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This paper reviews progress on the fractional quantum Hall effect (FQHE) based on what we term
Hamiltonian theories, i.e., theories that proceed from the microscopic electronic Hamiltonian to the
final solution via a sequence of transformations and approximations, in either the Hamiltonian or
path-integral approach, as compared with theories based on exact diagonalization or trial wave
functions. The authors focus on the Chern-Simons approach, in which electrons are converted to
Chern-Simons fermions or bosons that carry along flux tubes, and on their own extended Hamiltonian
theory, in which electrons are paired with pseudovortices to form composite fermions whose
properties are a lot closer to the ultimate low-energy quasiparticles. The article addresses a variety of
qualitative and quantitative questions: In what sense do electrons really bind to vortices? What is the
internal structure of the composite fermion and what does it mean? What exactly is the dipole picture?
What degree of freedom carries the Hall current when the quasiparticles are localized or neutral or
both? How exactly is the kinetic energy quenched in the lowest Landau level and resurrected by
interactions? How well does the composite-fermion picture work at and near n51/2? Is the system
compressible at n51/2? If so, how can composite fermions be dipolar at n51/2 and still be
compressible? How is compressibility demonstrated experimentally? How does the charge of the
excitation get renormalized from that of the electron to that of the composite fermion in an operator
treatment? Why do composite fermions sometimes appear to be free when they are not? How does
one compute (approximate) transport gaps, zero-temperature magnetic transitions, the
temperature-dependent polarizations of gapped and gapless states, the NMR relaxation rate 1/T1 in
gapless states, and gaps in inhomogeneous states? It is seen that though the Chern-Simons and
extended Hamiltonian approaches agree whenever a comparison is possible, results that are
transparent in one approach are typically opaque in the other, making them truly complementary.
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I. INTRODUCTION

Twenty years ago, von Klitzing, Dorda, and Pepper
(1980) made the first discovery in what has proved to be
a vital and exciting subfield of condensed-matter physics
to the present day, that of the quantum Hall effects.
Their discovery that the Hall conductance sxy of a two-
dimensional electron gas is quantized at integer mul-
tiples of e2/2p\ , the quantum unit of conductance, is
known as the integer quantum Hall effect (IQHE). Soon
after, Tsui, Störmer, and Gossard (1982) discovered the
even more puzzling fractional quantum Hall effect
(FQHE). Since the first observation of the fraction 1

3,
many more have been seen (see, for example, Störmer,
Tsui, and Gossard, 1999).

This review focuses on what we term the Hamiltonian
theories of the FQHE, by which we mean theoretical
approaches that begin with the microscopic Hamiltonian
for interacting electrons and try to obtain a satisfactory
description of the underlying physics through a sequence
of transformations and approximations in the operator
or path-integral formalism. We bother to give a special
name to what appears to be business as usual because an
alternate approach, pioneered by Laughlin (1983a,
1983b) and based on writing trial wave functions, has
proven so extraordinarily successful. While we shall of
course discuss the wave-function approach here because
the Hamiltonian approach is inspired by it, the discus-
sion (of this and any other topic) will be aimed at serv-
ing our primary goal: Providing a cogent and critical de-
scription of the Hamiltonian approach in one place,
including all the hindsight and insight that the interven-
ing years have provided. Of necessity, many topics will
have to be omitted or treated summarily. Fortunately
many excellent reviews exist1 and the reader is directed
to them.

1The earliest comprehensive introduction to the full range of
the quantum Hall effects is that of Prange and Girvin (1990).
Huckestein (1995) concentrates on the integer quantum Hall
effect. A more recent comprehensive review is that of Das
Sarma and Pinczuk (1997), while a more focused treatment of
the enormous body of research on composite fermions is pre-
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
The Hamiltonian theories described here address
both qualitative and quantitative issues. They give a con-
crete operator realization of many heuristic pictures that
have been espoused and they make precise under what
conditions and in what sense these pictures are valid.
They allow one to compute (within reasonable approxi-
mations) a large number of quantities at zero and non-
zero temperatures at equal and unequal times. They
open the door for a treatment of disorder.

The Hamiltonian theories themselves fall into two cat-
egories. The first, which we call the Chern-Simons ap-
proach, consists of making a singular gauge transforma-
tion on the electronic wave function that leads to a
composite particle, which is the union of an electron and
some number of point flux tubes. Composite particles
have a nondegenerate ground state at mean-field level.
They are coupled to a gauge field that is fully deter-
mined by the particle coordinates. This formalism is best
suited for computation of a variety of response func-
tions. It is particularly effective at n51/2, where adher-
ence to gauge invariance is of paramount importance if
certain low-energy phenomena pertaining to the over-
damped mode, coupling to surface acoustic waves, or
compressibility are to be properly described. However,
composite particles do not exhibit in any transparent
way the quasiparticle properties (such as charge e* or
effective mass m* ) deduced from trial wave functions,
though in principle they would surface after consider-
able work. It is also very hard to obtain a smooth limit as
the electron mass m→0 in this approach. The extended
Hamiltonian theory (EHT), which we have developed
over the years, addresses some of these issues.2 By the
adjective extended we signify both that our work is an
extension of older Chern-Simons work and that our
Hamiltonian is defined in an extended or enlarged Hil-
bert space with additional degrees of freedom. The en-
larged space allows us to introduce a quasiparticle that is
a much better approximation to what we expect, to eas-
ily disentangle low-energy (lowest-Landau-level) and
high-energy physics, to compute a variety of gaps and
finite temperature properties, to describe inhomoge-
neous states, and so on. However, the proper treatment
of the additional degrees of freedom is very difficult to
ensure in the computation of certain very-low-energy
quantities. Both the nonzero compressibility and an
overdamped mode at n51/2 (and its experimental con-
sequences) are all but invisible in this approach, though
they can be extracted with some effort. No contradic-
tions exist between the predictions of the Chern-Simons
and extended Hamiltonian approaches, which by and
large tend to make predictions in complementary re-
gions. Their predictions can be shown to agree in over-
lapping regions, but only with some effort.

sented by Heinonen (1998).
2We used to refer to this as THE Hamiltonian formalism, but

were persuaded to consider a name change that better re-
flected the state of affairs. Our compliance could not have
been more total—the new acronym is the exact reverse of the
old one.
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A. The experiment

Figure 1 shows in schematic form the experiment in a
rectangular geometry, with the current jx , magnetic field
Bz , and electric field Ey in mutually perpendicular di-
rections. By definition

jx5sxyEy . (1)

If we multiply both sides by the width of the sample we
obtain

Ix5sxyVy (2)

as the relation between current and voltage, reminding
us that in this d52 problem the Hall conductance and
conductivity are the same.3

Let us ask what one expects for sxy based on the
simplest ideas, so as to place the experimental discover-
ies in perspective. Let us ignore interactions and disor-
der. We can then assert that, in the steady state, the
electric and magnetic forces balance,

eE5evB , (3)

where e is the charge of the electrons and v is their
velocity. (Vector indices are omitted when obvious.)
Therefore

j5nev5
neE

B
, (4)

where n is the number density. Thus

sxy5
ne

B
. (5)

This result is unaffected by interactions and relies only
on Galilean invariance (relativity). To see this, let us
perform a boost to a frame in which the electric field (to
leading order in v/c)

E85E2v3B (6)

vanishes, that is, to a frame with v5E/B . In this frame
j50. Boosting back to the lab frame we obtain j
5neE/B and regain Eq. (5).

3The longitudinal conductance and conductivity are related
by the (aspect) ratio of length to width.

FIG. 1. A schematic of the Hall experiment in a rectangular
geometry.
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Figure 2 is a sketch of what is measured at T50 in the
thermodynamic limit. The key feature is that sxy , in-
stead of varying linearly with ne/B , is quantized at steps
or plateaus. This article focuses on steps given by

sxy5
e2

2p\
n , (7)

where

n5
p

2ps11
, p51,2, s50,1,2, . . . . (8)

The IQHE corresponds to s50, n5p , while the FQHE
refers4 to s.0. We explicitly display the \, which will
soon be set equal to unity.

On each step the longitudinal conductances vanish.
Thus the conductivity tensor assumes the form

s ij5
e2

2p\ S 0 n

2n 0 D . (9)

Consequently the diagonal part of the resistivity tensor
is also zero and the transport is dissipationless. In the
real world, due to nonzero temperature T and finite
sample size, the transitions between steps acquire a fi-
nite width, with sxx.0 therein.

Why is the quantization of conductance so surprising,
given that we have seen so many instances of quantiza-
tion of observables before? The answer is that the ob-
servable in this case does not refer to an atom or mol-
ecule, but to a macroscopic sample, with sample-specific
disorder. The role of disorder is truly paradoxical in the
quantum Hall effect: on the one hand, without disorder,
we cannot escape the Galilean-invariant relation sxy
5ne/B ; on the other hand, despite disorder (which
surely varies from sample to sample), the conductance in
any step is constant to better than a few parts in 1010. A
fairly detailed explanation of this now exists and will be
presented below. An integral part of this resolution is
also the explanation for why sxx50, for it is basic to an
understanding of why sxy is so well quantized even

4Fractions with denominator 2ps21 require only minor
modifications and are left as an exercise for the reader.

FIG. 2. A schematic of the measured Hall conductance at zero
temperature. The straight line is the Galilean invariant result
(valid when no disorder is present), while the steps describe
the data.
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though the leads used to measure Vy may not be per-
fectly aligned—there will be no unwanted contributions
from the longitudinal voltage drop.

B. What is special about the steps?

In searching for the physics underlying any one step
or plateau, it makes sense to begin with the points where
the straight line (the Galilean-invariant result) inter-
cepts the steps. Not only are these points singled out by
experiment, but they also have a Hall conductance that
we could hope to understand without including
disorder.5

At these points we have

ne

B
5

e2

2p\

p

2ps11
, (10)

which we rewrite as

B

n~2p\/e !
52s1

1
p

. (11)

Thus the ratio of B , the flux density, and n , the particle
density, has some special rational values at these points.
For example, in the case of the fraction 1/3, there are
three quanta of flux per electron.

To understand what is so special about these values,
recall the following textbook results (Shankar, 1994)
about a single particle of mass m and charge e moving in
two dimensions in a perpendicular magnetic field.

• The energy is quantized into Landau levels located at
E5(e\B/m)(n1 1/2)[\v0(n1 1/2), where v0 is
called the cyclotron frequency.

• Each Landau level has a degeneracy equal to F/F0 ,
the flux in units of the flux quantum F052p\/e , or

Degeneracy per unit area of each Landau level

5
B

~2p\/e !
. (12)

• The wave functions of the lowest Landau level (LLL)
are, in the symmetric gauge,

cLLL5zme2uzu2/4l2
, z5x1iy , m50,1, . . . , (13)

where l5A\/eB is the magnetic length. We shall often
drop the Gaussian factor in LLL wave functions.
Higher Landau-level wave functions depend on both
z and z̄ .

• Thus Eqs. (11) and (12) imply that at the special
points

5In the absence of disorder any state would have the desired
Hall conductance. We are looking for a nontrivial correlated
state that is robust under the inclusion of disorder and capable
of dominating the plateau to which it belongs.
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
Number of states in a Landau level
Number of particles

5
Flux quanta

particles
5

B

n~2p\/e !
52s1

1
p

5n21. (14)

Note that n, which stood for the dimensionless conduc-
tance, is thus the number of occupied Landau levels. It is
called the filling factor. In the FQHE n is a fraction,
restricted in this article to be ,1/2 unless otherwise
mentioned.

If n,1, there are more LLL states than particles, and
in the noninteracting limit they can all be fit into the
lowest Landau level with room to spare. For example, at
n5 1/3, there are three LLL states per electron. This
macroscopic degeneracy in the noninteracting ground
state means that we cannot even get started with a per-
turbative treatment of disorder and interactions. This is
the central problem. While this problem exists for any n
that is not an integer, experiments suggest that n2152s
1 1/p is somehow preferred by Nature. Indeed, at such
points there is a way out, but it is not simple perturba-
tion theory. This approach is what this article is all
about.

An alternative to perturbation theory, the Hartree-
Fock approximation, also does not work if applied di-
rectly to the electronic Hamiltonian. Let us see why. In
Hartree-Fock one takes the interaction (quartic in fer-
mion operators) and obtains an expression quadratic in
the fermion operators by replacing various bilinears by
their ground-state averages, initially taken as free pa-
rameters, and dropping some higher-order fluctuations.
The quadratic Hamiltonian is then solved and the
ground-state energy is then minimized as a function of
the assumed averages. At the minimum, the actual aver-
ages will self-consistently come out equal to the assumed
averages. Here is a toy model that illustrates the main
ideas. The model has just two fermion operators c and
d :

H5«cc†c1«dd†d1u0c†cd†d . (15)

Let us separate out the bilinears into averages ^c†c&
5lc and ^d†d&5ld and fluctuating parts :c†c : and
:d†d : ,

c†c5 :c†c :1^c†c&[ :c†c :1lc , (16)

d†d5 :d†d :1^d†d&[ :d†d :1ld . (17)

We now rewrite H as

H5«cc†c1«dd†d1u0@ldc†c1lcd†d2lcld

1 :c†c : :d†d :# (18)

and neglect the last term, quadratic in the fluctuations,
to obtain the Hartree-Fock Hamiltonian.

Let E0(lc ,ld) be the energy of the ground state u0& of
the Hartree-Fock Hamiltonian. From the Feynman-
Hellman theorem

]E0
5 K 0U ]H U0 L , (19)
]l ]l
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which can be proven using the fact that ^0u0&51 has no
l derivative. It follows that, at the minimum, lc5^c†c&
and ld5^d†d& .

Why does this fail in the FQHE problem? For integer
filling this procedure gives the expected state of an inte-
ger number of Landau levels filled (at least for not-too-
strong interactions). However, it turns out that for ge-
neric fractional filling translational symmetry is
spontaneously broken in Hartree-Fock, and the solution
corresponds to a crystalline (usually a Wigner crystal)
state. Due to the breaking of translational symmetry, the
Landau level and angular momentum indices (n ,m) are
no longer good quantum numbers. The single-particle
states are now bands in the crystal, parametrized by a
Bloch quasimomentum k and a band index nb . The
Hartree-Fock Hamiltonian for the FQHE will be of the
form H5(nbk«nb

(k)cnb

† (k)cnb
(k) up to c-number terms

(the analogs of lcla). The self-consistent solutions were
worked out by Yoshioka and Fukuyama (1979), Fuku-
yama and Platzman (1982), and Yoshioka and Lee
(1983). The Hartree-Fock solution is compressible, is
translationally noninvariant, and has no preference for
any particular density. Thus it does not describe the
FQHE phenomenology.

C. The integer quantum Hall effect—A warmup

We begin with a brief look at the IQHE case s50, or
n5p , which paves the way for Jain’s (1989) view of the
FQHE as the IQHE of entities called composite fermi-
ons.

In the IQHE, exactly p Landau levels are filled in the
noninteracting limit. There is exactly one totally anti-
symmetric ground state, which we denote by xp . The
simplest example is p51, with just the lowest Landau
level filled up. The corresponding wave function is

x15DetUz1
0 z1

1 z1
2

••••

z2
0 z2

1 z2
2

¯

] ] ] ]

U •Gaussian

5)
i,j

~zi2zj!expF2(
i

uziu2

4l2 G . (20)

This nondegenerate ground state is separated from
excited states by a gap equal to the cyclotron energy v0 .
Though now we have a starting point for perturbation
theory, we still need to actually carry out the perturba-
tive calculations and in particular understand why the
Hall conductance is unaffected by these perturbations
and stays at the Galilean-invariant value. We also need
to understand why the conductance is unchanged as we
make small changes in density, i.e., why there are steps.

The explanation of the IQHE, discovered over the
years, can be most easily understood in the noninteract-
ing limit. The single-electron problem with certain spe-
cial types of disorder can be exactly solved (Aoki and
Ando, 1981; Prange, 1981; Prange and Joynt, 1982), and
the exact solution shows that the Hall current is inde-
pendent of disorder. Moving beyond this, Trugman
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
(1983) showed in a seminal paper that for generic disor-
der in very high magnetic fields the electronic states fol-
low the equipotentials of the disorder potential, and
each Landau level gets broadened into a band. The
problem has many fruitful analogies with percolation. In
particular, there is exactly one energy at the band center
at which extended states can exist, while states at all
other energies are localized. When the chemical poten-
tial m crosses this energy, the Hall conductance changes
by an integer. Contrariwise, when m lies in an energy
range corresponding to localized states, changes of m
(changes of filling) produce no change in sxy , which
explains the steps.

From a somewhat different point of view, Laughlin
(1981) and Halperin (1982) showed by a gauge argu-
ment that in order to have a quantized Hall conductance
in the noninteracting limit, all one needs is sxx50,
which is assured if the chemical potential lies in the re-
gion of localized states. This argument shows that the
Hall conductance (in units of the quantum unit of con-
ductance e2/2p\) is a topological integer. There is also a
field-theoretic analysis of the noninteracting quantum
Hall problem in the presence of disorder that yields
similar results (Levine, Libby, and Pruisken, 1983, 1984a,
1984b, 1984c; Pruisken, 1984, 1985a, 1985b).

The IQHE can also be understood in the other limit,
where interactions dominate, as follows: In this case if
one is not exactly at n5integer, the excess (or deficit) of
particles form a Wigner crystal due to interactions. One
turns off the interactions and imposes an external peri-
odic potential of the same period as the Wigner crystal.
In this case Thouless et al. (1982) showed that the di-
mensionless Hall conductance has to be an integer and
that this integer is topological. Later work by Thouless
(1983), Niu and Thouless (1984), and Niu, Thouless, and
Wu (1985) showed that, since this integer is topological,
it is robust to the adiabatical introduction of disorder
and interactions. As long as the charge gap does not
close and there are no ground-state transitions, the Hall
conductance will remain unchanged.6 This allows one to
turn off the external periodic potential as the interac-
tions are being turned on. For further details on the
IQHE the reader is referred to an excellent review by
Huckestein (1995).

D. The fractional Quantum Hall effect

We turn now to fractions, such as 1/3. There is nothing
special about disordered single-particle states at such a
filling: They are expected to be localized except right
near the middle of the Landau band (Trugman, 1983). If
we ignore disorder and interactions, we are left with the
macroscopically degenerate manifold of many-body
states. Presumably interactions will select the ground
state. How is one to find it?

6By definition, an integer cannot change continuously.
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Here the story branches into two trails. The one
blazed by Laughlin (1983a, 1983b) consists of writing
down inspired trial wave functions; the other is the
Hamiltonian approach, which starts with an assault on
the degeneracy problem.

1. Laughlin’s answer

After some experimentation, Laughlin wrote down
the following celebrated trial wave function for n
51/(2s11):

C1/(2s11)5)
j,i

~zi2zj!
2s11 expS 2(

i
uziu2/4l2D ,

(21)

which was shown to have nearly unit overlap with the
numerical solution for small systems for generic repul-
sive interactions (Laughlin, 1983a, 1983b, 1990). We
shall refer to n51/(2s11) as Laughlin fractions, as per
convention.

Of the many remarkable properties of this function,
we list those that have the greatest bearing on what fol-
lows. First, it is from the lowest Landau level and obeys
the Pauli principle under particle exchange, since 2s
11 is odd and spin is assumed polarized. Halperin
(1983, 1984) zeroed in on one of its central features: it
has no wasted zeros, by which he meant the following:
Consider c(z1), which is C(z1 ,. . . ,zN) as a function of
any one variable, randomly chosen to be z1 , with all
others held fixed.7 Given that the sample is penetrated
by N/n5N(2s11) quanta of flux, the phase of c(z1)
has to have an Aharonov-Bohm phase change of
2pN(2s11) per particle, or N(2s11) zeros given the
LLL condition of analyticity. Only N of these had to lie
on other electrons by the Pauli principle. But they all do
lie on other electrons, thereby keeping the electrons
away from each other very effectively, producing a low
potential energy. (The kinetic energy is of course the
same for any function in the lowest Landau level.)

By showing that quantum averages in these ground
states are precisely statistical averages in a one-
component plasma (Baus and Hansen, 1980; Caillol
et al., 1982), Laughlin (1983a, 1983b) showed that the
system is an incompressible fluid, which means a fluid
that abhors density changes. Unlike a Fermi gas, which
increases or decreases its density globally when com-
pressed or decompressed, an incompressible fluid is
wedded to a certain density and will first show no re-
sponse to any applied pressure, and then suddenly
nucleate a localized region of different density (just the
way a type-II superconductor, in which a magnetic field
is not welcome, will allow it to enter in quantized units
in a region that turns normal).

Laughlin (1983a, 1983b) also provided the wave func-
tion for a state with such a localized charge deficit. If
one imagines inserting a tiny solenoid at a point z0 and
slowly increasing the flux to one quantum, one must, by

7The discussion is independent of this choice.
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gauge invariance, return to an eigenstate of H , and each
particle must undergo a 2p phase shift as it goes around
z0 .8 This condition and analyticity point to the ansatz

Cqh5)
i

~zi2z0!C2s11 . (22)

This is a quasihole. There is a more complicated state
with a quasiparticle.

The prefactor is a vortex at z0 . Since vortices play a
significant role in the FQHE, let us digress to under-
stand them better. Consider first a real flux tube inserted
into the sample at a point z0 . Clearly every electron will
‘‘see’’ this tube at z0 , i.e., c(z1), the wave function, seen
as a function of any one coordinate, chosen to be z1 ,
will see a 2p phase shift as z1 goes around z0 . The flux
tube clearly has a reality and location of its own, inde-
pendent of the locations of the electrons. The vortex is
an analytic LLL version of the flux tube: the 2p phase
change is accompanied by a zero, i.e., there is an analytic
zero at z0 for every coordinate. The zeros associated
with the vortex have the key feature that their location
does not depend on the location of the particles, i.e., it
too has an independent reality and location like the flux
tube.

There are also vortices in Laughlin’s ground-state
wave function. The only difference is that, instead of
sitting at some point z0 , they are anchored to the par-
ticles themselves. To see this, consider n5 1

3 and focus
on the part involving just z1 :

)
j.1

~zj2z1!3. (23)

If we freeze z1 and view it as a parameter like z0 , we see
that there is a triple vortex on particle 1 and, by symme-
try, each particle. Apart from the vortex mandated by
the Pauli principle, there are two vortices bound to each
electron. (The Pauli zero comes with the turf, for being a
fermion, and is not included in the count of vortices at-
tached to enforce correlations.) The term vortex is again
appropriate here, since the location of the vortex is in-
dependent of any coordinate except, of course, the elec-
tron to which it is attached.

Contrast the zeros that constitute a vortex to the zeros
of a generic antisymmetric analytic polynomial of the
same degree as the Laughlin wave function. Once again,
in c(z1), there is one zero at zi (i.1) independent of
all other zj by the Pauli principle. This zero is part of a
vortex, since all particles will ‘‘see’’ (in the wave func-
tions c) the Pauli zeros anchored on the other particles.
The non-Pauli zeros of c(z1), by contrast, will be para-
metric functions of all other particle coordinates i
52, . . . ,N (what else can they be?). If we now consider
c(z2), its non-Pauli zeros will in general bear no rela-

8The flux must be inserted slowly enough to prevent transi-
tions to other excited states, but fast enough to prevent a lapse
to the original ground state at the end, a possibility that exists
in finite systems with disorder.
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tion to those of c(z1). Since the location of the non-
Pauli zeros moves parametrically with all the z’s, they
do not belong to or form vortices. The reader must re-
member these distinctions in order to follow the discus-
sion on the internal structure of composite fermions that
follows shortly.9

Returning now to the quasihole, we note another im-
portant property, that it represents a charge deficit of
1/(2s11) in electronic units. One way to show this is to
employ the plasma analogy (Laughlin 1983a, 1983b,
1990). Here is a more general way (Su and Schrieffer,
1981; Su, 1984) that depends only on the state’s being
gapped, incompressible, and having a quantized Hall
conductance. As the flux quantum F0 is adiabatically
inserted to create the quasihole, the charge driven out to
infinity is given by integrating the radial current density
j produced by the Hall response to the induced azi-
muthal E field

Q52E j~r ,t !2prdt5sxyE E2pr dt

52sxyE dF

dt
dt52F0sxy (24)

52
2p\

e

e2

2p\
n52en . (25)

For non-Laughlin fractions, the charge driven out by in-
serting one flux quantum is that of p quasiparticles, each
of which has a charge equal to 1/(2ps11) (Su, 1984).
Note that the fractional sxy is the cause behind the frac-
tional charge. The fractional charge of the quasiparticles
has been confirmed experimentally (Goldman and Su,
1995; Goldman, 1996). The quasiparticles also have frac-
tional statistics, as was pointed out by Halperin (1984)
and explicitly confirmed in a wave-function calculation
by Arovas et al. (1985).10

The insensitivity of the Hall conductance to disorder
in the FQHE can be established by an extension of the
Laughlin-Halperin gauge arguments for the IQHE. To
show this in toroidal geometry, the old arguments have
to be supplemented by the fact that at fractions of the
form p/q , there are q ground states, and the assumption
that upon adding q flux quanta one returns to the start-
ing state. There seems to be a consensus that Hall con-
ductance is a ground-state property that is impervious to
a reasonable amount of disorder, very much the way
superfluidity is.

Laughlin (1983a, 1983b, 1990) explained the plateaus
as we move off the magic fraction as follows. Suppose

9If the Laughlin function is perturbed slightly, c(z1) will have
one Pauli zero on every other electron and two others nearby.
As long as the perturbation is small we can say, at length scales
bigger than the excursion of the zeros, that electrons are
bound to double vortices. For stronger perturbations that take
us far from the Laughlin ansatz, there will be no simple de-
scription of correlations in terms of vortices.

10Fractional statistics was shown to be an emergent property
of composite fermions by Goldhaber and Jain (1995).
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we move slightly off 1
3 , to, say, n5 1

3 60.01. The system
has two choices. It can either go to a FQHE ground
state at this fraction or it can be at 1

3 plus some number
of quasiparticles (quasiholes) of charge 6 1

3 . It turns out
that the latter has a lower energy. The reason sxy is
locked at 1

3 is that the quasiparticles/quasiholes, being
sharply defined entities, get localized by the disorder po-
tential and do not contribute to the Hall current. Thus
the Hall conductance is expected11 to be unaffected by
disorder. As we move further off 1

3 , the system switches
to another ground state with its own quasiparticles, and
sxy jumps to the neighboring plateau. It is clear that if
the fate of the quasiparticles/quasiholes is to get local-
ized, their fractional charge cannot explain the fractional
Hall conductance. As seen earlier, the connection is the
other way around.

Thus a fairly complete description of the FQHE
emerged from the Laughlin wave functions for the
ground and quasiparticle/quasihole states. However, nu-
merous other issues surfaced and were tackled by sub-
sequent work in the intervening two decades. We now
turn our attention to those bearing directly on this pa-
per.

Sticking for a moment to the Laughlin fractions, one
important question that was raised was whether the sys-
tem was really gapped, i.e., could there be lighter exci-
tations than Laughlin’s quasiparticles and quasiholes?
Perhaps a quasiparticle and quasihole could bind to
form a gapless excitation. Haldane and Rezayi (1985)
verified by exact diagonalization of small systems that
the n5 1

3 system was gapped. Girvin, MacDonald, and
Platzmann (1986) explored the question of neutral
particle-hole excitations using an analogy with Feyn-
man’s work on superfluids and found a way to calculate
the dispersion relations of the magnetoexciton within
the lowest Landau level and showed that they were
gapped in this sector for n5 1

3 .

2. Jain’s composite fermions

Let us now proceed to the non-Laughlin fractions.
Here the central question is this: Given that non-
Laughlin fractions like 2

5 are seen in experiment, what is
their wave function? Simply replacing the factors (zi
2zj)

2s11 by (zi2zj)
5/2 in Laughlin’s ansatz is not ac-

ceptable, since this does not produce the mandatory
change of sign under particle exchange. In the hierarchy
approach (Haldane, 1983; Halperin, 1983, 1984) the qua-
siparticles of the Laughlin states condense into their
own FQHE states, whose quasiparticles in turn do the
same thing, and so on. While this approach gives a natu-
ral way to generate additional fractions, it does not give
explicit wave functions in terms of electrons.

11There is currently no way of rigorously calculating transport
coefficients in the FQHE in the presence of disorder, hence the
qualifier ‘‘expected.’’
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Explicit trial states for fractions n5 p/(2ps11) were
provided by Jain (1989, 1990, 1994), who also explained
why they were natural in terms of objects called compos-
ite fermions.

Jain’s scheme is based on the seminal idea of flux at-
tachment, which plays such a central role in the FQHE
that it merits a little digression. It was introduced first by
Leinaas and Myrrheim (1977) in terms of wave func-
tions, and was explored in the language of Chern-
Simons field theories by Wilczek (1982a, 1982b). The
crux of the idea is that in d52 one can have particles
(dubbed anyons by Wilczek) that suffer a phase change
eiu upon exchange, with u50,p (mod 2p) correspond-
ing to bosons and fermions, respectively. To obtain one
of these particles one takes a fermion and drives a point
flux tube through its center, the amount of flux being
decided by the desired u. In particular, if this tube con-
tains an even/odd number of flux quanta, the composite
particle one gets is a fermion/boson.

