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Theory of ultrafast phenomena in photoexcited semiconductors
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The authors review the physics of ultrafast dynamics in semiconductors and their heterostructures,
including both the observed experimental phenomena and the theoretical description of the processes.
These are probed by ultrafast optical excitation, generating nonequilibrium states that can be
monitored by time-resolved spectroscopy. Light pulses create coherent superpositions of states, and
the dynamics of the associated phase relationships can be directly investigated by means of
many-pulse experiments. The commonly used experimental techniques are briefly reviewed. A variety
of different phenomena can be described within a common theoretical framework based on the
density-matrix formalism. The important interactions of the carriers included in the theoretical
description are the phonon interactions, the interactions with classical and quantum light fields, and
the Coulomb interaction among the carriers themselves. These interactions give rise to a strong
interplay between phase coherence and relaxation, which strongly affects the nonequilibrium
dynamics. Based on the general theory, the authors review the physical phenomena in various
semiconductor structures including superlattices, quantum wells, quantum wires, and bulk media.
Particular results which have played a central role in understanding the microscopic origins of the
relaxation processes are discussed in detail.
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I. INTRODUCTION

The magic word faster has always been one of the
major challenges in the development of semiconductor
microelectronics and optoelectronics (Capasso, 1990;
Shah, 1992). For many years this has basically been a
©2002 The American Physical Society
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concern for device and chip designers; however, today
semiconductor technology has reached a level where the
characteristic time scales of the underlying physical pro-
cesses may determine the speed limits. Investigation of
these ultrafast dynamics has thus become a strategic
field both in basic research and from a technological
point of view. Recent developments in ultrafast laser
physics and technology now allow us to study the very
initial interaction processes of nonequilibrium carriers in
a semiconductor (Phillips, 1994; Shah, 1999), which are
directly related to the microscopic details of the cou-
pling mechanisms. Therefore time-resolved laser spec-
troscopy has become an essential tool in modern semi-
conductor physics.

Linear optical spectroscopy of semiconductors has
provided invaluable information on electronic band
structures, phonons, plasmons, single-particle spectra,
and defects. These are impressive contributions, but in-
formation on the details of interaction processes among
the elementary excitations is often much more difficult
to obtain. In many cases it enters only in a strongly av-
eraged way, e.g., in terms of momentum or phase relax-
ation times determining the spectral linewidth. Here, ul-
trafast optical spectroscopy can do much more. Indeed,
an optical excitation has the ability to generate nonequi-
librium carrier and exciton distributions, and time-
resolved spectroscopy provides the best means for deter-
mining the temporal evolution of such distribution
functions. Furthermore, by means of ultrafast pulses, co-
herent superpositions of states can be generated and the
dynamics of such phase-related quantities can be ana-
lyzed. When these unique strengths are combined with
spatial imaging techniques and/or specific low-
dimensional structures, optical spectroscopy becomes a
powerful tool for investigating a wide variety of phe-
nomena related to relaxation and transport dynamics in
semiconductors (Shah, 1999). It is this wide range that
makes ultrafast optical spectroscopy a preferred tech-
nique for obtaining fundamental new information about
the nonequilibrium, nonlinear, and transport properties
of semiconductors.

Generally speaking, the optical excitation of a semi-
conductor creates both interband excitations, i.e., a co-
herent interband polarization, and intraband excitations,
i.e., electron and hole distributions as well as intraband
polarizations. The time evolution of these quantities is
governed by a nontrivial interplay between phase coher-
ence and energy relaxation. Indeed, scattering processes
tend to destroy the coherence, leading to a dephasing of
interband and intraband polarizations. Furthermore,
they lead to a relaxation of the distribution functions
towards the respective equilibrium distributions. Typical
time scales for scattering processes in semiconductors
are in the range of picoseconds or femtoseconds and the
resulting dynamics are generally termed ultrafast. It is
the aim of an ultrafast optical experiment to provide
information on the details of this temporal evolution,
which, in turn, gives insight into the fundamental pro-
cesses governing microscopic carrier dynamics. Before
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going into detail let us start with a brief historical over-
view and a description of typical experimental tech-
niques.

A. Nonequilibrium carrier dynamics in photoexcited
semiconductors

The investigation of nonequilibrium carrier dynamics
in optically excited semiconductors started in the late
1960s with the analysis of the energy relaxation process
(Shah and Leite, 1969) by using cw excitation. The mea-
surement of the carrier temperature as a function of the
cw laser intensity—obtained from the luminescence
spectrum—gave insight into the power loss from the car-
riers to the lattice, i.e., in carrier-phonon scattering pro-
cesses. In subsequent years, these investigations were
extended to different materials and excitation condi-
tions. While band-to-band luminescence spectra gave
only a combination of electron and hole temperatures,
direct information on the electron distribution function
was obtained by studying band-to-acceptor lumines-
cence spectra of doped semiconductors (Ulbrich, 1977).

However, as stressed before, only by using a pulsed
excitation can one directly investigate dynamical pro-
cesses. Here, the pulse duration limits the temporal
resolution and therefore restricts the phenomena that
can be studied. The typical time scales for most of the
processes discussed in the present review range from a
few femtoseconds to a few picoseconds. Therefore the
application of time-resolved nonlinear optical spectros-
copy to the study of dynamical processes in semiconduc-
tors is closely related to the ability to produce laser
pulses on these time scales. Such laser sources became
available for semiconductor studies in the late 1970s
(Shank et al., 1979). Since then, a great number of phe-
nomena have been studied, first mainly focusing on in-
coherent dynamics, i.e., the nonequilibrium dynamics of
distribution functions, and subsequently analyzing more
and more coherent phenomena, i.e., the dynamics of op-
tically created interband and intraband polarizations.

A typical scenario for the dynamics of distribution
functions is plotted schematically in Fig. 1: The laser
pulse with a given photon energy and a certain spectral
width determined by its duration creates electron-hole
pairs in a more or less localized region in k space. This
initial distribution then relaxes due to the presence of
scattering processes. In polar semiconductors on ul-
trafast time scales, there are typically two mechanisms of
particular importance: Due to the polar coupling to lon-
gitudinal optical (LO) phonons, the carriers may lose
their initial kinetic energy to the lattice. Since optical
phonons in the relevant region close to the center of the
Brillouin zone have a negligible dispersion, this leads to
the buildup of replicas of the initial distribution shifted
downwards by multiples of the phonon energy [Fig.
1(c)]. The scattering among the electrons themselves
due to the Coulomb interaction, on the other hand, con-
serves the total kinetic energy; however, it leads to a
spreading in k space [Fig. 1(d)] and eventually, to a
Fermi-Dirac distribution in which the temperature is de-
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termined by the initial excess energy. If, as is always the
case in a real semiconductor, both mechanisms are
present, both energy relaxation and thermalization to-
wards a Fermi-Dirac distribution occur simultaneously
[Fig. 1(e)]; the respective time scales, however, are
strongly dependent on the excitation conditions, in par-
ticular on the carrier density.

These thermalization and relaxation processes have
been studied in great detail over the past two decades,
both experimentally and theoretically, in bulk semicon-
ductor materials as well as in a variety of heterostruc-
tures. The most commonly used experimental tech-
niques for these studies have been luminescence, in
which the photons created by the radiative recombina-
tion of electrons and holes are detected, and pump-
probe measurements, in which the change in the absorp-
tion (or reflection) of a probe beam caused by the prior
excitation of electron-hole pairs by the pump beam is
observed. Since it is impossible to cite all the work, we
mention only some of the phenomena that have turned
out to be important under certain excitation conditions.
In the case of sufficiently high excitation densities, it has
been found that the distribution function of LO phonons
is driven substantially out of equilibrium and that this
‘‘hot-phonon effect’’ may drastically reduce the cooling
process (van Driel, 1979; Pötz and Kocevar, 1983; Koce-
var, 1985; Lugli et al., 1989). The dynamics of the non-
equilibrium phonons have been studied directly by Ra-
man measurements (von der Linde, Kuhl, and
Klingenberg, 1980; Ryan and Tatham, 1992). If the exci-
tation energy is above the threshold for transitions to
satellite valleys in the conduction band, intervalley tran-
sitions due to carrier-phonon interaction are a very ef-
fective scattering process mainly because of the high
density of states in these valleys (Shah et al., 1987;
Oberli, Shah, and Damen, 1989).

FIG. 1. The dynamics of distribution functions: (a) excitation
by a short laser pulse with a certain excess energy above the
band gap; (b) the resulting distribution of electrons and holes
as well as the subsequent relaxation of the electron distribu-
tion due to (c) electron-phonon scattering, (d) electron-
electron scattering, and (e) both types of scattering processes.
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Starting in the mid-1980s, the field of coherent excita-
tions in semiconductors became an increasingly active
research area. Even if essentially carrier relaxation pro-
cesses were monitored in the measurements mentioned
above, it turned out that features related to coherence
were present in these signals, as will be discussed in
more detail in Sec. III. Under certain conditions, how-
ever, coherent aspects may be dominant. In the case of
pump-probe spectra, this holds most prominently if the
pump pulse is nonresonant with optical transitions, i.e.,
if it is tuned into the band-gap region where it does not
create real populations. Here it gives rise to shifts and
splittings of the exciton line, which is known as the op-
tical or ac Stark effect. This effect has been extensively
investigated since the mid-1980s (Mysyrowicz et al.,
1986; Schmitt-Rink and Chemla, 1986; Balslev and Stahl,
1988; Schmitt-Rink, Chemla, and Haug, 1988; Combes-
cot and Combescot, 1989; Joffre et al., 1989).

Besides pump-probe and luminescence measure-
ments, there are other techniques that rely completely
on the phase coherence in the carrier system, thus pro-
viding direct information on the dynamics of coherent
interband and intraband polarizations. The most promi-
nent of these techniques are four-wave-mixing (FWM)
experiments and the detection of coherently emitted ra-
diation in the terahertz range.

Many physical systems exhibit inhomogeneous broad-
ening. In the case of a semiconductor in the excitonic
region, this is typically due to some disorder in the
sample, while in the band-to-band continuum region the
k dependence of transition energies may also be inter-
preted as such broadening. Then, coherent polarization
rapidly decays due to destructive interference of the dif-
ferent frequency components, and thus it is difficult to
extract information on the true loss of phase coherence
due to dephasing processes. In the case of magnetic
resonance, the spin-echo technique was introduced in
1950 (Hahn, 1950), to eliminate the decay due to inho-
mogeneous broadening and thus to make possible the
measurement of dephasing times (so-called T2 times). In
the 1960s, due to the availability of laser sources, echo
experiments were brought into the optical regime and
photon echoes were first observed in ruby (Kurnit,
Abella, and Hartmann, 1964; Abella, Kurnit, and Hart-
mann, 1966). Since dephasing times are much shorter in
semiconductors, very short pulses are required for such
techniques. In 1985 photon echoes from delocalized ex-
citons in semiconductors were observed by using 7-ps
pulses (Schultheis, Sturge, and Hegarty, 1985), and a few
years later photon echoes from band-to-band transitions
were measured with 6-fs pulses (Becker et al., 1988).
These photon echoes were typically studied by means of
degenerate four-wave-mixing experiments, which will be
described in the next section. In such experiments an
exciton phase coherence time of 7 ps was obtained in
GaAs at low temperatures (Schultheis et al., 1986); in
addition, the dephasing time T2 of an electron-hole
plasma was shown to depend on the carrier density n
according to T2;n20.3 (Becker et al., 1988). Not only do
such experiments provide information on the decay of
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the coherence, they also are useful in the study of other
coherent phenomena, e.g., quantum beats due to
quantum-mechanical superpositions of states, which ex-
hibit a splitting caused by a variety of physical
phenomena.1

If such superpositions are excited between states with
different spatial localizations, they are the source of
electromagnetic radiation with a frequency given by the
energy splitting. Often this frequency is in the terahertz
range; in this regime the electric-field strength may be
directly measured, in contrast to the optical regime,
where typically only intensities can be measured. Such a
terahertz emission was first observed from asymmetric
double-quantum-well structures (Roskos et al., 1992),
which opened up the field of terahertz spectroscopy in
semiconductors (Planken et al., 1992; Waschke et al.,
1993; Nuss et al., 1994; Dekorsy, Auer, et al., 1995;
Leitenstorfer et al., 1999).

Another direct approach to coherent phenomena is
the technique of coherent control by two temporally
separated, phase-locked pulses (Planken et al., 1993; He-
berle, Baumberg, and Köhler, 1995). If the optical polar-
ization created by the first pulse is still present in the
sample, this polarization can constructively or destruc-
tively interfere with the second pulse, leading to dynam-
ics in the system that strongly depend on the relative
phases of the two pulses. These dynamics can then be
probed by the reflection or transmission change, i.e., a
pump-probe technique, or by the four-wave-mixing sig-
nal induced by a third pulse. It should be noted that
there is a second type of coherent-control experiment in
which superposition of a one-photon and a two- or
three-photon excitation by two simultaneous pulses is
used to control the final state in the case of degeneracy
(Dupont et al., 1995; Atanasov et al., 1996). An overview
of different applications of coherent control can be
found in Pötz and Schroeder (1999). Generally, coherent
control makes use of the full time dependence of the
electric-field vector of the light pulse, including intensity,
phase, and polarization. Pulses of arbitrary shape within
a wide range of parameters can be created by using a
liquid-crystal-display spatial light modulator (Weiner
et al., 1990). Then the inverse problem can be formu-
lated: Which pulse shape produces the desired dynamics
in the sample? This question of constructing an optimal
interaction Hamiltonian has been addressed mainly in
the context of coherent control of chemical reactions
(Shapiro and Brumer, 1986; Warren, Rabitz, and
Dahleh, 1993; Shapiro and Brumer, 1997); it has been
shown that efficiencies (for example, of multiphoton
ionization processes) can indeed be substantially in-
creased by using an evolutionary algorithm (Assion
et al., 1996; Baumert et al., 1997).

Coherences do not only exist in the electronic sub-
system of the semiconductor. In spatially inhomoge-

1See, for example, Göbel et al. (1990); Leo, Damen, et al.
(1990); Schoenlein et al. (1993); Bányai et al. (1995); Mayer
et al. (1995); Joschko et al. (1997).
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neous systems or in systems with sufficiently low symme-
try, optical excitation may also generate coherent
phonons, i.e., phonons with a nonvanishing expectation
value of the lattice displacement, in contrast to incoher-
ent phonons, for which only the mean-square displace-
ment is nonzero. The excitation of coherent phonons in
semiconductors was first observed by optically exciting
the surface field of n-doped GaAs (Cho, Kütt, and Kurz,
1990). Here the differential reflectivity change exhibited
clear modulations with the phonon frequency. If the gen-
erated phonons are infrared active, they will also di-
rectly emit electromagnetic radiation with a frequency in
the terahertz range, which can be detected in the way
described above (Dekorsy, Auer, et al., 1995). Coherent
phonons have been observed in many materials and in
different types of heterostructures; a recent review on
this topic is that of Dekorsy, Cho, and Kurz (2000). Par-
ticularly interesting are situations in which the phonons
couple to other types of elementary excitations with
which they are nearly resonant. In addition to the gen-
eration of coherent phonons, the coupling of such
phonons to plasmons (Cho et al., 1996), to Bloch oscil-
lations in superlattices (Dekorsy, Kim, Cho, Köhler, and
Kurz, 1996), or to intersubband plasmon modes in quan-
tum wells (Dekorsy, Kim, Cho, Kurz, et al., 1996) has
been studied.

The enormous progress in the experimental study of
ultrafast phenomena has been paralleled by an increas-
ingly refined theoretical understanding. In fact, this
progress has often been possible only because of the
strong collaboration between theory and experiment.
While the first studies on energy relaxation were mod-
eled by simple rate equations for the mean carrier en-
ergy, detailed understanding of carrier relaxation and
thermalization processes required a modeling of the dis-
tribution functions of the carriers involved. Their tem-
poral evolution is governed by the Boltzmann transport
equation, which, in general, can only be solved numeri-
cally. Monte Carlo simulations have proven to be a tech-
nique well suited for this purpose (Jacoboni and Reggi-
ani, 1983; Jacoboni and Lugli, 1989). Additionally,
modeling coherent phenomena requires taking into ac-
count the interband (or intraband/intersubband) polar-
ization. On the mean-field level the dynamics are de-
scribed by the semiconductor Bloch equations (Huhn
and Stahl, 1984; Lindberg and Koch, 1988a), a generali-
zation of the well-known optical Bloch equations (Allen
and Eberly, 1987). Scattering processes that give rise to
relaxation and dephasing can be introduced in a
Boltzmann-like (semiclassical) way (Binder et al., 1992;
Kuhn and Rossi, 1992b). Such a density-matrix approach
has recently been generalized to describe quantum sys-
tems with open boundaries (Rossi, di Carlo, and Lugli,
1998).

On very short time scales even the description of scat-
tering processes in terms of rates obtained from Fermi’s
golden rule is no longer sufficient. Quantum-kinetic
theories that overcome this limitation have been devel-
oped based on different approaches, in particular non-
equilibrium Green’s functions (Haug and Jauho, 1996;
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Haug, 2001) and density matrices (Bonitz, 1998; Kuhn,
1998). These theories have been shown to describe the
dynamics on a femtosecond time scale with very high
accuracy. A more detailed discussion of theoretical ap-
proaches will be given in Sec. II.

B. Experimental techniques

As already mentioned above, essentially two different
classes of experiments have been used for the study of
carrier relaxation processes: luminescence and pump-
probe measurements. In both cases a pump pulse is used
to generate electron-hole pairs and bring the semicon-
ductor into a state far from thermal equilibrium. In a
luminescence experiment the radiation emitted in a di-
rection different from that of the incident pulse due to
recombination processes is analyzed spectrally and/or
temporally. This is shown schematically in Fig. 2(a). De-
pending on the temporal resolution, different techniques
have to be used: Temporal resolution in the range of 10
ps can be achieved by direct techniques by using either
fast photodiodes or a streak camera that provides spec-
tral and temporal information simultaneously. Higher
time resolution is obtained by gating the luminescence
signal with a second delayed laser pulse. Both the signal

FIG. 2. Schematic representation of typical experimental set-
ups for the study of ultrafast phenomena in semiconductors:
(a) single-pulse excitation in which the secondary emission
(resonant Rayleigh scattering or luminescence) is detected in a
direction different from that of incidence; (b) pump-probe ex-
periments or four-wave mixing in the two-pulse self-diffraction
geometry; (c) three-pulse four-wave-mixing experiments.
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and the delayed pulse are focused on a nonlinear crystal,
which creates a sum-frequency signal only in the pres-
ence of such a gating laser pulse. In this upconversion
technique the temporal resolution is limited only by the
laser-pulse duration; thus resolution in the 10-fs range is
possible. In an intrinsic semiconductor the luminescence
is due to the recombination of an electron in the con-
duction band with a hole in the valence band. In a fully
incoherent picture, according to Fermi’s golden rule, the
signal is essentially proportional to the product of the
distribution functions of electrons and holes. This com-
plicates the interpretation of experimental results. An
alternative is the use of doped semiconductors, e.g.,
p-doped samples, in which the band-to-acceptor lumi-
nescence directly monitors the distribution function of
electrons.

In a pump-probe experiment the semiconductor is ex-
cited by a pump pulse traveling in a direction q1 [pulse 1
in Fig. 2(b)], and the dynamics of the carriers induced by
this excitation are studied by looking at some property
related to a delayed probe pulse in a direction q2 . The
most commonly used technique is transmission or reflec-
tion spectroscopy, in which the change in the transmis-
sion or reflection of the probe pulse—induced by the
pump—is measured as a function of the time delay be-
tween the two pulses.2 By using a broadband probe
pulse, one therefore obtains differential transmission/
reflection spectra. In a purely incoherent free-carrier
picture the absorption is changed due to phase-space
filling, and these signals provide information on the sum
of the electron and hole populations in the optically
coupled states. Again, the interpretation of the results is
facilitated if the spectra are determined by a single dis-
tribution function. This can be achieved by exploiting
optical transitions for the probe in a different spectral
range, e.g., by pumping the heavy and light hole-to-
conduction-band transitions and probing the splitoff to
the conduction-band transition. A variation of the
pump-probe technique is electro-optic sampling, in
which the difference between two polarization compo-
nents of the transmitted/reflected signal is analyzed, pro-
viding information, for example, on the birefringence in-
duced by the optically excited dynamics. Instead of the
change in the transmitted/reflected signal, the change in
the Raman-scattering signal generated by the probe
pulse can also be measured. The dynamics of photoex-
cited phonons as well as electronic excitations can be
studied using this technique.

It is clear that the interpretation of luminescence and
pump-probe experiments in terms of a fully incoherent
free-carrier picture is valid only under limited condi-
tions. In intrinsic semiconductors at sufficiently low car-
rier densities, absorption and luminescence spectra in
the region close to the band gap are strongly dominated
by excitonic effects. Even high up in the band, pump-
induced changes in the Coulomb enhancement may sig-
nificantly influence pump-probe spectra. Furthermore,

2In Fig. 2 only the transmission case is plotted.
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on time scales comparable to or shorter than the char-
acteristic dephasing times, the signals may be consider-
ably modified by coherence effects. Therefore a detailed
analysis of luminescence and pump-probe spectra in the
ultrafast regime also provides information on coherent
phenomena in the semiconductor. In Sec. III we shall
discuss several examples in which such phase-related ef-
fects play a dominant role.

The most popular technique that provides direct infor-
mation on coherence in semiconductors is four-wave-
mixing spectroscopy. It can be performed in both a two-
pulse and a three-pulse configuration, as shown
schematically in Figs. 2(b) and (c).3 For clarity let us
start with the three-pulse configuration by assuming that
the time delay T12 between the two laser pulses 1 and 2
with wave vectors q1 and q2 is zero. In this case these
pulses create an interference pattern with wave vector
6(q22q1) on the sample, which translates into a density
grating when the light is absorbed. This density grating
results in a refractive index grating, which may diffract a
third pulse with incident wave vector q3 into various dif-
fraction orders q31n(q22q1), where n is an integer. In
four-wave-mixing the first diffracted order (n51) is
measured; here, three interacting incident waves inter-
act, giving rise to a fourth emitted wave, which explains
the name of the technique. Access to the coherent po-
larization in the sample is now obtained if pulses 1 and 2
are temporally separated. In this case there is no longer
a direct interference pattern on the sample. However, as
long as the microscopic interband polarization created
by pulse 1 is still at least partly present when pulse 2
arrives, the interaction of a pulse with wave vector q2
with the interband polarization in the direction of q1
again results in a transient grating which can diffract
pulse 3. Thus, by varying T12 , one obtains information
on the dynamics and the lifetime of the polarization, i.e.,
on the dephasing time. It should be noted that a micro-
scopic interband polarization may still be present even
if, in the case of a continuous spectrum due to destruc-
tive interference of different microscopic components,
there is no longer macroscopic polarization in the
sample. This is exactly why four-wave-mixing spectros-
copy can distinguish between homogeneous and inho-
mogeneous broadening. In the more often used two-
pulse setup, pulse 2 simultaneously creates the grating
and is diffracted by this grating; hence the name self-
diffraction geometry. Besides analyzing the signal in a
time-integrated way, one can also spectrally disperse it in
a monochromator or temporally resolve it by means of
an upconversion technique, as discussed in the case of
luminescence, which provides additional information on
the dynamics of the interband polarization.

Both pump-probe and four-wave-mixing experiments
can be used to study coherent-control phenomena. In
this case pulse 1 is replaced by a pair of phase-locked
pulses with variable delay traveling in the same direction

3Four-wave-mixing experiments can also be performed in a
reflection geometry.
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q1 . The carrier dynamics induced by these pulses then
depend on the relative phase between these two pulses
and can be analyzed by the second pulse traveling in
direction q2 . In general, measuring the transmitted sig-
nal in direction q2 (or the corresponding reflected direc-
tion) and the four-wave-mixing signal in direction 2q2
2q1 yields complementary information on the dynamics
of distribution functions and polarizations.

If the optically excited interband polarizations couple
electronic states with different spatial localizations, the
dynamics are associated with a time-dependent dipole
moment, which, according to classical electrodynamics,
acts as a source of electromagnetic radiation. Often this
radiation is in the terahertz spectral range. In a typical
terahertz-emission experiment a short laser pulse excites
the system in a superposition of states, thus creating an
intraband polarization. The intraband polarization oscil-
lates according to the energy splitting of the correspond-
ing states and emits a pulse of electromagnetic radiation
with the corresponding frequency. This radiation is then
collimated and transmitted to an optically gated photo-
conductive antenna, which measures the electric field of
the radiation. Thus the general setup is the same as Fig.
2(a), except that the emitted signal in direction q2 is in
the terahertz range. For a more detailed discussion of
experimental techniques, we refer the reader to the
book by Shah (1999).

C. Aim and outline of the paper

Ultrafast spectroscopy of semiconductors has been an
extremely active field of research and has led to many
new insights into phenomena of fundamental impor-
tance in semiconductor physics and technology. Such
rapid development has been accompanied by a growing
theoretical understanding of the basic processes govern-
ing the ultrafast nonequilibrium dynamics of photoex-
cited carriers. However, theoretical activity in the field
has often been focused on specific problems within dif-
ferent perspectives.

The aim of this paper is to provide a cohesive discus-
sion of ultrafast phenomena in semiconductors. More
specifically, our primary goal is to show how a variety of
apparently different phenomena can be described within
the same theoretical framework based on the density-
matrix formalism. Within this approach one can describe
the strong interplay between coherent and incoherent
(i.e., phase-breaking) phenomena that characterizes the
ultrafast electro-optical response of semiconductor bulk
and heterostructures.

In terms of this general theory, we shall review a va-
riety of physical phenomena in different semiconductor
structures such as bulk systems, superlattices, quantum
wells, and quantum wires. The field is so active and ex-
tensive that an exhaustive treatment of all the research
would be impossible. Thus we have to limit ourselves to
a discussion of selected theoretical and experimental re-
sults, including recent developments, which have led to
fundamental new insights into many diverse aspects of
semiconductor physics. We shall concentrate on phe-
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nomena in which carrier dynamics play the central role.
Therefore phenomena like resonant Rayleigh scattering
will be briefly mentioned but not discussed in detail.
Furthermore, we shall restrict ourselves to the case in
which the exciting light field can be treated as an exter-
nal field initializing the carrier dynamics, which excludes
propagation effects as well as phenomena related to mi-
crocavities. Finally, all the semiconductor structures
mentioned above have in common a continuous spec-
trum. The increasingly active field of ultrafast dynamics
in quantum dot structures has its own set of theoretical
considerations, which will not be covered by this review.
We shall briefly come back to this point in our conclud-
ing remarks.

The paper is organized as follows: In Sec. II we dis-
cuss the fundamentals of the density-matrix formalism
applied to the analysis of the electro-optical response of
semiconductor bulk and heterostructures. The contribu-
tions to the equations of motion due to various interac-
tion mechanisms are derived and their physical meaning
is explained. In the last part of the section we discuss
how typical experiments are modeled within the frame-
work presented earlier. A selection of fundamental re-
sults, both experimental and theoretical, is presented in
Sec. III. Finally, in Sec. IV we summarize and draw some
conclusions.

II. THEORETICAL BACKGROUND

A. Physical system

In order to study the optical and transport properties
of semiconductor bulk and heterostructures, let us con-
sider a gas of carriers in a crystal under the action of an
applied electromagnetic field. The carriers will experi-
ence mutual interaction as well as interaction with the
phonon modes of the crystal. This physical system can
be described by the following Hamiltonian:

H5Hc1Hp1Hcc1Hcp1Hpp . (1)

The first term describes the noninteracting-carrier sys-
tem in the presence of the external electromagnetic
field, while the second one refers to the free-phonon
system. The last three terms describe many-body contri-
butions: carrier-carrier, carrier-phonon, and phonon-
phonon interactions, respectively.

In order to discuss their explicit form, let us introduce
the usual second-quantization field operators C†(r) and
C(r). They describe, respectively, the creation and the
destruction of an electron in r. In terms of the above
field operators, the carrier Hamiltonian Hc can be writ-
ten as

Hc5E drC†~r!

3F F2i\¹r1
e

c
A~r,t !G2

2m0
2ew~r,t !1Vc~r!GC~r!.

(2)
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Here, Vc(r) denotes an effective single-particle poten-
tial due to the perfect crystal plus the valence electrons,
m0 is the free-electron mass, and 2e is the charge of the
electron. A(r,t) and w(r,t) denote, respectively, the vec-
tor and scalar potentials corresponding to the external
electromagnetic field:

E~r,t !52
1
c

]

]t
A~r,t !2¹rw~r,t !,

B~r,t !5¹r3A~r,t !. (3)

The above equation reflects the well-known gauge free-
dom: there is an infinite number of possible combina-
tions of A and w which give rise to the same electromag-
netic fields E and B. This gauge invariance will be
crucial in understanding the relationship between Bloch
oscillations and Wannier-Stark localization, and will be
discussed in more detail in Sec. III.F.1.

