. We apologize in advance and hope that this article
will be, nonetheless, instructive for a broad readership.

A. The nuclear many-body problem

Models for nuclear structure have been developed
since the early days of nuclear physics about 70 years
ago. The production of more and more new isotopes has
revived the interest in nuclear structure models in recent
Rev. Mod. Phys., Vol. 75, No. 1, January 2003
years. The large variety of new modeling initiatives can
be grouped into three different approaches: ab initio
methods; self-consistent mean-field (SCMF) and shell-
model theories; and macroscopic models with a touch of
quantum shell structure. The present review concen-
trates on the various brands of SCMF theory. Nuclear
SCMF models are in many respects analogs of density-
functional theory (Hohenberg and Kohn, 1964; Kohn
and Sham, 1965), which gives a very successful descrip-
tion of all kinds of many-electron systems (Jones and
Gunnarsson, 1989; Parr and Yang, 1989; Dreizler and
Gross, 1990; Nagy, 1998; Kohn, 1999; Singh and Deb,
1999; Calvayrac et al., 2000; Onida et al., 2002). In order
to put this level of approximation into perspective, we
briefly summarize here the status of the competing ap-
proaches, staying at a level of citations that is by no
means comprehensive.

Traditional ab initio methods start from a given
nucleon-nucleon potential, which is an effective interac-
tion to describe nucleon-nucleon scattering data
(Machleidt and Slaus, 2001). It has a large repulsive
core, which means that nuclear matter is a strongly cor-
related quantum liquid. A description requires highly
developed many-body theories like the relativistic
Brueckner-Hartree-Fock (Serot and Walecka, 1986;
Brockmann and Machleidt, 1990; Dickhoff and Müther,
1992) or correlated basis functions (Pandharipande
et al., 1997; Heiselberg and Pandharipande, 2000). All
these treatments reproduce the basic features of nuclear
saturation. At second glance, however, there is an inter-
esting distinction: all approaches that employ strictly the
given nucleon-nucleon potential fail to yield the satura-
tion point of nuclear matter quantitatively, while those
models that employ an additional (empirical) three-
body force perform very well. The microscopic origin of
this three-body force is still under discussion. Intrinsic
nucleonic degrees of freedom may play a role, and very
recently models have been proposed which try to draw
lines directly from underlying QCD formulations to
nuclear structure (Lutz et al., 2000; Kaiser et al., 2002).
The methods are so involved that almost all of these
investigations have been done in homogeneous nuclear
(or neutron) matter. Very recent developments in com-
putational techniques allow ab initio calculations of fi-
nite nuclei, currently reaching about as far as the carbon
nuclei (Navratil et al., 2000). The problem of a three-
body force persists, of course, in these investigations as
well.

The other extreme of nuclear models is the macro-
scopic nuclear liquid-drop model (Myers and Swiatecki,
1982), which parametrizes the energy in terms of global
properties such as volume energy, asymmetry energy,
surface energy, etc. The actual parameters are fitted phe-
nomenologically. The liquid-drop model thus describes
very well the average trends of nuclear binding energies.
It is usually augmented by a shell-correction energy that
approximates the quantal shell effects not taken into ac-
count in the liquid-drop model. This correction energy is
calculated from the single-particle spectrum obtained
using a phenomenologically adjusted single-particle po-
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tential (Brack et al., 1972). Both combined constitute the
microscopic-macroscopic (mic-mac) method which has
been tuned to very high descriptive power. The root-
mean-square error on binding energies is nowadays be-
low 0.7 MeV (Möller et al., 1995). The mic-mac method,
however, relies on a large amount of ad hoc modeling,
particularly around the expected nuclear mean field.
This leaves uncertainties when extrapolating the model
into the unknown regime of exotic nuclei.

In between the two extremes of ab initio and liquid-
drop models, there are two models that work at a micro-
scopic level but employ effective interactions to allow a
treatment in either restricted spaces or forms of many-
body wave functions. The first of these are the shell-
model approaches. In the shell model, one takes for the
mean field a standard phenomenological single-particle
model but then performs a configuration-mixing calcula-
tion involving all many-body states that can be con-
structed using a more or less broad band of single-
nucleon states around the Fermi energy (Brown and
Wildenthal, 1988). The residual interaction in the active
space is usually fitted phenomenologically. Hjorth-
Jensen et al. (1992) have recently come up with micro-
scopic determinations using as effective interaction a G
matrix from ab initio calculations. The problem of the
proper saturation point which plagues ab initio models is
circumvented by using a phenomenologically prescribed
mean field. The dimensions of these shell-model calcu-
lations grow explosively with system size. Thus Monte
Carlo techniques or specific diagonalization schemes
have been developed to tackle heavier nuclei. A large
body of surveys has been completed with these new
methods (Koonin et al., 1997a, 1997b; Caurier and
Nowacki, 1999; Otsuka, 2001; Otsuka et al., 2001).

The SCMF methods, to which the rest of this artcle
will be devoted, also fall in between ab initio and mic-
mac methods, but they take a different path than the
shell model. They concentrate on an unprejudiced, self-
consistent determination of the nuclear mean field. To
this end, they employ effective interactions which are
tuned to their primary use in mean-field calculations.
The concept is closely related to energy-density-
functional theory in electronic systems. Nuclear density
functional theory is outlined by Petkov and Stoitsov
(1991) and Fayans et al. (2000) for nonrelativistic models
and by Speicher et al. (1991, 1993) and Schmid et al.
(1995a) for relativistic ones.

However, electronic energy functionals of high accu-
racy may be derived ab initio from electron gas theory.
In the nuclear problem, the corresponding approach has
not yet been as successful. Attempts have been made to
map nuclear matter theory onto mean-field models for
finite nuclei using the local-density approximation
(LDA; Müther et al., 1990). These yield in a straightfor-
ward manner fair results for energies and radii, but for
quantitative purposes, energy functionals with phenom-
enologically determined parameters are far more accu-
rate. Thus one proceeds in a more phenomenological
manner: the form of the effective energy functional is
motivated from ab initio theory, but the actual param-
Rev. Mod. Phys., Vol. 75, No. 1, January 2003
eters (around 10) are adjusted by extensive fits to
nuclear structure data. This will be discussed in detail in
the theoretical section of this review.

The nuclear SCMF models have been used exten-
sively since the 1970s. Effective interactions were first
derived at that time and applied to a large variety of
problems. However, there were still several restrictions
imposed on the models which limited the range of appli-
cations and left room for mic-mac models. The main
restrictions were related to the symmetries of the wave
functions, which limited application of the model to
ground-state properties of even nuclei. The situation
changed in the 1990s when nearly symmetry-
unrestricted SCMF calculations became possible.
Thanks to this development, studies of rotational bands
in heavy nuclei could be systematically performed; in
particular, the SCMF models encountered great success
in studies of superdeformed rotational bands in isotopes
around Dy and Hg. This result was not obvious, since
the energy density functionals that were used were not
at all adjusted to this kind of phenomenon. To give an-
other example, systematic calculations of superheavy
nuclei were also performed, throwing doubt on some of
the conclusions drawn from macroscopic models. At the
same time, intense experimental developments greatly
increased our knowledge of nuclei far from stability.
This in turn had an impact on effective interactions,
which were improved in several ways over the last de-
cade. The success of the SCMF method has now reached
a point where one has to introduce correlations beyond
the mean field to improve further on the quality of the
description. Several developments along this line have
been started in recent years and the first applications
seem to be very promising.

We plan to review in this paper the present state of
developments, considering the three most widely used
variants of nuclear SCMF models. We try to give a com-
prehensive account of the underlying formal framework
and to demonstrate model performance with a brief
guided tour through a broad range of applications.

B. The Hartree-Fock-Bogoliubov method

This section is devoted to the general features of
nuclear mean-field models. It starts with the basic build-
ing blocks and presents the formulation of the coupled
mean-field equations at a level that is common to all
mean-field models. The actual models are specified later
in Sec. II by way of their effective energy functionals.
For a more detailed introduction into the Hartree-Fock-
Bogoliubov (HFB) method see Mang (1975), Goodman
(1979), Ring and Schuck (1980), and Blaizot and Ripka
(1985).

The notion of a ‘‘mean field’’ deserves further com-
ment. We concentrate in this review on self-consistent
models, where the potential well for nucleons is com-
puted from the nucleonic wave functions. This produces
a theory at the level of the Hartree-Fock approximation,
which is inadequate for a description of nuclear proper-
ties that are strongly influenced by pairing correlations.
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To take these correlations into account, one generalizes
the mean-field concept to include a pairing field, calcu-
lated with the Hartree-Fock-Bogoliubov equations
(known as the Bogoliubov–de Gennes equations in
condensed-matter physics). Following common usage in
the literature, we will use the expression ‘‘mean field’’ in
a twofold manner. On the one hand, mean field will refer
to methods and models that incorporate both the
nucleon potential and the pairing field, but on the other
hand we shall also use it to denote the particle-hole part
(as contrasted to the particle-particle or pairing part) of
the effective interaction or Hamiltonian in the HFB
equation.

1. Basics of a mean-field description

The basic building block of any mean-field model is a
set of single-nucleon wave functions,

$c i~x!,i51,.. . ,Nwf%, x5~r,s ,t!, (1)

where the number of single-particle wave functions Nwf
is larger than the number of nucleons A5Z1N . r
stands for spatial coordinates, s561 for spin, and t
561 for isospin indices. Some authors use equivalently
s ,t561/2.

For formal purposes it is advantageous to introduce
the creation operator â i

1 for a nucleon in the single-
particle state c i(x). The coordinate-space representa-
tion employs creation operators âx

1 for eigenstates of
position. The transformation to creation operators for
states i reads

â i
15E d3r(

st
c i~x! âx

1 . (2)

The simplest model based on these single-nucleon states
is the independent-particle model in which the state of a
nucleus, uF&, is described by a Slater determinant uF&
[det$ci(x),i51,.. . ,A%. The independent-particle state
can be characterized formally by â i

1uF&50 for occupied
states (1<i<A) and â iuF&50 for unoccupied states (i
.A).

Pairing correlations are included by introducing the
concept of independent quasiparticles defined by the
Bogoliubov transformation (Ring and Schuck, 1980),

b̂n
15(

i
~Uinâi

11Vinâ i!, (3)

which connects single-particle states to quasiparticle
states. In compact notation the transformation reads

S b̂

b̂1D 5W 1S â
â1 D , W5S U V*

V U* D , (4)

where the transformation matrix is unitary, i.e., U1U
1V1V51, UU11V* VT51, UTV1VTU50, and
UV11V* UT50. This transformation may be decom-
posed into the product of three simpler ones by virtue of
the Bloch-Messiah theorem (Bloch and Messiah, 1962).
The ground state of the system is given then by the qua-
siparticle vacuum condition,
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b̂nuF&50, (5)

for all n . The quasiparticle states are defined here in
terms of fermion operators. They can also be handled in
terms of quasiparticle wave functions in coordinate
space:

fn5S fn
(U)~x!

fn
(V)~x! D 5S (

i
Uinc i~x!

(
i

Vinc i~x!
D . (6)

These states are orthonormal due to the unitarity of the
quasiparticle transformation, i.e.,

E dxfn
1~x!fm~x!5dnm , E dx5E d3r(

st
. (7)

A compact description for an independent-particle state
is provided by the introduction of one-body density ma-
trices. This is particularly useful for self-consistent
mean-field models whose energy functionals are formu-
lated in terms of these densities. For independent quasi-
particles, one has to deal with two objects, a one-body
density matrix r and a pair tensor k, given as

r ij5^Fuâ j
1â iuF&5~V* VT! ij5r ji* , (8a)

k ij5^Fuâ jâ iuF&5~V* UT! ij52k ji . (8b)

These may be viewed as the components of a general-
ized quasiparticle density

R5S r k

2k* 12r* D . (8c)

From the properties of r and k, one can show that the
eigenvalues of R are equal to either 0 or 1.

The representation of the density matrices in configu-
ration space is equivalent to a representation in coordi-
nate space,

r~x,x8!5^Fuâx8
1 âxuF&[(

n
fn

(V)~x!fn
(V)* ~x8!, (9a)

k~x,x8!5^Fuâx8âxuF&[(
n

fn
(U)~x!fn

(V)* ~x8!. (9b)

Instead of the antisymmetric pair tensor k, the pair den-
sity matrix r̃ , which is obtained by time inversion of one
of the indices of k, turns out to be more useful for the
formulation of local energy-density functionals (Dobac-
zewski et al., 1984):

r̃~x,x8!52s8^Fuâ r8,2s8,t8âx
uF&

52s8k~x;r8,2s8,t8!. (10)

R is then constructed by replacing k with r̃ . Each of the
three forms, (b̂1,b̂), fn , and R, represents an
independent-quasiparticle state or Hartree-Fock-
Bogoliubov state. Each representation has its advan-
tages and disadvantages. Which form is to be preferred
depends on the actual application.
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2. The Hartree-Fock-Bogoliubov equation

The ground state uF& of the HFB method is obtained
by minimization of the total energy

E5^CuĤuC&5E@r ,k ,k* # , (11)

with constraints on proton and neutron numbers

^CuN̂quC&5Nq . Any expectation value of an operator
with an HFB state can be expressed in terms of the one-
body densities only. In fact, we shall later use effective
energy-density functionals in which only the energy
functional E@r ,k ,k* # is given without explicit knowl-
edge of an underlying Hamiltonian Ĥ .

The minimization of the total Routhian El5E
2lq^CuN̂quC& leads to the HFB equation, which can be
expressed in terms of the U and V transformation ma-
trices

HS Un

Vn
D5enS Un

Vn
D , (12a)

H5S h2l D

2D* 2h* 1l
D (12b)

with

hij5
dE

dr ji
5hji* , D ij5

dE

dk ij*
52D ji , (13)

where the quasiparticle energies en are the Lagrangian
multipliers introduced to constrain the orthonormaliza-
tion of the quasiparticle states. For a standard Hamil-
tonian Ĥ5T̂1V̂ where V̂ is a two-body interaction, the
matrix elements of the mean-field and gap Hamiltonians
are given by

hij5Tij1(
kl

Vikjlr lk , D ij5
1
2 (

kl
Vijklkkl , (14)

where Vikjl is the antisymmetrized two-body matrix ele-
ment. The HFB spectrum $en% is unbound from above
and below. The eigenvalues show up in pairs 6en where
one state for each pair already carries the full informa-
tion. One must keep only one of the two states in the
Fermion algebra to maintain the proper fermionic anti-
commutation relations. For that, one usually takes the
branch that is bound from below. A very compact form
of the static HFB equation is given in terms of the gen-
eralized density (8c) as @H,R#50.

The solution of the HFB equation can be expressed in
terms of several complete sets of individual states. Each
of them corresponds to the diagonalization of a different
operator. The quasiparticle basis fn , Eq. (6), is defined
by the diagonalization of the generalized one-body ma-
trix R which can be performed since this matrix com-
mutes with H. The natural orbital or canonical basis c i is
obtained by diagonalization of the density r. In this ba-
sis, the pair tensor k is in its canonical form, the Uni
matrix is diagonal, and the Vni matrix is decomposed
into 232 antidiagonal matrices. This basis provides a
very compact representation of the HFB state which has
sometimes been exploited for numerical solutions of the
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HFB equation (Mühlhans et al., 1984; Reinhard et al.,
1997; Tajima, 2000). A third basis is the Hartree-Fock
basis, in which the mean-field Hamiltonian ĥ is diagonal.
This basis still requires the full HFB matrices Uni and
Vni , but only on a smaller subset of pairing-active states.
Many HFB calculations use this double step, first diago-
nalizing ĥ and then solving the HFB equations in this
basis.

Equation (12) can be rewritten in coordinate space as
(Dobaczewski et al., 1984)

E dx8H~x,x8!fn~x8!5enfn~x!. (15)

Expressing R and H in terms of the pair density r̃ , this
representation is the appropriate tool for discussing the
asymptotic properties of the HFB spectrum (Bulgac,
1980; Dobaczewski et al., 1984). The density matrix and
the pair density matrix r̃ are localized over the nucleus.
The interaction terms h(x,x8) and h̃(x,x8)
5dE/dr̃(x8,x) tend to zero asymptotically, and the ki-
netic energy and l term are the only ones remaining for
uru→` :

2
\2

2m
Dfn

(U)~x!5~l1en!fn
(U)~x!, (16)

2
\2

2m
Dfn

(V)~x!5~l2en!fn
(V)~x!. (17)

The asymptotic forms of f(U) and f(V) depend on the
signs of l1en , and l2en , respectively: f(U) becomes a
plane wave for l1en.0 and a decreasing exponential
for l1en,0, while f(V) becomes a plane wave for l
2en.0 and a decreasing exponential for l2en,0.

For l.0, the whole spectrum is continuous, while for
l,0, it is either discrete (uenu,2l) or continuous
(uenu.2l). As for en.0 and l,0, the lower compo-
nents of f(V) are localized functions. One can write the
density matrices only in terms of bound wave functions:

r~x,x8!5X fn
(V)~x!fn

(V)* ~x8!, (18a)

r̃~x,x8!5X fn
(U)~x!fn

(V)* ~x8!, (18b)

where

X ¯5 (
0,en,2l

¯1E
2l

`

¯ .

These wave functions are always localized. The HFB
state is defined by the occupation of all the states with
negative energy, the quasiparticle states with positive en-
ergy defining the excitations of the system.

The fact that the density matrix vanishes asymptoti-
cally has the important consequence that the natural or-
bitals must vanish for uru→` . This property is crucial to
describing pairing correlations in nuclei far from stabil-
ity for which the Fermi level is close to zero. In the
Hartree-Fock basis, pairing correlations couple bound
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states to states in the continuum. However, the diagonal-
ization of the full HFB matrix still allows the construc-
tion of localized densities.

3. Symmetries and constraints

The Bogoliubov transformation, Eq. (3), is very gen-
eral and no symmetry is imposed a priori on the wave
functions. Two kinds of symmetry can be introduced: (i)
symmetry related to the shape of the nucleus and (ii)
time-reversal symmetry; see also Dobaczewski et al.
(2000a, 2000b) for a general discussion.

Space symmetries are usually imposed through the ba-
sis on which the wave functions are expanded or the
mesh that is used to discretize the wave function. Very
general shapes can be described at this point and several
codes exist which allow us to study nuclear densities ex-
hibiting triaxial quadrupole or octupole deformations.
The energy landscape as a function of a spatial degree of
freedom can be explored with the help of constraints.
The equations of motion are obtained by minimization
of a Routhian,

E5^Ĥ&2 (
q5p ,n

lq^N̂q&2(
a

la^Q̂a&, (19)

subject to the constraint ^Q̂a&5Qa , where lq and la

are Langrange multipliers, and where ^Q̂a& denotes the
expectation value ^CuQ̂auC&. The operators Q̂a corre-
spond to the spatial degrees of freedom that one wants
to explore. A quadratic constraint is frequently used in
the form

E5^Ĥ&2 (
q5p ,n

lq^N̂q&1
1
2 (

a
Ca~^Q̂a&2ma!2, (20)

where Ca is a constant, and ma is the desired value of
the operator expectation ^Q̂a&. This form is better
suited to explore energy curves with several extrema. It
is equivalent to a linear constraint with la varying over
the iterations and equal to Ca(ma2^Q̂a&) (Ring and
Schuck, 1980), see Sec. IV for more details.

Time-reversal symmetry limits the systems that can be
studied to even-even nonrotating nuclei and to two-
quasiparticle excited states of those even nuclei when
the quasiparticles are a pair of time-reversed orbits.
These orbitals are then Kramers degenerate and corre-
spond to the two eigenvalues 6i of the signature opera-
tor

R̂x5eip Ĵx, (21)

where Jx is the x component of the angular momentum
operator. For axially symmetric nuclei, the two degener-
ate states have opposite angular momentum projection
on the symmetry axis. The creation of a quasiparticle (to
study odd nuclei) or the rotation of a nucleus (driven by
a constraint v Ĵx) breaks time-reversal symmetry. The
orbitals paired by pairing correlations are no longer con-
nected by the signature symmetry and therefore are not
known a priori. The BCS approximation (see Sec. I.B.4)
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is then suspect. However, the single-particle wave func-
tions may remain eigenstates of signature. In this case,
the HFB matrices are divided into blocks and their di-
mensions can be reduced by a factor of 2.

According to a well-established procedure (Good-
man, 1974), the matrices U and V can be written in a
block form:

U5S u 0

0 ũ* D ; V5S 0 ṽ*

2v 0 D , (22)

where the u , v and ũ , ṽ matrices refer to the signature
blocks. This leads to simplifications for r and k:

r5S r 0

0 r̃* D ; k5S 0 k

2kT 0 D ; H r5 ṽ ṽ1

r̃5vv1

k5 ṽũ
, (23)

and for h and D:

h5S h 0

0 h̃*
D ; D5S 0 d

2dT 0 D . (24)

Then the HFB equations, (12a) and (12b), reduce to the
following problem:

S h d

d1
2h̃

D S u ṽ

2v ũ D 5S u ṽ

2v ũ D S Ei
vd ij 0

0 2Eî
vd î ̂

D .

(25)

In a similar manner, to study one-quasiparticle or two-
quasiparticle states, the U and V components of eigen-
vectors are exchanged and the sign of v is reversed.

4. The BCS approximation

The BCS approximation is a widely used simplifica-
tion of the HFB method for time-reversal-invariant sys-
tems. It requires an a priori knowledge of pairing part-
ner states and for this reason is well defined only in the
case of time-reversal invariance. There is then a Kram-
ers degeneracy of the single-particle states en5e n̄ which
come in pairs of time-conjugate partners wn , w n̄ . We
associate the elements of the pair by the shorthand no-
tation n , n̄ .

The HFB approach is cumbersome because the num-
ber of coupled equations that must be solved is double
that of the BCS approximation. This is a consequence of
the noncommutative properties of the mean-field and
pairing Hamiltonians. However, one can expect that
their commutator is close to zero in well-bound nuclei
where time-reversal invariance can be imposed. The
BCS approximation consists in forcing the pairing po-
tential d̂ to be diagonal in the basis of the eigenstates of
the mean-field Hamiltonian ĥ , i.e.,

dnm̄5dnmdnm̄ , ĥwn5«nwn . (26)

The two-component wave functions become simply
fn

(U)5unwn and fn
(V)5vnwn . The pairing problem re-

duces to determining the occupation amplitudes (un ,vn)
by means of the gap equation

~«n2l!~un
22vn

2 !12dnn̄unvn50. (27)
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The density matrices then become

r~x,x8!52 (
n.0

vn
2 wn~x!wn* ~x8!, (28a)

r̃~x,x8!522 (
n.0

unvn wn~x!wn* ~x8!. (28b)

This provides a much simpler scheme altogether. It is the
reason the BCS approximation is introduced for most
mean-field calculations dealing with nuclei that are well
bound and for which time-reversal invariance can be im-
posed.

However, the asymptotic conditions of the HFB
method are lost since the pairing potential D is not zero
asymptotically. The pair densities calculated in the BCS
approximation are not localized when the Fermi level
tends to zero. It is thus compulsory to switch to full HFB
when dealing with exotic nuclei near the drip lines or to
determine fission barriers.

5. Local densities and currents, nonrelativistic

The full density matrix r(x,x8)5r(rst ,r8s8t8), as
computed, for example in BCS, Eq. (28a) and Eq. (28b),
can be decomposed into four separate spin-isospin
terms,

r~rst ,r8s8t8!

5
1
4 H @r00~r,r8! dss81s00~r,r8!•ss8s# dtt8

1 (
a521

11

@r1a~r,r8! dss81s1a~r,r8!•ss8s#~tt8t!aJ .

(29)

The decomposition uses the fact that the three Pauli ma-
trices together with the unit matrix form a complete ba-
sis in both spin and isospin spaces. The ss8s and tt8t are
matrix elements of the Pauli matrices in spin and isospin
space,

ss8s5~s8uŝus!, tt8t5~t8ut̂ut!. (30)

In what follows we shall consider pure proton and neu-
tron states. In this case, only the a50 components of
the isovector densities contribute. This restriction suf-
fices for almost all applications. A generalization to iso-
spin nondiagonal contributions is straightforward when
needed (for situations with T50 pairing or to describe b
decay in the quasiparticle random-phase approximation,
for example). There are six local densities and currents
that can be derived from the full density matrix. With
T50 or 1, and omiting the second index in the densities
entering Eq. (29), we have

r0~r!5r0~r,r!5(
st

r~rst ;rst!,

r1~r!5r1~r,r!5(
st

r~rst ;rst!t ,
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s0~r!5s0~r,r!5 (
ss8t

r~rst ;rs8t! ss8s ,

s1~r!5s1~r,r!5 (
ss8t

r~rst ;rs8t! ss8st ,

(31)
jT~r!5

i

2
~¹82¹! rT~r,r8!ur5r8 ,

JT~r!5
i

2
~¹82¹! ^ sT~r,r8!ur5r8 ,

tT~r!5¹•¹8 rT~r,r8!ur5r8 ,

TT~r!5¹•¹8 sT~r,r8!ur5r8 .

These are the density, spin density, current, spin-current
tensor, kinetic density, and kinetic spin density, respec-
tively. See Dobaczewski and Dudek (1996) for a detailed
discussion of their properties. Isoscalar (T50) densities
are total densities (e.g., r05rn1rp), while isovector
(T51) densities account for proton-neutron differences
(e.g., r15rn2rp). The spin-current tensor is usually ap-
proximated by the spin-orbit current

J5(
ijk

e ijkJjkei , (32)

where e ijk is the Levi-Civita symbol. A similar decom-
position exists for the pair density matrix r̃(x,x8), Eq.
(10). In most applications, only the local pair density is
needed

r̃0~r!5(
st

r̃~rst ;rst!,

r̃1~r!5(
st

r̃~rst ;rst!t . (33)

While the local density r0(r) describes the probability of
finding a nucleon at r, the local pair density r̃0(r) is
related to the enhancement of the probability of finding
a pair of nucleons with opposite spin due to correlations;
see Dobaczewski, Nazarewicz, Werner, et al. (1996).

6. Local densities and currents, relativistic

A very similar line of development can be followed
for relativistic models. The generalization consists of let-
ting the Pauli spinor wave functions fn

(U) , fn
(V) , or wn in

the nonrelativistic HFB method, grow to four-
component Dirac spinor wave functions. There are 16
independent bilinear covariants c̄(r)Gc(r) that can be
constructed using the relativistic 434 Dirac matrices.
Choosing Gs51, Gm

v 5gm , Gmn
t 5(i/2)(gmgn2gngm), Gp

5g5 , and Gm
a 5gmg5 gives the local scalar, vector, tensor,

pseudoscalar, and pseudovector (axial) densities, which
can be constructed as isoscalar or isovector densities. A
simplification arises in that only three of these are re-
quired in standard relativistic mean-field theories,
namely, the isoscalar and isovector (four-)vector densi-
ties and the isoscalar scalar density,
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rm0~r!5 (
ss8t

r~rst ;rs8t!~gm!s8s , (34a)

rm1~r!5 (
ss8t

r~rst ;rs8t!~gm!s8st , (34b)

rs0~r!5 (
ss8t

r~rst ;rs8t!, (34c)

where s, s8 now run over four spinor components. The
summation in the densities is usually restricted to posi-
tive energy states only; states from the Dirac sea are
omitted. The related vacuum polarization effects are
supposed to be effectively contained in the parameters
of the model.

C. Semiclassical approximations

There is a straightforward link from the SCMF ap-
proach to the mic-mac methods. The basic idea of the
mic-mac approach is a separation of the total energy
into two parts (Strutinsky, 1967),

E5Ē1dE , (35)

dE5(
a

«a2E
2`

«̄F d«(
a

g~«2«a!, (36)

where g(e) is a Gaussian smoothing function whose
width is of the order of the shell spacing. The shell-
correction energy dE is an oscillating function of par-
ticle number and deformation. It is calculated from the
single-particle energies «a which are obtained either
from parametrized single-particle models like the modi-
fied harmonic oscillator, Woods-Saxon, or folded
Yukawa potentials, or from fully self-consistent mean-
field calculations. In the latter case, dE provides a useful
tool for analyzing trends in SCMF models and their pa-
rametrizations; see, for example, Kleban et al. (2002)
and Kruppa et al. (2000). The remaining component Ē
represents a smooth background energy. The idea be-
hind the mic-mac models is to parametrize Ē with high
accuracy. For details of the method and typical results
see Brack et al. (1972); Pauli (1973); Myers and Swiate-
cki (1974, 1982); Myers (1977); Ragnarsson et al. (1987);
Brack (1992); Nilsson and Ragnarsson (1995); Möller
et al. (1997), and references therein.

A direct path from the SCMF energy to the smooth
energy Ē is obtained by means of semiclassical approxi-
mations. The simplest one is the Thomas-Fermi approxi-
mation. The next step is the extended Thomas-Fermi
method in which gradient corrections to the kinetic-
energy functional are taken into account. It has been
shown that the extended Thomas-Fermi energy gives a
good approximation to the smooth background Ē
(Brack and Quentin, 1975). At the same time, the ex-
tended Thomas-Fermi method is also able to describe
many local features of SCMF models (Bartel and
Bencheikh, 2002). It has been exploited to approximate
SCMF calculations with Skyrme interactions by adding
Rev. Mod. Phys., Vol. 75, No. 1, January 2003
shell corrections (Aboussir et al., 1992). This approach
has allowed for the first time systematic large-scale cal-
culations using Skyrme interactions over the whole chart
of nuclei, irrespective of their deformation (Aboussir
et al., 1995).

There is also a large body of work concerning relativ-
istic Thomas-Fermi and extended Thomas-Fermi meth-
ods; see, for example, Centelles et al. (1998), and refer-
ences therein.

