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Electronic excitations lie at the origin of most of the commonly measured spectra. However, the
first-principles computation of excited states requires a larger effort than ground-state calculations,
which can be very efficiently carried out within density-functional theory. On the other hand, two
theoretical and computational tools have come to prominence for the description of electronic
excitations. One of them, many-body perturbation theory, is based on a set of Green’s-function
equations, starting with a one-electron propagator and considering the electron-hole Green’s function
for the response. Key ingredients are the electron’s self-energy 2 and the electron-hole interaction. A
good approximation for 3, is obtained with Hedin’s GW approach, using density-functional theory as
a zero-order solution. First-principles G W calculations for real systems have been successfully carried
out since the 1980s. Similarly, the electron-hole interaction is well described by the Bethe-Salpeter
equation, via a functional derivative of . An alternative approach to calculating electronic excitations
is the time-dependent density-functional theory (TDDFT), which offers the important practical
advantage of a dependence on density rather than on multivariable Green’s functions. This approach
leads to a screening equation similar to the Bethe-Salpeter one, but with a two-point, rather than a
four-point, interaction kernel. At present, the simple adiabatic local-density approximation has given
promising results for finite systems, but has significant deficiencies in the description of absorption
spectra in solids, leading to wrong excitation energies, the absence of bound excitonic states, and
appreciable distortions of the spectral line shapes. The search for improved TDDFT potentials and
kernels is hence a subject of increasing interest. It can be addressed within the framework of
many-body perturbation theory: in fact, both the Green’s functions and the TDDFT approaches profit
from mutual insight. This review compares the theoretical and practical aspects of the two approaches
and their specific numerical implementations, and presents an overview of accomplishments and work
in progress.
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I. INTRODUCTION

In every spectroscopic experiment one perturbs the
sample (by incoming photons, electrons, etc.) and mea-
sures the response of the system to this perturbation. In
other words, the system is excited. Therefore it is in gen-
eral not sufficient to calculate ground-state properties in
order to interpret or predict results of experiments like
photoemission, electron-energy loss, absorption, etc.

Direct and inverse photoemission and absorption can
be taken as the prototype spectroscopies which one
would like to describe in this context. They are sche-
matically depicted in Fig. 1. In the photoemission pro-
cess the system absorbs a photon 4 v, and an electron is
ejected whose kinetic energy E, is then measured at
some distance. If one considers this photoelectron to be
completely decoupled from the sample, energy and mo-
mentum conservation allow one to deduce the change in
total energy of the sample, which is interpreted as the
energy level of the “hole,” i.e., the level that was for-
merly occupied by the photoelectron. Hence as a first
approach one can state that photoemission measures the
density of occupied states. By analogy, inverse photo-
emission yields information about the density of unoc-
cupied states. In absorption experiments, an electron is
excited from an occupied state into a conduction state.
This process looks, at first glance, like the sum of a pho-
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toemission and an inverse photoemission experiment
(creation of a hole and an electron). Instead, as shown in
Fig. 1, in the absorption measurement the excited elec-
tron remains inside the system and cannot be supposed
to be a free electron decoupled from the others. Hence
whereas direct and inverse photoemission results are of-
ten already well described by the density of occupied
and unoccupied states, respectively, one realizes that (i)
in absorption, the joint density of occupied and unoccu-
pied states must be considered, (ii) even over a small
range of excitation energies, transition probabilities can
vary considerably and must be taken into account, and
(iii) the excited electron and the hole cannot be treated
separately, since the electron feels the presence of the
hole. Point (iii) constitutes the main difficulty for a cor-
rect description of this type of experiment.

The interpretation of photoemission spectra as a den-
sity of occupied states is linked to the picture of inde-
pendent electrons which occupy some well-defined en-
ergy level in the system. Of course, electrons are not
independent, and it is clear that, for example, an elec-
tron that leaves the sample will lead the remaining elec-
trons to relax. This relaxation energy and other
quantum-mechanical contributions must be taken into
account if energy differences are to be calculated cor-
rectly. In other words, in photoemission the single-
electron energy levels are renormalized by the presence
of the other electrons. One can then still retain the pic-
ture of one-particle energy levels, but these particles are
quasielectrons and quasiholes, i.e., they contain the ef-
fects of all the other particles (Landau, 1957a, 1957b,
1959). They can still be described by a sort of one-
particle Schrodinger equation, which does, however,
contain rather complicated effective potentials (also
called optical potentials) reflecting these interactions.
Moreover, it is clear that, in the case of absorption, even
a very sophisticated one-quasiparticle Schrodinger equa-
tion would be inadequate, since the quasielectron and
quasihole must be described simultaneously, requiring

Inverse
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Direct
photoemission

o~/
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FIG. 1. Schematic representation of the excitations involved in
direct photoemission, inverse photoemission, and absorption
spectroscopies. Photoemission can be resolved in angle, spin,
and time; absorption can be resolved in polarization and time.
This allows a direct probing of the electronic and structural
properties of bulk and low-dimensional samples including dy-
namical effects. AE=E;— E),c , apart from phonons and radia-
tive losses.
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an effective two-particle equation. Progress in the theo-
retical description of spectroscopy is in fact very often
linked to progress in finding better effective one- or two-
particle Hamiltonians.

One important motivation for seeking more precise
theoretical descriptions is, of course, the fact that dis-
crepancies arise between experimental spectra and the
spectra calculated at some approximate level. This mo-
tivation becomes stronger as more precise experiments
become available.

A. Motivation from experiments

The excitations considered in the present work con-
cern electrons, mainly in the valence energy region.
Most of the theoretical tools presented in the following
are general enough to be used also for the study of ex-
citations involving core electrons, although in that case
one is frequently interested in more complex phenom-
ena such as the Auger effect (Verdozzi et al., 2001),
which is not explicitly treated in this review. Traditional
techniques for the study of valence electron excitations
use either photons (visible and ultraviolet absorption,
transmission and reflectivity spectra), electrons
(electron-energy-loss spectra), or both (electron photo-
emission and inverse photoemission spectra).

During the last two decades, important improvements
in many of these techniques have been achieved, due to
the ongoing substantial progress in obtaining (a) high
spectral and spatial resolution, brightness; (b) short
measurement times (scale of femtoseconds); (c) high
spatial coherence; and (d) low temperatures (Smith,
2001). Large contributions come from the progress
made at synchrotron-radiation sources and with ultrafast
lasers. In particular, photon beams in the soft-x-ray en-
ergy region (extreme ultraviolet) are increasingly used,
due to the availability of high-brilliance sources (Smith,
2001). Several striking examples can be found in the re-
cent literature. Femtosecond lasers yield information
about elementary electronic processes occurring at sur-
faces on time scales from pico- to femtoseconds, which
are relevant for potential technological applications. For
example, an electronic excitation is the initial step in
many chemical reactions, and the energetics and lifetime
of this process directly govern the reaction probability.
Hence chemical selectivity can be obtained through an
activation of the desired reaction via a femtosecond
electronic excitation (Sundstrom, 1996; see Diau et al.,
1998, for an example). Time-resolved femtosecond pho-
toemission spectroscopy has been used to gain insight
into electronically induced adsorbate reactions at sur-
faces and kinetics of growth, and to monitor in real time
and with atomic resolution the dynamics of electrons
(Plummer, 1997) and the motion of atoms at surfaces
(Petek et al., 2000). Recent advances in ultrafast elec-
tron diffraction have yielded direct imaging of transient
structures in chemical reactions (Thee et al., 2001). X-ray
microscopy allowed the study of biological matter, like
the internal structure of a cell, with a spatial resolution
of 36 nm using photons in the “water window” energy
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range, i.e., between 290 and 530 eV, where carbon ab-
sorbs (excitation of the 1s electrons) and water is rela-
tively transparent. Photoelectron spectra with high spa-
tial resolution are at the basis of photoelectron
microscopy, where a 20-nm resolution can be obtained
(Nolting et al., 2000). The determination of the Fermi
surface of very complex materials such as cuprate super-
conductors (Zhou et al., 1999), the study of a Fermi gap
opening in complex structures (Cepek et al., 2001), and
the measurement of the energy dependence of the line-
width associated with photoemission peaks near the
Fermi energy (Valla et al., 1999a, 1999b) are now pos-
sible because of the improved spectral resolution.
Often, it is clear that a simple one-particle picture is
intrinsically inadequate for describing the processes oc-
curring in the experiments. A good example is resonant
photoemission, where core-valence absorption and va-
lence electron Auger emission interfere. Many aspects
of these experiments can in principle be described by the
theoretical tools discussed in this review. In the follow-
ing, we define the common framework of the ap-
proaches and then consider and compare them in detail.

B. Theoretical framework

1. Overview

This review treats approaches using or leading to the
picture of effective particles, i.e., “quasiparticles,” as
outlined above. There are, of course, other ways to treat
the many-body problem, e.g., the configuration-
interaction approach of quantum chemistry (see, for ex-
ample, Jensen, 1999; Szabo and Ostlund, 1983; Bonacic-
Koutecky et al., 1990 for an application). The latter is
based on the minimization of the energy with respect to
the expansion coefficients of a trial many-body wave
function, written as a linear combination of determi-
nants. A description of configuration-interaction-based
techniques is clearly beyond the scope of this paper, al-
though they can be very efficient (e.g., in the determina-
tion of higher excited states for point defects in SiO;;
Raghavachari er al., 2002). However, the drawback of
the configuration-interaction method with respect to
density-functional-based or  Green’s-function-based
“quasiparticle” methods is its unfavorable scaling with
the system’s size.!

"n particular, full configuration-interaction calculations in-
volve a number of determinants which grows exponentially
with the size of the system. Simplified methods have been de-
vised, such as the truncated configuration interaction, which
reduces the scaling to M® (where M is the number of basis
functions) when only determinants with a number of excited
electrons lower than or equal to 2 are included. Other scalings,
namely, M® or M'°, are obtained by also including triply or
quadruply excited determinants. The approaches which will be
discussed in this review can exhibit a much better scaling, ac-
cording to the system and to the numerical implementation
(Benedict et al., 1998a; Bertsch er al., 2000; Hahn et al., 2002;
Vasiliev et al., 2002).
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The concept of quasiparticles is intimately linked to
that of band structure (or discrete energy levels in a
finite system), and the corresponding one-electron—like
Schrodinger equations. Band-structure equations can
contain the complications of electron-electron interac-
tions implicitly in empirical or semiempirical Hamilto-
nians, as in the tight-binding approach, or they can treat
those effects explicitly. It is this latter point which is of
interest here. We shall hence discuss the quasiparticle
formalism of many-body perturbation theory. In addi-
tion, we shall also discuss approaches based on the static
and time-dependent density-functional theory (DFT and
TDDFT).

Static DFT (Hohenberg and Kohn, 1964) in the for-
mulation of Kohn and Sham (1965) is a ground-state
theory in the form of an effective one-particle Schro-
dinger equation (the Kohn-Sham equation). The Kohn-
Sham eigenvalues are often interpreted as quasiparticle
energies, and their differences as optical excitation ener-
gies, without formal justification. The Kohn-Sham eigen-
values and eigenfunctions are also often used as starting
point for further excited-state calculations. On the other
hand, DFT has been extended to time-dependent DFT
(Runge and Gross, 1984), which is in principle an exact
theory for the description of neutral excitations (such as
those involved in absorption). In fact, TDDFT can be
written in the form of an effective two-particle equation,
which can be directly compared to the effective two-
quasiparticle equation of many-body perturbation
theory.

