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Josephson weak links between samples of macroscopic quantum systems such as superconductors,
superfluids, and Bose-Einstein condensates provide a unique tool with which to explore quantum
mechanics and an opportunity to create applications based on macroscopic quantum physics. In this
review we describe the development of the field of weak links in superfluid *He. We review the basic
techniques used to study this system and then describe the experimental and theoretical milestones

that have led to our present understanding.
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I. INTRODUCTION

Superfluids, like superconductors and Bose-Einstein
condensates (BEC’s), are examples of systems in which a

0034-6861/2002/74(3)/741(33)/$35.00

finite fraction of all the constituent particles resides in
the same quantum state. When two samples of such a
system are “weakly coupled” together, a variety of inter-
esting physical effects occur due to the existence of a
well-defined quantum phase ¢ (London, 1945; Feynman,
1955; Anderson, 1964; Tilley and Tilley, 1990), which is a
macroscopic coordinate in the material. During the past
four decades superconducting Josephson devices (tunnel
junctions and microbridges) have been the prototypical
elements for the demonstration of a wide diversity of
physical phenomena, and some of the effects have led to
significant practical applications [e.g., superconducting
quantum interference device (SQUID) magnetometers
and voltage standards].

This article reviews recent progress in the physics of
Josephson weak links coupling samples of superfluid
SHe. We begin by giving a heuristic derivation of the
celebrated Josephson equations (Josephson, 1962) for
the general case of two weakly coupled macroscopic
quantum systems. We then remind the reader of some of
the most striking phenomena that exist in weakly
coupled superconductors: Josephson oscillations, the
Shapiro effect, plasma oscillations, and quantum inter-
ference as exemplified by the dc SQUID. After discuss-
ing the role of healing length in determining the strength
of the coupling, we describe some of the key experimen-
tal techniques for probing the properties of superfluid
3He weak links. The main body of this review covers the
key experimental and theoretical developments related
to the remarkable manifestations of weak-coupling
physics in superfluid *He.

Il. JOSEPHSON EQUATIONS A LA FEYNMAN

The governing equations for two weakly coupled mac-
roscopic quantum systems can be derived from several
different viewpoints. For simplicity we follow the heuris-
tic derivation of Feynman (Feynman et al., 1963). Al-
though originally intended to describe superconducting
phenomena, this approach is quite general for the weak
coupling of any two macroscopic systems.

We consider a particle that could be in either of two
samples of superfluid (labeled samples 1 and 2) which
are brought into some kind of weak coupling with each
other as shown schematically in Fig. 1(a). The represen-
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FIG. 1. Weak coupling between two superfluid samples: (a) a
schematic arrangement of two containers of superfluid sepa-
rated by a small aperture; (b) a schematic view of the overlap
of two unperturbed functions, u#; and u,, showing their inde-
pendent magnitudes as a function of position at the weak link.

tative particle is under the influence of a Hamiltonian
H=H)+ H,, where H describes an uncoupled system
and H, the coupling through the weak link.

In the presence of a weak-coupling term, the total
wave function W can be written as a superposition of the
uncoupled states u; and u,, which represent the eigen-
states for finding the particle on side 1 or 2, where the
energies are E| or E,, respectively. Thus

Hou1,2:E1,2u1,2 (1)

and
A4

We let ¥ =a,u;+a,u, and take the inner product of the
Schrodinger equation with u,. This gives

da
iﬁ7;=E101+01<M1|H1M1>+H12a2

=a1E{+H12a2, (3)

where H, is the matrix element (u|H u5).
Similarly, if we take the scalar product of the Schro-
dinger equation with u,, we get

da
i a_tz = Esay+ax(uy|Hyuy)+ Hyay

=a,E}+Hay, 4)

where we have used the fact that, for a real perturba-
tion, H12: H21 .

The amplitudes a; and a, are complex numbers,
which can be written as a;=p;e’? and a,= p,e'?2,
where the symbols p; and p, represent the mass density
of particles within the “condensed” fraction of the sys-
tem. Substitution of these amplitudes into Eq. (1) yields
two equations from the real and imaginary components.
One equation reveals that the mass current /=p; is
given by

2Hy, ) .
=7 VPip2 sin( ¢, — ¢p1)=1.sin ¢, 5
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where the second equality defines both the critical cur-
rent /, and the phase difference ¢=¢,— ¢;. One finds
from the other equation that

1
o= | (E1-EDar, ©)

where the energy E; equals E;+{(u;|H,|u;).

For a macroscopic quantum system the energy differ-
ence E;—FE/ is equal to the chemical-potential differ-
ence Au between the two sides, so we may write

1
#0= - | Bpar )
or, equivalently,
d¢ Auw
@ ®)

Although the derivation was carried out in the context
of two weakly coupled systems, the phase evolution
equation is much more general (Packard, 1998) and de-
scribes the phase evolution between any two points in a
macroscogic quantum system (e.g., superfluid “He, su-
perfluid °He-B, superconductors, and Bose-Einstein
condensates) whether weakly coupled or not. Since the
chemical-potential difference is the energy difference
between particles at two positions, Eq. (8) is equivalent
to saying that there exists a macroscopic wave function
that describes the system and that function has a time-
dependent phase varying as e ‘£”" (as in the single-
particle case). Equations (7) and (8) simply state that if
an energy difference exists between two points, the
phase difference changes with time in a fashion familiar
from microscopic quantum physics.

Equations (5) and (8) were first discovered by Joseph-
son (1962) in the context of Cooper-pair tunneling
through an insulating barrier, so-called “Josephson tun-
neling.” We note that the terms “Josephson equation”
and “Josephson effect” have been associated with very
many different phenomena occurring in many types of
weak links in many different physical situations. For
clarity, we shall use these terms sparingly and only as
defined in the text. Weak links characterized by the sine-
like 7(¢) [Eq. (5)] will be referred to as Josephson weak
links. Structures having local suppressed superconduc-
tivity (or superfluidity) but exhibiting a current-phase
relation /(¢) different from Eq. (5) we shall simply call
weak links. We also distinguish Josephson weak links
from “He devices in which phase slippage occurs by the
passage of vortices.

We shall refer to Eq. (5) as the Josephson current-
phase relation and Egs. (7) or (8) as the Josephson-
Anderson phase evolution equation. Note that Eq. (8) is
often called the ac Josephson equation or the Josephson
frequency relation. However, since this equation de-
scribes the general evolution of the phase difference
(not necessarily a periodic phenomenon), we shall re-
frain from this misnomer.

Ill. SUPERCONDUCTING WEAK LINKS

After Josephson’s pioneering paper (1962), experi-
ments on superconducting tunnel junctions soon showed
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that Josephson’s tunneling currents existed, and many
beautiful effects connected with Egs. (5) and (8) were
subsequently discovered (Van Duzer and Turner, 1981;
Barone and Paterno, 1982; Likharev, 1986). Since the
only requirement for the validity of Egs. (5) and (8) is
weak coupling between two macroscopic quantum
samples, it is not surprising that other weakly coupled
superconducting systems were soon also found to follow
these equations. In particular, constricting a supercon-
ductor into a narrow “bridge” between two macroscopic
samples will produce a device with a sin ¢ current-phase
relation (Dayem and Grimes, 1966). Quantum tunneling
is not required. The criterion for the bridge weak-link
geometry is that the length and at least one transverse
dimension of the link should be on the order of the su-
perconducting healing length ¢ (the characteristic mini-
mum length for wave-function variations near a bound-
ary). For example, in aluminum &~150nm and
photolithography techniques can readily produce
Dayem bridges that obey Egs. (5) and (8).

There is a vast literature describing many fascinating
effects associated with superconducting systems weakly
coupled in this fashion (Van Duzer and Turner, 1981;
Barone and Paterno, 1982; Likharev, 1986; Tilley and
Tilley, 1990). Here we shall mention only a few phenom-
ena that have played a pivotal role in the science of
superconducting weak links.

A. Josephson oscillations

If a fixed electric-potential difference V is established
between two weakly coupled superconductors, the
chemical-potential difference between Cooper pairs on
the two sides is given by

Ap=2eV. )

Using this in Eq. (8) and applying the result to Eq. (5)
immediately leads us to the prediction that a constant
voltage should produce supercurrents oscillating at the
so-called Josephson frequency,

Ap 2eV
wj=——=—7—=2m 484 THz/V. (10)

The existence of these currents, which are typically at
very high frequencies, is usually inferred from the detec-
tion of microwaves radiating from superconducting Jo-
sephson weak links (Langenberg et al., 1965) biased with
potential differences on the order of 1073 V.

B. Shapiro steps

If the potential difference applied across a supercon-
ducting Josephson weak link contains an ac component
Vac as well as a dc component, then this ac modulation
may mix with the Josephson oscillation to produce a dc
current (Josephson, 1962). This occurs when the Joseph-
son frequency associated with the applied dc compo-
nent, wy;, is an integral multiple of the frequency of the
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applied ac voltage w. As a function of w, current en-
hancement steps appear in the dc current-voltage char-
acteristic whenever

wj=nw, n=0,1,2,.... (11)
For a given n, the magnitude of the current enhance-
ment /,, depends on the nth-order Bessel function whose
argument is proportional to the applied ac voltage V,.:

J”( 2 eVac> '

I,=1 (12)

ho
This heterodyning effect was predicted in Josephson’s
original paper and confirmed experimentally soon after-
wards (Shapiro, 1963).

A related effect is seen when a dc-voltage-biased Jo-
sephson weak link is placed in a microwave resonant
cavity. Then the microwave radiation emitted by the os-
cillating currents in the weak link can excite cavity
modes which themselves will mix with the Josephson
oscillations and cause a dc current enhancement. Thus
when the Josephson frequency satisfies Eq. (11), where
w is now a cavity resonance frequency, a current spike
appears in the current-voltage (/-V) curve. This so-
called Fiske effect (Barone and Paterno, 1982) can be
thought of as a homodyne analog of the Shapiro effect.

C. Plasma mode

A real superconducting Josephson weak link may be
described by an electric equivalent circuit that consists
of a parallel combination of a capacitor, an ideal weak
link (i.e., an element exhibiting a sin ¢ current-phase re-
lation), and a resistor. For currents that are small com-
pared to I., the weak-link element acts as a linear in-
ductance L; with magnitude given by

]_27TIC ’

where ®,="h/2e is the quantum of magnetic flux. This
parallel combination of capacitive and inductive ele-
ments has a resonant mode that has been observed
(Dahm et al., 1968) and well studied in the microwave
region of the spectrum (Likharev, 1986). This mode is
often referred to as the plasma mode.

(13)

D. Quantum interference

In superconducting Josephson weak links there are
several interference effects related to the wave-function
phase shifts caused by magnetic fields. Perhaps the most
important example is that of the dc SQUID (Jaclevic
et al., 1964; Clarke, 1996). This consists of the parallel
connection of two sin ¢ junctions or weak links as shown
in Fig. 2. The total current through the device is propor-
tional to the sine of the phase difference across it, /
=1 ax SIN ¢. The maximum current [ ,,, is modulated by
the magnetic flux ® through the circuit:
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FIG. 2. The superconducting quantum interference device: (a)
schematic representation of a superconducting dc SQUID; (b)
a plot predicting the maximum dissipationless electrical cur-
rent as a function of magnetic flux measured in units of the flux
quantum.

i
cos IR (14)
The dc SQUID is the basis of the most sensitive de-
tector of magnetic fields and has many important uses in
science and technology. SQUID technology is reviewed
in many sources (Van Duzer and Turner, 1981; Barone
and Paterno, 1982; Likharev, 1986; Tilley and Tilley,
1990). To a large extent it is the technological impor-
tance of the SQUID (Clark, 1994) that has been a driv-
ing force toward fully understanding the many physical
phenomena related to superconducting weak links.

Imaxzzlc

IV. SUPERFLUID WEAK LINKS
A. Healing length

As mentioned above, weak coupling between two
macroscopic quantum systems (describable by a scalar
wave function) should lead to a sinelike current-phase
relationship and all the associated phenomena seen in
the superconducting systems. Superfluid helium is an ob-
vious choice for another such system (Anderson, 1967).
Because the helium mass is so much larger than the elec-
tron mass, it is unlikely that a true quantum tunneling
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junction can be created. However, as discussed below, it
is possible to create the equivalent of a Dayem bridge by
joining two bulk samples of superfluid via an aperture
whose spatial dimensions are on the order of &

In a mean-field theory of second-order phase transi-
tions to superfluidity, for example, Ginzburg-Landau
(Vollhardt and Wolfle, 1990) or Gross-Pitaevskii (Tilley
and Tilley, 1990), the superfluid healing length can be
estimated by the formula

= Voo 09

where « is the coefficient of the superfluid condensation
energy density term in the free-energy density. One can
obtain « from measurements of temperature depen-
dence of both the specific heat (on both sides of the
transition) and the superfluid density (Tilley and Tilley,
1990).

For *He well below T, ~2.17 K, &~0.1 nm, a dimen-
sion so small that fabrication of appropriate apertures
has not yet been successful. However, very near T,
where ¢, diverges as ~(1—T/T,)%, the data from a
recent experiment (Sukhatme et al., 2001) exhibited hy-
drodynamic behavior that was interpreted by the au-
thors as due to a sin ¢ current-phase relation. Consider-
able additional work will be required to determine if this
assertion is correct.

For *He, which forms a superfluid in the millikelvin
regime, Eq. (15) leads to (Vollhardt and Wolfle, 1990)

th
gS_E’

where vy is the Fermi velocity and A=1.76kT.(1
—T/T,)" is the energy gap. For the parameters rel-
evant for liquid *He, &;(7=0) varies from 12 to 65 nm
as the ambient pressure varies from 33 to 0 bars, respec-
tively. This size scale is sufficiently large that nanofabri-
cation techniques can be used to make apertures that
might be characterized by the Josephson /(¢) relation,
especially near the transition temperature at zero ambi-
ent pressure.

(16)

B. Possible weak-link geometries

Theoretical estimates of *He Josephson critical cur-
rent densities are on the order of pA/pp~1kgm 2s!
(where A is the energy gap, pr is the Fermi momentum,
and p is the fluid density). Thus the critical mass current
through a single aperture whose two transverse dimen-
sions are close to the coherence length (~100 nm) would
be on the order of 1x 10~ kg/s. Such mass currents are
quite difficult to detect with a good signal-to-noise ratio.
There are, however, at least two possible weak-link ge-
ometries that can allow for larger Josephson currents.

One possibility is to use a slit aperture for which only
one transverse dimension is on the order of & This has
been the approach used by Avenel and Varoquaux at
Saclay. In early experiments, ion milling techniques were
used to create a (nominally 0.3X 5 um?) slitlike structure
in 0.2-um-thick nickel foil (Varoquaux et al., 1987). In
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FIG. 3. A section of a nano-aperture array formed by etching
through a ~50-nm-thick silicon nitride membrane (which is
supported on a Si frame). The aspect ratio between the aper-
ture diameter d~¢ and the spacing /=3 um is chosen such
that />d to avoid series inductive effects.

later work, other slit apertures were fabricated in thin
silicon nitride (Si;N,) membranes. Results from experi-
ments using these slits are discussed extensively below.