D. Motivation of a nuclear energy functional

As argued in Sec. I.A, a full-fledged ab initio treat-
ment of finite nuclei is still beyond present-day capabili-
ties. One employs effective interactions which are tuned
for use in connection with self-consistent mean-field
models. The short range of the nuclear interaction and
the long wavelength of the single-nucleon states suggest
an expansion in terms of zero-range interactions. This is
called the density-matrix expansion and serves as a for-
mal derivation of the ansatz for the Skyrme energy func-
tional (Negele and Vautherin, 1972, 1975; Campi and
Bouyssy, 1978). We sketch it here for the simple example
of a local two-body interaction v(r2r8) using a compact
notation in terms of the one-body density matrix r as
introduced in Sec. I.B.1. We concentrate here on the
spatial part and skip the spin and isospin indices, thus
dealing with r(r1 ,r2) to simplify the notation. Including
spin and isospin is straightforward. The interaction en-
ergy contains a direct term and an exchange term,

Edir5
1
2 E E d3rd3r8r~r,r!v~r2r8!r~r8,r8!, (37)

Eex5
1
2 E E d3rd3r8r~r,r8!v~r2r8!r~r8,r!. (38)

Handling the full one-body density matrix in the ex-
change term is numerically expensive. It is also to some
extent unnecessary because r(r,r8) falls off quickly with
increasing r2r8. This suggests an expansion of order
(r2r8)n of the density matrix around r̄5(r1r8)/2,

r~r,r8!'r~ r̄!i~r2r8!•j~ r̄!

1
1
2

~r2r8!2Ft~ r̄!2
1
4

D r̄r~ r̄!G (39)

with local density r, current j, and kinetic density t as
defined in Sec. II.A.2. This yields for the square of the
one-body density matrix

ur~r,r8!u2'r2~ r̄!2~r2r8!2Fr~ r̄!t~ r̄!

2j2~ r̄!2
1
4

r~ r̄!D r̄r~ r̄!G , (40)

which gives a local exchange energy-density functional

Eex5
1
2 E d3r FV0r21V2S rt2j22

1
4

rDr D G , (41)
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Vn5E d3~r2r8!v~r2r8!~r2r8!n. (42)

These are precisely the terms we shall recognize later on
in the Skyrme energy functional (see Sec. II.A.2). The
direct term, Eq. (37), is already formulated in terms of
the local density. It can be easily handled and there are
models with finite-range direct terms. See, for example,
the Bonche-Koonin-Negele force (Bonche et al., 1976)
and the relativistuc mean-field models in Sec. II.A.3.
Nonetheless it is consistent with the spirit of a zero-
range force to expand this term as well. Using

r~r!'r~ r̄!1 1
2 ~r2r8!•¹r̄r~ r̄!1 1

8 ~r2r8!2D r̄r~ r̄!

yields after a partial integration

Edir5
1
2 E d3r S V0r21

1
2

V2rDr D . (43)

The term }rDr has already appeared in the exchange
energy. Since it shows up here without the rt term it
may be parametrized independently. However, the com-
bination (rt2j2) in Eq. (41) has to be kept together.
This guarantees Galilean invariance of the energy-
density functional.

Altogether, this simple model shows the basic steps of
a density-matrix expansion. The actual effective two-
body interaction is the T matrix in the nuclear medium.
It can be obtained from the microscopic nucleon-
nucleon force by many-body calculations like these, for
example, of Brueckner-Hartree-Fock. The matrix is a
density-dependent and nonlocal operator yielding the
potential energy

Epot5
1
2 E E E E dxdx8dydy8r~x,x8!

3T~x,x8;y,y8!r~y,y8!. (44)

An expansion similar to that above then yields all the
terms as they are used in the Skyrme energy-density
functional (Negele and Vautherin, 1972, 1975; Campi
and Bouyssy, 1978).

The basic energy functional of the relativistic mean-
field model can be motivated by a similar expansion
while adjusting the concepts to a covariant formulation
which is appropriate in the relativistic domain. The no-
tion of a two-body force does not fit so well here and
needs to be replaced by (effective) meson fields as me-
diators of the effective interaction. For a more detailed
discussion see Reinhard and Maruhn (1999).

Thus far the density-matrix expansion looks straight-
forward. It is to be noted, however, that its quantitative
success is very limited. A derivation of the parameters of
the expansion from given Brueckner-Hartree-Fock cal-
culations has provided only a fair reproduction of
nuclear properties in subsequent mean-field calculations
(Marcos et al., 1989; Elsenhans et al., 1990; Brockmann
and Toki, 1992), but fails at a quantitative level. It is not
yet clear to what extent this is a problem of the local-
density approximation or of the Brueckner-Hartree-
Fock calculations, which do not yet reproduce the
Rev. Mod. Phys., Vol. 75, No. 1, January 2003
nuclear binding properties precisely enough. It is thus
standard procedure to take the above density-matrix ex-
pansion as a motivation for the form of the mean-field
energy functional, whose actual parameters are then ad-
justed phenomenologically (see Sec. V.C).

II. CHOICES FOR THE EFFECTIVE INTERACTION

Self-consistent Hartree-Fock calculations for closed-
shell nuclei were first performed in the mid 1960s
(Muthukrishnan and Baranger, 1965; Davies et al., 1966;
Kerman et al., 1966; Bassichis et al., 1967; Saunier and
Pearson, 1967). The idea of a local-density approxima-
tion for such calculations was first explored by Negele
(1970). In all these studies attempts were made to derive
finite-range momentum-dependent or separable effec-
tive interactions directly from the bare nucleon-nucleon
interaction. The calculations reproduced qualitatively
the basic features of the nuclei, but failed on a more
quantitative level. The breakthrough came when the
connection to the bare nucleon-nucleon force was aban-
doned and effective interactions tailored for use in
mean-field calculations were directly adjusted to observ-
ables of finite nuclei. The rediscovery of Skyrme’s inter-
action by Vautherin and Vénéroni (1969) and Vautherin
and Brink (1972), the introduction of the Gogny force
(Gogny, 1973), and finally the formulation of the relativ-
istic mean-field model (Walecka, 1974; Boguta and Bod-
mer, 1977) led to three ‘‘standard models’’ for the
nuclear mean field which are widely used today and able
to compete with the mic-mac method on a quantitative
level.

A. Mean field

1. The Gogny interaction

Finite-range interactions have been introduced by
Brink and Boeker (1967) in the form of the sum of two
Gaussians with space-, spin-, and isospin-exchange mix-
tures. However such a form does not permit one to re-
produce correctly the binding energies at the Hartree-
Fock level of approximation. Gogny (1973, 1975)
suggested adding a density dependence in the interac-
tion and also a spin-orbit term. Dechargé and Gogny
(1980) subsequently proposed a parametrization for an
interaction which is now called the Gogny force:

v̂Gogny~r12!5(
j51

2

e2(r12 /m j)
2
~Wj1BjP̂s2HjP̂t

2MjP̂sP̂t!1t3~11x0P̂s!d~r12!

3raS r11r2

2 D1iWls~ŝ11ŝ2!•k̂†3d~r12!k̂,

(45)

where P̂s5 1
2 (11ŝ1•ŝ2) is the spin-exchange operator,

P̂t5 1
2 (11 t̂1• t̂2) the isospin-exchange operator, r125r1

2r2 , and k̂52 (i/2) (¹12¹2). The quantities Bj , Hj,
Mj, Wj , m j , t3, x0, a , and Wls are parameters of the
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interaction. The density-dependent zero-range force has
been chosen with a spin-exchange mixture x051 such
that it does not contribute to the T51 pairing channel.
In this way, the usual problem of divergence of a zero-
range interaction in the pairing channel is avoided,
which enables one to use the Gogny interaction simulta-
neously in both mean-field and pairing channels. For the
spin-orbit interaction the zero-range force introduced by
Bell and Skyrme (1956; Skyrme, 1959b) is used.

The interaction has been adjusted with the direct
Coulomb and Coulomb exchange terms calculated ex-
actly. The energy of the spurious center-of-mass motion
(see Sec. III.B.3) is subtracted from the total energy and
is taken into account variationally. It has an anti-spin-
orbit effect and if ignored requires a decrease in the
strength of the spin-orbit interaction.

All terms are taken into account in the pairing chan-
nel, including the Coulomb contributions. The informa-
tion going into the adjustment of the Gogny forces is
summarized later on in Table I. Since the fit was done
assuming spherical symmetry, the one-quasiparticle exci-
tations describing odd nuclei were obtained by averag-
ing all degenerate orbitals of a subshell. Moreover, odd
nuclei are not described with the same level of accuracy
as even ones are described by the HFB method. For this
reason, an underestimate of 300 keV of the ground-state
energy has been taken into account for odd-A nuclei.
The original parametrization D1 has been readjusted by
Berger et al. (1984, 1991) to correct for a too-large sur-
face coefficient leading to an overestimate of the fission
barrier of 240Pu. Most calculations use this interaction,
labeled D1S.

2. Skyrme interactions

In the Skyrme Hartree-Fock approach, the total bind-
ing energy is given by the sum of the kinetic energy, the
Skyrme energy functional that models the effective in-
teraction between nucleons, the Coulomb energy, the
pair energy, and corrections for spurious motion:

E5Ekin1E d3rESk1ECoul1Epair2Ecorr . (46)

As the Skyrme energy functional is local, it has several
technical advantages over the Gogny force. All ex-
change terms have the same structure as the direct
terms, which greatly reduces the number of integrations
when solving the Skyrme Hartree-Fock equations.

a. The Skyrme energy functional

It is useful to separate out the Skyrme energy func-
tional as

ESk5 (
T50,1

~E T
even1E T

odd!. (47)

The time-odd part E odd contains all dependences on
time-odd currents. They need to appear in bilinear form
to render the functional time-reversal invariant. The
term E even contains only time-even densities. It is the
only part which contributes in stationary calculations of
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even-even nuclei. The sum runs over the isospin T . The
time-even energy density is given by

E T
even5CT

r rT
2 1CT

Dr rTDrT1CT
t rTtT1CT

J JT
2

1CT
¹JrT ¹•JT , (48)

while the time-odd part reads

E T
odd5CT

s sT
2 1CT

Ds sT•DsT1CT
sT sT•TT1CT

¹s ~¹•sT!2

1CT
j jT

2 1CT
¹j sT•¹3jT . (49)

‘‘Time-odd’’ refers to the densities E T
odd is constructed

from, not a property of E T
odd itself, which is of course

time even. In most applications, the coefficients C are
taken to be constants except for CT

r and CT
s which de-

pend on density according to the parametrization

CT@r0#5CT@0#1~CT@r0,eq#2CT@0# !S r0

r0,eq
D a

, (50)

where r0,eq is the saturation density in infinite nuclear
matter. For other choices see Sec. II.A.2.g below. Invari-
ance under local gauge transformations links three pairs
of time-even and time-odd terms in the energy func-
tional

CT
j 52CT

t , CT
J 52CT

sT , CT
¹j51CT

¹J (51)

(see Dobaczewski and Dudek, 1995). This is a generali-
zation of the Galilean invariance of the Skyrme interac-
tion discussed by Engel et al. (1975).

b. Single-particle Hamiltonian

The single-particle Hamiltonian ĥq is obtained from
the energy functional by using the variational principle.
In what follows we now assume as is done in most ap-
plications, that protons and neutrons do not mix. For
discussion of the single-particle Hamiltonian, it is sim-
pler to recouple the isoscalar and isovector densities to
proton and neutron densities. The contribution from the
Skyrme interaction to the single-particle Hamiltonian
for the nucleon species q5p ,n is then given by

ĥq5Uq2¹•Bq¹2
i

2
$Wq ,¹s%

1Sq•ŝ2¹•~ŝ•Cq!¹2
i

2
$Aq ,¹%, (52)

where $Wq ,¹s%5( ij$Wij ,¹iŝ j%. The various local po-
tentials are calculated as

time-even: Uq5
dE

drq
, Bq5

dE

dtq
, Wq5

dE

dJq
, (53)

time-odd: Aq5
dE

djq
, Sq5

dE

dsq
, Cq5

dE

dTq
. (54)

Here Bq5\2/2mq* is proportional to the inverse effec-
tive mass, which in general depends on r. Ground-state
properties of even-even nuclei (which cover most appli-
cations of the Skyrme interaction in the published litera-
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ture) are determined by the time-even fields Bq , Uq ,
and Wq only, because for these the time-odd fields van-
ish: Aq5Cq5Sq50.

Figure 1 shows typical examples of the densities and
potentials in 208Pb. Both the spin-orbit current Jq ,r and
the spin-orbit potential exhibit a peak at the nuclear sur-
face. The densities obtained from SLy6 (Chabanat et al.,
1998) and BSk1 (Samyn et al., 2002) are very similar, but
there is a significant difference with regard to potentials.
While SLy6 has a low effective mass of m0* /m50.69 in
nuclear matter, the value for BSk1 is slightly larger than
1, leading to smaller kinetic energy. This is reflected in
the depth of the potentials Uq , which are much shal-
lower for BSk1 to obtain similar single-particle energies
at the Fermi surface with both parametrizations.

c. Time-odd fields

The time-odd fields Aq , Cq , and Sq contribute to the
single-particle Hamiltonian, Eq. (52), only in situations
where the intrinsic time-reversal symmetry is broken
and Kramers degeneracy of single-particle levels is re-
moved. One example is rotating nuclei where the crank-
ing constraint v Ĵx violates time-reversal symmetry in
the intrinsic frame. Other examples are odd-A and odd-
odd nuclei, where the time-odd fields from the unpaired
nucleon(s) induce dynamical core polarization. The
time-odd fields also contribute to dynamics in time-
dependent Hartree-Fock-Bogoliubov calculations and to
various excitation modes calculated with the quasiparti-
cle random-phase approximation.

d. Choices for the coupling constants

There are basically two concepts to motivate the
Skyrme energy density ESk :

FIG. 1. Time-even densities and potentials in 208Pb, for neu-
trons (left) and protons (right), as calculated with the Skyrme
interactions: solid lines, SLy6; dotted lines, BSk1.
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(i) ESk is derived from the Hartree-Fock expectation
value

ESk
HF5^HFuv̂SkuHF& (55)

of the zero-range momentum-dependent two-body
force introduced by Skyrme (1956, 1959a),

v̂Sk~r12!5t0 ~11x0P̂s! d~r12!1 1
2 t1 ~11x1P̂s!@ k̂†2d~r12!

1d~r12!k̂2#1t2~11x2P̂s! k̂†
•d~r12!k̂

1 1
6 t3 ~11x3P̂s! d~r12!r

aS r11r2

2 D
1iW0 ~ŝ11ŝ2!•k̂†d~r12!k̂, (56)

with P̂s , r12 , and k̂ as introduced in Sec. II.A.1.
Note that the t0,1,2 terms in the Skyrme force, Eq.
(56), correspond to the zero-range limit of a
Gogny-type force up to second order in the de-
rivatives (Vautherin and Brink, 1972). The calcu-
lation of the energy functional from Eq. (56) is
presented by Engel et al. (1975); see Appendix A
for the actual expressions for the coupling con-
stants. When including pairing correlations, a
strict approach calculates the energy functional
from Hartree-Fock-Bogoliubov states, which
then also gives a local pairing energy functional
(Dobaczewski et al., 1984). All Skyrme forces ex-
cept SkP are well known to have unrealistic pair-
ing properties. Therefore this strict approach is
rarely followed, and only the particle-hole part of
the energy functional is calculated from Eq. (55),
i.e., the contributions to the pair energy are
dropped.

(ii) ESk is parametrized directly without reference to
an effective two-body force. The form of the
Skyrme energy functional is obtained as a local-
density approximation to the nuclear T matrix
(Negele and Vautherin, 1972, 1975); see Sec. I.D.
It contains systematically all possible bilinear
terms in the local densities and currents [Eq. (31)]
up to second order in the derivatives, which are
invariant with respect to parity, time-reversal, ro-
tational, translational, and isospin transformations
(Dobaczewski and Dudek, 1996). Some density
dependence is added to the leading term in the
expansion.

Choice (i) introduces many dependencies among the
coupling constants, with the result that the isovector
spin-orbit term and all time-odd terms are fixed. The 16
coupling constants of ESk are then uniquely linked to the
10 parameters t i , xi , W0 , and a of vSk (see Appendix
A). These restrictions lead to some difficulties. For ex-
ample, the usual parametrization of a three-body force,
which was used in some early parametrizations to derive
the density-dependent term, causes a spin instability in
infinite nuclear matter (Chang, 1975) and finite nuclei
(Stringari et al., 1976), a problem which persists even in
recent parametrizations (see also Sec. II.A.2.g below).
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The consequences for spin-orbit splitting are discussed
in Sec. II.A.2.e and the problem of tensor forces in Sec.
II.A.2.f.

Choice (ii), on the other hand, is free of all these dif-
ficulties. The coupling constants of the energy functional
not fixed by global symmetries are free parameters. This
also nicely decouples the particle-hole and particle-
particle (5pairing) channels of the effective interaction
(see Fayans et al., 2000). The price to be paid is that the
additional coupling constants, i.e., CT

J 52CT
sT , CT

s , and
CT

Ds , have to be adjusted to the data. Only a few appli-
cations have tried this so far. The simplest approach is to
tentatively set the unknown couplings to zero, as done,
for example, by Reinhard and Friedrich (1985), who in-
clude in their random-phase-approximation (RPA) cal-
culations only those time-odd terms that are fixed by
gauge invariance of the functional. Such a procedure is
reasonable when describing natural parity excitations
within the quasiparticle RPA, but it neglects the spin-
spin terms, which are crucial for unnatural parity states.
This, in turn, offers the possibility of adjusting the re-
maining coupling constants (see Bender, Dobaczewski,
et al., 2002).

e. Spin-orbit interaction

The two terms }CT
J and }CT

¹J contribute to the spin-
orbit potential. For parametrizations that set CT

J 50, as
well as for spherical nuclei where the spin-orbit tensor J
always boils down to the spin-orbit current J, the spin-
orbit term in the single-particle Hamiltonian can be re-
written as

2
i

2
$Wq ,¹s%→2iWq•¹3ŝ (57)

where Wq5dE/dJq is now a local spin-orbit potential.
The Skyrme-force concept links CT

J to the other
Skyrme-force parameters, and it fixes the isospin struc-
ture of the genuine spin-orbit terms as C0

¹J53C1
¹J (Bell

and Skyrme, 1956; Skyrme, 1959b). The standard form
of the relativistic mean-field model, as described in Sec.
II.A.3, omits the exchange interactions and leads to val-
ues of C1

¹J'0 in the nonrelativistic limit. Lalazissis et al.
(1994), Reinhard and Flocard (1995), and Sharma et al.
(1995) find that this reduced isospin dependence is cru-
cial for describing the isotopic shifts of the charge radii
of Pb nuclei. The interpretation of the Skyrme interac-
tion as an energy density functional endows the spin-
orbit interaction with a more flexible isospin structure.
This was exploited by Reinhard and Flocard (1995) to
make two new Skyrme-type parametrizations; SkI3 and
SkI4. These two forces differ from the standard Skyrme
Hartree-Fock forces in the extrapolation of shell struc-
ture to exotic nuclei. Doubts about the necessity of this
extension were raised by Onsi et al. (1997), Nayak and
Pearson (1998), and Pearson (2001) for various reasons.

The spin-orbit interaction in the nonrelativistic limit
of the standard relativistic mean field differs from the
Skyrme energy functional not only in its isospin depen-
dence, but also in its density dependence (see also Sec.
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II.A.4). This additional degree of freedom was explored
by Pearson and Farine (1994). Another form of density
dependence was introduced by Pudliner et al. (1996). In-
spired by shell-model calculations with realistic interac-
tions for neutron drops, they introduced a density de-
pendence to the spin-orbit term to get their Skyrme
Hartree-Fock calculations for these highly speculative
objects into agreement with other models, while leaving
the properties of more stable nuclei nearly unchanged.

f. Tensor force

Most applications of the time-odd energy functional
set CT

¹s50. The term it multiplies comes from a local
two-body tensor force considered in the original papers
of Skyrme (1956, 1959a) and discussed by Stancu et al.
(1977), but omitted in all modern Skyrme parametriza-
tions except for the SL1 force introduced by Liu et al.
(1991). In the time-even part of the functional, a tensor
force gives an additional contribution to the J2 term.

For spherical shapes, the J2 term contributes to the
time-even energy density in the same way as the usually
neglected tensor force. One might therefore argue that
by including the tensor force one could counterbalance
the unwanted J2 term exactly (Beiner et al., 1975). This
argument, however, applies neither to deformed shapes
nor to time-odd fields. Although one might disagree
with this rationale for neglecting the J2 terms, it is not
easy to use CT

J as a free parameter in the spirit of the
energy-functional approach and to adjust it to spectral
data. Only once in the published literature has there
been an attempt to do so (Tondeur, 1983). Therefore
setting CT

J 50 is reasonable unless a unique way to ad-
just it is found. Among the forces which strictly enforce
the Hartree-Fock expectation value for CT

J are Zs

(Friedrich and Reinhard, 1989), SkP (Dobaczewski
et al., 1984), the forces of Tondeur (Tondeur et al., 1984),
SLy5 and SLy7 (Chabanat et al., 1998), and SkX (Brown,
1998). Most other parametrizations set CT

J 50. The spin-
tensor term also frequently triggers difficulties on the
quasiparticle RPA level. Many numerical codes calculate
the residual interaction strictly from Eq. (56), which vio-
lates self-consistency when employing forces with CT

J

50 [see also the discussion of Bender, Dobaczewski,
et al. (2002)].

g. Density dependence

All first-generation Skyrme interactions, like SI, SII
introduced by Vautherin and Brink (1972), and SIII in-
troduced by Beiner et al. (1975), use a power of density
dependence a51, which is equivalent to a three-body
delta force in the time-even functional (but not in its
time-odd part). However, the power a51 yields too
large an incompressibility K` , a problem that is cured
for values of a between 1/6 and 1/3 as they have been
introduced, for example, with the forces SkM (Krivine
et al., 1980) and SkM* (Bartel et al., 1982).

The simple generalization from 1 to a has been the
most efficient so far. Many other generalizations have
been tried, to correct this or that deficiency of the stan-
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dard Skyrme functional. An alternative, in which the
coupling constants also depend on the isospin density, is
sometimes used (Aboussir et al., 1995; Farine et al.,
1997). Krewald et al. (1977), Waroquier et al. (1983), and
Liu et al. (1991) introduced additional three-body
momentum-dependent forces. Waroquier et al. (1983)
also added an admixture of the density-dependent two-
body delta force and a three-body delta force. But none
of these interactions has been used subsequently. Farine
et al. (1997) add a density dependence to all momentum-
dependent terms of the Skyrme force, Eq. (56). This
idea was developed further by Farine et al. (2001) to
generate a density dependence of the effective mass, en-
abling a good mass fit (that requires m0* /m'1 at the
nuclear surface) for the description of giant resonances,
which call for m0* /m'0.8 in the nuclear interior (Bohi-
gas et al., 1979; Chabanat et al., 1997; see also Mahaux
et al., 1985). It is noteworthy that all generalizations of
the density dependences published so far were formu-
lated within the Hartree-Fock expectation-value ap-
proach to the Skyrme energy functional, which leads to
numerous inter-relations between coupling constants
and also adds density dependences in unwanted places.

h. Finite-range terms

The Skyrme Hartree-Fock method employs strictly
point couplings, while the standard relativistic mean-
field model has finite range through meson folding. The
relativistic mean-field finite range differs from that of
the Gogny force. It employs Yukawa folding (rather
than Gaussian) and exchange terms are neglected. To a
large extent, it plays the role of the gradient terms in the
Skyrme Hartree-Fock method. Similarly, there is a vari-
ant of the Skyrme Hartree-Fock which merges the gra-
dient term with the zero-range two-body force into a
finite-range two-body coupling,

E d3rrT
2 ~r!→E d3r r

T
~r!r̄T~r!, (58)

with the folded density

r̄T~r!5E d3r8
e2ur2r8u/m

4pm2ur2r8u
rT~r8!, (59)

where m is a free parameter to be adjusted phenomeno-
logically. Typical ranges of the Yukawa function are 0.3
<m<0.5 fm. The Yukawa folding, Eq. (59), has the
technical advantage that it can be easily accomplished
numerically by solving the Helmholtz equation (2D
1m22) r̄T(r)5m22rT(r). An early interaction con-
structed along these lines is the Bonche-Koonin-Negele
force (Bonche et al., 1976). It is a simplified version of
the Skyrme functional, in which CT

t , CT
Dr , CT

J , CT
¹J and

all time-odd coupling constants are set to zero. Com-
plete Skyrme functionals with finite-range rT

2 terms are
used by Umar et al. (1989). The folded form has advan-
tages in dynamical applications because folding smooths,
while gradient terms stir up fluctuations.
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i. The Fayans energy functional

The energy functional of Fayans et al. (2000) is con-
structed somewhat differently. While the Skyrme func-
tional can be viewed as a systematic expansion in deriva-
tives up to second order with a usually simple density
dependence, the Fayans functional omits the terms con-
taining derivatives except for the spin-orbit interaction,
but employs a much more elaborate density dependence
and folding for all remaining terms [including the den-
sity dependences, which prevents a mapping onto Eq.
(48)]. This keeps the number of coupling constants
around 10 as in the case of the Skyrme functional. No
time-odd terms have been considered so far (although
the functional is also used to calculate odd-A nuclei).
The volume term contains a density dependence of the
form CT

r @r#5CT
r @0#(12h1,T

v r0)/(11h2,T
v r0). As CT

t 50
the effective mass is everywhere mT* /m51. Instead of
employing CT

DrrTDrT terms, the surface energy is mod-
eled in analogy to Eq. (58), but includes a density de-
pendence.

3. Relativistic mean-field models

Mean-field models for low-energy nuclear structure
physics employing nonrelativistic kinematics are quite
successful. This is at first not surprising, since the depth
of the nuclear potential is below 100 MeV and much
smaller than the nucleon rest mass of nearly 1 GeV.
However, this depth is the result of the cancellation be-
tween much larger contributions and there are therefore
good reasons to consider relativistic kinematics for the
nucleon. One of the most obvious signatures of relativity
is the large nuclear spin-orbit force. In a relativistic de-
scription, the spin-orbit interaction emerges naturally
from the interplay between two strong and counteract-
ing fields: a long-range attractive scalar field and a short-
range repulsive vector field. These fields nearly cancel
each other out in the calculation of the potential but add
up for the spin-orbit interaction. Duerr (1956) had al-
ready shown by the 1950s how in a phenomenological
relativistic theory the saturation properties of nuclear
matter are reproduced and a spin-orbit interaction
emerges naturally without any separate adjustable pa-
rameter. These properties are common to any relativistic
model, although the mechanism leading to saturation or
the way the spin-orbit interaction appears depend on the
particular framework that is used.

Relativistic mean-field theories have been applied to
nuclear matter and finite nuclei with remarkable success.
The basic concept of these models is the same as for
nonrelativistic mean-field approaches: the many-body
state is built up as an independent particle or quasipar-
ticle state from the single-particle wave functions, which
are now four-component Dirac spinors. The motion of
the nucleons is governed by the Dirac equation
(Bjorken and Drell, 1964). The interaction, pointlike or
through meson fields, is considered to be an effective
interaction. There are several extensive reviews on the
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relativistic mean-field method (see Reinhard, 1989; Se-
rot, 1992; Ring, 1996), and we shall thus keep their pre-
sentation short.

There are many practical ways to define relativistic
models for nuclear structure calculations. In nearly all
cases the contribution from antiparticle states in the
Fermi sea to the nucleon densities is neglected (the no-
sea approximation). Another widely used approxima-
tion is the neglect of exchange (Fock) terms in the
mean-field equations. The contribution of the exchange
term is assumed to be absorbed into the effective cou-
pling constants through the phenomenological fit of the
model.

As in the case of nonrelativistic models, one has a
choice between effective zero-range forces (point cou-
plings) and effective finite-range interactions. In com-
plete analogy to the Skyrme Hartree-Fock method, the
single-particle potentials entering the Dirac equations of
point-coupling approaches are functions of the various
relativistic densities outlined in Sec. I.B.6. Much more
often used, however, are finite-range models. Motivated
by the idea of the nucleus as a system of interacting
nucleons and mesons, the effective interaction is intro-
duced through Klein-Gordon equations for the meson
fields, which are coupled to the Dirac equations for the
nucleons. These equations have to be solved self-
consistently, with nucleon densities as source terms in
the Klein-Gordon equations, and mesonic fields entering
the Dirac equations. In finite-range models, one also has
a choice in modeling the density dependence. This is
done either through the nonlinearities of the meson
fields, density-dependent couplings of nucleons and me-
sons, or a combination of both.

There is some confusion about the naming of the
models. In a strict sense, all possible combinations of the
above-mentioned approximations are relativistic mean-
field models. Below, we shall use this label (as is often,
but not always done in the literature) for the most
widely used standard approach, the relativistic Hartree
model with nonlinear finite-range meson fields. We shall
concentrate here on this model, but give some refer-
ences below to published work using other variants em-
ploying density-dependent couplings, relativistic
Hartree-Fock models, and various brands of relativistic
density-functional theory.

The relativistic mean-field method is usually formu-
lated in terms of a hadronic Lagrangian. In the energy
regime of nuclear structure, it may be assumed that the
nucleons interact only through the exchange of the me-
sons with the lowest values of spin J and isospin T . Such
an assumption is consistent with one-boson-exchange
potentials fitted to nucleon-nucleon scattering at low en-
ergies (Erkelenz, 1974; Holinde, 1981; Machleidt et al.,
1987; Machleidt and Slaus, 2001). This view of the
model, however, is not unique. In order to describe static
nuclei, one has to specify a reference frame, and one can
equally well formulate the model in terms of the corre-
sponding energy density. This formulation makes the
connection to the nonrelativistic models discussed above
more apparent and will be chosen here. A detailed dis-
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cussion of the Lagrangian can be found in several re-
views of the relativistic mean-field method, including
those of Serot and Walecka (1986), Reinhard (1989), Se-
rot (1992), and Ring (1996).

