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Recent trends in the determination of nuclear masses
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The mass of the nucleus, through its binding energy, continues to be of capital importance not only for
various aspects of nuclear physics, but also for other branches of physics, notably weak-interaction
studies and astrophysics. The authors first describe the modern experimental techniques dedicated to
the particularly challenging task of measuring the mass of exotic nuclides and make detailed
comparisons. Though tremendous progress in these and the associated production techniques has
been made, allowing access to nuclides very far from stability, it is still not yet possible to produce
many nuclides involved in stellar nucleosynthesis, especially the r process, leaving no choice but to
resort to theory. The review thus goes on to describe and critically compare the various modern mass
formulas that may be used to extrapolate from the data towards the neutron drip line. Special
attention is devoted to the crucial interplay between theory and experiment, showing how new
measurements far from stability can considerably reduce the ambiguity in extrapolations to nuclides
even further away.
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‘‘Paris is worth a mass.’’
—Henri IV

I. INTRODUCTION

The continuing interest in nuclear masses lies in the
fact that the mass M(N ,Z) of a nucleus with N neutrons
and Z protons is measurably less than the sum of the
masses of its constituent free nucleons, whence a direct
determination of the binding energy B of the nucleus is
possible:

B~N ,Z !5$NMn1ZMp2M~N ,Z !%c2, (1)

where Mn is the mass of the neutron and Mp that of the
proton. Given this inherent connection with the binding
energy, the mass of the nucleus must be regarded as one
of its basic characteristics. The steady growth over the
years in the number of nuclides whose masses have been
measured has contributed immensely to our understand-
ing not only of nuclear structure but also of several
other branches of fundamental physics.

The ‘‘mass defect’’ was discovered by Aston in the
early days of his pioneering program, launched right af-
ter the First World War (Aston, 1920). He found that to
within 1 part in 1000 all but one of the isotopes he mea-
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
sured had integral atomic weight (on the scale of 16 for
oxygen), helium in particular having atomic weight
4.000. The one exception was hydrogen, for which a
value of 1.008, rather than 1.000, was found, a result that
had to be reconciled with the prevailing view that the
helium nucleus consisted of four hydrogen nuclei and
two electrons (more than a decade was to elapse before
the discovery of the neutron). Aston attributed this mass
defect to the unique feature of the hydrogen atom of
‘‘not containing any negative electricity in its nucleus,’’
but Eddington (1920, 1926) interpreted it rather in terms
of the binding energy of the helium nucleus, showing
that the nuclear transmutation of hydrogen into helium
could serve as an adequate source of stellar energy. A
long-standing puzzle was thereby resolved, no other
known source of energy being sufficient to account for
the estimated output of the sun over the necessary time
scale. Others had made a similar suggestion, but Edding-
ton was the first to exploit the idea on a quantitative
basis by making the connection with Aston’s measure-
ments. The intimate relationship between nuclear-mass
measurements and astrophysics is thus seen to go back
to the earliest days of our field, thanks to Eddington.

Aston for his part went on to make systematic mea-
surements of some 200 nuclides, described in his book
(Aston, 1933). By the mid 1930s his measurements, in-
terpreted in terms of the new neutron-proton picture of
the nucleus, established the near constancy at around 8
MeV of the binding energy per nucleon of most nuclides
(with a weak maximum at 56Fe). This observation, com-
bined with the near constancy of nuclear densities, as
indicated by the measured nuclear radii, led to the con-
cept of the saturation of nuclear forces, i.e., the notion
that any given nucleon in a nucleus interacts only with
its nearest neighbors (see, for example, von Weizsäcker,
1935, and Bethe and Bacher, 1936).

This property of the nuclear forces was recognized as
being consistent with their known short range, although
other conditions on the forces have to hold as well. In
any case, closely associated with the saturation property
is the liquid-drop model of the nucleus, originally pro-
posed by Gamow (1930), even before the discovery of
the neutron. This picture of the nucleus became firmly
entrenched during the 1930s, and before the end of the
decade it had been extended, particularly in the hands of
Niels Bohr, to account for both the compound-nucleus
mechanism of nuclear reactions and the newly discov-
ered phenomenon of fission [see, for example, Friedman
and Weisskopf (1955) and Wheeler (1955) for these re-
spective topics].

Later, shortly after the end of the Second World War,
mass measurements played an important, although not
exclusive, role in establishing the shell model (Haxel
et al., 1948, 1949a, 1949b, 1949c, 1950; Mayer, 1948, 1949,
1950). According to this model, also known as the
independent-particle model, nuclei with so-called magic
numbers of neutrons or protons, N0 and Z058, 20, 28,
50, 82, and N05126, have exceptional stability, i.e., extra
binding beyond what is expected from the smooth sys-
tematics of the liquid-drop model. As far back as 1933
there had been some speculation, inspired by atomic
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physics, on possible shell structure (Elsasser, 1933,
1934a, 1934b), but Bethe and Bacher (1936) had stressed
the need for better mass measurements before any firm
conclusion could be drawn. Even more importantly, it
was long believed that any shell structure in the nucleus
would be impossible, since an essential condition for a
shell structure in a given system of particles is the exis-
tence of a common field in which the particles can move
more or less independently of each other. In the case of
the atom the electric charge of the nucleus obviously
generates such a field for the electrons, and moreover
the interactions between the electrons, being long-
ranged, can to a certain approximation be smoothed out
into a supplementary field which simply modifies the
Coulomb field of the nucleus. On the other hand, there
is nothing within the nucleus itself that can play the
same role that the nucleus plays within the atom, and it
was furthermore difficult to see how the short-range in-
teractions between the nucleons implied by the liquid-
drop picture could conspire, even to a first approxima-
tion, to form a smoothed field.

Nevertheless, by 1950 the evidence for shell proper-
ties had become overwhelming, and it had to be admit-
ted that in some way the nucleonic interactions do to
some extent smooth themselves out into a common, or
mean, field. Reconciling these aspects of nuclear struc-
ture with the equally well established liquid-drop fea-
tures became one of the major challenges of nuclear
physics. The necessary synthesis turned out to be a gen-
eralized independent-particle model, much closer to the
shell model than to the liquid-drop model in spirit: the
essential generalization lay in allowing the mean field to
deform from spherical symmetry and also to be time
dependent (see, for example, Rowe, 1970 and Brown,
1971). It was found that such a model could indeed have
all the known liquid-drop attributes, although it is highly
convenient for many purposes to retain the liquid-drop
language.

The most striking way in which shell structure mani-
fests itself in mass systematics is through the two-
neutron separation energy

FIG. 1. Two-neutron separation energy S2n of several ele-
ments in the range Z;30–50, as a function of neutron number
N . Data are taken from Audi and Wapstra (1995).
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S2n~N ,Z !5B~N ,Z !2B~N22,Z ! (2a)

in the case of neutron shells, and the two-proton sepa-
ration energy

S2p~N ,Z !5B~N ,Z !2B~N ,Z22 ! (2b)

in the case of proton shells. (Because of the pairing ef-
fect, the single-nucleon separation energy is a less clear-
cut indicator: see below.)

Referring specifically to neutron shells, there is a gen-
eral tendency for the two-neutron separation energy S2n
to fall steadily as the neutron number N increases with
the proton number Z held constant: this is a liquid-drop
characteristic, and follows from the von Weizsäcker
mass formula of Eq. (9). However, at the magic numbers
marking shell closure there is a sudden drop, after which
the steady fall resumes. The situation is well illustrated
in Fig. 1, where we show the variation with neutron
number of S2n for the elements Z;30–50: the magic
number N0550 is conspicuous, corresponding to a sud-
den drop in the energy necessary to remove neutrons
after a closed shell. Proton shell structure can likewise
be displayed by plotting the two-proton separation en-
ergy S2p as a function of Z for isotone chains.

The strong shell gap at N0550 is not the only depar-
ture from a steady fall of the S2n vs N curve that is
apparent in Fig. 1: between N556 and 61 there is a
trough visible for the elements Rb (Z537) to Ru
(Z544), having a maximum depth at N559 for Zr
(Z540). This corresponds to the mean field associated
with the shell structure undergoing a sharp change from
a spherical to a deformed shape. However, mass mea-
surements are by no means the only indicator of such
shape changes, a more characteristic signature of defor-
mation being the existence of rotational spectra, at least
in the case of nuclei close to the stability line.1

The magic numbers that we have quoted above were
established from the earliest days of the shell model
(Haxel et al., 1950; Mayer, 1950), at which time the data
were limited to nuclei lying close to the line of beta
stability (hereafter referred to as the stability line).
There is an ongoing interest concerning the extent to
which these numbers remain magic as one moves out
towards either the neutron drip line or the proton drip
line.2 Specifically, one would like to know whether there

1Such spectra were originally interpreted in terms of the clas-
sical rotations of a deformed liquid drop (Bohr and Mottelson,
1953), but they arise also in the generalized independent-
particle model as a necessary consequence of angular momen-
tum conservation, once the mean field is deformed (see, for
example, Mottelson, 1962).

2By neutron drip line is meant the locus of points correspond-
ing to the minimum value of N for which Sn,0 at each value
of Z . The proton drip line is likewise defined in terms of the
minimum value of Z for which Sp,0 at each value of N (see
Fig. 4 below). All nuclides lying between these lines will be
stable with respect to nucleon emission, although some iso-
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is any quenching, in the sense of either a weakening or a
total extinction, of the shell gaps, as defined by

Dn~N0 ,Z !5S2n~N0 ,Z !2S2n~N012,Z ! (3a)

and

Dp~N ,Z0!5S2p~N ,Z0!2S2p~N ,Z012 !. (3b)

From Fig. 2, showing the variation of the N0520, 28, 50,
82, and 126 neutron-shell gaps with Z , we see that in the
first three cases there is definitely a weakening of the
gaps as the neutron excess (or equivalently, proton defi-
ciency) increases, although only in the case of N0520 do
the presently available data approach the neutron drip
line. This is the region of the famous ‘‘island of inver-
sion,’’ which has been the subject of intense investiga-
tion by a variety of complementary techniques [see, for
example, Thibault et al. (1975), Orr et al. (1991a, 1991b),
and Lunney, Audi, Doubre, et al. (2001)]. As for N0
582 and 126, there is a tantalizing suggestion that
quenching might be setting in on the neutron-rich side.
Certainly, there are no data counterindicating quench-
ing. We return to this question in Sec. III.B.4.

The existence of shell quenching naturally raises the
question of whether new magic numbers might appear
in these neutron-rich or proton-rich regions of the
nuclear chart. In fact it would seem so, as evidenced by
recent studies (including mass measurements) around
N516 (Ozawa et al., 2000). On the other hand, while
recent Coulomb-excitation measurements by Sorlin
et al. (2002) suggest that N540 could be magic in the
case of Ni (Z528), there is no other evidence of a shell
gap in this region.

There is also the long-standing question of whether
there might not be new magic numbers lying beyond the
heaviest known nuclei. Actually, it was recognized a long
time ago that in a purely liquid-drop picture nuclei with
Z.104 would, because of the disruptive nature of the
Coulomb force, be completely unstable with respect to

lated nuclides lying beyond the lines will also be nucleon
stable. Also, many nuclides just beyond the proton drip line
are energetically capable of emitting protons but will, because
of the Coulomb barrier, be effectively stable against proton
emission, positron decay being so much more rapid [see No-
vikov et al. (2002), who describe this phenomenon as forming a
‘‘littoral shallow’’].

FIG. 2. Experimental neutron-shell gaps as a function of Z for
N0520, 28, 50, 82, and 126. Data are taken from Audi and
Wapstra (2001).
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spontaneous fission. The very existence of such elements
thus depends on the potentially stabilizing influence of
shell effects, and it was realized during the 1960s that
new magic numbers might give rise to ‘‘islands of
stability,’’ 3 essentially because of the large increase in
fission-barrier height that could be expected in the vicin-
ity of doubly magic nuclei (Myers and Swiatecki, 1966).
Early calculations (Meldner, 1967) indicated that Z
5114 and N5184 should both be magic, with the corre-
sponding doubly magic nucleus 298114 being close to
beta stability. After enormous experimental efforts [see
the reviews of Armbruster (2000), Hofmann and Mün-
zenberg (2000), Hofmann (2002), Oganessian (2001,
2002), and Oganessian et al. (2002)], the superheavy nu-
clide 289114 was discovered (Oganessian et al., 1999), but
it remains to be seen whether Z5114 and N5184 are
indeed magic; other theoretical candidates are discussed
by Kruppa et al. (2000) and by Berger et al. (2001). The
experimental signatures for the production of these ele-
ments, in most cases with only one or two events re-
corded over weeks of experiments, are invariably the
alpha-decay sequences that generally lead to spontane-
ously fissioning nuclides. Knowing the masses of these
descendants is important, not only for validating mass
predictions in this region, but also for confirming the
very existence of the superheavy nuclide in question.

In the light-mass region of the nuclear chart, experi-
ments have reached, and even crossed, the drip lines.
One of the surprises, discovered by Tanihata et al.
(1985), was the existence of halo nuclides. The arche-
typal example is 11Li, consisting of a more or less inert
9Li core and an extended halo of two very weakly bound
neutrons. The radial wave function of a halo nucleus
depends critically on the one- or two-neutron separation
energy. Modern, three-body models now require this
quantity as an input parameter. Recent reviews of halos
and their models are given by Hansen et al. (1995), Tani-
hata (1996), and Riisager et al. (2000).

As a final item in our summary of the various contri-
butions that mass measurements have made, and con-
tinue to make, to our knowledge of nuclear structure, we
mention the two different kinds of pairing phenomena
that are encountered. The better known of these refers
to the tendency for nuclei with an even number of nucle-
ons of one type or the other to be more strongly bound
than nuclei with an odd number. While this property was
already well established in the 1930s,4 understanding its

3This metaphor makes sense provided one works in terms of
the binding energy B rather than the internal energy E
52B . However, there is some confusion of terminology here,
since one often refers to nuclei lying close to the stability line
as constituting a ‘‘valley of stability,’’ a metaphor that makes
sense only in terms of E .

4It was his familiarity with pairing that led Niels Bohr as early
as 1939 to identify 235U, rather than the much more abundant
238U, as the isotope responsible for the fissioning of natural
uranium under bombardment by thermal neutrons (Bohr,
1939).
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behavior in nuclei lying far from the stability line is very
much a matter of current interest (see, for example,
Bennaceur et al., 1999). More subtle is the pairing be-
tween a neutron and a proton coupled in an isospin state
of T50. This appears to be related to the so-called
Wigner effect, i.e., the tendency for nuclei with N5Z to
be more strongly bound than neighboring nuclei (see
Sec. III.B.3). Mass measurements have played an impor-
tant role in elucidating this phenomenon (Jensen et al.,
1984; Brenner et al., 1990; Satula et al., 1997).

While new and better mass data still contribute to our
understanding of nuclear structure, a large part of the
motivation driving the continuing effort in the field de-
rives simply from the realization that a knowledge of the
masses of all the nuclei involved in a given reaction, or
other process such as beta decay or fission, leads to a
determination of the energy release. One important ap-
plication of this is the determination of the possible de-
cay modes of a system. For example, the recent discov-
ery of two-proton emission (Giovinazzo et al., 2002;
Pfützner et al., 2002) began with inspection of mass sur-
face (specifically, seeking a negative S2p and positive
Sp). Another example is in the prediction of cluster ra-
dioactivity, e.g., 12C emission. A recent experimental de-
termination of the Q value for this decay from the
alpha-decay studies of Mazzocchi et al. (2001) is very im-
portant, since this quantity has an enormous influence
on the partial half-life.

Particle physics is another, but quite different, area in
which measurements of nuclear masses are, because of
their implications for energy release, absolutely essen-
tial. Neutrinoless double-beta decay (Elliott and Vogel,
2002) is one example where the mass differences of the
parent and daughter precisely determine the location of
the double-beta peak, revealing the putative existence of
Majorana neutrinos (Klapdor-Kleingrothaus et al., 2001;
Aalseth et al., 2002). Other motivation comes from the
electroweak sector of the Standard Model of particle
interactions, in connection with the hypothesis of the
conserved vector current (CVC), and with the extent to
which the Cabibbo-Kobayashi-Maskawa (CKM) matrix
(Particle Data Group, 2002) satisfies unitarity. Both can
be tested by means of an accurate determination of the
weak vector-coupling constant GV , accessible via super-
allowed 01→01 nuclear beta decays. The clean extrac-
tion of GV from the comparative half-life of a given de-
cay requires precise knowledge of the available phase
space, which in turn depends sensitively on the energy
released by the beta decay in question, whence the need
for accurate mass measurements of both mother and
daughter nuclides. At the present time the CVC hypoth-
esis appears to be well verified, but there is a tantalizing
indication of a deviation from unitarity of the CKM ma-
trix. Confirming this possible breakdown of the Stan-
dard Model will require inter alia measuring the masses
of nuclei whose half-lives are less than 100 ms with an
accuracy of much better than 1 keV (see, for example,
Hardy and Towner, 2001, 2002). This is an interesting
example of an indispensable contribution made by low-
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
energy (actually, zero-energy) nuclear physics to a field
generally held to be the property of high-energy physi-
cists.

Yet another domain in which the determination of en-
ergy releases is of prime importance is that of stellar
nucleosynthesis, and it is fair to say that the needs of the
astrophysics community are at least partially responsible
for the current growth of activity in the field of nuclear
masses. (Another astrophysical context in which new
mass data could clarify matters is discussed at the begin-
ning of Sec. III.)

Having discussed the importance of mass determina-
tions for many different areas of physics, we now sum-
marize the approach we have adopted in the present
review. Even if there will always be some interest in
remeasuring with ever-increasing precision the masses of
particular nuclides, the predominant experimental
thrust, described in Sec. II, is to explore regions of the
nuclear chart further and further away from the stability
line. Continuing technical advances at an expanding
number of radioactive-beam facilities now allow us to
probe relatively exotic nuclear systems, in some cases
at—and beyond—the drip lines (Ravn, 2002). The main
problem facing experiments with exotic nuclides is the
fact that as these species are produced in very limited
quantities (see Sec. II.A), the associated measurement
techniques require very high sensitivity. Since the deter-
mination of the mass requires very high precision, this
means that great effort must be made to identify and
eliminate systematic error and to ensure consistency.
One of the many challenges facing mass spectrometrists
is that exotic nuclides are by definition very short lived.
The development of a fast measurement technique is
therefore imperative, but such techniques must also be
of sufficiently high resolution to make precision mea-
surements.

The precision required on the mass depends on the
physics being investigated. This idea is summarized in
Fig. 3. As can be seen from the above discussion con-
cerning nuclear structure, the first indications of shell
effects (see Fig. 1) are somewhat gross, of the order of a
few MeV, corresponding to a relative precision of about
1025. Probing the shell openings and closures of more
exotic nuclides requires somewhat higher precision,
roughly 1026. Halo nuclides, having very small separa-
tion energies that are themselves input parameters for
microscopic models, require a precision approaching
1027, while the stringent weak-interaction studies de-

FIG. 3. Correlation between the relative uncertainty on the
measured mass dm/m and the associated physics that can be
probed.
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FIG. 4. (Color) Nuclear chart showing the regions where measurements have been made (since 1994) by the various dedicated
mass programs using direct techniques and those determined by indirect measurements. Stable nuclides are shown as well as the
drip lines calculated by the finite-range droplet model (Möller et al., 1995). CPT, Canadian Penning Trap; CSS2, Separated Sector
Cyclotron at GANIL; ESR-IMS, Experimental Storage Ring-Isochronous Mass Spectrometry; ESR-SMS, Experimental Storage
Ring-Schottky Mass Spectrometry; ISOLTRAP, Isolde Penning trap; MISTRAL, Mass measurements at ISOLDE with a Trans-
mission Radio frequency spectrometer on-Line; SPEG, Spectromètre à Perte d’Energie au GANIL; TOFI, Time-Of-Flight Iso-
chronous spectrometer.
scribed above require a measurement precision of 1028

or better.
Masses can be determined in a variety of ways, nota-

bly in the form of differences resulting from the Q value
of a radioactive decay or nuclear reaction (Sec. II.B).
While decay measurements can be quite accurate, one
must be careful to have sufficient knowledge of the level
scheme in order to correctly determine the ground state
and feedings, and also to link this relative difference
value to a known mass value, sometimes very far away
and causing cumulative error. Methods that are comple-
mentary, and generally less prone to error, are based on
mass spectrometry to determine masses via time-of-
flight or frequency measurements. Furthermore, they
generally make measurements with respect to a well-
known reference mass, eliminating error accumulation.
We describe the several experimental programs cur-
rently dedicated to the measurement of masses of radio-
active ions by mass spectrometry in Sec. II.C. A detailed
comparison is given in Sec. II.D and a look into future
developments in Sec. II.E.

Since the mass of any given nucleus can be measured
in many ways, a comprehensive assessment of all the
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
currently available data is published every few years as
the ‘‘Atomic Mass Evaluation’’ (AME), the most recent
of which contains over 2200 consistently adjusted values
and is available via the Internet (Audi and Wapstra,
1995). The AME is maintained not only to provide a
repository for the wealth of atomic mass data but espe-
cially to attempt to reconcile often conflicting mass val-
ues determined by different techniques (see Sec. II.F).

Because of difficulties in production, a large number
of nuclei far from the line of stability have still not had
their masses measured and are unlikely to do so in the
near future (see Fig. 4).5 But many of these unmeasured
nuclei play a vital role in the stellar synthesis of the
stable nuclides, and an understanding of these processes
requires a knowledge of the masses of all the nuclei in-
volved. The problem is particularly acute in the case of
the heavy, highly neutron-rich, nuclei that are involved
in the r process (rapid neutron capture) of nucleosyn-

5Recently the drip-line nuclide 37Na (as well as 34Ne) was
detected at RIKEN (Notani et al., 2002) and GANIL (Luky-
anov et al., 2002)—twenty years after the first detection of 35Na
(Langevin et al., 1983)!



1027Lunney, Pearson, and Thibault: Determination of nuclear masses
thesis, an understanding of which may require the
masses of nuclei containing 30 or so neutrons more than
the heaviest measured isotope of the same element [see,
for example, Meyer (1994); Wallerstein et al. (1997); Ar-
nould and Takahashi (1999); Kratz et al. (2000); Goriely
(2003)]. A similar problem also arises occasionally in
connection with the synthesis of proton-rich stable nu-
clides through the rp process (rapid proton capture),
although the problem is less acute than in the case of the
r process since the available measurements extend much
closer to the proton drip line than to the neutron drip
line [see, for example Wallerstein et al. (1997); Schatz
et al. (1998); Arnould and Takahashi (1999)]. Faced with
this unenviable situation, one has no choice but to resort
to a theoretical determination of the mass. We devote
Sec. III to this question, surveying the various theoreti-
cal methods that are now available for this purpose. It
will be seen there that the only methods that have any
hope of success in all regions of the nuclear chart are
those that have an essentially ‘‘semiempirical’’ character,
in the sense that the theoretical description of the
nucleus that is adopted always has a number of free pa-
rameters that are fitted to the measured masses (and
maybe to other nuclear data). Thus theory is used here
simply as a means of extrapolating from the mass data to
the unknown nuclides (and, as discussed at the begin-
ning of Sec. III, to the system known as infinite nuclear
matter).

II. EXPERIMENTAL METHODS

Mass measurements are pursued worldwide.6 In some
cases, they are the fruit of detailed spectroscopic efforts
or reaction studies (indirect techniques) but there are
also various programs dedicated to the more direct de-
termination of masses. Apart from the efforts dedicated
to stable nuclides (discussed in Sec. II.E), these pro-
grams are naturally associated with radioactive-beam fa-
cilities using various production mechanisms and their
specific mass separation schemes. In fact, the technique
employed by a given mass measurement program is very
strongly conditioned by the production-separation
method, as outlined below. New experimental develop-
ments of ion cooling have had an enormous impact as
well. This section will first briefly describe the various
production mechanisms before giving an overview of in-
direct techniques, followed by a presentation of the di-
rect techniques used at the radioactive-beam facilities
with mass spectrometry programs. A detailed compari-
son of the various techniques will follow, as well as an
overview of the projects that are under development.

6In this paper only a summary of the various techniques and
associated programs is given (with no figures) accompanied by
detailed comparisons. For up to date and detailed
descriptions—all compiled into one volume—the reader is re-
ferred to the proceedings of the conference on Atomic Physics
at Accelerators APAC2000 (Lunney, Audi, and Kluge, 2001).
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A. Production of exotic nuclides

The study of radioactive nuclides requires their pro-
duction, for which several types of nuclear reactions may
be used. A large range of nuclides are produced, often
including less interesting but more abundant species
closer to stability. Two general techniques for separating
the reaction products from the primary production pro-
jectiles are used: in-flight and on-line. Mittig et al. (1997)
and Lepine-Szily (2001) give thorough reviews of these
production and separation questions. More general dis-
cussions, accompanied by brief descriptions of the exist-
ing installations exploiting these two techniques, are
given by Grunder (2002) and Nolen (2002) for North
American facilities, and by Jonson (2002) and Guerreau
(2002) in the case of Europe. An earlier article by Tani-
hata (1998) covers Asian installations. A survey of the
different reactions themselves is given by Schmidt et al.
(2002).

1. In-flight separation

When a heavy, high-energy primary beam is directed
onto a thin target, the resulting primary beam fragments
can be quite exotic in nature, in addition to being in
excited states [see reviews by Geissel et al. (1995) and
Morrissey (2002)]. The target must be thin enough not
to destroy the fragments and to minimize the effects of
straggling, which degrade the momentum and angular
distribution of the fragment beam. In addition to sepa-
rating the primary beam using magnetic rigidity selec-
tion and a velocity filter, for example, the produced frag-
ments can be time-tagged and after suitable drift time at
a velocity depending on the target thickness, identified
by time of flight as well as standard energy-loss tech-
niques.

Projectile fragmentation favors the production of ex-
otic nuclides at relatively high energies (a few tens to a
few hundred MeV/A) and their high velocity makes un-
ambiguous Z selection possible. This point is important
since a disadvantage of working with such beams is the
charge-state distributions of different elements that can
overlap. Spectrometers with large angular acceptance
must be used, which limits the intrinsic accuracy with
which the mass might be determined (unless there is a
way of cooling the fragments in flight, such as in a stor-
age ring, as described below).

At lower energies (a few MeV/nucleon) fusion-
evaporation reactions can be used in combination with
in-flight separation. These are the best reactions for pro-
ducing very proton-rich nuclides. Accelerated beams of
fissile elements can also be used with a thin, light target
to condition the resulting distributions of exotic nu-
clides. Major fragmentation facilities are: in Europe,
GANIL in Caen (France), GSI in Darmstadt (Ger-
many), and JINR in Dubna (Russia); in Japan, RIKEN;
in China, the Lanzhou facility; and in the USA, NSCL in
East Lansing and ANL near Chicago.
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2. Isotope separation on-line

The technique of isotope separation on line (ISOL),
which provided the very first beams of exotic nuclides
[see review by Jonson and Richter (2000)], uses a pri-
mary beam (e.g., high-energy protons or heavy ions) to
produce large quantities of radioactive nuclides in a very
thick target. Depending on the chemical composition of
the target, nuclides are created by spallation, fragmenta-
tion, or even fission in the case of uranium or thorium
carbide. Unlike in-flight separation, where the reaction
products are barely slowed, here they are stopped and
consequently must be coaxed out of the target by diffu-
sion, i.e., by heating the target matrix. After the atoms
have been transferred into an ionization chamber, differ-
ent techniques of varying chemical selectivity can be ap-
plied to produce the ions of interest. As the target-ion
source ensemble is mounted on a high-voltage platform
(typically 60 keV), once ionized, the beam is acceler-
ated, focused, and mass separated using a magnet. The
great advantage of the ISOL technique is the superior
beam quality, which is particularly amenable to use with
precision apparatus. The high quantity of exotic species
produced in the thick target is generally offset by the
fact that the produced nuclides must diffuse out of the
voluminous target matrix. Depending on chemical com-
position, this process can take a few hundred millisec-
onds for alkali elements, to several seconds and longer
for more refractive species.

A detailed description of production and separation
by the ISOL technique is given by Ravn et al. (1994) and
by Köster (2000, 2002a), and the mother of all ISOL
facilities, ISOLDE, has most recently been described by
Kugler (2000) and Lindroos (2003). Other facilities (see
review by Jonson, 2002) where mass measurements have
been (or will be) pursued using ISOL include GSI,
where fusion-evaporation reactions with heavy-ion
beams are used; Jyväskylä (Finland), where heavy-ion-
induced fission is used with the gas-jet, ion guide system
IGISOL; Studsvik (Sweden), where the OSIRIS facility
uses thermal neutrons to the same end; Japan’s new
KEK-JAERI joint facility, and Caen (France), where
the GANIL-SPIRAL facility uses projectile fragmenta-
tion in a thick target.

B. Indirect mass measurement techniques

Often a distinction is made between so-called ‘‘indi-
rect,’’ i.e., reaction and decay, measurements and ‘‘di-
rect’’ techniques due to the fact that the former yield
mass differences. In fact, the distinction is somewhat
academic, since the latter techniques all make use of a
mass reference with respect to which the unknown mass
is determined. Absolute measurements are impracti-
cable due to the fact that it would be otherwise impos-
sible to measure the magnetic-field values to anywhere
near the desired precision (see Sec. II.C).

1. Reactions

Nuclear reactions are traditionally one of the most
accurate mass measurement techniques, but they are of
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somewhat limited breadth, since the incoming and out-
going particles must be known in addition to the target
mass. The kinematics of the unknown mass or the reac-
tion Q value must be determined by a relatively precise
(and well-calibrated) mass spectrometer. Two tech-
niques are generally used: missing mass and invariant
mass (see recent review by Penionzhkevich, 2001).

In the missing-mass method, a suitable reaction
A(a ,b)B is selected in which the masses of target A ,
projectile a , and ejectile b are known. The mass of the
unknown product B is determined by measuring the Q
value. While the spectrometer used to measure the Q
value will suffer from a certain limitation in resolution,
the great advantage of this technique is that B need not
be a bound nuclide. No direct technique is applicable in
this case, since the measurement time will be too long.
Recent measurements using this technique were per-
formed on 13–16B by Kalpakchieva et al. (2000) at HMI
(Berlin); on 13Be by Belozyorov et al. (1998) at JINR
(Dubna); and by Lu et al. (1998) at the Lanzhou facility.
An original technique using pion reactions was also used
at the Los Alamos meson facility (LAMPF) for masses
of exotic nuclides. The last paper on this technique was
presented at the 1995 conference on Exotic Nuclei and
Atomic Masses (ENAM) by Seth (1996).

The invariant-mass method is particularly well suited
for unbound nuclides and very similar to a decay mea-
surement in that the mass of the unknown parent nu-
clide B is determined by detecting the kinematics of the
recoiling decay product b and decay particle x . The un-
known (unbound) nuclide is created from a reaction in a
thin target with detectors placed at forward angles for
the particles x and a large-acceptance spectrometer used
to determine the momentum of b . The invariant-mass
peak is reconstructed from the kinematics of x and b
events recorded in coincidence. This technique suffers
greatly from sensitivity limitations, since covering a
large solid angle with particle detectors is difficult, and a
small surface area is required in order to have sufficient
position resolution. A recent result on 18Na was ob-
tained by Zerguerras (2001) using this technique at
GANIL.

Neutrons offer the possibility of excellent accuracy via
(n ,p) or (n ,a) reactions (Wagemans et al., 2001) and
(n ,g) decays. For example, Kessler et al. (1999) have
determined the energy of the 1H(n ,g)2H reaction to
only 0.4 eV. These reactions are especially suitable for
nondestructive measurements on macroscopic samples
(Paul et al., 2001). (p ,g) reactions can likewise provide
tremendous accuracy.