Another approach, developed at Berkeley, uses an ar-
ray of N nominally square nanoapertures etched
through a thin silicon nitride (SiN) membrane. A scan-
ning electron microscopy (SEM) picture of such an ar-
ray is shown in Fig. 3. If an array behaves quantum co-
herently, then the Josephson mass currents will be N
times greater, potentially yielding an adequate signal-to-
noise ratio. One might expect that such coherence will
exist because, if neighboring apertures are incoherent,
there will be phase gradients along the membrane’s sur-
face. Such gradients involve additional energy, so the
lowest energy state should favor coherence in an array.

On the other hand, thermal fluctuations could create
incoherence among the apertures in an array. It is in-
structive to estimate the stochastic variations of phase
difference (due to thermal fluctuations) that might exist
across a volume of superfluid between two apertures
spaced a distance L apart. Consider a square slab of area
L? and thickness 7. The superfluid velocity is propor-
tional to the gradient of phase:

h
=—V¢. 1
Tk (17)
Equating the kinetic energy in this volume %p,v?L?7 to
3kpT, where p, is the superfluid density, suggests that
thermal energy could produce phase fluctuations be-
tween two apertures on the order of

A 2m3 ka 18
d)NT V 7p,° (18)

Taking a superfluid fraction of 3, a temperature near 1
mK, and a slab thickness 7 of ~100 um gives us phase
fluctuations due to thermal sources on the order of 2
X 10™* rad. This small number suggests phase coher-
ence will prevail in a *He nanoaperture array. Results
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from experiments in Berkeley with different types of
nanoaperture arrays are discussed in detail below.

By contrast, since /T/p, is ~3x10* greater in super-
fluid “He very close to T, , where the coherence length
is comparable to presently feasible nanoapertures, such
arrays are not expected from Eq. (18) to be coherent.

C. Theory of the weak-link current-phase relation

There are numerous theoretical predictions for the
I(¢) relation for a *He weak link. The problem is chal-
lenging because the order parameter describing this su-
perfluid is a complex 3 X3 tensor quantity characterized
by 18 parameters and because more than one superfluid
phase exists. For a discussion of the full theoretical de-
scription of superfluid *He, see the comprehensive re-
view by Vollhardt and Wolfle (1990). Reviews of related
physics of Josephson weak links in unconventional su-
perconductors can be found by Van Harlingen (1995)
and Mineev and Samokhin (1999).

Because of this complexity, calculations to predict
I(¢) for any real *He weak-link geometry require sim-
plifying assumptions. Several researchers have used dif-
ferent theoretical techniques, forms for the order pa-
rameter, and boundary conditions. Here we briefly
summarize the techniques and conclusions.

In their pioneering work on the Ginzburg-Landau de-
scription of superfluid *He, Ambegaokar, deGennes,
and Rainer (1974) write down a simple weak Ginzburg-
Landau coupling between two samples of superfluid.
They conclude that, if the superfluid is axial (e.g., A
phase), then there are two possible current-phase rela-
tions. One is conventional, i.e., /esin(¢), when the I vec-
tors are parallel on both sides of the weak link. When
the I’s are antiparallel, there is zero Josephson current
(to first order).

Kopnin (1986) considered the case of an orifice whose
diameter and length are much smaller than the healing
length. Using semiclassical Green’s-function techniques
and considering temperatures only near 7., he derived
the current-phase relation for two different situations.
When the scattering near the aperture is diffuse, 7(¢)
was found to be sinelike with the magnitude of 7, pro-
portional to (1—7/T,)?, whereas when scattering is
specular /(¢) is still sinelike, but now /. is proportional
tol1-T/T,.

Monien and Tewordt (1986, 1987) used a Ginzburg-
Landau representation of the free energy of the weak
link and calculated the current through an aperture for a
fixed phase difference across it. Different assumptions
for the form of the order parameter were made and
specular scattering boundary conditions chosen. A vari-
ety of predictions for I(¢) resulted, with many having
multivalued and noncontinuous functional forms.

Hook (1987) studied /(¢) in a superfluid phase con-
taining a single order parameter (S wave) as a function
of the length and diameter of the aperture using the
Ginzburg-Landau formalism. The phase diagram of phe-
nomena occurring in the aperture was then mapped out
in the plane whose axes are aperture length / and diam-
eter d. When [<¢ and d<<¢, a sinelike /(¢) resulted. If
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both /> ¢ and d> ¢, the phenomenon predicted was 27
phase slippage.

Kurkijarvii (1988) studied theoretically an aperture
whose diameter and length are much smaller than ¢,
with specular scattering at the walls. This is often re-
ferred to as the “pinhole” limit. Both the A phase and B
phase were considered in calculations using the quasi-
classical Green’s-function approach. In the A phase, for /
vectors parallel on the two sides of the aperture, I(¢) is
predicted to be sinelike, while opposite I vectors pro-
duce a zero Josephson current. For the B phase near 7,
a sinelike /(¢) is predicted, but for very low tempera-
tures this relationship is skewed and finally becomes
proportional to sin(¢/2).

Thuneberg (1988) used numerical solutions of the
Ginzburg-Landau equations in a two-dimensional model
of a weak-link aperture in the B phase. The current-
phase relation is found to be sinelike if the n vectors of
the B-phase order parameter are parallel. Antiparallel n
vectors resulted in the prediction of skewed and discon-
tinuous /(¢) functions.

Ullah and Fetter (1989) also used numerical solutions
to the Ginzburg-Landau equations in two dimensions.
Boundary conditions specifying the phase gradient,
rather than the phase, at the bulk ends of the aperture
were used. They computed the critical current as a func-
tion of the width and length of the weak link.

Thuneberg, Kurkijarvii, and Sauls (1990) used the
quasiclassical theory to study the case of different-
shaped apertures in thin walls (d<<¢) with specular scat-
tering. The effects of a finite-size radius aperture on the
order parameter and Josephson current, and a compari-
son with the pinhole result in the infinitely thin wall
(Kurkijarvii, 1988), are also discussed (Thuneberg et al.,
1990).

Very recently, a comprehensive theoretical analysis of
the *He weak-link problem in superfluid *He has been
carried out by Viljas and Thuneberg (2002). These au-
thors discuss the current-phase relationships of weak
links between two volumes of superfluid using an ap-
proach that is divided into mesoscopic and macroscopic
components. This is done to allow for analysis of effects
of texture on /(¢). The weak link is assumed to be a
pinhole. Using a self-consistent order parameter and
quasiclassical techniques they calculate the current-
phase relationship for several cases. In the isotextural
case, I(¢) is calculated assuming a constant spin-orbit
texture. In the opposite anisotextural case, the texture
changes as a function of the phase difference and its
stiffness is considered as well.

Theoretical work specifically focused on the special
case of the “m state” [and its associated I(¢)] is re-
viewed in Sec. IX below.

The theoretical analyses of this challenging and com-
plex problem have resulted in the prediction of a wide
variety of current-phase relations as a function of geom-
etry, superfluid phase, texture near the weak link, mag-
netic field, and temperature. It has remained an experi-
mental challenge to determine the actual I(¢) of *He
weak links.
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V. EXPERIMENTAL TECHNIQUES

Superfluid *He exists only at temperatures below a
few millidegrees Kelvin. The transition temperature 7.
varies from 0.9 mK at P=0 to 2.7 mK near the solidifi-
cation pressure of 30 bars. Thus the superfluid Joseph-
son weak-link experiments must be performed using
millikelvin refrigeration techniques. Usually the cooling
is performed using adiabatic demagnetization of the
nuclear spins in several kilograms of copper metal (Lou-
nasmaa, 1974; Richardson and Smith, 1988; Pobell,
1992).

To study superfluid *He weak links, one needs to ap-
ply and measure chemical-potential differences and
mass currents in a fashion analogous to the application
and measurement of voltage differences and electrical
currents in superconductors. Because the apertures are
necessarily on the submicron scale (i.e., on the order of
the coherence length), the mass currents are small, and
thus specialized techniques have been developed to
measure mass currents and to control chemical-potential
differences.

For a fluid, chemical-potential variations are given by
(Khalatnikov, 1965)

mdP
d,uzTJrsdT, (19)

where m is the particle mass, P is the pressure, p is the
density, s is the entropy per particle, and 7 is the tem-
perature. In all the *He weak-link experiments thus far,
the temperature variation term has been negligible. In
that case, the chemical-potential difference between two
superfluid *He samples is given by

2m 3AP
Au= , (20)
p
where the factor of 2 reflects the Cooper-paired nature
of the superfluid *He “particles.”

The key element used for control and measurement of
pressure difference is a flexible membrane coated with a
metallic film, as shown schematically in Fig. 4. A rigid
electrode adjacent to the membrane can be used to ap-
ply electrostatic pressures to the system. Small displace-
ments (from equilibrium) of the membrane are linear in
the applied pressure difference. For a given applied volt-
age V, the membrane’s (spatially averaged) equilibrium
displacement x4 is determined by the balance between
its spring force and the electrostatic pressure:

1 AegV?
Yea™) Tkad?

where ¢ is the permittivity of the liquid, A is the area of
the membrane, k is the membrane spring constant, and d
is the spacing between the membrane and rigid elec-
trode. For typical membranes used in the superfluid ap-
erture experiments, A~10"*m?, V~10°V, k~3
X 10° N/m, and d~5x10"° m, resulting in typical dis-
placements of order 1 um. The instantaneous pressure
difference across the membrane (and thus across the ap-
erture) is given by

21
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FIG. 4. A typical experimental arrangement used to probe the
properties of superfluid weak links. An inner volume is
bounded by an impermeable, rigid frame that supports a flex-
ible membrane. The fluid within is coupled to an outer volume
of fluid through the weak link under study. The membrane is
superconducting and faces an adjacent solid electrode and an
input coil to a superconducting displacement sensor. This
membrane serves as a pressure gauge, a mass current meter,
and a source of chemical-potential difference (i.e., pressure
differential). The displacement from equilibrium x(¢) is
shown.

k k
AP(1)=—[x(1) = xeq]= 3 Ax(0), (22)

where Ax(7) is the instantaneous displacement from
equilibrium. For the parameters listed here, differential
pressures of the order of 10 Pa and smaller are typical.
In the analyses below we set x. equal to 0 unless explic-
itly stated otherwise.

A flexible membrane can also be used to measure
mass currents. Referring to Fig. 4, we see that any fluid
entering through the aperture will increase the internal
volume by displacing the membrane. Assuming an in-
compressible fluid, the mass current is given by

I=pAt, (23)

where p is the fluid density.

Since the membrane position x yields the pressure
[Eq. (22)] and x yields the current [Eq. (23)], the key to
studying properties of flow through small apertures is to
use a highly sensitive displacement transducer to moni-
tor x(¢). An appropriate technique was developed by
Paik (1976) in the context of displacement measure-
ments for gravity-wave antennae and adapted for use
with superfluid helium by Avenel and Varoquaux (1986).
The Paik sensor is based on the small changes in the
mutual inductance between a pancake-shaped supercon-
ducting coil and a superconducting plane, when that
plane moves with respect to the coil. A persistent cur-
rent is trapped in the pancake coil, which is also con-
nected to the input coil of a dc SQUID. A change in
mutual inductance results in a SQUID signal V, pro-
portional to x.

The ultimate displacement noise floor is determined
by the flux noise level in the SQUID and is usually op-
timized by having the spacing between pancake coil and
membrane be as small as possible. In nanoaperture ex-
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periments one can achieve a displacement noise Jx
~10~' m//Hz for operating frequencies up to ~10 kHz
when the spacing is ~100 pum.

In fact, it is rather rare to be limited by the electronic
noise in the SQUID readout. Local vibrations of the
experimental apparatus typically move the membrane
for a variety of reasons and produce a “noise” signal in
excess of the intrinsic electronic SQUID noise. For this
reason sophisticated vibration isolation and acoustic
shielding (Avenel et al.,, 1993) are usually required to
obtain a good signal-to-noise ratio when determining
SHe Josephson mass current signals.

VI. EQUATION OF MOTION FOR ¢ IN A MEMBRANE-
APERTURE CELL

The general motion of a flexible membrane coupled
to a sin ¢ weak link is similar to that of a rigid pendu-
lum. Since the pressure AP across the weak link is pro-
portional to the membrane displacement [Eq. (22)], Eq.
(8) becomes

. 2ms k
¢:_ p_hZ[x(t)_xeq]' (24)
Differentiating gives
2ms k- 2mskl, 5 .
=-— p_ﬁzx: - Wsm p=—w,singp, (25)

where we have used the fact that the current is /
=pAx=1_sin ¢. Equation (25) is the equation of mo-
tion for the quantum phase evolution when dissipation is
ignored. It is identical in form to the equation of motion
for a rigid pendulum whose small-oscillation frequency
is w,, if ¢ now represents the angular displacement
from the vertical.

There are three characteristic motions of a rigid pen-
dulum, as indicated schematically in Figs. 5(a)—5(d). For
small displacement angles, sin ¢~ ¢ and the motion of ¢

and ¢ is simple harmonic with frequency w, . For large-
angle displacements with ¢<7r, the oscillator is nonlin-
ear with frequency approaching zero as the angular am-
plitude approaches 7 (Monien and Tewordt, 1987).

Furthermore, as ¢ approaches , ¢ approaches zero and
¢ remains near zero for relatively long periods of time.

For very large energies ¢ grows without limit, while ¢
oscillates about a nonzero value as the pendulum orbits
about the suspension point. Starting with a large initial
energy, if there is slight dissipation, the oscillator motion
evolves through each of these stages in turn, ending in
the simple pendulum mode.

The important dynamical variable in weak-link ex-
periments using a membrane-aperture cell is the quan-
tum phase difference ¢, which, after an initial large en-
ergy input (e.g., a large pressure step), evolves through
three stages equivalent to those in the rigid pendulum
dynamics. The observable in cells such as those in Fig. 4
is the membrane displacement Ax(¢), which from Eq.

(24) is proportional to ¢. Therefore, to compare theory
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Small-Amplitude Oscillations
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Large-Amplitude Oscillations
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—»

Damped Pen'dulum Decay

{UEE

FIG. 5. Rigid pendulum motion: (a) small-amplitude motion, a
simple pendulum; (b) motion approaching ¢~ , a nonlinear
oscillator that spends a significant fraction of the cycle near
¢=~0; (c) continuous twirling at some frequency resulting from
a large initial energy. The mean value of ¢ is not zero; (d)
transient decay with slight damping. When (¢)# 0, the twirling
frequency is proportional to ().

and experiment, it is the dynamics of ¢ that is the focus

of attention, and the characteristics of ¢ in each ex-
ample of these dynamics are shown in the right-hand
panels of Fig. 5. We show in Fig. 5(d) a numerical simu-

lation of both ¢ and ¢ when the system has large initial
energy and small damping. The twirling motion of the
pendulum discussed above is equivalent to an oscillation
of x in the membrane-aperture cell. Careful inspection
of the figure would reveal that the frequency of these
oscillations is proportional to the average displacement
of x from equilibrium.

