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Cosmic magnetic fields, including the fields of planets, stars, and galaxies, are believed to be caused by
dynamo action in moving electrically conducting fluids. While the theory and numerics of
hydromagnetic dynamos have flourished during recent decades, an experimental validation of the
effect was missing until recently. We sketch the long history towards a working laboratory dynamo. We
report on the first successful experiments at the sodium facilities in Riga and Karlsruhe, and on other
experiments which are carried out or planned at various places in the world.
CONTENTS

I. The Enigmatic Field 973
II. Dynamo Basics 974

A. Cosmic magnetism 974
B. Getting started: the disk dynamo 974
C. Some mathematics 975
D. Some distinctions 976

III. Towards Laboratory Dynamos 977
A. From theory to experiment 977
B. The past attempts 977

1. Swirling sodium: Lehnert’s experiment 977
2. Rotating cylinders: Lowes and Wilkinson 978
3. The ‘‘a-box’’ 978
4. Precession: another possibility for dynamo

action 978
5. Fast breeders 978

IV. Present Experiments 979
A. The dynamo experiments in Riga 979

1. Basics: a single helical stream 979
2. Close to the edge: the experiment of 1987 979
3. Restart: design and preparation 979
4. The kinematic and the saturated regime 980
5. Summarizing the main results 981

B. The dynamo experiments in Karlsruhe 982
1. Multivortex flows 982
2. Mean-field model of the Karlsruhe dynamo 982
3. The experiment 983

C. Taking stock 984
V. Further and Future Experiments 984

A. Maryland 984
B. Cadarache 985
C. Madison 985
D. Grenoble 985
E. Perm 986
F. New Mexico 987

VI. Conclusions 987
Acknowledgments 987
References 988

I. THE ENIGMATIC FIELD

‘‘And even Thales seems, from what is recorded of
him, to have supposed that the soul is something pro-
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ductive of movement, if he really said that the magnet
has a soul because it produces movement in iron.’’ This
sentence, found in Aristotle’s ‘‘On the soul’’ (Aristotle,
1986), testifies that magnetism was already known
around 600 B.C.

Throughout the centuries, people have been attracted
by the properties of lodestone. Usually, the Chinese are
said to have built the first compass in the form of a
lodestone spoon, probably in the first century B.C. (cf.
Needham, 1962). However, a purposefully shaped hema-
tite bar found close to Veracruz, Mexico, suggests that
the Olmec may have discovered and used the compass
even earlier than 1000 B.C. (cf. Carlson, 1975).

The poles of lodestone and their attracting and repel-
ling forces were the topic of Petrus Peregrinus’s ‘‘Epis-
tula de magnete’’ (Petrus Peregrinus, 1995), written in
1267, a fascinating treatise that possibly can be called
the first scientific ‘‘paper’’ in a modern sense. Gilbert
(1600), inspired by Peregrinus’s work, made his own ex-
periments with small spheres of lodestone (‘‘terrellae’’),
and concluded ‘‘ . . . that the terrestrial globe is magnetic
and is a loadstone.’’

Soon after Gilbert’s death, the westward drift of the
Earth’s magnetic field was observed by Gellibrand
(1635). That unsettling discovery raised the question
how such a large lodestone as Earth could undergo such
a change. Halley (1692) still tried to explain the secular
variation by assuming a shell structure within the Earth’s
interior, each sphere being independently magnetized,
and each rotating slowly with respect to the others.
However, the evidence against the lodestone hypothesis
continued to grow. Nowadays we know that magnetite,
the basic mineral of lodestone, loses its ferrimagnetism
at approximately 580 °C, a temperature that is exceeded
by the temperature in the Earth below a depth of about
30 km. And we know that not only planets but also stars
and whole galaxies produce magnetic fields.

The laboratory experiments that are the subject of the
present paper are not copies of specific cosmic bodies.
Rather they are intended to underpin our basic ideas of
cosmic magnetic-field generation, according to modern
hydromagnetic dynamo theory.
©2002 The American Physical Society
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II. DYNAMO BASICS

Usually, the construction of technical devices requires
a certain understanding of natural phenomena. Some-
times, however, it happens that natural phenomena are
explained in terms of well-known technical processes. In
the middle of the 19th century, Jedlik (cf. Simonyi,
1990), Siemens (1867), and Wheatstone (1867) had in-
vented the technical version of the self-exciting dynamo.
Only half a century later, trying to understand the mag-
netic field in sunspots, Larmor (1919) speculated that it
might be ‘‘ . . . possible for the internal cyclic motion to
act after the manner of the cycle of a self-exciting dy-
namo, and maintain a permanent magnetic field from
insignificant beginnings, at the expense of some of the
energy of the internal circulation.’’ Larmor’s one-page
communication has turned out to be the birth of the
modern theory of cosmic magnetic fields.

A. Cosmic magnetism

Magnetic fields are ubiquitous in the cosmos. They
seem to exist wherever sufficiently large quantities of
electrically conducting fluids can be found in convective
motion mixed with rotation.

The dynamo of the Earth produces a magnetic field
that is basically a dipole field with an axis slightly tilted
from the geographic axis. The field intensity on the
Earth’s surface is typically on the order of 531025 T. Of
particular interest is the observation that the Earth’s
magnetic field is changing on various time scales. Most
remarkable are the field reversals and the fact that their
sequence shows no periodicity but seems to be com-
pletely irregular.

Besides the Earth, other planets in the solar system
have magnetic fields produced by dynamo action (Mer-
rill et al., 1998). Fields are produced inside Jupiter, Sat-
urn, Uranus, and Neptune. Possibly, a dynamo had
worked inside Mars in the ancient past (Connerney
et al., 2001). The Mariner 10 mission in 1974–1975 had
revealed the magnetic field of Mercury (Ness et al.,
1975), and there remain many puzzles as to how it can
be produced (Southwood, 1997). The detection of the
magnetic field of Ganymede, the largest Jupiter moon,
was one of the major discoveries of NASA’s Galileo
spacecraft mission in 1996 (Kivelson et al., 1996).

The magnetic fields of sunspots were discovered by
Hale (1908) at Mt. Wilson observatory, thus proving evi-
dence that the magnetism is not a phenomenon re-
stricted to the Earth. Accepting the tight relation of sun-
spots and magnetic fields, sunspot observation turns into
a perfect test field for any theory of solar magnetism.
What has to be explained is, first of all, the 11-year pe-
riodicity of sunspots, their migration towards the equa-
tor (the ‘‘butterfly diagram’’), and the occurrence of
grand minima which are superimposed upon the main
periodicity (Rüdiger and Arlt, 1999).

Our Sun is not the only star with a magnetic field. Ap
(A-type peculiar) stars have remarkable magnetic field
strengths on the order of 1 T. The observed magnetic
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
field strengths of some white dwarfs exceed 100 T, and
those of some anomalous x-ray emitting pulsars reach
values of 1011 T (Kouveliotou et al., 1998).

Large scale magnetic fields of the order of 1029 T are
observed in many spiral galaxies (Beck et al., 1996).
Usually there is a close correlation of the magnetic field
structure with the optical spiral pattern that indicates
the relevance of dynamo action. It should be noted,
however, that the origin of the galactic and intergalactic
magnetic fields is still a matter of controversy, and that
particle-physics-inspired models of magnetic field gen-
eration in the early universe are discussed as well
(Grasso and Rubinstein, 2001).