Jain (1989, 1990) exploited flux attachment for n21

52s11/p as follows. Suppose we trade our electrons for
composite fermions carrying 2s point flux quanta point-
ing opposite to the external B . On average the compos-
ite fermions effectively see 1/p flux quanta per particle
and fill up exactly p Landau levels. At the mean-field
level, this approach gives the following trial wave func-
tion:

Cp/2ps115)
i,j

F ~zi2zj!

uzi2zju
G2s

•xp~z , z̄ !, (26)

where xp is the composite-fermion wave function with
p-filled Landau levels and the prefactor takes the
composite-fermion wave function back to the electronic
wave function. (This will be made clearer shortly.)

Jain improved this ansatz in two ways and proposed

cp/2ps115P)
i,j

~zi2zj!
2s
•xp~z , z̄ !, (27)

where

)
i,j

~zi2zj!
2s (28)

is called the Jastrow factor, and

P: z̄→2l2
]

]z
(29)

projects the wave function to the lowest Landau level by
eliminating all z̄’s in xp by turning them to z derivatives
on the rest of the wave function, except for the Gauss-
ian. (We shall see12 that in the lowest Landau level
@z , z̄#522l2.)

In making the change ) i,j@(zi2zj)/uzi2zju#2s

→) i,j(zi2zj)
2s, Jain replaces flux tubes by vortices.

Although in both cases each particle picks up an extra
phase shift of 4ps on going around another, only the

12For a nice review of states, operators, and matrix elements
within the lowest-Landau level, see Girvin and Jach (1984).
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vortex factor has the desirable multiple zero that keeps
the particles apart and lies in the lowest Landau level.
Jain does not need to justify these modifications, since in
writing a trial wave function, he is free to resort to any
changes that improve its energy. However, in the Hamil-
tonian approach, the replacement of flux tubes by vorti-
ces and the projection to the lowest Landau level prove
difficult but not insurmountable.

At p51, since x(z , z̄)5) i,j(zi2zj)•Gaussian, we do
not need P to get back Laughlin’s answer. For p.1 we
have concrete expressions for C in terms of electron
coordinates, although the action of P can be quite in-
volved and has a big impact on the wave function, as we
shall see.

Thus, while the degeneracy of the noninteracting
problem is present for any n,1, at the Jain fractions one
can beat it by thinking in terms of composite fermions.
As we move off the Jain fractions, the incremental com-
posite fermions (particles or holes) become localized,
giving rise to the plateaus. This is the sense in which the
composite-fermion approach allows one to think of the
FQHE as the IQHE of the composite fermions. Since
the IQHE can be understood without invoking interac-
tions, it is sometimes suggested that composite fermions
are free. Later we shall see why this cannot be so.

The reader will have noted that both Laughlin and
Jain wave functions make no reference to the interelec-
tron potential. This feature, which permits them to work
for a whole class of potentials, also renders them insen-
sitive to specific features, including even the range of the
interaction.

3. Vortices, zeros, and the dipole picture reexamined

Let us return to the vortices that are attached to elec-
trons in the Jastrow factor. We have already discussed
Halperin’s observation (Halperin, 1983, 1984) that elec-
trons are bound to vortices in the Laughlin wave func-
tion. This concept was taken up and vigorously pursued
by Read (1989). In particular, Read made a clear distinc-
tion between flux attachment and vortex attachment,
which were often loosely interchanged. Attaching elec-
trons to flux tubes is a mathematical trick; flux tubes are
unphysical and neutral. Vortices, however, are physical
excitations of the Laughlin ground states, and electrons
would naturally bind to them since the two are oppo-
sitely charged. The reason the composite fermion sees a
weaker field is not due to any mysterious capture of flux
tubes. Indeed, the external field is uniform and not
quantized into point flux tubes. What really happens in
the Laughlin case is that each electron pairs with 2s vor-
tices, and when the composite object goes around on a
loop, it sees a phase change of 22p(2s11) per en-
closed particle due to the external B and 2p(2s) per
enclosed composite fermion due to the vortices attached
to each one.

Next, since the 2s-fold vortex has a charge 22s/(2s
11) as per the flux insertion argument (Su, 1984), Eq.
(25), the vortices reduce e down to the quasiparticle or
composite fermion charge
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e* 512
2s

2s11
5

1
2s11

. (30)

In a Fermi liquid an added electron is also screened
by a correlation hole; here the difference is that the pos-
sible response of the Laughlin liquid to an extra electron
is limited to an integer number of vortices of quantized
charge.

Read (1994, 1996) next applied the notion of electrons
binding to vortices to the case n5 1

2 and derived what is
called the dipole picture. Let us consider this concept
more closely. Since the dipole picture comes from the
projection involved in the n5 1

2 wave function, it is in-
structive to start with an understanding of the impact of
P in a general Jain fraction where higher composite-
fermion Landau levels (p.1) are filled.

Consider N electrons at n5 2
5 . Prior to projection,

each electron in the Jain wave function has a double
vortex sitting on it due to the Jastrow factor. As we ex-
plained earlier, the term vortex is merited since every
other particle sees it at the same place. At this stage it is
correct to view the composite fermion as an electron
plus a double vortex.13 All this changes after projection
to the lowest Landau level. Now there can be only 5N/2
zeros of the wave function as a function of, say, z1 ; N of
them must lie on other electrons by the Pauli principle
(forming single vortices anchored to electrons), with
3N/2 left over. Clearly they cannot all be on electrons or
be associated with them uniquely (since we have 3/2 ze-
ros per electron). If the zeros are not on electrons, their
location must depend parametrically on the locations of
all the electrons, and they cannot organize themselves
into vortices.

Thus the wave-function analysis leaves us with the fol-
lowing quandary. The composite fermion cannot be
viewed as an electron-vortex complex in the projected
non-Laughlin states, but the quasiparticle charge, e*
512 2ps/(2ps11), is robust under P since e* is tied to
sxy , which is presumed robust under projection. What,
if any, is the entity that binds to the electron to bring e
down to e* ? How does this entity enter the theory?
What makes it bind to the electron? We shall see that
the extended Hamiltonian theory answers such ques-
tions.

Let us now return to n5 1
2 . In the unprojected wave

function the double-vortex charge fully cancels the elec-
tron charge so that e* 50. Read (1994) has argued that
the neutral composite fermion of momentum k has a
dipole moment d* 5kl2, based on the wave function at
n5 1

2 , also called the Rezayi-Read (Rezayi and Read,
1994) wave function, in which xp in Eq. (27) is replaced
by the filled Fermi sea:

C1/25P)
i,j

~zi2zj!
2Detueiki•rju. (31)

13There is also another zero, generally nonanalytic, in xp ,
which is antisymmetric. This is not part of the vortex count.
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Read considers

eik"r5exp S i

2
~kz̄1k̄z ! D , k5kx1iky . (32)

Since under the action of P, z̄ acts on the analytic part of
the wave function as 2l2]/]z , eil2k(]/]z) causes the shift
z→z1ikl2 in the Jastrow factor. This motion of the vor-
tex off the electron produces the dipole moment d*
5kl2. The energy needed to separate the vortex from
the electron (the Coulomb attraction) must begin with a
term quadratic in the separation or momentum. This
then gives the LLL fermions a kinetic energy or an ef-
fective mass m* resulting from interactions.

Attractive though this picture is, closer scrutiny re-
veals that the preceding line of reasoning is incorrect in
the following ways:

• Since every zi gets translated, (zi2zj)
2s→(zi2zj

1iki2ikj)
2s and particle i sees a multiple zero asso-

ciated with zj at zj1i(kj2ki). We cannot call this a
vortex since the location of the zero varies with the
label i . Different particles see it in different places.
This problem is actually moot because of the next,
more serious one.

• Even this multiple zero is there for one particular as-
signment of k’s, or one term in the determinant.
Upon antisymmetrization, we cannot relate the zeros
of the sum over the N! terms to the zeros of indi-
vidual terms. The situation would have been different
if we had been talking about poles, which can survive
such a sum. In fact, one of the two zeros that moved
off the particles (in each individual term) should re-
turn upon antisymmetrization to lie exactly on the
particles by Pauli’s principle, leaving another zero to
depend parametrically on all other coordinates, and
all the ki . Thus there is no reason to expect any
simple relation between the location of the electrons
and the non-Pauli zeros in C1/2 or to conclude that
these zeros form vortices. We commend to the reader
experimentation with the limited but nonetheless in-
structive case of just two particles, to see some of
these ideas in concrete form.

• If one looks at n5 1/2 in isolation, the fact that there
is one non-Pauli zero per electron (in the thermody-
namic limit) may tempt one to suggest that perhaps in
this case they organize themselves into vortices. In ad-
dition to our analysis of the gapped fractions, which
shows that this is extremely unlikely, there is the gen-
eral argument that zeros that do not lie on particles or
external flux tubes (i.e., locations with an independent
reality) must vary parametrically with all coordinates
and therefore cannot be organized into vortices.

Thus at n5 1/2 there seem to be two choices: Either
use the unprojected wave function in which the Jastrow
factor explicitly has two vortices per electron but the
dipole moment is zero (since the vortices are on the
electrons), or go to the lowest Landau levels, where the
vortices disintegrate into a smaller number of ordinary
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zeros, not correlated with the electrons in any simple
fashion. So what happens to the dipole?

Our extended Hamiltonian theory, which provides an
operator realization of the composite fermion, will show
that the dipole picture is more robust than the wave-
function-based arguments pointing to it. However, one
must look for it not in the wave function, but in opera-
tors and correlation functions. Even then, the value of
d* will be sensitive to the details of the wave function.
In this respect, it is quite unlike sxy , which is robust
under changes in the ground-state wave functions (in-
cluding projection to the lowest Landau level) and de-
pends only on the filling factor.

E. Hamiltonian approach

Let us begin by reviewing the challenges facing any
Hamiltonian theory. In the FQHE there is more than
enough room in the lowest Landau level for all the elec-
trons, leading to a macroscopic number of degenerate
ground states in the absence of interactions. This pre-
empts many of the standard approximations. It is ex-
pected that when interactions are turned on, there will
emerge from this degenerate manifold a unique ground
state, separated by a gap from other low-lying excited
states. While the true ground state and low-lying excita-
tions will of course contain an admixture of higher Lan-
dau levels, one expects that in the limit of bare mass
m→0, or v0→` , there will emerge a low-energy sector
spanned by LLL states. In other words, in the limit m
→0 a nonsingular low-energy theory must emerge. The
m-independent Laughlin wave functions for the ground
state, quasiparticles, and quasiholes illustrate this point.

If all memory of m is lost, the only energy scale is set
by the interactions. How is one to isolate the LLL phys-
ics, starting with the full Hilbert space? How is one to
battle the degeneracy of the noninteracting ground
state? How is one to get rid of the 1/m dependence of
the kinetic energy? These are problems for the Hamil-
tonian approach.

Next, there is one vestige of m dependence even in
the lowest Landau level, discovered by Simon, Stern,
and Halperin (1996): if the external field B varies slowly
in space, the zero-point energy eB/2m can no longer be
eliminated by redefinition of the zero. In fact, the par-
ticles behave as if they have a magnetic moment m*
5e/2m coupled to B . The theory must reproduce this
moment.14

We also do not want to ban higher Landau levels too
soon, since the Hall conductance necessarily involves
them.15 Finally, Kohn’s theorem (Kohn, 1961) assures us

14This magnetic moment is actually a compact way to de-
scribe an effect that is orbital in origin.

15The current operator goes as 1/m while sxy does not. The
1/m in the current is canceled by the energy denominator of
order v0 that comes from virtual transitions to the higher Lan-
dau levels. For a more detailed explanation, see Girvin, Mac-
Donald, and Platzman (1986) and Sondhi and Kivelson (1992).
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that despite interactions, the cyclotron mode at q50
must be at v05eB/m and it must saturate certain sum
rules at small q . The Hamiltonian theory must pass this
test: it must succeed in keeping the m dependence
where it belongs and exorcise it elsewhere.

The next set of issues concerns the quasiparticles, the
composite fermions. A heuristic picture that we saw aris-
ing from the unprojected wave functions is that the qua-
siparticles are composites of electrons and 2s vortices.
How is this actually realized in the Hamiltonian ap-
proach? After all, this is not analogous to the statement
that mesons are made of quarks and antiquarks, for un-
like antiquarks, which appear in the Hamiltonian, vorti-
ces do not. Vortices are not independent of electrons,
and to speak of them and electrons at the same time
surely paves the way for overcounting. In the non-
Laughlin cases, the issue is further complicated by the
fact that there are not enough zeros to form 2s vortices
per electron, and in any case the zeros are not organized
into vortices. Yet some object of the same charge as the
2s-fold vortex seems to bind with the electron since in
the end e gets reduced to e* . Somehow this object has
to enter the theory and give rise to the composite fer-
mion.

Other issues surround the composite fermion. How
strong are interactions between composite fermions?
Why do they sometimes appear to be free when we can
give persuasive arguments for why they cannot be? How
is disorder to be included?

Besides addressing these questions of principle, we
need answers for quantitative questions. For example,
what is the gap at n5 1/3? Very precise answers can be
given for such a question in the trial-wave-function
approach16 or by exact diagonalization.17 While these re-
sults are founded on the microscopic Hamiltonian, the
intermediate steps are computer intensive. It would be
nice to have a theory that displayed transparently the
features of the composite fermion deduced from the
study of wave functions and that furnished quantitative
results to, say, 10% accuracy. The same goes for polar-
izations in various states and transitions between them.

An especially interesting set of questions arises at and
near n51/2. Can the notion of the composite fermion
survive in this region without a robust gap? In particular,
will they really behave like particles of charge e* in this
region? Since the average effective magnetic field is
B* 50 at n51/2, we have fermions in zero magnetic
field, except for fluctuations. Will this Fermi system form
a Fermi liquid after including fluctuations? What are its
response functions? Will it be compressible? If so, how
do particles with e* 50 manage to be compressible or
even have a nonzero Hall conductance? What are the

16For a review of the trial-wave-function method with com-
plete references, see Jain and Kamilla (1998).

17Due to limitations of space we present only the earliest ref-
erences: Girvin and Jach (1983), Su (1984), Haldane and
Rezayi (1985), Morf and Halperin (1986, 1987), Yoshioka
(1986), with one exception, Morf et al. (2002).
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collective modes and how can they be detected? How is
disorder to be handled? Exact diagonalization and the
wave-function-based approaches are not very helpful for
unequal-time correlations and finite-temperature phys-
ics. Hamiltonian theories should fill this void and answer
all the questions raised above.

F. Organization of this review

Section II introduces the reader to some notation and
the physics of the lowest Landau level, including Kohn’s
theorem, which is often referred to in our work. Section
III describes the Chern-Simons theory of flux attach-
ment, including both composite bosons and fermions.
Section IV deals with the region at and near n51/2 and
is mainly about the work of Halperin, Lee, and Read
(1993). Section V explains our extended Hamiltonian
theory, EHT, formulated in an enlarged Hilbert space. It
is shown that there are two approaches to solving our
final equations: the conserving approximation, in which
the constraints are respected but the composite fermion
physics is hidden, and a shortcut in which the opposite is
true. The compressibility paradox at n51/2 is discussed.
Section VI illustrates the conserving approximation in
the EHT via the calculation of the structure factor at
small q in the Jain series and the magnetoexciton disper-
sion relations for 1/3 and 2/3. Section VII is devoted to
the computation of gaps and comparison to numerical
work and experiment. Section VIII deals with magnetic
phenomena at T50 for gapped and gapless systems.
The question of whether composite fermions are free or
not is discussed and answered in the negative, along with
an explanation of why they sometimes appear to be so.
Section IX addresses physics at T.0, describing the
computation of polarization and relaxation at n5 1/2
and polarization at 1/3 and 2/5. The results are then
compared to experiment. Section X deals with inhomo-
geneous states. Section XI gives a critical evaluation of
the EHT. A summary and a discussion of open problems
follow in Sec. XII.

II. PRELIMINARIES AND NOTATION

This section focuses on a single electron in two dimen-
sions. The Hamiltonian is

H05
~p1eA!2

2m
5

P2

2m
. (33)

Here A is the vector potential that leads to the external
magnetic field B5¹3A52B ẑ, p is the canonical mo-
mentum of the electron, 2e is its charge, and m is its
bare or band mass. Note that B points along the nega-
tive z axis.

Although one needs to pick a gauge for A in order to
find the wave functions, we can obtain the spectrum
without making that choice. Let us define a cyclotron
coordinate

h5l2ẑ3P, (34)
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where l5A\/eB is the magnetic length. Despite the
name, the two components of h are not commuting but
canonically conjugate variables:

@hx ,hy#5il2. (35)

It follows that

H05
h2

2ml4 (36)

describes a harmonic oscillator with energies

E5S n1
1
2 Dv0 , (37)

where n is the Landau-level index.
The Landau levels are highly degenerate because an-

other conjugate pair that commutes with h called the
guiding-center coordinate,

R5r2h, (38)

is cyclic. The components of R obey

@Rx ,Ry#52il2. (39)

Thus l2 plays the role of \ . Since in the lowest Landau
level ^h2&5l2, R roams all over the sample, whose area
L2 plays the role of phase space. The degeneracy of the
lowest Landau level (or any Landau level) is, from the
Bohr-Sommerfeld quantization rule,

D5
L2

‘‘h’’
5

L2

2pl2 5
eBL2

2p\
5

F

F0
, (40)

where F0 is the flux quantum. This leads to the follow-
ing result worthy of committing to memory:

LLL states
particles

5
D

N
5

flux quanta density
particle density

5
eB

2pn\
.

(41)

At points where steps in sxy cross the straight line
dictated by Galilean invariance,

sxy5
ne

B
5

e2

2p\
n5

e2

2p\

p

2ps11
, (42)

and

LLL states
particles

5
flux quanta density

particle density

5
eB

2p\n
52s1

1
p

5n21. (43)

Hereafter we set \51.

A. Gauge choices

There are two famous choices for gauge. In the Lan-
dau gauge A52jBx the Hamiltonian is cyclic in y , and
hence has the eigenfunctions eiky. Making the ansatz

c~x ,y !5eikyf~x !, (44)

we find that f obeys the equation for a displaced har-
monic oscillator,

2
1

2m

d2f

dx2 1
1
2

mv0
2~x2kl2!2f5Ef . (45)
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The lowest Landau level corresponds to putting the os-
cillator in its ground state. The degeneracy of any Lan-
dau level can be computed by considering a sample with
sides Lx and Ly , with periodic boundary conditions in
the y direction. This forces k5 2pj/Ly . Since the wave
function is centered on x5kl2,Lx , we must demand
0<j< LxLy/2pl2. Thus the degeneracy D of each Lan-
dau level is (going back to a square sample) D
5 BL2/F0 , in agreement with our prior gauge-invariant
counting of states. We shall use this gauge in the com-
putation of the magnetoexciton.

In the rest of this article we employ the symmetric
gauge, in which

A5
eB

2
~ iy2jx !, (46)

h5
1
2

r1l2ẑ3p, (47)

R5
1
2

r2l2ẑ3p. (48)

B. Getting to know the lowest Landau level

As with any simple harmonic oscillator, we can con-
struct ladder operators from the canonically conjugate
pair hx and hy (with l2 playing the role of \),

ah5
1

l&
~hx1ihy!, (49)

ah
† 5

1

l&
~hx2ihy!. (50)

The LLL condition ahuLLL&50 gives

c5e2uzu2/4l2
f~z !, (51)

where z5x1iy . A basis for c is

cm~z !5zme2uzu2/4l2
, m50,1, . . . . (52)

The Gaussian is often suppressed. The state has angular
momentum Lz5m .

If n51 (one electron per LLL state), there is a unique
noninteracting ground state, which may then be per-
turbed by standard means,

x15)
i,j

~zi2zj!•Gaussian

5DetUz1
0 z1

1 z1
2 .. . .

z2
0 z2

1 z2
2

¯

] ] ] ]

U •Gaussian. (53)

For n,1, we often want to focus on the limit v0→`
and work entirely within the lowest Landau level. If in
H5T1V we set T equal to a constant (eB/2m per par-
ticle), all the action is in V . Why is this a problem if V is
a function of just coordinates? After all,

r~r!5(
j

d~r2rj! (54)
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
and

V5
1
2 E d2rE d2r8r~r!v~r2r8!r~r8! (55)

5
1
2 (

q
r~q!v~q !r~2q!, (56)

r~q!5E d2rr~r!e2iq•r5(
j

e2iq•rj. (57)

The point is that if one sets T5eB/2m , the LLL
value, one must project the operator r to the lowest Lan-
dau level. The coordinates x and y , which commute in
the full Hilbert space, no longer commute in the lowest
Landau level and V now contains noncommuting opera-
tors.

C. Projection to the lowest Landau level

Let P denote projection to the lowest Landau level.18

Then

P: r5R1h⇒R. (58)

The projected components do not commute:

@Rx ,Ry#52il2 or @z , z̄#522l2

in the lowest Landau level. (59)

As for the densities,

P: e2iq"r⇒^e2iq"h&LLLe2iq"R5e2q2l2/4e2iq"R. (60)

Thus the projected problem is defined by

H% 5
1
2 (

q
e2q2l2/2r% ~q!v~q !r% ~2q!, (61)

r% ~q!5(
j

e2iq"Rj. (62)

The projection r% is the magnetic translation operator,19

which differs from the projected density by a factor
e2q2l2/4. We shall often refer to this as the density, but
take care to include the Gaussian in Eq. (61). The com-
mutation rules of r% define the magnetic translation alge-
bra:

@r% ~q!,r% ~q8!#52i sinF ~q3q8!l2

2 Gr% ~q1q8!, (63)

18A very nice introduction to LLL physics appears in Girvin
and Jach (1984)

19These operators and the projective group they form have a
long history and were first used to describe symmetries of the
noninteracting electron Hamiltonian in a magnetic field. For
references, see Peterson (1960), Brown (1964), and Zak
(1964a, 1964b). To the best of our knowledge, Girvin, Mac-
Donald, and Platzman (1986) were the first to concentrate on
the algebra of this operator.
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which was thoroughly exploited in the work of Girvin,
MacDonald, and Platzman (1986).

There is no small parameter in H% and the overall en-
ergy scale is set by v(q). This is why the FQHE problem
is unique. As mentioned earlier, the Hartree-Fock solu-
tion is also not an option at fractional filling.

D. Kohn’s theorem

By Kohn’s theorem we shall mean the following re-
sults. Consider, in a translationally invariant system, the
density-density response function K(q,v), the Fourier
transform of

K~q,t !5iu~ t !^0u@r~q,t !,r~2q,0!#u0&. (64)

In the frequency domain we define

K~q,v!5E
2`

`

K~q,t !eivtdt . (65)

From just the canonical commutation rules it can be
shown that K obeys the sum rule

E
0

`

Im K~q,v!
dv

p
5

q2n

2m
. (66)

Kohn showed that K must have a pole, the magnetoplas-
mon, at the cyclotron frequency v05eB/m with a resi-
due that saturates the above sum rule as q→0.

It follows that r% (q), the restriction of r(q) to the low-
est Landau level, cannot have (transition) matrix ele-
ments that are linear in q for small q .

The structure factor S(q ,v),

S~q ,v!5(
n

u^0ur~q ,0!un&u2d~v2En!, (67)

is related to K(q ,v) for v.0 by

1
p

Im K~q ,v!5S~q ,v!. (68)

Kohn’s theorem20 tells us that if we limit ourselves to the
lowest Landau level, S(q).q4 for small q .

III. HAMILTONIAN THEORY I—THE CHERN-SIMONS
APPROACH

The Hamiltonian for electrons in a vector potential A
is

H5(
j

@pj1eA~rj!#
2

2m
1V , (69)

where V is the electron-electron interaction, say, Cou-
lombic. Disorder is not included. As stated earlier, the

20To see this, introduce a complete set of exact eigenstates un&
of H between the two factors of r in Eq. (64), express the
Heisenberg operator r(t) in terms of r(0) and H , and do the
time integral.
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field A is such that there are 2s1 1/p flux quanta or LLL
states per electron and the attendant degeneracy frus-
trates perturbative analysis.

The first step in the Chern-Simons approach is to deal
with the degeneracy by resorting to flux attachment. For
the Laughlin fractions there are actually two options in-
volving either composite bosons or composite fermions.

A. Composite bosons

Historically, the first treatment came from Zhang,
Hansson, and Kivelson (1989), who considered Laughlin
fractions n51/(2s11). They traded electrons for com-
posite bosons carrying 2s11 flux quanta in opposition
to the applied field so that at mean-field level the bosons
saw zero field and had a unique ground state.21 The trad-
ing is done by introducing a Chern-Simons wave func-
tion CCS defined as follows:

Ce5)
i,j

~zi2zj!
2s11

uzi2zju2s11 CCS

[expS ~2s11 !i(
i,j

f ijDCCS , (70)

HCS5(
i

@pi1eA~ri!1acs~ri!!2

2m
1V , (71)

where f ij is the phase of the coordinate difference zi
2zj . Since Ce changes sign under particle exchange and
the prefactor produces 2s11 extra minus signs, CCS de-
scribes bosons.

The Chern-Simons gauge field, acs , comes from the
action of p on the prefactor (which is just the phase of
the Jastrow factor) that multiplies CCS :

acs~ri!52s¹(
jÞi

f ij , (72)

R acs~ri!•dri

52s R (
jÞi

¹f ij•dri (73)

52p~2s11 !~number of particles enclosed!, (74)

¹3acs52p~2s11 !r . (75)

Equation (75) shows explicitly that the flux quantum
density is 2s11 times the particle density. This is what is
meant by flux attachment. Equations (71) and (75)
define a Chern-Simons theory.22 The possibility that the

21This mean-field idea was first applied to anyon supercon-
ductivity by Laughlin (1988). Many more works on this topic
followed: Chen et al. (1989); Fetter, Hanna, and Laughlin
(1989); Halperin, March-Russell, and Wilczek (1989); Hanna,
Laughlin, and Fetter (1989, 1991); Lee and Fisher (1989); Dai
et al. (1992).

22Note that these manipulations could just as well be done in
the path-integral formulation. We have chosen to use the first-
quantized operator version for all our discussions, in the inter-
est of uniformity.
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FQHE would be described by a Chern-Simons theory
was presaged by Girvin (1987).

Since the idea of flux attachment is to cancel the ap-
plied field on average, Zhang, Hansson, and Kivelson
(1989) separate acs and r into average and fluctuating
parts:

¹3^acs&1¹3 :acsª2p~2s11 !n12p~2s11 !:r : .
(76)

This gives

HCS5(
i

~p1eA1^acs&1 :acs : ! i
2

2m
1V

5(
i

~p1 :acs : ! i
2

2m
1V (77)

upon using the fact that the flux due to eA precisely
cancels that due to ^acs&. Bosons in zero field have no
degeneracy problem (assuming they have some repul-
sive interactions) and allow one to describe much of the
FQHE physics in the familiar language of superfluids.
For example, it has been shown by computing response
functions that the superfluidity of the bosons implies the
FQHE for electrons (Zhang, Hansson, and Kivelson,
1989) and that the vortex in the superfluid is Laughlin’s
quasihole (Lee and Zhang, 1991). The nature of the col-
lective modes has also been explored (Kane et al., 1991).

Neglecting :acs : (the mean-field approximation) and
the interaction CCS , we obtain the wave function for
bosons [in Eq. (70)] as just unity and that of electrons as

Ce5)
i,j

S zi2zj

uzi2zju
D 2s11

•1, (78)

which is the phase of Laughlin’s answer. Kane et al.
(1991) showed that if long-wavelength Gaussian fluctua-
tions are included, the full Laughlin wave function is
obtained at long distances. [For an alternative route see
Rajaraman and Sondhi (1996).] But the same fluctua-
tions also reduce the long-range order in the boson field
down to the power-law order found by Girvin and Mac-
Donald (1987), who analyzed a gauge-transformed ver-
sion of the Laughlin wave function.23 Read (1989) then
showed that for Laughlin fractions one could form an
operator (which was a composite of an electron and 2s
11 vortices) that was neutral and had true long-range
order. The corresponding Landau-Ginzburg theory for
the order parameter was, however, very complicated.
Constraints of time and space prevent us from describ-
ing composite bosons any further. We refer the reader to
primary sources and excellent reviews (Zhang, 1992;
Karlhede, Kivelson, and Sondhi, 1993).

There are, however, some shortcomings in the
composite-boson approach. First, it is restricted to
Laughlin fractions. Next, since bosons have to be inter-

23This is to be expected given that the gauge transformation
of Girvin and MacDonald (1987) is the same Chern-Simons
transformation of Eq. (70).
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acting to be stable, a noninteracting starting point does
not exist. Finally, there is singular dependence on m as
m→0 and it is hard to carry out quantitative computa-
tions. Nonetheless, this work has served as a paradigm
for the Hamiltonian approach.

B. Composite fermions

We turn now to composite fermions. It was seen in the
review of Jain’s work (Sec. I.D.2) that by trading elec-
trons for composite fermions, which carry 2s flux quanta
in opposition to the applied field, we could get a fermi-
onic system that on the average sees a field A* that is
just right to fill p Landau levels. Lopez and Fradkin
(1991, 1992, 1993, 1998) were the first to accomplish this
in the Hamiltonian approach.24 They traded the elec-
tronic wave function Ce for CCS defined as follows:

Ce5)
i,j

~zi2zj!
2s

uzi2zju2s CCS[expS 2is(
i,j

f ijDCCS , (79)

HCS5(
i

@pi1eA~ri!1acs~ri!#
2

2m
1V . (80)

Since Ce describes fermions, so does CCS , since the
phase factor is even under particle interchange. The
Chern-Simons gauge field acs now obeys

¹3acs54psr . (81)

Separating acs and r into average and fluctuating parts,

HCS5(
i

~p1eA1^acs&1 :acs : ! i
2

2m
1V

5(
i

~P1 :acs : ! i
2

2m
1V , (82)

P5p1eA1^acs&[p1eA* , (83)

Lopez and Fradkin obtained

¹3~eA1^acs&!52eB14pns (84)

52
eB

2ps11

[2eB* S A* 5
A

2ps11 D , (85)

l* 5
1

AeB*
5lA2ps11. (86)

The following important results emerged from the
work of Lopez and Fradkin (1991, 1992, 1993):

• If we ignore :acs : and V , the composite fermions see
1/p flux quanta each (since 2s1 1/p → 1/p under flux
attachment) and have a unique ground state xp of p
filled Landau levels. Excitations are given by pushing
fermions into higher composite-fermion Landau lev-
els.