VIl. SUPERFLUID JOSEPHSON OSCILLATIONS
A. Josephson oscillations

The most striking phenomenon characteristic of the
sin ¢ current-phase relation is a spectrally pure oscillat-
ing current associated with a constant chemical-potential
difference. This violates our classical intuition that a
pressure head applied across the fluid in a hole should
result in unidirectional flow.
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FIG. 6. The Berkeley double-diaphragm cell. The addition of a
second (lower) membrane with another adjacent electrode
permits one to use feedback to drive flow at a constant pres-
sure differential.

For *He the Josephson frequency relation equivalent
to Eq. (10) is given by
h ph
Thus, for example, a pressure head of 1 Pa applied
across a superfluid Josephson weak link should create an
oscillating mass current of amplitude /.. at a frequency of
187.4 kHz. The Josephson oscillations resulting from a
given pressure head correspond to the twirling mode of
the pendulum [Fig. 5(c)].

A mass current oscillating at frequency w through an
aperture of area o will result in an amplitude x, of mem-
brane motion given by

(26)

W=

R
0 pAw’

where j . is the Josephson critical current density (/./o).
Since  theoretical  estimates suggest that j.
~1 kgm~ 257!, for an aperture of diameter ~£; and a
Josephson frequency of 100 Hz, this would result in an
oscillation amplitude of membrane motion ~3
X107 m, barely within the range of detectability.
However, as noted above, a coherent array of M
nanoapertures should in principle make these oscilla-
tions signals M times greater and hence detectable.
These Josephson oscillations have been observed in
nanoaperture arrays using an experimental cell similar
to that shown schematically in Fig. 6. The cell consists of
a very short cylindrical container bounded on the top
and bottom by flexible Kapton® membranes. Both mem-
branes are metal coated, the top with a superconducting
film and the bottom with a normal metal. Electrodes are
placed outside the cylinder, both above and below.
These electrodes are used in conjunction with voltage
supplies and capacitance bridges to apply pres-

27)
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sure heads to the cell and to determine the spring con-
stant of the membranes. The input coil of a Paik dis-
placement sensor is positioned above the top
membrane. A nanoaperture array is built into the lower
membrane.

In one type of experiment using an array [65X 65 ap-
ertures, 100 nm diameter, micromachined (Amar, 1993)
in a 50-nm-thick silicon nitride membrane], a voltage
step is applied between one of the membranes and its
adjacent electrode. The pull on the membrane creates a
pressure difference AP [and therefore a chemical-
potential difference given by Eq. (20)] across the
nanoaperture array. As described by Eq. (26), this
should lead to oscillating currents at the frequency

2}’}13P

fi= oh =187.4 kHz/Pa. (28)
As shown in Eq. (27), the displacement amplitude of the
detector membrane is inversely proportional to the fre-
quency. Therefore the range of pressure differential
must be chosen to limit the predicted Josephson fre-
quency to values sufficiently small to permit detection.
The pressure differentials are typically in the millipascal
regime, and the Josephson oscillation signal is in the au-
dible region. Under these conditions Josephson oscilla-
tions are indeed observed (Pereverzev et al., 1997). In
fact, the first detection of Josephson oscillations was
made by listening to the voltage output of the SQUID
with a set of audio headphones.

After the application of a step voltage, the output of
the SQUID displays a relaxation transient x(¢) as the
membrane relaxes to a new equilibrium position in a
time scale of several seconds. The SQUID output signal
applied to audio headphones reveals an oscillation signal
in the audio range, which sweeps downward in fre-
quency as the pressure head decays due to dissipative
processes (Simmonds, Marchenkov, Vitale, et al., 2000).

When the recorded SQUID signal is Fourier trans-
formed in each small time interval of the transient, it
displays a clear peak. Since the average displacement of
the membrane measures the pressure difference [from
Eq. (22)], one can plot the frequency of the fast Fourier
transform (FFT) peak in each time interval as a function
of the pressure across the array at the same instant. The
result can be seen in Fig. 7.

All the data points, from several different tempera-
tures, lie on the same straight line, whose slope is given
within systematic error by the Josephson frequency for-
mula, Eq. (28). At temperatures near 7., where the
healing length is long, the FFT’s reveal only the Joseph-
son frequency (i.e., no higher harmonics) consistent with
a pure sin ¢ current-phase relation. At lower tempera-
tures, higher harmonics can be detected.

Although, as shown below, there are several other ob-
served phenomena characteristic of a sin¢ current-
phase relation, the observation of dc pressure-driven
single-harmonic Josephson oscillations is still the sim-
plest and clearest manifestation of a superfluid Joseph-
son weak link.

Rev. Mod. Phys., Vol. 74, No. 3, July 2002

71 m 0.685 mK
5] © 0627mK
1 2 0543mK
5| v 0505mK
| e 0468 mK
f, *
[kHz] 3]
| f = (194 +15 Hz/mPa) P
24
1_

10.0 150 20.0 25.0 300 35.0
P [mPa]

00 50

FIG. 7. A plot of the frequency of membrane oscillations ver-
sus the differential pressure for several different temperatures.
All the points lie on a universal line that is consistent with the
prediction of Eq. (28).

B. Quantum pressure standard and phase meter

The data shown in Fig. 7 permit one to make an in situ
absolute pressure calibration of the displacement trans-
ducer. The pressure scale used in the figure was based on
an electrostatic calibration (i.e., the relation between the
SQUID output and the pressure created by the applica-
tion of a voltage) that is subject to systematic error on
the order of 10%. However, by assuming the correctness
of the superfluid Josephson frequency formula [Egq.
(28)], one can establish an absolute calibration of the
pressure scale. Since pressure is a linear function of av-
erage displacement, which is itself a linear function of

the SQUID signal V,, one can write from Eq. (26)

pliw;

AP=BV= Imy (29)
where B is the unknown calibration constant. The slope
of a plot of Vi, vs w; then yields g, thus providing an
absolute quantum pressure standard.! This is analogous
to the definition of the standard volt (Taylor et al., 1969;
Popel, 1992) in terms of Eq. (10).

The establishment of this absolute pressure scale pro-
vides a technique for determining the instantaneous
quantum phase difference, which is of great utility for
exploring the physics of superfluid weak links. Equation
(7) links the instantaneous phase difference to an inte-
gral of the chemical-potential differential, which is es-
tablished by the pressure head through Eq. (20). Follow-
ing some excitation of the aperture-membrane oscillator,
a continuous determination of ¢(¢) may be made by
integrating the time-dependent SQUID voltage V:

n order to create a very precise quantum pressure standard
based on the superfluid Josephson frequency relation, one
would need to determine the fluid density to greater accuracy
than known at present.
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1 e
d(t)=dy— % fo(ﬂz_,“])dl'

1 ft2m3APd
= - — R t'
d)[) % 0o p
2m3,3 ! , ,
=¢y— —pﬁ fﬂ V(t')dt'. (30)

We assume that, when the system is stationary, ¢,=0
and ignore inertial terms that can be shown to be typi-
cally no greater than 1%. Implementation of Eq. (30)
results in a continuous measurement of the quantum
phase difference, i.e., a “phase meter.”

VIIl. DETERMINATION OF THE CURRENT-PHASE
RELATION /()

According to the simple arguments leading to Eq. (5),
the I(¢) relation should be sinelike for sufficiently weak
coupling between superfluid reservoirs. However, as dis-
cussed in Sec. IV.C, detailed calculations for *He do not
always lead to this simple result. Therefore it has been
of great interest to determine 7(¢) for a *He weak link
as a function of temperature and pressure. There have
been several experimental approaches to this challenge.

A. Method |

The first approach for probing nonlinear current-
phase relations was suggested by Zimmermann (Brooks
et al., 1979) in the context of vortex phase slippage in
“He. The method focuses on the dynamical behavior of
a single aperture [whose I(¢) one wishes to know]
shunted by a larger tube. This shunted-aperture arrange-
ment has been used with great success, especially at
Saclay, for the study of vortex creation in “He (Avenel
and Varoquaux, 1985; Varoquaux et al., 1986; Avenel
et al., 1990; Zimmermann et al., 1990; Ihas et al., 1992;
Varoquaux et al. 1993).

In superfluid *He, this topology was first applied by
Parpia and Reppy (1979) who used a superfluid-filled
torus, which played the role of the shunt tube, inter-
rupted by a wall containing a micron-scale aperture. The
torus was the inertial element in a torsional oscillator.
They studied the oscillator response to an ever-
increasing driving force in search of nonlinear behavior
which would result from a sinelike current-phase rela-
tion in the aperture. Although this experiment did not
reveal any simple signatures, the oscillator exhibited
nonlinear chaotic behavior under certain conditions. In
hindsight, this may have been an effect due to a weak-
link /(¢) function that was approaching the Josephson
sin ¢ limit. However, without the foundation of simpler
effects to build on, the chaotic signatures could not be
analyzed as a manifestation of Eq. (5).

The first convincing experimental evidence for a sine-
like 7( ¢) in superfluid *He was reported by Avenel and
Varoquaux (1988). This team studied the shunted-
aperture topology but now coupled to a membrane
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FIG. 8. The geometry of the Saclay cell. An inner volume is
enclosed by rigid walls and a flexible membrane. The walls
include a small slit orifice (the weak link) as well as a larger
cross-section parallel channel of known length and width. The
parallel channel shorts out dc pressure differentials but permits
circulation changes in the closed path that passes through both
the channel and orifice. The position of the membrane is moni-
tored by a SQUID displacement detector.

(Brooks et al., 1979). The weak link was nominally a slit
of approximate dimensions 0.3X5 um?. Figure 8 is a
schematic representation of their original cell. As ex-
plained in Appendix A, the membrane can be repre-
sented by an effective capacitance, and the two parallel
flow paths can each be characterized by a representative
kinetic inductance. The cell in the figure is equivalent to
a combination of capacitor and inductor and thus exhib-
its hydrodynamic resonance. However, the inductance of
the weak link can be a function of the phase difference
across it (as discussed in Appendix A) and thus the
equivalent oscillator is nonlinear as a function of its am-
plitude.

Avenel and Varoquaux analyzed the oscillator dynam-
ics by parametrizing the aperture /(¢) using a model
introduced by Deaver and Pierce for superconductors.
In this model the slit aperture is assumed to be a linear
inductance in series with a sinelike weak link. This leads
to a parametrization of the current-phase relation given
by

I=1_.sin¢,
where
d={+asinl. (31)

As shown schematically in Fig. 9(a), ¢ is the real phase
drop across the combined system, while ¢ is the (unmea-
surable) phase drop across the sinelike element. In this
model, « is the ratio of the inductance of the series’
linear element to the inductance of the weak link at zero
phase bias. For «=0 the model represents a pure sine-
like weak link, whereas for a>1 it represents an /()
that is a multivalued function. Figure 9(b) shows a plot
of I(¢)/1,. for various values of «. The oscillator’s equa-
tion of motion involves both « and /...

The amplitude of the oscillator in Fig. 8 was measured
as a function of driving force and frequency (Avenel and
Varoquaux, 1988; Varoquaux et al., 1992). Figure 10 dis-
plays a response characteristic for the B phase of *He at
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FIG. 9. Plotted values of the normalized Deaver-Pierce
current-phase relation for various values of . When a<1, the
curve is single valued, whereas when a>1, it becomes triple
valued and hysteretic.

zero pressure. It shows a plot of the peak amplitude of
motion of the oscillator. The solid line is a best fit from a
numerical simulation of the experiment letting both «
and [, vary as fitting parameters. Because a fit to the
data can be achieved by using a sinelike current-phase
relation, this is the first experimental result consistent
with the existence of a Josephson weak link in superfluid
helium.

Table 1 from Varoquaux et al. (1992) gives the best-fit
values of @ and R at three temperatures where a good fit
to the numerical model could be achieved and one lower
temperature where the fit was difficult. For tempera-
tures above 0.837 ., <1, indicating that the aperture is
getting close to a sinelike /(¢) function.

As a further indication of the form of /(¢), the au-
thors point out that on some occasions the driving force
on the membrane results in no fluid flow through the
parallel aperture and tube. As discussed in Appendix A,
for a weak link characterized by a function I(¢), the
equivalent kinetic inductance is given by

. K3 dl -1
2w\de
The absence of flow in response to an applied pressure

implies that the parallel combination of the shunt induc-
tance L, and L,,,

L,=L,L,/(L;+L,), (33)

L(¢) (32)
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behaves as an infinite inductance. Since the parallel
shunt tube is a simple positive linear inductance, the ap-
erture must therefore have a negative inductance equal
in magnitude. Such a situation could occur if there is
permanent 7 phase bias across the aperture and if the
slope of I(¢) at 7 is sufficiently large and negative. This
is a property of a sine function.

Figure 11 shows a plot of I(¢) derived from Eq. (31)
using the reported fit parameters in Table 1 of Varo-
quaux et al. (1992). Although this parameter-fitting
method suggests a sinelike 7(¢) at high temperatures,
the rapid variation in /, with temperature is consistent
neither with existing theories nor with subsequent mea-
surements on weak-link arrays to be discussed below. As
the authors commented (Varoquaux et al., 1992), further
progress in understanding the /(¢) in detail requires
“...adirect measurement of /(¢) which in turn implies
a modification of the apparatus to directly monitor ¢.”

This method of fitting a numerical simulation to the
data was applied to the study of both A and B phases of
SHe at elevated pressures (Avenel and Varoquaux,
1989). In this regime the aperture was mostly character-
ized by a linear inductance exhibiting phase slippage. No
striking difference was observed between the two
phases. This could reasonably be interpreted as evidence
that, at elevated pressure, the coherence length is con-
siderably smaller than the apertures used and thus the
apertures would not be expected to be in the sin ¢ Jo-
sephson regime.

B. Method I

An alternative approach to method I was developed
at Berkeley (Backhaus et al., 1997, Marchenkov et al.,
1999) based on the establishment of the in situ quantum
pressure standard and the phase meter as described by
Eq. (30).

The experimental cell in Fig. 6 can be operated in
several different modes. We mentioned in Sec. VI that
the solution of Eq. (24), the equation of motion for ¢,
exhibits nonlinear oscillations around equilibrium analo-
gous to rigid pendulum motion, and we pointed out that

the observable x(¢) is analogous to ¢. If the membrane
is displaced far from equilibrium (by application of a
voltage on the nearby electrode) and then released, the
position x(t) should relax towards equilibrium with a
characteristic transient behavior similar to that shown in
Fig. 5(d). When the membrane reaches its equilibrium
position, the fluid inertia in the array causes it to over-
shoot and then oscillate about equilibrium. This is
equivalent to the instant when dissipation in the analo-
gous pendulum causes the twirling motion to cease and
nonlinear oscillation about equilibrium to commence, as
discussed in Sec. X.