Since we are interested in the electro-optical proper-
ties as well as in the ultrafast dynamics of photoexcited
carriers, the electromagnetic field acting on the crystal—
and the corresponding electromagnetic potentials—will
be regarded as the sum of two different contributions:
one part which will be treated dynamically in the equa-
tions of motion (term 1) and an additional static (electric
and/or magnetic) field (term 2) which will be included in
the evaluation of single-particle basis states. Term 1 con-
tains the time-dependent laser field responsible for the
intraband as well as interband electronic excitations, but
it may also contain additional static or dynamic electric
fields not included in the definition of the basis states.
However, we assume that all these contributions to term
1 are spatially sufficiently slowly varying (on the atomic
scale) that they are well described by the scalar potential

w1~r,t !52E1~r,t !•r. (4)

With this particular choice of the electromagnetic po-
tentials, the Hamiltonian in Eq. (2) can be rewritten as
Hc5Hc

01Hcf , where

Hc
05E drC†~r!

3F F2i\¹r1
e

c
A2~r,t !G2

2m0
2ew2~r,t !1Vc~r!GC~r!

(5)

describes the carrier system in the crystal under the ac-
tion of the static field 2 only,4 while

Hcf52eE drC†~r!w1~r,t !C~r! (6)

describes the carrier-field interaction.
In analogy to the carrier system, when bq

† and bq de-
note the creation and destruction operators for a pho-
non with wave vector q, the free-phonon Hamiltonian
takes the form

4It should be noted that, depending on the gauge, the poten-
tials may be time dependent even for static fields.
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Hp5(
q

\vqbq
†bq , (7)

where vq is the phonon dispersion. For simplicity, here
we restrict ourselves to a single branch of bulk phonons;
the generalization to several branches as well as to other
types of modes, e.g., confined phonons, is obvious.

Let us now discuss the explicit form of the many-body
contributions. The carrier-carrier interaction is de-
scribed by the two-body Hamiltonian

Hcc5
1
2 E drE dr8C†~r!C†~r8!Vcc~r2r8!C~r8!C~r!,

(8)

where Vcc denotes the Coulomb potential screened by
the valence electrons as well as by those phonon degrees
of freedom that are not taken into account dynamically.
The coupling between carriers and phonons is described
by the Hamiltonian

Hcp5E drC†~r!Vcp~r!C~r!, (9)

where

Vcp5(
q

@ g̃qbqeiq•r1 g̃q* bq
†e2iq•r# (10)

is the potential induced by the lattice vibrations, linear-
ized in the displacements of the nuclei. Here, the explicit
form of the coupling function g̃q depends on the particu-
lar phonon branch (acoustic, optical, etc.) as well as on
the coupling mechanism considered (deformation poten-
tial, polar coupling, etc.).

Finally, let us briefly comment on the phonon-phonon
contribution Hpp : The free-phonon Hamiltonian Hp in
Eq. (7), which describes a system of noninteracting
phonons, by definition accounts only for the harmonic
part of the lattice potential. However, nonharmonic con-
tributions of the interatomic potential can play an im-
portant role in determining the lattice dynamics in
highly excited systems (Kash and Tsang, 1989), since
they are responsible for the decay of optical phonons
into phonons of lower frequency. In our second-
quantization picture, these nonharmonic contributions
can be described in terms of a phonon-phonon interac-
tion which, in general, induces transitions between free-
phonon states. Here, we shall not discuss the explicit
form of the phonon-phonon Hamiltonian Hpp respon-
sible for such a decay. For the results discussed in this
review, it is not important either because the phonon
system remains sufficiently close to thermal equilibrium
or because the characteristic time scale of this decay
(about 7 ps for the decay of LO phonons in bulk GaAs;
von der Linde et al., 1980; Kash et al., 1985; Shah, 1992)
is considerably longer than the femtosecond time scales
typically studied in ultrafast experiments.

It is well known that the coordinate representation
used so far is not the most convenient one for describing
the electron dynamics within a crystalline semiconduc-
tor. In general, it is more convenient to employ the rep-
resentation given by the eigenstates of a suitably chosen
Rev. Mod. Phys., Vol. 74, No. 3, July 2002
noninteracting-carrier Hamiltonian, since it automati-
cally accounts for some of the symmetries of the system.

In this spirit, let us denote with $fn(r,t)% the set of
eigenfunctions of the noninteracting-carrier Hamil-
tonian in Eq. (5) and with en(t) the corresponding en-
ergy levels. Since the Hamiltonian is, in general, a func-
tion of time, the basis functions fn and the energies en
may be time dependent. Here, the label n denotes, in
general, a set of discrete and/or continuous quantum
numbers. In the absence of the static field 2, the above
wave functions will correspond to the well-known Bloch
states of the crystal, and the index n will reduce to the
wave vector k plus the band (or subband) index n. In the
presence of a homogeneous magnetic field, the eigen-
functions fn , after performing an effective mass ap-
proximation, may instead correspond to Landau states.
Finally, in a constant and homogeneous electric field,
depending on the gauge chosen, there exist two equiva-
lent representations: the accelerated Bloch states and
the Wannier-Stark picture. We shall come back to this
point in Sec. III.F.1 when discussing the relationship be-
tween Bloch oscillations and Wannier-Stark localization.

Let us now reconsider the system Hamiltonian intro-
duced so far in terms of fn . As a starting point, we shall
expand the second-quantization field operators in terms
of the new wave functions:

C~r!5(
n

fn~r,t !an , C†~r!5(
n

fn* ~r,t !an
† . (11)

The above expansion defines the new set of second-
quantization operators an

† and an ; they describe, respec-
tively, the creation and destruction of an electron in
state n .

In the case of a semiconductor structure (the only one
considered here), the energy spectrum en of the
noninteracting-carrier Hamiltonian (5) is always charac-
terized by two well-separated energy regions: the va-
lence and the conduction band. Also, in the presence of
an applied electromagnetic field, the effective lattice po-
tential Vc gives rise to a large energy gap. Therefore we
are dealing with two energetically well-separated re-
gions, which suggests the introduction of the usual
electron-hole picture. This corresponds to a separation
of the set of states $fn% into conduction states $f i

e% and
valence states $f j

h%. Thus the creation operator an
† intro-

duced in Eq. (11) will also be divided into electron cre-
ation and hole destruction operators ci

† and dj
† , while

the destruction operators an will be divided into electron
destruction and hole creation operators ci and dj

† . In
terms of the new electron-hole picture, the expansion
(11) is given by

C~r!5(
i

f i
e~r,t !ci1(

j
f j

h* ~r,t !dj
† ,

C†~r!5(
i

f i
e* ~r,t !ci

†1(
j

f j
h~r,t !dj . (12)

If we now insert the above expansion into Eq. (5), the
noninteracting-carrier Hamiltonian takes the form



903F. Rossi and T. Kuhn: Ultrafast phenomena in photoexcited semiconductors
Hc
0~ t !5(

i
e i

e~ t !ci
†ci1(

j
e j

h~ t !dj
†dj

5He
0~ t !1Hh

0~ t !. (13)

As already pointed out, the above Hamiltonian is in
general time dependent. We shall discuss this feature in
the following section, where we shall derive our set of
kinetic equations.

Let us now write the carrier-field interaction Hamil-
tonian [Eq. (6)] in terms of our electron-hole represen-
tation:

Hcf5(
i ,i8

Eii8
e(cf)ci

†ci81(
j ,j8

Ejj8
h(cf)dj

†dj8

1(
i ,j

@U ij
(cf)ci

†dj
†1U ij

(cf)* djci# . (14)

Here, Ell8
e ,h(cf) denote the electron and hole intraband

and U ij
(cf) the interband matrix elements of the scalar

potential w1(r,t):

Ell8
e ,h(cf)

56eE drf l
e ,h* ~r,t !E1~r,t !•rf l8

e ,h
~r,t !, (15a)

U ij
(cf)5eE drf i

e* ~r,t !E1~r,t !•rf j
h* ~r,t ! (15b)

where the upper (positive) sign refers to electrons and
the lower (negative) sign to holes. Equations (7), (13),
and (14) define the single-particle Hamiltonian Hsp

5Hp1Hc
01Hcf .

Similarly, the carrier-carrier Hamiltonian (8) can be
rewritten as

Hcc5
1
2 (

i1i2i3i4

Vi1i2i3i4

ee ci1

† ci2

† ci3
ci4

1
1
2 (

j1j2j3j4

Vj1j2j3j4

hh dj1

† dj2

† dj3
dj4

2 (
i1i2j1j2

Vi1j1j2i2

eh ci1

† dj1

† dj2
ci2

, (16)

where Vl1l2l3l4

ee/hh/eh are the Coulomb matrix elements of the
two-body Coulomb potential in our f representation.
The first two terms describe the repulsive electron-
electron and hole-hole interaction, while the third de-
scribes the attractive electron-hole interaction. The ef-
fective single-particle contributions that appear due to
the reordering of the operators are assumed to be in-
cluded in Hc

0(t). Here, we restrict ourselves to the
monopole-monopole contributions, which means that
we neglect terms that do not conserve the number of
electron-hole pairs, i.e., impact-ionization and Auger re-
combination processes (Quade et al., 1994), as well as
the interband exchange interaction. The former assump-
tion is typically well satisfied in the range of energies
and densities considered here; the latter is justified if the
longitudinal-transverse splitting of the exciton is much
smaller than its binding energy (Egri, 1985).
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Finally, we rewrite the carrier-phonon interaction
Hamiltonian introduced in Eq. (9):

Hcp5 (
ii8,q

@gq
ii8ci

†bqci81gq
ii8* ci8

† bq
†ci#

2 (
jj8,q

@gq
jj8dj

†bqdj81gq
jj8* dj8

† bq
†dj# , (17)

where

gq
ll85 g̃qE drf l* ~r,t !eiq•rf l8~r,t !. (18)

In Eq. (17) we can clearly recognize four different con-
tributions corresponding to phonon absorption and
emission by electrons and holes. The interband terms
have been neglected because of their strong off-
resonance nature.

B. Kinetic description

Many experimentally observable quantities like cur-
rent densities, phonon populations, photon numbers, or
electronic polarizations which act as sources for emitted
electromagnetic radiation are single-particle quantities.
They can be expressed in terms of single-particle density
matrices like the intraband electron and hole density
matrices f ii8

e
5^ci

†ci8& and f jj8
h

5^dj
†dj8& , the correspond-

ing interband density matrix pji5^djci&, or the phonon
occupation number nq5^bq

†bq&. The diagonal elements
of these density matrices describe the occupation prob-
abilities of the respective states, while the off-diagonal
elements determine the degree of quantum-mechanical
superposition of the two states involved. The expecta-
tion value is taken with respect to the initial state of the
system, which in most cases discussed in this review is
the vacuum of electron-hole pairs and a thermal phonon
distribution.

The primary goal of a kinetic theory of ultrafast pro-
cesses is to calculate the temporal evolution of the quan-
tities introduced above, which constitute the kinetic
variables of the system. However, due to the many-body
nature of the problem, an exact solution is generally not
possible, except for some simple model systems (Zim-
mermann and Wauer, 1994; Meden et al., 1995; Axt,
Herbst, and Kuhn, 1999; Castella and Zimmermann,
1999). Such exact calculations provide valuable informa-
tion on specific features of certain experiments, but for a
full understanding realistic semiconductor models have
to be considered, which then can only be treated ap-
proximately.

Different techniques for the theoretical treatment of
the dynamics of many-body systems have been devel-
oped in the past. Among the most commonly used meth-
ods are the nonequilibrium Green’s-function technique
and the density-matrix formalism. The former, intro-
duced in the 1960s by Kadanoff and Baym (1962) and
Keldysh (1965), is an extension of the well-known equi-
librium or zero-temperature Green’s-function theory to
nonequilibrium systems. The basic ingredient is a
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contour-ordered Green’s function for which, as in the
equilibrium case, a Dyson equation can be formulated.
This contour-ordered function can be separated into
four types of two-time Green’s functions. The central
approximation in this formalism is the identification of
the self-energy by selecting a specific subset of the infi-
nitely many diagrams, to define the interaction processes
taken into account. Since in most cases the quantities
that are directly related to experimental observables de-
pend on one time only, the question arises whether the
theory can be reduced to single-time variables. Kadanoff
and Baym (1962) showed that the Boltzmann equation
can be recovered if the two-time Green’s function G, is
written as a product of its time-diagonal part—i.e., the
single-particle density matrix—and a spectral function of
noninteracting carriers. This ansatz was extended by
Lipavský, Špička, and Velický (1986) to the so-called
generalized Kadanoff-Baym ansatz, which correctly
treats causality. Under nonequilibrium conditions, how-
ever, this is only an approximation. An introduction to
the theory of nonequilibrium Green’s functions with ap-
plications to many problems in transport and optics of
semiconductors can be found in the book by Haug and
Jauho (1996). A recent review is that of Haug (2001).

In the density-matrix formalism, one starts directly
with the equations of motion for the single-particle den-
sity matrices. Due to the many-body nature of the prob-
lem, the resulting set of equations of motion is not
closed; instead, it constitutes the starting point of an in-
finite hierarchy of higher-order density matrices. Aside
from differences related to the quantum statistics of the
quasiparticles involved, this is equivalent to the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hi-
erarchy in classical gas dynamics (Bogoliubov, 1967; Mc-
Quarrie, 1976). The central approximation to obtain a
tractable problem in this formalism is the truncation of
the hierarchy. This can be based on different physical
pictures. In this review we shall use the argument that
correlations involving an increasing number of particles
will become less and less important. On the classical
level this corresponds to the derivation of the Vlasov
equation (mean field) and the Boltzmann equation (two-
particle correlations) from the BBGKY hierarchy. An
alternative scheme was introduced by Axt and Stahl
(1994a): the so-called ‘‘dynamics-controlled truncation.’’
Here, the basic idea is an expansion in powers of the
exciting laser field, as is done in nonlinear optics when
nonlinear susceptibilities are introduced. It turns out
that for the usual case of a pair-conserving many-body
Hamiltonian and a system in which the initial state is
given by the vacuum of electron-hole pairs, the hierar-
chy can be rigorously truncated to any order in the driv-
ing field. This approach is particularly useful when
higher-order Coulomb correlations like biexcitons and
correlated two-exciton states are important. Further-
more, it allows a unified treatment of semiconductors
and molecular structures. For a detailed discussion of
this formalism, the reader is referred to the review ar-
ticle by Axt and Mukamel (1998).
Rev. Mod. Phys., Vol. 74, No. 3, July 2002
The standard procedure for deriving the set of kinetic
equations, i.e., the equations of motion for the relevant
kinetic variables, is to derive the equations of motion for
the electron and hole operators introduced in Eq. (12):

ci5E drf i
e* ~r,t !C~r!,

dj5E drf j
h* ~r,t !C†~r!. (19)

By applying the Heisenberg equation of motion for the
field operator C, one can easily obtain the following
equations of motion:

d

dt
ci5

1
i\

@ci ,H#1
1
i\ (

i8
Zii8

e ci8 , (20a)

d

dt
dj5

1
i\

@dj ,H#1
1
i\ (

j8
Zjj8

h dj8 , (20b)

where

Zii8
e

5i\E drS ]

]t
f i

e* ~r,t ! Df i8
e

~r,t !,

Zjj8
h

5i\E drS ]

]t
f j

h~r,t ! Df j8
h* ~r,t !. (21)

Here we neglect minor contributions due to coupling
between valence and conduction bands. Compared to
the more conventional Heisenberg equations of motion,
they contain an extra term, the last one. It accounts for
the possible time dependence of our f representation,
which will induce transitions between different states ac-
cording to the matrix elements Ze ,h.

By combining the above equations of motion with the
definitions of the kinetic variables, we can schematically
write the resulting set of kinetic equations as

d

dt
F5

d

dt
FuH1

d

dt
Fuf, (22)

where F denotes the generic kinetic variable. They ex-
hibit the same structure as the equations of motion [Eq.
(20)] for the electron and hole creation and destruction
operators: a first term induced by the system Hamil-
tonian H (which does not account for the time variation
of the basis states) and a second term induced by the
time dependence of the basis functions f.

The explicit form of this second term is given by

d

dt
fi1i2

e uf5
1
i\ (

i3

@Zi2i3

e f i1i3

e 2Zi3i1

e f i3i2

e # , (23a)

d

dt
fj1j2

h uf5
1
i\ (

j3

@Zj2j3

h fj1j3

h 2Zj3j1

h fj3j2

h # , (23b)

d

dt
pj1i1

uf5
1
i\ F(

j2

Zj1j2

h pj2i1
1(

i2

Zi1i2

e pj1i2G . (23c)

As we shall see, these contributions play a central role in
the description of Zener tunneling in superlattices
within the vector-potential representation.
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The first term—which is the only one present if a
time-independent basis is considered—is the sum of dif-
ferent contributions corresponding to the various parts
of the Hamiltonian. In the remainder of this section we
shall discuss the time evolution induced by the different
contributions to the total Hamiltonian.

C. Single-particle dynamics

The time evolution induced by the single-particle
Hamiltonian is easily obtained from the Heisenberg
equations of motion in Eq. (20), resulting in a closed set
of kinetic equations for the single-particle density matri-
ces. The intraband contributions have the same struc-
ture as those in Eq. (23); therefore the time dependence
of the basis states can be directly included, which is
again related to the gauge invariance of our formulation
as discussed in Rossi (1998). The resulting equations of
motion are

d

dt
fi1i2

e u(sp)5
1
i\ (

i3

@Ei2i3

e(sp)f i1i3

e 2Ei3i1

e(sp)f i3i2

e #

1
1
i\ (

j1

@Ui2j1

(sp)pj1i1
* 2Ui1j1

(sp)* pj1i2
# , (24a)

d

dt
pj1i1

u(sp)5
1
i\ F(

j2

Ej1j2

h(sp)pj2i1
1(

i2

Ei1i2

e(sp)pj1i2G
1

1
i\ FUi1j1

(sp)2(
i2

Ui2j1

(sp)f i2i1

e 2(
j2

Ui1j2

(sp)f j2j1

h G ,

(24b)

where the effective electron and hole single-particle en-
ergies (intraband energies) are Ell8

e ,h(sp)
5e l

e ,hd ll81Ell8
e ,h(cf)

1Zll8
e ,h and the effective field (interband energy) is

U ij
(sp)5U ij

(cf) . The equations for the hole density matrix
f jj8

h typically have the same structure as those for the
electron density matrix. Therefore, in general, we shall
give explicitly only the equations for fe and p .

It should be noted that Eqs. (24) are nothing more
than a multilevel generalization of the optical Bloch
equations. Indeed, by restricting ourselves to the case of
a single electron state i and a single hole state j , and by
identifying the elements of the density matrix r of a two-
level system with our variables according to r225f ii

e ,
r11512f jj

h , and r125pji , we recover the well-known
optical Bloch equations for a two-level system (Allen
and Eberly, 1987).

For the derivation of the equations of motion, no spe-
cific time dependence of the electric field has been as-
sumed. The importance of the different contributions,
however, is strongly determined by the frequency of the
electromagnetic excitation. For a static or low-frequency
field the intraband terms—describing carrier transport
phenomena—are usually the most important ones. In-
deed, in this case the interband terms are strongly off-
resonant; they give rise to Zener tunneling, which re-
quires very high fields to become relevant. If, in
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contrast, the frequency of the field is of the order of the
band gap, the creation of a coherent interband
polarization—and the resulting generation of electron-
hole pairs—is the dominant process.

1. Semiclassical generation rate

Many transport and relaxation phenomena in opti-
cally excited semiconductors, in particular if the relevant
time scales are not too short, can be described quite well
on a purely incoherent or semiclassical level, where dis-
tribution functions are the only dynamical variables.
Therefore one of the purposes of a quantum-kinetic
theory is to derive the semiclassical theory as a limiting
case and to study the approximations involved in such a
derivation. The general procedure employed to obtain
the semiclassical limit is the same for all types of inter-
actions. As we shall see, it consists of an adiabatic elimi-
nation of variables involving quantum-mechanical corre-
lations by means of a Markov approximation, assuming
that the system was initially uncorrelated. In this section
we discuss this approach for the case of interaction dy-
namics induced by an external field.

In the semiclassical limit the system is completely de-
termined by the distribution functions of electrons and
holes. Thus all off-diagonal elements have to be elimi-
nated. As discussed above, the dominant terms in Eq.
(24) are determined by the frequency of the field. In the
following we shall consider the case of a time-
independent single-particle basis fn and an optical (in-
terband) excitation. By keeping only the nearly resonant
parts in the equations of motion, i.e., performing a
‘‘rotating-wave’’ approximation (Haug and Koch, 1993),
we get

d

dt
fii

e 5(
j

gji~ t !,
d

dt
fjj

h 5(
i

gji~ t !, (25a)

d

dt
pji5

1
i\

~e j
h1e i

e!pji1
1
i\

U ij
0* ~ t !e2ivLt@12f ii

e 2f jj
h # ,

(25b)

where the generation rate is

gji~ t !5
1
i\

@U ij
0 ~ t !e2ivLtpji* 2U ij

0 ~ t !eivLtpji# , (26)

the effective field in the rotating-wave approximation is
Uij5U ij

0 (t)e2ivLt, and U ij
0 (t) denotes the slowly varying

part of U. In this case the above polarization equation
can be formally integrated:

pji~ t !5
1
i\

e2ivLtE
0

`

dte2i(v ji2vL)tUij
0 ~ t2t!

3@12f ii
e ~ t2t!2f jj

h ~ t2t!# , (27)

where \v ji5e j
h1e i

e . In the case of a continuous spec-
trum, the summation over the final states eventually
leads to a finite memory depth due to destructive inter-
ference of the different frequency contributions. The
semiclassical limit is then obtained with two assump-
tions: First, within the Markov approximation one as-
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sumes that the dominant time dependence is given by
the exponential in Eq. (27) and therefore that the carrier
distribution and field amplitude are sufficiently slowly
varying that their value at time t can be taken out of the
integral. Second, in order to have a well-defined initial
condition, the field is adiabatically switched on accord-
ing to U ij

0 (t)5limh→0Ũ ij
0 (t)eht. Then, the polarization is

an instantaneous function of the carrier distribution and
field according to

pji~ t !52
ip

\
U ij

0 ~ t !e2ivLt@12f ii
e ~ t !2f jj

h ~ t !#D~v ji2vL!,

(28)

where we have introduced the function

D~x !52
i

p
lim

h→0

1
x2ih

5d~x !2
i

p

P
x

. (29)

Here P denotes the principal value. This leads to the
semiclassical generation rate

gji~ t !5
2p

\2 uU ij
0 ~ t !u2@12f ii

e ~ t !2f jj
h ~ t !#d~v ji2vL!,

(30)

i.e., Fermi’s golden rule. The general procedure for ob-
taining a semiclassical rate, which has been performed
here for the case of light-matter interaction, is the same
for all coupling mechanisms: The interaction process in-
troduces a new variable describing the correlation asso-
ciated with this interaction. In the present case this is the
electron-hole correlation due to the light field described
by pji . This new variable is then adiabatically eliminated
on the basis of a Markov approximation and the as-
sumption of an initially uncorrelated system.

Completely neglecting the time dependence of the
field amplitude has led us to a monochromatic genera-
tion rate. Any pulse with a finite duration, however, is
characterized by a finite spectral width. Often this
broadening is introduced by multiplying the generation
rate by the spectral intensity of the pulse and integrating
over the light frequency. More rigorously, this broaden-
ing can be derived from the time-integrated generation
obtained from Eqs. (26) and (27) after a change of the
integration variables according to

Gji5E
2`

`

dtgji~ t !

5
1
\2 E

2`

`

dtE
2`

`

dt8F12f ii
e S t2

1
2

t8D2f jj
h S t2

1
2

t8D G
3U ij

0* S t1
1
2

t8DU ij
0 S t2

1
2

t8D e2i(v ji2vL)t8. (31)

If we now perform the Markov approximation for the
distribution functions only and identify the time of gen-
eration with the central time t , we arrive at a semiclas-
sical generation rate of the form
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gji~ t !5
1
\2 @12f ii

e ~ t !2f jj
h ~ t !#

3E
2`

`

dt8U ij
0* S t1

1
2

t8D
3U ij

0 S t2
1
2

t8D e2i(v ji2vL)t8, (32)

i.e., a rate determined by the time-dependent spectrum
of the pulse. In the absence of other types of interactions
and when phase-space filling effects can be neglected,
this generation rate leads to the correct final distribution
of electrons and holes. However, it is not strictly causal:
The generation rate at time t also depends on the am-
plitude of the light field at later times. This is a conse-
quence of the definition of an instantaneous spectrum
which violates energy-time uncertainty. In the case of a
Gaussian pulse U ij

0 (t)5Ūijexp@2t2/tL
2 #, Eq. (32) leads to

gji~ t !5
A2p

\2 @12f ii
e ~ t !2f jj

h ~ t !#uŪiju2tL

3expF22
t2

tL
2 GexpF2

1
2

tL
2 ~v ji2vL!2G , (33)

i.e., to a generation rate according to the product of the
temporal and spectral shape of the pulse. In general,
however, such a decomposition is not possible.

2. Homogeneous system, homogeneous excitation

The set of kinetic equations derived so far is valid in
any single-particle basis and for any type of semiconduc-
tor structure. In many experimentally relevant systems,
however, symmetries occur that may reduce the com-
plexity of the problem. The most important is the homo-
geneous system. This can be a bulk semiconductor that
is homogeneous in all three dimensions, but it also ap-
plies to low-dimensional structures like quantum wells
and wires in the so-called strong-confinement limit, i.e.,
if only one carrier subband contributes to the dynamics.
These structures are therefore homogeneous in d di-
mensions, where d is two or one. In such homogeneous
systems Bloch functions with a k vector in the d dimen-
sions can be chosen as basis states. Then, all interaction
mechanisms in the Hamiltonian satisfy momentum con-
servation. If, in addition, the k dependence of the
lattice-periodic part of the Bloch functions for electrons
@ue(r)# and holes @uh(r)# is neglected—which corre-
sponds to an effective-mass approximation—the Cou-
lomb and carrier-phonon matrix elements Vq and gq de-
pend on the momentum transfer q only; moreover, the
interband dipole matrix element

M52eE
Vc

drue* ~r!ruh* ~r! (34)

is k independent.
If such a homogeneous system is excited by a spatially

homogeneous electric field E(t), the effective energies
and fields are given by
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E kk8
e ,h

5Fek
e ,h6ieEi•

]

]kGdkk8 , (35a)

Ukk852M•Edk,2k8 , (35b)

where Ei is the component of the electric field in the
d-dimensional homogeneous subspace. Due to the di-
agonality of these matrices, only spatially homogeneous
dynamical variables—i.e., electron and hole distribution
functions fk

e5^ck
†ck& and fk

h5^dk
†dk&—and diagonal inter-

band polarizations pk5^d2kck& will be generated. They
satisfy the following equations of motion:

d

dt
fk

eu(sp)5
e

\
Ei•

]

]k
fk

e2
1
i\

E•~Mpk* 2M* pk!, (36a)

d

dt
pku(sp)5

1
i\

~ek
e1e2k

h !pk1
e

\
Ei•

]

]k
pk

2
1
i\

M•E~12fk
e2f2k

h !. (36b)

The intraband terms involving Ei describe acceleration
of the carriers due to the electric field. It is the same for
diagonal and off-diagonal parts and it agrees with the
Boltzmann drift term. The interband terms couple dis-
tribution functions and polarization. Again, as discussed
above, the relevance of the various contributions de-
pends on the frequency of the electromagnetic field. For
optical fields the drift terms can usually be neglected,
while for low-frequency fields the interband terms are of
minor importance. If a static or low-frequency field and
an optical field are applied simultaneously, the drift term
in Eq. (36b) gives rise to the static or dynamical Franz-
Keldysh effect in the optical absorption (Franz, 1958;
Keldysh, 1958; Jauho and Johnsen, 1996).

3. Homogeneous system, inhomogeneous excitation

If the spatially homogeneous system is excited by a
spatially inhomogeneous electric field, the dynamical
variables become inhomogeneous, and off-diagonal den-
sity matrices have to be included. Due to the structure of
the crystal Hamiltonian, a momentum representation is
often still useful, but a real-space representation can also
be chosen. In both cases the general equations of motion
(24) with the corresponding intraband and interband en-
ergies have to be applied. An alternative approach is a
mixed momentum and real-space representation, the so-
called Wigner representation (Wigner, 1932). This is par-
ticularly useful for three purposes: (i) The intraband
density matrix in this representation has the closest simi-
larity to the classical distribution function; therefore it is
best suited for a comparison to semiclassical kinetics de-
scribed by the Boltzmann equation. (ii) For sufficiently
slowly varying spatial inhomogeneities a gradient expan-
sion can be performed. (iii) Boundary conditions that
occur in systems with open boundaries—for example,
due to the coupling to contacts—can be incorporated
(Frensley, 1990).
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The single-particle density matrices in the Wigner rep-
resentation are obtained by performing a Fourier trans-
formation with respect to the relative momentum ac-
cording to

fk
e~r!5(

q
eiqr^ck2~1/2!q

† ck1~1/2!q&, (37a)

fk
h~r!5(

q
eiqr^dk2~1/2!q

† dk1~1/2!q&, (37b)

pk~r!5(
q

eiqr^d2k1~1/2!qck1~1/2!q&. (37c)

Here, r is again a vector within the d-dimensional homo-
geneous subspace. A lengthy but straightforward calcu-
lation allows us to derive the new set of kinetic equa-
tions in the Wigner picture; for the case of fe the
derivation can be found in Hess and Kuhn (1996). A
characteristic feature is that these kinetic equations are
nonlocal in space. By performing a Taylor expansion, we
can formally transform the resulting equations into par-
tial differential equations of infinite order according to

d

dt
fk

e~r!5
1
i\ (

n ,m50

` in1m

2n1mn!m! S ]

]k8
•

]

]rD
nS ]

]r8
•

]

]kD m

3$@~21 !n2~21 !m#Ek8
e

~r8!fk
e~r!