2. Decays

Radioactive decay Q values can provide relatively ac-
curate mass differences between parent and daughter
nuclides. However, in order to derive mass values, these
differences must be linked to a known mass which can
be sometimes quite far away, inducing cumulative error.
In addition, it is often very difficult to get the complete
spectroscopic information, and errors can occur if a (par-
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ticularly high-lying) decay branch has not been detected.
This is especially true in the case of beta decay, for
which the additional determination of the detector re-
sponse function, required to correctly unfold the end-
point energy, can also render such mass determinations
somewhat hazardous.

A recent example is given by Barton et al. (2003), who
prudently determined a lower limit for the mass of 80Y
(see Sec. II.D). Other recent mass results from beta de-
cay have been published by Brenner et al. (1998) for
150–151Er, Fogelberg et al. (1999) around 132Sn, and
Brenner (2001) for 73Br. Recent semiempirical results
(measurements incorporating, for example, Coulomb
energy corrections) have been obtained by Canchel et al.
(2001) for 27S with the LISE spectrometer using a frag-
mented beam at GANIL, and from the GSI ISOL facil-
ity by Mazzocchi et al. (2001) for 60Ga and Jokinen et al.
(2002) for 57Zn. Masses determined this way can be
thought of as by-products of a wealth of detailed spec-
troscopic information. While beta decay was, for a long
time, the principal source of mass determinations, this
situation has now been reversed. A precise mass value,
when determined by a direct technique, can be used as a
stringent constraint on the total energy window avail-
able for establishing level schemes, as requested by Oi-
nonen et al. (1999) for the case of 61Ga, for example.
Roeckl (2001) and Roeckl et al. (2003) discuss the perils
of deriving masses from beta-decay measurements and
review the GSI ISOL results for N'Z nuclides.

Qa measurements are more straightforward and at
the drip line, together with Qp values, are a very pow-
erful method for determining masses with excellent
accuracy—if the subsequent decay chains can be linked
to a known mass. Unlike beta particles, alpha particles
do not share their energy with a neutrino, and the en-
ergy differences are direct, providing that the decay
starts from and ends at the ground state (or an isomeric
state with a known energy). In addition to the work at
Argonne National Laboratory with the ATLAS facility
along—and even beyond—the proton drip line (see
Davids et al., 2001), a large contribution to mass knowl-
edge in the very heavy region comes from the GSI
superheavy-element research. Alpha particles are the
dominant decay mode and several chains have been
identified (see Heßberger et al., 2000, 2001 and Hof-
mann et al., 2001) to which known mass values can be
linked. Another rich source of alpha measurements is
the gas-filled RITU separator at Jyväskylä (Kettunen
et al., 2001), with other contributions coming from Ja-
pan’s JAERI recoil mass spectrometer (Tagaya et al.,
1999) and RIKEN (Mitsuoka et al., 1997) facilities as
well as heavy-ion radioactive-beam facilities in China at
Lanzhou (Gan et al., 2001) and in Russia at Dubna
(Oganessian, 2001).

C. Direct mass spectrometry techniques

The closing of the Chalk River TASCC facility in 1996
deprived the nuclear structure community of the last
mass program that relied on deflection-voltage
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measurements.7 Now, all direct mass determination
techniques, i.e., those of mass spectrometry, rely on mea-
surements of time-of-flight or (cyclotron) frequency,
which are inherently more accurate. These various tech-
niques are correlated with the production and, notably,
the separation mechanism. Generally speaking, the
ISOL method allows the use of higher-precision meth-
ods, while in-flight separation is more amenable to high
sensitivity. Until very recently, mass programs based on
direct techniques were found at only three installations
(all in Europe):8 ISOLDE, GANIL, and GSI. At GA-
NIL, the masses of exotic fragments are accessed natu-
rally through the ion time of flight combined with a ri-
gidity determination. Also starting from fragmentation,
the Experimental Storage Ring at GSI is run in two dif-
ferent operating modes to derive the mass from the ion
revolution frequency. Two experiments at ISOLDE rely
on measurement of the cyclotron frequency of an ion in
a homogeneous magnetic field to access the mass. One
of these, the Penning trap, represents a significant
breakthrough in terms of measurement accuracy. In
each of the following subsections we shall briefly de-
scribe the technique, its advantages and disadvantages,
and some recent results. A recent, very concise review is
also given by Scheidenberger (2002).

The present European domination will be challenged
very soon with new projects under construction at MSU
and TRIUMF, and the Penning trap program at ANL
(transferred there when TASCC was closed), which has
already started to produce results (Wang et al., 2002;
Clark et al., 2003). European presence will by no means
decline, however, since two new projects at GSI as well
as at Jyväskylä and Munich are also well underway. [In
the meantime, the new Penning trap in Jyväskylä has
produced some prelimary mass data on Zr isotopes
(Äystö et al., 2003).] It is very important to note that all
(save one of the GSI projects) are based on Penning
traps. These future mass measurement programs are dis-
cussed in Sec. II.E.

1. Mass measurement programs at GANIL: SPEG
and CSS2

a. SPEG: time-of-flight combined with rigidity analysis

At GANIL, exotic nuclides are produced by bom-
barding a production target with an intense heavy-ion
beam (1013 pps) at intermediate energy
(50–100 MeV/u). The dominant mechanism at these
energies is projectile fragmentation, after which the
forward-directed GeV fragments are selected in flight by
an a-shaped spectrometer and transported to the high-

7The University of Manitoba continues with such an instru-
ment for stable nuclides, having recently published results for
183W and 199Hg (Barillari et al., 2003).

8From 1985 to 1995, Los Alamos National Laboratory in the
US played an important role on the mass measurement scene
with the TOFI (Time-Of-Flight Isochronous) experiment. The
final TOFI data set was presented at the 1998 ENAM confer-
ence (Bai et al., 1998).
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resolution spectrometer SPEG. The mass measurement
technique using SPEG is discussed by Savajols (2001),
while the spectrometer itself is described by Bianchi
et al. (1989).

The mass is deduced from the relation

Br5
g m v

q
, (4)

where Br is the magnetic rigidity of a particle of rest
mass m , charge q , and velocity v , and g is the Lorentz
factor. This technique requires a precise determination
of the magnetic rigidity and of the velocity of the ion,
which is determined from a time-of-flight measurement.9

The time of flight, typically of the order of 1 ms, is
measured using microchannel plate detectors located
near the production target (start signal) and at the final
focal plane of SPEG (stop signal), over an 82-m (iso-
chronous) path. From the detector response, the time-
of-flight resolution Dt/t is about 231024.

The magnetic rigidity of each ion is derived from two
horizontal position measurements, and a momentum
resolution of 1024 is commonly achieved. The identifica-
tion of each ion arriving at the focal plane of SPEG is
achieved by the measured flight time and the energy loss
and total energy signals from a detector telescope. As
the resolution of the system is not sufficient to resolve
isomeric states, a 4p NaI array surrounds the telescope
for the detection of g rays.

Systematic errors due to electronics nonlinearity,
beam-optics effects, and element-dependent energy loss
in the detectors, are corrected with a calibration func-
tion that requires reference masses as far as possible
along a given isotopic chain (Savajols, 2001). The thicker
target necessary for the less exotic reference nuclides
produces too much beam for the sensitive detection sys-
tem required by the exotic nuclides. To avoid this prob-
lem, the production-target wheel has a narrow section of
increased thickness that sends short bursts of reference
ions as it turns.

The mass resolution of 2 –431024 obtained from the
combination of the time-of-flight and the magnetic rigid-
ity measurement is relatively modest. However, the ex-
cellent transmission and ion-by-ion elemental identifica-
tion feature of SPEG provides a sensitivity that is
unsurpassed by any other technique. This allows a rough
mapping of the mass surface very far from stability.

Measurements with SPEG are limited to about
A<70 due to rigidity of the beam transport system, as
explained by Chartier et al. (1998), who published
masses of the proton-rich 70,71Se nuclides. Those mea-
surements have since been improved by more careful
analysis performed after discovery of detector defects.
Moreover, thanks to additional calibration masses that
became available in the meantime, mass values for three

9In a similar way, the TOFI experiment at LANL produced a
very large quantity of mass data using fragmented beams fo-
cused into a series of three dipoles, with the resulting isochro-
nous trajectories used to determine the mass.
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additional exotic nuclides (Lima et al., 2002) could be
obtained. A recent campaign has provided a wealth of
data around the failing N528 shell closure (Sarazin
et al., 2000). An extension of these measurements, made
possible by cleansing the fragmented beam of light par-
ticles (protons, deuterons, and alphas) using a thin foil,
is under analysis and a new proposal covering the n-rich
region up to A;70 was recently approved (Savajols,
2002).

b. Cyclotrons: a lengthened time-of-flight base

For a given time resolution, the overall resolution in
time-of-flight measurements is limited by the total flight
time. If this can be increased, then a corresponding gain
in resolution is possible. At GANIL, a cyclotron has
been used to achieve this end. The circular orbits in the
cyclotron increase the flight path to over 1 km. The cy-
clotron uses an alternating voltage to accelerate ions of
different charge-to-mass ratio d(m/q)/(m/q) according
to

d~m/q !

~m/q !
5dt/t5df/f , (5)

where the accelerating frequency phase df/f between
different ions corresponds to a time difference dt/t . This
quantity is measured by inserting a radial telescope de-
tector system and recording the ion arrival time com-
pared to the accelerating frequency phase over the cor-
responding energy range.

The GANIL facility is now home to four cyclotrons,
two of which may be used for mass measurements: the
first, CSS1 (for separated sector), accelerates the projec-
tile beam to a few MeV/A to bombard a production
target, creating proton-rich nuclides via fusion-
evaporation. It is the second, CSS2, that is used for the
time-of-flight measurement. The details of this scheme
were elaborated by Auger et al. (1994), while the first
results were published by Chartier et al. (1996) for 100Sn
and Lalleman et al. (2001) for 80Y. The so-called energy-
phase plot is calibrated using a well-known reference
mass that must be simultaneously accelerated within the
narrow acceptance window of the cyclotron. Therein lies
the difficulty with this installation, since the cyclotron
providing the primary beam uses the same acceleration
frequency as the one accelerating the exotic beam. This
problem can be circumvented by using a cyclotron with
an independent acceleration frequency, as planned for
the new CIME machine at the GANIL-SPIRAL facility
(Chartier et al., 2001). This feature was employed by Iss-
mer et al. (1998) using the SARA cyclotron in Grenoble
to measure 80Y (see Sec. II.D); however, a price was
paid in transmission, due to a reduction in the accelera-
tion acceptance phase.

2. Mass measurements at GSI using the Experimental
Storage Ring

Circulating ions with well-defined orbits offer excel-
lent conditions for cumulative time-of-flight detection.
Mass measurements have now been performed at GSI
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by operating the Experimental Storage Ring (ESR) in
two different ion-optical modes, recording successive lap
times of the ions coasting around the ring. The ions in
question are produced by fragmentation of very heavy
projectiles (e.g., Au and Bi) at very high energies (about
0.5 GeV/A). The fragments are sent through a fragment
separator and injected into the 108.4-m-circumference
ESR, the optical lattice of which is tuned to accept a
certain magnetic-rigidity window.

The mean revolution frequency of an ion in a storage
ring is determined by its speed divided by its orbit cir-
cumference, which in turn will depend on the ion optical
conditions of the storage ring [its operating point—see
Franzke et al. (1995), Schlitt et al. (1996), and Geissel
et al. (2001) for more extended descriptions]. For mass
measurements, it is desirable on the one hand to have a
large range of simultaneously stored ions, but on the
other hand to minimize the magnetic-field volume
sampled by the ions, which will be a source of uncer-
tainty. The relative difference in revolution frequencies
Df/f depends on two components: the different charge
to mass ratios D(m/q)/(m/q) and the different veloci-
ties Dv/v according to

Df

f
52

1

gT
2

D~m/q !

m/q
1S 12

g2

gT
2 D Dv

v
, (6)

where g is the Lorentz factor, determined from the beam
velocity, and gT

2 5@d(p/q)/(p/q)#/(dC/C) where (p/q)
is the magnetic rigidity and C the orbit circumference.
The so-called transition point gT

2 (related to another pa-
rameter called the momentum compaction factor ap
51/gT

2 ), is determined by the optical setting of the ring.
For the mass measurement, gT must be determined us-
ing known mass values. In order to render this relation
velocity independent, the second term must be elimi-
nated. Two methods have now been used to achieve this
end, as described below.

a. ESR-SMS: Schottky mass spectrometry

One way of eliminating the second term in the above
relation is to directly minimize the velocity dispersion,
i.e., to indroduce an ion-cooling mechanism.

Ions circulating in a storage ring can be cooled by
electronic active feedback [the famous technique of sto-
chastic cooling developed by Van der Meer (1985) for
the discovery of the intermediate vector boson] or by
using laser excitation [originally achieved by Schröder
et al. (1990) and more recently by Madsen et al. (1999)].
A third possibility is to use electrons [see short descrip-
tion by Danared (1995) and comprehensive review by
Poth (1990)], which can also be interesting for experi-
ments in ion-electron recombination. The ESR includes
an electron cooler that merges its electron beam with
the circulating ion beam at a similar velocity. A stored
ion finds itself repeatedly bathed in a sea of cold elec-
trons and, feeling the Coulomb attraction from all quar-
ters, eventually takes up the pace. Once cooled, the ion-
beam energy can in fact be controlled by that of the
electron beam. Electron cooling reduces the phase space
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of the circulating ion beam, allowing better beam defi-
nition, very small velocity spread, and higher stored ion
density. The momentum dispersion dp/p can be de-
creased to '1026 for stored-ion intensities below a few
thousand. The beam temperature as a function of
stored-ion density even showed a phase transition, simi-
lar to the sudden vanishing of resistance in supercon-
ductors (Steck et al., 1996).

A charged particle passing near a conductor induces a
detectable signal called Schottky noise (Cocher and
Hofmann, 1990). A pair of parallel plates, a few centi-
meters from the beam axis, is used to ‘‘listen’’ to the
circulating beam. Since the cooled beam in the ESR has
a well-defined trajectory, the ions induce a well-defined
signal at the harmonics of their revolution frequency.
For better signal-to-noise ratio, a high harmonic is used
and frequency mixed with a local oscillator before being
Fourier transformed to obtain the revolution frequency.

The resolving power obtained from these Schottky
signals depends on the operating point of the ring. For
typical momentum compaction ap50.14 and beam en-
ergy 370 MeV/A (g51.4) resolving powers up to
7.53105 have been obtained (Geissel et al., 2001).

When a large number of ion species is present in the
ring, the masses of unknown fragments are determined
according to the above equation by comparing their
Schottky peak positions to those of the well-known
masses.

An added advantage of the storage ring that merits
comment is the fact that it is possible to monitor the
Schottky signal with time and glean information on de-
cay processes. This option was exploited in measure-
ments of the beta-decay lifetimes as a function of charge
state, with a dramatic result in the case of the cosmo-
chronometer 187Re: practically stable as an atom (T1/2
5531010 yr), the removal of all its electrons reduces its
half-life almost ten orders of magnitude to a mere 14
years—a case of bound-state beta decay (Bosch et al.,
1996).

As is usual in science, all good things come with a
compromise, and in the case of cooling the injected frag-
ments, it is the required duration of several seconds.
This obviously limits the application of the mass mea-
surement technique to nuclides having half-lives of this
order. (Note that a stochastic precooling technique that
could reduce the cooling time is available at the ESR
but has not yet been used for mass measurements.)

While measurement campaigns using the ESR have
not been frequent (two in 1995 and another in 1997, with
the ring being dismantled and reassembled in the mean-
time), the amount of data produced from these runs is
staggering: from 1995, 104 masses of p-rich nulides mea-
sured and a further 64 masses derived from existing links
to alpha-decay sequences that reach the proton drip line.
The preliminary results, validating this new technique,
were first published by Radon et al. (1997) and the com-
plete measurement harvest by Radon et al. (2000). A
more detailed analysis concentrating on the physics de-
rived from these measurements has recently appeared
(Novikov et al., 2002). In 1997, the same projectile and
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target combination was used with improved data acqui-
sition, and a further 89 new masses were determined
with 88 more masses determined via links. Improved
storage ring and electron cooler performance will con-
tribute to a reduction of experimental uncertainties. The
only source so far for this data set is the dissertation of
Falch (2000); however, Geissel et al. (2001) give an up-
date on these measurements, and Litvinov et al. (2003)
will provide the details and final numbers.

b. ESR-IMS: Isochronous mass spectrometry

An alternative method of minimizing the second term
in the above equation, and one that avoids the lengthy
cooling procedure, is to operate the ring in isochronous
mode where gT5g (see, for example, Trötscher et al.,
1992; Geissel et al., 2001). While the isochronous mode
offers access to very-short-lived fragments, the high-
quality Schottky diagnostic system is no longer appli-
cable. For this application, a special thin-foil detection
system has been developed that registers each passage
of the stored ions. The recorded time-of-flight spectrum
of the different ions of various mass is analyzed using a
sort of pattern recognition algorithm that seeks series of
equidistant peaks which are then regrouped and as-
signed a mass when compared with reference ions. Typi-
cally several hundred passages can be recorded before
the ion is lost. Resolving powers of over 105 have been
obtained, and the technique has been successfully used
to determine several masses including 68As, 70271Se, and
73Br (Hausmann et al., 2001). In a recent (2002) experi-
ment, fission fragments were injected into the ring and
several time-of-flight spectra were recorded for neutron-
rich nuclides in the range 28<Z<80 (Litvinov and
Scheidenberger, 2002). This exciting development shows
what a versatile tool the storage ring can be and is sure
to have an important impact on the mass landscape (see
Fig. 4).

3. The ISOLDE mass measurement program: MISTRAL
and ISOLTRAP

A great advantage of ISOL-produced radioactive
beams of interest for high-precision apparatus is their
relatively good optical quality, as well as the fact that
they are created at low energy. At ISOLDE, two experi-
ments exploit these characteristics: the transmission
spectrometer MISTRAL and the tandem Penning trap
spectrometer ISOLTRAP, both of which have homoge-
neous magnetic fields B in which a manipulation of the
ion trajectory is performed in a controlled and coherent
way to determine the mass m via the cyclotron fre-
quency fc5qB/2pm (Lunney and Bollen, 2000).

a. MISTRAL: radio-frequency transmission spectrometer

The radio-frequency transmission spectrometer
MISTRAL works by injecting the ISOLDE beam at its
full transport energy of 60 keV, after which it follows a
two-turn helicoidal trajectory through a homogeneous
magnetic field and is transported to a secondary electron
multiplier for counting. In order to obtain the high reso-
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lution needed for precision measurements, a sinusoidal
modulation of the longitudinal kinetic energy is effected
using a radio-frequency signal applied to electrode struc-
tures located at the one-half and three-half turn posi-
tions inside the magnetic field. This way the ions make
one complete cyclotron orbit between the two modula-
tions. The radio-frequency voltage is applied to the com-
mon, central modulator electrode and the resulting tra-
jectories are all isochronous. Depending on the phase of
this voltage when the ions cross the gaps, the resulting
longitudinal acceleration produces a larger or smaller
cyclotron radius than that of the nominal trajectory. The
ions are transmitted through the 0.4-mm exit slit when
the net effect of the two modulations is zero. This hap-
pens when the modulation frequency is an integer-plus-
one-half multiple of the cyclotron frequency

fRF5~n11/2!fc , (7)

which means that during the second modulation the ions
feel exactly the opposite of what they felt during the
first. The ion signal recorded over a wide frequency scan
shows consecutive transmission peaks, evenly spaced by
fc . The resolving power R5m/Dm depends on the har-
monic number n , the exit slit size w , and the amplitude
of modulation of the trajectory diameter Dm (Coc et al.,
1988):

R52pn
Dm

w
. (8)

The great advantage of this scheme is that, like the
time-of-flight techniques described above, there is no
half-life limitation incurred by preparation or measure-
ment time, nor is there a need to slow the beam in any
way. The great disadvantage is the limiting spectrometer
acceptance—five 0.4 mm35 mm slits required to pre-
cisely define the nominal trajectory and limit the
sampled magnetic-field volume to ensure measurement
precision.

After its installation in 1997, MISTRAL had its first
beam time at the end of that year for a (successful)
proof of principle. In 1998, the first test measurements
were performed on 23230Na—some of these nuclides
having particularly short half-lives (e.g., 28Na with T1/2
531 ms). A second run on these same nuclides was per-
formed in order to check the reproducibility. The en-
semble of these measurements was published by Lun-
ney, Audi, Doubre, et al. (2001) with considerable
improvement in accuracy for 28230Na. Using the plasma
ion source in 1999, they measured two short-lived iso-
topes of Ne in addition to 32Mg (Monsanglant, 2000;
Lunney, Monsanglant, et al., 2001). The fact that each
species gives rise to a series of peaks can make it ex-
tremely difficult to unfold more than two or three iso-
bars for which the mass peaks corresponding to different
harmonic numbers may overlap. For this reason, the Mg
isotopes were remeasured but using the chemically se-
lective ISOLDE laser ion source (Köster, 2002b; Fedos-
seev et al., 2003). With no isobaric contamination it was
possible to relax the required mass resolution, and the
consequent gain in transmission allowed measurements
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of 29233Mg, currently under analysis. A sucessful mea-
surement was also performed on the short-lived superal-
lowed beta emitter 74Rb (Vieira et al., 2003), and in
early 2002 the very short-lived (8.6 ms) halo nuclide 11Li
was also measured (Lunney, Audi, et al., 2003).

b. ISOLTRAP: Penning trap spectrometer

The Penning trap offers the possibility of storing an
ion for long periods, essentially at rest, in a clean, unper-
turbed environment. Consequently, the measurements
performed with Penning traps (as well as the related
Paul trap) are of such high precision that the 1989 Nobel
prize was awarded to the inventors of these instruments:
Dehmelt (1990) and Paul (1990).

Consisting of a quadrupole electric field formed by a
set of electrodes placed along the axis of a static mag-
netic field, the Penning trap confines ion movement in
three dimensions. The magnetic field provides radial
confinement whereas the electric field ensures longitudi-
nal confinement. The static quadrupole field also defo-
cuses in the radial plane, slightly slowing the cyclotron
motion to f1 in addition to introducing a second, very
slow radial eigenmode (called magnetron motion) f2 .
While slightly complicating the ion motion (by the addi-
tion of a radial mode), the use of a quadrupole field does
render it more exactly controllable since for a quadru-
pole field fc5f11f2 . A detailed description of the ion
dynamics in Penning traps is given by Brown and Gab-
rielse (1986). Other detailed works concerning Penning
traps are those of Ghosh (1995), Vedel and Werth
(1995), and Savard and Werth (2000) for nuclear mea-
surements.

Penning traps have been used for mass measurements
on stable species (mostly created in situ) by a number of
groups (see Sec. II.E.1). The tandem Penning trap spec-
trometer ISOLTRAP at CERN’s ISOLDE facility has
for a long time been the only such device used for mea-
surements of radioactive ions. Consisting of a beam-
collection trap, followed by a cooling and isobaric clean-
ing trap, and finally the measurement trap, ISOLTRAP
has now measured more than 200 masses over a broad
range of the nuclear chart. A complete description of
ISOLTRAP is given by Bollen et al. (1996), and more
recent status reports by Bollen et al. (2001), Blaum et al.
(2003), and Herfurth et al. (2003).

In order to collect ions into a Penning trap, they must
be brought to rest—a very delicate procedure requiring
high efficiency for weakly produced radioactive species.
The good optical quality of ISOL-produced beams is
more amenable to this excercise but, although produced
at relatively low energy, the beam velocity is still consid-
erable compared to that required to stay trapped. In
early experiments with ISOLTRAP, a collection foil was
used for stopping the fast ions, which were then re-
evaporated at thermal energies, effectively limiting mea-
surement possibilities to surface-ionizable species. Now,
a gas-filled linear Paul trap is used for this task. Not only
is it now possible to collect ions of any species and de-
liver them as low-energy bunches, but also the efficiency
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
has been greatly improved. This new system is described
by Herfurth, Dilling, Kellerbauer, Bollen, et al. (2001)
and in Sec. II.E.2.

A general difficulty with radioactive beams is isobaric
contamination by less exotic, stable, or molecular ions of
greatly superior abundance. This necessitated the devel-
opment of an isobaric separation trap in order to isolate
the ion of interest. This so-called cooler trap, of a larger
and more open, cylindrical geometry, uses a buffer-gas
cooling scheme that is mass dependent. Collisions with
gas molecules reduce the amplitude of the trapped-ion
motion except in the case of the magnetron motion,
where the amplitude increases, causing a loss. Since it is
possible to couple the two radial modes using an azi-
muthal excitation at the cyclotron frequency (Bollen
et al., 1996; Raimbault-Hartmann et al., 1997), the mag-
netron motion is converted to cyclotron motion, for
which cooling reduces the amplitude. Thus ions of a
given mass are cooled and centered, enabling a true
mass separation. A mass resolving power of over 105

(Raimbault-Hartmann et al., 1997) and isobaric contami-
nation suppression of more than 104 (Beck et al., 2000)
have been achieved.

The cooler trap delivers the ions of interest
to the high-precision, hyperbolic measurement trap
(Becker et al., 1900). Trapped for a final time, the ions
are manipulated into well-defined initial conditions be-
fore an azimuthal excitation of the cyclotron motion is
again performed. After an excitation time that will de-
termine the mass resolving power (see Sec. II.E), the
ions are extracted from the trap and their time of flight
is recorded as a function of excitation frequency. Ions in
resonance at fc will have greater kinetic energy, and
therefore reach the detector sooner, forming a dip in the
spectrum [see Bollen et al. (1996) for a complete expla-
nation]. When the half-life permits, the trapped ions can
be excited for several seconds, allowing a mass resolving
power of more than 107. This feature is important in
cases where certain species can be produced in isomeric
states. ISOLTRAP is in fact the only mass spectrometer
capable of resolving—and measuring—isomers. As with
all other techniques, the mass is determined by compar-
ing the cyclotron frequency with that of a reference ion
of a well-known mass.

The following is a summary of ISOLTRAP mass mea-
surements since 1995. Though the heated-foil technique
was only applicable to surface-ionizable elements, it
nonetheless permitted many early measurements on al-
kali elements (see Bollen et al., 1996) and a relatively
bountiful harvest of 44 rare-earth nuclides in the vicin-
tity of the semi-doubly-magic 146Gd, from five runs in
1995 and 1996 (Beck et al., 2000). This work was the
fruit of the commissioning of the cooler trap in which
isobaric separation was beautifully demonstrated. The
installation of a large, cylindrical Paul trap collector sys-
tem was then undertaken in order to render the appara-
tus universal. This system allowed measurements of a
long chain of Hg isotopes, as described by Schwarz,
Ames, Audi, Beck, Bollen, Coster, et al. (2001) and
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Schwarz, Ames, Audi, Beck, Bollen, Dilling, et al.
(2001), as well as heavier isotopes of Pb, Bi, Po, and At.
The effect of these results on the mass surface is remark-
able since there are many links to long alpha-decay
chains. The S2n plots of the affected region shown be-
fore and after by Schwarz, Ames, Audi, Beck, Bollen,
Dilling, et al. (2001) resemble something like a tumble-
dried cotton shirt before and after ironing. The mid-shell
Hg isotopes were particularly challenging due to the ne-
cessity of resolving the very-low-lying (50–250 keV) iso-
meric states, and in fact, Schwarz, Ames, Audi, Beck,
Bollen, Coster, et al. (2001) were the first to report the
actual determination of isomeric levels (for 187Hg and
191Hg) by mass spectrometry. Due to the limited effi-
ciency of the cylindrical Paul trap, however, this system
was subsequently replaced by the currently used linear
Paul trap (Herfurth, Dilling, Kellerbauer, Bollen, et al.,
2001). The increase in efficiency brought about by the
linear cooler buncher has made possible measurements
on more exotic nuclides, particularly the very short-lived
33Ar (T1/25174 ms) among other Ar isotopes, as re-
ported by Herfurth, Dilling, Kellerbauer, Audi, et al.
(2001), and 74Rb (T1/2565 ms), reported by Herfurth
et al. (2002) together with proton-rich Kr isotopes, nota-
bly 74Kr for weak-interaction physics. 74Rb is the
shortest-lived nuclide ever to be held in a Penning trap.
Additional measurements were made on Xe isotopes by
Dilling, Audi, et al. (2001), on proton-rich Sr isotopes
and neutron-rich Sn isotopes (including 132Sn) by Sikler,
Audi, et al. (2003), and on proton-rich Bi isotopes out to
189Bi by Weber and the ISOLTRAP Collaboration
(2003).

D. Comparisons of the various techniques

Summarizing the above sections, there are currently
three installations at which direct mass measurements
are performed on radioactive nuclides: GANIL, GSI,
and ISOLDE.10 Mass determinations using reaction and
decay experiments are pursued within the framework of
more general nuclear-spectroscopic studies at these and
other installations. [See Wapstra and Audi (2002) for a
summary of the ‘‘present knowledge.’’]

1. Measurement domains of the various methods

It is always difficult to make global comparisons since
each technique is adapted to a particular production
mode, which strongly conditions the choice of nuclides
and hence the nuclear properties, e.g., half-lives, iso-
meric states, etc. Before giving detailed comparisons of
the various methods, therefore, it is instructive to survey
the regions of the nuclear chart, shown in Fig. 4, where
the different established mass measurement experiments
have focused their attention.

10As also mentioned, measurements with the Canadian Pen-
ning Trap (CPT) at Argonne have been reported, but as yet no
mass values or errors have been published.
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Probably the most striking point in Fig. 4 is the sheer
volume of ESR measurements. In addition to the nu-
clides shown here, links have been fused to previously
established alpha chains, allowing the extension of mass
values out to the proton drip line. The recent SPEG
results (and the last of TOFI11) are concentrated on the
light, neutron-rich side. Like the ESR measurements,
they offer an ensemble of results over which one can
establish systematic behavior, only much further from
stability. Given the production mode, these techniques
produce a broad range of elements, the mass spectra
being accumulated in parallel. Using the same produc-
tion mode (but not necessarily the same reaction mecha-
nism), CSS2 and ESR-IMS have smaller rigidity accep-
tance, producing a smaller data set, but are more
optimized for nuclides of particular interest. For ex-
ample, in the case of CSS2, a measurement of 100Sn was
achieved. With the ESR in isochronous mode, proton-
rich masses of Se and Br were measured (see below)
only a short time after test measurements. The recent
ISOLTRAP measurements cover A532–203, probably
the largest range of all. Since the ISOLDE target-ion
sources are generally optimized for a given chemical
species, a sequence of isotopes of a particular element is
usually measured, allowing for systematic studies along
chains. Note that in Fig. 4, most of the Hg masses and
some of the rare earths measured by ISOLTRAP were
also measured by the ESR (see comparisons in Fig. 5).
MISTRAL has provided some shorter chains, in the
neutron-rich region of light nuclides having particularly
short half-lives. Like ISOLTRAP, MISTRAL is capable
of measuring the masses of any of the 64 elements pro-
duced by ISOLDE.

Finally, Fig. 4 shows that, despite the fact that masses
derived from spectroscopy (i.e., indirect measurements)
require additional constraints (e.g., links and assump-
tions on nuclear structure, as discussed above) and as
such are often less accurate, they do provide us the mass
data that are farthest from stability.

Given so many techniques, each with favored regions
of application, it is interesting to compare cases in which
the same nuclide is measured by differing techniques.
This is done for several cases shown in Fig. 5. Plotted are
the differences (in keV) with respect to the values with
the smallest uncertainty.