The end of a typical transient is shown in Fig. 12. This
compares very well with the solution of Eq. (25) with
small damping, shown in Fig. 5(c). Since V(1) is linear
in x(¢), the mass current can be determined at every
instant in time from dV,/dt,

[(1)=pAi(t)=pAy(dV4/d1), (34)
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FIG. 10. Staircase patterns in superfluid *He: (a) Data from
Saclay (Avenel and Varoquaux, 1988; Varoquaux et al., 1992)
displaying staircase patterns at 0.837,. The smooth curves are
staircases simulated numerically using the Deaver-Pierce
current-phase model. The two sets of data represent different
extremes of trapped phase bias. (b) A section of one of the
staircases showing the changes in the simulation for different
values of the @ parameter. In the top curve, a=0.4 is a best fit.

where 7y is determined by an electrostatic calibration
procedure.

Using Eq. (30) one can integrate the same data
stream, V' (¢), to give the instantaneous phase ¢(¢). By
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FIG. 11. The current-phase relations deduced from method I
using the parameters determined at Saclay (Varoquaux et al.,
1992).

eliminating the common time variable between /(¢) and
¢(t), one can generate the function I(¢). No fitting
parameters are required.

The measured /(¢) functions for a nanoaperture ar-
ray (Marchenkov et al., 1999) for various temperatures
are shown in Fig. 13. I(¢) is sinelike at higher tempera-
tures (above ~0.65T.), the region where ¢ is large. As
the temperature is lowered, the sine function evolves,
with the slope at 7 decreasing, eventually changing sign
(negative to positive). At the lowest observed tempera-
ture the function appears almost proportional to sin 2¢.

12
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FIG. 12. The SQUID signal showing the upper membrane dis-
placement approaching the end of a transient. The transient
was initiated by applying a step increase in voltage between
the membrane and the adjacent electrode. For t<<1s, the sys-
tem displays Josephson oscillations (twirling motion in the
pendulum), while the mean pressure differential is positive.
When the average pressure falls to zero, the system at first
exhibits nonlinear pendulum oscillations about the final equi-
librium position. At later times and smaller amplitudes, the
motion is harmonic. The mechanisms that contribute to the
energy dissipation are discussed later in the paper.



J. C. Davis and R. E. Packard: Superfluid *He Josephson weak links 753

7 -
2
= Ofe
o
=z L
—
-2 |
0 [ 2n 0
¢

For several reasons, the Deaver-Pierce model [Eq.
(31)] cannot be used to represent the form of many of
the directly measured /(¢)’s displayed in Fig. 13. For
example, in the Deaver-Pierce parametrization, when «
>1, the I(¢) curves are triple valued near , but none
of those in Fig. 13 are. Also, in the Deaver-Pierce pa-
rametrization /(¢) does not cross the zero-current line
at any point where ¢<m, but many of the /(¢) curves
in Fig. 13 do. Since the Deaver-Pierce parametrization
used in method I is a good fit to the data for « up to
6 (Varoquaux et al., 1992), one must ask how to recon-
cile that observation with the I(¢) curves displayed in
Fig. 13. One possibility is that /( ¢) in the single slit used
in the Saclay experiments may be quite different from
that of an array of apertures. Geometrically, the dimen-
sions of the elementary aperture in the array (100
X100 nm?) are far smaller than the maximum dimen-
sion of the slit (5 um). Another possibility, as pointed
out by those authors, is that the curve-fitting method is
“likely to be insensitive to the detailed shape of the
current-phase relation.” It may be that the fit of the data
to the Deaver-Pierce model is consistent with that
model, while the I(¢) function itself is quite different.
This is a well-known mathematical difficulty with solving
an “inverse problem.”

C. Method IlI

A third method for determining I(¢) has recently
been developed at Saclay. Figure 14 shows a toroidal
topology containing a single weak link. If this device is
rotated, at angular velocity €, about an axis normal to
the plane of the loop, the superfluid well away from the
weak link is constrained to rotate almost like a solid
body: v,=r, where r is the distance from the rotation
axis. If the phase can advance by only integral multiples
of 27 for a closed path within the torus, then the phase
difference across the weak link is seen to be

r2

2Q-A
¢=2mn+2w =2mn+2w , (35)
K3 K3
where 7 is an integer and A is an area vector normal to
the plane of the torus. Here for generality we have let
and A point in arbitrary directions. The integer n can be
nonzero if quantized vortices are trapped within the

torus or if persistent currents exist around the torus. For
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1 is discussed in Sec. IX.A.
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a loop of sufficiently large area (several cm?), reorienta-
tion of the loop with respect to the earth’s rotation vec-
tor £ can vary ¢ continuously over a range larger than
2. This gives the experimenter independent control of
¢.

This phase variation method is utilized to measure the
low-amplitude resonant frequency of a membrane-
aperture superfluid oscillator when a parallel tube of
length / and cross-sectional area a is connected in paral-
lel with a slitlike weak link (Avenel et al., 2000). The
topology of this experiment is the same as in method I,
but the slit is now etched in a silicon nitride membrane
rather than the nickel foil used in earlier Saclay experi-
ments. The inductance L of the parallel combination is
given by

LSLW

L:LS+LW’ (36)

local vertical

North superfluid loop
sub-micron orifice
membrane

sense coil

FIG. 14. The topology of a cell used for method III (Saclay). A
weak link is shunted by a long parallel tube. The closed path
enclosing the weak link and the tube has sufficient area that
reorientation of the cell in the earth’s rotational field creates
phase differences given by Eq. (35).
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where L is the hydrodynamic inductance of the parallel
path [see Eq. (A2)] given by

/
apy’

and L, is the weak-link inductance defined by Eq. (32).
For a nonlinear current-phase relationship /(¢), the
inductance L,, is a function of the phase difference ¢.
The idea behind method III is to vary ¢ and thus L, by
reorienting the torus with respect to € in order to
phase-bias the weak link. The connection between phase
bias and rotation is discussed further in Sec. XIV below.
Since the resonant frequency w of the membrane-
aperture oscillator is inversely proportional to L, the
frequency will change as L changes due to the changes
of ¢. This permits the experimentalist to sample the
slope d1/d ¢ as a function of ¢. It can be shown that, for
the weak link (Avenel et al., 2000),
dl w? K3
d¢_( >2wL;

(37)

N

o (38)
Here w; is the observed frequency when the oscillator is
driven at such high current that negligible mass is as-
sumed to flow through the weak link. Thus, by measur-
ing the small-amplitude resonant frequency w as a func-
tion of the orientation of the cryostat and assuming the
phase is given by Eq. (35), one can determine the local
slope dI/d¢ as a function of ¢ and upon integration
determine /( ¢).

The Saclay group reports that /( ¢) for the slit studied
using this technique is history dependent. That is, for a
given temperature, four different /(¢) functions were
observed in four different cooldowns. The well-defined
family of curves observed in nanoaperture arrays does
not seem to be present in this slit. However, at approxi-
mately zero ambient pressure the general shape of the
data [Fig. 15(b)] resembles that found in Fig. 13. Since
the earlier Saclay work using method I suggested a dis-
tinctly different 7(¢) (Fig. 11), one might conclude that
the silicon nitride slit has a different /(¢) from the
nickel slit or that method I did not reveal the correct
I(¢) function, because the Deaver-Pierce parametriza-
tion is mathematically incapable of representing /(¢)
functions of the form measured directly by methods II
and III (as shown in Figs. 13 and 15).

IX. UNEXPECTED NEW PHYSICS IN /(¢)

For conventional s-wave superconductors, the wave
function is a complex scalar, and the only degree of free-
dom that can modify a sinelike /(¢) is a series induc-
tance. This leads to the Deaver-Pierce parametrization.
By contrast, *He is described by a tensorlike wave func-
tion, which can lead to greater complexity (Vollhardt
and Wolfe, 1990). It is not surprising, therefore, that the
SHe weak-link current-phase relation exhibits phenom-
ena not seen in conventional superconductors.
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FIG. 15. Current-phase relations deduced by using method III
for a slit weak link: (a) Four I(¢) curves made at the same
temperature but in different cooldowns. Mathematically, none
of these curves can be described by the Deaver-Pierce param-
etrization (Fig. 9). (b) I(¢) curves from the same cooldown
but at four different temperatures. The lowest maximum cur-
rent curve is sinelike, whereas the larger current curves, which
presumably are at a lower temperature, display positive slope
at p=.

A. Bistability in &-sized apertures

Direct measurement of /(¢) (using method II) for the
nanoaperture array led to the unexpected discovery of
two families of /( ¢) functions (Marchenkov et al., 1999)
as shown in Fig. 13. When the liquid is cooled through
the superfluid transition, the weak-link properties ap-
pear to be set by freezing in some internal degree of
freedom. This results in two (and only two) families of
temperature-dependent /( ¢) curves. Apparently, the in-
ternal configuration of the weak link and its associated
set of I(¢)’s can only be changed by going above T'. and
then cooling back down.
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FIG. 16. A model for the source of bistability in the *He weak
link. Parts (a) and (b) show calculated /( ¢) for three different
values of Ginzburg-Landau parameters in the model. For some
values of the parameter describing the textural bending energy,
the n vectors will switch from a uniform to a nonuniform tex-
ture at a well-defined phase difference. (a) I(¢) functions
when the n vectors are parallel for ¢=0; (b) I(¢$) functions
when the n vectors are antiparallel for ¢=0; (c),(d) the calcu-
lated weak-link energies as a function of phase for these two
cases (Viljas and Thuneberg, 1999).

The two families of I(¢) are shown in Fig. 13. Both
families show the same generic character: sinelike at
high temperatures and acquiring a strong sin(2¢) com-
ponent at lower temperatures. At a given temperature,
the curves differ in maximum currents and are labeled H
and L for high and low current, respectively. The critical
current [defined as the maximum of /( ¢)] of the H state
is given by 1.3x107'° (1—T7/T,)' kg/s, while for the L
state it is 6.8X 1071 (1—-T/T,)? kg/s.

Although it was expected that only one /(¢) would
characterize a *He weak link, more recent theories (Vil-
jas and Thuneberg, 1999, 2002; Yip, 1999) show different
ways that two families of /(¢) relations can arise from
different orientations of the internal vector field n
(which characterizes bulk *He-B).

Using a Ginzburg-Landau formalism, Thuneberg and
Viljas derive the I(¢) functions resulting from n’s being
both parallel and antiparallel to the normal to the plane
containing the weak link. The model’s central predic-
tions are shown schematically in Fig. 16. There is a close
similarity between these model results and the families
of current-phase curves in Fig. 13. To find agreement
both in form and magnitude, three model parameters
need to be adjusted to values within an order of magni-
tude of those directly predicted in the theory.

In other work using a Green’s-function approach, Yip
(1999) also finds the possibility of two families of ()
functions. For this model, in the absence of magnetic
fields, when the n vectors are parallel on both sides of
the weak link, the current-phase relation has no sin(2¢)

Rev. Mod. Phys., Vol. 74, No. 3, July 2002

component at any temperature. In contrast, when the n’s
are antiparallel, there is always a sin(2¢) component at
all temperatures.

B. Weak links displaying a variety of I(¢)’s

The theories of Viljas and Thuneberg, and of Yip,
which show the important role of the n field in determin-
ing I(¢), may also offer an explanation of why the slit
aperture used in method III shows a multiplicity of
current-phase relations, whereas the &-sized apertures in
the Berkeley nanoaperture array reveal only the two
I(¢)’s found in the theory of Viljas and Thuneberg
(1999). Perhaps the slit, which has a length much longer
than &, simply permits a variety of metastable n textures
pinned to rough spots along the walls. Each texture
might give rise to a different /().

To test these new theories, one needs to measure /( ¢)
while controlling the orientation of a magnetic field rela-
tive to the normal of the junction and in a geometry
where the n texture is understood. The coupling be-
tween n and the field should reveal more clearly the
effect of the texture on /(¢). Preliminary results from
such experiments are now becoming available (Mukhar-
sky et al., 2001). A single slitlike aperture was studied
and many different /( ¢) states were detected (on differ-
ent cooldowns). Each I(¢) could be continuously
changed by varying the magnetic field. These data sup-
port the idea that the different /(¢)’s are the result of
different textures and that, in a large slit, these textures
can be varied quite significantly.

Although it is too soon to be sure, one may speculate
that an array of &-sized apertures can somehow lock the
overall weak link into the lowest available energy states
of the texture, most likely the “isotextural” (Viljas and
Thuneberg, 2002) case.

C. = states

A second unexpected discovery involved a metastable
state with 7 phase bias across the weak-link array. The
observed phenomena can be understood in terms of the
energy stored in the phase shift across the weak link.
The mechanical power applied to the system is the prod-
uct PI/p. This is the analog of the product of current
and voltage for an electrical device. The energy stored in
the weak link is given by

tPI
E=| —dzt. (39)
0P

By combining Egs. (8) and (20), one sees that

P k3 d
5= ﬁ d—‘f. (40)
Combining Egs. (39) and (40) gives
E- §J¢1(¢')d¢'. (41)
2 Jo
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FIG. 17. The family of weak-link energy-phase curves deduced
using Eq. (41) applied to the two sets of measured 7(¢) func-
tions shown in Fig. 13 [Color].

Thus, by integrating the current-phase relation, one ob-
tains the weak-link energy as a function of phase differ-
ence. By integrating the curves shown in Fig. 13, one
obtains the energy surfaces for the H and L states
(Marchenkov et al., 1999). These are shown in Fig. 17.

It is apparent that at temperatures where /(¢) has a
positive slope at 7, a local minimum appears in the en-
ergy. The depth of this potential well increases as tem-
perature decreases. It is therefore possible that at a
given temperature, the weak link might become meta-
stably trapped with a 7 phase difference across it.

Such a phenomenon was discovered (Backhaus et al.,
1998) using a nanoaperture array, before the complex
nature of /(¢) had been directly determined. As men-
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FIG. 18. Oscillation of the membrane resulting from the appli-
cation of four cycles of drive at the pendulum mode resonant
frequency at 0.37/T.: Trace A is the wave form of the excita-
tion. Traces B and C are the responses to successively in-
creased drive amplitudes displaying characteristics similar to
those of a high-Q pendulum. The amplitude of motion in-
creases while the drive is applied. After the drive is turned off,
the oscillations decay slowly due to the dissipation associated
with the membrane motion. Trace D shows the departure from
the behavior of a simple oscillator. The drive level has been
adjusted so that the oscillator makes the transition to a new
state near the time when the drive is turned off. Without fur-
ther excitation, the oscillator “rings” freely in its new state
until a random external perturbation causes a transition back
to the original state. When the oscillator returns to its initial
state, it regains the energy it had before the collapse. From
Backhaus et al., 1997.

tioned above, the nanoaperture array coupled to the
membrane exhibits an oscillatory pendulum mode. If
this mode is excited by a few resonant oscillations to a
given amplitude of membrane motion, the decay of the
oscillation can then be observed. When this experiment
is performed at quite low temperatures (7<0.4 mK)
and at sequentially higher excitations, the decay is ob-
served until a critical amplitude of excitation is reached.
For drives above this critical level, the oscillation seems
to collapse, but after an arbitrary period of time (which
can last many seconds), the energy spontaneously reap-
pears. This remarkable behavior is shown in Fig. 18. In
the lowest trace the oscillation increases for a few cycles
(as a result of the applied resonant drive), and then the
amplitude abruptly drops to a much lower level with a
different frequency. Subsequently the system oscillates
in that low-amplitude state for many cycles before
abruptly jumping back to the original amplitude. It
seems as if kinetic energy abruptly leaves the system for
a long period, only to be reinserted later.