In the last few years, several reviews have addressed
different aspects of the calculation of electronic excita-
tions in both finite and infinite systems using either the
quasiparticle picture (see, e.g., Aryasetiawan and Gun-
narsson, 1998; Strinati 1988; Aulbur et al., 1999; Farid,
1999a; Hedin, 1999; Rohlfing and Louie, 2000) or TD-
DFT (see, for example, Gross et al., 1994, 1996; Casida
1995, 1996; Dobson, Vignale, and Das, 1997; Rubio
et al., 1997; van Leeuwen, 2001; Burke et al., 2002). It
emerges that, although both methods are in principle
exact when applied to the appropriate problem, they
present different drawbacks: in the context of many-
body perturbation theory, the effective one- and two-
quasiparticle Hamiltonians are essentially well estab-
lished, but the methods become numerically
impracticable for complex systems. TDDFT, on the
other hand, could in principle lead to technically simpler
equations, but its large-scale application is at present
prevented by the fact that a good general approximation
for the corresponding effective two-particle Hamiltonian
(or equivalent quantities) has not yet been found. The
large increase of interest in theoretical spectroscopic
analysis from first principles suggests a joint venture in
exploring both approaches. The aim is to reach an effec-
tive method of handling excitations of many-electron
systems with an effort comparable to that of DFT-based
approaches used for the calculation of ground-state
properties.

In the present work we review some of the essential
physics contained in the various approximations used to
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describe spectroscopic measurements from first prin-
ciples. We address in detail some frequently asked ques-
tions related to the calculation of photoemission and op-
tical spectra, including those which remain open and
may be solved in the near future. We attempt to give a
general perspective of our present understanding of dif-
ferent spectroscopies and to compare the many-body
perturbation theory approaches—in particular those
based on Hedin’s equations (Hedin, 1965)—with time-
dependent density-functional theory. This comparison
with an eye to practical applications, together with the
focus on the calculation of photon absorption and
electron-energy-loss spectra which involve two-
quasiparticles (electron-hole) excitations, characterizes
the present work and differentiates it from other re-
cently published reviews on Green’s-function methods,
more focused on one-particle Green’s functions and
single-quasiparticle excitations, such as those involved in
photoemission or inverse photoemission (e.g., Aryase-
tiawan and Gunnarsson, 1998; Aulbur et al., 1999; Farid,
1999a; Hedin, 1999).

Since this field of research is rather broad, and in or-
der to make the discussions more focused and specific,
we have restricted the review to the description of
purely electronic excitations from valence states, for
nonmagnetic systems. We have hence excluded the ex-
plicit discussion of core-level spectroscopy (Almbladh
and Hedin, 1983) and Auger spectroscopy (Verdozzi
et al., 2001), although the theory presented here remains
valid in that energy range. We also exclude the problem
of strong correlation and the methods that have been
developed to treat these problems in particular, e.g., the
local-density approximation plus an on-site Hubbard re-
pulsion method (LDA+U; Anisimov et al.,, 1997) and
the dynamical mean-field theory (Georges et al., 1996).

Unless otherwise stated, we shall use atomic units
throughout the paper (i.e., e’=f=m,=1).

2. Effective Hamiltonians and effective interactions

The earliest attempts to cast the many-body problem
into the form of one particle moving in some mean (or,
more generally, effective) field due to the electron-
electron interaction are the Hartree (1928) and the
Hartree-Fock (Fock, 1930) approaches: a product or de-
terminant ansatz for the many-body wave function al-
lows one to minimize the total energy variationally, lead-
ing to an effective one-particle Schrodinger equation. It
is interesting to note that the Hartree-Fock method al-
ready yields good results, like total energy differences,
in certain systems. However, the interpretation of the
Hartree-Fock eigenvalues as electron addition and re-
moval energies does not lead to satisfactory agreement
between theory and experiment. As a guideline we may
take the minimum direct quasiparticle gap at I' in dia-
mond, for which Mauger and Lannoo (1977) obtained a
value of E,~15¢eV in a self-consistent Hartree-Fock
calculation, instead of the experimental quasiparticle
gap of 7.3 eV (inferred from optical experiments by
Roberts and Walker, 1967).
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The need for going beyond Hartree-Fock in electronic
structure calculations was in fact recognized -early.
Many-body correlation effects have been studied since
the 1930s (Wigner, 1934); an important milestone is the
work of Quinn and Ferrell (1958) on the homogeneous
electron gas and metals. A key role is played by the
electron self-energy, which is the proper exchange-
correlation potential acting on an excited electron or
hole. A sound basis for modern band-structure calcula-
tions was laid by Hedin (Hedin, 1965; Hedin and Lun-
dqvist, 1969) with the so-called GW approximation for
the self-energy, which was applied to the electron gas in
that work. The essential improvement offered by the
GW one-particle Schrodinger equation over the
Hartree-Fock equation lies in the explicit description of
the potential induced by the additional particle. In order
to understand this, one might ask why the eigenvalues of
the Hartree-Fock equation do not yield a satisfactory
description of quantities like the band structure, al-
though Koopman’s theorem says that it is justified to
identify eigenvalues with total energy differences. So
what is missing, and which ingredients should reason-
ably appear in a theory going beyond Hartree-Fock and
allowing one to use the eigenvalues of some effective
Hamiltonian?

First, Koopman’s theorem supposes that the one-
electron orbitals are frozen upon changing the number
of electrons. In order to go beyond this drastic approxi-
mation, one has to include the relaxation of the orbitals
as a response to the addition of an electron or a hole to
the system. This effect is contained in the so-called delta-
self-consistent-field calculations for finite systems, where
the difference in total energy between two self-
consistent calculations, for N and N+ 1 electrons, is ob-
tained explicitly. In other words, total energy differences
are calculated successfully within Hartree-Fock, because
in the calculation for N£1 electrons the wave functions
are allowed to relax with respect to those of the
N-electron calculation. This response of the system to
the additional electron or hole—the screening of the ad-
ditional particle—can be reformulated in linear response
in terms of the dielectric matrix e, defined by the relation

Viedr)= f dr,sil(nrl)vext(r,) (1.1)
between the external potential V,,, and the screened
(total) potential V,,. The total potential is the sum of
the external potential and the potential due to the po-
larization of the system induced by the external pertur-
bation. It is the relaxation of the wave functions which
gives rise to this polarization, and one can therefore try
to use the concept of the dielectric matrix in order to
correct the Hartree-Fock one-particle Schrodinger equa-
tion, without calculating the relaxation explicitly as in
the delta-self-consistent-field approach. One has hence
to calculate the induced potential V;,,=V,,,— V., due
to an additional electron, and acting on that electron
itself. As a first step, one could assume that the addi-
tional electron in a state n gives rise to an induced po-
tential that is proportional to the perturbing “charge

Rev. Mod. Phys., Vol. 74, No. 2, April 2002

density” |4, (r)|? (as in the familiar picture of the image
charge). However, whereas Hartree relaxation effects
are very important in small systems, in solids in a Bloch
picture they are negligible, and hence this effect alone
cannot lead to a satisfactory correction of the Hartree-
Fock equation. Rather, one should take |,(r)|?> as the
probability to find the additional electron in some point
r, and then, supposing that the additional electron is at r
(i.e., taking correlation into account), calculate the in-
duced potential in the same point. Then, in the corre-
sponding equations |,|? is replaced by a & function, and
the potential which should be added to the Hartree-
Fock equation turns out to be the so-called Coulomb-
hole term Jv(s !—1), v being the bare Coulomb
interaction.’

Of course, the change in the charge distribution due
to the additional, perturbing, electron will also affect the
exchange term of the original Hartree-Fock equation,
which now turns out to be screened by £ ~!. These argu-
ments lead to an effective one-particle Schrodinger
equation for an additional electron (or hole) which
reads

VZ
(—7+J' dr' p(r")v(r,xr")

1 ’ ’ -1 ’ !
+§f dr'v(r’,r)[e” (r,r")=S8(r,x")]| ¢, (x)

- f A W(er') 3 0 () 6),(0') = € (),

(1.2)

where W=¢&¢~ "v is the screened Coulomb interaction.
This is the equation known as the static COHSEX (Cou-
lomb hole plus screened exchange) approximation (He-
din, 1965), where the terms added to the kinetic-energy
operator and the Hartree potential constitute the self-
energy 3 COHSEX For diamond, Hybertsen and Louie
(1986) have found that the energy difference between
valence and conduction bands is overestimated in the
COHSEX approximation by about 1 eV, which means,
however, that most of the error of the Hartree-Fock re-
sult cited above is removed by this correction.

To go further, one must take into account the fact that
the response of a system to an external perturbation is
frequency dependent, which means that one has to in-
troduce the concept of a response in time (dynamical
correlation and memory effects). In fact, the COHSEX
potential is nothing other than the static limit of the
exchange-correlation self-energy calculated in the so-

1

’The factor 3 describes the fact that a charge e is taken from
infinity to a point r of the system or, equivalently, built up from
e=0. The part of the work coming from the induced charge
which is needed to do this is f{dqV;,a(q)=[5dqq(e ' —1)v
=1/2¢**(W—v). This is nothing other than the adiabatic
building up of charge density (Hedin, 1965, 1999) of classical
electrostatics.
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called GW approximation (Hedin, 1965), which, as
pointed out above, can be considered as the state-of-the-
art tool for band-structure calculations today.

After its introduction for metals, the GW approxima-
tion was also used early for semiconductors and insula-
tors, first in static COHSEX (Brinkman and Goodman,
1966; Lipari and Fowler, 1970; Brener, 1975a, 1975b),
later using a plasmon-pole approximation in a model
e ! (Bennett and Inkson, 1977; Inkson and Bennett,
1978) and, starting from a Hartree-Fock calculation, us-
ing a realistic frequency- and wave-vector-dependent di-
electric matrix, in a basis of localized orbitals (Strinati
et al., 1980, 1982).

It was shown that the GW approach managed to cor-
rect the largest part of the band-gap error; in fact, for
the example of the gap at I' in diamond, Strinati et al.
(1980) found a value of 7.4 eV, which is half of the
Hartree-Fock gap and very close to the experimental
one.’ The fact that the inclusion of dynamical effects in
the response functions leads to a reduction of the quasi-
particle gap with respect to the static COHSEX result is
a general finding, and the example of diamond shows
the typical order of magnitude of the dynamical effects
(i.e., about 10-20 % of the experimental gap).