Although the energy-functional approach relaxes the
direct correspondence to hadronic physics, the fields are
commonly denoted as the mesons whose quantum num-
bers they carry,

• s field Fs , Jp, T501,0, medium-range attraction;
• v field Fv

m , JpT512,0 short-range repulsion;
• r field Fr

m , JpT512,1, isospin channel.

The index m is the standard index of a relativistic four-
vector. There is no experimental evidence for a free s
meson, although the s field is a crucial ingredient in
relativistic mean-field models. This is a hint that we are
dealing with effective fields in an effective Lagrangian.
The lowest-mass and in many other respects most im-
portant p-meson field does not appear in the list. In fact,
the p-meson field with Jp502, T51 cannot contribute
on the Hartree level of standard relativistic mean-field
models, because the pseudoscalar and pseudovector
densities it couples to vanish for stationary states unless
time-reversal invariance and parity are broken. It ap-
pears only in nuclear dynamics, or in the Hartree-Fock
approximation via the exchange terms (Bouyssy et al.,
1987).

The standard relativistic mean-field energy functional
is given by (setting \51 and c51 as is usually done in
relativistic theory)

E5E d3r ERMF1ECoul1Epair2Ecm , (60)

ERMF5Enucl1Emeson1Ecoupl1Enonl , (61)
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c3~Fv ,mFv
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where rsT and rmT are the scalar and vector densities as
introduced in Sec. I.B.6. The quantities gs , gv , gr , ms ,
mv , mr , b2 , b3 , and c3 are parameters of the energy
functional while the va

2 are BCS occupation probabili-
ties, see Sec. I.B.4. Note that the spacelike components
of the vector densities vanish for time-reversal-invariant
systems. They correspond to the time-odd part of the
Skyrme energy functional, while the scalar density and
the zero component of the vector density correspond to
the time-even part.

A functional with linear coupling terms Eq. (64) only
allows us to give a qualitative description of the nuclei.
However, essential nuclear properties such as incom-
pressibility or surface properties cannot be reproduced
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by such an ansatz. To do so requires nonlinear terms
Enonl which are usually parametrized as self-couplings of
the meson fields. The most widely used and well-
established form is a self-coupling of the s field (Boguta
and Bodmer, 1977). More recently, the self-coupling of
the vector fields has been considered (Gmuca, 1992;
Sugahara and Toki, 1994). The need for the latter and its
particular advantage is not yet fully worked out. One
ought to mention that this choice for the nonlinear form
can lead to unstable conditions when solving the meson
equations. A stabilized nonlinear functional has been
proposed by Reinhard (1988) in connection with the pa-
rametrization PL-40.

The separation of the energy functional (61) into
nucleonic and mesonic parts is not unique. In analogy to
Eq. (58), the sum of the meson and coupling energy
densities for each field can be rewritten as a folded bi-
linear term in local nucleonic densities, e.g., ;gvrm0r̄0

m .
In linear models the folding function is simply of
Yukawa form [Eq. (59); see, for example, Ring (1996)],
but it becomes more complicated for mesons with self-
coupling.

While most applications use the standard approach
outlined above, there are also numerous explorations of
extensions of, or alternatives to, this model. As in the
case of the Skyrme Hartree-Fock method, most of these
studies are motivated by known deficiencies of the
model in some particular detail. Within the standard
relativistic mean-field approach, derivative (tensor) cou-
plings of the vector fields are used by Rufa et al. (1988)
and Bender et al. (1999), while Zimanyi and Mosz-
kowski (1990) introduce derivative couplings of the sca-
lar field.

Alternatives to nonlinear couplings in terms of
density-dependent coupling constants have been sug-
gested by several people (Brockmann and Toki, 1992;
Haddad and Weigel, 1993; Ineichen et al., 1996; Shen
et al., 1997; Cescato and Ring, 1998; Typel and Wolter,
1999). These models are often denoted as density-
dependent relativistic mean-field (DDRMF) models.
Relativistic Hartree-Fock models of nuclear matter and
finite nuclei are described by Brockmann (1978),
Blunden and Iqbal (1987), Bouyssy et al. (1987), Bernar-
dos et al. (1993), and Von-Eiff, Haddad, and Weigel
(1994). The role of the pion, which appears in the ex-
change term, is discussed in particular by Horowitz and
Serot (1982). Relativistic density-functional theory for
nuclei is analyzed by Speicher et al. (1991, 1993). A
local-density approximation to the exchange terms in
the linear relativistic mean-field model is discussed by
Schmid et al. (1995a, 1995b). However, there is not yet a
parametrization of a generalized Lagrangian that ap-
proaches the performance of the standard model.

All these models have in common finite-range meson
fields. A point-coupling model, which has to be seen as
the relativistic equivalent of the nonrelativistic Skyrme
interaction, has been explored by Hoch and Manakos
(1990), Nikolaus et al. (1992), Rusnak and Furnstahl
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(1997), and Bürvenich, Madland, et al. (2002). It
achieves a similar level of quality to that of the standard
model.

4. Links between relativistic mean-field and Skyrme Hartree-
Fock models

Like all self-consistent mean-field models, both the
Skyrme Hartree-Fock (SHF) and the relativistic mean-
field (RMF) schemes can be thought of as being derived
from a local expansion of an underlying T matrix.

As discussed in Sec. I.D, the nonrelativistic SHF
model expands the T matrix in terms of a zero-range
effective force with gradient and kinetic corrections. The
very involved density dependence of the T matrix is pa-
rametrized simply in terms of a power-law density de-
pendence in the zero-range two-body interaction. The
RMF method, on the other hand, parametrizes the T
matrix in terms of meson fields with point coupling to
the nucleons. The density dependence is described indi-
rectly through a nonlinear self-coupling of the s field.
The spin-orbit coupling is automatically implied in the
relativistic kinematics of the nucleons. At first glance,
the two expansion lines, SHF and RMF, look very dif-
ferent. The differences are, however, not as large as one
would expect. It is, in fact, possible to map the RMF
model to a large extent onto the SHF model by using
standard techniques of nonrelativistic expansion (Thies,
1986; Reinhard, 1989). As a first step, one eliminates the
lower component of the Dirac wave functions for the
nucleons. This yields the following v/c expansion for the
scalar density in terms of nonrelativistic densities (iso-
spin indices are omitted here):

rs5r1
1

2m* ~t2j2/r1¹•J!. (66)

Note that this expansion generates kinetic as well as
spin-orbit terms. The zeroth component of the vector
density directly becomes the normal density in the non-
relativistic limit. An independent expansion is required
to map the finite range of the meson fields into a zero-
range-plus-gradient correction as used in the SHF
method. This can be written as an expansion of the me-
son propagator,

1

2D1mM
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2 1

D

mM
4 , (67)

where mM is the meson mass. This propagator is none
other than the compact-operator formulation of the
Yukawa folding [Eq. (59)] mentioned in connection with
finite-range variants of SHF models. All together, we are
dealing with a double expansion, one with respect to v/c
and another one with respect to D/m2.

Now let us consider, pars pro toto, the scalar term in
the coupling energy functional (64). After having elimi-
nated the meson field we expand up to first order,
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where Cs5gs
2 /ms

2 . The expansion for the vector me-
sons yields only the D/m2 terms. These together pro-
duce precisely the same terms as are used in the SHF
functional, Eqs. (48) and (49). The lowest order yields
the zero-range force. The next order in D/m2 yields the
gradient corrections. The next order v/c yields the effec-
tive mass term and at the same time the spin-orbit force.

Thus far one can trace back the general structure of
SHF terms and that of RMF ones. There are, however,
differences in detail. The spin-orbit force comes mainly
from the isoscalar spin-orbit current J0 while the isospin
mix is different for SHF forces (Lalazissis et al., 1994;
Reinhard and Flocard, 1995; Sharma et al., 1995). More-
over, the effective mass m* in the denominator of Eq.
(68) depends, in principle, on the density. We have thus
obtained extra density dependence in kinetic and spin-
orbit terms (Pearson and Farine, 1994), an effect which
is absent from standard SHF models. Finally, we have
already eliminated the tricky density dependence
through the nonlinearity of the scalar field while elimi-
nating the meson field at the starting point of the expan-
sion. Density dependence is basically different for the
two models. However, the differences are not appre-
ciable for stable nuclei which all concentrate about the
same equilibrium density.

The relation between RMF and SHF models is com-
plicated by the fact that one needs a double expansion.
There is an alternative to the RMF model which is for-
mulated as nonlinear spinor theory employing zero-
range coupling between the nucleonic currents (Ni-
kolaus et al., 1992). It has recently been shown that this
relativistic point-coupling model performs as well as tra-
ditional SHF and RMF ones (Bürvenich, Madland,
et al., 2002). Such a model is then the ideal link for
studying effects from the v/c and D/m2 expansions sepa-
rately. It has the further advantage that density depen-
dence is mapped in a quite similar way to that in the
SHF model.

5. The Coulomb interaction

The energy functionals that model the effective strong
interaction have to be accompanied by an energy func-
tional for the Coulomb interaction. The direct term of
the Coulomb energy,

ECoul
dir 5

e2

2 E E d3rd3r8
rch~r!rch~r8!

ur2r8u
, (69)

is a functional of the local density. In most cases, the
expression is simplified by employing the point proton
density instead of the charge density, rch→rp . However,
Tondeur et al. (1984; Tondeur et al., 2000; Goriely et al.,
2001) use rch approximated by Gaussian folding with a
finite proton size. Note that even more involved ap-
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proximations are necessary to calculate the observable
charge form factor; see Sec. V.A.2.

Very early SHF models and all relativistic mean-field
forces employ the direct Coulomb term only. The exact
Coulomb exchange term was used in the fit of the
Gogny force and in subsequent spherical calculations.
But it is very cumbersome to calculate, so approxima-
tions are usually invoked.

In the spirit of their local-density approximation, the
exchange term is added to Skyrme interactions in the
Slater approximation,

ECoul
ex 52 3

4 e2S 3
p D 1/3E d3rrch

4/3~r!. (70)

The next-order term was studied by Titin-Schnaider and
Quentin (1974) and found to be small. The difference
between Eq. (70) and the exact Coulomb exchange term
has been studied by Skalski (2001) in the framework of
Skyrme interactions and by Anguiano et al. (2001a) in
the framework of Gogny–Hartree-Fock-Bogoliubov
methods. It mainly gives rise to a state-dependent shift
of single-particle energies. There are hints from the
study of displacement-energy systematics that the Slater
exchange term has to be reduced (Brown et al., 2000).
The Nolen-Schiffer anomaly can be phenomenologically
explained by either reducing the Coulomb exchange
term or by introducing a charge-symmetry-breaking in-
teraction. Brown (1998) considers this effect in the fit of
SkX by scaling the Slater exchange term.

The Coulomb correlation energy has been studied by
Bulgac and Shaginyan (1999a, 1999b). Its largest effect is
in the nuclear surface, shifting single-particle energies,
which affects the position of the calculated proton drip
line and corrects mass differences of mirror nuclei.

There is also a contribution from the Coulomb inter-
action to the pairing interaction which emerges naturally
when calculating the HFB expectation value of the two-
body Coulomb potential. This is usually neglected. How-
ever, it was considered in the fit of Gogny forces. See
Anguiano et al. (2001a) for a discussion.

The magnetic interaction, which gives a correction in
situations with broken intrinsic time-reversal symmetry,
is taken into account in some cranked relativistic
Hartree-Bogoliubov calculations (Afanasjev et al.,
2000).

B. Pairing correlations

1. Pairing interactions

A first distinction has to be made concerning the iso-
spin channel of pairing. As shown in Sec. I.B.5, the pair-
ing density matrix contains contributions from T50 as
well as T51. Pairing between like particles contributes
to the T51 channel only and is routinely used in mean-
field calculations. Pairing between neutrons and protons
contributes to both T51 and T50 pairing channels.
Unlike like-particle T51 pairing, which contributes to
all nuclei, proton-neutron pairing probably plays a sig-
nificant role for nuclei close to the N5Z line only. It is
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only recently that both pairing channels have been con-
sidered simultaneously (Terasaki et al., 1998; Goodman,
1999). The complication introduced by the proton-
neutron pairing interaction is that it can proceed either
between states of different signatures, as for the like-
particle pairing interaction, or between states of the
same signature. Indeed, the latter possibility is not for-
bidden by the Pauli principle in this case, since the in-
teracting particles have differing isospin. For this reason,
a treatment of all the pairing channels requires breaking
the signature symmetry. The study by Terasaki et al.
(1998) has been, up to now, the only mean-field calcula-
tion (in our terminology) employing T50 pairing. Here
we follow the overwhelming majority of publications
and consider only T51 like-particle pairing correlations.

SHF and relativistic mean-field models require one to
define a separate interaction to determine the pairing
matrix elements. Let us recall that this is not the case for
the Gogny interaction which is also well behaved for the
like-particle T51 pairing.

Several recent applications have shown that the use of
a simple seniority interaction for the pairing is too crude
[see, for example, work on superdeformed rotational
bands (Terasaki et al., 1995), on evolution of charge radii
around magic numbers (Fayans, 1999; Fayans et al.,
2000; Tajima, Bonche, et al., 1993), and on halo nuclei
(Bertsch and Esbensen, 1991)]. Moreover, the HFB
method reduces to the BCS method for a seniority inter-
action and the lack of localization (see Sec. I.B.2) thus
makes the seniority force inappropriate for a study of
nuclei that are far from stability. More sophisticated in-
teractions have to be used. Two main ways of generaliz-
ing the seniority interaction have been investigated. In
the first, the seniority interaction has been viewed as the
first term of a multipole expansion of a more realistic
interaction, and a quadrupole term has been added. This
generalized pairing interaction has been used in mic-mac
calculations (Satuła and Wyss, 1994) with a single-
particle potential parametrized by a Woods-Saxon po-
tential.

Nowadays, a widely used effective pairing interaction
is a zero-range local force, often including a density de-
pendence (Dobaczewski, Flocard, and Treiner, 1984;
Krieger et al., 1990; Tajima, Bonche, et al., 1993;
Terasaki et al., 1995; Dobaczewski, Nazarewicz, Werner,
et al., 1996). This simple form of the interaction was in-
troduced in the 1970s by Tondeur (1979). It is formally
equivalent to a Skyrme interaction [Eq. (56)] with t0 and
t3 terms only. A convenient way to write it as an energy
functional is

Epair5 (
q5p ,n

Vq

4 E d3rF12S r~r!

rc
D bG r̃q~r!r̃q* ~r!, (71)

which corresponds to the density-dependent two-body
pairing force,

vpair5
V0

2
~12P̂s!F12S r~r1!

rc
D bGd~r12r2!. (72)
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Depending on the value of the switching density rc ,
pairing is more active in the volume (‘‘volume pairing,’’
rc→`) of the nucleus or on its surface (‘‘surface pair-
ing,’’ rc'r0,eq , where r0,eq50.16 fm23 is the saturation
density of nuclear matter that approaches the density
inside the nucleus). All pairing models smear out the
occupation of single-particle levels close to the Fermi
surface. Thus the dominant contribution often stems
from the nuclear surface in coordinate space. A pure
two-body force (rc5`) keeps some sensitivity to the
volume while a density dependence with rc'r0,eq
pushes the sensitivity towards the outer surface. A re-
cent study by Dobaczewski, Nazarewicz, and Stoitsov
(2002) seems to indicate that the density dependence is
probably intermediate between these two extremes and
is governed by values of rc larger than the saturation
density. The exponent b of the density dependence af-
fects the appearance of neutron skins and halos (Dobac-
zewski, Nazarewicz, and Reinhard, 2001). It is difficult
to fix using the present data. A widely used value is b
51.

The pairing strengths Vp ,n are adjusted phenomeno-
logically to reproduce the odd-even staggering of ener-
gies in selected chains of nuclei (see Sec. V.C). It is im-
portant to note that the strengths depend on the
underlying mean-field force, particularly on its isoscalar
effective mass. Low m0* /m produces low level density
and requires larger pairing strengths. Moreover, the fits
usually result in Vp slightly differently from Vn which
breaks the isospin invariance of the pairing energy func-
tional.

More complicated pairing interactions are sometimes
used. Fayans (1999; Fayans et al., 2000) adds several
terms for density derivatives to a density-dependent in-
teraction. A more ambitious attempt is the SkP param-
etrization of the Skyrme force (Dobaczewski, Flocard,
and Treiner, 1984), which is specifically designed to use
the same force [Eq. (56)] simultaneously in the mean-
field and in the pairing channels of the HFB expectation
value. In this way, the interaction is closer to the spirit of
the Gogny interaction although it still requires an en-
ergy cutoff since the pairing does not converge as a func-
tion of the active space.

Significant progress has been made in the last few
years (Kucharek and Ring, 1991; Ring, 1996; Serra et al.,
2000) in deriving a relativistic theory of pairing. An ap-
plication to finite nuclei has been published just recently
(Serra and Ring, 2002). In the spirit of most SHF calcu-
lations, a covariant point-coupling pairing interaction is
used together with a standard relativistic mean-field
force. In all other practical applications, the effective
mean-field models use a nonrelativistic pairing formal-
ism, often with the matrix elements of the Gogny force
(Gonzalez-Llarena et al., 1996). Note that, in other mod-
els, the pairing interaction is adjusted in conjunction
with the mean-field interaction. The coupling constants
of the pairing interaction depend on quantities governed
by the mean field, like the density of single-particle
states around the Fermi surface, which is related to the
effective mass of the mean-field interaction. The consis-
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tent use of a Gogny force in the pairing channel and
relativistic Lagrangians has yet to be studied in detail.

2. Pairing-active space

Pairing interactions usually have strong matrix ele-
ments for very high-lying states. It is obvious that calcu-
lations using a seniority pairing interaction with constant
matrix elements cannot converge at all. The same holds
for zero-range interactions (Takahara et al., 1994), while
results using a finite-range interaction like the Gogny
force converge, although very slowly, when increasing
the pairing-active space of single-particle states, depend-
ing on the range of the interaction in momentum space
(Grasso et al., 2002). Thus, for all applications, pairing
recipes need to be complemented with a prescribed cut-
off. The situation is complicated by the fact that un-
bound single-particle states depend on the actual nu-
merical representation, which prevents a mapping of
cutoff recipes between expansion and grid methods. The
box size in grid methods or the number of shells in a
basis expansion adds an additional hidden cutoff to all
applications (see also Sec. IV.A). In many cases, how-
ever, the choice of the actual cutoff is not too critical.
The parameters of effective pairing interactions are fit-
ted phenomenologically anyway. One simply has to do it
in connection with a given cutoff. It is not clear, how-
ever, that a cutoff recipe has the same effect for all nu-
clei throughout the chart of nuclei.

Seniority pairing uses a band of single-particle ener-
gies around the Fermi surface. The bandwidth delivers
the cutoff. Simple scaling rules allow us to tune the pair-
ing strength to the actual bandwidth (Reinhard et al.,
1996).

Many recent applications consider pairing interactions
as derived from zero-range forces [see Eq. (71)]. They
are usually used in connection with a soft cutoff to avoid
artifacts if single-particle states are crossing the cutoff
line. To this end, one augments each state in the pairing-
active space by a pairing weight factor wn . The pair
density, Eq. (33), is thus modified to r̃(r)
522(n.0wnunvnucn(r)u2. The wn are determined by a
Fermi function in single-particle energies. This cutoff is
applied either above the Fermi energy only (Bonche
et al., 1985; Krieger et al., 1990) or above and below
(Duguet et al., 2001). The latter method allows us to use
the same pairing strength for protons and neutrons. A
fixed-width ecut of the Fermi function might be too rigid
a recipe if one wants to cover a broad range of nuclei,
particularly if one goes for exotic nuclei with their
squeezed density of states. As an alternative, ecut might
be determined in such a way that the distribution of wn
adds up to a given number of states (Bender, Rutz, et al.,
2000b).

A different approach has to be taken in connection
with the HFB equations in the quasiparticle basis. To
obtain the correct density matrices, one has to sum up
from all the quasiparticle states corresponding to the
bound particle states. Since these states have energies
close to the depth of the potential well D , one has to set
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the cutoff parameter at least as large as D , i.e., around
50 MeV (Dobaczewski, Flocard, and Treiner, 1984). This
cutoff is so large that artifacts due to level crossing at the
upper cutoff energy are negligible. There is, further-
more, a subtle difference between cutoff recipes in the
BCS and HFB methods: they are formulated in terms of
single-particle energies in BCS, but in terms of quasipar-
ticle energies in HFB.

Let us note also that Bulgac (2002; Bulgac and Yu,
2002) has recently introduced a renormalization scheme
for the HFB equations which allows us to avoid the di-
vergence of a zero-range interaction as a function of the
pairing-active space.

III. BEYOND THE STATIC MEAN-FIELD APPROACH

The static mean-field approach provides the lowest-
order nuclear binding energy. It is well adapted to de-
scribing nuclear bulk properties throughout the chart of
nuclei. To achieve a higher precision or to describe a
larger set of data, one has to go beyond a strict mean-
field approach and consider correlations. The most im-
portant correlation effects in nuclear structure stem
from large-amplitude collective motion. Low-lying ex-
cited states are mixed into the calculated mean-field
ground state which can be removed by configuration
mixing, i.e., superposition of several mean-field states.
This embraces nuclear surface vibrations related to low-
lying excitation spectra and zero-energy modes (transla-
tion, rotation, etc.) related to the restoration of symme-
tries broken by the mean-field ground state. Both
aspects will be discussed in this section. We start in Sec.
III.A.1 with collective motion in general and come to
the more specific case of symmetry restoration in Sec.
III.B.

There are various concepts dealing with correlations.
The one we follow here is the generator coordinate
method, which relies on a superposition of mean-field
states optimized variationally. This concept is closely re-
lated to the multiconfigurational Hartree-Fock method
well known from atomic physics. There are also close
links to the Monte Carlo shell model in nuclear physics,
where often mean-field propagation is used to achieve
appropriate importance sampling (Otsuka et al., 2001).
Alternative concepts are path integrals and diagram-
matic methods. The path-integral methods still have
links to the generator coordinate method, and both
methods allow one to deal with large-amplitude collec-
tive motion. The diagrammatic techniques follow a dif-
ferent track. They are restricted to small amplitudes as-
sociated with collective correlations. In the regime of
low-energy, relatively long-range correlations, one ob-
tains the RPA correlations diagrammatically. For an
overview and comparative discussion see Reinhard and
Toepffer (1994).

There is a subtle conceptual problem when computing
correlations. The energy functionals that we use are de-
signed for SCMF calculations and supposedly embrace
various correlation effects. Using them to compute cor-
relations explicitly looks like double counting. However,
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the procedure is still justified for correlations associated
with low- or zero-energy states. These are strongly vary-
ing with shell effects and cannot be hidden in a smooth
energy functional. Moreover they can be derived from a
quasistatic sequence of mean-field states in the spirit of a
Born-Oppenheimer approach. All considerations below
belong to that class. The correlations from highly excited
states, such as giant resonances, are in the dangerous
regime of double counting. The problem is even worse
for the short-range correlations.

A. Configuration mixing

1. Generator coordinate method

As has often been emphasized, collective and single-
particle nuclear dynamics are intimately associated. The
generator coordinate method was one of the first at-
tempts to incorporate both seemingly contrary aspects
into one single coherent quantum-mechanical formula-
tion (Hill and Wheeler, 1953; Griffin and Wheeler,
1957). Early nuclear applications are found, for instance,
in the work of Jancovici and Schiff (1964), Brink and
Weiguny (1968), and Wong (1975). A review is given by
Reinhard and Goeke (1987). The generator coordinate
method has many attractive features. It is, formally at
least, a simple and flexible variational method which ex-
tends the configuration-mixing formalism to the case of
a continuous collective variable. In principle, it can ad-
dress a wide range of collective phenomena. It accounts
for long-range ground-state correlations and provides
both excitation spectra and transition matrix elements to
be compared with data. Moreover, all projection meth-
ods designed to restore broken symmetries are simply
special forms of the generator coordinate method in
which the weight functions are known a priori. The gen-
erator coordinate method has improved our understand-
ing of the connection between phenomenological mod-
els of collective motion and microscopic descriptions
such as Hartree-Fock (HF) or HF1BCS.

a. Review of the formalism

Given a family of N-body wave functions uF(q)&, de-
pending on a collective variable q , the generator coor-
dinate method (GCM) determines approximate eigen-
states (hereafter called GCM states) of the Hamiltonian
Ĥ , having the form

uCk&5E dquF~q !&fk~q !. (73)

The weight functions fk (where k is the index of the
eigenstate of the Hamiltonian Ĥ) are found by requiring
that the expectation value Ek ,

Ek5
^CkuĤuCk&

^CkuCk&
, (74)

be stationary with respect to an arbitrary variation dfk .
This prescription leads to the Hill-Wheeler integral
equation (Hill and Wheeler, 1953),
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E dq8@H~q ,q8!2EkI~q ,q8!#fk~q8!50, (75)

in which the Hamiltonian kernel H and the overlap ker-
nel I are defined as

H~q ,q8!5^F~q !uĤuF~q8!&,

I~q ,q8!5^F~q !uF~q8!&. (76)

In the same way, for any operator Ô , we define the ker-
nel O by

O~q ,q8!5^F~q !uÔuF~q8!&. (77)

Since the weight functions fk are not orthonormal, they
cannot be interpreted as collective wave functions for
the variable q . This role is assigned to the orthonormal
set of functions gk related to the fk’s by the integral
transform

gk~q !5E dq8I 1/2~q ,q8! fk~q8!, (78)

where I 1/2(q ,q8) is the Hermitean square root of the
norm operator (see, for example, Reinhard and Goeke,
1987), and the matrix element of any operator Ô be-
tween two GCM states can be expressed in terms of the
gk’s as

^CkuÔuC l&5E E dqdq8gk* ~q !Õ~q ,q8!gl~q8!, (79)

with

Õ~q ,q8!5E E dq9dq-I 1/2~q ,q9!

3O~q9,q-!I 1/2~q-,q8!. (80)

In particular, the GCM energies Ek and functions gk are
the eigenvalues and eigenvectors of the Hermitian inte-
gral operator with kernel H̃,

E dq8H̃~q ,q8!gk~q8!5Ekgk~q !. (81)

This is the starting point of the most commonly used
method for solving the Hill-Wheeler equation.

In practical applications of the generator coordinate
method, the family of states uF(q)& is known for only a
discrete set of values $qi%, and Eqs. (73)–(81) transform
into a discrete approximation to the GCM, where ker-
nels become matrices and the integral equation a matrix
equation.

b. Conservation of the nucleon numbers

Since the inclusion of pairing correlations is essential
for a realistic description of heavy nuclei, BCS or HFB
states appear as a natural choice for the GCM basis.
However, such states are not eigenvectors of the nucleon
number operators and have only expectation values of
the operators N̂ and Ẑ equal to the neutron number N0
and the proton number Z0 . As a consequence, the solu-
tions uCk& of the Hill-Wheeler equation (75) built from
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BCS states are not eigenstates of N̂ and Ẑ . Further-
more, nothing guarantees that their average nucleon
number values will be equal to N0 and Z0 . In fact, since
the binding energy increases with the average particle
number, one expects that an unconstrained variation of
the weight functions fk will generate a ground state (and
first excited state) with an average number of neutrons
and protons larger than N0 and Z0 , respectively. The
correct average values of the particle numbers can be
restored by means of two constraints involving the N̂
and Ẑ operators, using Lagrange multipliers lN and lZ .

c. Choice of the collective coordinate

Two families of choices can be made for the collective
variable. The first category of applications of the genera-
tor coordinate method involves the restoration of bro-
ken symmetries. The family of the wave functions
uF(q)& is generated by the symmetry operations: rota-
tion in coordinate space for angular momentum, rota-
tion in gauge space for particle number, or parity trans-
formation (in which case, the mixing is discrete). In
these cases, the generating function fk(q) is determined
a priori by the properties of the symmetry operator.

The second category concerns any kind of shape de-
gree of freedom, in which case the collective space is
generated by constrained mean-field calculations. The
generating function is unknown and determined by di-
agonalization of the Hill-Wheeler equation (81). The
constraint is chosen intuitively (quadrupole moment, oc-
tupole moment, cranking) in most cases. There exist sys-
tematic schemes to optimize the constraint variationally.
Due to their derivation from the time-dependent mean-
field approach, they are called adiabatic time-dependent
Hartree-Fock (adiabatic TDHF) approaches (Baranger
and Vénéroni, 1978; Goeke and Reinhard, 1978). For a
review see Reinhard and Goeke (1987).

2. Gaussian overlap approximation

It is thanks to approximations of the generator coor-
dinate method that one can make links between micro-
scopic models based on mean-field wave functions and
collective models. These approximations are based on
the rapid decrease of the matrix elements between wave
functions corresponding to different values of the collec-
tive variable. They have been extensively used to deter-
mine simple rotational and vibrational corrections to
mean-field results.

a. Gaussian overlap kernel

In the Gaussian overlap approximation, the overlap
kernel I(q ,q8), Eq. (96), is replaced by a Gaussian func-
tion of the form

I~q ,q8!.IG~q ,q8!5expH2
1
2 F~q2q8!

a~q̄!
G2J, (82)

whose width a is in general a function of the average
GCM coordinate q̄5(q1q8)/2.
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b. Canonical collective variable

It is sometimes convenient to introduce another col-
lective variable x in the Gaussian overlap approxima-
tion, defined in such a way that the overlap kernel, Eq.
(82), becomes a Gaussian function with a constant width
(Ring and Schuck, 1980), i.e.,

I~q ,q8!.IG~q ,q8!5expH2 1
2

@x~q!2x~q8!#2J. (83)

Both approximations, Eqs. (82) and (83), are equivalent
up to terms of the fourth order in q2q8. The canonical
variable x gives a measure of the distance between dif-
ferent wave functions in terms of the overlaps between
them.

c. Gaussian overlap Hamiltonian kernel

Along with the quadratic approximation for the func-
tion log I(x ,x8), Eq. (83), the Gaussian overlap approxi-
mation relies on the validity of an expansion quadratic
in (x2x8) for the reduced Hamiltonian kernel h(x ,x8),

h~x ,x8!5
H~x ,x8!