24Note that, in the interest of uniformity, throughout this pa-
per we do not distinguish between the functional-integral for-
malism that they employed and the operator approach that we
used in our work.
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There is, however, a problem: If we excite a fermion
from level p to p11, the energy cost (activation gap)
of the particle-hole pair is D5eB* /m plus corrections
due to neglected terms. This divergent dependence on
m flies in the face of the nonsingular m→0 limit we
have argued must exist.25 We want D.e2/«l in the
Coulomb case.

• At the mean-field level, the composite-fermion wave
function xp transformed back to electrons is

Ce5)
i,j

S zi2zj

uzi2zju
D2s

xp~z,z̄!. (87)

Lopez and Fradkin showed that fluctuations at one
loop give the square of the wave function (at long
distances) for Laughlin fractions. (The factors uzi
2zju2s in the denominator of the mean-field wave
function are eliminated by fluctuations.)

• They calculated time-dependent density-density re-
sponse functions in the random-phase approximation
(RPA; this will be explained in the next section). The
cyclotron mode appears with the right position and
residue. However, between the cyclotron mode
(eB/m) and the LLL excitations, there are many spu-
rious modes attributable to the ubiquitous presence of
m , which prevents a clear separation of LLL and non-
LLL energy scales. This is a problem common to all
Chern-Simons theories and was well appreciated by
the authors.

The Lopez-Fradkin work paved the way for subsequent
work to which we now turn.

IV. PHYSICS AT AND NEAR n5 1/2

In the early days of the composite fermion, there was
a widespread belief that its utility was confined to frac-
tions with a robust gap: the all-forgiving gap allowed one
to neglect, in a first approximation, interactions, disor-
der, and gauge-field fluctuations. It was therefore quite a
surprise to see that the composite fermion survived even
when p→` or n→1/2s and the composite-fermion cy-
clotron gap eB* /m5eB/(2ps11)m approached zero.

A. Physics at n5 1/2

Kalmeyer and Zhang (1992) were the first to discuss
the case n51/2. Their work emphasized the following
important point. One may expect that the effect of dis-
order will be rather small since the electron donors lie at
a respectable distance from the electron gas itself. How-
ever, any small charge inhomogeneity induced by disor-

25Jain does not have this problem since he does not use HCS
or xp or its excitations directly. For him the Chern-Simons
picture is a step towards getting electronic wave functions for
the ground and excited states by attaching the Jastrow factor
and projecting. The energy gap is computed as the difference
in ^V& between the ground and excited electronic wave func-
tions.
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der is accompanied by a corresponding flux density in a
Chern-Simons theory, and this can cause significant scat-
tering.

A landmark study of the region at and near n51/2
was made by Halperin, Lee, and Read (1993), who seri-
ously pursued the remarkable possibility that a Fermi
liquid could be hiding deep in the fractional quantum
Hall regime. Halperin, Lee, and Read started with the
following Hamiltonian at n51/2:

HCS5(
i

~p1 :acs : ! i
2

2m
1V , (88)

where :aCS : is related to charge fluctuations by the
Chern-Simons condition

¹3 :acsª4p :r : . (89)

Note that Chern-Simons theory dictates that m must be
the bare mass, since flux attachment by minimal cou-
pling is a gauge transformation performed on the bare
electron. If one wants to take the view that this is an
effective low-energy theory with an effective mass m* ,
one must also be prepared for the possibility that the
coupling of the fermion to the gauge field is more com-
plicated.

The cornerstone of Halperin, Lee, and Read’s work is
the computation of the electromagnetic response func-
tions. Let us recall some general results on this topic so
we may better understand and appreciate their work. In
writing this description we were greatly aided by the
reviews of Halperin (in Das Sarma and Pinczuk, 1997)
and Simon (in Heinonen, 1998).

If an external four-potential eAm
ext(q,v) is applied to

the system, it will generate a four-current jm(q,v)
(whose components are the particle-number current and
density) as per

jm~q,v!5eKmn~q,v!An
ext~q,v!. (90)

Linear-response theory tells us that

Kmn5E
2`

`

dteivtiu~ t !^0u@ jm~q,t !,jn~2q,0!#u0&, (91)

where u0& is the vacuum state.
For pedagogical purposes let us consider just K00 , the

density-density correlator. In free-field theory, K00 is
given by K00

0 , the particle-hole bubble, in which the par-
ticle and hole created by one r are absorbed by the
other. The full theory, of course, requires us to include
interactions. Once again, for pedagogical purposes, let
us begin with the case with just the Coulomb interac-
tions. The exact K00 is given by an infinite sum of Feyn-
man graphs in which the electrostatic propagator v(q)
52pe2/q appears in all possible ways. It is possible to
organize the sum as in Fig. 3. Each bubble K00

v , called
the Coulomb-irreducible response, has the property that
it cannot be cut into two disjoint pieces by snipping just
one Coulomb propagator v(q), denoted by the wiggly
line connecting the irreducible bubbles. Performing the
geometric sum, one finds
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K005
K00

v

11v~q !K00
v 5

1

@K00
v #211v~q !

. (92)

The response K00
v has the following significance. Con-

sider some conducting system with an applied potential
efext. An electron inside the conductor feels in addition
the potential generated by the charges themselves, i.e., it
feels the total potential efT5efext2v(q)r(v ,q), and
K00

v is the response to this total field. To verify this let us
write

r~v ,q!5eK00
v @efext2v~q !r~v ,q!# , (93)

for which we get the solution

r~v ,q!5
eK00

v

11v~q !K00
v fext. (94)

Who cares about the total field? Answer: The voltme-
ter we use to measure the drop in a wire. The voltmeter
responds to the total electric field and not to the exter-
nally applied one that would exist in the absence of the
conductor. The longitudinal conductivity sxx can be re-
lated to K00

v as

sxx5
ej

ET 5e2
v

iq2 K00
v , (95)

where we have used the continuity equation qj5vr and
E5iqf .26

In the RPA, K00
v is approximated by K00

0 , the free
particle-hole bubble. Thus RPA takes into account Cou-
lomb interaction via the internal field the particle them-
selves generate, but ignores all vertex and self-energy
corrections coming from exchanging v(q) inside the
particle-hole bubble. Figure 3 shows the connection be-
tween the irreducible and total responses.

The work of Halperin, Lee, and Read differs from this
illustrative example in that there are now two types of
gauge fields, the Coulombic v(q) and the Chern-Simons
gauge field, so that the wiggly line in Fig. 3 is described
by a 232 matrix propagator. The Halperin-Lee-Read
version of RPA consists of summing repeated bubbles
irreducible with respect to both propagators, and ap-
proximating the irreducible part by the free-field re-
sponse. Thus the Chern-Simons field and v(q) are in-
cluded only to take into account the internal fields

26The extra e in front comes in because r and j refer to the
particle density and not charge density.

FIG. 3. The structure of the RPA expansion. Here the wiggly
line is the interaction and the bubble is the free particle-hole
pair. If the bubble is made to include all interaction diagrams
except those that have a horizontal wiggle (upon snipping
which the diagram will be disjoint), the result is the full exact
answer.
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produced by the induced charges and currents. In matrix
notation it is still true that

@K#215@K0#211U , (96)

where U is a matrix propagator for the Coulombic v(q)
and the Chern-Simons gauge fields. Let us focus on just
the 00 element K00 , which assumes the form

K005
1

v~q !1@K00
0 #211S 2pf̄

q
D 2

K11
0

, (97)

where K11
0 is the free-field transverse-current response

and f̄ is the number of flux quanta attached. Though
f̄52s in our notation, we still use Halperin, Lee, and
Read’s notation here to help readers who may wish to
consult that work for more details.

Let us now examine this expression in various re-
gimes.

1. Static compressibility

The behavior of K00 at v50, q→0, gives the static
compressibility of the system. For v50 and q!kF , Hal-
perin, Lee, and Read find

K005
1

v~q !12p~11f̄2/6!/m
, (98)

which shows that just as in a Fermi liquid, the compress-
ibility is nonzero if v(q) is short ranged and vanishes as
q if Coulombic. This vanishing only means that any ap-
plied external force is unable to change the density be-
cause the field inside the medium is strongly screened by
the medium.

2. Cyclotron mode

The poles of K00 define the natural modes of oscilla-
tion of the system, for at these poles we get a response
with no applied potential [see Eq. (90)]. If at any q there
is a pole at some v(q), it means that there is a mode of
energy v(q). For example, in a three-dimensional (3D)
electron gas, a plasmon pole appears at the plasma fre-
quency as q→0 and then moves as a function of q . At
larger q , when decay into particle-hole pairs is possible,
the pole position acquires an imaginary part denoting a
finite lifetime.

In the present case, as q→0, at very high v, K00 has a
pole at the cyclotron frequency v054pn/m (where m is
the bare or band mass) with a residue in accordance
with Kohn’s theorem.

3. The overdamped mode

At very low v and q , one finds

@K00#
215

2p

m S 11
f̄2

12 D 1v~q !2iS 2pf̄

q D 2
2nv

qkF
. (99)
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The zero occurs at the overdamped mode with the dis-
persion relation

v.iq3v~q !.q2 (100)

for the Coulomb case. If v(q) is short ranged, the mode
is subdiffusive. The reason the charge will diffuse rather
than move ballistically (even in the clean system) is that
the magnetic field makes the charge move perpendicular
to the Coulomb force, which tries to even out the den-
sity gradient. The overdamped mode and the effects it
produces lie at the heart of the work of Halperin, Lee,
and Read.

Note that if one first sent m→0, one would miss the
overdamped mode. Of course in a real system we can
always find a q such that 1/q dominates 1/m . It is, how-
ever, a theoretical problem that we cannot send m→0
here. A way out will be discussed later.

4. Longitudinal conductivity

Upon examining Eq. (99), we can see that the
Coulomb-irreducible part (obtained by dropping v) is
dominated by the last term in the limit of small q and v.
Thus

sxx5e2
v

iq2 K00
v 5

e2

8p

q

kF
. (101)

The above result holds only for q@1/lm , where lm is
the mean free path for the composite fermion. For q
!1/lm ,

sxx5
e2

4pkFlm
. (102)

It is interesting to see how one arrives at Eq. (102).
Let us define a composite-fermion conductivity by

ej5sCFET, (103)

where ET is the total field, which is the sum of the ap-
plied field and the internal field e generated by the fer-
mions themselves. To compute e, let us imagine a par-
ticle current j and a unit length perpendicular to it. In
one second j particles cross it, carrying with them 2j flux
quanta of Chern-Simons flux. However, the composite
fermion makes no distinction between real flux and
Chern-Simons flux, since the particles enter HCS only
via their sum. It will therefore sense a Chern-Simons
electric field e5 (4p/e) ẑ3j. Thus

ej5sCFFE1
4p

e
ẑ3jG . (104)

The electron resistivity tensor r (with components rab
and not to be confused with the density operator) de-
fined by

Ea5rab ~ejb! (105)

is then

r5rCS1rCF , (106)

where
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rCS5
4p

e2 F 0 1

21 0G . (107)

At mean-field level, composite fermions do not see a
field of any kind. The effect of disorder is to produce

sCF ,xx5sCF ,yy5
ne2t

m
5

ne2lm

kF
5

kF
2 e2lm

4pkF
5

e2kFlm

4p
,

(108)

where t is the elastic-scattering time and lm is the mean
free path. If we now use Eq. (106) and assume kFlm
@1 we obtain Eq. (102).

Note that the resistivity of the electron is the sum of
the resistivities of the composite fermion and the Chern-
Simons term. If we move off to a general Jain fraction
and ignore disorder, we will have

rCF5
2p

e2 F 0
1
p

2
1
p

0
G (109)

since the composite fermions fill p Landau levels of their
own. When the resistivity matrices are added, one ob-
tains the correct Hall resistivity for electrons at n
5p/(2p11).

5. Surface acoustic waves

When a surface acoustic wave is coupled to the elec-
tronic system, it is predicted to undergo a velocity shift
and an attenuation described by

dvs

vs
2

ik

q
5

a2/2
11isxx~q !/sm

, (110)

where a is a piezoelectric constant, vs is the sound ve-
locity, k describes the attenuation, sxx(q)5sxx(q ,v
5qvs) where vs is the sound velocity, and sm
5vs«/2p . Theory fits the experiments of Willett et al.
(1990) and Willet and Pfeiffer (1996; for a review see
Willett, 1997) with a sm that is about five times larger
than expected. The reader is strongly urged to consider
Halperin, Lee, and Read (1993) and the reviews for
more details.

6. Mass divergences

Halperin, Lee, and Read (1993) predicted a diver-
gence in the effective mass m* at the Fermi surface aris-
ing from the fermion self-energy diagram involving the
emission and absorption of the overdamped mode. For
the Coulomb case one has

m* ~v!.ln v . (111)

(Shorter-range interactions lead to more violent diver-
gences.) Assuming that this mass can be used near n
51/2, one expects that the gaps will be given by

En5
eB*

m*
, (112)
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where m* is self-consistently defined by m* (v5En).
For n5p/(2p11), this implies, as p→` , that Ep
.1/(p ln p). The log divergent effective mass will also
imply a specific heat C(T).T ln T. It has not been pos-
sible to confirm these logarithms in numerical or experi-
mental work.

Since the nature of the mass divergence depends on
the range of the potential, it cannot be reproduced by
trial wave functions, which make no explicit reference to
the potential, in particular, its range.

It has been shown that the mass divergences do not
affect bosonic (e.g., density-density) correlations.27

B. Physics near n51/2

Halperin, Lee, and Read’s (1993) predictions tran-
scend n51/2 and describe its immediate vicinity. The
key idea is that in this region, it is useful to think of the
composite fermion as a particle seeing a weak effective
magnetic field B* 5B/(2p11). This means that it will
describe a cyclotron orbit of radius

R* 5
\kF

eB*
(113)

with kF5A4pn (given that spin is fully polarized). Note
that this result is independent of the fermion mass,
whose treatment is quite tricky.

The surface acoustic wave results of Willett et al.
(1990, 1996) found that away from n51/2, there was a
resonance in the velocity shift when the wavelength of
the surface acoustic wave coincided with 2R* .

Confirmation of the R* concept was also found in the
experiments of Kang et al. (1993), Goldman, Su, and
Jain (1994), and Smet et al. (1996). To visualize the
Goldman et al. experiment, imagine a semi-infinite sys-
tem in the upper half-plane. If a current is introduced at
the origin up the y axis, it should bend and return to the
x axis at x52R* , after completing one semicircle. It
would then bounce off and start the next semicircle. It
follows that if a return path is provided on the x axis, the
maximum current will flow if the drain is located an in-
tegral multiple of 2R* from the source. If a return loca-
tion is held fixed and B is varied, a maximum is ex-
pected, and found, whenever the spacing between
source and drain is a multiple of 2R* .

Kang et al. built an array of antidots, in which each
antidot is a region where electrons are absent. It was
found that the sheet conductance had peaks when the
antidot lattice constant equaled 2R* . While a detailed
formula for conductance is not known in this context,
the correlation is very suggestive and is what was seen
with ordinary electrons in a weak field. The fact that
composite fermions, which entered the theory as a math-
ematical device, manifest themselves so clearly in trans-
port is a stunning affirmation of the theoretical frame-
work.

27See Kim, Furusaki, et al. (1994); Kim, Lee, et al. (1994);
Kim, Lee, and Wen (1995); Stern and Halperin (1995).
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C. The theory of Halperin, Lee, and Read—room for
improvement?

Despite its many remarkable and experimentally con-
firmed predictions, the theory of Halperin, Lee, and
Read leaves room for improvement mainly because of
the Chern-Simons approach on which it is based.

One such area has to do with the dependence on bare
mass m . We have argued that at the starting point HCS
must contain the bare mass, since flux attachment by
minimal coupling of the Chern-Simons field is an exact
transformation done on electrons. This choice certainly
helps to get the cyclotron frequency in accord with
Kohn’s theorem. However, in our extraction of various
low-energy long-wavelength quantities, like the over-
damped mode from Eq. (99), we had to assume that 1/q
dominates over 1/m . While this is certainly valid for re-
alistic and fixed values of m , one would like to be able
to extract what is evidently the correct physics even if
m50 is imposed first.

Simon and Halperin (1993) and Simon, Stern, and
Halperin (1996) proposed a way out. They assumed, as
in Landau theory, that HCS is an effective theory with an
effective m* . Kohn’s theorem and the overdamped
mode can both be salvaged if a suitable Landau param-
eter F1 is introduced. This is reasonable since Kohn’s
theorem relies on Galilean invariance and Landau’s
theory uses this principle to relate m , m* , and F1 . How-
ever, this leaves the origin of m* inside a black box.28 It
is also not clear why in the effective theory the fermions
and the Chern-Simons field should be minimally
coupled.

In the case of Coulomb interactions, one can also ar-
gue that the bare mass is swamped by the renormalized
m* .ln v generated by the exchange of the overdamped
mode. Again it would be nice to be able to follow in
detail the separation of the low-energy physics, con-
trolled by an m* generated by interactions, and high-
energy physics controlled by m .

Another shortcoming is that there is no evidence of
the neutral fermion one expects at n51/2, and more
generally a fermion of charge e* 5e/(2ps11) at other
Jain fractions. This was to be expected since the com-
posite fermion in the work of Halperin et al. and in ear-
lier Chern-Simons work of Lopez and Fradkin was an
electron bound to two flux tubes that carried no charge.

Also missing was the effective magnetic moment m*
5e/2m that Simon, Stern, and Halperin (1996) would
later argue must go with each composite fermion.

In short, the composite fermion that appears in the
Chern-Simons theory does not have, in obvious form,
the right charge or energy scale of the ultimate quasipar-
ticle. While the Chern-Simons transformation is exact
and can yield all these in principle, they are not manifest
in the RPA.

28Why do we view this inability to calculate m* as a weak-
ness, when in Landau theory it is simply accepted as a fact of
life? As we shall see, in the FQHE we can go a long way
towards computing m* from the interactions by using the ex-
tended Hamiltonian theory.
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Finally, Lee, Krotov, et al. (1997, 1998) have raised the
following issue. Suppose we push all Landau levels up to
infinity except for the lowest Landau level and assume
particle-hole symmetric disorder at n5 1/2. Then it can
be verified that a nonzero sxx for electrons implies for
the Chern-Simons fermion sxy

CS52e2/(4p). However,
both the mean-field approximation and the RPA correc-
tions to it give sxy

CS50. We are not aware of a resolution
of this issue, arising from the fact that resistivities add.

V. HAMILTONIAN THEORY II—EXTENDED HAMILTONIAN
THEORY

We now turn to our extension of the Chern-Simons
formalism.29 In this extension, a composite fermion with
all the known properties can be made manifest and a
variety of LLL quantities computed with no 1/m singu-
larities. But the computation of certain low-energy long-
wavelength quantities (like the compressibility),
straightforward in the Chern-Simons approach, becomes
extremely delicate. Hopefully we shall impart to the
reader a sense of which approach to use for what pur-
pose.

We want to eschew the historical route and furnish an
axiomatic presentation of our work with a minimum of
preamble, setting the stage for exact or approximate cal-
culations as rapidly as possible. However, to establish
the context, we shall begin with a brief sketch of our
earlier work so as to take some of the mystery out of the
end product and provide some degree of motivation.

Let us recall the work of Bohm and Pines (1953) on
the electron gas in three dimensions. At small q the
spectrum consists of particle-hole pairs at low energies
and the plasmon at high energies. The particle and hole
are part of the original Hamiltonian, while the plasmon
comes from summing an infinite class of diagrams in the
density-density response. It is not an independent entity,
even though it is a sharply defined excitation that can be
experimentally produced and detected. Bohm and Pines
showed that, by introducing extra canonical oscillator
degrees of freedom at small q , one could describe plas-
mons as independent objects in an enlarged Hilbert
space. In order to prevent double counting, they im-
posed constraints on state vectors of the form

x% ~q!uphysical state&50, (114)

with one x% (q) for each q at which a plasma mode was
introduced as an independent canonical oscillator. The
plasmons, initially coupled to the fermions, were ap-
proximately decoupled, leaving behind fermions with a
renormalized mass and constraints that essentially froze
out any putative plasmons with small q . Such a simple
description of plasmons, or isolation of high-energy
physics, would have been impossible within the confines

29Shankar and Murthy (1997); Murthy, Park, Shankar, and
Jain (1998); Murthy and Shankar (1998a, 1998b, 1999, 2002);
Murthy (1999, 2000a, 2000c, 2001b, 2001c); Shankar (1999,
2000, 2001).
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of the electronic Hilbert space, wherein plasmons are
complicated collective excitations of the electrons them-
selves.

What we originally did for the FQHE (Shankar and
Murthy, 1997; Murthy and Shankar, 1998a) was similar
in many ways. We enlarged the Hilbert space to include
at each q a new set of independent, canonically conju-
gate variables—a transverse vector field a(q) and a lon-
gitudinal vector field P(q). Using these it was possible,
by a unitary transformation, to get rid of the dependent
Chern-Simons vector potential aCS . While all the opera-
tors in our Hamiltonian were now independent, the
physical sector was defined by the (Chern-Simons) con-
dition

~¹3a24psr!uphysical state&50. (115)

The conjugate variables a and P formed oscillators near,
but not exactly at, the cyclotron frequency. They were
coupled to fermions. We found a way to decouple the
oscillators in the limit ql→0 by a second unitary trans-
formation. The decoupled oscillators now complied with
Kohn’s theorem for pole position and residue. The for-
mula for r% (q), the electronic charge density projected to
the lowest Landau level, was derived to order ql , as was
the constraint x% (q), which now acted only within the
particle sector. At this point a guess was made (Shankar,
1999) to extend the small ql answer to all orders by
exponentiation of leading-order terms. The final theory
of the LLL sector took the following form:

H% 5
1
2 (

q
r% ~q!v~q !e2q2l2/2r% ~2q!, (116)

@H% ,x% ~q!#50, (117)

05x% ~q!uphysical state&. (118)

The Hamiltonian H% is just the potential energy V pro-
jected to the lowest Landau level, written in terms of the
projected electron charge density r% (q),

r% ~q!5(
j

exp~2iq•Rej!, (119)

Re5r2
l2

11c
ẑ3P, (120)

where we define a very important and frequently occur-
ring variable:

c25
2ps

2ps11
. (121)

From the commutation relations

@Rex ,Rey#52il2 (122)

it is clear that Re is just the electron guiding-center co-
ordinate but now expressed in terms of composite-
fermion variables r and P5p1eA* .

The physical states are annihilated by the constraint

x% ~q!5(
j

exp~2iq•Rvj!, (123)
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Rv5r1
l2

c~11c !
ẑ3P. (124)

The pseudovortex coordinate Rv describes an object of
charge 2c2522ps/(2ps11):

@Rvx ,Rvy#5
il2

c2 (125)

and commutes with Re :

@Re ,Rv#50. (126)

Thus the constraints commute with H% and form an
algebra:

@x% ~q!,x% ~q8!#522i sinF l2~q3q8!

2c2 Gx% ~q1q8!. (127)

The problem is just like Yang-Mills theory.
The expressions for Re and Rv in terms of r and P,

which were already encoded in the small-q theory,
jumped out upon exponentiation. They, together with
the constraints, lie at the heart of our approach.

We shall now show how one can get to the final result,
Eqs. (116)–(118), simply by making a certain enlarge-
ment of the electronic Hilbert space and following it
with a change of variables. Any reader who wants to
know more about choice of these variables should con-
sult our earlier work. Those who just want to use the
results can go ahead.

A. The axiomatic introduction to the extended
Hamiltonian theory

Let us begin afresh with the primordial Hamiltonian
in terms of electronic variables (which carry the sub-
script e to distinguish them from other coordinates to be
introduced):

H5(
j

hei
2

2ml4 1
1
2 (

i ,j ,q
v~q !eiq•(rei2rej)[H01V .

(128)

This Hamiltonian contains complete information
about the problem. It can be used to study Landau-level
mixing and the computation of Hall current, which re-
quires higher Landau levels in an essential way. These
topics will be discussed in due course. We first focus on
the main challenge of Hamiltonian theories: extracting
the m-independent physics of the lowest Landau level.
As discussed in Sec. II, projecting to the lowest Landau
level as such is no problem: one drops the first term and
makes the replacement r→R in the density operator and
v(q)→v(q)e2q2l2/2. The catch is that the projected
Hamiltonian lives in the highly degenerate lowest Lan-
dau level, frustrating both perturbation theory and the
Hartree-Fock approximation.

In the Chern-Simons approach one resorts to flux at-
tachment to beat the degeneracy of the kinetic term, but
that can be done only in the full electronic Hilbert space.
Consequently m gets into everything and the low-energy
(LLL) and high-energy sectors get hopelessly entangled.
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What we really want to do is work within the lowest
Landau level and attach flux tubes, which in the lowest
Landau level translates into vortices, by analyticity.
However, when we say vortices, we do not mean zeros of
the wave function, for such a thing does not exist as a
degree of freedom within the Hamiltonian and, as we
have seen, there are not enough of them in the wave
function to go around anyway. Instead we mean by a
vortex some object that has the charge of the 2s-fold
vortex and corresponds to an excitation that can be cre-
ated by inserting 2s flux quanta into the Hall system.
Since such an object does not exist in the original Hil-
bert space (as an independent entity), we enlarge it to
make room for this entity, which we call the pseudovor-
tex, the vortex to emphasize its similarity to the vortices
in the wave functions and the pseudo to emphasize its
differences.

The enlargement of Hilbert space can be explained in
terms of just one electron, with cyclotron and guiding-
center coordinates he and Re . Let us temporarily focus
on just the LLL physics and ignore he , which does not
participate in the change of variables and will be rein-
stated subsequently.

First we introduce an extra guiding-center coordinate
Rv (the pseudovortex), defining it algebraically by its
commutation relations, which represent a charge 2c2,

@Rvx ,Rvy#5
il2

c2 . (129)

Next we combine Re and Rv to form the composite-
fermion space. (Note that it takes two canonical pairs to
make one regular fermion in two dimensions.) This
composite-fermion space can be defined in terms of ei-
ther the position r and velocity P of the composite fer-
mion, or in terms of its cyclotron and guiding-center co-
ordinates, h and R. Note that henceforth variables
carrying no identifying subscripts will refer to the com-
posite fermion. The composite-fermion coordinates h
and R obey the commutation rules of the cyclotron and
guiding-center coordinates of an object of charge e*
512c251/(2ps11):

@hx ,hy#5il* 25
il2

12c2 , (130)

@Rx ,Ry#52il* 2. (131)

The rule for forming the composite fermion from Re
and Rv is the following:

R5
Re2c2Rv

12c2 , (132)

h5
c

12c2 ~Rv2Re!. (133)

The first equation says that the composite-fermion guid-
ing center is the weighted sum of its parts. The second
can be found by demanding that h be linear in Re and
Rv , commute with R, and have an overall scale that
produces the right commutator.

The inverse transformation is
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Re5R1hc , (134)

Rv5R1h/c . (135)

In terms of r and P, the composite-fermion coordinate
and velocity operators are

Re5r2
l2

~11c !
ẑ3P, (136)

Rv5r1
l2

c~11c !
ẑ3P, (137)

which are just the expressions encountered in the brief
historical review.

Ignoring the zero-point energy, here is where we stand
in the LLL sector:

H% 5
1
2 (

i ,j ,q
v~q !e2q2l2/2eiq•(Rei2Rej) (138)

5
1
2 (

i ,j ,q
v~q !e2q2l2/2

3exp$iq•@~Ri2Rj!1c~hi2hj!#%. (139)

While it is true that we have managed to get rid of m
and cleanly isolate the lowest Landau level, the reader
may ask what we have gained, since algebraically the
problem is the same as in electronic coordinates. The
answer is that now there is a natural nondegenerate
Hartree-Fock ground state in the extended space. This is
because the Hartree-Fock Hamiltonian is now written in
terms of composite-fermion operators R and h, and the
particle density is just right to fill exactly p filled
composite-fermion Landau levels, i.e., xp is the ground
state. The proof of its Hartree-Fock nature is found in
Appendix C. This key step opens up all the usual ap-
proximation schemes.