On the other hand, GW calculations are cumbersome
as compared, for example, to DFT ones. As pointed out
above, the Kohn-Sham equation also has the form of an
effective one-particle Schrodinger equation, and it is
therefore tempting to use its eigenvalues as electron ad-
dition and removal energies. However, this yields large
errors (Lundqgvist and March, 1983); in particular one
finds a strong underestimate of the band gap of semicon-
ductors and insulators. For diamond, the difference of
Kohn-Sham eigenvalues calculated in the local-density
approximation (LDA) has yielded a gap at I of E,
=5.51 eV (Hybertsen and Louie, 1985). The origin of
this failure, whether it is mainly due to the wrong inter-
pretation of the Kohn-Sham equation or to the LDA, is
still discussed today and will be studied in Sec. IV.A.2. In
any case, DFT is a good starting point for further calcu-
lations, and starting from the work of Hybertsen and
Louie (1985, 1986), and Godby et al. (1986, 1987, 1988),
today ab initio GW calculations are mostly performed
using Kohn-Sham results as ingredients (to be precise,
the Kohn-Sham eigenvalues and eigenfunctions are used
to construct the self-energy of the GW form). These
fully ab initio GW calculations generally yield very good
agreement, most often better than 10-15 %, between
the experimental and the calculated band structure,
apart from the case of strongly correlated systems.
Again for the example of diamond, Hybertsen and
Louie (1985) and Godby et al. (1987) have performed ab
initio GW calculations and obtained a quasiparticle gap
at I' of E,=738¢eV and E,=7.26 ¢V, respectively,
which compare well with the experimental value of 7.3
eV (Roberts and Walker, 1967).

3To be precise, this calculation also includes a vertex correc-
tion beyond the usual GW.

Rev. Mod. Phys., Vol. 74, No. 2, April 2002

The GW approach thus yields very gratifying results
concerning the band structure, but having a good band
structure is not enough when one is interested in spec-
troscopies like absorption, where one creates a neutral,
i.e., electron-hole type of excitation. One is in that case
talking about the response of the system to a (time-
dependent) external potential, which implies that one is
interested in the dielectric matrix itself, as defined in Eq.
(1.1) in its obvious time-dependent extension. This re-
sponse, when looked at from the point of view of the
system in its ground state, implies a redistribution of
charge (wave functions), in other words, depletion of
charge (holes) or accumulation of charge (electrons) in
some places. This creation of electron-hole pairs can be
seen explicitly in the corresponding equations. In fact, in
direct (r) space, the dielectric function for an electron
system can be written as

s(r,r’,w)zé(r—r’)—jdr”v(r—r”)P(r”,r’,w) (1.3)

where v is the bare Coulomb interaction and where a
polarizability operator P(r",r',w) has been introduced.
When P is zero, the system is not polarizable and hence
the total potential is equal to the external one. Other-
wise, P is, in general and on average, negative, i.e., act-
ing against the external potential. The simplest approxi-
mation for P is the independent (quasi)particle form:

Pi(0) g (1) g (x") i (x')

w—w,-j--}—in

Prop(rr’ o) ::z‘z]‘ (fi—1p)
(1.4)

Here w;;=(€j—¢€;), f; are Fermi occupation numbers,
and (i,j) label the states of energy €; and ¢; obtained
from some (for the moment, unspecified) equation for
one-particle states. The small imaginary number iy
leads to an imaginary part of P which is proportional to
d(ej—€;— w); in other words, one can see the energy
conservation for a photon w promoting an electron from
state i to state j.

The approximation for the polarizability P;,p in Eq.
(1.4) as a sum over independent transitions has the form
of the random-phase approximation (RPA; Adler, 1962;
Wiser, 1963). In fact, the RPA was originally meant to
describe a calculation performed within the (linearized)
time-dependent Hartree approach, or Lindhard approxi-
mation (Lindhard 1954), for a homogeneous electron
gas. Later, the time-dependent Hartree approach was
shown by Ehrenreich and Cohen (1959) to be equivalent
to the diagrammatic bubble expansion for the dielectric
function in many-body perturbation theory (see also
Pines, 1963, and Pines and Nozicres, 1989). Here, the
term RPA form will in the following indicate that the
approximation (1.4) has been used for P. The “addi-
tional” holes i and electrons j can of course be calcu-
lated within the framework of the one-particle excita-
tions outlined above. It turns out that the dielectric
function evaluated using Kohn-Sham orbitals ¢; and ei-
genvalues ¢; from LDA in Eq. (1.4) yields absorption
spectra that are in quantitative, and sometimes even in
qualitative, disagreement with experiments (Cohen and
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Chelikowsky, 1988). Since the factor d(€;—€,—w) im-
plies that absorption occurs at eigenvalue differences,
this has been in part attributed to the fact that the Kohn-
Sham eigenvalues underestimate the quasiparticle gap,
which leads to a redshift of the theoretical spectrum with
respect to the experimental one. In fact, for example, in
a small sodium cluster Na, the first allowed transition
between Kohn-Sham orbitals occurs at 1.1 eV (Onida
et al., 1995), whereas the first experimental absorption
peak is seen at 1.8 eV (Wang et al., 1990).

However, even when the quasiparticle gap problem is
corrected by replacing the Kohn-Sham eigenvalues by
quasiparticle energies calculated, for example, in the
GW approximation (this approach will be named
GW-RPA in the following), important discrepancies
with experiment are found. In general, the redshift prob-
lem becomes a blueshift problem—in the case of Nay,
the first main absorption peak is shifted to 3.3 eV. This
problem is not due to a failure of the GW approach. In
fact, for Na, the ionization potential, i.e., the creation of
a hole, is correctly described within GW (Reining et al.,
2000). In the latter case, however, one considers the ad-
dition of a hole with respect to the ground state and not,
as in the case of absorption, the addition of a hole and
then the addition of an electron in the presence of that
hole. An additional correction term to the potential is
hence needed in the case of absorption, expressed by the
change of the potential upon presence of the hole, and a
self-consistent treatment of hole and electron altogether.
One has therefore to expect an effective two-particle
equation for the response function, including electron-
hole interaction effects. This equation—the Bethe-
Salpeter equation—is actually found via the rigorous
treatment of the problem within Green’s-function theory
(see Sec. IV.B). It requires the correct calculation of the
quasielectron and the quasihole (for example, via GW)
and contains an interaction term that mixes the formerly
independent transitions. The electron-hole interaction
hence modifies the expression for the polarizability in
Eq. (1.4). These excitonic effects have been well known
for some time, starting from a description based on a
superposition of atomic excitations (Frenkel, 1931a,
1931b; Peierls, 1932) and the insertion of the concept of
“excitons” into the band picture (Wannier, 1937), and
extending to detailed work in the 1950s like that of
Heller and Marcus (1951), or of Haken (1956, 1957). An
overview of the intense activity in the field at that time
can be found in the book of Knox (1963).

Sham and Rice (1966) established the link between
exciton models and many-body theory, by deriving the
effective mass approximation from the Bethe-Salpeter
equation. The first realistic nonmodel calculation for va-
lence excitons in a solid based on the Bethe-Salpeter
equation was performed by Hanke and Sham, first using
the time-dependent Hartree-Fock approximation (which
is equivalent to introducing an unscreened electron-hole
interaction; Hanke and Sham 1974, 1975) and later also
introducing a static electron-hole screening (Hanke and
Sham, 1980). Their calculation, based on the linear com-
bination of atomic orbitals, managed to explain the
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qualitative features of the line shape of the spectra of
diamond and silicon. The Na, cluster was the first real-
istic system to be treated in the ab initio scheme starting
from DFT and going through GW (Onida et al., 1995),
with a particularly strong effect of the electron-hole in-
teraction due to the finite size of the cluster: the first
absorption peak was moved back by 1.5 eV from its GW
position, with a result close to the experimental one. An
increasing number of such ab initio calculations of exci-
tonic effects in finite and extended systems (see, for ex-
ample, Albrecht eral, 1997, 1998a, 1998b; Benedict
et al., 1998a, 1998b; Rohlfing and Louie, 1998a, 1998b)
have appeared since then, generally showing a big im-
provement over the results of RPA and GW-RPA cal-
culations.

Of course these two-particle electron-hole calcula-
tions are relatively cumbersome, and it has always been
tempting to stay within the framework of DFT. One
could in fact consider the DFT exchange-correlation po-
tential V. as an approximation to the self-energy and,
knowing that self-energy and electron-hole interaction
effects partially cancel each other,* hope that V.. to-
gether with its variation with density (the functional de-
rivative 6V ./ 8p, i.e., the so-called exchange-correlation
kernel f,.), could yield improved optical spectra. This
resembles the theoretically more rigorous TDDFT
(Runge and Gross, 1984; Gross and Kohn, 1985), where
the response of the electrons to a time-dependent exter-
nal potential is derived by searching the extrema of the
quantum-mechanical action functional, which leads to a
time-dependent Kohn-Sham equation. It has turned out
that TDDFT in the adiabatic local-density approxima-
tion (TDLDA) often yields good spectra for finite sys-
tems. For Na, and other sodium clusters, Vasiliev et al.
(1999) have calculated absorption spectra in excellent
agreement with experiment, i.e., reproducing peak posi-
tions and relative heights within =10% (0.2 eV). This is
not in contradiction with the fact that, as mentioned
above, the Kohn-Sham eigenvalue differences are
smaller than the absorption energies: TDDFT directly
describes the evolution of the density under the influ-
ence of a time-dependent external potential, which
means that both the potential (yielding the Kohn-Sham
eigenvalues) and variations of the potential (which can
shift the excitation energies) are taken into account.
TDLDA is also successful in describing electron-energy-
loss spectra for bulk metals and semiconductors, but im-
proves only very slightly the absorption spectra of solids
with respect to RPA calculations (Gavrilenko and Bech-
stedt, 1996). Therefore, in the field of TDDFT the main
effort is directed toward finding better approximations
for both the exchange-correlation potential and its varia-
tion with the density (i.e., f,.). To this end, one has to
understand the main differences between finite and infi-
nite systems, as well as between different spectroscopies.

4See the example of Na, in Onida er al. (1995), and the re-
sults of the jellium model for metal clusters by Pacheco and
Ekardt (1997; also Ekardt and Pacheco, 1995).
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In fact, for example, absorption and electron- energy-
loss spectra are derived in different ways from the same
dielectric function.

In the following we shall therefore concentrate in
more detail on the dielectric function and its link to
spectroscopy. In particular, we shall outline those fea-
tures that are common to both TDDFT and Bethe-
Salpeter approaches, before treating the two approaches
separately and finally comparing them.

Il. TDDFT AND GREEN’S-FUNCTION APPROACHES:
COMMON INGREDIENTS

TDDFT is an extension of static ground-state density-
functional theory. Also, Green’s-function calculations of-
ten start from DFT results. In fact, concerning the
ground state, calculations based on density-functional
theory using simple density functionals predominate to-
day. Current DFT results have often surpassed those
from standard ab initio quantum chemistry techniques
like Hartree-Fock, configuration interaction, etc., which
may require heavy compromises in their technical real-
ization for systems that are not very small (e.g., full
configuration-interaction calculations can hardly be
done for more than five electrons; Jensen, 1999). De-
spite the failures of DFT due to the approximations
made for the exchange-correlation contributions, its use
continues to increase because of its wide applicability
and its favorable scaling with the number of atoms.

In the following, we briefly review the basic ingredi-
ents of DFT in view of its use as a starting point for
spectroscopy calculations. For a more detailed descrip-
tion we refer the reader to any of the numerous compi-
lations published in recent years, e.g., Lundqvist and
March (1983); Dreizler and Gross (1990); Seminario
(1996).