Figure 5 (top) compares heavy masses measured by
ESR-SMS (Radon et al., 2000) to those determined by
ISOLTRAP (Beck et al., 2000; Bollen et al., 2001;
Schwarz, Ames, Audi, Beck, Bollen, Coster, et al., 2001).
While the ISOLTRAP uncertainties are five times
smaller, the agreement is generally excellent.

Figure 5 (middle) shows values for 68,70–71Se and 80Y.
68Se was measured at GANIL by Lalleman et al. (2001)
with the CSS2 cyclotron, by Lima et al. (2002) using
SPEG, and very recently at Argonne using the Canadian

11The final TOFI data set (Bai et al., 1998) seems to be
strongly correlated with the 1994 results (Seifert et al., 1994),
so they are all included in the following discussions.
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FIG. 5. Comparisons of mass data as measured by the various
techniques described in this section. Plotted are the differences
(in keV) with respect to the value with the smallest uncer-
tainty. Top: chain of Hg isotopes (left) and various others
(right) measured by ESR-SMS (Radon et al., 2000) compared
to those measured by ISOLTRAP (Beck et al., 2000; Bollen
et al., 2001; Schwarz, Ames, Audi, Beck, Bollen, Coster, et al.,
2001). Middle: 68Se measured by the Canadian Penning Trap
(Clark, Sharma, and Savard, 2003, preliminary result) com-
pared to that of SPEG (Lima et al., 2002), CSS2 (Lalleman
et al., 2001), and the value derived from systematics from the
1995 evaluation (Audi and Wapstra, 1995); 70Se and 71Se from
SPEG (Chartier et al., 1998) and Qb-derived masses (Brenner,
2001) compared to ESR-IMS (Hausmann et al., 2001); a pre-
liminary 80Y mass measured by Lalleman et al. (2001) using
CSS2 with respect to the one determined by Issmer et al.
(1998) using the SARA cyclotron, some older Qb results
(Lister et al., 1981; Della Negra et al., 1982; Shibata et al.,
1996), and a new Qb result from Barton et al. (2003) using the
Yale Tandem, as well as a systematic prediction from Audi and
Wapstra (1993). Bottom: 32Mg recently measured by MIS-
TRAL (Gaulard et al., 2003) compared with a previous MIS-
TRAL result (Lunney, Monsanglant, et al., 2001) and older
values from TOFI (Zhou et al., 1991) and SPEG (Orr et al.,
1991a); 74Rb as determined by MISTRAL (Vieira et al., 2003)
compared to ISOLTRAP (Herfurth et al., 2002); 76Sr mea-
sured by ISOLTRAP (Sikler, Audi, et al., 2003) and CSS2 (La-
lleman et al., 2001); 150,151Er measured by ESR-SMS (Falch,
2000) and by Qb (Brenner et al., 1998).
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Penning Trap (Clark, Sharma, and Savard, 2003). The
preliminary CPT value, in perfect agreement with SPEG
and with a value from the 1995 mass evaluation derived
from systematic trends (Audi and Wapstra, 1995), is al-
most 2 MeV away from the CSS2 result. The masses of
70271Se measured by Hausmann et al. (2001) via ESR-
IMS are compared to the older SPEG values from
Chartier et al. (1998), the recent reanalysis of the same
SPEG data by Lima et al. (2002), and the Qb values
from Brenner (2001). There is very satisfactory agree-
ment for 71Se while the Qb mass value for 70Se is slightly
at odds with the direct measurement results, all of which
are in agreement. It is interesting to note that the uncer-
tainty assigned to the older SPEG measurements was
conservative enough that they are completely compat-
ible with the new ones. These masses were very recently
measured by ISOLTRAP, whose superior precision
should be decisive.

The right part of Fig. 5 (middle) shows the 80Y mass
measured by CSS2 (Lalleman et al., 2001) compared
with that determined by the SARA cyclotron (Issmer
et al., 1998) and some (older) Qb results from Lister
et al. (1981); Della Negra et al. (1982); and Shibata et al.
(1996). While the Qb results are all in agreement, the
ensemble deviates by about 2 MeV from the SARA re-
sult, with the CSS2 value falling in between. Unlike the
SARA cyclotron measurement, the CSS2 experiment
did not record the total time of flight, and therefore the
number of turns made by the different accelerated nu-
clides remains uncertain. A confirming measurement is
planned with CSS2 in an attempt to resolve this diffi-
culty. It is interesting to note that in the Atomic Mass
Evaluation of both 1993 (Audi and Wapstra, 1993) and
1995 (Audi and Wapstra, 1995), the older Qb results
were replaced by a recommended mass based on sys-
tematics (see Sec. III.E). From the behavior of the S2n
plot in Borcea et al. (1993), it is easy to see why. This
systematic value, also shown in the figure, is in perfect
agreement with the SARA value. A very recent Qb
measurement at Yale (Barton et al., 2003) has shed some
light on this issue. In their measurement, Barton et al.
(2003) paid particular attention to high-lying decay
strength, some of which indeed escaped detection, ex-
plaining the large deficits of the older measurements.
They very prudently placed an upper limit on their de-
rived mass and have produced a value that would seem
to vindicate the SARA measurement, as well as the
analysis of Audi and Wapstra (1993, 1995) in the evalu-
ation.

In Fig. 5 (bottom) the mass of 32Mg, measured twice
with compatible results by MISTRAL (Lunney, Mon-
sanglant, et al., 2001; Gaulard et al., 2003), is compared
with the older values of TOFI (Zhou et al., 1991) and
SPEG (Orr et al., 1991a). Both the compatibility with
SPEG and the disagreement with one data set of the
TOFI results was also seen for the case of 30Na (Lunney,
Audi, Doubre, et al., 2001). A detailed study by Mon-
sanglant (2000) of the two data sets published by Zhou
et al. (1991), recorded with different spectrometer set-
tings, revealed a systematic deviation of 270670 keV
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FIG. 6. The published, relative experimental uncertainties of mass measurements carried out since 1994 by the direct techniques:
SPEG (Sarazin et al., 2000), TOFI (Bai et al., 1998; Seifert et al., 1994), MISTRAL (Gaulard et al., 2003; Lunney, Audi, et al., 2001,
Lunney, Monsanglant, et al., 2001; Vieira et al., 2003), CSS2 (Chartier et al., 1996; Lalleman et al., 2001), ESR-IMS (Hausmann
et al., 2001), ESR-SMS (Falch, 2000; Radon et al., 2000), and ISOLTRAP (Beck et al., 2000; Bollen et al., 2001; Dilling, Acker-
mann, et al., 2001; Herfurth, Dilling, Kellerbauer, Audi, et al., 2001; Schwarz, Ames, Audi, Beck, Bollen, Coster, et al., 2001;
Herfurth et al., 2002; Raimbault-Hartmann et al., 2002; Blaum and the ISOLTRAP Collaboration, 2003; Sikler, Audi, et al., 2003)
vs ‘‘relative isobaric distance from stability,’’ derived by fitting a quadratic function to the ensemble of stable nuclides, calculating
the isobaric distance from the measured nuclide to this line, and weighting by 10/A2/3.
between the two. A possible explanation for these dis-
crepencies might be the fact that isomers were neither
detectable nor resolvable, causing a systematic bias to-
wards higher masses coupled with a simple underestima-
tion of error bars.

Next, the mass of 74Rb as determined by ISOLTRAP
(Herfurth et al., 2002) is compared to MISTRAL (Vieira
et al., 2003), showing perfect agreement. While the re-
sults of both measurements were limited by statistics,
the reliability of ISOLTRAP in the new domain of sub-
100-ms measurements is very reassuring.

Figure 5 (bottom) also shows a recent ISOLTRAP
measurement of 76Sr by Sikler, Audi, et al. (2003), com-
pared to the CSS2 value of Lalleman et al. (2001). The
questions regarding the systematic error evaluations of
the CSS2 measurements would appear to be justified,
given the difference of some five standard deviations
(and even more in the case of 68Se).

Finally in Fig. 5 (bottom), two comparisons are made
with results from ESR-SMS (Falch, 2000) and Qb results
performed at Argonne (Brenner et al., 1998) for
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150–151Er, showing very satisfactory agreement and
showing that careful b spectroscopy can produce reliable
mass measurements.

It is indeed an indication of the great recent progress
in this field that in the various situations where masses
have been measured by more than one of the techniques
reviewed here, the agreement is quite satisfactory. The
only disagreements come from CSS2 and the older Qb
measurements in the case of 80Y, from the CSS2 76Sr
and 68Se values, and in some cases the older TOFI mea-
surements.

2. Comparison of measurement uncertainties

Uncertainty is a term that is used to account for the
contributions of all experimental errors. Given sufficient
statistics, an instrument can be said to make precise
measurements when the dispersion of repeated mea-
surements is small. An accurate measurement, however,
is not guaranteed by high precision, since the result may
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still be incorrect. Measurements using differing tech-
niques, each with their own experimental errors, are
used to ensure that precise measurements can be trans-
formed into accurate ones.

The impact of a mass measurement is gauged by two
criteria: the accuracy achieved and the distance from sta-
bility. As we shall see, these two criteria have up until
recently been orthogonal, from a simple statistical argu-
ment but also because a more precise measurement gen-
erally requires a longer measurement time; something
not compatible with the decreasing half-lives encoun-
tered the further one goes from stability. Figure 6 is a
comparison of these two criteria based on results pub-
lished since the 1995 mass evaluation for the following
programs: SPEG, CSS2, TOFI, ESR-SMS, ESR-IMS,
ISOLTRAP, and MISTRAL. Plotted is the (published)
relative mass uncertainty versus the quantity ‘‘relative
isobaric distance from stability’’ derived as follows: a line
of (b) stability is determined by fitting a quadratic func-
tion to the stable nuclide values of (Z ,N). The isobaric
distance from the measured nuclide to this line is calcu-
lated and then weighted using the function 10/A2/3 in an
attempt at normalization (since the drip lines are
reached sooner for light nuclides). The grouping of the
data from the various experiments is striking—resulting
from concentration on a certain area of the nuclear chart
combined with the assignment of a dominating system-
atic error component. For each experiment there is a
general trend of increasing error with distance from sta-
bility, due to decreasing statistics from plummeting pro-
duction cross sections.

SPEG is the most capable of making the first forays
into unknown territory. The price to pay for this supe-
rior sensitivity comes in obtaining only a moderate mea-
surement uncertainty—from 531026 for thousands of
events to 531025 for tens of events—enough, however,
to permit mapping the mass landscape. The farthest
point in Fig. 6 for SPEG corresponds to 39Al. Recent
developments in detector time resolution have been
made in an effort to improve overall precision, but im-
proving the Br measurements will require significant
work.

The CSS2 measurements (Chartier et al., 1996; Lalle-
man et al., 2001) would appear to have delivered in
terms of reducing uncertainty by increasing the overall
time of flight. However, as can be seen from Fig. 5, the
error bars of these measurements may well be under-
estimated, probably due to the ambiguities concerning
the total number of turns made by the various ions in
the cyclotron. The farthest CSS2 point corresponds to
100Sn.

The ESR-SMS measurements reach very far from sta-
bility with accuracies approaching 1027, but the cooling
time necessary to make such measurements excludes nu-
clides with half-lives less than several seconds. While the
ESR-SMS measurements from the 1995 experiment
(Radon et al., 2000) seem to be dominated by an uncer-
tainty at the 531027 level, the 1997 measurements in
the same region (Falch, 2000), performed with an im-
proved data aquisition system and ring/cooler perfor-
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mance, reach as little as 1.531027 in many cases. They
do scatter over a larger range, however. There is no hint
of statistical error increasing with distance from stability
(the farthest point corresponds to 144Dy), since the
many revolutions of a single stored (and cooled) ion al-
low the accumulation of a clear signal. [Litvinov et al.
(2003) have since performed a more detailed analysis of
these data and have achieved almost uniform uncer-
tainty of about 231027.] The ESR-IMS measurements,
which will allow access to very short half-lives using the
isochronous ring mode (Hausmann et al., 2001) have not
yet resulted in the same low uncertainty. However, this
technique is quite new and these first results are very
promising.

Dominating the uncertainty axis are the ISOLTRAP
measurements, and the conservative systematic error as-
signment can be clearly seen with practically all cases
falling at 131027. Lack of statistics and isomeric
contaminations were responsible for uncertainties
above this value, and several recent measurements on
Ne, Ar, and Kr (Herfurth et al., 2002; Blaum and the
ISOLTRAP Collaboration, 2003) have achieved uncer-
tainties approaching 1028, even for exotic cases: the far-
thest ISOLTRAP point corresponds to 74Rb and the
most accurate, at 1.431028, to 34Ar. As with all spec-
trometers, the major uncertainty during on-line runs
continues to be the stability of the magnetic field. In the
evaluation of most ISOLTRAP measurements with cali-
bration measurements performed only every few hours,
the value of dm/m5131027, so plainly visible in Fig. 6,
has been used as a conservative estimate for systematic
error. More frequent calibrations have allowed a reduc-
tion of this contribution (Herfurth et al., 2002). Coulomb
interaction between ions of different masses stored si-
multaneously is another source of uncertainty (Bollen
et al., 1992). This effect is avoided by loading the trap
with only one ion at a time. Electric-field imperfections,
e.g., higher-order components and angle with respect to
the magnetic-field axis, result in a systematic error pro-
portional to the difference between reference and inves-
tigated ion mass. For ISOLTRAP this effect has been
quantified in a beautiful campaign of systematic mea-
surements using the ideal ion source: carbon clusters
(Blaum et al., 2002). As the mass unit is defined by car-
bon, the first advantage of using it as a reference ion is
that the measurements are directly compared to the
mass unit itself. The other crucial advantage is that since
the molecular binding energy of the clusters is very small
(less than 1 eV per carbon atom), a reference mass is
available for every 12 mass units, over the entire nuclear
chart. Inevitably, a frequency shift is present, but con-
tributes only 2310210 per mass unit to the overall un-
certainty.

Offering an attractive compromise between going far
from stability and preserving good measurement accu-
racy are the MISTRAL results. The distance from sta-
bility of the nuclides measured by MISTRAL is large
since the mass numbers are small. Note that 11Li, for
which a relative precision of 2.331026 was obtained in a
recent, preliminary measurement (Lunney, Audi, Bache-
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let, et al., 2003), corresponds to a distance-from-stability
value of 5.56—off the scale of Fig. 6. The farthest
MISTRAL point corresponds to 33Mg. In fact, nuclides
must be produced with about the same intensity as the
most exotic cases measured by ISOLTRAP (about 1000
per second). The uncertainty of the MISTRAL results is
dominated by a systematic error contribution. The Na
measurements (Lunney, Audi, Doubre, et al., 2001) re-
vealed a linear deviation from known masses that is, for
the moment, explained by the fact that the ions injected
from the reference ion source and from ISOLDE do not
see exactly the same magnetic field. It turned out that
the deviation also changed with time, which caused the
experiments to be very lengthy due to the necessity of
often repeating the calibration process. While improve-
ments to the beam transport system have practically
eliminated the calibration time variation, efforts to
eliminate the systematic deviation itself (using magnetic
shim coils) have not been successful up to now. For like-
mass comparisons, e.g., in the case of using isobars de-
livered by ISOLDE (Lunney, Monsanglant, et al., 2001)
an overall uncertainty of 231027 is possible, otherwise
the calibration procedure can introduce a contribution
of up to 531027.

It is interesting to note that if we were to extrapolate
back to stability, using a line following the extreme iso-
baric distances of SPEG, MISTRAL, and ISOLTRAP,
the relative uncertainty would correspond to about
1310210. This is, in fact, the accuracy of Penning trap
measurements reported for stable nuclides (described in
Sec. II.E.1).

3. Complementarity of the different measurement programs

All of the present measurement programs play an im-
portant role in the overall scheme of mass determina-
tions. The metrological aspect of mass determinations is
the primary reason. This aspect itself has two compo-
nents: the high precision required for the measurement
and the fact that reference masses are required, since
absolute measurements are impossible (see below).
Thus there is always the need for independent checks of
results using different techniques. Finally, another gen-
eral argument is the one of simple numbers: there are so
many masses that require measurement, it is simply im-
possible for any one experiment to measure
everything—even if all nuclides could be produced at
any one installation.

The various programs are complementary not only for
the differing regions of the nuclear chart where they are
exploited but also for the accuracy that is possible,
closely correlated with the sensitivity attained (as illus-
trated in Fig. 6). Techniques going the furthest from sta-
bility provide only modest precision but for more preci-
sion measurements that follow, it is always more
convenient to have at least a rough idea of where to look
and not to grope blindly, losing valuable measurement
time. The complement is that mass values measured
with greater precision (even if not as far from stability)
are indispensible for calibrating the data of lesser preci-
sion.
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Finally, each of the direct programs discussed in this
section has its niche. SPEG plays the all-important role
of pathfinder. Going the furthest from stability, the
SPEG masses give us the first glimpse of what exciting
phenomena might be on the exotic nuclear horizon.
While the quenching of the N520 shell closure has been
known for many years, the newer SPEG values of Sa-
razin et al. (2000) now indicate a similar occurrence at
N528. Calibration of such measurements is an ex-
tremely delicate procedure, however.

The ESR-SMS technique is notable for the sizable
measurement domain—with extremely good precision—
making possible a very detailed mapping of a large re-
gion. This is extremely useful for drawing conclusions
about nuclear structure from a systematic study (e.g., see
Novikov et al., 2002). No other technique is able to
gather such a large harvest of data. The price to pay,
however is the long time that has been required for
analysis of this plethora of data. Calibration ions are
interspersed but the situation is similar to SPEG in the
sense that multidimensional correlations are possible (in
this case there is also the question of charge state, elimi-
nated in the SPEG analysis). Experiments are currently
in progress at GSI’s fragment separator facility for the
production of exotic neutron-rich nuclides, which have
now been injected into the ESR and measured (Litvinov
and Scheidenberger, 2002). This will open up a broad
physics avenue for both the ESR mass measurement
programs.

The ESR-IMS program is very important for the very
short-lived species placing it in direct competition with
MISTRAL. For the moment at least, the IMS accuracy
is inferior to that of MISTRAL; however, a great advan-
tage can be had in the large volume of measurements.
The sensitivity of the IMS approach also seems superior
to that of MISTRAL. In order to reach the very-short-
lived nuclides and fully exploit its measurement speed,
MISTRAL will have to improve its sensitivity to the
point where nuclides produced at a rate of less than 10
per second can be measured.

ISOLTRAP is simply the most accurate technique
that exists. In addition to the all-important role of sprin-
kling accurate mass data all over the chart, thereby as-
suring a plentiful supply of references for the other tech-
niques, the subfield of nuclear physics that requires the
ultimate in mass accuracy—weak-interaction studies—
has become the exclusive domain of the trapped-ion
measurement technique.

E. The future of mass spectrometry

1. The Penning trap

Due to its wide applicability (including short-lived nu-
clides) and superior performance, the Penning trap is at
the heart of most of the new mass measurement projects
for exotic nuclides (see below) and therefore warrants
some additional comment. The reader is also referred to
recent reviews by Werth et al. (2003) for precision mea-
surements in general and Bollen (2001) for details on
‘‘what Penning traps can provide.’’
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The strength of the Penning trap lies not only in its
long observation time, allowing very high resolving
power, but also in the fact that the trapping volume is
extremely small, about 1 cubic centimeter. When super-
conducting solenoids are used, the field homogeneity
over such a small volume is of superior quality, allowing
the mass to be determined with little perturbation. The
use of ion cooling also ensures that the same initial con-
ditions are established for both the radioactive and ref-
erence ions.

The resolving power in Penning trap mass spectrom-
etry depends on the time of observation Tobs of the ion
motion. As described by Bollen (2001), the linewidth
Dfc (FWHM) with which the cyclotron frequency of an
ion with charge-to-mass ratio q/m stored in a homoge-
neous magnetic field can be determined is approxi-
mately given by Dfc'1/Tobs . For the resolving power
one obtains R5m/Dm5fc /Dfc'fc3Tobs . Thus the re-
solving power can be increased by lengthening the ob-
servation time of the ions but with a limitation from the
half-life. The statistical uncertainty with which the cyclo-
tron frequency can be determined is inversely propor-
tional both to the resolving power R and to the square
root of the number of detected ions N : (dm/m)stat
'R213N21/2. Note that increasing the resolving power
simply by increasing the cyclotron frequency is possible
either with a stronger field or using higher charge states.

Stable nuclides are important for nuclear physics since
they are used for calibration purposes, so the accuracy
of their masses must be beyond question. The Penning
trap has now been established by several groups as pro-
viding the most accurate mass values ever:12 The Univer-
sity of Washington group confines single ions in a liquid-
helium-cooled trap within a pressure-stabilized cryostat
and recently published a mass for 16O with an uncer-
tainty of 1.6310210 (Van Dyck et al., 2001). Using a
similar instrument, but with a different type of detection
scheme, the MIT group measures masses in pursuit of a
more accurate value for the fine-structure constant, and
Rainville et al. (2001) and Bradley et al. (1999) have re-
ported masses for 23Na, 85,87Rb, and 133Cs with uncer-
tainties of 1 –2310210. Stockholm’s SMILETRAP (Fri-
tioff et al., 2001a, 2002), a clone of ISOLTRAP but using
highly charged ions, recently obtained a 3.2310210 un-
certainty for 4He (Fritioff et al., 2001b) compared to
5.5310210 from a recent measurement by the Mainz
Penning trap (Brunner et al., 2001). The SMILETRAP
group has also recently published a measurement of the
76Ge–76Se double-beta-decay Q value in which both nu-
clides were determined with an uncertainty less than
1.531029 (Douysset et al., 2001). Harvard’s TRAP spec-
trometer (Gabrielse et al., 1999) at CERN used simulta-
neous confinement of protons and antiprotons, cooled

12In a recent review, Barber and Sharma (2003) include an
informative figure showing mass measurement accuracy versus
time, starting with the work of Thompson and Aston, that cor-
responds to a progression of roughly an order of magnitude
per decade.
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
by a simultaneously trapped electron cloud, to compare
these fundamental baryon masses for a precision test of
CPT conservation at a level of 9310211. Even though
the trapped species are stable and can be observed for
long periods,13 TRAP and SMILETRAP deserve special
mention since they have overcome the adverse condi-
tions of an accelerator facility to achieve (near) record
accuracy. Finally, the lowly electron has had its mass
value improved, thanks to a Penning trap in Mainz—
not, in fact, by a direct measurement of a lone trapped
electron but one of the g factor of an electron bound to
a stripped 12C ion (Beier et al., 2002).

Though there are developments planned to improve
it, ISOLTRAP still relies on the destructive time-of-
flight technique (the above instruments, with the excep-
tion of SMILETRAP and the Mainz trap, measure the
different eigenfrequencies using a tuned circuit that de-
tects the signal induced in the trap electrodes by the
circulating ion). The time-of-flight technique requires
the somewhat cumbersome protocol of performing an
entire measurement cycle (accumulation, transfer, cool-
ing, cleaning, transfer, excitation, extraction, detection)
for each frequency point. The high resolving power that
can be brought to bear in cases where isomers may be
present requires not only a long excitation time but also
limiting the occupation of the trap to only one ion. As
all measurements are sequential—and must be inter-
spersed with reference scans—the time required for get-
ting one mass can be extremely long.

2. Stopping and cooling of ions using gas cells

Ion cooling is a subject that is naturally associated
with trapping since isolating a particle at rest inevitably
requires shedding a large amount of energy. The lower
velocities of ions trapped in three dimensions make the
storage-ring techniques of stochastic and electron cool-
ing less interesting for nuclear physics, since they require
longer cooling times. Buffer-gas cooling is a technique
that is extremely rapid, universally applicable, and has
long been used with trapped ions [for a review on
trapped-ion cooling, see Itano et al. (1995)]. The use of
buffer-gas cooling for the collection of ions into traps is
relatively new (see Moore and Lunney, 1995; Lunney
and Moore, 1999) and newer still is the application of
gas cells for stopping high-energy beams produced from
fragmentation (see Savard et al., 2002).

Though the interaction of an ion beam with a reser-
voir of cold gas produces a thermal equilibrium, there is
a side effect of diffusion, which is counteracted by hav-
ing the ion-gas interaction take place inside a confining
field. In the case of low-energy (ISOL) beams, the in-
coming beam is decelerated and injected into a radio-

13Typically measurements are made over one night, since un-
derground trains and elevators cause too much disturbance
during the day—see the comments on the work of Cornell
et al. (1989) by Gabrielse (1990) and their reply (Cornell et al.,
1990).
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frequency quadrupole ion guide. The moderate gas load
is pumped away differentially and the cooled beam is
extracted (and bunched, if necessary). In addition to the
ISOLTRAP beam-buncher system mentioned above
(Herfurth, Dilling, Kellerbauer, Bollen, et al., 2001), a
similar system has been successfully brought into opera-
tion at JYFL for laser spectroscopy studies (Nieminen
et al., 2001, 2002). A beam cooler for negative ions has
also been tested at the HRIBF in Oak Ridge by Liu
et al. (2002). Similar systems are under development
for use at GANIL (Delahaye et al., 2001) and for
MISTRAL (Henry et al., 2003) as well as a ‘‘second-
generation’’ beam cooler at Michigan State University
(Schwarz, Bollen, et al., 2003).

In the case of high-energy fragments, higher (almost
atmospheric) pressures are used where the supersonic
effects of gas flow play an important role. The ions are
also guided using adapted electric-field geometries be-
fore being injected into the type of Paul-trap cooler used
with ISOL beams. At Louvain-la-Neuve, extensive
nuclear spectroscopy studies are now possible using such
a high-pressure gas cell system, combining a chemically
selective laser ion source and sextupole ion guide
(Kudryavtsev et al., 1998, 2003). Important tests have
also been achieved at ANL by Maier et al. (2001) and
Clark, Barber, et al. (2003) for the CPT program, at
MSU by Baumann et al. (2002), and at GSI by Engels
et al. (2001).

Stopping reaction residues produced at high energies
in a gas followed by efficient and clean delivery to a
Penning trap in cold bunches at low and precise energy
gives us, as the title from the recent paper of Savard
et al. (2002) reads, ‘‘the best of both worlds.’’

3. Future mass measurement projects

There are six new proposed mass measurement
projects, most of which are scheduled for data taking
within the next few years. Due to the superior perfor-
mance capabilities of Penning traps, all but one of these
projects will employ a Penning trap in conjunction with
differing production schemes, with the result that most
are complementary in character. The SHIPTRAP
project at GSI (Dilling, Ackermann, et al., 2001; Marx
et al., 2001; Sikler, Ackermann, et al., 2003) will be dedi-
cated to transuranium (especially superheavy) elements
and will stop the residues of fusion-evaporation reac-
tions in a gas cell and transfer them into a Penning trap.
A similar project is underway for the Munich Accelera-
tor for Fission Fragments (MAFF) facility at the
FRM-II reactor near Munich (Kester et al., 2002; Habs
et al., 2003). MAFFTRAP (Szerypo et al., 2003) will
have a neutron-rich hunting ground inaccessible to all
the others, save for the JYFL trap (Szerypo et al., 2002;
Kolhinen et al., 2003) which will exploit the chasse
gardée of the refractory neutron-rich nuclides that are
the fruit of the very special IGISOL (Ion Guide Isotope
Separator On-Line) production technique. The LEBIT
(Low-Energy Beam Ion Trap) project, coupling a high-
field Penning trap to a gas cell, is now under construc-
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tion at Michigan State (Bollen, 2001; Schwarz, Baird,
et al., 2003). This mass-measurement program will ben-
efit from the powerful fragmentation production mecha-
nism and have a rich selection of measurement candi-
dates, both proton- and neutron-rich. As such, it will
complement the (fusion-evaporation) Canadian Penning
Trap program. The proposed TITAN (Trapped Ions at
TRIUMF for Atomic and Nuclear Physics) facility
(Dilling et al., 2003) may become a rival to ISOLTRAP,
with the potential advantage of using highly charged
ions to achieve higher resolving powers given the same
statistics. A complementary project is the WITCH spec-
trometer (Beck et al., 2003), now being installed at
ISOLDE for beta-decay studies. WITCH uses a Penning
trap to prepare radioactive species for measuring the
energy spectrum of the recoil ions after the decay and as
such, will be capable of determining beta-end-point en-
ergies. The only new project not based on a Penning
trap is one under development at GSI using an electro-
static mirror trap (Wollnik and Casares, 2001) connected
to a gas cell in which reaction residues separated from
the fragment separator are deposited (Scheidenberger
et al., 2001).

This leaves the community of nuclear and astrophysi-
cists requiring accurate mass data of nuclides very far
from stability in a very good position. The current situ-
ation is excellent, and the future is chock full of new,
promising projects. Theory, so dependent on such data,
will benefit greatly, as Sec. III will attest.

F. Evaluation of nuclear masses

The Atomic Mass Evaluation (AME; Audi and Wap-
stra, 1993, 1995; Audi et al., 1993) is often referred to as
the ‘‘mass table,’’ implying a simple compilation of ex-
perimental results, perhaps requiring an average here or
there where more than one value might exist. This is not
so! The many direct (Sec. II.C) and indirect (Sec. II.B)
methods described above result in the measurement of
connections between masses, and not absolute values.
As such, the transition from a new mass measurement to
a readjusted mass value is far from straightforward. The
AME serves as a coordinated network that is able to
check by how much or how little a new mass value may
change the myriad connected masses. In cases where this
poses a problem, i.e., where a conflict arises, evaluation
requires a critical review and objective judgement as to
whether all sources of error may have been correctly
accounted for (see also Wapstra and Audi, 2002).

To illustrate the underlying complexity of the mass
network, one part of the connection diagram that ac-
companies the atomic mass evaluation is shown in Fig. 7
[taken from Audi and Wapstra (1993), where the
nuclear chart is depicted using five such panels]. The
graph is plotted N2Z versus A , and the Qa (Qb) con-
nections appear as horizontal (vertical) lines while the
isotopic chains are spread over diagonals. The nuclide
133Cs is discussed here as an example. In the 1993 evalu-
ation, information was provided by 13 measurements,
based on three different techniques: (i) Q values for two
reactions: 133Cs(n ,g)134Cs, 133Cs(g ,n)132Cs; (ii) mea-
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surements by ISOLTRAP of 226Ra, 125,127,128,129,130,131Cs
and 140,141,142Ba, for which it was used as a reference;
and (iii) the electron-capture Q value 133Ba(EC)133Cs.
In this particular case, all measurements were in agree-
ment, providing a mass value of 132.905 447(3) u (see
Appendix A for the definition of u).

From a general point of view, values that are compat-
ible with those derived using completely different tech-
niques not only give confidence but, as stated in the
evaluation: ‘‘...are important for turning precise values
into accurate ones.’’ This statement is an important cor-
ollary of the law of measurement: precision is necessary
but not sufficient for accuracy. In the case of 133Cs, two
new Penning trap measurements from MIT were pub-
lished by Bradley et al. (1999) using C5H6

1 and CO2
1 as

references. The mass value is now 132.905 451 931(27) u ,
much more precise than the previous one and both val-
ues are completely in agreement, meaning they are, in
fact, accurate.