B. Getting started: the disk dynamo

Before entering the sophisticated matter of homoge-
neous dynamos, we discuss the very process of magnetic
field self-excitation for a simple theoretical model. Basi-
cally, the homopolar disk dynamo (Fig. 1) consists of a
rotating metal disk which is slidingly connected to a wire
wound around the rotation axis of the disk (Bullard,
1955). Assuming that the disk rotates with an angular
velocity v and that it is penetrated by an external mag-
netic field B, an electromotive force (emf) v3B is in-
duced along the radial direction, with the local velocity
given by v5v3r. This emf drives a current I through
the wire that amplifies the externally applied magnetic
field, in the case that the rotation direction is the same
as the winding direction of the wire (starting from the
rim, cf. Fig. 1). The inverse amplification of the magnetic
field as a function of the rotation rate is shown in Fig. 2.

Neglecting the external magnetic field, standard cir-
cuit analysis gives the relation L0İ1RI5LvI/2p for

FIG. 1. The homopolar disk dynamo. A metallic disk rotates
with an angular velocity v in a magnetic field B. The emf v
3B points from the axis to the rim of the disk and drives a
current I through the wire. The orientation of the wire is such
that the external magnetic field is amplified. At a critical value
of v, the amplification becomes infinite: self-excitation sets in.
With growing magnetic field, the Lorentz force j3B acts
against the driving torque.
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the current I , with R , L0 , and L denoting the Ohmic
resistance of the circuit, the self-inductance of the cir-
cuit, and the mutual inductance between the coil and a
hypothetical circuit which corresponds to the rim of the
disk, respectively. Evidently, this setup can work as a
self-excited dynamo if the angular velocity v of the disk
exceeds the critical value vc52pR/L . Beyond that
critical rotation rate the magnetic field will start to in-
crease exponentially. This is the kinematic regime of the
dynamo. With increasing magnetic field B and current
density j, a saturation regime will be reached when the
Lorentz force j3B exerts a braking torque on the disk
that is in equilibrium with the supposed mechanical driv-
ing torque.

Although this device looks very simple, one should
notice the presence of insulating spacings between the
conducting parts forcing the current in the desired direc-
tion. In contrast to multiply connected and asymmetric
technical dynamos of this sort, cosmic dynamos work in
singly connected electrically conducting fluids.

C. Some mathematics

The mathematics of hydromagnetic dynamos is a fas-
cinating topic in itself. For the theoretically inclined
reader we mention, without any claim to completeness,
the explanation of the dynamo effect in terms of spon-
taneous symmetry breaking in a field-theoretical model
of magnetohydrodynamic (MHD) turbulence (Adzhe-
myan et al., 1999), the relevance of topological methods
and knot theory (Arnold and Khesin, 1998; Faddeev and
Niemi, 2000), and the claimed relation of MHD with
string theory (Olesen, 1996).

In the context of laboratory experiments it might suf-
fice to derive the induction equation from textbook elec-
tromagnetism and to impart to the reader a certain feel-
ing for how self-excitation manifests itself in a
homogeneous fluid.

The equations to start with are Ampère’s law, Fara-
day’s law, and Ohm’s law:

¹3B5m0j, (1)

FIG. 2. Inverse amplification of the applied magnetic field in
the disk dynamo. At a critical angular velocity, the amplifica-
tion becomes infinite and self-excitation starts.
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¹3E52Ḃ, (2)

j5s~E1v3B!. (3)

The conductivity of the fluid is denoted by s, and the
permeability of the vacuum by m0 (we suppose all ma-
terials to be nonmagnetic). Note that we have skipped
the displacement current in Eq. (1) as it is not relevant
here. Taking the curl of Eqs. (1) and (3), and inserting
Eq. (2), one readily arrives at the induction equation for
the magnetic field:

]B
]t

5¹3~v3B!1
1

m0s
DB. (4)

In deriving Eq. (4) we have assumed, for simplicity, s to
be constant in the considered region, and we have ex-
ploited the fact that the magnetic field is source free:

¹•B50. (5)

Assuming that there are no external excitations of the
magnetic field from outside the considered finite region,
the boundary condition for the magnetic field reads

B5O~r23! as r→` . (6)

It is worthwhile to note that Eq. (4) describes the evo-
lution of the magnetic field alone, without considering
the electric field. Actually, the dominance of the mag-
netic field is a consequence of the quasistationarity in
good conductors. The energy of the electric field is by a
factor v2/c2 smaller than the energy of the magnetic
field.

The evolution of the magnetic field in Eq. (4) is gov-
erned by the competition between the diffusion and the
advection of the field. For vanishing velocity the mag-
netic field will disappear within a typical decay time td
5m0sl2, with l being a typical length scale of the sys-
tem. On the other hand, the advection can lead to an
increase of B within a kinematic time tk5l/v . If the ki-
nematic time becomes smaller than the diffusion time,
the net effect of the evolution can become positive, and
hence the field will grow. Comparing the diffusion time
scale with the kinematic time scale we get a dimension-
less number that governs the ‘‘fate’’ of the magnetic
field. This number is called the magnetic Reynolds num-
ber Rm :

Rm5m0slv . (7)

Depending on the flow pattern, the values of the critical
Rm are in the range of 101 –103.

The competition between field dissipation and pro-
duction can also be understood in terms of the energy
balance. Taking the scalar product of the induction
equation with B/m0 , and performing a partial integra-
tion, we find for the time evolution of the magnetic en-
ergy

d

dt E B2

2m0
dV52E v•~j3B!dV2E j2

s
dV . (8)

In this form, the dynamo action can be interpreted in a
familiar way: the time derivative of the magnetic field
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energy equals the difference between the work done
(per time) by the Lorentz forces and the Ohmic losses.
The Lorentz force converts kinetic energy into magnetic
energy, the Ohmic dissipation converts magnetic energy
into heat.

Besides the usual differential equation formulation
[Eqs. (4) and (5)], dynamo action can also be made in-
telligible in the framework of integral equations. In the
simplest case of a time-independent dynamo which is
acting in an infinite region of homogeneous conductivity
we can easily apply Biot-Savart’s law to get

B~r!5
m0s

4p E ¹3@v~r8!3B~r8!#

ur2r8u
dV8. (9)

The source of the magnetic field is the current s(v
3B) under the integral on the right-hand side of Eq. (9).
For Eq. (9) to have nontrivial solutions, BÓ0, the veloc-
ity field v must be chosen appropriately. In particular, if
we assume a certain spatial structure of v, Eq. (9) turns
into an eigenvalue equation for the intensity of this ve-
locity field. For interesting numerical implementations
of the integral equation method, see Gailitis (1970,
1973) and Dobler and Rädler (1998). The generalization
to time-dependent dynamos was considered by Dobler
and Rädler (1998), and the inclusion of boundaries was
discussed by Stefani et al. (2000).

Finally, it is important to avoid the impression that
any sufficiently vigorous flow will result in dynamo ac-
tion. Starting with Cowling’s theorem, stating that no
fluid flow can maintain a purely axisymmetric magnetic
field (Cowling, 1934), there are a number of anti-
dynamo theorems excluding too simple structures of the
velocity field or the self-excited magnetic field (cf. Fearn
et al., 1988; Roberts, 1994).

D. Some distinctions

Let us draw a few distinctions which are most relevant
to characterize dynamos.

The first distinction, between kinematic and dynami-
cally consistent dynamos, concerns the assumptions on
the velocity field. If we assume the velocity to be steady,
the time dependence of B in Eq. (4) becomes an expo-
nential one according to B(r,t)5exp(lt)B̂(r), and the
dynamo problem can be rewritten as a time-independent
eigenvalue equation. In general, the eigenvalue l can be
complex, with a growth rate p and a frequency f : l5p
12pif . A velocity field v is then said to work as a dy-
namo if p>0. As in the disk dynamo case, the field then
starts to grow exponentially. As we have seen, dynamo
action is based on the conversion of kinetic energy into
magnetic energy. It is obvious that the source of dynamo
action, the velocity field, cannot stay unaffected when
the magnetic field grows. Indeed, with increasing mag-
netic field there is an increasing Lorentz force j3B act-
ing back on the velocity field, again as in the case of the
disk dynamo. In general, the evolution of the velocity
field is governed by the Navier-Stokes equation,
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
]v
]t

1~v•¹!v52
¹p

r
1

1
m0r

~¹3B!3B1nDv1fd ,

(10)

where r and n denote the density and the kinematic vis-
cosity of the fluid, p is the pressure, and fd symbolizes
driving forces which we leave unspecified at the mo-
ment. The Lorentz force in Eq. (10) puts Lenz’s rule into
action: the magnetic field acts back on the flow, in gen-
eral weakening the source of its own generation. The
treatment of the coupled system of Eqs. (4) and (10),
that is the dynamically consistent dynamo problem, is
much more intriguing than the treatment of the linear
induction equation alone.