A. Density-functional theory for the ground state

The ground-state energy of a system of interacting
electrons in an external potential can be written as a
functional of the ground-state electronic density. Com-
pared to conventional quantum-chemistry methods this
approach is particularly appealing, since it does not rely
on a complete knowledge of the N-electron wave func-
tion but only on the electronic density. Of course, al-
though the theory is exact, the energy functional is un-
known and has to be approximated in practical
implementations. Today’s DFT starts with the theorems
of Hohenberg and Kohn (1964) for a search of the elec-
tronic ground state of an isolated system of N interact-
ing electrons in an external potential V,,,(r). The first
theorem (“the density as the basic variable in the elec-
tronic problem”) establishes that the external potential
V.«(r) is a functional of the charge density p(r), within
an additive constant. The second theorem establishes
the “energy variational principle for the density.” These
two theorems show that the problem of solving the
many-body Schrodinger equation for the ground state
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can be exactly recast into the variational problem of
minimizing the Hohenberg-Kohn functional with respect
to the charge density.

In practice, the available approximations for kinetic
energy and exchange-correlation density-based func-
tionals give moderate quantitative agreement with ex-
perimental data (Dreizler and Gross, 1990). A much im-
proved strategy has been presented by Kohn and Sham
(1965) using orbital variables. The fundamental assump-
tion is to introduce a reference system of noninteracting
electrons in an external potential fof(r) such that the
ground-state charge density of the physical system coin-
cides with that of the reference system.” With the intro-
duction of the noninteracting system, the variational
problem on p(r) is thus finally reformulated in terms of
the following set of self-consistent Kohn-Sham equa-
tions:

1
- §V2+ Va(e)+ V. (x) +Vo(r) | i;(x) = e;¢;(x)
2.1)

with the density given by p(r)=3",|,(r)|>. Thus VX2
=Vyt+V,.+Vy, where Vg is the Hartree potential,
V.c(r)= 8E, . [p]/6p(r) is the exchange-correlation po-
tential that contains all many-body effects, and V|, is an
external potential stemming, for example, from the
electron-ion interaction.

The simplest approximation (still widely used) to E .
is the local-density approximation (Kohn and Sham,
1965). The approximation is based on using the
exchange-correlation energy density e/;;’m of the homo-
geneous electron gas (Ceperley and Alder, 1980; Ortiz
etal, 1999), namely, ELPA[p]=[e"""(p(r))p(r)dr.
Hence one replaces the inhomogeneous electron system
at each point r by a homogeneous electron gas having
the density of the inhomogeneous system at r. The ra-
tionale for this approximation is in the limit of slowly
varying density. Unexpectedly, the domain of applicabil-
ity of the LDA has been found to go much beyond the
nearly free-electron gas and accurate results can be ob-
tained for very inhomogeneous systems. Improvements
over the LDA have been found, e.g., by the generalized-
gradient approximations, in which the exchange-
correlation energy density is a function not only of the
electron density, but also of its gradient (see, e.g., Per-
dew et al., 1996). Further improvements over the
generalized-gradient functional should go in the direc-
tion of nonlocal functionals, in order to describe better
the inhomogeneity of the exchange-correlation hole, as
in the case of the exact exchange potentials (Gross ef al.,
1996).

The issue of calculating electronic excitations, how-
ever, goes beyond the problem of finding a good ap-
proximation to the ground-state exchange-correlation

SThis definition is meaningful if the charge density is nonin-
teracting v representable, so that one has a unique definition
of the total energy Kohn-Sham functional.
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functional. The problem is intimately linked to the fact
that the one-particle eigenvalues in the Kohn-Sham
theory have often been used, as well, to discuss the ex-
citation spectra of solids, molecules and atoms. Al-
though there is no rigorous justification for a direct iden-
tification of Kohn-Sham eigenvalues with quasiparticle
energies, the formal resemblance between Kohn-Sham
and quasiparticle equations, such as the COHSEX
equation [Eq. (1.2)], where 3(r,r',w) replaces &(r
—r')V,.(r) in Eq. (2.1) explains why the Kohn-Sham
equation can be considered at least as a starting point.

As pointed out above, once some one-particle—like
theory such as Kohn-Sham has been established, re-
sponse functions and spectra can be constructed, for ex-
ample in the approximation (1.4). This is the subject of
the next section.

B. The inverse dielectric function and local-field effects

As discussed above, information about the electrons
and holes, and about their interaction, is contained in
the dielectric function via the polarizability P of Eq.
(1.3). However, further considerations are necessary in
order to obtain spectra. In fact, independently of how P
and ¢ are calculated, the latter usually has to be in-
verted, since one is concerned with the total potential
Viee=¢ 'V, for a given external potential V,,,, and
not vice versa. Equivalently, the induced charge is given
by p;a=xVex:» Where the reducible polarizability y and
¢! are linked by

sfl(r,r’,w)zﬁ(r—r’)-l—jdr”v(r—r”))((r",r’,w). (2.2)

In the following, it is useful to describe explicitly two
types of spectra containing neutral excitations, namely,
photon absorption and electron-energy-loss spectra
(EELS). In electron-energy-loss experiments, an elec-
tron impinges on the sample and loses energy by excit-
ing electron-hole pairs, plasmons, and other high-order
multipair excitations. This energy loss is given by the
imaginary part of the integral of the potential created by
the electron, and the induced charge. When the poten-
tial V,,, due to an electron is taken proportional to a
plane wave, this leads, for a momentum transfer q, to
the loss function

L(w)*—TIm (2.3)

fdrdr’e_iq‘)((r,r’,w)eiq" ,
which is hence determined by the Fourier transform of
the inverse dielectric function —Im[e ™ '(q,q,)].

In a finite system, y also yields the photoabsorption
cross section o, via
(2.4)

g(w)= TIm a(w),

where c is the velocity of light and Im «(w) is the imagi-
nary part of the dynamical polarizability,

a(w)=— j drdr'V, (r,0)x(r,r' ,0)V, (1t o). (2.5)
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In particular, for a dipolar external field V,,, along the z
direction, the corresponding component of the o tensor
reads

d7w , , ,
o'zz(w)z—TIm f drdry' zx(r,x',w)z’, (2.6)

which can also be obtained from the long-wavelength
limit of &'t o(w)=limy ¢ (w/c)Imv(q)x(q.q,0)]
along the field direction. The other components of the
tensor can be similarly obtained. Note that in molecular-
beam experiments, where the molecules are randomly
oriented, one measures the trace of the tensor, that is,
Uexp(w) = %Ei:(x,y,z)o-ii(w)-

In the solid, one has to distinguish between the loss
spectra and the absorption spectra, which are instead
described by the macroscopic dielectric function €y, . Its
relation to the microscopic dielectric function & of peri-
odic crystals has been discussed by Adler (1962) and
Wiser (1963) as well as by Ehrenreich (1966):

ey(w)=lim—

e 27)
4—08G=0.G'-0(q:®)

where egg/(q,0):=¢(q+G,q+G’',w) is the Fourier
transform to reciprocal space of e(r,r"), G is a recipro-
cal lattice vector, and q belongs to the first Brillouin
zone. The optical absorption spectrum is then given by
the imaginary part e,(w) of €)(w). The dielectric con-
stant g is the value of £ ,(w) at @=0. If ¢ is diagonal in
G,G', &) is just ey =limg_¢eG=0,G' =0, i-€., the spatial
average of the microscopic dielectric function. This is in
fact the case in the homogeneous electron gas. Other-
wise, the microscopic dielectric function & (r,x") will de-
pend explicitly on the positions r and r’, and not simply
on the distance |r—r'|. This is translated into the fact
that the dielectric matrix in reciprocal space is not diag-
onal. The fact that all elements of the matrix contribute
to one element of its inverse reflects the so-called local
field effects: these effects arise whenever the system un-
der study is nonhomogeneous on the microscopic scale.
In this case, for example, an external spatially constant
perturbing field will induce fluctuations on the scale of
the interatomic distances in the material, giving rise to
additional internal microscopic fields. These concepts
will be helpful in the next section [see the discussion
after Eq. (2.23)], and in Sec. VI, where TDDFT and
Bethe-Salpeter methods are compared, outlining the
equations and the part of the kernel which are common
to both approaches (see in particular Sec. VI.D.1). It is
clear that the local field effects should in principle be
included in both absorption and loss spectra, since the
crucial quantity which appears is always the inverse di-
electric function.

Local field effects can shift peak positions, and they
can be very important, as will be discussed later. How-
ever, even when local field effects are taken into ac-
count, the above conclusions about the need to go be-
yond RPA or GW-RPA in the calculation of P, and
hence &, remain valid (for example, the inclusion of local
field effects does not generally lead to a significant im-
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provement of the absorption spectra of solids; Louie
et al., 1975). It should in fact be stressed that the concept
of local field effects is independent of the approach used
to calculate P and e. It is therefore useful to summarize
here the notations that will be used throughout this re-
view in order to characterize the different levels of ap-
proximation: First, RPA and G W-RPA refer to a calcu-
lation in which P has been approximated by the form
(1.4), using DFT and GW eigenvalues, respectively, but
the spectrum has then correctly been constructed from
&~ !. When local field effects are neglected in the inver-
sion, in the dipole limit Eq. (1.4) leads to the well-known
Ehrenreich and Cohen (1959) expression for the imagi-
nary part of the macroscopic dielectric function in terms
of the matrix elements of the velocity operator v be-
tween valence and conduction states:®

16
Imfey(@)}= 7 2 (VeI oe—e, 0. @8)

Independently of the quality of the states ¢ entering Eq.
(1.4), the electronic excitations described by Eq. (2.8)
are restricted to the generation of noninteracting
particle-hole pairs. In the following this approximation
will be called an independent-particle-random-phase ap-
proximation macroscopic dielectric function (Del Sole
and Girlanda, 1993).

It is also interesting to point out that, on the other
hand, if the matrix inversion is properly taken into ac-
count, the formerly independent transitions mix. In
other words, even if no electron-hole interaction is in-
cluded in P, there is an effective electron-hole interac-
tion showing up in €,,. This is actually an electron-hole
exchange term, as will be discussed later.

The inclusion of local field effects is, in principle,
straightforward: Inverting & and placing the Fourier
transform of the inverse dielectric function in Eq. (2.7)
directly yields the macroscopic dielectric function for
each frequency w. For our purpose, however, it is con-
venient to use a different formulation for the macro-
scopic dielectric function, which is suitable for a subse-
quent inclusion of excitonic effects. Moreover, and more
importantly here, it will enable us to compare in a con-
cise way (i) electron-energy-loss and absorption spectra
and, later, (ii) TDDFT and the Bethe-Salpeter approach.
In fact, one can show (see Hanke, 1978 and Appendix
B.1) that &), can be constructed from a modified re-

sponse function P,

en(®)=1—1lim[v(q)oP =g -0(q )], (2.9)

q—0

where the matrix FG,G, satisfies the Dyson-like screen-
ing equation
P=P+PuP. (2.10)

®This is none other than Fermi’s golden rule in the dipole
approximation and the one-electron picture for absorption
processes (Pines, 1963; Fetter and Walecka, 1971).
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Here we have defined the modified Coulomb interaction
v(q)¢ as follows:

0 if G=0
v(qQ)g= 4
= else
v(qQ)g |q+G|2

In other words, the difference between v and v is “only”
in the G=0 component.” Because of the long range of
the Coulomb interaction, this term is divergent for van-
ishing q, which explains its importance, as will be dis-
cussed below. v, on the other hand, does not diverge and
plays the role of a correction term, namely, the local
field effects. In fact, from Eq. (2.10) it is clear that put-
ting v to zero is equivalent to neglecting those effects.