The starting point of the 1993 evaluation (Audi et al.,
1993) was a set of 5220 experimental data connecting
2417 different nuclides and including 368 identified iso-
meric states [see also Audi (2001) for a detailed descrip-
tion of the evaluation process]. Analyzing the inconsis-
tencies and carefully checking the validity of the
published data led to the rejection of 186 (;4%) doubt-
ful links. Furthermore, about 13% of the data were su-
perseded by much more accurate ones. After preaverag-
ing the identical links, a set of 1447 links interconnecting
813 primary masses (primary links are shown as solid
lines in Fig. 7) are subject to a least-squares adjustment.
The influence of each datum on the primary masses is
calculated by means of the flow-of-information matrix
(Audi et al., 1986). For the above 133Cs example, the
main contributions were 34% for the (n ,g) reaction,
22% for the (g ,n), and 13% for the ISOLTRAP 226Ra
measurement. The QEC value and Cs/Ba ISOLTRAP
measurements each contributed only a few percent. The
x2 distribution was then carefully checked and all values
deviating by more than two standard deviations were
scrutinized.

The flow-of-information matrix is a powerful tool. It
provides the various influences (or weights) of a particu-
lar datum on a given mass value and, more generally,
enables the evaluators to examine inconsistencies. For
example, the errors of the published data comprising the
AME95 are underestimated by about 17%, and the re-
sponsibility for this is shared equally between direct and
indirect techniques (Audi, 2001).

In addition to these primary masses, in the 1993 evalu-
ation, 1604 secondary masses were directly determined
by as many single links (shown as dotted lines in Fig. 7).
As can be seen in Fig. 7, some of them belong to long
chains (e.g., Qa series) and are attributed a high second-
ary degree (up to 13) reflecting their distance from the
network of primaries. Not only ground states but iso-
meric states must be carefully checked. A recent ex-
ample illustrating both the linking phenomenon and the
isomeric problem is 150Ho (see Fig. 7). This nuclide is
linked to 19 others via experimental Q values including
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
alpha-decay chains up to 174Au and 170Pt. An experi-
mental Q value for 150Ho in the 1993 AME caused such
a rupture of the mass surface that it was rejected in the
1995 AME, leaving no link between the decay chains
and known nuclides. The problem was probably caused
by an isomeric state fed by a decay sequence. 150Ho was
subsequently produced at the ISOLDE facility and the
high resolving power of the ISOLTRAP spectrometer
was brought to bear to ensure that no isomeric contami-
nation was present (Beck et al., 2000). All the previously
unassigned masses could consequently be assigned. (A
deviation of over 800 keV also justified the rejection of
older values for 150Ho.)

The unambiguous assignment of ground and isomeric
states is a delicate task. In the past, isomers were evalu-
ated by the NSDD (Nuclear Structure and Decay Data
network). In 1997, a first attempt was made at integrat-
ing the data on isomers with the AME and the result
was published as NUBASE (Audi et al., 1997).14

It is important to notice that the AME deals with
atomic masses and not nuclear masses. The main reason
for this is that the overwhelming majority of existing
data have been obtained either by indirect methods,
measuring mass differences between atoms, or by mass
spectrometry (including ISOLTRAP and MISTRAL),
generally using singly-charged ions. Fully ionized atoms
are not only difficult to produce but also difficult to pre-
serve since they readily acquire electrons. It is only very
recently that nuclear masses could be measured, mainly
due to the use of the in-flight separation production
mode [for example, by SPEG (Chartier et al., 1998) or
ESR (Radon et al., 1997)]. A comparison of theoretical

14The mass values published in the 1997 NUBASE were in
fact those of the 1995 AME.

FIG. 7. Part of the multitude of reaction and decay energy
input-data links between the various nuclides of the chart from
the Atomic Mass Evaluation of 1993 (Audi and Wapstra,
1993).
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masses to evaluated masses must therefore take into ac-
count the atomic binding energy. More details about the
connection between atomic and nuclear masses, and the
atomic mass unit itself, are given in Appendix A.

III. THEORY

It will be recalled from Sec. I that in this review our
interest in theory is semiempirical, in the sense that we
would like to use theory to determine the masses of un-
measured nuclei by extrapolating from the mass data.
Most of the so-called ‘‘mass formulas’’ that we consider
are global, i.e., their parameters are fitted to essentially
all measured masses, and they are intended to be appli-
cable to all bound nuclei. Actually, hardly any of the
models we discuss can be described by simple formulas,
and it would be more precise to speak of ‘‘semiempirical
mass algorithms,’’ the results usually being expressed in
tabular form. We shall for the most part confine our
attention to global mass formulas for which complete
mass tables have been published. However, we briefly
consider local mass formulas, i.e., simple algebraic for-
mulas expressing the mass of any given unknown nu-
clide directly in terms of the masses of known neigbor-
ing nuclides.

Actually, in saying that semiempirical theories are
used for extrapolating from the mass data out to un-
known nuclei, it should be recognized that an even
greater leap from the mass data is possible: extrapola-
tion out to homogeneous or infinite nuclear matter
(INM). Two forms of this can be recognized. The first is
defined as the limit of an ordinary nucleus with an infi-
nite number of nucleons, and with the Coulomb force
switched off; without this latter fiction the energy per
nucleon would diverge. Although this system is purely
hypothetical, it is of enormous theoretical interest in
that, being the simplest many-body nuclear system, it
serves as a test bench for theoretical methods of deriving
nuclear properties from the real two- and three-nucleon
forces: the first task of nuclear many-body theory is to
derive the properties of uncharged INM, as inferred
semiempirically from the properties of real nuclei, from
the basic forces between nucleons. The second form of
INM, on the other hand, has a real existence, being
found in the interior of neutron stars. It consists not only
of neutrons and protons but also of electrons, the latter
assuring rigorous charge neutrality, from which it follows
that the problem of the divergent Coulomb energy sim-
ply does not arise. As we shall see, there is still some
residual ambiguity in the inferred properties of both
kinds of INM, and further mass measurements, com-
bined with reliable semiempirical theories, can be ex-
pected to be of significance in such diverse areas as the
nuclear many-body problem and the study of neutron-
star interiors.

The very first attempt to account theoretically for
nuclear binding energies was the 1935 ‘‘semiempirical
mass formula’’ (halbempirisch) of von Weizsäcker
(1935), which we describe in a slightly updated version
in Sec. III.A. This formula, inspired by the liquid-drop
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model of the nucleus, is the macroscopic mass formula
par excellence, but we shall see that it works remarkably
well, accounting for all but a small part of the variation
in the binding energy. The nearly 70 years of effort that
have already been devoted to elucidating the residual
effects are characterized primarily by attempts to estab-
lish the coexistence of drop-model aspects on the one
hand and microscopic effects such as shell-model and
pairing corrections on the other.

We have already pointed out in Sec. I how the shell
model and liquid-drop model, despite being mutually
exclusive at first sight, can indeed be reconciled and sub-
sumed into a unified framework, the generalized
independent-particle model. However, the most direct
way of implementing this framework, the Hartree-Fock
method, is computationally very demanding, and for
many years the scene was dominated by the hybrid
‘‘macroscopic-microscopic’’ (euphonically abbreviated
as ‘‘mic-mac’’) approach, which simply decreed that the
two aspects of nuclear structure must cohabit, with mi-
croscopic corrections grafted onto the liquid-drop
model. Like many arranged marriages, this worked
fairly well, but some serious ambiguities arose from the
decision to ignore the common origin that drop-model
and shell-model aspects must have in the Hartree-Fock
framework. There is thus a certain need to replace the
mic-mac approach to the nuclear mass formula with a
Hartree-Fock approach, although it is only with the new
millenium that it has become possible to construct full-
fledged Hartree-Fock mass formulas. But since the exact
way in which the mic-mac approach fuses the drop-
model and shell-model aspects is most easily understood
as an approximation to the Hartree-Fock method, we
shall violate the historical order of development and dis-
cuss this method (Sec. III.B) before describing the mic-
mac approach (Sec. III.C). Some other global ap-
proaches to the mass formula are then described in Sec.
III.D, while local approaches are dealt with in Sec. III.E.
Finally, in Sec. III.F, we attempt to assess the outstand-
ing problems of the currently available mass formulas,
and look at promising trends to explore in the future.

Throughout this section we shall work in terms of the
nuclear internal energy E rather than the binding energy
B[2E .
A. The von Weizsäcker mass formula

We take a slightly generalized form of the original
expression of von Weizsäcker (1935), writing it as

E5avolA1asfA
2/31

3e2

5r0
Z2A21/3

1~asymA1assA
2/3!I2, (9)

where I5(N2Z)/A is the charge-asymmetry parameter
of the given nucleus. This is the form given by Bethe and
Bacher (1936), aside from the surface-symmetry term
ass , which was introduced by Myers and Swiatecki
(1966) [actually, the present form is slightly more gen-
eral than that of Myers and Swiatecki (1966), in that we
release their constraint of imposing the condition
ass /asf52asym /avol]. On the other hand, since we are



1043Lunney, Pearson, and Thibault: Determination of nuclear masses
concerned here only with the macroscopic aspects, we
omit the pairing effects that von Weizsäcker took into
account.

The two leading terms correspond to a spherical liq-
uid drop, with the term asf representing a surface-
tension contribution. The third term denotes the Cou-
lomb energy of the spherical drop, assuming the charge
Ze to be uniformly distributed, and with the radius
given by R5r0A1/3, a constant value of the charge-
radius constant r0 , implying the same density for all nu-
clei; this contribution must be taken into account explic-
itly, since the Coulomb force, being of infinite range, is
not saturated. One also allows the specifically nuclear
terms, both volume and surface, to depend not only on
the total number of nucleons but also on the neutron-
proton composition. To a good approximation this de-
pendence can be expected to be an even function of the
charge-asymmetry parameter I , since Mn.Mp and
nuclear forces are more or less charge symmetric.

We have fitted the mass formula (9) to the 1768 mea-
sured nuclides with N ,Z>8 given in the 1995 Audi-
Wapstra tables (Audi and Wapstra, 1995),15 finding an
rms error of 2.97 MeV, which is to be compared with the
first column of Table I in Appendix D for all the modern
mass formulas. This corresponds to a rms fractional er-
ror in the binding energy of each nucleus of only 0.4%, a
remarkable result, given that nearly 2000 data points are
being fitted by just five parameters. Nevertheless, the
graph of the residual errors (Fig. 8) shows clearly the
importance of the shell effects omitted in Eq. (9); less
apparent is the neglected even-odd pairing effect. The
values of the five fitted parameters are shown in the first
column of Table II in Appendix D.

We see now how the von Weizsäcker formula (9) per-
mits a trivially easy extrapolation from the mass data to
the limit of uncharged infinite nuclear matter: we take
the limit A→` and switch off the Coulomb term by
setting the electron charge e equal to zero. The resulting
energy per nucleon is then

15Note particularly that we omit all nuclei marked with a #
sign, since this indicates that the given value is based on sys-
tematics.

FIG. 8. Deviations from experiment of the von Weizsäcker
mass formula (9), shown as a function of neutron number N .
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e`~r0 ,I !5avol1asymI2, (10)

with the two parameters taking the values determined
above from the mass fit. Actually, this refers to INM
with a neutron/proton ratio given by I5(rn2rp)/r ,
where rn and rp refer to the neutron and proton densi-
ties, respectively, and r5rn1rp , the total density; the
parameter avol thus represents the energy per nucleon
of charge-symmetric INM. Furthermore, since the nuclei
whose masses are being extrapolated are in their ground
states, we must presume the corresponding INM to be at
its equilibrium density r05(3/4p)r0

23; we show this
quantity for convenience in the fourth line of Table II.
(A more complete treatment, as, for example, in Sec.
III.C, shows that the equilibrium density of INM will
depend to some extent on the asymmetry parameter I .)

Thus, while they are characteristic of the liquid-drop
model, the three parameters avol , asym , and r0 (or r0)
of the von Weizsäcker mass formula (9) can also be in-
terpreted in terms of INM. Now all the global mass for-
mulas that we consider here (Secs. III.B, III.C, and
III.D) can be extrapolated to INM, and in all cases the
resulting energy per nucleon can be expressed in the
form of Eq. (10). However, the values of the parameters
will be seen to vary somewhat from one mass formula to
another: it is impossible to infer the properties of INM
from nuclear masses in a model-independent way. Nev-
ertheless, the values extracted from the von Weizsäcker
formula are not markedly different from those inferred
from much more sophisticated models. The two remain-
ing parameters, the surface coefficient asf and the
surface-symmetry coefficient ass , can be interpreted in
terms of what is referred to as semi-infinite nuclear mat-
ter. See, for example, Swiatecki (1951), Moszkowski
(1970), and Farine et al. (1980).

B. Microscopic approaches

We are concerned above all in this subsection with the
nonrelativistic Hartree-Fock approach, an approach that
is microscopic in the sense that it is based on a solution
of the Schrödinger equation with specified forces be-
tween all nucleons, albeit with a model wave function.
However, we shall see that the forces that have to be
used in such an approach are effective interactions, and
not the real forces implied, for example, by nucleon-
nucleon scattering. Nevertheless, it must be possible in
principle to derive ab initio not only the binding energies
of all nuclei but also all other nuclear properties as well
from the basic nucleonic interactions, and it is therefore
natural to ask at the outset, before adopting any model-
based approaches, just how far towards a viable mass
formula it is possible to go with such a ‘‘fundamentalist’’
approach. We can say right away that the answer is ‘‘not
very far,’’ but we shall nevertheless begin this subsection
with a summary of the enormous amount of work that
has already been done along these lines, simply in order
to set the stage for the discussion of the more successful
model-based approaches. We shall also briefly describe
in this subsection the relativistic Hartree approach,
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which is promising but has not yet been fully developed
as a mass formula.

1. Realistic nucleonic interactions and the nuclear
many-body problem

The ‘‘fundamentalist’’ approach to nuclear theory was
initiated in the 1950s by Brueckner and co-workers, and
since then a tremendous effort has been expended in
pursuing different possible avenues. Two main types of
calculation can be discerned, as follows.16

(a) Nonrelativistic methods. These calculations assume
that the nucleus is described by a nonrelativistic Schrö-
dinger equation,

HC5EC , (11)

where

H52
\2

2M (
i

¹ i
21(

i.j
Vij1 (

i.j.k
Vijk . (12)

Here Vij and Vijk are potentials representing the real
two-nucleon (N-N) and three-nucleon (N-N-N) inter-
actions, respectively.

The basic problem in solving Eq. (11) for more than
two nucleons lies in the strong short-range repulsion of
the real N-N force, which makes ordinary perturbation
theory quite impractical, even if still formally possible.
Diagonalizing the matrix of the exact Hamiltonian (12)
in a basis of shell-model states is equally impractical on
account of the prodigious dimensionality that would be
required, although with an effective force in a restricted
basis shell-model diagonalization serves as a promising
semiempirical approach to the determination of nuclear
masses (see Secs. III.D.1 and III.F). A more feasible
way of solving Eq. (11) is through Brueckner-Bethe-
Goldstone theory, which was originally developed for
handling the highly singular forces that were in vogue
during the 1950s; for reviews of the early work see Day
(1967) and Bethe (1971). As a fundamental theory of
nuclear binding energies this framework had only lim-
ited success for finite nuclei, and in recent years it has
been used primarily for the somewhat simpler problem
of INM (see, for example, Baldo et al., 2000; Lejeune
et al., 2000; Zuo et al., 2002a, 2002b). However, the early
work of Kuo and Brown (Kuo and Brown, 1966, 1968;
Brown and Kuo, 1967; Kuo, 1967), applying Brueckner-
Bethe-Goldstone theory to finite nuclei has led to the
development of realistic effective forces suitable for the
shell-model diagonalizations to which we have just al-
luded. In the meantime the most successful ab initio
nonrelativistic calculations of finite nuclei have been
based rather on the Green’s-function Monte Carlo

16We are not including here the very recent calculations (Kai-
ser et al., 2002a, 2002b) based on chiral perturbation theory,
which work directly in terms of pion exchanges between nucle-
ons, rather than in terms of nucleonic interactions. While very
promising, this method has so far been confined to INM and
has yet to be applied to finite nuclei.
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
method (Wiringa et al., 2000; Pieper et al., 2001), but the
complexity increases rapidly with mass number A , and it
seems that for the foreseeable future the limit is A512
(Wiringa, 2001). [For a very recent brief review see Bar-
rett et al. (2003).]

(b) Brueckner-Dirac methods. Here the nucleons are
treated fully relativistically, being represented by Dirac
spinors. The degrees of freedom associated with the ex-
change of the mesons responsible for the nucleonic in-
teractions are taken into account explicitly; moreover,
the meson parameters are fitted to the N-N scattering
data and to measured meson properties (for a review see
Machleidt, 1989). When fully developed this approach
should be at least as reliable as the nonrelativistic meth-
ods. The present situation is that although INM seems to
be correctly saturated with this method, the available
finite-nucleus results are somewhat unsatisfactory (Fritz
et al., 1993; Navrátil et al., 2001).

All these ‘‘fundamentalist’’ approaches are of the
greatest interest, since they address what is surely the
basic question of nuclear theory, namely, the under-
standing of the properties of complex nuclei in terms of
the actual forces between nucleons, but it is quite clear
that we shall have to wait many years before a viable
mass formula is found in this way. Nevertheless, such
calculations should in the meantime be able to serve at
least as a qualitative guide in developing the more phe-
nomenological approaches based on the shell model that
we describe below. Indeed, as long ago as 1958 many-
body theory had reconciled the validity of the shell
model with the short-range character of nuclear forces
(Gomes et al., 1958), thereby underpinning these more
phenomenological approaches.

2. Mean-field models with phenomenological interactions

Since the ab initio approaches that we have just de-
scribed are quite inadequate for our present purposes,
the best that can be done is to be guided by the success
of the independent-particle model and assume, at least
in the beginning, that all nucleons move in some single-
particle field that is not necessarily spherically symmet-
ric. We shall suppose, however, that the shape of this
field is time independent, although if the field is not
spherically symmetric it will of necessity rotate, simply
by virtue of angular momentum conservation, giving rise
thereby to rotational spectra (Mottelson, 1962). It will
be seen in the following how the adoption of this picture
renders both the nonrelativistic and relativistic forms of
nuclear many-body theory tractable. The appearance of
shell-model features in such an approach is, of course,
ensured from the outset; we shall see that saturation, the
most characteristic of the drop-model features, can
emerge as well. Two main categories of mean-field cal-
culations can be recognized, as follows.

(a) Nonrelativistic Hartree-Fock method. This is a
variational method, with a trial wave function having the
form of a Slater determinant F5det$fi(xi)%, this being a
properly antisymmetrized product of single-particle
wave functions f i(xi). Since a model wave function of
the form of F can never be identical to the exact wave
function C of Eq. (11), whatever the choice of f i(xi), it
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follows that the expectation value ^FuHuF& will always
be higher than the exact eigenenergy E of Eq. (11). We
shall thus have to replace the exact Hamiltonian H by
an effective Hamiltonian if the Hartree-Fock method is
to give the exact energy E . Hence we write in place of
Eq. (12)

Heff52
\2

2M (
i

¹ i
21(

i.j
v ij

eff , (13)

in which v ij
eff is some effective nuclear force that does not

have to fit the N-N scattering data, and that will in fact
be softer than one that does. One way in which this
force can be determined, particularly appropriate to the
present context of nuclear masses, is to optimize the fit
of the expectation values

EHF5^FuHeffuF&[E d3r E~r! (14)

to all the measured values of E [the quantity E(r) is the
energy-density functional].

For a given force the development of the method pro-
ceeds by minimizing EHF with respect to arbitrary varia-
tions in the unknown single-particle functions f i(xi),
which are then given as eigensolutions to the so-called
Hartree-Fock equation, a single-particle Schrödinger
equation of the form

S 2
\2

2M
¹21U Df i5e if i , (15)

where U is a single-particle field that in general is non-
local, deformed, and spin dependent, but ultimately is
determined uniquely by the effective force. However,
this field depends explicitly on the single-particle func-
tions f i(xi) themselves, so that Eq. (15) must be solved
reiteratively. Once self-consistent solutions f i(xi) have
been determined, EHF can be calculated.

Provided the effective force, unlike the Coulomb
force, is not of infinite range and has a short-range re-
pulsion, INM will be saturated, i.e., have a finite density
and energy per nucleon. Thus both drop-model and
shell-model aspects emerge automatically and on an
equal footing in this picture, so that a much more unified
approach to the mass formula is offered than is possible
with the hybrid mic-mac methods (Sec. III.C).

A particularly suitable form of effective force is the
ten-parameter Skyrme form (Vautherin and Brink, 1972;
Beiner et al., 1975; Tondeur et al., 1984; Brack et al.,
1985; Chabanat et al., 1997, 1998):

v ij5t0~11x0Ps!d~rij!1t1~11x1Ps!
1

2\2

3$pij
2 d~rij!1H.c.%1t2~11x2Ps!

1
\2 pij •d~rij!pij

1
1
6

t3~11x3Ps!rgd~rij!

1
i

\2 W0~si1sj!"pij3d~rij!pij , (16)
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where pij is the momentum conjugate to rij , and Ps

5 1
2 (11s1"s2) is the two-body spin-exchange operator.

All terms here are formally of zero range, although the
momentum dependence of the t1 and t2 terms simulates
a finite range; the last term is a two-body spin-orbit
term. The t3 term is density dependent, r being the local
nucleonic density: r5rp1rn , where rp and rn are the
local proton and neutron densities, respectively.

With Skyrme forces the single-particle equation (15)
takes the form

H 2“•

\2

2Mq* ~r!
“1Uq~r!1Vq

coul~r!

2iWq~r!•“3sJ f i ,q5e i ,qf i ,q , (17)

in which i labels all quantum numbers, and q denotes n
(neutrons) or p (protons).17 All the field terms are now
local, essentially because one has been able to introduce
position-dependent effective masses Mq* , one for each
of the two types of charge. Actually, at any point in the
nucleus these two effective masses are determined en-
tirely by the local densities, according to

\2

2Mq*
5

2rq

r

\2

2Ms*
1S 12

2rq

r D \2

2Mv*
, (18)

in which Ms* and Mv* are the so-called isoscalar and
isovector effective masses, respectively, quantities that
are determined entirely by the Skyrme-force param-
eters. The precise expressions for these two quantities,
and for all those appearing in Eq. (17), as well as for
EHF , can be found in Tondeur et al. (2000).18

Most of the nuclear Hartree-Fock calculations that
have been performed use Skyrme forces, although the
Gogny group uses forces that are explicitly finite range
(Dechargé and Gogny, 1980). While the latter may be
regarded as more realistic, the essential nonlocality of
the single-particle fields complicates the calculations
considerably. Until very recently no Hartree-Fock effec-
tive force had been fitted to more than ten or so nuclei,
all spherical (including all the known doubly-magic nu-
clei), presumably because of the computer-time limita-
tions that arose in the past with deformed nuclei (see,

17Although Eq. (17) is generally used for both spherical and
deformed nuclei, we have neglected several small terms that
rigorously vanish only for spherical nuclei: see Engel et al.
(1975). These terms originate in certain terms appearing in the
energy functional, as defined in the second term of Eq. (14), so
it could be said that Eq. (17) is still exact, but corresponds to a
slightly modified energy functional rather than to the original
Skyrme force (16). Whether one should take the force or the
functional as the starting point is an open question, discussed
in Sec. III.F.

18Note that in Eq. (2) of Tondeur et al. (2000) the kinetic-
energy contribution to the energy density was unfortunately
omitted. The full formalism is presented correctly by Farine
et al. (2001).
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for example, Patyk et al., 1999). However, it is now pos-
sible to fit to the masses of all nuclei (Sec. III.B.4).

(b) Relativistic Hartree method. As in the Dirac-
Brueckner method, nucleons are represented by Dirac
spinors, and the mesons mediating the nucleonic inter-
actions are taken into account explicitly. However, their
sole effect is to generate a mean field in which the nucle-
ons move, and since no two-body (or three-body) forces
appear explicitly there are no exchange terms, so we are
dealing with a Hartree, rather than a Hartree-Fock,
theory. Unlike the Dirac-Brueckner method, the meson
parameters are determined by fitting directly to the
properties of finite nuclei, rather than to those of the
N-N system. In this sense the method, also known as the
relativistic mean-field (RMF) method, resembles the
nonrelativistic Hartree-Fock method. A further similar-
ity lies in the fact that here too infinite nuclear matter
will be saturated, so that again both drop-model and
shell-model aspects emerge automatically with equal
status. However, the RMF method has the important
merit of being Lorentz invariant, a feature that allows
the spontaneous appearance of a spin-orbit term in the
field. Thus in the event of a contradiction between this
method and the nonrelativistic Hartree-Fock method,
there would be good reasons for preferring the former.

So far the basic meson-parameter set of this method
has not been fitted to the properties of more than ten
nuclei. However, using a parameter set determined in
this way, the masses (and other properties) of over a
thousand nuclei have been calculated (Lalazissis et al.,
1999). Unfortunately, the rms error of 2.6 MeV is unac-
ceptable for astrophysical purposes; moreover, only
even-even nuclei were calculated. But even if this means
that no RMF mass formula can be said to be available at
the present time, Lalazissis et al. (1999) can still serve as
a useful guide to the behavior of the spin-orbit field far
from stability. It also provides an extensive bibliography
to the RMF method.

3. Correlations

Even when the Slater determinant F satisfies the
Hartree-Fock equations (15), it can never be identical to
the exact nuclear wave function C. Thus we must expect
nuclear properties to show features that cannot be ac-
counted for within the Hartree-Fock framework, al-
though it will always be possible to express them in
terms of a configuration mixing of Slater determinants;
such irreducible deviations from the mean-field picture
are referred to as correlations.

(a) Pairing of like nucleons. These are the most wide-
spread and conspicuous correlations in nuclear ground
states, involving the tendency of like nucleons in time-
reversed single-particle states to couple to zero total an-
gular momentum. Their most obvious manifestation lies
in the characteristic even-odd effect in binding energies,
but they also account for the spherical shape of many
open-shell nuclei: a nucleus with even one nucleon out-
side doubly-closed shells would be deformed in the pure
Hartree-Fock picture.
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
The simplest way to introduce pairing correlations
into the Hartree-Fock framework is as follows. After
each Hartree-Fock iteration, in the basis of single-
particle states thereby generated, one applies the BCS
method (borrowed from the theory of superconductiv-
ity) to the pairing interaction, which usually, but not in-
variably, is chosen to be distinct from the Hartree-Fock
effective interaction: see, for example, Chap. 8 of Pre-
ston and Bhaduri (1975) or Chap. 6 of Ring and Schuck
(1980). This so-called HF-BCS procedure can be cast in
variational form (Vautherin, 1973), but the treatment of
pairing is only approximate, in the sense that the pairing
matrix elements are treated as constants and are not
subjected to the variation of the single-particle functions
f i(xi). While acceptable for nuclei close to the stability
line, this procedure leads to the presence of an unphysi-
cal neutron gas outside nuclei that are close to the neu-
tron drip line, essentially because of the continuum of
neutron single-particle states: see, for example, Dobac-
zewski et al. (1984, 1996). This problem is avoided in the
Hartree-Fock-Bogolyubov (HFB) method, which is fully
variational, with single-particle and pairing aspects
treated simultaneously and on the same footing: see
Chap. 7 of Ring and Schuck (1980) and also Mang
(1975) and Goodman (1979).

(b) Wigner effect. Even when pairing between like
nucleons, i.e., nn and pp pairing (T51, uTzu51 in iso-
spin language) is correctly taken into account, Hartree-
Fock and other mean-field calculations systematically
underbind nuclei with N5Z by about 2 MeV. This prob-
lem is strikingly evident in the mass tables of Aboussir
et al. (1995), which were based on the approximation to
the Hartree-Fock method to be described in Sec. III.C.4,
with nn and pp pairing included. Actually, the effect is
also conspicuous in the older mic-mac approaches, and it
was in this framework that Myers and Swiatecki (1966)
stressed that the effect was highly localized, dying out
rapidly as uN2Zu increases from zero. They accordingly
proposed an additional term in their mass formula with
the form

EW5VW exp~2luN2Zu/A !, (19)

in which VW is negative and l@1.
Since Wigner’s supermultiplet theory, based on SU(4)

spin-isospin symmetry, gives rise to a similar sharp cusp
for nuclei with N5Z (Wigner, 1937; see also Van
Isacker et al., 1995), the term became known as the
Wigner term. But the cusp of supermultiplet theory
arises from repulsive terms that are proportional to uN
2Zu, which become increasingly important as one
moves away from the N5Z line, in contrast to the ob-
served, highly localized, phenomenon. Fortunately, a
more direct description of the observed effect seems to
be available in terms of T50 neutron-proton pairing,
the contribution of which rapidly vanishes as N moves
away from Z (Satula et al., 1997; Satula and Wyss, 1997,
2000).

This is not to say that the supermultiplet description is
incorrect, but the increasing contribution that it implies
away from the N5Z line entails an inconvenient en-
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tanglement with the mean-field contributions. Since, fur-
thermore, SU(4) symmetry implies a fixed relation be-
tween T51 and T50 pairing (see, for example, Van
Isacker and Juillet, 1999), it would seem to be prefer-
able, at least for mass-formula purposes, to regard the
two kinds of pairing as being independent and treat
them phenomenologically, without reference to the su-
permultiplet description, even if this description does lie
at a somewhat deeper level, embracing not only T51
and T50 pairing but also mean-field features. [A similar
comment still holds even if the SU(4) symmetry is re-
placed by pseudo-SU(4) symmetry (Van Isacker et al.,
1999), which is more appropriate for jj coupling, as op-
posed to LS coupling.]

Nevertheless, T50 pairing is a more complex phe-
nomenon than T51,uTzu51 pairing. For example, while
the latter is dominated by the two nucleons coupling to a
total angular momentum of J50, in the former one can
have J51,3,... . There is also the question of the compet-
ing T51 neutron-proton (i.e., Tz50) pairing. As a re-
sult no global mass formula constructed so far includes
T50 pairing explicitly, phenomenological representa-
tions like that of Eq. (19) having been judged more con-
venient.

We pointed out above that all the Skyrme forces pre-
sented until recently had been fitted to no more than ten
or so nuclei, including all the known doubly-magic nu-
clei. But among these latter were the three N5Z nuclei
16O, 40Ca, and 56Ni, and since the Wigner effect was not
taken into account in the fits the resulting Hartree-Fock
effective interactions will be to some extent distorted.

4. The Skyrme–Hartree-Fock mass formulas

The first complete mass table to be based on the
Hartree-Fock method, the HFBCS-1 mass formula, was
constructed in the year 2000 by the Brussels-Montreal
group (Goriely et al., 2001). It was followed by two more
Hartree-Fock mass formulas, HFB-1 (Samyn et al.,
2002) and HFB-2 (Goriely et al., 2002), both constructed
by the same group. In all three cases a Skyrme force of
the form (16) was taken, with pairing correlations repre-
sented by a d-function pairing force,

vpair~rij!5Vpqd~rij!. (20)

In the first mass formula, HFBCS-1, pairing was treated
in the BCS approximation, but the full HFB approach
was adopted in HFB-1 and HFB-2.

The following points are common to all three mass
formulas (see also Tondeur et al., 2000):

(i) The single-particle states were expanded in a
harmonic-oscillator basis limited to 21\v, where
\v541.0A21/3 MeV is the oscillator strength.

(ii) The pairing-strength parameter Vpq was allowed
to be different for neutrons and protons, and also
to be slightly stronger for an odd number of
nucleons (Vpq

2 ) than for an even number (Vpq
1 ),

i.e., the pairing force between neutrons, for ex-
ample, depends on whether N is even or odd.
Without this ‘‘staggered pairing’’ device (Nayak
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
and Pearson, 1995), optimizing the pairing-
strength parameters to the absolute masses would
have led to even-odd differences that were sys-
tematically too large. The problem presumably
originated in the fact that Hartree-Fock solutions
to odd-A and odd-odd nuclei do not satisfy time-
reversal symmetry, so that in principle states that
are time-reversal invariant should be projected
out of these solutions. None of the presently
available Hartree-Fock mass formulas do this,
whence the need to make the pairing force
slightly stronger for an odd number of nucleons.
The point is further discussed by Tondeur et al.
(2000), but note that their statement that the last
odd nucleon does not perturb the field generated
by the even-even core is wrong. More recently, a
much more thorough examination of the question
of odd nuclei has been made by Duguet et al.
(2002a, 2002b), and it is to be hoped that the ideas
developed there will be incorporated in future
mass formulas.