Depending on what we want to compute, there are
two distinct schemes. Both rely on the nondegenerate
Hartree-Fock ground state, and both acknowledge a
huge symmetry group of H% , which comes from the fol-
lowing fact: H% , as embedded in the composite-fermion
space, does not depend on Rv5R1h/c , the pseudovor-
tex coordinate. Equivalently, it depends on R and h only
through the combination Re5R1ch. The other (com-
muting) combination Rv5R1h/c can be used to define
a pseudovortex density

x% ~q!5(
j

e2iq"Rv, (140)

which commutes with H% :

@H% ,x% ~q!#50. (141)

Let us understand this symmetry. If we view H% as a
function of h and R, or r and P, its eigenfunctions will
depend on two coordinates, which can be chosen to be
one component each of h and R or just x and y . If we
view H as a function of Re and Rv , it depends only on
Re . The energy eigenfunctions will be of the form
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c~ze ,zv!5ce~ze!cv~zv!, (142)

where cv(zv) is arbitrary, since nothing in H% determines
it. This degeneracy is of the same type as that of the
noninteracting electron Hamiltonian, which depends on
he but not Re . However, since Rv is unphysical, and all
physical observables depend only on Re , this is a gauge
symmetry.

We deal with the gauge symmetry as usual, by select-
ing a representative from each orbit, which in this case
means eliminating the degeneracy due to the arbitrary
function c(zv) that tags along for the ride. Let us make
a particular choice cv0(zv). All we require is that it be
translationally invariant so that ^x% (q)&50 in this state.
The gauge-fixed Hilbert space now consists of functions
of the form ce(ze)cv0(zv). In this sector x% (q)50 in the
weak sense: any Green’s function involving a string of
x% (q)’s will vanish since (i) x% (q,t)5x% (q,0)[x% (q), (ii)
^x% (q)&50,30 in the one-dimensional space spanned by
cv0(zv). [Imagine inserting the projector to this state
between any two x% (q)’s in the Green’s function.]

In the path-integral language we can make x% (q) van-
ish weakly, that is to say, vanish whenever it appears in a
Green’s function, by a method similar to what is done in
gauge theories. Imagine writing a path integral in the
full composite-fermion space and then inserting a delta
function imposing x% (q)50 for all q at any one time.31

Since x% (q) does not change with time, this restriction
will hold automatically for all times and specify the fate
of x% (q) the way a gauge-fixing term does for the longi-
tudinal degrees of freedom.

The theory is thus defined (in schematic form) by the
equations

H% 5
1
2 (

q
v~q !e2q2l2/2r% ~q!r% ~2q!, (143)

@H% ,x% ~q!#50, (144)

x% ~q!.0, (145)

where .0 means vanish weakly.
Now we turn to the two approximate ways of dealing

with this problem: the conserving approximation and the
shortcut.

B. The conserving approximation

Given a Hamiltonian, a reasonable first approxima-
tion to try is Hartree-Fock. It is shown in Appendix C
that composite-fermion Landau-level states are Hartree-
Fock states of H% . How good is this Hartree-Fock ap-
proximation likely to be? For example, how will we fare
if we compute the activation or transport gap in a fully
polarized sample as

D5^p1PHuHup1PH&2^puHup& , (146)

30An exception occurs if the string contains only x% (0)5N .
This does not affect what we plan to do.

31Since x% (q) involves r and p, this will have to be done in the
phase-space path integral.
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where up& stands for the Hartree-Fock ground state with
p-filled Landau levels and PH stands for a widely sepa-
rated particle-hole pair?

There are at least two good reasons to expect that this
naive Hartree-Fock result will require fairly strong cor-
rections. First, if we compute the matrix element of the
projected electron density between any two Hartree-
Fock states, the answer will be linear in q , whereas in
the exact theory, and within the lowest Landau level, it
must go as q2 as per Kohn’s theorem. To see this note
that

e2iq"Re512iq•~R1ch!1O~q2!. (147)

While R has no transition matrix elements between dif-
ferent composite-fermion Landau levels, h does. The
second problem is that as ql→0, the projected electronic
density [which reduces to ( j exp(2iq•rj)] has a unit con-
tribution from each composite fermion while we would
like it to be e* . Evidently the Hartree-Fock result will
receive strong corrections that will renormalize these
quantities until they are in line with these expectations.

These shortcomings are to be expected since the
Hartree-Fock solution does not obey the constraint, or
equivalently, does not factorize into the form c
5ce(ze)cv(zv).

The conserving approximation (Anderson, 1958a,
1958b; Rickayzen, 1958; Nambu, 1960; Baym and
Kadanoff, 1961) is a sophisticated procedure for improv-
ing the Hartree-Fock state with additional diagrammatic
corrections so that x% (q).0 in Green’s functions. For n
51/2, Read (1998) showed that this procedure restores
Kohn’s theorem and reveals a dipolar structure for
density-density correlations. We shall say more about
this in connection with the compressibility paradox.

Now we shall discuss the other approximation, the
shortcut.

C. The shortcut: The preferred charge and Hamiltonian

Consider the exact solution to the gauge-fixed prob-
lem. Suppose, in the Hamiltonian and elsewhere, we re-
place r% (q) by the preferred combination

r% p~q!5r% 2c2x% . (148)

This makes no difference (to the computation of any-
thing physical) in an exact calculation, since x% is essen-
tially zero.

However, in the Hartree-Fock approximation it
makes a big difference if we start with the Hamiltonian
written in terms of r% p(q). To see why, consider its ex-
pansion in powers of ql :

r% p5(
j

e2iq"rjS 1
2ps11

2il2q3Pj

10•~q3Pj!
21¯ D . (149)

• The transition matrix elements are of order q2 be-
tween Hartree-Fock states because the coefficient of q
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is proportional to the composite-fermion guiding-
center coordinate r2l* 2ẑ3P with no admixture of
the composite-fermion cyclotron coordinate. This is
more transparent if we use R and h to write

r% p~q!5@12iq•~R1ch!1¯#

2c2@12iq•~R1h/c !1 ¯# (150)

5~12c2!~12q•R!1O~q2!. (151)

• With no further fixing, we see that the electronic
charge density associated with r% p(q) is now 12c2

5e* .
• We see from Eq. (149) that when n51/2, the pre-

ferred density couples to an external electric field like
a dipole of size l2ẑ3p.

Thus there is no a priori need for strong corrections, at
least in the long-wavelength limit.

The Hamiltonian we work with,

H% p5
1
2 (

q
r% p~q!v~q !e2q2l2/2r% p~2q!, (152)

subsumes a lot of the right low-energy physics and
composite-fermion properties. Unlike H% , which com-
mutes with x% (q), H% p is weakly gauge invariant, that is,

@H~r% p!,x% ~q!#.0, (153)

where the .0 symbol means that it vanishes in the sub-
space obeying x% (q)50. Thus neither H(r% p) nor r% p will
mix physical and unphysical states.

The significance of H(r% p) is the following. If the con-
straint x% 50 is imposed exactly, there are many equiva-
lent Hamiltonians depending on how x% is insinuated into
it. However, in the Hartree-Fock approximation, these
are not equivalent and H(r% p) best approximates, be-
tween Hartree-Fock states and at long wavelengths, the
true Hamiltonian between true eigenstates. In contrast
to a variational calculation in which one searches among
states for an optimal one, here the Hartree-Fock states
are the same for a class of Hamiltonians (where x% is
introduced into H in any rotationally invariant form),
and we seek the best Hamiltonian: H(r% p) encodes the
fact that every electron is accompanied by a correlation
hole of some sort, which leads to a certain e* , d* and
obeys Kohn’s theorem (q2 matrix element for the LLL
projected charge density).

Note that when we use the preferred charge and
Hamiltonian we shall make no further reference to con-
straints and simply carry out the Hartree-Fock approxi-
mation. This is based on the expectation that, even if we
found some way to include the effect of constraints, it
would make no difference in the small ql region. This is
because the leading renormalization of e to e* and sup-
pression of q matrix elements down to q2 that are
achieved by the conserving approximation by summing
ladder diagrams following Read (1998) or using the
time-dependent Hartree-Fock (Murthy, 2001a, Sec. VI)
are built in here.
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It is in this approximate, operator sense, where we use
r% p in place of r% , that the binding of electrons and
pseudovortices to form composite fermions is realized in
the Hamiltonian theory. Since the pseudovortices have
coordinates that are independent of the electrons, there
is no double counting here. The problems that we en-
countered with vortices in the wave-function approach
for non-Laughlin fractions (with the limiting case being
the dipole picture of n5 1/2) are also absent, since we
are not talking about those vortices. Since the
pseudovortices per electron are independent of elec-
trons, their number does not change when n changes
(though their charge, tied to c252sn , does). Whereas
antisymmetrization fragmented the vortices in the Ja-
strow factor into ordinary parametric zeros (except for
the Pauli zero), it does nothing to the pseudovortices.
Antisymmetrization is accomplished by simply writing
the operator r% (q) in terms of second-quantized (com-
posite) fermion operators.

The reader will recall that any simple picture of qua-
siparticles, whether it be in Landau’s Fermi-liquid theory
or in BCS theory, is best captured by approximate and
not exact descriptions. The quasiparticles are all carica-
tures of some exact reality and therein lies their utility.
Similarly the composite fermion in our extended formal-
ism appears only in the Hartree-Fock approximation to
H% p. Recall that we brought in the coordinate Rv to be-
come the electron’s partner in forming the composite
fermion. However, Rv was cyclic in the exact Hamil-
tonian H% . Thus the exact dynamics never demanded
that Rv be bound to Re or even be anywhere near Re .
However, in the Hartree-Fock approximation, since we
wanted the right charge and transition matrix elements
of the density operator (Kohn’s theorem) to be manifest,
we needed to replace r% (q) by r% p(q), and trade H% for
H% p, the preferred Hamiltonian. In H% p, Rv is coupled to
Re . The Hartree-Fock approximation and this coupling
go hand in hand. The exact eigenfunctions of the origi-
nal H% are factorized in the analytic coordinates ze and
zv and presumably reproduce the electronic correlations
of the FQHE states. On the other hand, in the Hartree-
Fock approximation to H% p, the wave functions (e.g.,
p-filled Landau levels) mix up ze and zv , and H% p, the
preferred Hamiltonian, dynamically couples Re and Rv .
The net result is that, at least at long wavelengths, these
two wrongs make it right and mimic what happens in the
exact solution.

Another advantage of H% p is that it gives an approxi-
mate formula for m* originating entirely from interac-
tions. This is best seen at n51/2. When we square r% p

[Eq. (149)], we get a double sum over particles whose
diagonal part is the one particle (free-field) term:

Hn5 1/2
0 52(

j
E d2q

4p2 sin2Fq3kjl
2

2 Gv~q !e2q2l2/2.

(154)

This is not a Hamiltonian of the form k2/2m* . How-
ever, if the potential is peaked at very small q , we can
expand the sine and read off an approximate 1/m* ,
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1
m*

5E qdqdu

4p2 @~sin2 u!~ql !2#v~q !e2q2l2/2, (155)

which has its origin in electron-electron interactions. In-
deed, we can do more: we have the full H0 as well as the
interactions. The point to emphasize is that H is not of
the traditional form (p2/2m1V) and there is no reason
it has to be.

The reader should verify that if we use H(r% ) instead,
the one-particle piece will be a constant with no momen-
tum dependence. The entire energy will be due to the
Fock term, as in Read’s (1998) conserving calculation.

For the benefit of readers who may be overwhelmed
by seeing too many approaches, we present the key
equations of the Chern-Simons and extended Hamil-
tonian approaches in Table I.

To summarize, in any context where r% p can be reliably
employed, we can say that the composite fermion ap-
pears to be the bound state of an electron and the
pseudovortex. We shall see that this includes calcula-
tions of the gap and magnetization properties at zero
and nonzero temperatures, even at n51/2. We shall turn
to these later on. But first, we list some cases in which
r% (q)p and H% p fail to capture the right physics.

D. The conserving approximation and compressibility
paradox

Halperin, Lee, and Read (1993) predicted that the n
51/2 system has a static compressibility that is nonzero
for short-range forces and vanishes as q for the Cou-
lomb interaction. This result appears paradoxical in the

TABLE I. Basic equations.

CS Theory

HCS5
1

2m (
i

~p1eA1acs! i
21V

¹3acs54psr
Extended Hamiltonian theory „lowest Landau level only…

H% 5
1
2 (

q
v~q !e2q2l2/2r% ~q!r% ~2q!

@H% ,x% (q)#50
x% (q).0

r%~q!5(
j

exp~2iq•Rej!

Re5r2
l2

11c
ẑ3P5R1hc

x% ~q!5(
j

exp~2iq•Rvj!

Rv5r1
l2

c~11c !
ẑ3P5R1h/c

H% p5H% (r% p)
r% p(q)5r% (q)2c2x% (q)
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present approach in which the dipolar nature of the
composite fermion has been transparently exposed (us-
ing r% p). Imagine coupling the system to an external po-
tential F. The dipole will couple to the gradient of F and
the resulting response will be a dipolar density whose
divergence will give the induced charge. These two itali-
cized factors imply a q2 in the response even for short-
range interactions. Indeed, this is what we first obtained
(Shankar and Murthy, 1997; Murthy and Shankar,
1998a) upon doing a simple RPA calculation. How is this
to be reconciled with the Halperin-Lee-Read (1993) re-
sult, assuming that their (compressible) answer is right?

Halperin and Stern (1998) first raised this question
and provided the key to its resolution. They first estab-
lished a matter of principle, namely, that dipolar objects
could be compressible, by considering the following
Hamiltonian:

H5(
i

pi
2

2m
2

1
2mn (

i ,j ,q

n ,n ,Q

pi•pje
iq•(ri2rj). (156)

This Hamiltonian arose in our earlier work (Murthy and
Shankar, 1998a) when we decoupled the magnetoplas-
mon oscillators from the fermions. There we had chosen
the upper cutoff Q5kF so that the i5j term from the
double sum contributes 2p2/2m to each particle and
cancels the first sum, rendering 1/m* 50. Halperin and
Stern considered the limiting case Q→0. In this limit H
takes the form

H5(
ij

~pi2pj!
2

2m
5(

i

S pi2
1
n (

j
pjD 2

2m
(157)

and is invariant under the simultaneous shift of all mo-
menta. This symmetry, called K invariance, had also
been pointed out by Haldane (1995) in unpublished
work and arose as part of a gauge symmetry in our
work. The symmetry implies that it costs no energy to
move the Fermi surface as a whole. Consequently there
are some very soft modes that could lead to a singular
density response which can offset the q2 from the dipo-
lar factors, provided these soft modes are not merely
gauge artifacts that couple to nothing physical. The de-
tailed calculation of Stern et al. (1999), which we now
describe, demonstrated that gauge-invariant soft modes
do exist and lead to nonzero compressibility.

The first order of business was to start with a Hamil-
tonian that had K invariance for small Q and not just
Q50, since one needed to consider the response func-
tions at small but nonzero q . The Hamiltonian in Eq.
(157) had to be augmented by more terms in order to
assure this. These terms were derived by Stern et al.
(1999) as follows. They go a step back and start with the
following Hamiltonian and constraints for the coupled
oscillators and particles:
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H5(
j

~pj2a!2

2m
1V (158)

5(
j

pj
2

2m
2(

q

Q

g~q!
1

2mnCS
a~2q!

1E d2r@nCS~r!ua~r!u2#1V , (159)

g~q!5(
j

pje
2iq"rj, (160)

05~¹3a24pnCS!uphysical state&, (161)

where nCS is the fermion number-density operator. The
only minor difference from our work is that ax and ay
(instead of the longitudinal and transverse components
a and P) are canonically conjugate. The cutoff on q at
Q means that the Chern-Simons fermions now carry flux
tubes, smeared over a distance 1/Q (sometimes called
‘‘fat’’ flux tubes; see Halperin, 1992).

Next Stern et al. (1999) approximate nCS by n , the
average density, and obtain

H5(
j

pj
2

2m
2

1
2mn (

q
g~q!g~2q!

1(
q

n

2m Ua~q!2
1
n

g~q!U2

. (162)

Now they invoke the unitary transformation we em-
ployed to decouple the a fields from the fermions in the
small-ql limit:

U5expF i

4pn (
q

Q

g~q!3a~2q!G . (163)

Since ax and ay are conjugates, U is just the shift opera-
tor a2g/n→a8. Here comes the big difference. While
we kept just the H from Eq. (157), they augment H with
additional terms to ensure that the constraints

r~q!52
il2

2
q3g~q! (164)

commute with Haug to the desired order. The reader
should verify that this constraint is just

x% ~q!5(
j

e2iq"Rvj5(
j

expF2iq•S rj1
l2

2
ẑ3pjD G50

(165)
expanded to order ql .32 To this order the electron den-
sity is (dropping a terms, which do not matter at low
energies)

re~q!5(
j

e2iq"Rej5(
j

expF2iq•S rj2
l2

2
ẑ3pjD G

(166)

32Since the Chern-Simons constraint commutes with H prior
to the action of U , it does so after the action of U , but of
course only to leading order in ql , since U was not imple-
mented exactly.
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.(
j

exp~2iq•rj!S 12
il2

2
q3pjD

(167)

5r~q!2
il2

2
q3g~q!. (168)

Recall that the constraint generates gauge transforma-
tions. To zeroth order the constraint operator is just
( je

2iq"rj50 and its action is

rj→rj , pj→pj1qe2iqrj. (169)

Thus respecting the constraint ensures K invariance.
Stern et al. (1999) now perform an RPA calculation of

the electronic density-density correlation. The random-
phase approximation works because, at a given q, the
gauge field (of that q) enters only in the wiggles connect-
ing irreducible bubbles in Fig. 3 and nowhere inside
these bubbles: every internal exchange brings with it a
sum over q that introduces a small parameter Q . Since
in the limit Q→0, RPA diagrams are all we have, RPA
respects the symmetry of Haug . We shall now argue that
if the constraint is respected, compressibility follows.
For the electron-density operator we have many choices,
starting with Eq. (168) and using the constraint Eq.
(164). In particular we can write it as

re52r (170)

or as

re522
il2

2
q3g~q!. (171)

Written the first way, a nonzero compressibility is not
surprising since there are no powers of q in the operator.
In the second way, we see the possible paradox, since
there is a q up front in each of the two factors of re. It is
here that the overdamped mode appears in the trans-
verse sector, couples to g(q), and saves the day with a
factor q2v(q) in its static propagator, yielding results
that coincide with those of Halperin, Lee, and Read
(1993).

The details of this formidable calculation are not
shown here in the interest of brevity. Suffice it to say
that five different operators (r and the two components
each of g and C, where C is another vector operator) get
coupled and K215K0

211U is a relation among 535
matrices. It is remarkable that in the end all the physics
of Halperin, Lee, and Read, including the overdamped
mode, finite compressibility, and mass divergences at the
Fermi surface, emerge from the more physical quasipar-
ticles, though after a lot of work.

This is not quite the end, since we have discussed only
the Q→0 limit, while the actual theory has no such limit
on Q . Stern et al. (1999) finesse this question with a two-
step argument: (i) First they show that K invariance
guarantees that the Landau parameter F1 has to be 21.
(ii) Then they show that this condition generally pro-
duces very soft modes which restore compressibility to
the dipole gas. Let us elaborate a little. Suppose we want
to define an effective low-energy theory for the compos-
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ite fermions. How do we ensure that it has K invari-
ance? We cannot possibly find all the higher-order cor-
rection in the Q expansion. This is also the typical
situation in Landau theory: although in principle the
Landau parameters can be calculated given the micro-
scopic interaction, there is no way to do this reliably in
practice. However, there are exceptions where a symme-
try is involved. For example, Galilean invariance can be
used to relate the bare mass, the physical mass, and the
Landau parameter F1 . It turns out that here, too, K
invariance can be assured for the actual problem if we
choose F1521. The reason is that the energy cost of
boosting the Fermi sea is measured by (11F1). Choos-
ing F1521 makes the boost cost-free, i.e., implies K
invariance. In other words, the dipolar fermion cannot
have an arbitrary Fermi-liquid interaction: its F1 must
equal 21. At the level of diagrams, if F1521 is in-
cluded as an interaction, the correlation function of two
dipolar densities will go as q0 and not q2.

The compressibility of the n51/2 system was also es-
tablished by Read (1998) using a conserving approxima-
tion. He begins with the problem of bosons at unit fill-
ing, a problem first studied by Pasquier and Haldane
(1998), though not in a conserving approximation. The
bosons can be traded for fermions in zero average field
by attaching a flux quantum. The role of fluctuations is
the same as in the Halperin-Lee-Read problem except
for the strength of the gauge field-fermion coupling. The
Hamiltonian is just the electronic interaction written in
the composite-fermion basis with

Re5r2
l2

2
z̄3p, (172)

and the constraint is the density corresponding to

Rv5r1
l2

2
z̄3p. (173)

The advantage of this starting point is that the con-
straint exactly commutes with H% . Thus one can look for
approximation schemes in which the constraint is re-
spected at the level of Green’s functions, i.e., Green’s
functions with any number of x% (q)’s in them vanish.
Read’s (1998) calculation begins with the filled Fermi
sea (which does not respect the constraint) and embel-
lishes it with diagrammatic corrections. An infinite sum
of ladders (whose legs contain fermions in zero field)
leads to the collective mode. The density-density cor-
relator has the appearance of dipolar objects that ex-
change a transverse gauge field. The transverse propaga-
tor (which is just the overdamped mode) introduces a
v(q)q2 in the denominator that offsets the q2 upstairs.
It is found that correlators containing x% (q)’s vanish and
Ward identities are satisfied.

It is instructive to look at Read’s (1998) density-
density correlator, which takes the form

Kirr~q ,v!5E d2kd2k8~eil2k3q21 !M~k,k8,q,v!

3~e2il2k83q21 !, (174)
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where the factors at each end reduce to dipoles at small
ql , and M5M01MT is a sum of two terms, one from
the free Fermi sea and one from the exchange of the
transverse collective mode, which peaks at iv.q3 v(q).
At high frequencies, MT can be ignored and the dipoles
emerge as free objects, while at low frequencies, they
are coupled by the overdamped mode and do not be-
have like classical dipoles. We begin to see how the di-
poles appear in the correlators (because we can tune the
frequency and wavelength in K to expose them) but not
the wave functions, which describe equal-time correla-
tions and thus involve an integral over all frequencies.

Arguments for the compressibility of the dipolar sys-
tem were also given by Lee (1998).

The resolution of the compressibility paradox did
much to assure the community that various descriptions
of the quasiparticle, each tailor-made for a different oc-
casion, were mutually compatible and consistent.

E. Higher Landau levels

The advantage of the extended Hamiltonian is that it
keeps track of the electronic cyclotron coordinate and
does not go to the lowest Landau level prematurely. This
has many benefits. If we want to compute the Hall con-
ductance, we can couple the system to an external po-
tential and find the response. As stated previously, the
response involves higher Landau levels so that the pres-
ence of he is crucial. The details are shown in Appendix
B. We can also study the effects of Landau level mixing.
Instead of using just HLLL we can try to get an effective
theory within the lowest Landau level, which subsumes
the effects of virtual transitions to higher Landau levels.

To extract the leading correction due to higher Lan-
dau levels we write the Schrödinger equation in sche-
matic form as

F H00 H0n8

Hn80 Hn8n8
G Ffj G5EFfj G , (175)

where f is restricted to the space spanned by Fock states
composed of just the LLL states and j stands for every-
thing else. Likewise the subscripts 0 and n8 stand for
collective labels in and above the lowest Landau level,
respectively. The exact equation obeyed by f is

S H001H0n8

1
E2Hn8n8

Hn80Df5Ef , (176)

which is not an eigenvalue problem since E appears on
both sides. However, we may approximate as follows:

1
E2Hn8n8

52
1

Hn8n8
1O~v/v0!, (177)

since the eigenvalue E we are interested in is of order v
and the eigenvalues of Hn8n8 are of order v0 . To the
same accuracy in k5v/v0 we can also replace

Hn8n8.Hn8n8
0

5(
a

aa
† aana8v0 , (178)

which leads to
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H00
eff5H002(

n8
H0n8

1
n8v0

Hn80 . (179)

Once we have the effective theory in the lowest Lan-
dau level, we can switch to the composite-fermion for-
malism: We introduce Rv , exchange Re and Rv for R
and h, and proceed as before by a Hartree-Fock calcu-
lation. The results are in accord with earlier works show-
ing that Landau level-mixing reduces the transport gap,
but that finite thickness reduces this effect (Yoshioka,
1986; Price, Platzman, and He, 1993; Melik-Alaverdian
and Bonesteel, 1995; Price and Das Sarma, 1996; Melik-
Alaverdian, Bonesteel, and Ortiz, 1997). Full details can
be found in Murthy and Shankar (2002).

VI. CORRELATION FUNCTIONS IN THE CONSERVING
APPROXIMATION

This section illustrates how one does the conserving
calculation within the Hamiltonian approach by deriving
density-density correlation functions (Murthy, 2001a).
This calculation differs from that of Read (1998) in two
ways. First, it is done for nonzero effective field (n
Þ1/2), so that the composite fermions are in Landau
levels instead of plane wave states. Next, the calculation
is done in the operator approach (Anderson, 1958a,
1958b; Rickayzen, 1958) using equations of motion as
compared to diagrams (Nambu, 1960). The second dif-
ference is only cosmetic and is introduced here to pro-
mote harmony with the rest of the paper.33

The Hamiltonian and constraint to be solved are

H5
1
2 (

q
r% ~q!v~q !e2(ql)2/2r% ~2q!, (180)

x% ~q!.0. (181)

Let us define a time-ordered pseudovortex-electron
density-density Green’s function Gve(q ,t) as follows
(with Gee and Gvv similarly defined):

Gve~q,t2t8!52i^Tx% ~q,t !r% ~2q,t8!&

52iQ~ t2t8!^x% ~q,t !r% ~2q,t8!&

2iQ~ t82t !^r% ~2q,t8!x% ~q,t !&, (182)

which evolves as

2i
]

]t
Gve~q,t2t8!52d~ t2t8!^@x% ~q,t !,r% ~2q,t8!#&

2i^T@H ,x% ~q,t !#r% ~2q,t8!& .

(183)

Since x% commutes with H , one immediately sees that
Gve is a constant. If the constraint is set to zero initially,
then it remains zero, and all its correlators also remain
zero.

33For an illustration of calculations in the gapped fractions
using the diagrammatic approach, see Green (2001).
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The above is true in an exact treatment of the theory.
Of course, we can only do approximate calculations. A
calculation that respects Gve5Gvv50 respects the sym-
metries of the theory at the level of correlators and is
called conserving. Let us see what a natural approxima-
tion scheme might be. Consider

i
]

]t
Gee~q,t !5d~ t !^@r% ~q,t !,r% ~2q,0!#&

2i^T@H ,r% ~q,t !#r% ~2q,0!&. (184)

Since @r% ,r% #.r% , a Green’s function involving three
densities will arise. Additional time derivatives will pro-
duce higher-order density correlators, leading to a hier-
archy of equations for more and more complicated
Green’s functions. The natural way to truncate this hier-
archy is to make a mean-field approximation at some
stage that reduces a product of two densities to a single
density. One of the simplest of such approximations
(Baym and Kadanoff, 1961) reduces @H ,r% # , which is a
product of four Fermi operators, to a product of only
two, by using the averages

da1

† da2

† db2
db1

→^da1

† db1
&da2

† db2
1^da2

† db2
&da1

† db1

2^da1

† db2
&da2

† db1
2^da2

† db1
&da1

† db2
.

(185)

Here ^da
† db&5dabNF(a), where NF(a) is the Fermi

occupation of the single-particle state a.
Using the Hartree-Fock states and their occupations

in the above truncation is known as the time-dependent
Hartree-Fock (TDHF) approximation.34 We shall use
the operator approach to TDHF as expounded by
Anderson (1958a, 1958b) and Rickayzen (1958). We
shall explicitly see below that it is conserving for all prin-
cipal fractions.

The physical picture underlying our calculation is the
following. When a bosonic operator such as r% (q) or
x% (q) acts on the ground state, it creates a linear combi-
nation of particle-hole pairs. In the Landau gauge, each
pair is labeled by an index n5n1 ,n2 (not to be confused
with the filling factor) that keeps track of the composite-
fermion Landau-level indices of the particle and hole,
and a total pair momentum q, which is conserved be-
cause the particle and hole have opposite charges and do
not bend in the magnetic field. It is clear that in order to
calculate time-dependent response functions we have to
understand the time evolution of these pairs. In the ex-
act theory, the Hamiltonian can scatter a pair into two
pairs, two pairs into four pairs, etc. This is what leads to

34The TDHF approximation has been the method of choice
in computing magnetoexciton dispersions in the IQHE. Here
are some of the early references: Chiu and Quinn (1974); Hor-
ing and Yildiz (1976); Theis (1980); Bychkov, Iordanskii, and
Eliashberg (1981); Bychkov and Rashba (1983); Kallin and
Halperin (1984); Hawrylak and Quinn (1985); MacDonald
(1985); Marmorkos and Das Sarma (1992); Longo and Kallin
(1993).
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the hierarchy of equations. However, the great simplicity
of the TDHF approximation is that in this approxima-
tion a particle-hole pair scatters only into another
particle-hole pair. At a given q we thus have a matrix
labeled by the indices (n ,n8) of the incident and scat-
tered particle-hole pairs. The magnetoexciton spectrum
comes from the eigenvalues of this matrix, which, to-
gether with its eigenvectors, will be seen to explicitly
determine the Green’s function.

Clearly we must begin with an operator that creates
an exciton in a state of definite momentum q, starting
with states labeled by composite-fermion Landau-level
indices n5(n1 n2). The following operator does the job:

On1n2
~q!5(

X
e2iqxXdn1 ,X2 qyl* 2/2

† dn2 ,X1 qyl* 2/2 .

