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There is strong evidence that the area of any surface limits the information content of adjacent
spacetime regions, at 1.431069 bits per square meter. This article reviews the developments that have
led to the recognition of this entropy bound, placing special emphasis on the quantum properties of
black holes. The construction of light sheets, which associate relevant spacetime regions to any given
surface, is discussed in detail. This article explains how the bound is tested, and its validity is
demonstrated in a wide range of examples. A universal relation between geometry and information is
thus uncovered. It has yet to be explained. The holographic principle asserts that its origin must lie in
the number of fundamental degrees of freedom involved in a unified description of spacetime and
matter. It must be manifest in an underlying quantum theory of gravity. This article surveys some
successes and challenges in implementing the holographic principle.
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I. INTRODUCTION

A. A principle for quantum gravity

Progress in fundamental physics has often been driven
by the recognition of a new principle, a key insight to
guide the search for a successful theory. Examples in-
clude the principles of relativity, the equivalence prin-
ciple, and the gauge principle. Such principles lay down
general properties that must be incorporated into the
laws of physics.

A principle can be sparked by contradictions between
existing theories. By judiciously declaring which theory
contains the elements of a unified framework, a prin-
ciple may force other theories to be adapted or super-
ceded. The special theory of relativity, for example, rec-
onciles electrodynamics with Galilean kinematics at the
expense of the latter.

A principle can also arise from some newly recog-
nized pattern, an apparent law of physics that stands by
itself, both uncontradicted and unexplained by existing
theories. A principle may declare this pattern to be at
the core of a new theory altogether.

In Newtonian gravity, for example, the proportionality
of gravitational and inertial mass in all bodies seems
a curious coincidence that is far from inevitable.
The equivalence principle demands that this pattern
must be made manifest in a new theory. This led
Einstein to the general theory of relativity, in which
the equality of gravitational and inertial mass is built in
from the start. Because all bodies follow geodesics in
a curved spacetime, things simply could not be other-
wise.

The holographic principle belongs in the latter class.
The unexplained ‘‘pattern,’’ in this case, is the existence
of a precise, general, and surprisingly strong limit on the
information content of spacetime regions. This pattern
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has come to be recognized in stages; its present, most
general form is called the covariant entropy bound. The
holographic principle asserts that this bound is not a co-
incidence, but that its origin must be found in a new
theory.

The covariant entropy bound relates aspects of space-
time geometry to the number of quantum states of mat-
ter. This suggests that any theory that incorporates the
holographic principle must unify matter, gravity, and
quantum mechanics. It will be a quantum theory of grav-
ity, a framework that transcends general relativity and
quantum field theory.

This expectation is supported by the close ties
between the covariant entropy bound and the semiclas-
sical properties of black holes. It has been confirmed—
albeit in a limited context—by recent results in string
theory.

The holographic principle conflicts with received
wisdom; in this sense, it also belongs in the former class.
Conventional theories are local; quantum field theory,
for example, contains degrees of freedom at every
point in space. Even with a short distance cutoff, the
information content of a spatial region would appear to
grow with the volume. The holographic principle, on the
other hand, implies that the number of fundamental de-
grees of freedom is related to the area of surfaces in
spacetime. Typically, this number is drastically smaller
than the field theory estimate.

Thus the holographic principle calls into question
not only the fundamental status of field theory but the
very notion of locality. It gives preference, as we shall
see, to the preservation of quantum-mechanical unitar-
ity.

In physics, information can be encoded in a variety
of ways: by the quantum states, say, of a conformal
field theory, or by a lattice of spins. Unfortunately, for
all its precise predictions about the number of funda-
mental degrees of freedom in spacetime, the holo-
graphic principle betrays little about their character. The
amount of information is strictly determined, but not
its form. It is interesting to contemplate the notion
that pure, abstract information may underlie all of phys-
ics. But for now, this austerity frustrates the design of
concrete models incorporating the holographic prin-
ciple.

Indeed, a broader caveat is called for. The covariant
entropy bound is a compelling pattern, but it may still
prove incorrect or merely accidental, signifying no
deeper origin. If the bound does stem from a fundamen-
tal theory, that relation could be indirect or peripheral,
in which case the holographic principle would be un-
likely to guide us to the core ideas of the theory. All that
aside, the holographic principle is likely only one of sev-
eral independent conceptual advances needed for
progress in quantum gravity.

At present, however, quantum gravity poses an im-
mense problem tackled with little guidance. Quantum
gravity has imprinted few traces on physics below the
Planck energy. Among them, the information content of
spacetime may well be the most profound.
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The direction offered by the holographic principle is
impacting existing frameworks and provoking new ap-
proaches. In particular, it may prove beneficial to the
further development of string theory, widely (and, in our
view, justly) considered the most compelling of present
approaches.

This article will outline the case for the holographic
principle while providing a starting point for further
study of the literature. The material is not, for the most
part, technical. The main mathematical aspect, the con-
struction of light sheets, is rather straightforward. In or-
der to achieve a self-contained presentation, some basic
material on general relativity has been included in an
appendix.

In demonstrating the scope and power of the holo-
graphic correspondence between areas and information,
our ultimate task is to convey its character as a law of
physics that captures one of the most intriguing aspects
of quantum gravity. If the reader is led to contemplate
the origin of this particular pattern nature has laid out,
our review will have succeeded.

B. Notation and conventions

Throughout this paper, Planck units will be used:

\5G5c5k51, (1.1)

where G is Newton’s constant, \ is Planck’s constant, c is
the speed of light, and k is Boltzmann’s constant. In par-
ticular, all areas are measured in multiples of the square
of the Planck length,

lP
25

G\

c3 52.59310266 cm2. (1.2)

The Planck units of energy density, mass, temperature,
and other quantities are converted to cgs units, e.g., in
Wald (1984), whose conventions we follow in general.
For a small number of key formulas, we will provide an
alternate expression in which all constants are given ex-
plicitly.

We consider spacetimes of arbitrary dimension D
>4, unless noted otherwise. In explicit examples we of-
ten take D54 for definiteness. The Appendix fixes the
metric signature and defines ‘‘surface,’’ ‘‘hypersurface,’’
‘‘null,’’ and many other terms from general relativity.
The term ‘‘light sheet’’ is defined in Sec. V.

‘‘GSL’’ stands for the generalized second law of ther-
modynamics (Sec. II.A.3). The number of degrees of
freedom of a quantum system N is defined as the loga-
rithm of the dimension N of its Hilbert space in Sec.
III.A. Equivalently, N can be defined as the number of
bits of information times ln 2.

C. Outline

In Sec. II, we review Bekenstein’s (1972) notion of
black hole entropy and the related discovery of upper
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bounds on the entropy of matter systems. Assuming
weak gravity, spherical symmetry, and other conditions,
one finds that the entropy in a region of space is limited
by the area of its boundary.1 Based on this ‘‘spherical
entropy bound,’’ ’t Hooft (1993) and Susskind (1995b)
formulated a holographic principle. We discuss motiva-
tions for this radical step.

The spherical entropy bound depends on assumptions
that are clearly violated by realistic physical systems. A
priori there is no reason to expect that the bound has
universal validity, nor that it admits a reformulation that
does. Yet, if the number of degrees of freedom in nature
is as small as ’t Hooft and Susskind asserted, one would
expect wider implications for the maximal entropy of
matter.

In Sec. IV, however, we demonstrate that a naive gen-
eralization of the spherical entropy bound is unsuccess-
ful. The ‘‘spacelike entropy bound’’ states that the en-
tropy in a given spatial volume, irrespective of shape
and location, is always less than the surface area of its
boundary. We consider four examples of realistic, com-
monplace physical systems, and find that the spacelike
entropy bound is violated in each one of them.

In light of these difficulties, some authors, forgoing
complete generality, searched instead for reliable condi-
tions under which the spacelike entropy bound holds.
We review the difficulties faced in making such condi-
tions precise even in simple cosmological models.

Thus the idea that the area of surfaces generally
bounds the entropy in enclosed spatial volumes has
proven wrong; it can be neither the basis nor the con-
sequence of a fundamental principle. This review
would be incomplete if it failed to stress this point.
Moreover, the ease with which the spacelike entropy
bound (and several of its modifications) can be excluded
underscores that a general entropy bound, if found, is no
triviality. The counterexamples to the spacelike bound
later provide a useful testing ground for the covariant
bound.

1The metaphorical name of the principle (’t Hooft, 1993)
originates here. In many situations, the covariant entropy
bound dictates that all physics in a region of space is described
by data that fit on its boundary surface, at one bit per Planck
area (Sec. VI.C.1). This is reminiscent of a hologram. Holog-
raphy is an optical technology by which a three-dimensional
image is stored on a two-dimensional surface via a diffraction
pattern. (To avoid any confusion, this linguistic remark will
remain our only usage of the term in its original sense.) From
the present point of view, the analogy has proven particularly
apt. In both kinds of ‘‘holography,’’ light rays play a key role
for the imaging (Sec. V). Moreover, the holographic code is
not a straightforward projection, as in ordinary photography;
its relation to the three-dimensional image is rather compli-
cated. [Most of our intuition in this regard has come from the
anti–de Sitter/conformal field theory (AdS/CFT) correspon-
dence, Sec. IX.B.] Susskind’s (1995b) quip that the world is a
‘‘hologram’’ is justified by the existence of preferred surfaces in
spacetime, on which all of the information in the universe can
be stored at no more than one bit per Planck area (Sec. IX.C).
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Inadequacies of the spacelike entropy bound led Fis-
chler and Susskind (1998) to a bound involving light
cones. The covariant entropy bound (Bousso, 1999a),
presented in Sec. V, refines and generalizes this ap-
proach. Given any surface B , the bound states that the
entropy on any light sheet of B will not exceed the area
of B . Light sheets are particular hypersurfaces gener-
ated by light rays orthogonal to B . The light rays may
only be followed as long as they are not expanding. We
explain this construction in detail.

After discussing how to define the entropy on a light
sheet, we spell out known limitations of the covariant
entropy bound. The bound is presently formulated only
for approximately classical geometries, and one must ex-
clude unphysical matter content, such as large negative
energy. We conclude that the covariant entropy bound is
well defined and testable in a vast class of solutions. This
includes all thermodynamic systems and cosmologies
presently known or considered realistic.

In Sec. VI we review the geometric properties of light
sheets, which are central to the operation of the covari-
ant entropy bound. Raychaudhuri’s equation is used to
analyze the effects of entropy on light sheet evolution.
By construction, a light sheet is generated by light rays
that are initially either parallel or contracting. Entropic
matter systems carry mass, which causes the bending of
light.

This means that the light rays generating a light sheet
will be focused towards each other when they encounter
entropy. Eventually they self-intersect in a caustic,
where they must be terminated because they would be-
gin to expand. This mechanism would provide an ‘‘ex-
planation’’ of the covariant entropy bound if one could
show that the mass associated with entropy is necessarily
so large that light sheets focus and terminate before they
encounter more entropy than their initial area.

Unfortunately, present theories do not impose an in-
dependent, fundamental lower bound on the energetic
price of entropy. However, Flanagan, Marolf, and Wald
(2000) were able to identify conditions on entropy den-
sity which are widely satisfied in nature and which are
sufficient to guarantee the validity of the covariant en-
tropy bound. We review these conditions.

The covariant bound can also be used to obtain suffi-
cient criteria under which the spacelike entropy bound
holds. Roughly, these criteria can be summarized by de-
manding that gravity be weak. However, the precise con-
dition requires the construction of light sheets; it cannot
be formulated in terms of intrinsic properties of spatial
volumes.

The event horizon of a black hole is a light sheet of its
final surface area. Thus the covariant entropy bound in-
cludes to the generalized second law of thermodynamics
in black-hole formation as a special case. More broadly,
the generalized second law, as well as the Bekenstein
entropy bound, follow from a strengthened version of
the covariant entropy bound.

In Sec. VII, the covariant entropy bound is applied to
a variety of thermodynamic systems and cosmological
spacetimes. This includes all of the examples in which
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the spacelike entropy bound is violated. We find that the
covariant bound is satisfied in each case.

In particular, the bound is found to hold in strongly
gravitating regions, such as cosmological spacetimes and
collapsing objects. Aside from providing evidence for
the general validity of the bound, this demonstrates that
the bound (unlike the spherical entropy bound) holds in
a regime where it cannot be derived from black-hole
thermodynamics.

In Sec. VIII, we arrive at the holographic principle.
We note that the covariant entropy bound holds with
remarkable generality but is not logically implied by
known laws of physics. We conclude that the bound has
a fundamental origin. As a universal limitation on the
information content of Lorentzian geometry, the bound
should be manifest in a quantum theory of gravity. We
formulate the holographic principle and list some of its
implications. The principle poses a challenge for local
theories. It suggests a preferred role for null hypersur-
faces in the classical limit of quantum gravity.

In Sec. IX we analyze an example of a holographic
theory. Quantum gravity in certain asymptotically
anti–de Sitter spacetimes is fully defined by a conformal
field theory. The latter theory contains the correct num-
ber of degrees of freedom demanded by the holographic
principle. It can be thought of as living on a kind of
holographic screen at the boundary of spacetime and
containing one bit of information per Planck area.

Holographic screens with this information density can
be constructed for arbitrary spacetimes—in this sense,
the world is a hologram. In most other respects, how-
ever, global holographic screens do not generally sup-
port the notion that a holographic theory is a conven-
tional field theory living at the boundary of a spacetime.

At present, there is much interest in finding more gen-
eral holographic theories. We discuss the extent to which
string theory, and a number of other approaches, have
realized this goal. A particular area of focus is de Sitter
space, which exhibits an absolute entropy bound. We
review the implications of the holographic principle in
such spacetimes.

D. Related subjects and further reading

The holographic principle has developed from a large
set of ideas and results, not all of which seemed mutually
related at first. This is not a historical review; we have
aimed mainly at achieving a coherent, modern perspec-
tive on the holographic principle. We do not give equal
emphasis to all developments, and we respect the his-
torical order only where it serves the clarity of exposi-
tion. Along with length constraints, however, this ap-
proach has led to some omissions and shortcomings, for
which we apologize.

We have chosen to focus on the covariant entropy
bound because it can be tested using only quantum field
theory and general relativity. Its universality motivates
the holographic principle independently of any particu-
lar ansatz for quantum gravity (say, string theory) and
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without additional assumptions (such as unitarity). It
yields a precise and general formulation.

Historically, the idea of the holographic principle was
tied, in part, to the debate about information loss in
black holes2 and to the notion of black hole
complementarity.3 Although we identify some of the
connections, our treatment of these issues is far from
comprehensive. Reviews include those of Thorlacius
(1995), Verlinde (1995), Susskind and Uglum (1996),
Bigatti and Susskind (2000), and Wald (2001).

Some aspects of what we now recognize as the holo-
graphic principle were encountered, at an early stage, as
features of string theory. (This is as it should be, since
string theory is a quantum theory of gravity.) In the in-
finite momentum frame, the theory admits a lower-
dimensional description from which the gravitational dy-
namics of the full spacetime arises nontrivially (Giles
and Thorn, 1977; Giles, McLerran, and Thorn, 1978;
Thorn, 1979, 1991, 1995, 1996; Klebanov and Susskind,
1988). Susskind (1995b) placed this property of string
theory in the context of the holographic principle and
related it to black-hole thermodynamics and entropy
limitations.

Some authors have traced the emergence of the holo-
graphic principle also to other approaches to quantum
gravity; see Smolin (2001) for a discussion and further
references.

By tracing over a region of space one obtains a den-
sity matrix. Bombelli et al. (1986) showed that the result-
ing entropy is proportional to the boundary area of the
region. A more general argument was given by Sred-
nicki (1993). Gravity does not enter in this consider-
ation. Moreover, the entanglement entropy is generally
unrelated to the size of the Hilbert space describing ei-
ther side of the boundary. Thus it is not clear to what
extent this suggestive result is related to the holographic
principle.

This is not a review of the AdS/CFT correspondence
(Gubser, Klebanov, and Polyakov, 1998; Maldacena,
1998; Witten, 1998). This rich and beautiful duality can
be regarded (among its many interesting aspects) as an
implementation of the holographic principle in a con-
crete model. Unfortunately, it applies only to a narrow
class of spacetimes of limited physical relevance. By con-
trast, the holographic principle claims a far greater level
of generality—a level at which it continues to lack a
concrete implementation.

We will broadly discuss the relation between the AdS/
CFT correspondence and the holographic principle, but
we will not dwell on aspects that seem particular to AdS/

2See, for example, Hawking (1976b, 1982), Page (1980, 1993),
Banks, Susskind, and Peskin (1984), ’t Hooft (1985, 1988,
1990), Polchinski and Strominger (1994), and Strominger
(1994).

3See, e.g., ’t Hooft (1991), Susskind, Thorlacius, and Uglum
(1993), Susskind and Thorlacius (1994), Susskind (1993b),
Stephens, ’t Hooft, and Whiting (1994). For recent criticism,
see Jacobson (1999).
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CFT. (In particular, this means that the reader should
not expect a discussion of every paper containing the
word ‘‘holographic’’ in the title!) A detailed treatment of
AdS/CFT would go beyond the purpose of the present
text. An extensive review has been given by Aharony
et al. (2000).

The AdS/CFT correspondence is closely related to
some recent models of our 311-dimensional world as a
defect, or brane, in a 411-dimensional AdS space. In
the models of Randall and Sundrum (1999a, 1999b), the
gravitational degrees of freedom of the extra dimension
appear on the brane as a dual field theory under the
AdS/CFT correspondence. While the holographic prin-
ciple can be considered a prerequisite for the existence
of such models, their detailed discussion would not sig-
nificantly strengthen our discourse. Earlier seminal pa-
pers in this area include Hořava and Witten (1996a,
1996b).

A number of authors (e.g., Brustein and Veneziano,
2000; Verlinde, 2000; Brustein, Foffa, and Veneziano,
2001; see Cai, Myung, and Ohta, 2001, for additional
references) have discussed interesting bounds which are
not directly based on the area of surfaces. Not all of
these bounds appear to be universal. Because their rela-
tion to the holographic principle is not entirely clear, we
will not attempt to discuss them here. Applications of
entropy bounds to string cosmology (e.g., Veneziano,
1999a; Bak and Rey, 2000b; Brustein, Foffa, and Sturani,
2000) are reviewed by Veneziano (2000).

The holographic principle has sometimes been said to
exclude certain physically acceptable solutions of Ein-
stein’s equations because they appeared to conflict with
an entropy bound. The covariant bound has exposed
these tensions as artifacts of the limitations of earlier
entropy bounds. Indeed, this review bases the case for a
holographic principle to a large part on the very gener-
ality of the covariant bound. However, the holographic
principle does limit the applicability of quantum field
theory on cosmologically large scales. It calls into ques-
tion the conventional analysis of the cosmological con-
stant problem (Cohen, Kaplan, and Nelson, 1999;
Hořava, 1999; Banks, 2000a; Hořava and Minic, 2000;
Thomas, 2000). It has also been applied to the calcula-
tion of anisotropies in the cosmic microwave back-
ground (Hogan, 2002a, 2002b). The study of cosmologi-
cal signatures of the holographic principle may be of
great value, since it is not clear whether more conven-
tional imprints of short-distance physics on the early
universe are observable even in principle (see, e.g., Ka-
loper et al., 2002, and references therein).

Most attempts at implementing the holographic prin-
ciple in a unified theory are still in their infancy. It would
be premature to attempt a detailed review; some refer-
ences are given in Sec. IX.D.

Other recent reviews overlapping with some or all of
the topics covered here are Bigatti and Susskind (2000),
Bousso (2000a), ’t Hooft (2000b), Bekenstein (2001),
and Wald (2001). Relevant textbooks include Hawking
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and Ellis (1973), Misner, Thorne, and Wheeler (1973),
Wald (1984, 1994), Green, Schwarz, and Witten (1987),
and Polchinski (1998).

II. ENTROPY BOUNDS FROM BLACK HOLES

This section reviews black-hole entropy, some of the
entropy bounds that have been inferred from it, and
their relation to ’t Hooft’s (1993) and Susskind’s (1995b)
proposal of a holographic principle.

The entropy bounds discussed in this section are ‘‘uni-
versal’’ (Bekenstein, 1981) in the sense that they are in-
dependent of the specific characteristics and composi-
tion of matter systems. Their validity is not truly
universal, however, because they apply only when grav-
ity is weak.

We consider only Einstein gravity. For black-hole
thermodynamics in higher-derivative gravity, see, e.g.,
Myers and Simon (1988), Jacobson and Myers (1993),
Wald (1993), Iyer and Wald (1994, 1995), Jacobson,
Kang, and Myers (1994), and the review by Myers
(1998).4

A. Black hole thermodynamics

The notion of black hole entropy is motivated by two
results in general relativity.

1. Area theorem

The area theorem (Hawking, 1971) states that the area
of a black-hole event horizon never decreases with time:

dA>0. (2.1)

Moreover, if two black holes merge, the area of the new
black hole will exceed the total area of the original black
holes.

For example, an object falling into a Schwarzschild
black hole will increase the mass of the black hole, M .5

Hence the horizon area, A516pM2 in D54, increases.
On the other hand, one would not expect the area to
decrease in any classical process, because the black hole
cannot emit particles.

The theorem suggests an analogy between black hole
area and thermodynamic entropy.

2. No-hair theorem

Work of Israel (1967, 1968), Carter (1970), Hawking
(1971, 1972), and others, implies the curiously named
no-hair theorem: A stationary black hole is characterized

4Abdalla and Correa-Borbonet (2001) have commented on
entropy bounds in this context.

5This assumes that the object has positive mass. Indeed, the
assumptions in the proof of the theorem include the null en-
ergy condition. This condition is given in the Appendix, where
the Schwarzschild metric is also found.
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by only three quantities: mass, angular momentum, and
charge.6

Consider a complex matter system, such as a star, that
collapses to form a black hole. The black hole will even-
tually settle down into a final, stationary state. The no-
hair theorem implies that this state is unique.

From an outside observer’s point of view, the forma-
tion of a black hole appears to violate the second law of
thermodynamics. The phase space appears to be drasti-
cally reduced. The collapsing system may have arbi-
trarily large entropy, but the final state has none at all.
Different initial conditions will lead to indistinguishable
results.

A similar problem arises when a matter system is
dropped into an existing black hole. Geroch has pro-
posed a further method for violating the second law,
which exploits a classical black hole to transform heat
into work; see Bekenstein (1972) for details.

3. Bekenstein entropy and the generalized second law

Thus the no-hair theorem poses a paradox, to which
the area theorem suggests a resolution. When a thermo-
dynamic system disappears behind a black hole’s event
horizon, its entropy is lost to an outside observer. The
area of the event horizon will typically grow when the
black hole swallows the system. Perhaps one could re-
gard this area increase as a kind of compensation for the
loss of matter entropy?

Based on this reasoning, Bekenstein (1972, 1973,
1974) suggested that a black hole actually carries an en-
tropy equal to its horizon area, SBH5hA , where h is a
number of order unity. In Sec. II.A.4 it will be seen that
h5 1/4 (Hawking, 1974):

SBH5
A

4
. (2.2)

[In full, SBH5kAc3/(4G\).] The entropy of a black
hole is given by a quarter of the area of its horizon in
Planck units. In ordinary units, it is the horizon area
divided by about 10269 m2.

Moreover, Bekenstein (1972, 1973, 1974) proposed
that the second law of thermodynamics holds only for
the sum of black-hole entropy and matter entropy:

dS total>0. (2.3)

For ordinary matter systems alone, the second law need
not hold. But if the entropy of black holes, Eq. (2.2), is
included in the balance, the total entropy will never de-
crease. This is referred to as the generalized second law
or GSL.

6Proofs and further details can be found, e.g., in Hawking and
Ellis (1973), or Wald (1984). This form of the theorem holds
only in D54. Gibbons, Ida, and Shiromizu (2002) have re-
cently given a uniqueness proof for static black holes in D
.4. Remarkably, Emparan and Reall (2001) have found a
counterexample to the stationary case in D55. This does not
affect the present argument, in which the no-hair theorem
plays a heuristic role.
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The content of this statement may be illustrated as
follows. Consider a thermodynamic system T, consisting
of well-separated, noninteracting components. Some
components, labeled Ci , may be thermodynamic systems
made from ordinary matter, with entropy S(Ci). The
other components, Bj , are black holes, with horizon ar-
eas Aj . The total entropy of T is given by

S total
initial5Smatter1SBH . (2.4)

Here, Smatter5(S(Ci) is the total entropy of all ordinary
matter. SBH5( (Aj/4) is the total entropy of all black
holes present in T.

Now suppose the components of T are allowed to in-
teract until a new equilibrium is established. For ex-
ample, some of the matter components may fall into
some of the black holes. Other matter components
might collapse to form new black holes. Two or more
black holes may merge. In the end, the system T will
consist of a new set of components Ĉi and B̂j , for which
one can again compute a total entropy S total

final . The GSL
states that

S total
final>S total

initial . (2.5)

What is the microscopic, statistical origin of black-
hole entropy? We have learned that a black hole, viewed
from the outside, is unique classically. The Bekenstein-
Hawking formula, however, suggests that it is compat-
ible with eSBH independent quantum states. The nature
of these quantum states remains largely mysterious. This
problem has sparked sustained activity through various
different approaches, too vast in scope to sketch in this
review.

However, one result stands out because of its quanti-
tative accuracy. Recent developments in string theory
have led to models of limited classes of black holes in
which the microstates can be identified and counted
(Strominger and Vafa, 1996; for a review, see, e.g., Peet,
2000). The formula S5A/4 was precisely confirmed by
this calculation.