1~21 !nUk8~r8!pk* ~r!

2~21 !mUk8
* ~r8!pk~r!%u

r85r
k85k, (38a)

d

dt
pk~r!5

1
i\

Uk~r!1
1
i\

3 (
n ,m50

` in1m

2n1mn!m! S ]

]k8
•

]

]rD
nS ]

]r8
•

]

]kD m

3$@~21 !nEk8
e

~r8!1~21 !mE2k8
h

~r8!#pk~r!

2~21 !nUk8~r8!f2k
h ~r!

2~21 !mUk8~r8!fk
e~r!%u

r85r
k85k, (38b)

where the space-dependent energies and effective fields
are

Ek
e ,h~r!5(

q
eiqrEk1~1/2!q,k2~1/2!q

e ,h 5ek
e ,h6eEi~r,t !•r,

(39a)

Uk~r!5(
q

eiqrUk1~1/2!q,k2~1/2!q52M•E~r,t !. (39b)

In each order (n ,m) there are spatial derivatives of the
order n1m . If the length scales of the inhomogeneities
are sufficiently large, then it can be expected that with
increasing order the contributions will be of decreasing
importance. Let us briefly discuss the structure of the
lowest-order contributions.

The zeroth order (n5m50) is given by

d

dt
fk

e~r,t !5
d

dt
f2k

h ~r,t !5gk~r,t !, (40a)



908 F. Rossi and T. Kuhn: Ultrafast phenomena in photoexcited semiconductors
d

dt
pk~r,t !5

1
i\

@Ek
e~r,t !1E2k

h ~r,t !#pk~r,t !1
1
i\

Uk~r,t !

3@12fk
e~r,t !2f2k

h ~r,t !# , (40b)

where the generation rate is

gk~r,t !5
1
i\

@Uk~r,t !pk* ~r,t !2Uk* ~r,t !pk~r,t !# . (41)

Here, the spatial coordinate enters only as a parameter;
locally, the dynamics coincide with those of the homoge-
neous case and there are no transport effects. As we
shall see in Sec. III, in many cases this lowest-order pic-
ture is sufficient to describe pump-probe as well as four-
wave-mixing experiments.

The first-order contributions (n51, m50 and n50,
m51) are given by

d

dt
fk

e(1)~r!5
1
\ H 2

]Ek
e~r!

]k
•

]fk
e~r!

]r
1

]Ek
e~r!

]r
•

]fk
e~r!

]k

2
]Uk~r!

]k
•

]pk* ~r!

]r
1

]Uk~r!

]r
•

]pk* ~r!

]k

2
]Uk* ~r!

]k
•

]pk~r!

]r
1

]Uk* ~r!

]r
•

]pk~r!

]k J .

(42)

The first two terms on the right-hand side (rhs) corre-
spond to the Boltzmann drift terms in phase space. The
other terms can be interpreted as a local generation rate
due to the flow of polarization into or out of the phase-
space element. Thus this first-order approximation level
can be regarded as a two-band generalization of the con-
ventional Boltzmann equation.

Higher-order terms then give rise to such typically
quantum-mechanical features as tunneling.

D. Carrier-phonon interaction

Having considered the equations of motion derived
from the single-particle Hamiltonian, we now come to
the many-body contributions. Here, the equations of
motion for the kinetic variables are no longer closed;
instead they give rise to an infinite hierarchy of equa-
tions.

Let us start with the case of carrier-phonon interac-
tion. The corresponding Hamiltonian introduced in Eq.
(17) leads to the following contributions to the equa-
tions of motion:

d

dt
fi1i2

e u(cp)5
1
i\ (

i3 ,q
@gq

i2i3sq
e ,i1i31gq

* i3i2sq
e ,i3i1*

2gq
i3i1sq

e ,i3i22gq
* i1i3sq

e ,i2i3* # , (43a)

d

dt
pj1i1

u(cp)5
1
i\ (

i2 ,q
@gq

i1i2tq
(1),j1i21gq

* i2i1tq
(2),j1i2#

2
1
i\ (

j2 ,q
@gq

j1j2tq
(1),j2i11gq

* j2j1tq
(2),j2i1# .

(43b)
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The equation of motion for the phonon distribution
function has the same structure:

d

dt
nqu(cp)52

1
i\ (

i1 ,i2

@gq
i1i2sq

e ,i1i22gq
* i1i2sq

e ,i1i2* #

1
1
i\ (

j1 ,j2

@gq
j1j2sq

h ,j1j22gq
* j1j2sq

h ,j1j2* # . (44)

Here, new variables, the so-called phonon-assisted den-
sity matrices, have been introduced (Zimmermann,
1990):

sq
e ,i1i25^ci1

† bqci2
&, sq

h ,j1j25^dj1

† bqdj2
&, (45a)

tq
(1),j1i15^dj1

bqci1
&, tq

(2),j1i15^dj1
bq

†ci1
&. (45b)

These variables describe correlations between carriers
and phonons. The quantity sq

e ,i1i2 , for example, relates
an initial state with one electron in the electronic one-
particle state i2 and a phonon with wave vector q to a
final state with only an electron in i1 . Thus its temporal
evolution contains information on an electronic transi-
tion from i2 to i1 by phonon absorption as well as the
reverse process by phonon emission. The equations of
motion for the above phonon-assisted density matrices
involve expectation values of four operators, and there-
fore an infinite hierarchy of equations shows up. To ob-
tain a solution, this hierarchy has to be truncated at
some level. As has been discussed in Sec. II.B, trunca-
tion schemes based on different ideas have been pro-
posed in the literature. Here we shall use a correlation
expansion based on the assumption that correlations in-
volving an increasing number of carriers or phonons are
of decreasing importance.

1. First order: Coherent phonons

The lowest order in the hierarchy is obtained by ne-
glecting all correlations between carriers and phonons.
This corresponds to a factorization according to

sq
e ,i1i2'^ci1

† ci2
&^bq&5f i1i2

e Bq , (46)

where we have introduced the coherent-phonon ampli-
tude Bq5^bq&. It is easy to see that a nonvanishing
coherent-phonon amplitude is equivalent to a nonvan-
ishing Fourier component of the lattice polarization and
thus to a displacement of the ions (Scholz, Pfeifer, and
Kurz, 1993; Kuznetsov and Stanton, 1994). This is in
contrast to the usual phonon occupation number, which
is determined by the ionic mean-square displacement
only.

On this approximation level the contributions of
carrier-phonon interaction to the equations of motion of
the single-particle density matrices can be expressed in
terms of nondiagonal energy renormalizations according
to

d

dt
fi1i2

e u(cp ,1)5
1
i\ (

i3

@Ei2i3

e(cp ,1)f i1i3

e 2Ei3i1

e(cp ,1)f i3i2

e # , (47a)
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d

dt
pj1i1

u(cp ,1)5
1
i\ F(

j2

Ej1j2

h(cp ,1)pj2i1
1(

i2

Ei1i2

e(cp ,1)pj1i2G ,

(47b)

where the self-energy matrices are

Ei1i2

e(cp ,1)5(
q

@gq
i1i2Bq1gq

i2i1* Bq* # , (48a)

Ej1j2

h(cp ,1)52(
q

@gq
j1j2Bq1gq

j2j1* Bq* # , (48b)

while the equation of motion for the phonon amplitude
is given by

d

dt
Bq52ivqBq

1
1
i\ F (

i1 ,i2

gq
* i2i1f i1i2

e 2 (
j1 ,j2

gq
* j2j1f j1j2

h G . (49)

2. Second order: Scattering and dephasing

The next step in the hierarchy is obtained by taking
into account deviations of the phonon-assisted density
matrices from the lowest-order factorization previously
introduced, e.g.,

dsq
e ,i1i25sq

e ,i1i22f i1i2

e Bq . (50)

In order to determine the equation of motion for this
phonon-assisted correlation, we first derive the equation
of motion for the corresponding phonon-assisted density
matrix. Assuming a time-independent basis and neglect-
ing the carrier-field part of the Hamiltonian, we obtain

d

dt
sq

e ,i1i252
1
i\

~e i1

e 2e i2

e 2\vq!sq
e ,i1i2

2
1
i\ (

i3 ,q8
@g

q8

i3i1^ci3

† ci2
bq8bq&

1g
q8

i1i3* ^ci3

† ci2
bq8

† bq&2g
q8

i2i3^ci1

† ci3
bqbq8&

2g
q8

i3i2* ^ci1

† ci3
bqbq8

† &#

1
1
i\ (

i3 ,i4

gq
i3i4* ^ci1

† ci4

† ci3
ci2

&

2
1
i\ (

j3 ,j4

gq
j3j4* ^ci1

† dj4

† dj3
ci2

&. (51)

Thus the equation of motion involves expectation values
of four operators: electron-phonon and electron-
electron two-particle density matrices. In the spirit of
the correlation expansion previously discussed, these
quantities have to be decomposed into all possible
lower-order factorizations, the remaining part describing
two-particle correlations. Such a decomposition is given
by

^ci3

† ci2
bq8

† bq&5f i3i2

e Bq8
* Bq1ds

q8

e ,i2i3* Bq1dsq
e ,i3i2Bq8

*

1f i3i2

e nqdq,q81d^ci3

† ci2
bq8

† bq&. (52)
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Here, as in the following, nq only refers to the distribu-
tion of incoherent phonons defined as nq5^bq

t bq&
2 uBqu2 and we have assumed that this distribution is
space independent, i.e., diagonal in q. A generalization
to the nondiagonal case is straightforward. The equation
of motion for the phonon-assisted correlation is ob-
tained by inserting these decompositions into Eq. (51)
and by subtracting the equations of motion for the sec-
ond term on the rhs of Eq. (50). Then, the first and
second terms on the rhs of Eq. (52) cancel, the third
leads to a renormalization of the single-particle energies
by the coherent-phonon contributions, the fourth leads
to the scattering part, and the last describes the influ-
ence of two-particle correlations. Again, the hierarchy
can be truncated by neglecting these higher-order corre-
lations, which results in the following equation of mo-
tion:

d

dt
dsq

e ,i1i252
1
i\ (

i3 ,i4

~Ei3i1

e d i2i4

2Ei2i4

e d i1i3
2\vqd i1i3

d i2i4
!dsq

e ,i3i4

1
1
i\ (

i3 ,i4

gq
i4i3* @~nq11 !f i1i4

e ~d i3i2
2f i3i2

e !

2nqf i3i2

e ~d i1i4
2f i1i4

e !#

2
1
i\ (

j1 ,j2

gq
j2j1* pj1i1

* pj2i2
, (53)

where the renormalized energies are given by

Ei1i2

e 5e i1

e d i1i2
1E i1i2

e(cp ,1) . (54)

If the time dependence is calculated with the full single-
particle Hamiltonian, the energy e i1

e is replaced by the
full single-particle energy matrix, as given in Eq. (24).
Furthermore, the effective field leads to a coupling of
different types of phonon-assisted correlations (Schilp,
Kuhn, and Mahler, 1994a). Such equations for the four
types of phonon-assisted correlations, together with the
equations for the single-particle density matrices, consti-
tute the basis for the analysis of electron-phonon quan-
tum kinetics. Results based on this theoretical approach
will be reviewed and discussed in Sec. III.G.

Again, the semiclassical limit is obtained by adiabatic
elimination of the phonon-assisted correlations. This can
be performed following the same procedure described in
Sec. II.C for the carrier-light interaction. We shall again
neglect all off-diagonal energy renormalizations. This is
also in the spirit of the Boltzmann theory, in which scat-
tering processes occur between free-carrier states. We
stress that when performing the Markov approximation,
one must properly take into account the fast oscillations
of interband and intraband polarizations induced by H0 .
Within this approximation scheme, the phonon-assisted
correlation is given by
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dsq
e ,i1i252ip (

i3 ,i4

D~2e i4

e 1e i3

e 1\vq!gq
i4i3*

3@~nq11 !f i1i4

e ~d i3i2
2f i3i2

e !

2nqf i3i2
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e !#1ip

3 (
j1 ,j2

D~e j1

h 2e j2

h 1\vq!gq
j2j1* pj1i1

* pj2i2
. (55)

If this phonon-assisted correlation is now inserted into
the equation of motion for the single-particle density
matrix, it becomes evident that the principal-value part
of D is associated with energy renormalizations—
describing the polaron corrections to the band
structure—while the d-function part is associated with
irreversible scattering and dephasing processes. Typi-
cally, the dominant polaronic features are a rigid shift of
the bands and a slight modification of the effective mass.
In this case, these effects can be included in H0 , since
they are always present in any experiment determining
the band structure. Therefore the principal-value contri-
butions will be neglected hereafter. However, this deri-
vation shows that in a quantum-kinetic treatment, the
polaron shift is always included. This must be taken into
account when comparing quantum-kinetic to semiclassi-
cal results.

The second-order carrier-phonon contributions in the
Markov limit, for example, for the electron density ma-
trix, can be written in the general form

d

dt
fi1i2

e u(cp ,2)5(
i3

@2G i2i3

e ,out(cp ,2)f i1i3

e 2G i1i3

e ,out(cp ,2)* f i2i3

e*

1G i2i3

e ,in(cp ,2)~d i1i3
2f i1i3

e !

1G i1i3

e ,in(cp ,2)* ~d i2i3
2f i2i3

e* !#

1
1
i\ (

j1

@U i2j1

e(cp ,2)pj1i1
* 2U i1j1

e(cp ,2)* pj1i2
# .

(56)

The explicit form of the various matrices G(cp ,2) and
U (cp ,2) due to the second-order carrier-phonon interac-
tion appearing on the rhs of Eq. (56) can be found in
Kuhn (1998). In the next section the results for the spe-
cial case of a homogeneous system in momentum repre-
sentation will be given explicitly. In the fully semiclassi-
cal limit, where all off-diagonal elements of the
intraband density matrices and all interband polariza-
tions are neglected, the well-known Boltzmann-like scat-
tering contributions due to phonon emission and absorp-
tion are recovered.

3. Homogeneous system

As in the case of single-particle dynamics, let us dis-
cuss the special case of a homogeneous system that is
either homogeneously or inhomogeneously excited. The
first-order contributions in the momentum representa-
tion are given by the self-energy matrices
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Ekk8
e ,h(cp ,2)

5gk2k8
e ,h Bk2k81gk82k

e ,h* Bk82k
* , (57)

and the generation of coherent phonons is described by

d

dt
Bq52ivqBq1

1
i\ (

k
@gq

e* fk,k1q
e 2gq

h* fk,k1q
h # .

(58)

When the system is homogeneously excited, only
coherent-phonon amplitudes with q50 can be gener-
ated. According to Eq. (58), however, this requires dif-
ferent coupling matrix elements gq for electrons and
holes. Thus no coherent phonons are generated for the
case of Fröhlich interaction, in which (Madelung, 1978)

gq5gq
e5gq

h5iF2pe2\vLO

V S 1
«`

2
1
«s

D G1/2 1
q

, (59)

where «` is the optical dielectric constant, «s is the static
dielectric constant, and vLO is the LO phonon fre-
quency. This is usually the most important type of
carrier-phonon interaction for ultrafast dynamics in po-
lar semiconductors. The carrier-phonon self-energy in
Wigner representation depends on r only. In the case of
Fröhlich interaction, it can be written as E e ,h

56eF(r,t), where the electrostatic potential is deter-
mined by the Poisson equation DF54p¹•P(r,t), and
the lattice polarization is given by

Plat5F\vLO

8pV S 1
«`

2
1
«s

D G1/2

(
q

q
q

eiqr~Bq2B2q* !. (60)

It is interesting to analyze the long-wavelength limit of
Eq. (58): The matrix element diverges as q21. Under the
condition

(
k

fkk
e 5(

k
fkk

h , (61)

i.e., the condition of charge neutrality, this divergence
cancels in Eq. (49), leading to a finite value of B0 which
is equivalent to a phononic dipole moment of the struc-
ture. According to classical electrodynamics, such a di-
pole moment, when oscillating, acts as a source of elec-
tromagnetic radiation typically in the terahertz range.

The second-order contributions, in the case of homo-
geneous excitation, can be written in a slightly different
way, which can be more easily interpreted on physical
grounds. By introducing proper transition matrices
We ,h(cp) and W e ,h(cp) as well as effective fields U e ,h(cp),
we obtain

d

dt
fk

eu(cp ,2)52(
q

@Wk2q,k
e(cp) fk

e~12fk2q
e !

2Wk,k2q
e(cp) fk2q

e ~12fk
e !#

1
1
i\

@Uk
e(cp ,2)pk* 2Uk

e(cp ,2)* pk# , (62a)
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d

dt
pku(cp ,2)52(

q
F ~W k2q,k

e(cp) 1W 2(k2q),2k
h(cp) !pk

2S gq
h

gq
e W k,k2q

e(cp) 1
gq

e

gq
h W 2k,2(k2q)

h(cp) D pk2qG ,

(62b)

where the transition matrices are

Wk2q,k
e ,h(cp)5

2p

\ (
6

ugq
e ,hu2d~ek2q

e ,h 2ek
e ,h6\vq!

3S nq1
1
2

6
1
2 D , (63)

W k2q,k
e ,h(cp)5

p

\ (
6

ugq
e ,hu2D~ek2q

e ,h 2ek
e ,h6\vq!

3F S nq1
1
2

7
1
2 D fk2q

e ,h

1S nq1
1
2

6
1
2 D ~12fk2q

e ,h !G , (64)

and the effective field is

U k
e ,h(cp)5ip(

q
gq

egq
h* (

6
~6pk2q!D~ek

h ,e2ek2q
h ,e 6\vq!.

(65)

Here, we have assumed gq
e/gq

h5gq
e* /gq

h* , which holds
both for deformation-potential and polar-coupling
mechanisms. In the equations of motion for the distribu-
tion functions, we thus recover the usual Boltzmann
scattering term consisting of in- and out-scattering con-
tributions due to phonon emission and absorption. If
there is an interband polarization in the system, there is
an additional contribution, which is quadratic in pk . The
prefactor shows that this term is due to the simultaneous
interaction of electrons and holes with the same phonon
mode. This type of process is sometimes called polariza-
tion scattering (Kuznetsov, 1991). On the other hand, ac-
cording to its structure, it can also be regarded as a co-
herent generation-recombination process, since it has
the same structure as the generation rate in Eq. (26).
However, (i) the effective fields Uk

e ,h(cp) are different for
electrons and holes, and (ii) it conserves the number of
electrons and holes.

In the equation for polarization, we also find two dif-
ferent types of contributions. We have a loss term pro-
portional to pk , due to processes involving either
electron-phonon or hole-phonon interaction. The
real part of the corresponding matrices is related to the
Boltzmann scattering matrices by

Re W k2q,k
e ,h(cp)5

1
2

@Wk2q,k
e ,h(cp)~12fk2q

e ,h !1Wk,k2q
e ,h(cp)fk2q

e ,h # .

(66)

Thus a scattering process of a carrier both into and out
of the state k leads to a loss of interband coherence.
However, there is an additional contribution that may
reduce this loss of coherence, which is again related to
Rev. Mod. Phys., Vol. 74, No. 3, July 2002
the simultaneous interaction of electrons and holes with
the same phonon. If, as in the case of Fröhlich interac-
tion, both matrix elements coincide, we obtain

d

dt (k
pku(cp ,2)50. (67)

In this case dephasing is the net result of two opposite
contributions, whose relative magnitude is dictated by
the k dependence of both the single-particle energies
and the scattering matrix elements. In particular, it de-
pends strongly on the energy transfer in the scattering
process.

When the system is inhomogeneously excited and a
Wigner representation is chosen, a gradient expansion
can also be performed for the second-order contribu-
tions. Here, however, only the zeroth order is usually
taken, which means that all variables in Eq. (62) depend
parametrically on the space coordinate r. This is in the
spirit of Boltzmann’s Stoßzahlansatz, in which scattering
processes are treated as pointlike in space and time. As
for the Markov approximation, in which energy-time un-
certainty is neglected, here the position-momentum un-
certainty is neglected, and a scattering process between
well-defined momentum states occurs at some well-
defined position.

4. Third order: Collisional broadening

The correlation expansion can be continued by taking
into account two-particle correlations. In this section we
briefly discuss the structure of these contributions. How-
ever, to simplify the notation we shall limit ourselves to
the case of a homogeneous single-band system. Its gen-
eralization to the multiband case with arbitrary basis
functions is straightforward.

The equations of motion for two-particle correlations
involve expectation values of five operators, the two-
particle phonon-assisted density matrices. Like the
phonon-assisted density matrices, these expectation val-
ues contain information not only on two-phonon emis-
sion or absorption processes, but also on virtual pro-
cesses related to the emission and reabsorption of
phonons. The hierarchy is truncated by a factorization
into single-particle and phonon-assisted density matri-
ces. The resulting equation of motion, for example, for
the correlation appearing in Eq. (52), is of the form

d

dt
d^ck1q2q8

† ckbq8
† bq&

52
1
i\

~ek1q2q8
e

2ek
e !d^ck1q2q8

† ckbq8
† bq&

2
1
i\

gq8~12fk1q2q8
e

1nq8!dsk1q,q,k
e

1
1
i\

gq8~fk
e1nq!dsk1q2q8,q,k2q8

e

2
1
i\

gq* ~12fk
e1nq!dsk1q,q8,k1q2q8

e*

1
1
i\

gq* ~fk1q2q8
e

1nq8!dsk,q8,k2q8
e* . (68)
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For a further simplification of this contribution, we keep
in mind that Eq. (51) involves a summation over q8.
Since the phonon-assisted correlation is a complex quan-
tity, in a first approximation we can assume that all con-
tributions involving a summation of this quantity are
small due to random phases at different momenta. This
allows us to neglect the last three terms in Eq. (68),
which can now be formally solved according to

d^ck1q2q8
† ckbq8

† bq&

52
1
i\

gq8E0

`

dtei(ek1q2q8
e

2ek
e)t/\

3@12fk1q2q8
e

~ t2t!1nq8~ t2t!#dsk1q,q,k
e ~ t2t!.

(69)

After inserting this result in Eq. (51), we obtain a closed
equation of motion for the phonon-assisted density ma-
trix, which, however, contains a memory term. This can
be eliminated by again performing a Markov approxi-
mation. As a result, the third-order contributions give
rise to second-order self-energy corrections in the equa-
tions of motion for ds according to

d

dt
dsk1q,q,k

e 52
1
i\

~E k1q
e(cp ,2)2E k

e(cp ,2)* !dsk1q,q,k
e ,

(70)

where the complex second-order carrier-phonon self-
energy is

E k
e(cp ,2)52ip (

q8,6
ugq8u

2D~ek
e2ek1q8

e
6\vq!

3@~nq81
1
2 6 1

2 !fk1q8
e

~nq81
1
2 7 1

2 !~12fk1q8
e

!# .

(71)

Here, the real part of the self-energy describes the fact
that the scattering processes occur between renormal-
ized polaronic states, while the imaginary part describes
a collisional broadening. In the Green’s-function ap-
proach this collisional broadening appears in the re-
tarded Green’s function if the two-time functions are re-
duced to one-time functions by means of the generalized
Kadanoff-Baym ansatz (Lipavský et al., 1986) and if a
Markov approximation for the retarded Green’s func-
tion is performed (Haug, 1992; Tran Thoai and Haug,
1993). However, it turns out that this approximation
leads to a strong overestimation of the role played by
the two-particle correlations. In particular, the imaginary
part leads to a violation of energy conservation (Schilp
et al., 1995) as well as to an overestimation of the broad-
ening. It has been shown that a non-Markovian decay of
the retarded Green’s function—corresponding to the
non-Markovian dynamics of the phonon-assisted corre-
lation [Eq. (69)]—improves the result (Haug and Bán-
yai, 1996). However, as has been shown for carrier-
carrier scattering, it does not completely restore the
conservation of the total energy (Bonitz, Semkat, and
Haug, 1999). In contrast, if all third-order terms are
taken into account, it can be shown analytically that the
total energy is conserved.
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E. Carrier-carrier interaction

Many optical properties of semiconductors are
strongly influenced by Coulomb interaction. Therefore
let us now discuss the contributions to the system dy-
namics due to the carrier-carrier interaction Hamil-
tonian Hcc [Eq. (16)].

The corresponding term for the electron density ma-
trix, is

d

dt
fi1i2

e u(cc)5
1
i\ (

i3 ,i4 ,i5

@Vi2i3i4i5

ee Ki1 ,i3 ,i4 ,i5

2Vi5i4i3i1

ee Ki5 ,i4 ,i3 ,i2
#

2
1
i\ (

i3 ,j1 ,j2

@Vi2j1j2i3

eh Ni1 ,j1 ,j2 ,i3

2Vi3j2j1i1

eh Ni3 ,i2 ,j1 ,i2
# . (72)

It involves two-particle density matrices like

Ki1 ,i2 ,i3 ,i4
5^ci1

† ci2

† ci3
ci4

& ,

Ni1 ,j1 ,j2 ,i2
5^ci1

† dj1

† dj2
ci2

& . (73)

Functions involving other combinations of four fermion
operators appear in the equations for the hole density
matrix and the interband polarization. The variable
Ki1 ,i2 ,i3 ,i4

, for example, is related to a transition of two
electrons from the initial states i3 and i4 to the final
states i2 and i1 , i.e., an electron-electron scattering pro-
cess, but it also contains information on the joint occu-
pation probabilities of two states, e.g., i15i4 and i2
5i3 . Again, Eq. (72) constitutes the starting point of an
infinite hierarchy of equations of motion for density ma-
trices with an increasing number of carriers. As antici-
pated, this is the quantum-mechanical analog of the clas-
sical BBGKY hierarchy, in which the equation of motion
for an N-particle distribution function involves the (N
11)-particle distribution functions (Bogoliubov, 1967;
Carruthers and Zachariasen, 1983).

1. First order: Excitons and renormalization

The lowest-order contribution due to carrier-carrier
interaction is obtained by factorizing the two-particle
density matrices into single-particle ones,

Ki1 ,i2 ,i3 ,i4
5f i1i4

e f i2i3

e 2f i1i3

e f i2i4

e . (74)

This corresponds to the Hartree-Fock or mean-field
level, in which all correlations between the carriers are
neglected. The corresponding equations of motion are
given by
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d

dt
fi1i2

e u(cc ,1)5
1
i\ (

i3

@Ei2i3

e(cc ,1)f i1i3

e 2Ei3i1

e(cc ,1)f i3i2

e #

1
1
i\ (

j1

@U i2j1

(cc ,1)pj1i1
* 2U i1j1

(cc ,1)* pj1i2
# ,

(75a)

d

dt
pj1i1

u(cc ,1)5
1
i\ F(

j2

Ej1j2

h(cc ,1)pj2i1
1(

i2

Ei1i2

e(cc ,1)pj1i2G
1

1
i\ FU i1j1

(cc ,1)2(
i2

U i2j1

(cc ,1)f i2i1

e

2(
j2

U i1j2

(cc ,1)f j2j1

h G , (75b)

where the self-energy matrices due to Hartree and Fock
contributions are

Ei1i2

e(cc ,1)52 (
i3 ,i4

Vi1i3i2i4

ee f i3i4

e 1 (
i3 ,i4

Vi1i3i4i2

ee f i3i4

e

2 (
j3 ,j4

Vi1j3j4i2

eh fj3j4

h , (76a)

Ej1j2

h(cc ,1)52 (
j3 ,j4

Vj1j3j2j4

hh fj3j4

h 2 (
i3 ,i4

Vi3j1j2i4

eh fi3i4

e

1 (
j3 ,j4

Vj1j3j4j2

hh fj3j4

h , (76b)

and the internal-field matrix due to the Fock contribu-
tions of the electron-hole interaction is

Ui1j1

(cc ,1)52 (
i2 ,j2

Vi1j1j2i2

eh pj2i2
. (77)

Thus we again obtain the same structure of equations as
in the single-particle case, but with renormalized ener-
gies and fields. Here, the self-energies describe band-
gap-renormalization effects as well as induced poten-
tials, while the internal field gives rise to excitonic
effects and Coulomb enhancement. The single-particle
equations including first-order carrier-carrier contribu-
tions are usually called semiconductor Bloch equations.
They were derived in real-space representation by Huhn
and Stahl (1984) and in momentum representation by
Schmitt-Rink and Chemla (1986) and Lindberg and
Koch (1988a).