The dynamics of the motion can be analyzed by plot-
ting d@/dt vs ¢(t). Both of these quantities are ob-
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FIG. 19. A phase portrait of the motion before, during, and
after a collapse. ¢ and ¢ are determined from Eq. (30). During
the excitation, consisting of eight cycles, the system orbits
about the ¢=0 stability point, whereas after the collapse it
orbits the ¢= 7 metastable point. When the system makes the
transition out of the r state, the system is then found to orbit
either ¢=0 or ¢p=21.

tained from Eq. (30), which gives ¢(¢) in terms of the
SQUID voltage. The resulting phase portrait of the mo-
tion is shown in Fig. 19. Here we see that during the
excitation process the oscillator orbits a stability point
around ¢=0. However, when the oscillation collapses,
the system begins to make orbits of smaller amplitude
around ¢= . The oscillation at this new frequency can
decay to zero, and the system is then trapped with a 7
phase difference across the junction. This is referred to
as the m state, and by contrast, oscillations about ¢=0
are referred to as the 0 state. When the oscillation
abruptly reappears, the system again orbits around 27 or
0. The survival time, which is not under the control of
the observer, grows longer as temperature decreases
reaching as long as 1 h at temperatures below 0.257...

This behavior is completely consistent with the energy
surfaces shown in Fig. 17. The absolute local minimum
in E(¢), which occurs at ¢=27n (where n is an inte-
ger), leads to periodic motion characteristic of the rigid
pendulum described in Sec. VI. This is the O state. If the
temperature is sufficiently low and the drive amplitude
sufficiently large, it is possible for the system to evolve
into the local minimum at 7. Dissipation or external me-
chanical noise can then allow the weak link to become
trapped in the m state. The different frequency of oscil-
lations for = states relative to O states is due to the dif-
ference in curvatures of E(¢) near ¢=0 and ¢=.
Both the H family and the L family of I(¢) show =
states, and their frequencies are in excellent agreement
with those predicted for the appropriate E(¢).

There have been several different explanations ad-
vanced for the origin of the  state.

(1) Since positive slope of I(¢) at 7 is the requirement
for a local energy minimum there, 7 states are im-
plicitly predicted by the work of both Viljas and
Thuneberg (1999, 2002) and Yip (1999).

(2) An alternative approach was developed by Smerzi
et al. (2001) and also by Hatakenaka (1998). These
authors considered the behavior of weakly coupled
quantum systems such as Bose-Einstein conden-
sates. Using Feynman’s treatment of the weak link
with an added constraint of fixed particle number,
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they found an effective /(¢) that would exhibit a 7
state. To test these fascinating ideas, one would pre-
sumably need a condensate with much smaller par-
ticle numbers than the typical He system.

(3) A third model for the 7 state was suggested by the
Saclay group based on their Deaver-Pierce model of
a weak link (Avenel et al, 1999). If the Deaver-
Pierce model were correct, for phase differences
near 7 and a>1, there is a double-valued current-
phase relation with branches labeled 7, and 7_.
Avenel et al. point out that, in a nanoaperture array,
if the I(¢) of each nanoaperture can be param-
etrized by the Deaver-Pierce model, and if approxi-
mately half of the apertures reside on the /, branch
and half on the /_ branch, the effective /(¢) of the
array would have positive slope at 7 and therefore
would lead to a metastable state whose stability
point is near ¢= . This model predicts that the ef-
fective I(¢) function for the aperture array is dis-
continuous, which, as seen in Fig. 13, is not in agree-
ment with the observations. Furthermore, these
authors subsequently remeasured the current-phase
relation of a single-slit aperture, using method III
described above. They reported a single-valued
1(¢) with positive slope near 7, demonstrating that
the 7 state is an intrinsic property of an individual
aperture (Avenel et al., 2000).

X. PENDULUM MODE

In Sec. VI we described how the membrane’s equation
of motion (which describes a coupled Josephson weak
link and membrane) predicts that the membrane dis-
placement mimics the angular velocity of a rigid pendu-
lum. As shown schematically in Fig. 5(a), for small-
amplitude oscillations about equilibrium, the simple
pendulum frequency w, is given by Eq. (25), whereas
for large-amplitude oscillations about equilibrium, the
frequency is amplitude dependent and should approach
0 as ¢ approaches 7 (Monien and Tewordt, 1987).

These features can be tested by studying transient re-
sponses such as those shown in Fig. 12. After a large
excitation, Josephson oscillations accompany the posi-
tive pressure head across the weak link. When the time-
average pressure relaxes to zero, oscillations about equi-
librium begin. For these oscillations about P=0, it is
clear that the frequency is amplitude dependent, rising
as the amplitude falls. Figure 20 shows a plot of this
frequency versus the phase oscillation amplitude. The
quantum phase is measured by integrating the displace-
ment transducer signal as described by Eq. (30). The
frequency here is defined as the reciprocal of the period
of motion. To compare to the data the figure also in-
cludes a plot of the calculated frequency as a function of
¢ for a rigid pendulum without damping. If the Q of the
oscillator is large, one would expect the predictions for
the frequency of the undamped pendulum to be a good
representation of the phase oscillation frequency. The
experiment demonstrates that the nanoaperture array, as
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FIG. 20. A plot of the oscillator frequency as a function of
maximum phase angle. An ideal rigid pendulum (without
damping) would follow the smooth curve drawn as a solid line.
The data are the average of approximately 50 transient ring-
downs.

long as the temperature is sufficiently high (7
>0.65T,), accurately displays the nonlinear rigid pendu-
lum frequency.

Equation (25) predicts the dependence of small-
amplitude oscillation frequency on the temperature-
dependent critical current,

2_2}7’13)\
C')1)_14p2h Ic s
where N=k/A. Figure 21 shows the measured values of
wlz, as a function of /., the latter quantity being mea-
sured directly from /(@) as described in method II. In
the temperature region where I(¢) is sinelike there is
excellent agreement with Eq. (42). When I(¢) is no
longer sinelike the frequency is found to fall below the
dashed line.

These experiments not only demonstrate again the

(42)
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FIG. 21. A plot of the dependence of the pendulum (low-
amplitude) frequency on the critical current. I, was deter-
mined by measuring the complete current-phase relation in the
temperature regime above 0.757 ., where 1( @) is sinelike. The
straight line drawn is a plot of Eq. (42), which has no adjust-
able parameters. At lower temperatures, when I(¢) is no
longer a simple sine function, the frequencies drop below the
line.
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sinelike nature of /(¢) for small apertures, but, perhaps
more importantly, suggest a convenient method of deter-
mining /. directly by simply measuring the frequency of
the small-amplitude oscillations.

XI. SHAPIRO EFFECT

For superconductors the first dynamic phenomenon
involving both the Josephson current-phase relation
[Eq. (5)] and the phase evolution equation [Eq. (8)] was
the current “steps” observed by Shapiro (1963) when a
microwave field impinged on a Josephson junction. The
fact that an oscillating chemical-potential field mixes
with the Josephson oscillations to produce a dc current
is a consequence of the interplay between the two equa-
tions (5) and (8).

To observe similar effects in superfluid *He, one may
apply an oscillating pressure field at frequency w while
the apertures are biased with a dc pressure Py.. When
the Josephson frequency [Eq. (26)] is an integral mul-
tiple of the applied frequency [Eq. (11)], the theory pre-
dicts dc mass current steps /,, of magnitude

2m3Pac/p>
" ho '

Here P, is the amplitude of the impressed pressure field
and J,, is the nth-order cylindrical Bessel function.

Searches for Shapiro-like phenomena in “He by
Anderson and Richards (1965) launched the entire field
of superfluid weak links. Several other independent
searches using ‘“He were not conclusive (Tilley and
Tilley, 1990), presumably because the apertures used
were much larger than the coherence length. Early posi-
tive indications of an effect were later interpreted in
terms of other acoustic phenomena not associated with
weak-link behavior.

The first attempt to observe a *He Shapiro effect was
reported by Lounasmaa et al. (1983) in Helsinki. Their
weak link consisted of a random array of ~700-nm-
diameter cylinders etched through a 6-um-thick plastic
membrane. The apparatus used membranes to drive and
detect mass currents through these pores. The current-
pressure (I-P) characteristic of these pores was mea-
sured in the presence of an ac applied pressure differ-
ence. They found that there were no Shapiro-like
features for apertures with this aspect ratio. This was
presumably because the apertures, which were many co-
herence lengths long, will not exhibit sin ¢ current-phase
relations (Hook, 1987). However, for currents greater
than some critical value, they did notice unexpected dis-
sipative currents that, as described in Sec. XII, are now
believed to occur due to superfluid velocity oscillations
at the Josephson frequency.

Following the Helsinki results a search was made for
Shapiro phenomena using a single aperture with this
type of long aspect ratio (Pekola et al., 1987). The idea
was that perhaps incoherence between the millions of
pores in the Helsinki experiment might have obscured
the effect. Although again dissipation consistent with su-
perfluid velocity oscillations was observed, no Shapiro
signature was detected.

1,=1.\J (43)
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This situation changed with the discovery that
nanoaperture arrays behave like Josephson weak links.
In order to detect the Shapiro effect, the Berkeley
double-diaphragm cell (shown schematically in Fig. 6)
was reinstrumented with the capability of simulta-
neously applying both ac and dc pressure fields while
monitoring the dc mass current through the nanoaper-
ture array. This is accomplished by the configuration
shown schematically in Fig. 6. The upper membrane
serves as a dc pressure gauge (as described in Sec. V).
The lower membrane is metalized and also has an adja-
cent electrode. A feedback loop is formed that applies
voltages to the lower electrode set so that the dc deflec-
tion of the upper membrane is held fixed, thus maintain-
ing a constant dc pressure head across the weak links
(Backhaus and Packard, 1996).

An additional ac voltage is applied between the upper
membrane and an adjacent electrode, creating an ac
pressure field. Due to small effects of hydrodynamic in-
ductance in series with the top membrane, the ac pres-
sure P, across the weak link is not exactly equal to the
pressure Py delivered electrostatically to the top mem-
brane. We define a frequency-dependent transfer func-
tion v, (of magnitude close to 1) such that P,./Py,=v,
for each harmonic n of w.

The mass current through the weak link is measured
by monitoring the time evolution of the feedback volt-
age V. The mass current is given by

- 1 eA?%p d(V?)
T2 d*, dr

(44)

where ¢ is the liquid’s permittivity, A is the effective area
of the lower membrane, d is the effective gap between
the electrodes, and k; is the stiffness constant of the
lower membrane.

In order to predict the form of the expected current
features as a function of w, one can perform a numerical
simulation (Simmonds, Marchenkov, Davis, ef al., 2001)
combining a sin ¢ current-phase relation with a time-
varying pressure field containing both dc and ac compo-
nents. This differs from the standard superconducting
case because it is equivalent to a voltage-biased weak
link instead of the usual superconducting current-bias
situation. In the simulation the time evolution of ¢ and
appears very complex, but a well-defined time-averaged,
mass current can be determined. A typical result of such
a simulation in the range where w;~w is shown in Fig.
22. As a practical definition of the current “step” I, in
the simulations, one can take the peak-peak magnitude
of the feature shown in the figure.

Using the apparatus shown in Fig. 6, one can clearly
see current features at the frequency-matching condi-
tions of Eq. (11), w;=nw. A typical experimental signa-
ture is shown in Fig. 23. The close resemblance between
this and Fig. 22 indicates that the predicted phenomena
are occurring. The peak-peak magnitude of the experi-
mentally observed feature, I3 */I,, is plotted as a func-
tion of (2m3P,./p)/hw in Figs. 24(b) and 24(c) for n
=1 and 2. The Bessel function evolution clearly demon-
strates the superfluid Shapiro effect for n=1 and 2.
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FIG. 22. A numerical simulation of the changes occurring in
the dc mass current in a pressure range near w;~wi, for dif-
ferent values of the ac pressure amplitude. The horizontal axis
represents dc pressure expressed in units of frequency f
=2m;P4./ph. The vertical axis is the mass current. The I-P
curves are shifted upward from each other by a constant
amount for clarity. Each shifted plot represents an increase in
the ac pressure amplitude. The vertical line identifies w.

Probing the n=0 Shapiro effect requires a different
technique because the existence of currents at w;=0
(i.e., P4.=0) requires current biasing. The effective criti-
cal current of the nanoaperture array is now [, as given
by Eq. (43). Recalling that the pendulum mode fre-
quency w, is a measure of the zero-pressure critical
mass current according to Eq. (42), one can measure the
n=0 Shapiro effect by measuring w, as a function of
(2msP,./p)hw. Figure 24(a) plots the ratio I,/1,
wa,(Pac)/ wf,(PaCZO). Again, one sees excellent agree-
ment between the predictions of Eq. (43) and the obser-
vations.

Even though earlier measurements established the
sin ¢ nature of the nanoaperture array weak links, it is
nevertheless remarkable that no complications interfere
at higher frequencies to destroy the interplay between
Egs. (5) and (8), whose solution leads to the Shapiro
effect. Although the superfluid Shapiro effect was ob-
served after the measurements of /(¢), its observation
is nonetheless satisfying, since searches for it had been
the driving force in the field for many years.

A related phenomenon occurs when the Josephson
oscillations are resonant with some vibrational normal
mode of the cell. This is analogous to the Fiske effect in
superconducting weak links. A dc pressure applied
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FIG. 23. A series of I-P curves measured in a pressure range
near w;~ w for different values of the ac pressure amplitude.
The horizontal axis represents dc pressure expressed in units
of frequency f=2m;Pg4./ph. The vertical axis is the mass cur-
rent. The I-P curves are shifted upward from each other by a
constant amount for clarity. Each shifted plot represents an
increase in the ac pressure amplitude. The vertical line identi-
fies w.

across the weak link will create Josephson current oscil-
lations at frequency ;. These oscillating currents in
turn may excite a local resonance, which results in an
additional (back-action) pressure oscillation across the
weak link. The combined dc pressure plus back-action
oscillating pressure at w; results in a dc current feature
related to those discussed in the Shapiro effect.