I~x ,x8!
.hG~x ,x8!

5h0~ x̄ !2
1
2

h2~ x̄ !~x2x8!2. (84)

The function h0(x) is equal to the Hartree-Fock energy
along the collective path,

h0~x !5h~x ,x !5H~x ,x !, (85)

while the function h2(x) can be determined from the
second derivatives of the reduced kernel (Reinhard and
Goeke, 1987).

d. Collective Schrödinger equation

In the collective Schrödinger equation approximation,
one introduces a collective Hamiltonian Ĥ which is a
second-order differential operator in the variable x :

Ĥ52
1
2

d

dx
B~x !

d

dx
1V~x !. (86)

The quantity B(x) is the collective mass parameter and
V(x) is the collective potential energy. The collective
Schrödinger equation is then written

ĤGk5EkGk , (87)
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where G(x) is the normalized collective wave function,
i.e., *dxuG(x)u251. It is known that the collective po-
tential V(x) differs from the Hartree-Fock energy h0(x)
by a quantity called the zero-point-motion correction.
This should not be confused with trivial modifications of
the potential term arising from a change of variable in
the Schrödinger equation (87).

e. Relationship between the collective Schrödinger equation
and the Gaussian overlap approximation

In most derivations which attempt a connection be-
tween the generator coordinate method and a Schrö-
dinger equation, the Gaussian overlap approximation is
introduced as an intermediate step. This is not surprising
since, within the Gaussian overlap approximation, the
Hill-Wheeler equation (75) is formally equivalent to the
differential equation (87). A systematic study of this
equivalence for one-dimensional problems has been
made by Bonche et al. (1990a). More often, one intro-
duces instead some approximation schemes (Girod and
Gogny, 1976; Ring and Schuck, 1980; Reinhard and
Goeke, 1987) based on Taylor expansions of the kernels.
An alternative method based on the calculation of col-
lective masses to the cranking approximation (Girod
and Grammaticos, 1979) is frequently used to study the
collective dynamics on top of potential energy surfaces
calculated with the Gogny interaction (Girod et al.,
1989, 1992).

f. Extension of the generator coordinate method and the
Gaussian overlap approximation

There are several refinements of this straightforward
method. An appropriate treatment of dynamical fea-
tures (associated with collective mass) is achieved by an
extension to a two-parameter set of conjugate coordi-
nates (q,p). This allows the incorporation of a dynamical
linear response and cranking masses into the approxima-
tion framework (Goeke and Reinhard, 1980).

As we have seen in the previous section, the Gaussian
overlap approximation requires a collective coordinate
of Cartesian-type spanning the interval (2`,1`). How-
ever, there are many collective coordinates with differ-
ent topology, such as the rotational angle which is de-
fined on a unit sphere. For such cases, one can improve
the performance of the approximation by properly
implementing the topology of the collective coordinate
into the model for the overlap (Reinhard, 1978; Gozdz
et al., 1985).

B. Symmetry restoration

Symmetries of the many-body state introduce rela-
tions between the single-particle wave functions, which
obviously cannot be represented by a single
independent-(quasi)particle state. A self-consistent
mean-field wave function necessarily breaks several
symmetries of the nuclear Hamiltonian. For example,
translationally invariant SCMF wave functions can be
constructed only from plane waves; a rotationally invari-
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ant one must have spherical symmetry. As a conse-
quence, an SCMF solution is degenerate with respect to
the SCMF wave functions generated by the symmetry
operation that is broken. One must superpose all these
equivalent wave functions to restore the symmetry.
These symmetry modes are a special case of collective
motion. There is no restoring force for symmetry rea-
sons. Thus they are associated with zero excitation en-
ergy and large-amplitude motion. Practically, they can
be treated with the generator coordinate method, and
the actual details are much simpler than in the general
case because several features are determined by the
given symmetry.

1. Particle-number projection

a. General treatment

BCS (or HFB) states are not eigenstates of the
particle-number operator. They give the desired particle
numbers N and Z only on average due to the constraints
explained in Sec. I.B.2. Many-body states projected on
good particle numbers (i.e., eigenstates of the particle-
number operators Ẑ for protons and N̂ for neutrons)
can be obtained from BCS or Bogoliubov wave func-
tions with projection operators written as integrals over
gauge angles,

P̂N5
1

2p E
0

2p

dfNeifN(N̂2N), (88)

where N stands here for the neutron number on which
one projects. A similar expression holds for proton num-
ber Z . Altogether, one obtains an eigenstate uF(N ,Z)&
of N̂ and Ẑ with N neutrons and Z protons by acting on
any wave function uC& which still spans a variety of par-
ticle numbers:

uF~N ,Z !&5P̂NP̂ZuC&. (89)

It can easily be checked that this operator extracts from
uC& a wave function with Z protons and N neutrons by
writing the expansion of uC& on a basis uF(N8,Z8)& of
wave functions with good neutron and proton numbers.

b. Variation before or after projection

Starting from an HFB wave function uC& with mixed
particle numbers, one can construct a wave function
with well-defined particle numbers by acting with P̂NP̂Z
and calculating the resulting energy:

Ek5
^F~N ,Z !uĤuF~N ,Z !&

^F~N ,Z !uF~N ,Z !&
. (90)

This procedure is called a projection after variation
(PAV), since the HFB wave function is determined a
priori by the resolution of the HFB equations. This is
not satisfactory from a variational point of view because
the PAV solution optimizes the mean field for a spread
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of particle numbers, including adjacent nuclei. One op-
timizes, of course, the content of correct particle number
by choosing ^CuN̂uC&5N and ^CuẐuC&5Z at least on
the average, but with a nonzero dispersion ^CuN̂2uC&
2N2.0. It is obviously an improvement to perform the
variation of the projected HFB wave function. Such a
calculation is called a variation after projection (VAP)
calculation. See, for example, Egido and Ring (1982a,
1982b) and Sheikh and Ring (2000) for the general for-
malism and Anguiano et al. (2001b) for a recent applica-
tion using the Gogny force. This distinction between
PAV and VAP applies to any symmetry restoration dis-
cussed in this subsection.

The need for VAP is obvious in several practical ap-
plications where continuous trends with collective pa-
rameters are studied. Fast rotating nuclei are a clear ex-
ample of the weakness of a mean-field description.
Rotation tends to align the spin of the nucleons along
the rotation axis and therefore to decrease the pairing
correlations which favor pairs of nucleons with opposite
spins (see, for example, de Voigt et al., 1983; Szymanski,
1983; Casten, 1990). For a given angular frequency, the
pairing breaks down, generating a sudden phase transi-
tion and sharp peaks in the the moment of inertia in-
compatible with the data. These sudden transitions are a
particular feature of mean-field models, but are unreal-
istic in finite systems. To cure this deficiency while re-
taining the quality and the simplicity of a mean-field de-
scription, the best approach is VAP on correct particle
number (Ring and Schuck, 1980; Anguiano et al.,
2001b).

c. The Lipkin-Nogami prescription

Full projection is difficult, the more so if used in con-
nection with VAP. Thus one often employs approximate
schemes for particle-number projection. A widely used
scheme is the Lipkin-Nogami approach (Lipkin, 1960,
1961; Nogami, 1964; Pradhan et al., 1973). The associ-
ated equations have been tested to provide a good nu-
merical approximation of the VAP in situations where
both the HFB and the BCS equations predict a collapse
of the pairing correlations. [See the recent studies of
model systems without rotation (Dobaczewski and
Nazarewicz, 1992; Zheng et al., 1992) and with rotation
(Magierski et al., 1993), and the references cited
therein.]

The Lipkin-Nogami prescription amounts to modify-
ing the energy E by adding the second-order Kamlah
correction (Kamlah, 1968) to the energy,

E→E2l2^DN̂2& , (91)

where ^DN̂2&5^N̂2&2^N̂&2. This Routhian has the same
form as if a constraint on the dispersion in particle num-
ber had been introduced. However, the coefficient l2 is
not a Lagrange multiplier, and one can show that it de-
pends on the wave function and the Hamiltonian:
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l25
ŠĤ~DN̂22^DN̂2&!‹2^ĤDN̂&^DN̂3&/^DN̂2&

^DN̂4&2^DN̂2&22^DN̂3&2/^DN̂2&
.

(92)

A consistent application of the Lipkin-Nogami prescrip-
tion in connection with SCMF methods requires us to
take the full effective interaction in the calculation of l2
(Bender, Rutz, et al., 2000b; Valor et al., 2000b). The
modification of the HFB equations associated with the
Lipkin-Nogami prescription is obtained by a restricted
variation of l2^DN̂2&, namely, l2 is not varied although
its value is calculated self-consistently using Eq. (92).
For a thorough discussion of the Lipkin-Nogami method
and other approximations to VAP see Flocard and On-
ishi (1997) and Balian et al. (1999).

2. Angular momentum projection

a. Principle of the method

Deformed mean-field states are not eigenstates of the
total angular momentum. An eigenstate with eigenvalue
J is obtained by projecting the mean-field wave function
uC&:

uF ,JM&5

(
K

gKP̂MK
J uC&

A(
K

ugKu2^CuP̂KK
J uC&

, (93)

where the projector is given by Ring and Schuck (1980):

P̂MK
J 5

2J11
8p2 E dVDMK

J* ~V!R̂~V!, (94)

where V[(a ,b ,g) are the Euler angles and R̂(V)
[eia Ĵze ib Ĵye ig Ĵz is the rotation operator.

Wave functions with good angular momentum and
particle numbers are obtained by restoration of symme-
try on uC(q)& :

uF ,JMq&5
1
N (

K
gK

J P̂MK
J P̂ZP̂NuC~q !&, (95)

where N is a normalization factor, P̂MK
J , P̂N , and P̂Z

are, respectively, projectors onto angular momentum J
with projection M along the laboratory z axis, neutron
number N , and proton number Z . The operator P̂MK

J is
not a projector in the mathematical sense (Ring and
Schuck, 1980). It extracts from an intrinsic wave func-
tion the component with a projection K along the intrin-
sic z axis of the nucleus. Since K is not a good quantum
number, all these components must be mixed and the
coefficients gK

J determined by a minimization of the en-
ergy.

Generalizing Eq. (76) to projected wave functions,
one can define kernels for a projected generator coordi-
nate calculation as

HJM~q ,q8!5^FJMquĤuFJMq8& ,

IJM~q ,q8!5^FJMquFJMq8& . (96)
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Since the Hamiltonian is rotationally invariant and con-
serves the number of particles, one has to restore the
symmetries on only one of the two wave functions en-
tering in each matrix element like Eq. (96). The kernels
are obtained by integration on three Euler angles and
two gauge angles of the matrix elements between ro-
tated wave functions. There is a subtle problem with the
density dependence of the interaction. It will be ad-
dressed in Sec. III.B.2.d below.

Solving the secular equation for the configuration
mixing (96) amounts to a VAP in a many-body Hilbert
space built on a limited set of states obtained for differ-
ent values of the collective variables q8.

In the derivation above, it is assumed that the single-
particle bases on which uC(q)& and uC(q8)& are ex-
panded are either complete or truncated in such a way
that they span the same space. This property is not valid
when orbitals are discretized on a three-dimensional
mesh (Bonche et al., 1990a) or expanded on different
oscillator bases (Robledo, 1994). This problem can be
solved by taking into account that the missing part of the
expansion of the left states on the right basis includes
empty states that do not affect the structure of the
nucleus. These states are defined by the condition vm
50 and contribute neither to the overlap nor to the con-
tractions (Valor, Heenen, and Bonche, 2000).

b. Calculation of multipole moments and transition
probabilities

Besides the overlap and Hamiltonian kernels, restora-
tion of rotational symmetry permits one to calculate
spectroscopic quadrupole moments and transition prob-
abilities directly in the laboratory frame of reference.
Transition probabilities require the calculation of the
matrix elements of a tensor of order L , T̂L

M , between
projected states. Assuming axial symmetry, one has to
take into account only the K50 term. There are many
applications using schematic interactions in reduced
model spaces (see, for example, Hara et al., 1982; Enami
et al., 2000, 2001). Recent applications for E2 transitions
based on complete self-consistent models are those of
Valor et al. (2000b) using Skyrme interactions and
Rodriguez-Guzmán et al. (2000a, 2000b, 2000c, 2002) us-
ing the Gogny force. Sun et al. (1994) and Egido et al.
(1992, 1996) have also applied this method for the cal-
culation of E3 transition moments employing the Gogny
force and collective wave functions obtained from the
Gaussian overlap approximation of the generator coor-
dinate method.

c. Density dependence of the effective interactions

The density-dependent term of the interaction must
be generalized to calculate nondiagonal matrix ele-
ments. In the case of a density dependence equivalent to
a three-body interaction, the Hamiltonians kernel can
be expressed in terms of the mixed density (Bonche
et al., 1990a):
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mns

^a1b&mnF l ,m* ~r,s!Fr ,n~r,s!, (97)

where the indices l (left) and r (right) refer to the mean-
field single-particle states of the bra and the ket. They
can correspond either to a collective variable like the
quadrupole moment or to a rotation for symmetry res-
toration. The same dependence on the mixed density
can also be chosen when there is no equivalence with a
three-body interaction, i.e., for aÞ1 in the ansatz (50).
The energy is then expressed as a functional of left and
right wave functions similar to the mean-field functional.
For spatial rotations, one can show that the mixed den-
sity depends only on the relative angles between the
principal axes of both wave functions. Therefore, after
integration on the Euler angles, the energy is real and
does not depend on the orientation of the reference
frame. One can thus restore symmetries on either the
left or the right wave function.

d. Rotational correction as approximate projection

Applying a full angular momentum projection as de-
scribed above is cumbersome. Various schemes for ap-
proximating the full projection have been proposed (see,
for example, Villars, 1957; Kamlah, 1968; Scheid and
Greiner, 1968; Fink et al., 1972). A very simple approxi-
mation is provided by the rotational correction

Erot52
^Ĵ2&
2J , (98)

where J is the moment of inertia. This correction is em-
ployed in most deformation energy studies with the
Gogny force, and also some recent studies with Skyrme
forces done by Baran and Höhenberger (1995, 1996), or
the recent Hartree-Fock mass formulas (Tondeur et al.,
2000; Goriely et al., 2001; Samyn et al., 2002). The recipe
can be derived from Gaussian overlap approximation to
rotational projection. It is valid for well-developed de-
formation, but fails for nuclei close to sphericity. An im-
proved recipe can be drawn from a topologically cor-
rected generator coordinate method; see Sec. III.A.2
and Reinhard (1978).

3. Center-of-mass projection

The mean field is localized in space. This violates
translational invariance, which has to be restored by
projection onto good center-of-mass momentum. And
this is probably the most important case of symmetry
breaking. Rotational projection is not needed for spheri-
cal nuclei. Particle-number projection is unnecessary for
closed shells. But center-of-mass projection is compul-
sory under all conditions. It is thus desirable to develop
particularly simple schemes for this case.

The projection of the mean-field state uC& onto good
center-of-mass momentum zero reads uF(Pcm50)&
5*d3R exp@2(i/\)R•P̂cm#uC& . VAP is preferable to
PAV because VAP restores full Galilean invariance
(Ring and Schuck, 1980). However, an exact projection
is numerically expensive (Marcos et al., 1983, 1984). It
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turns out that the overlaps between translated wave
functions fall off very quickly and that the Gaussian
overlap approximation is particularly well adapted for
that case. This allows us to derive a simple expression
for a center-of-mass correction to the energy to second
order in P̂cm ,

Ecm52
^P̂cm

2 &
2mA

, (99)

where P̂cm5(kp̂k is the sum of the single-particle mo-
mentum operators. The Gaussian overlap approxima-
tion improves with increasing mass number A . Results
are fair for 16O and quite good above A'40 (Schmid
and Reinhard, 1991). Ecm is positive and has to be sub-
tracted from the energy functional to obtain the total
binding energy. It describes the energy of states with
spurious center-of-mass vibrations that are contained in
the mean-field state. The same expression (99) is ob-
tained by the introduction of ‘‘redundant coordinates’’
when going from the laboratory frame to center-of-mass
and intrinsic coordinates; see Ring and Schuck (1980)
and Dietrich (1996) for details. The center-of-mass cor-
rection decreases with A and vanishes for infinite
nuclear matter. Since the total binding energy increases
with A , the relative contribution of the center-of-mass
correction to the total binding energy is largest for very
small nuclei.

Few effective interactions have been adjusted with the
center-of-mass correction [Eq. (99)] in the variational
procedure, such as the Gogny forces or the Skyrme in-
teractions SLy6 and SLy7 (Chabanat et al., 1998). For
Hartree-Fock states without pairing, Ecm contributes an
additional term to the equations of motion but the
Hartree-Fock equations can be solved as usual. For
HFB states the mean field becomes state dependent,
which complicates the solution of the mean-field equa-
tions for Skyrme forces. Therefore most applications
avoid VAP or use simpler approximations.

An alternative is PAV, i.e., omiting the center-of-mass
correction in the variational equations, but adding Eq.
(99) a posteriori when calculating the binding energy.
This is done, for example, for the Skyrme forces SkI1-
SkI5 and the relativistic-mean field forces NL-Z, NL-Z2,
PL-40, and TM2.

The simplest PAV scheme is to use a fixed formula for
Ecm . Such a formula can be derived analytically for
harmonic-oscillator states. With an oscillator constant
taken from the Nilsson model, one obtains Ecm

osc

52 3
4 41 A21/3 MeV. This is used for many relativistic

mean-field forces like NL-SH, NL1, NL3, and TM1.
Other forces in this family, like L1, use the approxima-
tion Ecm

fit '217.2 A21/5 MeV, which is a fit to values of
the full correction for selected nuclei calculated with the
Skyrme interaction Zs .

An alternative that is often used for Skyrme forces is
to consider the diagonal (direct) terms of Eq. (99) only.
These can be expressed through the isoscalar local ki-
netic density t0 ,
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dir5
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vk

2 pk
252

\2

2mA E dr t0~r!. (100)

The formula is usually applied with VAP. The contribu-
tion from the center-of-mass correction to the (nonrela-
tivistic) equations of motion has the same structure as
the kinetic term and leads to a renormalization of the
nucleon mass 1/m → (1/m) @12 (1/A)# . This scheme is
used for most Skyrme interactions like SIII, SkM* , SkP,
the Skyrme forces of Tondeur, and SLy4. The off-
diagonal matrix elements of P̂cm

2 , however, have nearly
the same size as the diagonal ones, but opposite sign.
Therefore Ecm

dir overestimates Ecm and exhibits an incor-
rect trend with respect to A . Butler et al. (1984) have
suggested correcting for this by multiplying Eq. (100) by
f(A)52/(t11/3t), where t5( 3

2 A)1/3.
When using Ecm

dir , Ecm
osc , or Ecm

fit during the fit of an
effective interaction, the difference between the ‘‘exact’’
value of Eq. (99) and the approximation is compensated
by the force. This may induce in the forces an incorrect
trend with respect to A which becomes visible in the
nuclear matter properties. As a consequence, all forces
using simple approximations for Ecm have significantly
larger surface coefficients than those using the full cor-
rection. This leads to differences in the deformation en-
ergy which are particularly pronounced for superde-
formed states and fission barriers (Bender, Rutz, et al.,
2000a).

When applied in VAP, Eq. (99) automatically corrects
all observables. In all a posteriori correction schemes, a
similar correction in the second order Gaussian overlap
approximation needs to be applied to all other observ-
ables too. The effect on the charge density can be easily
explained. The (localized) mean-field state contains spu-
rious center-of-mass vibrations with a width D2rcm

51/(4^P̂cm
2 )&51/(8mAEcm). This means that the den-

sity distribution is folded by a Gaussian of that width
and needs to be unfolded to access the intrinsic density
[see Reinhard (1989, 1991) and Eq. (105)]. The recipe
contains the center-of-mass energy which guarantees
consistency with the energy correction.

C. Time-dependent mean-field approaches

1. Time-dependent Hartree-Fock (Bogoliubov)

Stationary mean-field models are tuned to describe
ground-state properties, and that is what density-
functional theory is designed for. The extension to a
time-dependent mean-field theory is formally straight-
forward: a given mean-field state uF(t)& at a certain in-
stant of time t uniquely defines a one-body density ma-
trix r̂(t), or generalized density matrix R(t), and with it
the corresponding mean-field Hamiltonian (see Sec.
I.B). This can be used to step to the next mean-field
state by the self-consistent one-body Schrödinger equa-
tion,

i\
]

]t
uF~ t !&5Ĥ~ t !uF~ t !&. (101)
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The solution of this equation conserves the energy E if it
is evaluated with the same expression from which Ĥ was
derived. This scheme is called time-dependent density-
functional theory (TDDFT) in the realm of electronic
density functionals (Runge and Gross, 1984). In nuclear
dynamics, it is known as time-dependent Hartree-Fock
(TDHF), or TDHFB in the case of pairing. The ab initio
foundation of TDDFT is still a matter of debate (Gross
et al., 1994). Nonetheless, its practioners are using it
heavily for a large variety of applications. See, for ex-
ample, Onida et al. (2002) or Calvayrac et al. (2000) for
examples from metallic clusters. Similarly, there are ap-
plications of TDHF in nuclear and heavy-ion dynamics.
See, for example, Kerman (1977), Negele (1982), and
Abe et al. (1996) for discussions of general aspects of
TDHF, Davies et al. (1985) for TDHF with Skyrme
forces, and Cusson, Reinhard, Molitoris, et al. (1985)
and Vretenar et al. (1993) for dynamics with the relativ-
istic mean-field method. A thorough discussion of these
large-scale applications goes beyond the scope of this
review. We consider here limiting cases which allow us
to compute nuclear excitation properties. The low-
energy regime of surface vibrations and fission is
reached by adiabatic TDHF (Baranger and Vénéroni,
1978). It is closely related to the generator coordinate
method and the microscopic derivation of a Bohr
Hamiltonian (Goeke and Reinhard, 1978; Reinhard and
Goeke, 1987), which was discussed in Secs. III.A.1 and
III.A.2. The other important limiting case is small-
amplitude motion which accesses the regime of the
nuclear giant resonances. It will be discussed in the next
section. For more details about the various approaches,
see Ripka and Porneuf (1975), Quentin and Flocard
(1978), Goeke and Reinhard (1982), Balian and Vén-
éroni (1986, 1988, 1991), and Flocard (1989).

2. Quasiparticle random-phase approximation

The starting point for deriving the quasiparticle
random-phase approximation (quasiparticle RPA) is the
TDHFB equation (101). One considers small oscillations
about the stationary mean-field ground state uC&. These
are necessarily harmonic oscillations. The wave function
uFk& of the excited states k can then be written in the
form

uFk&5~11he2i\vktĈk
1!uC& , (102)

where Ĉk
1 creates a superposition of two-quasiparticle

states (one-particle/one-hole states in the case of
TDHF) on top of the mean-field ground state uC&. The
eigenfrequency of the eigenmode k is vk , while h is a
small number. Inserting this ansatz into Eq. (101) and
expanding up to order h1 yields (Reinhard and Gamb-
hir, 1992)

\vkĈk
1uC&5S @Ĥ,Ĉk

1#1trH dĤ
dR̂ @Ĉk

1 ,R̂C#J D uC&,

(103)
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where Ĥ is the HFB Hamiltonian, Eq. (12), R̂C the gen-
eralized density matrix, Eq. (8c), corresponding to the
mean-field ground state, and the trace is taken over
]/]R̂ and the commutator. In case of TDHF without
pairing, one has to replace Ĥ by ĥ and R̂ by r̂ . The
commutators in Eq. (103) select those two-quasiparticle
or one-particle/one-hole states that contribute to a given
excitation mode. The contribution from the effective in-
teraction to the quasiparticle RPA equation, i.e., dĤ/dR̂
in the last term in Eq. (103), is usually called the residual
interaction and determines the properties of the excited
states. As Ĥ5dE/dR̂, Eq. (12), this boils down to a sec-
ond derivative of the energy functional (see, for ex-
ample, Bertsch and Tsai, 1975; Reinhard, 1992b). Equa-
tion (103) is an eigenvalue equation for the mode k .
This linearized TDDFT is called the random-phase ap-
proximation (RPA) due to its first derivation with dia-
grammatic techniques (Bohm and Pines, 1953). The
RPA is the basic theory of nuclear excitations in the
regime of giant resonances. There is a large body of lit-
erature on this topic and there exist many different no-
tations for the RPA equations and techniques to solve
them. See, for example, Rowe (1970), Bertsch and Tsai
(1975), Ring and Schuck (1980), and Bertsch and Bro-
glia (1994). We have chosen here the equations-of-
motion technique of Rowe (1970), which provides the
most compact formulation. The form is also suggestive
as it resembles the commutator algebra of coupled har-
monic oscillators. Further details about an actual nu-
merical implementation of RPA in nuclei can be found
in the articles of Bertsch (1991), Reinhard (1992b), and
Reinhard and Gambhir (1992) or in the above-
mentioned books. The generalization of the RPA which
includes pairing, i.e., the quasiparticle RPA, has been
much less often used. For recent examples see Engel
et al. (1999), Auerbach et al. (2001), Hagino and Sagawa
(2001), and Matsuo (2001).

One should take into account that the excitation en-
ergies of giant resonances reach the particle continuum.
But most RPA calculations ignore that and discretize the
continuum. There also exist schemes in which the con-
tinuum is treated correctly; see, for example, Shlomo
and Bertsch (1975) and Cavinato et al. (1982).

The RPA calculations are usually very involved due to
the large one-particle/one-hole spaces required. In the
end, one is interested mostly in a few key data such as
the peak position of a giant resonance. Thus there exist
several approaches to simplifying RPA calculations for
delivering just these few key quantities. A first step is a
reduction to a fluid dynamics formulation in terms of
local densities and currents. See, for example, Bertsch
and Stricker (1976), Holzwarth and Eckart (1978), Strin-
gari (1983), and Gleissl et al. (1990). Even simpler and
sufficient for first surveys are sum-rule approaches (for a
review, see Bohigas et al., 1979).

There is an intriguing conceptual problem in connec-
tion with energy functionals. RPA tacitly assumes
requantization of linearized TDHF and this requantiza-
tion generates RPA correlations in the underlying
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ground state; see, for example, Ring and Schuck (1980).
On the other hand, the energy functional was con-
structed to incorporate the correlations already. Recom-
putation of the RPA correlation would mean double
counting them. Moreover, the zero-range nature of the
Skyrme force (and the short range of relativistic mean-
field and Gogny forces) is badly tuned to that task. The
correlation effects become very large and sometimes
even diverge when computed in unlimited configuration
space. Reasonably sized and pertinent correlations for
radii have been obtained in RPA calculations using lim-
ited spaces of one-particle/one-hole states (Reinhard
and Drechsel, 1979; Barranco and Broglia, 1985; Rein-
hard and Friedrich, 1985). The usual practice, however,
is to ignore the RPA correlations (because they are sup-
posed to be contained in the energy functional) and to
consider only RPA excitations.

IV. TECHNICALITIES

A. Representations

The practical solution of the mean-field equations
starts with an appropriate numerical representation of
single-particle wave functions, densities, and fields. Two
different schemes are used: basis expansions and grid
techniques. Basis expansions usually employ harmonic-
oscillator wave functions, for which there are powerful
analytical methods to compute all conceivable matrix el-
ements (Wong, 1970). For a recent detailed example of
an application see Dobaczewski and Dudek (2000). The
advantage of this scheme is that basis states are pre-
sorted according to their approximate energy. This
yields a compact representation. The technique is par-
ticularly advantageous if the nonlocal exchange operator
is taken explicitly into account as is done for the Gogny
force (Girod and Grammaticos, 1983). The disadvantage
is that the oscillator basis is composed of tightly bound
states which asymptotically decrease too rapidly. The ex-
pansion thus becomes very slowly converging if one has
to describe weakly bound states or even continuum
states, as is required for exotic nuclei. It is also very
expensive to accommodate the extreme shapes which
occur during fission. There are attempts to cure these
defects. For example, a transformed oscillator basis can
be tailored to accommodate the proper asymptotic be-
havior of the density (see Stoitsov et al., 1998 for relativ-
istic mean-field methods and Stoitsov et al., 2000 for
Skyrme Hartree-Fock applications). However, this gen-
erates a density-dependent basis.