4. Hawking radiation

Black holes clearly have a mass M . If Bekenstein en-
tropy SBH is to be taken seriously, then the first law of
thermodynamics dictates that black holes must have a
temperature T :

dM5TdSBH . (2.6)

Indeed, Einstein’s equations imply an analogous ‘‘first
law of black-hole mechanics’’ (Bardeen, Carter, and
Hawking, 1973). The entropy is the horizon area, and
the surface gravity of the black hole, k, plays the role of
the temperature:

dM5
k

8p
dA . (2.7)

For a definition of k, see Wald (1984); e.g., a Schwarzs-
child black hole in D54 has k5(4M)21.

It may seem that this has taken the thermodynamic
analogy a step too far. After all, a blackbody with non-
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zero temperature must radiate. But for a black hole this
would seem impossible. Classically, no matter can escape
from it, so its temperature must be exactly zero.

This paradox was resolved by the discovery that black
holes do in fact radiate via a quantum process. Hawking
(1974, 1975) showed by a semiclassical calculation that a
distant observer will detect a thermal spectrum of par-
ticles coming from the black hole, at a temperature

T5
k

2p
. (2.8)

For a Schwarzschild black hole in D54, this tempera-
ture is \c3/(8pGkM), or about 1026 K divided by the
mass of the black hole in grams. Note that such black
holes have negative specific heat.

The discovery of Hawking radiation clarified the inter-
pretation of the thermodynamic description of black
holes. What might otherwise have been viewed as a
mere analogy (Bardeen, Carter, and Hawking, 1973) was
understood to be a true physical property. The entropy
and temperature of a black hole are no less real than its
mass.

In particular, Hawking’s result affirmed that the en-
tropy of black holes should be considered a genuine con-
tribution to the total entropy content of the universe, as
Bekenstein (1972, 1973, 1974) had anticipated. Via the
first law of thermodynamics, Eq. (2.6), Hawking’s calcu-
lation fixes the coefficient h in the Bekenstein entropy
formula, Eq. (2.2), to be 1/4.

A radiating black hole loses mass, shrinks, and even-
tually disappears unless it is stabilized by charge or a
steady influx of energy. Over a long time of order
M(D21)/(D23), this process converts the black hole into a
cloud of radiation. (See Sec. III.G for the question of
unitarity in this process.)

It is natural to study the operation of the GSL in the
two types of processes discussed in Sec. II.A.2. We will
first discuss the case in which a matter system is dropped
into an existing black hole. Then we will turn to the
process in which a black hole is formed by the collapse
of ordinary matter. In both cases, ordinary entropy is
converted into horizon entropy.

A third process, which we will not discuss in detail, is
the Hawking evaporation of a black hole. In this case,
the horizon entropy is converted back into radiation en-
tropy. This type of process was not anticipated when
Bekenstein (1972) proposed black hole entropy and the
GSL. It is all the more impressive that the GSL holds
also in this case (Bekenstein, 1975; Hawking, 1976a).
Page (1976) has estimated that the entropy of Hawking
radiation exceeds that of the evaporated black hole by
62%.

B. Bekenstein bound

When a matter system is dropped into a black hole, its
entropy is lost to an outside observer. That is, the en-
tropy Smatter starts at some finite value and ends up at
zero. But the entropy of the black hole increases, be-
cause the black hole gains mass, and so its area A will
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grow. Thus it is at least conceivable that the total en-
tropy, Smatter1 A/4, does not decrease in the process,
and that therefore the generalized second law of ther-
modynamics, Eq. (2.3), is obeyed.

Yet it is by no means obvious that the generalized
second law will hold. The growth of the horizon area
depends essentially on the mass that is added to the
black hole; it does not seem to care about the entropy of
the matter system. If it were possible to have matter
systems with arbitrarily large entropy at a given mass
and size, the generalized second law could still be vio-
lated.

The thermodynamic properties of black holes devel-
oped in the previous subsection, including the assign-
ment of entropy to the horizon, are sufficiently compel-
ling to be considered laws of nature. Then one may turn
the above considerations around and demand that the
generalized second law hold in all processes. One would
expect that this would lead to a universal bound on the
entropy of matter systems in terms of their extensive
parameters.

For any weakly gravitating matter system in asymp-
totically flat space, Bekenstein (1981) has argued that
the GSL implies the following bound:

Smatter<2pER . (2.9)

[In full, S<2pkER/(\c); note that Newton’s constant
does not enter.] Here, E is the total mass energy of the
matter system. The circumferential radius R is the radius
of the smallest sphere that fits around the matter system
(assuming that gravity is sufficiently weak to allow for a
choice of time slicing such that the matter system is at
rest and space is almost Euclidean).

We will begin with an argument for this bound in ar-
bitrary spacetime dimension D that involves a strictly
classical analysis of the Geroch process, by which a sys-
tem is dropped into a black hole from the vicinity of the
horizon. We will then show, however, that a purely clas-
sical treatment is not tenable. The extent to which quan-
tum effects modify, or perhaps invalidate, the derivation
of the Bekenstein bound from the GSL is controversial.
The gist of some of the pertinent arguments will be
given here, but the reader is referred to the literature for
the subtleties.

1. Geroch process

Consider a weakly gravitating stable thermodynamic
system of total energy E . Let R be the radius of the
smallest D22 sphere circumscribing the system. To ob-
tain an entropy bound, one may move the system from
infinity into a Schwarzschild black hole whose radius b is
much larger than R but otherwise arbitrary. One would
like to add as little energy as possible to the black hole,
so as to minimize the increase of the black hole’s horizon
area and thus to optimize the tightness of the entropy
bound. Therefore the strategy is to extract work from
the system by lowering it slowly until it is just outside
the black-hole horizon, before one finally drops it in.

The mass added to the black hole is given by the en-
ergy E of the system, redshifted according to the posi-
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tion of the center of mass at the drop-off point, at which
the circumscribing sphere almost touches the horizon.
Within its circumscribing sphere, one may orient the sys-
tem so that its center of mass is ‘‘down,’’ i.e., on the side
of the black hole. Thus the center of mass can be
brought to within a proper distance R from the horizon,
while all parts of the system remain outside the horizon.
Hence one must calculate the redshift factor at radial
proper distance R from the horizon.

The Schwarzschild metric is given by

ds252V~r !dt21V~r !21dr21r2dVD22
2 , (2.10)

where

V~r !512S b

r D D23

[@x~r !#2 (2.11)

defines the redshift factor x (Myers and Perry, 1986).
The black-hole radius is related to the mass at infinity M
by

bD235
16pM

~D22 !AD22
, (2.12)

where A(D22)52p(D21)/2/G@(D21)/2# is the area of a
unit D22 sphere. The black hole has horizon area

A5AD22bD22. (2.13)

Let c be the radial coordinate distance from the hori-
zon:

c5r2b . (2.14)

Near the horizon, the redshift factor is given by

x2~c !5~D23 !
c

b
, (2.15)

to leading order in c/b . The proper distance l is related
to the coordinate distance c as follows:

l~c !5E
0

c dc

x~c !
52S bc

D23 D 1/2

. (2.16)

Hence

x~ l !5
D23

2b
l . (2.17)

The mass added to the black hole is

dM<Ex~ l !uR5
D23

2b
ER . (2.18)

By Eqs. (2.12), (2.13), and (2.2), the black-hole entropy
increases by

dSBH5
dSBH

dM
dM<2pER . (2.19)

By the generalized second law, this increase must at least
compensate for the lost matter entropy: dSBH2Smatter
>0. Hence

Smatter<2pER . (2.20)
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2. Unruh radiation

The above derivation of the Bekenstein bound, by a
purely classical treatment of the Geroch process, suffers
from the problem that it can be strengthened to a point
where it yields an obviously false conclusion. Consider a
system in a rectangular box whose height h is much
smaller than its other dimensions. Orient the system so
that the small dimension is aligned with the radial direc-
tion, and the long dimensions are parallel to the horizon.
The minimal distance between the center of mass and
the black hole horizon is then set by the height of the
box, and will be much smaller than the circumferential
radius. In this way, one can ‘‘derive’’ a bound of the form

Smatter<pEh . (2.21)

The right-hand side goes to zero in the limit of vanishing
height, at fixed energy of the box. But the entropy of the
box does not go to zero unless all of its dimensions van-
ish. If only the height goes to zero, the vertical modes
become heavy and have to be excluded. But entropy will
still be carried by light modes living in the other spatial
directions.

Unruh and Wald (1982, 1983) have pointed out that a
system held at fixed radius just outside a black-hole ho-
rizon undergoes acceleration, and hence experiences
Unruh radiation (Unruh, 1976). They argued that this
quantum effect will change both the energetics (because
the system will be buoyed by the radiation) and the en-
tropy balance in the Geroch process (because the vol-
ume occupied by the system will be replaced by entropic
quantum radiation after the system is dropped into the
black hole). Unruh and Wald concluded that the Beken-
stein bound is neither necessary nor sufficient for the
operation of the GSL. Instead, they suggested that the
GSL is automatically protected by Unruh radiation as
long as the entropy of the matter system does not ex-
ceed the entropy of unconstrained thermal radiation of
the same energy and volume. This is plausible if the sys-
tem is indeed weakly gravitating and if its dimensions
are not extremely unequal.

Bekenstein (1983, 1994a), on the other hand, has ar-
gued that Unruh radiation merely affects the lowest
layer of the system and is typically negligible. Only for
very flat systems, Bekenstein (1994a) claims that the
Unruh-Wald effect may be important. This would invali-
date the derivation of Eq. (2.21) in the limit where this
bound is clearly incorrect. At the same time, it would
leave the classical argument for the Bekenstein bound,
Eq. (2.20), essentially intact. As there would be an inter-
mediate regime where Eq. (2.21) applies, however, one
would not expect the Bekenstein bound to be optimally
tight for nonspherical systems.

The question of whether the GSL implies the Beken-
stein bound remains controversial (see, e.g., Bekenstein,
1999, 2001; Pelath and Wald, 1999; Wald, 2001; Marolf
and Sorkin, 2002).

The arguments described here can also be applied to
other kinds of horizons. Davies (1984) and Schiffer
(1992) considered a Geroch process in de Sitter space,
respectively extending the Unruh-Wald and the Beken-
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stein analysis to the cosmological horizon. Bousso
(2001) has shown that the GSL implies a Bekenstein-
type bound for dilute systems in asymptotically de Sitter
space, with the assumption of spherical symmetry but
not necessarily of weak gravity. In this case one would
not expect quantum buoyancy to play a crucial role.

3. Empirical status

Independently of its logical relation to the GSL, one
can ask whether the Bekenstein bound actually holds in
nature. Bekenstein (1981, 1984) and Schiffer and Beken-
stein (1989) have made a strong case that all physically
reasonable, weakly gravitating matter systems satisfy
Eq. (2.9); some come within an order of magnitude of
saturation. This empirical argument has been called into
question by claims that certain systems violate the Bek-
enstein bound; see, e.g., Page (2000), and references
therein. Many of these counterexamples, however, fail to
include the whole gravitating mass of the system in E .
Others involve questionable matter content, such as a
very large number of species (Sec. II.C.4). Bekenstein
(2000c) gives a summary of alleged counterexamples
and their refutations, along with a list of references to
more detailed discussions. If the Bekenstein bound is
taken to apply only to complete, weakly gravitating sys-
tems that can actually be constructed in nature, it has
not been ruled out (Flanagan, Marolf, and Wald, 2000;
Wald, 2001).

The application of the bound to strongly gravitating
systems is complicated by the difficulty of defining the
radius of the system in a highly curved geometry. At
least for spherically symmetric systems, however, this is
not a problem, as one may define R in terms of the
surface area. A Schwarzschild black hole in four dimen-
sions has R52E . Hence its Bekenstein entropy, S
5A/45pR2, exactly saturates the Bekenstein bound
(Bekenstein, 1981). In D.4, black holes come to within
a factor 2/(D22) of saturating the bound (Bousso,
2001).

C. Spherical entropy bound

Instead of dropping a thermodynamic system into an
existing black hole via the Geroch process, one may also
consider the Susskind process, in which the system is
converted to a black hole. Susskind (1995b) has argued
that the GSL, applied to this transformation, yields the
spherical entropy bound

Smatter<
A

4
, (2.22)

where A is a suitably defined area enclosing the matter
system.

The description of the Susskind process below is influ-
enced by the analysis of Wald (2001).

1. Susskind process

Let us consider an isolated matter system of mass E
and entropy Smatter residing in a spacetime M. We re-



834 Raphael Bousso: The holographic principle
quire that the asymptotic structure of M permits the
formation of black holes. For definiteness, let us assume
that M is asymptotically flat. We define A to be the area
of the circumscribing sphere, i.e., the smallest sphere
that fits around the system. Note that A is well defined
only if the metric near the system is at least approxi-
mately spherically symmetric. This will be the case for
all spherically symmetric systems, and for all weakly
gravitating systems, but not for strongly gravitating sys-
tems lacking spherical symmetry. Let us further assume
that the matter system is stable on a timescale much
greater than A1/2. That is, it persists and does not ex-
pand or collapse rapidly, so that the time dependence of
A will be negligible.

The system’s mass must be less than the mass M of a
black hole of the same surface area. Otherwise, the sys-
tem could not be gravitationally stable, and from the
outside point of view it would already be a black hole.
One would expect that the system can be converted into
a black hole of area A by collapsing a shell of mass M
2E onto the system.7

Let the shell be well separated from the system ini-
tially. Its entropy Sshell is non-negative. The total initial
entropy in this thermodynamic process is given by

S total
initial5Smatter1Sshell . (2.23)

The final state is a black hole, with entropy

S total
final5SBH5

A

4
. (2.24)

By the generalized second law of thermodynamics, Eq.
(2.3), the initial entropy must not exceed the final en-
tropy. Since Sshell is obviously non-negative, Eq. (2.22)
follows.

2. Relation to the Bekenstein bound

Thus the spherical entropy bound is obtained directly
from the GSL via the Susskind process. Alternatively,
and with similar limitations, one can obtain the same
result from the Bekenstein bound, if the latter is as-
sumed to hold for strongly gravitating systems. The re-
quirement that the system be gravitationally stable im-
plies 2M<R in four dimensions. From Eq. (2.9), one
thus obtains

S<2pMR<pR25
A

4
. (2.25)

This shows that the spherical entropy bound is weaker
than the Bekenstein bound, in situations where both can
be applied.

The spherical entropy bound, however, is more closely
related to the holographic principle. It can be cast in a
covariant and general form (Sec. V). An interesting

7This assumes that the shell can actually be brought to within
A without radiating or ejecting shell mass or system mass. For
two large classes of systems, Bekenstein (2000a, 2000b) obtains
Eq. (2.22) under weaker assumptions.
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open question is whether one can reverse the logical
direction and derive the Bekenstein bound from the co-
variant entropy bound under suitable assumptions (Sec.
VI.C.2).

In D.4, gravitational stability and the Bekenstein
bound imply only S< (D22)/8 A (Bousso, 2001). The
discrepancy may stem from the extrapolation to strong
gravity and/or the lack of a reliable calibration of the
prefactor in the Bekenstein bound.

3. Examples

The spherical entropy bound is best understood by
studying a number of examples in four spacetime dimen-
sions. We follow ’t Hooft (1993) and Wald (2001).

It is easy to see that the bound holds for black holes.
By definition, the entropy of a single Schwarzschild
black hole, SBH5A/4, precisely saturates the bound. In
this sense, a black hole is the most entropic object one
can put inside a given spherical surface (’t Hooft, 1993).

Consider a system of several black holes of masses
Mi , in D54. Their total entropy will be given by

S54p( Mi
2 . (2.26)

From the point of view of a distant observer, the system
must not already be a larger black hole of mass (Mi .
Hence it must be circumscribed by a spherical area

A>16pS ( Mi D 2

.16p( Mi
254S . (2.27)

Hence the spherical entropy bound is satisfied with
room to spare.

Using ordinary matter instead of black holes, it turns
out to be difficult even to approach saturation of the
bound. In order to obtain a stable, highly entropic sys-
tem, a good strategy is to make it from massless par-
ticles. Rest mass only enhances gravitational instability
without contributing to the entropy. Consider, therefore,
a gas of radiation at temperature T , with energy E , con-
fined in a spherical box of radius R . We must demand
that the system is not a black hole: R>2E . For an order-
of-magnitude estimate of the entropy, we may neglect
the effects of self-gravity and treat the system as if it
lived on a flat background.

The energy of the ball is related to its temperature as

E;ZR3T4, (2.28)

where Z is the number of different species of particles in
the gas. The entropy of the system is given by

S;ZR3T3. (2.29)

Hence the entropy is related to the size and energy as

S;Z1/4R3/4E3/4. (2.30)

Gravitational stability then implies that

S&Z1/4A3/4. (2.31)

In order to compare this result to the spherical entropy
bound, S<A/4, recall that we are using Planck units.
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For any geometric description to be valid, the system
must be much larger than the Planck scale:

A@1. (2.32)

A generous estimate for the number of species in nature
is Z;O(103). Hence Z1/4A3/4 is much smaller than A
for all but the smallest, nearly Planck size systems, in
which the present approximations cannot be trusted in
any case. For a gas ball of size R@1, the spherical en-
tropy bound will be satisfied with a large factor, R1/2, to
spare.

4. The species problem

An interesting objection to entropy bounds is that one
can write down perfectly well-defined field theory
Lagrangians with an arbitrarily large number of particle
species (Sorkin, Wald, and Zhang, 1981; Unruh and
Wald, 1982). In the example of Eq. (2.31), a violation of
the spherical entropy bound for systems up to size A
would require

Z*A . (2.33)

For example, to construct a counterexample of the size
of a proton, one would require Z*1040. It is trivial to
write down a Lagrangian with this number of fields. But
this does not mean that the entropy bound is wrong.

In nature, the effective number of matter fields is
whatever it is; it cannot be tailored to the specifications
of one’s favorite counterexample. The spherical bound is
a statement about nature. If it requires that the number
of species is not exponentially large, then this implica-
tion is certainly in good agreement with observation. At
any rate, it is more plausible than the assumption of an
exponentially large number of light fields.

Indeed, an important lesson learned from black holes
and the holographic principle is that nature, at a funda-
mental level, will not be described by a local field theory
living on some background geometry (Susskind, Thor-
lacius, and Uglum, 1993).

The spherical entropy bound was derived from the
generalized second law of thermodynamics (under a set
of assumptions). Could one not therefore use the GSL
to rule out large Z? Consider a radiation ball with Z
*A massless species, so that S.A . The system is trans-
formed to a black hole of area A by a Susskind process.
However, Wald (2001) has shown that the apparent en-
tropy decrease is irrelevant, because the black hole is
catastrophically unstable. In Sec. II.A.4, the time for the
Hawking evaporation of a black hole was estimated to
be A3/2 in D54. This implicitly assumed a small number
of radiated species. But for large Z , one must take into
account that the radiation rate is actually proportional
to Z . Hence the evaporation time is given by

t0;
A3/2

Z
. (2.34)

With Z*A , one has t0&A1/2. The time needed to form
a black hole of area A is at least of order A1/2, so the
black hole in question evaporates faster than it forms.
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Wald’s analysis eliminates the possibility of using the
GSL to exclude large Z for the process at hand. But it
produces a different, additional argument against prolif-
erating the number of species. Exponentially large Z
would render black holes much bigger than the Planck
scale completely unstable. Let us demand therefore that
super-Planckian black holes be at least metastable. Then
Z cannot be made large enough to construct a counter-
example from Eq. (2.31). From a physical point of view,
the metastability of large black holes seems a far more
natural assumption than the existence of an extremely
large number of particle species.

Further arguments on the species problem (of which
the possible renormalization of Newton’s constant with
Z has received particular attention) are found in Bom-
belli et al. (1986), Bekenstein (1994b, 1999, 2000c), Ja-
cobson (1994), Susskind and Uglum (1994, 1996), Frolov
(1995), Brustein, Eichler, and Foffa (2000), Veneziano
(2001), Wald (2001), and Marolf and Sorkin (2002).

III. TOWARDS A HOLOGRAPHIC PRINCIPLE

A. Degrees of freedom

How many degrees of freedom are there in nature, at
the most fundamental level? The holographic principle
answers this question in terms of the area of surfaces in
spacetime. Before reaching this rather surprising answer,
we will discuss a more traditional way one might have
approached the question. Parts of this analysis follow ’t
Hooft (1993) and Susskind (1995b).

For the question to have meaning, let us restrict to a
finite region of volume V and boundary area A . As-
sume, for now, that gravity is not strong enough to blur
the definition of these quantities, and that spacetime is
asymptotically flat. Application of the spherical entropy
bound, Eq. (2.22), will force us to consider the circum-
scribing sphere of the region. This surface will coincide
with the boundary of the region only if the boundary is a
sphere, which we shall assume.

In order to satisfy the assumptions of the spherical
entropy bound we also demand that the metric of the
enclosed region is not strongly time dependent, in the
sense described at the beginning of Sec. II.C.1. In par-
ticular, this means that A will not be a trapped surface in
the interior of a black hole.

Let us define the number of degrees of freedom of a
quantum-mechanical system N to be the logarithm of
the dimension N of its Hilbert space H:

N5ln N5ln dim~H!. (3.1)

Note that a harmonic oscillator has N5` with this defi-
nition. The number of degrees of freedom is equal (up
to a factor of ln 2) to the number of bits of information
needed to characterize a state. For example, a system
with 100 spins has N52100 states, N5100 ln 2 degrees of
freedom, and can store 100 bits of information.
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B. Fundamental system

Consider a spherical region of space with no particu-
lar restrictions on matter content. One can regard this
region as a quantum-mechanical system and ask how
many different states it can be in. In other words, what is
the dimension of the quantum Hilbert space describing
all possible physics confined to the specified region,
down to the deepest level?

Thus our question is not about the Hilbert space of a
specific system, such as a hydrogen atom or an elephant.
Ultimately, all these systems should reduce to the con-
stituents of a fundamental theory. The question refers
directly to these constituents, given only the size8 of a
region. Let us call this system the fundamental system.

How much complexity, in other words, lies at the
deepest level of nature? How much information is re-
quired to specify any physical configuration completely,
as long as it is contained in a prescribed region?

C. Complexity according to local field theory

In the absence of a unified theory of gravity and quan-
tum fields, it is natural to seek an answer from an ap-
proximate framework. Suppose that the ‘‘fundamental
system’’ is local quantum field theory on a classical back-
ground spacetime satisfying Einstein’s equations (Birrell
and Davies, 1982; Wald, 1994). A quantum field theory
consists of one or more oscillators at every point in
space. Even a single harmonic oscillator has an infinite-
dimensional Hilbert space. Moreover, there are infinitely
many points in any volume of space, no matter how
small. Thus the answer to our question appears to be
N5` . However, so far we have disregarded the effects
of gravity altogether.

A finite estimate is obtained by including gravity at
least in a crude, minimal way. One might expect that
distances smaller than the Planck length, lP51.6
310233 cm, cannot be resolved in quantum gravity. So
let us discretize space into a Planck grid and assume that
there is one oscillator per Planck volume. Moreover, the
oscillator spectrum is discrete and bounded from below
by finite volume effects. It is bounded from above be-
cause it must be cut off at the Planck energy, MP51.3
31019 GeV. This is the largest amount of energy that
can be localized to a Planck cube without producing a
black hole. Thus the total number of oscillators is V (in
Planck units), and each has a finite number of states n .
(A minimal model one might think of is a Planckian
lattice of spins, with n52.) Hence the total number of
independent quantum states in the specified region is

N;nV. (3.2)

The number of degrees of freedom is given by

N;V ln n*V . (3.3)

8The precise nature of the geometric boundary conditions is
discussed further in Sec. V.C.
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This result successfully captures our prejudice that the
degrees of freedom in the world are local in space, and
that therefore complexity grows with volume. It turns
out, however, that this view conflicts with the laws of
gravity.

D. Complexity according to the spherical entropy bound

Thermodynamic entropy has a statistical interpreta-
tion. Let S be the thermodynamic entropy of an isolated
system at some specified value of macroscopic param-
eters such as energy and volume. Then eS is the number
of independent quantum states compatible with these
macroscopic parameters. Thus entropy is a measure of
our ignorance about the detailed microscopic state of a
system. One could relax the macroscopic parameters, for
example, by requiring only that the energy lie in some
finite interval. Then more states will be allowed, and the
entropy will be larger.

The question at the beginning of this section was
‘‘How many independent states are required to describe
all the physics in a region bounded by an area A?’’ Re-
call that all thermodynamic systems should ultimately be
described by the same underlying theory, and that we
are interested in the properties of this ‘‘fundamental sys-
tem.’’ We are now able to rephrase the question as fol-
lows: ‘‘What is the entropy S of the fundamental system,
given that only the boundary area is specified?’’ Once
this question is answered, the number of states will sim-
ply be N5eS, by the argument given in the previous
paragraph.

In Sec. II.C we obtained the spherical entropy bound,
Eq. (2.22), from which the entropy can be determined
without any knowledge of the nature of the ‘‘fundamen-
tal system.’’ The bound,

S<
A

4
, (3.4)

makes reference only to the boundary area; it does not
care about the microscopic properties of the thermody-
namic system. Hence it applies to the fundamental sys-
tem in particular. A black hole that just fits inside the
area A has entropy

SBH5
A

4
, (3.5)

so the bound can clearly be saturated with the given
boundary conditions. Therefore the number of degrees
of freedom in a region bounded by a sphere of area A is
given by

N5
A

4
; (3.6)

the number of states is

N5eA/4. (3.7)

We assume that all physical systems are larger than
the Planck scale. Hence their volume will exceed their
surface area, in Planck units. (For a proton, the volume
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is larger than the area by a factor of 1020; for the Earth,
by 1041.) The result obtained from the spherical entropy
bound is thus at odds with the much larger number of
degrees of freedom estimated from local field theory.
Which of the two conclusions should we believe?

E. Why local field theory gives the wrong answer

We shall now argue that the field theory analysis over-
counted available degrees of freedom, because it failed
to include properly the effects of gravitation. We assume
D54 and neglect factors of order unity. (In D.4 the
gist of the discussion is unchanged though some of the
powers are modified.)