It is interesting to compare Eq. (2.10) to the corre-
sponding Dyson-like equation for y, which follows from
Eqgs. (2.2) and (1.3):

x=P+Puy, (2.11)

the only difference is in fact the G=0 part of the bare
Coulomb interaction. This remark turns out to be ex-
tremely important, as will be discussed later in the com-
parison of TDDFT and Bethe-Salpeter results for finite
and infinite systems. One can put the common term v
into evidence by writing Eq. (2.11) as

X6.¢'=Pg,q

+ E PG,G/'U_G”XG”,G/ +PG,OUOX0,G/ . (212)

G"
One can then immediately write down Eq. (2.12) and
(2.10) for the case when local field effects are neglected,

and take the macroscopic limit; two quantities Pgy= Py
and xgo=Poy/(1—Pyuvg) are obtained, which describe,
respectively, the absorption and the electron-energy-loss
spectra of the system. Also in this simplified case it is

clear that y and P are fundamentally different (y is

screened, but P is not), and that this fact is entirely due
to the seemingly tiny difference of the kernel of the
Dyson-like equations, i.e., the difference between v and
v (see detailed discussions and applications in Sec.
VLD).

Until now, all considerations have been general, i.e., P
has not been specified. Only when talking explicitly
about P will there be a difference between TDDFT and
the Bethe-Salpeter approach. However, in spite of—or
because of—the differences that will arise, it is worth-
while to anticipate a qualitative discussion of the struc-
ture of the equations leading to the determination of P.
This allows one to highlight the importance and conse-

In a finite system, one can still have a wave vector k as a sum
of a reciprocal lattice vector G and a vector q lying inside the
first Brillouin zone, by creating a periodic array of “unit cells”
of vacuum, each of them containing a copy of the system. The
limit of infinite volume (isolated systems) for those supercells
corresponds to the zero-volume limit for the first Brillouin
zone, i.e., to an infinitely dense G-space.
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quences of induced local and nonlocal potentials, with-
out masking simple concepts by complicated many-body
formulations. For the case of Hartree-Fock, many de-
tails can be found in the reviews of McLachlan and Ball
(1964) and Langhoff et al. (1972).

C. Four-point kernels and effective two-particle equations

An effective self-consistent Hamiltonian, which is
made time dependent through the time dependence of
the wave functions, in the presence of a time-dependent
external potential, allows one to calculate the induced
density matrix to first order (Hedin and Lundqvist,
1969):

Pina(e @)= 2 ,(x)
X(fn_fn’)<n|H(1)(w)|nl>

€, €~ w

g (r'),
(2.13)

where €, and ,(r)=(r|n) are the eigenvalues and
eigenfunctions of the unperturbed Hamiltonian. Then y
is determined through

pind(r’r):f dr’X(r’r’)Vexl(r,)' (214)
The perturbation H") not only is given by the external
potential V,,,, but also contains self-consistently the in-
duced potential, which is proportional to the induced
density matrix (schematically V;,;= pinaSV cit/ Op)-

A typical effective Hamiltonian will have an effective
potential V (r;,r,,¢) that has some contributions that
are local and depend on the density, i.e.,
Vied[p(F.1)],r,,1}8(r;—1,) (like the Hartree potential
or the DFT exchange-correlation potential), and others
that are nonlocal but directly proportional to the density
matrix (like the Hartree-Fock exchange potential):
p(ry,ry,0)w(r;,ry), where w(ry,ry) is some generalized
interaction. For simplicity here we do not consider more
complicated time-dependent interactions, but include
the possibility of memory effects in V., i.e., V,,. can
be a functional of the density at all (past) times 7. In this
case, the induced potential is

Vina(xy,10p 1) = f dl‘3d1'4df{ o(r;—1p) 8(r3—1y)

8V 1,([p(FE 1))y 1)
5[)(1'3 ,1'3 ,[,)

+0(r;—13) o(ry—rg)w(ry ,xp) (1 —1")
X Pina(¥3,x4,t")
:zf drydrydt’ K(ry,xy,03,84,1,1")
(2.15)

X Pina(r3,14,t"),
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which defines the four-point kernel K. Equations (2.13)
and (2.15) can be put into a closed form for the induced
density matrix, by introducing the four-point function
“Xo [see Eq. (B16)] such that Eq. (2.13) becomes

Pind(l‘hl‘z,w):j drsdr,drsdrg
X (1="xoK) 1(r;.ry 15,14, @)
X4 x0(X3,14,¥5, g, )

X Vext(rS ’w) 5(1‘5 - ré)-
Hence from Eq. (2.14)

(2.16)

X(rp,r,0)= f drsdry(1=*xoK) " (r,ry 13,14, 0)

X4X0(r3 ,l‘4,l‘2,l’2,(1)). (217)

An equation of this kind is Eq. (4.9), derived below for
the particle-hole response function in the Bethe-
Salpeter scheme. Another one is the TDDFT equation.
Note that in this case, since there are only local poten-
tials, the & functions in the kernel (2.15) allow us to
contract all equations immediately and to work with
two-point functions from the beginning (see, e.g.,
Bertsch and Tsai, 1975; Bertsch and Broglia, 1994). In
particular, the four-point function *y, can immediately
be replaced by the two-point function P;yp(ry,r;)
=%Yo(r;,1;,1,,1,) defined in Eq. (1.4), as in the main
equation of TDDFT [Eq. (5.11)] in Sec. V.B. A compari-
son of Eq. (2.17) and the four-point generalization of
Eq. (2.11) allows one to get the four-point polarizability
4P from the equation

P="xo+xo 1P
with

(2.18)

4 _ 4
fry 1y ,13,10) = K(x1,1p,¥3,14) —"0(1 ,¥;,15,1y),

and®

40(1'1 1y ,13,14) = 6(r; — 1) 8(r3—14)v (1 ,13).
The two-point P is then

P(r;,1)="P(r; 11 ,1,,15). (2.19)

Using the Green’s-function formalism which will be in-
troduced below (Sec. III), x, and *y, will be expressed,
respectively, as —iGy(12)Gy(21) and
—iGy(13)G((42).

In general, V. will of course contain the Hartree po-
tential, and hence K will contain the variation of the
Hartree potential with respect to the density, 6V /6p,
which is just the contribution v appearing in the Dyson-
like equation (2.11). This allows one to see the relation
between the local field effects (see Sec. I1.B) and the
density variation of the Hartree potential: When local
field effects are neglected, all spatial frequencies of the

The definition of “v, which is used in the four-point equa-
tions involving P, is analogous to that of %v.
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induced Hartree potential are neglected in the Dyson-
like equation apart from the spatial frequency given by
the external potential, i.e., apart from the G=0 contri-
bution when the external potential is macroscopic.” In
finite systems, macroscopic potentials do not play a role,
and the distinction is meaningless—neglecting local field
effects becomes equivalent to completely neglecting the
induced Hartree potential. Therefore Eq. (2.6) is at the
same time proportional to the macroscopic loss function
and the to limit of Eq. (2.9) for the case of an infinitely
dense G space.

To summarize, one will in general find a four-point

equation for S=*y or S=*P:

S= 4X0+ 4XOKS, (220)
where K contains (K=v+f) or not (K=v+f) the
long-range term v(G=0), depending on whether S=*y
or S=4P. Any density-matrix-dependent effective po-
tential will lead to a four-point equation for S. In order
to get the two-point functions, S has to be contracted
like in the expression for the macroscopic dielectric
function, given by
ey(w)=1—1lim

q—0

X

v(q)f drdr' e e (=) 4F(r,r,r’,r’;w) .

(2.21)

If no nonlocal terms are present in V4 (e.g., when V
=V yarree T VEET), Eq. (2.20) can be contracted immedi-
ately, and one can work with two-point functions only.

Generally, in order to solve Eq. (2.20), one has to in-
vert a four-point function for each frequency. This has
been done even for solids, for example in the case of a
Fock term in the effective Hamiltonian, in the early
work of Hanke and Sham (1974, 1975). However, for a
comparison between TDDFT and the Bethe-Salpeter
equation method it is more convenient to present the
equations in a different way, also often used. This
scheme, described in the following, has the advantage of
putting the two-particle nature of the problem into evi-
dence. In fact, it has been shown (see Appendix B.2)
that the four-point equation for S can be transformed to
an eigenvalue problem involving the effective two-
particle Hamiltonian:

2 _
H(glnz),(ngfu): ( €n, ™ 6”1) 5"1"35"2"4

+ (fnl _fnz)K(nlnz),(n3n4) .

The indices n; refer to the fact that matrix elements
have been taken with respect to four eigenfunctions of
the starting effective static one-particle Hamiltonian.
Hence H?" is diagonalized, and from its eigenvalues E

(2.22)

The local field effects can also be included through a direct
calculation of the variation of the Hartree potential in re-
sponse to an electric field as done in density functional pertur-
bation theory (Baroni ef al., 2001 and references therein).
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and eigenstates A’;lnz the four- and two-point quantities
of interest are constructed. For example, the macro-
scopic dielectric function is given by

> (e ny)

ny,ny

ep(w)=1—limv(q) >,
q—0 NN

(n1ny)
x—A)‘ -1
w_E)\+i'7] AN

X 3 (ngle ™ n) AL, < f) ] (2.23)
ni3,ny

Here N, is an overlap matrix (see Appendix B.2).
Since it can be shown that the n; always appear as pairs
consisting of one occupied and one empty state (see Ap-
pendix B.2), this reflects the very physical approach of
rewriting the problem in terms of mixing between differ-
ent independent-particle transitions between occupied
and unoccupied eigenstates of a one-particle Hamil-
tonian. Equation (2.23) should be compared to Eq. (2.8);
the difference is caused by a change in excitation ener-
gies [from (e.— €,) to E, ], but also, very importantly, by
the coefficients A, which mix the formerly independent
transitions. As pointed out above, even if only the Har-
tree potential is used in the derivation of K, i.e., if one
considers only local field effects and no further
exchange-correlation contributions, the electron-hole
Hamiltonian is not diagonal, and the coefficients A, will
mix the transitions. This way of formulating the problem
is hence also appealing because the knowledge of the A,
allows one to interpret spectra in terms of mixing of
transitions.

One can thus define a general two-particle Hamil-
tonian which (i) yields, depending on its interaction po-
tential, the inverse dielectric function or the macro-
scopic one and (ii) does so for systems that are described
by an effective one-particle Hamiltonian either depend-
ing on just the density, or containing more complicated
functionals involving the density matrix.

The corresponding equations have been derived start-
ing from the time-dependent density matrix in Eq.
(2.13). In order to talk now in detail about the possible
effective one-particle Hamiltonians and derived kernels,
one is naturally led to rigorously introduce in the follow-
ing a sort of time-dependent density matrix for electrons
and holes, which will allow the effective Hamiltonian
and its derived response functions to be obtained on the
same footing; one is led to introduce the Green’s
function.!”