(iii) The finite size of the proton was taken into ac-
count in calculating both the charge radius and
the energy, the proton’s charge being assumed to
be Gaussian-distributed with an rms radius of 0.8
fm.

(iv) The Coulomb exchange energy is calculated using
the Slater approximation, as in Eq. (3b) of Ton-
deur et al. (2000), for example. This leads to a
slight underbinding, which amounts to about 1.5
MeV in the case of 208Pb (Meyer et al., 1986). This
error can be partially absorbed into the param-
eters of the Skyrme force by the data fit, but the
compensation cannot be exact, given that the lat-
ter force conserves isospin, while the Coulomb
force does not. The residual error is not expected
to be significant, and is certainly very much
smaller than that arising from the neglect of
vacuum polarization (see Sec. III.B.5).

(v) A correction was made for the spurious center-of-
mass motion, using the method of Butler et al.
(1984).

(vi) In the case of deformed nuclei the spurious rota-
tional energy associated with the violation of an-
gular momentum conservation that is inevitable in
mean-field theories,

Erot5
\2

2I ^ Ĵ2&, (21)

is subtracted from the total computed energy;
here Ĵ2 represents the usual angular momentum
operator, and I is the moment of inertia, calcu-
lated as described by Tondeur et al. (2000).

a. The HFBCS-1 and HFB-1 mass formulas

The first two Hartree-Fock mass formulas, HFBCS-1
and HFB-1, have the following additional features in
common. (i) A Wigner correction term of the form of
Eq. (19) was included. (ii) The spectrum of single-
particle states entering the pairing calculation was cut
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off at an energy of 1\v . (iii) With 16 force parameters
in all, a single constraint was applied before fitting: the
isoscalar and isovector effective masses were set equal,
Ms* 5Mv* (5M* ), the quality of the mass fit being
rather insensitive to changes of Mv* over a wide range of
values (Pearson and Goriely, 2001).

With 15 remaining degrees of freedom, an rms error
of s50.718 MeV was found for the HFBCS-1 fit to the
same data set as the one to which Eq. (9) was fitted—
1768 measured masses from the 1995 AME (Audi and
Wapstra, 1995); the mean error was ē50.102 MeV
(Table I).19 For the force parameters corresponding to
the HFBCS-1 fit, the original paper (Goriely et al., 2001)
should be consulted; this set is labeled MSk7.

When this same force, MSk7, was run in the HFB
code under exactly the same conditions, the fit to the
data became unacceptably bad. The force thus had to be
refitted to the data, and it will be seen from Table I in
Appendix D that the final fit is only slightly inferior to
that of the HFBCS-1 mass formula, s having risen from
0.718 to 0.740 MeV. However, with the force refitted to
the data (parameter set BSk1), it was found that on ex-
trapolating to the unknown regions of the nuclear chart
lying beyond the data there was a fairly close agreement
with the HFBCS-1 mass predictions. Not surprisingly
the maximum deviations were found close to the neu-
tron drip line, but they never exceed 2 MeV for Z
<110, or 5 MeV for superheavies up to Z5120. For the
neutron-separation and beta-decay energies the devia-
tion between the two formulas is usually much smaller,
and we note that it is these, rather than the absolute
masses, that are relevant to the r process. Given the
inherent uncertainty that arises in extrapolating a highly
phenomenological effective interaction from the data
out to the region of the nuclear chart close to the neu-
tron drip line, it seems that as far as mass formulas, and
especially the r process, are concerned the HFBCS
method serves as a good approximation to the HFB
method, provided the force is refitted to the data. (The
difficulties that might be expected for highly neutron-
rich nuclei when pairing is treated in the BCS approxi-
mation, as discussed in Sec. III.B.3, seem to be confined
to the charge radii of highly neutron-rich nuclei, being
systematically a little larger for HFBCS-1 than for HFB-
1.)

In saying that the HFBCS-1 and HFB-1 fits were
achieved with just 15 parameters (actually, the fits to x1
and g were made only roughly), one must not forget that
there are four parameters relating to the moment of in-
ertia (Tondeur et al., 2000). While these parameters
were determined in fact from the experimental values of
the moments of inertia they are masslike, in the sense

19The actual fit was made to the 1888 measured masses with
N ,Z>8 given in the unpublished Audi-Wapstra file
mass–exp.mas95, but 120 of these experimental masses,
marked by a l in the published tables (Audi and Wapstra,
1995), are not ‘‘recommended,’’ being inconsistent with local
systematics.
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that they could have been determined in the mass fits, in
principle. It might thus be helpful to say that each of
these two fits involved 1514 parameters.

b. Impact of new data: the HFB-2 mass formula

After the above two Hartree-Fock mass formulas
were constructed, an extensive preliminary version of a
new AME (Audi and Wapstra, 2001) became available.
This new compilation contained 2135 measured masses
of nuclei with N ,Z>8, but since 15 of the nuclei that
originally appeared in the 1995 compilation (Audi and
Wapstra, 1995) had now been removed, there were ac-
tually 382 ‘‘new’’ nuclei, out of which 337 were located in
the proton-rich region of the nuclear chart and 45 in the
neutron-rich. In addition to showing the rms errors s
and the mean deviations ē of the various mass formulas
for the 1768 masses of the 1995 compilation, Table I also
gives the corresponding errors for the new data.

Actually, the errors shown in the first six columns of
Table I do not take account of the experimental errors
of the mass measurements, which are specified in the
AME’s (Audi and Wapstra, 1995, 2001). However, as
many neutron-rich new masses suffer a large experimen-
tal error, a better assessment of the validity of a given
mass formula can be had from Möller’s ‘‘model’’ stan-
dard deviation smod , shown in column 7 for the 382
‘‘new’’ nuclei; we also show the model mean error ēmod
(see Appendix B).

In the last column of Table I in Appendix D and in
Fig. 13 we show the ratio R of the model error smod of
the 382 ‘‘new’’ nuclei to the rms error s for the 1995
compilation (there is negligible difference between s
and smod for the 1768 nuclei of the 1995 compilation). It
will be seen that both of the above Hartree-Fock formu-
las extrapolate rather badly to the new data. The prob-
lem with the two previously published formulas lies in a
tendency to overbind both highly neutron-rich and
highly proton-rich nuclei, particularly the Z.82 iso-
topes and N.110 isotones. Goriely et al. (2002) have
shown that these problems have a twofold origin: (a) the
prescription for the cutoff of the spectrum of single-
particle states over which the pairing force acts; (b) the
form of the Wigner term. We now discuss each of these
two points, and then on that basis describe the formula-
tion of the improved mass formula, HFB-2.

Both BCS and Bogoliubov calculations will diverge if
the space of single-particle states over which a
d-function pairing force is allowed to act is not trun-
cated. Making such a cutoff is, however, not simply a
computational device but an essential part of the phys-
ics, since the pairing interaction between two nucleons is
really a long-range phenomenon mediated at least in
part by the exchange of surface phonons (Barranco
et al., 1999; Giovanardi et al., 2002). To represent such
an interaction by a d-function force is thus legitimate
only to the extent that all high-lying excitations are sup-
pressed, although how exactly the truncation of the pair-
ing space should be made will depend on the precise
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nature of the real, long-range pairing force.20 Since this
is badly known one has considerable latitude in making
the cutoff, and Goriely et al. (2002) exploited this igno-
rance to optimize the cutoff prescription to the mass
data (more precisely, to the subset of spherical nuclei).

Now in both the HFBCS-1 and HFB-1 formulas the
spectrum of single-particle states admitted to the pairing
calculation was cut off at a single-particle energy of \v
541.0A21/3 MeV, which means that as one moves to-
wards the neutron drip line the available spectrum for
neutrons above the Fermi energy EF is narrowed, while
that for protons is widened; the opposite situation will
prevail as one moves towards the proton drip line. An
alternative, and physically more plausible, scenario is
that the height of the spectrum above the Fermi energy
is constant, at least for a given mass number A . Goriely
et al. (2002) found that this latter scenario did indeed
lead to an improved mass fit, the optimum cutoff height
above the Fermi energy being 15 MeV for all nuclei.
Actually, the same physical insight that suggests a con-
stant cutoff height above the Fermi energy also suggests
that the pairing spectrum of single-particle states should
be cut off at a certain depth below the Fermi energy as
well. A slight improvement was in fact found in this way,
and the final cutoff prescription that was adopted in the
HFB-2 mass formula was for the spectrum to be con-
fined between EF615 MeV.

As for the Wigner term, Goriely et al. (2002) made
two modifications. First, it was found that a slight im-
provement resulted from replacing the exponential form
of Eq. (19) with a Gaussian form. Second, a significant
improvement in the mass fit could be obtained by adding
a second Wigner term that was linear in uN2Zu and was
confined to light nuclei. The complete Wigner term that
was adopted thus had the form

EW5VW expH 2lS N2Z

A D 2J
1VW8 uN2ZuexpH 2S A

A0
D 2J , (22)

in place of the form of Eq. (19). The form of this second
Wigner term is characteristic of SU(4) spin-isospin sym-
metry, but it could simply be simulating some other
physical feature that has been omitted from the model,
conceivably the T51 np pairing [see Satula and Wyss
(2002) for a further discussion]. In any case, the optimal
value of the cutoff parameter A0 is 28, which means that
the second term rapidly becomes negligible with increas-
ing A .

Varying all 18 parameters, i.e., the 10 Skyrme param-
eters, 4 pairing parameters, and 4 Wigner parameters,

20The need for a cutoff does not arise if one uses a finite-
range pairing force in the BCS or Bogoliubov calculations, but
it is doubtful that the usual choice of a simple static energy-
independent force such as the Gogny force (Dechargé and
Gogny, 1980) is much closer to the complicated underlying re-
ality than is the ‘‘truncated d-function’’ representation.
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the 2135 measured masses of the new compilation (Audi
and Wapstra, 2001) were fitted with an rms error of
0.674 MeV, a significant improvement in the fits to the
‘‘new’’ nuclei being obtained (see Table I in Appendix
D). For the 1842 masses with A>56 the rms error of the
HFB-2 formula falls to 0.622 MeV, with a mean error
20.006 MeV; note that only 14 parameters are involved
in fitting this subset of the data.

Since the parameters of the new mass formula HFB-2
have been fitted to all of the available data it is impos-
sible to make a direct assessment of its predictive power,
or ‘‘extrapolatability,’’ i.e., the reliability of its extrapo-
lations. However, the reliability of the underlying model
was tested by refitting the parameters to the original
1768 measured masses of the 1995 compilation (Audi
and Wapstra, 1995) and then inspecting the predictions
of this modified version of the mass formula HFB-2, la-
beled HFB-28, for the ‘‘new’’ data. We see from the
fourth line of Table I that the new model leads to a
drastic improvement over the mass formula HFB-1, add-
ing thereby to the credibility of HFB-2. (The total num-
ber of parameters can be expressed as 1814, as com-
pared with 1514 in the case of HFBCS-1 and HFB-1.)
(Strictly speaking, we should say that there are 1914
parameters in HFB-2, if we include the pairing cutoff as
a free parameter.)

The differences between the predictions of the HFB-2
mass formula on the one hand and the HFBCS-1 and
HFB-1 mass formulas on the other become particularly
striking when expressed in terms of the shell-model gaps
D(N0) for the various magic neutron numbers N0 , de-
fined in Eq. (3a). In Figs. 9(a)–9(d) we show for all three
Hartree-Fock mass formulas how the gaps at N0550, 82,
126, and 184 vary with Z . It will be seen that while the
HFB-1 neutron-shell gaps follow closely those of the
HFBCS-1 mass formula, those of the HFB-2 mass for-
mula tend to follow a more distinctive trend. While all
three mass formulas agree fairly closely at the stability
line (as they should), the HFB-2 neutron-shell gaps tend
to become smaller and smaller relative to those of the
HFBCS-1 and HFB-1 mass formulas as Z decreases, i.e.,
as the neutron drip line is approached. Looking at the
different magic numbers in turn, we see that for all three
Hartree-Fock mass formulas the N0550 gap is strongly
quenched as the neutron drip line is approached [Fig.
9(a)], while for N0582 the quenching of all three
Hartree-Fock gaps is weaker than in the case of N0
550, but is stronger for HFB-2 than for the other mass
formulas [Fig. 9(b)]. This trend continues at N05126,
for which the HFB-2 gap is quite unquenched, while for
the other two Hartree-Fock mass formulas the gaps are
actually enhanced towards the neutron drip line [Fig.
9(c)]. Finally, at N05184 there is hardly any gap at all
for HFB-2, while for HFBCS-1 and HFB-1 it becomes
quite strong as the neutron drip line is approached [Fig.
9(d)].

Only the pairing-cutoff prescriptions that have been
adopted can account for these striking differences be-
tween the HFBCS-1 and HFB-1 mass formulas on the
one hand and the HFB-2 formula on the other: the two
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FIG. 9. Neutron-shell gaps as a function of Z for the four mass tables HFBCS-1, HFB-1, HFB-2, and FRDM for N0550, 82, 126,
and 184. The experimental gaps are calculated with mass data from Audi and Wapstra (2001).
former formulas use the same prescription, while the
HFB-2 formula uses a different one, and this factor
seems to be more important than the replacement of the
HFBCS method by the HFB method (assuming always
that the force is refitted to the data).21 To understand
what happens, we first note that with the new prescrip-
tion the available single-particle spectrum is narrower
than before for nuclei close to the stability line, which
accounts for the fact that the pairing parameters result-
ing from the data fit are larger. But for highly neutron-
rich nuclei the single-particle spectrum entering the
neutron-pairing calculation is wider than that with the
old prescription, so that for these nuclei the neutron
pairing will be strongly enhanced, with the result that
the neutron-shell gaps are weakened.

The possibility of one or another of the canonical neu-
tron magic numbers being quenched for large neutron
excesses can influence the r process (Chen et al., 1995;
Pearson et al., 1996; Kratz et al., 2000). But the extent to
which such quenching actually occurs depends, among
other things, on the pairing-cutoff prescription, as we
have already seen. Significantly, the prescription leading

21Allusions to ‘‘Bogolyubov-enhanced quenching,’’ as in Pear-
son et al. (1996), for example, are thus highly misleading and
were inspired by an inadequate understanding of the situation.
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to the stronger quenching is the one favored by the new
mass data (Audi and Wapstra, 2001), as far as the global
fits are concerned, but the relatively small number of
mass data that bear directly on the shell gaps for large
neutron excesses are far less conclusive. For N0550 (as
well as for N0520 and 28, as one sees in Fig. 2) there
can be no doubt that quenching does indeed set in as the
neutron drip line is approached, but for N0582 and 126
the available mass data do no more than suggest that
this might be happening: there is a serious need in the
case of these two magic numbers to push the measure-
ments to lower Z values.

It could very well turn out that new measurements of
this sort will show that the N0582 and 126 shells are not
quenched, and confirm that HFB-2 has the wrong
pairing-cutoff prescription. Since of all the different pre-
scriptions that were considered it was the one adopted in
HFB-2 that led to the best global mass fit, this could
only mean that more sophisticated models of the pairing
cutoff would have to be examined, e.g., a dependence on
the neutron or proton excess. Thus besides the need for
more data there is clearly a serious need for a better and
more microscopic theory of pairing to serve as a guide in
formulating the pairing-cutoff prescription. But regard-
less of future developments, one very important lesson
of the HFB-2 experience must surely survive: the acqui-
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sition of new mass data can have implications for nuclei
lying far away on the nuclear chart, much closer to the
neutron drip line.

Finally, we point out that whatever defects in the
three Hartree-Fock mass formulas may be revealed far
from the stability line in the future, they already con-
spicuously fail to reproduce well established data much
closer to the stability line: we are referring to the inabil-
ity of these mass formulas to reproduce the sharp
maxima displayed by each of the N0550, 82, and 126
shell gaps in Figs. 9(a), 9(b), and 9(c), respectively. As
can be seen in Fig. 2, every neutron-shell gap, including
N0520 and 28, is strongest when the corresponding pro-
ton number is magic (in the case of N0550 the maxi-
mum occurs when Z has the ‘‘semi-magic’’ value of
40).22 This is the phenomenon of mutually enhanced
magicity discussed extensively by Zeldes et al. (1983); we
shall return to this question in Sec. III.B.5.

5. General comments on Skyrme–Hartree-Fock mass
formulas

a. Macroscopic parameters

For the forces corresponding to the above three
Hartree-Fock mass formulas, MSk7, BSk1, and BSk2,
respectively, we show in Table II of Appendix D the
values of the macroscopic parameters defined in Eq. (9).
The first five parameters relate to infinite nuclear matter
and are given analytically in terms of the Skyrme-force
parameters (Tondeur et al., 2000), while the last two re-
late to semi-infinite nuclear matter, and were calculated
by Farine (2001). Generally speaking, the values of
these parameters for the three Hartree-Fock fits are
quite similar to those obtained with the drop-model fit
of Eq. (9). The biggest difference is for r0 ; this can be
understood in part as a result of the neglect by Eq. (9) of
both Coulomb exchange and the diffuseness of the
charge distribution. This constant is of crucial impor-
tance in obtaining correct nuclear radii: see Sec.
III.B.5.c. Because of its importance we now deal with
the symmetry coefficient asym under a separate heading.

b. Symmetry coefficient

All three Skyrme–Hartree-Fock mass formulas give
values of asym clustering around 28 MeV, which is some-
what higher than for the drop-model fit of Eq. (9); by
way of partial compensation in fitting the same data the
surface-symmetry coefficient ass is more negative for the
Hartree-Fock fits than for the drop-model fit. Similar
values for asym are found with the approximation to the
Hartree-Fock method to be described in Sec. III.C.4,
and we conclude that the value of 28 MeV is quite ro-
bust within the framework of Skyrme forces. However,
the mic-mac formula of the finite-range droplet model

22Note that, in the cases of N0520 and 28, a large part of the
enhancement at Z520 and 28, respectively, probably comes
from the Wigner effect. However, the weaker peak of the N0
528 gap at Z520 will be remarked.
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(see Sec. III.C.3) gives a comparable fit to the same data
with a value for asym in the range of 32–35 MeV. Clearly,
we need some independent determination of asym . Fun-
damental theory is unhelpful on this point, nuclear-
matter calculations based on modern realistic nucleonic
interactions giving values in the range 28–30 MeV
(Engvik et al., 1997; Zuo et al., 1999), while calculations
based on chiral perturbation theory (Kaiser et al., 2002a)
yield 33.8 MeV.

However, a sensitive experimental determination of
asym that is quite independent of mass fits is possible, in
principle, through the measurement of the neutron-skin
thickness of finite nuclei, Rn

rms2Rp
rms , where Rn

rms is the
rms radius of the neutron distribution and Rp

rms that of
the point proton distribution. Taking an experimental
value of 0.1460.04 fm for the case of 208Pb (Hoffmann
et al., 1980) led Tondeur et al. (1984) to the value of
asym52962 MeV, which does give a slight advantage
to the Skyrme value, but is hardly conclusive. Moreover,
a more recent measurement (Starodubsky and Hintz,
1994) of the same quantity gave 0.2060.04 fm, which
implies a somewhat higher value of asym . Both of these
experiments involved nucleon-nucleus scattering and
were very difficult, but a newly proposed method based
on parity-violating electron-nucleus scattering is promis-
ing (Horowitz et al., 2001).

In a completely different approach, a relationship be-
tween the neutron radius Rn

rms of finite nuclei and the
radii of neutron stars has been pointed out (Brown,
2000; Horowitz and Piekarewicz, 2001a, 2001b; Typel
and Brown, 2001); one can speculate that astronomical
observations might shed light on the value of asym . An-
other property of neutron stars that is related to asym is
their rate of neutrino cooling (Lattimer et al., 1991, 1994;
Yakovlev et al., 2001). In Appendix C, we discuss the
possibility that the minimum possible mass of a neutron
star depends strongly on asym .

In any case, all these different ways of determining
Rn

rms and asym have the potential to rule out a Skyrme-
force representation on nuclear masses (without neces-
sarily ruling in any other); the implications of such a
finding for mass formulas are discussed in Section III.F.

c. Charge radii

Performing a Hartree-Fock calculation on a nucleus
automatically yields a unique value for the rms charge
radius, so that a comparison with the measured values
provides an independent test of the validity of the
model. For the 523 nuclei listed in the 1994 data compi-
lation (Nadjakov et al., 1994) the rms error for the three
Hartree-Fock mass formulas is 0.024, 0.025, and 0.028
fm, respectively (for further details see Buchinger et al.,
2001). It should be stressed that this good agreement
was achieved without any further parameter adjustment;
r0 is particularly important in this respect.

d. Incompressibility of nuclear matter

The incompressibility Kvol of symmetric infinite
nuclear matter for each of the forces of the three
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Hartree-Fock mass formulas is shown in Table II. All
three forces are in excellent agreement with the experi-
mental value extracted from breathing-mode measure-
ments (Youngblood et al., 1999, 2002; Lui et al., 2001),
225–240 MeV. However, this agreement may be some-
what fortuitous, since it has been shown (Farine et al.,
1997) that with a suitable generalization of the Skyrme
force it is possible to change Kvol , along with the
breathing-mode energies, while maintaining the mass fit
(at least to a restricted set of mass data).

e. Effective masses

Table III in Appendix D shows the values (at the
equilibrium density r0 of symmetric nuclear matter) of
the isoscalar and isovector effective masses, Ms* and
Mv* , respectively, for the forces MSk7, BSk1, and BSk2.
In each of the three cases we see that Ms* /M.1.0, which
is precisely the condition on conventional Skyrme forces
that must be satisfied for the density of single-particle
states in the vicinity of the Fermi surface to be correct
(Barranco and Treiner, 1981),23,24

It may indeed appear plausible that to obtain good
nuclear masses, especially for open-shell nuclei, a neces-
sary condition is that one have the correct density of
single-particle states near the Fermi surface, whence the
condition Ms* /M.1.0 [for forces of the form of Eq.
(16)]. We shall return to this question below, but first we
note that all INM calculations of Ms* /M with realistic
forces indicate a value of 0.6–0.9 at the density r0
(Brueckner and Gammel, 1958; Friedman and Pandhari-
pande, 1981; Wiringa et al., 1988; Zuo et al., 1999). This
significantly lower range of values for Ms* /M is also con-
firmed experimentally, both through the spacing of the
deepest single-particle states in light nuclei (these states
have not been measured in heavier nuclei; Mahaux
et al., 1985) and through measurements of the giant iso-
scalar quadrupole resonance (Bohigas et al., 1979).
However, there is no contradiction between these two
sets of values of Ms* /M , since Bertsch and Kuo (1968)
and Bernard and Van Giai (1980) have shown that one
can obtain reasonable single-particle level densities in
finite nuclei with the INM values of Ms* /M , i.e., of 0.6–
0.9, provided one takes into account the coupling be-
tween single-particle excitation modes and surface-
vibration random-phase approximation modes. Since
the good agreement with measured single-particle level
densities found by Barranco and Treiner (1981) was ob-
tained without making these corrections, it must be sup-
posed that the resulting error is being compensated by
the higher value of Ms* /M , i.e., Ms* /M.1.0, which may
thus be regarded as a phenomenological value that per-

23This condition can be relaxed for Skyrme forces of a more
general form than that of Eq. (16): see Farine et al. (2001);
Onsi and Pearson (2002).

24Note that the density of single-particle states in nuclei not
very far from the stability line is determined largely by Ms* /M :
see Eq. (18).
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mits considerable success with straightforward Hartree-
Fock, or other mean-field calculations, without any of
the complications of Bertsch and Kuo (1968) and Ber-
nard and Van Giai (1980).

All published Skyrme forces such as those of the Lyon
group (Chabanat et al., 1997, 1998) with Ms* /M in the
range 0.7–0.9 give a poor agreement with the mass data
in the case of open-shell nuclei; see, for example, Figs.
1–4 of Chabanat et al. (1998). The Skyrme force MSk5*
(Farine et al., 2001), with Ms* /M50.8, likewise conforms
to the above conjecture that a good mass fit requires
Ms* /M.1.0, since the rms error for the masses of the
416 spherical nuclei to which it was fitted is an unaccept-
ably high 1.141 MeV. Nevertheless, unpublished work of
S. Goriely shows that mass fits almost as good as that of
the HFB-2 mass formula (Goriely et al., 2002) are pos-
sible with Ms* /M50.8, provided the pairing cutoff is ad-
justed appropriately, an rms error of 0.686 MeV having
been obtained for the complete data set of 2135 masses.
We stress that in this new mass fit the Fermi levels and
the immediately adjacent single-particle levels are in
good agreement with experiment, but elsewhere the
single-particle spectrum is too widely spaced, as ex-
pected. This latest calculation thus shows that the cou-
pling between the mass fit and the fit to single-particle
levels can be broken by exploiting the degree of free-
dom associated with the pairing cutoff.

As for the isovector effective mass Mv* , this was con-
strained in forces MSk7 and BSk1 to be equal to Ms* ,
but, with this constraint being released, it falls to 0.86M
in the case of force BSk2. Although the quality of the
mass fit is rather insensitive to small changes in Mv*
(Pearson and Goriely, 2001), this result agrees remark-
ably well with the value of 0.83 inferred from the INM
calculations of Zuo et al. (1999) with modern realistic
nucleonic interactions (see especially their Fig. 9). In
principle, one can measure Mv* /M directly from the in-
tegrated cross section for electric dipole photoabsorp-
tion, since M/Mv* is the factor by which the Thomas-
Reiche-Kuhn sum rule is enhanced. The analysis of
Berman and Fultz (1975) leads to Mv* /M50.8360.08,
while other measurements (Leprêtre et al., 1976) are
consistent with the lower limit of 0.75. Successful calcu-
lations of the position of the giant dipole resonance
(Myers et al., 1977; Krivine et al., 1980) were performed
with Mv* /M50.7, but equally good results have been ob-
tained with Mv* /M51.05 (Goriely and Khan, 2002). The
point is that the position of the giant dipole resonance
does not determine Mv* /M uniquely, and statements to
the contrary (Farine et al., 2001; Tondeur et al., 2000)
are wrong.

f. Stability of infinite nuclear matter

Table III also shows the Landau G0 and G08 param-
eters of the three Hartree-Fock forces, as defined by
Van Giai and Sagawa (1981). All three forces satisfy the
condition that these parameters must be larger than 21
in order to ensure the stability of symmetric nuclear
matter against spin and spin-isospin flips, respectively
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(Bäckman et al., 1975). However, the overall agreement
with the actual experimental values of around 0 and 1.80
for G0 and G08 , respectively (Borzov et al., 1984), is less
than satisfactory; attempts to improve the agreement in-
evitably have an adverse effect on the mass fit.

Given the relevance of mass formulas to the r process,
there is an obvious interest, in the case of those based on
the Hartree-Fock method, for the effective interactions
to be compatible with the known astrophysical con-
straints associated with the highly neutron-rich environ-
ment in which this process occurs. Following Rayet et al.
(1982), we consider the extent to which the foregoing
effective forces conform to the known properties of neu-
tron matter, i.e., purely neutronic infinite nuclear matter.
Of course, it is much more difficult to infer the proper-
ties of this system from those of real nuclei than it is
those of charge-symmetric INM, but one property can
be asserted with certainty: the existence of neutron stars
tells us that neutron matter must be stable. Beyond that,
the calculations on neutron matter performed with real-
istic nucleonic forces by Friedman and Pandharipande
(1981) should serve as a reliable guide, the solid curve
labeled FP in Fig. 10 shows the energy per neutron given
by these calculations as a function of the density. More
recent calculations of neutron matter (Cugnon et al.,
1987; Wiringa et al., 1988; Akmal et al., 1998) give very
similar results, at least up to the equilibrium density r0
of symmetric INM, beyond which Skyrme forces are not
expected to be relevant. It will be seen that force BSk2,
the force of the HFB-2 mass formula, conforms reason-
ably well to the FP curve, remaining stable up to a den-
sity of at least r0 ; forces MSk7 and BSk1 are indistin-
guishable from BSk2 in this respect. On the other hand,
force SkSC4 (Aboussir et al., 1992), the Skyrme force of
the ETFSI-1 mass formula (see Sec. III.C.4), can be seen
to lead to an unphysical collapse of neutron matter at
subnuclear densities and is thus to be rejected.

Whether or not a given Skyrme force is compatible
with the stability of neutron matter up to nuclear equi-

FIG. 10. Energy per neutron (MeV) of neutron matter as a
function of density (neutrons/fm3): FP, the calculations of
Friedman and Pandharipande (1981); HFB-2, the force BSk2;
SkSC4, the force of ETFSI-1.
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librium densities depends critically on the corresponding
value of the symmetry coefficient asym : stability is as-
sured for 28 MeV or higher, while collapse is inevitable
for 27 MeV or less. Remarkably, fitting Skyrme forces to
nuclear masses drives asym down very close to the col-
lapse point [in the case of SkSC4 only two values of asym
were tried, 30 and 27 MeV, and the latter certainly gives
the better mass fit (Aboussir et al., 1992)]. Insofar as a
Skyrme-force fit is valid, it seems that if asym were a
fraction of an MeV smaller then either neutron stars
would not exist at all, or at the very least they would be
much denser than they actually are.

Another unphysical instability to which neutron mat-
ter is prone when calculated with Skyrme forces is a spin
flip into a ferromagnetic state that has no energy mini-
mum and would collapse indefinitely (Kutschera and
Wójcik, 1994). It is essential that the density r frmg at
which this occurs be greater than the equilibrium density
r0 , beyond which the Skyrme form of force is invalid
anyway, and irrelevant to ground-state properties. The
last line of Table III in Appendix D shows that this con-
dition is satisfied for all three forces.

A systematic study of the conditions that must be sat-
isfied by Skyrme forces against the various kinds of in-
stability of nuclear matter has been given by Margueron
et al. (2002). Actually, their conditions are probably ex-
cessively stringent, since they apply for all densities up
to 4r0 , even though one would expect the Skyrme form
to break down at lower densities.

g. Mutually enhanced magicity

A striking feature of all three Hartree-Fock mass for-
mulas is the strong underbinding of the doubly-magic
nuclei 48Ca, 132Sn, and 208Pb, and their immediate
neighbors formed by adding or removing not more than
one nucleon of each kind (the presently quoted mass of
48Ni does not display this difficulty, while the only other
known doubly-magic nuclei have N5Z , and these have
been compensated by the phenomenological Wigner
term). There are 27 such nuclei, and in the case of both
HFB formulas their mean error (experiment
2calculated) is 21.31 MeV, as compared to 0.040 MeV
for the complete set of 1768 data points in the case of
HFB-1 and 0.000 MeV (to three decimals) for the 2135
data points in the case of HFB-2. For HFBCS-1 the ef-
fect is smaller but still significant, the mean error for the
27 nuclei being 20.731 MeV, to be compared with 0.102
MeV for the complete fit.