The restriction to a finite spatial region provides an
infrared cutoff, precluding the generation of entropy by
long-wavelength modes. Hence most of the entropy in
the field theory estimate comes from states of very high
energy. But a spherical surface cannot contain more
mass than a black hole of the same area. According to
the Schwarzschild solution, Eq. (2.10), the mass of a
black hole is given by its radius. Hence the mass M con-
tained within a sphere of radius R obeys

M&R . (3.8)

The ultraviolet cutoff imposed in Sec. III.C reflected
this, but only on the smallest scale (R51). It demanded
only that each Planck volume must not contain more
than one Planck mass. For larger regions this cutoff
would permit M;R3, in violation of Eq. (3.8). Hence
our cutoff was too lenient to prevent black-hole forma-
tion on larger scales.

For example, consider a sphere of radius R51 cm, or
1033 in Planck units. Suppose that the field energy in the
enclosed region saturated the naive cutoff in each of the
;1099 Planck cells. Then the mass within the sphere
would be ;1099. But the most massive object that can
be localized to the sphere is a black hole, of radius and
mass 1033.

Thus most of the states included by the field theory
estimate are too massive to be gravitationally stable.
Long before the quantum fields can be excited to such a
level, a black hole would form.9 If this black hole is still
to be contained within a specified sphere of area A , its
entropy may saturate but not exceed the spherical en-
tropy bound.

Because of gravity, not all degrees of freedom that
field theory apparently supplies can be used for generat-
ing entropy, or storing information. This invalidates the
field theory estimate, Eq. (3.3), and thus resolves the
apparent contradiction with the holographic result, Eq.
(3.6).

Note that the present argument does not provide in-
dependent quantitative confirmation that the maximal

9Thus black holes provide a natural covariant cutoff which
becomes stronger at larger distances. It differs greatly from the
fixed distance or fixed energy cutoffs usually considered in
quantum field theory.
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entropy is given by the area. This would require a de-
tailed understanding of the relation between entropy,
energy, and gravitational backreaction in a given system.

F. Unitarity and a holographic interpretation

Using the spherical entropy bound, we have con-
cluded that A/4 degrees of freedom are sufficient to fully
describe any stable region in asymptotically flat space
enclosed by a sphere of area A . In a field theory descrip-
tion, there are far more degrees of freedom. However,
we have argued that any attempt to excite more than
A/4 of these degrees of freedom is thwarted by gravita-
tional collapse. From the outside point of view, the most
entropic object that fits in the specified region is a black
hole of area A , with A/4 degrees of freedom.

A conservative interpretation of this result is that the
demand for gravitational stability merely imposes a
practical limitation for the information content of a spa-
tial region. If we are willing to pay the price of gravita-
tional collapse, we can excite more than A/4 degrees of
freedom—though we will have to jump into a black hole
to verify that we have succeeded. With this interpreta-
tion, all the degrees of freedom of field theory should be
retained. The region will be described by a quantum Hil-
bert space of dimension eV.

The following two considerations motivate a rejection
of this interpretation. Both arise from the point of view
that physics in asymptotically flat space can be consis-
tently described by a scattering matrix. The S matrix
provides amplitudes between initial and final asymptotic
states defined at infinity. Intermediate black holes may
form and evaporate, but as long as one is not interested
in the description of an observer falling into the black
hole, an S-matrix description should be satisfactory from
the point of view of an observer at infinity.

One consideration concerns economy. A fundamental
theory should not contain more than the necessary in-
gredients. If A/4 is the amount of data needed to de-
scribe a region completely, that should be the amount of
data used. This argument is suggestive; however, it could
be rejected as merely aesthetical and gratuitously radi-
cal.

A more compelling consideration is based on unitar-
ity. Quantum-mechanical evolution preserves informa-
tion; it takes a pure state to a pure state. But suppose a
region was described by a Hilbert space of dimension
eV, and suppose that region was converted to a black
hole. According to the Bekenstein entropy of a black
hole, the region is now described by a Hilbert space of
dimension eA/4. The number of states would have de-
creased, and it would be impossible to recover the initial
state from the final state. Thus unitarity would be vio-
lated. Hence the Hilbert space must have had dimension
eA/4 to start with.

The insistence on unitarity in the presence of black
holes led ’t Hooft (1993) and Susskind (1995b) to em-
brace a more radical, ‘‘holographic’’ interpretation of
Eq. (3.6).
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Holographic principle (preliminary formulation). A re-
gion with boundary of area A is fully described by no
more than A/4 degrees of freedom, or about 1 bit of in-
formation per Planck area. A fundamental theory, unlike
local field theory, should incorporate this counterintuitive
result.

G. Unitarity and black hole complementarity

The unitarity argument would be invalidated if it
turned out that unitarity is not preserved in the presence
of black holes. Indeed, Hawking (1976b) has claimed
that the evaporation of a black hole—its slow conver-
sion into a cloud of radiation—is not a unitary process.
In semiclassical calculations, Hawking radiation is found
to be exactly thermal, and all information about the in-
going state appears lost. Others (see Secs. I.D and IX.A)
argued, however, that unitarity must be restored in a
complete quantum gravity theory.

The question of unitarity of the S matrix arises not
only when a black hole forms, but again, and essentially
independently, when the black hole evaporates. The ho-
lographic principle is necessary for unitarity at the first
stage. But if unitarity were later violated during evapo-
ration, it would have to be abandoned, and the holo-
graphic principle would lose its basis.

It is not understood in detail how Hawking radiation
carries away information. Indeed, the assumption that it
does seems to lead to a paradox, which was pointed out
and resolved by Susskind, Thorlacius, and Uglum
(1993). When a black hole evaporates unitarily, the same
quantum information would seem to be present both
inside the black hole (as the original matter system that
collapsed) and outside, in the form of Hawking radia-
tion. The simultaneous presence of two copies appears
to violate the linearity of quantum mechanics, which for-
bids the ‘‘xeroxing’’ of information.

One can demonstrate, however, that no single ob-
server can see both copies of the information. Obviously
an infalling observer cannot escape the black hole to
record the outgoing radiation. But what prevents an out-
side observer from first obtaining, say, one bit of infor-
mation from the Hawking radiation, only to jump into
the black hole to collect a second copy?

Page (1993) has shown that more than half of a system
has to be observed to extract one bit of information.
This means that an outside observer has to linger for a
time compared to the evaporation time scale of the
black hole (M3 in D54) in order to gather a piece of
the ‘‘outside data,’’ before jumping into the black hole to
verify the presence of the same data inside.

However, the second copy can only be observed if it
has not already hit the singularity inside the black hole
by the time the observer crosses the horizon. One can
show that the energy required for a single photon to
evade the singularity for so long is exponential in the
square of the black hole mass. In other words, there is
far too little energy in the black hole to communicate
even one bit of information to an infalling observer in
possession of outside data.
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The apparent paradox is thus exposed as the artifact
of an operationally meaningless, global point of view.
There are two complementary descriptions of black-hole
formation, corresponding to an infalling and and an out-
side observer. Each point of view is self-consistent, but a
simultaneous description of both is neither logically con-
sistent nor practically testable. Black-hole complemen-
tarity thus assigns a new role to the observer in quantum
gravity, abandoning a global description of spacetimes
with horizons.

Further work on black-hole complementarity includes
’t Hooft (1991), Susskind (1993a, 1993b, 1994), Stephens,
’t Hooft, and Whiting (1994), Susskind and Thorlacius
(1994), and Susskind and Uglum (1994). Aspects real-
ized in string theory are also discussed by Lowe, Suss-
kind, and Uglum (1994) and Lowe et al. (1995); see Sec.
IX.A. For a review, see, e.g., Thorlacius (1995), Verlinde
(1995), Susskind and Uglum (1996), and Bigatti and Sus-
skind (2000).

Together, the holographic principle and black hole
complementarity form the conceptual core of a new
framework for black-hole formation and evaporation, in
which the unitarity of the S matrix is retained at the
expense of locality.10

In the intervening years, much positive evidence for
unitarity has accumulated. String theory has provided a
microscopic, unitary quantum description of some black
holes (Callan and Maldacena, 1996; Strominger and
Vafa, 1996; Sec. IX.A). Moreover, there is overwhelming
evidence that certain asymptotically anti–de Sitter
spacetimes, in which black holes can form and evapo-
rate, are fully described by a unitary conformal field
theory (Sec. IX.B).

Thus a strong case has been made that the formation
and evaporation of a black hole is a unitary process, at
least in asymptotically flat or AdS spacetimes.

H. Discussion

In the absence of a generally valid entropy bound, the
arguments for a holographic principle were incomplete,
and its meaning remained somewhat unclear. Neither
the spherical entropy bound, nor the unitarity argument
which motivates its elevation to a holographic principle,
are applicable in general spacetimes.

An S-matrix description is justified in a particle accel-
erator, but not in gravitational physics. In particular, re-
alistic universes do not permit an S-matrix description.
(For recent discussions see, e.g., Banks, 2000a; Fischler,
2000a, 2000b; Bousso, 2001a; Fischler et al., 2001; Heller-

10In this sense, the holographic principle, as it was originally
proposed, belongs in the first class discussed in Sec. I.A. How-
ever, one cannot obtain its modern form (Sec. VIII) from uni-
tarity. Hence we resort to the covariant entropy bound in this
review. Because the bound can be tested using conventional
theories, this also obviates the need to assume particular prop-
erties of quantum gravity in order to induce the holographic
principle.
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man, Kaloper, and Susskind, 2001.) Even in spacetimes
that do, observers do not all live at infinity. Then the
question is not so much whether unitarity holds, but how
it can be defined.

As black-hole complementarity itself insists, the laws
of physics must also describe the experience of an ob-
server who falls into a black hole. The spherical entropy
bound, however, need not apply inside black holes.
Moreover, it need not hold in many other important
cases, in view of the assumptions involved in its deriva-
tion. For example, it does not apply in cosmology, and it
cannot be used when spherical symmetry is lacking. In
fact, it will be seen in Sec. IV that the entropy in spatial
volumes can exceed the boundary area in all of these
cases.

Thus the holographic principle could not, at first, es-
tablish a general correspondence between areas and the
number of fundamental degrees of freedom. But how
can it point the way to quantum gravity, if it apparently
does not apply to many important solutions of the clas-
sical theory?

The AdS/CFT correspondence (Sec. IX.B), hologra-
phy’s most explicit manifestation to date, was a thing of
the future when the holographic principle was first pro-
posed. So was the covariant entropy bound (Secs.
V–VII), which exposes the apparent limitations noted
above as artifacts of the original, geometrically crude
formulation. The surprising universality of the covariant
bound significantly strengthens the case for a holo-
graphic principle (Sec. VIII).

As ’t Hooft and Susskind anticipated, the conceptual
revisions required by the unitarity of the S matrix have
proven too profound to be confined to the narrow con-
text in which they were first recognized. We now under-
stand that areas should generally be associated with de-
grees of freedom in adjacent spacetime regions.
Geometric constructs that precisely define this
relation—light sheets—have been identified (Fischler
and Susskind, 1998; Bousso, 1999a). The holographic
principle may have been an audacious concept to pro-
pose. In light of the intervening developments, it has
become a difficult one to reject.

IV. A SPACELIKE ENTROPY BOUND?

The heuristic derivation of the spherical entropy
bound rests on a large number of fairly strong assump-
tions. Aside from suitable asymptotic conditions, the
surface A has to be spherical, and the enclosed region
must be gravitationally stable so that it can be converted
to a black hole.

Let us explore whether the spherical entropy bound,
despite these apparent limitations, is a special case of a
more general entropy bound. We will present two con-
jectures for such a bound. In this section, we will discuss
the spacelike entropy bound, perhaps the most straight-
forward and intuitive generalization of Eq. (2.22). We
will present several counterexamples to this bound and
conclude that it does not have general validity. Turning
to a case of special interest, we will find that it is difficult
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to precisely define the range of validity of the spacelike
entropy bound even in simple cosmological spacetimes.

A. Formulation

One may attempt to extend the scope of Eq. (2.22)
simply by dropping the assumptions under which it was
derived (asymptotic structure, gravitational stability, and
spherical symmetry). Let us call the resulting conjecture
the spacelike entropy bound: The entropy contained in
any spatial region will not exceed the area of the region’s
boundary. More precisely, the spacelike entropy bound
is the following statement (Fig. 1): Let V be a compact
portion of a hypersurface of equal time in the spacetime
M.11 Let S(V) be the entropy of all matter systems in
V . Let B be the boundary of V and let A be the area of
the boundary of V . Then

S~V !<
A@B~V !#

4
. (4.1)

B. Inadequacies

The spacelike entropy bound is not a successful con-
jecture. Equation (4.1) is contradicted by a large variety
of counterexamples. We will begin by discussing two ex-
amples from cosmology. Then we will turn to the case of
a collapsing star. Finally, we will expose violations of Eq.
(4.1) even for all isolated, spherical, weakly gravitating
matter systems.

1. Closed spaces

It is hardly necessary to describe a closed universe in
detail to see that it will lead to a violation of the space-
like holographic principle. It suffices to assume that the
spacetime M contains a closed spacelike hypersurface V.
(For example, there are realistic cosmological solutions
in which V has the topology of a three-sphere.) We fur-

11Here V is used both to denote a spatial region and its vol-
ume. Note that we use more careful notation to distinguish a
surface (B) from its area (A).

FIG. 1. A hypersurface of equal time. The spacelike entropy
bound attempts to relate the entropy in a spatial region V to
the area of its boundary B . This is not successful.
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ther assume that V contains a matter system that does
not occupy all of V, and that this system has nonzero
entropy S0 .

Let us define the volume V to be the whole hypersur-
face, except for a small compact region Q outside the
matter system. Thus Smatter(V)5S0.0. The boundary B
of V coincides with the boundary of Q . Its area can be
made arbitrarily small by contracting Q to a point. Thus
one obtains Smatter(V).A@B(V)# , and the spacelike en-
tropy bound, Eq. (4.1), is violated.

2. The Universe

On large scales, the universe we inhabit is well ap-
proximated as a three-dimensional, flat, homogeneous,
and isotropic space, expanding in time. Let us pick one
homogeneous hypersurface of equal time, V. Its entropy
content can be characterized by an average ‘‘entropy
density’’ s, which is a positive constant on V. Flatness
implies that the geometry of V is Euclidean R3. Hence
the volume and area of a two-sphere grow in the usual
way with the radius:

V5
4p

3
R3, A@B~V !#54pR2. (4.2)

The entropy in the volume V is given by

Smatter~V !5sV5
s

6Ap
A3/2. (4.3)

Recall that we are working in Planck units. By taking
the radius of the sphere to be large enough,

R>
3

4s
, (4.4)

one finds a volume for which the spacelike entropy
bound, Eq. (4.1), is violated (Fischler and Susskind,
1998).

3. Collapsing star

Next, consider a spherical star with nonzero entropy
S0 . Suppose the star burns out and undergoes cata-
strophic gravitational collapse. From an outside observ-
er’s point of view, the star will form a black hole whose
surface area will be at least 4S0 , in accordance with the
generalized second law of thermodynamics.

However, we can follow the star as it falls through its
own horizon. From collapse solutions (see, e.g., Misner,
Thorne, and Wheeler, 1973), it is known that the star
will shrink to zero radius and end in a singularity. In
particular, its surface area becomes arbitrarily small: A
→0. By the second law of thermodynamics, the entropy
in the enclosed volume, i.e., the entropy of the star, must
still be at least S0 . Once more, the spacelike entropy
bound fails (Easther and Lowe, 1999).

As in the previous two examples, this failure does not
concern the spherical entropy bound, even though
spherical symmetry may hold. We are considering a re-
gime of dominant gravity, in violation of the assumptions
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of the spherical bound. In the interior of a black hole,
both the curvature and the time dependence of the met-
ric are large.

4. Weakly gravitating system

The final example is the most subtle. It shows that the
spacelike entropy bound can be violated by the very sys-
tems for which the spherical entropy bound is believed
to hold: spherical, weakly gravitating systems. This is
achieved merely by a nonstandard coordinate choice
that breaks spherical symmetry and measures a smaller
surface area.

Consider a weakly gravitating spherical thermody-
namic system in asymptotically flat space. Note that this
class includes most thermodynamic systems studied ex-
perimentally; if they are not spherical, one redefines
their boundary to be the circumscribing sphere.

A coordinate-independent property of the system is
its world volume W . For a stable system with the spatial
topology of a three-dimensional ball (D3), the topology
of W is given by R3D3 (Fig. 2.)

The volume of the ball of gas, at an instant of time, is
geometrically the intersection of the world volume W
with an equal time hypersurface t50:

V[Wù$t50%. (4.5)

The boundary of the volume V is a surface B given by

B5]Wù$t50%. (4.6)

FIG. 2. The world volume of a ball of gas, with one spatial
dimension suppressed. (a) A time slice in the rest frame of the
system is shown as a flat plane. It intersects the boundary of
system on a spherical surface, whose area exceeds the system’s
entropy. (b) In a different coordinate system, however, a time
slice intersects the boundary on Lorentz-contracted surfaces
whose area can be made arbitrarily small. Thus the spacelike
entropy bound is violated. (c) The light sheet of a spherical
surface is shown for later reference (Sec. V.C.1). Light sheets
of wiggly surfaces may not penetrate the entire system (Sec.
VII.C). The solid cylinder depicted here can also be used to
illustrate the conformal shape of anti–de Sitter space (Sec.
IX.B).
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The time coordinate t , however, is not uniquely de-
fined. One possible choice for t is the proper time in the
rest frame of the weakly gravitating system [Fig. 2(a)].
With this choice, V and B are metrically a ball and a
sphere, respectively. The area A(B) and the entropy
Smatter(V) were calculated in Sec. II.C.3 for the example
of a ball of gas. They were found to satisfy the spacelike
entropy bound, Eq. (4.1).

From the point of view of general relativity, there is
nothing special about this choice of time coordinate. The
laws of physics must be covariant, i.e., invariant under
general coordinate transformations. Thus Eq. (4.1) must
hold also for a volume V8 associated with a different
choice of time coordinate t8. In particular, one may
choose the t85const hypersurface to be rippled like a
fan. Then its intersection with ]W , B8, will be almost
null almost everywhere, like the zigzag line circling the
worldvolume in Fig. 2(b). The boundary area so defined
can be made arbitrarily small (Jacobson, 1999; Flanagan,
Marolf, and Wald, 2000; Smolin, 2001).12 This construc-
tion has shown that a spherical system with nonzero en-
tropy Smatter can be enclosed within a surface of area
A(B8),Smatter , and the spacelike entropy bound, Eq.
(4.1), is again violated.

How is this possible? After all, the spherical entropy
bound should hold for this system, because it can be
converted into a spherical black hole of the same area.
However, this argument implicitly assumed that the
boundary of a spherically symmetric system is a sphere
(and therefore agrees with the horizon area of the black
hole after the conversion). With the nonstandard time
coordinate t8, however, the boundary is not spherically
symmetric, and its area is much smaller than the final
black-hole area. (The latter is unaffected by slicing am-
biguities because a black-hole horizon is a null hypersur-
face.)

12The following construction exemplifies this for a spherical
system. Consider the spatial D22 sphere B defined by t50
and parametrized by standard spherical coordinates
(u1 ,. . . ,uD23 ,w). Divide B into 2n segments of longitude de-
fined by k/2n < w/2p,(k11)/2n with k50, . . . ,2n21. By
translation of t this segmentation carries over to ]W . For each
even (odd) segment, consider a Lorentz observer boosted with
velocity b in the positive (negative) w direction at the midpoint
of the segment on the equator of B . The time foliations of
these 2n observers, restricted respectively to each segment and
joined at the segment boundaries, define global equal time hy-
persurfaces. The slices can be smoothed at the segment bound-
aries and in the interior of W without affecting the conclusions.
After picking a particular slice, t850, a volume V8 and its
boundary B8 can be defined in analogy with Eqs. (4.5) and
(4.6). Since V8 contains the entire thermodynamic system, the
entropy is not affected by the new coordinate choice:
Smatter(V8)5Smatter(V). Because of Lorentz contraction, the
proper area A(B8) is smaller than A(B). Indeed, by taking
b→1 and n→` one can make A(B8) arbitrarily small:

A(B8) ——→
n→`

A(B)A12b2 ——→
b→1

0. An analogous construc-
tion for a square system takes a simpler form; see Sec. VII.C.
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C. Range of validity

In view of these problems, it is clear that the spacelike
entropy bound cannot be maintained as a fully general
conjecture holding for all volumes and areas in all space-
times. Still, the spherical entropy bound, Eq. (2.22),
clearly holds for many systems that do not satisfy its
assumptions, suggesting that those assumptions may be
unnecessarily restrictive.

For example, the Earth is part of a cosmological
spacetime that is not, as far as we know, asymptotically
flat. However, the Earth does not curve space signifi-
cantly. It is well separated from other matter systems.
On time and distance scales comparable to the Earth’s
diameter, the Universe is effectively static and flat. In
short, it is clear that the Earth will obey the spacelike
entropy bound.13

The same argument can be made for the Solar Sys-
tem, and even for the Milky Way. As we consider larger
regions, however, the effects of cosmological expansion
become more noticable, and the flat space approxima-
tion is less adequate. An important question is whether
a definite line can be drawn. In cosmology, is there a
largest region to which the spacelike entropy bound can
be reliably applied? If so, how is this region defined? Or
does the bound gradually become less accurate at larger
and larger scales?14

Let us consider homogeneous, isotropic universes,
known as Friedmann-Robertson-Walker (FRW) uni-
verses (Sec. VII.A). Fischler and Susskind (1998) aban-
doned the spacelike formulation altogether (Sec. V.A).
For adiabatic FRW universes, however, their proposal
implied that the spacelike entropy bound should hold
for spherical regions smaller than the particle horizon
(the future light cone of a point at the big bang).

Restriction to the particle horizon turns out to be suf-
ficient for the validity of the spacelike entropy bound in
simple flat and open models; thus the problem in Sec.
IV.B.2 is resolved. However, it does not prevent viola-
tions in closed or collapsing universes. The particle ho-
rizon area vanishes when the light cone reaches the far
end of a closed universe—this is a special case of the
problem discussed in Sec. IV.B.1. An analog of the prob-
lem of Sec. IV.B.3 can arise also. Generally, closed uni-
verses and collapsing regions exhibit the greatest diffi-
culties for the formulation of entropy bounds, and many
authors have given them special attention.

Davies (1988) and Brustein (2000) proposed a gener-
alized second law for cosmological spacetimes. They
suggested that contradictions in collapsing universes
may be resolved by augmenting the area law with addi-

13Pathological slicings such as the one in Sec. IV.B.4 must still
be avoided. Here we define the Earth’s surface area by the
natural slicing in its approximate Lorentz frame.

14The same questions can be asked of the Bekenstein bound,
Eq. (2.9). Indeed, Bekenstein (1989), who proposed its appli-
cation to the past light cone of an observer, was the first to
raise the issue of the validity of entropy bounds in cosmology.
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tional terms. Easther and Lowe (1999) argued that the
second law of thermodynamics implies a holographic en-
tropy bound, at least for flat and open universes, in re-
gions not exceeding the Hubble horizon.15 Similar con-
clusions were reached by Veneziano (1999b), Kaloper
and Linde (1999), and Brustein (2000).

Bak and Rey (2000a) argued that the relevant surface
is the apparent horizon, defined in Sec. VII.A.2. This is a
minor distinction for typical flat and open universes, but
it avoids some of the difficulties with closed universes.16

The arguments for bounds of this type return to the
Susskind process, the gedankenexperiment by which the
spherical entropy bound was derived (Sec. II.C.1). A
portion of the universe is converted to a black hole; the
second law of thermodynamics is applied. One then tries
to understand what might prevent this gedankenexper-
iment from being carried out.

For example, regions larger than the horizon are ex-
panding too rapidly to be converted to a black hole—
they cannot be ‘‘held together’’ (Veneziano, 1999b).
Also, if a system is already inside a black hole, it can no
longer be converted to one. Hence one would not expect
the bound to hold in collapsing regions, such as the in-
terior of black holes or a collapsing universe (Easther
and Lowe, 1999; Kaloper and Linde, 1999).

This reasoning does expose some of the limitations of
the spacelike entropy bound (namely, those that are il-
lustrated by the explicit counterexamples given in Secs.
IV.B.1 and IV.B.3). However, it fails to identify sufficient
conditions under which the bound is actually reliable.
Kaloper and Linde (1999) give counterexamples to any
statement of the type ‘‘The area of the particle (appar-
ent, Hubble) horizon always exceeds the entropy en-
closed in it’’ (Sec. VII.A.6).

In the following section we will introduce the covari-
ant entropy bound, which is formulated in terms of light
sheets. In Sec. VII we will present evidence that this
bound has universal validity. Starting from this general
bound, one can find sufficient conditions under which a
spacelike formulation is valid (Secs. VI.C.1 and
VII.A.7). However, the conditions themselves will in-
volve the light-sheet concept in an essential way. Not
only is the spacelike formulation less general than the
light-sheet formulation; the range of validity of the
former cannot be reliably identified without the latter.

We conclude that the spacelike entropy bound is vio-
lated by realistic matter systems. In cosmology, its range
of validity cannot be intrinsically defined.

V. THE COVARIANT ENTROPY BOUND

In this section we present a more successful generali-
zation of Eq. (2.22): the covariant entropy bound.

15The Hubble radius is defined to be a/(da/dt), where a is
the scale factor of the universe; see Eq. (7.1) below.