%Note that the history of modern band-structure calculations
started with the Hartree theory, where the essential ingredient
is the electronic density, p(r)=2¢7% (r),(r). Exchange ef-
fects (Hartree-Fock) are then included through the nonlocal
density matrix p(r,r') =247 (r') ,(r), whereas to introduce a
time dependence, the natural way is to do it in the phase of the
wave functions, which leads to a time-dependent density ma-
trix: p(r,x’ ' —1) =3 (r') i, (r)e's "), This quantity is ac-
tually a sort of one-hole Green’s function, which will show up
in the following in the more formal discussion of the problem.
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lll. GREEN’'S-FUNCTION THEORY

The Green’s-function technique is indeed extremely
useful: it allows one to tackle directly the problems of
calculating excitation and ionization energies, ground-
state energies, transition matrix elements, absorption co-
efficients, and dynamical polarizabilities, as well as elas-
tic and inelastic electron cross sections. Furthermore,
self-consistent perturbation theories can be formulated
in terms of the Green’s function. The technique is fully
discussed in many textbooks and we refer the reader to
those for details (Abrikosov et al., 1963; Hedin and Lun-
dqvist, 1969; Fetter and Walecka, 1971; Landau and Lif-
schitz, 1980), but in the following we outline the equa-
tions needed in the discussion. For further reading about
the subtleties of the mathematical concepts involved, see
the review by Farid (1999a) where this many-body ap-
proach is developed in detail together with the approxi-
mations to Hedin’s equations discussed below.

A. The concept of Green’s functions and the self-energy

The one-electron Green’s function G is defined (at
zero temperature) as an expectation value with respect
to the many-electron ground state |N),

G(xt,x't")y=—i(N|Ty(xt)y'(x"t")|N), (3.1)

where (xt) is the field operator in the Heisenberg pic-
ture, x stands for three space coordinates (r) plus one
spin coordinate (¢), and T is the time-ordering operator.
In this equation, '(x,f)|[N) represents an
(N+1)-electron state in which an electron has been
added to the system at point r and time ¢. When ¢’ <t,
the many-body Green’s function gives the probability
amplitude to detect an electron at point r and time ¢
when an electron has been added to the system at point
r’ and time ¢’. When t'>¢, the Green’s function de-
scribes the propagation of a many-body state in which
one electron has been removed at point r and time ¢,
that is, the propagation of a hole.!' G is closely related
to fundamental properties like charge and spin density
or the total energy, and derived spectra like photoemis-
sion or Compton scattering. Thus, for example, the
charge density is obtained through

p(rt)=—ilim__ y+ J G(xtxt+7)dé.

Similarly, the total electronic energy can be deduced
through the Galitskii-Migdal formula (Galitskii and
Migdal, 1958)

G(x,t,x",t") oy s
(32)

1 ] J
Ez—fdx lim,,_,,+ E—zh(x)

2

'When time-reversal symmetry holds, the Green’s function is
symmetric with respect to the interchange of the spatial coor-
dinates. This general statement is also true for the density ma-
trix.
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where /(x) is the density-independent part of the effec-
tive Hamiltonian. By inserting a complete set of (N
+1)- or (N—1)-particle states (depending on the time
ordering) between the field operators in Eq. (3.1), one
obtains the Lehmann representation of the Green’s
function in terms of the amplitudes,

<N|{/l(x)|N+1’s>7
(N=Ls|ih(x)[N),
and in terms of the real energies e,=FE(N+1,s)
—E(N) (or [E(N)—E(N—1,)]) for ,>p (<pu):

f oy F0Of (1)
Glx,x "")_2 w—[etinsgn(p—e)]’

fi(x)= s (3.3)

€<

(3.4)

where the small imaginary part # is needed for the con-
vergence of the Fourier transform to frequency space.
The poles of G hence correspond to electron addition
and removal energies. In particular, the so-called spec-
tral function A (w):=|(1/7)Im G(w)| becomes

Ax50)= 2 [Of (x) d@=z,). (35)
In the noninteracting case, where |[N), [N+1) and |N
—1) are simply Slater determinants, only states with
IN+1,s)=c!|N) (c' is a creation operator) lead to non-
vanishing Lehmann amplitudes. These amplitudes and
the Lehmann energies are then equal to the eigenfunc-
tions and eigenvalues of the corresponding one-electron
Hamiltonian, and the spectral function consists of a set
of 6 peaks at those eigenvalues. Hence each peak corre-
sponds to a particle. Furthermore, it can be easily seen
that the Green’s function reduces to the time-dependent
electron or hole density matrix introduced in Sec. II.C.
When the electron-electron interaction is turned on it is
no longer possible to write [N—1) or [N+1) simply in
terms of pure one-electron Slater determinants. Instead,
the many-body wave function is a linear combination of
many of them. For example, the (N+1)-particle wave
function can be expressed as [N+1,s)=3,,a5, ci|N)),
where |N;) is an excited state of the N-particle system.
Hence there will now be more nonvanishing contribu-
tions to the spectral function (3.5). If these contribu-
tions, merged together, form a clearly identifiable main
structure, which can be thought to derive from a § peak
when the interactions are switched off, one can still
work in a particle-like picture, associating each peak
with a “quasiparticle.”’> With respect to an
independent-particle & peak, for the quasiparticle one

2The concept of quasiparticles was introduced by Landau
(Landau, 1957a, 1957b, 1959; Landau and Lifschitz, 1980) in
the Fermi-liquid theory of ordinary metals as a one-to-one cor-
respondence between low-energy excitations of a free Fermi
gas and those of the interacting electron liquid. A quasiparticle
can be considered as the combination of a real particle (elec-
tron or hole) and a cloud of virtual electron-hole pairs sur-
rounding it. Through mutual interactions quasiparticles can de-
cay into other quasiparticles, leading to a finite lifetime.
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finds a spreading of the oscillator strength. Therefore
the broadening carries valuable information about
many-body correlation effects in the interacting system.

Another important quantity for the analysis of the op-
tical spectra of interacting electron systems is the two-
particle Green’s function, defined as

G(121'2")= —(N|T¢(1)¢(2)¢T(2’)W(1’)|Nzé 6)

where space, time, and spin coordinates are indicated in
abbreviated form by numbers, i.e., 1=(r,t{,&). This
function provides information about processes involving
two-particle transitions and their interaction through the
time ordering of the four times appearing in the equa-
tion. For the purpose of this review, only a few specific
time orderings need be considered, in particular for
ty,t]>1,1h

G(12,1'2)=-2, X, (1,1")X,(2.2")

in terms of the hole-particle (Bethe-Salpeter) ampli-
tudes X,(1,1')=(N|Ty(1)y'(1")|N,s) and X (1,1)
=(N,s|Ty(1)y"(1")|N). Also the case t1,t;<t,,t}; de-
scribes particle-hole amplitudes, whereas other time or-
derings will lead to particle-particle or hole-hole pair-
ings. This point is relevant here because only for hole-
particle pairings do the states belong to the N-particle
system. Therefore one can define a specific hole-particle
Green’s function G”? considering only those two time
orderings (¢ ,t{21,,t5):

G(12,1'2')=G"(12,1' 2')+other orderings.
(3.7)

The “other orderings” terms correspond to poles of the
two-particle Green’s function that differ from
+[E(N,s)— E(N)] and that are important for different
types of spectroscopies, e.g., Auger in the case of G""
(Cini, 1977, 1979).

1. Connection to spectroscopic measurements

In the Introduction we sketched the main spectro-
scopic measurements that can be described by the ap-
proaches presented in this review. It is now useful to
build a bridge between those qualitative considerations
and the abstract mathematics of the previous subsection.

In fact, the building block for the description of any
spectrum involving the interaction of radiation and mat-
ter is the probability P for an excitation from the initial
state |W,) (typically the ground state) to a set of final
states | (). According to the measurement, the initial or
final states contain an additional photon. This process is
well described by Fermi’s golden rule:

73=27r; (VAW )28(E—Ey), (3.8)
where A describes the perturbation due to the photon
field. For a one-photon process, neglecting quadratic
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terms in the vector potential A, A= (e/2mc) (Ap
+pA). High photon fluences (multiphoton processes)
are excluded here.

From the transition probability, one can construct the
spectra. In the case of photoemission (see Fig. 1), one
measures the photocurrent, which is proportional to the
probability per unit time of emitting a photoelectron of
momentum k, when the target is irradiated with photons
of frequency w. Hence one looks explicitly at the photo-
electron. As a consequence, the simple approximations
for photoemission decouple the photoelectron from the
target, usually treating it as a free propagating electron
state. One then finds that the photoemission spectrum
carries directly accessible information about the target
itself, namely, about its electronic structure, or to be pre-
cise, the energy of holes (or electrons, for inverse pho-
toemission). The final simple relation between the pho-
toemission spectrum and the electronic structure of the
sample is based on the classical three-step model (see, for
example, Almbladh and Hedin, 1983, and Kevan, 1992):
the photoelectron is excited by the photon, loses energy
on its way to the surface, and finally has to pass the
surface to propagate (as a free particle) to the detector.
Only the first step, the excitation of the photoelectron, is
contained in the so-called intrinsic spectrum, whereas
losses on the way out of the target are called extrinsic.'?

Starting from the transition probability [Eq. (3.8)],
one can write down the photoelectron current of photo-
emission, using the initial-state energy Eo=Ey+ w, i.€.,
the sum of the N-particle ground-state energy and the
photon energy. In the intrinsic approximation, the final
state [k;N—1,f) is approximated by c[|N—1.f) with en-
ergy €x+Exn_1y, where k and €, are the momentum and
the energy of the photoelectron. The photoelectron cur-
rent reads then (Almbladh and Hedin, 1983)

k
J(w)= W; S, — €~ w)

2
1

Here ¢,=Ey—Ey_1y, and El-injc,ch is the photon op-
erator in second quantization. Using the argument that
the high-energy one-electron state k does not change the
state of the (N —1)-electron system, and that it makes a
negligible contribution to the virtual one-electron exci-
tations contained in the ground state N (that is c¢|N)
=0), one can write the photoelectron current as
k

Jk(w)ZmiE/ ApiAj(e— o)Ay, (3.10)
where A;; are the matrix elements of the spectral func-
tion (3.5) between one-electron orbitals,

Aj(e—w)= f dxdx' yf (x)h(x")A(x,x", €~ w).
(3.11)

3For high-energy photoelectrons this contribution is, in gen-
eral, much smaller than the intrinsic part.
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If one further assumes that the diagonal elements of A
are dominating (which is exact for independent elec-
trons) and that the A are constant, the photoemission
spectrum is proportional to the trace of the interacting
spectral function (also neglecting electron-phonon cou-
pling and impurity effects).