It is particularly to be noted that there is no tendency
for singly-magic nuclei to be underbound, so the prob-
lem of the doubly-magic nuclei cannot simply be attrib-
uted to problems arising in the neutron and proton
shells separately. Rather, these difficulties are related to
the long-standing problem of ‘‘mutually enhanced
magicities’’ that we mentioned in connection with
neutron-shell strength at the end of Sec. III.B.4. These
nuclei, lying close to doubly closed shells, and with no
interactions between valence nucleons to consider,
should be the simplest of all nuclei to describe within the
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Hartree-Fock framework, and it is natural to wonder
whether there may not be some fundamental limitation
in conventional Skyrme forces of the form of Eq. (16),
as suggested by Zeldes et al. (1983). If the problem does
indeed lie here then the much better fit that has been
obtained for all the other nuclei, i.e., for the open-shell
nuclei, can only mean that the error in the Skyrme force
is compensated by a skewing of the pairing
parameters.25 However, the trouble may not lie with the
form (16) of the Skyrme force but elsewhere: since the
open-shell nuclei are much more numerous and domi-
nate the fit, it could be that an inadequate treatment of
pairing (e.g., an inexact projection of particle number),
or the total omission of some other kind of correlation,
is being compensated by a skewing of the Skyrme-force
parameters, with repercussions on the doubly magic nu-
clei and their immediate neighbors. But in neither case
will we have the correct Skyrme force, and the extrapo-
lation to INM will be distorted.

h. Vacuum polarization and other charge-related effects

To our knowledge no mass formula has ever consid-
ered the vacuum polarization induced by the nuclear
charge, even though in 208Pb, for example, it adds about
4 MeV to the total energy (Samaddar et al., 1986). A
similar, but even larger, effect comes from the Coulomb
correlations studied by Bulgac and Shaginyan (1999).

i. Compatibility of Skyrme–Hartree-Fock method with
relativistic mean-field theory

Since the spin-orbit field appears spontaneously in the
relativistic mean-field method, in a Lorentz-invariant
way, it is of interest to see to what extent the spin-orbit
field generated by the Skyrme–Hartree-Fock method
conforms to the RMF form. Insofar as both methods fit
their parameters to the data, the two methods will
clearly agree close to the stability line, but it remains to
be seen to what extent the spin-orbit fields given by the
two methods will continue to agree on extrapolating to
the drip lines, i.e., to what extent the spin-orbit fields
have the same isospin dependence in the two methods.

Now for a Skyrme force of the form of Eq. (16) the
spin-orbit field for nucleons of charge type q is given
approximately by

Wq5
1
2

W0“~r1rq!5
3
4

W0“H r6
1
3

~rn2rp!J , (23)

where the upper sign corresponds to q5n , the lower to
q5p . (There are also some spin-current terms, but since
they are weak we do not consider them in the following
qualitative argument.) But in RMF theories the spin-
orbit field can depend on (rn2rp) only through the r
boson [see, for example, Eq. (5) of Sharma et al. (1995)],
and in view of the relatively weak coupling of this boson

25This, rather than the failure to project states of well-defined
time reversibility, could account for the ‘‘staggering’’ of the
pairing forces of all three Hartree-Fock mass formulas.
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to the nucleon field it was suggested (Reinhard and Flo-
card, 1995; Sharma et al., 1995; Rutz et al., 1997) that the
spin-orbit field would have a much weaker isospin de-
pendence in RMF models than in Skyrme-force models.
Thus, it was argued, an RMF model and a Skyrme-force
model that give comparable high-quality fits to the data
might diverge when extrapolated far from the stability
line. In fact, in view of the importance of the spin-orbit
field for the determination of single-particle states, this
was expected to be the principal difference between
Skyrme-force and RMF methods, and it seemed that the
former should fall into disfavor, since a theory that has
manifest Lorentz invariance is certainly to be preferred
to one that does not, other things being equal.

However, in the case of the Skyrme force it is fairly
easy to see that the isospin dependence arising from the
second term of Eq. (23) cannot be very large. In the first
place we note that even at the neutron drip line the
magnitude of 1

3 (rn2rp) cannot exceed 10% of the first
term r. Second, both of these terms are acted on by the
gradient operator, and since the profiles of the neutron
and proton distributions are nearly everywhere parallel
it follows that the isospin-dependent term in Eq. (23)
can make a nonzero contribution only over very re-
stricted regions of the nucleus. Exact Hartree-Fock cal-
culations (Pearson, 2001) confirm this qualitative argu-
ment and show that the extrapolations to nuclei far from
the stability line given by Skyrme–Hartree-Fock mass
formulas, such as those described above, are consistent
with what could be expected from a complete RMF
mass formula that had been well fitted to the data (see
also Onsi et al., 1997; Nayak and Pearson, 1998).

C. Macroscopic-microscopic approaches

1. The Myers-Swiatecki mass formula of 1966

The first systematic graft of microscopic corrections
onto the liquid-drop model was made in the 1966 mass
formula of Myers and Swiatecki (1966). Shell effects
were regarded as a manifestation of the ‘‘bunching’’ of
the single-particle spectrum, i.e., of the deviation of this
spectrum from a strictly uniform one of equidistant lev-
els. A simple algebraic representation of this bunching
was found, and the crucial physical assumption was
made that it must vanish with increasing deformation, it
being believed that the single-particle spectrum must
then tend towards uniformity.26 As for the drop-model
contribution, this was taken to be given essentially by
Eq. (9), with the constraint on ass already noted and
some simple modifications, notably to allow for depar-
tures from the spherical symmetry implied by Eq. (9).
Pairing was taken into account simply by adding to the
calculated energy a term 11A21/2 MeV in the case of
odd-odd nuclei, and subtracting the same term for even-

26This same approximate approach was adopted by Lattimer
et al. (1977) to estimate shell effects beyond the neutron drip
line in decompressing neutron matter.
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even nuclei. A Wigner term of the form of Eq. (19) was
included. The total energy thus found was minimized
with respect to the deformation of the nucleus.

The development of this mass formula marked a sig-
nificant step forward, with the rms discrepancy between
experimental and calculated masses being around 1
MeV (no precise figure was given), much better than
what we found above for the pure drop-model expres-
sion (9). Moreover, even if the predictions for ground-
state quadrupole moments were only moderately suc-
cessful, it should be remembered that without shell
corrections all nuclei would be spherical in the ground
state. However, fission barriers were systematically too
low, the discrepancy becoming steadily worse with in-
creasing Z .

2. The Strutinsky theorem

The next major advance, the Strutinsky theorem
(Strutinsky, 1967, 1968), made possible a much more rig-
orous approach to the problem of making shell correc-
tions to a purely macroscopic model. At a very early
stage (Strutinsky, 1967) it was found that the Strutinsky
theorem implied that fission barriers could in certain
cases be double humped, a feature that would account
for a certain number of previously incomprehensible ex-
perimental results. More generally, it became clear that
the assumption made by Myers and Swiatecki (1966) of
vanishing shell effects at large deformations was wrong.

Myers and Swiatecki (1982) have shown how the
Strutinsky method can be understood in an intuitively
appealing way as a generalization of their algebraic
bunching procedure (Myers and Swiatecki, 1966). More
microscopically, it can also be derived as an approxima-
tion to the Hartree-Fock method, as follows. If r̃ is any
smooth diagonal approximation to the Hartree-Fock
density matrix rHF , then an expansion of E@rHF# in
powers of dr[rHF2 r̃ leads, as shown by Bunatian et al.
(1972), to the Strutinsky theorem,

EHF[E@rHF#.E@ r̃#1(
i

niẽ i2tr h̃ r̃1O~dr!2.

(24)

Here h̃[h@ r̃# is the smoothed single-particle Hamil-
tonian approximating the exact single-particle Hamil-
tonian h@rHF# , the ẽ i are the corresponding eigenvalues,
and the ni are the appropriate occupation numbers; all
the shell-model bunching effects arise in the sum.

The choice of r̃ is arbitrary, and in the present appli-
cation we must suppose it to correspond to the liquid-
drop model. Thus we simply take the term E@ r̃# as being
given by the appropriate drop-model expression, e.g.,
Eq. (9), without specifying r̃ explicitly. As for the single-
particle Hamiltonian h̃ , this must have the same form as
in Eq. (15), whence a choice must be made for the field
U . In principle, this is determined by r̃ , but we cannot
determine this latter quantity uniquely from the drop-
model expression for E@ r̃# , there being no way to invert
this expression to extract r̃ . The choice for the field U is
thus ambiguous, and the best that one can do in practice
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is to be guided by considerations of physical plausibility
and convenience. Once this choice has been made, the
determination of the ẽ i is straightforward, involving just
the numerical solution of the single-particle Schrödinger
equation (note that the field U contains a spin-orbit
component, and is deformed in general). With the
single-particle states thus determined, the pairing contri-
bution can be calculated with the BCS method, whence
one finds the occupation numbers ni appearing in Eq.
(24). The term

Es .p .[(
i

niẽ i (25)

can now be calculated, and there remains only the last
term of Eq. (24) to deal with. Formally, this corresponds
to a smoothed version of the sum in the preceding term,

tr h̃ r̃[(
i

˜
niẽ i[Ẽs .p . , (26)

but this cannot be evaluated explicitly in the present
case since r̃ is not specified.

Strutinsky’s own procedure (Strutinsky, 1967, 1968)
for handling this problem begins by writing the single-
particle spectrum as

g~e!5(
i

nid~e2 ẽ i!, (27)

whence

Es .p .5E
2`

`

eg~e! de . (28)

A smoothed version of this can then be generated by
replacing each d function in g(e) with some smoother
function g̃(e) peaked at the appropriate value of e. Then

Ẽs .p .5E
2`

`

e g̃~e! de . (29)

The simplest choice for the smoothed function g̃(e) is
the normalized function

g̃~e!5
1

gAp
(

i
ni exp$2~e2 ẽ i!

2/g2%, (30)

where g is some smoothing parameter that clearly
should be at least as large as the average spacing of
major shells. In practice a slightly more elaborate
smoothing procedure is adopted [see, for example, Sec.
12.4 of Preston and Bhaduri (1975)], but the foregoing
suffices to illustrate the principle of the method. In par-
ticular, one sees that the procedure will be meaningless
unless Ẽs .p . is stable against fairly wide variations in the
smoothing parameter g. Figure 20 of Bolsterli et al.
(1972) shows that this so-called plateau condition can
indeed be satisfied moderately well for nuclei lying close
to the stability line, but because of problems associated
with the continuum it may be impossible to find plateaus
in the case of nuclei lying close to the neutron drip line
[see, for example, Nazarewicz et al. (1994) for a guide to
the literature on this point].
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This is a second source of ambiguity arising in the use
of the Strutinsky theorem to calculate shell corrections
to the liquid-drop model, but unlike the first source, as-
sociated with the choice of single-particle field, this one
can be avoided, since the Strutinsky smoothing proce-
dure that we have just described, referred to as the stan-
dard averaging method by Nazarewicz et al. (1994), can
be replaced by more reliable procedures. The first of
these is a semiclassical method, being based on the
Wigner-Kirkwood expansion (Jennings et al., 1975) [see
also Dutta and Pearson (1987)]; other smoothing meth-
ods have been developed by Vertse et al. (1998, 2000).

Unfortunately, none of these elegant smoothing meth-
ods has ever been exploited in a full-scale mass formula.
Rather, the several generations of mass formulas based
on one form or another of the liquid-drop model that
have been developed over the last 30 years or so by the
Los Alamos and Berkeley groups all use Strutinsky’s
‘‘standard averaging method’’ to implement the Strutin-
sky theorem. These different mass formulas are all di-
rect descendants of Myers and Swiatecki (1966), and are
distinguished mainly by successive improvements to the
macroscopic part. We shall deal here only with the latest
(1995) and most refined member of this family, as fol-
lows.

3. The finite-range droplet model

The name of this mass formula, finite-range droplet
model (FRDM), applies, strictly speaking, only to its
macroscopic part, but is used to designate the complete
model, which includes Strutinsky shell corrections, BCS
pairing corrections, and a Wigner term. Since this model
has become not only the de facto standard for mass for-
mulas but also the usual point of reference for experi-
mentalists, we have adopted it as a sort of yardstick in
this review, and must thus give it a detailed critical ex-
amination. Fuller details and an extensive guide to the
earlier literature are given with the tabulation of Möller
et al. (1995); an earlier version appeared in 1988 (Möller
et al., 1988).27

a. Macroscopic term

The original liquid-drop expression of Eq. (9) was
generalized in three distinct stages. The first of these
consisted of the replacement of the drop model by the
so-called ‘‘droplet model’’ (Myers and Swiatecki, 1969,
1974), the second, the introduction of finite-range sur-
face effects (Möller and Nix, 1981), while the third stage
consisted of the addition of a purely phenomenological
exponential compressibility term (Treiner et al., 1986).

27Möller et al. (1995) also describe a so-called ‘‘finite-range
liquid-drop’’ model, FRLDM. This is less sophisticated than
the FRDM and gives a poorer fit to the mass data, but is of
interest to the extent that it is still being used in fission-barrier
calculations (Möller and Iwamoto, 2000).
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To understand the generalizations introduced by the
droplet model we rewrite Eq. (9) for the total macro-
scopic energy as a sum of volume, surface, and Coulomb
terms,

Emac5Evol1Esf1Ecoul , (31)

and look at the modifications of each of these three
terms in turn. We shall confine our discussion initially to
spherical nuclei, and indicate later how deformations are
taken into account in the model (Myers and Swiatecki,
1974).

The essentially new feature introduced into the vol-
ume, or bulk, term is to allow the incompressibility of
infinite nuclear matter to be finite, rather than make it
infinite, as was implicitly the case with Eq. (9), so that a
finite nucleus will be squeezed under the influence of its
surface tension and dilated under the influence of the
Coulomb force. It is thus convenient to express the cen-
tral, or bulk, density rc5rn

c 1rp
c in terms of a dilata-

tional variable e5(r02rc)/3r0 , where r0 is the equilib-
rium density of symmetric INM. Then introducing also
the central asymmetry variable d5(rn

c 2rp
c )/rc (we shall

see below that this is not exactly equal to I in a finite
nucleus), Eq. (10) for the energy per nucleon generalizes
to

Evol /A[e`~rc,d!

5avol1
1
2

Kvole
2

1~asym2Le!d21¯ . (32)

Here our asym is the same coefficient that is denoted J in
Myers and Swiatecki (1969) and in subsequent papers of
these authors, while L is a density-symmetry coefficient
determining the equilibrium density of asymmetric INM
according to

req5r0$12~3L/Kvol!I2%. (33)

Turning now to the surface term, we see that the main
new feature is a degree of freedom allowing the neutron
and proton surfaces to separate, as certainly happens
with real nuclei. To pursue this, one defines a neutron-
skin thickness

un[Rn2Rp5
2
3

r0~I2d!A1/3, (34)

where Rn and Rp are equivalent sharp radii of the neu-
tron and proton distributions, respectively, and the
charge-radius constant r05(4pr0/3)21/3. We suppose
now that the surface energy can depend on the neutron-
proton composition only to the extent that there is a
nonvanishing neutron-skin thickness. Because of the ap-
proximate charge symmetry of nuclear forces and the
near-equality of the neutron and proton masses, only
even powers of un can be involved, and one writes,
working only to first order in small quantities,

Esf54pR2H s1
Q

4pr0
2 S un

r0
D 2J

5~112e!asfA
2/31

4
9

Q~I2d!2A4/3, (35)
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where asf54pr0
2s is the usual surface coefficient, and Q

is the surface-stiffness coefficient introduced in Myers
and Swiatecki (1969).28

If we now use the same approximation for the Cou-
lomb energy as was made in Eq. (9), i.e.,

Ecoul5
3
5

e2Z2

Rp
, (36)

and minimize the total macroscopic energy Emac with
respect to e and d, we find

d5
I1~9e2/40r0Q !Z2A25/3

11~9asym/4Q !A21/3 (37a)

and

e5
22asfA

21/31Ld21~3e2/5r0!Z2A24/3

Kvol
. (37b)

Note that in their Eq. (47) for d Möller et al. (1995)
make the substitution Z5A/2, an approximation that
might have implications far from the stability line.

We then find, after considerable algebraic simplifica-
tion,

Emac5S avol1asymd22
1
2

Kvole
2DA

1S asf1
9asym

2

4Q
d2D A2/3

1
3e2

5r0
Z2A21/32

9e4

400r0
2Q

Z4A22. (38)

Note particularly that this result holds only for the equi-
librium values of d and e, as given by Eqs. (37a) and
(37b), respectively. Because of the dependence of e and
d on A and I this expression does not have exactly the
same form as Eq. (9), showing that the droplet model is
indeed bringing new physics into the mass formula. In
fact, the droplet model goes far beyond the original
liquid-drop model in that it provides a meaningful
framework for the description of dynamic phenomena
such as the ‘‘breathing mode’’ (Blaizot, 1980) and the
giant dipole resonance (Myers et al., 1977).

Before discussing the remaining refinements, we point
out that in the limit of large A Eq. (38) for Emac does go
over into the form of Eq. (9), provided we make the
identification

ass5
2asfL

Kvol
2

9asym
2

4Q
(39)

and neglect all but the leading Coulomb term. This
shows that the term in I2A21/3 in Eq. (9) is not purely a
surface-symmetry term but contains a contribution from
the volume energy.

28Myers and Swiatecki (1969) also admit the presence of sur-
face terms in ds

2 and ds un , where ds is the value of d in the
surface. However, they obtain a result showing that ds is pro-
portional to un [their Eq. (3.5)], so their final expression for
Esf is equivalent to our Eq. (35).
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But even if the form (9) holds only asymptotically, we
see that to this approximation the droplet model can be
regarded as expanding the energy per nucleon in powers
of A21/3 and I2. Thus to Eqs. (31) and (38) it is usual to
add purely phenomenologically the next two terms in
the expansion with respect to A21/3, writing them as
acvA1/3 and a0A0. In the latest fit (Möller et al., 1995)
both these new coefficients are equal to zero, but it
should be realized that in the large-A limit there are
several terms in Evol and Esf that vary as A1/3 and A0.
In any case, since the sharp radius R varies almost as
A1/3 it follows that the expansion in powers of A21/3 is
effectively an expansion in powers of 1/R . Thus the term
acvA1/3 represents a surface energy that varies as 1/R
and can thus be regarded as a curvature term.

More generally, this expansion converges rather
quickly, but since the parameter that determines the rate
of convergence of a series must be dimensionless we
take it as b/R rather than simply 1/R , with b being some
length. If b were zero then the series would converge
infinitely rapidly, i.e., only the volume, or bulk, term
would survive. Thus b is a measure of the thickness of
the surface region, i.e., the region where we can no
longer assume bulk conditions, and the rapidity of the
expansion depends on the surface region’s being thin
compared to the radius. Myers and Swiatecki describe
this situation as ‘‘thin-skinned’’ or leptodermous. One
could also envisage the addition of higher-order surface-
symmetry terms, e.g., terms in I4A2/3. Such terms have
been shown (Dutta, Arcoragi, Pearson, Behrman, and
Farine, 1986) to be necessary to simulate the softening
of the surface of highly neutron-rich nuclei that is re-
vealed by more microscopic calculations. However, no
full-scale mass formula with the inclusion of such ‘‘soft-
skinned’’ or malacodermous terms has ever been fitted
to the data.

We stress now that Eq. (38) is not the final expression
adopted for the total macroscopic energy, even in the
original droplet-model paper (Myers and Swiatecki,
1969). Although this paper calculated the variables e and
d with the highly simplified Eq. (36) for the Coulomb
energy, exactly as we have done here, a much more so-
phisticated treatment of the Coulomb energy was
adopted in the final expression for Emac . Thus to Eq.
(38), the Coulomb dependence of which assumes the
simple picture of a uniformly charged classical sphere
with a sharp surface, were added a number of correction
terms, representing (a) exchange effects, (b) the effect
of the surface diffuseness on the Coulomb energy, (c)
the redistribution effect, i.e., the tendency of the protons
to be repelled outwards, separating to some extent from
the neutrons and creating a central depression,29 and (d)
the finite proton size.

29This redistribution term, as derived by Myers and Swiatecki
(1969), is called the volume redistribution term in Eq. (40) of
Möller et al. (1995). However, what this latter reference calls
the ‘‘surface distribution term’’ is really nothing physically new
but merely the last term of Eq. (38), with Z set equal to A/2.
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Our discussion of the standard droplet model has so
far been limited to spherical nuclei, but Eq. (38) was
generalized in Myers and Swiatecki (1974) to take ac-
count of deformations: each term except the one in A is
multiplied by some correction factor Bi that is a function
of the deformation. Also some of the higher-order cor-
rection terms that we have mentioned are multiplied by
a deformation-dependent B factor, as are some of the
terms in Eqs. (37a) and (37b) for d and e, respectively. In
all, there are six of these B functions in the standard
droplet model; they have been tabulated by Myers and
Swiatecki (1974).

We turn now to the ‘‘finite-range’’ modifications to the
original droplet model, the essentially new physics,
which consists in taking account of the effect on the sur-
face energy of the finite range of the N2N interaction.
Following earlier studies of nucleus-nucleus collisions
(Krappe et al., 1979), the new mass model (Möller and
Nix, 1981) replaces the term asfA

2/3 in Eq. (38) by, to use
the notation of the later papers, asfB1A2/3, where

B15
A22/3

8p2r0
2a4 E E S 22

ur2r8u
a D

3
exp~2ur2r8u/a !

ur2r8u/a
d3r d3r8. (40)

Here the Yukawa and exponential terms have the same
range a , and the double volume integral goes over a
sharp-surfaced region whose shape is that being as-
sumed for the nucleus in question and whose volume is
V5(4p/3)r0

3A . This factor B1 will, of course, be shape
dependent, but because it takes account of finite-range
effects it will not have the value unity for a spherical
shape. The first ‘‘finite-range’’ paper (Möller and Nix,
1981) also introduces a more refined treatment of the
Coulomb energy: the term (3e2/5r0)Z2A21/3 is multi-
plied by a factor B3 which takes account not only of
deformation but also of the diffuseness of the charge
distribution, characterized by the diffuseness parameter
aden5b/& .

The last major refinement that has been made to the
macroscopic term consists of the introduction of the ex-
ponential compressibility term (Treiner et al., 1986),
which addressed the tendency of the standard droplet
model to overestimate the central density (Pearson,
1980, 1982). It might have been thought that including
higher-order terms in the leptodermous expansion, be-
yond the terms acvA1/3 and a0A0, would suffice, but
Treiner et al. (1986) showed that this was not so and that
only a term that was exponential in 2A1/3 would work.
Thus Eq. (31) was replaced by

Emac5Evol1Esf1Ecoul1acvA1/3

1a0A02CA exp~2gA1/3!e , (41)

where we show also the curvature and A0 terms. Equa-
tion (37a) for d remains unchanged, but Eq. (37b) for e
becomes
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e5

C exp~2gA1/3!22asfA
21/31Ld21

3e2

5r0
Z2A24/3

Kvol
.

(42)

It then turns out that Eq. (38) remains unchanged at
equilibrium, the effect of the new term only manifesting
itself implicitly through e.

b. Shell corrections

A necessary first step in the calculation of shell cor-
rections in any mic-mac mass formula is the specification
of the single-particle field U appearing in a single-
particle Schrödinger equation of the form of Eq. (15),
the eigenvalues of which are the single particle energies
e i required for implementation of the Strutinsky theo-
rem. The FRDM writes

U5V11Vs .o .1Vcoul , (43)

in which the first term is the spin-independent nuclear
part, the second the spin-orbit field, and the last term
the Coulomb field.

For the first term the model takes the form

V1~r!52
V0

q

4papot
3 E exp~2ur2r8u/apot!

ur2r8u/apot
d3r8, (44)

in which the volume integral goes over a sharp-surfaced
region whose shape is that being assumed for the
nucleus in question and whose volume is V
5(4p/3)Rpot

3 , where

Rpot5Rden1Aden2Bden /Rden , (45)

in which Aden and Bden are fitted parameters, while

Rden5r0A1/3~11e!. (46)

It will be seen that this ‘‘potential radius’’ is different
from the corresponding quantity involved in Eq. (40) for
the macroscopic term. As for the well depth, one writes,
with Vs and Va being fitted parameters,

V0
q5Vs6Vad , (47)

for q5p ,n , respectively.
For the quantities e and d appearing in Eqs. (46) and

(47), respectively, the model takes the values given ex-
actly by Eqs. (37b) and (37a), respectively, i.e., the equa-
tions of the original droplet model (Myers and Swia-
tecki, 1969), and not the refined equations used in the
macroscopic part of the FRDM itself. Furthermore, the
values taken for asf , asym , Q , Kvol , and L in the calcu-
lation of the shell corrections are, because of computer-
time limitations (Möller et al., 1995), different from
those used in the macroscopic part of the model. There
is thus less consistency between the macroscopic and mi-
croscopic parts of the calculation than the model is in-
herently capable of ensuring.

Turning to the spin-orbit field, we have

Vs .o .~r,p!52lq
\

4M2c2 s"“V1~r!3p, (48)
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where

lq5kqA1lq , (49)

in which kn , kp , ln , and lp are fitted parameters.
As for the last term in Eq. (43), the Coulomb single-

particle field in the FRDM is taken as

Vcoul~r!5
Ze2

~4p/3!r0
3A E d3r8

ur2r8u
, (50)

in which the volume integral goes over a sharp-surfaced
region whose shape is that being assumed for the
nucleus in question and whose volume is (4p/3)r0

3A .
This term, too, is not fully consistent with the macro-
scopic part of the model, since a uniform sharp-surfaced
distribution is assumed, with surface diffuseness ne-
glected.

As already intimated, the FRDM implements the
Strutinsky theorem via the standard averaging method.
Further details will be found in Sec. 2.10 of Möller et al.
(1995), which indicates that in lighter nuclei it was not
always possible to satisfy the plateau condition.

In discussing shell-model corrections it will be recalled
from Sec. III.B that, in any independent-particle model,
energy contributions from spurious rotational and
center-of-mass motions will arise. Corrections for these
spurious terms will certainly have to be made in any
Hartree-Fock calculation, but this is less obvious in the
case of mic-mac calculations based on the standard av-
eraging method for implementing the Strutinsky theo-
rem, since it could be argued that the same spurious
term arises in both Es .p . and Ẽs .p . terms, so cancelling
out. In any case, neither the FRDM nor any other drop-
model mass formula makes such a correction, and there
is no evidence of any resultant error.

One spurious motion for which the FRDM does make
a correction is the zero-point energy of vibrational
modes, but it is determined entirely by measured fission
lifetimes and thus does not involve any new parameters.
We mention in passing that no such term was included in
any of the Hartree-Fock mass formulas of Sec. III.B.

c. Pairing corrections

The pairing model adopted in the finite-range droplet
model is that of the seniority force, i.e., a pairing force
with all matrix elements having the same value, 2G ,
treated in the Lipkin-Nogami variation of the BCS
method. The most obvious strategy for fitting such a
pairing force to the mass data is to adopt some suitable
parametrization of G as a function of N ,Z , and all de-
formation parameters b, and fit this directly to the mass
data. However, a more circuitous strategy is adopted in
the FRDM, with primacy being given to the pairing gap
rather than to the effective pairing force; the founda-
tions of this strategy are discussed by Möller and Nix
(1992), but it has much older antecedents (Brack et al.,
1972). Specifically, the value of G for given N, Z, and b
is determined by first postulating an effective-interaction
pairing gap DG , which represents an average trend over
all nuclei of the pairing gap, as deduced from the experi-
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
mentally observed even-odd differences; the parametri-
zation actually adopted for this quantity is

DGn
5

rmicBs

N1/3 (51a)

and

DGp
5

rmicBs

Z1/3 , (51b)

where Bs is one of the deformation-dependent Bi fac-
tors of the droplet model and rmic is a fitting parameter
of the model, the only one relating to nn and pp pairing.
Then for the given N, Z, and b in question, and for a
particular value of rmic , one reads off from these equa-
tions the appropriate values of DGn

and DGp
. At the

same time one replaces the actual nucleus by a
‘‘smoothed’’ nucleus with the same N, Z, and b but with
a constant level density being assumed, equal to the
smoothed density g̃ given by the standard averaging
method of the Strutinsky procedure for the actual
nucleus in question. For such a smoothed nucleus
[known as the ‘‘average’’ nucleus in Möller et al. (1995)]
the discrete summations of the gap equation reduce to
integrals that can be evaluated analytically, whence the
value of G corresponding to the given value of DG can
be expressed as a simple function,

G5G~DG , g̃ ,N1 ,N2 ,N tot!. (52)

Here N1 and N2 are labels denoting, respectively, the
lower and upper cutoffs on the space of single-particle
states in which the pairing force is postulated to act,
while N tot is N or Z , as the case may be.

This value of G has been determined for an ‘‘average’’
nucleus from an ‘‘average’’ value DG of the gap and is
thus deemed to be appropriate for performing ‘‘real’’
calculations on the ‘‘real’’ nucleus of the given N, Z, and
b, using of course the same values of N1 and N2 that
were taken in Eq. (52). The advantage of this procedure
is that it automatically ensures the fluctuations in G nec-
essary to achieve the rather smooth variations of even-
odd differences that are observed in reality. In particu-
lar, one avoids completely the problem encountered in
Sec. III.B that necessitated the introduction of the so-
called ‘‘staggered pairing.’’ One possible objection to
this procedure is that there is no justification for adopt-
ing the parametrization (51a) and (51b) beyond the
known region of the nuclear chart, with the result that
there is no guarantee of a reliable extrapolation.

All this discussion of pairing in the FRDM applies
only to nn and pp pairing. There is no np pairing as
such, but for odd-odd nuclei a term dnp5h/(BsA

2/3),
characterized by the single fitting parameter h , is sub-
tracted from the total energy.

d. Wigner term

Rather than adopt the phenomenologically suggested
form (19) for the Wigner term, as in the original mic-
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mac mass formula (Myers and Swiatecki, 1966), the
finite-range droplet model supposes a form more appro-
priate to SU(4) symmetry,

EW5VWS uIu1
d

A D , (53)

where d51 if N and Z are both odd and equal, and
vanishes otherwise. We do not know what overall effect
this change of parametrization will have had on the fit.
[Note particularly that this form of Wigner term does
not have a high-A cutoff, unlike the second term of Eq.
(22).]

e. Charge-asymmetry term

The finite-range droplet model also has a term of the
form ca(Z2N). An energy term of precisely this form
arises from the charge-symmetry-breaking force postu-
lated by Brown et al. (2000) to account for the measured
energy differences between pairs of mirror nuclei; we
find that their fit corresponds to a value of ca of around
0.56 MeV. However, if a similar term is added to the
HFBCS-1 mass formula (Goriely et al., 2001) the opti-
mum value of ca is very much smaller, 20.001 04 MeV,
with a negligible impact on the quality of the mass fit.
Since the fit of Brown et al. (2000) on mirror nuclei was
limited to A,70, while the HFBCS-1 fits were made to
all nuclei, there is an indication that any charge-
asymmetry term should have a considerably more com-
plicated form than the one taken in the FRDM, becom-
ing smaller, rather than bigger, for heavy nuclei.

f. Final fit

We have counted 31 independent mass-related param-
eters in the finite-range droplet model, as described in
the foregoing (the corresponding number for the
HFBCS-1 and HFB-1 mass formulas of Sec. III.B is 19,
and 22 in the case of HFB-2), but many of these were
predetermined by other properties before making the fit
to the mass data. Thus the charge-radius constant r0 ,
and the charge-diffuseness parameter aden were deter-
mined by electron-scattering data. Likewise the ‘‘finite-
range’’ parameter a was fixed by heavy-ion scattering.
Furthermore, all nine parameters relating to the single-
particle fields, Aden , Bden , apot , Vs , Va , kp , lp , kn ,
and ln were determined from measured systematics of
single-particle levels (Bolsterli et al., 1972). We are thus
left with the 14 parameters avol , asf , asym , Kvol , L , Q ,
acv , a0 , C , g, VW , rmic , h , and ca to be determined by
the mass data, but since asf , asym , Kvol , L , and Q take
different values in the macroscopic and the microscopic
parts of the calculation there were effectively 19 param-
eters involved in the mass fit. Thus we can say that there
are 19112 parameters involved in the FRDM, as com-
pared to 1514 for the HFBCS-1 and HFB-1 mass for-
mulas, and 1814 in the case of HFB-2 (or 1914, count-
ing the cutoff as a free parameter).