A second distinction concerns whether or not the tur-
bulent character of practically all dynamo related flows
is treated by the dynamo model. Note that in dimension-
less form both Eqs. (4) and (10) are equations with small
coefficients at the highest derivative. These small coeffi-
cients are Rm

21 for Eq. (4) and Re21 for Eq. (10), where
Re denotes the hydrodynamic Reynolds number Re
5lv/n . The magnetic Prandtl number PmªRm /Re
5m0sn for liquid metals is of the order 1025, hence Re
for liquid metal dynamos is larger than 106. Those flows
are in general turbulent, the question is only about the
turbulence level and its role in the dynamo process.
Commonly, one distinguishes between so-called laminar
and mean-field dynamo models. Laminar models are de-
scribed by the unchanged Eq. (4) with neglected turbu-
lence. The self-excited magnetic field varies on the same
length scale as the velocity field does. Mean-field dy-
namo models, on the other hand, are relevant for highly
turbulent flows. In this case the velocity and the mag-
netic field are considered as superpositions of mean and
fluctuating parts, v5 v̄1v8 and B5B̄1B8. From Eq. (4)
we get the equation for the mean part B̄,

]B̄
]t

5¹3~ v̄3B̄1E!1
1

m0s
DB̄. (11)

Obviously, the equation for the mean field is identical to
the equation for the original field, except for one addi-
tional term,

E5v83B8, (12)

that represents the mean electromagnetic force due to
the fluctuations of the velocity and the magnetic field.
The elaboration of mean-field dynamo models in the
1960s by Steenbeck, Krause, and Rädler (1966) was a
breakthrough in dynamo theory (cf. also Krause and
Rädler, 1980). They had shown that the mean electro-
motive force in a nonmirrorsymmetric turbulence can be
of the form

E5aB̄2b¹3B̄, (13)

with a parameter a that is nonzero for helical turbulence
and a parameter b that describes the enhancement of
the electrical resistivity due to turbulence. The effect
that helical fluid motion can induce an emf that is paral-
lel to the magnetic field is now commonly known as the
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a-effect. Dynamo models based on the a-effect have
played an enormous role in the study of solar and galac-
tic magnetic fields, and we will later explain the physics
of the Karlsruhe experiment in terms of a mean-field
model with the a-effect.

Third, it is useful to distinguish between weak-field
and strong-field dynamos. The precise distinctive feature
between both types is controversial (ratio of magnetic to
kinetic energy, interaction parameter, etc.). Here we
adopt the definition of Zhang and Schubert (2000) that
‘‘in a strong-field dynamo the structure and scale of the
flow are sensitive to variations in the generated mag-
netic field,’’ whereas in a weak-field dynamo ‘‘the dy-
namic effect of the generated magnetic field can be
treated as a perturbation.’’

Connected with this, and in particular relevant to
laboratory dynamos, there is a distinction between con-
strained flow dynamos and free flow dynamos. The
present laboratory dynamos comprise mechanical instal-
lations to drive and guide the flow (propellers, guiding
vanes, and blades). Obviously, the fewer installations
present in the fluid, the more freedom the flow has to be
modified and reorganized by the Lorentz forces. The
idea behind free flow dynamos is to make the flow field
as unconstrained as possible allowing a free evolution of
the nonlinearities in the coupled Eqs. (4) and (10). It
would be most interesting to drive the flow purely by
convection, as in the Earth’s outer core. However, it
seems to be impossible to reach velocities sufficient for
dynamo action in a purely convective way in laboratory
experiments, as discussed, e.g., by Tilgner (2000). Hence
all present laboratory experiments have to find a com-
promise between a mechanical forcing of the flow and
the degree of freedom of the flow for the magnetic field
back reaction.

For completeness, we should also mention the distinc-
tion between slow and fast dynamos (Childress and Gil-
bert, 1995) which is, however, not particularly relevant
for experimental dynamos.

III. TOWARDS LABORATORY DYNAMOS

A. From theory to experiment

During recent decades tremendous progress has been
made in the analytical understanding and the numerical
treatment of hydromagnetic dynamos, which has been
reported in dozens of monographs and review articles
(to quote a few: Busse, 1978, 2000, 2002; Moffatt, 1978;
Krause and Rädler, 1980; Inglis, 1981; Roberts and
Jensen, 1992; Roberts and Soward, 1992; Childress and
Gilbert, 1995; Hollerbach, 1996; Fearn, 1998; Merrill
et al., 1998; Roberts and Glatzmaier, 2000). Recent nu-
merical simulations (Glatzmaier and Roberts, 1995;
Kuang and Bloxham, 1997; Busse et al., 1998; Chris-
tensen et al., 1999; Kageyama et al., 1999) share their
main results with features of the Earth’s magnetic field,
including the dominance of the axial dipolar component,
weak nondipolar structures, and, in some cases, full po-
larity reversals, a behavior that is well known from pa-
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
leomagnetic measurements (for a recent overview, see
Merrill and McFadden, 1999).

Despite those successes, a number of unsolved prob-
lems remain. The simulations of the Earth’s dynamo are
carried out in parameter regions far from the real one.
This concerns, in particular, the Ekman number E (the
ratio of the rotation time scale to the viscous time scale)
and the magnetic Prandtl number Pm (the ratio of the
magnetic diffusion time to the viscous diffusion time).
The Ekman number of the Earth is of the order 10215,
the magnetic Prandtl number is of the order 1026.
Present numerical simulations are carried out for values
of E and Pm as small as E;1025 and Pm;0.1. The wide
gap between real and numerically tractable parameters
is, of course, a continuing source of uncertainty about
the physical relevance of those simulations. The usual
way in fluid dynamics to deal with parameter discrepan-
cies of this sort, namely, to apply sophisticated turbu-
lence models, is presently hampered by the lack of reli-
able turbulence models for fluids that are strongly
rotating and strongly interacting with a magnetic field.
Here is the crucial point where laboratory experiments
are unavoidable in order to collect knowledge about the
turbulence structure in the (rotating or not) dynamo re-
gime.

B. The past attempts

Typical values of the critical magnetic Reynolds num-
ber for different flow geometries are of the order of 100.
For the best liquid metal conductor, sodium, the product
of conductivity and magnetic permeability is approxi-
mately 10 s/m2. To get an Rm of 100 the product of
length and velocity has to be 10 m2/s. It is this large
value, in combination with the technical and safety prob-
lems in handling sodium, that has made the way to a
working laboratory fluid dynamo so stony. To reach this
value one should have more than 1 m3 sodium and use
at least 100 kW of mechanical power to move it.