From Eq. (3.5) one can see that the spectral function
has a direct link to the density of available states for the
addition and removal of electrons. In fact, for indepen-
dent particles the trace of the spectral function is pro-
portional to the density of occupied and empty states of
the system, respectively, and provides a good approxi-
mation for the direct and inverse photoemission spectra.
As we have seen, the same is true for the interacting
electron case: the trace of A(x,x';w) can be accessed
experimentally. In this way, the quasiparticle spectrum is
directly measured in experiments such as direct, inverse
and time-resolved two-photon photoemission (see Fig. 1
for a schematic diagram of the first two). Still, final-state,
extrinsic, and surface (transport) effects, neglected in
this discussion, can play an important role in some spe-
cific experimental configurations.

The absorption coefficient, by contrast, is defined as
the ratio of the energy removed from the incident beam
per unit time and per unit volume to the incident flux.
This energy is absorbed thanks to transitions from the
initial to any final state, with the sole constraint of en-
ergy conservation. There is, in general, no simple as-
sumption concerning the final state as there is in photo-
emission, and one has to deal with holes and electrons at
the same time. It would not be a good approximation for
the final state to decouple the excited electron from the
others, nor to describe it by a scattering (plane-wave)
state. One has therefore to sum over all possible
N-particle excited states in order to obtain the absorp-
tion coefficient. The energy differences appearing in the
o function are now Ey s~ (Ey+ ), and the sum over all
states leads to a density-density correlation function (or
density response function).'* The latter can be obtained
from the time-ordered (or retarded) two-particle
Green’s function G"?(1,2,1’ 2") [Eq. (3.7)], by contract-
ing some of its arguments and by taking suitable aver-
ages or integrals of the resulting (microscopically vary-
ing) functions. That is, the microscopic polarizability of
Eq. (1.3) or the density response function entering in
Eqgs. (2.2) and (2.5) are obtained from a G"? where the
limit (1')—(1%); (2')—(2"%) has been taken. In the

Y“Indeed, using the standard Kubo formula for the density-
density response function (Abrikosov et al., 1963) x(x,t;x",0)
=—i0(){N|[p(x,t),p(x",0)]|N), together with the clo-
sure relation of N-particle states |N,f) and the time evolu-
tion of the density operator p(x,t)=e!"0!p(x,0)e 0!,
one finds the response function x(x,t;x".,0)
=—i0(t)[2B{(x)B} (x")e'En"Enpi—cc], where By(x)
=(N|p(x,t)IN,f) and Ey ;is the energy of the fth N-particle
excited state. Then its time Fourier transform has poles at the
true excitation energies of the N-particle system, w==*(Ey
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RPA approximation, P;,p is derived by taking G as
the product of two one-particle Green’s functions:
G(121'2")=G(12")G(2,1"), which becomes
G(1,2)G(2,1) after the contraction. More details are
given in Sec. IV.B.2.

2. Dyson’s equation: the self-energy operator 3,

The full one-particle Green’s function cannot be com-
puted exactly, and one therefore needs a method to de-
rive a physically sound approximation. In the simple
case of the Hartree-Fock approximation, G is written
directly in terms of the Hartree-Fock eigenvalues and
eigenfunctions as G (x,x",w)==,4,(x) " (x"){w
—[e,+insgn(u—e,)]. The inverse of G' is hence
linked to the Hartree-Fock Hamiltonian H''%:

(G N xx',0)=w—H" (xx"). (3.12)

For the general case, it is therefore reasonable to write
the frequency Fourier transform of G ™! as

G_l(x,x',w)={5(x—x')[w—HH(x)]—E(x,x',w)},
(3.13)

where Hp contains the kinetic-energy operator, the ex-
ternal and the Hartree potential, and ¥ is supposed to
include the Fock exchange and the rest of the Coulomb
interaction (correlation). This means that in this Dyson
equation for G the exchange (the Fock term) and cor-
relation contributions are included in an operator that is
in principle unknown, the self-energy 3.'5 Since the
right-hand side of Eq. (3.13) contains o, i.e., the Fourier
transform of a time derivative, implicit expressions for 2,
can be found through an evaluation of the equation of
motion for the Green’s function. This scheme gives rise
to a set of coupled differential equations in which
higher-order Green’s functions appear. Those equations
can be exactly decoupled in only a few cases, and one
has to resort to approximations to get a practical, solv-
able scheme. However one can sum up the series of
coupled equations for the Green’s functions in a pertur-
bative way and recast all the information in the operator
>, as we shall see later.

Suppose for the moment that ¥ is known. Expressing
G in terms of the Lehmann amplitudes and energies
[Eq. (3.3)], one finds, after taking (for a discrete level)
the w— g, limit,

f {6(x—x")e,— Hp(x)]=2(x,x",e,)}f(x")dx" =0,
(3.14)

i.e., the Dyson equation for the quasiparticle energies ¢
and amplitudes f;. The amplitudes f; form a complete
set but are nonorthogonal, since the self-energy opera-
tor is energy dependent. This also implies that the equa-
tion can have more solutions than in the static case. In-

15See Farid (2001) for a detailed discussion of the general
properties of the dynamical self-energy operator, including an
analysis of the shortcomings of the usually applied approaches.
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stead, if the electron-electron interaction is smoothly
switched off, those amplitudes tend to form the standard
orthonormal set of an independent-particle system. This
leads again to the situation described above, with the
difference between the isolated independent-particle
peaks and the broad quasiparticle ones containing a cer-
tain number of nonvanishing Lehmann amplitudes. Dy-
son’s equation (3.14) indeed has a one-electron form
(single-particle Schrodinger-like) but the operator 3, has
very nontrivial correlation effects built in and is far from
a mean-field approximation.

In order to deal more easily with the pole structures
of G, 3, etc., it is convenient to generalize all quantities
from the real frequency axis w to the complex plane z,
l.e., to make an analytic continuation. The one-particle
Green’s function is then written in terms of left and right
solutions

Pl(2) b (2)
Z_ES(Z)

defined by the general Dyson equation to be solved in
the full complex plane,

E(z)=z,

where
[Ho+2(2)]¢5(z)=Ey(2) $i(z),

[Ho+32(2)] ¢ (2)=EX (2) ¥ (2).

The self-energy 2 here plays the role of an effective
potential for an electron or hole added to the system
which is, in general, complex, nonlocal, and energy de-
pendent. This potential arises from the exchange and
from the response of the rest of the electrons to the
presence of the additional particle. 2 (w) is real when
is set to an energy value below the first inelastic thresh-
old of the system.

Thus one has achieved an exact one-particle picture at
the price of introducing a complicated effective poten-
tial. The non-hermiticity and energy dependence of X
imply that the quasiparticle wave functions are energy
dependent and not necessarily orthogonal; however,
both the Green’s function and Dyson’s equations admit a
biorthogonal spectral representation (in terms of left
and right eigenfunctions).'® The important point to note
is that now one is dealing with the energies E,(z), which
are in principle complex.

The mathematical details of the analytic continuation
are nontrivial and have important consequences. For a
rigorous and complete treatment we refer the reader to
the review paper of Farid (1999a). It is, however, useful
to illustrate the connection between the Lehmann rep-
resentation and the analytic continuation by an example:

G(z)=§ (3.15)

(3.16)

1®The biorthonormal and Lehmann representations are both
exact. Even if they look similar they are not identical, since in
the former case one works with the analytic continuations
(Farid, 1999a).
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Suppose that some matrix element of a Green’s func-
tion is given in the Lehmann representation by

G(w):z g(s)

5 w—€+tin

(3.17)

For simplicity, let us consider a case in which g(s)
=(1/m)E,/[(s—E{)*+E3] and e,=s. Given this par-
ticular form of g(s), taking the thermodynamic limit
(i.e., making s a continuous variable) yields a spectral
function A (w)=1/7| Im[G(w)]| with a Lorentzian form:

A(w)= l % (3.18)
T (w—E)"+E;
On the other hand, we can also write
1 1
A(w)z; Im(m) ; (3.19)

thus the Lorentzian, which in the beginning was given by
the imaginary part of a function containing a series of
infinitely close-lying poles on the real axis (a branchcut),
in this particular case can also be described by the imagi-
nary part of another function, defined in the whole com-
plex plane, having a single, but complex, pole (E;
+iE,). The position of the peak of A(w) is given by the
real part £, and the imaginary part E, gives its width.
This simple example demonstrates the connection be-
tween the Lehmann and the complex-pole representa-
tion of the Green’s function, in the case of a single qua-
siparticle pole. It also explains why the complex
representation is advantageous—in this example it re-
places the search for a branchcut by the search for one
complex pole. Moreover, it illustrates the meaning of £,
and E,: the real part of the quasiparticle energies solu-
tion of Dyson’s equation gives the band structure, and
the imaginary part the quasiparticle damping (electron
dynamics). The solution can be real valued only for ex-
citations with infinite lifetime [ImX(z=¢g,)=0; the dis-
crete part of the spectrum]. However, for energy ranges
where & forms a continuum, 3 (x,x";¢) is also complex
and Dyson’s equation still has a solution with a complex
z. In principle, this non-Hermitian eigenvalue problem
can be solved for each and every value of z in the com-
plex plane (with the corresponding set of eigenvalues
and eigenvectors). Finally, this simple example is meant
to explain why the existence of complex quasiparticle
energies is not in contradiction with the fact that ¢ ap-
pearing in the Lehmann representation of the Green’s
function are always real quantities.

In order to extend the quasiparticle picture, one can
return to the description of a photoelectron spectrum in
terms of the Green’s function and self-energy operator
(in its analytic continuation, i.e., using complex ener-
gies), by considering the matrix elements of Eq. (3.15):

1
Gi(w)= o—Ea) (3.20)
If one expands this expression for energies w close to the
generally complex quasiparticle energy E;, one obtains

Gii(w)~w_—l;
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where Z; is the complex renormalization factor,

1
9% (w)

Jw

Z.= (3.21)

w=E;

The ith matrix element of the spectral function for w
close to E; then reads

1 |ImEl ReZl_(w_ReEl)Ile|

A (w)=
) (o Re £+ (ImE,)?

If [Im E}| is small, A;;(w) has a sharp Fano peak at o
=Re E; of width I';=|Im E;| and strength |Re Z,|, with
the asymmetry set by Im Z;. Z; is hence a measure of
the strength of the quasiparticle pole and determines the
specific shape of the corresponding excitation in the
spectral function. Even for weakly correlated systems
like sp metals and valence semiconductors |Re Z|| is far
from 1 and can typically be in the range 0.6—0.9 (Hedin
and Lundqvist, 1969; Hybertsen and Louie, 1986; Godby
et al., 1988). The sum of all resonances, i.e., the trace of
A, will finally determine the specific shape of the pho-
toelectron spectrum.

B. Hedin’s equations

As discussed in the Introduction (Sec. I.B), when go-
ing beyond Hartree-Fock one has to deal with electron
relaxation and correlation effects, which can also be de-
scribed as dynamical screening effects. In fact, one can
write an expansion of the self-energy in terms of a
screened Coulomb potential W, by demanding that the
total energy be stationary with respect to variations of
the Green’s function (Hedin, 1965). In this process the
self-energy should be seen as a functional of the Green’s
function (X[ G]). The use of W instead of the bare Cou-
lomb potential is physically more sound: conventional
many-body perturbation theory suffers in fact from vari-
ous convergence problems, which have to be bypassed
with care (see, e.g., Farid, 1999b).