(186)

Why is this so? First note that in this gauge [Eq. (45)],
the wave functions are plane waves in y with momentum
k and localized in x at X5kl* 2. Thus
dm1 ,X2 qyl* 2/2

† dm2 ,X1 qyl* 2/2 , which creates a hole at X

2 qyl* 2/2 and a particle at X1 qyl* 2/2, creates an exci-
ton in a state of momentum qy in the y direction, cen-
tered at X . Multiplying by e2iqxX and summing over X
creates a state of momentum qx in the x direction.

Now we define

G~n ;n8;q;t2t8!52i^TOn~q,t !On8~2q,t8!& . (187)

Taking the time derivative we get

2i
]

]t
G~n ;n8;q;t !52i^T@H ,On~q,t !#On8~2q,0!&

2d~ t !^@On~q,t !,On9~2q,0!#& .

(188)

The last piece is the standard inhomogeneous
‘‘source’’ term. The dynamics are controlled by the com-
mutator with the Hamiltonian, to which we now turn:

@H ,On~q!#5@e~n1!2e~n2!#On~q!1@NF~n2!

2NF~n1!#(
n9

S v~q !

2p~ l* !2 e2q2l2/2rn19n29
~q!

3rn2n1
~2q!2E d2s

~2p!2 v~s !

3e2s2l2/2rn19n1
~s!rn2n29

~2s!

3ei(l* )2s3qDOn8~q!, (189)

where «(n) is the Fock energy in a state of composite-
fermion Landau-level index n, and the TDHF approxi-
mation has been made.

Note that the action of commuting with H on On in
the TDHF approximation can be represented as the
right multiplication by a matrix H(n ;n9;q). It follows
that if we form a linear combination of operators OC

5(nC(n ;q)On , the column vector C will transform lin-
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early under the action of H. Diagonalizing H will also
enable us to solve for the Green’s function, for the
eigenvectors represent linear combinations of particle-
hole states that are normal modes of H. Assume that
one has found the right and left eigenvectors and corre-
sponding eigenvalues Ea(q), labeled by a,

H~n ;n9;q!Ca
R~n9;q!5Ea~q !Ca

R~n ;q!, (190)

Ca
L~n ;q!H~n ,n9;q!5Ea~q !Ca

L~n9;q!, (191)

where sums over repeated indices are implicit.
Assuming that the matrix H has a complete set of

eigenvectors, the Green’s function can be written as

G~n ;n8;q;v!5
L2

2p~ l* !2(
a

Ca
R~n1n2 ;q!

1
v2Ea

3Ca
L~n28n18 ;q!@NF~n18!2NF~n28!# ,

(192)

where the factor @NF(n18)2NF(n28)# comes from the
source term [the last term of Eq. (188)].

An important property of H from the point of view of
the conserving approximation is that it always has one
left eigenvector with zero eigenvalue for every q,
namely,

C0
L~n1n2 ;q!5x̃n1n2

~q!, (193)

where

x̃n1n2
~q!5^n1ue2iq•(h/c)un2&. (194)

The existence of this eigenvector with zero eigenvalue
[for any v(q)] is shown explicitly by Murthy (2001a).
This zero eigenvalue is related to the constraint and is
one of the conditions for the TDHF approximation to be
conserving. To see this let us go back to the exact theory.
There the Hamiltonian commutes with x% (q). This
means that x% (q) acting on the ground state should pro-
duce a zero-energy state at every q. In the TDHF ap-
proximation the action of the Hamiltonian on this state
is approximated by the action of the matrix H on the left
vector C0

L(n1n2 ;q), corresponding to the operator
Ox% (q)5(x̃n1n2

(q)On1n2
(q). The fact that H admits C0

L

as a left eigenvector with zero eigenvalue means that the
zero-energy state that had to be present in the exact
theory is also present in the TDHF approximation.

To put it slightly differently, the TDHF approximation
represents a truncation of the Hilbert space of neutral
excitations to states having only a single particle-hole
pair above the ground state. A priori this truncation
need not have respected the constraint, but it does.

The above condition is necessary for TDHF to be con-
serving, but not sufficient. The other condition is that
the physical sector [excitations created by r% (q)] not
couple to the zero-energy sector of H. This can also be
verified in a straightforward way (Murthy, 2001a).

A. Small-q structure factor

We shall now put the conserving approximation to an-
other test. Recall that the density-density correlator has
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
two parts: one coming from the cyclotron pole, with a
residue of q2, which is unrenormalized as per Kohn’s
theorem and saturates the sum rule, and another coming
from the dynamics in the lowest Landau level. Hence
the LLL-projected structure factor S% (q) has to vanish
faster than q2, and if it is analytic in q2, it has to go like
q4. We shall see if this is true. Luckily, to obtain the
leading behavior of S% (q) in the TDHF approximation
one need keep only a finite-dimensional submatrix of
the infinite TDHF matrix.

The results are as follows. For n5 1/3 we have, upon
diagonalizing a 434 matrix,

S% ~q !5
~ql !4

8
1¯ . (195)

We can extend this result to all the Laughlin fractions
1/(2s11) to obtain

S% ~q !5
1
8

~ql !41¯ . (196)

The coefficient 1/8, independent of s , differs from the
result s/4 obtained from Laughlin’s wave function
(Girvin, MacDonald, and Platzman, 1986). However, no
general principle requires that we regain this coefficient.

One can carry out a very similar, but much more te-
dious, calculation for all the principal fractions (Murthy,
2001a). The result, upon diagonalizing a 636 matrix, is

S% ~q !5
~ql !4

2

p423p31
5
4

p213p1
7
4

p221
. (197)

This expression, with its divergence as p→` or n
→ 1/2, is consistent with the result (Read, 1998) that for
a problem equivalent to the n5 1/2 problem, S% (q)
.q3 ln(q). As p→` , the radius of convergence of the
power-series expansion of S% (q) must go to zero [or else
the structure factor would diverge for a range of q ac-
cording to Eq. (97)], and the p→` limit does not com-
mute with the q→0 limit. The formula also does not
hold for p51, the Laughlin fractions, for which we must
use the results quoted earlier.

Surprisingly, the results are independent of the form
of the potential, which does enter the intermediate
stages of the calculation.

B. Magnetoexciton dispersions for 1/3 and 2/5

We saw that the small-q behavior of S% (q) can be sat-
isfactorily addressed using the TDHF approximation. It
turns out that this approximation also works well for
computing the dispersion of magnetoexcitons, by which
we mean the lowest-energy physical eigenstate of H at
each q.

As shown in the previous section, for very small q , the
naive magnetoexcitons (bare particle-hole states created
by On) do not mix with others and become the true
eigenstates of H. As q increases they become increas-
ingly coupled, and both level repulsion (between posi-
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tive energy states) and level attraction (between positive
and negative energy states) manifest themselves, giving
rise to complicated magnetoexciton dispersions. The
matrix H is infinite dimensional, but in any numerical
calculation only a finite matrix can be diagonalized. We
saw that the lowest nontrivial result for S% (q) could be
obtained by keeping at most a 636 matrix. As q in-
creases, more composite-fermion Landau levels have to
be kept to obtain accurate results. The accuracy of the
truncation was checked by two different methods. First,
the number of composite-fermion Landau levels kept
was increased until the energy of the magnetoexciton
was stable. Second, we knew that at every q there
should be two zero eigenvalues corresponding to the un-
physical sector. The number of composite-fermion Lan-
dau levels kept in the calculation was increased until
these null eigenvalues were at least four orders of mag-
nitude smaller than the smallest physical eigenvalue.

Figures 4 and 5 show the potential v(q)5 (2pe2/
eq) e2q2b2/2 for various values of b. It is worth noting that
though the depths of the minima are b dependent and
different from what is found in numerical diagonaliza-
tions or from composite-fermion wave functions, the po-
sitions are correct.35 This indicates that the TDHF ap-
proximation to the extended Hamiltonian theory does
capture the important physics of the electronic problem
even at fairly large q .

In the case of 1/3, the magnetoexciton energy has sta-
bilized at large ql , enabling us to read off the activation
gap Da , defined as the minimum energy needed to pro-
duce a widely separated particle-hole pair. However, the

35See Haldane and Rezayi (1985); Morf and Halperin (1987);
Su and Wu (1987); d’Ambrumenil and Morf (1989); He, Si-
mon, and Halperin (1994); He and Platzman (1996); Kamilla,
Wu, and Jain (1996a, 1996b); Jain and Kamilla (1998).

FIG. 4. The lowest-energy spin-polarized magnetoexciton for
n5 1/3 for two values of b. Note the ‘‘magnetoroton’’ at ql
51.4.
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situation deteriorates rapidly as p increases. It becomes
prohibitively hard, even at p52, to get the large-ql limit
of the magnetoexciton spectrum, as is evident from Fig.
5. This is because the decoupling of the naive magne-
toexcitons is asymptotic only for large q . However, as p
increases, the shortcut gives very good answers (Figs. 6
and 7 below) with hardly any additional work. We now
turn to it.

VII. GAPS

Having developed the extended Hamiltonian theory
at length and having established several qualitative re-
sults and matters of principle, we now turn to mainly
quantitative issues. As mentioned at the outset, one can
compute just about anything within this approach, some
things more accurately than others. In the next few sec-
tions we shall discuss a variety of such quantities. Rather
than run through an endless list, we shall focus on a few
that give the flavor of the method and expose its
strengths and shortcomings, and point out references
containing more details or examples. An invaluable
benchmark will be provided by results from trial wave
functions and exact diagonalization. Comparison with
experiment will be made with the clear understanding
that no systematic attempt is made to incorporate disor-
der.

In comparing to the results of exact diagonalization
and trial wave functions one must bear in mind their
limitations. Exact diagonalization (ignoring machine er-
rors) suffers from the fact that the systems are necessar-
ily small. In comparing these results to ours (valid for
infinite systems) we must examine the approach to the
thermodynamic limit and the scaling of gaps. We refer
the reader to Morf, d’Ambrumenil, and Das Sarma
(2002) for the most recent study of this kind.

FIG. 5. The lowest-energy spin-polarized magnetoexciton for
n5 2/5 for two values of b. Note the minima at ql50.8 and
ql51.5.
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While trial wave functions can be written down for
any number of particles, the evaluation of gaps requires
once again that the number of particles be small (though
not as small as in exact diagonalization). The details may
be found in Park, Meskini, and Jain (1999), to whose
work we compare our numbers. It must also be borne in
mind that the correct wave functions may not be of the
form being tried, in which case even a flawless evalua-
tion of gaps is irrelevant. So far there is good reason to
believe that for 1/3,n<1/2 the Jain-like functions are
good. At very low densities the correct state is believed
to be a Wigner crystal, and when higher Landau levels
are involved, more complicated functions like Pfaffians
[the Moore-Read (1991) state] need to be explored.
With these caveats in mind we proceed with the com-
parison of our extended Hamiltonian theory with nu-
merics.

In the remaining sections, we shall use the preferred
density and pay no further regard to constraints. As
stated earlier, this is the most efficient way to work on
problems that do not depend crucially on the deep-
infrared region @v.q3 v(q)# . In the cases discussed,
this is ensured by either a gap, a nonzero temperature,
or both.

Let us begin with the activation or transport gap in a
fully polarized sample, defined as the minimum energy
needed to produce a widely separated particle-hole pair:

D5^p1PHuHup1PH&2^puHup& , (198)

where up& stands for the Hartree-Fock ground state with
p-filled Landau levels and PH stands for a widely sepa-
rated particle-hole pair. We shall use a boldface symbol
such as p to label a Slater determinant with p occupied
Landau levels. Nonboldface symbols will label single-
particle states. Note also that the highest occupied
composite-fermion Landau level index n for the state
labeled by p is n5p21 since the composite-fermion
lowest Landau level has index n50. As shown in Ap-
pendix C, the particle-hole excitations of up& are
Hartree-Fock states of our H .

The expression for the gap written above is formally
the same in the wave-function-based approach of Park,
Meskini, and Jain (1999), to whose results we shall com-
pare ours. However, the notation hides a big difference.
They work in the electronic basis where r(q)5( j
3exp(2iq•rj), and the states are the simple wave func-
tions xp , multiplied by the Jastrow factor and then pro-
jected to the lowest Landau level. (Projection leads to a
very complicated expression for the wave functions.) In
the present approach we have tried to incorporate these
effects by going in the reverse direction, from electrons
to composite fermions, and obtaining complicated ex-
pressions for the charge and other operators, but with
simple expressions for the wave functions. While these
operator expressions are unusual in form, they are
simple to evaluate within the Hartree-Fock calculation.

In all our calculations we shall use the Zhang–Das
Sarma potential (Zhang and Das Sarma, 1986)
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vZDS5
2pe2e2qll

q
, (199)

which is a crude model for the electron-electron interac-
tion in a sample of finite thickness. We simply take it to
be a one-parameter family of potentials. In terms of the
Haldane pseudopotentials Vm (which give the interac-
tion in a state of relative angular momentum m ; see
Haldane, 1990), we know that just one (typically V1)
dominates. We can think of l as controlling the opera-
tive pseudopotential.

Rather than work with a widely separated particle-
hole pair, we find the energy in a state with just the
particle and add to it the energy of a state with just the
hole and subtract double the ground-state energy. Rel-
egating the details to Appendix E, we present the cen-
tral idea.

We begin with the second-quantized expression for
the preferred charge operator r% p(q):

r% p~q!5 (
m2n2 ;m1n1

dm2n2

† dm1n1
rm2n2 ;m1n1

~q!, (200)

where dmn
† creates a particle in the state umn& where m

is the angular momentum and n is the Landau-level in-
dex of the composite fermion in the weakened field
A* 5A/(2ps11) with a magnetic length

l* 5lA2ps11. (201)

The key ingredient in the Hartree-Fock calculation is
the matrix element rm2n2 ;m1n1

, which factorizes (as
shown in Appendix A) into

rm2n2 ;m1n1
5rm2m1

m
^ rn2n1

n . (202)

The gaps depend only on rn2n1

n , the superscript of
which will be generally dropped. Often we shall use the
dimensionless activation gap da defined by

Da5
e2

«l
da . (203)

Figure 6 shows the gaps computed for 1/3 , 2/5 , 3/7,
and 4/9 for the Zhang–Das Sarma potential and com-
pared to the work of Park, Meskini, and Jain (1999) in
the region 0<l<3. The following features are notewor-
thy.

• At l50, the Coulomb case, the gaps are finite in con-
trast to the small-q theory (Murthy and Shankar,
1999). This is due to the Gaussian factor e2q2l2/2 in
H(r% ) [Eq. (61)], which was absent in the small-q
theory. The slope of the graphs in the present theory is
nonzero at this point. It is readily verified that dD/dl
at l50 is the gap due to a delta-function potential
and should vanish for spinless fermions. The descrip-
tion of the composite fermion in terms of r% p does not
give good answers for potentials as short ranged as the
delta function, as anticipated earlier. Indeed, even the
Coulomb interaction is too singular, and the theory
begins to work well only beyond l.1.

• Beyond l.1 the agreement is quite fair in general
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and best for 2/5. However, we cannot go to too large a
l since in this range the system may not be an FQHE
state.

• The gaps that do not vanish for any fraction and any
finite l exceed the Park, Meskini, and Jain (1999) val-
ues for 1/3 and 2/5 and lie below them for 3/7 and 4/9.
This result is at odds with the general belief that
Hartree-Fock always overestimates the gaps by ne-
glecting fluctuations.

The situation is different when we compare with the
exact diagonalization results of Morf, d’Ambrumenil,
and Das Sarma (2002), who used a potential

v~q !5
2pe2

q
e(qlb)2

Erfc~qlb !, (204)

where b is the analog of l.36 Our numbers are compared
in Fig. 7. The calculated gaps always lie above the exact
diagonalization results for the two fractions shown (as
well as for the 1/3 case, not shown).

The general disagreement with our theory is worse for
this potential than for the Zhang–Das Sarma case be-
cause at large q this potential goes as 1/q , while the
Zhang–Das Sarma potential falls exponentially.

36This potential is not very different in form from the Zhang–
Das Sarma potential except at very short distances.

FIG. 6. Comparison of the dimensionless activation gaps da to
the work of Park, Meskini, and Jain (1999; PMJ) for the frac-
tions 1/3, 2/5, 3/7, and 4/9 (that is, p51,2,3,4 and s51) as a
function of l, the thickness parameter in the Zhang–Das
Sarma potential.
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A. Activation gaps

We have computed gaps for many other fractions, in-
cluding s52, when four vortices are attached to form
composite fermions. Rather than show more plots, we
shall now analyze the theory in terms of the activation
mass ma defined by

Da5
eB*

ma
5

eB

~2ps11 !ma
. (205)

Comparison to Eq. (203) shows that

1
ma

5
e2l

«
da~2ps11 ![

e2l

«
Ca . (206)

Thus

Ca5da~2ps11 !. (207)

Based on the exact diagonalization results of
d’Ambrumenil and Morf (1989), Halperin, Lee, and
Read (1993) pointed out that Ca approaches a limit as
we approach n5 1/2 or p→` . The Halperin-Lee-Read
theory expects Ca to be modified by logarithms. We too
expect these logarithms once we approach n5 1/2 and
are forced to include the overdamped mode. However,
we find, as did Halperin, Lee, and Read (1993), a good
fit to the calculated gaps without invoking the loga-
rithms, which are operative in a very tiny region near
n5 1/2 (Morf, d’Ambrumenil, and Das Sarma, 2002).
The only difference here is that Ca approaches a limit
that depends on l, a parameter they set equal to zero
(Coulomb case).

We next turn to Pan et al. (2000), whose experiments
detected that the normalized mass defined by

ma
nor5

ma

meAB~T !
, (208)

where me is the electron mass and B(T) is the field in
tesla, is nearly the same for s51 and s52, i.e., two and
four flux tubes. The theory predicts that mnor are com-
parable for s51 and s52, but makes it clear that no
fundamental significance can be attached to this result
since it depends on l, or more generally, the potential.
Further details may be found in Shankar (2001).

FIG. 7. Comparison of the predictions of the Hamiltonian
theory to the exact diagonalization results of Morf,
d’Ambrumenil, and Das Sarma (2002) for p52 and 3.



1132 G. Murthy and R. Shankar: Hamiltonian theories of the fractional quantum Hall effect
Consider next the experiments of Du et al. (1993),
who have extensive data on activation gaps. We shall
limit ourselves to n< 1/2, to which states with 1>n
> 1/2 are related by particle-hole symmetry if full polar-
ization is assumed. Given that the experiments, unlike
that of Park, Meskini, and Jain (1999), have an unknown
contribution from Landau-level mixing and impurities, it
is not clear how to apply the theory. There is no ab initio
calculation that includes these effects. (There is, how-
ever, reliable evidence that Landau-level mixing is a
very small effect at the values of l under consideration.
Recall also our results from Sec. V.)

We shall compute gaps using the Zhang–Das Sarma
potential with l as a free parameter and ask what l fits
the data, just to get a feel for its size. The results are
summarized in Tables II–IV.

Comparing the above values of l extracted from data
to the local-density approximation (LDA) (Price and
Das Sarma, 1996, and references therein) and exact di-
agonalization calculations (Park, Meskini, and Jain,
1999; Morf, d’Ambrumenil, and Das Sarma, 2002),
which suggest l.1, we see that disorder has a substan-
tial effect on activation gaps.

It is possible to compute the charge density in a state
with a widely separated particle-hole pair in some
gapped fractions. The details, and a comparison to the
unpublished work of Park and Jain, may be found in
Shankar (2001).

B. Other potentials

Figure 8 shows a comparison to the Park, Meskini,
and Jain (1999) results for a Gaussian potential

v~q !52pe2le2q2l2/2. (209)

Note that except for n5 1/3 the agreement is excep-
tional. This is the kind of ultraviolet soft potential for
which the present theory works best, though unfortu-
nately we do not presently know of any system in which

TABLE II. Activation gaps as a function of l for 1<l<2
according to the Hamiltonian theory. Note the convergence of
Ca

(2) as p→` . The superscript (2) refers the number of flux
tubes attached.

p Da
(2)/kB550AB(T)da

(2) da
(2) Ca

(2)

1 5.31AB(T)/l 0.106/l 0.32/l
2 2.08AB(T)/l 0.042/l 0.21/l
3 1.23AB(T)/l 0.025/l 0.17/l
4 0.87AB(T)/l 0.017/l 0.16/l

TABLE III. Approximate numbers used in this paper, with kB
the Boltzmann’s constant, me the electron mass, and B(T) the
field in tesla.

eB

mekB
51.34B~T ! K

e2

«lkB
550AB~T ! K

«

e2l
50.026 meAB~T !
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it is operative. Its study serves to instruct us on the do-
main of validity of our approach. Not surprisingly, work
on the potential

v~r !5
e2kr

r
(210)

shows an agreement that is worse than for the Coulomb
case, since this potential is just as bad as r→0 and does
not give the large r values a chance. Likewise 1/r2 fares
worse than 1/r .

Note that if l→` we may be in trouble, since the
potential may not lead to FQHE states.

In summary, it appears as if our approach works well
in any problem that is not sensitive to distances smaller
than about a magnetic length. Since the extended for-
malism is mathematically equivalent to the original elec-
tronic problem in the lowest Landau level, it is the twin
approximations—the use of r% p to deal with constraints
and Hartee-Fock—that are responsible for deviations
from our benchmarks.

While our approach can reproduce the numbers of the
wave-function and exact diagonalization approaches to
within about 10% (if l.1) with a lot less work (a few
seconds on a PC), without these benchmarks we would
have known neither its range of validity nor its degree of
accuracy. Without such feedback, we would not have ap-
plied the method with such confidence to other phenom-
ena not treated by wave functions or exact diagonaliza-
tion, such as relaxation rates and polarization at T.0.

FIG. 8. Comparison of activation gaps predicted by the Hamil-
tonian theory with the work of Park, Meskini, and Jain (1999)
for the Gaussian potential. The agreement is almost perfect for
p.1.

TABLE IV. Comparison of activation masses to sample A of
Du et al. (1993), which has a density n51.1231011 cm22. The
last column gives the best fit to l.

n B(T) Da
exp (K) Da

theo (K) l

1
3 13.9 8.2 5.3AB(T)/l 2.4
2
5 11.6 3 2.08AB(T)/l 2.4
3
7 10.8 2 1.23AB(T)/l 2.0
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VIII. MAGNETIC TRANSITIONS AT T=0

Now we turn to the behavior of the spin of the system,
which so far has been assumed to be frozen along the
applied field. The reader might wonder why we bother,
since the magnetic fields are of order at least a few tesla.
The reason, originally pointed out by Halperin (1983), is
that the Zeeman energy EZ5g* (e/2m)B is the smallest
energy scale in the problem, owing to a combination of
two factors. First, due to band-structure effects, the band
mass of the electron in GaAs is 0.068me , with me the
electron’s mass in vaccuum. This makes the cyclotron
frequency about 14 times what it would have been in
empty space. Next, due to spin-orbit coupling, the effec-
tive g factor of the electron in GaAs is g50.44 instead
of the empty space value of 2. Thus the Zeeman energy
is about 64 times smaller than the cyclotron energy v0 .
Typically the interaction energy is of the same order as
v0 , leading to EZ’s being the smallest energy. Since the
original realization by Halperin (1983), spin transitions
have been seen in experiment,37 and explored by exact
diagonalization.38 We shall compare our results with the
recent work of Park and Jain (1998, 1999) in the
composite-fermion wave-function approach.

The coupling of electron spin to the applied field is
given by the Zeeman term

HZ52gS e

2me
D S

2
B , (211)

where g50.44, me is the electron mass in free space, S is
given by

S5nP , (212)

where n is the density, and P is the polarization, to
which each electron contributes 61.

Since the uniform external field couples to the
q50 component of the spin density, which is unaffected
by the canonical transformations, HZ will have the
same form in the final composite-fermion representa-
tion.

A. Magnetic transitions in gapped fractions

When HZ is large, we expect the system to be fully
polarized (P51). As we lower HZ , we expect P to
drop. If translationally invariant composite-fermion
states are considered for the gapped fractions, there is a
discrete set of allowed values of P . At n5p/(2ps11),
these correspond to states of the form up2r,r& in which
p2r composite-fermion Landau levels are occupied by

37Clark et al. (1989), Eisenstein et al. (1989), Furneaux et al.
(1989), Buckthought et al. (1991), Du et al. (1995, 1997).

38Chakraborty and Zhang (1984a, 1984b), Rasolt, Perrot, and
MacDonald (1985), Chakraborty, Pietiläinen, and Zhang
(1986).
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up-spins and r composite-fermion Landau levels by
down-spins.39 Thus the allowed values of polarization
are given by

P5
p22r

p
. (213)

For example, when p54, the allowed values are P
51, 0.5, and 0 corresponding to u4,0&, u3,1&, and u2,2&.

Our goal is to calculate the critical fields at which the
system will jump from one value of r to the next as HZ
is varied. Let

E~p2r ,r !5^p2r,ruHup2r,r&, (214)

where H does not contain the energy due to HZ . This
will be the case for the single-particle and ground-state
energies, with one exception, which will be clearly
pointed out. Since HZ is diagonal in the Hartree-Fock
states that have definite spin, its effects can be trivially
incorporated.

The Hartree-Fock calculation of E(p2r ,r) is detailed
in Appendix F.

The critical field Bc for the transition from r to r11 is
given by

E~p2r ,r !2E~p2r21,r11 !5g
eBc

2me

n

p
, (215)

where the right-hand side denotes the Zeeman cost of
flipping the n/p spins in the Landau level that switched
its spin. This discussion assumes that B is perpendicular
to the sample. If there is a tilt u, we write

E~p2r ,r !2E~p2r21,r11 !5g
eB'

c

2me cos u

n

p
. (216)

When these energy differences are calculated, the
same remarkable regularity first noted by Park and Jain
(1998, 1999) emerges: the differences can be fit in the
following sense by a theory of free fermions of mass mp ,
the polarization mass, that occupy Landau levels with a
gap Dp5eB* /mp . In a free theory of gap Dp , we would
have

E~p2r ,r !2E~p2r21,r11 !5
n~p22r21 !

p
Dp ,

(217)
since (n/p) spin-up fermions of energy (p2r21
1 1/2)Dp drop to the spin-down level with energy (r
1 1/2)Dp . Suppose we evaluate the left-hand side of Eq.
(217) in the Hartree-Fock approximation and define

Dp~r !def5
p

n

E~p2r ,r !2E~p2r21,r11 !

p22r21
. (218)

Given that H is not free, there is no reason why
Dp(r)def should be r independent. But it is very nearly
so. For example, at p56,l51,

39In Jain’s approach, the actual wave function will be such a
state times the Jastrow factor, followed by projection to the
lowest Landau level. In the present approach, up2r,r& is liter-
ally the state, but the operators for charge and spin are ob-
tained by transformations to the composite-fermion basis. For
the interested reader we mention that these transformations
are spin independent.
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Dp~0,1,2 !def5
e2

«l
~0.00660,0.00649,0.00641!, (219)

The three terms describe the transitions u6,0&→u5,1& ,
u5,1&→u4,2& , and u4,2&→u3,3&. This r independence of
the gaps was true for every fraction and every value of l
we looked at. We shall soon demystify this apparent
free-field behavior, which has a counterpart in the gap-
less case as well.

The transition up2r,r&→up2r21,r11& occurs when
the spin-flip energy equals the energy difference of the
two competing ground states:

g
e

2me

B'
c

cos u
5~p22r21 !Dp . (220)

B. Magnetic properties of gapless fractions

Let us turn now to the gapless fractions 1
2 and 1

4 . The
discrete labels p2r and r of the Hartree-Fock states
that count the spin-up and spin-down Landau levels are
now replaced by continuous variables k6F , which label
the Fermi momenta of the spin-up and spin-down seas.
These momenta are such that the total number of par-
ticles equals n :

k1F
2 1k2F

2 5kF
2 54pn , (221)

where kF denotes the Fermi momentum of a fully polar-
ized sea.

In the gapped case there were several critical fields
Bc, each corresponding to one more composite-fermion
Landau level flipping its spin, each describing one more
jump in the allowed values of P . In the gapless case the
situation is different. For very large Zeeman energy, the
sea will be fully polarized. It will not be worth including
even one fermion of the opposite spin, since the Zeeman
energy cost alone will exceed the Fermi energy of the
polarized sea. As we lower the Zeeman term, we shall
reach a critical field at which it will be worth introducing
one fermion of the other spin with zero (effective) ki-
netic energy. At this point the energy of a particle on top
of the spin-up sea obeys

E1~k1F!5g
e

2me

B'
c

cos u
. (222)

If we lower the Zeeman term further, the polarization
will fall continuously and be determined by E6(k6F),
the energies of the particles on top of these two seas,
according to

E1~k1F!2E2~k2F!5g
e

2me

B'

cos u
. (223)

This equation states that the system is indifferent to the
transfer of a particle from one sea to another, i.e., it has
minimized its energy with respect to polarization.

Since the effective magnetic field vanishes at the gap-
less fractions, we deal with a very simple expression for
r% (q)p:
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r% p~q!5E d2k

4p2 ~22i !sinS q3kl2

2 Ddk2q
† dk . (224)

It is easy to do a Hartree-Fock calculation and obtain

E6~k !52E d2q

4p2 v̌~q !sin2Fk3ql2

2 G
24E d2k8

4p2 n6
F ~ uk8u!v̌~ uk2k8u!