1. Swirling sodium: Lehnert’s experiment

An early dynamo-related sodium experiment was re-
ported by Lehnert (1958). His experiment can be con-
sidered as the prototype of a number of dynamo-related
experiments which will be considered later. Lehnert had
used a motor-driven disk, partly attached with radial
strips, rotating in a 0.4-m-diameter vessel containing 58 l
of liquid sodium. He observed the conversion of an ap-
plied poloidal magnetic field component into a toroidal
field, which is an important ingredient of the dynamo
process. Historically it is interesting that Lehnert did not
believe in the dynamo capabilities of his device: ‘‘A fluid
dynamo necessarily has to be asymmetric in order to
become self-exciting. Thus it is plausible that no dynamo
can exist in the configuration . . . which has a low de-
gree of asymmetry and has been operated at angular
velocities not exceeding 47 sec21.’’ It seems that, being
well aware of the impossibility of axisymmetric magnetic
field generation (Cowling, 1934), Lehnert did not fore-
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see the spontaneous breaking of magnetic field symme-
try allowing dynamo action for axisymmetric velocity
fields as well.

2. Rotating cylinders: Lowes and Wilkinson

Soon after Lehnert, Lowes and Wilkinson started a
long-term series of homogeneous dynamo experiments
(Lowes and Wilkinson, 1963, 1968; Wilkinson, 1984). In-
spired by the pioneering work of Herzenberg (1958),
who had given the first rigorous existence proof for a
homogeneous dynamo consisting of two rotating small
spheres embedded in a large sphere, they started with
the first homogeneous dynamo using two rotating cylin-
ders in a ‘‘house-shaped’’ surrounding conductor (see
Fig. 3). The key point for the success of this and the
following experiments was the utilization of various fer-
romagnetic materials making the magnetic Reynolds
number large, simply by a high relative magnetic perme-
ability mr (between 150 and 250).

The history of these experiments is fascinating, not
only for their step-by-step improvements but also for the
continuing comparison of the resulting field with geo-
magnetic features (Wilkinson, 1984). Starting with a
simple geometry of the rotating cylinders, which pro-
duced steady and oscillating magnetic fields, the design
was made more sophisticated so that it permitted the
observation of field reversals. That way it was shown
that a complex field structure and behavior can be pro-
duced with comparatively simple patterns of motion.

However, the experiments were flawed by the use of
ferromagnetic materials (e.g., perminvar, heat treated
mild steel, electrical iron) and the nonlinear field behav-
ior which is inevitably connected with these materials.
One attempt to get self-excitation with rotating nonmag-
netic copper cylinders failed. And, although homoge-
neous, all these dynamos did not allow one to study the
nontrivial back reaction of the magnetic field on the
fluid motion, and there was no chance to learn some-
thing about MHD turbulence.

3. The ‘‘a-box’’

It was in the 1960s that the concept of mean-field dy-
namos and the a-effect started to flourish (Steenbeck
et al., 1966). As said above, the essence of the a-effect is
that helical turbulence can produce currents parallel to
the mean magnetic field. Compared to our book learn-

FIG. 3. Herzenberg’s dynamo model. (a) Two spheres rotate
around nonparallel axes. (b) The first dynamo of Lowes and
Wilkinson. Two cylinders rotate in a ‘‘house-shaped’’ block.
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ing that currents and magnetic fields are connected via
the right-hand rule, this effect is indeed remarkable.

For experimental demonstration of the a-effect,
Steenbeck et al. (1967) constructed the ‘‘a-box,’’ a sys-
tem of two orthogonally interlaced channels (see Fig. 4).
By virtue of this special geometry, the sodium flow
through this system was not mirror symmetric.

The main result of this experiment was that the in-
duced voltage in weak fields is proportional to Bv2, i.e.,
it is independent of the flow direction, and it reverses if
the applied magnetic field is reversed. The a-effect was
therefore validated.

We only mention that recently the b-effect, i.e., the
reduction of the electrical conductivity due to turbu-
lence [cf. Eq. (13)], was demonstrated in an experiment
by Reighard and Brown (2001).

4. Precession: another possibility for dynamo action

Gans (1970) has reported on an experiment which was
dynamo related, too. He used a sodium-filled precessing
cylinder having a 25 cm diameter and approximately the
same height. The rotation rate of the cylinder could
reach 3600 rpm, and the precession rate 50 rpm. Ampli-
fications of an applied magnetic field up to a factor of 3
were observed.

In this context it should be mentioned that precession
has not been completely ruled out as one possible source
of planetary dynamos (Malkus, 1994). Recently, a
precession-driven dynamo experiment with liquid so-
dium has been proposed (Léorat et al., 2001).

5. Fast breeders

For the sake of completeness we mention a sort of
dynamo investigation related to liquid metal fast
breeder reactors (Bevir, 1973; Pierson, 1975; Kirko et al.,
1982). The magnetic Reynolds numbers in the huge
pumps are indeed in the region where dynamo action
may occur, and in some cases the flow topology is even
helical, as is preferable for dynamo action. More recent

FIG. 4. The ‘‘a-box,’’ the first dynamo-related experiment in
Riga. The sodium flow through the helically interlaced chan-
nels produces an emf parallel to the magnetic field.
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results indicate, however, that no dynamo action has oc-
curred in those facilities (Plunian et al., 1999; Alemany
et al., 2000).

IV. PRESENT EXPERIMENTS

For decades, a ‘‘fair’’ hydromagnetic dynamo experi-
ment, i.e., an experiment with a homogeneous liquid but
without ferromagnetic material, seemed to be at the
edge of technical feasibility. The successful self-exciting
dynamos of Lowes and Wilkinson were not fluid dyna-
mos, and their results were dominated by the use of fer-
romagnetic materials. On the other hand, the sodium
experiments of Lehnert (1958) and Steenbeck et al.
(1967) were not intended to provide self-excitation.

At the end of 1999, two successful dynamo experi-
ments have been carried out, one in Riga, Latvia (Gaili-
tis et al., 2000), the other in Karlsruhe, Germany (Müller
and Stieglitz, 2000; Stieglitz and Müller, 2001). With a
slight emphasis on the former (simply on account of our
personal engagement), we report on the preparation and
the results of both experiments.

A. The dynamo experiments in Riga

1. Basics: a single helical stream

Dynamos like screw motion. Ponomarenko (1973)
had investigated the ‘‘elementary cell’’ of dynamos: an
endless helical stream moving as a solid cylinder and
maintaining full electrical contact with its immobile sur-
rounding. The solution of the induction equation for the
Ponomarenko dynamo consists of a linear combination
of Bessel functions within the screwing rod and within
the surrounding motionless conductor. There remains a
matching condition at the interface resulting in a tran-
scendent secular equation. For large Rm Ponomarenko
proved that this configuration is indeed a dynamo. The
basic dynamo action in the large Rm limit has been
called a ‘‘stretch-diffuse’’ mechanism (Gilbert, 1988; cf.
also Ruzmaikin, Sokoloff, and Shukurov, 1988); it com-
prises the stretching of a weak radial field by the infinite
helical shear across the boundary into azimuthal and
axial fields aligned with the shear, as well as a restora-
tion of the radial field by diffusion of the azimuthal field.

Gailitis and Freibergs (1976) found a critical Rm of
17.7 for the magnetic field mode with an azimuthal de-
pendence ;exp(imw) with m51. This was an encourag-
ingly low value for a magnetic instability. Unpleasantly,
this instability turned out to be a convective one, i.e., a
magnetic mode that grows exponentially in time but si-
multaneously moves downstream with some group ve-
locity. In contrast to a global instability, a convective in-
stability cannot be observed in a finite length system.

In other words, the problem is that magnetic field am-
plification takes place in the flow, but the amplified field
is convected away. The key idea to overcome this di-
lemma was to introduce some sort of feedback. This
feedback can be achieved by adding a counterflow to the
central helical flow. From the latter the magnetic field
will diffuse into the former which in turn transports the
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
convected field back to the location of its generation.
This idea was made concrete in another paper of Gailitis
and Freibergs (1980). In technical terms, a working dy-
namo, i.e., a dynamo with a global instability, could con-
sist of a helical inner flow and a surrounding backflow,
connected by two flow bending regions. If we add an-
other surrounding area with sodium at rest, which is in-
tended to lower the critical Rm by providing suitable
electrical boundary conditions, we have the central mod-
ule of the Riga dynamo experiment (cf. Sec. IV.A.3 be-
low).