16Related discussions also appear in Dawid (1999) and Ka-
lyana Rama (1999). The continued debate of the difficulties of
the Fischler-Susskind proposal in closed universes (Wang and
Abdalla, 1999, 2000; Cruz and Lepe, 2001) is, in our view, ren-
dered nugatory by the covariant entropy bound.
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There are two significant formal differences between
the covariant bound and the spacelike bound, Eq. (4.1).
The spacelike formulation starts with a choice of spatial
volume V . The volume, in turn, defines a boundary B
5]V , whose area A is then claimed to be an upper
bound on S(V), the entropy in V . The covariant bound
proceeds in the opposite direction. A codimension 2 sur-
face B serves as the starting point for the construction of
a codimension 1 region L . This is the first formal differ-
ence. The second is that L is a null hypersurface, unlike
V which is spacelike.

More precisely, L is a light sheet. It is constructed by
following light rays that emanate from the surface B , as
long as they are not expanding. There are always at least
two suitable directions away from B (Fig. 3). When light
rays self-intersect, they start to expand. Hence light
sheets terminate at focal points.

The covariant entropy bound states that the entropy
on any light sheet of a surface B will not exceed the area
of B :

S@L~B !#<
A~B !

4
. (5.1)

We will give a more formal definition at the end of this
section.

We begin with some remarks on the conjectural na-
ture of the bound, and we mention related earlier pro-
posals. We will explain the geometric construction of
light sheets in detail, giving special attention to the con-
siderations that motivate the condition of nonexpansion
(u<0). We give a definition of entropy on light sheets,
and we discuss the extent to which the limitations of
classical general relativity are inherited by the covariant
entropy bound. We then summarize how the bound is
formulated, applied, and tested. Parts of this section fol-
low Bousso (1999a).

A. Motivation and background

There is no fundamental derivation of the covariant
entropy bound. We present the bound because there is
strong evidence that it holds universally in nature. The

FIG. 3. The four null hypersurfaces orthogonal to a spherical
surface B . The two cones F1 and F3 have negative expansion
and hence correspond to light sheets. The covariant entropy
bound states that the entropy on each light sheet will not ex-
ceed the area of B . The other two families of light rays, F2 and
F4 , generate the skirts drawn in thin outline. Their cross-
sectional area is increasing, so they are not light sheets. The
entropy of the skirts is not related to the area of B . Compare
this figure to Fig. 1.
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geometric construction is well defined and covariant.
The resulting entropy bound can be saturated, but no
example is known where it is exceeded.

In Sec. VI.B plausible relations between entropy and
energy are shown to be sufficient for the validity of the
bound. But these relations do not at present appear to
be universal or fundamental. In special situations, the
covariant entropy bound reduces to the spherical en-
tropy bound, which is arguably a consequence of black-
hole thermodynamics. But in general, the covariant en-
tropy bound cannot be inferred from black-hole physics;
quite conversely, the generalized second law of thermo-
dynamics may be more appropriately regarded as a con-
sequence of the covariant bound (Sec. VI.C.2).

The origin of the bound remains mysterious. As dis-
cussed in the Introduction, this puzzle forms the basis of
the holographic principle, which asserts that the covari-
ant entropy bound betrays the number of degrees of
freedom of quantum gravity (Sec. VIII).

Aside from its success, little motivation for a lightlike
formulation can be offered. Under the presupposition
that some general entropy bound waits to be discovered,
one is guided to light rays by circumstantial evidence.
This includes the failure of the spacelike entropy bound
(Sec. IV), the properties of the Raychaudhuri equation
(Sec. VI.A), and the loss of a dynamical dimension in
the light cone formulation of string theory (Sec. I.D).

Whatever the reasons, the idea that light rays might
be involved in relating a region to its surface area—or,
rather, relating a surface area to a lightlike ‘‘region’’—
arose in discussions of the holographic principle from
the beginning.

Susskind (1995b) suggested that the horizon of a black
hole can be mapped, via light rays, to a distant, flat ho-
lographic screen, citing the focussing theorem (Sec.
VI.A) to argue that the information thus projected
would satisfy the holographic bound. Corley and Jacob-
son (1996) pointed out that the occurrence of focal
points, or caustics, could invalidate this argument, but
showed that one caustic-free family of light rays existed
in Susskind’s example. They further noted that both past
and future directed families of light rays can be consid-
ered.

Fischler and Susskind (1998) recognized that a light-
like formulation is crucial in cosmological spacetimes,
because the spacelike entropy bound fails. They pro-
posed that any spherical surface B in FRW cosmologies
(see Sec. VII.A) be related to (a portion of) a light cone
that comes from the past and ends on B . This solved the
problem discussed in Sec. IV.B.2 for flat and open uni-
verses but not the problem of small areas in closed or
recollapsing universes (see Secs. IV.B.1 and IV.B.3).

The covariant entropy bound (Bousso, 1999a) can be
regarded as a refinement and generalization of the
Fischler-Susskind proposal. It can be applied in arbitrary
spacetimes, to any surface B regardless of shape, topol-
ogy, and location. It considers all four null directions
orthogonal to B without prejudice. It introduces a new
criterion, the contraction of light rays, both to select
among the possible lightlike directions and to determine
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how far the light rays may be followed. For any B , there
will be at least two ‘‘allowed’’ directions and hence two
light sheets, to each of which the bound applies individu-
ally.

B. Light-sheet kinematics

Compared to the previously discussed bounds, Eqs.
(2.22) and (4.1), the nontrivial ingredient of the covari-
ant entropy bound lies in the concept of light sheets.
Given a surface, a light sheet defines an adjacent space-
time region whose entropy should be considered. What
has changed is not the formula, S<A/4, but the pre-
scription that determines where to look for the entropy
S that enters that formula. Let us discuss in detail how
light sheets are constructed.

1. Orthogonal null hypersurfaces

A given surface B possesses precisely four orthogonal
null directions (Fig. 3). They are sometimes referred to
as future directed ingoing, future directed outgoing, past
directed ingoing, and past directed outgoing, though ‘‘in’’
and ‘‘out’’ are not always useful labels. Locally, these
directions can be represented by null hypersurfaces
F1 ,. . . ,F4 that border on B . The Fi are generated by the
past and the future directed light rays orthogonal to B ,
on either side of B .

For example, suppose that B is the wall of a (spheri-
cal) room in approximately flat space, as shown in Fig. 3,
at t50. (We must keep in mind that B denotes a surface
at some instant of time.) Then the future directed light
rays towards the center of the room generate a null hy-
persurface F1 , which looks like a light cone. A physical
way of describing F1 is to imagine that the wall is lined
with light bulbs that all flash up at t50. As the light rays
travel towards the center of the room they generate F1 .

Similarly, one can line the outside of the wall with
light bulbs. Future directed light rays going to the out-
side will generate a second null hypersurface F2 . Finally,
one can also send light rays towards the past. (We might
prefer to think of these as arriving from the past, i.e., a
light bulb in the center of the room flashed at an appro-
priate time for its rays to reach the wall at t50.) In any
case, the past directed light rays orthogonal to B will
generate two more null hypersurfaces F3 and F4 .

In Fig. 3, the two ingoing cones F1 and F3 , and the
two outgoing ‘‘skirts,’’ F2 and F4 , are easily seen to be
null and orthogonal to B . However, the existence of
four null hypersurfaces bordering on B is guaranteed in
Lorentzian geometry independently of the shape and lo-
cation of B . They are always uniquely generated by the
four sets of surface-orthogonal light rays.

At least two of the four null hypersurfaces F1 ,. . . ,F4
will be selected as light sheets, according to the condi-
tion of nonpositive expansion discussed next.

2. Light-sheet selection

Let us return to the example where B is the wall of a
spherical room. If gravity is weak, one would expect that
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the area A of B will be a bound on the entropy in the
room (Sec. II.C.1). Clearly, A cannot be related in any
way to the entropy in the infinite region outside the
room; that entropy could be arbitrarily large. It appears
that we should select F1 or F3 as light sheets in this
example, because they correspond to our intuitive no-
tion of ‘‘inside.’’

The question is how to generalize this notion. It is
obvious that one should compare an area only to en-
tropy that is in some sense inside the area. However,
consider a closed universe, in which space is a three-
sphere. As Sec. IV.B.1 has illustrated, we need a crite-
rion that prevents us from considering the large part of
the three-sphere to be inside a small two-sphere B .

What we seek is a local condition, which will select
whether some direction away from B is an inside direc-
tion. This condition should reduce to the intuitive, glo-
bal notion—inside is where infinity is not—where appli-
cable. An analogy in Euclidean space leads to a useful
criterion, the contraction condition.

Consider a convex closed surface B of codimension
one and area A in flat Euclidean space, as shown in Fig.
4(a). Now construct all the geodesics intersecting B or-
thogonally. Follow each geodesic an infinitesimal proper
distance dl to one of the two sides of B . The set of
points thus obtained will span a similarly shaped surface
of area A8. If A8,A , let us call the chosen direction the
inside. If A8.A , we have gone ‘‘outside.’’

Unlike the standard notion of inside, the contraction
criterion does not depend on any knowledge of the glo-
bal properties of B and of the space it is embedded in. It
can be applied independently to arbitrarily small pieces
of the surface. One can always construct orthogonal geo-
desics and ask in which direction they contract. It is local
also in the orthogonal direction; the procedure can be
repeated after each infinitesimal step.

Let us return to Lorentzian signature, and consider a
codimension 2 spatial surface B . The contraction crite-
rion cannot be used to find a spatial region inside B .
There are infinitely many different spacelike hypersur-
faces S containing B . Which side has contracting area
could be influenced by the arbitrary choice of S.

However, the four null directions F1 ,. . . ,F4 away from
B are uniquely defined. It is straightforward to adapt the

FIG. 4. Local definition of ‘‘inside.’’ (a) Ingoing rays perpen-
dicular to a convex surface in a Euclidean geometry span de-
creasing area. This motivates the following local definition. (b)
Inside is the direction in which the cross-sectional area de-
creases (A8<A). This criterion can be applied to light rays
orthogonal to any surface. After light rays locally intersect,
they begin to expand. Hence light sheets must be terminated at
caustics.
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contraction criterion to this case. Displacement by an
infinitesimal spatial distance is meaningless for light
rays, because two points on the same light ray always
have distance zero. Rather, an appropriate analog to
length is the affine parameter l along the light ray (see
the Appendix). Pick a particular direction Fi . Follow
the orthogonal null geodesics away from B for an infini-
tesimal affine distance dl . The points thus constructed
span a new surface of area A8. If A8<A , then the di-
rection Fi will be considered an inside direction, or light-
sheet direction.

By repeating this procedure for i51,.. . ,4, one finds all
null directions that point to the inside of B in this tech-
nical sense. Because the light rays generating opposite
pairs of null directions (e.g., F1 and F4) are continua-
tions of each other, it is clear that at least one member of
each pair will be considered inside. If the light rays are
locally neither expanding nor contracting, both members
of a pair will be called inside. Hence there will always be
at least two light-sheet directions. In degenerate cases,
there may be three or even four.

Mathematically, the contraction condition can be for-
mulated thus:

u~l!<0 for l5l0 , (5.2)

where l is an affine parameter for the light rays gener-
ating Fi and we assume that l increases in the direction
away from B . l0 is the value of l on B . The expansion
u of a family of light rays is discussed in detail in Sec.
VI.A. It can be understood as follows. Consider a bunch
of infinitesimally neighboring light rays spanning a sur-
face area A. Then

u~l![
dA/dl

A . (5.3)

As in the Euclidean analogy, this condition can be
applied to each infinitesimal surface element separately
and so is local. Crucially, it applies to open surfaces as
well as to closed ones. This represents a significant ad-
vance in the generality of the formulation.

For oddly shaped surfaces or very dynamical space-
times, it is possible for the expansion to change sign
along some Fi . For example, this will happen for
smooth concave surfaces in flat space. Because of the
locality of the contraction criterion, one may split such
surfaces into pieces with constant sign, and continue the
analysis for each piece separately. This permits us to as-
sume henceforth without loss of generality that the sur-
faces we consider have continuous light-sheet directions.

For the simple case of the spherical surface in
Minkowski space, the condition (5.3) reproduces the in-
tuitive answer. The area is decreasing in the F1 and F3
directions—the past and future directed light rays going
to the center of the sphere. We will call any such surface,
with two light-sheet directions on the same spatial side,
normal.
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In highly dynamical geometries, the expansion or con-
traction of space can be the more important effect on
the expansion of light rays. Then it will not matter which
spatial side they are directed at. For example, in an ex-
panding universe, areas get small towards the past, be-
cause the big bang is approached. A sufficiently large
sphere will have two past directed light sheets, but no
future directed ones. A surface of this type is called an-
titrapped. Similarly, in a collapsing universe or inside a
black hole, space can shrink so rapidly that both light
sheets are future directed. Surfaces with this property
are trapped.

In a Penrose diagram (Appendix), a sphere is repre-
sented by a point. The four orthogonal null directions
correspond to the four legs of an ‘‘X’’ centered on this
point. Light-sheet directions can be indicated by draw-
ing only the corresponding legs (Bousso, 1999a). Nor-
mal, trapped, and antitrapped surfaces are thus denoted
by wedges of different orientation [see Figs. 5, 7(a), and
8].

3. Light-sheet termination

From now on we will consider only inside directions,
Fj , where j runs over two or more elements of $1,2,3,4%.
For each Fj , a light sheet is generated by the corre-
sponding family of light rays. In the example of the
spherical surface in flat space, the light sheets are cones
bounded by B , as shown in Fig. 3.

Strictly speaking, however, there was no particular
reason to stop at the tip of the cone, where all light rays
intersect. On the other hand, it would clearly be disas-
trous to follow the light rays arbitrarily far. They would
generate another cone which would grow indefinitely,
containing unbounded entropy. One must enforce, by
some condition, that the light sheet is terminated before
this happens. In all but the most special cases, the light
rays generating a light sheet will not intersect in a single
point, so the condition must be more general.

FIG. 5. Penrose diagram for an expanding universe (a flat or
open FRW universe, see Sec. VII.A). The thin curve is a slice
of constant time. Each point in the interior of the diagram
represents a sphere. The wedges indicate light-sheet directions.
The apparent horizon (shown here for equation of state p
5r) divides the normal spheres near the origin from the anti-
trapped spheres near the big bang. The light sheets of any
sphere B can be represented by inspecting the wedge that
characterizes the local domain and drawing lines away from
the point representing B in the direction of the wedge’s legs.
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A suitable condition is to demand that the expansion
be nonpositive everywhere on the light sheet, and not
only near B :

u~l!<0, (5.4)

for all values of the affine parameter on the light sheet.
By construction (Sec. V.B.2) the expansion is initially

negative or zero on any light sheet. Raychaudhuri’s
equation guarantees that the expansion can only de-
crease. (This will be shown explicitly in Sec. VI.A.) The
only way u can become positive is if light rays intersect,
for example, at the tip of the light cone. However, it is
not necessary for all light rays to intersect in the same
point. By Eq. (5.3), the expansion becomes positive at
any caustic, that is, any place where a light ray crosses an
infinitesimally neighboring light ray in the light sheet
[Fig. 4(b)].

Thus Eq. (5.4) operates independently of any symme-
tries in the setup. It implies that light sheets end at
caustics.17 In general, each light ray in a light sheet will
have a different caustic point, and the resulting caustic
surfaces can be very complicated. The case of a light
cone is special in that all light rays share the same caus-
tic point at the tip. An ellipsoid in flat space will have a
self-intersecting light sheet that may contain the same
object more than once (at two different times). Gravita-
tional backreaction of matter will make the caustic sur-
faces even more involved.

Nonlocal self-intersections of light rays do not lead to
violations of the contraction condition, Eq. (5.4). That is,
the light sheet must be terminated only where a light ray
intersects its neighbor, but not necessarily when it inter-
sects another light ray coming from a different portion
of the surface B . One can consider modifications of the
light-sheet definition where any self-intersection termi-
nates the light sheet (Tavakol and Ellis, 1999; Flanagan,
Marolf, and Wald, 2000). Since this modification can
only make light sheets shorter, it can weaken the result-
ing bound. However, in most applications, the resulting
light sheets are easier to calculate (as Tavakol and Ellis,
in particular, have stressed) and still give useful
bounds.18

17If the null energy condition (Appendix) is violated, the con-
dition (5.4) can also terminate light sheets at noncaustic points.

18Low (2002) has argued that the future directed light sheets
in cosmological spacetimes can be made arbitrarily extensive
by choosing a closed surface containing sufficiently flat pieces.
Low concludes that the covariant entropy bound is violated in
standard cosmological solutions, unless it is modified to termi-
nate light sheets also at nonlocal self-intersections. This rea-
soning overlooks that any surface element with local curvature
radius larger than the apparent horizon possesses only past
directed light sheets (Bousso, 1999a; see Sec. VII.A.2). Inde-
pendently of the particular flaw in Low’s argument, the conclu-
sion is also directly invalidated by the proof of Flanagan, Ma-
rolf, and Wald (2000). (This is just as well, as the modification
advocated by Low would not have solved the problem; nonlo-
cal intersections can be suppressed by considering open sur-
faces.)
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The condition, Eq. (5.4), subsumes Eq. (5.2), which
applied only to the initial value of l. It is satisfying that
both the direction and the extent of light sheets are de-
termined by the same simple condition, Eq. (5.4).

C. Defining entropy

1. Entropy on a fixed light sheet

The geometric construction of light sheets is well de-
fined. But how is ‘‘the entropy on a light sheet,’’ Smatter ,
determined? Let us begin with an example where the
definition of Smatter is obvious. Suppose that B is a
sphere around an isolated, weakly gravitating thermody-
namic system. Given certain macroscopic constraints,
for example, an energy or energy range, pressure, vol-
ume, etc., the entropy of the system can be computed
either thermodynamically, or statistically as the loga-
rithm of the number of accessible quantum states.

To good approximation, the two light sheets of B are
a past and a future light cone. Let us consider the future
directed light sheet. The cone contains the matter sys-
tem completely [Fig. 2(c)], in the same sense in which a
t5const surface contains the system completely [Fig.
2(a)]. A light sheet is just a different way of taking a
snapshot of a matter system—in light cone time. (In fact,
this comes much closer to how the system is actually
observed in practice.) Hence the entropy on the light
sheet is simply given by the entropy of the matter sys-
tem.

A more problematic case arises when the light sheet
intersects only a portion of an isolated matter system, or
if there simply are no isolated systems in the spacetime.
A reasonable (statistical) working definition was given
by Flanagan, Marolf, and Wald (2000), who demanded
that long-wavelength modes which are not fully con-
tained on the light sheet should not be included in the
entropy.

In cosmological spacetimes, entropy is well approxi-
mated as a continuous fluid. In this case, Smatter is the
integral of the entropy density over the light sheet (Secs.
VI.B and VII.A).

One would expect that the gravitational field itself can
encode information perturbatively, in the form of gravi-
tational waves. Because it is difficult to separate such
structure from a ‘‘background metric,’’ we will not dis-
cuss this case here.19

We have formulated the covariant entropy bound for
matter systems in classical geometry and have not made
provisions for the inclusion of the semiclassical Beken-
stein entropy of black holes. There is evidence, however,
that the area of event horizons can be included in
Smatter . However, in this case the light sheet must not be

19Flanagan, Marolf, and Wald (2000) pointed out that pertur-
bative gravitational entropy affects the light-sheet by produc-
ing shear, which in turn accelerates the focussing of light rays
(Sec. VI). This suggests that the inclusion of such entropy will
not lead to violations of the bound. Related research is cur-
rently pursued by Bhattacharya, Chamblin, and Erlich (2002).
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continued to the interior of the black hole. The Beken-
stein entropy of the black hole already contains the in-
formation about objects that fell inside; it must not be
counted twice (Sec. III.G).

2. Entropy on an arbitrary light sheet

So far we have treated the light sheet of B as a fixed
null hypersurface, e.g., in the example of an isolated
thermodynamic system. Different microstates of the sys-
tem, however, correspond to different distributions of
energy. This is a small effect on average, but it does
imply that the geometry of light sheets will vary with the
state of the system in principle.

In many examples, such as cosmological spacetimes,
one can calculate light sheets in a large-scale, averaged
geometry. In this approximation, one can estimate Smatter
while holding the light-sheet geometry fixed.

In general, however, one can at best hold the surface
B fixed,20 but not the light sheet of B . We must consider
Smatter to be the entropy on any light sheet of B . Section
VII.B.3, for example, discusses the collapse of a shell
onto an apparent black-hole horizon. In this example, a
part of the spacetime metric is known, including B and
the initial expansions u i of its orthogonal light rays.
However, the geometry to the future of B is not pre-
sumed, and different configurations contributing to the
entropy lead to macroscopically different future light
sheets.

In a static, asymptotically flat space the specification
of a spherical surface reduces to the specification of an
energy range. The enclosed energy must lie between
zero and the mass of a black hole that fills in the sphere.
Unlike most other thermodynamic quantities such as en-
ergy, however, the area of surfaces is well defined in
arbitrary geometries.

In the most general case, one may specify only a sur-
face B but no information about the embedding of B in
any spacetime. One is interested in the entropy of the
‘‘fundamental system’’ (Sec. III.B), i.e., the number of
quantum states associated with the light sheets of B in
any geometry containing B . This leaves too much free-
dom for Eq. (5.1) to be checked explicitly. The covariant
entropy bound essentially becomes the full statement of
the holographic principle (Sec. VIII) in this limit.

D. Limitations

Here we discuss how the covariant entropy bound is
tied to a regime of approximately classical spacetimes
with reasonable matter content. The discussion of the
‘‘species problem’’ (Sec. II.C.4) carries over without sig-
nificant changes and will not be repeated.

20We shall take this to mean that the internal metric of the
surface B is held fixed. It may be possible to relax this further,
for example, by specifying only the area A along with suitable
additional restrictions.
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1. Energy conditions

In Sec. II.C.3 we showed that the entropy of a ball of
radiation is bounded by A3/4, and hence is less than its
surface area. For larger values of the entropy, the mass
of the ball would exceed its radius, so it would collapse
to form a black hole. But what if matter of negative
energy was added to the system? This would offset the
gravitational backreaction of the gas without decreasing
its entropy. The entropy in any region could be in-
creased at will while keeping the geometry flat.

This does not automatically mean that the holo-
graphic principle (and indeed, the generalized second
law of thermodynamics) is wrong. A way around the
problem might be to show that instabilities develop that
will invalidate the setup we have just suggested. But
more to the point, the holographic principle is expected
to be a property of the real world. And to a good ap-
proximation, matter with negative mass does not exist in
the real world.21

Einstein’s general relativity does not restrict matter
content, but tells us only how matter affects the shape of
spacetime. Yet, of all the types of matter that could be
added to a Lagrangian, few actually occur in nature.
Many would have pathological properties or cata-
strophic implications, such as the instability of flat space.

In a unified theory underlying gravity and all other
forces, one would expect that the matter content is dic-
tated by the theory. String theory, for example, comes
packaged with a particular field content in its perturba-
tive limits. However, there are many physically interest-
ing spacetimes that have yet to be described in string
theory (Sec. IX.A), so it would be premature to consider
only fields arising in this framework.

One would like to test the covariant entropy bound in
a broad class of systems, but we are not interested
whether the bound holds for matter that is entirely un-
physical. It is reasonable to exclude matter whose en-
ergy density appears negative to a light ray, or which
permits the superluminal transport of energy.22 In other
words, let us demand the null energy condition as well as
the causal energy condition. Both conditions are spelled
out in the Appendix, Eqs. (A8) and (A9). They are be-
lieved to be satisfied classically by all physically reason-

21We discuss quantum effects and a negative cosmological
constant below.

22This demand applies to every matter component separately
(Bousso, 1999a). This differs from the role of energy condi-
tions in the singularity theorems (Hawking and Ellis, 1973),
whose proofs are sensitive only to the total stress tensor. The
above example shows that the total stress tensor can be in-
nocuous when components of negative and positive mass are
superimposed. An interesting question is whether instabilities
lead to a separation of components, and thus to an eventual
violation of energy conditions on the total stress tensor. We
would like to thank J. Bekenstein and A. Mayo for raising this
question.
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able forms of matter.23

Negative energy density is generally disallowed by
these conditions, with the exception of a negative cos-
mological constant. This is desirable, because a negative
cosmological constant does not lead to instabilities or
other pathologies. It may well occur in the universe,
though it is not currently favored by observation. Unlike
other forms of negative energy, a negative cosmological
constant cannot be used to cancel the gravitational field
of ordinary thermodynamic systems, so it should not
lead to difficulties with the holographic principle.

Quantum effects can violate the above energy condi-
tions. Casimir energy, for example, can be negative.
However, the relation between the magnitude, size, and
duration of such violations is severely constrained (see,
e.g., Ford and Roman, 1995, 1997, 1999; Flanagan, 1997;
Fewster and Eveson, 1998; Fewster, 2000; further refer-
ences are found in Borde, Ford, and Roman, 2001).
Even where they occur, their gravitational effects may
be overcompensated by those of ordinary matter. It has
not been possible so far to construct a counterexample
to the covariant entropy bound using quantum effects in
ordinary matter systems.

2. Quantum fluctuations

What about quantum effects in the geometry itself?
The holographic principle refers to geometric concepts
such as area, and orthogonal light rays. As such, it can
be applied only where spacetime is approximately clas-
sical. This contradicts in no way its deep relation to
quantum gravity, as inferred from the quantum aspects
of black holes (Sec. II) and demonstrated by the AdS/
CFT correspondence (Sec. IX.B).

In the real world, \ is fixed, so the regime of classical
geometry is generically found in the limit of low curva-
ture and large distances compared to the Planck scale,
Eq. (1.2). Setting \ to 0 would not only be unphysical; as
Lowe (1999) points out, it would render the holographic
bound, Akc3/4G\ , trivial.

Lowe (1999) has argued that a naive application of the
bound encounters difficulties when effects of quantum
gravity become important. With sufficient fine tuning,
one can arrange for an evaporating black hole to remain
in equilibrium with ingoing radiation for an arbitarily
long time. Consider the future directed outgoing light
sheet of an area on the black-hole horizon. Lowe claims
that this light sheet will have exactly vanishing expan-
sion and will continue to generate the horizon in the
future, as it would in a classical spacetime. This would
allow an arbitrarily large amount of ingoing radiation
entropy to pass through the light sheet, in violation of
the covariant entropy bound.