The alternative to basis expansions are grid tech-
niques in which the wave functions and fields are repre-
sented on a grid in coordinate space. Depending on the
symmetry, this can be a radial 1D, an axial 2D, or a
Cartesian 3D grid. The saturation properties of nuclear
matter allow the use of equidistant grid points, which
are particularly simple to handle. Coordinate-space grids
are well suited for self-consistent mean-field models
which employ local densities. The densities and poten-
tials are given immediately on the grid without the need
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to compute overlap matrix elements. This makes the
coding simple and intuitive. Less simple is the represen-
tation of the kinetic energy. Various approximations can
be chosen here: Fourier representation or finite-
difference formulas at various orders. The Fourier tech-
nique is best suited to Cartesian 3D grids, where the fast
Fourier transformation can be exploited either directly
or via resummation in coordinate space (Baye and
Heenen, 1986). It always yields the best possible ap-
proximation to momentum and the kinetic-energy op-
erator. Finite differences exist at various orders of ap-
proximation. The optimum choice depends on the
dimensionality. Higher orders are more efficient in 3D
(Bonche et al., 1985), while lower orders are preferable
for 1D radial problems. For a discussion see Blum et al.
(1992), and Reinhard (1991) for a detailed 1D Skyrme
Hartree-Fock code. A further alternative for computing
the kinetic energy is a representation using basis splines
(Kegley et al., 1996). This technique is advantageous in
connection with nonequidistant grids and involved
boundary conditions, of which finite elements are a spe-
cial case. For an example in the relativistic mean-field
model see Pöschl, Vretenar, and Ring (1997).

B. Algorithms

The actual solution of self-consistent mean-field equa-
tions can only proceed iteratively. Older schemes solve
the mean-field equations for given potentials by diago-
nalization and update the mean-field potentials accord-
ing to the new densities from the new wave functions.
More efficient are direct iteration schemes. The simplest
scheme is the gradient step downhill in the energy land-
scape of the Hilbert space of the single-particle wave
functions. There are various options to improve the
speed of this scheme: energy-selective step size (equiva-
lent to preconditioning in numerical analysis; Reinhard
and Cusson, 1982; Blum et al., 1992) or the conjugate
gradient step (Egido et al., 1995).

Gradient techniques are not immediately applicable
to the relativistic mean-field models because the solu-
tions would search the minimum energy in the (forbid-
den) Fermi-sea states. A stable iteration can be achieved
by mapping the Dirac equation onto an effective Schrö-
dinger equation for the upper component of the Dirac
wave function (Reinhard, 1989).

The HFB equation can be solved in any of the three
bases introduced in Sec. I.B.2. Most codes proceed in
the quasiparticle basis (see, for example, Dobaczewski
et al., 1984). A scheme well adapted to 3D grid tech-
niques and to the use of different interactions in the
mean-field and pairing channels relies on the use of a
double basis, the Hartree-Fock and the canonical bases
(Gall et al., 1994; Terasaki et al., 1996). An alternative
choice is a basis composed of the natural orbitals, which
is very efficient (Mühlhans et al., 1984; Reinhard et al.,
1997) but requires a careful tuning of the iteration
scheme (Tajima, 2000).

A particular problem is the computation of the long-
range Coulomb potential. The issue is usually attacked
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by solving the Poisson equation with similar iterative
techniques to those mentioned above. Special care has
to be taken in dealing with the long-range part. See, for
example, Maruhn et al. (1976) and Lauritsch and Rein-
hard (1994). In the case of an oscillator expansion the
Coulomb potential can be mapped onto a sum of Gauss-
ian potentials, which is then solved with the standard
techniques of the basis expansion.

Constraints also require special consideration. Con-
straints may drive the system towards an unstable solu-
tion as, for example, in the calculation of a fission bar-
rier where the potential-energy surface has negative
curvature. Such unstable (but physically interesting) re-
gimes can be stabilized by iterative techniques (Cusson,
Reinhard, Strayer, et al., 1985). An alternative is to use a
quadratic constraint (see Sec. I.B.3), which stabilizes any
solution. No problem of that sort exists for cranking
constraints, which still aim at a stable minimum in the
cranked potential landscape. Additionally, constraints
on multipole moments have to be damped at large dis-
tances, as there is always one direction in which the con-
tribution from the constraint to the single-particle po-
tential becomes negative as r→` ; see, for example,
Rutz et al. (1995).

Further considerations must be taken into account for
dynamical mean-field calculations. Various propagation
techniques are used for full TDHF, and a large variety of
solution schemes exist for RPA. We do not discuss them
here because dynamics is not the main topic of this re-
view.

V. PARAMETRIZATIONS

A. Observables

We present in this subsection the most prominent ob-
servables that are closely related to mean-field models,
the bulk properties of finite nuclei, such as energy and
density distribution, and the key features of nuclear mat-
ter. Both are used as phenomenological input to adjust
effective forces, and the basic properties of the models
are discussed in terms of these observables. Observables
for pairing are a bit more involved and will be discussed
separately in Sec. V.B. Other observables will be intro-
duced as necessary in Sec. VI where results are dis-
cussed.

1. Energies

The total binding energy of a nucleus is the most im-
mediate observable in self-consistent mean-field models.
It is naturally provided by the numerical solution of the
mean-field equations, but has to be complemented by
corrections for spurious motion.

The single-particle energies ek are given by diagonal-
ization of the single-particle Hamiltonian ĥ . However,
their interpretation is not trivial. This will be discussed
in Sec. VI.B.1.
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2. Charge form factor and radii

The nuclear charge density is a useful observable for
analyzing nuclear structure. It provides information
about the nuclear shape and is determined by elastic
electron scattering (Friedrich and Vögler, 1982). In or-
der to compute the charge density from mean-field re-
sults, one has to take into account that the nucleons
themselves have an intrinsic electromagnetic structure
(Friar and Negele, 1975). Thus one needs to fold the
proton and neutron densities in with the intrinsic charge
density of the nucleons. We discuss this here in detail for
the case of Skyrme Hartree-Fock methods. Folding be-
comes a simple product in Fourier space, i.e., in terms of
form factors,

Fq~k!5E d3reik"rrq~r!, (104)

where again qP$p ,n%. In fact, the form factor is closer
to experiment than the charge density because it repre-
sents directly in Born approximation the amplitude for
scattering at momentum transfer \k. It depends only on
k5uku for spherical systems, which we shall assume for
what follows. The charge form factor is composed as

Fch~k !5(
q

~FqGE ,q1Fls ,qGM!expS \2k2

8^P̂cm
2 &

D , (105)

where Fls ,q is the form factor of ¹•Jq augmented by a
factor mq /(4m2), with mq being the magnetic moment
of the nucleon. GE ,q is the electric form factor, and GM
the magnetic form factor of the nucleons (assumed to be
equal for both species). The exponential factor takes
into account an unfolding of the spurious vibrations of
the nuclear center of mass in harmonic approxima-
tion (see Sec. III.B.3). The nucleon form factors are
taken from nucleon scattering data. For details see
Appendix B.

Most of the information contained in the form factor
at low momentum can be described by three parameters,
the root-mean-square radius rrms ,

rrms5A2
3

Fch~0 !
lim

k→0

d2

dk2 Fch~k !, (106)

the (first) diffraction radius,

R5
4.493

k0
(1) , (107)

which is determined from the first zero of the form fac-
tor Fch(k0

(1))50, and the surface thickness,

s5
2

km
lnS Fbox~km!

Fch~km! D . (108)

See Friedrich and Vögler (1982) for more details. The
diffraction radius parametrizes the overall diffraction
pattern, which is similar to that of a sphere of radius R .
This is the so-called ‘‘box equivalent’’ radius. The actual
nuclear form factor decreases faster than the box form
factor Fbox ,
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Fbox~k !53
j1~kmR !

kmR
with km55.6/R (109)

due to the finite surface thickness of nuclei, where j1 is
the spherical Bessel function. The Helm model assumes
that the nuclear surface is obtained by folding the box
distribution with a Gaussian, exp(2 1

2q2s2) (Helm, 1956).
It allows us to determine the surface parameter s by
comparing the height of the first maximum of the box
equivalent form factor and of the mean-field result Fch .
The Helm model establishes a fixed relation between
these three key parameters of the nuclear charge distri-
bution: rrms

2 5 3
5 R213s2. Deviations from the model ap-

pear mostly in the outer nuclear surface. This suggests
the introduction of a nuclear halo parameter
A 3

5 R213s22rrms which is found to be a relevant mea-
sure of the outer surface diffuseness (Mizutori et al.,
2000).

The calculation of the charge rms radius from the full
charge form factor is very cumbersome for deformed
nuclei. A simple approximation is provided by Bertozzi
et al. (1972) and Chabanat et al. (1997):

rrms
2 5^r2&p1rp

21
N

Z
rn

21
1
Z

\

mc (
n

vn
2mq ,n~ŝ• ,̂!n ,

(110)

where ^r2&p is the mean-square radius of the point-
proton distribution, and rp

250.74 fm2 and rn
2

520.117 fm2 are the charge mean-square radii of the
free proton and neutron, respectively. The last term
gives the contribution from the spin-orbit charge distri-
bution, where mq ,n is the magneton moment for the
nucleon species of a given single-particle state n . Many
applications simplify this further by considering the first
two terms only and then using rp

250.64 fm2.
A related quantity that is directly accessible by experi-

ment and sometimes used in model fitting is the isotopic
shift of charge mean-square radii drms(Z)5rrms

2 (Z)
2rrms

2 (Z0), i.e., the change of the mean-square radius
relative to a reference nucleus with charge number Z0 .

The charge distribution is mostly sensitive to the pro-
ton distribution. Useful complementary information is
contained in the neutron distribution which, however, is
not directly accessible in experiment. It couples pre-
dominantly to the strong interaction. Thus all sorts of
medium corrections need to be taken into account
(Batty et al., 1989). One usually ends up with informa-
tion on the neutron mean-square radius ^r2&n . It can be
easily computed theoretically from a given neutron dis-
tribution.

3. Nuclear matter

a. Infinite nuclear matter

Homogeneous infinite nuclear matter (INM) is a
widely used model system for studying and characteriz-
ing effective interactions. It describes the leading contri-
butions (volume terms) to nuclear properties, which are
considered as useful pseudo-observables sometimes
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used to adjust the parameters of effective interactions.
The actual values of INM properties are given in Table
III below. Most studies deal with the simplest case of
symmetric INM where all densities of neutrons and pro-
tons with spin up and down are the same, i.e., r15s0
5s150. The isoscalar density r0 is then the only remain-
ing degree of freedom. More general systems are asym-
metric (r1Þ0), polarized (s0Þ0), and spin-isospin po-
larized (s1Þ0) matter. The isotropy of polarized nuclear
matter is broken, which leads to an axially deformed
Fermi surface (Haensel and Da̧browski, 1975; Da̧b-
rowski and Haensel, 1976). A very detailed discussion of
asymmetric INM in the Skyrme Hartree-Fock method is
given by Chabanat et al. (1997). Infinite nuclear matter
properties at large asymmetry are key ingredients for
the description of neutron stars. See, for example,
Haensel et al. (1989) and Chabanat et al. (1997) for a
discussion at the mean-field level. A stability criterion
for spin-isospin polarized neutron matter, derived by
Kutschera and Wójcik (1994), has even been used by
Chabanat et al. (1997, 1998) to constrain the parameters
of the SLyx forces. Most works on polarized INM rely
on the interpretation of the Skyrme functional as the
Hartree-Fock expectation value of a two-body force.
The more general energy-functional approach permits
us to relax many dependencies among the properties of
polarized and unpolarized INM; see Bender, Dobacze-
wski, et al. (2002).

The energy per particle E/A5E/r0 , often called the
equation of state, has its minimum (E/A)eq
'216 MeV at saturation density r0,eq'0.16 fm23. Fur-
ther INM properties are connected to basic features of
the excitations of finite nuclei. The incompressibility at
the saturation point K` is given by

K`59 r0
2 d2

dr0
2

E
r0

U
r0,eq

. (111)

It corresponds to the curvature at the minimum and is
related to breathing modes like the giant monopole
resonance (Blaizot, 1980). From the theoretical side, K`

is determined by the density dependence of the effective
interaction (Blaizot et al., 1995; Friedrich and Reinhard,
1986; Chabanat et al., 1997, 1998). An analysis of the
breathing mode data has to take into account the inter-
play of the incompressibility with the surface and sym-
metry energy (Yoshida et al., 1998) and with anharmo-
nicity effects (Stocker and Chossy, 1998); see also
Blaizot et al. (1995).

The symmetry energy coefficient is related to the iso-
vector curvature at the saturation point by

asym5
1
2

d2

dr1
2

E
r0

U
r0,eq

. (112)

Isoscalar and isovector effective masses are calculated
from the single-particle energies «k in INM as m* (k)
5k/(]k«). This yields, for nonrelativistic models,

\2

2mT*
5

\2

2m
1

d

dtT

E
r0

U
r0,eq

, (113)
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and for relativistic models

mT* 5A~m1ST!21\2k2, (114)

with ST denoting the scalar mean field. Note that m*
still depends on k in relativistic models. One usually re-
fers to the value at k50, while physically more relevant
is the value at the Fermi surface kF . Skyrme Hartree-
Fock mass fits require isoscalar effective masses around
m0* /m'1, while giant isoscalar quadrupole resonances
call for m0* /m'0.8 (Bohigas et al., 1979; Chabanat et al.,
1997). This conflict cannot be resolved within the stan-
dard energy functionals, but may possibly be resolved
with the help of generalized density dependencies
(Farine et al., 1997, 2001).

The isovector effective mass is usually expressed as
the enhancement factor of the Thomas-Reiche-Kuhn
sum rule (Ring and Schuck, 1980), which reads

kTRK5
m

m0*
1

1
2

d

dr1

m

m* U
r0,eq

215
m

m1*
21, (115)

where mT* are isoscalar and isovector effective masses in
symmetric INM. This equation relates m1* /m to the iso-
vector dipole giant resonance, but of course it also plays
a role for ground-state properties. See the recent at-
tempt by Pearson and Goriely (2001) to extract its value
from a Skyrme Hartree-Fock mass fit. It has to be
stressed that the meaning of the effective mass is slightly
different in relativistic and nonrelativistic models (Ma-
haux et al., 1985; Jaminon and Mahaux, 1990). The ef-
fective mass in the Dirac equation depends on momen-
tum and cannot be simply identified with the
nonrelativistic effective mass.

The present form of the effective interaction some-
times leads to strong dependencies between nuclear
matter properties. See, for example, the analysis of the
correlation between r0,eq and K` by Tondeur et al.
(1986) and of correlations between K` , m0* , and the
exponent a of the density dependence of the Skyrme
interaction (Chabanat et al., 1997). This and other defi-
ciencies may be cured by generalized density dependen-
cies, for which, however, conclusive answers have yet to
come.

b. Semi-infinite nuclear matter

Surface properties can be studied in semi-infinite
nuclear matter (SINM). This is not as trivial to compute
as INM, because the density profile of the surface de-
pends on the effective interaction. There are a few fully
self-consistent calculations. See, for example that of
Köhler (1976) using Skyrme interactions, Cote and Pear-
son (1978) for the Gogny force, and Von-Eiff, Stocker,
et al. (1994) for the relativistic mean-field model. Most
calculations invoke the simpler extended Thomas-Fermi
approximation (Brack et al., 1985), in which a semiclas-
sical approximation for the energy is minimized with re-
spect to a parametrization of the density profile. See
Von-Eiff, Pearson, et al. (1994) for relativistic mean-field
studies, and Centelles et al. (1998) for a comparison of
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Skyrme Hartree-Fock and relativistic mean-field models
for asymmetric SINM. Important SINM properties are
the surface and surface asymmetry coefficients and the
surface thickness. Note that values obtained from the
extended Thomas-Fermi method differ significantly
from those calculated self-consistently. While the latter
quantify the actual mean-field models, the former are
safer to compare with values from mic-mac models.

c. Relation to liquid-drop models

Nuclear matter properties are usually identified with
the coefficients of the liquid-drop model, although the
connection is not trivial (see, for example, Satpathy
et al., 1999). In its simplest form, the binding energy is
given as

ELDM5avol~11kvolI
2!A1asurf~11ksurfI

2!A2/3

1ECoul1EPair1¯ . (116)

Refinements to the droplet model also take compress-
ibility effects into account (Myers and Swiatecki, 1974;
Myers, 1977). Modern versions include many correc-
tions, such as finite-range effects on the surface term
(Möller et al., 1995). Often one identifies

avol5~E/A !eq , asym5avolkvol , (117)

although a more consistent comparison with self-
consistent models also requires droplet corrections to
Eq. (116).

4. Stability

The variational principle guarantees that solution of
an unconstrained mean-field calculation is an extremum
for given symmetries, but it still might be a saddle point.
The stability of a calculated state has to be checked a
posteriori. This can be done by looking at the RPA ex-
citations. A mean-field state is unstable as soon as one
finds an imaginary excitation energy.

Sometimes such instabilities are even properties of the
parametrization of the SCMF interactions. A first and
simple check can be made for nuclear matter in terms of
the Landau-Migdal parameters, which characterize the
strength of the residual interaction for the basic excita-
tion channels of INM. See Henning and Manakos (1987)
for the relativistic mean-field method, Ventura et al.
(1994) for Gogny forces, Bäckman et al. (1975), Chang
(1975), Krewald et al. (1977), Liu et al. (1991), Van Giai
and Sagawa (1981), and Waroquier et al. (1983) for two-
body Skyrme forces, Eq. (56), and Bender, Dobac-
zewski, et al., (2002) for Skyrme energy-density func-
tionals, Eqs. (48) and (49). These two variants of the
Skyrme Hartree-Fock method differ in the expressions
for the Landau parameters in the spin channels. Stability
in saturated INM, however, does not guarantee stability
in finite nuclei, since their densities vary from center to
surface. They also explore a large range of N/Z asym-
metries.
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5. Some words of caution

Effective energy-density functionals are designed for
a pertinent description of the binding energy of a many-
body system. The basic theorems of density-functional
theory also state that the local density distribution is
well described if one uses the ‘‘exact’’ energy functional
(Hohenberg and Kohn, 1964; Kohn and Sham, 1965;
Kohn, 1999). In practice, however, energy functionals
are deduced at best by an additional local-density ap-
proximation. Thus the range of validity for the various
observables is a point of concern. We shall sketch here
briefly the known limitations and necessary corrections.

The binding energy should be the safest observable in
density-functional theory. But the nuclear mean field
breaks basic symmetries (translation, occasionally rota-
tion, and particle number). These need to be restored
(see Sec. III), and that creates corrections to the energy
as well as to other observables. These are the minimum
correlation effects which need to be taken into account.
For spherical calculations the center-of-mass correction
suffices (see Sec. III.B.3). Deformed calculations addi-
tionally call for angular momentum projection (see Sec.
III.B.2), which, however, are only consistent if accompa-
nied by the corresponding low-energy vibrational cor-
rections (Reinhard, 1978).

The gross properties of the local density distribution
r(r) are usually reliable observables, while finer proper-
ties are not. The form factor F(k), which is the Fourier
transform of r(r), allows a clear distinction. It is reliable
for k below the Fermi momentum and should be modi-
fied by short-range correlation effects for larger k. This
is hinted at by systematic deviations between mean-field
models and experiment at large k (Reinhard et al., 1984)
and corroborated by a systematic test of the local-
density approximation (Reinhard, 1992a). Even so, all
corrections to the energy have to be applied similarly to
the density. See the example of a center-of-mass correc-
tion later on.

Single-particle energies do not belong to the guaran-
teed observables of density-functional theory, although
they are often looked at in electronic systems as well as
in nuclei. They are known to be plagued by a self-
interaction error which can be removed by a self-
interaction correction (Perdew and Zunger, 1981). A
thorough discussion of self-interaction corrections in nu-
clei has yet to be done. Besides this open question, one
has to think of the appropriate experimental approach.
The analysis of single-particle energies from the spectra
of adjacent odd nuclei is discussed in Sec. VI.B.1. More
direct access may be given by fast separation processes,
such as (e ,e8) or (d ,3He) reactions, combined with a
careful analysis of final-state interactions. See, for ex-
ample, Grabmayr et al. (1994).

Excitaton energies go beyond the safe grounds of con-
ventional density-functional theory. But modern devel-
opments of a time-dependent version suggest the opti-
mistic view that these can be reliable observables. This
view is supported by successes in the mean-field descrip-
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tion of nuclear giant resonances, surface vibrations, and
fission, as will be discussed in Sec. VI.

B. The pairing gap and odd-even staggering of masses

The most prominent observable for like-particle, T
51, pairing correlations on the mean-field level is the
odd-even staggering of nuclear masses, often identified
with the pairing gap appearing in schematic models
(Ring and Schuck, 1980). Reality is more complicated.
The structure of odd nuclei differs from that of even
nuclei in several respects. The unpaired nucleon’s con-
tribution to all densities is not just half the contribution
of a pair; it also breaks intrinsic time-reversal invariance.
Owing to self-consistency, all other nucleons rearrange
themselves to these changes, which adds a contribution
from the mean field to odd-even staggering; see, for ex-
ample, Rutz et al. (1999), Duguet et al. (2002a), and Sec.
VI.B, where this is discussed in the context of single-
particle energies.

There are several measures for odd-even staggering
which are proposed in the literature. The only ones ac-
cessible by experiment and calculation are three-, four-,
and five-point mass-difference formulas Dq

(n) , n53,4,5
(Jensen and Miranda, 1986; Madland and Nix, 1988).
Phenomenological fits to data are reviewed by Möller
and Nix (1992).

Several studies have tried to disentangle the mean-
field and pairing contributions to the Dq

(n) . While this
can be done in simple model systems (Dobaczewski,
Magierski, et al., 2001), it is impossible in full unre-
stricted HFB calculations (Duguet et al., 2002b). This
has consequences for the fit of pairing interactions. In
most cases the unavoidable complications from the
mean field in odd nuclei are simply neglected when ad-
justing the pairing strength. As they usually decrease the
odd-even staggering, the pairing strength thus obtained
will also be too small. This problem was examined by
Rutz et al. (1999) in the framework of the relativistic
mean-field model looking at global trends, and by Xu
et al. (1999) with emphasis on rotational bands. The situ-
ation is complicated by the fact that the mean-field con-
tribution is dominated by the time-odd part, which is not
completely fixed in the Skyrme Hartree-Fock method
and which was never carefully explored for Gogny or
relativistic mean-field models. It can also be expected
that correlations beyond the mean-field level, e.g., those
discussed in Sec. VI.F.2, are different for even and odd
nuclei, which again will affect the odd-even staggering of
all observables.

Incorporating these complications in an effective
manner, the Gogny force D1S was adjusted with a sim-
plified description for odd nuclei but artificially reducing
experimental pairing gaps by 300 keV. Another line is
followed in the Hartree-Fock mass formula by Tondeur
et al. (2000), which also employs a simplified description
of odd nuclei and puts the remaining differences in the
structure of even and odd nuclei into different pairing
strengths for the two types of nuclei.
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Note that all n-point formulas are peaked at magic
numbers, just at the point where pairing breaks down.
This spurious peak is caused by the discontinuity of the
mean-field energy at shell closures (Bender, Rutz, et al.,
2000b; see also the extensive discussion of this effect for
deformed nuclei on the Hartree-Fock level by Satuła
et al., 1998).

To compare theoretical models, simpler measures for
pairing correlations can be used, which avoid the calcu-
lation of several nuclei. One criterion is the lowest qua-
siparticle energy in an odd nucleus. When using this, the
HFB ground states of the fully paired odd-A nucleus
should be used as reference state (Duguet et al., 2002a).
A measure that is also defined for even-even nuclei is
the average matrix element of the pair potential (Do-
baczewski et al., 1984), which reads in the canonical ba-
sis ^v2D&q5(kvk

2Dk /(kvk
2 . This puts too much weight

on deeply bound states. An average that is more sensi-
tive to states at the Fermi surface is provided by
Sauvage-Letessier et al. (1981):

^uvD&q5

(
k

ukvkDk

(
k

ukvk

. (118)

The quantities uk, vk are the BCS occupation ampli-
tudes, see Sect. I.B.4. See Bender, Rutz, et al. (2000b)
and Duguet et al. (2002b) for a more detailed discussion.
Pairing correlations also give significant corrections to
other observables. These can be used to determine the
parameters of more complicated pairing interactions, as
was done by Fayens et al. (1994, 2000; Fayens and
Zawischa, 1996) using isotopic shifts of mean-square
charge radii. There is also the possibility of avoiding the
calculation of odd-mass nuclei completely and adjusting
the pairing functional solely to observables for even-
even nuclei, e.g., to the dynamical moment of inertia J2 ,
as done by Duguet et al. (2001).

Measures for T50 pairing are less well understood.
The Wigner energy in nuclei close to the N5Z line is
usually associated with T50 pair correlations (Satuła
and Wyss, 1997), but there is still a lot of controversy
about other unique signatures (Satuła et al., 1997;
Terasaki et al., 1998; Satuła and Wyss, 2001a, 2001b). As
T50, pairing is neglected in all fits of mean-field models,
its contribution to fitted nuclei with N5Z like 16O and
40Ca is missing. This might cause some incorrect trends
in the effective forces as the T50 pairing effect has to
be simulated by other terms in the effective interaction.
To avoid this problem a correction for the Wigner en-
ergy as used in mic-mac models was introduced in the
Hartree-Fock and HFB mass formulas by Tondeur et al.
(2000) and Samyn et al. (2002).

C. Fit strategies

As argued above, the adjustement of nuclear effective
energy functionals relies on fits to phenomenological in-
put. There is a large variety of conceivable choices for
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this input. As a general trend, early adjustments used
less, and more basic, data, while more recent parametri-
zations include larger sets of information on finite nuclei
and employ systematic least-squares fits to cope with the
amount of data. Table I aims to summarize the phenom-
enological input for a selection of the most widely used
forces at present, including the key references for each
strategy. The case is a bit more involved for the family
‘‘SkI1-5, NL-Z2.’’ The underlying fitting strategy was ini-
tiated for the force Zs (Friedrich and Reinhard, 1986)
and used for NL1 (Reinhard, Rufa, et al., 1986), as well
as NL-Z (Rufa et al., 1988) and PL-40 (Reinhard, 1988).
More data have been taken into account for the later fits
of SkI1-5 (Reinhard and Flocard, 1995) and NL-Z2
(Bender, Rutz, et al., 1999). This larger set is shown in
the table.

The table is self-explanatory. Thus we shall skip a
lengthy discussion of the differences in bias. For com-
pleteness, we mention here a few further families of
forces and their fitting strategies. Amongst the earlier
adjustments, there also exists a whole set of SkT1-9
forces developed by Tondeur et al. (1984), in which all
forces share a common set of basic nuclear properties
(E and rrms), and a systematic variation of additional
features has been added on top. A more recent alterna-
tive is the SkX force (Brown, 1998). The fits here again
include bulk properties (E and rrms) and, as a particular
feature, detailed information on single-particle levels in
various nuclei. The bias on single-particle energies is re-
lated to the aim of this force, namely, to provide self-
consistent input for shell-model calculations. Very re-
cently a new family of forces has shown up which relies
on fits of binding energies for a huge selection of nuclei,
including deformed ones. The aim is to develop Skyrme
functionals which describe energies with the same high
precision as the systematics fitted within mic-mac mod-
els. The family of forces MSk1-MSk7 uses BCS pairing
in the fits (Tondeur et al., 2000; Goriely et al., 2001),
while the most recent BSk1 employs HFB methods
throughout (Samyn et al., 2002). These forces demon-
strate that it is very possible to reproduce binding ener-
gies with a root-mean square error of less than 0.8 MeV.
However, one has to be aware that these forces may not
describe other properties of nuclei so well.

The fitting strategies as listed in Table I show the bias
on phenomenological data which went into the various
forces. There are subtle differences at an even more ba-
sic level. These concern the various options which are
open in Skyrme Hartree-Fock and relativistic mean-field
models: choice of center-of-mass correction, choice of
spin-orbit model, treatment of the Coulomb interaction,
and the nucleon mass used in the calculations. Most of
these options have been discussed in previous sections.
Table II provides a summary for the selection of forces
used in this review. See the text of the previous sections
for discussion of other forces. Last but not least, one has
to be aware of slightly different values for the Coulomb
strength e2. A traditional choice is e251.44 MeV fm.
Some authors use more digits.
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TABLE I. Compilation of phenomenological input for various parametrizations: E5binding energy,
r5charge rms radius, R5charge diffraction radius, s5charge surface thickness, dr25isotopic shift of
charge m.s. radius, rn5neutron rms radius, INM5infinite nuclear matter properties as defined in Sec.
V.A. The basic references are given in the heading lines together with the names of the corresponding
forces.