2. Close to the edge: the experiment of 1987

Under the guidance of two of the authors, a forerun-
ner (see Fig. 5) of the present dynamo experiment was
prepared in Riga and carried out in St. Peterburg (Gaili-
tis et al., 1987, 1989; Gailitis, 1989, 1993). Unfortunately,
because of mechanical vibrations, this experiment had to
be stopped before magnetic field self-excitation was
reached. Nevertheless, it was possible to collect data on
the essential amplification of an external seed field,
which gave some indication that the value of the critical
magnetic Reynolds number was in agreement with the
theoretical prediction.

3. Restart: design and preparation

Despite the failure to reach self-excitation, the 1987
experiment was encouraging. Since the beginnings of the
1990s, an improved version of the experiment was pre-
pared. The main difference from the previous experi-
ment is that the sodium flow is produced by a motor-
driven propeller instead of by outer electromagnetic
pumps.

Much effort has been spent to fine-tune the whole
facility. The first step was to optimize the main geomet-
ric relations, in particular the relations of the three radii
to each other and to the length of the system (Gailitis,
1996). The resulting shape of the central module of the
dynamo is shown in Fig. 6. In a water dummy facility, a
lot of tests have been carried out which were devoted to
optimizing the velocity profiles (Christen et al., 1998)
and to ensuring the mechanical integrity of the system.
All the experimental preparations were accompanied by
extensive numerical simulations, using different one-
and two-dimensional codes. One main result of these
simulations was the optimization of the velocity profile
with regard to the limited motor power resources of

FIG. 5. The dynamo module of the 1987 experiment.
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around 120 kW (Stefani et al., 1999). Another result was
the prediction of the main features of the expected mag-
netic field, i.e., its growth rate, frequency, and spatial
structure, and the dependence of these features on the
rotation rate of the propeller.

4. The kinematic and the saturated regime

The first experiment at the Riga dynamo facility was
carried out on 10–11 November 1999 (Gailitis et al.,
2000). Before the experiment could start, sodium was
pumped slowly through the tubes at a temperature of
300 °C in order to ensure good electrical contact with
the inner 1.5-mm stainless-steel walls. As the conductiv-

FIG. 6. The main part of the Riga dynamo facility: (1) Propel-
ler moved via belts by two motors (not shown). (2) Helical
flow region without any flowguides; flow rotation is maintained
by inertia only. (3) Back-flow region. (4) Sodium at rest. (5)
Thermal insulation. F: Position of the flux-gate sensor. H1–H6:
Positions of six vertically aligned Hall sensors.
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ity of sodium increases with decreasing temperature, the
main experiment was planned at a temperature close to
150 °C. During the cooling down period some pre-
experiments were devoted to the investigation of the
subcritical behavior of the dynamo. To this end, a three-
phase seed-field coil was helically wound around the dy-
namo and fed by an ac current in order to produce a
rotating magnetic field as similar as possible to the ex-
pected self-excited field. The amplification of this field,
and its dependence on the propeller rotation rate, was
measured by a flux-gate sensor. Figure 7 gives the in-
verse amplification, in terms of the relation of the ap-
plied current to the measured total field, taken at an
excitation frequency of 1 Hz. In contrast to the magnetic
field of the disk dynamo, the magnetic field of the Riga
dynamo has a complicated spatial structure, and it ro-
tates with a certain frequency around the dynamo axis
producing an ac signal in every sensor. Nevertheless, a
large part of the curve (between 500 and 1500 rpm) re-
sembles the amplification scheme of the disk dynamo
(cf. Fig. 2). This part of the curve points to an intersec-
tion with the abscissa, i.e., to infinite amplification, at
about 1700 rpm. As 1 Hz is not exactly the generation
frequency, the curve bends and drifts away from the ab-
scissa above a rotation rate of 1900 rpm.

It is noteworthy that the measured signals underlying
the points shown in Fig. 7 were very clean sinusoidal
signals with the external frequency, with hardly any su-
perposition of other frequencies. The observed signal
shape changed suddenly at the maximum rotation rate
of 2150 rpm. There, another clear-cut frequency
emerged in the signal. Figure 8 shows how the measured
field splits into the amplified external field and the self-
excited field which was exponentially increasing in time.
Hence, 11 November 1999 marked the first experimental
observation of the kinematic regime of a hydromagnetic
dynamo.

Soon after the detection of this self-excited mode, the
experiment had to be stopped due to a technical prob-
lem with a seal on the propeller axis.

In July 2000, when the seal was repaired, it was pos-
sible to work at lower temperatures (down to 150 °C)
and therefore at higher magnetic Reynolds numbers
(Gailitis et al., 2001, 2001a, 2001b; Gailitis, Lielausis,

FIG. 7. Amplification of an applied magnetic field with 1 Hz.
At the rightmost point (2150 rpm at 205 °C) self-excitation
occurs.
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Platacis, Dement’ev, et al., 2002). A typical experimental
run is documented in Fig. 9. The duration of this run was
about 8 min. At the beginning the propeller rotation was
quickly increased. Then, it was held fixed at 1950 rpm
for a period of 80 sec. During this time the magnetic
field grew exponentially and started to saturate. In later
periods the rotation rate was slightly modified, and the
dependence of the saturated field on the rotation rate
was studied.

5. Summarizing the main results

From four experimental runs similar to that shown in
Fig. 9, together with the runs from the November 1999
experiment, we have compiled a number of data on the

FIG. 8. Flux-gate signal measured at 2150 rpm, i.e., the right-
most point in Fig. 7 (crosses). Decomposition of the signal into
an amplified part with 0.995 Hz (dashed line) and a self-excited
part with 1.326 Hz (full line).

FIG. 9. One experimental run in July 2000. Rotation rate of
the motors, and magnetic field measured at one Hall sensor
(H4 in Fig. 6) plotted vs time. After the exponential increase
of the magnetic field in the kinematic dynamo regime, the de-
pendence of the field level on the rotation rate has been stud-
ied in the saturation regime. The temperature increased during
the run from 170 to 180 °C. The inset shows the signal mea-
sured at the (inner) fluxgate sensor during the very beginning
of self-excitation when the field at the (outer) Hall sensor is
much below its sensitivity.
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kinematic and the saturated dynamo regimes. Let us
start with Fig. 10 in which the measured growth rates
and frequencies are compared with our numerical pre-
dictions. For the sake of clarity all the measured data
have been scaled to the sodium conductivity at a tem-
perature of 157 °C. Starting from the left-hand side, the
growth rates increase, i.e., the decay rates decrease. At
the critical rotation rate of 1840 rpm, the growth rates
show a sharp bend to zero, indicating that the saturation
regime has been reached. (Note that there are a few
positive values of the growth rates, where the magnetic
fields were still small enough to belong to the kinematic
regime.) The numerical prediction in the framework of
kinematic dynamo theory was surprisingly good, apart
from an overall shift of the measured data by about 10%
towards higher rotation rates. A similar correspondence
of predictions and measurements holds for the frequen-
cies in the kinematic regime. There is a shift of about
8% towards lower rotation rates. The most surprising
effect comes from the frequency data in the saturation
regime. It seems that they are almost unaffected by the
transition from the kinematic to the saturation regime.
So what? Why does the growth rate behave as if the flow
intensity were frozen to the critical one whereas the fre-
quencies behave as if the flow intensity were completely
unaffected by the back reaction?

We may come closer to the solution of this puzzle if
we consider the measured magnetic field distribution
along the axis of the dynamo. The data points in Fig. 11
show these distributions in the kinematic and in the
saturation regime. There is a clear shift of the magnetic
field towards the upper part of the dynamo.