An analysis of the effect due to the lowest-lying mode
of the double-membrane cell shown in Fig. 6 predicts an
excess dc current given by

12m; kol I2Q
Aly=z—5—>5 737 45
dc 2 A P2A% ij ’ ( )
where Q is the quality factor of the mode, k; and k, are
the effective spring constants, and A; and A, the effec-
tive areas of the top and bottom membranes, respec-
tively. For this particular mode the parameter ¢ is given
by {=(k,/A3)/(k{/A2+ky/A3). For other modes ¢
will have a different form. For any given cell mode, A/,
on resonance depends on a geometric factor times
1;Qlw;.

In an experiment to look for this phenomenon, the dc
mass current was measured as a function of the static
applied pressure difference, Pxw;, across the weak link
(Simmonds et al., 1998). In the resulting /-P characteris-
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FIG. 24. The superfluid *He Shapiro effect: (a) The n=0 case.
A plot of the ratio [/I.= wlz,(PaC)/wf,(Pac=0) as a function of
(2m3P,./p)/how. For n=0, the value of the transfer function
P,./Py=vy=1.25 is determined by requiring the zeros of our
data to fit the zeros of the Bessel function J,. The solid line in
this panel is the prediction for the zero-pressure mass current
Iy/1.. We determine the frequency w, by taking the Fourier
transform of the low-amplitude segment of the pendulum-
mode motion of the membrane. A typical Fourier transform of
the pendulum mode is shown in the inset panel. (b) The n
=1 case. A plot of the current feature /, /[, as a function of
(2m3P,./p)hw. The inset shows that the current feature oc-
curs at w;=w and indicates our definition of /;. Fitting the
data to the J; Bessel function zeros gives the value v;=1.16.
(c) The n=2 case, which is similar to (b), except now w;
=2w. Here v,=1.04. The data in each inset are associated
with the circled data point in the associated panel.

tic curve, one finds conspicuous current peaks at well-
defined static pressures. The cell’s normal-mode fre-
quencies and Q’s are determined independently by
studying the response function relating the membrane
motion to the frequency of a swept external drive. As
one can see in Fig. 25, one finds that the current peaks in
the [-P curve occur whenever w; matches a cell reso-
nance frequency.

In Fig. 26, Al is plotted as a function of I2Q/w> for
the lowest cell mode, which occurs in the range between
100 and 500 Hz (as temperature is varied). The value of
I. (at each temperature) is determined from current-
phase measurements using method II above. The plot-
ted points agree with Eq. (45) within experimental pre-
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FIG. 25. The superfluid *He Fiske effect: (a) A typical
current-pressure curve. A slowly varying background, associ-
ated with the dissipation mechanisms discussed in Sec. XII, has
been removed to clarify the position of the peaks. This I-P
curve was measured at 7/7T,.=0.572. (b) The response of the
upper membrane when an oscillating force is applied to the
lower membrane, also measured at 7/7,.=0.572. The vertical
scale is logarithmic.

cision until the temperature falls below the point where
a simple sine function describes I(¢).

Both the Shapiro effect and the Fiske effect demon-
strate that the *He weak link is well described by the
finite-frequency phase dynamics resulting from Egs. (5)
and (8). Furthermore, the dc currents resulting from

12 T T
slope: 3.7x10%

10

AL (10" kg/s)

00 1 2 3 4 5 6 7
I’ Qo [ke'/rad’] (x107)

FIG. 26. Measured magnitude of the peak current enhance-
ment, Aly., Vs IfQ/ w? for the lowest-frequency peak. For data
with an abcissa value less than 2 [i.e., for which T/T.>0.64,
where I(¢) is known to be sinelike], the points fit a line that
has a slope of (3.7=0.3) X 10'* (SI). This agrees well with the
prediction for a sinelike /( ¢), which is shown as a solid line
with slope 3.6x 10" (SI) from Eq. (45). At lower temperatures
(on the right) the data depart from the prediction as expected.
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these phenomena can serve as a convenient and sensi-
tive measure of the critical current /.. The need for such
techniques becomes paramount in the use of a super-
fluid dc SQUID, discussed in Sec. XIV.

Xll. INTRINSIC WEAK-LINK DISSIPATION

Although many of the phenomena described in the
preceding sections agree exceedingly well with the pre-
dictions from Egs. (5) and (8), the discoveries of bista-
bility and 7 states were completely unexpected. Another
unexpected feature is the large dissipation associated
with Josephson oscillations. The very fact that the mem-
brane relaxes to its mechanical equilibrium position af-
ter a large displacement (Fig. 12) implies that its poten-
tial energy has been dissipated by some mechanisms.
Dissipative processes associated with the weak link are
intrinsically interesting and, perhaps more importantly,
will contribute to the thermal noise in any device based
on these elements (e.g., a dc SQUID; Clarke, 1996).

There is one well-known dissipative effect that results
from the conversion of superfluid to normal fluid during
oscillatory superflow (Khalatnikov, 1965). This involves
the so-called second-viscosity coefficient, which is rela-
tively large for *He (Cook et al., 1996). This damping
mechanism correctly predicts the quality factors ob-
served for pendulum motion about equilibrium (Sim-
monds, Marchenkov, Davis, et al., 2000). However, in
the regime of high-frequency Josephson oscillations, i.e.,
P+#0, the second viscosity damping should be almost
negligible.

The fact that a step increase in pressure differential
relaxes to equilibrium in times typically less than a
minute indicates that there is a large additional source of
dissipation. This dissipation can be studied by determin-
ing the relationship between dc mass current through
the weak link and the associated pressure head, i.e., the
[-P characteristic, which is analogous to the /-V charac-
teristic in a superconducting weak link. For a charged
system, power dissipation Q equals IV. Similarly, for a

neutral fluid, Q=1P/p.

In order to determine the /-P characteristic, one may
use the constant-pressure drive technique described in
Sec. IX. The resultant families of temperature-
dependent curves (one set for the H state and one set
for the L state) are shown in Fig. 27. There are two
remarkable features. The curves are not straight lines,
clearly indicating the dissipation is non-Ohmic. Further-
more, for a given pressure P, the currents increase as
temperature decreases, which implies that the dissipa-
tion gets greater as temperature is reduced, a nonintui-
tive result for superfluid.

Two dissipation processes can be identified, each de-
scribable as an independent conductance in parallel with
the weak link, as shown in Fig. 28. One mechanism is
equivalent to an Ohmic (/*P) conductance and the
other is nonlinear such that /o \/P. The curves in Fig. 27
can be well fit to a function of the form

I=1,+1,=G,P+G,\P, (46)
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FIG. 27. The measured dc current is plotted as a function of
the pressure across the weak link for both H and L states and
critical currents below 25 ng/s. The gaps in the data are where
the largest of the dc current enhancements (Fiske effect distor-
tions) have been removed for clarity of fit. Some small distor-
tions are still visible at low temperatures. For critical currents
above ~25 ng/s, the I-P distortions become broad and are con-
tinuous throughout the accessible pressure range, making a
meaningful fit to Eq. (46) problematic. The solid line (for
T/T.=0.697 in the H state) is an example of a fit to Eq. (46).
The inset (for T/T,=0.695 in the L state) shows the /P char-
acter of the quasiparticle current /, (notice the small size of 7,
for the L state so that the I-P curves appear purely linear at
first glance). To obtain this curve, a fit of the I-P curve was
made to Eq. (46), producing G; and G,. Then the quasiparti-
cle current is given by /— G P and the solid line is given by

12262\/F.

where G; and G, are the linear and nonlinear conduc-
tance fit parameters, respectively.

The linear conductance G can be qualitatively under-
stood in terms of the so-called orbital viscosity (Wheat-
ley, 1975; Cross, 1983) of superfluid *He. Although the
bulk fluid surrounding the weak link (in the Berkeley
experiments) is *He-B, when confined between solid
walls separated by distances on the order of §, it is
known from both theory (Fetter and Ullah, 1988; Li and
Ho, 1988) and experiment (Freeman et al., 1988) that
the order parameter of the B phase must distort to that
of an anisotropic superfluid similar to *He-A. An aniso-
tropic superfluid is characterized by a unit vector field or

I texture, where I points in the direction of the Cooper-
pair angular momentum. When a chemical-potential dif-
ference exists between two points in the A phase, if the
superfluid time-average acceleration is zero, I will ex-
hibit periodic motion at the Josephson frequency, as
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y =1+,
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FIG. 28. Schematic of a weak link shunted by two dissipative
elements G, and G,.

shown schematically in Fig. 29(a). Thus the entire tex-
ture within the nanoaperture may be thought to precess
at the Josephson frequency (Hall and Hook, 1977; Ho,
1978; Volovik, 1978).

Due to the finite relaxation time of quasiparticles, as
shown schematically in Fig. 29(b), motion of the texture
is an inherently dissipative process (Cross and Ander-
son, 1975; Cross, 1983) characterized by the orbital vis-
cosity u; as the relevant dissipative coefficient. The

power dissipated per unit volume is given by u,(dl/dt)>.
The dc current associated with orbital precession may
be estimated by equating the Ohmic power dissipation

(2)

A

[-texture

texture
precesses

= at o,

(o)—

FIG. 29. A model for the component of weak-link dissipation
which exhibits “Ohmic” conductance: (a) schematic of textural
motions at the Josephson frequency in the aperture; (b) sche-
matic of the physical source of Cross-Anderson orbital viscos-
ity. The anisotropic superfluid energy gap surrounding the
Fermi surface is shown falling to zero at the poles. The dots
represent the distribution of quasiparticles, which must con-
tinuously relax towards the energy-gap nodes as it precesses at
the Josephson frequency.
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FIG. 30. The magnitude of G; plotted as a function of (1
—TIT,.) for A, the H state and V¥, the L state. The dashed line
was generated using the theoretical expression for u /(7 (valid
near T.), with 8=1 and the fit value V ;=1.4x10"2! m>. The
data agree very well with our prediction for both H and L
states for temperatures near 7.

to the time-averaged energy lost due to the precessing /
vector:

. IP
Q=7=<M, | <i>2d3r>wﬂu,<w,>2 [

2m;P)\?
:,BMIP—ﬁ Ve (47)

Here the factor B, which is of order unity, represents an

average over the spatial orientations of (i)z, and Vg is
the effective volume of the anisotropic phase region sur-
rounding one aperture. Using the definition /;=GP
and Eq. (47), we find that the conductance of N aper-
tures is given by

7 (48)
This expression is independent of the form of the
current-phase relation of the weak-link array. The tem-
perature dependence of G| comes mainly from the or-
bital viscosity coefficient because the effective volume of
the A-phase region should not vary strongly with tem-
perature (since the confining geometry alone stabilizes
the state).

Fitting Eq. (46) to the data in Fig. 27 allows the ex-
traction of G4 as a function of temperature. Figure 30 is
a plot of that G vs T for both the H and the L states.
The dotted line is the prediction of the theory calculated
from Eq. (48) with B=1 and V z=1.4X10"?! m*, com-
parable to the volume of one aperture. As predicted by
the model, due to the independence of this process from
I(®), the linear dissipation terms in both H and L states
are the same. Furthermore, near 7. the data are quan-
titatively in agreement with the Ginzburg-Landau value
of M.

The nonlinear conductance G, originates in another
mechanism (Marchenkov et al., 1999) and can be de-
scribed using a phenomenological model involving the
concept of nonequilibrium creation of quasiparticles.
Several intertwined phenomena lead to this dissipation:

2
My 2ms
G, :ﬂNVeff7(_) .
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FIG. 31. Visualizing the creation of a quasiparticle current: (a)
Josephson current oscillations in time; (b) the dependence of
the superfluid density p, as a function of the current density
J; (c) the resultant decremental oscillations of p, and the as-
sociated incremental oscillations in p,,; (d) ballistic quasiparti-
cles being swept away from an aperture by the local pressure
gradient.

(1) As described in Sec. VIILA, when a pressure head
exists across the nanoaperture array, there is an as-
sociated mass current oscillating at the Josephson
frequency.

(2) For a BCS-type superfluid p,; decreases with super-
fluid current density (Maki, 1978; Kleinert, 1980).
Therefore the Josephson current oscillations will
give rise to a decremental oscillation of p; .

(3) The decrease in p, is associated with the creation of
quasiparticles within the aperture. It can be shown
that these quasiparticles have initial group velocity
very close to zero.

(4) Since, at millikelvin temperatures, the mean free
path of the quasiparticles is very large compared to
the dimensions of the aperture, they will be ballisti-
cally swept away from the apertures by the local
pressure gradient.

(5) If the quasiparticles are propelled ballistically by the
pressure gradient, they attain an average drift veloc-
ity (v,) given from simple kinematics by (v,)
~\[2P/p. This is the proposed origin of the /P de-
pendence.

The elements of this model are shown schematically in
Fig. 31.

The associated dissipative quasiparticle current den-
sity is J,=(8p,){v,), where (5p,) is the time-averaged
density of the quasiparticles created during a Josephson
period. For N apertures with individual cross-sectional
area o, the total current is then proportional to /P with
proportionality constant

2
G,~(8p,)No \[I_J (49)

Since (8p,) depends on the time variation of the su-
percurrent, the detailed shape of the current-phase rela-
tion /(¢) results in different values of G, for the H and
L states. Using existing predictions for the suppression
of the superfluid density with current density and knowl-
edge of I(¢), one can generate the values for (Jp,) and
from Eq. (49) predict G, as a function of temperature.
The solid line in Fig. 32 shows the predictions for G,
based on the p,(v,) derived in a weak-coupling BCS
treatment, valid for all temperatures (Kleinert, 1980). In
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FIG. 32. The values for G, plotted as a function of 1
—T/T,: A, for the H state; V¥, for the L state. The dashed line
shows a prediction for G, using a Ginzburg-Landau model.
The solid line shows a prediction for G, using a weak-coupling
BCS treatment, valid for all temperatures.

the figure the measured values of G, for both states are
also plotted. Notice the large difference between the val-
ues for G, in each state.

These curves are in good agreement with the data. In
Eq. (49) the aperture area o has been adjusted to get
best agreement with both sets of data. This gives a single
value, 0=1.4x10"%' m>. Using effusion data, Marchen-
kov et al. (2002) independently found the aperture area
to be 0=1.36x10""* m.

No detailed theory has been developed to support
these phenomenological models, and future work is re-
quired to provide a microscopic understanding of these
phenomena.

The essential elements for explaining the nonlinear
conductance are an oscillating mass current and a BCS
velocity-induced density suppression. A pure Josephson
oscillation is not necessary. Other *He mass flow experi-
ments can include these elements. In particular, Lounas-
maa et al. (1983) studied pressure-driven flow of super-
fluid *He through submicron pores whose length was too
long to be a Josephson weak link. Nonetheless, they did
observe nonlinear dissipation quite similar to that dis-
cussed above. There is no detectable dissipation until
the current reaches a critical value /.. Thereafter the
time-averaged current can be described by

I~1,+G,\P. (50)

Presumably, the instantaneous current resembles a saw-
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FIG. 33. Measured critical currents compared to various theo-
retical predictions. The Kopnin and Kurkijarvii models have
very simple geometries and no adjustable parameters. The re-
sults from other theories are not plotted because no analytic
expression for the critical current density as a function of tem-
perature was reported. AV data are those of Avenel and Va-
roquaux, 1985.

tooth oscillation about /, due to vortex-mediated phase
slippage. The velocity amplitude of oscillations is ap-
proximately «3/2L, where L is the pore length.