23The dominant energy condition has sometimes been de-
manded instead of Eqs. (A8) and (A9). It is a stronger condi-
tion that has the disadvantage of excluding a negative cosmo-
logical constant (Bousso, 1999a). One can also ask whether,
in a reversal of the logical direction, entropy bounds can be
used to infer energy conditions that characterize physically ac-
ceptable matter (Brustein, Foffa, and Mayo, 2002).
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If a light sheet lingers in a region that cannot be de-
scribed by classical general relativity without violating
energy conditions for portions of the matter, then it is
outside the scope of the present formulation of the co-
variant entropy bound. The study of light sheets of this
type may guide the exploration of semiclassical generali-
zations of the covariant entropy bound. For example, it
may be appropriate to associate the outgoing Hawking
radiation with a negative entropy flux on this light sheet
(Flanagan, Marolf, and Wald, 2000).24

However, Bousso (2000a) argued that a violation of
the covariant entropy bound has not been demonstrated
in Lowe’s example. In any realistic situation small fluc-
tuations in the energy density of radiation will occur.
They are indeed inevitable if information is to be trans-
ported through the light sheet. Thus the expansion along
the light sheet will fluctuate. If it becomes positive, the
light sheet must be terminated. If it fluctuates but never
becomes positive, then it will be negative on average. In
that case an averaged version of the focussing theorem
implies that the light rays will focus within a finite affine
parameter.

The focussing is enhanced by the 2u2/2 term in Ray-
chaudhuri’s equation (6.8), which contributes to focus-
sing whenever u fluctuates about zero. Because of these
effects, the light sheets considered by Lowe (1999) will
not remain on the horizon, but will collapse into the
black hole. New families of light rays continually move
inside to generate the event horizon. It is possible to
transport unlimited entropy through the black-hole ho-
rizon in this case, but not through any particular light
sheet.

E. Summary

In any D-dimensional Lorentzian spacetime M , the
covariant entropy bound can be stated as follows: Let
A(B) be the area of an arbitrary D22-dimensional spa-
tial surface B (which need not be closed). A D21 dimen-
sional hypersurface L is called a light sheet of B if L is
generated by light rays which begin at B, extend orthogo-
nally away from B, and have nonpositive expansion,

u<0, (5.5)

everywhere on L. Let S be the entropy on any light sheet
of B. Then

S<
A~B !

4
. (5.6)

Let us restate the covariant entropy bound one more
time, in a constructive form most suitable for applying
and testing the bound, as we will in Sec. VII.

(1) Pick any D22-dimensional spatial surface B , and

24More radical extensions have been proposed by Markopou-
lou and Smolin (1999) and by Smolin (2001).
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determine its area A(B). There will be four families
of light rays projecting orthogonally away from B :
F1¯F4 .

(2) Usually additional information is available, such as
the macroscopic spacetime metric everywhere or in
a neighborhood of B .25 Then the expansion u of the
orthogonal light rays can be calculated for each fam-
ily. Of the four families, at least two will not expand
(u<0). Determine which.

(3) Pick one of the nonexpanding families Fj . Follow
each light ray no further than to a caustic, a place
where it intersects with neighboring light rays. The
light rays form a D21-dimensional null hypersur-
face, a light sheet L(B).

(4) Determine the entropy S@L(B)# of matter on the
light sheet L , as described in Sec. V.C.1.26

(5) The quantities S@L(B)# and A(B) can then be
compared. The covariant entropy bound states that
the entropy on the light sheet will not exceed a quar-
ter of the area: S@L(B)#< A(B)/4. This must hold
for any surface B , and it applies to each nonexpand-
ing null direction Fj separately.

The first three steps can be carried out most system-
atically by using geometric tools which will be intro-
duced at the beginning of Sec. VI.A. In simple geom-
etries, however, they often require little more than
inspection of the metric.

The light-sheet construction is well defined in the limit
where geometry can be described classically. It is conjec-
tured to be valid for all physically realistic matter sys-
tems. In the absence of a fundamental theory with defi-
nite matter content, the energy conditions given in Sec.
V.D.1 approximately delineate the boundaries of an
enormous arena of spacetimes and matter systems, in
which the covariant entropy bound implies falsifiable,
highly nontrivial limitations on information content.

In particular, the bound is predictive and can be tested
by observation, in the sense that the entropy and geom-
etry of real matter systems can be determined (or, as in
the case of large cosmological regions, at least esti-
mated) from experimental measurements.

VI. THE DYNAMICS OF LIGHT-SHEETS

Entropy requires energy. In Sec. III.E, this notion
gave us some insight into a mechanism underlying the
spherical entropy bound. Let us briefly repeat the idea.
When one tries to excite too many degrees of freedom

25The case where no such information is presumed seems too
general to be practically testable; see the end of Sec. V.C.2.

26In particular, one may wish to include in S quantum states
which do not all give rise to the same macroscopic spacetime
geometry, keeping fixed only the intrinsic geometry of B . In
this case, step (3) has to be repeated for each state or class of
states with different geometry. Then L(B) denotes the collec-
tion of all the different light sheets emanating in the jth direc-
tion.
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in a spherical region of fixed boundary area A , the re-
gion becomes very massive and eventually forms a black
hole of area no larger than A . Because of the second law
of thermodynamics, this collapse must set in before the
entropy exceeds A/4. Of course, it can be difficult to
verify this quantitatively for a specific system; one would
have to know its detailed properties and gravitational
backreaction.

In this section, we identify a related mechanism un-
derlying the covariant entropy bound. Entropy costs en-
ergy, energy focuses light, focussing leads to the forma-
tion of caustics, and caustics prevent light sheets from
going on forever. As before, the critical link in this ar-
gument is the relation between entropy and energy.
Quantitatively, it depends on the details of specific mat-
ter systems and cannot be calculated in general. Indeed,
this is one of the puzzles that make the generality of the
covariant entropy bound so striking.

In many situations, however, entropy can be approxi-
mated by a local flow of entropy density. With plausible
assumptions on the relation between the entropy and
energy density, which we review, Flanagan, Marolf, and
Wald (2000) proved the covariant entropy bound.

We also present the spacelike projection theorem,
which identifies conditions under which the covariant
bound implies a spacelike bound (Bousso, 1999a).

A. Raychaudhuri’s equation and the focussing theorem

A family of light rays, such as the ones generating a
light sheet, is locally characterized by its expansion,
shear, and twist, which are defined as follows.

Let B be a surface of D22 spatial dimensions, param-
etrized by coordinates xa, a51,.. . ,D22. Pick one of the
four families of light rays F1 ,. . . ,F4 that emanate from B
into the past and future directions to either side of B
(Fig. 3). Each light ray satisfies the equation for geode-
sics (see the Appendix):

dka

dl
1Gbc

a kbkc50, (6.1)

where l is an affine parameter. The tangent vector ka is
defined by

ka5
dxa

dl
(6.2)

and satisfies the null condition kaka50. The light rays
generate a null hypersurface L parametrized by coordi-
nates (xa,l). This can be rephrased as follows. In a
neighborhood of B , each point on L is unambiguously
defined by the light ray on which it lies (xa) and the
affine distance from B(l).

Let la be the null vector field on B that is orthogonal
to B and satisfies kala522. (This means that la has the
same time direction as ka and is tangent to the orthogo-
nal light rays constructed on the other side of B .) The
induced D22-dimensional metric on the surface B is
given by

hab5gab1
1
2

~kalb1kbla!. (6.3)
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In a similar manner, an induced metric can be found for
all other spatial cross sections of L .

The null extrinsic curvature,

Bab5ha
chb

d¹ckd , (6.4)

contains information about the expansion, u, shear, sab ,
and twist, vab , of the family of light rays L :

u5habBab , (6.5)

sab5
1
2

~Bab1Bba!2
1

D22
uhab , (6.6)

vab5
1
2

~Bab2Bba!. (6.7)

Note that all of these quantities are functions of (xa,l).
At this point, one can inspect the initial values of u on

B . Where they are positive, one must discard L and
choose a different null direction for the construction of a
light sheet.

The Raychaudhuri equation describes the change of
the expansion along the light rays:

du

dl
52

1
D22

u22sabsab1vabvab28pTabkakb.

(6.8)

For a surface-orthogonal family of light rays, such as L ,
the twist vanishes (Wald, 1984). The final term,
2Tabkakb, will be nonpositive if the null energy condi-
tion is satisfied by matter, which we assume (Sec. V.D.1).
Then the right-hand side of the Raychaudhuri equation
is manifestly nonpositive. It follows that the expansion
never increases.

By solving the differential inequality

du

dl
<2

1
D22

u2, (6.9)

one arrives at the focussing theorem:27 If the expansion
of a family of light rays takes the negative value u1 at
any point l1 , then u will diverge to 2` at some affine
parameter l2<l11 (D22)/uu1u.

The divergence of u indicates that the cross-sectional
area is locally vanishing, as can be seen from Eq. (5.3).
As discussed in Sec. V.B.3, this is a caustic point, at
which infinitesimally neighboring light rays intersect.

By construction, the expansion on light sheets is zero
or negative. If it is zero, the focussing theorem does not
apply. For example, suppose that B is a portion of the
xy plane in Minkowski space: z5t50, x21y2<1. Then
each light sheet is infinitely large, with everywhere van-
ishing expansion: z56t , x21y2<1. However, this is
correct only if the spacetime is exactly Minkowski, with
no matter or gravitational waves. In this case the light

27In the context of the AdS/CFT correspondence (Sec. IX.B),
the role of focussing theorem in the construction of light sheets
has been related to the c theorem (Balasubramanian, Gimon,
and Minic, 2000; Sahakian, 2000a, 2000b).
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sheets contain no entropy in any case, so their infinite
size leads to no difficulties with the covariant entropy
bound.

If a light sheet encounters any matter (or more pre-
cisely, if Tabkakb.0 anywhere on the light sheet), then
the light rays will be focused according to Eq. (6.8).
Then the focussing theorem applies, and it follows that
the light rays will eventually form caustics, forcing the
light sheet to end. This will happen even if no further
energy is encountered by the light rays, though it will
occur sooner if there is additional matter.

If we accept that entropy requires energy, we thus see
at a qualitative level that entropy causes light rays to
focus. Thus the presence of entropy hastens the termi-
nation of light sheets. Quantitatively, it appears to do so
at a sufficient rate to protect the covariant entropy
bound, but slowly enough to allow saturation of the
bound. This is seen in many examples, including those
studied in Sec. VII. The reason for this quantitative be-
havior is not yet fundamentally understood. (This just
reformulates, in terms of light-sheet dynamics, the cen-
tral puzzle laid out in the Introduction and reiterated in
Sec. VIII.)

B. Sufficient conditions for the covariant entropy bound

Flanagan, Marolf, and Wald (2000; henceforth in this
section, FMW) showed that the covariant entropy
bound is always satisfied if certain assumptions about
the relation between entropy density and energy density
are made. In fact, they proved the bound under either
one of two sets of assumptions. We will state these as-
sumptions and discuss their plausibility and physical sig-
nificance. We will not reproduce the two proofs here.

The first set of conditions are no easier to verify, in
any given spacetime, than the covariant entropy bound
itself. Light sheets have to be constructed, their end
points found, and entropy can be defined only by an
analysis of modes. The first set of conditions should
therefore be regarded as an interesting reformulation of
the covariant entropy bound, which may shed some light
on its relation to the Bekenstein bound, Eq. (2.9).

The second set of conditions involves relations be-
tween locally defined energy and entropy densities only.
As long as the entropy content of a spacetime admits a
fluid approximation, one can easily check whether these
conditions hold. In such spacetimes, the second FMW
theorem obviates the need to construct all light sheets
and verify the bound for each one.

Neither set of conditions is implied by any fundamen-
tal law of physics. The conditions do not apply to some
physically realistic systems (which nevertheless obey the
covariant entropy bound). Furthermore, they do not
permit macroscopic variations of spacetime, precluding
a verification of the bound in its strongest sense (Sec.
V.C.2).

Thus, as Flanagan, Marolf, and Wald point out, the
two theorems do not constitute a fundamental explana-
tion of the covariant entropy bound. By eliminating a
large class of potential counterexamples, they do pro-
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vide important evidence for the validity of the covariant
entropy bound. The second set can significantly shortcut
the verification of the bound in cosmological spacetimes.
Moreover, the broad validity of the FMW hypotheses
may itself betray an aspect of an underlying theory.

1. The first Flanagan-Marolf-Wald theorem

The first set of assumptions is

• Associated with each light sheet L in spacetime there
is an entropy flux four-vector sL

a whose integral over
L is the entropy flux through L .

• The inequality

usL
a kau<p~l`2l!Tabkakb (6.10)

holds everywhere on L . Here l` is the value of the
affine parameter at the end point of the light sheet.

The entropy flux vector sL
a is defined nonlocally by

demanding that only modes that are fully captured on L
contribute to the entropy on L . Modes that are partially
contained on L do not contribute. This convention rec-
ognizes that entropy is a nonlocal phenomenon. It is par-
ticularly useful when light sheets penetrate a thermody-
namic system only partially, as discussed in Sec. V.C.1.

This set of assumptions can be viewed as a kind of
‘‘light ray equivalent’’ of Bekenstein’s bound, Eq. (2.9),
with the affine parameter playing the role of the circum-
ferential radius. However, it is not clear whether one
should expect this condition to be satisfied in regions of
dominant gravity. Indeed, it does not apply to some
weakly gravitating systems (Sec. VI.C.2).

Flanagan, Marolf, and Wald were actually able to
prove a stronger form of the covariant entropy bound
from the above hypotheses. Namely, suppose that the
light sheet of a surface of area A is constructed, but the
light rays are not followed all the way to the caustics.
The resulting light sheet is, in a sense, shorter than nec-
essary, and one would expect that the entropy on it, S ,
will not saturate the bound. The final area spanned by
the light rays, A8, will be less than A but nonzero [Fig.
4(b)].

Flanagan, Marolf, and Wald showed, with the above
assumptions, that a tightened bound results in this case:

S<
A2A8

4
. (6.11)

Note that this expression behaves correctly in the limit
where the light sheet is maximized [A8→0; one recovers
Eq. (5.6)] and minimized (A8→A ; there is no light sheet
and hence no entropy).

The strengthened form, Eq. (6.11), of the covariant
entropy bound, Eq. (5.6), appears to have broad, but not
completely general validity (Sec. VI.C.2).

2. The second Flanagan-Marolf-Wald theorem

Through a rather nontrivial proof, Flanagan, Marolf,
Wald showed that the covariant entropy bound can also
be derived from a second set of assumptions, namely:



851Raphael Bousso: The holographic principle
• The entropy content of spacetime is well approxi-
mated by an absolute entropy flux vector field sa.

• For any null vector ka, the inequalities

~sak
a!2<

1
16p

Tabkakb, (6.12)

ukakb¹asbu<
p

4
Tabkakb (6.13)

hold at everywhere in the spacetime.

These assumptions are satisfied by a wide range of
matter systems, including Bose and Fermi gases below
the Planck temperature. It is straightforward to check
that all of the adiabatically evolving cosmologies inves-
tigated in Sec. VII.A conform to the above conditions.
Thus the second FMW theorem rules out an enormous
class of potential counterexamples, obviating the hard
work of calculating light sheets. (We will find light sheets
in simple cosmologies anyway, both in order to gain in-
tuition about how the light-sheet formulation works in
cosmology, and also because this analysis is needed for
the discussion of holographic screens in Sec. IX.C.)

Generally speaking, the notion of an entropy flux as-
sumes that entropy can be treated as a kind of local
fluid. This is often a good approximation, but it ignores
the nonlocal character of entropy and does not hold at a
fundamental level.

C. Relation to other bounds and to the generalized
second law of thermodynamics

1. Spacelike projection theorem

We have seen in Sec. IV.B that the spacelike entropy
bound does not hold in general. Taking the covariant
entropy bound as a general starting point, one may de-
rive other, more limited formulations, whose regimes of
validity are defined by the assumptions entering the
derivation. Here we use the light-sheet formulation to
recover the spacelike entropy bound, Eq. (4.1), along
with precise conditions under which it holds. By impos-
ing further conditions, even more specialized bounds
can be obtained; an example valid for certain regions in
cosmological spacetimes is discussed in Sec. VII.A.7 be-
low.

Spacelike projection theorem (Bousso, 1999a): Let B
be a closed surface. Assume that B permits at least one
future directed light sheet L. Moreover, assume that L is
complete, i.e., B is its only boundary (Fig. 6). Let S(V) be
the entropy in a spatial region V enclosed by B on the
same side as L. Then

S~V !<S~L !<
A

4
. (6.14)

Proof. Independently of the choice of V (i.e., the choice
of a time coordinate), all matter present on V will pass
through L . The second law of thermodynamics implies
the first inequality, the covariant entropy bound implies
the second.
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What is the physical significance of the assumptions
made in the theorem? Suppose that the region enclosed
by B is weakly gravitating. Then we may expect that all
assumptions of the theorem are satisfied. Namely, if B
did not have a future directed light sheet, it would be
antitrapped—a sign of strong gravity. If L had other
boundaries, this would indicate the presence of a future
singularity less than one light-crossing time from
B—again, a sign of strong gravity.

Thus for a closed, weakly gravitating, smooth surface
B we may expect the spacelike entropy bound to be
valid. In particular, the spherical entropy bound, deemed
necessary for the validity of the GSL in the Susskind
process, follows from the covariant bound. This can be
seen by inspecting the assumptions in Sec. II.C, which
guarantee that the conditions of the spacelike projection
theorem are satisfied.

2. Generalized second law and Bekenstein bound

In fact, Flanagan, Marolf, and Wald (2000) showed
that the covariant bound implies the GSL directly for
any process of black-hole formation, such as the Suss-
kind process (Sec. II.C.1).

Consider a surface B of area A on the event horizon
of a black hole. The past directed ingoing light rays will
have nonpositive expansion; they generate a light sheet.
The light sheet contains all the matter that formed the
black hole. The covariant bound implies that Smatter
<A(B)/45SBH . Hence the generalized second law is
satisfied for the process in which a black hole is newly
formed from matter.

Next, let us consider a more general process, the ab-
sorption of a matter system by an existing black hole.
This includes the Geroch process (Sec. II.B.1). Does the
covariant bound also imply the GSL in this case?

Consider a surface B on the event horizon after the
matter system, of entropy Smatter , has fallen in, and fol-
low the past-ingoing light rays again. The light rays are
focused by the energy momentum of the matter. ‘‘After’’
proceeding through the matter system, let us terminate
the light sheet. Thus the light sheet contains precisely
the entropy Smatter . The rays will span a final area A8
(which is really the initial area of the event horizon be-
fore the matter fell in).

According to an outside observer, the Bekenstein en-
tropy of the black hole has increased by (A2A8)/4,
while the matter entropy Smatter has been lost. According

FIG. 6. Spacelike projection theorem. If the surface B has a
complete future directed light sheet L , then the spacelike en-
tropy bound applies to any spatial region V enclosed by B .
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to the ‘‘strengthened form’’ of the covariant entropy
bound considered by Flanagan, Marolf, and Wald, Eq.
(6.11), the total entropy has not decreased. The original
covariant bound, Eq. (5.6), does not by itself imply the
generalized second law of thermodynamics, Eq. (2.3), in
this process.

Equation (6.11) can also be used to derive a version of
Bekenstein’s bound, Eq. (2.9)—though, unfortunately, a
version that is too strong. Consider the light sheet of an
approximately flat surface of area A , bounding one side
of a rectangular thermodynamic system. With suitable
time slicing, the surface can be chosen to have vanishing
null expansion u.

With assumptions on the average energy density and
the equation of state, Raychaudhuri’s equation can be
used to estimate the final area A8 of the light sheet
where it exits the opposite side of the matter system.
The strengthened form of the covariant entropy bound,
Eq. (6.11), then implies the bound given in Eq. (2.21).
However, for very flat systems this bound can be vio-
lated (Sec. II.B.2)!

Hence Eq. (6.11) cannot hold in the same generality
that is claimed for the original covariant entropy bound,
Eq. (5.6).28 However, the range of validity of Eq. (6.11)
does appear to be extremely broad. In view of the sig-
nificance of its implications, it will be important to better
understand its scope.

We conclude that the covariant entropy bound implies
the spherical bound in its regime of validity, defines a
range of validity for the spacelike bound, and implies
the GSL for black-hole formation processes. The
strengthened form of the covariant bound given by
Flanagan, Marolf, and Wald, Eq. (6.11), implies the GSL
for absorption processes and, under suitable assump-
tions, yields Bekenstein’s bound [though in a form that
demonstrates that Eq. (6.11) cannot be universally
valid].

The result of this section suggests that the holographic
principle (Sec. VIII) will take a primary role in the com-
plex of ideas we have surveyed. It may come to be
viewed as the logical origin not only of the covariant
entropy bound, but also of more particular laws that
hold under suitable conditions, such as the spherical en-
tropy bound, Bekenstein’s bound, and the generalized
second law of thermodynamics.

VII. APPLICATIONS AND EXAMPLES

In this section, the covariant entropy bound is applied
to a variety of matter systems and spacetimes. We dem-
onstrate how the light-sheet formulation evades the vari-
ous difficulties encountered by the spacelike entropy
bound (Sec. IV.B).

We apply the bound to cosmology and verify explicitly
that it is satisfied in a wide class of universes. No viola-

28It follows that the first FMW hypotheses do not hold in
general. An earlier counterexample to Eq. (6.11), and hence to
these hypotheses, was given by Guedens (2000).
Rev. Mod. Phys., Vol. 74, No. 3, July 2002
tions are found during the gravitational collapse of a
star, a shell, or the whole universe, though the bound
can be saturated.

A. Cosmology

1. Friedman-Robertson-Walker metric and entropy density

Friedmann-Robertson-Walker (FRW) metrics de-
scribe homogeneous, isotropic universes, including, to a
good degree of approximation, the portion we have seen
of our own universe. Often the metric is expressed in the
form

ds252dt21a2~ t !S dr2

12kr2 1r2dV2D . (7.1)

We will find it more useful to use the conformal time
h and the comoving coordinate x:

dh5
dt

a~ t !
, dx5

dr

A12kr2
. (7.2)

In these coordinates the FRW metric takes the form

ds25a2~h!@2dh21dx21f2~x!dV2# . (7.3)

Here k521,0,1 and f(x)5sinh x,x,sin x correspond to
open, flat, and closed universes, respectively. Relevant
Penrose diagrams are shown in Figs. 5 and 7(a).

In cosmology, the entropy is usually described by an
entropy density s, the entropy per physical volume:

S~V !5E
V

d3xAh s . (7.4)

FIG. 7. Penrose diagram for a closed FRW universe filled with
pressureless dust. The three-sphere time slices are represented
by horizontal lines (not shown). (a) Two apparent horizons
divide the diagram into four wedge domains: normal spheres
are found near the poles, trapped (antitrapped) spheres near
the big bang (big crunch). (b) The construction of a global
holographic screen (Sec. IX.C) proceeds by foliating the space-
time into a stack of light cones. The information on each slice
can be stored on the maximal sphere, which lies on the appar-
ent horizon.



853Raphael Bousso: The holographic principle
For FRW universes, s depends only on time. We will
assume, for now, that the universe evolves adiabatically.
Thus the physical entropy density is diluted by cosmo-
logical expansion:

s~h!5
s

a~h!3 . (7.5)

The comoving entropy density s is constant in space and
time.

2. Expansion and apparent horizons

Let us verify that the covariant entropy bound is sat-
isfied for each light sheet of any spherical surface A .
The first step is to identify the light-sheet directions. We
must classify each sphere as trapped, normal, or anti-
trapped (Sec. V.B.2). Let us therefore compute the ini-
tial expansion of the four families of light rays orthogo-
nal to an arbitrary sphere characterized by some value
of (h,x).

We take the affine parameter to agree locally with
62h and use Eq. (5.3). Differentiation with respect to h
(x) is denoted by a dot (prime). Instead of labeling the
families F1 ,. . . ,F4 , it will be more convenient to use the
notation (66), where the first sign refers to the time
(h) direction of the light rays and the second sign de-
notes whether they are directed at larger or smaller val-
ues of x.

For the future directed families one finds

u165
ȧ

a
6

f8
f

. (7.6)

The expansion of the past directed families is given by

u2652
ȧ

a
6

f8
f

. (7.7)

Note that the first term in Eq. (7.6) is positive when
the universe expands and negative if it contracts. The
term diverges when a→0, i.e., near singularities. The
second term is given by cot x(1/x ;coth x) for a closed
(flat; open) universe. It diverges at the origin (x→0),
and for a closed universe it also diverges at the opposite
pole (x→p).

The signs of the four quantities u66 depend on the
relative strength of the two terms. The quickest way to
classify surfaces is to identify marginal spheres, where
the two terms are of equal magnitude.

The apparent horizon is defined geometrically as a
sphere at which at least one pair of orthogonal null con-
gruences have zero expansion. It satisfies the condition

ȧ

a
56

f8
f

, (7.8)

which can be used to identify its location xAH(h) as a
function of time. There is one solution for open and flat
universes. For a closed universe, there are generally two
solutions, which are symmetric about the equator
@xAH8(h)5p2xAH(h)].