2. Second order: Scattering and dephasing

As in the case of carrier-phonon interaction, the next
step in the correlation hierarchy is obtained by including
two-particle correlations like

dKi1 ,i2 ,i3 ,i4
5Ki1 ,i2 ,i3 ,i4

2f i1i4

e f i2i3

e 1f i1i3

e f i2i4

e , (78)

which describe deviations from the corresponding fac-
torizations. The equations of motion for these quantities
involve three-particle density matrices. The hierarchy
can be truncated by factorizing the three-particle density
Rev. Mod. Phys., Vol. 74, No. 3, July 2002
matrices into products of three single-particle density
matrices, resulting in equations like

i\
d

dt
dKi1 ,i2 ,i3 ,i4

5~e i4

e 1e i3

e 2e i2

e 2e i1

e !

3dKi1 ,i2 ,i3 ,i4
1See1Seh, (79)

where the source terms See and Seh involve only single-
particle density matrices. The intraband term

See5 (
i5 ,i6 ,i7 ,i8

~Vi5i6i7i8

ee 2Vi6i5i7i8

ee !

3@f i1i8

e f i2i7

e ~d i6i3
2f i6i3

e !~d i5i4
2f i5i4

e !

2~d i1i8
2f i1i8

e !~d i2i7
2f i2i7

e !f i6i3

e f i5i4

e # (80a)

exhibits a structure similar to carrier-carrier scattering
terms in the Boltzmann equation, but in an off-diagonal
generalization. The interband term

Seh5 (
i5 ,i6 ,j1 ,j2

Vi5j1j2i6

eh @pj1i1
* pj2i4

~d i2i6
f i5i3

e 2f i2i6

e d i5i3
!

1pj1i2
* pj2i3

~d i1i6
f i5i4

e 2f i1i6

e d i5i4
!

2pj1i1
* pj2i3

~d i2i6
f i5i4

e 2f i2i6

e d i5i4
!

2pj1i2
* pj2i4

~d i1i6
f i5i3

e 2f i1i6

e d i5i3
!# (80b)

gives rise to polarization scattering; it modifies the scat-
tering processes as long as there are coherent interband
polarizations present. The set of equations for two-
particle correlations constitutes the starting point for the
study of carrier-carrier quantum kinetics in the density-
matrix formalism. Some recent results on this topic will
be reviewed in Sec. III.H.

The semiclassical limit is then obtained by adiabatic
elimination of the two-particle correlations, exactly as in
the case of the phonon-assisted correlations discussed in
Sec. II.D. The result can be cast into the same form as in
Eq. (56), but with different functions G(cc ,2) and U (cc ,2)

replacing G(cp ,2) and U (cp ,2); its explicit form can again
be found in Kuhn (1998). In the next section we shall
explicitly discuss the carrier-carrier contributions in mo-
mentum representation.

3. Homogeneous system

In a homogeneous material the Coulomb matrix ele-
ments depend on the momentum transfer q only. Here
we shall also assume that the three matrix elements cor-
responding to electron-electron, hole-hole, and electron-
hole interactions are equal. This is true in bulk semicon-
ductors, where

Vq5
4pe2

V«rq
2 , (81)

but it also holds in low-dimensional structures if the con-
finement wave functions for electrons and holes are the
same, i.e., in the limit of infinitely high barriers. For fi-
nite barriers the matrix elements become significantly
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different for q values larger than the inverse confine-
ment length. However, since the small-wavelength be-
havior dominates in most of the features discussed here,
the assumption of equal matrix elements is often a good
approximation, even in this case. The value of «r de-
pends on the treatment of the phonon dynamics: if
phonon-induced correlations due to the Fröhlich inter-
action are taken into account dynamically, it coincides
with the optical dielectric constant; otherwise, the static
value has to be taken.

The first-order contribution in momentum representa-
tion is given by the intraband and interband energies,

E kk8
e ,h(cc ,1)

52(
q

@Vqfk81q,k1q
e ,h

7Vk2k8

3~fq,q2k81k
e

2fq,q2k81k
h

!# , (82a)

U kk8
(cc ,1)

52(
q

Vqp2k82q,k1q , (82b)

with Fock (;Vq) and Hartree (;Vk2k8) terms. Here
the upper sign refers to electrons and the lower sign to
holes. If the system is homogeneously excited, the Har-
tree terms cancel due to charge neutrality. The intraband
Fock terms describe band-gap renormalizations, while
the interband terms describe Coulomb correlations be-
tween electrons and holes. In particular, they give rise to
excitonic features in optical spectra.

In a Wigner representation the first-order terms can
be written as

E k
e ,h(cc ,1)~r!52(

k8
Vk2k8fk8

e ,h
~r!7eF~r!, (83a)

Uk~r!52(
k8

Vk2k8pk8~r!, (83b)

where the induced potential satisfies the Poisson equa-
tion

¹2F~r!52
4p

«r
r~r!5

4pe

«rV (
k

@fk
e~r!2fk

h~r!# , (84)

r(r) being the charge density.
The second-order contributions in the case of homo-

geneous excitation are given by

d

dt
fk

eu(cc ,2)52(
q

@Wk2q,k
e(cc ,2)fk

e~12fk2q
e !

2Wk,k2q
e(cc ,2)fk2q

e ~12fk
e !#

1
1
i\

@U k
e(cc ,2)pk* 2U k

e(cc ,2)* pk# , (85a)

d

dt
pku(cc ,2)52(

q
@~W k2q,k

e(cc ,2)1W 2(k2q),2k
h(cc ,2) !pk

2~W k,k2q
e(cc ,2)1W 2k,2(k2q)

h(cc ,2) !pk2q# , (85b)

where the transition matrices are
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Wk2q,k
e ,h(cc ,2)5

p

\
uVqu2 (

n85e ,h
(
k8

D~ek2q
e ,h 1ek81q

n8

2ek8
n82ek

e ,h!@fk8
n8~12fk81q

n8 !2pk81q
* pk8#

1c.c., (86)

W k2q,k
e ,h(cc ,2)5

p

\
uVqu2 (

n85e ,h
(
k8

D~ek2q
e ,h 1ek81q

n8

2ek8
n82ek

e ,h!@2pk81q
* pk8

1fk8
n8~12fk81q

n8 !~12fk2q
e ,h !

1fk2q
e ,h fk81q

n8 ~12fk8
n8!# , (87)

and the effective field is

U k
e ,h(cc ,2)5ip(

k8,q
(

n85e ,h
uVqu2D~ek

h ,e1ek8
n8

2ek81q
n8 2ek2q

h ,e !@fk81q
n8 2fk8

n8#pk2q . (88)

The structure of the equations is the same as in the case
of carrier-phonon interaction, and therefore everything
that has been stated above also holds in this case. The
main difference is that now the transition matrices [Eq.
(86)] no longer coincide with the Boltzmann transition
matrices. Instead, we have additional contributions due
to the interband polarization, which, in general, remove
the positive-definiteness and consequently the possibility
of interpreting such terms as transition rates. Only when
the polarization has decayed are the Boltzmann rates
recovered. For the polarization we again obtain contri-
butions with the structure of out-scattering (;pk) and
in-scattering (;pk2q) terms, which, due to equal Cou-
lomb matrix elements, satisfy the sum rule

d

dt (k
pku(cc ,2)50. (89)

This compensation between in- and out-scattering terms
is essential in order to reproduce a physically reasonable
density dependence of carrier-carrier scattering-induced
dephasing (Rossi, Haas, and Kuhn, 1994; Haas, Rossi,
and Kuhn, 1996).

4. Second order: Screening

In the previous section the carrier-carrier scattering
terms were derived in the second Born approximation.
While this gives well-defined, finite results on a
quantum-kinetic level (El Sayed, Bányai, and Haug,
1994), it is well known that in the semiclassical limit the
total scattering rate for a bare Coulomb potential di-
verges due to the long-range nature of this interaction.
Usually, this divergence is removed by taking a screened
Coulomb potential whose screening is described, for ex-
ample, by the Lindhard formula. This dielectric function
is obtained by studying the response of the carrier sys-
tem to an external potential within the random-phase
approximation (Haug and Koch, 1993), i.e., in the
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present case, from the first-order carrier-carrier contri-
butions. However, as shown by several authors in the
field of plasma physics in the early 1960s (Lenard, 1960;
Balescu, 1961; Guernsey, 1962; Wyld and Fried, 1963),
screening appears self-consistently within the second-
order density-matrix approach. Some recent derivations
applied to condensed-matter physics can be found in the
work of Hohenester and Pötz (1997) and Bonitz (1998).
Here we shall briefly review the derivation of the dy-
namically screened scattering rates by essentially follow-
ing Wyld and Fried (1963) and restricting the discussion
to the homogeneous single-band case.

The equation of motion for the distribution function
in a one-band model is given by

i\
d

dt
fk5(

k8,q
Vq@dKk,k8,k81q,k2q2dKk2q,k81q,k8,k# .

(90)

The equation of motion for the two-particle correlations
is obtained in the same way as in the previous section,
leading to three-particle density matrices. While there
the three-particle correlations were factorized into
single-particle density matrices only, now all factoriza-
tions into lower-order correlations are included. Thus
additional contributions appear due to a factorization of
a three-particle density matrix into a distribution func-
tion times a two-particle correlation. Neglecting the
three-particle correlations, we obtain the resulting equa-
tion of motion:

i\
d

dt
dKk,k8,k81q,k2q5~Ek2q1Ek81q2Ek82Ek!

3dKk,k8,k81q,k2q1(
i51

5

Si , (91)

where the renormalized energies are Ek5ek
2(qVqfk2q . A series of five terms that describe differ-
ent physical phenomena results from the factorization
(Wyld and Fried, 1963).

S1 leads to the scattering in Born approximation as
discussed in the previous section:

S15~Vq2Vk2k82q!@fkfk8~12fk81q!~12fk2q!

2fk2qfk81q~12fk8!~12fk!# ; (92a)

S2 gives rise to the screening of the Coulomb potential
in the random-phase approximation (RPA);

S25VqF ~fk2fk2q!(
k9

dKk9,k8,k81q,k92q

1~fk82fk81q!(
k9

dKk,k9,k91q,k2qG ; (92b)

S3 contains exchange corrections to the screening, which
are necessary to satisfy the correct antisymmetry of dK
upon exchange of two particles:
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S352Vk2k82qF ~fk82fk2q!(
k9

dKk,k9,k91k2k82q,k81q

1~fk2fk81q!(
k9

dKk9,k8,k2q,k92k1k81qG ; (92c)

S4 describes the repeated scattering of two particles
from each other and leads to the exact T matrix:

S45~12fk2q2fk81q!(
q8

Vq8dKk,k8,k81q1q8,k2q2q8

2~12fk2fk8!(
q8

Vq8dKk2q8,k81q8,k81q,k2q ;

(92d)

and, finally, S5 contains terms that in the Green’s-
function language would be called vertex corrections to
the screening terms S2 and S3 :

S552~fk2fk2q!(
q8

Vq8dKk2q8,k8,k81q,k2q2q8

2~fk82fk81q!(
q8

Vq8dKk,k81q8,k81q1q8,k2q

2~fk82fk2q!(
q8

Vq8dKk,k81q8,k81q,k2q1q8

2~fk2fk81q!(
q8

Vq8dKk2q8,k8,k81q2q8,k2q .

(92e)

Due to the divergence of Vq for small q, the direct
term in S1 and the term S2 are expected to dominate,
since they involve no summation over the Coulomb ma-
trix element. Keeping only these contributions is equiva-
lent to the random-phase approximation. The solution
of Wyld and Fried is based on the observation that, in
this case, Eq. (91) can be factorized in the following
sense: If the operator F̂k,q5ck2q/2

† ck1q/2 satisfies the op-
erator analog of the linearized Vlasov equation, i.e.,

d

dt
F̂k,q5

1
i\

~Ek1q/22Ek2q/2!F̂k,q

2
1
i\

Vq~fk1q/22fk2q/2!(
k8

F̂k8,q , (93)

then Eq. (91) with only the direct part of S1 and S2 is a
direct consequence of Eq. (93). Such a factorization
property is also the basis for the derivation of screening
in Hohenester and Pötz (1997). By solving Eq. (93) in
the Markov approximation and assuming an initially un-
correlated system, we can calculate the two-particle cor-
relation. With this result Eq. (90) reads

d

dt
fk52

2p

\ (
k8,q

U Vq

«@q,~Ek2q2Ek!/\#
U2

3d~Ek2q1Ek81q2Ek82Ek!@fkfk8~12fk81q!

3~12fk2q!2fk2qfk81q~12fk8!~12fk!# . (94)
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This corresponds to the Boltzmann equation with the
Coulomb potential dynamically screened by the
Lindhard dielectric function,

«~q,v!512Vq(
k

fk2fk2q

Ek2Ek2q2\v
. (95)

Without the Markov approximation, Eq. (91) with the
contributions S1 and S2 serves as a starting point for a
quantum-kinetic investigation of carrier-carrier scatter-
ing, including the buildup of screening at early times.

5. Third order: Collisional broadening

The next order in the hierarchy is obtained in the
same way as in the case of carrier-phonon interaction:
The equations of motion for three-particle correlations
have to be set up and the resulting four-particle density
matrices have to be factorized into all kinds of lower-
order terms. Among the many possible factorizations
there is one class of terms having the structure of self-
energy corrections to the second-order equation, thus
resulting in second-order energy renormalizations and
collisional broadening terms in the equation for the two-
particle correlation. Here, however, due to the strong
dominance of small-angle scattering, particularly at low
densities, this approximation overestimates the broaden-
ing in a much more dramatic way than in carrier-phonon
scattering. Such a strong overestimation of the colli-
sional broadening due to carrier-carrier scattering when
in-scattering terms are neglected has been studied by
Rossi et al. (1994) and Haas et al. (1996) for the case of
carrier photogeneration. In particular, it has been shown
how the inclusion of additional terms with the structure
of in-scattering contributions leads to the correct physi-
cal behavior. Within the Green’s-function approach a
strong violation of energy conservation and unphysically
large broadening resulting from an exponentially decay-
ing memory function—corresponding to a Lorentzian
spectral function—have been demonstrated (Bonitz
et al., 1999). In the same paper the authors show that
again the replacement of the exponential by a hyper-
bolic secans improves the results but does not restore
energy conservation. On the other hand, neglecting the
decay of the retarded Green’s function—which is
equivalent to taking the second-order density-matrix
theory—is in surprisingly good agreement with the re-
sults of a two-time Green’s-function calculation.

6. Coulomb interaction in doped semiconductors

In the previous sections we have derived equations of
motion for the case of an intrinsic (or undoped) semi-
conductor. If, in contrast, the semiconductor is doped,
the doping impurities can provide or accept electrons or
holes, thereby changing their charge state. In this case
the Coulomb interaction with the carriers bound at im-
purities has to be taken into account as well. In general,
this interaction contributes at each order to our equa-
tions of motion. The first-order or Hartree term de-
scribes the electrostatic potential produced by the
charged impurities. It is necessary to maintain charge
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neutrality. In a homogeneous system it is a divergent
term at q50 which exactly cancels the divergence of the
other Coulomb contributions. In inhomogeneous sys-
tems it is responsible for built-in fields. Examples of this
case are modulation-doped quantum-well structures in
which impurities provide conduction electrons to the
quantum wells. The second-order terms give rise to
carrier-impurity scattering processes that contribute to
momentum relaxation, and they may also lead to Auger-
or impact-ionization-like transitions between free and
bound carrier states. In this section we shall address a
specific case which is important if optical transitions be-
tween free and bound states are involved. Experiments
based on such transitions, in particular the study of
band-to-acceptor luminescence, have provided valuable
information on ultrafast carrier dynamics in optically ex-
cited semiconductors, as will be discussed in more detail
in Sec. III.A.3.

Let us consider a homogeneous semiconductor that is
slightly p-doped with shallow acceptors. At zero tem-
perature the Fermi level is in the middle between the
top of the valence band and the acceptor level. Thus at
sufficiently low temperatures the acceptors are unoccu-
pied, and it is convenient to treat the acceptor occupa-
tion in an electron picture. We thus denote by si

† and si
the creation and destruction of an electron at the accep-
tor position ri . Within the hydrogenic impurity model
the wave function of the acceptor state is given by

c~r!5uV~r!f~r2ri!, (96)

where uV denotes the periodic part of the Bloch func-
tion at the top of the valence band and f is the 1s hy-
drogen wave function. If we again neglect Coulomb
terms leading to transitions between impurity levels and
free carrier states, which for the purpose studied here
are not important, we have three additional contribu-
tions to the Coulomb interaction Hamiltonian, due to
electron-acceptor, hole-acceptor, and acceptor-acceptor
interactions. For sufficiently low doping concentration
and negligible occupation of the acceptor levels, the
acceptor-acceptor interaction is not important, and the
Hamiltonian is given by

Hcc
a 5Hcc

ea1Hcc
ha

5 (
k,q,i

Vq
i ck2q

† si
†sick2 (

k,q,i
Vq

i dk2q
† si

†sidk , (97)

where the Coulomb matrix elements are

Vq
i 5

e2

V«r
E drdr8uf~r82ri!u2

eiqr

ur2r8u
, (98)

which in the case of the 1s wave function reduces to

Vq
i 5Vqeiqribq5Vqeiqri@11~ 1

2 qaB!2#22. (99)

Here, Vq is the Coulomb matrix element of the homo-
geneous semiconductor [Eq. (81)] and aB is the acceptor
Bohr radius.

The relevant dynamical variable to describe optical
transitions between the conduction band and the impu-
rity level is the band-to-acceptor polarization,
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pk
a5(

i
e ikri^si

†ck&5(
i

e ikripk
i . (100)

The first-order contribution to its equation of motion
due to the complete (band and impurity) Coulomb in-
teraction is given by

d

dt
pk

au(cc ,1)52
1
i\ (

q
Vq~fk1q

e pk
a2bqfk

epk1q
a !. (101)

Here, the first term is due to the renormalization of the
conduction band by electron-electron interaction, while
the second term gives rise to Coulomb enhancement and
excitonic effects in the transition (we have again ne-
glected terms involving acceptor occupations). Both
terms are proportional to the electron distribution func-
tion and therefore negligible at low densities.

The second-order contribution is obtained in the same
way as the interband polarization. Here we shall give
only the result in the semiclassical limit, which can be
written in a form similar to Eq. (85b):

d

dt
pk

au(cc ,2)52(
q

@W k2q,k
e(cc ,2)pk

a2bqW k,k2q
e(cc ,2)pk2q

a #

2(
q,i

@bq
2W k2q,k

a(cc ,2)ei(k2q)ripk
i

2bqW k,k2q
a(cc ,2)eikripk2q

i # , (102)

where the matrix W k,k2q
e(cc ,2) is given in Eq. (87) and the

matrix W k,k2q
a(cc ,2) is

W k,k2q
a(cc ,2)5

p

\
uVqu2 (

n5e ,h
(
k8

d~ek81q
n

2ek8
n

!

3fk8
n

~12fk81q
n

!. (103)

If the impurity positions are randomly distributed, this
last part vanishes. In contrast to interband polarization,
here we do not have an exact symmetry between in- and
out-scattering terms because the matrix elements for
electron-electron and electron-impurity interaction are
different. However, for q values smaller than the inverse
Bohr radius of the impurity we have bq'1 and the sym-
metry is approximately recovered, leading again to a
strong compensation between the two terms.

F. Carrier-photon interaction

Typically, the laser pulses used to excite semiconduc-
tors in the ultrafast regime have a very high degree of
coherence and are well described by a classical light
field, as was done in the previous sections. However,
there are certain features that can only be described in
terms of a quantum-mechanical treatment of the electro-
magnetic radiation. Among these are all kinds of phe-
nomena that affect the photon statistics, like the genera-
tion of squeezed light by nonlinear optical techniques
(Fox et al., 1995; Dabbicco et al., 1996) or the optical
Stark effect with nonclassical light (Altevogt, Puff, and
Zimmermann, 1997). The most important process, how-
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ever, which requires a quantum description of light, is
spontaneous emission. Often the characteristic time
scales for spontaneous emission are much longer than
those for other interaction processes like carrier-carrier
or carrier-phonon scattering. Therefore, for the model-
ing of the ultrafast carrier dynamics, it can be neglected.
However, in luminescence experiments the spontane-
ously emitted photons are the quantities that are de-
tected, and a theory is required that relates the proper-
ties of the emitted radiation to the carrier dynamics. In
this section we shall derive equations of motion describ-
ing the rate of spontaneously emitted photons.

The quantized light field is described by creation and
destruction operators aqn

† and aqn for a photon with
wave vector q and polarization component n. The free-
photon Hamiltonian is then given by

Hl5(
q,n

\vqaqn
† aqn , (104)

where the dispersion relation is vq5cq , c being the ve-
locity of light.

The exact form of the interaction Hamiltonian, as well
as the interpretation of the photon operators, depends
on the choice of gauge. In the Coulomb gauge, by ne-
glecting terms quadratic in the field, we obtain the
carrier-light Hamiltonian

Hcl5 (
ij ,q,n

@mq,n
ij c i

†aqndj
†1mq,n

ij* djaqn
† ci# , (105)

where we have considered interband transitions only in
the rotating-wave approximation. The multipole form
of the interaction can be obtained by performing
the Power-Zienau-Woolley transformation (Cohen-
Tannoudji, Dupont-Roc, and Grynberg, 1989; Kira et al.,
1999; Savasta and Girlanda, 1999), which results in the
same form of the interaction Hamiltonian but with dif-
ferent matrix elements, and an additional field-
independent term. This latter term—the dipole self-
energy—has the same operator structure as the electron-
hole interaction. For the present case (in which we are
only interested in the properties of the spontaneously
emitted photons and neglect the feedback on the carrier
dynamics) the choice of the gauge plays a minor role;
the properties are essentially determined by the struc-
ture of the carrier-light Hamiltonian [Eq. (105)]. A re-
cent review of the quantum theory of carrier-light inter-
action in semiconductors is that of Kira et al. (1999).

1. First order: Coherent electromagnetic fields

The structure of the above light-matter Hamiltonian is
similar to that of carrier-phonon interaction. Therefore
the structure of the resulting equations of motion is also
similar, the main difference being that carrier-phonon
interaction is an intraband process, while carrier-photon
interaction is an interband process. To first order in the
correlation expansion, coherent photon amplitudes are
excited according to
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d

dt
^aqn&5ivq^aqn&1

1
i\ (

ij
mq,n

ij* pji . (106)

These coherent amplitudes correspond to a classical co-
herent electromagnetic field, and a description on this
level coincides with the classical treatment of the light
field in the previous sections. In particular, Eq. (106)
shows that the interband polarization acts as a source for
a classical light field.

2. Second order: Absorption and luminescence

Even in the absence of a coherent amplitude, photons
can be emitted. These incoherent photons are described
by the average photon occupation number,

Nqn
inc5^aqn

† aqn&2u^aqn&u2. (107)

In the absence of a coherent contribution, the rate of
change of this variable determines the photon flux in the
direction q. This photon flux is obtained from the equa-
tion of motion

d

dt
Nqn

inc52
1
i\ (

ij
@mqn

ij rqn
ji* 2mqn

ij* rqn
ji # , (108)

where we have introduced the incoherent photon-
assisted density matrices

rqn
ji 5Š~aqn

† 2^aqn* &!djci‹. (109)

Thus, in complete analogy with carrier-phonon interac-
tion, these photon-assisted density matrices appear as
new dynamical variables. Their temporal evolution is
determined by the equation of motion

d

dt
rqn

j1i15
1
i\

@e j1

h 1e i1

e 2\vq#rqn
j1i1

2
1
i\ (

i2 ,j2

mqn
i2j2~^ci2

† dj2

† dj1
ci1

&2pj2i2
* pj1i1

!

2
1
i\ (

i2 ,q8,n8
m

q8n8

i2j1
Š~aqn

† 2^aqn* &!ci2

† aq8n8ci1
‹

2
1
i\ (

j2 ,q8,n8
m

q8n8

i1j2
Š~aqn

† 2^aqn* &!dj1
aq8n8dj2

†
‹.

(110)

Here, only the single-particle Hamiltonian in a time-
independent basis has been used for the evolution of the
carrier operators. We shall address the role of interac-
tion mechanisms in Sec. II.F.5. From Eq. (110) it can be
seen that the source term for the emission of incoherent
photons (first term on the rhs) is a two-particle density
matrix, the function N introduced in Eq. (73), where the
interband coherent part has been subtracted. However,
it may still include intraband coherences. If, in accor-
dance with our correlation-expansion scheme, all two-
particle correlations are neglected, the terms on the rhs
can be factorized into products of single-particle density
matrices according to
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d

dt
rqn

j1i1u(cl)52
1
i\ (

i2 ,j2

mqn
i2j2f i2i1

e f j2j1

h

1
1
i\

~Nqn
inc1u^aqn&u2!

3S 12(
i2

mqn
i2j1f i2i1

e 2(
j2

mqn
i1j2f j2j1

h D .

(111)

The first source term gives rise to spontaneous emission,
while the second one gives rise to absorption and stimu-
lated emission. In the following we shall neglect this sec-
ond term, since we assume that the photons immediately
leave the system, making their occupation number neg-
ligible.

In the semiclassical limit, when the photon-assisted
density matrices are adiabatically eliminated and only
diagonal density matrices are taken into account, we get
the following rate of emitted photons:

d

dt
Nqn

inc5
2p

\ (
ij

umqn
ij u2d~e j

h1e i
e2\vq!f ii

e f jj
h , (112)

i.e., the well-known Fermi’s golden rule result for which
the luminescence intensity is proportional to the product
of electron and hole distribution functions of the opti-
cally coupled states.

3. Homogeneous system

The carrier-photon interaction Hamiltonian in mo-
mentum representation is given by

Hcl5 (
k,q,n

@mq,nck
†aqnd2k1q

† 1mq,n* d2k1qaqn
† ck# . (113)

Then, the rate of emitted photons in the semiclassical
limit reads

d

dt
Nqn

inc5
2p

\ (
k

umqnu2d~e2k1q
h 1ek

e2\vq!fk
ef2k1q

h .

(114)

In many cases the momentum of the photon is negligible
compared to other characteristic momenta in the carrier
dynamics, and replacing k2q by k on the rhs of Eq.
(114) is a very good approximation.

4. Transitions between band and impurity states

The theory developed so far for interband transitions
is easily translated to transitions between band and im-
purity states. The band-to-acceptor interaction Hamil-
tonian reads

Hcl5 (
i ,k,q,n

@mq,ngkck
†aqnsi1mq,n* gksi

†aqn
† ck# , (115)

where gk58(paB
3 /V)1/2@11(kaB)2#22 is the Fourier

transform of the acceptor wave function. After factor-
ization and under the assumption of a negligible accep-
tor occupation, this yields for the spectrum
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d

dt
Nqn

inc5
2p

\ (
k

umqnu2ugku2d~ek
e2ea2\vq!fk

e , (116)

i.e., the same result as for the band-to-band case, in
which the hole distribution function is replaced by the
time-independent quantity ugku2. Here, ea is the energy
of the acceptor level in the electron picture. This shows
that band-to-acceptor luminescence spectra provide di-
rect information on the electron distribution function.

5. Influence of other interaction mechanisms

In the previous sections only the contributions of the
single-particle Hamiltonian to the equation of motion
for the photon-assisted density matrix have been taken
into account. Of course, like its semiclassical counter-
part, the interband polarization, the photon-assisted
density matrix will also be influenced by other interac-
tion mechanisms. We can easily obtain the contributions
due to these interaction Hamiltonians by noticing that
we can write the equation of motion as

d

dt
rqn

j1i1u(cc ,cp)5 K ~aqn
† 2^aqn* &!

d

dt
~djci!u(cc ,cp)L . (117)

Thus we obtain exactly the same operator combinations
as in the case of interband polarization, which are only
multiplied by a photon creation operator. After factor-
ization, if this polarization is replaced by the photon-
assisted density matrix, all terms linear in the interband
polarization that have been derived in the previous sec-
tions remain the same. Terms without an interband po-
larization do not contribute, since we have neglected
photon-induced intraband transitions in the Hamil-
tonian. Terms with higher powers of the interband po-
larization give additional contributions where one of the
polarizations is replaced by the photon-assisted density
matrix. In many cases, however, particularly if lumines-
cence from band states instead of exciton states is stud-
ied, these terms are of minor importance.