3sin2Fk83kl2

2 G[E01EI ,

where the Zeeman energy is not included, n6
F is the

Fermi (step) function for the two species, E0 and EI rep-
resent single-particle energy (due to what was called H0
earlier) and the energy of interaction of this particle at
the Fermi surface with those inside the sea, and

v̌~k !5v~k !e2k2l2/2. (225)

When this result is used to compute E1(k1F)
2E2(k2F), we find once again that the numbers fit a
free theory in the following sense. Imagine that compos-
ite fermions were free and had a mass mp . We would
then have

E1~k1F!2E2~k2F!5
k1F

2 2k2F
2

2mp
. (226)

What we find is that the Hartree-Fock number for
E(k1F)2E(k2F) may be fit very well to the above form
with an mp that is essentially constant as we vary k6F ;
i.e., the relative sizes of the up and down seas (this is
analogous to an mp that does not depend on the index r
in the gapped case). This constant mp defined by

1
mp

52
E1~k1F!2E2~k2F!

k1F
2 2k2F

2 (227)

matches smoothly with that defined for the nearby
gapped fractions.

This free-field behavior is surprising because we shall
shortly see that there are many reasons to believe that
the composite fermions are not free. For now, note that
the Hartree-Fock energies are not even quadratic in mo-
menta: for example, at n5 1/2 and l51 there is a hefty
quartic term:

E~k6F!

~e2/«l !
5aS k6F

kF
D 2

1bS k6F

kF
D 4

, (228)

where a50.075 and b520.030.
There is no reason that the composite-fermion kinetic

energy should be quadratic in momentum. These par-
ticles owe their kinetic energy to electron-electron inter-
actions, and given this fact, all we can say is that their
energy must be an even function of k , starting out as k2

at small k . What constitutes small k is an open question
that is answered unambiguously here: Our expression of
the energy has substantial k4 terms for momenta of in-
terest, but not from higher powers. An analogous result
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holds for the gapped fractions, in which the composite-
fermion Landau levels are not equally spaced (Murthy,
1999; Mandal and Jain, 2001a).

The proper interpretation of this free-field behavior
will be taken up next.

C. Composite fermions: free at last?

The fact that magnetic phenomena at T50 can be
described (to excellent accuracy) by free fermions of
mass mp (Park and Jain, 1998, 1999; Shankar, 2000,
2001) needs to be properly understood and interpreted.
In particular, one must resist the thought that perhaps by
some further change of variables one could take the
present Hamiltonian and convert it to a free one. This is
because if there were really an underlying free theory, it
would have a single mass mCF for both activation and
polarization phenomena, with the composite fermions
forming Landau levels of spacing eB* /mCF . But we
know from the extended Hamiltonian theory, Jain’s ap-
proach, or experiment that there are two masses ma and
mp that differ by at least a factor of 2. Furthermore the
shape of the magnetoexciton dispersions (Jain and Ka-
milla, 1998, and Fig. 5) also points to sizable composite-
fermion interactions: as ql2, the distance between the
particle and hole, varies, the (binding) energy varies by
an amount comparable to their individual energies,
whose sum is given by the value at large ql .

It has been shown (Shankar, 2000, 2001) that a single
assumption about the form of the ground-state energy,
an assumption that is not equivalent to the free-field
assumption or even to a quadratic dispersion relation in
the gapless cases, will explain this behavior for gapped
and gapless fractions. Consider E(S), the ground-state
energy as a function of S5nP , where P is the polariza-
tion. By rotational invariance it must have only even
powers of S in its series. Assume that the series is domi-
nated by the first two terms:

E~S !5E~0 !1
a

2
S2, (229)

where a is the inverse linear static susceptibility.
Consider first the gapless case. When dn particles go

from spin-down to spin-up,

dE5aSdS5aS~2dn ! (230)

5a
k1F

2 2k2F
2

4p
~2dn ! (231)

using the volumes of the Fermi seas. We see that dE has
precisely the form of the kinetic-energy difference of
particles of mass mp given by

1
mp

5
a

p
. (232)

Thus mp is essentially the static susceptibility, which
happens to have dimensions of mass in d52. The state-
ment that mp has no r dependence in the gapped case or
no spin dependence in the gapless case is the same as
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saying that the full nonlinear susceptibility does not de-
pend on the spin S , which in turn means that E(S) is
quadratic in S .

Note that the free-field form of dE comes from E
.S2 and d52: in d53, we would have dE/dn.S
.(k1F

3 2k2F
3 ), which no one would interpret as a differ-

ence of kinetic energies.
Let us see how this general argument applies to the

specific example we have been working on.
Consider the Hartree-Fock energies quoted earlier:

E~k6F!

~e2/«l !
5aS k6F

kF
D 2

1bS k6F

kF
D 4

. (233)

The quartic terms miraculously drop out in the energy
cost of transferring a particle from the top of the spin-
down sea to the top of the spin-up sea:

dE

~e2/«l !
5a

k1F
2 2k2F

2

kF
2 1b

k1F
4 2k2F

4

kF
4 (234)

5a
k1F

2 2k2F
2

kF
2 1b

~k1F
2 2k2F

2 !~k1F
2 1k2F

2 !

kF
4

(235)

5
~a1b !

kF
2 ~k1F

2 2k2F
2 ! (236)

using

k1F
2 1k2F

2 5kF
2 . (237)

Note how d52 was essential to this argument: in d53
we would have k1F

3 1k2F
3 5kF

3 .
Thus the k4 terms in E(k6) are not the cause of the S4

term. However, a k6 term in E(k6) can be shown to
produce an S4 term in E(S).

Thus the apparent free-field behavior is tied to the
smallness of terms of order k6 and higher. To under-
stand why the k6 term is so small, we turn to Eq. (154)
for H0 . Expanding the sin2 in a series, we find that the
k6 term is down by a factor of at least 15 (50) relative to
the k2 term, at l50 (l51), all the way up to k5kF .
Presumably this feature (and its counterpart in the
gapped case) persists in the Hartree-Fock approxima-
tion to H and keeps E(S) essentially quadratic, which in
turn mimics free-field behavior.

The reader is referred the original work (Shankar,
2001) for a proof that E(S)5E(0)1 (a/2) S2 implies
that D(r) will be r independent in the gapped case as
well.

Composite fermions are not free fermions but are like
Landau quasiparticles in a Fermi liquid.40 These objects,
too, are labeled by free-particle quantum numbers and
are long-lived. They do have fairly strong interactions:
the dimensionless Landau parameters that describe
these interactions are not small and produce effects like

40This was already suggested by Halperin, Lee, and Read
(1993). Also in this context, see the work of Mandal and Jain
(2001a).
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zero sound. They are adiabatically connected to free fer-
mions in zero field just as the composite fermions are
adiabatically connected to free fermions in a reduced
field B* .

D. Effective potentials for experimental systems
with disorder

In comparing theory to experimental results one can-
not neglect disorder. Our theory ignores disorder and
our results are completely determined by the electron-
electron interaction. Here we ask if it is possible that a
Zhang–Das Sarma potential with some effective l could
describe a dirty system. First of all, we realize that this
could not be true with respect to all observables, if it
were true for any. For example, if one were considering
conductance, one would know the electron in a disor-
dered potential would typically get localized, whereas no
Zhang–Das Sarma interaction would predict this. As for
transport gaps, the present-day samples, with a disorder
broadening of the same order as the gaps, again pre-
clude this possibility. Magnetic transitions, however, are
controlled by total energies and one might expect that
disorder would have a rather innocuous effect and could
be represented in an average way by some translation-
ally invariant interaction. We raise this issue because, in
several magnetic phenomena to be described shortly, it
appears that a single l characterizes a sample. Specifi-
cally, l extracted from one data point can be used to
explain the rest of the data from that sample. If the
other data points differ only in the temperature T , the
same l is used. If they differ in B or n or n, the following
scaling argument applies (Ando, Fowler, and Stern,
1982): In a heterojunction, the donors of density n pro-
duce a confining linear potential of slope that goes as n .
If one considers a variational wave function of the Fang-
Howard (1966) form c(z)5A(w)z exp(2z/w) in the
transverse direction, then the optimal w̄ (to which L, the
well width, must be proportional) varies as w̄.n2 1/3.
Consequently the dimensionless width, l5L/l , varies as

l.n2 1/3B1/2.B1/6n2 1/3.n1/6n2 1/2. (238)

Arguments can be given (Shankar, 2001) for why in
certain limiting conditions, not realized in today’s ex-
periments, an effective potential exists. The question of
why this works in realistic situations far from this limit
remains unanswered.

With this preamble, let us turn to comparison with
experimental results. Kukushkin, von Klitzing, and
Eberl (1999) vary both n and B and drive the system
through various transitions at T50 (by extrapolation).
The field B is always perpendicular to the sample. We
compare the Hamiltonian theory to these experiments
by calculating the critical fields at which the n5 1

2 and

n5 1
4 systems saturate (P51) and the gapped fractions

undergo transitions from one quantized value of P to
the next.

Let us recall that, as far as these transitions go, the
systems behave like free fermions of mass mp , which is
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
independent of the index r that labels how many Lan-
dau levels have reversed their spins in the gapped case
or the size of the up and down Fermi circles in the gap-
less cases.

We consider Bc’s at which the systems at 1
4 , 2

5 , 3
7 , 4

9 ,
and 1

2 lose full polarization (r50 for gapped cases, satu-
ration for the gapless cases) and, for 4

9 , also the r51
transition, u3,1&→u2,2&.

An experimental complication needs to be addressed
first. Each of these transitions seems to take place via a
narrow intermediate step (Kukushkin, von Klitzing, and
Eberl, 1999) with a polarization halfway between those
allowed by composite-fermion theory based on spatially
homogeneous states. We use the center of these narrow
steps as the transition points for comparison to the
present theory. The physics of these intermediate steps
will be addressed in Sec. X.

In accordance with our strategy we find l by fitting
the theory to the experiment for a particular transition.
We use this value [or for samples with changing field and
density, Eq. (238)] to predict Bc for other transitions
using Eq. (220). We obtain l3/751.42 from the transition
u3,0&→u2,1& at Bc54.5 T.

For the gapless cases, there are two equivalent ap-
proaches. First, at the critical field the Fermi energy of
the up-spins equals the Zeeman energy of the down-
spins:

gF eBc

2me
G5

kF
2

2mp
5

2pn

mp
5

eBn

mp
. (239)

Equivalently we can write for the total ground-state
energy density EZ(S) (where the superscript indicates
that the Zeeman energy is included)

EZ~S !5
a

2
S22g

e

2me

B'S

cos u
, (240)

where a5p/mp . This expression is minimized (for P
<1) to give P . Setting P51 gives the critical fields.

The comparison to experiment is made in Table V.
Note that in rows above 3

7 , where we fit l, the predicted
Bc’s are lower than the observed values, i.e., the actual
l’s are less than what Eq. (238) gives, and in the rows
below 3

7 , the predicted Bc’s are higher than the values
observed. This is consistent with the expectation that
interactions will increase the effective thickness with in-
creased density. If we fit to the 2

5 point, we obtain similar
numbers, with the agreement worsening as we move off

TABLE V. Critical fields based on a fit at 3
7 . The rows are

ordered by the last column, which measures density.

n Comment Bc (expt) Bc (theor) nBc (expt)

4
9 (3,1)→(2,2) 2.7 T 1.6 T 1.2
2
5 (2,0)→(1,1) 3 T 2.65 T 1.2
1
4 saturation 5.2 T 4.4 T 1.3
3
7 (3,0)→(2,1) 4.5 T 4.5 T 1.93
4
9 (4,0)→(3,1) 5.9 T 5.9 T 2.62
1
2 saturation 9.3 T 11.8 T 4.65
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in density from 2
5 . Thus 3

7 was chosen as the fitting point,
since its density was somewhere in the middle of all the
densities considered.

IX. PHYSICS AT NONZERO TEMPERATURES T>0

So far we have seen that the extended Hamiltonian
theory may be used to compute quantities such as gaps,
particle-hole profiles, critical fields for magnetic transi-
tions, and so on to 10–20 % accuracy. All such quantities
have been readily computed using trial wave functions,
giving numbers that are superior to ours. Our main em-
phasis has been to expose the underlying physics as
transparently as possible and to resolve questions such
as why composite fermions behave like free particles on
some occasions.

We turn now to physics at finite T (Murthy, 2000c;
Shankar, 2000, 2001), where the Hamiltonian method
has few rivals. Exact diagonalization (Chakraborty and
Pietiläinen, 1996; Chakraborty, Niemelä, and Pietiläinen,
1998) is limited to very small systems, and trial wave
functions typically cover the ground state and very-low-
energy excitations. The Hamiltonian approach is able to
yield the temperature dependence of polarization P and
the relaxation rate 1/T1 for the gapless states in the ther-
modynamic limit. We shall see that, if l is treated as
before (fit to one data point per sample), it is possible to
give a very satisfactory account of experiments in gap-
less systems up to about 1 K, which is of the order of the
Fermi energy (Shankar, 2000, 2001).

We shall then address finite-temperature polarization
in gapped states, which is complicated by a nonzero
spontaneous polarization and the attendant spin waves.
It turns out to be essential to take the finite-T behavior
of these spin waves into account. Once this is done, the
theoretical predictions are in excellent agreement with
experiment up to several degrees Kelvin (Murthy,
2000c).

We start with the gapless case since it is simpler.

A. Polarization and relaxation in gapless states

The polarization P is computed as follows. First we
compute the Hartree-Fock energy of a particle including
the Zeeman energy, which is the self-consistent solution
to

E 6
Z ~k !57

1
2

gF eB

2mG12E d2q

4p2 v̌~q !sin2Fk3ql2

2 G
24E d2k8

4p2 n6
F ~ uk8u!v̌~ uk2k8u!

3sin2Fk83kl2

2 G ,

where the superscript on E 6
Z reminds us that it is the

total energy including the Zeeman part, and the Fermi
functions
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n6
F ~ uku!5

1

exp@~E 6
Z ~k !2m!/kT#11

(241)

depend on the energies E 6
Z (k) and the chemical poten-

tial m. Figure 9 shows some typical results. At each T ,
one must choose a m and solve for E 6

Z (k) until a self-
consistent answer with the right total particle density n
is obtained. From this, one may obtain the polarization
by taking the difference of up and down densities. As
usual we use the Zhang–Das Sarma potential, for which

v̌~q !5e2q2l2/2
2pe2e2qll

q
. (242)

The computation of the longitudinal nuclear relax-
ation rate 1/T1 is more involved (Shankar, 2000, 2001).
The fermions are in a quantum well, with their density
varying across the width, so the nuclear relaxation rate
will be a function of position. Consider a nucleus at the
center of the quantum well (as well as the x2y plane)
where the density is the largest. Let us call this point the
origin and let 1/T1 be the relaxation rate here. The
theory predicts

1
T1

54pkBTS Kn
max

n D 2

3E
E0

`

dES dnF~E !

dE D r1~E !r2~E !F~k1 ,k2!,

(243)

F5e2(k1
2

1k2
2 )l2/2I0~k1k2l2!, (244)

r6~E !5E kdk

2p
d@E2E 6

Z ~k !# , (245)

where k6 are solutions to E 6
Z (k6)5E , I0 is the Bessel

function, E0 is the lowest possible energy for up-spin
fermions, and Kn

max is the measured maximum Knight
shift (at the center of the sample) for the fraction n5 1

2

or 1
4 .

Here is a rough description of the derivation, the de-
tails of which may be found in Shankar (2000). Suppose
for a moment we were dealing with electrons and not
composite fermions. The Knight shift at the chosen

FIG. 9. Hartree-Fock energies at n5 1/2 for up- and down-
spins (upper and lower curves) at T50.3 K for B55.52 T and
no tilt. Note that they are not simply quadratic in the momenta
and that at the chemical potential, indicated by the horizontal
line, the two graphs have very different slopes, that is, different
densities of states.
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point, the origin, will be determined by the spin density
there. The same parameter enters the 1/T1 calculation
quadratically. This is why Kn

max enters the answer. Thus
Kn

max is not calculated ab initio but is taken from the
same experiment. The density of states and Fermi factor
are standard. The only new feature here is the presence
of F(k1 ,k2), which reflects the fact that the spin den-
sity has to be projected into the lowest Landau level
when going to the composite-fermion basis. The effect
of this factor (which is none other than the e2q2l2/2 that
appeared on the projected charge density) is to suppress
processes with momenta much larger than 1/l , as these
have no place within the lowest Landau level.

We now compare to some experiments at n5 1
2 and

T.0. Consider first Dementyev et al. (1999). From their
data point P50.75 for B5B'55.52 T at 300 mK we
deduce

l51.75. (246)

We have once again chosen to see to what extent a sole
parameter l can describe P and 1/T1 for the given
sample at a given B' , but at various temperatures and
tilts.

Since there does not exist a model, including disorder,
that describes how l should vary with tilt, we include no
such variation.

FIG. 10. Comparison of the predictions of the Hamiltonian
theory for the NMR relaxation rate and polarization to the
work of Dementyev et al. (1999). The value of l used in the
theory is fit to P at 300 mK, B'55.52 T, and used for other T
and B' . Notice the correlation between the curvature of 1/T1
and the limit of P as T→0.
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Dementyev et al. (1999) find K1/3
max54.85631027 K,

which is believed to describe a saturated system at P
51. They estimate that K1/2

max50.953K1/3
max , which is what

we need here. Given this information, 1/T1 follows.
The top and bottom halves of Fig. 10 compare the

Hartree-Fock calculation of 1/T1 and P , respectively, to
the data. The graphs for 1/T1 differ slightly from those
in Shankar (2000), since the present calculation treats
the spin of the composite fermion more carefully. The
1/T1 graph at 5.52 T appears a little jagged, since it was
computed at just six points, which were then connected.
This is not apparent in the tilted case, since the points lie
on a straight line.

Dementyev et al. (1999) had pointed out that a two-
parameter fit (using a mass m and interaction J) led to
disjoint sets of values (in the m2J plane) for these four
curves. Given that H is neither free nor of the standard
form @p2/2m1V(x)# , this is to be expected. By contrast,
a single l is able to describe the data here rather well,
since H has the right functional form. Given how the
theory fits the polarization data up to the Fermi energy
of .1 K, it is clear that changing the data point used to
fix l will be inconsequential.

The present work establishes a phenomenological,
nontrivial, and nonobvious fact that a single l param-
eter, determined from one data point, can describe both
P and 1/T1 for the given sample under a variety of con-
ditions. That the fitted l is larger than the local-density-
approximation value makes sense, as both disorder and
Landau-level mixing will lower the gap and raise l.

FIG. 11. (Color in online edition) Comparison of the predic-
tions of the Hamiltonian theory with the data of Melinte et al.
(2000) for two values of the tilt angle u50° and u560°. The
value of l used in the theory is fit to P at 60 mK and B'

57.1 T.
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Consider next sample M280 of Melinte et al. (2000),
which had P50.76 at 0.06 K and B5B'57.1 T, from
which we deduced l51.6. Figure 11 compares the the-
oretical T dependence of P(T) with data. There is a
factor-of-2 difference between theory and experiment
for 1/T1 (not shown).

The fair agreement for the tilted cases is unexpected
in both the Dementyev et al. (1999) and Melinte et al.
(2000) data. First of all, orbital effects have to be con-
sidered due to the tilt. The thickness parameter L can be
affected by it. As pointed out by Jungwirth in a private
communication, once there is an in-plane component of
B , the problem is no longer rotationally invariant. This
means that our states are no longer Hartree-Fock states
and get scattered into each other by the potential. No
attempt was made here to take into account all the ef-
fects of the tilt. Instead we included just the increased
Zeeman coupling and hoped for the best.

For the benefit of others who measure 1/T1 at n
5 1/2 in the future on similar samples, we give some
very approximate formulas (to be used for zero or small
tilts). From Fig. 10 we note that, in general, the graphs
of 1/T1 become linear and parallel for temperatures
above 0.3 K. In this region we can write

d~1/T1!

dT
.3F K̄

n̄ G 2

31023 s21 K21 for T.0.3 K,

(247)

with K̄ the Knight shift in KHz and

n̄5
n

1010/cm2 . (248)

[In this approximate formula, we ignore the l depen-
dence of Eqs. (243)–(245) and the distinction between
the average and maximum Knight shift.]

The graphs do not generally obey the Korringa-like
law because as T→0 they are sublinear or superlinear
for saturated or unsaturated cases, respectively. Only the
critical case with P(0)→1 as T→0 is linear. For T
.0.3 K (which in general must be replaced by either the
energy gap or energy overlap between the up and down
Fermi energies) we have the approximate result

1
T1

.@3T K1C#F K̄

n̄ G 2

31023 s21, (249)

C50 ~critical! (250)

^0 ~unsaturated! (251)

%0 ~saturated!. (252)

For the critical case (only), we have a Korringa law

1
T1T K

.@3#F K̄

n̄ G 2

31023 s21 K21. (253)

For Dementyev et al. (1999) C.1. This value may be
used as a first approximation. For more accurate results
one must solve Eqs. (243)–(245).
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
B. Polarization in gapped states

Let us now turn to the theoretical description of the
finite-temperature polarization of the n5 1/3 state, de-
tailed measurements of which have recently been car-
ried out (Khandelwal et al., 1998; Melinte et al., 2000;
Freytag, 2001). Theoretical details can be found in Mur-
thy (2000c).

While the composite-fermion Hartree-Fock approxi-
mation provides an adequate description of n5 1/2 it is
qualitatively incorrect for a spontaneously polarized
state like n5 1/3, because it underestimates the effects
of the excitations that destroy order. For example, it pre-
dicts a nonzero spontaneous polarization at EZ
5gmB tot50 and T.0, in violation of the Hohenberg-
Mermin-Wagner theorem (Mermin and Wagner, 1966;
Hohenberg, 1967) that forbids spontaneous breaking of
a continuous symmetry in two dimensions, except at T
50. The T50 spontaneous polarization is driven by the
fact that fermions of the same spin will avoid each other
due to the Pauli principle and thus have a lower interac-
tion energy, just as in the n51 spontaneous quantum
ferromagnet,41 which has been extensively studied
theoretically42 and experimentally.43

Thus we must begin by understanding the disordering
mechanism and seeking a proper description of it. Con-
sider a fully polarized n5 1/3 state at T50 with all the
fermions in the composite-fermion LLL state. As the
system is heated, some fermions will go to the n51
composite-fermion Landau level with spin-up (which
does not change the polarization) and some will go to
spin-down n50 which reduces the polarization and costs
an energy per spin-flip of DSR , the spin-reversed gap.

This description completely misses the spin waves,
which are related to the particle-hole excitations as fol-
lows. Just as in the case of the magnetoexciton (Fig. 4),
where no spin was flipped, a spin-flip particle-hole exci-
tation has an energy that varies with q .44 As q→` , the
dispersion settles down at DSR , the energy to create a
widely separated pair. However, as q→0 the pair energy
vanishes, for EZ50, by Goldstone’s theorem. For non-
zero EZ the long-wavelength limit for the spin-wave en-
ergy is EZ according to Larmor’s theorem. These are the
modes to reckon with, for they are very low in energy
and plentiful at low temperatures.

The simplest way to describe these spin waves (includ-
ing their self-interaction) is the continuum quantum fer-
romagnet (Read and Sachdev, 1996). This model as-
sumes that all high-energy modes (at the electronic and

41The classic study of nontrivial interaction effects (beyond
ferromagnetism) at n51 is that of Sondhi et al. (1993).

42For theoretical work, see Kopietz and Chakravarty (1989);
Kasner and MacDonald (1996); Read and Sachdev (1996);
Haussmann (1997); Timm et al. (1998); Kasner, Palacios, and
MacDonald (2000).

43Experimental studies include those of Barrett et al. (1995);
Tycko et al. (1995); Aifer, Goldberg, and Broido (1996); Man-
fra et al. (1996).

44For an example of this calculation, see Murthy (1999).
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composite-fermion cyclotronic scales) have been inte-
grated out. The only modes left are slow and long-
wavelength fluctuations of the spin polarization, which
have the action

S5E ddxE
0

1/T
dtS iM0A~n!•¹tn1

rs

2
~¹xn!2

2M0H•n1¯ D , (254)

where M0 is the magnetization density, n is a local vector
of unit length pointing in the direction of the magneti-
zation, A(n) is the field that implements the Berry’s
phase needed to obtain the correct quantum commuta-
tion relations between the spin components, rs is the
spin stiffness, and H5g* mBB is the Zeeman field
(uHu5EZ).

This model is still nontrivial (because of the condition
unu251). However, it can be solved (Read and Sachdev,
1996) in the limit when N→` , where N is the number of
components of n. The limit N→` appears to describe
the actual case of N53 in the case n51.

Our strategy, then, will be to deduce reasonable val-
ues for M0 , the magnetization density, and rs , the spin
stiffness, and then plug them into the known results
from the large-N limit for the magnetization as a func-
tion of T , given by

P~T !5M0FM~r ,h !, (255)

where r5rs /T and h5EZ /T are scaling variables, and
FM is a known scaling function (Read and Sachdev,
1996).45

To find the values of the parameters M0 and rs corre-
sponding to the n5 1/3 state, we shall use some Hartree-
Fock results. Since the underlying fermionic theory re-
sponds to temperature by self-consistently modifying
occupations and energies, we expect to obtain
temperature-dependent values46 M0(T) and rs(T).

First consider the spin stiffness rs(T). At a given tem-
perature T the self-consistent occupations NF ,GS(s ,n)
and energies e(s ,n) in the ground state are computed
using the procedure described in the gapless case. Now
one creates a twisted spin state and computes the
Hartree-Fock energy of the twisted ground state (Mur-
thy, 2000c), and thence the excess energy to order q2.
Comparing to the energy cost of a twist in the con-
tinuum quantum ferromagnet, which is (rs/2)L2q2, one
finds the spin stiffness

45There are actually two different large-N approximations
corresponding to the fact that the symmetry group can be
viewed as an example of O(N) with N53, or as an example of
SU(N) with N52. Both are considered by Read and Sachdev
(1996) and scaling functions are given.

46This should be contrasted with the case n51 in which, due
to the huge exchange gap, particle-hole excitations are frozen
at all temperatures of interest and the parameters of the con-
tinuum quantum ferromagnet are T independent.
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rs5
1

16p E d2s

~2p!2 v~s ! (
n1 ,n2

urn1n2
~s !u2

3@NF~↑ ,n1!2NF~↓ ,n1!#

3@NF~↑ ,n2!2NF~↓ ,n2!# , (256)

where L2 is the area of the system, and r̃n1n2
is the

matrix element of Eq. (D1). The above should be re-
garded as an estimate for the twist rather than a rigorous
calculation (even in Hartree-Fock), since ideally one
should compute the free-energy cost of a twist, rather
than just the internal energy cost, as we have done.

To find M0(T) we need a more devious approach
(Murthy, 2000c) based on Eq. (255). We already know
how to compute the composite-fermion Hartree-Fock
magnetization PHF(T). We set

PHF~T !5M0~T !FM~r50,h5DSR /T ! (257)

and justify it as follows. In the composite-fermion
Hartree-Fock theory the particles and holes are treated
as independent, or noninteracting, with a gap equal to
DSR independent of the distance between them. This
corresponds to a collective mode dispersion that is com-
pletely flat, v(q)5DSR . The continuum quantum ferro-
magnet description that corresponds most closely to the
composite-fermion Hartree-Fock theory is the one that
has the same spin-flip excitation spectrum, namely, one
with no spin stiffness (r50) and an effective Zeeman
field EZ

eff5DSR .
Armed with M0(T) and rs(T), we evaluate the large-

N scaling functions and hence P(T). The predictions

FIG. 12. Comparison of the predictions of the Hamiltonian
theory for the temperature-dependent polarization P(T) to
the Khandelwal et al. (1998) data of 10W sample. The thick-
ness parameter has been set to l51.5 and other parameters
appropriate to the 10W sample have been used. Note the im-
portant role played by the spin waves in bringing the Hartree-
Fock value of P down to excellent agreement with experiment.
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are shown in Fig. 12 for parameters corresponding to the
experiment of Khandelwal et al. (1998). As can be seen,
composite-fermion Hartree-Fock theory overestimates
the spin magnetization considerably at low tempera-
tures, but the inclusion of interacting spin waves gives a
prediction in almost perfect agreement with the data.
The results are quite insensitive to l, and a typical value
of l51.5 was used. The results are also insensitive to
which of the two large-N approximations is used. Simi-
lar good agreement over a wide range of temperatures is
found in the comparison to the Melinte et al. (2000) data
of M242 sample, shown in Fig. 13. Here we have plotted
the Knight shift vs the temperature. The Knight shift at
very low temperature shows considerable scatter, and an
appropriate intermediate value has been used to fit to
the theory.

It is somewhat surprising that the theory agrees so
well with the data up to temperatures much higher than
those for which agreement was found for the gapless
fractions. We expect the theory to work only when
composite-fermions are well defined, which should be
true up to temperatures of the order of the 1/3 gap. In
fact, the agreement persists to about 10 K, which is
higher than a typical activation gap for 1/3 in such
samples. For more details see Murthy (2000c).

The same considerations can be applied to the n
5 2/5 state. Since it is unpolarized for EZ50 we can
stop at the composite-fermion Hartree-Fock stage. Fig-
ure 14 shows the P(T) curves for n5 2/5 for l51.5l for
a range of Zeeman couplings. The rise and fall of P(T)
at small EZ can be understood as follows. At T50, the
system is in a singlet state with the up- and down-spins
occupying the composite-fermion lowest Landau level.
As the system is heated, some particles go to the next

FIG. 13. Comparison of the predictions of the Hamiltonian
theory for the temperature-dependent polarization P(T) to
the Melinte et al. (2000) data of M242 sample. The thickness
parameter has been set to l51.5 and other parameters appro-
priate to the M242 sample have been used. Once again spin
waves are seen to be important. CFHF5composite-fermion
Hartree-Fock.
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Landau level. Here the ones with spin parallel to the
external field are preferred due to the Zeeman term and
hence a nonzero polarization develops. At higher T , the
two spin species start to get occupied with nearly equal
probabilities and P starts to decline. There is a transition
to the fully polarized state around EZ50.01EC .