The proper area of the apparent horizon is given by
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AAH~h!54pa~h!2f@xAH~h!#25
4pa2

S ȧ

a D 2

1k

. (7.9)

Using Friedmann’s equation,

ȧ2

a2 5
8pra2

3
2k , (7.10)

one finds

AAH~h!5
3

2r~h!
, (7.11)

where r is the energy density of matter.
At any time h, the spheres that are smaller than the

apparent horizon,

A,AAH , (7.12)

are normal. (See the end of Sec. V.B.2 for the definitions
of normal, trapped, and antitrapped surfaces.) Because
the second term f8/f dominates in the expressions for
the expansion, the cosmological evolution has no effect
on the light-sheet directions. The two light sheets will be
a past and a future directed family going to the same
spatial side. In a flat or open universe, they will be di-
rected towards x50 (Fig. 5). In a closed universe, the
light sheets of a normal sphere will be directed towards
the nearest pole, x50 or x5p [Fig. 7(a)].

For spheres greater than the apparent horizon,

A.AAH , (7.13)

the cosmological term ȧ/a dominates in the expressions
for the expansion. Then there are two cases. Suppose
that ȧ.0, i.e., the universe is expanding. Then the
spheres are antitrapped. Both light sheets are past di-
rected, as indicated by a wedge opening to the bottom in
the Penrose diagram. If A.AAH and ȧ,0, then both
future directed families will have negative expansion.
This case describes trapped spheres in a collapsing uni-
verse. They are denoted by a wedge opening to the top
[Fig. 7(a)].

3. Light sheets vs spatial volumes

We have now classified all spherical surfaces in all
FRW universes according to their light-sheet directions.
Before proceeding to a detailed calculation of the en-
tropy contained on the light sheets, we note that the
violations of the spacelike entropy bound identified in
Secs. IV.B.1 and IV.B.2 do not apply to the covariant
bound.

The area of a sphere at h0 ,x0 is given by

A~h0 ,x0!54pa~h0!2f~x0!2. (7.14)

To remind ourselves that the spacelike entropy bound
fails in cosmology, let us begin by comparing this area to
the entropy enclosed in the spatial volume V(x0) de-
fined by x<x0 at equal time h5h0 . With our assump-
tion of adiabaticity, this depends only on x0 :
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S@V~x0!#54psE
0

x0
dxf~x!2. (7.15)

For a flat universe @f(x)5x], the area grows like x0
2

but the entropy grows like x0
3. Thus S@V(x0)#.A for

sufficiently large x0 . (This was pointed out earlier in
Sec. IV.B.2.) For a closed universe „f(x)5sin x…, x
ranges only from 0 to p. S@V(x0)# is monotonically in-
creasing in this range, but A→0 for x0→p . Again, one
has S@V(x0)#.A . This is a special case of the problem
discussed in Sec. IV.B.1.

Why do light sheets not run into the same difficulties?
Consider first a large sphere in a flat universe (Fig. 5).
The future-ingoing light rays cover the same amount of
entropy as the enclosed spatial volume. However, for
spheres greater than the apparent horizon, the future-
ingoing light rays are expanding and hence do not form
a light sheet. Only past directed light sheets are permit-
ted. The past-ingoing light rays, for example, will pro-
ceed towards the origin. However, if the sphere is
greater than the particle horizon (x.h), they will ter-
minate at the big bang (h50) and will not get all the
way to x50. Instead of a comoving ball 0<x8<x , they
will sweep out only a shell of width h : x2h<x8<x .
Thus the entropy to area ratio does not diverge for large
x, but approaches a constant value.

Small spheres (A,AAH) in a closed universe [Fig.
7(a)] permit only light sheets that are directed to the
smaller enclosed region. The light rays directed towards
the larger portion of the universe will be initially ex-
panding and hence do not form light sheets. Both in the
flat and the closed case, we see that the u<0 contraction
condition is of crucial importance.

4. Solutions with fixed equation of state

The matter content of FRW universes is most gener-
ally described by a perfect fluid, with stress tensor

Tb
a5diag~2r ,p ,p ,p !. (7.16)

Let us assume that the pressure p and energy density r
are related by a fixed equation of state

p5wr . (7.17)

Our universe and many other more general solutions
can be pieced together from solutions obtained via this
ansatz, because the transitions between different effec-
tive equations of state are very rapid.

For most of its lifetime, our universe was dominated
by pressureless dust and hence was characterized by w
50. The early universe was dominated by radiation,
which is described by w5 1

3 . A cosmological constant,
which may have been present at very early times and
perhaps again today, corresponds to w521.

With this ansatz for the matter content and the FRW
ansatz for the metric, Einstein’s equation can be solved.
This determines the scale factor in Eq. (7.3):

a~h!5a0F fS h

q D Gq

, (7.18)
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where

q5
2

113w
, (7.19)

and f is the sin (the identity, sinh) for a closed (flat,
open) universe, as in Eq. (7.3). From Eq. (7.8) it follows
that an apparent horizon is located at

xAH~h!5
h

q
(7.20)

in all cases. An additional mirror horizon lies at p
2 h/q in the closed case.

Having established the light-sheet directions as a func-
tion of t and r , we will now check whether the covariant
entropy bound is satisfied on all light sheets. The present
treatment concentrates on flat and closed (k50,1) uni-
verses with w>0. However, we will quote results for w
,0, i.e., negative pressure (Kaloper and Linde, 1999),
which involves additional subtleties. We will also com-
ment on the inflationary case (w521). We omit the
open universes (k521) because they do not give rise to
qualitatively new features (Fischler and Susskind, 1998).
Bousso (1999a) discusses closed universes in detail. The
main additional features beyond the flat case are cov-
ered in Secs. VII.A.3 and VII.B. We will comment on
the inflationary case (w521) separately.

5. Flat universe

Let us consider all possible light sheets of all spherical
areas (0,x,`) at the time h in a flat FRW universe,

A~h ,x!54pa~h!2x2. (7.21)

If x<xAH(h), the sphere is normal, and the light-sheet
directions are (12) and (22). If x>xAH , the sphere
is antitrapped, with light sheets (21) and (22) (Fig.
5).

We begin with the future-ingoing (12) light rays.
They contract towards the origin and generate a conical
light sheet whose coordinates (x8,h8) obey

x81h85x1h . (7.22)

This light sheet contains the comoving entropy in the
region 0<x8<x , which is given by

S125
4p

3
sx3. (7.23)

The ratio of entropy to area,

S12

A
5

sx

3a~h!2 , (7.24)

is maximized by the outermost normal surface at any
given time h, the sphere on the apparent horizon. Thus
we obtain the bound

S12

A
<

sxAH~h!

3a~h!2 . (7.25)

The past-ingoing (22) light sheet of any surface with
x,h also reaches a caustic at x50. If x.h , then the
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light sheet is truncated instead by the big-bang singular-
ity at h50. Then it will contain the comoving entropy in
the region x2h<x8<x . The entropy to area ratio is
given by

S22

A
5

sh

a~h!2 S 12
h

x
1

h2

3x2D . (7.26)

This ratio is maximized for large spheres (x→`), yield-
ing the bound

S22

A
<

sh

a~h!2 (7.27)

for the (22) light sheets at time h.
Finally, we must consider the past-outgoing (21)

light sheet of any surface with x.xAH . It is truncated
by the big-bang singularity and contains the entropy
within x<x8<x1h . The ratio of the entropy to the
area,

S21

A
5

sh

a~h!2 S 11
h

x
1

h2

3x2D , (7.28)

is maximized for the smallest possible value of x, the
apparent horizon. We find the bound

S21

A
<

sh

a~h!2 S 11
h

xAH
1

h2

3xAH
2 D . (7.29)

We now use the solution for fixed equation of state,
setting a051 for convenience:

a~h!5S h

q D q

, xAH~h!5
h

q
. (7.30)

Up to factors of order unity, the bounds for all three
types of light sheets at time h agree:

S

A
<sh122q. (7.31)

Note that one Planck distance corresponds to the co-
moving coordinate distance Dx5a(h)21. At the Planck
time, h;a(h);O(1). Hence s is roughly the amount of
entropy contained in a single Planck volume at one
Planck time after the big bang. This is the earliest time
and shortest distance scale one can hope to discuss with-
out a full quantum gravity description. It is reasonable
to assume that a Planck volume contains no more than
one bit of information:

s&1. (7.32)

Equation (7.31) then implies that the covariant en-
tropy bound, Eq. (5.6), is satisfied at the Planck time.
Moreover, the bound will continue to be satisfied by all
light sheets of all spheres at later times (h.1), if q
> 1/2. In terms of the parameter w , this corresponds to
the condition

w<1. (7.33)

This result was obtained by Fischler and Susskind (1998)
who also assumed w>0.

Kaloper and Linde (1999) showed more generally that
the entropy bound will be satisfied at all times if 21
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,w<1, provided that the bound is satisfied at the Planck
time.29 The case w521 corresponds to de Sitter space,
in which there is no initial singularity. Since a cosmologi-
cal constant does not carry entropy, the bound is trivially
satisfied in this case. In summary, all light sheets of all
surfaces in any flat FRW universe with equation of state
satisfying

21<w<1 (7.34)

satisfy the covariant entropy bound, Eq. (5.6).
This condition is physically very reasonable. It follows

from the causal energy condition, which prohibits the
superluminal flow of energy. We assumed in Sec. V.D.1
that this condition holds along with the null energy con-
dition. The definitions of all relevant energy conditions
are reviewed in the Appendix.

6. Nonadiabatic evolution and mixed equations of state

So far, we have assumed that the universe evolves
adiabatically. In order to relax this assumption, one gen-
erally has to abandon the FRW solution given above and
find the exact geometry describing a cosmology with in-
creasing entropy. However, the global solution will not
change significantly if we rearrange matter on scales
smaller than the apparent horizon.

Consider the future-ingoing light sheet of the present
apparent horizon L12@h0 ,xAH(h0)# . All entropy we
generate using the matter available to us inside the ap-
parent horizon will have to pass through this light sheet.
An efficient way to generate entropy is to form black
holes. Building on a related discussion by Bak and Rey
(2000a), Bousso (1999a) showed that the highest en-
tropy is obtained in the limit where all matter is con-
verted into a few big black holes. In this limit,
S12 /A@h0 ,xAH(h0)# approaches 1/4 from below.
Hence the covariant bound is satisfied and can be satu-
rated.

According to the inflationary model of the early uni-
verse (see, e.g., Linde, 1990), a different nonadiabatic
process occurred at the end of inflation. At the time of
reheating, matter is produced and a large amount of en-
tropy is generated. One might be concerned that the
holographic principle is violated by inflation (Easther
and Lowe, 1999), or that it places severe constraints on
acceptable models (Kalyana Rama and Sarkar, 1999).

Before inflation ended, however, there was almost no
entropy. Hence all past directed light sheets can be trun-
cated at the reheating surface, h5hreheat . The energy

29Like Fischler and Susskind (1998), this work precedes the
covariant entropy bound (Bousso, 1999a). Hence it considers
only the (22) case, which corresponds to the Fischler-
Susskind proposal. We have seen that the entropy range on
other light sheets does not differ significantly in the flat case.
Of course, the absence of a (22) light sheet for some surfaces
in other universes is crucial for the validity of the covariant
entropy bound (see, e.g., Secs. VII.A.3 and VII.B). Davies
(1987) obtained w>21 as a condition for the growth of the
apparent horizon in an inflating universe.
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density at reheating is expected to be significantly below
the Planck density. The light sheets will be cut shorter
than in our above discussion, which assumed that stan-
dard cosmology extended all the way back to the Planck
era. Hence inflation leads to no difficulties with the ho-
lographic principle.30

Kaloper and Linde (1999) studied a particularly inter-
esting cosmology, a flat FRW universe with ordinary
matter, w1>0,r1.0, as well as a small negative cosmo-
logical constant, w2521,r2,0. The universe starts mat-
ter dominated, but the cosmological constant eventually
takes over the evolution. It slows down and eventually
reverses the expansion. In a time symmetric fashion,
matter eventually dominates and the universe ends in a
future singularity.

The Kaloper-Linde universe provides a tough testing
ground for proposals for a cosmological holographic
principle. As in any flat FRW universe, spacelike holog-
raphy breaks down for sufficiently large surfaces. More-
over, as in any collapsing universe, this occurs even if
one restricts to surfaces within the particle horizon, or
the Hubble horizon. Most interestingly, the ‘‘apparent
horizon’’ proposal of Bak and Rey (2000a) fails in this
cosmology. This can be understood by applying the
spacelike projection theorem to cosmology, as we dis-
cuss next.

The holographic principle in anisotropic models was
discussed by Fischler and Susskind (1998) and by Cat-
aldo et al. (2001). Inhomogeneous universes have been
considered by Tavakol and Ellis (1999); see also Wang,
Abdallah, and Osada (2000).

7. A cosmological corollary

Let us return to a question first raised in Sec. IV.C.
What is the largest volume in a cosmological spacetime
to which the spacelike holographic principle can be ap-
plied? The spacelike projection theorem (Sec. VI.C.1)
guarantees that the spacelike entropy bound will hold
for surfaces that admit a future directed, complete light
sheet. Let us apply this to cosmology. Surfaces on or
within the apparent horizon are normal and hence admit
a future directed light sheet. However, the completeness
condition is not trivial and must be demanded sepa-
rately. In the Kaloper-Linde universe, for example, the
future light sheets of sufficiently late surfaces on the ap-
parent horizon are truncated by the future singularity.

We thus arrive at the following corollary to the space-
like projection theorem (Bousso, 1999a): The area of
any sphere within the apparent horizon exceeds the en-
tropy enclosed in it, if the future light sheet of the sphere
is complete.

B. Gravitational collapse

Any argument for an entropy bound based on the
generalized second law of thermodynamics must surely

30Fabinger (2001) has suggested a bound on entanglement
entropy, assuming certain inflationary models apply.
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become invalid in a collapse regime. When a system is
already inside its own Schwarzschild radius, it can no
longer be converted into a black hole of equal surface
area.

Indeed, the example of the collapsing star (Sec.
IV.B.3), and the conclusions reached by various analyses
of collapsing universes (Sec. IV.C) would seem to dis-
courage hopes of finding a nontrivial holographic en-
tropy bound that continues to hold in regions undergo-
ing gravitational collapse. Surprisingly, to the extent that
it has been tested, the covariant entropy bound does
remain valid in such regions.

Whenever possible, the validity of the bound is most
easily verified by showing that a given solution satisfies
the local hypotheses of Flanagan, Marolf, and Wald
(2000). Otherwise, light sheets must be found explicitly.

Ideally, one would like to investigate systems with
high entropy, in dynamical, collapsing spacetime regions.
Generically, such regions will be extremely inhomoge-
neous, which makes the practical calculation of light
sheets difficult. However, one should keep in mind that
other proposals for general entropy bounds, such as the
spacelike entropy bound, are quickly invalidated by
simple, easily tractable counterexamples that make use
of gravitational collapse.

It is remarkable, from this point of view, that the co-
variant bound has not met its demise by any of the stan-
dard collapse solutions that are readily available in the
literature. To illustrate how the covariant bound evades
violation, we will review its application to two simple
examples, a collapsing star and a closed universe.

We will also consider a particular setup that allows the
calculation of light sheets deep inside a black hole
formed by the collapse of a spherical shell. In this ex-
ample one has good quantitative control over the col-
lapse of a system of arbitrarily high entropy.

1. Collapsing universe

Let us begin with a very simple example, the adiabatic
recollapse of a closed FRW universe. In this case the
recollapsing phase is just the time reversal of the ex-
panding phase. The light-sheet directions are similarly
reversed [Fig. 7(a)]. Small spheres near the poles are
normal, but larger spheres, which are antitrapped during
expansion will be trapped during collapse. Their light
sheets are future directed and hence are typically trun-
cated by the future (big crunch) singularity.

Because the solution is symmetric under time rever-
sal, the validity of the covariant entropy bound in the
collapse phase follows from its validity in the expanding
phase. The latter can be verified straightforwardly. For
antitrapped spheres, the calculation (Fischler and Suss-
kind, 1998) is similar to the analysis of the flat case (Sec.
VII.A.5). For small spheres one needs to pay special
attention to choosing the correct inside directions (see
Sec. VII.A.3).

2. Collapsing star

Next, we return to the collapsing star of Sec. IV.B.3.
Why do the arguments demonstrating the breakdown of
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other entropy bounds not extend to the covariant en-
tropy bound?

The metric in and around a collapsing star is well de-
scribed by the Oppenheimer-Snyder solution (Misner,
Thorne, and Wheeler, 1973). In this solution, the star is
modeled by a suitable portion of a collapsing closed
FRW universe. That is, one considers the coordinate
range

0<x<x0 , h.q
p

2
, (7.35)

in the metric of Eq. (7.3). Here, q depends on the equa-
tion of state in the star according to Eq. (7.19). Also,
x0,p/2, so that the star does not overclose the universe.
Outside the star, space is empty. Birkhoff’s theorem dic-
tates that the metric will be given by a portion of the
Schwarzschild solution, Eq. (2.10).

The corresponding Penrose diagram is shown in Fig.
8. The light-sheet directions are obtained from the cor-
responding portions of the Penrose diagrams for the
closed universe [Fig. 7(a)] and for the Schwarzschild so-
lution. At sufficiently late times, the apparent horizon
reaches the surface of the star. At this moment, the star
forms a black hole. The surface of the star is trapped at
all later times. Hence it admits only future directed light
sheets near the future singularity.

According to Eq. (7.14), the surface area of the star is
given by

A~x0 ,h!5AmaxS sin
h

q D q

. (7.36)

Recall that q is positive and of order unity for realistic
equations of state. At the time of maximum expansion,
A5Amax[4pa0

2sin2 x0 . The future singularity corre-
sponds to the time h5qp .

Let B be the star’s surface at a time h0.qp2x0 . The
future directed ingoing light sheet will be truncated by
the future singularity at x5x02(qp2h0), i.e., it will
not traverse the star completely (Fig. 8). Hence it will
not contain the full entropy of the star. For very late

FIG. 8. Penrose diagram of a collapsing star (shaded). At late
times, the area of the star’s surface becomes very small (B).
The enclosed entropy (in the spatial region V) stays finite, so
that the spacelike entropy bound is violated. The covariant
entropy bound avoids this difficulty because only future di-
rected light sheets are allowed. L is truncated by the future
singularity; it does not contain the entire star.
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times, h0→p , the surface area approaches zero,
A(x0 ,h0)→0. The spacelike entropy bound is violated,
S(V).A(B), because the entropy of the star does not
decrease (Sec. IV.B.3). But the entropy S(L) on the in-
going light sheet, L vanishes in this limit, because L
probes only a shallow outer shell, rather than the com-
plete star.

Light-sheet truncation by future singularities is but
one of several mechanisms that conspire to protect the
covariant entropy bound during gravitational collapse
(see Bousso, 1999a).

3. Collapsing shell

Consider a small black hole of radius r052m . In the
future of the collapse event that formed this black hole,
the apparent black hole horizon is a null hypersurface
with spacelike, spherical cross sections of area A
54pr0

2.
Let us pick a particular sphere B of area A on the

apparent horizon. By definition, the expansion of the
past directed ingoing and the future directed outgoing
light rays vanishes near B , so both are allowed light-
sheet directions.

The former light sheet contains all of the infalling
matter that formed the black hole, with entropy Sorig .
The covariant entropy bound, in this case, is the state-
ment of the generalized second law: the horizon entropy,
A/4, is greater than the lost matter entropy Sorig . The
future directed ingoing light rays will be contracting.
They will contain entropy Sorig or less, so the covariant
bound is satisfied once more.

We will be interested in the future directed outgoing
light sheet L . It will continue to generate the apparent
horizon of the black hole. Indeed, if no more matter
ever enters the black hole, this apparent horizon coin-
cides with the event horizon, and the light sheet will
continue forever at zero expansion.

Suppose, however, that more matter eventually falls
into the black hole. When this happens, the apparent
horizon moves out to a larger value r.r0 . (It will be
generated by a new set of light rays that were formerly
expanding.) The light sheet L , however, will begin to
collapse, according to Eq. (6.8). The covariant entropy
bound predicts that the light rays will reach a singularity,
or a caustic, before encountering more entropy than
A/4.

This is a remarkable prediction. It claims that one
cannot collapse more entropy through a (temporary)
black hole horizon than it already has. This claim has
been tested (Bousso, 1999a). Here we summarize only
the method and results.

Far outside the black hole, one can assemble a shell of
matter concentric with the black hole. By choosing the
initial radius of this shell to be sufficiently large, one can
suppress local gravitational effects and give the shell ar-
bitary total mass M and width w .

Let us assume that the shell is exactly spherically sym-
metric, even at the microscopic level. This suppresses
the deflection of radial light rays into angular directions,
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rendering the eventual calculation of L tractable. More-
over, it permits an estimate of the entropy of the shell.

In weakly gravitating systems, Bekenstein’s bound,
Eq. (2.9), has much empirical support (Bekenstein, 1981,
1984; Schiffer and Bekenstein, 1989). There is indepen-
dent evidence that the bound is always obeyed and can
be nearly saturated by realistic, weakly gravitating mat-
ter systems.

Because all excitations are carried by radial modes,
the shell can be divided along radial walls. This yields
several weakly gravitating systems of largest length scale
w . To each, Bekenstein’s bound applies. After reassem-
bling the shell, one finds that its total entropy is bounded
by

S<2pMw . (7.37)

In principle, there are no restrictions on either M or w ,
so the amount of entropy that can be collapsed onto the
black hole is unlimited.

Now consider the adiabatic collapse of the shell.
When the inner surface of the shell has shrunk to area
A , the shell will first be reached by the light rays gener-
ating L . As the light rays penetrate the collapsing shell,
they are focused by the shell’s stress tensor. Their expan-
sion becomes negative. Eventually they reach a caustic.

In order to violate the bound with a shell of large
entropy, one would like to ensure that all of the shell’s
entropy S will actually be contained on L . Thus one
should demand that the light rays must not reach a caus-
tic before they have fully crossed the shell and re-
emerged on the outer surface of the shell.

Inspection of the collapse solution, however, reveals
that this requirement restricts the shell’s mass and width,

Mw<r0
2/2. (7.38)

By Eq. (7.37), this also limits the entropy of the shell:

S<pr0
25

A

4
. (7.39)

The entropy on the light sheet L may saturate the cova-
riant bound, but it will not violate it.

C. Nearly null boundaries

In Sec. IV.B.4 it was shown that any isolated, weakly
gravitating matter system can be surrounded with a
closed surface of arbitarily small area, in violation of the
spacelike entropy bound, Eq. (4.1).

In order to capture the key advantage of the light-
sheet formulation, Eq. (5.6), we find it simplest to con-
sider a square-shaped system occupying the region 0
<x ,y<a in 211 dimensional Minkowski space; t is the
time coordinate in the system’s rest frame [Fig. 9(a)].
The boundary length of the system at t50 is

A054a . (7.40)
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Let us define a new boundary B by a zigzag curve
consisting of the following four segments: y50,t5bx for
0<x<a ; x5a ,t5b(a2y) for 0<y<a ; y5a ,t5b(a
2x) for 0<x<a ; and x50,t5by for 0<y<a . This can
be regarded as the boundary of the system in some non-
standard time slicing. Its length is Lorentz-contracted
relative to the boundary in the rest frame:

A~B !5A0A12b2. (7.41)

The length of B vanishes in the limit as b→1.
The future-ingoing light sheet L(B) can be computed

by piecing together the light sheets of all four segments.
The light sheet of the first segment is obtained by trans-
lating the segment in the direction (1,b ,A12b2). (It is
instructive to verify that this generates an orthogonal
null hypersurface of vanishing expansion. The curvature
of spacetime is neglected in order to isolate the effect of
‘‘wiggling’’ the boundary.) For b2. 1

2 , this light sheet
covers a fraction A12b2/2b of the total system [Fig.
9(b)]. The light sheets of the other segments are simi-
larly computed.

To leading order in (12b), the total fraction of the
system covered by L(B),

V~b!

V0
5

2A12b2

b
, (7.42)

vanishes at the same rate as the boundary length.
The future-ingoing light sheet is not complete in this

case; it has boundaries running through the interior of
the system. Hence the assumptions of the spacelike pro-
jection theorem are not satisfied. (This is not just an
artifact of the sharp edges of B . If B was smoothed at
the edges, it would contain a segment on which only past
directed light rays would be contracting. Thus B would
not admit a future directed light sheet everywhere, and
the spacelike projection theorem would still not apply.)

FIG. 9. A square system in 211 dimensions, surrounded by a
surface B of almost vanishing length A . (a) Space-time pic-
ture. (b) (Here the time dimension is projected out.) The light
sheet of B intersects only with a negligible (shaded) fraction of
the system.
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VIII. THE HOLOGRAPHIC PRINCIPLE

A. Assessment

The previous sections have built a strong case for a
holographic principle.31

• The covariant entropy bound is well defined (Sec. V).
The light-sheet construction establishes a precise rela-
tion between surfaces and adjacent hypersurfaces.
The area of the former must be compared to the en-
tropy contained on the latter. Thus the bound is test-
able, in an arena limited only by the range of semi-
classical gravity, the approximate framework we are
compelled to use until a general quantum theory of
gravity becomes available. Like any law of physics, it
can of course be tested only to the extent that the
relevant quantities and constructs (here, area, light
sheets, and entropy) are practically computable. But
importantly, the bound will not become ill defined in a
regime which is otherwise physically well understood.

• The bound has been examined and found to hold in a
wide range of examples, some of which we reviewed
in Sec. VII. No physically realistic counterexample has
been found. This is remarkable especially in view of
the ease with which the general validity of some alter-
native proposals can be excluded (Sec. IV).

• The bound is nontrivial. Naively one would expect the
maximal entropy to grow with the volume of spatial
regions. Instead, it is set by the area of surfaces.

• The bound refers to statistical entropy.32 Since it in-
volves no assumptions about the microscopic proper-
ties of matter, it places a fundamental limit on the
number of degrees of freedom in nature.

• The bound is not explained by other laws of physics
that are presently known. Unlike its less general pre-
decessors (e.g., the spherical entropy bound, Sec.
II.C), the covariant bound cannot be regarded merely
as a consequence of black-hole thermodynamics. Ar-
guments involving the formation of black holes cannot
explain an entropy bound whose scope extends to the
deep interior of black holes and to cosmology. We
conclude that the bound is an imprint of a more fun-
damental theory.