Gogny D1, D1S (Dechargé and Gogny, 1980)

E&r : 16O, 90Zr

,•s 16O(1pn,1pp)

INM equilibrium symmetric INM

Pairing even-odd E in Sn isotopes (quenched)

SI-SVI (Beiner et al., 1975)

E : 16O, 40Ca, 48Ca, 56Ni, 90Zr, 140Ce, 208Pb

r : 16O, 40Ca, 48Ca, 56Ni, 90Zr, 140Ce, 208Pb

,•s 16O(1pn,1pp)

Additionally for SkM (Krivine et al., 1980)

INM K` , asym (↔ resonances in 208Pb)

Additionally for SkM* (Bartel et al., 1982)

INM asurf (↔ fission barriers)

SkP (Dobaczewski et al., 1984)

E : 16O, 208Pb

,•s differences E

INM (E/A)0,eq , r0,eq , K` , asym , kTRK , m0* /m51,
asym(r/2)

Pairing average gaps

SLy1-10 (Chabanat et al., 1998)

%E : 16O, 40Ca, 48Ca, 56Ni, 78Ni, 132Sn, 208Pb

%r : 16O, 40Ca, 48Ca, 56Ni, 208Pb

,•s 208Pb(3pn)

INM (E/A)0,eq , r0,eq , K` , asym , kTRK , EoSneut

SkI1-5, NL-Z2, (NL-Z, PL-40, NL1, Zs)

%E : 16O, 40Ca, 48Ca, 56Ni, 58Ni, 88Sr, 90Zr, 112Sn,
120Sn, 124Sn, 132Sn, 144Gd, 208Pb, 214Pb

%R : 16O, 40Ca, 48Ca, 58Ni, 88Sr, 90Zr, 112Sn,
120Sn, 124Sn, 208Pb

%s : 16O, 40Ca, 48Ca, 90Zr, 208Pb

,•s 16O(1pn,1pp) (only SHF)

dr2 214Pb-208Pb (only SHF)

INM kTRK (only SHF)

NL3 (Lalazissis et al., 1997)

E : 16O, 40Ca, 48Ca, 58Ni, 90Zr, 116Sn, 124Sn,
132Sn, 208Pb, 214Pb

r : 16O, 40Ca, 48Ca, 58Ni, 90Zr, 116Sn, 124Sn,
208Pb, 214Pb

rn : 40Ca, 48Ca, 58Ni, 90Zr, 116Sn, 124Sn, 208Pb

INM (E/A)0,eq , r0,eq , K` , asym
., Vol. 75, No. 1, January 2003
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TABLE II. The options used in the definition of the various forces from Table I (as well as the
MSk1-7 and BSk1 family). For c.m. correction options see Sec. III.B.3. A d indicates that the correc-
tion is included variationally. The asterisk in the case of MSk1-7 & BSk1 is a reminder that a
correction for nondiagonal terms has been included; see Sec. III.B.3. For the Coulomb energies see
Sec. II.A.5. rp , proton density; rC , charge density; LDA indicates that the Slater approximation to
exchange was used. There are two options for the spin-orbit field. The first column indicates whether
the JT

2 term [see Eq. (48)] is taken into account. The second column indicates whether the isovector
term of the spin-orbit force is considered as a separate degree of freedom. Conventional Skyrme
forces are identified by 3C1

¹J5C0
¹J in Eq. (48). The entity ‘‘var’’ means that various options (‘‘yes’’

and ‘‘no’’) have been used within the family of forces. Numerical values are given in nuclear units,
energies in MeV, and lengths in fm.

Force
\2

2m Ecm

Coulomb ,•s

ECoul
(dir) ECoul

(ex) JT
2 T51

D1,D1S d
^P̂cm

2 &

2mA
rp exact – no

SI, . . . ,SkM* 20.73
d
K(

i
p̂i

2L
2mA

rp LDA no no

SkP 20.73
d
K(

i
p̂i

2L
2mA

rp LDA yes no

SLy1-10 20.73553 var rp LDA var var

SkI1-5 20.7525 ^P̂cm
2 &

2mA
rp LDA no var

MSk1 . . . BSk1
20.7505
20.7219 d

K(
i

p̂ i
2L

2mA
,*

rC LDA yes no

Force mc2 Ecm ECoul
(dir) ECoul

(ex)

NL1 939.0
30.75

A1/3
rp none

NL-Z, NL-Z2 938.9 ^P̂cm
2 &

2mA
rp none

NL3 939.0
30.75

A1/3
rp none
D. Global results

1. Nuclear matter properties

Key features of symmetric nuclear matter are summa-
rized in Table III. A few comments are in order. The
relativistic mean-field method tends to larger volume en-
ergy coefficients avol than the nonrelativistic models.
Even more pronounced is the difference in saturation
density r0,eq . The relativistic mean-field method delivers
much lower values than Skyrme Hartree-Fock models
(the SIII interaction does not count here, as it does not
perform well for radii.) Both discrepancies are larger
than the estimated extrapolation errors from least-
squares fits. We encounter here a deep-rooted difference
between the two models which has yet to be understood.
There are also large and systematic differences concern-
ing the effective mass m0* /m and the sum-rule enhance-
., Vol. 75, No. 1, January 2003
ment factor kTRK . The relativistic mean-field model uses
very small m0* /m and large kTRK . It should be remem-
bered, however, that the effective mass from this model
has a different meaning from that in nonrelativistic mod-
els (see Sec. V.A.3).

The isoscalar effective mass is directly related to the
giant quadrupole resonance, and m0* /m'0.8 is required
for a proper reproduction (see Sec. VI.F.3). The sum-
rule enhancement is not so easily fixed. It is related to
the giant dipole resonance. But the relativistic mean-
field model with large kTRK and also large ksym yields
similar resonance energies to the Skyrme Hartree-Fock,
with both quantities being smaller (see Sec. VI.F.3). It is
to be noted that the features of the (finite-range) rela-
tivistic mean-field model also persist for the point-
coupling model PC-F1 (Bürvenich, Madland, et al.,
2002). The differences are thus due to relativistic kine-
matics and not due to the finite range of the interaction.
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TABLE III. Nuclear matter properties according to the liquid-drop model formula, Eq. (116): r0,eq ,
saturation density; K` , incompressibility modulus; m0* /m , isoscalar effective mass; kTRK , sum-rule
enhancement factor. The second line for the relativistic mean-field forces shows m0* /m and kTRK at
the Fermi surface kF rather than at k50. Not all values are predictions of the forces as some infinite
nuclear matter properties might have been constrained during the fit.

Force
avol

(MeV) kvol

asurf
(MeV) ksurf

r0,eq
(fm23) K` m0* /m kTRK

SIII 215.93 1.77 17.0 3.22 0.145 356 0.76 0.53
SkM* 215.86 1.89 17.6 2.01 0.161 218 0.79 0.54
SkT6 216.07 1.86 18.1 2.61 0.161 237 1.00 0.00
SkP 216.03 1.87 18.0 2.74 0.163 202 1.00 0.35
SLy6 215.92 2.01 17.4 1.55 0.159 230 0.69 0.25
SkI4 215.92 1.85 17.3 1.45 0.160 248 0.65 0.25
BSk1 215.80 1.76 16.7 1.45 0.157 231 1.05 20.05
D1S 216.02 – 19.0 – 0.160 209 0.67 –
NL3 216.24 2.30 18.5 1.39 0.148 272 0.59 0.68
– – – – – – – 0.65 0.53
NL-Z2 216.07 2.43 17.7 1.34 0.151 172 0.58 0.72
– – – – – – – 0.64 0.55
PC-F1 216.17 2.34 – – 0.151 270 0.61 –
– – – – – – – 0.67 –
The differences in the surface energy coefficient asurf
look small but make a crucial difference for the shape of
deformation potential-energy surfaces. A smaller asurf
tends to allow shape transitions more easily. There are
large differences in the incompressibility modulus K` .
This is well known and much discussed. Experimental
access is provided by the monopole resonance (see Sec.
VI.F.3).

Pure neutron matter constitutes the extreme end of
isotopic trends and is relevant for astrophysical applica-
tions (Pethick and Ravenhall, 1995). Predictions for the
equation of state of neutron matter are compared in Fig.
2. There is a broad span of predictions from Skyrme
interactions. The data are simply not very well fixed by
finite-nuclei information. But the SLy6 interaction dem-
onstrates that neutron data can easily be accommodated

FIG. 2. Energy per particle in pure neutron matter (at zero
temperature) calculated with the effective interactions as indi-
cated: Filled diamonds connected by a thin solid line denote
results from a variational many-body calculation (Friedmann
and Pandharipande, 1981) which are widely used as reference
data for neutron matter.
., Vol. 75, No. 1, January 2003
by Skyrme forces (Chabanat et al., 1997). The situation
is different for the relativistic mean-field interactions.
The shape of the curve is quite different from those of
the Skyrme Hartree-Fock forces and from the Fried-
mann and Pandharipande results. There is no way to fit
these neutron matter pseudodata with standard relativ-
istic mean-field functionals. Extensions of the models
are needed, e.g., nonlinearities of the vector fields
(Oyamatsu et al., 1998) or density-dependent coupling
constants (Typel and Wolter, 1999).

2. Average quality of bulk observables

As outlined in Sec. V.C, the various parametrizations
of the models have been adjusted, often to very different
sets of experimental data. Even if it does not do justice
to all parametrizations, it is instructive to compare them
with respect to a common quality measure. Table IV
shows the relative rms errors on the binding energies
and the three parameters describing the charge form
factor (see Sec. V.A.2), computed for the set of data
used to adjust the Skyrme interactions SkI1-6 and the
relativistic mean-field force NL-Z2 (see Table I). All pa-
rametrizations reproduce the binding energies well. Sys-
tematic differences appear for the charge form factor.
As expected, those data which are explicitly fitted are
described better. This suggests that mean-field interac-
tions have enough versatility to describe charge form
factors, but their predictions are not completely con-
strained by the other ground-state data. There is a sys-
tematic difference between Skyrme interactions and
relativistic mean-field forces. Within the standard rela-
tivistic mean-field model (represented here by the NL3
and NL-Z2 parametrizations) all three key quantities of
the charge form factor are not simultaneously well de-
scribed. This seems to be a deficiency of the current
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standard finite-range model. The relativistic point-
coupling model PC-F1 (Bürvenich, Madland, et al.,
2002) performs as well as the nonrelativistic Skyrme in-
teractions in that respect.

VI. APPLICATIONS

We shall now compare results obtained with the vari-
ous models presented here for a broad selection of ob-
servables. We have chosen a few representative param-
etrizations for each model, i.e., the Skyrme interactions
SLy4 or SLy6 (Chabanat et al., 1998), the Skyrme inter-
action with generalized spin-orbit interaction SkI3
(Reinhard and Flocard, 1995), the Skyrme-HFB mass fit
BSk1 (Samyn et al., 2002), the Gogny force D1S (Berger
et al., 1984), and the relativistic mean-field parametriza-
tions NL3 (Lalazissis et al., 1997) and NL-Z2 (Bender,
Rutz, et al., 1999). We omit a comparison of the various
choices for pairing models and forces, but give refer-
ences wherever it is known that results are sensitive to
details of pairing.

A. Binding energies

A detailed look at the reproduction of binding ener-
gies is given in Fig. 3. The performance is very good for
the fitted nuclei (see Table I), setting a typical error mar-
gin of about 62 MeV. The force BSk1 with its extreme

TABLE IV. Relative error dO5(Ocalc2Oexpt)/Oexpt calculated
for dE , the experimental binding energy; dR , charge diffrac-
tion radius; ds, charge surface thickness; and dr , charge rms
radius in %. The experimental data included are those taken
from the fits of the SkI1-5 and NL-Z2 interactions (see Table I)
Numbers in italics indicate data that were also included in the
force fitting, while numbers in roman type show ‘‘predictions.’’

Force dE dR ds dr

SIII 0.38 2.84 4.8 1.20
SkM* 0.38 0.36 4.9 0.34
SLy6 0.24 0.69 5.3 0.44
SkI4 0.33 0.44 1.8 0.64
MSk7 0.27 1.12 2.5 0.57
NL-Z2 0.22 0.92 1.8 1.18
NL3 0.34 0.88 5.5 0.85
PC-F1 0.27 0.48 1.4 0.50
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bias on energies performs visibly better than all others
here. The errors for nonfitted nuclei usually also stay
within the typical error bands. SkI3 is sometimes an ex-
ception. The reason is that this force produces deformed
nuclei more easily than the other forces and that we
have compared only spherical calculations in this figure.
Another feature is noteworthy: the errors are not dis-
tributed statistically but show a pronounced trend to un-
derbinding in the midshell regions. This is either an ef-
fect of underestimated pairing interaction or of missing
correlation energy. Note that trends visible in Fig. 3 can-
not be trivially related to the nuclear matter properties
that enter the liquid-drop modal formula (116). The
problem is that binding energies are overlaid with strong
shell fluctuations. The comparison becomes more in-
structive if one subtracts the shell correction energy, Eq.
(36), before looking for trends, as was done by Kleban
et al. (2002) for the Gogny force. Complete mass tables
have been published by Goriely et al. (2001) for the
Skyrme interaction MSk7 and Lalazissis, Raman, and
Ring (1999) for the relativistic mean-field force NL3.
For the recent mass fit MSk7, the rms error of 0.738
MeV for all currently known binding energies reaches
nearly the quality of the best current mic-mac models.
This value is quite close to the lower limit for the rms
error in a mean-field approach estimated by Bohigas
and Leboeuf (2002).

Figure 4 extends the comparison to the available su-
perheavy elements. It is gratifying to see that the ex-
trapolations work very well for the selection of (recent)
forces shown here. A systematic difference between
relativistic mean-field and Skyrme Hartree-Fock interac-
tions develops where the latter tend to underbinding.
This is probably related to the significant binding differ-
ences seen in Table III. When the binding is plotted ver-
sus mass number A , one obtains flat curves for all
Skyrme Hartree-Fock forces, while there is a small but
visible slope for the relativistic mean-field forces that
points to an unresolved isoscalar trend. When plotted
versus the relative neutron excess I , all forces (perhaps
with the exception of BSk1) show slopes that point to
unresolved trends in the isovector channel. This is true
even for modern forces like NL3 or SLy6 fitted with bias
on good isovector properties. However, one has to be
careful with that interpretation since the range of known
masses in I is rather small, and wrong trends in the
‘‘macroscopic part’’ of the models interfere with local
FIG. 3. Error on the total bind-
ing energy for the isotopic
chains and forces indicated.
Positive DE denote under-
bound nuclei with respect to
the experiment; negative DE
correspond to overbound nu-
clei. Results were obtained
from spherical mean-field cal-
culations.
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kinks of the shell structure, as found in Fig. 3 around all
shell closures.

A magnifying glass is provided by energy differences,
such as the two-neutron separation energy

S2n~Z ,N !5E~Z ,N !2E~Z ,N22 !. (119)

Figure 5 shows the evolution of S2n along the chain of
Sn isotopes. All forces agree nicely with data in the re-
gime of stable nuclei. Significant differences develop

FIG. 4. Error on the binding energy DE for the heaviest nuclei
where the mass is known. To separate trends in the isoscalar
and isovector channels of the effective interactions, DE is plot-
ted in the upper panel against total mass number A5N1Z for
chains of nuclei with the same neutorn excess I5N2Z , and
vice versa in the lower panel. The calculations include quadru-
pole axial deformations. Calculations are taken from Bender
(2001), Bürvenich et al. (1998), and Samyn et al. (2002).

FIG. 5. Two-neutron separation energy S2n for the chain of tin
isotopes. The inset on the upper right shows results for N
<82.
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from 132Sn on. One reason for this is that the jump in the
S2n at the shell closure is predicted differently. This jump
is a typical shell effect, and the results indicate that the
various forces, although similar in bulk properties, have
different detailed shell structure. This can also be seen
from the small jumps following for larger N . They are
predicted at different N and with different amplitudes.
One would have expected that the trends in long isoto-
pic chains would reflect the isovector properties of the
effective interactions, e.g., asym as given in Table III. Fig-
ure 5 demonstrates that these are overlaid by shell struc-
ture. More direct access to isovector forces is provided
by the neutron skin (see Sec. VI.C.2).

B. Shell structure

Global trends of nuclear observables are relatively
well described by the analogy between nuclei and drop-
lets. However, shell effects are crucial for almost all ob-
servables. For example, the existence of superheavy nu-
clei relies only on shell effects. In this section, we discuss
those observables most directly related to shell struc-
ture, namely, the nuclear level scheme and shell closures.

1. Single-particle energies

Experimental information on single-particle energies
of even-even nuclei is drawn from the single-nucleon
removal energies into or out of the low-lying excited
states of adjacent odd-A nuclei. Identification of an even
nucleus with calculated single-particle energies works
only if the modifications of the mean fields induced by
the extra nucleon (or hole) are small. Looking at single-
particle spectra around doubly magic nuclei permits us
to limit the modifications on the mean field to polariza-
tion effects. The magnitude of these effects has been
investigated by Rutz et al. (1998) for doubly magic nu-
clei within the relativistic mean-field method. Figure 6
shows the example of proton states in 208Pb. The last
column gives the experimental removal energies relative
to the doubly magic nucleus, i.e., Sp(208Pb)5E(208Pb)
2E(207Tl) for hole states and Sp(209Pb)5E(209Bi)
2E(208Pb) for particle states. The 9/22 single-particle
state corresponds to the ground state of 209Bi and the
1/21 to the 207Tl ground state. All levels above the 9/22

or below the 1/21 state correspond to excited configura-
tions of 209Bi or 207Tl, respectively. The other columns of
Fig. 6 show relativistic mean-field results. The first col-
umn shows the eigenvalues of the single-particle Hamil-
tonian in 208Pb. Columns 2 through 4 are drawn from
one-proton removal energies as in the experimental
data. They correspond to various stages of refinement as
explained in the caption. Each polarization effect con-
tributes in a similar way, while all together build up a
substantial shift of the ‘‘single-particle energies’’ of the
order of 0.5 MeV for 208Pb. The effect is even larger for
lighter nuclei. The direction of the shift will be in oppo-
site for particle and hole states. The 9/22-1/21 gap is
strongly affected by polarization. Single-particle ener-
gies on an absolute scale [as used, for example, in the fits
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of the Skyrme parametrization SkX by Brown (1998)]
are not reliable either. However, the relative energies
amongst the particle states and the hole states, taken
separately, are more robust. Thus information on energy
differences can be taken from the experimental spectra
of odd nuclei and safely compared with differences of
ek . For example, spin-orbit splittings are a robust ob-
servable as long as they do not cross the shell gap. Simi-
lar results were obtained by Bernard and Van Giai
(1980) with a Skyrme interaction using linear response
theory in the particle-core coupling model [see also
Hamamoto (1974) and Mahaux et al. (1985)].

The upper part of Fig. 7 shows neutron spectra for
208Pb obtained with a representative set of interactions.
All forces predict the same ordering of hole levels, in
agreement with data with the exception of the 2 f5/22,
which is generally too low and is predicted differently by
the various interactions. It is known that the average
level density at the Fermi surface scales with the effec-
tive mass as gq(eF,q)'(3/4)Nq 2mq* /(\kF,q)2, where Nq

is the particle number, mq* the effective mass, and kF,q
the Fermi momentum for a given nucleon species. One
can indeed see in Fig. 7 a correlation between m0* /m
(see Table III) and the 9/22-1/21 gap. However, there is
no clear relation to the density of states amongst the
hole or particle states.

The lower part of Fig. 7 shows neutron spectra in the
doubly magic 132Sn. The pattern looks at first glance
very similar to that of 208Pb. All forces predict similar
level orderings, which are, however, in disagreement
with the experimental data. The experimental ground
state of 131Sn has spin 3/21 while all mean-field models,
Skyrme Hartree-Fock, Gogny, and relativistic mean-
field, predict spin 11/22. The origin of this discrepancy is

FIG. 6. Proton spectra of 208Pb calculated with the relativistic
mean-field model and the force PL-40. Column 1 shows the ek

spectrum of the eigenvalues of the mean-field Hamiltonian for
208Pb. Columns 2–4 show the one-proton separation energies
Sp from and to the adjacent nuclei as indicated. Column 2
results from spherical calculations of the odd nuclei, column 3
from axially symmetric deformed calculations with time-
reversal invariance, and column 4 from deformed calculations
allowing for broken time-reversal symmetry. The last column
shows the experimental values calculated from excitation en-
ergies taken from Kinsey et al. (1997) and masses given by
Audi and Wapstra (1995). Data taken from Rutz et al. (1998).
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not clear. It may be related to a peculiarity of the high l
states, which affects their average position or their spin-
orbit splitting.

Moving away from magic shells, the structure of odd
nuclei is also affected by changes in the pairing field due
to the unpaired nucleon and by the breaking of time-
reversal invariance (Duguet et al., 2002a, 2002b). All
these effects have to be taken into account. The impact
of ground-state correlations is discussed in Sec. VI.F.2.

The spectra of superheavy nuclei are particularly sen-
sitive to subtle details of the shell structure. The level
density increases with mass number A , and small differ-
ences between the forces are magnified in this mass re-
gion. Figure 8 shows as an example the proton spectra in
292120. Different parametrizations predict different shell
closures, Z5114, 120, or 126 (see Rutz et al., 1997;
Kruppa et al., 2000). These differences are caused by
changes in the spin-orbit splitting of the 2 f shell and the
development of ‘‘semibubble’’ shapes around 292120 (see
Bender, Rutz, et al., 1999; Dechargé et al., 1999).

The spin-orbit splitting predictions made for stable
nuclei with the same interactions are compared with the
data in Fig. 9. The splittings in 16O are included in the fit
of most Skyrme Hartree-Fock forces and are well repro-
duced. Note, however, that the splittings are not in-
cluded for SLy6 and BSk1 without noticeable loss of
quality. Large differences show up for heavier nuclei.
The relativistic mean-field interactions agree nicely with
the data, which is remarkable in view of the fact that the

FIG. 7. Eigenvalues en of the single-particle Hamiltonian for
neutrons in 208Pb (upper panel) and 132Sn (lower panel) calcu-
lated with the Skyrme forces BSk1, SLy6, and SkI3, the Gogny
force D1S, and the relativistic mean-field forces NL3 and NL-
Z2. Results obtained with the folded Yukawa model (FY) used
in mic-mac models are shown for comparison. Experimental
values as in Fig. 6.
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spin-orbit force needs no adjustment at all in this
method. The Skyrme Hartree-Fock forces show larger
deviations, even for SkI3, which is tailored to map the
isospin mix of the spin-orbit force from the standard
relativistic mean-field model. The reasons for this weak-
ness are still under investigation. At the present stage,
one has to be aware that these uncertainties plague de-
tailed predictions for the level scheme of superheavy el-
ements.

2. Signatures for shell closures

When discussing the stability of shell closures far from
stability, one needs signatures to identify them. The first
indications of shell closures were derived from isotopic
and mass abundances as well as from the number of
stable isotones (Göppert-Mayer, 1948). The findings
could be related to the systematics of binding energies.
Around the stability line, shell closures are associated
with a jump in nucleon separation energies (see Fig. 5),
which reflects the large change in the Fermi energy
when crossing the gap in the single-particle spectrum at
a magic number (see Sec. VI.B.1). This suggests that a

FIG. 8. Proton spectra of 292120172 at spherical shape. The
numbers in circles indicate the (magic) proton numbers corre-
sponding to the gap. Data taken from Bender et al. (1999).

FIG. 9. The relative error on spin-orbit splittings in several
doubly magic nuclei as indicated for a variety of forces. Data
taken from Bender et al. (1999).
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simple signature of shell closures is the two-nucleon
shell gap, which for neutrons is given by

d2n~Z ,N !5S2n~Z ,N12 !2S2n~Z ,N !

5E~Z ,N22 !22E~Z ,N !1E~Z ,N12 !,

(120)

and similarly for protons. This signature is usually
simple to compute and also to determine experimentally
from mass tables. However, there is a possible pitfall.
This quantity represents a signature of shell closure only
if no dramatic rearrangements of the mean field take
place between the three adjacent nuclei. That is not al-
ways the case in exotic nuclei (see, for example, Bender,
Cornelius, et al., 2002) and the discussion of shell
quenching in Sec. VI.B.3.

Another measure for shell effects is the shell-
correction energy dEshell [see Eq. (36)], which quantifies
the ‘‘bunchyness’’ of the ek . It is large and negative at
shell closures because the discrete sum has a particularly
low value there while the smoothed expression extends
over the shell gap. The dEshell measures the deviation of
the actual level density at the Fermi energy from the
averaged level density. The separation of the binding en-
ergy [Eq. (36)] into a smooth part and dEshell provides a
powerful tool for analyzing all phenomena related to
quantal shell effects, like the stabilization of superheavy
nuclei or the structure of fission barriers of heavy nuclei.
Nonetheless it is a purely theoretical measure without
experimental access.

Both criteria, the two-nucleon shell gap and the shell-
correction energy, yield well distinguished peaks at shell
closures along and near the valley of stability, as can be
deduced from Fig. 5. The situation becomes less clear in
the region of superheavy nuclei, as illustrated in Fig. 10.
The two-proton shell gap d2p has shrunk to at most 2
MeV at the shell closures Z5120, (124), and 126. The
shell-correction energy has minima at some proton num-
bers, but they are broad and soft, predicting substantial
stabilization by shell effects in a large area around the
shell closures. The stabilized region is even broader be-
cause deformation effects (not included in the calcula-
tions for Fig. 10) also enhance the stabilization. The con-
cept of magicity thus dissolves (for details see Bender,
Nazarewicz, and Reinhard, 2001).

There is one further experimental signature for magic
numbers: the excitation energy of vibrational states and
the associated electric transition rates. The gap in the
single-particle spectrum sets the scale for the lowest ex-
citations. Peaks in the systematics of the lowest 21 states
in even-even nuclei reflect the stiffness of the potential-
energy surface, which is largest in closed-shell nuclei
(see also Fig. 21 below). Compared to binding-energy
differences, the data on vibrational states have the ad-
vantage that they do not mix information from different
nuclei. The disadvantage is on the theoretical side. Re-
liable computations of excitation spectra are not easy
(see Sec. VI.F).

3. Shell quenching

The weakening or ‘‘quenching’’ of spherical shell clo-
sures when going away from the valley of stability to
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weakly bound nuclei is a phenomenon of great current
interest. It is now well established for neutron-rich N
520 and N528 isotones, and there are first hints that it
may apply for the N550 and N582 shells (see the com-
pilation of data by Kautzsch et al., 2000). Shell quench-
ing in neutron-rich systems has far-reaching conse-
quences for astrophysics, as it influences the r-process
path (Chen et al., 1995; Pfeiffer et al., 1996).

The actual sequence of magic numbers in neutron-rich
nuclei is strongly affected by various nonstandard fea-
tures: an increased diffuseness of the neutron density,
the closeness of the particle continuum (Dobaczewski
et al., 1994), and changes in the spin-orbit splitting (Von-
Eiff et al., 1995; Lalazissis et al., 1998a). For whatever
reason, one finds an increased destabilization of the
spherical shape for light neutron-rich N528 isotones
which can even lead to a stable quadrupole deformation;
see, for example, Lalazissis, Vretenar, Ring, Stoitsov,
and Robledo (1999); Werner et al. (1994); Terasaki et al.
(1997a); Reinhard et al. (1999); Peru et al. (2000), and
the example discussed in Sec. VI.D.2.

However, there are cases where the signatures for
shell quenching are ambiguous. One has to distinguish
between real shell quenching, in which the spectrum of
ek is quenched, and the disappearance of certain indirect
signatures for shell closures which might be independent
of the underlying shell structure of magic nuclei. An ex-
ample is the neutron-deficient Pb isotopes. The Z582
shell gap in the single-proton spectra ek is predicted to
be stable by all mean-field models, while recent mass
measurements show a significant quenching of the two-
proton shell gap d2p5E(Z12,N)22E(Z ,N)1E(Z

FIG. 10. Signatures for (spherical) proton shell closures along
two isotonic chains of superheavy elements (N5184 and N
5172), computed for spherical configurations with the SLy4
interaction. Upper panel: shell correction energy (36). Lower
panel: two-proton shell gap d2p5E(Z22,N)22E(Z ,N)
1E(Z12,N). Data taken from Kruppa et al. (2000) and Rutz
et al. (1997).
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22,N). The discrepancy is resolved when considering
the deformation softness of Hg and Po isotopes. The
additional deformation energy of Po and Hg reduces d2p
and thus masks the spherical Z582 shell effect for Pb.
The deformation effect remains at the level of pure
mean-field models (Bender, Cornelius, et al., 2002). It is
often accompanied by deformation softness whose
quantitative description requires configuration mixing.
See, for example, Bonche et al. (1990a, 1991) and Chas-
man et al. (2001) for examples from the neutron-
deficient Pb region.

4. Proton emitters

The properties of proton-rich nuclei around the drip
line differ in many respects from those of their neutron-
rich counterparts. The smaller asymmetry and the stabi-
lizing Coulomb potential hinder large proton skins and
prevent the formation of proton halos. The proton drip
line has been reached experimentally up to large charge
number, and there is now a wealth of available data. An
interesting phenomenon in proton-rich nuclei is the oc-
currence of proton emitters. Nuclei that are unstable
with respect to the emission of a proton may have siz-
able lifetimes due to the large Coulomb barrier (Åberg
et al., 1997), and a large number of proton emitters are
known experimentally (Woods and Davids, 1997). The
description of unbound nuclei by mean-field methods is
a challenge. In principle standard mean-field equations
do not converge when the Fermi level is in the con-
tinuum (see Sec. I.B.2), although this feature can some-
times be neglected due to the large Coulomb barrier, as
done in some recent relativistic mean-field calculations
(Lalazissis et al., 1999a, 1999b). A more satisfacory ap-
proach is to use mathematical tools to generalize the
mean-field equation for positive Fermi energy. This has
been done using the complex scaling method for spheri-
cal Skyrme calculations without pairing correlations
(Kruppa et al., 1997) and with them (Kruppa et al.,
2001).

C. Observables of the density distribution

1. Systematics of charge radii

A detailed comparison of the charge radii obtained
with several models is given in Fig. 11. More extensive
plots may be found in the articles of Pomorski et al.
(1997) for the relativistic mean-field method, Kleban
et al. (2002) for Gogny forces, and Buchinger et al.
(2001) for Skyrme Hartree-Fock forces. The agreement
with experimental data is generally very good. The rela-
tivistic mean-field interaction NL-Z2 tends to show the
largest deviations, which hints again at the problem of
covering all at once the key features of the charge form
factor with finite-range meson fields (see also Sec.
V.D.2). For the Ca isotopes all forces show a significant
deviation from the data in the isotopic trends. This
clearly points to an effect of ground-state correlations.
See the semiphenomenological discussions of Barranco
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FIG. 11. Comparison of rms radii of the charge distributions from spherical mean-field calculations. Experimental data are taken
from Nadjakov et al. (1994). Filled diamonds denote results from direct radius measurements, while open diamonds are obtained
from measurements of isotopic shifts.
and Broglia (1985) and Caurier et al. (2001) for an
analysis using shell-model calculations.