The results obtained in the previous sections for the
interband polarization can now be directly applied to
the photon-assisted density matrix. The first-order con-
tributions due to carrier-phonon and carrier-carrier in-
teraction are obtained by simply adding the respective
self-energies [Eqs. (48) and (76)] to the single-particle
energies in Eq. (110). In particular, in the case of a ho-
mogeneous system we obtain (Kuhn and Rossi, 1992b)

d

dt
rqn

k 5
1
i\ (

k8
akk8~vq!rqn

k82
1
i\

mkfk
ef2k

h , (118)

where

akk8~vq!5F ek
e1e2k

h 2\v2(
k9

Vk2k9~fk9
e

1f2k9
h

!G
3dkk82~12fk

e2f2k
h !Vk2k8 . (119)

This equation, supplemented by the respective stimu-
lated terms as well as by a phenomenological dephasing
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rate and combined with the respective equations for
electron, hole, and photon distribution functions, has
been called the semiconductor luminescence equation
(Kira, Jahnke, and Koch, 1998).

The semiclassical luminescence spectrum is given by

d

dt
Nqn

inc5
1
i\ (

k,k8
$mkmk8

* @a21~vq!#kk8

2mk* mk8@a* 21~vq!#kk8%fk8
e f2k8

h . (120)

With the bare Coulomb potential and in the absence of
band-gap renormalization, the inverse of the matrix
a—including an infinitesimal imaginary part—
corresponds to the exciton propagator, which can be cal-
culated analytically. Taking into account screening,
band-gap renormalization, and a finite dephasing rate,
we can calculate the inverse numerically by using tech-
niques that have been developed for the calculation of
quasiequilibrium absorption spectra (Schmitt-Rink,
Löwenau, and Haug, 1982; Haug, 1988).

The second-order contributions due to carrier-phonon
and carrier-carrier interaction are given by

d

dt
rqn

k u(2)52(
q

~Wk2q,krqn
k 2Wk,k2qrqn

k2q!, (121)

where the transition matrices are the same as in Eqs.
(64) and (87). Thus the same compensation effects be-
tween in- and out-scattering terms apply here as well.
This will be discussed in more detail in Sec. III.A.2.

Including these terms, the equation of motion for the
photon-assisted density matrix again has the same form
as in Eq. (118), but with the matrix ã given by

ãkk8~vq!5F ek
e1e2k

h 2\vq2(
k9

Vk2k9~fk9
e

1f2k9
h

!

2i\(
k9

Wk9,kGdkk82~12fk
e2f2k

h !Vk2k8

1i\Wk,k8 . (122)

For sufficiently slowly varying distribution functions, the
semiclassical spectrum is again obtained by inverting this
matrix, which now includes broadening due to carrier-
phonon and carrier-carrier scattering processes. A nu-
merical solution of the equation of motion for the
photon-assisted density matrix yields the quantum-
kinetic spectrum.

Band-to-acceptor spectra, including many-body and
dephasing processes, can be obtained in the same way,
by replacing the self-energies and transition matrices
with those derived in Sec. II.E.6 for the band-to-
acceptor polarization.

G. Theoretical modeling of typical experiments

Virtually all experiments in the ultrafast time domain
are carried out in the optical regime, which means that
the semiconductor is optically excited by a short laser
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pulse and the detected signal is again electromagnetic
radiation. Therefore the modeling of such experiments
has to take into account three basic features: the cre-
ation of electronic excitations by the exciting light field,
the subsequent carrier dynamics in the semiconductor,
and the generation of the emitted electromagnetic radia-
tion. The excitation of the semiconductor by a classical
electromagnetic field has been treated in Sec. II.C, while
the generation of coherent and incoherent radiation has
been described in Sec. II.F. For the modeling of the car-
rier dynamics we have to distinguish between two cases:
excitation by a single pulse, as is typical of luminescence
or terahertz-emission experiments, and excitation by
two pulses traveling in different directions, as is the case
in pump-probe and four-wave-mixing experiments.

If the semiconductor is excited by a single pulse with a
sufficiently large spatial extension, the equations of mo-
tion as derived in Sec. II for the homogeneous case can
be directly applied. In this case the direction of the inci-
dent pulse is the only preferred direction, and the coher-
ent emission will also take place in this direction. Due to
disorder, light scattering in other directions, the so-
called Rayleigh scattering, is also possible. An incoherent
emission of photons, on the other hand, may occur in
any direction; this is usually called luminescence. Since
in many cases it is difficult to distinguish between these
two contributions, the more general name secondary
emission, including both phenomena, has become com-
mon usage. Here we shall concentrate on some aspects
related to luminescence. Recent results on Rayleigh
scattering and on other aspects of the secondary emis-
sion have been presented by Wang et al. (1995), Haacke
et al. (1997), Birkedal and Shah (1998), Woerner and
Shah (1998), Garro et al. (1999), and Haacke et al.
(2000).

Many luminescence experiments have been inter-
preted on a purely incoherent basis. In this case the car-
rier dynamics are completely described in terms of dis-
tribution functions, and their temporal evolution is
dictated by Boltzmann equations. The spectral and tem-
poral shapes of the corresponding generation and emis-
sion rates are obtained from Fermi’s golden rule. Within
this approach the luminescence spectrum due to band-
to-band transitions is a direct probe of the product of
electron and hole distribution functions at the corre-
sponding transition energy, while the band-to-acceptor
spectrum directly monitors the electron distribution
function. Because the Boltzmann equation is a rate
equation, it is well suited to stochastic simulations based
on the well-known Monte Carlo method. Sophisticated
programs involving a large variety of scattering mecha-
nisms as well as details of the band structure have been
developed and applied to many experimental investiga-
tions (Osman and Ferry, 1987; Goodnick and Lugli,
1988; Stanton, Bailey, and Hess, 1988; Lugli et al., 1989;
Rieger et al., 1989; Hohenester et al., 1993; Rota et al.,
1993, 1995; Supancic et al., 1996). If coherence phenom-
ena do not play an important role—as is typically the
case on not-too-short time scales—a good agreement be-
tween theory and experiment has been achieved and
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much has been learned about the characteristic times of
the various scattering processes. To overcome the prob-
lem of screening, which is particularly important for
carrier-carrier scattering processes, molecular-dynamics
schemes were developed that directly simulate in phase
space the dynamics of an ensemble of interacting elec-
trons, while still treating the interactions with the lattice
within a Monte Carlo scheme. Compared to Monte
Carlo simulations using a time-dependent quasistatic
screening model, the molecular-dynamics results showed
a faster initial broadening at high carrier densities, which
is in better agreement with experiments (Hohenester
et al., 1993; Rota et al., 1993). However, as will be dis-
cussed in more detail in Sec. III.A, it turns out that for
this initial broadening the inclusion of coherence phe-
nomena may be essential.

Coherence in the photogeneration process is taken
into account by treating the interband polarization as an
independent dynamical variable. If the scattering pro-
cesses are treated on a semiclassical level, it is still pos-
sible to use a generalized Monte Carlo approach to treat
the scattering terms in the equations for the distribution
functions (Kuhn and Rossi, 1992a, 1992b) or in the
equations for the polarization (Rossi et al., 1994; Haas
et al., 1996), but direct-integration methods have also
been widely used (Rappen, Peter, and Wegener, 1994;
Jahnke and Koch, 1995; Jahnke et al., 1996; Pötz, 1996b;
Joschko et al., 1997).

Coherence and correlation phenomena in the photo-
emission process are included by taking into account the
photon-assisted density matrices introduced in Sec. II.F.
As discussed there, on this level excitonic effects, Cou-
lomb enhancement, and renormalization, as well as
broadening due to scattering processes, can be included.
If memory effects (‘‘electron-photon quantum kinetics’’)
are neglected, the photon-assisted density matrices can
be adiabatically eliminated and the spectrum is obtained
by performing a matrix inversion in which, however, the
matrix is a function of time.

Typical terahertz signals constitute coherently emitted
electromagnetic radiation. Therefore a quantized treat-
ment of the field is not necessary in this case. Instead,
they are calculated directly from the intraband polariza-
tion or from the oscillating current density induced by
the exciting light field, which act as sources for a classical
field.

If the semiconductor is excited by two or more pulses
traveling in different directions or by a strongly localized
pulse, the excitation corresponds to a spatially inhomo-
geneous electric-field distribution and thus the full
theory, including nondiagonal single-particle density ma-
trices, has to be used. If the typical length scales intro-
duced by the excitation are sufficiently large, however,
the Wigner representation in combination with the gra-
dient expansion—as introduced in Sec. II.C.3—can be
conveniently employed. The characteristic length scale
in a two-pulse pump-probe or four-wave-mixing experi-
ment is the period of the transient grating created in the
sample. If l is the wavelength of the exciting pulses and
a the angle between the two incident directions, this pe-
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riod is given by l/@2 sin(a/2)# , which is typically at least
in the micrometer range. Since in the absence of strong
electric fields transport processes over this distance can
usually be neglected on a femtosecond time scale, the
dynamics are well described by the lowest-order contri-
bution in the gradient expansion, i.e., by the equations
of motion for the homogeneous case in which all the
quantities now depend parametrically on the spatial co-
ordinate r. For an exciting electric field of the form

E~r,t !5E1~ t !eiq1r1E2~ t !eiq2r1c.c.

5eiq1r@E1~ t !1E2~ t !ei(q22q1)r#1c.c., (123)

all dynamical variables can be expanded in a Fourier
series (Lindberg, Binder, and Koch, 1992) as5

fk~r!5(
n

fk
(n)ein(q22q1)r,

pk~r!5eiq1r(
n

pk
(n)ein(q22q1)r. (124)

Here, fk
(0) is the spatially averaged distribution function,

fk
(1) and fk

(21) describe transient grating terms, and
higher orders of fk describe a nonsinusoidal shape of this
grating. pk

(0) and pk
(1) describe polarizations traveling in

the directions of the pulses; thus, if pulse 2 is the probe
pulse, pump-probe signals are calculated from pk

(1) . In
particular, assuming an optically thin sample by neglect-
ing any propagation effects, as is always done in this
review, the differential transmission spectrum DT(v) is
obtained from the total polarization in the probe direc-
tion P(1)5(kMpk

(1) by Fourier transformation: accord-
ing to

DT~v!;
Im@E2* ~v!dP(1)~v!#

uE2~vu2 , (125)

where dP(1) is the difference between the polarization
calculated with and without the pump pulse (Lindberg
and Koch, 1988b; Balslev, Zimmermann, and Stahl,
1989).

The diffracted polarizations pk
(2) and pk

(21) give rise to
four-wave-mixing signals. Again, in the absence of
propagation effects, the emitted fields are essentially
proportional to the polarizations P(n)5(kMpk

(n) , where
n52 and 21; therefore both temporally and spectrally
resolved signals are directly given by uP(t)u2 and
uP(v)u2, respectively. Since the feedback from higher to
lower orders in the Fourier expansion is usually not very
strong, the series is truncated either at the desired order
or at most one order above. With this technique the cal-

5It should be noted that this Fourier expansion only holds in
the case of a rotating-wave approximation and in the absence
of Coulomb terms that do not conserve the number of
electron-hole pairs. Otherwise, the clear separation between
distribution functions and polarizations is lost and a different
expansion involving additional Fourier components has to be
performed.
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culation of pump-probe and four-wave-mixing signals
requires increasing the number of variables by a factor
of about 4 with respect to the single-pulse calculation.
An alternative method that avoids the increase in the
number of variables has been proposed by Bányai et al.
(1995; Haug and Jauho, 1996). It is based on the obser-
vation that if the phase difference f between the pulses
is treated as a continuous variable equal to (q22q1)r
and the dynamics are calculated for all phases f, the
polarization components in the various directions can be
obtained by a Fourier transform,

pk
(n)5

1
2p E

0

2p

pk~f!einfdf . (126)

This method is particularly useful in quantum-kinetic
calculations, in which the number of variables in the ho-
mogeneous case is often already very large and a further
increase is not possible due to memory limitations.

III. SELECTED EXPERIMENTAL AND THEORETICAL
RESULTS

A. Line shape of luminescence spectra

As mentioned above, measurements of the lumines-
cence spectrum were among the first optical experiments
to yield information on nonequilibrium carrier dynamics
in semiconductors, and they are still widely applied to a
variety of semiconductor materials and structures. For a
long time they were rather successfully interpreted in
terms of a fully incoherent picture based on the Boltz-
mann equation and transition rates obtained from Fer-
mi’s golden rule. However, it turned out that several fea-
tures in the spectra—particularly in spectral regions
directly related to the carrier photogeneration process—
were hard to explain. In this section we shall discuss
effects due to a coherent description of carrier dynamics.
For this purpose we shall first compare the carrier pho-
togeneration process treated in an incoherent picture
with the corresponding coherent description based on
the semiconductor Bloch equations. Then we shall ana-
lyze the photoemission process on the same level. Fi-
nally, we shall show that this coherent treatment indeed
provides a much better explanation of experimentally
observed band-to-acceptor luminescence spectra.

1. Coherent carrier photogeneration

According to Fermi’s golden rule, the generation rate
of electrons and holes is given by a product of temporal
and spectral shapes of the exciting laser pulse, as ob-
tained in the case of a Gaussian pulse in Eq. (33). In a
coherent picture, on the other hand, carrier generation
is a two-step process according to Eq. (26): First, the
light field creates an interband polarization and then the
polarization itself interacts again with the field, creating
electron and hole populations. The photogeneration
rates obtained in these two pictures are plotted at four
different times in Fig. 3 for the case of a 150-fs pulse
centered at 1.68 eV and material parameters corre-
sponding to bulk GaAs. In the case of Fermi’s golden
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rule, the spectral shape is time independent, except for
the phase-space-filling terms, which are responsible for
the slight difference between the curves at 2100 fs and
100 fs. In contrast, the generation rate obtained from the
Bloch equations in the absence of carrier-phonon and
carrier-carrier scattering exhibits a pronounced time de-
pendence of the spectral shape. The generation starts
out very broad; with increasing time the shape becomes
narrower, and negative values appear in the wings. From
a physical point of view this can be easily understood:
As in the semiclassical case, the spectral width is deter-
mined by energy-time uncertainty. Due to causality,
however, only the time from the onset of the laser pulse
up to the observation time determines the broadening,
leading to a spectrally very broad rate at early times.
With increasing time, the energy uncertainty decreases,
and since there is still complete phase coherence be-
tween the carriers and the laser field, those carriers gen-
erated off-resonance perform a stimulated recombina-
tion leading to negative wings. As a result, the time-
integrated generation rate agrees with the semiclassical
case as long as phase-space filling is not important, and
one should expect that for measurements performed af-
ter the exciting pulse has gone, there should be no big
difference.

The situation changes if scattering processes are taken
into account. The semiclassical rate is not affected by
these processes, since on a Boltzmann level all interac-
tion processes are treated independently. In the Bloch
case, on the other hand, the generation rate is still given
by Eq. (26); the polarization dynamics, however, are
strongly influenced by carrier-phonon and carrier-carrier
interactions. In the present case of a homogeneous sys-
tem and an excitation high up in the band, the most
important contributions are given by the second-order
terms, which lead to a dephasing of the interband polar-
ization.

Figure 4 shows generation rates for different pulse in-

FIG. 3. Generation rate of a 150-fs laser pulse as a function of
wave vector at different times: (a) semiclassical and (b) coher-
ent picture. No dephasing processes have been taken into ac-
count. After Kuhn and Rossi, 1992b.
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tensities (specified by the final carrier density) obtained
from the semiconductor Bloch equations, taking into ac-
count first-order carrier-carrier contributions (Hartree-
Fock) as well as second-order carrier-carrier and carrier-
phonon contributions on a Markovian level according to
Eqs. (62) and (85). Now the shape of the generation rate
becomes strongly density dependent. Due to dephasing
by scattering processes, coherence is lost and, as a con-
sequence, the stimulated recombination processes in the
wings are inhibited, thereby reducing the narrowing of
the spectral shape with increasing time. The dominant
process for this density dependence is carrier-carrier
scattering. At lower densities dephasing is essentially
due to carrier-phonon scattering only. The correspond-
ing dephasing rate is of the order of 200 fs; therefore, on
the time scale of the pulse, it is not yet very efficient. We
observe only a slight reduction of the negative parts.
With increasing density, however, the loss of coherence
increases and the negative parts are more and more re-
duced. The generation rate remains broad during the
pulse, leading to a much broader carrier distribution af-
ter the pulse, compared to the semiclassical case. In Sec.
III.A.3 we shall show how this broadening of the carrier
generation process influences band-to-acceptor spectra.

It should be noted that a physically reasonable density
dependence is obtained only if both in- and out-
scattering-type second-order contributions as given in
Eq. (85) are included, particularly in the case of carrier-
carrier scattering. Sometimes it has been argued that,
due to random phases, in-scattering contributions can be
neglected. Then, the scattering terms reduce to a
k-dependent dephasing rate, given by the total out-

FIG. 4. Coherent generation rate of a 150-fs pulse at three
different densities, including dephasing due to carrier-carrier
and carrier-phonon scattering. After Leitenstorfer et al., 1996.
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scattering rate. As discussed in detail by Rossi et al.
(1994) and Haas et al. (1996), this results in an essen-
tially density-independent, very strong broadening. The
physical reason for this strong overestimation of the
dephasing at low densities is the assumption inherent in
this approximation that each scattering process com-
pletely destroys the coherence. However, at low densi-
ties most of the two-body scattering processes are char-
acterized by a very small momentum transfer q, which,
in turn, leads to a very small energy exchange and thus
to very small dephasing.

In addition to the scattering-induced broadening of
the generation rate, there are, of course, other cases in
which the semiclassical rate [Eq. (33)] no longer holds.
Close to the semiconductor band gap, carrier-light inter-
action is strongly influenced by excitonic effects. In the
semiconductor Bloch equations such effects are de-
scribed by the first-order carrier-carrier contributions, in
particular by the internal field. Here, a semiclassical gen-
eration rate can again be obtained by adiabatic elimina-
tion of the polarization, which, however, has to be per-
formed in an exciton basis. If the laser pulse intensity is
very high, the assumption of slowly varying distribution
functions is no longer satisfied. Here, the semiconductor
Bloch equations give rise to Rabi-type oscillations, well
known from the physics of two-level systems. Since a
continuum of energies is involved in band-to-band exci-
tations, no complete Rabi oscillations are possible; nev-
ertheless, the total generation rate still exhibits non-
monotonic behavior (Kuhn and Rossi, 1992b; Fürst,
Leitenstorfer, Nutsch, et al., 1997). Even for excitonic
excitation, which is closer to a two-level model, Cou-
lomb effects and the presence of the continuum strongly
modify the Rabi oscillations, but in this case multiple
oscillations with a frequency depending linearly on the
field amplitude have been observed (Schülzgen et al.,
1999).

2. Luminescence line shape

Luminescence is the inverse process to the generation
of carriers by light absorption. Therefore features simi-
lar to those discussed in the previous section should oc-
cur in the emission process as well, leading again to
modifications in the luminescence spectra when com-
pared to the Fermi’s golden rule result. The theoretical
description is somewhat more complicated, since, as dis-
cussed in Sec. II.F, it requires a quantum-mechanical
treatment of the light field in which the photon-assisted
density matrix, instead of the interband polarization, is
the relevant variable introduced by the interaction. Nev-
ertheless, the many-body contributions appear in the
same way as in the case of the interband polarization,
since neither carrier-phonon nor carrier-carrier interac-
tions couple directly to the photons. Therefore, the same
scattering matrices responsible for the broadening of the
generation process give rise to the broadening of the
band-to-band luminescence spectrum.

In order to focus on the broadening of the lumines-
cence spectrum—and to avoid the broadening of the dis-
Rev. Mod. Phys., Vol. 74, No. 3, July 2002
tribution function due to the scattering of the excited
carriers—here, we show luminescence spectra obtained
for a stationary distribution function of electrons and
holes, generated by a laser pulse according to the mod-
els in the previous section (Kuhn, Rossi, et al., 1996;
Leitenstorfer et al., 1996). Since the distribution func-
tions after the pulse are constant, the spectra are ob-
tained by inverting the matrix in Eq. (122). In Figs.
5(a)–(c) luminescence spectra, calculated according to
four different models, are plotted for three different car-
rier densities. The dot-dashed lines show the fully semi-
classical result obtained by calculating both generation
and luminescence according to Fermi’s golden rule. In
this case the spectrum is simply given by the square of
the exciting laser spectrum multiplied by the density of
states. The dashed lines show the luminescence spectra
obtained by solving the semiconductor Bloch equations,
taking into account the broadening of the generation
process, while the luminescence process is described by
the semiclassical formula, thus introducing no additional
broadening. The dotted lines show the opposite case:
semiclassical generation and luminescence including
broadening. These curves essentially agree with the
dashed ones, which again demonstrates the fact that it is
the same physics that broadens the transitions. Finally,
the solid lines display the spectra in which broadening
has been included for both the generation and emission
processes. From these results it is clear that, with rising
density, the semiclassical model increasingly underesti-
mates the width of the luminescence spectra; the broad-
ening of both generation and emission processes has to
be taken into account.

FIG. 5. Spectral profile of band-to-band [(a)–(c)] and band-to-
acceptor [(d)–(f)] luminescence at different densities calcu-
lated for a carrier distribution generated by a 150-fs pulse:
dot-dashed line, semiclassical generation and recombination;
dashed line, broadened generation and semiclassical recombi-
nation; dotted line, semiclassical generation and broadened re-
combination; solid line, broadened generation and recombina-
tion. After Leitenstorfer et al., 1996.
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Instead of measuring band-to-band luminescence, in
p-doped semiconductors one can measure band-to-
acceptor luminescence, which, as has been mentioned
above, has the advantage that it does not involve free
holes. Therefore it is usually easier to interpret. Let us
now look at the broadening in these experiments. Parts
(d)–(f) of Fig. 5 show band-to-acceptor spectra calcu-
lated under the same conditions as in parts (a)–(c) for
band-to-band spectra. Here, we no longer find an agree-
ment between the dashed and dotted lines; instead, the
dashed lines essentially agree with the solid ones. The
reason for this behavior can be understood as follows:
Since the generation is a band-to-band transition, while
the emission is a band-to-acceptor transition, there is no
longer symmetry between the two processes and there is
no reason why the broadening should be the same. In
fact, the broadening of the generation process is much
greater, which can be traced back to the fact that
dephasing of band-to-acceptor transitions is due to scat-
tering processes of the electrons only, while the dephas-
ing of band-to-band transitions is due to scattering pro-
cesses of both electrons and holes, the latter usually
being much more efficient because of the much higher
density of states. Therefore we can conclude that for
band-to-acceptor spectra the broadening of the emission
process is negligible compared to that of the generation
process.

3. Band-to-acceptor luminescence spectra

In the previous section we have clearly seen that a
proper inclusion of the interband polarization
dynamics—in particular their density-dependent
dephasing—should noticeably modify luminescence
spectra. Therefore the question arises whether such cal-
culations can improve the agreement with experimen-
tally observed spectra (Leitenstorfer, Lohner, Elsaesser,
et al., 1994; Leitenstorfer et al., 1996). Figure 6 demon-
strates that this is indeed the case. Here, time-integrated
band-to-acceptor spectra calculated on a semiclassical
(Boltzmann) as well as on a coherent (semiconductor
Bloch) level for three different densities are compared
to experimental results. In agreement with the findings
of the previous section, here the broadening of the emis-
sion process has been neglected in the calculations. At
low densities the spectra exhibit pronounced phonon
replicas due to the emission of optical phonons, while
carrier-carrier scattering has essentially no effect at the
lowest density. In contrast, with increasing density the
replicas are more and more washed out due to increas-
ing carrier-carrier scattering. The overall behavior is
similar in the Boltzmann and Bloch cases; however,
there are remarkable differences, particularly in the re-
gion of the peak at the highest energy (marked by heavy
lines), which are due to those carriers’ not yet having
emitted a phonon. In the Boltzmann case this peak is
visible up to the highest density because in this picture
the carriers are always generated with a narrow distribu-
tion, which is subsequently broadened by carrier-carrier
scattering. In contrast, in the Bloch case the generation
Rev. Mod. Phys., Vol. 74, No. 3, July 2002
process is broadened as discussed above, which is clearly
in much better agreement with the experimental results.

B. Coherent features in pump-probe experiments

Much like luminescence experiments, pump-probe ex-
periments in the band-to-band region have been per-
formed for many years to obtain information on the dy-
namics of carrier distribution functions. Measurements
of the transmission change of a probe pulse due to a
previous pump pulse were among the first time-resolved
studies of the nonequilibrium dynamics in semiconduc-
tors (Shank et al., 1979), and the transmission change
has been completely interpreted in terms of Pauli block-
ing of the optical transitions. However, the direct source
for a differential transmission or reflection signal is a
third-order polarization created in the sample by the
pump and probe pulses. Therefore, on a time scale of
the order of the dephasing time, the coherent dynamics
of this polarization will influence the signal. Besides the
usual phase-space-filling term present when the pump
pulse precedes the probe pulse, there are two additional
contributions which are also well known from two-level
systems (Chachisvilis, Fidder, and Sundström, 1995):
First, if the probe pulse precedes the pump pulse by a
time delay of the order of or shorter than the dephasing
time, the pump pulse perturbs the decay of the probe
polarization by suddenly increasing the dephasing rate.
This gives rise to the perturbed free polarization decay.
Second, if the pulses overlap temporally, they induce a
grating in the sample which can diffract the pump pulse

FIG. 6. Band-to-acceptor luminescence spectra at three differ-
ent excitation densities: left and center panels, theoretically
calculated; right panel, experimentally observed. The unre-
laxed peak (heavy lines) reflects the broadening of the genera-
tion processes as included in the coherent model. After Leiten-
storfer, Lohner, Elsaesser et al., 1994.
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into the probe direction. If the probe pulse precedes the
pump pulse, these phenomena give rise to spectral oscil-
lations in the differential transmission with a frequency
determined by the time delay between both pulses
(Fluegel et al., 1987; Lindberg and Koch, 1988c; Likfor-
man et al., 1995). This shows that, on time scales compa-
rable to or shorter than dephasing times, pump-probe
spectra are quite complicated to interpret. Grating ef-
fects can be even more complicated if, for example, in
spatially resolved pump-probe experiments, a nearly col-
linear excitation has to be used. In this case different,
diffracted orders can no longer be distinguished, leading
to a superposition of pump-probe, four-wave-mixing,
and possibly higher-order contributions (Otremba et al.,
1999). Besides these features general to pump-probe ex-
periments, there are additional modifications in a semi-
conductor due to many-body effects. Electron and hole
distributions give rise to band-gap renormalization and,
therefore, to a spectral shift. Furthermore, they modify
the Coulomb enhancement, which again may lead to an
induced absorption in some spectral regions (Fürst, Le-
itenstorfer, Laubereau, and Zimmermann, 1997). Cou-
lomb correlation effects are even more pronounced in
the excitonic region of the spectrum. Here it has been
shown that Coulomb sources may even strongly domi-
nate the spectra (Bartels et al., 1997). In particular, in
the case of pumping and probing with two countercircu-
larly polarized laser pulses, Pauli blocking—as well as
other mean-field contributions—is completely absent
and only correlations give rise to a signal (Smith et al.,
1994; Axt, Victor, and Stahl, 1996; Sieh et al., 1999). In

FIG. 7. Differential transmission signals after band-to-band
excitation of bulk GaAs with 20-fs pulses: (a) experimentally
observed signals at four different energies; (b) calculated sig-
nal at 1.56 eV: solid line, the full model; dashed line, without
inter-valence-band (IV) polarization; dotted line, without scat-
tering. After Joschko et al., 1997, 1998.
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the following we shall address in more detail a specific
coherent feature in band-to-band spectra.

The Pauli blocking terms in a density-matrix theory
involve not only distribution functions—i.e., diagonal
density-matrix elements—but, if the optical excitation
overlaps spectrally with several transitions, also off-
diagonal elements describing phase coherence within a
given band or between different conduction or valence
bands, respectively. Since such off-diagonal elements os-
cillate in time with a frequency given by the correspond-
ing energy splitting, they give rise to quantum beats in
pump-probe signals when plotted as a function of the
delay time between pump and probe pulse. In the exci-
tonic region such quantum beats have been observed for
many years in different systems, where the interfering
states were given by excitons in coupled quantum wells
(Leo, Göbel, et al., 1991), spin states in a magnetic field
(Bar-Ad and Bar-Joseph, 1991) as well as heavy- and
light-hole excitons (Schmitt-Rink et al., 1992). In the
band-to-band regime, on the other hand, there is in
many cases a continuous variation of splitting energies,
for example, in the case of heavy- and light-hole bands.
Therefore, even if a superposition is excited, it is not
obvious whether quantum beats can be observed in
pump-probe signals.