One may compute P(T) for arbitrary fractions by ex-
act diagonalization (keeping all the excited states) and
subsequent calculation of thermodynamic quantities
(Chakraborty and Pietiläinen, 1996). Due to computa-
tional limitations, this method is restricted to fairly small
systems. For example, the largest system studied by
Chakraborty and Pietiläinen (1996) for n5 1/3 has five
electrons and for n5 2/5 has four electrons. Allowing for
this, the results seem fairly consistent with ours. Experi-
mental data are not currently available for comparison.

Finally, one can use the Chem-Simons theory to do
finite T calculations, using m* as a free parameter in-
stead of l.

X. INHOMOGENEOUS STATES OF COMPOSITE
FERMIONS

We have repeatedly emphasized that composite fermi-
ons are interacting particles. The uniform liquid states
studied so far were not contingent on composite-fermion
interactions—such states could exist even for noninter-
acting composite fermions. We now turn to some inter-
esting inhomogeneous states, which would not exist if
the composite fermions were free, such as the high-field
Wigner crystal and possibly the partial polarized states
seen in the gapped fractions by Kukushkin, von Klitzing,
and Eberl (1999).

FIG. 14. Theoretical predictions for the temperature-
dependent polarization P(T) for n5 2/5 for various values of
EZ . Both T and EZ are in units of the interaction energy
e2/«l . Note the transition to a fully polarized state at around
EZ50.01.
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A. The high-field Wigner crystal

The clearest instance of an inhomogeneous state in
the fractional quantum Hall regime is the high-field
Wigner crystal (Yoshioka and Fukuyama, 1979). If we
start with a free-electron gas and slowly crank up the
interactions or lower the density, the emphasis goes from
kinetic to potential energy. In the Wigner crystal the
electrons seek an arrangement aimed at minimizing the
potential energy. In the Hall case, due the quenching of
kinetic energy, the Wigner crystal seems even more
likely at low densities. It was initially proposed (Fuku-
yama and Platzman, 1982) as a possible explanation of
the fractional quantum Hall effect. However, it was soon
realized (Yoshioka and Lee, 1983) that this state is very
different from the fractional quantum Hall states, be-
cause both its longitudinal and its Hall conductances
vanish at zero temperature and when the crystal is
pinned by disorder (Yoshioka, 1983; MacDonald, 1984),
leading to an insulating state. Further, the Wigner crystal
state is not tied to any particular commensurate filling.

There are now experimental observations47 that sup-
port the existence of the Wigner crystal near n5 1/5. In
fact, experiments see a reentrant transition (Jiang et al.,
1990, 1991) in which there is a putative Wigner crystal
both above and below 1/5. To see how this might hap-
pen, recall that the incompressibility of the Laughlin
state results in a downward cusp in the ground-state en-
ergy as a function of filling factor in the neighborhood of
(say) 1/5. Thus one can easily imagine that in a small
neighborhood of 1/5 the Laughlin liquid has a lower en-
ergy than the Wigner crystal, leading to the reentrant
Wigner crystal near 1/5.

Theoretical work on the Wigner crystal,48 based on a
study of trial wave functions and collective excitations,
has established that the Laughlin state becomes unstable
around n' 1/6 to a density wave even in the absence of
disorder. In the wave-function approach, Hartree-Fock
and (weakly) correlated wave functions have also been
written down and their energy evaluated. By studying
the excitonic instabilities of the Laughlin liquid, Jain and
Kamilla (1998) showed that it becomes unstable to crys-
tallization around n5 1/9.

Let us begin with one of the simplest Hartree-Fock
wave functions for the crystal, that of Maki and Zotos
(1983):

CHF~$ri%!5A)
i

fRi
~ri!, (258)

where A is the antisymmetrization operator and fRi
is a

single-particle wave function that is localized at Ri (lat-
tice site) and belongs to the lowest Landau level. It is
given by

47See, for example, Jiang et al. (1990, 1991); Engel et al.
(1992); Goldys et al. (1992); Goldman et al. (1993). For a re-
cent review of the experimental situation, see Shayegan (1997).

48See Maki and Zotos (1983); Lam and Girvin (1984);
Levesque, Weiss, and MacDonald (1984); Price, Platzman, and
He (1993). For a recent review of the theory, see Fertig (1997).
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fRi
~r!5e2ur2Riu

2/4l0
2
2ir3Ri• ẑ/2l0

2
. (259)

The wave function (258) can be improved by adding a
correlation factor corresponding to including small fluc-
tuations around the Hartree-Fock state. The energy of
this state becomes lower than that of the liquid state at
about the experimentally right filling fraction (n' 1

7 ;
Maki and Zotos, 1983; Lam and Girvin, 1984; Levesque,
Weiss, and MacDonald, 1984).

Experiments (Jiang et al., 1990, 1991) show transport
gaps two orders of magnitude smaller than the theoret-
ical estimate as calculated using the Hartree-Fock ap-
proximation (Fukuyama, Platzman, and Anderson, 1979;
Yoshioka and Fukuyama, 1979). The measurements of
the Hall resistivity rxy are surprising as well (Goldys
et al., 1992; Goldman et al., 1993). As mentioned above,
the Wigner crystal is expected to have a vanishing Hall
conductance sxy50 (when pinned), which implies a
vanishing Hall resistance rxy50. However, the experi-
ments see ‘‘Hall insulating’’ behavior (Zhang, Kivelson,
and Lee, 1992), that is, rxy' 2p\/ne2. These problems
led Yi and Fertig (1998) to consider crystalline states
with correlation zeros that keep electrons apart. Each
electron is combined with 2s vortices to obtain the trial
wave function

C~$ri%!5A)
iÞj

~zi2zj!
2s)

i
fRi

~ri!. (260)

They also find that near 1/5 the best energies are ob-
tained by attaching four zeros to each electron. In other
words, they take the Laughlin FQHE wave function at
1
5 , which is a product of a Jastrow factor with quartic
zeros and a single filled composite-fermion Landau level
x1 , and replace x1 with a crystal. The Coulomb energy
for this wave function is computed using Monte Carlo
methods. Yi and Fertig (1998) have shown that the
ground-state energy of the correlated Wigner crystal is
lower than that of the usual Wigner crystal at experi-
mentally relevant filling fractions. Moreover, by intro-
ducing Laughlin-Jastrow correlations between the inter-
stitials and the lattice electrons, one can explain the
experimentally observed rxy (Zheng and Fertig, 1994a,
1994b). Unfortunately, the method becomes too compu-
tationally demanding to allow one to calculate other
quantities of interest, such as the excitation spectrum.

This is a situation tailor-made for the extended Hamil-
tonian theory. Before we describe the theory and its re-
sults, let us note that there are two features of the ex-
periment that hint that a composite-fermion Wigner
crystal is involved. The first is the nonmonotonic behav-
ior of the gap near 1

5 , which shows that the 1
5 Laughlin

liquid correlations are being felt in the nearby Wigner
crystal state. Second, the threshold electric field beyond
which the Wigner crystal becomes depinned and starts
sliding increases near 1

5 . Below we shall see its connec-
tion with the structure and properties of the composite-
fermion Wigner crystal.

Now let us see how to set up the extended Hamil-
tonian theory. Since attaching the zeros to electrons con-
verts them into composite fermions, we are naturally led
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to consider a Wigner crystal of composite fermions.
Here is how one proceeds (details can be found in
Narevich, Murthy, and Fertig, 2001). The crystal is char-
acterized by density-wave order parameters at the
reciprocal-lattice vectors G:

Dnn8~G!5
2p~ l* !2

L2 (
X

e2iGxX

3^dn ,X2Gyl* 2/2
† dn8,X1Gyl* 2/2& . (261)

First, one has to assume a particular lattice structure
(shape and size). An important parameter of the lattice
is the number of quanta of effective flux that penetrate
each unit cell.49 Things become simple when this num-
ber is rational, of the form p/q , where p and q have no
common factors. In this case each composite-fermion
Landau level breaks up into p subbands with the total
number of states in the original composite-fermion Lan-
dau level being equally divided among the subbands
(Yoshioka and Fukuyama, 1979). While the original
composite-fermion Landau level had a sharp energy, the
subbands have a nonzero energy dispersion, which can
be found from the Hartree-Fock Hamiltonian. One fi-
nally closes the circle by demanding self-consistency; the
ground state formed by filling up the subbands with the
correct number of particles should reproduce the as-
sumed form of Eq. (261). Once one has a self-consistent
Hartree-Fock solution, the transport gap is found as the
energy difference between the centers of the highest oc-
cupied subband and the lowest unoccupied subband.
The Wigner crystal is characterized by one particle per
unit cell, and, depending on the filling, this translates to
different p and q .

49Since the composite fermions see effective flux rather than
external flux, this point is crucial.

FIG. 15. Experimental (stars, from Jiang et al., 1991) and the-
oretical (squares and diamonds, from Narevich, Murthy, and
Fertig, 2001) gaps vs n for the Wigner crystal. Theoretical gaps
are for a composite-fermion Wigner crystal where the compos-
ite fermion has four vortices attached. Squares are the gaps for
a triangular lattice, while the diamonds are for an oblique lat-
tice. A disorder-driven change of shape just above 1/5 could
explain the nonmonotonicity of the data.
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Here are the results: The gaps calculated from the
Hamiltonian theory are within a factor of 2 of the ex-
perimental results (Fig. 15), which is to be contrasted to
the more-than-two-orders-of-magnitude disagreement
with electronic Hartree-Fock calculations. The theory
also predicts that the gap below 1/5 should be substan-
tially more than the gap between 1/5 and 2/9 (the next
quantum Hall liquid state). Narevich, Murthy, and Fertig
(2001) are not able to go very close to 1/5 because then
p and q become large and the problem becomes com-
putationally prohibitive.

Two other results emerge at a qualitative level. First,
the shear modulus becomes very small as 1

5 is ap-
proached, which means that the crystal becomes very
soft to deformations. The reason is that as 1

5 approaches
the Wigner crystal tends more and more to a Laughlin
liquid. The density-wave order parameter decreases, and
the shape of the crystal matters less and less. This is
connected to the depinning threshold of the Wigner
crystal to electric fields and can be understood as follows
(Fukuyama and Lee, 1978; Blatter et al., 1994): When
the crystal is stiff it is not able to take advantage of all
the minima in the disorder potential, and so is not
strongly pinned. However, when the crystal becomes
soft, it does not cost a lot of energy to deform and take
advantage of local minima of the disorder, and the crys-
tal becomes more strongly pinned. Disorder may also
have a dominant role in the behavior of the gap near 1

5 .
Since the crystal is soft, its actual shape is determined by
the local disorder. Different shapes give gaps varying by
about a factor of 2.

The second qualitative result is that the density inho-
mogeneity in the composite-fermion Wigner-crystal state
is quite small in absolute terms (about 20% of the back-
ground density) for all n, not just near 1

5 . This is at odds
with the conventional view that electrons are localized
in a Wigner crystal. The correlation zeros seem to prefer
a more homogeneous state.50 The electronic Wigner
crystal has to partially melt and become more homoge-
neous to accommodate Laughlin-Jastrow correlations.
This has interesting similarities with earlier ideas con-
cerning cooperative ring exchanges in a Wigner crystal
and the melting of the Wigner crystal (Kivelson et al.,
1986a, 1986b).

B. Partially polarized Hall crystal states

Another class of candidates for an inhomogeneous
state of composite fermions stems from the observation
of Kukushkin, von Klitzing, and Eberl (1999), who mea-
sured the spin polarization of various principal fractions
as a function of EZ , the Zeeman energy, and found po-
larizations not expected in the composite-fermion
theory with uniform states. As an example, consider n

50It is easy to see that correlation zeros become meaningless
if electrons are strictly localized; then they do not come close
enough for the zeros to be operative.
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5 2
5. There are two filled composite-fermion Landau lev-

els, and at small EZ we expect that the state is unpolar-
ized with the n50,↑ and n50,↓ Landau levels occupied
and the rest empty. At large EZ we expect a fully polar-
ized state with n50,↑ and n51,↑ occupied. If these are
the only states we are allowed to think about, then at
some intermediate EZ there should be a first-order tran-
sition. Such transitions between P50 and P51 were
extensively discussed earlier.

However, Kukushkin, von Klitzing, and Eberl (1999)
observe a plateau at half the maximum polarization in a
narrow region of EZ for 2

5 . Analogous plateaus are ob-
served at other principal fractions.51 Other puzzling phe-
nomena near this transition are that of hysteresis over a
range of fillings near 2/5 (Cho et al., 1998) and very slow
dynamics (Eom et al., 2000). One of us (Murthy, 2000a)
has proposed that these observations might be explained
by considering partially polarized Hall crystals of com-
posite fermions.52

Let us first review some terminology. A state that
shows the co-existence of density-wave and quantum
Hall order (a quantized sxy) is called a Hall crystal.
Such states were implicit in the ring-exchange theory
(Kivelson et al., 1986a, 1986b) but were first postulated
explicitly by Halperin, Tesanovic, and Axel (1986) and
analyzed in great detail with explicit examples by Te-
sanovic, Axel, and Halperin (1989).53 A Wigner crystal is
an example of a Hall crystal, as is the lattice of quasipar-
ticles formed at a filling n5 1

3 1d , provided the density
wave is pinned. The reason the partially polarized state
at 2/5 has to be a Hall crystal (if it is a crystal at all) is
that no changes in the quantized Hall conductance are
observed as EZ is varied.

Now let us understand the nature of the proposed
state (Murthy, 2000a). Imagine that composite fermions
were really free. Then as EZ is raised from 0 the system
remains in a singlet state until the n50,↓ Landau level
(whose energy is increasing) crosses the n51,↑ Landau
level (whose energy is decreasing) at a special Zeeman
energy EZ* . This is when the system makes the first-
order transition. Now let us ‘‘turn on’’ interactions be-
tween composite fermions, which we know are present

51Very recently, polarizations not allowed by translationally
invariant composite-fermion states have been seen at 2

3 by
NMR techniques as well; see Freytag et al. (2001).

52An alternate explanation is provided by Mariani et al.
(2002).

53The topological numbers associated with these states had
been noticed before by a number of authors: Wannier (1978);
Johnson and Moser (1982); Thouless et al. (1982); MacDonald
(1983); Thouless (1983); Avron and Seiler (1985); Avron and
Yaffe (1986); Dana, Avron, and Zak (1985); Kunz (1986).
However, Tesanovic, Axel, and Halperin (1989) were the first
to give a concrete example in which nontrivial topological in-
tegers were realized and to make an important connection be-
tween the topological integers and gapless collective excita-
tions. For an extension of the Hall crystal concept to the
fractional quantum Hall regime, see Kol and Read (1993).
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in the full theory. At EZ* there are twice the number of
degenerate states (from the n50,↓ and n51,↑
composite-fermion Landau levels) as there are
composite-fermions at the Fermi level. The true many-
body ground state will therefore be picked by the inter-
actions. This state should be stable in a small range of
EZ near EZ* determined by the strength of the
composite-fermion interactions. One possibility is a
charge/spin-density wave state.

As we saw in the previous subsection, when the sys-
tem self-consistently chooses a particular density-wave
order with p/q quanta of effective flux per unit cell, each
composite-fermion Landau level splits up into p sub-
bands of equal degeneracy (Yoshioka and Fukuyama,
1979). The partially polarized 2/5 state has two quanta of
effective flux penetrating every unit cell, which means
p52, q51, and each composite-fermion Landau level is
split into two subbands. The proposed state corresponds
to occupying three subbands of ↑ composite fermions
and one subband of ↓ composite fermions. Once again a
composite-fermion Hartree-Fock calculation allows us
to calculate the gap. The theoretical prediction for the
range in EZ over which the state should be stable is
consistent with the experiment (Murthy, 2000a).

This possibility can be investigated in more detail in
the integer quantum Hall analog of n52/5, which is n
52. There it can be shown (Murthy, 2000b) that there
are indeed charge/spin-density-wave states whose en-
ergy (in Hartree-Fock) is less than either the singlet or
the fully polarized liquid states. It can also be shown that
these states are Hall crystals with a nonzero quantized
Hall conductance (Murthy, 2000b).

However, there are other possibilities for the partially
polarized state at n52/5. For example, Apalkov et al.
(2001) have proposed that the composite fermions be-
longing to the n50,↓ and n51,↑ composite-fermion
Landau levels form a Halperin (111) state (Halperin,
1983), which is a liquid. Their proposal is based on a
finite-size calculation in a spherical geometry where only
the composite fermions belonging to the two ‘‘active’’
levels were kept, and their interaction was approximated
as being a two-body interaction. While their state re-
mains a contender, Apalkov et al. (2001) wrongly con-
clude, by neglecting some terms in the ground-state en-
ergy (see Murthy, 2001c), that the ground-state energy
of the charge/spin-density-wave state would be higher
than the Halperin (111) analog state.

At the moment it is fair to say that the situation is not
resolved. There are some key differences between the
two proposals that could be used to distinguish them
experimentally. For example, in the liquid state of
Apalkov et al. (2001), one would expect no gapless exci-
tations whatsoever and no spatial variation in the spin
density, and thus the NMR Knight shift. On the other
hand, there are generically gapless density excitations in
the partially polarized Hall crystal state (Tesanovic,
Axel, and Halperin, 1989; Murthy, 2000b), and one
would expect (at very low temperatures when the crystal
is frozen) periodic spatial variation in the Knight shift,
with the maximum Knight shift being the same as in the
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fully polarized state. A complete understanding of these
partially polarized states will hinge on future experi-
ments.

XI. CRITICAL REVIEW OF EHT AND ITS APPROXIMATE
SOLUTIONS

The extended Hamiltonian theory (EHT) was arrived
at by starting with the electronic Hamiltonian, introduc-
ing a new (pseudovortex) coordinate Rv , combining it
with the electronic guiding center Re to form the
composite-fermion variables h and R. A (weak) con-
straint x% (q).0 completed the picture. For n51/2 the
formalism coincides with that of Pasquier and Haldane
(1998).

As an exact restatement of the original electronic
problem, the EHT is as good as any, with no loss of
information, including that pertaining to higher Landau
levels. Its main claim to superiority over other formula-
tions is its amenability to Hartree-Fock and attendant
approximations, because the problem is now expressed
in terms of composite-fermion variables (h and R),
which admit a natural Hartree-Fock ground state that
fills an integral number of Landau levels.

We discussed two approximation schemes, both of
which rely on a nondegenerate Hartree-Fock state but
differ in how the constraints are handled. Since the sepa-
ration of the LLL physics (and thus the limit m→0) was
straightforward in this formalism, we focused on this
limit and the lowest Landau level.

In a conserving approximation, one finds approximate
Green’s functions that respect the constraints. The time-
dependent Hartree-Fock (TDHF) approximation is con-
serving. It was employed (Murthy, 2001a) to show that in
the lowest Landau levels, S(q).q4 for gapped states, in
compliance with Kohn’s theorem. For n51/2 it was used
by Read (1998) to show that the state is compressible
and the fermion effective mass has a logarithmic diver-
gence at the Fermi surface, because the overdamped
mode of Halperin, Lee, and Read (1993) responsible for
all this is generated by summing ladder diagrams. Thus
there is no conflict between the Halperin-Lee-Read re-
sults based on Chern-Simons fermions (which have unit
charge) and those based on composite fermions with
charge e* (which vanishes for n51/2.) However, results
that are easily obtained in the Chern-Simons approach
are obtained only following a careful, gauge-invariant
calculation in the EHT. It may well be that without the
Chern-Simons results, the compressibility at n51/2
would have been overlooked in a description that suc-
ceeded in displaying dipolar expressions for the electron
charge operator. While the primary use of the conserv-
ing approximation thus far has been to demonstrate that
correct results in the infrared, long-wavelength limit re-
quire a proper implementation of constraints, it seems to
capture numerically some of the short-distance physics,
as well, as evidenced by the magnetoexciton dispersions
for 1/3 and 2/5 (Murthy, 2001a, Sec. VI.B).

In the other approximation, the shortcut, one uses the
preferred charge r% p(q)5r% (q)2c2x% (q) in place of r% (q)
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on the grounds that in an exact calculation such a sub-
stitution is permitted. This single substitution manages
to accomplish at tree level some of the work of the con-
straints: e→e* , d→d* , and S(q).q2→S(q).q4. The
constraints are then ignored, so that their effects at
higher orders in ql are not built in and may or may not
be described well by the simple Hartree-Fock calcula-
tion that follows. Thus, although the EHT itself is exact,
the small parameter ql is needed in the shortcut because
of the way we handled the constraints. Note that it is ql
and not ql* that has to be small, as demonstrated by the
success of the approach near and at n51/2 where l*
→` .

Also missing in the shortcut are the overdamped
mode and its attendant consequences. However, in prob-
lems with a gap or T.0 this does not seem to matter.
On this basis one expects it to work in problems in
which the potential favors small ql and the problem is
still described by composite fermions.54

These expectations were borne out in the computa-
tion of gaps, magnetic transitions, and T dependence of
polarization and nuclear-spin relaxation, which were
compared to results from exact diagonalization, trial
wave functions, and experiment. The very special form
of the Hamiltonian that comes out of this theory does
what ad hoc Hamiltonians parametrized by standard ki-
netic and interaction terms cannot: It explains a host of
phenomena in any given sample (polarization, relax-
ation) with a single parameter describing electron-
electron interactions. We are not aware of any other
quantitative, analytical approximation scheme for com-
puting these quantities that is not plagued by singulari-
ties as m→0.

The preferred charge description also resolves many
qualitative issues: In what sense does an electron bind to
its correlation hole (represented here by pseudovorti-
ces) to form the composite fermion? How can composite
fermions appear to be free in some magnetic phenom-
ena when they are surely not free? What does the dipole
picture really mean? How is an effective mass generated
from the interactions alone?

On the down side, the preferred charge as a way to
implement constraint is peculiar to the FQHE and is
unprecedented. We do not know a priori how well this
procedure will work and how to systematically improve
it. We have no internal signal that the composite-
fermion description is failing as the interaction is varied
(say, by sending l→` in the Zhang–Das Sarma interac-
tion) or by mapping n.1 problems into effective
Landau-level problems with modified interactions,
where Pfaffian states and striped states might be the an-
swer.

XII. SUMMARY AND OPEN QUESTIONS

The goal of the Hamiltonian theory was to start with
the Hamiltonian for two-dimensional interacting elec-

54If one lets the ‘‘thickness’’ parameter of the Zhang–Das
Sarma potential become very large, composite fermions will
likely become unstable, and the state will not be describable in
the extended Hamiltonian theory.
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trons in a magnetic field and arrive at a comprehensive
description of fractional quantum Hall phenomena by a
sequence of transformations to the final quasiparticles.
The final theory was expected to encode and display the
wisdom inherited from the study of trial wave functions,
make the various pictures precise, and permit the com-
putation of all physical quantities (to some accuracy) by
the use of standard approximation techniques such as
Hartree-Fock.

Thus we first surveyed the wave-function approach to
see what it could teach us and then described the two
Hamiltonian approaches: the Chern-Simons approach
and our extension of it, the extended Hamiltonian
theory.

The wave functions taught us the following. The
FQHE ground states are described by incompressible
fluids. The wave functions for the ground states and qua-
siparticle (or quasihole) excitations are independent of
the mass m (in the m→0 limit) and are built entirely of
LLL wave functions. In the Laughlin fractions, the el-
ementary excitation is a vortex of charge 21/(2s11) in
electronic units. When an extra electron is introduced
into the system, it is screened by 2s such vortices, lead-
ing to a composite fermion of charge e* 51/(2s11).
These vortices sit on the electron. In the Jain fractions
the wave functions are obtained by projection to the
lowest Landau level. Prior to projection one can see the
composite fermion as made of an electron and 2s vorti-
ces sitting on them. After projection, many zeros are
annihilated; typically they move off the electrons and
are no longer organized into vortices. This holds for n
51/2 as well, as is clear when n51/2 is seen as a limit of
nearby Jain fractions. This means that the naive dipole
picture based on zeros of the wave functions is not ten-
able. Remarkably, despite the dissolution of vortices on
projection, the composite fermion still has the charge of
an electron and 2s vortices. The proper interpretation of
this requires the Hamiltonian approach, in particular the
EHT, which in turn is an offshoot of Chern-Simons
theory.

We emphasize that our aim was not simply to get yet
another exact reformulation of the problem, but to find
one that lends itself to approximations. For example, the
problem in terms of electrons,

H5(
j

hei
2

2ml4 1
1
2 (

i ,j ,q
v~q !eiq•(rei2rej)[H01V ,

(262)

contains all the answers in principle, but is flawed in
practice because the LLL degeneracy of H0 precludes
the use of Hartree-Fock or perturbation theory.

The degeneracy of the noninteracting problem is over-
come by the flux attachment transformation of Chern-
Simons theory. Lack of space prevented us from discuss-
ing the very first application of this idea to the Laughlin
fractions by Zhang, Hansson, and Kivelson (1989). They
converted the problem to one of composite bosons in
zero average field, which led to a detailed analogy to
superfluidity. This review focused on composite fermi-
ons, turning to the work of Lopez and Fradkin (1991,
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1992, 1993), who implemented Jain’s idea in operator
form by attaching 2s flux quanta to electrons and con-
verting them to Chern-Simons fermions described by

HCS5(
i

~P1 :acs : ! i
2

2m
1V , (263)

P5p1eA* S A* 5
A

2ps11 D , (264)

¹3 :acs ª4ps :r : . (265)

At mean field one now has a unique vacuum of
p-filled Landau levels of composite fermion upon ne-
glecting V and :acs : . Their effects could be included per-
turbatively. In particular, in an RPA formulation one
could include both of these and obtain the cyclotron
mode at the right frequency, and in the Laughlin fraction
obtain the wave function in the long-distance limit (Lo-
pez and Fradkin, 1991, 1992, 1993).

However, two problems remained: A singular limit as
m , the bare mass of the electron, vanished, and a quasi-
particle charge of unity (at tree level) instead of e* , ow-
ing to the fact that flux tubes and not vortices were at-
tached. These features made quantitative predictions
difficult.

We mentioned Kalmeyer and Zhang (1992), who con-
sidered n51/2 and pointed out that impurity scattering
would be stronger than naively expected, since any
charge inhomogeneity led to additional gauge flux (by
the Chern-Simons condition), which produced strong
scattering.

We then moved to the Halperin, Lee, and Read
(1993) treatment of n. 1/2, which was extensive and
aimed at confronting theory with experiment at a quan-
titative level. The success of the composite-fermion
theory in the region of small or zero gap was quite un-
expected. Halperin, Lee, and Read not only highlighted
the fact that at n51/2 the system saw zero gauge field on
average and therefore had a Fermi surface, they also
argued that the best way to think of the region near n
51/2 was in terms of composite fermions seeing an ef-
fective field B* 5B2B1/2 . This meant the particles
would bend with a radius R* 5\kF /eB* with kF

5A4pn , a result that was verified experimentally by
Kang et al. (1993), Goldman, Su, and Jain (1994), and
Smet et al. (1996).

Halperin, Lee, and Read (1993) computed the electro-
magnetic response within the RPA. They showed that
the system was as compressible as a traditional Fermi
liquid. It had a longitudinal conductivity sxx5(e2/8p)
3(q/kF). This was tested by the damping and velocity
shift of surface acoustic waves by Willett et al. (1990,
1996), who also found that away from n51/2 there was a
resonance in the velocity shift when the wavelength of
the surface acoustic wave coincided with 2R* .

Halperin, Lee, and Read (1993) identified an over-
damped mode in the density-density correlation with
dispersion v.iq3v(q). This mode, responsible for the
compressibility of the system, also produces a (logarith-
mic) divergence in the composite-fermion mass by enter-
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ing its self-energy. This in turn leads to a gap E
.1/(p ln p) for n5p/(2p11) as p→` . It has been
shown that the mass divergences do not affect bosonic
(e.g., density-density) correlations.55

These successes notwithstanding, the Halperin-Lee-
Read approach had some room for improvement. It did
not allow a clear separation of the LLL physics, i.e., it
did not have a smooth m→0 limit. The Chern-Simons
fermion, obtained by attaching two flux tubes to elec-
trons, had a charge of unity (and not e* 50). It did not
make contact with the dipole picture (Read, 1994, 1996)
based on a wave-function analysis.

The extended Hamiltonian theory was devised to ad-
dress some of these issues. The key idea is that in order
to discuss the correlation hole that accompanies the
electron to form the composite fermion in tractable
form, one must enlarge the Hilbert space to describe
collective charge degrees of freedom and to place a suit-
able number of constraints. This idea, along with expres-
sions for the new coordinates and a certain change of
variables, was arrived at via a somewhat tortuous route
(Shankar and Murthy, 1997; Murthy and Shankar,
1998a) from electrons to composite fermions. In this re-
view, we have spared the reader details of the historical
route and given an axiomatic description (Murthy and
Shankar, 2002) of the EHT.

Here we begin with the electronic Hamiltonian Eq.
(262), and add for each electron a new pseudovortex
guiding-center coordinate Rv (whose algebra corre-
sponds to charge 2c2). Thus the Hilbert space becomes
larger and Rv has no dynamics.