There is also a significant deviation in the trends for
Pb isotopes. The experimental trend exhibits a kink at
the doubly magic 208Pb. The relativistic mean-field cal-
culations reproduce this nicely, while the radii obtained
with most Skyrme Hartree-Fock forces crosses N5126
without any kink. It is argued by Reinhard and Flocard
(1995) and Sharma et al. (1995) that this hints at a dif-
ference in isovector spin-orbit force. The mismatch has
been cured by extending the spin-orbit force in the
Skyrme parametrization (see Sec. II.A.2) in the forces
SkI3 and SkI4, which better reproduce this kink at
208Pb. This is a nice example of how a comparison be-
tween different models has improved our understanding
of each model. However, the case is not yet settled, as
there exist arguments that the kink could equally well be
due to a density-dependent pairing interaction like that
in Eq. (71) (see Fayans et al., 2000 and Tajima, Flocard,
et al., 1993).

As for energies, looking at differences between radii
in an isotopic chain, i.e., isotopic shifts, often makes ef-
fects more visible.

From the experimental side, isotopic shifts can be
measured directly and with high precision by laser spec-
troscopy. This technique also allows us to deal with un-
stable isotopes. Thus there exists a rich pool of data and
a large body of literature; for a review see Otten (1989).
Amongst the prominent effects in this regime is the huge
even-odd staggering in proton-rich Hg isotopes which
can be related to a prolate-oblate shape isomerism
(Bengtsson et al., 1987). The effect is qualitatively pro-
vided by all mean-field models although quantitative
predictions about the transition point differ (Reinhard,
Reiss, et al., 2000). Most data on isotope shifts give indi-
rect information about collective ground-state correla-
tions (Reinhard and Drechsel, 1979; see also the above
example of Ca isotopes). These correlations have been
considered in early microscopic generator coordinate
calculations using the Gaussian overlap approximation
Rev. Mod. Phys., Vol. 75, No. 1, January 2003
(Girod and Reinhard, 1982a). A more recent example
will be given in connection with low-energy excitations
in Fig. 21.

2. Neutron radii

Neutron radii would provide very valuable informa-
tion complementing the rich pool of data from charge
radii. Unfortunately, their experimental determination
has so far been model dependent because the strong
interaction is involved (Batty et al., 1989). There is hope
that a clean tool will be available soon from parity-
violating electron-nucleus scattering experiments
(Vretenar, Lalazissis, and Ring, 2000; Horowitz et al.,
2001). Reliable data on neutron radii will improve mod-
els in several respects. For example, there is a close con-
nection between the equation of state of neutron matter
and the neutron rms radius of 208Pb. See Brown (2000)
for the Skyrme Hartree-Fock method and Typel and
Brown (2001) for the relativistic mean-field model.

Other interesting phenomena related to the neutron
density are the presence of neutron skins (Hamamoto
and Zhang, 1995; Dobaczewski, Nazarewicz, and
Werner, 1996; Lalazissis et al., 1998b) or of neutron halos
(Sagawa, 1992; Hansen et al., 1995; Tanihata, 1996) far
from b stability. Their description takes advantage of the
variational principle that self-consistently optimizes the
density profile (separately for neutrons and protons), a
feature that is absent in mic-mac approaches and limits
their use for neutron-rich systems.

One can establish a direct relation between isovector
forces and the neutron skin, defined as the difference
between neutron and proton radii (Reinhard, 1999; Sa-
gawa, 2002). Figure 12 shows the skin in Sn isotopes
predicted by various forces. It hints that larger skins are
produced by forces with large symmetry energy and
smaller skins by those with low asym . More thorough
variations of asym confirm that there is a unique relation
between skin and asymmetry energy within the current
standard form of the Skyrme Hartree-Fock interactions
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(Reinhard, 1999). The effect is particularly pronounced
for neutron-rich exotic nuclei.

Nuclei that exhibit experimentally a neutron halo are
light neutron-rich nuclei, like 11Li and 14Be. The pres-
ence of a halo is due to the very weak binding of the
outermost neutron. There is no consensus in the litera-
ture on how to define and parametrize halos. A simple
and robust measure can be obtained from a combination
of rms radius, diffraction radius, and surface thickness,
quantifying the deviation from the Helm model (see Sec.
V.A.2; for a thorough discussion see Mizutori et al.,
2000).

A reliable description of neutron halos requires care-
ful modeling. Experimental data are available so far
only for small systems, in which the number of nucleons
is not large enough to justify a pure mean-field approach
(see, for example, Barranco et al., 2001). Pairing plays a
crucial role for halo nuclei (Bertsch and Esbensen,
1991); see also the pairing antihalo effect discussed by
Bennaceur et al. (2000) and the sensitivity to model de-
tails of the density dependence of the pairing interac-
tion, as discussed by Dobaczewski, Nazarewicz, and
Reinhard (2001). A careful description of the coupling
to loosely bound or even continuum states is unavoid-
able and requires the HFB method, otherwise artifacts
from BCS pairing might produce spurious halos (see dis-
cussions by Dobaczewski et al., 1984; Dobaczewski,
Nazarewicz, and Werner, 1996; Grasso et al., 2001).
There have been several HFB studies using Skyrme in-
teractions (Mizutori et al., 2000), Gogny forces (Nerlo-
Pomorska et al., 2000), and relativistic mean-field
Lagrangians (Pöschl, Vretenar, Lulazissis, and Ring,
1997; Meng and Ring, 1998; Stoitsov et al., 1998).

D. Deformation

Nuclei with closed or nearly closed shells are well de-
scribed by a mean field with spherical symmetry. Far
from closed shells, the incomplete filling of a shell trig-
gers deformation and one has to allow the mean-field
potential to be deformed. This necessity is illustrated,
for instance, by the appearance of rotational bands and
the sequence of vibrational states in the low-energy
spectrum of many nuclei (Casten, 1990). Deformation is
related to shell filling and is, in principle, a nuclear Jahn-

FIG. 12. Neutron skin Rn2Rp along the chain of Sn isotopes.
Results are shown for two groups of forces, one with low and
one with high asymmetry energy.
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Teller effect (Reinhard and Otten, 1984; Nazarewicz,
1993). In fact, we encounter a dynamical Jahn-Teller ef-
fect as the pairing interaction tends to restore spherical
shapes.

There are several ways to access deformation experi-
mentally. Direct information can be obtained by Cou-
lomb excitation cross sections, from measurements of
lifetimes or of static quadrupole moments. Indirect evi-
dence can be deduced through rotational and vibrational
spectra. The rms deformation in the intrinsic system of
reference of the nucleus can be related to quadrupole
transition moments. At the mean-field level of approxi-
mation, a measure for deformation is given by multipole
moments of the ground-state density. To compare defor-
mations across different system sizes, it is better to deal
with dimensionless multipole deformations defined as

b,5
4p

3AR0
, ^r,Y,0& with R051.2 A1/3 fm, (121)

where Y,0 is the spherical harmonic. Note that these b,

are computed from the expectation values of the actual
densities and need to be distinguished from the generat-
ing moments used in the multipole expansion of the
nuclear shape in mic-mac models (Hasse and Myers,
1988). Note also that self-consistent calculations produce
deformed ground states by straightforward variation.
The potential-energy surfaces for collective motion are
computed by constraint Hartree-Fock calculations, in
which one or two (usually isoscalar) multipole moments
are fixed. Except for these constraints, the self-
consistency optimizes all other multipole moments for
protons and neutrons. This is to be contrasted with mic-
mac models, which need to parametrize a large number
of higher multipole moments and which, in particular,
assume that protons and neutrons have the same defor-
mation. The consequences of this assumption were ex-
plored by Berger and Pomorski (2000), and shown to
enhance fission barriers by about 1 MeV for actinides.

There is a world of test cases for nuclear deformation
and a large variety of related phenomena, which are re-
viewed, for example, by Åberg et al. (1990) and Nazare-
wicz and Ragnarsson (1996). We shall sketch a few se-
lected examples in the subsequent sections.

1. Medium-mass nuclei

Particularly interesting are isotopic chains along
which one observes a transition from spherical to de-
formed shapes. A typical example is given by the iso-
topes of Gd above the neutron shell at N582. This
chain has been studied by Baran and Höhenberger
(1996) with Skyrme interactions and by Blum et al.
(1989) with the relativistic mean-field method.

Figure 13 shows the potential-energy surfaces for the
chain of Gd isotopes at and above 146Gd together with
the systematics of the ground-state deformations. The
potential-energy surfaces illustrate nicely the transition
from a spherical to a well-deformed minimum, with vi-
brationally soft intermediate nuclei. Although the de-
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scription of these intermediate isotopes requires one, in
principle, to take into account fluctuations of shapes,
one can discuss the evolution of shapes by looking only
to the minima of the potential-energy surfaces. The
lower panel shows how these deformations are predicted
by different forces. The shape transition from N582 to
N590 is similarly obtained by all the forces, but the way
the transition takes place shows significant differences.
In particular, the deformation obtained by the BSk1 in-
teraction is systematically lower. A possible source for
this difference may be its larger effective mass (see
Table III). The deviation from the experimental defor-
mation could be a hint that this large m0* /m is inappro-
priate. However, there are several other possible sources
for this discrepancy, mainly the pairing correlations and
the approximate rotational correction that is incorpo-
rated in BSk1. A conclusive answer has yet to be found.

2. Shell quenching in light nuclei

Due to the small number of nucleons, the mean-field
approximation is less valid for light nuclei than it is for
heavy ones. Fluctuations beyond the mean field play a
larger role and there is stronger competition between
spherical- and deformed-shell effects. For this reason,
the phenomenon of shape coexistence [see Heyde et al.

FIG. 13. Transition from spherical to deformed shapes in the
chain of Gd isotopes. Upper panel: HF1BCS potential-energy
surfaces calculated with the SLy6 interaction for neutron num-
bers ranging from 82 to 90. Lower panel: Ground-state defor-
mation of Gd isotopes for several forces. Pairing is treated
with the BCS method except for BSk1 for which the HFB
method is used. Experimental values are taken from Raman
et al. (2001).
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(1983) and Wood et al. (1992) for reviews] is even more
abundant here than it is in heavy nuclei (Reinhard et al.,
1999).

The Mg isotopes are a good example of the problems
encountered in a mean-field description of light nuclei.
They extend over three supposedly magic neutron num-
bers (N58, 20, and 28). On the other hand, Z512 cor-
responds to a deformed-shell effect and the stable iso-
tope 24Mg is a good example of a nucleus with deformed
ground state. Figure 14 illustrates the situation for the
heavy isotopes, 32Mg up to 40Mg. The upper panel
shows the potential-energy surfaces for quadrupole de-
formation relative to the energy of the spherical configu-
ration.

Let us first discuss the case of 32Mg. It corresponds to
a magic neutron number N520 and its ground state is
predicted to be spherical, though with a rather soft
potential-energy surface. This result is in contradiction
with the experimental spectrum of 32Mg: its first 21 state
is at low excitation energy and has a strong B(E2) tran-
sition probability to the ground state. The deformation
deduced from the experimental data is around b250.5.
No effective interaction predicts a deformation like that
for 32Mg (Terasaki et al., 1997a; Rodriguez-Guzmán
et al., 2000a); mean-field calculations give at most a
potential-energy surface presenting an excited shallow

FIG. 14. Disappearance of the sperical N528 shell in neuton-
rich nuclei. Upper panel: Deformation energy of neutron-rich
Mg isotopes computed with the HFB method and the SLy6
interaction. Lower panel: neutron single-particle energies en at
spherical shape for the N528 isotones. Solid lines denote
states with positive parity, dotted lines states with negative par-
ity.
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minimum or an inflexion point at a b2 value around 0.5.
For this reason, it is generally assumed that vibrational
and rotational corrections have to be included to de-
scribe nuclei in this mass region. A typical vibrational
zero-point energy here would be around 3 MeV and this
corresponds to fluctuations Db2;60.4. We shall come
back to this point in Sec. VI.F.2. The softness of the
potential-energy surfaces increases for N522, and a de-
formed minimum appears for N524. The deformation
energy increases further for N526, and the next magic
number, N528, by no means restores sphericity.

This tendency to deformation for nuclei far from sta-
bility may be related to the shell quenching that is likely
to appear towards drip lines (see also Sec. VI.B.3). The
effect is demonstrated in the lower panel of Fig. 14,
showing the evolution of neutron levels along the N
528 chain as a function of the number of protons. The
N528 gap shrinks when going from 20

48Ca28 towards the
neutron drip line (at spherical shape, the next nucleus
10
38Ne28 has a positive neutron Fermi energy). Already for
Z516, the gap at N528 is too small to counterbalance
the deformation induced by the nonmagic proton num-
ber Z516 and to drive the nucleus to spherical symme-
try (as is the case for N520).

3. Fission barriers

Fission has been one of the major motivations for de-
veloping models of nuclear collective motion (Bohr and
Wheeler, 1939; Hill and Wheeler, 1953). It is also a criti-
cal test case for mean-field models as a microscopic pic-
ture of collectivity (see, for example, Sec. III.A.1). On
the experimental side, there exists a large pool of infor-
mation on fission barriers deduced by model analysis
from spontaneous and induced fission (Specht, 1974;
Bjørnholm and Lynn, 1980). On the theoretical side, fis-
sion barriers are often used as a benchmark for mean-
field models (Bartel et al., 1982; Berger et al., 1984), as
they probe the surface tension of the parametrizations
(see also Tondeur, 1985; Bender et al., 2000a).

The fission paths are special collective paths which
evolve from the ground-state deformation to the outer
barrier and then slide asymptotically down the Coulomb
valley. As with any collective path, they are represented
by a succession of deformed mean-field states $uFq&%.
An unambiguous self-consistent definition of the path is
given by the adiabatic TDHF equations (Baranger and
Vénéroni, 1978; Goeke and Reinhard, 1978). Most prac-
tical calculations use quadrupole constrained mean-field
calculations (Flocard et al., 1973) as an intuitive approxi-
mation. Furthermore, correlation corrections play a role
in fission. The zero-point energies for vibration and ro-
tation modify the barriers by about 2 MeV (Reinhard
and Goeke, 1979, 1987). The way pairing correlations
are described also has a critical influence, since the path
connects minima with low level density and barriers with
high level density.

Fission paths explore many shape degrees of freedom
including triaxiality and reflection-asymmetric shapes.
There are usually two (or more) separate valleys in the
Rev. Mod. Phys., Vol. 75, No. 1, January 2003
multidimensional landscape (see, for example, Berger
et al., 1984). A typical example is given by the distinction
of fusion and fission paths which differ in their hexade-
capole moment. An additional difficulty arises from the
fact that separate valleys found in a calculation might be
an artifact from an overly restricted symmetry (e.g.,
axial) and merge if computed more generally (e.g., tri-
axially); see the example given by Bender, Rutz, et al.
(1998). Finally, it might not be sufficient to compute only
the potential-energy surfaces along the fission path.
Strong variations in the collective masses can cause the
fission path to deviate from the minimum-potential line
(see, for example, Giannoni and Quentin, 1980a, 1980b).
It is clear that fission studies are a very complex task and
many technical improvements are still required.

As a test case, we consider the fission barrier of 240Pu,
which has been the traditional benchmark for the per-
formance of mean-field models. The description of the
double-humped fission barrier of actinides was one of
the first prominent successes of the shell-correction
method. It also became one of the first applications of
constrained self-consistent calculations with Skyrme in-
teractions (Flocard et al., 1974), the Gogny force
(Berger et al., 1984), and the relativistic mean-field
method (Blum et al., 1994; Rutz et al., 1995).

Figure 15 shows as a typical example the potential-
energy surfaces for 240Pu computed with the SkI4 inter-
action. The oscillations of the surfaces are due to shell
fluctuations, while the liquid-drop-model energy would
give one broad smooth barrier. The actual size of the
shell effects depends strongly on the shapes that are in-
volved in the calculation. Relaxing symmetries often de-
creases the barriers, as can be seen from the axial and
triaxial paths at the first barrier and the (axial)
reflection-symmetric and reflection-asymmetric paths at
the second barrier. The paths with steep slopes at large
b2 correspond to symmetric and asymmetric entrance
channels for fusion. The two approaching nuclei have to

FIG. 15. Paths in the deformation energy landscape of 240Pu
calculated with the SkI4 interaction. The solid line corresponds
to axial quadrupole and octupole (reflection asymmetric) con-
straints, the dashed line to triaxial quadrupole constraints, the
dotted line to axial quadrupole constraint only. The two steep
lines correspond to the symmetric (dotted line) and asymmet-
ric (solid line) fusion paths. Shapes along the paths are indi-
cated by the density contours at r050.07 fm23. From Bender
(1998).
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overcome the barrier between the fusion path and the
fission path before this can form a neck and fuse. This
happens only for smaller deformations. Note that both
paths are connected in a landscape of varying hexadeca-
pole moment, which is not constrained in the calculation
here. The points with error bars, which are drawn at
arbitrary deformations, indicate the empirical barriers
and minima. The mean-field result overestimates the
barriers a bit. Vibrational and rotational corrections will
probably help to come closer to the data.

Figure 16 shows the potential-energy surfaces of 240Pu
for a variety of forces. The typical pattern of a double-
humped barrier is reproduced by every mean-field
model. There are quantitative differences in the barrier
height and depth of the second minimum. The Gogny
force D1S produces rather high barriers. The relativistic
mean-field forces, on the other hand, predict low barri-
ers and a low second minimum, while all Skyrme
Hartree-Fock forces fall in between. These differences
between the interactions are even more pronounced for
superheavy elements around Z'116, where Skyrme
forces strongly stabilize against fission, while the relativ-
istic mean-field forces show only shallow barriers, which
increase again towards the next shell closures (Ćwiok
et al., 1996; Bender, Rutz, et al., 1998; Berger et al.,
2001). However, the comparison is a bit touchy for the
Gogny force D1S. One has to remember that this force
has been adjusted on the fission barrier of 240Pu to in-
clude a correction for rotation. Therefore, we also show
in Fig. 16 the potential-energy surfaces for D1S where
the rotational correction has been taken into account.
This comes closer to the data. A similar correction
should then be applied to all other forces as well. In fact,
several other zero-point corrections also had to be in-
cluded. These are not yet available for the relativistic

FIG. 16. Deformation energy along the fission path of 240Pu
calculated with the mean-field forces as indicated. Shapes are
triaxial and reflection symmetric at the first barrier around
b2'0.6; they are axial and reflection asymmetric at the second
barrier, which is located around b2;1.3.
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mean-field model. At present the most consistent way is
to compare just the uncorrected potential-energy sur-
faces, as is done in Fig. 16.

4. Superdeformed states and fission isomers

Fission isomers are a special case of superdeformed
minima which appear very often in heavy elements.
There are some experimental data on the absolute exci-
tation energies of superdeformed minima at zero spin.
These provide information on the magnitude of shell
effects in the second well. A test of several Skyrme in-
teractions (Heenen et al., 1998; Takahara et al., 1998)
has shown that they reproduce particle separation ener-
gies within a well much better than absolute excitation
energies. This suggests that configuration mixing (for ex-
amples, see Bonche et al., 1989, 1990a, 1990b, 1991,
1994, 1996) and symmetry restoration or at least dy-
namical zero-point energy corrections (see Girod and
Reinhard, 1982b; Delaroche et al., 1989, 1994; Deloncle
et al., 1989; Libert et al., 1999) have to be taken into
account. However, the experimental data have up to
now been too limited to permit conclusive studies.

Transition probabilities from fission isomers to the
ground state have been measured experimentally for
236,8U. Their determination by a generator-coordinate-
method calculation including mean-field states in the
two wells allows us to test the topology of the barrier
because quantum tunneling is extremely sensitive to the
height and thickness of the barrier (Chinn et al., 1992;
Krieger et al., 1994, 1996). Theoretical lifetimes agree
with experimental ones within two orders of magnitude,
which gives us some confidence in the ability of mean-
field calculations to describe the topology of the first
barrier correctly.

5. Octupole deformation

Observation of negative-parity states at very low exci-
tation energies was the first evidence that nuclei might
have a shape that is reflection asymmetric, such as a pear
shape. Extensive investigations have led to the conclu-
sion that these shapes are not as stable as quadrupole
deformations. Butler and Nazarewicz have given both a
short introduction to the subject (1991) and an extensive
review (1996). There are now a few examples of nuclei
exhibiting negative-parity bands at low excitation en-
ergy, which can be related to intrinsic shapes with parity-
breaking multipole moments. Examples are 20Ne and
nuclei around 146Ba and 222Th. Octupole instability was
first analyzed in terms of shell effects within the frame-
work of mic-mac models (Leander et al., 1982; Nazare-
wicz et al., 1984). Soon after the pioneering calculations
of 222Ra with the Skyrme interaction SIII by Bonche
et al. (1986), the intrinsic octupole deformation of Ra
isotopes was investigated by Robledo et al. (1987) with
the Gogny interaction D1S. It was found that octupole
deformations do not yield a large gain in energies. De-
pending on the interaction, one obtains either a shallow
minimum or a very flat octupole potential-energy sur-
face. Thus one needs configuration mixing and parity
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projection. This was first done in the framework of a
collective Schrödinger equation approximation to the
generator-coordinate method (see Sec. III.A.2.d) with
either adiabatic TDHF or generator-coordinate method
masses (Robledo et al., 1988; Egido and Robledo, 1989,
1990, 1992). Full parity projection after variation was
subsequently performed for studies of octupole ground-
state correlations in several regions of the nuclear chart
with the Gogny interaction by Egido and Robledo
(1991) and with the Skyrme interaction including con-
figuration mixing by the generator coordinate method
by Skalski, Heenen, and Bonche (1993) and Heenen,
Skalski, et al. (1994). Good agreement with the experi-
mental data was obtained, in particular for E1 transition
probabilities determined with the Gogny interaction.
Symmetry-unrestricted Skyrme HFB calculations of N
5Z nuclei from 64Ge to 84Mo (Yamagami et al., 2001)
have demonstrated the extreme softness of these nuclei
against nonaxial octupole deformations in several ex-
cited states.

Figure 17 illustrates for the case of 208Pb (Heenen,
Valor, Bender, et al., 2001) how octupole deformations
develop due to the inclusion of correlations. The mean-
field potential-energy surface of 208Pb is flat as a func-
tion of octupole deformations and presents a minimum
at spherical shape. When projecting on parity for each
value of the octupole moment, one obtains a different
potential-energy surface for each parity. Since there is
no energy gain by projection for the spherical configu-
ration, a shallow well develops for the positive parity,
with a minimum for a small, nonzero value of the octu-
pole moment. The minimum of the curve projected on
negative parity appears for a much larger octupole de-
formation. The generator-coordinate method mixes
mean-field states corresponding to different octupole
moments. This yields a spectrum of states. The energy

FIG. 17. Octupole deformation properties in 208Pb computed
with SLy4. The lower panel shows the potential-energy sur-
faces from mean-field and parity projected calculations as in-
dicated. The upper panel shows the collective wave functions
gk(b3), Eq. (78), for ground state and first excitation. Data
taken from Heenen, Valor, Bender, Bonche, and Flocard
(2001).
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difference between the first states of both parities is
rather close to the energy difference between the
minima of the wells of both parity. One must note that
the positive-parity wave function has a maximum value
in the spherical shape and spreads approximately like a
Gaussian over octupole deformations. Conversely, the
maximum of the lowest GCM state of negative parity
corresponds to the minimum of the potential-energy sur-
face with negative parity.

The ground-state shapes of Ra and Th isotopes have
been investigated within the relativistic mean-field
method by Rutz et al. (1995). Several studies have also
been devoted to the investigation of octupole deforma-
tions in the superdeformed well of nuclei in the Hg-Pb
mass region. There is indeed experimental evidence
(Wilson et al., 1996) that some superdeformed rotational
bands are generated by the rotation of reflection-
asymmetric intrinsic states. Parity projected calculations
of octupole deformations in the superdeformed well in
194Pb were investigated by Bonche et al. (1991). A
coupled quadrupole-octupole generator-coordinate-
method study of 194Pb, including all the quadrupole de-
formations from the spherical ground state to the super-
deformed intrinsic state, was performed by Meyer et al.
(1995). This enabled these authors to determine
octupole-phonon states in both wells. The nonaxial oc-
tupole modes were calculated by Skalski, Heenen,
Bonche, Flocard, and Meyer (1993), showing, in contrast
to non-self-consistent calculations, that nonaxial modes
are not energetically favored. The same formalism was
used by Heenen and Skalski (1996) to describe the cou-
pling between the octupole and isovector dipole modes
in the normally deformed nucleus 152Sm and in the su-
perdeformed 190Hg. They showed that the low-energy
states of negative parity are well described without the
inclusion of the dipole degree of freedom. Inclusion of
isovector dipole deformations permits a satisfactory de-
scription of the giant dipole resonance simultaneously
with the low energy octupole excitations.

Reflection-asymmetric shapes have been much less
studied for rotating nuclei. A symmetry-unrestricted
cranked Skyrme Hartree-Fock calculation of high-spin
states in 32S was performed by Yamagami and Matsuy-
anagi (2000), who showed that nonaxial deformations of
Y31 type play a role above spin 5. The transition to oc-
tupole deformations at high spin for N588 isotopes
around 144Ba is discussed by Garrote et al. (1997, 1998)
in a cranking approach using the Gogny interaction.

E. Qa values in superheavy elements

Superheavy elements have attracted much interest in
the past and continue to do so. This interest is motivated
by the general interest in extending the table of ele-
ments up to the limits of stability and finding new shell
closures. Superheavy elements provide a testing ground
for nuclear models as they probe the interplay of the
collective effects triggered by the strong repulsive Cou-
lomb field and details of the stabilizing shell structure.
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Experimental data on superheavy nuclei are still
sparse (Hofmann, 1998; Armbruster, 2000; Hofmann
and Münzenberg, 2000); in most cases the only available
observable is the a-decay energy release Qa(N ,Z)
5E(N ,Z)2E(N22,Z22)2E(2,2), which is a differ-
ential observable similar to the two-nucleon separation
energies, Eq. (119). Figure 18 compares calculated and
experimental systematics of Qa in the regime of the
heaviest observed elements. Large gaps between the
curves and kinks within the curves are related to de-
formed proton and neutron shells, respectively. All
forces reproduce the overall pattern of the Qa , but
there are differences among the forces in the shift be-
tween experimental and calculated curves for a given Z ,
as well as in the appearance or position of kinks in the
trends with respect to N . Keep in mind that BSk1 with
its large m0* /m has the smoothest trends, even smoother
than the data. The parametrizations differ in their pre-
dictions for the next spherical shell closures (see Fig. 8).

FIG. 18. Qa values of even-even superheavy elements as pre-
dicted by self-consistent mean-field models. Experimental val-
ues are taken from Audi and Wapstra (1995), Hofmann et al.
(2000), and Oganessian et al. (2001); SLy4 values are from
Ćwiok et al. (1999), NL-Z2 values are from Bender (2000); and
BSk1 values are from Samyn et al. (2002). Experimental values
at the upper right corner are for Z5116, 114, and 112.
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On the basis of the currently available data for Qa (for
even nuclei), none of the parametrizations is to be pre-
ferred, although we see clear differences among them.

Figure 18 covers a transition from well-deformed nu-
clei at the lower end up to transitional nuclei close to the
next shell closures (Ćwiok et al., 1996; Bürvenich et al.,
1998), which is reflected in an increased softness of the
deformation energy surfaces with increased Z . The
heaviest nuclei shown cannot be safely described on the
mean-field level; including long-range correlations will
alter the systematics of Qa similarly to the findings for
S2n discussed in Sec. VI.F.2.

Results in Fig. 18 are for even nuclei only. There are
more data for odd nuclei, but their modeling is as in-
volved as the calculation of separation energies dis-
cussed in Sec. VI.B.1. It is by no means guaranteed that
experimental data refer to transitions between the low-
est quasiparticle states. Selected decay chains are inves-
tigated by Ćwiok et al. (1999) and Bender (2000).

F. Excitations

1. Rotational bands

The 1990s saw a significant breakthrough for mean-
field methods in the calculation of rotational bands in
several regions of the nuclear chart, in particular for nu-
clei in which superdeformed rotational bands have been
detected experimentally (Garett et al., 1986; Nolan and
Twin, 1988; Janssens and Khoo, 1991; Baktash et al.,
1995). Before that time, mean-field calculations were
performed either with simple interactions in a restricted
space (see, for instance, Egido et al., 1980a, 1980b) or
within a pure Hartree-Fock framework (Passler and
Mosel, 1976; Fleckner et al., 1979; Bonche et al., 1987).
A major numerical difficulty in handling rotating nuclei
is that time-reversal invariance is broken, with the con-
sequence that one cannot treat pairing correlations in
the BCS approximation. But pairing correlations are in-
evitably needed because superdeformed bands have
been detected down to very low spin. This is particularly
true around A'190, where the moment of inertia of the
bands varies strongly as a function of spin, a clear sign of
varying pairing correlations.

All the variants of the mean-field methods discussed
here have now been applied to the study of superde-
formed bands and usually have shown surprisingly good
agreement with the experimental data. Recent refer-
ences include studies of superdeformed bands in the A
'190 mass region with the Skyrme Hartree-Fock-
Bogoliubov method (Terasaki et al., 1995, 1997b), with
the Gogny force (Girod et al., 1994; Valor et al., 2000a,
2000b), and with the relativistic mean-field method
(Afanasjev and Ring, 2000; Afanasjev et al., 2000). Very
recently, rotational bands were detected in 252No (Reiter
et al., 2000) and there are experiments underway to
measure bands in superheavy odd-A isotopes. This will
provide a unique opportunity to test the quasiparticle
spectra of the pairing correlations in very heavy nuclei
and the validity of mean-field interactions for extrapola-
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tion to superheavy nuclei. Up to now, Skyrme Hartree-
Fock-Bogoliubov calculations (Duguet et al., 2001) and
calculations with the Gogny interaction (Egido and
Robledo, 2000) nicely reproduce the experimental data.