The final fit of the FRDM was made to a data set
consisting of 1654 masses with N and Z>8 [coming
from a preliminary version of the 1995 compilation
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
(Audi and Wapstra, 1995)] and 28 fission barriers, and a
model error smod of 0.669 MeV is quoted for this fit
(Möller et al., 1995). For the full 1995 data set of 1768
‘‘recommended’’ measured masses with N and Z>8 we
find a model error smod of 0.667 MeV, while the rms
error s is 0.678 MeV (see Table I in Appendix D).

It is likely that the error would have been even lower
if some of the 12 predetermined parameters had been
included in the mass fit. This is particularly true in the
case of the nine parameters associated with the single-
particle fields, given that the single-particle data to
which these data were fitted are rather old. We also sus-
pect that some improvement would result from includ-
ing r0 in the mass fit, rather than determining it through
electron scattering. Indeed, one wonders whether the
value adopted by the FRDM for r0 , 1.16 fm, is optimal
even from the point of view of electron scattering, given
that charge radii calculated in the model tend to be
slightly larger than the measured values (Buchinger
et al., 2001). [In this respect we recall that the Hartree-
Fock mass formulas of Sec. III.B determine r0 in the
mass fit, and nevertheless achieve a better agreement
with measured charge radii than does the FRDM (Buch-
inger et al., 2001); their final value of r0 is 1.149 fm.]
Another way in which the mass fit of the FRDM might
conceivably be improved would be to exclude fission
barriers from the parameter determination, as was done
with the Hartree-Fock mass formulas; as it is, the
FRDM parameters might be distorted by the theoretical
uncertainties associated with the barriers. Finally, adding
‘‘malacodermous’’ terms to the model (Dutta, Arcoragi,
Pearson, Behrman, and Farine, 1986) should also lead to
a still better fit.

Less obvious are the implications of the fact that the
five parameters asf , asym , Kvol , L , and Q take different
values in the macroscopic and the microscopic parts of
the FRDM. Constraining each of these to have the same
value in both parts reduces the number of free param-
eters, so that naively one might expect the quality of the
fit to deteriorate. But this is less obvious when one re-
flects on how the fitting was actually done: the macro-
scopic and microscopic parts were optimized separately,
and the double values for these five parameters simply
reflect the fact that the process was truncated before
convergence had been achieved. Had reiteration been
continued until there was consistency between the two
parts the final fit might have been even better than it
actually was.

More troubling is the high value found for the charge-
asymmetry constant ca : 0.436 MeV, which is very close
to the value of Brown et al. (2000), discussed above. If in
fact the FRDM value of ca is unacceptably high, it
would be interesting to combine this observation with
the fact that charge radii are slightly too large in this
same model. Jointly, these two effects could be compen-
sating for a value of the volume-symmetry coefficient
asym , 32.73 MeV in the macroscopic part, 35.00 MeV in
the microscopic part, that was too high. However, it is
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beyond the scope of this review to see whether one
could in this way reconcile the FRDM with the value of
close to 28 MeV found in all Skyrme–Hartree-Fock
mass formulas.

FIG. 11. Differences between FRDM and (a) HFB-2, (b) TF-
FRDM, (c) Duflo-Zuker (DZ), (d) Koura et al. (KUTY)
masses, as functions of Sn .
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As for the fit to the 2001 data (Audi and Wapstra,
2001), we see from Table I that the rms error is almost
the same as that of HFB-2. However, this latter mass
formula was fitted to the newer data, so that it is almost
certain that the FRDM would outperform HFB-2 if it
were refitted to the same data, even without taking ac-
count of the above improvements that we have pro-
posed. But despite the almost identical global fits to the
most recent mass data given by the present version of
the FRDM and HFB-2, Fig. 11(a) shows that consider-
able differences between the two formulas emerge on
extrapolating to the neutron drip line.

The variation with Z of the neutron-shell gaps given
by the FRDM for the magic numbers N0550, 82, 126,
and 184 are shown in Figs. 9(a), 9(b), 9(c), and 9(d),
respectively. The observed mutually enhanced magicity
is roughly reproduced for N0550, but not at all for 82
and 126. It will be seen that as the neutron drip line is
approached the FRDM gaps behave quite differently
from those given by the HFB-2 mass formula, even
though these two mass formulas give almost identical
global fits to the most recent mass data (Audi and Wap-
stra, 2001). The lack of any quenching must be a conse-
quence of the parametrization adopted for the single-
particle field: pairing cannot initiate any quenching of
the shell gaps in the case of the FRDM because of the
steady weakening of the pairing gap that the adopted
parametrization (51a) imposes as the neutron drip line is
approached. However, it is quite conceivable that with
different parametrizations for the pairing and single-
particle field quenching could have been achieved in the
FRDM without any loss in the quality of the fit to the
presently available data.

4. The ETFSI approximation

The method known as ETFSI (extended Thomas-
Fermi plus Strutinsky integral) offers a much closer ap-
proximation to the Hartree-Fock method than does the
finite-range droplet model or any of the other drop-
model-based methods; see Dutta, Arcoragi, Pearson,
Behrman, and Tondeur (1986), Tondeur et al. (1987),
Pearson et al. (1991), Aboussir et al. (1992, 1995), and
Goriely (2000). It is based entirely on a Skyrme force of
the form of Eq. (16), with the constraint of M* 5M . The
starting point is to calculate the energy of any given
nucleus in the fourth-order extended Thomas-Fermi ap-
proximation. The resulting energy varies smoothly as a
function of N ,Z and deformation, so that it constitutes a
purely macroscopic term, for which microscopic correc-
tions still have to be added. However, there is a funda-
mental difference from the earlier mic-mac calculations:
a unique single-particle field U can now be generated
simply by folding the same Skyrme force over the
nucleon distribution determined in the first part of the
calculation. There is thus a much closer unity between
the two parts of the calculation than in earlier mic-mac
calculations, the same Skyrme force underlying both
parts. Furthermore, in applying the Strutinsky theorem,
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all the ambiguities that we mentioned in relation to
smoothing vanish, since the term in tr h̃ r̃ of Eq. (24)
reduces to an integral over quantities determined in the
extended Thomas-Fermi calculation: this is the Strutin-
sky integral.

It turns out that in its latest form, ETFSI-2 (Goriely,
2000), this method approximates Hartree-Fock so well
that the two methods give essentially equivalent results.
The rms errors of the respective data fits are virtually
identical, and the fitted forces give very similar extrapo-
lations out to the drip lines (note, however, that the fit-
ted forces are not identical). Nevertheless, the ETFSI
approximation is very much faster30 and thus was fea-
sible at a time when the Hartree-Fock method itself was
not. As far as mass formulas are concerned, the ETFSI
approximation has now been made effectively redun-
dant by the Hartree-Fock calculations, but it is still ex-
tremely valuable for the far more complicated calcula-
tions of fission barriers: ETFSI calculations of some 2000
barriers were recently performed (Mamdouh et al., 1998,
2001).

5. The TF-FRDM approximation

Myers and Swiatecki (1996) have constructed a mass
formula based on a different semiclassical approxima-
tion, using a force that is finite range and both momen-
tum and density dependent; the momentum dependence
involves both a p2 term and a novel 1/p term. This force
is purely central, there being no spin-orbit component.
Besides the force there are two other significant differ-
ences with respect to the ETFSI method. (i) The semi-
classical calculation is zeroth-order Thomas-Fermi,
rather than fourth-order extended Thomas-Fermi, which
means that the nuclear surface is not as well represented
as in ETFSI. The effect of this on the quality of the fit to
the data is presumably taken up by the parameters, but
the compensation might not hold in the unknown re-
gions far from stability to which one will want to ex-
trapolate. (ii) The shell corrections are not calculated
self-consistently, as in the Hartree-Fock method (and
the ETFSI approximation thereto), but are taken di-
rectly from the finite-range-droplet-model calculation,
along with the pairing corrections and the deformations,
making this much closer to the mic-mac formulas based
on the drop model.

There are seven force parameters that were fitted to
the mass data, but these relate, of course, just to the
macroscopic part. Thus any estimate of the total number
of parameters involved in this mass formula must take
account of the original FRDM parameters as well, bear-
ing in mind that even though the present model makes
use only of the microscopic part of the FRDM, the de-

30This much greater rapidity comes in large part from the fact
that all the quantities that enter the Strutinsky theorem (24)
vary smoothly with respect to N, Z, and deformation, thereby
making extensive interpolation possible.
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formation parameters, for example, depend also on its
macroscopic part. Now for the final force emerging in
the Thomas-Fermi calculation the corresponding drop-
model parameters, avol , etc., can be calculated, which
means that some of these parameters implicitly have
three different values in different parts of the model; the
Thomas-Fermi value of asym , for example, is 32.65 MeV,
as compared to 32.73 and 35.00 MeV for the macro-
scopic and microscopic FRDM values, respectively.
However, despite all this additional flexibility, the fit to
the 1995 data is only slightly better than that given by
the FRDM, while the fit to the 2001 data is slightly
worse.

In Fig. 11(b), where we plot the differences between
the TF-FRDM and FRDM masses as a function of the
neutron-separation energy Sn , it will be seen that the
Thomas-Fermi-based model has a tendency to bind
much more strongly than the latter in the case of highly
neutron-rich nuclei, presumably because the Thomas-
Fermi-based model is taking account of the malacoder-
mous effects neglected by the FRDM. The question thus
arises, which of the two formulas should be believed.
Since the microscopic terms are identical in the two
models it must be the difference between the macro-
scopic parts that is leading to the different mass predic-
tions. But the microscopic part of the FRDM is strongly
coupled with its macroscopic part, as it should be, so
that the more the macroscopic part of the Thomas-
Fermi formula differs from that of the FRDM, the more
inconsistent it is to use the FRDM microscopic terms in
conjunction with the Thomas-Fermi macroscopic term.
Thus insofar as the two models lead to different extrapo-
lations far from the stability line, it would seem that one
should prefer the original FRDM to the Thomas-Fermi
version of the model if one is to avoid internal contra-
dictions.

This difficulty could have been avoided by calculating
the microscopic corrections corresponding to the
Thomas-Fermi force, exactly as with the ETFSI method.
(It would, of course, be necessary also to define a spin-
orbit two-body force, which might involve a modifica-
tion of the original central force. Pairing also would
have to be dealt with explicitly.) Then, and only then,
would the level of self-consistency be high enough for a
meaningful comparison with the ETFSI (and Hartree-
Fock) results to be possible. It would be interesting for
this Thomas-Fermi approach to be carried through to
completion along these lines (particularly if the full
fourth-order extended Thomas-Fermi formalism were
used), since it is quite possible that the radically differ-
ent form of force adopted would lead to results different
from those given by all the approaches based on Skyrme
forces.

D. Other global approaches

1. The Duflo-Zuker mass formula

The approach to the mass formula problem followed
by Duflo and Zuker (1995) is more fundamental than
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FIG. 12. Neutron-shell gaps as a function of Z for the four mass tables Duflo-Zuker (DZ), Koura et al. (KUTY), HFB-2, and
FRDM for N0550, 82, 126, and 184. Experimental gaps calculated with mass data from Audi and Wapstra (2001).
the mic-mac methods, and yet is not strictly microscopic,
since no nucleonic interaction appears explicitly. Never-
theless, the starting point is the assumption that there
exist effective interactions (‘‘pseudopotentials’’) smooth
enough for Hartree-Fock calculations to be possible. It
is then shown that the corresponding Hamiltonian H
[the Heff of Eq. (13)] can be separated into monopole
and multipole terms, Hm and HM , respectively. The
monopole term is entirely responsible for saturation and
single-particle properties, serving in principle as a plat-
form for Hartree-Fock calculations, while the multipole
term acts as a residual interaction that permits the
method to be pushed beyond pure Hartree-Fock by ad-
mitting a very general configuration mixing that in-
cludes, but is not confined to, pairing and Wigner corre-
lations. It is these monopole and multipole terms, rather
than any effective interaction, that are parametrized, the
parametrization being formulated through scaling and
symmetry arguments in such a way that one takes ac-
count of the main features of both saturation and the
configuration mixing corresponding to shell-model di-
agonalizations based on the Kuo-Brown interaction
(Kuo and Brown, 1966, 1968; Brown and Kuo, 1967;
Kuo, 1967). The magic numbers and the regions of
strong deformation both arise naturally in this schema,
although in earlier versions they were put in by hand
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
(Abzouzi et al., 1991; Zuker, 1994).31 A technical limita-
tion of the method is the failure to take account of the
spurious center-of-mass and rotational energies, but it
does not seem to have affected the results too seriously.

With 28 parameters, the 1768 masses of the 1995 com-
pilation (Audi and Wapstra, 1995) are fitted with an rms
error of a mere 0.346 MeV. Similarly, the extrapolations
to the new data (Audi and Wapstra, 2001) that have
become available since this mass formula was fitted can
be seen from Table I to be of high quality. As for the
long-range extrapolations, Fig. 11(c) shows that the de-
viations with respect to the FRDM grow as the neutron
drip line is approached, but they are relatively modest,
and can take either sign. A closer examination shows
that they are related to a much stronger gap for the
Duflo-Zuker mass formula at N05184.

The variation with Z of the neutron-shell gaps given
by the Duflo-Zuker mass formula for the magic numbers
N0550, 82, 126, and 184 are shown in Fig. 12. For N0
550 there is a clear-cut disagreement with experiment,
with neither the mutually enhanced magicity in the vi-
cinity of Z540 nor the quenching being reproduced. On

31These last two papers nevertheless provide some essential
insights into the model; important discussions are also to be
found in Duflo and Zuker (1999) and Zuker (2003).
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the other hand, for both N0582 and 126 the experimen-
tal trends, including the mutually enhanced magicity, are
very well reproduced, right up to the incipient onset of
quenching. The predicted quenching occurring thereaf-
ter is strong for both these magic numbers, but, remark-
ably, the gaps begin to recover as the neutron drip line is
approached still more closely. No other mass formula
behaves in this way, and it is not clear whether this rep-
resents physical reality or is simply an artifact of an
over-restrictive parametrization; no experimental check
is available at the present time, of course. On the other
hand, the predicted recovery is quite weak, and may not
be of much consequence in practical applications, such
as to the r process.

2. The mass formula of Koura et al.

Like the FRDM, the mass formula of Koura et al.
(2000) has two parts, but the respective parts are not
identified with macroscopic and microscopic terms, as
such, but rather with general trends on the one hand and
fluctuations about these trends on the other hand. In this
way, the existence of smoothly varying components in
the shell and pairing energies is recognized, but at the
price of losing the physical transparency of the macro-
scopic part of the FRDM. A single-particle field is, of
course, an essential feature of the fluctuation part, ex-
actly as in the microscopic part of the FRDM, but there
is now no apparent connection with the gross term, so
again there seems to be less physics than in the case of
the FRDM. Deformation is handled by taking a super-
position of translated spherical nuclei. An alternative to
the Strutinsky method is used. The quality of the data fit
is very similar to that of the FRDM, but far more pa-
rameters are involved: 34 parameters are fitted directly
to the mass data, while the single-particle field has 81
parameters, none of which are fitted to the mass data.

As for the extrapolations, one sees from Fig. 11(d)
that the mass formula of Koura et al., like HFB-2, tends

FIG. 13. A comparison of the predictive power of the various
models (the quantity R in Table I): DZ, Duflo-Zuker; FRDM,
finite-range droplet model; GK, Garvey-Kelson; JM, Jänecke-
Masson; KUTY, Koura et al.; LZ, Liran-Zeldes; NS, Nayak-
Satpathy; TF-FRDM, Thomas-Fermi finite-range droplet
model.
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to bind much more strongly than the FRDM as the neu-
tron drip line is approached. The Koura et al. gaps like-
wise follow the same general trends as those of HFB-2,
but are definitely stronger.

3. The infinite-nuclear-matter mass formula

The infinite-nuclear-matter (INM) mass formula of
Nayak and Satpathy (Nayak, 1999; Nayak and Satpathy,
1999; Satpathy et al., 1999) could, at first sight, be re-
garded as another mic-mac formula, but one that at-
tempts to graft the shell corrections onto the drop-
model part, not by the Strutinsky theorem but rather by
the generalized Hugenholtz–Van Hove theorem, which
relates the chemical potential of any homogeneous fer-
mion system such as INM to the mean energy per par-
ticle of this system. In its original form (Hugenholtz and
Van Hove, 1958) the theorem applies only to symmetric
INM, but it can easily be generalized to the case of
asymmetric INM (Farine, 1981; Satpathy and Nayak,
1983).

To begin our presentation of the INM model we com-
bine Eqs. (2.1-4) and (2.8) of Nayak (1999) to write the
energy of a finite nucleus as

EF~A ,Z !5Ae`~r0 ,I !1f~A ,Z !1h~A ,Z !. (54)

In the first term here e`(r0 ,I) denotes the energy per
nucleon in INM, as given by Eq. (10), while the second
term takes account of some finite-nucleus effects,

f~A ,Z !5asfA
2/31

3e2

5r0
$Z225~3/16p!2/3Z4/3%A21/3

2d~A ,Z !, (55)

the last term of which represents pairing, parametrized
as DA21/2. Thus the first two terms of Eq. (54) corre-
spond closely to the von Weizsäcker mass formula given
in Eq. (9), except that Nayak and Satpathy omit the
surface-symmetry term, but include pairing (and a
Coulomb-exchange term). The last term of Eq. (54),
h(A ,Z), then serves as a repository for all the post-1935
physics, containing, among other things, the compres-
sion or dilatation of the liquid drop of Eq. (54) (Myers
and Swiatecki, 1969), shell effects, and deformation cor-
rections [deformations are, of course, shell driven, but
the h terms contain not only the microscopic part of the
deformation corrections but also the macroscopic part
(Myers and Swiatecki, 1974), the liquid drop of the INM
model always being assumed to be spherical]. Without
treating any of these effects explicitly, Nayak and Satpa-
thy now claim that their aggregate is so strongly con-
strained by the Hugenholtz–Van Hove theorem that the
residual ambiguity can be removed by the data, permit-
ting thereby an unambiguous extrapolation to the drip
lines.

To do this, the INM model (Nayak, 1999; Nayak and
Satpathy, 1999; Satpathy et al., 1999) draws a fundamen-
tal distinction between the first two terms of Eq. (54),
i.e., the von Weizsäcker terms, on the one hand, and the
h terms on the other: the former are regarded as ‘‘glo-
bal’’ and the latter as ‘‘local,’’ and it is asserted that local
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and global quantities must be independent. Then, after
some algebraic manipulation to incorporate the
Hugenholtz–Van Hove theorem, Eq. (54) decouples
into a pair of equations, one of which involves only h :

h~A ,Z !/A5
1
2 F ~11I !S ]h

]N D
Z

1~12I !S ]h

]Z D
N
G . (56)

This partial differential equation, which is Eq. (2.6) of
Nayak (1999), constitutes the backbone of the INM
model, even if its implementation requires that it be dis-
cretized as the pair of finite-difference equations (2.9) of
Nayak (1999):

h~N ,Z !5
N

A21
h~N21,Z !1

Z

A21
h~N ,Z21 !,

h~N ,Z !5
N

A11
h~N11,Z !1

Z

A11
h~N ,Z11 !.

(57)

But these equations, like Eq. (56), are of first order, and
thus can extrapolate and interpolate only smooth trends
in the masses, since to reproduce the sharp fluctuations
characteristic of shell effects it is necessary (but not suf-
ficient) to include many higher-order derivatives. The
model is thus incapable of predicting any shell structure
that may lie beyond the data set to which the model is
fitted, and it becomes easy to see why the model must
predict strong quenching of shell effects (Nayak, 1999).
It also follows that if the data had been cut off below
Z575, N5115, for example, it would have been impos-
sible to predict the doubly magic nature of 208Pb; we
have checked this point numerically.

Clearly, Eq. (56) cannot be correct, even though it has
been derived from the Hugenholtz–Van Hove theorem.
This is a theorem of great generality, holding for any
homogeneous fermion system, and it is a necessary con-
dition on any nuclear model that this theorem be satis-
fied in the INM limit; it is easy to see that all mass for-
mulas based on the liquid-drop model satisfy it, as do
those that are based on Hartree-Fock methods. And just
because of its great generality the Hugenholtz–Van
Hove theorem will hold even for fermion systems in
which there is no independent-particle motion [e.g.,
solid nitrogen at zero temperature (Gomes et al., 1958)],
which means that it can tell us nothing new about shell
structure, i.e., nothing that is not already present in the
existing mass data. Nevertheless, Eq. (56) has unequivo-
cal implications for shell structure: it says that shell
structure must be quenched as the drip lines are ap-
proached.

How has the Hugenholtz–Van Hove theorem led to a
statement concerning a question on which it cannot have
anything to say? The problem lies not with the theorem
but with the way in which Nayak and Satpathy apply it,
specifically with the assumption made in decoupling Eq.
(54) that the ‘‘local’’ h quantities are independent of the
‘‘global’’ quantities. This cannot be right: for example,
the depth of the shell-model field must depend on the
volume parameter avol , even if it is not determined
uniquely by this parameter, while deformability depends
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on the surface coefficient asf . More generally, to assert
the independence of global and local properties is
equivalent to denying the possibility of a self-consistent
field, and thus the validity of the Hartree-Fock method
(Pearson and Goriely, 2003). In this way the prediction
of shell quenching (Nayak, 1999) is built into the INM
model at the outset. If the Hugenholtz–Van Hove theo-
rem had been capable of telling us something about shell
structure, then the network of equations to which it led
would of necessity have contained finite differences of
much higher order.

Nevertheless, if the INM model is inherently inca-
pable of predicting shell effects, it may be wondered
how it can fit the data so well, including, of course, the
known shell structure: the rms error for 1884 masses is
0.401 MeV. The point is that the pair of finite-difference
equations (57) form a network of recurrence relations
connecting each nucleus with its nearest neighbors. This
network is solved over a hexagonal mesh, each contain-
ing 58 nuclei, and to start the integration it is necessary
to specify four baseline nuclei of known mass. However,
by taking different meshes, up to 70 different values of h
for a given nucleus can be found, the mean of which is
taken as the final value for the nucleus in question. But
no matter how many times a given nucleus is calculated,
an essential feature of this procedure is that each known
nucleus is calculated in terms of other known nuclei.
Thus in claiming that the low rms error has been
achieved with only five parameters, the global param-
eters avol , asym , asf and r0 , and the strength of the pair-
ing term, the Nayak and Satpathy papers (Nayak, 1999;
Nayak and Satpathy, 1999; Satpathy et al., 1999) do not
take into account the large numbers of baseline masses
that are required to solve the network of equations.
Without these data points (or an equal number of other
parameters that serve as initial conditions) it is impos-
sible to solve the network. We do not know the exact
number of baseline nuclei that were taken, but since
1884 masses are fitted, and 4 baseline nuclei per block of
58 nuclei are needed, it cannot be less than 130, and
from the description of the procedure it is presumably
much larger. There will thus be no problem in getting an
excellent fit to the mass data, including the observed
shell effects, with a model of the form of Eq. (57), even
though it is inherently incapable of predicting shell ef-
fects.

Actually, although its authors present it as a global
mass formula, the form of the basic equations of the
INM model, Eq. (57), is typical of the local mass formu-
las of the Garvey-Kelson type (Garvey and Kelson,
1966; Jänecke and Masson, 1988) that we discuss in the
next subsection. [Indeed, the Garvey-Kelson formulas
are third order and still cannot reliably extrapolate very
far (Jänecke and Masson, 1988).] As such, the INM
model has all the limitations of local mass formulas: an
inability to predict shell effects correctly and a total un-
suitability for long-range extrapolations. But even as a
local mass formula, making only short-range extrapola-
tions, the large value of the ratio R given in Table I
shows that the INM model does not perform very well.
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E. Local mass formulas

Often one is confronted with the situation of requiring
the mass of a nucleus which, although unmeasured itself,
lies fairly close to a considerable number of nuclei of
known mass. Such cases arise, for example, in connec-
tion with the rp process of nucleosynthesis (Schatz et al.,
1998) and also when preparing experimental searches
for double b decay or 2p emission. To handle this situ-
ation several simple procedures have been devised to
express the unknown mass in terms of the nearby known
masses. The actual physics involved in these so-called
local mass formulas is often minimal, and it is not ex-
pected that novel features such as the onset of a new
deformation zone or the occurrence of a new magic
number will be predicted. We shall describe in this sub-
section some of the more familiar of these procedures,
and compare their predictions for the new data with the
predictions made by the global mass formulas (Table I in
Appendix D).

1. Systematic trends

As shown in Fig. 1, the two-neutron separation energy
S2n varies in a very regular way with respect to N . The
same remark also applies to the variation with respect to
Z and A , and likewise to other mass derivatives such as
S2p , Qb , and Qa . Even when a kink is observed, as for
shell closures, similar kinks are seen to occur in neigh-
boring chains.

On the basis of this observation, a straightforward and
systematic scheme for interpolation and extrapolation
has been developed (Wapstra et al., 1985; Audi and
Wapstra, 1993, 1995; Borcea et al., 1993), with the mass
assignment to a given unknown nuclide being made in
such a way that all the mass-derivative quantities men-
tioned above vary as smoothly as possible. The assess-
ment of smoothness is usually made visually, but math-
ematical approaches have also been considered (Borcea
and Audi, 1993, 1998). When such smoothness is judged
to be well established, extrapolations of up to three or
four nuclides can be made. These ‘‘values derived from
systematic trends,’’ accompanied by appropriately in-
creasing error bars, are published with the evaluated
masses, but are distinguished from the experimental
data by being labeled with the symbol # (Audi and Wap-
stra, 1995).

In the course of this procedure it occasionally happens
that replacing the quoted experimental value of a par-
ticular mass by some other value can lead to a substan-
tial improvement in the overall smoothness of the vari-
ous mass-derivative quantities. New measurements
generally confirm that the original suspicion of an incor-
rect experimental value was well founded. An example
is the case of 150Ho already described in Sec. II.F. Such
cases are indicated in the table by both the # and l
symbols (Audi and Wapstra, 1995).

The 1995 table provided systematics-based predictions
for 368 of the 382 new data given by Audi and Wapstra
(2001). The small errors given in Table I demonstrate
that these predictions are particularly accurate.
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2. Garvey-Kelson relations

Garvey and Kelson (1966) and Garvey et al. (1969)
developed algebraic relations connecting the masses of
neighboring nuclides. The most widely used is the so-
called transverse relation linking six masses,

M~N12,Z22 !2M~N ,Z !1M~N ,Z21 !

2M~N11,Z22 !1M~N11,Z !

2M~N12,Z21 !50, (58)

derived from an independent-particle picture, with spin
and isospin independence. It is also assumed that single-
particle energies and effective interactions vary
smoothly and slowly with A . On the n-rich side, the
mass of the (N12,Z22) nuclide may be determined
with good accuracy if the five others are known. Simi-
larly, on the p-rich side, the mass of the (N ,Z) nuclide
may generally be calculated.32 In this way, Eq. (58) was
examined in 1087 cases using the 1768 masses published
in AME 1995, resulting in a relatively low rms error as
can be seen in Table I.

Mass predictions can be made using an iterative pro-
cedure, but it is clear that since the number of known
masses used in the relation diminishes with each itera-
tion, the error will grow. In the limit of seven iterations,
for example, 242 out of the 382 new masses could be
calculated with deviations smod50.232 MeV and ēmod
520.018 MeV. A total of 21 iterations was required to
reach 340 of these masses, but with the resulting large
rms deviation of smod50.717 MeV (quoted in Table I).
Pushing the relation further leads to numerically un-
stable predictions.

Several other mass formulas based on the Garvey-
Kelson relations were developed to try to minimize this
loss of convergence in order to extrapolate to the drip
lines (Comay et al., 1988; Jänecke and Masson, 1988;
Masson and Jänecke, 1988). In Table I, a comparison of
the 372 masses predicted by Jänecke and Masson (1988)
(JM) to the new mass data shows that they do not sur-
pass the quality of predictions from global approaches.

3. Neural networks

Another manner in which to take advantage of the
regularity of the mass surface is the use of neural net-
works. The first attempts (Gazula et al., 1992; Gernoth
et al., 1993) simply used N and Z as input. The output is
a ‘‘yes’’ or ‘‘no’’ answer that corresponds to a physical
state such as the stability, or a numerical value such as

32There are some exclusions around the N5Z line. In par-
ticular, nuclei having N5Z5odd must not be involved.
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the spin, the decay probability (Gernoth and Clark,
1995a), the separation energy, or the mass excess. In the
case of atomic masses, the large number of available
data is nicely adapted for training the network on one
part of the data and testing it on other parts.

One important result concerns the encoding of N and
Z . When an analog encoding is used, the neural network
misses the shell effects and smoothes the mass surface in
a way similar to a pure liquid-drop model, leading to s
.a few MeV. When a binary encoding is used, the shell
structure is correctly taken into account and the ob-
tained deviations are s.1 –2 MeV and ē.0.4 MeV
when two or three layers are used with typically 300 to
400 parameters. The lowest deviations obtained up to
now are s.0.7 MeV and ē.0.010 MeV by adding A
5N1Z and N2Z values as input and carefully moni-
toring the training phase. Weighting the mass input with
the correponding uncertainties has also been pursued
(Gernoth and Clark, 1995b). While the ‘‘predicted’’
masses are, in fact, only interpolated, new schemes have
been developed to specifically attack the problem of ex-
trapolation (Mavrommatis et al., 2000; Athanassopoulos
et al., 2003), but with deviations of around 1.5 MeV, this
approach does not seem too promising. In this field, at
least, the human brain would seem to do better than
neural networks!

4. The Liran-Zeldes mass formula

Liran (1973) and Liran and Zeldes (1976) developed a
semiempirical formula in which the binding energy is
expressed as a sum of pairing, deformation, and Cou-
lomb energies. The parameters used in the development
of these three terms are fitted separately for each do-
main delimited by magic N and Z values. The number
of parameters to adjust is 11 in the case of diagonal
shells, where the major valence shells are the same for
neutrons and protons, and 15 in other cases.

Provided there are enough data in the explored re-
gion, the extrapolations are rather accurate (see Table
I), especially given that the parameters were fitted using
only the restricted set of experimental masses known in
1976. The magic numbers are chosen a priori and not
predicted by the model. In the case of the trans-lead and
superheavy regions, this raised the key question of the
choice of associated magic proton number. Recently, Li-
ran et al. (2000, 2001) tested an older adjustment (Liran,
1973) in which Z5126 was chosen over Z5114. In the
superheavy region, the deviations for the 49 new masses
with N>129 are s50.155 MeV and ē520.001 MeV.
In the trans-lead region, a new partial fit was performed
leading to deviations s50.246 MeV, and ē
520.001 MeV, indicating good reliability for mass pre-
dictions in these regions. Further improvements are ex-
pected from a completely new fit, in particular for the
masses near boundaries.
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5. Approaches for nuclei around the N5Z line

a. The isobaric mass multiplet equation

The isospin formalism allows for every nuclear state
to be assigned an isospin which is part of an isobaric
multiplet, all members of which have nearly identical
wave functions. The energy differences in a multiplet are
very well described by a quadratic formula of isospin
projection having three coefficients: the isobaric mass
multiplet equation (see Benenson and Kashy, 1979). The
coefficients of all measured multiplets have been re-
cently tabulated by Britz et al. (1998). Deviations from
the quadratic form are relatively small (below the level
of 1026), making it possible to predict proton-rich ana-
log levels, including ground states, to relatively good ac-
curacy. The application of this equation is, of course,
limited to those multiplets having known coefficients
and will not allow extrapolations for nuclides much be-
yond A5100.

b. Coulomb energy corrections to mirror nuclides

Numerous examples of mass determinations using
Coulomb energy differences can be found in the litera-
ture, with Brown et al. (2002) providing the latest refine-
ments, including the use of Hartree-Fock calculations in
order to generate the necessary nuclear structure infor-
mation for (often unbound) nuclides in the range A
541–75, of interest to the rp process. On condition that
the mass of the corresponding neutron-rich mirror nu-
clide is known, the displacement energies can be calcu-
lated relatively accurately since they depend mainly on
the Coulomb interaction, although isospin symmetry
breaking needs to be taken into account.