In a first simple numerical model we have tried to
understand this behavior (Gailitis, Lielausis, Platacis,
Gerbeth, and Stefani, 2002). Taking into account only
the azimuthal component of the Lorentz force and fit-
ting its strength to a value that is compatible with the
measured increase of the motor power in the saturation

FIG. 10. Measured growth rates p and frequencies f for differ-
ent rotation rates V in the kinematic and the saturation re-
gime, compared with the numerical predictions. The dotted
line is a fit curve for the growth rates in the kinematic regime.
V, p , and f at the temperature T were scaled to (Vc ,pc ,fc)
5s(T)/s(157 °C) @V(T),p(T),f(T)# as required by the scal-
ing properties of Eq. (4).
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regime (around 10 kW) we got the result that the reduc-
tion of the azimuthal velocity component accumulates
downstream. This reduction is mirrored by the observed
magnetic field distribution, depicted in the numerical
curves in Fig. 11, and at the same time it explains the
observed behavior of the growth rate and the frequency.
To be honest, not all effects of the magnetic field in the
saturation regime can be explained by our (too) simple
back reaction model, but there is good hope that the
back reaction can be understood by a slightly improved
weak-field dynamo concept.

B. The dynamo experiments in Karlsruhe

1. Multivortex flows

A dynamo experiment with a flow configuration simi-
lar to that in the present Karlsruhe experiment had been
analyzed by Gailitis (1967). The underlying geophysical
motivation, the basic idea, the mathematics and a final
formula for the critical flow rates can already be found
in that paper. The original motivation was to build a
dynamo model ‘‘in which the gyrotropic turbulence is
simulated by means of a certain pseudo-turbulent mo-
tion.’’ In other words, real helical (‘‘gyrotropic’’) turbu-
lence was proposed to be substituted by ‘‘pseudo-
turbulence,’’ realized by a large (but finite) number of
parallel channels with a helical flow inside.

Busse (1975) considered a similar kind of dynamo.
This renewed interest was triggered by theoretical and
experimental studies on thermal instabilities in rapidly
rotating systems (Busse, 1970, 1992; Busse and Carrigan,
1974) which had shown the appearance of convection
rolls.

In 1999, self-excitation was really demonstrated in an
experimental dynamo facility of this kind. Essential con-
tributions to the prediction and the interpretation of the
results of the Karlsruhe experiment have been made by
Rädler et al. (1996, 1998) and Tilgner (1997a, 1997b).

FIG. 11. Dependence of the magnetic field amplitudes on the
position along the z axis of the dynamo. Measured data and
predicted structure for the kinematic and the saturation re-
gime.
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2. Mean-field model of the Karlsruhe dynamo

To understand the basics of the Karlsruhe dynamo ex-
periment, consider the velocity field in Fig. 12. It repre-
sents a flow pattern with a horizontal part and a vertical
part, both are periodic in x and y directions. Roberts
(1972) had shown that such a periodic flow pattern is
capable of magnetic field self-excitation. For dynamos of
this sort we can readily apply the mean-field machinery.
We split the velocity and the magnetic field into mean
fields and fluctuating fields, keeping in mind that the
‘‘fluctuations’’ of the velocity field are experimentally re-
alized by the small scale, but well defined, flows in the
spin generators.

It can be shown (Gailitis, 1967; Rädler et al., 1998,
2002a) that for such a flow pattern without any z depen-
dence the electromotive force acquires the form

E52a'@B̄2~ez•B̄!ez# , (14)

i.e., an extremely anisotropic a-effect that produces only
electromotive forces in the x and y directions but not in
the z direction.

In the specific realization of the Karlsruhe experiment
the Roberts flow in each cell is replaced by a flow
through two concentric channels (Fig. 13). In the central
channel the flow is straight; in the outer channel it is
geometrically forced on a helical path. Denoting the side
length of a cell by a , the pitch of the helical channels by
h , and the volumetric flow rates through the central and
the helical channel by V̇C and V̇H , respectively, Rädler
et al. (1998) gave the following expression for a' :

a'5
V̇H

a2hh S V̇CfC~V̇H /hh !1
1
2

V̇HfH~V̇H /hh ! D ,

(15)

where h51/m0s .
The functions fC and fH depend, apart from the

given argument V̇H /hh , also on the profile of the rota-
tion. They are of the order of 1 for small values of V̇H ,

FIG. 12. Flow periodic in the x and y directions. An elemen-
tary cell of it comprises a horizontal flow (arrows) and a per-
pendicular flow (indicated by the gray scale).
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but decrease to 0 for higher V̇H . The resulting nontrivial
dependence of a' on V̇H is a consequence of the flux
expulsion in rotating conductors.

For the experimentally interesting region, the isolines
of the quantity C5a'R/h , which is a dimensionless
measure of the a effect, are plotted in Fig. 14 (R denotes
the radius of the module).

Once a' is expressed in terms of the flow rates V̇C

and V̇H one can put it into an induction equation solver
in order to determine the critical value C* of C , beyond
which magnetic field self-excitation occurs. One has to
be careful in order to find the critical value for the most

FIG. 13. Central part of the Karlsruhe dynamo facility. The
module consists of 52 spin generators, each containing a cen-
tral tube with nonrotating flow and an outer tube where the
flow is forced on a helical path. Figure courtesy of R. Stieglitz.

FIG. 14. Isolines of the dimensionless number C5a'R/h in
the V̇C-V̇H plane, resulting from Eq. (15). In a certain approxi-
mation, dynamo action should occur beyond the isoline with
C58.12 (Rädler et al., 2002a). The experimentally determined
neutral line (bold), separating regions with and without dy-
namo action, slightly deviates from the theoretical line. Figure
courtesy of K.-H. Rädler.
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easily excitable modes of the magnetic field, which differ
in their symmetries with respect to the axis and to the
middle plane of the dynamo.

It turns out that the lowest value of C* is achieved for
a magnetic field mode with a dependence on the azi-
muthal angle w as exp(imw) with m51. For this mode,
Rädler et al. (2002a) gave a value of C* 58.12. However,
this value depends on several modeling assumptions,
and a shift of the experimental data towards higher val-
ues should always be expected.

Note that the mean-field approach is a natural way to
treat the Karlsruhe dynamo, but not the only one. The
induction equation can as well be solved for the actual
velocity field (Tilgner, 1997a, 1997b). For differences be-
tween the two methods, see Tilgner and Busse (2001).

3. The experiment

Once the design principle of the Karlsruhe dynamo
module was fixed, a fine-tuning of the geometric rela-
tions was necessary (Stieglitz and Müller, 1996). This
concerned, in particular, the number of spin generators
Z , the radius of the module R , the height of the module
d , the difference Dr of the radii of the inner and the
outer tube, and the pitch height h . The criterion was,
naturally, to achieve the highest possible a' for a given
pump power. One can easily imagine that a large value
of h would decrease the pressure losses in the helical
channel but would at the same time also decrease the
value of a' .

The output of this optimization was the following
choice of the above values: Z552, R50.85 m, d
50.703, Dr50.055 m, a50.21 m, and h50.19 m.

The Karlsruhe dynamo facility includes the central dy-
namo module [Fig. 15(a)], three MHD pumps, a tank, a
cooling device, and control and measurement units. In
contrast to the Riga setup in which a single swirling flow
forces the magnetic field pattern to rotate, in the
Karlsruhe setup an equal number of streams with either
rotation direction produce a dc field.