• Yet, the covariant bound is closely related to the
black-hole entropy and the generalized second law,

31All of the following points are independent of the consider-
ations of economy and unitarity that motivated ’t Hooft’s and
Susskind’s holographic principle (Sec. III.F). However, those
arguments emerge strengthened, since a key difficulty, the ab-
sence of a general entropy bound, has been overcome (Sec.
III.H). One can no longer object that more than A/4 degrees
of freedom might be needed to describe the physics, say, in
strongly gravitating regions.

32A conventional thermodynamic interpretation is clearly not
tenable. Most thermodynamic quantities are not defined in
general spacetimes. Moreover, the time direction imprinted on
thermodynamic entropy conflicts with the invariance of the co-
variant entropy bound under reversal of time (Bousso, 1999a).
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long considered important clues to quantum gravity.
Though the bound does not itself follow from thermo-
dynamics, it implies other bounds which have been
argued to be necessary for upholding the second law
(Sec. VI.C). We also note that the bound essentially
involves the quantum states of matter. We conclude
that the fundamental theory responsible for the bound
unifies matter, gravity, and quantum mechanics.

• The bound relates information to a single geometric
quantity (area). The bound’s simplicity, in addition to
its generality, makes the case for its fundamental sig-
nificance compelling. We conclude that the area of
any surface B measures the information content of an
underlying theory describing all possible physics on
the light sheets of B .33

B. Formulation

Let us combine the three conclusions drawn above
and formulate the holographic principle (Bousso, 1999a,
1999b): The covariant entropy bound is a law of physics
which must be manifest in an underlying theory. This
theory must be a unified quantum theory of matter and
spacetime. From it, Lorentzian geometries and their mat-
ter content must emerge in such a way that the number of
independent quantum states describing the light sheets of
any surface B is manifestly bounded by the exponential of
the surface area,

N@L~B !#<eA(B)/4. (8.1)

(See Secs. I.B and V.E for notation.)
Implicit in the phrase ‘‘quantum states’’ is the equiva-

lence, in quantum theory, of the logarithm of the dimen-
sion N of Hilbert space and the amount of information
stored in the quantum system. As it is not obvious that
quantum mechanics will be primary in a unified theory, a
more neutral formulation of the holographic principle
may be preferable: N, the number of degrees of freedom
(or the number of bits times ln 2) involved in the descrip-
tion of L(B), must not exceed A(B)/4.

C. Implications

The holographic principle implies a radical reduction
in the number of degrees of freedom we use to describe
nature. It exposes quantum field theory, which has de-
grees of freedom at every point in space, as a highly
redundant effective description, in which the true num-
ber of degrees of freedom is obscured (Sec. III.E).

The holographic principle challenges us to formulate a
theory in which the covariant entropy bound is manifest.
How can a holographic theory be constructed? Physics
appears to be local to a good approximation. The num-

33An entropy bound in terms of a more complex combination
of physical quantities (e.g., Brustein and Veneziano, 2000),
even if it holds generally, would not seem to betray a concrete
relation of this kind.



860 Raphael Bousso: The holographic principle
ber of degrees of freedom in any local theory is exten-
sive in the volume. Yet, the holographic principle dic-
tates that the information content is in correspondence
with the area of surfaces. How can this tension be re-
solved? There appear to be two main lines of approach,
each casting the challenge in a different form.

One type of approach aims to retain locality. A local
theory could be rendered holographic if an explicit
gauge invariance was identified, leaving only as many
physical degrees of freedom as dictated by the covariant
entropy bound. The challenge, in this case, is to imple-
ment such an enormous and rather peculiar gauge in-
variance.

For example, ’t Hooft (1999, 2000a, 2001a, 2001b,
2001c) is pursuing a local approach in which quantum
states arise as limit cycles of a classical dissipative system
(see also van de Bruck, 2000). The emergence of an ar-
ea’s worth of physical degrees of freedom has yet to be
demonstrated in such models.

A second type of approach regards locality as an
emergent phenomenon without fundamental signifi-
cance. In this case, the holographic data are primary.
The challenge is not only to understand their generation
and evolution. One must also explain how to translate
underlying data, in a suitable regime, into a classical
spacetime inhabited by local quantum fields. In a suc-
cessful construction, the geometry must be shaped and
the matter distributed so as to satisfy the covariant en-
tropy bound. Because holographic data are most natu-
rally associated with the area of surfaces, a serious diffi-
culty arises in understanding how locality can emerge in
this type of approach.

The AdS/CFT correspondence (Sec. IX.B) lends cre-
dence to the second type of approach. However, because
it benefits from several peculiarities of the asympotically
AdS universes to which it applies (Sec. IX.C), it has of-
fered little help to researchers pursuing such approaches
more broadly.

Some of the proposals and investigations discussed in
Secs. IX.D and IX.E can be associated to the second
type.

Which type of approach one prefers will depend, to a
great extent, on which difficulty one abhors more: the
elimination of most degrees of freedom, or the recovery
of locality. The dichotomy is hardly strict; the two alter-
natives are not mutually exclusive. A successful theory
may admit several equivalent formulations, thus recon-
ciling both points of view.

Since light sheets are central to the formulation of the
holographic principle, one would expect null hypersur-
faces to play a primary role in the classical limit of an
underlying holographic theory (though this may not be
apparent in descriptions of weakly time-dependent ge-
ometries; see Sec. IX.B).

IX. HOLOGRAPHIC SCREENS AND HOLOGRAPHIC
THEORIES

We will begin this section by discussing which aspects
of the holographic principle have already been realized
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in string theory. We assess how general the class of uni-
verses is in which the holographic principle is thus
implemented. In this context, we will present the most
explicit example of a holographic theory presently
known. The AdS/CFT correspondence defines quantum
gravity—albeit in a limited set of spacetimes. Anti–de
Sitter space contains a kind of holographic screen, a dis-
tant hypersurface on which holographic data can be
stored and evolved forward using a conformal field
theory.

We will then review the construction of holographic
screens in general spacetimes, including those without
boundary. Using light sheets, it is always possible to find
such screens. However, a theory that generally describes
the generation and evolution of holographic data re-
mains elusive. The structure of screens offers some clues
about the difficulties that must be addressed. We will list
a number of approaches.

We will also discuss the application of the covariant
entropy bound to universes with positive vacuum en-
ergy. In this class of spacetimes the holographic principle
appears to place a particularly strong constraint on an
underlying description.

A. String theory and the holographic principle

1. A work in progress

String theory naturally produces a unified quantum
description of gravity and matter fields. Its framework
has proven self-consistent in remarkably nontrivial ways,
given rise to powerful mathematical structures, and
solved numerous physical problems. One might wonder
what the holographic principle is still needed for. If a
good theory is available, why search further? What is
left to do?

String theory has developed in an unconventional
way. It began as a formula whose physical interpretation
in terms of strings was understood only later. The theory
was first misunderstood as a description of hadrons, and
only later recognized as a quantum theory of gravity. It
forms part of a rigid mathematical structure whose con-
tent and physical implications continue to be explored.

String theory34 has yet to address many of the most
pressing questions one would like to ask of a fundamen-
tal theory. These include phenomenological issues: Why
does the world have four large dimensions? What is the
origin of the stardard model? How is supersymmetry
broken? More importantly, there are conceptual difficul-
ties. It is unclear how the theory can be applied to real-
istic cosmological spacetimes, and how it might describe
most black holes and singularities of general relativity.

String theory’s most notable recent successes hinged
on the discovery of a new set of objects in the theory, D-
branes (Polchinksi, 1995). Before D-branes, string theo-
ry’s list of open questions was longer than it is today.
This serves as a reminder that unsolved problems need

34We shall take related 11-dimensional theories to be in-
cluded in this term.
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not signal the failure of string theory. Neither should
they be dismissed as mere technical difficulties. Instead,
they may indicate that there are still crucial parts of the
theory that have not been discovered.

There is little evidence that string theory, in its current
form, represents more than a small portion, or a limiting
case, of a bigger theoretical structure. Nor is it clear that
the exploration of this structure will continue to proceed
most efficiently from within.35

An intriguing success of the covariant entropy bound
is its validity in highly dynamical geometries, whose de-
scription has proven especially difficult in string theory.
This suggests that the holographic principle may offer
useful guidance to the further development of the
theory.

Its present limitations prevent string theory from ex-
plaining the general validity of the covariant entropy
bound. The theory is not under control in many situa-
tions of interest, for example, when supersymmetry is
broken. Moreover, many solutions of physical relevance,
including most of the examples in this text, do not ap-
pear to be admitted by string theory in its current form.

2. Is string theory holographic?

These restrictions aside, one may ask whether the ho-
lographic principle is manifest in string theory. Let us
consider, for a moment, only spacetimes that string
theory can describe, and in which the holographic prin-
ciple is also well defined (i.e., geometry is approximately
classical). Is the number of degrees of freedom involved
in the string theory description set by the area of sur-
faces?

In perturbative string theory, the holographic prin-
ciple is only partly realized. Effects associated with ho-
lography include the independence of the wave function
on the longitudinal coordinate in the light cone frame,
and the growth of the size of states with their momen-
tum (see the reviews cited in Sec. I.D; Giles and Thorn,
1977; Giles, McLerran, and Thorn, 1978; Thorn, 1979,
1991, 1995, 1996; Klebanov and Susskind, 1988; Suss-
kind, 1995b; see also Susskind, 1995a).

A number of authors have studied the extent to which
string theory exhibits the nonlocality implied by the ho-
lographic principle (Lowe, Susskind, and Uglum, 1994;
Lowe et al., 1995). These investigations are closely re-
lated to the problem of understanding of the unitarity of
black-hole evaporation from the point of view of string
theory, in particular through the principle of black-hole
complementarity (Sec. III.G).

The entropy bound of one bit per Planck area, how-
ever, is not explicit in perturbative string theory. Suss-
kind (1995b) showed that the perturbative expansion
breaks down before the bound is violated (see also
Banks and Susskind, 1996). One would expect the holo-

35In particular, Banks (2000b) has argued that there may be
no sense in which all isolated ‘‘vacua’’ of the theory can be
smoothly connected.
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graphic principle to be fully manifest only in a nonper-
turbative formulation of the theory.

Since the holographic principle was conceived, non-
perturbative definitions of string theory have indeed be-
come available for two special classes of spacetimes. Re-
markably, in the AdS/CFT correspondence, the number
of degrees of freedom agrees manifestly with the holo-
graphic principle, as we discuss below. In matrix theory
(Banks et al., 1997) the corresponding arguments are
somewhat less precise. This is discussed, e.g., by Bigatti
and Susskind (1997), and by Banks (1998, 1999), where
further references can be found.36

The holographic principle may not only aid the search
for other nonperturbative definitions of string theory. It
could also contribute to a background-independent for-
mulation that would illuminate the conceptual founda-
tion of string theory.

B. Anti–de Sitter/conformal field theory correspondence

An example of the anti–de Sitter/conformal field
theory (AdS/CFT) correspondence concerns type-IIB
string theory in an asymptotically AdS53S5 spacetime
(the bulk), with n units of five-form flux on the
five-sphere37 (Gubser, Klebanov, and Polyakov, 1998;
Maldacena, 1998; Witten, 1998). This theory, which in-
cludes gravity, is claimed to be nonperturbatively de-
fined by a particular conformal field theory without
gravity, namely, 311-dimensional supersymmetric
Yang-Mills theory with gauge group U(n) and 16 real
supercharges. We will refer to this theory as the dual
CFT.

The metric of AdS53S5 is

ds25R2F2
11r2

12r2 dt2

1
4

~12r2!2 ~dr21r2dV3
2!1dV5

2G , (9.1)

where dVd denotes the metric of a d-dimensional unit
sphere. The radius of curvature is related to the flux by
the formula

R5n1/4, (9.2)

in units of the ten-dimensional Planck length.

36A significant nonperturbative result closely related to the
holographic principle is the microscopic derivation of the en-
tropy of certain black holes in string theory (Strominger and
Vafa, 1996).

37There is a notational conflict with most of the literature,
where N denotes the size of the gauge group. In this review, N
is reserved for the number of degrees of freedom (Sec. III.A).
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The proper area of the three-spheres diverges as r
→1. After conformal rescaling (Hawking and Ellis,
1973), the spacelike hypersurface, t5const, 0<r,1 is
an open ball, times a five-sphere. (The conformal picture
for AdS space thus resembles the world volume occu-
pied by a spherical system, as in Fig. 2.) Because the
five-sphere factor has constant physical radius, and the
scale factor vanishes as r→1, the five-sphere is scaled to
a point in this limit. Thus the conformal boundary of
space is a three-sphere residing at r51.

It follows that the conformal boundary of the space-
time is R3S3. This agrees with the dimension of the
CFT. Hence it is often said that the dual CFT ‘‘lives’’ on
the boundary of AdS space.

The idea that data given on the boundary of space
completely describe all physics in the interior is sugges-
tive of the holographic principle. It would appear that
the dual CFT achieves what local field theory in the in-
terior could not do. It contains an area’s worth of de-
grees of freedom, avoiding the redundancy of a local
description. However, to check quantitatively whether
the holographic bound really manifests itself in the dual
CFT, one must compute the CFT’s number of degrees of
freedom, N . This must not exceed the boundary area A
in ten-dimensional Planck units.

The proper area of the boundary is divergent. The
number of degrees of freedom of a conformal field
theory on a sphere is also divergent, since there are
modes at arbitrarily small scales. In order to make a
sensible comparison, Susskind and Witten (1998) regu-
larized the bulk spacetime by removing the region 1
2d,r,1, where d!1. This corresponds to an infrared
cutoff. The idea is that a modified version of the AdS/
CFT correspondence still holds for this truncated space-
time.

The area of the S33S5 boundary surface38 is approxi-
mately given by

A'
R8

d3 . (9.3)

In order to find the number of degrees of freedom of the
dual CFT, one has to understand how the truncation of
the bulk modifies the CFT. For this purpose, Susskind
and Witten (1998) identified and exploited a peculiar
property of the AdS/CFT correspondence: infrared ef-
fects in the bulk correspond to ultraviolet effects on the
boundary.

There are many detailed arguments supporting this
so-called UV/IR relation (see also, e.g., Balasubrama-
nian and Kraus, 1999; Peet and Polchinski, 1999). Here
we give just one example. A string stretched across the
bulk is represented by a point charge in the dual CFT.
The energy of the string is linearly divergent near the

38Unlike Susskind and Witten (1998), we do not compactify
the bulk to five dimensions in this discussion; all quantities
refer to a ten-dimensional bulk. Hence the area is eight dimen-
sional.
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boundary. In the dual CFT this is reflected in the diver-
gent self-energy of a point charge. The bulk divergence
is regularized by an infrared cutoff, which renders the
string length finite, with energy proportional to d21. In
the dual CFT, the same finite result for the self-energy is
achieved by an ultraviolet cutoff at the short distance d.

We have scaled the radius of the three-dimensional
conformal sphere to unity. A short distance cutoff d thus
partitions the sphere into d23 cells. For each quantum
field, one may expect to store a single bit of information
per cell. A U(n) gauge theory comprises roughly n2 in-
dependent quantum fields, so the total number of de-
grees of freedom is given by

N'
n2

d3 . (9.4)

Using Eq. (9.2) we find that the CFT number of degrees
of freedom saturates the holographic bound,

N'A , (9.5)

where we must keep in mind that this estimate is only
valid to within factors of order unity.

Thus the number of CFT degrees of freedom agrees
with the number of physical degrees of freedom con-
tained on any light sheet of the boundary surface S3

3S5. One must also verify that there is a light sheet that
contains all of the entropy in the spacetime. If all light
sheets terminated before reaching r50, this would leave
the possibility that there is additional information in the
center of the universe which is not encoded by the CFT.
In that case, the CFT would not provide a complete de-
scription of the full bulk geometry—which is, after all,
the claim of the AdS/CFT correspondence.

The boundary surface is normal (Bousso, 1999b), so
that both past and future ingoing light sheets exist. In an
asymptotically AdS53S5 spacetime without past or fu-
ture singularities, either of these light sheets will be
complete. Thus one may expect the CFT to describe the
entire spacetime.39

Thus the CFT state on the boundary (at one instant of
time) contains holographic data for a complete slice of
the spacetime. The full boundary of the spacetime in-
cludes a time dimension and is given by R3S33S5. Each
moment of time defines an S33S5 boundary area, and
each such area admits a complete future directed light
sheet. The resulting sequence of light sheets foliate the

39If there are black holes in the spacetime, then the future
directed light sheet may cross the black-hole horizon and end
on the future singularity. Then the light sheet may miss part of
the interior of the black hole. One can still argue that the CFT
completely describes all physics accessible to an observer at
infinity. A light sheet can be terminated at the black-hole ho-
rizon, with the horizon area added to its entropy content. The
data on a horizon, in turn, are complementary to the informa-
tion in the black-hole interior (Susskind, Thorlacius, and Ug-
lum, 1993).
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spacetime into a stack of light cones [each of which
looks like the cone in Fig. 2(c)]. There is a slice-by-slice
holographic correspondence between bulk physics and
dual CFT data. By the spacelike projection theorem
(Sec. VI.C.1), the same correspondence holds for the
spacelike slicing shown in Fig. 2(a).

Thus a spacelike formulation of the holographic prin-
ciple is mostly adequate in AdS. In recent years there
has been great interest in models of our universe in
which four-dimensional gauge fields are holographic du-
als to the physics of an extra spatial dimension (see, e.g.,
Randall and Sundrum, 1999a, 1999b)—a kind of ‘‘in-
verse holography.’’ Such models can be realized by in-
troducing codimension one objects, branes, into a five-
dimensional bulk spacetime. If the bulk is anti–de Sitter
space, the holographic correspondence is expected to be
a version of the AdS/CFT correspondence. In a very
general class of models (Karch and Randall, 2001), the
brane fields are dual only to a portion of the bulk. At-
tempts to apply the spacelike holographic principle lead
to contradictions in this case, and the use of the light-
sheet formulation is essential (Bousso and Randall,
2001).

To summarize, the AdS/CFT correspondence exhibits
the following features:

• There exists a slicing of the spacetime such that the
state of the bulk on each slice is fully described by
data not exceeding A bits, where A is the area of the
boundary of the slice.

• There exists a theory without redundant degrees of
freedom, the CFT, which generates the unitary evolu-
tion of boundary data from slice to slice.

Perhaps due to the intense focus on the AdS/CFT cor-
respondence in recent years, the holographic principle
has come to be widely regarded as synonymous with
these two properties. Their partial failure to generalize
to other spacetimes has sometimes been confused with a
failure of the holographic principle. We emphasize
therefore that neither property is sufficient or necessary
for the holographic principle, as defined in Sec. VIII.

Assuming the validity of the covariant entropy bound
in arbitrary spacetimes, Bousso (1999b) showed that a
close analog of the first property always holds. The sec-
ond, however, is not straightforwardly generalized. It
should not be regarded as a universal consequence of
the holographic principle, but as a peculiarity of anti–de
Sitter space.

C. Holographic screens for general spacetimes

1. Construction

Any spacetime, including closed universes, contains a
kind of holographic boundary, or screen. It is most easily
obtained by slicing the spacetime into light cones. The
total entropy on each light cone can be holographically
stored on the largest surface embedded in the cone. Our
Rev. Mod. Phys., Vol. 74, No. 3, July 2002
construction follows Bousso (1999b); see also Bigatti
and Susskind (2000) and Bousso (2000a).

Consider the past light cone, L 2 (technically, the
boundary of the past), of a point p in any spacetime
satisfying the null energy condition. The following con-
siderations will show that L 2 consists of one or two light
sheets.

The area spanned by the light rays will initially in-
crease with affine parameter distance l from p . In some
cases, for example, AdS, the area keeps increasing in-
definitely. For any surface B(l1) the holographic prin-
ciple implies that the total number of degrees of free-
dom on the portion 0<l<l1 is bounded by
A@B(l1)#/4. One can express this by saying that B(l1)
is a holographic screen, a surface on which the informa-
tion describing all physics on the enclosed light cone
portion can be encoded at less than one bit per Planck
area. If the light cone is extended indefinitely, it will
reach the conformal boundary of spacetime, where its
area diverges. In this limit one obtains a holographic
screen for the entire light cone.

A second possibility is that the area does not increase
forever with the affine parameter. Instead, it may reach
a maximum, after which it starts to contract. The focus-
sing theorem (Sec. VI.A) implies that contracting light
rays will eventually reach caustics or a singularity of the
spacetime. Let us continue the light cone until such
points are reached.

Let B be the apparent horizon, i.e., the spatial surface
with maximum area on the light cone. B divides the light
cone into two portions. By construction, the expansion
of light rays in both directions away from B vanishes
locally and is nonpositive everywhere. (We will not be
concerned with the second pair of null directions, which
does not coincide with the light cone.) Hence both por-
tions are light sheets of B . It follows that the total num-
ber of degrees of freedom on the light cone is bounded
by the area of its largest spatial surface:

N<
A~B !

2
. (9.6)

The denominator is 2 because the holographic bound
(A/4) applies separately to each light sheet, and the
light cone consists of two light sheets.

Consider, for example, a universe that starts with an
initial singularity, a big bang. Following light rays back-
wards in time, our past light cone grows at first. Eventu-
ally, however, it must shrink, because all areas vanish as
the big bang is approached.

One can summarize both cases by the statement that a
holographic screen for all the data on a light cone is the
surface where its spatial area is largest. A global holo-
graphic screen for the entire spacetime can now be con-
structed as follows.

One picks a worldline P(t) and finds the past light
cone L 2(t) of each point. The resulting stack of light
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cones foliates the spacetime.40 Each cone has a surface
of maximal area, B(t). These surfaces form a hypersur-
face in the spacetime or on its boundary. Cone by cone,
the information in the spacetime bulk can be repre-
sented by no more than A(t) bits on the screen, where
A(t) is the area of B(t).

In suitably symmetric spacetimes, the construction of
holographic screens is simplified by a Penrose diagram.
The spacetime must first be divided into ‘‘wedge do-
mains,’’ as shown in Fig. 7(a) for a closed universe. A
light-cone foliation corresponds to a set of parallel lines
at 45° to the vertical. (The remaining ambiguity corre-
sponds to the choice of past or future light cones.) In
order to get to a holographic screen, one has to follow
each line in the direction of the tip of the wedge. Either
one ends up at a boundary, or at an apparent horizon,
where the wedge flips.

The example shown in Fig. 7(b) is remarkable because
it demonstrates that holographic screens can be con-
structed for closed universes. Thus an explanation of the
origin of the holographic principle should not ultimately
hinge upon the presence of a boundary of spacetime, as
it does in the AdS/CFT correspondence.

Using the general method given above, global holo-
graphic screens have been constructed explicitly for vari-
ous other spacetimes (Bousso, 1999b), including
Minkowski space, de Sitter space, and various FRW uni-
verses. In many cases, they do form a part of the bound-
ary of spacetime, for example, in asymptotically AdS,
Minkowski, and de Sitter spacetimes.41 For several ex-
amples, Penrose diagrams with wedges and screens are
found in Bousso (1999b) and Bigatti and Susskind
(2000).

2. Properties and implications

Some of the properties of the boundary of AdS, such
as its area and its behavior under conformal transforma-
tions, can be used to infer features of the dual CFT.
Properties of global holographic screens can similarly
provide clues about holographic theories underlying
other classes of spacetimes (Bousso, 1999b).

In AdS, the global holographic screen is unique. It
is the direct product of a spatial sphere at infinity with

40A few remarks are in order. (1) A foliation can also be
obtained from future light cones, or from more general null
hypersurfaces. (2) Depending on global structure, the past
light cones may foliate only the portion of the spacetime vis-
ible to the observer. Suitable extensions permit a global folia-
tion by other null hypersurfaces. (3) If light rays generating the
past light cone of p intersect, they leave the boundary of the
past of p and become timelike separated from p . To obtain a
good foliation, one should terminate such light rays even if
they intersect with non-neighboring light rays, as suggested by
Tavakol and Ellis (1999). This can only shorten the light sheet
and will not affect our conclusions.

41Some subtleties arise in the de Sitter case which allow, al-
ternatively, the use of a finite area apparent horizon as a screen
(Bousso, 1999b). See also Sec. IX.E
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the real time axis. If the sphere is regulated, as in
Sec. IX.B above, its area can be taken to be constant
in time. None of these properties are necessarily shared
by the global screens of other spacetimes. Let us identify
some key differences and discuss possible
implications.

• In general, global holographic screens are highly
nonunique. For example, observers following differ-
ent worldlines correspond to different stacks of light
cones; their screens do not usually agree.

• One finds that spacetimes with horizons can have dis-
connected screen hypersurfaces. This occurs, for ex-
ample, in the collapse of a star to form a black hole
(Bousso, 1999b). Consider light cones centered at r
50. The past light cones are all maximal on I 2. The
future light cones are maximal on I 1 only if they start
outside the event horizon. Future light cones from
points inside the black-hole are maximal on an appar-
ent horizon in the black-hole interior. Thus there is
one screen in the past, but two disconnected screens
in the future.
These two features may be related to black hole
complementarity (Sec. III.H), which suggests that the
choice of an observer (i.e., a causally connected re-
gion) is a kind of gauge choice in quantum gravity.
Related questions have recently been raised in the
context of de Sitter space, where black hole comple-
mentarity suggests a restriction to one causal region
(Sec. IX.E). They also play a central role in the frame-
work for a holographic theory of cosmology pursued
by Banks (2000c) and Banks and Fischler (2001a,
2001b).