6. Interacting boson model

This model uses group theory for describing low-lying
states of even-even nuclei. Bosons of differing angular
momenta are used to model valence nucleons, and they
interact through a Hamiltonian containing two-body in-
teractions. The latest version of this model has included
the binding energy in the analysis, since it is very sensi-
tive to the Hamiltonian used. It is described by Fossion
et al. (2002), who use it to analyze the fine structure of
the mass surface in particular regions (e.g., Hg) by mak-
ing local adjustments.

7. Conclusion concerning local formulas

One might have expected that local formulas, while of
more limited scope, would be more accurate than the
global ones described in Secs. III.B–III.D. Table I shows
that this is not the case except for the systematic masses
given by Audi and Wapstra (1995), which are far more
reliable than all other predictions. Near the N5Z line,
the possibility to make use of the isobaric mass multiplet
equation, or of data on mirror nuclei, also provides high
quality predictions, but for a very limited range of nu-
clides. While fitted on old data, the Liran-Zeldes mass
formula is still competitive.
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F. Outstanding problems and future directions

A recent significant development has been the claim
of Bohigas and Leboeuf (2002) that considerations of
quantum chaos impose a lower limit on the accuracy
with which nuclear masses can be predicted. The precise
value of this lower limit is somewhat uncertain, but it
appears unlikely that global mass formulas could ever
predict masses with an rms deviation much smaller than
0.3 MeV.

One mass formula stands out above all others with
respect to both the quality of the data fit and the success
with which it predicts the new data (Table I): this is the
mass formula of Duflo and Zuker (1995), and in fact it
performs fairly close to the limit claimed to be imposed
by quantum chaos. However, this does not mean that
with Duflo-Zuker we have reached the end of history,
even as far as mass formulas are concerned. On the con-
trary, since different mass formulas giving comparable
data fits can extrapolate quite differently out to the neu-
tron drip line, it is essential that both the microscopic
and mic-mac approaches be developed to the point
where they give data fits whose quality is comparable to
that of the Duflo-Zuker formula. Only in this way will
we have some reasonable handle on the range of uncer-
tainty for long-range extrapolation, although for a given
quality of fit to the mass data one would have greater
confidence in the long-range extrapolations given by the
more microscopic model, simply because nuclear bind-
ing energies, along with all other properties, originate
ultimately in the basic interactions between the constitu-
ent nucleons.33

The best microscopic mass formula we have at the
present time is HFB-2 (note that because of the phe-
nomenological Wigner terms it cannot be regarded as
being fully microscopic), but the quality of its fit to the
data is distinctly inferior to that given by the Duflo-
Zuker formula. Perhaps the most obvious place to look
for improvement over HFB-2 lies in the calculational
details of the method itself: numerical accuracy, conver-
gence, and, in the case of deformed nuclei, the removal
of the spurious rotational energy. Let us say at once that
there is no evidence of any problem of this sort, and that
some of the most serious doubts concerning the HFB-2
mass formula lie rather with the treatment of pairing. In
the first place, it needs to be asked whether one should
take for the pairing force the same interaction that is
used in the Hartree-Fock part of the calculation, i.e., the
Skyrme force. The Gogny group has always imposed this
constraint (Dechargé and Gogny, 1980), and Dobac-
zewski et al. (1984) have adopted the same point of view
with regard to the Skyrme force SkP, but there is no

33Another reason for preferring microscopic mass formulas is
that these give us not only the mass but also the nuclear wave
function. This is of especial importance in applications such as
to the r process of nucleosynthesis, where one needs to be able
to calculate b-decay rates, in addition to masses, and it is
highly desirable that one use the same model for both.
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compelling evidence for this constraint. Rather, we be-
lieve that the ‘‘truncated d function’’ should provide an
adequate representation of the pairing force, but it is
essential to admit a possible density dependence confin-
ing it to the nuclear surface, and above all to consider
more flexible parametrizations of the cutoff. Both these
points require a much more thorough phenomenological
study than they have so far enjoyed, but it is fairly clear
already that the data alone will not be sufficient to dis-
criminate between all the different possibilities: there
would always be the fear that future data would repeat
the same nasty surprise with which the 2001 data (Audi
and Wapstra, 2001) confronted the HFBCS-1 and
HFB-1 formulas. Thus an urgent priority is the develop-
ment of a much better microscopic understanding of
pairing that would discriminate between different mod-
els that give equally good fits to the data but different
extrapolations. Bertsch and Esbensen (1991), Barranco
et al. (1999), and Garrido et al. (1999) serve as welcome
steps in this direction.

As for the Skyrme force itself, the most plausible
source of improvement would be to add to the form of
Eq. (16) a t4 term, i.e., a term with simultaneous density
and momentum dependence. Preliminary studies
(Farine et al., 2001) do not suggest that any dramatic
reduction of the rms error is possible in this way. An-
other avenue to explore would be to include a tensor
term (we are indebted to F. Weber for this reminder),
although the only published studies of such a term
(Stancu et al., 1977) are not very promising.

1. Beyond Skyrme forces

It is, of course, always conceivable that there is some
fundamental limitation with the Skyrme form, and in-
deed we have already raised the possibility that this
form of force might be incapable of simultaneously fit-
ting masses and an independently determined value of
the symmetry coefficient asym . Also to be borne in mind
here is the failure of all three Skyrme–Hartree-Fock
mass formulas to represent correctly the phenomenon of
mutually enhanced magicity. But going beyond the
Skyrme form means that finite-range forces will have to
be adopted, and we have already remarked that
Hartree-Fock calculations with such forces will be much
more complicated than with Skyrme forces. Moreover, if
the adopted finite-range forces are purely static, as with
the Gogny forces (Dechargé and Gogny, 1980), then the
effective mass will be significantly lower than the real
nucleon mass, which may spoil the mass fit for open-
shell nuclei: the Gogny force has Ms* /M50.67, which
may account for the poor agreement with the experi-
mental masses of spherical open-shell nuclei, as dis-
played in Fig. 9 of Dechargé and Gogny (1980). It might
be possible to rectify this problem with an appropriate
pairing cutoff, but otherwise it would be necessary to
make the finite-range forces momentum dependent, pos-
sibly by resurrecting some forms that have not been
used since the pre-Skyrme days of the 1960s; see Davies
et al. (1966), Tabakin and Davies (1966), Saunier and
Pearson (1967), Pearson and Saunier (1968). All in all,
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finite-range forces do not seem to offer a promising ap-
proach to the mass-formula problem.

2. Hartree-Fock without forces

The formulation of the Hartree-Fock method as we
have described it in Sec. III.B.2 proceeds by first deriv-
ing the energy-density functional appearing in Eq. (14),
E(r), from the given effective force v ij

eff . The Hartree-
Fock equation (15) is then derived from E(r). Now in
principle instead of starting from an effective force one
could always begin at the level of the energy-density
functional E(r), postulating a suitable form for it, with a
convenient number of adjustable parameters. This ap-
proach was adopted long ago by Tondeur (1978a,
1978b), but has to a large extent been eclipsed by ex-
plicit use of Skyrme, or Gogny, forces (see, however,
footnote 17). Indeed, the range of possible terms that
could be included in the energy-density functional is
vast, being by no means restricted to terms that corre-
spond to a simple force, but this has the disadvantage of
there being no obvious way of eliminating a priori all
but a manageable number of terms. By contrast, the use
of a simple force certainly has an intuitively physical
appeal, which no doubt accounts for the popularity of
this approach.

However, should certain intrinsic limitations to the
use of a force begin to emerge, then one could always
have recourse to the energy-density functional ap-
proach, adding to the functional that corresponds to the
original force just those terms that might be expected to
repair the defect that has been encountered. The
Skyrme–Hartree-Fock calculations that we have de-
scribed here might well have reached the point where
further progress depends on generalizations along these
lines. Recent results of Yu and Bulgac (2003) using the
energy-density functional of Fayans et al. (2000) are very
promising.

3. Beyond Hartree-Fock

Having raised the question of going beyond Skyrme
forces, it is natural to envisage going beyond Hartree-
Fock. Of course, pairing and Wigner correlations are al-
ready taken into account, but the success of the Duflo-
Zuker formula as compared to HFB-2 suggests that
other types of configuration mixing might be significant.
Stevenson et al. (2001, 2002); and Rikovska Stone et al.
(2002) have begun to explore this possibility, evaluating
up to third order a perturbation series the leading term
of which is just the usual Hartree-Fock expression.
While this procedure will certainly give rise to correla-
tions that are not included in the kind of Hartree-Fock
calculations that we have described here, it is not clear
to what extent the essential pairing and Wigner correla-
tions are embraced. Only very preliminary results, ob-
tained with a density-dependent separable effective in-
teraction, have been published so far.

In principle, another way of going beyond Hartree-
Fock would be to diagonalize the matrix of the effective
Hamiltonian (13) in a basis of shell-model states, fitting
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the parameters of the effective interaction to the known
masses. However, implementing such a program explic-
itly as the basis of a global mass formula is totally im-
practical at the present time, but some of the general
features that would arise in such calculations have al-
ready been included in the Duflo-Zuker mass formula.

Nevertheless, it is worth noting that shell-model di-
agonalization has already been used to calculate the nu-
clei of the sd shell (Retamosa et al., 1997; Caurier et al.,
1998) and of the fp shell (Caurier et al., 1999). Such cal-
culations are completely microscopic, but can at the
present time be implemented only locally, because of
computer limits on the dimensionality of the basis.
These calculations, when compared to experiment, fare
no worse than the other microscopic or mic-mac models,
but do no better either. In fact, the known shell quench-
ing at N520 can be reproduced only by introducing in-
truder orbits. Clearly, these shell-model calculations are
too limited at the present time for predicting masses far
from stability if provisions for irregular behavior must
be prescribed in advance.

In order to overcome limitations of conventional
shell-model calculations, the so-called Monte Carlo shell
model has been developed by Otsuka (2001; Otsuka, Ut-
suno, et al., 2001). The many-body problem is solved by
a judicious selection of basis states, using the stochastic
quantum Monte Carlo diagonalization method, which
are then used in a shell-model calculation. For the
present, encouraging results have been obtained for
light nuclides, including an interesting interpretation for
shell quenching at N520 (Otsuka, Fujimoto, et al.,
2001).

4. Possible improvements to the mic-mac approach

We have already indicated several obvious ways in
which the finite-range droplet model could achieve a still
better fit to the mass data: inclusion of malacodermous
terms, optimization of r0 and the parameters of the
single-particle potential to the mass data, exclusion of
fission barriers from the fits, closer attention to the
charge-asymmetry term, and a more general Wigner
term, possibly of the form of Eq. (22) (the first term of
this seems to be essential). The extrapolations would
likewise have greater credibility if the standard averag-
ing method of Strutinsky were replaced by more modern
methods (Jennings et al., 1975; Dutta and Pearson, 1987;
Vertse et al., 1998, 2000), and if the parameters asf ,
asym , Kvol , L , and Q were constrained to keep the
same values in the microscopic and macroscopic parts of
the calculation. Above all, it must be remembered that
all the pairing-related ambiguities that have beset the
Hartree-Fock mass formulas are just as likely to be in
play in the mic-mac formulas; in particular, it will be
essential to release the constraints (51a) and (51b) that
were imposed on the FRDM’s pairing gaps.34

34Actually, in seeking a better mic-mac formula one could
take the formula of Koura et al., rather than the FRDM, as the



1070 Lunney, Pearson, and Thibault: Determination of nuclear masses
But whatever developments the future holds, there re-
mains the question of which of the presently available
mass formulas should be used in practical applications.
While one formula, namely, Duflo-Zuker, gives a signifi-
cantly better data fit than all the others, the safest pro-
cedure to adopt in practical applications, such as to the r
process, would probably be to examine the implications
not only of the Duflo-Zuker formula, but also of the
FRDM and HFB-2. The better the agreement among
the three approaches the greater one’s confidence in the
predictions.35

IV. CONCLUSION

In Sec. II we described the new techniques of high
sensitivity and accuracy that are enabling an extremely
fine mapping of an ever-widening mass landscape. While
it is sobering that the difficult task of producing pure
beams of exotic nuclides allows steps towards the drip
lines to be taken at a rate of barely one nucleon per
decade, there is hope in the next-generation initiatives
EURISOL (Vervier, 2003), the Rare Isotope Accelera-
tor (RIA; Savard, 2003; Sherrill, 2003), and the future
GSI fragmentation facility (Henning, 2003), which plans
to include two new storage rings for mass measurements
(Geissel et al., 2003). These programs plan for aggressive
research and development in production and handling
techniques in order to increase beam intensities by three
orders of magnitude in the next ten years. We have also
described the continuing efforts of the Atomic Mass
Evaluation, which provides an enormous service to
nuclear science, both experimental and theoretical.

Nevertheless, Fig. 4 makes it clear that only about a
quarter of all the possible nuclei lying between the drip
lines have already had their masses measured. Less ap-
parent from this figure is the near certainty that many of
the remaining nuclei will stay unmeasured for the fore-
seeable future. This is particularly true in the case of the
heavy, highly neutron-rich, nuclei, the masses of which
are required for a full understanding of the r process of
stellar nucleosynthesis. There is thus a great need for a
reliable ‘‘mass formula,’’ as one continues to call any
semiempirical theory, however complicated, that permits
extrapolation from the data out to the unknown regions
of the nuclear chart. Recent developments in this area
are reviewed in Sec. III, where we make it clear that the
present situation is somewhat unsatisfactory, in that dif-
ferent mass formulas giving acceptable fits to the mass

starting point, but since the physical content of its different
terms is less transparent than in the case of the FRDM, it is
less obvious how to go about making improvements, except by
adding still more terms, and thus still more parameters.

35In this context one might be tempted to use the measured
abundances of r-process nuclides to discriminate between the
different mass formulas. However, one would have to make
sure that there was no residual ambiguity associated with the
astrophysical conditions under which nucleosynthesis occurs.
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data will nevertheless diverge strongly in their extrapo-
lations out to the neutron drip line.

Even if one were to give greatest credibility to the
most microscopic of the available mass formulas, HFB-2
(Goriely et al., 2002), considerable ambiguity would re-
main, as we have pointed out, especially with regard to
pairing. Future progress would be helped enormously by
the development of better theories of pairing, but at
least as important is the acquisition of more mass data,
further and further from the stability line. Indeed we
recall how the new mass data of 2001 (Audi and Wap-
stra, 2001) diagnosed flaws in the earlier Hartree-Fock
mass formulas, HFBCS-1 and HFB-1, and led directly to
the development of the HFB-2 formula, with its radi-
cally different behavior in the highly neutron-rich re-
gion. There is no reason to believe that new data ac-
quired in the future will not lead to equally radical
revisions of the mass extrapolations.

Particularly valuable would be new masses relating to
the shell gaps at magic neutron numbers, since we have
seen how sensitive these quantities are to the choice of
pairing model. Furthermore, regardless of its relevance
to the development of suitable mass models, a knowl-
edge of masses at magic neutron numbers, and of a pos-
sible quenching of the shell gaps, is of vital importance
for understanding the r process. But any new mass
would be useful, since the more one accumulates data
and fits them correctly, the less will be the ambiguity in
the extrapolation to the ever-diminishing number of un-
known nuclei. However, despite the experimental
progress reported here, the masses of many exotic nuclei
of interest will certainly remain unmeasured for many
years to come, and in the meantime it will be essential to
sustain the interplay between experiment and theory
that we have described.

ACKNOWLEDGMENTS

We wish to acknowledge valuable communications
with O. Bohigas, G. Bollen, A. Bulgac, J. Dobaczewski,
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APPENDIX A: RELATION BETWEEN ATOMIC
AND NUCLEAR MASSES

As mentioned in Sec. II.F, the masses given in the
Atomic Mass Evaluation (Audi and Wapstra, 1993,
1995) are indeed atomic and not nuclear masses, the re-
lation between the two being given by

MAME~N ,Z ![Mat~N ,Z !

5M~N ,Z !1Zme2Bel~Z !, (A1)

where Mat(N ,Z) is the atomic mass, me is the electron
mass, and Bel(Z) is the total binding energy of the elec-
trons.

Of course, not only the masses but all the energy dif-
ferences tabulated in the AME are also expressed in
terms of atomic masses, and thus are not exactly equal
to their nuclear counterparts. As an example, the tabu-
lated binding energy BAME(N ,Z) is different from the
nuclear binding energy B(N ,Z) as defined by Eq. (1):

BAME~N ,Z !5$NMn1ZMH2Mat~N ,Z !%c2

5B~N ,Z !2ZBel~Z51 !1Bel~Z !,

(A2)

where MH is the mass of the hydrogen atom.
In order to derive the nuclear quantities from the

tabulated (atomic) ones, the value of Bel(Z) has to be
calculated, and its uncertainty may be much larger than
that of the experimental atomic mass itself. The electron
binding energy ranges from 13.6 eV for H up to more
than 700 keV for U. Calculations have been made by
Huang et al. (1976) for all elements from Z52 to 106.36

As first proposed by Foldy (1951), Bel(Z) can be fit-
ted by a power law. The old formula used by Seeger and
Howard (1975) and Myers (1976),

Bel~Z !514.33 Z2.39 eV, (A3)

deviates from the tabulation of Huang et al. (1976) by
nearly 100 keV at the upper limit of Z5106. A better
approximation may be obtained by using

Bel~Z !514.4381 Z2.3911.554 6831026 Z5.35 eV,

(A4)
which provides a rms error over the entire range of
tabulated masses of 150 eV, although considerably larger
errors can be expected for extrapolation to the super-
heavy region.

Atomic masses are expressed either in mass units or in
energy units. The atomic mass unit u is defined as 1/12
of the mass of the neutral 12C atom; its most recently

36The accuracy of mass measurements is now so great that
QED contributions to electronic binding energies have be-
come relevant for the determination of atomic mass values of
stable nuclides: see the recent discussion by Indelicato et al.
(2001).
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determined value (Mohr and Taylor, 2000) is u
51.660 538 73310227 kg5931.494 014 MeV/c2, with an
experimental uncertainty of 0.08 ppm. Such precision is
impossible in direct absolute-mass measurements and
was obtained, in fact, from a determination of
Avogadro’s number NA , defined as the number of at-
oms in 12 g of 12C, whence

u51023/NA kg. (A5)

Ultimately, the atomic mass unit is defined in terms of
the standard kilogram. This is, in fact, the last of the
three fundamental quantities whose standard is an ac-
tual artifact rather than an invariant property of nature:
the standard second is defined in terms of the frequency
of a certain spectral line; the standard meter is defined
relative to the standard second through the velocity of
light, for which an exact value has been attributed and
frozen: c5299 792 458 m s21; as for the standard kilo-
gram, it resides in Sèvres, close enough to smoggy Paris
that its definition includes a cleaning recipe! It has been
proposed [see, for example, Mohr and Taylor (2000);
Paul et al. (2001)] that this mass standard be replaced by
the atomic mass unit, i.e., 1

12 of the neutral 12C atom,
essentially by fixing the value of Avogadro’s number and
using Eq. (A5). The most accurate way of determining
NA consists of effectively counting the atoms in a pure
silicon crystal of known mass and volume by measuring
the lattice spacing; a precise knowledge of the isotopic
composition of the crystal together with the correspond-
ing atomic masses is also required.

In any case, for a given value of the atomic mass unit
expressed in kg, there is no ambiguity in the energy
equivalent as long as it is expressed in joules. On the
other hand, expressing this same energy in electron volts
requires a precise definition of the volt: see, for example,
Sec. 2 of Cohen and Wapstra (1983).

APPENDIX B: ON MODEL ERRORS

The rms error srms with which a model or theory fits a
data set $M1 ,M2 , . . . ,Mi , . . . ,Mn% is widely used as a
measure of the validity of that model as a representation
of the phenomenon in question. However, the experi-
mental error s i with which each data point Mi is mea-
sured will itself contribute to srms , thereby limiting the
usefulness of this quantity as a measure of the validity of
the model. Clearly, it would be better to replace srms by
some other quantity to which the experimental errors do
not contribute.

By assuming that the inherent errors of the model
follow a Gaussian distribution, Möller and Nix (1988)
applied the method of maximum likelihood to obtain a
model standard deviation given by

smod
2 5

1
(wi

( wi$~Mi2Mi
mod!22s i

2%, (B1)
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where Mi
mod is the model prediction for the data point i ,

and the weighting factor is

wi5
1

~s i
21smod

2 !k (B2)

with k52. These two equations are given as Eqs. (42)
and (43), respectively, in the paper of Möller and Nix
(1988), although these authors write s th

2* in place of
smod

2 . Actually, such a definition of smod is intuitively
plausible for any positive value of k and furthermore
has the convenient property of reducing to the familiar
srms in the limit of all the experimental errors vanishing.
However, the value of smod depends on the value cho-
sen for k , and only the analysis of Möller and Nix (1988)
leads to a unique result.

These considerations have been extended by Möller
et al. (1995) to the definition of a model mean error,

ēmod5
1

(gi
( gi~Mi2Mi

mod!. (B3)

This is essentially Eq. (10) of Möller et al. (1995), except
that we have written ēmod in place of m th* . The weighting
function in Eq. (B3) is

gi5
1

s i
21h2 , (B4)

in which the quantity h2 is given by

h25
1

( gi
2
( gi

2$~Mi2Mi
mod2 ēmod!22s i

2%, (B5)

according to Eq. (9) of Möller et al. (1995).
Equations (B3) and (B5) are coupled through Eq.

(B4), which means that to obtain ēmod we have to solve
for h as well. The question thus arises, what is the mean-
ing of h? We see from the definition (B5) that it can be
interpreted as a ‘‘model standard deviation’’ around the
mean error ēmod , and indeed when the latter is zero we
have h5smod . For this reason Möller et al. (1995) write
h2 as s th

2* again, but in order to avoid all confusion we
use a different symbol. In any case, h is a quantity of
subsidiary interest and does not reduce to srms when all
the experimental errors vanish, but rather to (srms

2

2 ē2)1/2 (note that in that case ēmod still reduces to ē).

APPENDIX C: MINIMUM MASS OF NEUTRON STARS,
AND THE SYMMETRY COEFFICIENT asym

It is known that binary systems of neutron stars lose
energy through gravitational radiation, and it is gener-
ally supposed that the end result of this process will be a
merger of the two stars. However, 30 years before any
neutron star had ever been observed, it was pointed out
that there must be a minimum mass Mmin , below which
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
no neutron star could have a stable existence (Landau,
1938; Oppenheimer and Serber, 1938). It was thus specu-
lated that in a binary system in which one neutron star
was initially much lighter than the other, the lighter star
could lose so much matter to the heavier that its mass
would fall to Mmin before an actual merger had taken
place. The fate of the binary would then be an explosion
of the lighter star rather than a merger of the two (Blin-
nikov et al., 1984; Colpi et al., 1989, 1991; Sumiyoshi
et al., 1998). It is thus a matter of some interest to cal-
culate the actual value of Mmin . Haensel et al. (2002)
have discussed the sensitivity of Mmin to the equation of
state of neutron-star matter; here we wish simply to
point out that the symmetry coefficient asym must play a
crucial role.

To see this we adopt an exceedingly simple model of
the neutron star: we regard it as an enormous nucleus
and represent it by the von Weizsäcker mass formula,
Eq. (9), generalized to include gravity. Since this has a
nonsaturating character formally identical to that of the
Coulomb force, though with opposite sign, we can write
for the energy per nucleon

Enuc

A
5avol1asfA

21/31
3

5r0
H e2

4
~12I !22GM2J A2/3

1~asym1assA
21/3!I2, (C1)

where G is the gravitational constant and M the nucleon
mass. For normal nuclei the gravitational correction will
be utterly negligible, but for very large values of A in
systems consisting entirely of neutrons, I51, we have

Enuc

A
5avol1asym2

3GM2

5r0
A2/3. (C2)

The sum of the nuclear terms, avol1asym , is always
positive, but the system will be bound by gravity if the
number of neutrons exceeds a certain critical minimum:

A>H ~avol1asym!
5r0

3GM2J 3/2

. (C3)

For the FRDM mass formula, asym532.7 MeV (see
Table II), we find that the corresponding critical mass is
2.331029 kg, which is just 0.1 of the mass of a typical
neutron star. It is plausible to regard this critical mass as
an estimate of Mmin . For the HFB-2 mass formula,
asym528.0 MeV, we find a value that is around 36%
smaller.

In view of the extreme crudity of our model, little
credence can be given to the absolute values of our es-
timates of Mmin , but at least we have given reason to
believe that Mmin should depend sensitively on asym .
And in any case, we see why it is that the ablating star
finally explodes: it is blown apart by the repulsive sym-
metry energy, once the nonsaturating gravitational at-
traction is no longer sufficient to overcome it.
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TABLE I. The rms error (s) and mean error ( ē) of fits given by various mass formulas to the masses of the 1995 (Audi and
Wapstra, 1995) and 2001 (Audi and Wapstra, 2001) evaluations. Mass formula HFB-2 was fitted to the 2001 compilation, but all
others were fitted to the 1995 or earlier evaluations. Errors are also shown for the 382 ‘‘new’’ nuclei appearing in the 2001
compilation with smod and ēmod denoting errors determined using the analysis prescribed by Möller (Möller and Nix, 1988; Möller
et al., 1995; see text). The quantity R is the ratio of smod of the ‘‘new’’ nuclei to the rms error of the 1995 compilation and is a
measure of the predictive power of the mass formulas fitted to the 1995 data (R is shown graphically in Fig. 13). All errors are in
MeV. The last four lines correspond to local relations for which predictions of all 382 ‘‘new’’ masses do not necessarily exist.

1995 data (1768
nuclei)

2001 data (2135
nuclei) ‘‘New’’ nuclei (382 nuclei)

s ē s ē s ē smod ēmod R

HFBCS-1 (III.B.4) 0.718 0.102 0.805 0.180 1.115 0.494 1.056 0.460 1.47
HFB-1 (III.B.4) 0.740 0.040 0.822 0.131 1.123 0.510 1.091 0.494 1.47
HFB-2 (III.B.4) 0.674 0.000 0.769 0.377 0.724 0.356
HFB-28 (III.B.4) 0.651 20.039 0.702 0.058 0.857 0.470 0.789 0.437 1.21
FRDM (III.C.3) 0.678 0.023 0.676 0.072 0.655 0.247 0.485 0.202 0.71
TF-FRDM (III.C.5) 0.662 20.034 0.655 20.036 0.655 20.085 0.511 20.121 0.77
Duflo-Zuker (1995, 1999) (III.D.1) 0.346 20.010 0.373 0.009 0.479 0.054 0.378 0.028 1.09
Koura et al. (2000) (III.D.2) 0.656 0.012 0.682 0.053 0.755 0.200 0.676 0.163 1.03
Nayak-Satpathy (1999) (III.D.3) 0.359 0.000 0.485 0.047 0.837 0.229 0.779 0.208 2.17
Audi-Wapstra (1995) (III.E.1) 0.317 0.053 0.122 20.002
Garvey and co-workers (1966, 1969) (III.E.2) 0.277 20.010 0.717 0.127 0.653 0.096 2.36
Jänecke-Masson (1988) (III.E.2) 0.247 20.010 0.319 0.010 0.540 0.070 0.451 0.071 1.83
Liran-Zeldes (1976) (III.E.4) 0.534 20.005 0.586 20.036 0.722 20.226 0.554 20.253 1.04

TABLE II. Macroscopic parameters of different mass formulas. The quantities in parentheses for the
FRDM denote the values used in the microscopic part of the model.

Eq. (9) HFBCS-1 HFB-1 HFB-2 FRDM

av (MeV) 215.73 215.794 215.805 215.794 216.247
asym (MeV) 26.46 27.95 27.81 28.00 32.73 (35)

r0 (fm) 1.2185 1.1487 1.1492 1.1487 1.16
r0 (fm23) 0.13196 0.15749 0.15730 0.15749 0.153

Kvol (MeV) ` 231.2 231.3 233.6 240 (300)
asf (MeV) 17.77 17.4 17.5 17.5 22.92 (22)
ass (MeV) 217.70 228.9 229.3 230.9 282.5 (295.7)

TABLE III. Nuclear-matter parameters specific to Hartree-Fock mass formulas.

MSk7 (HFBCS) BSk1 (HFB-1) BSk2 (HFB-2)

Ms* /M 1.050 1.050 1.042
Mv* /M 1.050 1.050 0.860

G0 20.081 20.079 20.705
G08 0.229 0.220 0.446

r frmg /r0 1.47 1.47 1.12
Rev. Mod. Phys., Vol. 75, No. 3, July 2003



1074 Lunney, Pearson, and Thibault: Determination of nuclear masses
REFERENCES

Aalseth, C. E., F. T. Avignone III, A. Barabash, F. Boehm, R.
L. Brodzinski, J. I. Collar, P. J. Doe, H. Ejiri, S. R. Elliott, E.
Fiorini, R. J. Gaitskell, G. Gratta, et al., 2002, Mod. Phys.
Lett. A 17, 1475.

Aboussir, Y., J. M. Pearson, A. K. Dutta, and F. Tondeur, 1992,
Nucl. Phys. A 549, 155.

Aboussir, Y., J. M. Pearson, A. K. Dutta, and F. Tondeur, 1995,
At. Data Nucl. Data Tables 61, 127.

Abzouzi, A., E. Caurier, and A. P. Zuker, 1991, Phys. Rev.
Lett. 66, 1134.

Akmal, A., V. R. Pandharipande, and D. G. Ravenhall, 1998,
Phys. Rev. C 58, 1804.

Armbruster, P., 2000, Annu. Rev. Nucl. Part. Sci. 50, 411.
Arnould, M. and K. Takahashi, 1999, Rep. Prog. Phys. 62, 395.
Aston, F. W., 1920, Nature (London) 105, 617.
Aston, F. W., 1933, Mass Spectra and Isotopes (Edward Ar-

nold, London) [2nd ed. (Edward Arnold, London, 1942)].
Athanassopoulos, S. T., E. Mavrommatis, K. A. Gernoth, and

J. W. Clark, 2003, in Exotic Nuclei and Atomic Masses
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J.-M. Casandjian, A. Cunsolo, C. Donzaud, A. Foti, A.
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Martins, M. A. Ourdane, F. Parente, P. Patté, et al., 2001, Hy-
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Mittig, W., A. Lépine-Szily, and N. A. Orr, 1997, Annu. Rev.
Nucl. Sci. 47, 27.

Mohr, P. J., and B. N. Taylor, 2000, Rev. Mod. Phys. 72, 351.
Möller, P., and A. Iwamoto, 2000, Phys. Rev. C 61, 047602.
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avec MISTRAL au voisinage de 32Mg, Ph.D. thesis (Université
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