Figure 15 documents the experiment carried out in
December 1999 (Müller and Stieglitz, 2000; Stieglitz and
Müller, 2001). The scheme in Fig. 15(a) depicts the dy-
namo module with the 52 spin generators and defines
the coordinate system for the location and direction of
the Hall probes. The remaining three plots [Figs. 15(b)–
(d)] show the magnetic field behavior at different posi-
tions and for different directions. The signals were re-
corded after the central flow rate V̇C was set to a
constant value of 115 m3/h and the flow rate V̇H in the
helical ducts was increased from 95 m3/h to 107 m3/h at
a time 30 s from the start of the experiment. It is fasci-
nating to see that the field needs about one and a half
minutes to grow. Only at a time 120 s does it start to
saturate at a few mT. Hence December 1999 marked the
first experimental observation of the saturated regime of
a hydromagnetic dynamo.

Meanwhile, some other experiments have been car-
ried out at the Karlsruhe facility. One of the main results
of all these experiments is a stability diagram (Fig. 14).
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The experimentally determined neutral line, separating
dynamo and nondynamo regions, corresponds to values
of C* in the region of 8.4–9.3. Hence the numerical pre-
diction, C* 58.12, resulting from mean-field theory
(Rädler et al., 2002a) was quite reasonable.

Work is going on in order to improve the kinematic
dynamo simulations (Rädler et al., 2002a; Tilgner, 2002)
and to make initial attempts to understand the saturated
regime (Tilgner and Busse, 2001; Rädler et al., 2002b).

C. Taking stock

What did we learn, after all, from the dynamo experi-
ments in Riga and Karlsruhe? Killjoys could argue that
(pre-)Maxwell’s equations and Ohm’s law have been
validated once more, laws that nobody seriously
doubted. As for the kinematic dynamo regime, there is
indeed some rationale behind such an opinion. Given a
well-known laminar velocity distribution, the numerical
solution of the induction equation is in principle no
longer a problem. But even for this kinematic regime
there are open questions, in particular concerning the
role of turbulence. The experiments have shown that
dynamo action is a robust phenomenon, even if the ve-
locity structure is only approximately known and the
turbulence is not considered. It is also robust with re-
spect to imperfect boundary conditions. Kinematic dy-

FIG. 15. Self-excitation and saturation in the Karlsruhe dy-
namo experiment. (a) The dynamo module with the connec-
tions between the spin generators and the supply pipes. (b)–
(d) Simultaneously recorded Hall sensor signals in the inner
bore of the module. Figure courtesy of R. Stieglitz.
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namos work, and rough numerical simulations are fairly
appropriate to describe them. This was generally be-
lieved; now we know it.

Killjoys could also object that the flows in both experi-
ments are not free enough to allow for nontrivial back
reactions. This is not true. For the Riga experiment we
have shown that there is room for a remarkable defor-
mation of the flow structure. At the propeller rotation
rate reached the Riga dynamo is a weak-field dynamo,
understandable within the framework of a perturbation
expansion around the unperturbed flow. But it is worth-
while to understand this kind of saturation experimen-
tally and numerically before switching over to the study
of strong-field dynamos.

The back reaction effects in Karlsruhe are a bit more
constrained, but nevertheless they are interesting
enough to warrant analysis.

V. FURTHER AND FUTURE EXPERIMENTS

We have prominently portrayed the Riga and
Karlsruhe experiments because they have shown mag-
netic field self-excitation. Some of the experiments that
will be sketched now have been carried out even before
those two. Some others are presently being carried out
and it might happen that they may have already suc-
ceeded during the time this paper is in press. Some of
the experiments are focusing on certain flow topologies
in spheres and cylinders that had been the subject of
intense numerical computations (Bullard and Gellman,
1954; Lilley, 1970; Pekeris et al., 1973; Kumar and Rob-
erts, 1975; Dudley and James, 1989; Nakajima and
Kono, 1991; Holme, 1997). These topologies are classi-
fied with respect to the different numbers of poloidal
and toroidal eddies. The notation s21t2, for example,
stands for two poloidal eddies (s2) that are inward di-
rected in the equatorial plane (indicated by the 1), to-
gether with two counter-rotating toroidal eddies (t2).

A. Maryland

Under the guidance of D. Lathrop at the University of
Maryland, there have been impressive efforts to build a
working dynamo (Peffley, Goumilevski, et al., 2000;
Shew et al., 2001).

The first experiment (Fig. 16) was motivated by com-
mon ideas about planetary convection. A 0.2-m-
diameter titanium vessel containing 1.5 l of liquid so-
dium was heated on the outer side and cooled at the
axis. The fast rotation (up to 25 000 rpm) was intended
to induce centrifugally driven convection, with the cen-
trifugal force as a substitute for gravitation in the plan-
etary case. The second experiment (Fig. 17) consisted of
a 0.3-m-diameter steel sphere. A total of 15 l of sodium
was stirred by two counter-rotating propellers, each
powered by 7.4-kW motors.

In neither of these two experiments was there any sign
of magnetic field self-excitation. However, in the second
experiment, it was possible to decrease the decay rate of
an applied magnetic field by about 30% compared to the
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unstirred fluid (Peffley, Cawthorne, and Lathrop, 2000).
This was achieved for a magnetic Reynolds number of
about 65. Further experiments with larger spheres are
planned.

B. Cadarache

On the premises of the research center in Cadarache
(France), a group guided by J.-F. Pinton has built and
run a dynamo experiment under the acronym VKS.
VKS means ‘‘von Kármán sodium,’’ and ‘‘von Kármán’’
stands for the flow between two rotating disks (cf. Zand-
bergen and Dijkstra, 1987).

The flow is produced inside a cylindrical vessel with
equal diameter and height, 2r5H50.4 m [Fig. 18(a)].
The counter-rotating flows [Figs. 18(b) and (c)] are pro-
duced by disks driven by two 75-kW motors at rotation
rates up to 1500 rpm. The von Kármán flow geometry
has been chosen as it is the realization of the s21t2 flow
that is known to yield self-excitation at comparably low
values of Rm . The disadvantage of this flow is a high
sensitivity of the critical Rm on the precise relation of
poloidal and toroidal velocity components. In addition,
the counter-rotation at the equatorial plane is a power-
ful source of turbulence, making numerical predictions
based on laminar flows doubtful.

The results of this experiments have been published
by Marié et al. (2001), Bourgoin et al. (2001), and
Marié et al. (2002). Up to the present no self-excitation
has been achieved, although remarkable deformations
of applied magnetic fields have been measured.

C. Madison

Since 1997, C. B. Forest and his colleagues have pre-
pared a dynamo project at the University of Wisconsin-
Madison (O’Connell et al., 2001; Forest et al., 2002).
Like the second experiment in Maryland, the Madison
dynamo is a sphere filled with liquid sodium which is
driven by two propellers. The flow topology is again the
s21t2 topology consisting of two counter-rotating toroi-

FIG. 16. The first dynamo experiment in Maryland. A rapidly
rotating torus is heated at the rim and cooled at the axis. Fig-
ure courtesy of D. Lathrop.
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dal flows and two poloidal flows which are pointing in-
ward in the equatorial plane.

A lot of effort has been spent in the numerical opti-
mization of the precise geometry of the flow. Even then,
there remained the problem of finding an adequate pro-
peller configuration that drives the desired flow. Water
pre-experiments have been carried out with a power
supply of 35 kW, corresponding in sodium to an Rm of
70. The velocity profiles have been carefully measured
and analyzed, leading to the result that an interpolation
to an Rm of 100 should give a working dynamo. The
power supply at the final sodium experiment is 150 kW
which should be enough to meet the goal, provided, and
here is the big uncertainty, that one takes into account
only the mean velocity. The fluctuations have also been
measured, giving a turbulence degree of approximately
40%. The turbulence consists not only of high-frequency
fluctuations but also contains low-frequency fluctuations
with a period comparable to the resistive diffusion time.