• The area of the maximal surface generically varies
from cone to cone: A(t)Þconst. For example, the
area of the apparent horizon in a flat FRW universe
vanishes at the big bang and increases monotonically,
diverging for late-time cones (Fig. 5). In a closed FRW
universe, the area of the apparent horizon increases
while the universe expands and decreases during the
collapsing phase [Fig. 7(b)].
This behavior poses a challenge, because it would
seem that the number of degrees of freedom of a ho-
lographic theory can vary with time.42 The shrinking
of a screen raises concerns about a conflict with the
second law (Kaloper and Linde, 1999). However, the
following observation suggests that the parameter t
should not be uncritically given a temporal interpreta-
tion on a screen hypersurface.

• The maximal surfaces do not necessarily form time-
like (i.e., Lorentzian signature) hypersurfaces. In de
Sitter space, for example, the global screens are the
two conformal spheres at past and future infinite time.

42Strominger (2001b) has recently suggested that the growth
of a screen might be understood as inverse renormalization-
group flow in a dual field theory.
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Both of these screens have Euclidean signature.43 The
same is true for the apparent horizons in spacetimes
with a w.1/3 equation of state (Fig. 5).

• Screens can be located in the spacetime interior.
Screens near the boundary have the advantage that
metric perturbations and quantum fluctuations fall off
in a controlled way. The common large distance struc-
ture of different asymptotically anti–de Sitter space-
times, for example, makes it possible to describe a
whole class of universes as different states in the same
theory.
The shape of interior screens, on the other hand, is
affected by small variations of the spacetime. The ap-
parent horizon in cosmological solutions, for example,
will depend on the details of the matter distribution.
Thus it is not clear how to group cosmological space-
times into related classes (see, however, Sec. IX.E).

The AdS/CFT correspondence realizes the holo-
graphic principle explicitly in a quantum gravity theory.
The points just mentioned show that, intricate though it
may be, this success benefits from serendipitous simpli-
fications. In more general spacetimes, it remains unclear
how the holographic principle can be made manifest
through a theory with explicitly holographic degrees of
freedom. In particular, one can argue that the screen
should not be presumed; all information about the ge-
ometry should come out of the theory itself.

Nevertheless, the existence of global holographic
screens in general spacetimes is an encouraging result. It
demonstrates that there is always a way of projecting
holographic data, and it provides novel structures. The
understanding of their significance remains an important
challenge.

D. Towards a holographic theory

We have convinced ourselves of a universal relation
between areas, light sheets, and information. The holo-
graphic principle instructs us to embed this relation in a
suitable quantum theory of gravity. It suggests that null
hypersurfaces, and possibly global screens, will be given
a special role in the regime where classical geometry
emerges. How far have we come in this endeavor?

The extent to which holography is explicit in string
theory and related frameworks has been discussed in
Secs. IX.A and IX.B. We have also mentioned the local
approach being developed by ’t Hooft (Sec. VIII.C).

An effectively lower-dimensional description is evi-
dent in the quantum gravity of 211-dimensional space-
times (Witten, 1988; see also van Nieuwenhuizen, 1985;
Achucarro and Townsend, 1986; Brown and Henneaux,

43This does not mean that holography reduces to ordinary
Cauchy evolution. Holographic encoding does not make use of
equations of motion. There is always a projection, slice by
slice, of holographic data onto the screen. Moreover, the limit
of 1 bit per Planck area, central to holography, plays no role in
Cauchy evolution.
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1986; see Carlip, 1995, for a review of 211 gravity). As
in the light cone formulation of string theory, however,
the entropy bound is not manifest. Hořava (1999) has
proposed a Chern-Simons formulation of (11-
dimensional) M theory, arguing that the holographic en-
tropy bound is thus implemented. Lightlike directions
do not appear to play a special role in present Chern-
Simons approaches.

The importance of null hypersurfaces in holography
resonates with the twistor approach to quantum gravity
(see the review by Penrose and MacCallum, 1972), but
this connection has not yet been substantiated. Jacobson
(1995) has investigated how Einstein’s equation can be
recovered from the geometric entropy of local Rindler
horizons. Markopoulou and Smolin (1998, 1999) have
proposed to construct a manifestly holographic quantum
theory of gravity based on the formalism of spin net-
works. Smolin (2001) discusses related approaches to an
implementation of the holographic principle and pro-
vides further references.

Banks (2000c) and Banks and Fischler (2001a, 2001b)
have sketched a preliminary framework for holographic
theories of cosmological spacetimes. After discretizing
time, one considers a network of screens obtained from
a discrete family of observers. In other words, one con-
structs the past light cones of a discrete set of points
spread throughout the spacetime. The maximal area on
each light cone determines the dimension of a Hilbert
space describing the enclosed portion of the spacetime.
Light cone intersections and inclusion relations give rise
to a complicated network of Hilbert spaces, whose di-
mensions encode geometric information. A theory is
sought which will give rise to spacetime geometry by
inverting these steps. The rules for the generation of
Hilbert space networks, and the construction of a suit-
able time evolution operator, are not yet understood.

Banks and Fischler (2001a) have also argued that con-
siderations of entropy determine the inital state of a big-
bang universe. By Eqs. (7.31) and (7.34), maximally stiff
matter, with equation of state p5r , has marginal prop-
erties under the holographic principle. This motivates a
model based on the initial domination of a p5r fluid,
from which Banks and Fischler are aiming to obtain new
perspectives on a number of standard cosmological
problems.

It has recently been noticed (Banks, 2000a; Fischler,
2000a, 2000b) that the holographic principle has particu-
larly strong implications in certain universes with a posi-
tive cosmological constant. As we discuss next, this
could be of help in characterizing a holographic theory
for a class of spacetimes that may include our universe.

E. Holography in de Sitter space

Generally the holographic principle restricts the num-
ber of degrees of freedom, N , only relative to some
specified surface. There are spacetimes, however, where
the holographic principle implies an absolute upper limit
on N . This follows in particular if it is possible to find a
global holographic screen whose area never exceeds N .
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Physically, there is not ‘‘enough room’’ in such universes
to generate entropy greater than N . In particular, they
cannot accommodate black holes with area greater than
of order N .

An absolute entropy bound could be viewed as a hint
about characteristics of the quantum description of a
whole class of spacetimes. The most radical conclusion
would be to look for theories that come with only eN of
states (Banks, 2000a; Bousso, 2000b; Fischler, 2000a,
2000b; Dyson, Lindesay, and Susskind, 2002).44 This is
quite unusual; even the Hilbert space of a single har-
monic oscillator contains infinitely many states.

If a continuous deformation of Cauchy data can take a
universe with maximal entropy N to one with N8ÞN , it
is hard to argue that they should be described by two
entirely different theories. Hence this approach will be
compelling only if physical criteria can be found which
characterize a class of spacetimes with finite N , indepen-
dently of initial data.

As we discuss below, a suitable class may be the uni-
verses that become similar to de Sitter space asymptoti-
cally in the future. However, we will not find this crite-
rion entirely satisfactory. We will comment on its
problems and possible generalizations.

1. de Sitter space

The maximally symmetric spacetime with positive cur-
vature is de Sitter space. It is a solution to Einstein’s
equation with a positive cosmological constant L and no
other matter. Using w521 in Eqs. (7.3), (7.18), and
(7.19), the metric can be written as a closed FRW uni-
verse,

ds25
a0

2

sin2 h
~2dh21dx21sin2 xdVD22

2 !. (9.7)

The curvature radius is related to the cosmological con-
stant by

a0
25

~D21 !~D22 !

2L
. (9.8)

For simplicity, we will take D54 unless stated other-
wise.

The spatial three-spheres contract from infinite size to
size a0 (0,h<p/2), then reexpand (p/2<h,p). The
Penrose diagram is a square, with spacelike conformal
boundaries at h50,p . A light ray emitted on the north
pole (x50) at early times (h!1) barely fails to reach
the south pole (x5p) in the infinite future [Fig. 10(a)].

The light rays at h5x reach neither the north nor the
south pole in finite affine time. They generate a null
hypersurface H , of constant cross-sectional area. (All
spatial sections of H are spheres of radius a0 .) H is the
future event horizon of an observer at the south pole. It

44For a speculation on the origin of the number N , see Mena
Marugan and Carneiro (2001).
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bounds the region from which signals can reach the ob-
server. There is a past event horizon (h5p2x) which
bounds the region to which the southern observer can
send a signal.

The intersection of both regions forms the ‘‘southern
diamond,’’ the region that can be probed by the ob-
server. It is covered by a static coordinate system:45

ds25a0
2F2~12r2!dt21

dr2

12r2 1r2dV2G . (9.9)

Note that the location of event horizons in de Sitter
space depends on a choice of observer (r50). Despite
this difference, Gibbons and Hawking (1977) showed
that the future event horizon of de Sitter space shares
many properties with the event horizons of black holes.
Classically, objects that fall across the event horizon can-
not be recovered. This would seem to endanger the sec-
ond law of thermodynamics, in the sense discussed in
Sec. II.A.3.

Mirroring the reasoning of Sec. II.A.3, one concludes
that the horizon must be assigned a semiclassical
Bekenstein-Hawking entropy equal to a quarter of its
area,

SdS5pa0
25

3p

L
. (9.10)

Gibbons and Hawking (1977) showed that an observer
in de Sitter space will detect thermal radiation coming
from the horizon, at a temperature T51/2pa0 .46

In pure de Sitter space, there is no matter entropy, so
the total entropy is given by Eq. (9.10).

2. dS6 spacetimes

So far we have discussed empty de Sitter space. Gen-
erally one is interested in describing a larger class of

45The coordinates r and t defined here differ from those de-
fined at the beginning of Sec. VII.A.

46See the end of Sec. II.B.2 for references to Bekenstein and
Unruh-Wald bounds arising in de Sitter space.

FIG. 10. Penrose diagram for empty de Sitter space. (a) H is
the future event horizon of an observer on the south pole (x
5p). The shaded region is the ‘‘southern diamond.’’ (b) Pen-
rose diagram for a generic solution that asymptotes to de Sitter
in the past and future (dS6). The future event horizon has
complete time slices in its past, such as Y .
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spacetimes, which might be characterized by asymptotic
conditions. Let us consider spacetimes that approach de
Sitter space asymptotically both in the past and in the
future. We denote this class by dS6. Its quantum de-
scription has recently attracted much attention (e.g.,
Balasubramanian, Hořava, and Minic, 2001; Strominger,
2001a; Witten, 2001; for extensive lists of references, see,
e.g., Balasubramanian, de Boer, and Minic, 2001; Sprad-
lin and Volovich, 2001). Implications of the holographic
principle in other accelerating universes have been con-
sidered by Hellerman, Kaloper, and Susskind (2001) and
Fischler et al. (2001); see also Banks and Dine (2001)
and Carneiro da Cunha (2002).

If de Sitter space is not completely empty, the Penrose
diagram will be deformed. In the asymptotic regions
matter is diluted, but in the interior of the spacetime it
can have significant density. Gao and Wald (2000)
showed under generic assumptions47 that the backreac-
tion of matter makes the height of the diagram greater
than its width. Then the future event horizon will cross
the entire space and converge in the north [Fig. 10(b)].
Because the spacetime approaches empty de Sitter space
in the future, the horizon will asymptote to a surface B ,
a sphere of radius a0 surrounding the south pole. There
will be no matter inside this sphere at late times. All
matter will have passed through the future event hori-
zon.

The future event horizon can be regarded as a light
sheet of the surface B . This implies that the entropy of
all matter on any earlier Cauchy slices cannot exceed a
quarter of the area A(B)54pa0

2. With Eq. (9.8) we find
that

Sglobal<
3p

L
. (9.11)

In particular, this holds for the total entropy in the
asymptotic past.

We will not be concerned with the unobservable fu-
ture region behind the event horizon. We conclude that
in a dS6 spacetime, the global entropy cannot exceed (3p
times) the inverse cosmological constant.

This may seem a surprising result, since the initial
equal-time slices can be taken arbitrarily large, and an
arbitrary amount of entropy can be placed on them.
However, if the matter density becomes larger than the
energy density of the cosmological constant during the
collapsing phase, the universe will collapse to a big
crunch. Then there will be no future infinity, in contra-
diction to our assumption.

3. dS1 spacetimes

An even larger class of spacetimes is characterized by
the condition that they approach de Sitter space in the

47Among other technical requirements, the spacetime must
be geodesically complete and nonempty. Strictly, the presence
of both asymptotic regions is not sufficient to guarantee geo-
desic completeness, because black holes can form. One would
not expect the geodesic incompleteness due to black-hole sin-
gularities to invalidate the above conclusions, however.
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asymptotic future. No restrictions are made on the be-
havior in the past. This class will be labeled dS1. In
addition to all of the dS6 universes, it includes, for ex-
ample, flat FRW universes that start with a big-bang sin-
gularity and are dominated by matter or radiation for
some time. At late times, all matter is diluted, only a
cosmological constant remains, and the metric ap-
proaches that of empty de Sitter space.

Recent astronomical data (Riess et al., 1998; Perlmut-
ter et al., 1999) favor a nonzero value of L;102120. If
this really corresponds to a fixed cosmological constant,
our own universe is in the dS1 class. This makes the
study of de Sitter–like spacetimes, in particular the dS1

class of universes, especially significant.
The global entropy at early times is unbounded in this

class. In the dS6 class, constraints arise, roughly speak-
ing, because all matter has to ‘‘fit’’ through a throat
three-sphere at h5p/2. In the dS1 class, there is no
need for a contracting phase. The universe can be every-
where expanding, with noncompact spacelike hypersur-
faces of infinite total entropy.

However, an observer’s vision is cloaked by the de
Sitter event horizon that forms at late times. Let us ask
only how much entropy can be detected by any single
observer (Banks, 2000a; Fischler, 2000a, 2000b). This is
easy to answer because the final entropy is known. At
late times, there is no matter and only a de Sitter event
horizon, so the total entropy will be given by Eq. (9.10).
By the generalized second law of thermodynamics, the
entropy at all other times will be less or equal.

It follows that in a dS1 spacetime, the entropy avail-
able to any observer cannot exceed (3p times) the inverse
cosmological constant. The restriction to a single ob-
server is natural in view of black hole complementarity
(Sec. III.G).

4. Other universes with positive L

Although they comprise a broad class, it is still some-
what unnatural to restrict one’s attention to dS1 uni-
verses. Because of exposure to thermal radiation, an ob-
server in de Sitter space cannot last forever. It is as
unphysical to talk about arbitrarily long times as it is to
compare the observations of causally disconnected ob-
servers.

Moreover, fluctuations in the Gibbons-Hawking radia-
tion cause black holes to form. If they are too big, they
can cause a big crunch—a collapse of the entire space-
time. But even the persistent production of ordinary
black holes means that any observer who is not other-
wise thermalized will fall into a black hole. In short,
quantum effects will prevent any observer from reaching
I 1.

So how can spacetimes with an absolute entropy
bound be usefully characterized? With assumptions in-
volving spherical symmetry, the covariant entropy bound
implies that the observable entropy in any universe with
L.0 is bounded by 3p/L (Bousso, 2000b). In addition



868 Raphael Bousso: The holographic principle
to all dS1 spacetimes, this class includes, for example,
closed recollapsing FRW universes in which the cosmo-
logical constant is subdominant at all times. This result
relies on the ‘‘causal diamond’’ definition of an observ-
able region. It would seem to suggest that L.0 may be
a sufficient condition for the absolute entropy bound,
S<3p/L .

At least in D.4, however, one can construct product
manifolds with fluxes, which admit entropy greater than
that of D-dimensional de Sitter space with the same cos-
mological constant (Bousso, DeWolfe, and Myers, 2002).
A fully satisfactory classification of spacetimes with fi-
nite entropy remains an outstanding problem.
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APPENDIX: GENERAL RELATIVITY

In this appendix, we summarize most of the geometric
terminology that pervades this paper. No attempts at
completeness and precision are made; in particular, we
will ignore issues of smoothness. The textbooks of
Hawking and Ellis (1973), Misner, Thorne, and Wheeler
(1973), and Wald (1984) may be consulted for a more
thorough discussion of this material.

1. Metric, examples, and Einstein’s equation

General relativity describes the world as a classical
spacetime M with D21 spatial dimensions and one
time dimension. Mathematically, M is a manifold whose
shape is described by a metric gab of Lorentzian signa-
ture (2 ,1 , . . . ,1). In a coordinate system (x0,. . . ,xD21),
the invariant distance ds between infinitesimally neigh-
boring points is given by

ds25gab~x0,. . . ,xD21!dxadxb. (A1)

Summation over like indices is always implied.
For example, the flat spacetime of special relativity

(Minkowski space) in D54 has the metric

ds252dt21dx21dy21dz2 (A2)

52dt21dr21r2dV2 (A3)

in Cartesian or spherical coordinates, respectively. A
Schwarzschild black hole of mass M is described by the
metric
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ds252S 12
2M

r Ddt21S 12
2M

r D 21

dr21r2dV2.

(A4)

The black-hole horizon, r52M , is a regular hypersur-
face, though this is not explicit in these coordinates.
There is a singularity at r50.

Einstein’s equation,

Gab58pTab , (A5)

relates the shape of space to its matter content. The Ein-
stein tensor, Gab , is a nonlinear construct involving the
metric and its first and second partial derivatives. The
stress tensor Tab is discussed further below.

2. Timelike, spacelike, and null curves

A curve is a map from (a portion of) R into M. In a
coordinate system it is defined by a set of functions
xa(l), lPR. At each point the curve has a tangent vec-
tor dxa/dl .

A vector va pointing up or down in time is called
timelike. It has negative norm, gabvavb,0. Massive par-
ticles (such as observers) cannot attain or exceed the
speed of light. They follow timelike curves, or worldlines,
i.e., their tangent vector is everywhere timelike. A vec-
tor ka is called null or lightlike if its norm vanishes. Light
rays follow null curves through spacetime; their tangent
vector is everywhere null. Spacelike vectors have posi-
tive norm. Spacelike curves connect points that can be
regarded as simultaneous (in some coordinate system).
No physical object or information follows spacelike
curves; this would require superluminal speed.

3. Geodesic curves

Curves that are ‘‘as straight as is possible’’ in a given
curved geometry are called geodesics. They satisfy the
geodesic equation,

d2xa

dl2 1Gbc
a dxb

dl

dxc

dl
5a

dxa

dl
. (A6)

(The Christoffel symbols Gbc
a are obtained from the met-

ric and its first derivatives.) Any geodesic can be re-
parametrized (l→l8) so that a vanishes. A parameter
with which a50 is called affine.

Unless nongravitational forces act, a massive particle
follows a timelike geodesic. Similarly, light rays do not
just follow any null curve; they generate a null geodesic.
We use the terms ‘‘light ray’’ and ‘‘null geodesic’’ inter-
changeably.

Two points are timelike separated if there exists a
timelike curve connecting them. Then they can be re-
garded as subsequent events on an observer’s worldline.
Two points are null separated if they are connected only
by a light ray. Two points are spacelike separated if it is
impossible for any object or signal to travel from one
point from the other, i.e., if they are connected only by
spacelike curves.



869Raphael Bousso: The holographic principle
4. Visualization and light cones

In all depictions of spacetime geometry in this paper,
the time direction goes up, and light rays travel at 45°.
The light rays emanating from a given event P (e.g.,
when a bulb flashes) thus form a cone, the future light
cone. Light rays arriving at P from the past form the past
light cone of P . They limit the spacetime regions that an
observer at P can send a signal to, or receive a signal
from.

Events that are timelike separated from P are in the
interior of the light cones. Null separated events are on
one of the light cones, and spacelike separated events
are outside the light cones. The worldline of a massive
particle is always at an angle of less than 45° with the
vertical axis. A moment of time can be visualized as a
horizontal plane.

5. Surfaces and hypersurfaces

In this text, the term surface always denotes a
D22-dimensional set of points, all of which are space-
like separated from each other. For example, a soap
bubble at an instant of time is a surface. Its whole his-
tory in time, however, is not a surface.

A hypersurface H is a D21-dimensional subset of the
spacetime (with suitable smoothness conditions). H has
D21 linearly independent tangent vectors, and one nor-
mal vector, at every point. If the normal vector is every-
where timelike (null, spacelike), then H is called a
spacelike (null, timelike) hypersurface.

Physically, a spacelike hypersurface can be interpreted
as ‘‘the world at some instant of time’’; hence it is also
called a hypersurface of equal time, or simply, a time slice
(Fig. 1). A timelike hypersurface can be interpreted as
the history of a surface. A soap bubble, for example,
inevitably moves forward in time. Each point on the
bubble follows a timelike curve. Together, these curves
form a timelike hypersurface.

Null hypersurfaces play a central role in this review,
because the holographic principle relates the area of a
surface to the number of degrees of freedom on a light
sheet, and light sheets are null hypersurfaces. If a soap
bubble could travel at the speed of light, each point
would follow a light ray. Together, the light rays would
form a null hypersurface. A particularly simple example
of a null hypersurface is a light cone.

More generally, a null hypersurface is generated by
the light rays orthogonal to a surface. This is discussed in
detail in Sec. V.B. As before, ‘‘null’’ is borderline be-
tween ‘‘spacelike’’ and ‘‘timelike.’’ This gives null hyper-
surfaces great rigidity; under small deformations, they
lose their causal character. This is why any surface has
only four orthogonal null hypersurfaces, but a continu-
ous set of timelike or spacelike hypersurfaces.

6. Penrose diagrams

Many spacetimes contain infinite distances in time, or
in space, or both. They have four or more dimensions,
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and they are generally not flat. All of these features
make it difficult to draw a spacetime on a piece of paper.

However, often one is less interested in the details of a
spacetime’s shape than in global questions. Are there
observers that can see the whole spacetime if they wait
long enough? Are parts of the spacetime hidden behind
horizons, unable to send signals to an asymptotic region
(i.e., are there black holes)? Does the spacetime contain
singularities, places where Einstein’s equation predicts
its own breakdown? If so, are they timelike, so that they
can be probed, or spacelike, so that they lie entirely in
the past or in the future?

Penrose diagrams are two-dimensional figures that
capture certain global features of a geometry while dis-
carding some metric information. The ground rules are
those of all spacetime diagrams: time goes up, and light
rays travel at 45°. An important new rule is that (al-
most) every point represents a sphere. This arises as fol-
lows.

We assume that the spacetime M is at least approxi-
mately spherically symmetric. Then the only nontrivial
coordinates are radius and time, which facilitates the
representation in a planar diagram. Usually there is a
vertical edge on one side of the diagram where the ra-
dius of spheres goes to zero. This edge is the worldline
of the origin of the spherical coordinate system. All
other points in the diagram represent (D22) spheres.
(In a closed universe, the spheres shrink to zero size on
two opposite poles, and the diagram will have two such
edges. There are also universes where the spheres do
not shrink to zero anywhere.)

A conformal transformation takes the physical metric
gab to an unphysical metric g̃ab :

gab→ g̃ab5V2gab . (A7)

The conformal factor V is a function on the spacetime
manifold M. The unphysical metric defines an unphysi-
cal spacetime M̃ .

A conformal transformation changes distances be-
tween points. However, it is easy to check that it pre-
serves causal relations. Two points that are spacelike
(null, timelike) separated in the spacetime M will have
the same relation in the unphysical spacetime M̃.

Penrose diagrams exploit these properties. A Penrose
diagram of M is really a picture of an unphysical space-
time M̃ obtained by a suitable conformal transforma-
tion. The idea is to pick a transformation that will re-
move inconvenient aspects of the metric. The causal
structure is guaranteed to survive. Here are two ex-
amples.

A judicious choice of the function V will map
asymptotic regions in M, where distances diverge, to
finite regions in M̃. An explicit example is given by Eq.
(9.7). By dropping the overall conformal factor and sup-
pressing the trivial directions along the (D22) sphere,
one obtains the unphysical metric depicted in the Pen-
rose diagram (Fig. 10). The asymptotic infinities of de
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Sitter space are thus shown to be spacelike. Moreover,
the spacetime can now be represented by a finite dia-
gram.

A neighborhood of a singularity in the spacetime M
can be ‘‘blown up’’ by the conformal factor, thus expos-
ing the causal structure of the singularity. An example is
the closed FRW universe, Eq. (7.3); let us take w>0 in
Eqs. (7.19) and (7.18). Again, the prefactor can be re-
moved by a conformal transformation, which shows that
the big-bang and big-crunch singularities are spacelike
(Fig. 7).

Conformal transformations yielding Penrose diagrams
of other spacetimes are found, e.g., in Hawking and Ellis
(1973), and Wald (1984).

7. Energy conditions

The stress tensor Tab is assumed to satisfy certain
conditions that are deemed physically reasonable. The
null energy conditon48 demands that

Tabkakb>0 for all null vectors ka. (A8)

This means that light rays are focused, not antifocused,
by matter (Sec. VI.A). The causal energy condition is

TabvbTacvc<0 for all timelike vectors va. (A9)

This means that energy cannot flow faster than the
speed of light.

In Sec. V.D.1, the null and causal conditions are both
demanded to hold for any component of matter, in order
to outline a classical, physically acceptable regime of
spacetimes in which the covariant entropy bound is ex-
pected to hold. The dominant energy condition is some-
what stronger; it combines the causal energy condition,
Eq. (A9), with the weak energy condition,

Tabvavb>0 for all timelike vectors va. (A10)

In cosmology and in many other situations, the stress
tensor takes the form of a perfect fluid with energy den-
sity r and pressure p :

Tab5ruaub1p~gab1uaub!, (A11)

where the unit timelike vector field ua indicates the di-
rection of flow. In a perfect fluid, the above energy con-
ditions (e.c.) are equivalent to the following conditions
on p and r:

null e.c.: r>2p , (A12)

causal e.c.: uru>upu, (A13)

null and causal: uru>upu and (A14)

r,0 only if r52p , (A15)

weak e.c.: r>2p and r>0, (A16)

dominant e.c.: r>upu. (A17)

48The ‘‘Null convergence condition’’ in Hawking and Ellis
(1973).
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With the further assumption of a fixed equation of state,
p5wr , conditions on w can be derived.
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