Figure 7(a) shows experimentally observed pump-
probe signals at different detection energies obtained
from bulk GaAs excited by 20-fs pump and probe pulses
at 1.61 eV (Joschko et al., 1997). The pulses overlap with
a broad manifold of transitions from the heavy- and the

FIG. 8. Differential transmission spectra calculated (a) with
and (b) without inter-valence-band polarizations.
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light-hole band to the conduction band, but they do not
overlap with the exciton at about 1.5 eV and therefore
clearly probe band-to-band transitions. While under
such conditions a spectrally integrated signal exhibits no
oscillations, here oscillations are clearly visible on the
low-energy side, in particular at 1.56 eV. The variation of
the oscillation frequency with the excess energy gives a
clear hint that these are indeed heavy-hole/light-hole
quantum beats. This interpretation is confirmed by the-
oretical results obtained from the semiconductor Bloch
equations. In Fig. 7(b) the calculated signal at 1.56 eV
(solid line) is compared with the results of calculations
in which the inter-valence-band polarizations (dashed
line) and the carrier-carrier and carrier-phonon scatter-
ing (dashed line) have been switched off. Figures 8(a)
and (b) show the complete spectra as functions of the
photon energy and the delay time with and without
inter-valence-band polarization, respectively. If the inter-
valence-band polarizations (off-diagonal elements of the
hole density matrix) are switched off, these oscillations
are absent, unambiguously demonstrating their origin as
heavy-hole/light-hole quantum beats in the continuum.
From an analysis of the various contributions in the the-
oretical model, the spectra can be understood in detail
(Joschko et al., 1998): The strong asymmetry with re-
spect to the spectral center of the pulses is due to the
Coulomb enhancement, which strongly increases the
low-energy part; the negative feature around zero time
delay is mainly due to the grating effect discussed above;
and the damping of the oscillations is due to a combina-
tion of dephasing by scattering processes and of the in-
homogeneous broadening of the transition frequencies.

The occurrence of quantum beats in spectrally re-
solved signals can be easily understood from a three-
band model of noninteracting carriers. Assuming that
the pump pulse at time 2TD creates electron and heavy-
and light-hole distributions fk

e , fk
h , and fk

l , as well as
an inter-valence-band polarization fk

lh5 f̃ k
lh exp@(ivk

lh

2G lh)(t1TD)# , where \vk
lh is the heavy-hole/light-hole

splitting energy at a given k and G lh the corresponding
dephasing rate, the linear susceptibility due to a probe
pulse at time t50 is given by
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Here, Gh and G l are interband dephasing rates of
the heavy-hole-to-conduction-band and light-hole-to-
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conduction-band transitions, respectively, Mh and Ml

are the corresponding dipole matrix elements, and E(v)
is the Fourier transform of the electric field of the probe
pulse. We have assumed that the distribution functions
as well as the inter-valence-band polarization envelope
f̃ k

lh are slowly varying during the probe pulse. This result
clearly shows that there are oscillating contributions in
the spectrum (third and fourth terms). They are damped
not only by G lh, but also by inhomogeneous broadening,
since at a given frequency v, a range of k states (the
corresponding width being determined by the interband
dephasing rate) around the resonant transition fre-
quency contributes to the susceptibility. Furthermore,
these terms involving inter-valence-band polarizations
depend on the spectral shape of the probe pulse, and
they are shifted towards lower (third term) and higher
(fourth term) frequency compared to the diagonal (first
and second) term. The question remains why oscillations
are seen only on the low-energy side in both the experi-
mental and the theoretical spectra. This behavior is also
confirmed by Eq. (127) when the k summation is per-
formed. It turns out that when we calculate the imagi-
nary part of the susceptibility, the two terms resulting
from the decomposition exp(6ivk

lhTD)5cos vk
lhTD

6i sin vk
lhTD in the third term add constructively, while

in the fourth term they oscillate out of phase, thus can-
celing each other.

Recently, heavy-hole/light-hole quantum beats in the
band-to-band continuum—in particular, their dephasing
dynamics—have also been analyzed on the level of a
Coulomb quantum-kinetic approach (Mieck and Haug,
1999). It has been found that they should persist in
pump-probe spectra even in the density range between
1017 and 1018 cm23. In the excitonic part of the spectrum
the heavy-hole/light-hole systems more closely resemble
a three-level system, and one might expect a simpler
interpretation. However, it turns out that here Coulomb
effects are even more important. In particular,
Coulomb-induced correlations between excitons may
even change the sign of the signal or modify the phase of
the beats (Bartels et al., 1997), and they efficiently
couple heavy-hole and light-hole excitons (Meier et al.,
2000).

C. Temporal and spectral shape of four-wave-mixing
signals

In a four-wave-mixing experiment the sample is ex-
cited by two pulses traveling in directions q1 and q2 , and
the signal is measured in the diffracted direction 2q2
2q1 . If the sample is optically thin, it is usually a good
assumption to model the emitted electric field directly
by the optical polarization in this direction. To lowest
order this is a third-order polarization, but, of course,
with increasing power of the pulses, higher-order polar-
izations also contribute to the signal. For the case of a
two-level system and pulses arriving at times t52TD
and t50, respectively, with pulse durations shorter than
the dephasing time, it can be shown that the third-order
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polarization in the diffracted direction is directly propor-
tional to the value of the phase-conjugated polarization
at t50 created by the first pulse at t52TD . Since the
time-integrated signal decays with a time constant T2/2,
this technique provides direct information on the
dephasing time T2 . As a function of time, the polariza-
tion decays with the dephasing time; it exhibits a free
polarization decay. If instead of a single two-level system
an inhomogeneously broadened ensemble of such sys-
tems is considered, the signal is not emitted immediately
after the second pulse due to interference of the differ-
ent frequency contributions. Instead, its maximum oc-
curs at time t5TD : It exhibits photon-echo behavior.
The time-integrated signal in this case decays with a
time constant of T2/4. Such an echo signal was first ob-
served in magnetic resonance (Hahn, 1950), here called
the spin echo, with dephasing times of the order of 10
ms. In the visible range the first photon echoes were
observed in ruby (Kurnit et al., 1964; Abella et al., 1966)
with dephasing times of the order of 100 ns.

In a semiconductor the spectrum consists of both a
discrete excitonic and a continuous band-to-band part.
Furthermore, depending on the sample and the experi-
mental conditions, the exciton line may be either homo-
geneously or inhomogeneously broadened. Therefore
one might expect a more complicated temporal behavior
of the four-wave-mixing signal, depending on a variety
of parameters. For inhomogeneously broadened two-
dimensional excitons in quantum wells excited by
12.6-ps pulses, it was shown during the early stages of
coherent spectroscopy in semiconductors that this sys-
tem exhibits a photon echo (Schultheis et al., 1985).
Similar results were obtained for excitons in mixed crys-
tals (Noll et al., 1990). For weak disorder, however, the
signals can only be understood in detail if the Coulomb
interaction is also included in the model (Jahnke et al.,
1994).

For homogeneously broadened excitons it was found
that the expected free polarization decay is modified by
many-body effects, which, particularly at higher excita-
tion power, strongly dominate the temporal shape of the
signal (Leo, Wegener, et al., 1990; Kim, Shah, Damen,
et al., 1992; Mycek et al., 1992; Weiss et al., 1992). This
behavior is qualitatively well reproduced by calculations
based on the semiconductor Bloch equations (Wegener
et al., 1990; Lindberg et al., 1992). The most prominent
deviation from the two-level case, which also manifests
itself in the time-integrated signal, is the appearance of a
contribution at negative delay times. Qualitatively, this
can be understood on the mean-field level on the basis
of a two-level system, which, in addition to the external
field, is subject to a local field proportional to the polar-
ization. Here, the polarization created by the first pulse
in the direction q2 , which is still present at the arrival of
the second pulse, can be diffracted into the observed
direction 2q22q1 . This contribution, however, is re-
moved by sufficiently strong inhomogeneous broaden-
ing. At positive delay times the Coulomb interaction
gives rise to a delayed contribution in the signal, the
delay being determined by the dephasing time. Besides
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these mean-field effects of the Coulomb interaction,
there are also modifications to the noninteracting carrier
case which are related to electronic correlations induced
by the Coulomb interaction. As has been shown in detail
in Sec. II.E.2, such correlations give rise to nonlinear
scattering and relaxation terms. This type of dephasing
has been introduced in a simplified way as excitation-
induced dephasing (Wang et al., 1993; Hu et al., 1994),
i.e., a dephasing rate that increases linearly with the car-
rier density. However, these correlations lead to more
than just dephasing. Variables like Bj1 ,i1 ,j2 ,i2

5^dj1
ci1

dj2
ci2

&, which were not discussed in Sec. II be-
cause in a correlation expansion they enter at a higher
order, include effects related to biexcitons as well as
exciton-exciton correlations (Axt and Stahl, 1994b).
They again modify four-wave-mixing signals; in particu-
lar, they give rise to biexcitonic quantum beats with a
frequency determined by the biexciton binding energy
(Pantke et al., 1993; Mayer et al., 1994; Bartels et al.,
1995). Even if bound biexcitons are excluded due to ex-
citation with two pulses of the same circular polariza-
tion, the signals are strongly dominated by such Cou-
lomb correlations, particularly at negative delay times
(Kner et al., 1998). We shall come back to the features of
biexcitons and exciton-exciton correlations in Sec. III.H
when discussing Coulomb quantum kinetics. Quantita-
tively, it has been found that correlation effects are typi-
cally more important than local field corrections for the
deviations of four-wave-mixing signals in the excitonic
regime from the limiting case of noninteracting two-
level systems described by the optical Bloch equations.

In the band-to-band continuum case, which, at least in
the limit of noninteracting carriers, is equivalent to an
inhomogeneously broadened ensemble of two-level sys-
tems, a photon echo behavior is expected. The dephas-
ing in this case was studied as a function of carrier den-
sity by using 6-fs pulses (Becker et al., 1988), and the
signal was indeed attributed to a photon echo. However,
in that work the signal was not time resolved; therefore
a clear proof was not possible. A clear photon echo be-
havior, as found in calculations based on the semicon-
ductor Bloch equations for the case of excitation in the
band-to-band continuum (Lindberg et al., 1992; Glutsch,
Siegner, and Chemla, 1995), was observed by Lohner
et al. (1993) after spectral filtering of the continuum con-
tribution, and recently by Hügel et al. (1999) in room-
temperature measurements with 11-fs pulses. In the fol-
lowing we shall discuss in more detail the results
obtained by Lohner et al.

In that experiment a bulk GaAs sample was excited
by 100-fs pulses slightly above the band edge but still
overlapping with the exciton. The diffracted signal was
then spectrally as well as temporally analyzed. The spec-
trally resolved signal for zero time delay at four different
excitation densities is shown in Fig. 9(a). The spectrum
of the laser pulse is included in Fig. 9(b) as a dashed
line. Even if the pulse maximum is in the band, at low
densities the spectrum is completely determined by the
exciton. Such a strong enhancement of the exciton con-
tribution has been found in quantum wells by scanning
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the excitation frequency across the exciton line (Kim,
Shah, Cunningham, et al., 1992). With increasing density
the exciton is screened and an additional free-carrier
contribution appears which is essentially given by the
pulse spectrum. This behavior is qualitatively well repro-
duced by calculations based on the semiconductor Bloch
equations, as shown in Fig. 9(b). The slight differences,
in particular the slight redshift of the exciton and the
stronger free-carrier contribution at higher densities, can
be attributed to limitations of the quasistatic screening
model used in these calculations and to possible uncer-
tainties in the exact determination of the density. The
interesting point here is that the exciton is still clearly
visible at densities more than one order of magnitude
higher than the Mott density at T510 K (Ulbrich, 1988),
which demonstrates that the nonequilibrium distribution
is much less effective in screening the electron-hole in-
teraction. At a given density the spectral shape of the
signal also strongly depends on the delay (Leitenstorfer,
Lohner, Rick, et al., 1994): With increasing negative de-
lay, the excitonic contribution increases, since here the
continuum contribution vanishes due to inhomogeneous
broadening. For positive delay times the excitonic con-
tribution is decreasing faster than the continuum contri-
bution, which can be attributed to destructive interfer-
ence between the polarizations of bound and unbound
states. A similar two-component behavior of the spec-
trally resolved four-wave-mixing signal was found at the
direct gap of germanium (Rappen et al., 1993).

As one might expect from the discussion above, the
temporal shape of the signal in this case will be quite
complicated. However, by performing a spectral filtering
at either the exciton or excitation frequency, one can
extract the two characteristic signal types. This is shown

FIG. 9. Spectrally resolved four-wave-mixing (FWM) signals
of bulk GaAs excited by two 100-fs pulses with zero delay, 4
meV above the band gap: (a) experimental and (b) theoretical
results at different excitation densities. After Lohner et al.,
1993.
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in Figs. 10(a) and (b) for the experimental data and
10(c) and (d) for the theoretical results. The continuum
contribution [Figs. 10(a) and (c)] exhibits clear photon
echo behavior, while the excitonic contribution [Figs.
10(b) and (d)] exhibits essentially a free polarization de-
cay modified by many-body effects as discussed above.
This demonstrates that in a semiconductor these types
of signals, which were initially shown to be characteristic
of different atomic or magnetic systems, occur simulta-
neously, and furthermore they can be clearly separated.

If the semiconductor is excited with a shorter pulse
higher up in the band, the excitonic contribution is es-
sentially absent and the time-resolved four-wave-mixing
signal exhibits photon echo behavior. This is clearly seen
in Figs. 11(a) and (b), where experimental and theoret-
ical results, respectively, are shown corresponding to an
excitation with 11-fs pulses centered at 50 meV above
the band gap (Hügel et al., 1999). The calculations

FIG. 10. Measured [(a), (b)] and calculated [(c), (d)] tempo-
rally resolved four-wave-mixing (FWM) signals for different
delay times: (a), (c) after filtering at the excitation frequency;
(b), (d) after filtering at the exciton frequency. After Lohner
et al., 1993.

FIG. 11. Temporally resolved four-wave-mixing (FWM) sig-
nals for different delay times for the case of excitation by 11-fs
pulses centered 50 meV above the band edge: (a) experiment;
(b) theory. After Hügel et al., 1999.
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shown here are based on a quantum-kinetic treatment of
Coulomb and carrier-phonon scattering processes in
terms of nonequilibrium Green’s functions, which takes
into account the dynamical buildup of screening.

D. Coherent control phenomena

The existence of a four-wave-mixing signal in the case
of temporally nonoverlapping laser pulses in different
directions is clear proof of the coherence in the material.
Coherence means that the system is characterized not
only by amplitudes but also by phases. This phase sensi-
tivity is demonstrated even more clearly by coherent-
control experiments, in which the response of the system
is measured after excitation with two temporally non-
overlapping phase-locked laser pulses in the same direc-
tion. In a semiclassical picture the first laser pulse cre-
ates a certain density of electron-hole pairs. If the
system is far from inversion, then a second pulse simply
adds another density, which, in the case of equal pulse
intensities, is essentially the same as the first pulse. In a
coherent picture, as has been discussed in detail above,
first a polarization is created and then the interaction of
the polarization with the light field leads to the genera-
tion of a carrier density. Thus the second pulse may in-
terfere constructively or destructively with the polariza-
tion left over from the first pulse. In the absence of
dephasing, constructive interference results in a final
carrier density that is four times the density of the first
pulse alone, while in the case of destructive interference,
all carriers generated by the first pulse are removed,
leaving an unexcited sample. Therefore, as a function of
the delay time between the pulses, the final carrier den-
sity exhibits an oscillatory behavior. In the presence of
dephasing, these oscillations are damped with increasing
delay time until finally, for times much longer than the
dephasing time, the semiclassically expected result—i.e.,
twice the density generated by the first pulse—is recov-
ered.

This was shown by Heberle et al. (1995) for excitons
in quantum wells. Experimental and theoretical results
for the case of two pulses with different intensities are
plotted in Fig. 12 at different delay times (Heberle et al.,
1996). The sensitivity with respect to the delay time
(here given in units of Thh52p/Ehh , where Ehh is the
energy of the heavy-hole exciton), as well as the de-
creasing splitting between the constructive and destruc-
tive curves with increasing delay time, is clearly visible.
In the experiment the density was extracted from the
differential reflectivity change, measured with a third
pulse. The deviations from a constant value after the
pulses are due to the fact that this quantity is not exactly
proportional to the density; instead, as discussed in Sec.
III.B.1, it also depends on intraband coherences and the
time-dependent momentum distribution of the carriers.

Coherent-control techniques using two temporally
separated phase-locked pulses have been applied to a
variety of systems. If the pulses are perpendicularly po-
larized, they do not interfere directly and therefore their
relative phase does not influence the total exciton den-
Rev. Mod. Phys., Vol. 74, No. 3, July 2002
sity. However, they may control the spin density in a
quantum well sample (Heberle et al., 1996). This can be
best understood by decomposing the pulses into their
circular polarization components. The first pulse creates
a superposition of excitons with spin sz511 and sz
521. If the delay time is t125(n61/4)Thh , one of the
circular components of the second pulse interferes con-
structively with the corresponding polarization compo-
nent created by the first pulse, while the other compo-
nent interferes destructively. As a result, one of the
angular momentum components is removed and the
other is enhanced, leaving a net angular momentum in
the sample. At integer or half-integer multiples of Thh ,
the interference effectively results in a linear polariza-
tion, thus creating no net angular momentum.

All kinds of quantum beats can be coherently con-
trolled. They arise due to the excitation of a superposi-
tion of two energetically separated levels by a short laser
pulse with a spectrum overlapping both transitions. In
general, the delay times corresponding to destructive in-
terference of the two transitions are different. Therefore
it is possible to select delay times when one component
is selectively switched off, removing the quantum beats
from the signal (Kuhn et al., 1999). This has been shown
for heavy-hole/light-hole beats in quantum wells (He-
berle et al., 1995), quantum beats due to charge oscilla-

FIG. 12. Coherent-control signals for excitation of a GaAs
quantum well structure with two phase-locked pulses of
slightly different intensities centered at the heavy-hole exciton
at delay times of n times the heavy-hole exciton oscillation
period: (a)–(c), measured differential reflection of a probe
pulse; and (d)–(f), calculated exciton densities. In (a) and (d)
only the signals corresponding to an excitation by pulse one or
two have been included. After Heberle et al., 1996.
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tions in coupled quantum wells (Luo et al., 1993; Plan-
ken et al., 1993), and phonon quantum beats (Wehner
et al., 1998; Steinbach et al., 1999). We shall come back
to the case of phonon quantum beats in Sec. III.G when
we discuss quantum-kinetic phenomena.

In the case of degenerate final states of an optical
transition, coherent-control techniques can be used for
selective excitations. Here, the quantum interference be-
tween a one-photon and a two- or three-photon transi-
tion is typically used to control the final states. Based on
such an approach, the outcome of chemical reactions
(Brumer and Shapiro, 1995) or the photoionization of
atoms (Chen, Yin, and Elliot, 1990) can be controlled. In
a semiconductor this technique allows one to create a
photocurrent in the absence of an applied voltage be-
cause the superposition of the light pulses removes the
symmetry between the generation of carriers with oppo-
site momenta (Dupont et al., 1995; Atanasov et al., 1996;
Haché et al., 1997), which is always present if a single
pulse is used. Again, another type of phase-dependent,
i.e., coherently controlled, carrier dynamics is obtained
in semiconductor nanostructures if interband and inter-
subband transitions are simultaneously excited by
phase-locked fields in their respective frequency ranges
(Pötz, 1997a, 1997b, 1998).

E. Charge oscillations in double quantum wells

For all the phenomena discussed in the previous sec-
tions, spatial inhomogeneities were irrelevant for the
carrier dynamics. In pump-probe and four-wave-mixing
experiments inhomogeneities introduced by the differ-
ent pulse directions, particularly the induced transient
grating, were necessary for selecting the desired optical
signal; however, all space dependences were treated
parametrically and thus all spatial transport phenomena
were neglected. This was justified by the large length
scales in the micrometer range. The situation changes if
inhomogeneities occur on a nanometric scale. In this and
the following section, we shall discuss some phenomena
related to the spatial dynamics of optical carrier excita-
tion in the growth direction of multiple quantum well
structures.

In an asymmetric double quantum well with a suffi-
ciently thin barrier, the states in the two wells are
coupled due to tunneling. Typically, in the flat-band case
this coupling is not very strong because of the different
energies of bound states in the two wells. By applying an
electric field, however, one can bring states in the wide
and narrow wells into resonance (see the inset in Fig.
13). The resulting delocalized states are then energeti-
cally separated by the tunnel splitting and, if the spectral
width of the exciting laser pulse is larger than this split-
ting, a superposition of the two states is excited, leading
to quantum beats, as discussed above for the case of
heavy and light holes. Such beats have been observed
both in the differential transmission and in the four-
wave-mixing signal (Leo, Shah, et al., 1991, 1992). The
difference with respect to the heavy-hole/light-hole case,
however, is the fact that here the superposition leads to
Rev. Mod. Phys., Vol. 74, No. 3, July 2002
a spatial oscillation of the electronic wave packet. Since
the hole states are not in resonance, the holes essentially
remain in the wide well. Thus an oscillating dipole mo-
ment is created. Neglecting the interband cotributions,
which oscillate much faster, we obtain the dipole mo-
ment from the density matrices according to

P5(
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where Mi1i2

e and Mj1j2

h are the electron and hole dipole
matrix elements between subbands i1 and i2 or j1 and j2 ,
respectively, and k is the in-plane momentum. In Fig.
13(a) the dipole moment excited by a 160-fs laser pulse
is plotted as a function of time. This result is obtained
from a solution of the semiconductor Bloch equations
including two electron and one hole subband (Binder,
Kuhn, and Mahler, 1994; Kuhn, Binder, et al., 1994).
Here, the dashed and dotted lines show the diagonal and
off-diagonal contributions, respectively. The off-
diagonal part describes the coherent superposition; it os-
cillates and finally decays due to dephasing processes.6

The diagonal part approaches a finite value due to the
different localizations of electrons and holes. According
to classical electrodynamics, such a time-dependent di-
pole moment emits electromagnetic radiation propor-
tional to its second derivative, which is plotted in Fig.

6Here dephasing has been treated by phenomenological in-
terband and intersubband rates. Results in which the dephas-
ing due to carrier-carrier scattering has been treated on the
semiclassical (Boltzmann-Bloch) level can be found in the ar-
ticles of Pötz, Žiger, and Kocevar (1995), Pötz (1996a), and
Binder (1997).

FIG. 13. Oscillating wave packet in a GaAs/AlGaAs asymmet-
ric double quantum well structure: (a) dipole moment (solid
line, total moment; dashed line, diagonal contribution; dotted
lines, off-diagonal contribution) and; (b) emitted electromag-
netic radiation. The inset shows the band edges and the elec-
tronic states. After Kuhn et al., 1994.
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13(b).7 Such radiation in the terahertz range has indeed
been observed experimentally (Roskos et al., 1992; Nuss
et al., 1994). Figure 14 shows electromagnetic transients
emitted from an asymmetric double quantum well struc-
ture with the same parameters as above at different val-
ues of the bias field (Roskos et al., 1992). A coherent
emission of terahertz radiation has also been observed
in superlattices, as will be discussed in the next section.

Spatial inhomogeneities give rise to two additional
features included in the general theory discussed above
which are absent in the homogeneous case: coherent
phonons and Hartree contributions. An oscillating elec-
tronic wave packet polarizes the crystal lattice. This lat-
tice polarization is described by coherent optical
phonons according to Eq. (60). Figure 15 shows the elec-
tron charge density as well as the lattice polarization as
functions of space and time. It can clearly be seen that
whenever the electronic wave packet is localized in the
narrow well, the lattice polarization is maximal, while it
essentially vanishes if the electrons are in the wide well,
where their charge density is compensated by the holes.
The coherent-phonon amplitudes increase linearly with
the density of excited carriers. Therefore they give a
density-dependent contribution to the electron and hole

7It should be noted that the oscillation frequencies are deter-
mined by the exciton energies. The additional appearance of
single-particle energies in the spectrum under certain condi-
tions is an artifact of the truncation of the hierarchy as dis-
cussed by Axt, Bartels, and Stahl (1996) and Haring Bolivar
et al. (1997).

FIG. 14. Measured coherent electromagnetic transients emit-
ted from an asymmetric double-quantum well structure at dif-
ferent bias fields for a photon energy of 1.54 eV. After Roskos
et al., 1992.
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self-energies [Eq. (48)]. As shown by the squares in Fig.
16, they tend to reduce the frequency of the electronic
oscillation. However, the Hartree terms also increase
linearly with carrier density and give rise to density-
dependent self-energies [Eq. (76)]. It turns out that they
tend to increase the oscillation frequency (triangles in
Fig. 16). If both contributions are taken into account,
the latter dominates, as shown by the diamonds. Physi-
cally, this density dependence can be well understood
from classical electrodynamics: The Hartree terms de-
scribe the electrostatic forces between electrons and
holes. They are attractive, thus increasing the oscillation
frequency. These forces, however, are screened by the
lattice, which reduces this increase. These calculations

FIG. 15. Oscillating wave packet in the asymmetric double
quantum well structure of Fig. 13: (a) electron charge density;
(b) induced lattice polarization as functions of position and
time.

FIG. 16. Oscillation frequency of the dipole moment in the
asymmetric double quantum well structure of Fig. 13 as a func-
tion of the excited carrier density for free carriers, including
space-charge effects (Hartree terms), and/or coherent
phonons. After Binder, Preisser, and Kuhn, 1997.
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therefore include the lattice screening on a fully dynami-
cal and microscopic basis. Frequency changes due to in-
duced electric fields have been used to obtain direct in-
formation on the spatial dynamics of charge oscillations
in superlattices (Lyssenko et al., 1997).

F. Bloch oscillations and Wannier-Stark localization in
superlattices

Ever since the initial applications of quantum me-
chanics to the dynamics of electrons in solids, the analy-
sis of Bloch electrons moving in a homogeneous electric
field has been of central importance. By employing
semiclassical arguments, Bloch (1928) demonstrated
that a wave packet, given by a superposition of single-
band states peaked about some quasimomentum \k,
moves with a group velocity given by the gradient of the
energy-band function with respect to the quasimomen-
tum and that the rate of change of the quasimomentum
is proportional to the applied field F. This is often re-
ferred to as the ‘‘acceleration theorem’’:

\k̇5eF. (129)

Thus, in the absence of interband tunneling and scatter-
ing processes, the quasimomentum of a Bloch electron
in a homogeneous and static electric field will be uni-
formly accelerated into the next Brillouin zone in a
repeated-zone scheme (or equivalently undergoes an
umklapp process back into the first zone). The corre-
sponding motion of the Bloch electron through the pe-
riodic energy-band structure, shown in Fig. 17(a), is
called Bloch oscillation; it is characterized by an oscilla-
tion period tB5h/(eFd), where d denotes the lattice
periodicity in the field direction.

There are two mechanisms impeding a fully periodic
motion: interband tunneling and scattering processes.
Interband tunneling is an intricate problem and still is
the subject of a continuing debate. Early calculations of
the tunneling probability into other bands in which the
electric field is represented by a time-independent scalar

FIG. 17. Bloch oscillations and Wannier-Stark localization in
superlattices: (a) the field-induced coherent motion of an elec-
tronic wave packet initially created at the bottom of a mini-
band in the Bloch (miniband) picture; (b) transitions from the
valence band (VB) to the conduction band (CB) of a superlat-
tice in the Wannier-Stark picture. Here, the width of the mini-
band exceeds the LO phonon energy ELO , so that LO phonon
scattering is possible. After (a) von Plessen et al., 1994 and (b)
Waschke et al., 1993.
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potential were made by Zener (1934), who used a
Wentzel-Kramers-Brillouin generalization of Bloch
functions; by Houston (1940), who used accelerated
Bloch states (Houston states); and subsequently by
Kane (1959) and Argyres (1962), who employed the
crystal momentum representation. Their calculations led
to the conclusion that the tunneling rate per Bloch pe-
riod is much less than unity for electric fields up to
106 V/cm for typical band parameters corresponding to
elemental or compound semiconductors.

Despite the apparent agreement among these calcula-
tions, the validity of employing the crystal momentum
representation or Houston functions to describe elec-
trons moving in a nonperiodic (crystal plus external
field) potential has been disputed. The starting point of
the controversy was the original paper by Wannier
(1960). He pointed out that, due to the translational
symmetry of the crystal potential, if f(r) is an eigen-
function of the scalar-potential Hamiltonian (corre-
sponding to the perfect crystal plus the external field)
with eigenvalue e, then any f(r1nd) is also an eigen-
function with eigenvalue e1nDe , where De5eFd is the
so-called Wannier-Stark splitting and d is the primitive
lattice vector along the field direction. He concluded
that the translational symmetry of the crystal gives rise
to a discrete energy spectrum, the so-called Wannier-
Stark ladder. The states corresponding to these equidis-
tantly spaced levels are localized, as schematically
shown in Fig. 17(b) for the case of a semiconductor su-
perlattice.

The existence of such energy quantization was dis-
puted by Zak (1968), who pointed out that in an infinite
crystal the scalar potential 2F•r is not bounded, which
implies a continuous energy spectrum. Thus the main
point of the controversy was related to the existence (or
absence) of Wannier-Stark ladders. More precisely, the
point was to decide whether interband tunneling [ne-
glected in the original calculation by Wannier (1960)] is
strong enough to destroy the Wannier-Stark energy
quantization (and the corresponding Bloch oscillations).