If we are interested in physics at the cyclotron scale,
we can focus on the kinetic term. The mass m appears
here as it should, in v0 . The collective coordinate
formed out of he carries the entire Hall current. (This
answers the question of what carries the Hall current at
n5 1/2 when e* 50.) In fact the he collectively carry the
Hall current even at gapped fractions where e* Þ0, thus
substantiating the general belief that the Hall current is
not affected by disorder because it is carried by collec-
tive coordinates. Having identified them as our oscilla-
tors (for which we have a specific Hamiltonian), we have
paved the way for a detailed analysis of the Hall re-
sponse. We also showed how to extract an effective LLL
theory by approximately integrating out the coordinate
he in our discussion of Landau level mixing.

Let us now proceed to drop higher Landau levels and
work with

H% ~r% !5V5
1
2 ( r% ~q !v~q !e2(ql)2/2r% ~q !, (266)

r% ~q!5(
j

expF2iq•S rj2
z3P j

11c D G
[(

j
exp@2iq•Rej# . (267)

55Kim, Furusaki, et al. (1994); Kim, Lee, et al. (1994); Kim,
Lee, and Wen (1995); Stern and Halperin (1995).
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The densities r% (q) obey the magnetic translation alge-
bra, since Re is the electron guiding-center coordinate in
the composite fermion basis. The advantage of this basis
is that the velocity operator P sees a weaker field B* ,
leading to a nondegenerate Hartree-Fock ground state.

The Hamiltonian commutes with the operators

x% ~q!5(
j

expF2iq•S rj1
z3P j

c~11c ! D G
[(

j
exp@2iq•Rvj# . (268)

The pseudovortex densities x% (q) thus form a closed al-
gebra, the symmetry algebra of H .

In the first derivation of the theory (Shankar, 1999),
the following constraint naturally emerged:

x% ~q!uphysical state&50. (269)

In the extended approach (Murthy and Shankar, 2002),
Rv is a cyclic coordinate with no dynamics. One is free
to supplement the theory with the above constraint,
since nothing physical depends on the auxiliary coordi-
nate Rv . We made this choice so that there would be
just one set of equations to deal with.

We described two ways to proceed, the choice being
dictated by what we want to calculate: the conserving
approximation and the shortcut using the preferred
charge.

For situations in which the symmetries of H are im-
portant one uses the conserving approximation, in which
the constraint is respected at the level of Green’s func-
tions. This amounts to ensuring gauge invariance. We
reviewed the compressibility paradox in which gauge in-
variance made all the difference. The paradox con-
cerned the system at n5 1/2, which Halperin and Stern
(1998) argued must be compressible [as had been pre-
dicted by Halperin, Lee, and Read (1993)]. This result
seemed to be at odds with our operator description in
which the charge was dipolar. Halperin and Stern gave
heuristic arguments for how a system of dipoles could
still be compressible if their Hamiltonian had K
invariance—invariance of the energy under the shift of
all momenta, a symmetry first noted by Haldane, and
which appeared in our work as part of a gauge symme-
try.

The more detailed analysis of Stern et al. (1999) drove
the point home. They considered first a model in which
the flux tubes were spread over a distance 1/Q and the
Hamiltonian had K invariance to sufficiently high order
in Q to examine the question of compressibility. The
density-density correlation (now of the dipole-dipole
form) was computed in the RPA (which was exact in the
limit Q→0) and the factors of q2 in the numerators
from the dipoles were canceled by the exchange of the
overdamped mode. They then showed that in the actual
FQHE problem, K invariance could be built in if the
Landau parameter F1521. The conserving approxima-
tion was also employed by Read (1998) within the
Pasquier-Haldane (1998) formalism for n51 bosons (to
which our theory reduces if we set c51 or n5 1/2).
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Read (1998) established that the fermions interacted
with each other as dipoles by exchanging a transverse
collective mode, but that, as q→0, the propagator for
this mode produced enough negative powers of q to
overturn the q2 coming from the dipolar factors from
the two ends. These calculations were important in
showing that if constraints were taken into account, the
correct charge of the composite fermion would emerge
and that despite the weaknesses in the wave-function-
based arguments leading to the dipole picture (see Sec.
I.D.3), the predicted dipole moment is correct in the
above sense. Murthy (2001a) was able to show that in
the gapped fractions one could obtain structure factors
in accord with Kohn’s (1961) theorem (S% .q4) in a con-
serving calculation. He also showed how to compute
magnetoexciton dispersions.

In all other situations [when a gap or temperature or
both suppress the deep-infrared region v.q3v(q)] the
shortcut using r% p(q) was the weapon of choice. Here we
make the replacement r% →r% p5r% 2c2x% , which is allowed
in the exact theory. This choice allows us to employ na-
ive Hartree-Fock calculations that respect Kohn’s theo-
rem (S% .q4). As a bonus the composite-fermion charge
and dipole moment emerge in the power-series expan-
sion of r% p. It is only in this sense that the composite
fermion can be viewed as the union of an electron and a
correlation hole of charge 2c2. With these features built
in at tree level, the usual approximations such as
Hartree-Fock are applicable as long as the large-ql re-
gion is avoided by the potential.

The EHT gives a uniform and precise description of
the internal structure of the composite fermion.
Whereas in the wave-function-based description, the
Laughlin fractions allowed for a simple picture of the
composite fermion (an electron bound to 2s vortices)
and the rest of the Jain series (upon projection) did not,
in the EHT the composite fermion is viewed as an elec-
tron plus a pseudovortex. Especially interesting is the
case of n5 1/2. The expansion for r% p in a power series
shows that it begins with a term that couples to an ex-
ternal electric field exactly as a dipole moment of
strength l2z3p would. This formula, in operator form,
makes no reference to zeros of the wave function or
vortices, neither of which is robust. It does not have the
problems of the wave-function-based dipole picture.
These problems arose upon antisymmetrization, which
we carry out by expressing r% p in second-quantized form
in terms of fermionic operators. We saw that the place to
look for dipoles is not in the wave function but in corre-
lation functions at high frequencies at and above the
composite-fermion Fermi energy.

The operator approach gives a concrete realization of
one of the primary expectations in FQHE: Once the ki-
netic energy is quenched by restricting electrons to the
lowest Landau level, it will be resurrected by interac-
tions, and this low-energy problem will be characterized
by one common scale, the electron-electron interaction.
Equation (61), which gives H as a quadratic function of
r% (or r% p if we use the preferred combination), embodies
all of these expectations.
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The Hartree-Fock approximation to H(r% p) was used
to compute transport gaps (Murthy and Shankar, 1999;
Shankar, 2001) good to within 10–20 % for potentials
that vanish rapidly with ql . It could be used to explore
magnetic transitions from one quantized value of mag-
netization to the next (Shankar, 2000, 2001). In the ab-
sence of disorder it is clear that all physical quantities
pertaining to the FQHE (restricted to the lowest Lan-
dau level) are functionals of the potential v(q). For the
Zhang–Das Sarma potential which we use for most of
our work, this means a function of l. We saw that, given
a value of l from experiment, we did not need several
masses for several phenomena; they all came from one
potential (Shankar, 2000, 2001). This is because the
Hamiltonian for the composite fermions is rather
unusual56 and contains the kinetic and potential terms in
a monolithic form. Hidden in it are the various mass
scales ma and mp appropriate to various phenomena
(activation, polarization), all functionals of the interac-
tion v(q).

The operator approach also clarified the question of
whether or not composite fermions are free. Given the
prominent variations in the magnetoexciton dispersions
and the fact that it takes two very different masses to
describe polarization and activation, it is clear that they
are not. But why do they appear to be free for some
magnetic phenomena? Our theory (Shankar, 2000, 2001)
shows that it is an accident coming from rotational in-
variance and d52.

The EHT allows us to compute physical quantities at
T.0, such as polarization and relaxation rates for gap-
less states (Shankar, 2000, 2001). In the experiments of
Dementyev et al. (1999), a l determined from one polar-
ization data point gives the polarization and relaxation
curves for two tilts and a range of temperatures. This is
to be contrasted with attempts to fit the data with a mass
and interaction pair (m ,J), where the four curves re-
quire four nonoverlapping values of these pairs. In the
case of Melinte et al. (2000) and Freytag (2001), the 1/T1
predictions (which vary over orders of magnitude) are
off by a factor of 2, but the polarization data are well
described by a single l. Once again the success can be
traced back to the fact that the composite-fermion
Hamiltonian is of a nonstandard form, parametrized by
a l, which in turn determines all the mass and energy
scales relevant to each given process.

When calculating the polarization of gapped states, it
turns out to be essential to take into account spin waves
for spontaneously polarized cases. This is done (Murthy,
2000c) by mapping the low-energy dynamics of the
problem onto the continuum quantum ferromagnet
treated in the large-N approximation (Read and Sach-
dev, 1996), the parameters of which are extracted from
the Hartree-Fock treatment of the problem in the
Hamiltonian theory. The results (Murthy, 2000c) agree
extremely well with experiment (Khandelwal et al.,
1998; Melinte et al., 2000) up to very high temperatures.

56Consider, for example, Eq. (154) for n5
1
2 .
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This calculation, like all the others in the Hamiltonian
theory, is in the thermodynamic limit and free from
finite-size effects.

The EHT allows us to calculate the gaps of the
Wigner crystal in terms of composite fermions (Narev-
ich, Murthy, and Fertig, 2001). These gaps are off by a
factor of 2 when compared to experiment (Jiang et al.,
1990, 1991). This should be contrasted to previous ap-
proaches in which the gaps were off by two orders of
magnitude. This approach also allows us to consider in-
homogeneous states (Murthy, 2000a) with polarizations
not allowed by the composite-fermion theory of homo-
geneous ground states.

Hopefully we have succeeded in establishing that the
Hamiltonian theory of the FQHE is a comprehensive
scheme for addressing and answering a variety of quali-
tative and quantitative questions, for gapped and gapless
states, at zero and nonzero temperatures. We have given
the reader a taste of what can be done using this formal-
ism. While many things have been clarified, there are
many open problems to which we believe this approach
may be fruitfully applied.

One outstanding open problem is that of computing
transport coefficients in the quantum Hall regime from a
microscopic theory. By identifying the collective mode
that carries the Hall current, we have set the stage for a
study of transport in the presence of disorder.

The fractional quantum Hall edge57 is another open
problem to which the Hamiltonian approach is appli-
cable. Since Wen’s (1990a, 1990b, 1992) description of
the edge as a chiral Luttinger liquid, other descriptions
have appeared based on wave-function and field-
theoretic approaches.58 The field-theoretic descriptions
are all effective theories whose connection to the elec-
tron problem has not been rigorously established. While
the wave-function approaches are microscopic, it is im-
practical to calculate time-dependent response functions
in them. As we have seen in the extended formalism, we
have an exact rewriting of the microscopic electron
problem, but with the added advantage of a nondegen-
erate starting point. The calculation of edge reconstruc-
tions (MacDonald, Yang, and Johnson, 1993; Chamon
and Wen, 1994) in composite-fermion Hartree-Fock
theory and the number and dispersions of the edge col-
lective modes in TDHF seem to be very accessible in the
Hamiltonian approach. One of the interesting things to
consider in the edge problem is tunneling.59 For this one

57For an excellent review, see Kane and Fisher (1997).
58For wave-function-based approaches, see Zülicke and Mac-

Donald (1999), Goldman and Tsiper (2001), and Mandal and
Jain (2001b). For field-theoretic descriptions, see Lee and Wen
(1998), Lopez and Fradkin (1999), and Levitov, Shytov, and
Halperin (2001).

59The theory was described in a series of beautiful papers by
Kane and Fisher (1992a, 1992b, 1994). Recently some truly
remarkable tunneling experiments have appeared in which the
data span several orders of magnitude of voltage; see Grayson
et al. (1998) and Chang et al. (2001).
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needs a description of electron creation and destruction
operators within the composite-fermion basis, which is
an open problem.

Since there is a gap, the effects of disorder on the Jain
series ought to be describable in some simple approxi-
mation, such as the self-consistent Born approximation
for single-particle properties. Such a treatment seems to
capture many of the experimental facts at n51 (see
Murthy, 2001b), such as the reduction of the transport
gap due to disorder, the variation of the transport gap as
a function of EZ (see, for example, Schmeller et al.,
1995), the polarization at n51,60 etc. Such an approach
ought to be applicable to the gapped fractions. The ef-
fect of disorder on excitons is also interesting and can be
treated in a ‘‘self-consistent exciton approximation’’
(Kallin and Halperin, 1985).

A more ambitious problem that might benefit from
the Hamiltonian approach is the question of whether the
n5 1/2 state remains metallic at T50, when disorder is
included. The Chern-Simons formalism of Halperin,
Lee, and Read (with its logarithmic corrections) sug-
gests that metallic behavior disappears. It is known that
noninteracting fermions are always localized in two di-
mensions, regardless of how weak disorder is (Abra-
hams et al., 1979). By extension, it seems plausible that a
Fermi liquid, which is adiabatically connected to nonin-
teracting fermions, should also be an insulator on the
longest length scales. The n5 1/2 system is unique in
that the state is produced by interactions. The extended
Hamiltonian has additional symmetries absent in the
zero-field problem.

We have excluded from this review many interesting
topics to which the Hamiltonian is applicable, such
as double-layer systems,61 paired states,62 etc. These
omissions reflect the double constraints of limited space
and our own lack of expertise.
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APPENDIX A: MATRIX ELEMENTS

Many of the calculations performed in this paper deal
with the preferred density r% p. In second quantization we
write it as

r% p~q!5 (
m2n2 ;m1n1

dm2n2

† dm1n1
rm2n2 ;m1n1

, (A1)

where dm2n2

† creates a particle in the state um2 n2& where
m is the angular momentum and n is the Landau-level
index. They are related to the composite-fermion cyclo-
tron and guiding-center coordinates R and h as follows.
Let

b5
Rx2iRy

A2l* 2
, b†5

Rx1iRy

A2l* 2
, (A2)

where l* 5l/A12c2 is the composite-fermion magnetic
length. These obey the oscillator algebra

@b ,b†#51 (A3)

given

@Rx ,Ry#52il* 2. (A4)

Similarly we define, in terms of the cyclotron coordi-
nates,

a5
hx1ihy

A2l* 2
, a†5

hx2ihy

A2l* 2
, (A5)

which obey the oscillator algebra

@a ,a†#51 (A6)

given

@hx ,hy#5il* 2. (A7)

The states umn& are just the tensor products

umn&5
~b†!m

Am!

~a†!n

An!
u00&, (A8)

where u00& is annihilated by both a and b .
We shall now show that

^m2ue2iq"Rum1&5Am2!
m1!

e2x/2S 2iq1l*

&
D m12m2

3Lm2

m12m2~x !, (A9)

where
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x5q2l* 2/2, q65qx6iqy . (A10)

L is the associated Laguerre polynomial and m1>m2 . If
m1,m2 one may invoke the relation

^m2ue2iq"Rum1&5^m1ue1iq"Rum2&* . (A11)

Likewise to establish Eq. (A9), consider the coherent
states

uz&5eb†zu0&5 (
m50

` um&

Am!
zm (A12)

with the inner product

^z̄uz&5ez̄z. (A13)

First we write from the definitions given above
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[R~ z̄ ,z ,q!. (A15)

On the other hand,
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[R~ z̄ ,z ,q!. (A19)

Comparing Eqs. (A14)–(A18) and matching powers of
z̄azb we obtain Eq. (A9) if we recall

Lm2
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Likewise, to establish

^n2ue2iq"hun1&5An2!
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e2x/2S 2iq2l*
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D n12n2

Ln2
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(again for n1>n2), we just need to remember that the
commutation rules of the components of h have a minus
sign relative to those of R, which exchanges the roles of
creation and destruction operators and hence q1 and
q2 .

Now we consider matrix elements of r% ,x% ,r% p. As a first
step, let us express the operators Re and Rv in terms of
composite-fermion guiding-center and vortex coordi-
nates R and h. We have seen that in the composite-
fermion representation

Re5r2l2
ẑ3P

11c
5R1hc (A22)
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if we recall l25l* 2(12c2).
It can similarly be shown that

Rv5r1l2
ẑ3P

c~11c !
5R1h/c . (A23)

Thus in first quantization

r% p5r% 2c2x% , (A24)
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r% 5(
i

exp~2iq•Ri!exp~2iq•hic !, (A25)

x% 5(
i

exp~2iq•Ri!exp~2iq•hi /c !. (A26)

Armed with Eqs. (A9) and (A21) we may finally write
for the matrix elements of r% (q) defined in Eq. (A1)
r% m2n2 ;m1n1
5Am2!

m1!
e2x/2S 2iq1l*

&
D m12m2

Lm2

m12m2~x ! ^ FAn2!
n1! S 2icq2l*

&
D n12n2

e2xc2/2Ln2

n12n2~xc2!

2c2
•f•S 2iq2l*

&c
D n12n2

e2x/2c2
Ln2

n12n2~x/c2!G[rm2m1

m
^ rn2n1

n .
Superscripts on rm2m1

m and rn2n1

n , which will be apparent
from the subscripts, will usually be suppressed.

APPENDIX B: HALL RESPONSE IN THE EXTENDED
PICTURE

To compute the dc Hall conductance we just need the
zero-momentum component of the current operator

J~0 !5
]H

]Aq50
5

e

m (
j

P j52
e

ml2 (
j

ẑ3hej . (B1)

Note that the current at q50 depends only on the cy-
clotron coordinate, just as it depended only on the oscil-
lator coordinate in the small treatment. Upon coupling
the system to an external potential F(q), we obtain H ,

H5(
j

hej
2

2ml4 1eF~q!(
j

e2iq"rj. (B2)

If we now keep the interaction to O(q) and recall re
5Re1he , we obtain

H5(
j

hej
2

2ml4 1eF~q!(
j

@2iq•~Rej1hej!#1¯ .

(B3)

If we complete squares on hej , we can read off its mean
value in the presence of F or the corresponding electric
field iqF . From this we obtain a mean current J(0) cor-
responding to the right Hall conductance of ne/B .

This exercise should make it clear that the oscillator
coordinates are just the collective coordinates formed
from he at small q . If we go to higher orders in q we
shall find that the current involves both he and Re . Our
extended formalism allows us to explore corrections due
to this mixing in a small-q expansion.
Note that in this approach the magnetic moment of
Simon et al. need not be put in by hand, since h1e is
still in the picture and can respond to a slowly varying
magnetic field by a changing zero-point energy.

The objections of Lee et al. (1998) to the composite-
fermion Hall conductance are moot since we do not add
resistivities as in Eq. (107) but rather conductivities (of
the he and composite-fermion variables).

APPENDIX C: PROOF OF HARTREE-FOCK NATURE OF
TRIAL STATES

Consider

^fuHui&5^pudfHdi
†up&, (C1)

where up& stands for the (ground) state with a p-filled
Landau-level and i ,f label single-particle excitations on
top of this ground state. We want to show that this ma-
trix element vanishes if iÞf , i.e., the Hamiltonian does
not mix these putative Hartree-Fock particle states.
(This result was established for the small-q theory by
Murthy, 1999.) The proof, which relies on just the rota-
tional invariance of the potential, applies with trivial
modifications to the hole states, i.e., to

^pudf
†Hdiup&. (C2)

The matrix element in question takes the schematic
form

^fuHui&5E
q
^pudfd1

†d2d3
†d4di

†up&r12~q!r34~2q!,

(C3)
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where 1 stands for m1n1 and so on, and *q stands for an
integral over a rotationally invariant measure:

E
q
5

1
2 E d2q

4p2 v~q !e2q2l2/2. (C4)

Now we use Wick’s theorem and perform pairwise
contractions on the vacuum expectation value, bearing
in mind that

• We cannot contract the indices 1 and 2 or 3 and 4
since this will require that q50, at which point the
measure (which contains the potential) vanishes.

• If we contract i and f we already have the desired
result.

Here is a representative of the contractions we can get:

r12r34d f1~12n1
F!d23~12n2

F!d4i~12n4
F!, (C5)

where n1
F is the Fermi function for the Landau level

labeled by n1 ,

n1
F5u~p212n1! (C6)

and so on. Since f51 and i54, the factor (12n2
F)(1

2n4
F)51. The integrand assumes the form

(
m250

`

(
n25p

`

r f2~q!r2i~2q!5F (
m250

`

rmf m2
~q!rm2mi

~2q!G
3F (

n25p

`

rnf n2
~q!rn2ni

~2q!G
5dmf mi(n2

q
2

ni2nfF~ uqu!,

where we have also used the fact that e2iq"R
•eiq"R5I

(the identity operator) in doing the sum over m2 , and
where F(uqu) is some rotationally invariant function. It
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follows that every term in the sum over n2 vanishes un-
less nf5ni due to the angular integral in q.

APPENDIX D: ON THE CONSERVING NATURE
OF TDHF

We shall now verify that the constraint is a left eigen-
vector of H, as required of the conserving approxima-
tion.

To this end we shall need the matrix elements

r̃n1n2
~q!5^n1ue2icq"hun2&, (D1)

x̃n1n2
~q!5^n1ue2 i/c q"hun2&. (D2)

Note that only the cyclotron parts of the electron and
pseudovortex coordinates appear in these exponentials.
An important result we shall need is

(
n

x̃n1n~q1!r̃nn2
~q2!

5^n1ue2 i/c q1•he2icq2•hun2& (D3)

5e2 ~ i/2! Q13Q2^n1ue2i(q1 /c 1cq2)•hun2&, (D4)

Q5ql* , (D5)

where we have used the completeness of the states un&
and the commutation rules obeyed by h. Finally we
separate the exponentials in the reverse order to get the
second useful identity,

(
n

x̃n1n~q1!r̃nn2
~q2!5e2iQ13Q2

3(
n

r̃n1n~q2!x̃nn2
~q1!. (D6)

Note that r̃ and x̃ do not commute, even though r% and x%
do.

Let us now right-multiply the putative left eigenvector
x̃ by H:
(
n18n28

x̃n18n28
~q!H~n18n28 ;n1n2 ;q!5@e~n1!2e~n2!#x̃n1n2

~q!1 (
n18n28

@NF~n28!2NF~n18!#
v~q !

2p~ l* !2 e2q2l2/2x̃n18n28
~q!

3 r̃n28n18
~2q!r̃n1n2

~q!2 (
n18n28

@NF~n28!2NF~n18!#

3E d2s

~2p!2 v~s !e2 s2l2/2r̃n1n18
~s!x̃n18n28

~q!r̃n28n2
~2s!ei(l* )2s3q. (D7)
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Let us consider the direct and exchange terms sepa-
rately. In the direct term, one n8 index can always be
summed freely, while the other is constrained by the
Fermi occupation factor NF . The sum over the free n8
gives, according to Eq. (D4),

direct term5(
n28

NF~n28!r̃n1n2
~q!

3^n28ue
2i(1/c 2c)q•hun28&

2(
n18

NF~n18!r̃n1n2
~q!

3^n18ue
2i(1/c 2c)q•hun18&. (D8)

The two terms are immediately seen to cancel. Now let
us turn to the exchange terms and consider the one that
has the factor NF(n28) and a free sum over n18 . In this
term, one can use Eq. (D6) to exchange the r̃ and x̃
matrix elements, to obtain

exchange term52(
n28

NF~n28!(
n18

x̃n1n18
~q!

3E d2s

~2p!2 v~s !e2 s2l2/2r̃n18n28
~s!

3 r̃n28n2
~2s!. (D9)

Notice that the phase factor ei(l* )2s3q has been canceled
by an opposite phase factor from Eq. (D6). Now the
angular s integral forces n185n2 for a rotationally invari-
ant potential, and the result contains the Fock energy of
the state n2 ,

eF~n2!x̃n1n2
~q!. (D10)

Similarly, the other exchange term proportional to
NF(n18) ends up giving 2eF(n1)x̃n1n2

(q). Due to the
peculiar nature of the Hamiltonian, the Hartree energy
is a constant independent of the composite-fermion
Landau-level index, and the difference of the Fock en-
ergies is the same as the difference of the full Hartree-
Fock energies. Thus the exchange contributions cancel
the diagonal term @e(n1)2e(n2)#x̃n1n2

(q), and x̃n1n2
(q)

is indeed a left eigenvector with zero eigenvalue for H.
In addition, this property is independent of the form of
v(q) as long as it is rotationally invariant.

APPENDIX E: ACTIVATION GAPS

Now we need to find the energy cost of producing a
widely separated particle-hole (PH) pair. This will be
done by evaluating

Da5^p1PuHup1P&1^p1HuHup1H&22^puHup&

(E1)

5E
q
E~P !1E~H !, (E2)
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E
q
5

1
2 E d2q

4p2 v~q !e2q2l2/2, (E3)

where P denotes a particle added to the state labeled
m5(n5p ,m50) and H denotes a state in which a hole
has been made in the state m5(n5p21,m50). Let us
consider

E~P !5^pudmd1
†d2d3

†d4dm
† up&r12r34 . (E4)

In performing the contractions we

• Do not make any contractions within H . This gets rid
of E05^puHup&, the ground-state energy.

• Do not contract 1 with 2 or 3 with 4 since v(0)50.

We end up with

E
q
@dm1d23d4m~12n1

F!~12n2
F!~12n4

F!

2dm3d14d2m~12n3
F!~n4

F!~12n2
F!#r12r34 .

Since 45m51 in the first term, we can drop (1
2n1

F)(12n4
F) and for similar reasons (12n3

F)(12n2
F) in

the second, giving us

E~P !5 (
m250

`

(
n25p

`

rm2~q!r2m~2q! (E5)

2 (
m250

`

(
n250

p21

r2m~q!rm2~2q!. (E6)

Since the sum over m2 is unrestricted, we can use
completeness and e2iq•R

•e2iq•R5I to get rid of the m
index altogether. Thus we end up with

E~P !5S (
n5p

`

urpnu22 (
n50

p21

urpnu2D (E7)

5F ^pur~q !r~2q !up&22 (
n50

p21

urpnu2G . (E8)

A similar calculation for the hole state gives (upon
dropping the ground-state energy as usual)

E~H !5F2^p21ur~q !r~2q !up21&

12 (
n50

p21

urp21,nu2G , (E9)

where

^nur~q !r~2q !un&5 (
n85o

`

ur~q !nn8u
2. (E10)

Putting all the pieces together, we obtain the gap.

APPENDIX F: CRITICAL FIELDS FOR MAGNETIC
TRANSITIONS

We need to calculate

E~p2r ,r !5^p2r,ruHup2r,r&, (F1)
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the energy in a state with p2r spin-up Landau levels
and r spin-down Landau levels. Since the Hartree-Fock
calculation for the spinless case is very similar, this treat-
ment will be brief. We write

H5 (
1234

E
q
d1

†d2d3
†d4r12r34 (F2)

with the understanding that a label like 1 stands for the
triplet (n1 ,m1 ,s1), where s is the spin. The matrix ele-
ments r ij are defined by

r125^1ue2iq•R@e2iq•hc2c2fe2iq•h/c#u2&

5rm1m2
^ rn1n2

^ ds1s2

and as a result

where we acknowledge the fact that the occupation fac-
tors n1

F and n2
F can depend on the spin. We have also

used the fact that the sum over all values of m is the
degeneracy of each composite-fermion Landau-level,
n/p . Carrying out the sums over n1 and n2 , we obtain

E~p2r ,r !5
n

p E
q
F (

n150

p2r21

^n1ur~q !r~2q !un1&

2 (
n1 ,n250

p2r21

urn1n2
u2

1 (
n150

r21

^n1ur~q !r~2q !un1&

2 (
n1 ,n250

r21

urn1n2
u2G .

It is now straightforward to compute the critical field
for the transition up2r,r&→up2r21,r11& by invoking

E~p2r ,r !2E~p2r21,r11 !5gF e

2me
GBc

n

p
. (F3)

ACRONYMS AND SYMBOLS

This paper invokes many symbols, not all of which
have been standardized. For the convenience of the
reader, a list is supplied below.

LIST OF SYMBOLS

Widely used quantities

n 5p/(2ps11)5filling fraction
2s Number of vortices of flux tubes at-

tached
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
p Number of composite-fermion Lan-
dau levels

ẑ Unit vector along z axis
c2 2ps/(2ps11)
me (m) Electron mass in free space (in solid)
A* or B* Potential or field seen by composite

fermion A* 5A/(2ps11)
P Velocity operator for composite fer-

mion, p1eA*
g g factor of electron or composite fer-

mion, taken to be 0.44
l(l* 5l/A12c2) Electron (composite-fermion) mag-

netic length
Re or Rv or R Electron, pseudovortex, or

composite-fermion guiding-center
coordinate

he or h Electron or composite-fermion cy-
clotron coordinate

H% Hamiltonian in the lowest Landau
level

r% (q) Electron density in the lowest Lan-
dau level

x% (q) Constraint
r% p(q) r% (q)2c2x% (q) (preferred charge)

Quantities related to gaps

Da ,p Activation or polarization gap

ma ,p
(2s) Defined by Da ,p5eB* /(ma ,p

(2s))
d D/(e2/«l)
l Defined by vZDS(q)52pe2e2qll/q

Magnetic quantities

S Number of spin-up minus spin-down
composite fermions

E(S) Ground-state energy density
E6(k) Hartree-Fock energy for up/down-

spin at momentum k
up2r,r& Composite-fermion state with p2r

Landau levels spin-up and r down.

Matrix elements

rn1n2 Single-particle matrix element of r% p

between Landau levels n1 and n2
x̃nn8 ^nuexp(2iq•h/c)un8&
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