The magnitude of G, in this case can be estimated by
considering the BCS enhancement of (p,) due to the
sawtooth oscillations. Arguments similar to those above
lead to an estimate of G, in agreement with the experi-
ment. Thus the nonlinear dissipation observed by Lou-
nasmaa et al. may have been an early indirect manifes-
tation of superfluid oscillations occurring at the
Josephson frequency, albeit without a sinelike /().

Xlll. CRITICAL CURRENTS

Microscopic theories of *He weak-link physics have
attempted to compute the current-phase relation for
various superfluid weak links with tractable geometries.
These calculations, which are summarized in Sec. IV.C,
yield functional forms I(¢)=1,f(¢), where f(¢) is
some function spanning the range —1 to 1, which is 27
periodic in ¢. Since the maximum current does not nec-
essarily occur when ¢= 7, we define /, as the maximum
mass current possible at any phase difference.

There are two sets of experimental results for 7 (Va-
roquaux et al., 1992; Marchenkov et al., 1999). To com-
pare them, we divide the reported maximum mass cur-
rents /, by the nominal open area of the slit/array to
yield the maximum mass current density J. for each
weak link as a function of temperature. In Fig. 33 we
show the J,. data sets along with the predictions of Kop-
nin (1986), Kurkijarvii (1988), and recent calculations
specifically for the nanoaperture array (Viljas and
Thuneberg, 2002). We also show the bulk depairing mass
current density at zero pressure.

The pinhole calculations of Kopnin and Kurkijarvii
both overestimate the size of J, as determined in the
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FIG. 34. Schematic differences between operational modes of
an rf SQUID and a de SQUID.

nanoaperture array, but are nearer to that of the slit
(Varoquaux et al., 1992), whose J. rises very rapidly,
crossing the depairing line near 0.87/7.. The calcula-
tions of Viljas and Thuneberg, which use an “isotex-
tural” model near the nanoaperture array, are in quite
good agreement with the H and L states of the array.
Similarly detailed calculations are not available for the
geometry of the slit used at Saclay. Since the data are
still quite limited, it is too soon to determine whether a
predictive general model exists for the magnitude of the
Josephson mass currents as a function of temperature,
field, and geometry in *He weak links.

XIV. DC SQUID
A. Superfluid dc SQUID

The most important application of superconducting
weak links are as detectors of magnetic flux, in devices
referred to as superconducting quantum interference de-
vices or SQUID’. These devices are generally classified
as “rf” or “dc” SQUID’s (Van Duzer and Turner, 1981;
Barone and Paterno, 1982; Likharev, 1986; Tilley and
Tilley, 1990). This historical nomenclature can be con-
fusing. The rf SQUID does not involve quantum inter-
ference and does not necessarily have to be operated at
radio frequencies. The dc SQUID does involve quantum
interference but operates with biased Josephson weak
links oscillating at gigahertz frequencies. Nevertheless,
these designations persist. Figure 34(a) shows an rf
SQUID, which is characterized by a close loop contain-
ing a single weak link (not necessarily sinelike). Figure
34(b) shows a dc SQUID, which contains a closed loop
containing two weak links. Both of these devices rely on
three facts: (1) The weak links must have a well-defined
maximum supercurrent, e.g., a phase-slip onset current
or the maximum of /(¢). (2) There is a macroscopic
quantum phase which is coherent throughout the sys-
tem. (3) There is a topologic constraint on the phase
winding due to the loop geometry. These three features
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will result in physically measurable changes in the re-
sponse of the loop when phase changes are created by
external magnetic fields.

In the case of “He, only analogs of the rf SQUID have
been demonstrated. Here /(¢) is linear but there is a
maximum current determined by the phase-slip critical
velocity (Avenel and Varoquaux, 1985; Varoquaux et al.,
1986; Beecken and Zimmermann, 1987a, 1987b; Davis
et al., 1992; Thas et al., 1992; Bonaldi et al., 1994; Stein-
hauer et al., 1995). Figure 14 shows a schematic diagram
of the arrangement used at Saclay (Avenel et al., 1997).
The loop containing a small aperture is coupled to a
flexible membrane; the entire assembly is a superfluid
hydrodynamic oscillator. The plot of oscillation ampli-
tude vs drive force shows a characteristic staircase pat-
tern (Avenel and Varoquaux, 1985). The first plateau
occurs when the drive force produces superflow in the
aperture sufficient to generate 27 dissipative phase slips
in each half cycle of motion due to the generation of
quantized vortices. If the torus is rotating about an axis
perpendicular to the plane of the loop, there is an addi-
tional current within the aperture as required by circu-
lation quantization. Since the phase-slip critical current
is intrinsic to the aperture, this additional current causes
an apparent change in the drive force needed to create
phase slippage. Therefore changes in rotation can be
monitored by recording changes in the drive force nec-
essary to create 27 phase slips (Schwab et al., 1997).
Even without a well-defined staircase, the state of rota-
tion can be determined by monitoring each individual
phase slip occurring in the oscillator (Avenel et al.,
1997).

In *He sinelike Josephson weak links exist, and both
rf and dc SQUID analogs have been demonstrated. The
rf device uses the same arrangement as in Fig. 14, except
that the aperture is now of coherence length dimensions.
This arrangement is topologically equivalent to the
method I device used by Avenel and Varoquaux in /( ¢)
determination, shown in Fig. 8. The rf SQUID-like re-
sponse pattern (shown schematically in Fig. 9) would
presumably have changed if the device had been ro-
tated. However, at that time a rotational degree of free-
dom was not a characteristic of the cryostat.

The more recent apparatus to determine /(¢) using
method III is a different type of rf SQUID analog. As
discussed in Sec. VIII.C, the method for determining
I(¢) involved changes in kinetic inductance of the torus
due to reorientation of the loop in the earth’s rotational
field. The reorientation changes the phase across a weak
link. The line integral of the phase gradient around the
loop must be an integral multiple of 2. If the loop is
rotated about an axis perpendicular to its plane, fluid
flow similar to solid-body motion is induced in the fluid
away from the weak link (v;~=QR). In these regions
the phase gradient is given by Eq. (17) as V¢
=(2m3/h)v,, and therefore

2}7’13 b
2mn= § V¢dl:7f ve-dl+ ¢

2m3
h

2
27R*Q+ ¢p= K—2AQ+ b,
3

(51)
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where ¢ is the phase drop across the weak link and 7 is
an integer. For n =0, the phase difference is thus propor-
tional to rotation (). If the rotation vector £ is at an
arbitrary orientation with respect to the normal area
vector A, then

2m
d=——2Q0-A. (52)
K3
On the rotating earth, if A is greater than about 4 cm?,
reorientation of a cryostat with respect to the local ver-
tical can modulate ¢ through at least 277 (Avenel et al.,
2000). Thus reorientation of the loop creates a con-
trolled phase bias across the weak link. The system is a
novel implementation of a single weak-link rf SQUID in
which the effect of rotation on the kinetic inductance is
detected through Eq. (32).

The phase shift given by Eq. (52) can be viewed as the
superfluid version of the general “Sagnac” phase shift,
d=47mA-Q/h (where h is Planck’s constant), which
occurs in any rotating double-path quantum interferom-
eter using particles of mass m. In the case of photons,
one uses E/c? instead of m, where E is the photon en-
ergy and c the speed of light. This phenomenon is well
studied for beams of photons (Stedman, 1997), neutrons
(Werner et al., 1979), and atoms (Keith et al., 1991).

A double-junction superfluid dc SQUID has also been
demonstrated (Simmonds, Marchenkov, Hoskinson,
et al., 2001). Figure 35(a) shows a schematic diagram of
the device, consisting of a loop interrupted by two
matched nanoaperture array weak links. The system ro-
tates about an axis perpendicular to the loop. The total
external mass current passing through the loop is given
by

I,=1_.sin ¢+ 1,sin ¢,

¢ - ¢’2) .
) Sin

(53)

1+ ¢2)

=21, cos( 3

where I, is the critical current of each weak link and ¢;
is the phase difference across weak link i. The value of
the argument of the cosine term can be obtained by con-
sidering the line integral of the phase gradient around
the loop:

2an= 9€V¢-d1

_ 2m3

b 2m3 d
—Tf VS~dl+¢1+Tf ve-dl— ¢y

a

2
= QA+~ (54)
3
With n=0, substituting ¢, — ¢, from Eq. (54) into Eq.
(53) yields

b1+ b,
2

S1n

20 A
) . (55)

K3

I,=2Iccos(

The argument of the sine function is the average phase
difference across the input and output, ®=(¢;— ¢,)/2.
Thus Eq. (55) may be rewritten as
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FIG. 35. The superfluid dc SQUID: (a) A schematic diagram
of the basic superfluid de SQUID interferometer loop; (b) the
interferometer geometry used in the experiment. The nominal
“loop” area is 6 cm® and the tube cross-sectional radius is
0.3 cm.

[,=1IF sin®, (56)
where we have defined an effective critical current
7280 A
Ir=21I, cos — ——. (57)
3

Thus the entire superfluid dc SQUID behaves as a single
Josephson weak link whose maximum current may be
modulated by rotation through Eq. (57).

An experimental test of these predictions has been
performed using an apparatus shown schematically in
Fig. 35(b) (Simmonds, Marchenkov, Hoskinson, et al.,
2001). The pressure- and current-sensing elements used
technology similar to that described in Sec. V. There
were two objectives of the experiment. The first was to
determine whether the superfluid dc SQUID is describ-
able by the current-phase relation given by Eq. (56).
This would be demonstrated by the observation of phe-
nomena such as Josephson oscillations or pendulum mo-
tion or direct measurement of /(¢) as described in Secs.
VII, VIII, and X. The second objective was to determine
whether the effective critical current can be modulated
by reorienting the toroidal loop with respect to the
earth’s rotation vector according to Eq. (57).

The nominal loop area was 6 cm?, chosen so that the
earth’s daily rotation would provide several cycles of
modulation in I} when the cryostat was reoriented by
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FIG. 36. The spectrum of the mass current during a 1-s inter-
val of the data stream from the SQUID transducer. A typical
data stream lasts 6 s, limited by the magnitude of the voltage
applied to the diaphragm. Due to imperfect pressure regula-
tion, the Josephson peak drifts slightly during the 6-s data
stream. Therefore the transient is broken into 1-s intervals and
a fast Fourier transform (FFT) routine is used to produce a
figure like that shown for each interval. The peak is due to the
Josephson oscillation at 273 Hz. Seventeen data streams are
recorded, and an average value of all 6 X17 of the peaks is
computed and taken as the measure of I¥ , the critical current
of the interferometer.

180° at the latitude of Berkeley, 6; =38°. The connect-
ing tube had a nominal radius of 3 mm so that the ki-
netic inductance of the tube created negligible phase
drop.

If the dc SQUID behaves as a single Josephson weak
link, a static pressure differential applied across the in-
terferometer should cause the quantum phase @ to in-
crease linearly in time [Eq. (8)], leading to mass current
oscillations at the Josephson frequency.

As before, the deflection of the flexible membrane re-
vealed both pressure across the interferometer and the
mass current through it. A feedback method was used
that permitted the system to be driven at constant pres-
sure by applying a time-varying voltage to the mem-
brane. A differential pressure was selected at which the
Josephson frequency lay near 270 Hz, a spectral region
away from parasitic acoustic noise lines in the displace-
ment transducer, and also below the first acoustic
standing-wave mode in the loop.

Figure 36 shows a Fourier transform of the mass cur-
rent signal (o«x) through the interferometer resulting
from the constant pressure differential applied for about
6 s. A sharp peak at 273 Hz is very pronounced. This
corresponds to the Josephson oscillation. This frequency
agrees with Eq. (28) to within the systematic uncertainty
in the electrostatically derived pressure scale calibration.
The oscillation frequency was found to scale linearly
with P at least up to 1 kHz, and there were no higher
harmonic signals within the signal-to-noise ratio of the
experiment. This implies that the overall current-phase
relation of the superfluid dc SQUID is sinelike and that
the two separated arrays are phase coherent.

The magnitude of this Fourier peak is a direct mea-
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FIG. 37. A plot of the effective critical current I¥ as a function
of the rotation flux through the interferometer loop. The error
bars, which are the standard deviation of 102 FFT’, are
smaller than the size of the plotted points. The horizontal axis
is normalized in units of the *He circulation quantum. The
temperature was approximately 0.87 .. The rotation flux was
varied by reorienting the normal to the loop’s plane through an
angle of =m/2 with respect to the east-west direction. The ro-
tation flux is - A=A cos O, sin §, where 6 is the direction
of A with respect to an east-west line and ©; ~38° is the lati-
tude of Berkeley. The solid line drawn is a plot of Eq. (57).

sure of I’ . Therefore, if Eq. (57) is correct, reorienta-
tion of the cryostat will lead to a modulation of the peak
amplitude. The amplitude of the Fourier peak is mea-
sured as a function of orientation angle 6 of the cryostat.
Since the applied rotation flux is not linear in 6, the
observed modulation pattern is complex. For each angle
0, one can calculate that 2€Q2- A=2() A cos 6, sin 6 and
then plot the Josephson peak as a function of
2Q- A/ k5. Figure 37 shows such a plot. The cosinusoidal
modulation predicted by Eq. (57) is displayed clearly.
The scatter in the data is dominated by vibration noise
associated with the building.

The interference pattern predicted by Eq. (57) and
shown in Fig. 37 is the most striking feature of this ex-
periment. The device displays a remarkable phenom-
enon: two-path quantum interference in a liquid. The
pattern shows that the interferometer is a superfluid
equivalent of a dc SQUID.

B. Noise considerations for a superfluid dc SQUID

It is natural to ask whether the superfluid quantum
interference device could be developed into a sensitive
rotation sensor, perhaps to perform meaningful geodesy
measurements or experiments on general relativity. The
earth’s rotation vector is currently monitored with very-
long-baseline interferometry (VLBI) techniques at a
level of 107 1°Q ; in a one-day measuring time (Herring,
1991). A comparable level of gyroscopic sensitivity is
required to observe the gravitomagnetic field of the
earth as predicted by general relativity (Buchman et al.,
2000).
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The minimal detectable change in rotation for a su-
perfluid dc SQUID can be expressed as

K3

o™ 37 4
C

ol., (58)
where 6/, is the minimal detectable change in the criti-
cal current (Packard and Vitale, 1992). Therefore rota-
tion sensitivity is limited by the noise sources in the mass
current measurements.