It was only during the last decade that this contro-
versy came to an end. From a theoretical point of view,
most of the formal problems related to the nonperiodic
nature of the scalar potential (superimposed on the pe-
riodic crystal potential) were finally removed by using a
vector potential representation of the applied field (Kit-
tel, 1963; Krieger and Iafrate, 1986). Within such a vec-
tor potential picture, upper boundaries for the interband
tunneling probability were established at a rigorous
level, showing that an electron may execute a number of
Bloch oscillations before tunneling out of the band
(Krieger and Iafrate, 1986; Nenciu, 1991), in qualita-
tively good agreement with the earlier predictions of Ze-
ner (1934) and Kane (1959).

The second mechanism impeding a fully periodic mo-
tion is scattering by phonons, impurities, etc. [see Fig.
17(a)]. This results in lifetimes shorter than the Bloch
period tB for all reasonable values of the electric field,
so that Bloch oscillations should not be observable in
conventional solids.
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In superlattices, however, the situation is much more
favorable because of the smaller Bloch period tB result-
ing from the small width of the mini-Brillouin zone in
the field direction (Bastard, 1989).

Indeed, the existence of Wannier-Stark ladders as well
as Bloch oscillations in superlattices has been confirmed
by a number of recent experiments (Shah, 1999). The
photoluminescence and photocurrent measurements of
the biased GaAs/GaAlAs superlattices performed by
Mendez and co-workers (1988), together with the elec-
troluminescence experiments by Voisin and co-workers
(1988), provided the earliest evidence of field-induced
Wannier-Stark ladders in superlattices. A few years
later, Feldmann and co-workers (1992) were able to
measure Bloch oscillations in the time domain through a
four-wave-mixing experiment originally suggested by
von Plessen and Thomas (1992). A detailed analysis of
the Bloch oscillations in the four-wave-mixing signal
(which reflects the interband dynamics) was also per-
formed by Leo and co-workers (Leo, Haring Bolivar,
et al., 1992; Leisching et al., 1994).

In addition to the above interband polarization analy-
sis, Bloch oscillations have been detected by monitoring
the intraband polarization, which, in turn, is reflected by
anisotropic changes in the refractive index (Shah, 1999).
Measurements based on transmittive electro-optic sam-
pling were performed by Dekorsy and co-workers (1994;
Dekorsy, Ott, et al., 1995). Finally, Bloch oscillations
were measured through a direct detection of terahertz
radiation in semiconductor superlattices (Waschke et al.,
1993; Roskos et al., 1994).

1. Two equivalent pictures

Let us now apply the theoretical approach presented
in Sec. II to the case of a semiconductor superlattice in
the presence of a uniform (space-independent) electric
field. The noninteracting carriers within the superlattice
crystal will then be described by the Hamiltonian Hc

0 in
Eq. (5), where now the electrodynamic potentials A2
and w2 (in the following simply denoted as A and w)
correspond to a homogeneous electric field E2(r,t)
5F(t).

As pointed out in Sec. II.A, the natural quantum-
mechanical representation is given by the eigenstates of
this Hamiltonian:

F F2i\¹r1
e

c
A~r,t !G2

2m0
2ew~r,t !1Vl~r!Gfn~r!

5enfn~r!. (130)

However, due to the gauge freedom discussed in Sec. II,
there is an infinite number of possible combinations of
A and w—and therefore of possible Hamiltonians—that
describe the same homogeneous electric field F(t). In
particular, one can identify two independent choices: the
vector-potential gauge
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A~r,t !52cE
t0

t
F~ t8!dt8, w~r,t !50 (131)

and the scalar-potential gauge

A~r,t !50, w~r,t !52F~ t !•r. (132)

As shown by Rossi (1998), the two independent choices
correspond to the well-known Bloch oscillation and
Wannier-Stark pictures, respectively. They simply reflect
two equivalent quantum-mechanical representations
and therefore, any physical phenomenon can be de-
scribed in both pictures.

More specifically, within the vector potential picture
[Eq. (131)], the eigenfunctions fn in Eq. (130) are the
so-called accelerated Bloch states (or Houston states;
Houston, 1940; Kittel, 1963; Krieger and Iafrate, 1986).
As discussed by Rossi (1998), this time-dependent rep-
resentation constitutes a natural basis for the description
of Bloch oscillations, i.e., it provides a rigorous
quantum-mechanical derivation of the acceleration
theorem [Eq. (129)], thus showing that this is not a
simple semiclassical result.8 Within this representation,
Bloch oscillations are fully described by the diagonal
terms of the intraband density matrix (semiclassical dis-
tribution functions). Therefore nondiagonal elements
describing phase coherence between different Bloch
states do not contribute to the intraminiband dynamics.
However, they are of crucial importance for the descrip-
tion of interminiband dynamics, i.e., field-induced Zener
tunneling, which in this Bloch state representation origi-
nates from the time variation of our basis states [see Eq.
(23)].

In contrast, within the scalar potential picture [Eq.
(132)], the eigenfunctions fn in Eq. (130) are the well-
known Wannier-Stark states (Wannier, 1960). Contrary
to the previous Bloch picture, within this representation
the intraminiband Bloch dynamics originate from a
quantum interference between different Wannier-Stark
states, thus involving nondiagonal elements of the intra-
band density matrix.

In the remainder of this section we shall review a few
simulated experiments on ultrafast carrier dynamics in
semiconductor superlattices (Je et al., 1995; Koch et al.,
1995; Meier et al., 1995; Rossi et al., 1995; Rossi, Gulia,
et al., 1996; Rossi, Meier, et al., 1996). In this case, the
Bloch representation discussed in Sec. III.F.1 was em-
ployed, limiting the set of interband density-matrix ele-
ments to the diagonal ones, i.e., i5j . In addition, inco-
herent scattering processes were treated within the usual
Markov limit discussed in Sec. II.D. Due to the rela-
tively low electric fields considered, the ‘‘intracollisional

8The acceleration theorem [Eq. (129)] and the corresponding
Bloch oscillation dynamics are often regarded as a semiclassi-
cal result compared to the Wannier-Stark picture. On the con-
trary, they correspond to two different fully quantum-
mechanical pictures.
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field effect’’ (Brunetti, Jacoboni, and Rossi, 1989)—i.e.,
the action of the field during the scattering process—was
neglected.9

In the simulated experiments reviewed here, the fol-
lowing superlattice model was employed: The energy
dispersion and the corresponding wave functions along
the growth direction (k i) were computed within the
well-known Kronig-Penney model (Bastard, 1989),
while for the in-plane direction (k') an effective-mass
model was used. Only coupling to GaAs bulk phonons
was considered. This, of course, is a simplifying approxi-
mation which neglects any superlattice effect on the
phonon dispersion, such as confinement of optical
modes in the wells and barriers and the presence of in-
terface modes (Rücker, Molinari, and Lugli, 1992; Moli-
nari, 1994). However, while these modifications have im-
portant consequences for phonon spectroscopies (like
Raman scattering), they are far less decisive for trans-
port phenomena.10

2. Bloch oscillation analysis

We shall start by discussing the scattering-induced
damping of Bloch oscillations. In particular, we shall
show that in the low-density limit this damping is mainly
determined by optical-phonon scattering (Rossi, Meier,
et al., 1995, 1996), while at high densities the main
mechanism responsible for the suppression of Bloch os-
cillations is found to be carrier-carrier scattering (Rossi,
Gulia, et al., 1996).

All of the simulated experiments presented in this sec-
tion refer to the superlattice structure considered by
Meier et al. (1995): 111-Å GaAs wells and 17-Å
Al0.3Ga0.7As barriers. For such a structure there has
been experimental evidence for terahertz emission from
Bloch oscillations (Roskos et al., 1994).

In the first set of simulated experiments, an initial dis-
tribution of photoexcited carriers (electron-hole pairs) is
generated by a 100-fs Gaussian laser pulse in resonance
with the first miniband exciton (\vL'1540 meV). The
strength of the applied electric field is assumed to be 4
kV/cm, which corresponds to a Bloch period (tB
5h/eFd) of about 800 fs.

In the low-density limit (corresponding to a weak la-
ser excitation), incoherent scattering processes do not
alter the Bloch oscillation dynamics. This is due to the
following reasons: In agreement with recent experimen-
tal (Roskos et al., 1994; von Plessen et al., 1994) and the-
oretical (Meier et al., 1995; Rossi, Meier, et al., 1995,
1996) investigations, at low temperature, scattering with
LO phonons is not permitted and scattering with acous-
tic phonons is unimportant for superlattices character-

9A detailed analysis of the intracollisional field effect in su-
perlattices in the high-field regime can be found in Hader et al.
(1997), where numerical solutions based on Wannier-Stark and
plane-wave bases are compared.

10Indeed, it is now well known (Molinari, 1994) that the total
scattering rates are sufficiently well reproduced if the phonon
spectrum is assumed to be bulklike.
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ized by a miniband width smaller than the LO phonon
energy—as for the structure considered here—and for
laser excitations close to the band gap. Moreover, in this
low-density regime carrier-carrier scattering plays no
role: Due to the quasielastic nature of Coulomb colli-
sions, most of the scattering processes in the low-density
limit are characterized by a very small momentum trans-
fer. As a consequence, the momentum relaxation along
the growth direction is negligible. As a result, on this
picosecond time scale the carrier system exhibits coher-
ent Bloch oscillation dynamics, i.e., negligible scattering-
induced dephasing. This can be clearly seen from the
time evolution of the carrier distribution as a function of
k i (i.e., averaged over k') shown in Fig. 18. During the
laser photoexcitation (t50) the carriers are generated
around k i50, where the transitions are close to reso-
nance with the laser excitation. According to the accel-
eration theorem, the electrons are then shifted in k
space. When the carriers reach the border of the first
Brillouin zone, they are Bragg reflected. After about 800
fs, corresponding to the Bloch period tB , the carriers
have completed one oscillation in k space. As expected,
the carriers execute Bloch oscillations without losing the
synchronism of their motion by scattering. This is again
shown in Figs. 18(b)–(d), where we have plotted (b) the
mean kinetic energy, (c) the current, and (d) its time
derivative, which is proportional to the emitted far field,
i.e., the terahertz radiation. All three quantities exhibit
oscillations characterized by the same Bloch period tB .
Due to the finite width of the carrier distribution in k
space [see Fig. 18(a)], the amplitude of the oscillations
of the kinetic energy is somewhat smaller than the mini-
band width. Since the scattering-induced dephasing is
negligible for this excitation condition, the oscillations of
the current are symmetric around zero, which implies

FIG. 18. Full Bloch oscillation dynamics corresponding to a
laser photoexcitation resonant with the first-miniband exciton:
(a) time evolution of the electron distribution as a function of
k i ; (b) average kinetic energy; (c) current; and (d) terahertz
signal corresponding to the Bloch oscillations in (a).



935F. Rossi and T. Kuhn: Ultrafast phenomena in photoexcited semiconductors
that the time average of the current is equal to zero, i.e.,
there is no dissipation.

As already pointed out, this ideal Bloch oscillation
regime is typical of laser excitation close to the gap in
the low-density limit. Let us now discuss the case of laser
photoexcitation high in the band, still at low densities.
Figure 19(a) shows the terahertz signal as obtained from
a set of simulated experiments corresponding to differ-
ent laser excitations (Meier et al., 1995). The different
traces correspond to the emitted terahertz signal for in-
creasing excitation energies. We can clearly see the pres-
ence of Bloch oscillations in all cases. However, the os-
cillation amplitude and decay (effective damping) is
excitation dependent.

In the case of laser excitation resonant with the first
miniband exciton considered above (see Fig. 18), we
have a strong terahertz signal. The amplitude of the sig-

FIG. 19. Bloch oscillations corresponding to laser photoexci-
tation high in the band: (a) total terahertz signals for eight
different spectral positions of the exciting laser pulse (1540,
1560, . . . , 1680 meV, from bottom to top); (b) individual tera-
hertz signals of the electrons and holes in the different bands
for a central spectral position of the laser pulse of 1640 meV;
(c) experimentally observed terahertz transients for different
excitation energies extending from just below the fundamental
band gap up to well into the second miniband. After [(a), (b)]
Koch et al., 1995 and (c) Roskos et al., 1994.
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nal decreases when the excitation energy is increased.
Additionally, there are also some small changes in the
phase of the oscillations, which are induced by the
electron-LO phonon scattering.

When the laser energy comes into resonance with the
transitions between the second electron and hole mini-
bands (\vL'1625 meV), the amplitude of the tera-
hertz signal increases again. The corresponding tera-
hertz transients show an initial part, which is strongly
damped, and some oscillations for longer times that are
much less damped. For a better understanding of these
results, we show in Fig. 19(b) the individual terahertz
signals, originating from the two electron and two
heavy-hole minibands for the excitation with \v
51640 meV. The Bloch oscillations performed by the
electrons within the second miniband are strongly
damped due to intra- and interminiband LO phonon
scattering processes (Meier et al., 1995; Rossi et al.,
1995). Since the width of this second miniband (45 meV)
is somewhat larger than the LO phonon energy, intra-
miniband scattering is also possible whenever the elec-
trons are accelerated into the high-energy region of the
miniband. The terahertz signal originating from elec-
trons within the first miniband shows an oscillatory be-
havior with a small amplitude and a phase that is deter-
mined by the time the electrons need to relax down to
the bottom of the band.

At the same time, the holes in both minibands exhibit
undamped Bloch oscillations, since the minibands are so
close in energy that no LO phonon emission can occur
under these excitation conditions. The analysis shows
that at early times the tetrahertz signal is mainly deter-
mined by the electrons within the second miniband. At
later times the observed signal is due to heavy holes and
electrons within the first miniband.

The above theoretical analysis closely resembles ex-
perimental observations obtained for a superlattice
structure very similar to the one modeled here as shown
in Fig. 19(c) (Roskos et al., 1994). In these experiments
terahertz emission from Bloch oscillations was found.
For some excitation conditions the oscillations were as-
sociated with resonant excitation of the second mini-
band. The general behavior of the magnitude of the sig-
nals, the oscillations, and the damping are close to the
results shown in Figs. 19(a) and (b). In superlattices with
a miniband width larger than the LO phonon energy, it
has been found that the terahertz radiation may even be
enhanced by phonon emission because this process gives
rise to a narrowing of the electron distribution (Wolter
et al., 1997).

Finally, in order to study the density dependence of
the Bloch oscillation damping, let us go back to the case
of laser excitations close to the gap. Figure 20(a) shows
the total (electrons plus holes) terahertz radiation as a
function of time for three different carrier densities.
With increasing carrier density, carrier-carrier scattering
becomes more and more important: Due to Coulomb
screening, the momentum transfer in carrier-carrier scat-
tering increases (its typical value being comparable to
the screening wave vector). This can be seen in Fig.
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20(a), where for increasing carrier densities we realize
an increasing damping of the terahertz signal. However,
for the highest carrier density considered here, we also
deal with a damping time of the order of 700 fs, which is
much longer than the typical dephasing time, i.e., the
decay time of the interband polarization, associated with
carrier-carrier scattering. The dephasing time is typically
investigated by means of four-wave-mixing measure-
ments, and such multipulse experiments can be simu-
lated as well (Lohner et al., 1993; Leitenstorfer, Lohner,
Rick, et al., 1994). From a theoretical point of view, a
qualitative estimate of the dephasing time is given by the
decay time of the incoherently summed polarization
(Kuhn and Rossi, 1992b). Figure 20(b) shows this inco-
herently summed polarization as a function of time for
the same three carrier densities as Fig. 20(a). As ex-
pected, the decay times are always much shorter than
the corresponding damping times of the terahertz signals
[note the different time scales in Figs. 20(a) and (b)].
This difference, discussed in more detail by Rossi, Gulia,
et al., (1996) and Rossi (1998), can be understood as fol-
lows: The fast decay times of Fig. 20(b) reflect the inter-
band dephasing, i.e., the sum of the electron and hole
scattering rates. In particular, for the Coulomb interac-
tion this means the sum of electron-electron, electron-
hole, and hole-hole scattering. As in the case of bulk
GaAs discussed in Sec. III.A, this last contribution is
known to dominate and determines the dephasing time
scale. On the other hand, the total terahertz radiation in
Fig. 20(a) is the sum of the electron and hole contribu-
tions. However, due to the small value of the hole mini-
band width compared to that of the electron, the elec-
tron contribution dominates. This means that the
terahertz damping in Fig. 20(a) mainly reflects the
damping of the electron contribution. This decay, in
turn, reflects the intraband dephasing of electrons, which
is due to electron-electron and electron-hole scattering
only, i.e., there are no hole-hole contributions.

From the above analysis we can conclude that the de-
cay time of the terahertz radiation due to carrier-carrier
scattering differs considerably from the corresponding
dephasing times obtained from a four-wave-mixing ex-
periment: The first is a measurement of the intraband

FIG. 20. Bloch oscillations corresponding to laser photoexci-
tation close to the gap: (a) total terahertz radiation as a func-
tion of time; (b) incoherently summed polarization as a func-
tion of time. After Rossi, Gulia, et al., 1996.
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dephasing, while the second reflects the interband
dephasing.11

G. Carrier-phonon quantum kinetics

Most of the theoretical results discussed so far have
been obtained by treating energy relaxation and dephas-
ing processes on a semiclassical level, i.e., in terms of
scattering rates. The Markov approximation leading to
these rates, however, always assumes a separation be-
tween the time scales relevant for the interaction-
induced correlations and the dynamics of distribution
functions or the envelope of polarizations. On a femto-
second time scale this separation is no longer satisfied
and quantum-kinetic phenomena are of increasing im-
portance either because they quantitatively modify the
semiclassical results or because they introduce com-
pletely new features not present in a semiclassical pic-
ture. In the following sections we shall review some phe-
nomena in which quantum kinetics play an essential
role. We shall concentrate on carrier-phonon quantum
kinetics and then discuss a few results of the currently
very active field of Coulomb quantum kinetics.

1. Memory effects and energy-time uncertainty

As discussed in the theory part of this review, in the
density-matrix formalism each interaction mechanism
introduces new types of dynamical variables. For the in-
teraction with a classical light field, these correspond to
the various interband polarizations, while for the carrier-
phonon coupling they are given by phonon-assisted den-
sity matrices. Semiclassical transition rates are obtained
if these new variables are adiabatically eliminated by
means of the Markov approximation. In the previous
sections we have extensively discussed phenomena that
showed the failure of this approximation in the case of
the interband polarization and that could only be ex-
plained by treating the interband polarization as an in-
dependent dynamical variable. In particular, in Sec.
III.A.1 we discussed the time-dependent broadening of
carrier photogeneration associated with these dynamics.

Similarly, the carrier-phonon interaction is treated on
the quantum-kinetic level if the phonon-assisted density
matrices are obtained from the solution of equations of
motion like Eq. (53). The full set of equations for the
case of a homogeneous semiconductor can be found in
Schilp et al. (1994a).

Broadening phenomena related to electron-phonon
quantum kinetics can be observed most clearly in a one-
band model in which this is the only type of interaction.

11We stress that this difference between intraband and inter-
band dephasing in superlattices is the same as was discussed in
Sec. III.A.3 for the case of bulk semiconductors, where the
broadening of the photoexcited carrier distribution is mainly
determined by the decay of the interband polarization (inter-
band dephasing), while the subsequent energy broadening of
the electron distribution is due to electron scattering only (in-
traband dephasing; see Fig. 6).
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In Figs. 21(a) and (b) we compare the electron distribu-
tions as functions of energy and time obtained from a
semiclassical (Boltzmann) and a quantum-kinetic calcu-
lation; here we consider the energy relaxation of an ini-
tial Gaussian distribution within a one-band electron
model interacting with LO phonons. In the semiclassical
case replicas due to the emission of one, two, or three
phonons appear on the low-energy side. Due to energy
conservation in each scattering process, they exhibit the
same spectral shape of the initial distribution, in com-
plete analogy with the time-independent shape of the
semiclassical generation rate in Fig. 3. The quantum-
kinetic result, on the other hand, exhibits a strong time-
dependent broadening. The replicas are initially very
broad; with increasing time they become narrower and
approach the semiclassical shape. This is again a conse-
quence of energy-time uncertainty: At early times the
single-particle energy is not yet a well-defined quantity.
Figure 21(c) shows the distribution functions for the
more realistic case of a two-band semiconductor (Schilp
et al., 1994a, 1994b) in which the carriers are generated
by a 100-fs laser pulse. Now there is a time-dependent
broadening due to both the light absorption and the
phonon emission process. The former is responsible for
the broadening of the highest energy peak, while the
latter broadens the subsequent replicas. It can be clearly

FIG. 21. Electron distribution functions in bulk GaAs: (a)
semiclassical calculation; (b) and (c) quantum-kinetic calcula-
tions. (a) and (b) show the relaxation of a given initial distri-
bution in a one-band model, while (c) is the result of a two-
band calculation for the case of an excitation by a 100-fs laser
pulse. After Schilp, Kuhn, and Mahler, 1994a, 1994c.
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seen that there is initially no minimum between two rep-
licas; these minima build up with increasing time due to
destructive interference at the semiclassically forbidden
transitions. Such time-dependent broadening due to
phonon scattering were observed in two-color pump-
probe experiments (Fürst, Leitenstorfer, Laubereau, and
Zimmermann, 1997) in which electron-hole pairs were
generated by a 120-fs laser pulse and the transmission
change of a weak, spectrally broad 25-fs pulse was mea-
sured. The corresponding differential transmission spec-
tra for various delay times between pump and probe
pulse are shown in Fig. 22. The same features were also
obtained in calculations based on the Green’s-function
formalism (Bányai et al., 1992; Tran Thoai and Haug,
1993; Schmenkel, Bányai, and Haug, 1998) as well as in
exactly solvable models of electron-phonon interaction
(Meden et al., 1996; Schönhammer and Wöhler, 1997;
Schönhammer 1998).

2. Nonequilibrium phonons and energy conservation

In the previous section we have seen that energy-time
uncertainty is a characteristic feature of quantum kinet-
ics. However, in the absence of an external light field, we
have a closed electron-phonon system, and the energy of
such a closed system should be constant without any
uncertainty. Here we want to address the question of
energy conservation in greater detail. In the semiclassi-
cal case the system is completely determined by the dis-
tribution functions of electrons and holes. In the relax-
ation process the electrons lose energy, which is taken
up by the phonons. This is shown in Fig. 23(a), where

FIG. 22. Spectrally resolved transmission changes in GaAs
measured for different time delays at a carrier density of 8
31014 cm23 (the dashed line denotes the excitation spectrum).
After Fürst, Leitenstorfer, Laubereau, and Zimmermann,
1997.
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the mean energies of the electrons and phonons are
plotted as functions of time for the case of relaxation
from a given initial distribution. As is clear from the
semiclassical scattering rates, the sum of the two ener-
gies is a constant. Figure 23(b) shows the same energies
obtained from the quantum-kinetic calculation. Now the
sum of electron and phonon energy is no longer con-
stant; however, if the interaction energy given by the
expectation value of the interaction Hamiltonian is in-
cluded, a constant total energy is recovered (Schilp
et al., 1995). The initial increase of the electron and pho-
non energies is balanced by the buildup of a negative
interaction energy due to electron-phonon correlations.
Thus we directly observe the buildup of polarons from
an initially uncorrelated electron-phonon system.

In Sec. II.D.4 we discussed how the correlation expan-
sion could be continued to take into account higher-
order correlations. As shown there, neglecting the off-
diagonal part and treating the diagonal part in Markov
approximation results in a complex self-energy describ-
ing a damping of electron-phonon correlations. How-
ever, it has been shown both analytically and numeri-
cally that this approximation violates the conservation of
the total energy (Schilp et al., 1995). In addition, it
strongly overestimates the broadening of the distribu-
tion functions, in clear contrast to results known from
exactly solvable models and from experiments. How-
ever, if all terms of the next order are taken into ac-
count, it can be shown analytically that energy conserva-
tion is again satisfied. Numerically, this ‘‘fourth Born
approximation’’ has been studied for a one-dimensional
model (Zimmermann et al., 1998). It turns out that in
many cases it is a better approximation to completely
neglect third-order terms than to use the Markovian
self-energy approximation.

FIG. 23. One-band model including nonequilibrium phonons
in bulk GaAs: (a) semiclassical and (b) quantum-kinetic calcu-
lation of total energy (solid line), as well as contributions due
to electrons (dashed lines), phonons (dotted line), and carrier-
phonon interaction (dot-dashed line) as functions of time.
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The interaction energy in Fig. 23(b) has a contribution
that oscillates with the phonon frequency. These oscilla-
tions can be traced back analytically to the divergence at
q50 in the Fröhlich coupling matrix element, since this
gives rise to a divergence in the frequency spectrum of
the phonon-assisted density matrices (Binder, Schilp,
and Kuhn, 1998). Also, in the case of the phonon energy
the oscillations are due to phonons with very small wave
vectors mainly in a range that is semiclassically not al-
lowed. In the semiclassically allowed region the non-
equilibrium phonon distribution in a bulk semiconduc-
tor is quite close to its semiclassical value. In a one-
dimensional system, however, this is different. Here the
semiclassical model yields very sharp peaks in the pho-
non distribution because, for an electron with a given
momentum, the emission of phonons with only two dis-
tinct wave vectors is compatible with energy and mo-
mentum conservation. In contrast, in the quantum-
kinetic case energy-time uncertainty leads to a smooth
distribution function (Binder et al., 1998).

3. Phonon quantum beats

Phonon quantum kinetics modify the carrier distribu-
tion functions that can be measured, for example, in
pump-probe experiments. However, experimentally ob-
servable signals are in general changed only quantita-

FIG. 24. Phonon quantum beats: (a) incoherently summed po-
larization as a function of time in bulk GaAs after excitation
by a 50-fs pulse: dotted line, semiclassical calculation; dashed
line, quantum-kinetic (qk) calculation with thermal phonons;
solid line, quantum kinetic calculation with nonequilibrium
phonons. (b) Four-wave-mixing signals at different densities
exhibiting phonon quantum beats: solid line, experiment; dot-
ted line, theory. After (a) Schilp et al., 1995 and (b) Bányai
et al. (1995).
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tively. For a clear proof of quantum kinetics, it would be
desirable to have a phenomenon that is present only in a
quantum-kinetic treatment. The situation is similar to
the case of the coherent interband polarization discussed
above: An explicit treatment of that variable quantita-
tively changes the carrier photogeneration process; phe-
nomena like four-wave-mixing or coherent control in the
case of temporally nonoverlapping pulses are simply not
present if the polarization is adiabatically eliminated.
Such a phenomenon, which is present only due to
carrier-phonon quantum kinetics, has indeed been
found: If the semiconductor is excited by a sufficiently
short laser pulse, the interband polarization exhibits an
oscillatory decay, the oscillation frequency being of the
order of the phonon frequency (Tran Thoai and Haug,
1993; Schilp et al., 1994a, 1995; Bányai, Vu, and Haug,
1998). This is shown in Fig. 24(a) where the incoherently
summed polarization is plotted as a function of time.
While in the semiclassical case it is smoothly decaying,
in quantum-kinetic cases with both thermal and non-
equilibrium phonons, oscillations are present. These os-
cillations are phonon quantum beats, and they arise due
to the simultaneous excitation of a direct optical transi-
tion and a phonon-assisted one; therefore they rely on
an electron-phonon correlation. The faster decay of the
polarization in the presence of nonequilibrium phonons
is due to enhanced phonon absorption. Phonon quan-
tum beats have been experimentally observed in time-
integrated four-wave-mixing experiments. Figure 24(b)
shows the diffracted signal at different densities after
excitation of bulk GaAs with two 14.2-fs pulses (Bányai
et al., 1995). The dots are results of quantum-kinetic cal-
culations. Phonon quantum beats have also been ob-
tained in the case of quantum wells (Wehner et al.,
1998).

Like other quantum beat phenomena, electron-
phonon quantum beats can be controlled by a second
phase-locked pulse (Wehner et al., 1998; Steinbach et al.,
1999). If the delay time corresponds to destructive inter-
ference on the phonon-assisted transition, the beats are
eliminated from the signal, as can be clearly seen in Fig.
25(a), where the incoherently summed polarization is
plotted as a function of time for the case of excitation
with two phase-locked 15-fs pulses whose delay time
varies from 42.8 fs (top) to 48.2 fs (bottom) in steps of
0.3 fs (Axt et al., 1999; Kuhn et al., 1999). Figure 26
shows corresponding experimentally observed four-
wave-mixing signals (Wehner et al., 1998) for similar ex-
citation conditions. Qualitatively, the appearance of
phonon quantum beats and their coherent control can
be understood quite well in terms of a simple model
based on a two-level system coupled to a single phonon
mode. This model has the advantage of being exactly
solvable and thus the linear as well as the nonlinear re-
sponse can be given exactly (Axt et al., 1999; Castella
and Zimmermann, 1999). Here the linear spectrum con-
sists of a series of lines separated by the phonon energy
corresponding to the zero-phonon line and sidebands
due to phonon-assisted transitions (Mahan, 1990); thus
the excitation of phonon quantum beats by a pulse that
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spectrally overlaps with at least two lines becomes obvi-
ous. Since for this model the exact solution is known, it
can also be applied to systems with a stronger electron-
phonon coupling in which the quantum-kinetic approach
based on the correlation expansion breaks down. In-
deed, it has been shown that the coherent control of
phonon quantum beats in ZnSe—where clear signatures
of multiphonon transitions are observed—can be well
explained (Steinbach et al., 1999). The drawback of this
simple model is, however, that it does not provide any
dephasing, which has to be put in by hand. Therefore it
cannot reproduce another interesting feature seen in ex-
periment, namely, the fact that the decay of the four-
wave-mixing signals also depends on the phase differ-
ence between the two exciting pulses. This behavior is
well reproduced by the quantum-kinetic semiconductor
model, as is shown in Fig. 25(b), where the inverse of the
decay time extracted from the curves in Fig. 25(a) is
plotted as a function of the delay time between the
pulses. This clearly demonstrates that scattering pro-
cesses can be influenced as long as the correlation be-
tween initial and final states has not yet died out.