The study of rotational bands extending up to very
high spins has shown the necessity of treating pairing
correlations beyond the HFB method. Indeed, at this
level of approximation, pairing correlations collapse
abruptly as a function of the rotational frequency, lead-
ing to an unphysical phase transition (Gall et al., 1994).
The best way to cure this deficiency would be to perform
a variation after projection (VAP) on particle numbers.
Up to now, all applications have used an approximate
VAP by means of the Lipkin-Nogami method which has
proven sufficient to avoid an abrupt pairing collapse.

Besides the nice reproduction of moments of inertia
of even nuclei, calculations of the large number of one-
and two-quasiparticle bands that have been detected
have increased our confidence in the quasiparticle spec-
tra predicted by the mean-field interactions. Figure 19
compares two bands calculated with the SLy4 Skyrme
force with the data for an odd-odd isotope 192Tl. These
bands correspond to two different one-quasiparticle ex-
citations on an even vacuum. The agreement between
data and theory is very nice; in particular, the relative
magnitudes of the moments of inertia is well repro-
duced. Several similar results have allowed us to assign
the excited bands to specific quasiparticle excitations.

The study of rotational bands has also initiated inves-
tigations of the importance of time-odd terms in Skyrme
interactions (Dobaczewski and Dudek, 1995), and of
time-odd fields in relativistic Lagrangians (Afanasjev
and Ring, 2000). Rotational bands might be the appro-
priate tool to constrain these time-odd components
(Bender, Dobaczewski, et al., 2002). However, more sys-
tematic studies remain to be done.

Recent progress in realistic shell-model calculations
allows the calculation of medium-mass nuclei by these
methods. Thus medium-mass nuclei are a good place to
compare mean-field and shell-model calculations. Cau-

FIG. 19. Dynamical moment of inertia J(2), which is equal to
the second derivative of the energy with respect to the rota-
tional frequency v, for two rotational bands in 192Tl calculated
with density-dependent pairing and the SLy4 interaction
(Heenen and Janssens, 1998). Experimental data are taken
from Han and Wu (1999).
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rier et al. (1995) have compared spherical shell-model
calculations with cranked HFB using the Gogny interac-
tion for 48Cr. The rotational band of this nucleus is
known up to spin 16. It shows a backbend which is re-
produced by both calculations. However, the mean-field
moment of inertia is too large, while the shell-model
result agrees with the experimental data. This hints at a
deficiency in the treatment of pairing correlations. In
particular, no neutron-proton T50 pairing is taken into
account in the mean-field calculations.

2. Low-energy spectra

a. Light nuclei

We have seen in Sec. VI.D.2 that the description of
light nuclei requires the introduction of correlations be-
yond a mean-field approach. Let us look first at the ef-
fect of these correlations for the stable nucleus 24Mg,
which is well deformed in its ground state. The axial
quadrupole potential-energy surfaces presented in Fig.
20 (obtained with SLy4 and a density-dependent delta
pairing) show a mean-field minimum for a quadrupole
moment around 2 b. Potential-energy surfaces for angu-
lar momenta values ranging from 0 to 10 are obtained by
projecting the mean-field wave functions for each quad-
rupole moment onto good angular momentum and par-
ticle numbers. As expected from the usual estimates of
zero-point energy motion, the restoration of each mode
brings a gain of energy of around 2 MeV. The mean-field
wave function corresponding to the minimum of the J
50 projected curve has a quadrupole moment slightly

FIG. 20. Projected potential-energy surfaces of 24Mg for angu-
lar momentum J50 to 10, as a function of the axial quadru-
pole moment q0 of the state that is projected. The dashed
curve is the mean-field result. The first three energies obtained
for each J in the configuration-mixing calculation are repre-
sented by horizontal bars centered at the value of q0 where the
respective collective wave functions have their largest value.
Taken from Valor, Heenen, and Bonche (2000).
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larger than the minimum of the intrinsic curve. The po-
sition of this minimum does not vary significantly with
angular momentum. Configuration mixing with respect
to the quadrupole moment of the mean-field states still
brings a small gain in energy, but much smaller than the
restoration of symmetry. As expected for a vibrational
correlation as well, it slightly decreases the mean quad-
rupole moment of the mixing and brings it back to the
value of the intrinsic curve. Thanks to the symmetry res-
toration, transition probabilities between the different
states can be calculated directly in the laboratory frame
of reference and compared to the experimental data
without having to introduce approximations.

Calculations along these lines have been done for sev-
eral light nuclei. Many of these studies focus on the phe-
nomenon of shape coexistence (see Heyde et al., 1983
and Wood et al., 1992 for reviews) or on the evolution of
the N520 and N528 shell closures in neutron-rich nu-
clei. Some of the calculations rely on the Bohr Hamil-
tonian approximation of the generator-coordinate
method [see, for example, Reinhard et al. (1999), who
use Skyrme interactions or Peru et al. (2000), who use
the Gogny force]. Configuration-mixing calculations of
angular momentum projected wave functions using the
Gogny force have been performed for some Mg and Si
isotopes (Rodriguez-Guzmán et al., 2000a) and for a
possible superdeformed band in 32S (Rodriguez-
Guzmán et al., 2000c). The quadrupole collectivity has
been investigated with the same model for N'20 nuclei
by Rodriguez-Guzmán et al. (2000b), and N'28 nuclei
by Rodriguez-Guzmán et al. (2002). Finally, a configura-
tion mixing of many-body states with different quadru-
pole moments, projected onto angular momentum and
particle number, has been performed for 32S with a
Skyrme interaction and a density-dependent delta pair-
ing force by Heenen, Valor, and Bonche (2001).

In all these applications, the correlations beyond the
mean field provided by the symmetry restorations and
the configuration mixing significantly improve the agree-
ment with experimental data. They also confirm the re-
sult based on simpler models that magic numbers like
N528 are not preserved far from stability. These first
explorations demonstrate the need for correlations and
better mean-field models in light nuclei.

b. Deformation effects in medium-mass nuclei

The light Sr isotopes are a good example of nuclei
whose shape varies rapidly with changing neutron num-
ber. 88Sr is a spherical nucleus, due to the neutron shell
closure at N550, while 78Sr is strongly deformed. The
potential-energy surfaces of the intermediate isotopes
are extremely soft against triaxial quadrupole deforma-
tions, with several minima of very different shapes but
similar energies. This prevents a meaningful comparison
of the charge radii with experiment. Although the
minima have similar energies, their radii are quite differ-
ent. Such a deficiency can be corrected by performing a
configuration mixing by the generator-coordinate
method. This has been done by Heenen, Bonche, et al.
(1993). The mean-field wave functions for a grid of tri-
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axial quadrupole moments were generated by Hartree-
Fock1BCS1Lipkin-Nogami (HF1BCX1LN) calcula-
tions with the SIII Skyrme interaction and a seniority
pairing. They were mixed by a generator-coordinate
method calculation after particle-number projection.
Partial restoration of angular momentum was also per-
formed by mixing the six possible orientations of the
principle axes of the nucleus along the axes of the intrin-
sic frame of reference. Results are shown in Fig. 21 for
the excitation energies of the lowest 21 and 31 states
obtained after the approximate angular momentum pro-
jection, and for the isotopic shifts. The decrease in the
excitation energy of the first 21 from N550 to N540 is
a consequence of the gradual appearance of deforma-
tions. It agrees qualitatively with experiment. The isoto-
pic shifts are greatly affected by the mixing of configu-
rations. The ambiguities of the mean-field calculation
are removed thanks to configuration mixing. However,
the increase of the isotopic shift with decreasing neutron
number is not reproduced for the intermediate isotopes.
An exact restoration of angular momentum would favor
an increase of deformations and its lack is probably the
major source of discrepancy in the present example.

c. Ground-state correlations and mass systematics

Figure 22 shows, together with the experimental data,
the two-neutron separation energies calculated around
68Ni (Reinhard, Bender, et al., 2000) and around 208Pb
(Heenen, Valor, Bender, Bonche, and Flocard, 2001)
with the SkI4 and SLy4 parametrizations, respectively.
In both cases, the mean-field results are obtained from

FIG. 21. Isotopic shifts (bottom) and excitation energies of the
first 21 and 31 states (top) for light Sr isotopes. The theoret-
ical results are obtained from HF1BCS1LN calculations with
the Skyrme force SIII and a schematic seniority pairing inter-
action, and from generator-coordinate method calculations on
triaxial quadrupole mean-field wave functions projected on
particle number (Heenen et al., 1993). Experimental values for
drms are taken from Buchinger et al. (1990), while excitation
energies are taken from Kinsey et al. (1997).
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Skyrme-HF1BCS1LN calculations employing a
density-dependent delta force. Correlations beyond the
mean field are included in both cases, for Ni with the
Gaussian overlap approximation of the generator-
coordinate method and for Pb with particle-number pro-
jected generator-coordinate method calculations. The
inclusion of quadrupole correlations in the Ni case sig-
nificantly modifies the mean-field S2n and brings them
close to the experimental data. For Pb isotopes, several
collective variables have been explored but none of
them allows us to obtain the same quality of agreement
with the data as that for Ni. The mode that most
strongly affects the Pb results is pairing vibration. The
difference between Ni and Pb is probably related to
their different ‘‘magicity’’: the N5126 gap in 208Pb is
much larger than the N540 gap in 68Ni, which means
that collective quadrupole vibrations are much softer in
68Ni than in 208Pb.

3. Giant resonances

An important characteristic of nuclear excitation
spectra is the presence of giant resonances (Speth and
van der Woude, 1981; Goeke and Speth, 1982; Speth and
Wambach 1991; van der Woude, 1991; Bertsch and Bro-
glia, 1994; Bortignon et al., 1998). This mode appears in
almost any multipolarity and isospin channel. The most
prominent resonances are the isovector dipole, which is
in lowest order a collective oscillation of the proton
against the neutron density, the isoscalar monopole,
which is a radial vibration of the nucleus as a whole
(‘‘breathing mode’’), and the isoscalar quadrupole,
which corresponds to small collective quadrupole oscil-
lations. These modes show up in an energy range of
10–30 MeV, where a large fraction of the multipole sum
rules are exhausted. They explore only small-amplitude
oscillations around the nuclear ground state and are thus
ideally suited for a description in terms of the RPA.

There is a long-standing history of microscopic calcu-
lations of giant resonances. Several of them rely on phe-
nomenologically adjusted model potentials with effec-

FIG. 22. Influence of ground-state correlations on the S2n

around 68Ni (left panel) and 208Pb (right panel). Q20 , Q30 , and
‘‘pair’’ denote quadrupole, octupole, and pair vibrations, re-
spectively. Data taken from Reinhard, Bender, et al. (2000)
(68Ni) and Heenen, Valor, Bender, Bonche, and Flocard (2001)
(208Pb).
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tive residual interactions, for reviews see Goeke and
Speth (1982) and Speth and Wambach (1991). There is
also a large body of RPA calculations based on self-
consistent mean-field models with Skyrme interactions
[for recent compilations see Colo et al. (1995) and Rein-
hard (1999)], and the Gogny force (Blaizot et al., 1976;
Blaizot and Gogny, 1977). The first RPA results based
on the relativistic mean-field approach were published
recently (Vretenar, Wandelt, and Ring 2000; Ma et al.,
2001; Ring et al., 2001; Vretenar et al., 2001a, 2001b,
2002). We shall give here a brief overview of the three
most important resonances: the isoscalar monopole (L
50, T50), the isovector dipole (L51, T51), and the
isoscalar quadrupole (L52, T50).

In Fig. 23, the dipole strength distribution in 16O and
in 208Pb, calculated with three different Skyrme forces,
is compared to photoneutron experiments. The reso-
nance in 208Pb shows a nicely dominating peak, in ex-
periment as well as in calculations. In fact, this peak is
strongly fragmented by interference with one-particle/
one-hole states (Landau fragmentation), but the cou-
pling to other modes (escape width and nucleon-nucleon
collisions) smooths the detailed structure in such a way
that one broad peak remains visible. A thorough treat-
ment of all contributions to the width goes beyond the
RPA (Bertsch et al., 1983). For 208Pb the Landau frag-
mentation (included in the RPA) is the dominant contri-
bution (about 2/3) while the escape (included in the con-
tinuum RPA) and collisional widths are responsible for
about 1/3 of the width (Reinhard, Yadav, and Toepffer,
1986). All three theoretical results for 208Pb are close to
the experimental curve. The picture looks quite differ-

FIG. 23. Random-phase approximation results for the dipole
strength distributions in 16O (upper panel) and 208Pb (lower
panel for various forces indicated. The discrete RPA spectra
have been folded with a Lorentzian of width 1 MeV to account
roughly for escape width and collisional broadening. Experi-
mental photoneutron cross sections are taken from Dietrich
and Bermann (1988).
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ent for a light nucleus such as 16O. The lower density of
one-particle/one-hole states leaves a detailed fragmenta-
tion pattern apparent in the smoothed strengths, in
qualitative agreement with the data. All forces system-
atically produce too low a resonance energy. This leads
to the conclusion that the A dependence of the asymme-
try energy is underestimated by present-day mean-field
interactions, although the precise reasons for this mis-
match are not yet fully understood.

We confine further considerations to the safe case of
208Pb. Here, all major giant resonances show a clear
single-peak structure and comparisons can be made on
the grounds of peak positions. This introduces a small
ambiguity in comparison with the experimental data.
Figure 23 shows that the spectral distribution is asym-
metric. Thus the position of the maximum depends
slightly on the folding width of the Lorentzian used on
the discrete RPA results. We have to assume an uncer-
tainty of about 60.5 MeV for the resonance energy.

Table V shows results for the three major resonances
computed with a broad selection of forces. We see that
most forces perform very well for the dipole resonance.
The interaction MSk5, which has been exclusively ad-
justed to all known masses, is the only one to underes-
timate the energy of the resonance significantly. The po-
sition of the dipole resonance is determined by bulk
parameters: the symmetry energy coefficient asym , the
sum-rule enhancement factor kTKR , and the density de-
pendence of the symmetry energy coefficient ]rasym .
The resonance energy increases with increasing kTKR ,
while it decreases with increasing asym ; cf. Table III. The
latter trend is unexpected. It stems from a strong link to
]rasym in the ground-state fits (Reinhard, 1999). The
various influences on the peak position inhibit direct ac-
cess to asym by these data.

The results for the isoscalar quadrupole resonance
gather nicely around the experimental value. It is well
known that the resonance position is uniquely related to
the isoscalar effective mass (Brack et al., 1985). Standard
Skyrme Hartree-Fock parametrizations with m0* /m
50.8 fit the resonance best (Reinhard, 1999). It is clear
that parametrizations with m0* /m51 (here SkP and

TABLE V. The peak positions of the most important giant
resonances in 208Pb computed with the RPA for various forces
and compared with experimental values. All energies are given
in MeV.

L51,T51 L52,T50 L50,T50
Expt. 13.6 11.2 14.2

SIII 14.1 12.0 17.5
SkM* 13.0 11.6 14.0
SkP 12.5 10.3 13.2
SLy6 12.8 12.5 14.5
SkI3 12.7 13.7 15.3
SkI4 12.7 13.0 15.1
MSk5 11.4 10.3 14.1
SkT6 14.5 12.4 9.9
NL3 12.9 11.3 13.8
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MSk5) yield values that are too low while forces with
low effective mass (SkI3, SkI4, SLy6) predict resonance
energies that are too large. See also Sec. V.A.3.

The position of the isoscalar monopole resonance is
closely related to the incompressibility (Blaizot, 1980;
Blaizot et al., 1995). The far too high value obtained
from the early parametrizations, e.g., SIII, was one of
the motivations for extending the model by allowing a
,1 in the exponent of the density dependence [see Eq.
(50) and Krivine et al. (1980)]. The more recent forces
perform fairly well for this component. Note that the
monopole resonance has not been fitted but comes out
as a prediction from the force. Nuclear surface proper-
ties and trends with respect to mass number also carry a
lot of (indirect) information on the incompressibility.
These seem to go in the right direction once a has been
allowed to take on values less than 1.

In sum, we see that there is a world of valuable infor-
mation in the resonance excitation spectra, even more
when taking into account isotopic trends and trends in
system size. Other modes carry further information,
which has yet to be thoroughly examined.

The extrapolation of giant resonance properties to nu-
clei far from stability has been extensively discussed by
Hamamoto et al. (1997a, 1997b, 1997c, 1998) using
Skyrme interactions (see also Sagawa and Esbensen,
2001).

4. Excitations of unnatural parity and b decay

The previous section dealt with giant resonances of
natural parity. Here we look briefly at excitations with
unnatural parity, i.e., Jp502, 11, 22, etc., which are still
in the early stages of exploration. The dominant isosca-
lar modes have magnetic dipole (M1) structure and spin
and orbital current contributions. Orbital M1 strength is
related to the nuclear scissors mode which has been ob-
served by Bohle et al. (1984; see Iudice, 1997 for more
details). The most prominent isovector mode is the
Gamov-Teller spin-isospin resonance which is observed
in charge-exchange reactions (for reviews, see Gaarde
et al., 1981; Osterfeld, 1991, 1992). Most calculations dis-
cuss strength distibutions or simply the peak energies of
the corresponding giant resonances obtained in quasi-
particle RPA. Only models based on Skyrme interac-
tions have been used so far.

There are two possible choices for Eodd in the Skyrme
interaction (see Sec. II.A.2), which differ significantly
when modeling unnatural parity states. RPA calculations
using the two-body Skyrme force, Eq. (55), are reported
by Auerbach and Klein (1984), Hamamoto (1999),
Hamamoto and Sagawa (2000), and Suzuki and Sagawa
(2000) for M1 strength and by Colo et al. (1994), Hama-
moto and Sagawa (1993), Van Giai and Sagawa (1981),
Sagawa et al. (1995), and Suzuki and Sagawa (2000) for
Gamov-Teller resonances (though the calculations are
not always done in a fully self-consistent way; see,
Bender, Dobaczewski, et al., 2002). One finds a large
scattering of predictions among the various Skyrme in-
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teractions; some parametrizations are even unstable
with respect to certain spin-excitation modes. This led to
the parametrization SGII of Van Giai and Sagawa
(1981) tailored for this particular purpose. To under-
stand this deficiency of Skyrme interactions, one has to
remember that the dominant contribution from the re-
sidual interaction (see Sec. III.C.2) to unnatural parity
states stems from the time-odd part Eodd of the effective
interaction, Eq. (49). Within the two-body Skyrme force
framework, the coupling constants of the time-odd
terms determined from Eq. (55) are a function of the
time-even ones [see also Eq. (A1)]. The resulting depen-
dence of Eodd on Eeven imposes, for example, a relation
between Gamov-Teller properties and the isobaric ana-
log state discussed by Colo et al. (1994, 1995). It seems
that Eq. (55) does not offer enough versatility to de-
scribe the usual bulk properties and the Gamov-Teller
response data at the same time. Furthermore, the usual
fitting strategies do not constrain Eodd as it does not con-
tribute to the ground states of even-even nuclei and
gives a small correction only when calculating odd-A
nuclei or rotating nuclei (see Secs. II.A.2, VI.B.1, and
VI.F.1). Excitation modes with unnatural parity deliver
the only available data that are dominated by Eodd . The
energy-functional framework for the Skyrme interaction
offers the freedom to adjust Eodd to M1 or Gamov-Teller
data without affecting Eeven . When constructing a time-
odd Skyrme energy functional for Gamov-Teller studies,
the simplest approach is to use only the isovector spin-
spin term Eodd;s1t3

2 (note that only the off-diagonal t3

561 terms contribute here). This is equivalent to a
Landau-Migdal s-wave interaction with strength g08
(Bertsch, 1981). An attempt to adjust all the relevant
parameters of the time-odd Skyrme energy functional to
Gamov-Teller response data was undertaken by Bender,
Dobaczewski, et al. (2002), who found that the available
data do not uniquely determine all coupling constants.

Nothing is known about the performance of those
mean-field models that do not have any freedom in their
time-odd part, i.e., the Gogny force or the standard rela-
tivistic mean field (in the standard Lagrangian there are
neither mesons nor couplings nor exchange terms which
directly access the spin distribution).

Some applications use an even simpler separable sche-
matic residual interaction, e.g., v5kGT ŝ•ŝ8 t̂• t̂8 for
Gamov-Teller studies. The coupling constant kGT has to
be a function of A . Examples are the study of M1 reso-
nances by Sarriguren et al. (1997) and the Gamov-Teller
and b-decay studies of deformed nuclei by Sarriguren
et al. (2001). Although in both cases the coupling con-
stant k is estimated from the Landau parameters of the
two-body Skyrme force, the quality of this approxima-
tion to a fully self-consistent calculation is unclear. This
is because the schematic interaction thus obtained is not
equivalent to the Landau interaction (Gaarde et al.,
1981), nor is the Landau interaction in infinite nuclear
matter equivalent to the original Skyrme interaction in
finite nuclei (Bender, Dobaczewski, et al., 2002).

It is to be noted that for a complete description of
Gamov-Teller properties the strength distribution re-
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quires us to take into account intrinsic degrees of free-
dom of the nucleon (see Sagawa and Van Giai, 1982) for
a generalized model including D-hole excitations (see
also Towner, 1987).

The low-energy tail of the Gamov-Teller strength dis-
tribution is explored by b2 decay. The key observable
here is the decay rate, which is computed from the ma-
trix element of ŝt̂ augmented by a kinematic factor for
the outgoing (e2, n̄e) pair, which is very sensitive to the
energy release Qb . The modeling of b decay is compli-
cated by the fact that proton-neutron T50 pairing also
contributes. The T50 pairing interaction redistributes
the low-energy tail of the Gamov-Teller strength distri-
bution (therefore it can be safely neglected in Gamov-
Teller resonance studies) that determines the b transi-
tion rates. Owing to the lack of other data, the T50
pairing strength is fitted to b-decay data and so intro-
duces an adjustable parameter into the modeling. Very
few calculations consider proton-neutron pairing, as
does the b2-decay calculation of Borzov et al. (1996) for
nuclei around 132Sn based on the Fayans energy func-
tional, using a phenomenological spin-spin residual in-
teraction, or the study of neutron-rich nuclei by Engel
et al. (1999) in which the same Skyrme force SkO’ is
used everywhere for the particle-hole channel. Typical
results are shown in Fig. 24. Including T50 pairing
shortens half-lives by a factor of 2 to 5 times that of
models without T50 pairing. The shorter half-lives alter
predictions for the abundance distribution of r-process
elements and for the time it takes to synthesize them.

VII. CONCLUSIONS AND OUTLOOK

We have reviewed self-consistent models for nuclear
structure and low-energy excitations. The formal basis is
in every case the Hartree-Fock-Bogoliubov scheme. The
actual models differ in their ansatz for parametrizing the
effective forces or the energy-density functionals. The
three most widely used forms have been considered: the
Gogny force, the Skyrme energy functional, and the

FIG. 24. Predictions for the half-lives of closed neutron-shell
nuclei along the r-process path from quasiparticle RPA calcu-
lations. h, HFB1SkO’ results are shown with T50 pairing; * ,
(HFB1SkO’,V050) without T50 pairing. Data taken from
Engel et al. (1999) and Martı́nez-Pinedo and Langanke (1999)
(shell model).
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relativistic mean-field model. In each case parametriza-
tions exist which provide an excellent description of
nuclear bulk properties. More than that, one can also
accommodate very well excitation properties such as fis-
sion, vibrational states, rotations, and various giant reso-
nances. Of course, differences in performance show up
when looking at more subtle observables and when ex-
trapolating far into the realm of exotic nuclei. This
points to weaknesses in the existing models. At the same
time, it provides interesting and helpful hints for further
developments and a deeper understanding of the mod-
els. Thus the assessment is mixed. On the one hand,
self-consistent mean-field models have reached a high
descriptive and predictive power in many respects. On
the other hand, there are many open problems calling
for further investigation. Probably the most important
next step is a proper and highly efficient inclusion of
ground-state correlations. The precision of the mean-
field description has reached such a high level that cor-
relation effects can no longer be neglected. On the other
hand, thanks to experimental progress related to the
construction of exotic-beam facilities, many new data on
nuclei far from stability should be available. They will
constitute a great challenge for self-consistent mean-
field methods and should allow us to specify more pre-
cisely the key ingredient of these models: the effective
interaction.
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APPENDIX A: ENERGY-DENSITY FUNCTIONAL FROM
THE TWO-BODY SKYRME FORCE

Calculating the Hartree-Fock expectation value
^HFuv̂SkuHF& of the standard Skyrme force [Eq. (56)]
yields the energy functionals (48) and (49) with coupling
constants given by

C0
r5 3

8 t01 3
48 t3 r0

a , (A1)
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C1
r52 1

4 t0~ 1
2 1x0!2 1

24 t3~ 1
2 1x3! r0

a ,

C0
s 52 1

4 t0~ 1
2 2x0!2 1

24 t3~ 1
2 2x3! r0

a ,

C1
s 52 1

8 t02 1
48 t3 r0

a ,

C0
t5 3

16 t11 1
4 t2~ 5

4 1x2!,

C1
t52 1

8 t1~ 1
2 1x1!1 1

8 t2~ 1
2 1x2!,

C0
sT5hJ @2 1

8 t1~ 1
2 2x1!1 1

8 t2~ 1
2 1x2!# ,

C1
sT5hJ~2 1

16 t11 1
16 t2!,

C0
Dr52 9

64 t11 1
16 t2~ 5

4 1x2!,

C1
Dr5 3

32 t1~ 1
2 1x1!1 1

32 t2~ 1
2 1x2!,

C0
Ds5 3

32 t1~ 1
2 2x1!1 1

32 t2~ 1
2 1x2!,

C1
Ds5 3

64 t11 1
64 t2 ,

C0
¹J52 3

4 W0 ,

C1
¹J52 1

4 W0 ,

C0
¹s50,

C1
¹s50,

nine of which are independent. Although in this ap-
proach hJ51, many parametrizations of the Skyrme in-
teraction set hJ50. For generalized Skyrme forces with
more involved density dependencies, see the references
on density dependence cited in Sec. II.A.2. For interac-
tions with generalized spin-orbit interaction one obtains

C0
¹J52b42 1

2 b48 , C1
¹J52 1

2 b48 , (A2)

using the notation introduced by Reinhard and Flocard
(1995). In the energy-density functional approach, one
has additionally CT

s , CT
sT52CT

J , CDs, and C¹s as inde-
pendent coupling constants.

APPENDIX B: THE NUCLEON FORM FACTOR

The computation of the charge density following Eq.
(105) requires a folding with the intrinsic nucleon form
factors. These are taken from electron scattering on pro-
tons and deuterons. They are given as the so-called
Sachs form factors for isospin 0 and 1 in the form of a
dipole fit (Simon et al., 1980),
TABLE VI. The coefficients of the isospin-coupled Sachs form factors of the nucleons, Eq. (B1). The
bs ,n are given in units of fm22. The magnetic form factors are taken from Simon et al. (1980), the
electric form factors from Walther (1986).

S as ,1 as ,2 as ,3 as ,4 bs ,1 bs ,2 bs ,3 bs ,4

E ,I50 2.2907 20.6777 20.7923 0.1793 15.75 26.68 41.04 134.2
E ,I51 0.3681 1.2263 20.6316 0.0372 5.00 15.02 44.08 154.2

M 0.6940 0.7190 20.4180 0.0050 8.50 15.02 44.08 355.4
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Gs5 (
n51

4 as ,n

11k2/bs ,n

, (B1)

for sP$(E ,I50),(E ,I51),M%. The actual coefficients
are displayed in Table VI. The isospin-coupled form fac-
tors are recoupled for our purposes to proton and neu-
tron form factors, and the relativistic Darwin correction
(see, for example, Bjorken and Drell, 1964; Friar and
Negele, 1975) has to be added, finally yielding

GE ,q5
1
2

~GE ,I506GE ,I51!S 11
\2k2

2mq
D 21/2

. (B2)

Note that the nucleon structure is taken into account
only approximately because we are folding with the free
form factors of the nucleons, thus neglecting medium
effects and the off-shell effects of the nucleon.

The charge density rch(r) is finally obtained from the
charge form factor by the Fourier back transformation.
But all other information is usually drawn directly from
the form factor.

A similar procedure applies for the relativistic mean-
field method. The relativistic Darwin corrections is, of
course, not needed. And the spin-orbit densities are
computed from the tensor densities ¹•(nvn

2 c̄nŝcn . For
details see Reinhard (1989).
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Åberg, S., H. Flocard, and W. Nazarewicz, 1990, Annu. Rev.
Nucl. Part. Sci. 40, 439.
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Kerman, 1974, Nucl. Phys. A 231, 176.



176 Bender, Heenen, and Reinhard: Self-consistent mean-field models
Friar, J. L., and J. W. Negele, 1975, Adv. Nucl. Phys. 8, 219.
Friedmann, B., and V. R. Pandharipande, 1981, Nucl. Phys. A

361, 502.
Friedrich, J., and P.-G Reinhard, 1986, Phys. Rev. C 33, 335.
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Kutschera, M., and W. Wójcik, 1994, Phys. Lett. B 325, 172.
Lalazissis, G. A., J. König, and P. Ring, 1997, Phys. Rev. C 55,

540.
Lalazissis, G. A., S. Raman, and P. Ring, 1999, At. Data Nucl.

Data Tables 70, 1.
Lalazissis, G. A., M. M. Sharma, J. König, and P. Ring, 1994, in

International Conference on Nuclear Shapes and Nuclear
Structure at Low Excitation Energies, Antibes (France),
edited by M. Vergnes, D. Goutte, P.-H. Heenen, and J. Sau-
vage (Editions Frontieres, Gif-sur-Yvette Cedex, France), p.
161.

Lalazissis, G. A., D. Vretenar, W. Pöschl, and P. Ring, 1998a,
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