At present, there are several known categories of
noise for this device. The first is vibration of the cell,
which creates pressure differentials randomly varying in
time and ultimately degrades the precision of any tech-
nique to determine I . Such effects can be minimized
by making the laboratory environment as quiet as pos-
sible (Avenel et al., 1993), and by minimizing cell dimen-
sions in the directions of greatest acceleration noise
(Pereverzev et al., 1996). Presumably, the ideal instru-
ment would operate in a vibration-free environment
such as in a free-flying satellite. A more practical step
would be to house the superfluid gyroscope in a geologi-
cally quiet, underground laboratory in a remote site.

A second limitation is imposed by the noise of the
electronic dc SQUID that monitors the displacement
transducer.

The ultimate intrinsic noise floor of the superfluid dc
gyroscope can be estimated following the analysis
(Clarke, 1996) used on superconducting dc SQUID’s. It
arises from Nyquist noise in the dissipative elements as-
sociated with the weak link. For example, for the total
conductance G that shunts the weak links, one can ex-
press the smallest detectable angular velocity in terms of
the intrinsic noise currents:

ETCER
O Kk3\4k, TG(Af) ? (59)
41.A

where Af is the measurement bandwidth. From determi-
nations (Simmonds, Marchenkov, Vitale, et al., 2000) of
dissipation described above, we estimate an intrinsic
limit of § Q~5x10"°Q 4 /A in a 1-s bandwidth. There
are several parameters that reflect the weak-link critical
current: magnitude of the Josephson oscillation, fre-
quency of the low-amplitude pendulum mode, current
enhancement due to the Fiske effect, and Shapiro step
currents. It remains to be seen what method of monitor-
ing I will permit detection of the smallest variations in
rotation rate. It is already clear that the intrinsic sensi-
tivity can only be reached if other extrinsic noise sources
such as temperature drifts, environmental noise, and
electronic SQUID readout noise are reduced several or-
ders of magnitude below the values in the present ex-
periment.

XV. OTHER SUPERFLUID JOSEPHSON PHENOMENA
A. Spin Josephson effect

In this review we have focused on Josephson phenom-
ena associated with mass superfluidity. However, charge
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HPD-1

Spin Josephson Wedak Link

FIG. 38. A schematic diagram of two cylindrical containers,
each containing a homogeneously precessing domain (HPD).
The connecting tube is necked down until its dimensions ap-
proach the magnetic coherence length determined by the field
gradient and the distance of the HPD boundary from the con-
necting tube.

superfluidity (superconductivity) and spin superfluidity
are also possible. The nonzero spin of Cooper pairs in
superfluid *He means that spin transport via supercur-
rents should be possible. In a geometry with two spin
reservoirs separated by a “spin weak link,” one might
expect phenomena analogous to the “mass” Josephson
effect discussed above to be detectable. These phenom-
ena were observed in a beautiful series of experiments
carried out in Moscow in the 1980s.

The phenomenon of the homogeneously precessing
domain (HPD) in superfluid *He-B was used to create
the required “spin reservoir.” An HPD is created by lo-
cating a sample of superfluid *He-B in a magnetic field
gradient VH in the presence of an rf excitation whose
frequency is approximately centered on the mean-field
value. This causes a steady growth in the gradient of
precession phase between different parts of the sample
and a resulting redistribution of spin along the field gra-
dient direction until a magnetic two-domain structure
arises. In one domain the magnetization is static, and in
the other it precesses with a common phase—this is the
HPD.

Figure 38 shows a schematic diagram of two HPD’s
connected by a narrow channel. This geometry is the
nuclear-spin analog of Fig. 1. The phase and frequency
of precession can be controlled independently for each
HPD via the phase and frequency of the rf signals. The
change in phase of the precession in one HPD with re-
spect to the other creates a time-varying gradient of pre-
cession phase in the channel. The effects of spin currents
through this channel can be detected by changes in the
rf power absorbed in each HPD.

For the channel to become a Josephson spin weak
link, its dimensions need to be on the order of the spin
coherence length, which is given by

&= ; (60)
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where C, is the spin-wave velocity along the channel, o
is the frequency of precession in the channel, and Vo
=vyZ(VH). Here vy is the gyromagnetic ratio and Z is
the distance from the domain wall in the HPD to the
channel. Equation (60) shows that the spin coherence
length can be tuned, and when it is made larger than the
characteristic dimension of the channel, spin Josephson
phenomena should result.

In the experiments of Borovik-Romanov (1989a,
1989b) an orifice of diameter and length 0.5 mm was
chosen. The rf absorption of one HPD was recorded
while increasing (or diminishing) the phase difference
between HPD’s. A sinelike dependence of the absorp-
tion (and thus the spin current through the weaklink) on
the phase difference was observed (Borovik-Romanoyv,
1989a, 1989b). These experiments provide a direct dem-
onstration of the spin Josephson effect.

B. Josephson phenomena in “He

In a recent report, Sukhatme et al. (2001) probed the
regime in “He near T, . Not too close to T, they ob-
served a “staircase pattern” in a Helmholtz resonator
containing an array of 24 slit apertures (1.3x0.17 um?)
micromachined in a silicon nitride membrane. To ex-
plain the staircase, they inferred that there must be both
a fortuitous parallel path leak of unknown dimensions
and quantized phase slips occurring coherently within all
the slits. However, the appearance of such a staircase
was contrary to expectations based on the effects of
thermal fluctuations.

As the superfluid transition temperature was further
approached, and the coherence length might have been
comparable to the smaller dimension of the apertures,
the steps on the staircase disappeared. This was inter-
preted by the authors as an approach to a dissipation-
less, nonhysteretic weaklink with a nearly sinusoidal
current-phase relationship. However, the evolution from
the phase-slip regime to the dissipationless Josephson
regime was not accompanied by the expected geometric
suppression of the superfluid density in the weak link,
which can be deduced from the change in the ratio of
low-amplitude and high-amplitude Helmholtz frequen-
cies. Substantial suppression was previously observed in
an aperture of similar size in a superfluid *He Helmholtz
resonator (Varoquaux et al., 1992).

If the sin ¢ current-phase relation in “He can be ob-
served by some direct means, such as direct detection of
Josephson oscillations or measurement of /(¢), then
the accessibility of superfluid Josephson physics may be
enhanced compared to the millikelvin regime required
for *He. However, the very small value of p, that is in-
herent in experiments near 7'y may obscure some of the
effects that are clear in *He.

XVI. FUTURE DIRECTIONS
As this review has tried to make clear, small apertures

and aperture arrays display the elementary properties of
Josephson weak links in superfluid *He. What, then, are
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the questions left unanswered, and what might be future
directions of research involving these devices?

It appears that whether or not model calculations can
predict the current-phase relation for a given structure
weak link in a given environment has not been estab-
lished. The most recent calculations of Viljas and
Thuneberg (1999) agree well with the /(¢) observed in
aperture arrays, yet the authors suggest these calcula-
tions should not describe the arrays. Also, recent slit
aperture experiments at Saclay have yielded /(¢) func-
tions that span a continuum of states which do not yet fit
into the most recent /(@) calculations. It would there-
fore be interesting to determine /( ¢) experimentally for
a larger sample of weak links and to try to understand
the strengths and weaknesses of the state of the art of
the predictive power of the current theoretical models.

Aperture array experiments thus far have been per-
formed only near zero ambient pressure and at tempera-
tures down to about 0.37/7.. However, the experimen-
tal phase space extends up to 30 bars, a region where the
healing length ¢ is five times smaller than at P=0. Con-
sidering the unexpected discoveries made at 0 bar (bi-
stability, 7 states, and new dissipation mechanisms), it
would be surprising if further discoveries did not await
the experimentalist at elevated ambient pressure. Such
experiments will require smaller apertures and the abil-
ity to measure even smaller mass currents.

As described in Sec. XII, nonlinear dissipation in the
aperture weak links can be explained in terms of a
model involving creation of nonequilibrium quasiparti-
cles. Although this model agrees well with experiments,
there is no microscopic basis for it. Furthermore, we re-
mind the reader that agreement between experiment
and theory only demonstrates consistency between the
two. In fact, there are aspects to the model that are dif-
ficult to justify. Therefore it is highly desirable either to
put the model on a proper microscopic foundation or
else to replace it with a more robust picture that will also
describe the dissipative processes.

Even without an improved microscopic understanding
of superfluid Josephson weak links, these devices can be
used to construct instruments such as gyroscopes that
may find utility in science. The big question here is how
sensitive a rotation sensor can be made. To be truly use-
ful, such a device would need to be more sensitive than
other technologies, such as laser gyros and matter-wave
rotation sensors. In order to reach that goal, local noise
problems (i.e., vibration) need to be solved. Only then
can one determine whether the present estimates of in-
trinsic noise limits are correct. Even if the superfluid
SQUID is demonstrably the most sensitive inertial sen-
sor, there will still be several orders of magnitude of
enhancement required to be useful for the most obvious
geodetic measurements or relativity experiments.

There is, however, already a small class of experi-
ments that can uniquely be performed using a superfluid
SQUID. In particular, one could test the predictions of
quantum phase shifts due to controlled textural orienta-
tion evolutions (Mermin and Ho, 1976) or due to geo-
metrical phase effects.
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Finally, it would be intriguing to consider setting an
upper limit on the strength of torsionlike “fifth forces”
that might couple rotating objects to either spin or mass.
Although such forces are not expected to exist, the dark
matter problem raises uncertainties about our under-
standing of the macroscopic world, uncertainties that
might be resolved by experimental searches for unex-
pected effects.

XVIl. SUMMARY

The 30-year-long development of superfluid helium
SHe weak links has finally shown that the sought-after
devices lie just where simple models suggested, i.e., in
apertures whose dimensions are on the order of the co-
herence length. Beginning with the discoveries of the
Saclay group in 1987 and accelerating with the discovery
of coherent nanoaperture arrays at Berkeley in 1997,
many physical phenomena such as sin ¢ current-phase
relations, quantum oscillations at the Josephson fre-
quency, the Fiske effect, Shapiro effects, plasma oscilla-
tions, and rf and dc SQUID’s, have already been ob-
served and quantified.

Perhaps the most interesting results, both experimen-
tally and theoretically, have involved unexpected fea-
tures: the bistability phenomenon of H and L states, the
7 periodicity of the I(¢) functions and the related
m-state feature, and finally the dissipation currents aris-
ing from textural precession and nonequilibrium quasi-
particle currents. One might wonder if analogous effects
will someday be seen in complex order-parameter super-
conducting systems like the cuprates and ruthenates, or
in multicomponent BEC’s. In this small topic of the su-
perfluid *He Josephson effect, one once again sees that
in the search for the expected and predictable, Nature
reveals the unexpected.

Finally, the almost perfect analogies between the phe-
nomena discussed in this review and those in supercon-
ductors indicate their universality and point the way to-
wards studies of similar effects in other macroscopic
quantum systems.
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APPENDIX A: CIRCUIT ANALOGS FOR SUPERFLUID
HYDRODYNAMICS

Electrical circuit analogs are often used in describing
the superfluid weak-link cells. We describe here several
of these concepts.

1. Kinetic inductance L

There are two ways to motivate the formula for super-
fluid kinetic inductance.

(a) In an electric circuit the magnetic energy stored in
a circuit is given by E =} LI?. If superfluid flows through
a tube of length / and cross-sectional area o, the super-
fluid kinetic energy can be written in terms of the mass
current / as

1 ! 1
- 2_ 112
> ps(r] 5 LI,
where we define the superfluid kinetic inductance of the
tube as

E

(A1)

l
pso’

(b) In general for a superfluid, the equivalent hydro-
dynamic inductance at phase difference ¢ of a device
with current-phase relation /(¢) is given by Eq. (32).
This is because from the definition of L in Eq. (Al) we
can write

dE=L(1)d(I*12). (A3)

On the other hand, we see from Egs. (39), (40), and (41)
that

dE=(x/2m)(d )= (k12m)(d dld])dI*12, (A4)
L=dE/d(I*2)=(k2m)(d $IdI). (A5)

As an example, consider a tube of length / and area o.
The current-phase relation is given by

_ _ K3\ ¢
I(d’)_o-psys_o-ps(zﬂ_) !
Using Eq. (17) for the straight tube [Vé=(2m3/h) v,

= ¢/l] and substituting into Eq. (AS), we recover Eq.
(A2).

L=

(A2)

(A6)

2. Weak-link kinetic inductance L

As discussed in Sec. IX, for a weak link characterized
by a function /(¢), the equivalent hydrodynamic induc-
tance is given by Eq. (32) [or equivalently by Eq. (A5)].
For I(¢)=1.sin(¢), this means that the hydrodynamic
inductance of the weak link when ¢=0 (the Josephson
inductance) is given by

K3
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3. Membrane capacitance

In an electric circuit, a capacitor C stores charge Q
=CV, where V is the chemical potential per unit
charge. Consider a fluid-filled volume bounded on one
side by a flexible diaphragm of area A and spring con-
stant (force/length) k. If additional fluid with mass M
enters the volume, the diaphragm will stretch an amount
x and a chemical-potential head P/p will be established,
given by simple geometry as

=P A8
Thus, if M plays the role of Q and P/p plays the role of
V, the capacitance is defined as
2A2
c=2=
k

As an example of the utility of this electrical analog, an
aperture in parallel with a capacitance exhibits a reso-
nant mode whose frequency is given by w=1/J/LC
=(p,all)(k/p®A?). This is the well-known resonance
frequency of a membrane-tube superfluid Helmholtz
resonator.

(A9)

APPENDIX B: PRESSURE CALIBRATION PROCEDURES

Figure 4 shows the basic geometry of a membrane-
aperture cell. For displacements much smaller than the
elastic limit of the diaphragm, the device responds as a
classic Hooke’s-law spring:

potis)

(B1)

where k is a spring constant (in N/m) and (x) is the dis-
placement of the membrane averaged over its area A.

Empirical calibration of the pressure gauge may be
obtained by applying a known pressure head across the
membrane. When using the SQUID transducer, one
does this by including a thin normal-metal electrode be-
tween the membrane and the pancake coil. A potential
difference V, applied between the membrane and the
electrode, produces a deflection of the diaphragm
equivalent to an applied pressure head P=V?/2ed>.
Here ¢ is the permittivity of the liquid helium, and d is
the average gap between the membrane surface and the
electrode. A plot of the output voltage of the position
sensor circuit Vg, vs V? is a straight line whose slope
provides the calibration constant. In practice, uncertain-
ties in knowing d (typically 10~ m) lead to systematic
errors on the order of 15%.

An alternative calibration approach is to use the fact
that the diaphragm’s restoring force is dominated by ten-
sion 7 rather than stiffness. Then a theoretical expres-
sion for k can be used that involves knowledge of the
tension in the diaphragm and its mass/area. These pa-
rameters can be inferred from observing several of the
vacuum resonances of the “drumhead” diaphragm.
Again, the systematic errors appear to be on the order
of 15%.
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