FIG. 25. Incoherently summed polarization: (a) excitation with
a pair of phase-locked 15-fs pulses with delay times ranging
from 42.8 fs (top) to 48.2 fs (bottom) in steps of 0.3 fs; (b)
extracted decay constant as a function of the delay time. Pa-
rameters refer to bulk GaAs. After Axt et al., 1999.
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4. Carrier-phonon quantum kinetics in inhomogeneous
systems

In the results obtained from a quantum-kinetic treat-
ment of carrier-phonon interaction discussed so far, we
have always assumed a spatially homogeneous excita-
tion. Technically, this means that the single-particle den-
sity matrices depend on only one wave vector k, and the
phonon-assisted density matrices depend on two wave
vectors. In the case of an inhomogeneous excitation, this
corresponds to the zeroth order in a gradient expansion,
as discussed in Sec. II.C.3. This is a good approximation
if all inhomogeneities—introduced, for example, by the
exciting laser pulses—occur on sufficiently large length
scales, such that transport phenomena are not relevant
on the ultrafast time scale considered in this review.
However, much like the time scales the length scales in
optical experiments are also continuously reduced;
therefore the interest in optically induced transport phe-
nomena on ultrafast time scales is rapidly increasing.

Depending on the required spatial resolution, differ-
ent experimental techniques have been developed to
perform a spatially resolved optical excitation and/or de-
tection. Spot sizes of the order of 1 mm have been
achieved by using lenses or microscope objectives
(Yoon, Wake, and Wolfe, 1992; Otremba et al., 1999).
The theoretical limitation of this technique, which is
given by the diffraction limit of about l/2, where l is the
wavelength of the light, can be overcome by using a
solid immersion lens. A spot size of 355 nm correspond-
ing to 0.41l was demonstrated with this method (Voll-
mer et al., 1999). Alternatively, the light can be transmit-
ted through holes in metal masks with diameters in the
micron and submicron range (Hillmer et al., 1988; Gam-
mon et al., 1996; Sönnichsen et al., 2000). The highest
spatial resolution, of the order of 100 nm and less, can

FIG. 26. Four-wave-mixing (FWM) signals in GaAs measured
for the case of excitation with a pair of phase-locked 15-fs
pulses with different delay times. After Wehner et al., 1998.
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be achieved by using scanning near-field optical micro-
scopes (Betzig et al., 1991; Hess et al., 1994; Richter
et al., 1997; Guenther et al., 1999). In this case transport
processes occur on a femtosecond time scale.

The semiclassical description of transport phenomena
is again based on the Boltzmann picture in which scat-
tering events occur locally in space and time between
states with well-defined energy and momentum. The dy-
namical variable in the semiclassical theory is the single-
particle distribution function. Its closest analog in quan-
tum mechanics is the Wigner function defined in Eq.
(37). Formally, the scattering terms are obtained from
the equation of motion for the Wigner function as the
zeroth order in the gradient expansion discussed in Sec.
II.C.3, together with the Markov approximation, which
is equivalent to a zeroth-order gradient expansion in
time. In the previous sections we have clearly seen that
on ultrafast time scales the conservation of the single-
particle energies, which appears as a result of the Mar-
kov approximation, is no longer satisfied. Instead,
energy-time uncertainty strongly affects the dynamics.
Similarly, on very short length scales the assumption of
slowly varying dynamical variables, which is the basis for
the gradient expansion, is no longer fulfilled. The uncer-
tainty relation between position and momentum makes
scattering process nonlocal in space. Both kinds of un-
certainty relations are treated correctly if, in the case of
carrier-phonon interaction, the single-particle and the
phonon-assisted density matrices are taken as indepen-
dent dynamical variables. Here the quantum-kinetic
treatment has the additional advantage of being inde-
pendent of the choice of the single-particle basis. This is
in clear contrast to the semiclassical Boltzmann case, in
which the Markov approximation requires selecting the
initial and final states of a scattering process, which, in
turn, depends on this basis.

In this section we shall discuss a few phenomena re-
lated to the spatiotemporal dynamics of locally gener-
ated carriers. By using a short-pulse excitation through a
near-field microscope, a spatially localized wave packet
of electrons and holes is created. The subsequent dy-
namics of such a wave packet strongly depend on the
excitation condition (Steininger et al., 1996; Hanewinkel
et al., 1999): An excitation resonant with the 1s exciton
creates electron-hole pairs that are strongly bound, and
the resulting wave packet exhibits spatial broadening.
An excitation high up in the band-to-band continuum
produces electron-hole pairs, which, in the absence of
phonon interaction, propagate like pulses through the
sample. Electron-hole correlation effects are of minor
importance in this case. Phonon emission leads to en-
ergy loss and thus to carrier group-velocity relaxation; as
a consequence, it induces spatial broadening of the
pulses with a subsequent transition from a ballistic to a
diffusive transport regime (Steininger et al., 1997; Knorr
et al., 1998). This behavior, which can be well under-
stood on a semiclassical level of description, is again
modified on ultrashort time scales by quantum-kinetic
features. In Fig. 27 the Wigner function fk

e(r) for a
Gaussian wave packet prepared at time t50 at z50
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with an excess energy of 120 meV is plotted at time t
5100 fs. It is obtained from a semiclassical [Fig. 27(a)]
and a quantum-kinetic [Fig. 27(b)] treatment of carrier-
phonon interaction. These calculations have been per-
formed for a GaAs cylindrical quantum wire model with
a single subband. The broadening of the phonon replicas
due to energy-time uncertainty in the quantum-kinetic
results—which was discussed above for the case of a
bulk semiconductor—is again clearly visible. Here this
broadening also affects the spatial dynamics, due to oc-
cupation of momentum states inaccessible by semiclassi-
cally allowed processes. This phenomenon is analyzed in
more detail in Fig. 28, where the electron density ne(r)
5V 21(kfk

e(r) [Figs. 28(a) and (b)] and the mean kinetic
energy ^E(r)&5@ne(r)V#21(k (\2k2/2m) fk

e(r) [Figs.
28(c) and (d)] are plotted along the wire axis after 100 fs
and after 200 fs (Herbst, Axt, and Kuhn, 2000). Note
that the energies are only plotted at those positions
where this quantity is well defined, i.e., where the den-
sity is noticeably different from zero. For clarity the ini-
tial values have also been included. The results corre-
spond to three levels of the theory: (i) a calculation
neglecting phonons (dot-dashed lines), (ii) a calculation
including phonon scattering by using the semiclassical
Boltzmann approach (solid lines), and (iii) a full
quantum-kinetic treatment of the electron-phonon inter-
action (dotted lines). Without phonons we find the ex-
pected ballistic transport of electrons. The distribution
remains Gaussian for all times and moves outward along
the wire axis. Initially, the energy distribution is, by con-
struction, position independent. Since highly energetic
particles cover a longer distance (compared to low-

FIG. 27. Wigner function at t5100 fs for a Gaussian wave
packet in a GaAs quantum wire prepared at t50, z50, and
E5120 meV: (a) semiclassical and (b) quantum-kinetic calcu-
lation.
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energy ones), at later times the mean kinetic energy in-
creases monotonically with the distance from the origin,
as can be clearly seen in Figs. 28(c) and (d). In the low-
temperature limit considered here, phonons can only be
emitted. Therefore, in the Boltzmann case, electrons can
only lose energy, leading to a slowing down, as con-
firmed by the corresponding electron density in Figs.
28(a) and (b); we now find a noticeable electron density
behind the ballistic wave front, but no density is built up
ahead of the wave front. Correspondingly, ^E(r)& is al-
ways below the respective value obtained in the ballistic
case. Only at the front edge of the wave—formed by
carriers that have not yet emitted a phonon—is the bal-
listic value reached.

In the quantum-kinetic case, also, phonons can only
be emitted. Nevertheless, as a consequence of the
energy-time uncertainty, it is possible for some of the
particles to increase their kinetic energy as long as the
collision is not yet complete. The effect of this type of
process is clearly visible in Figs. 28(a) and (b), where the
quantum-kinetic calculation predicts a small but finite
electron occupation ahead of the ballistic wave front,
i.e., we find electron densities in space regions that are
out of reach from a semiclassical point of view. As
shown in Figs. 28(c) and (d), the particles ahead of the
ballistic wave front indeed have mean kinetic energies
drastically increased compared to the highest values ob-
tained in the ballistic description or in the Boltzmann
case. The occurrence of high kinetic energies at early
times is known from the quantum-kinetic treatment of
the spatially homogeneous case (Schilp et al., 1994a).
The new aspect here is that in the spatially inhomoge-
neous case this effect is accompanied by a spatial sepa-
ration of the highly energetic particles from the classical
wave front. For space regions that could be reached
within a semiclassical description, the Boltzmann result

FIG. 28. GaAs quantum wire along the wire axis at different
times for an initial excess energy of 120 meV: (a) and (b) elec-
tron densities; (c) and (d) spatially resolved mean kinetic en-
ergies obtained from a semiclassical calculation of a Bloch os-
cillation (solid lines), a quantum-kinetic (QK; dotted lines),
and a noninteracting-carrier (dot-dashed lines) calculation.
The thin lines represent the initial values at time t50. After
Herbst et al., 2000.
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agrees quite well with the predictions of the quantum-
kinetic theory.

Although initially the wire is locally neutral, the mo-
tion of the electrons leads to a charge separation induc-
ing an electrical field. According to Eq. (58), the induced
potential acts as a source for the generation of coherent
phonons. Figure 29 displays the z component of the lat-
tice polarization Plat [Eq. (60)] along the wire axis after
100 and 400 fs, together with the corresponding electron
densities. In addition to the curves obtained from a com-
plete treatment including coherent and incoherent
phonons (solid lines), we also plot results where the in-
coherent phonons have been switched off (dotted lines).
Here, spatial oscillations of the phonon polarization,
whose amplitudes decrease with increasing distance
from the origin, are clearly visible. The spatial extent of
the lattice vibrations equals the region between the bal-
listic wave fronts. The electrons passing a given space
position excite lattice vibrations that oscillate with the
LO frequency at that site. Because these oscillations
start in different sites at different times, the vibrations
are translated into spatial modulations. The decrease in
the phonon amplitudes is due to the fact that charges
accumulated in a small region of a 1d wire induce an
electric field that decreases with increasing distance,
thus reducing the forces responsible for the ion displace-
ments. The inclusion of incoherent phonons leads to an
effective damping of the phonon oscillations, which be-
comes stronger at later times. It should be noted that
Eq. (58) is complete within the model considered, i.e.,
there are no terms left out due to the truncation proce-
dure. It follows that in the absence of anharmonic
forces, the only way the incoherent phonons may influ-
ence the coherent amplitudes is by their impact on the
distribution functions. The damping of the phonon am-
plitudes is thus due to the spatial broadening of the
wave packet and to the corresponding reduction of the
induced potentials that generate the coherent phonons.
Coherent phonons can be experimentally detected by
various techniques either in the optical range or directly

FIG. 29. GaAs quantum wire along the wire axis for an initial
excess energy of 80 meV: (a) and (b) electron densities; (c) and
(d) z component of the lattice polarization including only co-
herent phonons (dotted lines) and both coherent and incoher-
ent phonons (solid lines). After Herbst et al., 2000.
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in the terahertz frequency range of the phonon oscilla-
tions. If coherent phonons are excited close to a surface,
they modulate the reflectivity of the crystal and thus give
rise to an oscillatory contribution in differential reflec-
tion signals. Figure 30 shows such reflectivity changes
due to coherent phonons in bulk GaAs that were gener-
ated by the charge separation of carriers excited in a
strong surface electric field due to Fermi level pinning at
the surface (Cho et al., 1990). A recent review on coher-
ent phonon phenomena in condensed matter is that of
Dekorsy, Cho, and Kurz (2000).

H. Carrier-carrier quantum kinetics

As in the case of carrier-phonon coupling, in a carrier-
carrier interaction the Boltzmann picture of instanta-
neous scattering events occurring between states with
well-defined energies loses its validity over ultrashort
time scales. The temporal evolution of the single-
particle density matrices is no longer completely deter-
mined by specifying their values at a given time. In con-
trast, it also depends on the values at previous times; the
dynamics become non-Markovian. In the density-matrix
approach discussed in this review, this corresponds to
treating the two-particle density matrices as indepen-
dent variables and solving the corresponding equations
of motion like Eq. (79), in which higher-order correla-
tion terms have been factorized into single-particle den-
sity matrices. Besides scattering, the Coulomb interac-
tion in a charged many-particle system, however, gives
rise to an additional important feature: The interaction
between two carriers is screened by the presence of all
the other carriers. It is intuitively clear that the carrier
system requires some time to react to a perturbation and
thus to build up the screening. The characteristic time is
essentially given by the inverse of the plasmon fre-
quency (El Sayed, Schuster, et al., 1994) which, for mod-
erate densities in GaAs, is of the order of 100 fs. There-
fore this buildup of screening occurs on the same time
scale relevant for quantum-kinetic phenomena. Here,

FIG. 30. Time-resolved reflectivity changes of (100)-oriented
intrinsic GaAs for the case of excitation with a 50-fs pulse at 2
eV exhibiting oscillations due to the coherent phonons. After
Cho et al., 1990.
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we shall briefly review some of the results that have
been achieved in this currently very active field of Cou-
lomb quantum kinetics.

As discussed above, it takes about 100 fs for the
screening to build up. On the other hand, this means
that on very short times of the order of 10 fs, screening
does not play an important role, and the calculations can
be performed with an unscreened potential. It is inter-
esting to note that, while in the Boltzmann case Cou-
lomb scattering rates with an unscreened potential di-
verge, in a quantum-kinetic treatment all contributions
remain finite. On this level it has been found that the
incoherently summed interband polarization, as well as
time-integrated four-wave-mixing signals, exhibit a non-
exponential decay with a density dependence of the
characteristic decay time according to n21/3 (El Sayed,
Bányai, and Haug, 1994; Vu et al., 1997), thus confirming
the measured density dependence (Becker et al., 1988).
Furthermore, the ultrafast redistribution of electrons as
measured in pump-probe experiments was explained
qualitatively (Camescasse et al., 1996). Comparing
quantum-kinetic and semiclassical calculations based on
the same static screening model, it turned out that the
non-Markovian relaxation is slightly delayed with re-
spect to the Markovian one (Schäfer, 1996).

For times approaching 100 fs the buildup of screening
has to be taken into account. In the density-matrix ap-
proach this requires including additional terms in the
equations of motion of the two-particle density matrices,
as discussed in Sec. II.E.4. In a Green’s-function ap-
proach the screened potential is treated as a dynamical
variable and a corresponding Dyson equation has to be
solved. This leads to a considerable increase in the
amount of computation. Nevertheless, such calculations
are possible today, and a series of interesting results
have been obtained in the past few years. Indeed, the
decay of the interband polarization turns out to be in
between the results obtained with a bare and with a
statically screened Coulomb potential (Bányai, Vu,
Mieck, and Haug, 1998). On this level, a good quantita-
tive agreement between theory and experiment has been
achieved for both four-wave-mixing (Bányai, Vu, and
Haug, 1998; Hügel et al., 1999) and pump-probe signals
(Vu et al., 1999). For systems excited by an inhomoge-
neous external potential, the generation and damping of
plasmons has also been studied (Kwong and Bonitz,
2000).

Besides scattering and screening, there are other phe-
nomena in a two- (or multi-) band semiconductor that
are related to density matrices involving four operators.
Among these are transitions involving two electron-hole
pairs, which have attracted considerable interest in re-
cent years. Typically, such two-pair states consist in a
bound state, the biexciton, and an exciton-exciton scat-
tering continuum. While the bound biexciton has often
been treated in terms of a few-level model, the con-
tinuum is more complicated and is directly related to
quantum kinetics. In the density-matrix approach the
central quantity for these phenomena is the two-pair
transition Bj1 ,i1 ,j2 ,i2

introduced in Sec. III.C. However, it
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turns out that for the kind of experimental conditions in
which these effects are most important, the correlation
expansion method described in this review is not the
most useful one for truncating the hierarchy, mainly be-
cause it treats all two-particle density matrices on the
same level. Instead, virtually all calculations in this field
have been based on the dynamics-controlled truncation
scheme (Axt and Stahl, 1994a, 1994b; Axt and Muka-
mel, 1998), in which the variables are classified accord-
ing to their order in the driving electric field. By for-
mally solving the equation of motion for the two-pair
transition, one can derive a memory term in the
equation for the interband polarization, which again
shows the quantum-kinetic nature of this contribution
(Östreich, Schönhammer, and Sham, 1995; Axt, Victor,
and Kuhn, 1998). Some aspects related to such
Coulomb-induced correlations in pump-probe and four-
wave-mixing signals have already been discussed above.
These correlations have been found to be particularly
important for describing the polarization dependence of
pump-probe and four-wave-mixing experiments (Axt
et al., 1995; Mayer et al., 1995; Schäfer et al., 1996). One
reason for their importance is the fact that the corre-
lated exciton-exciton continuum strongly compensates
some mean field contributions and, therefore, it is essen-
tial to obtain the correct line shape (Haase et al., 2000)
as well as the transient polarization (Bartels et al., 1998)
of four-wave-mixing experiments in which both exciton
and biexciton contributions are present. Furthermore,
such correlations may effectively couple different transi-
tions and thus remove the clear distinction between
quantum beats that arise from an interference in the
semiconductor material and polarization interference,
where the signals interfere in the detector (Phillips and
Wang, 1999; Smirl et al., 1999). In higher-order dif-
fracted signals—like in a six-wave-mixing experiment—
even density matrices involving six operators have been
found to be important for a correct description of the
spectra because there are again strong compensation ef-
fects (Bolton et al., 2000).

All the investigations discussed so far have been re-
stricted to those contributions of the Coulomb interac-
tion that conserve the number of electron-hole pairs, an
approximation that has also been applied in the theory
part of this review. In the case of high carrier densities
and strong external fields, it is well known that other
contributions also become important, leading, for ex-
ample, to Auger recombination and impact ionization.
In particular, the latter process is an interesting candi-
date for a quantum-kinetic treatment because it involves
threshold behavior: Semiclassically, an electron must
reach at least an energy corresponding to one band gap
above the minimum of the band before it can create an
additional electron-hole pair. Since in a quantum-kinetic
treatment the scattering process is not instantaneous,
the electron can still gain energy from the electric field.
Therefore with increasing field the threshold for impact
ionization is shifted to lower fields. This has been calcu-
lated both for idealized parabolic bands (Quade et al.,
1994) and for realistic materials based on full band struc-
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tures (Redmer et al., 2000). Formally similar processes
occur in doped semiconductor nanostructures, where the
Coulomb interaction leads to transitions between differ-
ent subbands. Here again the threshold behavior of the
semiclassical theory is smoothed on short time scales
due both to the energy-time uncertainty of the intersub-
band transition and to an initial fast broadening caused
by intrasubband scattering (Prengel, Schöll, and Kuhn,
1997; Prengel and Schöll, 1999a, 1999b).

IV. SUMMARY AND CONCLUSIONS

The aim of the present paper was to provide a review
of ultrafast phenomena in photoexcited semiconductors.
The primary goal was to present a cohesive discussion of
both coherent—i.e., phase-related—and incoherent—
i.e., phase-breaking—processes in semiconductor bulk
and heterostructures, as well as of their mutual interplay
on a subpicosecond time scale. After a brief historical
overview and a description of typical experimental tech-
niques, we have shown how different phenomena can be
described and explained within the same theoretical
framework, based on the density-matrix formalism. By
applying a correlation expansion we have derived the
contributions to the equations of motion for the relevant
kinetic variables corresponding to various interaction
mechanisms and we have discussed their physical mean-
ing. Based on this theoretical approach, we have re-
viewed a number of experimental and theoretical results
crucial to understanding the microscopic origin of many
ultrafast phenomena in semiconductors.

The main conclusion of the analysis presented in the
paper is twofold: On the one hand, purely macroscopic
or phenomenological models, commonly used to de-
scribe carrier relaxation and dephasing in the early days
of ultrafast optics, are no longer adequate for describing
the nonequilibrium dynamics of interacting carrier-
phonon systems on a subpicosecond time scale. In con-
trast, a kinetic description—based, for example, on the
density-matrix formalism but of course also on other ap-
proaches like the Green’s-function approach—is re-
quired. On the other hand, the study of photoexcited
carrier and phonon degrees of freedom on extremely
short (femtosecond) time scales shows a variety of phe-
nomena that cannot be explained in terms of the usual
semiclassical Boltzmann theory. This is mainly ascribed
to a failure of the conventional Markov approximation
over ultrashort time scales as well as a failure of the
independent treatment of different interaction mecha-
nisms. One is then forced to employ fully quantum-
kinetic formulations, which implies extending the set of
kinetic variables to higher-order correlation functions
like phonon-assisted and specific many-particle density
matrices.

Generally speaking, the continuous improvement of
time-resolved optical spectroscopy, intimately related to
the ability to generate laser-pulse sequences on shorter
and shorter time scales, has been accompanied by a pro-
gressive refinement of their theoretical description, i.e.,
from macroscopic to kinetic or quantum-kinetic models.
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At this point a few comments are in order. As already
mentioned, the field of ultrafast dynamics in semicon-
ductors is so vast that it is not possible to treat all phe-
nomena in a single review. For example, for most of the
phenomena discussed in this review, we could treat the
exciting light field as an external field and neglect the
feedback of the carrier system to this field. This was
possible because the samples were assumed to be opti-
cally thin. In optically thick samples propagation effects
become important, leading, for example, to the forma-
tion of polaritons (Fröhlich et al., 1991) and self-induced
transmission (Giessen et al., 1998). In this case interac-
tion mechanisms may also give rise to new, renormalized
states, for example, between polaritons and phonons,
which have been called ‘‘phonoritons’’ (Hanke et al.,
1999). Another example is the case of optically coupled
subsystems like multiple quantum well structures in
which each quantum well ‘‘sees’’ the light field that is
coherently emitted by the other wells. Depending on the
interwell distance, these fields may add up constructively
or destructively, thereby modifying the carrier dynamics
in the wells (Hübner et al., 1996). Recent progress in the
fabrication and characterization of semiconductor mi-
crocavities (Khitrova et al., 1999) offers the possibility of
studying ultrafast carrier dynamics in the presence of
strong light-matter coupling. Such systems constitute a
unique laboratory for the study of basic phenomena re-
lated to coupled exciton-light dynamics.

It clearly follows that a proper description of such ef-
fects requires treating electromagnetic degrees of free-
dom explicitly, which implies further extending our set
of dynamical variables. If the light field is treated quan-
tum mechanically, photon populations and various
photon-assisted density matrices have to be included
along with average fields, as described in Sec. II.F. In
this respect, there is a natural parallelism between pho-
tons and phonons: for both, the strong coupling with
carrier degrees of freedom introduces significant corre-
lations in terms of photon- and phonon-assisted density
matrices, which results in new renormalized states, i.e.,
polaritons and polarons, respectively.

All the experiments discussed in this paper have been
interpreted in terms of the correlation expansion of the
density-matrix approach. The assumption that correla-
tions involving an increasing number of carriers are of
decreasing relevance has allowed us to limit the descrip-
tion to a few higher-order density matrices. In the semi-
classical case they could even be adiabatically elimi-
nated. Typically, this assumption is fulfilled in the
presence of short-range interactions. The Coulomb po-
tential, however, is a long-range interaction and it is only
the presence of the many-body system that, due to
screening, reduces the length scale of this interaction.
Indeed, as already mentioned in Sec. III.H, at suffi-
ciently low densities there are experiments that require
density matrices involving at least six operators for a
proper description (Bolton et al., 2000).

The assumption is even less fulfilled in quasi-zero-
dimensional nanostructures, the so-called quantum dots
or semiconductor macroatoms (Jacak, Hawrylak, and
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Wójs, 1998). Due to their discrete or atomiclike energy
spectrum, they are intrinsically few-electron systems.
Such macroatoms typically exhibit few-carrier effects
both in transport (Schmidt et al., 1995; Tarucha et al.,
1996; Rontani et al., 1998) and in optics (Dekel et al.,
1998; Motohisa et al., 1998; Hohenester, Rossi, and Mo-
linari, 1999), due to the limited number of confined elec-
trons and/or holes in the nanostructure: the energy
needed to add an extra electron or electron-hole pair to
the system depends on the current number of electrons
and/or holes. In order to describe such few-carrier ef-
fects, correlations have to be properly taken into ac-
count; in particular, the mean-field or Hartree-Fock de-
scription, commonly employed as a first step in systems
of higher dimensionality, cannot be used to describe
single semiconductor macroatoms, for which the de-
tailed knowledge of the microscopic few-electron wave
function is required. Therefore the introduction of
quasi-zero-dimensional systems requires on the theoret-
ical side a careful consideration of the relevant correla-
tions between the particles.

We are therefore led to conclude that ultrafast optical
spectroscopy of semiconductors in the last three decades
has allowed us to improve our understanding of non-
equilibrium carrier dynamics significantly, from macro-
scopic or phenomenologic models to kinetic and
quantum-kinetic treatments, to partially microscopic ap-
proaches.

We stress that a partially microscopic treatment of the
carrier dynamics in few-electron systems, apart from
practical difficulties, on the one hand leads to a reformu-
lation of the concept of dephasing, and on the other
hand raises once again the measurement problem. In-
deed, semiconductor macroatoms are currently consid-
ered as potential candidates for quantum computation/
information12 processing devices. To this end, a recent
study (Zanardi and Rossi, 1998) has shown that a proper
tailoring of few-electron states may lead to a strong sup-
pression of phonon-induced decoherence processes in
quantum dot arrays. The key point is that in a quantum-
correlated few-electron system, each electron does not
interact individually with environmental degrees of free-
dom, in clear contrast to any single-particle kinetic for-
mulation.

Finally, a crucial point for a proper modeling of ul-
trafast experiments on few-electron systems is the de-
scription of the measurement process. Since quantum
correlation, i.e., entanglement effects, may play a signifi-
cant role in such systems, it is vital to describe at the
same microscopic level (i) the initial-state preparation,
(ii) its quantum-mechanical evolution, and (iii) the mea-
surement process. On the theoretical side this is the only
way to account properly for the increasingly sophisti-

12See, for example, Molotkov (1996), Loss and DiVincenzo
(1998), Zanardi and Rossi (1998), and Biolatti et al. (2000); for
a review on quantum computation, see, Steane (1998) and Di-
Vincenzo and Bennet (2000).
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cated experiments in ultrafast optics, for which the sepa-
ration between ‘‘measured system’’ and ‘‘detector’’ be-
comes ill defined.
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Atanasov, R., A. Haché, J. L. P. Hughes, H. M. van Driel, and

J. E. Sipe, 1996, Phys. Rev. Lett. 76, 1703.
Axt, V. M., G. Bartels, and A. Stahl, 1996, Phys. Rev. Lett. 76,

2543.
Axt, V. M., M. Herbst, and T. Kuhn, 1999, Superlattices Micro-

struct. 26, 117.
Axt, V. M., and S. Mukamel, 1998, Rev. Mod. Phys. 70, 145.
Axt, V. M., and A. Stahl, 1994a, Z. Phys. B: Condens. Matter

93, 195.
Axt, V. M., and A. Stahl, 1994b, Z. Phys. B: Condens. Matter

93, 205.
Axt, V. M., A. Stahl, E. J. Mayer, P. Haring Bolivar, S. Nüsse,
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Hübner, M., J. Kuhl, T. Stroucken, A. Knorr, S. W. Koch, R.

Hey, and K. Ploog, 1996, Phys. Rev. Lett. 76, 4199.
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Quade, W., E. Schöll, F. Rossi, and C. Jacoboni, 1994, Phys.
Rev. B 50, 7398.

Rappen, T., U.-G. Peter, and M. Wegener, 1994, Phys. Rev. B
49, 10 774.

Rappen, T., U.-G. Peter, M. Wegener, and W. Schäfer, 1993,
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