In order to estimate the effect of these low-frequency
fluctuations on the growth rate of the magnetic field, the
measured mean flow velocities have been varied many
times, using a Monte Carlo sampling, by the measured
fluctuation levels (O’Connell et al., 2001). The result is a
histogram of growth rates whose dependence upon the
chosen stochastic profile provides hope of getting grow-
ing eigenmodes, at least for a certain fraction of time. In
this respect, turbulence makes the success of the Madi-
son experiment somehow unpredictable, but in case of
success it might also give rise to an interesting behavior
of the dynamo, possibly with an on-off intermittence of
the magnetic field.

D. Grenoble

A group of geophysicists in Grenoble plans to build a
laboratory dynamo as similar as possible to the Earth’s
dynamo (Cardin et al., 2002). Continuing the tradition of
former geophysically inspired experiments (Brito et al.,
1995), the Grenoble ansatz relies heavily on the concept
of magnetostrophic equilibrium between the Coriolis
forces (in a rotating sphere) and the Lorentz forces.

FIG. 17. The second dynamo experiment in Maryland. In a
0.3-m-diameter sphere different flows have been produced by
propellers. Figure courtesy of D. Lathrop.
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A large version of this experiment is expected to be of
1 m radius, with the outer sphere rotating at around 400
rpm, and an inner sphere of radius 0.5 m rotating at
about 560 rpm. The power to drive such a dynamo is
estimated to be of the order 650 kW, which is four times
the power used in the Riga experiment. Presently, a
small version of such an experiment, called DTS (‘‘Der-
viche Tourneur Sodium’’), is being prepared in
Grenoble, with the special feature of a permanent mag-
net in the inner sphere in order to study the magneto-
strophic regime even when self-excitation is expectedly
not achieved.

E. Perm

The dynamo experiments discussed so far are large
scale in size and driving power. The idea of a dynamo

FIG. 18. The VKS experiment in Cadarache. (a) The experi-
mental design with the disks rotating in the cylinder, the induc-
tion coils and the Hall and pressure probes. (b) Isolines of the
toroidal component of the time averaged velocity for the case
of counter-rotating disks. (c) Vector plot of the poloidal com-
ponent of the time averaged velocity. Figure courtesy of the
VKS team.
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with low necessary motor power has been pursued in the
group of P. Frick at the Institute of Continuous Media
Mechanics in Perm, Russia (Frick et al., 2001, 2002). The
experiment is based on the fact that a nonstationary he-
lical flow of the Ponomarenko type can be produced
within a torus when its rotation is abruptly braked and a
fixed diverter forces the inertially continuing flow on a
helical path. This concept is very attractive not only with
respect to the low motor power that is necessary to
slowly accelerate the torus, but also with respect to the
fact that the sodium can be perfectly confined in the
torus without any need for complicated sealing. A less
attractive feature is the nonstationarity of the flow al-
lowing only the study of a transient growth and decay of
a magnetic field. A technical problem is, of course, the
control of the abrupt braking action when a large
amount of kinetic energy must be dissipated at once and
considerable stresses and strains act on parts of the fa-
cility.

Extensive water pre-experiments and numerical simu-
lations have been carried out to optimize and predict
magnetic self-excitation in such a nonstationary dynamo.
Figure 19 gives an impression of the flow that appears
shortly after the brake of the torus. The major radius of
the water-filled torus is 10 cm, the minor radius is 2.7 cm.
The photograph was taken 1.5 s after the full stop.

Water measurements and numerical optimization
have led to the proposal of a realistic sodium experiment
with the following dimensions: major radius of the torus,
40 cm; minor radius of the torus, 12 cm; mass of sodium,
115 kg; rotation rate, 3000 rpm; maximal velocity, 140
m/s; effective magnetic Reynolds number, 40; minimal
braking time, 0.1 s. For such a configuration it is ex-
pected that the magnetic field will grow within a time
period of approximately half a second.

FIG. 19. Helical flow that develops after the abrupt brake of
the torus in the Perm experiment, visualized by polystyrene
particles. The white bar at the bottom of the picture represents
the diverter. Figure courtesy of P. Frick.
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F. New Mexico

A sodium experiment with a claimed direct relevance
for a concrete cosmic dynamo is presently under con-
struction at the New Mexico Institute of Mining and
Technology (Colgate et al., 2001, 2002). The title of the
project is ‘‘The a2V accretion disk dynamo that powers
active galactic nuclei (AGN) and creates the magnetic
field of the universe.’’ Here, we can only touch upon the
astrophysical background that has been the subject of
enormous work during the last decade (for a compre-
hensive review see Balbus and Hawley, 1998). ‘‘Accre-
tion’’ refers to the accumulation of matter onto a heavy
cosmic body, under the influence of its pull of gravity.
Accretion disks appear as (a) protostellar disks from
which stellar systems are born, (b) disks around accret-
ing compact stars in binary systems, and (c) disks in ac-
tive galactic nuclei (AGN). For decades, it has been a
major problem to understand how accretion works in
reality. On the one hand, the release of gravitational en-
ergy is essential to the accretion process as well as a
powerful source of the observed luminosity; on the other
hand, the angular momentum has to be conserved and
cannot be easily withdrawn from the infalling matter. A
purely laminar shear would be totally insufficient to ex-
plain the dissipation and the necessary transport of an-
gular momentum. Turbulence could do that job, but
Rayleigh’s criterion that differentially rotating disks be-
come unstable when the specific angular momentum,
V(r)r2, increases inwards, is not fulfilled for disks which
are governed mainly by Kepler’s law V(r)
5(GM/r3)1/2.

This puzzle has been solved by Balbus and Hawley
(1991) who had shown that a magnetic field prevents gas
flow in the disk from being laminar. The magnetorota-
tional instability that arises makes the gas flow turbulent,
thus allowing for increased heat production and angular
momentum transport. What is more, the resulting turbu-
lence is capable of maintaining a dynamo (Drecker
et al., 2000). In effect the kinetic energy is transformed
into magnetic energy which, in turn, keeps the instability
going, thereby feeding the turbulence.

Dynamo action in accretion disks is the background of
the New Mexico dynamo experiment. The experiment is
designed to simulate the field deformations produced by
Keplerian rotation and the collision of stars with the
accretion disk. As a side remark, we mention also recent
investigations into the possibility of studying the magne-
torotational instability in the laboratory (Ji et al., 2001;
Rüdiger and Zhang, 2001).

Figure 20 shows the scheme of a water pre-
experiment which also illustrates the essentials of the
envisioned sodium experiment. The differential rotation
of the inner and outer cylinders is intended to produce a
Couette flow [with V(r);r22 instead of V(r);r23/2 for
a Keplerian flow]. In addition to the Couette flow,
plumes are produced by driven pulsed jets. The planned
Rm , based on the rotation alone, is 130, the correspond-
ing Rm for the plumes is 15 (Colgate et al., 2001). The
water experiments have already revealed that the differ-
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ential rotation of the Couette flow speeds up the anticy-
clonic rotation of the plumes. This anticyclonic rotation
forms the basis for the a-effect of the a-V dynamo.

VI. CONCLUSIONS

With the success of the complementary sodium ex-
periments in Riga and Karlsruhe the science of homoge-
neous dynamos has been pushed forward. Kinematic dy-
namo theory has been shown to be correct and robust
with respect to low levels of turbulence and complicated
boundary and interface conditions. The observed satura-
tion effects are nontrivial as they concern not only the
expected increase of motor power but also the redistri-
butions of the flow. A number of other experiments are
currently being prepared or carried out, with varying
theoretical backgrounds, flow topologies, and technical
refinements. If these experiments work, they will open
up flow regimes with higher degrees of freedom and tur-
bulence. None of these laboratory facilities is a perfect
model of a planetary, a stellar, or a galactic dynamo. But
all of them will widen our knowledge of hydromagnetic
dynamos in general. Hopefully, one day geophysics and
astrophysics will profit from these experiments.
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