In fact, interactions in a real many-body system are
screened to a large extent, and therefore W should be a
much better behaved quantity for the development of a
perturbation expansion than the bare Coulomb poten-
tial. The latter is known to lead to convergence prob-
lems in the range of densities of normal metals and
semiconductors (Hedin, 1965, 1999; Hedin and Lun-
dqvist, 1969, 1971). This expansion allows one to write
the many-body problem as a closed set of five integral
equations introduced by Hedin (1965), which relate the
Green’s function, self-energy, polarization propagator,
and vertex function. The equations can be obtained by
introducing a local time-dependent source term in the
Hamiltonian which directly couples to the particle den-
sity. This new source term is set to zero once the final
equations are obtained. In this way Hedin derived a self-
consistent scheme written in terms of the following set
of coupled equations [here, as before, 1= (ry,f;,&;), and
v stands for the bare Coulomb interaction]:
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2(12)21'] G(13)I'(324)W(41)d(34), (3.22)

W(12)=v(12)+f v(13)P(34)W(42)d(34), (3.23)

P(12)= —if G(13)G(41)T'(342)d(34), (3.24)

T'(123)=6(12) 8(13)

J 62.(12)
6G(49)

G(46)G(75)1I'(673)d(4567),

(3.25)

where P(12) is the time-ordered polarization operator,
W(12) is the dynamical screened interaction, and
I'(123) is the vertex function. The fifth equation is the
Dyson equation, which links G and X [see Eq. (3.13)].
This way of writing the equations is in fact appealing,
since it highlights the important physical ingredients: the
polarization [Eq. (3.24)], which contains the response of
the system to the additional particle or hole, is built up
by the creation of pairs of particles and holes (the two
Green’s functions). The vertex function I' contains the
information that the hole and the electron interact. I', in
turn, is determined by the change in the potential upon
excitation [Eq. (3.25)].

C. The iterative approach

Hedin’s equations together with Dyson’s equation
form a set of equations that must in principle be solved
self-consistently for G. This means that the Green’s
function used to calculate the self-energy should coin-
cide with the Green’s function obtained from the Dyson
equation with the very same self-energy. It is obvious
that this is a very difficult task, and that one must in
practice find a simplification of Hedin’s equations. Since
it is not possible to find a straightforward, well-defined
and convergent perturbation expansion in some small
parameter, the approach to simplifying the equations is
somewhat arbitrary and needs to be analyzed in detail.
A self-consistent calculation of the interaction of low-
energy electrons with an electron gas was first carried
out by Quinn and Ferrell (1958). They performed a self-
energy calculation of electron-electron scattering rates
near the Fermi surface and derived a formula for the
inelastic lifetime of hot electrons which is exact in the
high-density limit. These free-electron-gas calculations
were extended by Ritchie (1959)” and Quinn (1962) to
include, within the first Born and random-phase ap-
proximations, energies away from the Fermi surface,
and by Adler (1963) and Quinn (1963) to take into ac-
count the effects of the presence of a periodic lattice
and, in particular, the effect of virtual interband transi-

The 1/2 factor in front of z? in the expansion of f; just
before Eq. (6.15) of this reference must be replaced by 1/3, as
done in a subsequent paper (Ritchie and Ashley, 1965).
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tions (Quinn, 1963). In their original work, Quinn and
Ferrell (1958) had already given the GW expression for
3, but did not recognize its usefulness beyond the case
of an electron gas and only evaluated the results as a
density (r,) expansion. Further studies for quasiparticle
excitations and lifetimes in a homogeneous electron gas
were done by Hedin (1965) and Lundqvist (1967, 1968).

1. First iteration step: the GW approximation

The simplest approximation to I'(123) assumes this
operator to be diagonal in space and time coordinates,
I'(123)=6(12) 8(13): the so-called vertex corrections
are neglected. This implies that the irreducible polariz-
ability is given by noninteracting quasielectron-
quasihole pairs,

P(12)=—iG(12)G(217). (3.26)

It can be evaluated explicitly by using Eq. (3.4). After a
Fourier transformation, and taking into account the
small imaginary parts of the energies, one obtains the
formula (1.4) in its time-ordered version; this approxi-
mation is in fact again the RPA form.

For the self-energy, this approximation yields the form

2(12)=iG(13)W(31), (3.27)

the so-called GW approximation as introduced by He-
din (1965). Of course, the Dyson equation for the
Green’s function G=Gy+ G2 G still has to be added,
and even at the GW level one has to deal with a many-
body self-consistent problem. However, the GW ap-
proximation is a comparatively simple expression for the
self-energy operator, which in principle allows the
Green’s function of an interacting many-electron system
to be computed by starting from the Green’s function
G, of a hypothetical independent-particle system with
an effective one-electron potential, and iterate to self-
consistency. The GW extends the well-known Hartree-
Fock approximation, in which the self-energy is the ex-
change potential 3., by replacing the bare Coulomb
potential v by the dynamically screened potential W,
e.g., %,=iGv is replaced by X;y=iGW. The self-
energy operator now consists of a dynamically screened
exchange potential plus a dynamical Coulomb hole. In
fact, the static approximation of the GW self-energy is
none other than the COHSEX formula [Eq. (1.2)] dis-
cussed in the introduction. GW has been shown to be
physically well motivated and to be superior to the
Hartree-Fock approximation, especially for metals,
where Hartree-Fock (i.e., using the bare Coulomb po-
tential) leads to unphysical results (Hedin and Lund-
qvist, 1969). The dynamically screened interaction W in-
troduces energy-dependent correlation effects absent in
the one-particle picture. Further, an energy-dependent
correlation decreases the Hartree-Fock band gap by
raising the valence-band energy and lowering the
conduction-band energy. There is some empirical evi-
dence that supports the idea that even in the first itera-
tion (that is, using just the noninteracting Green'’s func-
tion G,) one obtains quite accurate results for one-
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electron properties such as the excitation energy
(Hybertsen and Louie, 1985, 1986; Godby et al., 1986,
1987, 1988; Aryasetiawan and Gunnarsson, 1998) and
the quasiparticle lifetime (Campillo et al., 1999; Schone
et al., 1999; Campillo, Pitarke, et al., 2000; Echenique
et al., 2000; Campillo, Rubio, et al., 2000; Campillo,
Silkin, et al., 2000; Keyling et al., 2000; Silkin et al., 2001;
Spataru et al., 2001). This is important for practical ap-
plications of the GW approach since, despite its formal
simplicity, the practical solution of the self-consistent
G W equations is a formidable task, which has been car-
ried out only recently: self-consistent calculations were
performed for the homogeneous electron gas (Holm and
von Barth, 1998; Holm and Aryasetiawan, 2000; Garcia-
Gonzalez and Godby, 2001), simple semiconductors, and
metals (Shirley, 1996; Schone and Eguiluz, 1998). Self-
consistency modifies the one-electron excitation spec-
trum (excitation energies and lifetimes) as well as the
calculated screening properties. The results turn out to
be worse than those of the nonself-consistent GyW,
calculations'® or those obtained within the so-called
GW,, in which only the explicit G, and not W, is up-
dated at every iteration, thus achieving partial self-
consistency in G (von Barth and Holm, 1996). Improve-
ments have been obtained, in particular concerning the
position of plasmon satellites, using a partially self-
consistent G, i.e. wave functions of order zero but up-
dated quasiparticle energies (Bechstedt et al., 1994). The
problem of self-consistency in GW calculations has been
investigated more deeply in such simple systems as the
homogeneous electron gas or an exactly solvable Hub-
bard model. The main outcome of the self-consistent
GW calculation for the homogeneous electron gas
(Holm and von Barth, 1998; Holm and Aryasetiawan,
2000; Garcia-Gonzalez and Godby, 2001) is that the total
energy computed with the Galitskii and Migdal (1958)
formula turns out to be strikingly close to the total en-
ergy calculated using quantum Monte Carlo (Ceperley
and Alder, 1980; Ortiz et al., 1999). Here few sum rules
already determine most of the energy contributions in
the homogeneous electron gas. Encouraging results are
also obtained for the electron gas in three and two di-
mensions, even for those ranges of densities for which
the GW approach is often supposed to fail (Garcia-
Gonzalez and Godby, 2001) and for inhomogeneous sys-
tems such as bulk, surfaces, and interfaces (Sanchez-
Friera and Godby, 2000; Garcia-Gonzalez and Godby,
2002), and dimers (Aryasetiawan et al., 2002b). This re-
sult may be related to the fact that the self-consistent
G W scheme conserves electron number, energy, and to-
tal momentum (that is, it fulfills the microscopic conser-
vation laws; Martin and Schwinger, 1959, Baym and
Kadanoff, 1961; Baym, 1962). However, concerning
spectroscopic properties a systematic deterioration in
the description of the bandwidth, quasiparticle excita-

8In this scheme G,W,, the full G has been replaced by G,
and the corresponding screened Coulomb potential is called
WO.
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tion and lifetimes, and plasmon satellites is found. Re-
sults along the same lines were obtained in the case of
an analytically solvable finite Hubbard cluster recently
used to compare the performances of several types of
GW calculations (Verdozzi et al., 1995; Pollehn et al.
1998; Schindlmayr et al., 1998).

An important conclusion of this subsection is that, if
one is interested in the excitation spectrum, self-
consistent GW performs worse than the simpler G W,
scheme; efforts should be directed towards consistently
including vertex corrections in the calculations (see next
section).

2. Second iteration step: vertex correction in P and X

Having arrived at the GW expression for the self-
energy (or any approximation for 3 other than X =0),
one can go again through Eq. (3.22)—(3.25), starting with
the latter. Now, for a nonvanishing functional derivative
62/0G, one obtains a correction to the bare vertex I’
= ¢, this is the linear response of the self-energy to a
change in the total potential of the system. This correc-
tion affects the polarizability in Eq. (3.24)—the two
Green’s functions in P are no longer decoupled. In fact,
vertex corrections account for exchange-correlation ef-
fects between an electron and the other electrons in the
screening density cloud. In particular this includes the
electron-hole attraction (excitonic effects) in the dielec-
tric response, which we shall look at later.

The improved I" and P can then be used, through Egs.
(3.23) and (3.22), in order to construct a new self-energy.
This iteration step is still important, since, for example,
long-range vertex corrections are needed in order to im-
prove the structure of plasmon satellites (Aryasetiawan
and Gunnarsson, 1998). Also the fact that self-
consistency causes the results of GW spectroscopy cal-
culations to deteriorate suggests that vertex corrections
are important (Verdozzi et al., 1995). On the other hand,
as noted by DuBois (1959), vertex corrections enhance
correlation functions as the density-density response,
whereas the inclusion of self-energy effects in the
Green’s function leads to a reduction. Similar conclu-
sions were reached by Hong and Mahan (1994). There-
fore one faces competing effects between self-
consistency and vertex corrections: contributions from
vertex corrections and self-consistency tend to cancel to
a large extent for the 3D homogeneous electron gas.
However, vertex corrections in quasi-2D electron-gas
systems (like narrow quantum wells) are more impor-
tant for the description of the quasiparticle band-gap
renormalization and lifetimes (Marmorkos and Das
Sarma, 1991)." The cancellation of vertex corrections
with self-consistency seems to be a quite general feature.
Vertex correction diagrams have also been found by de

For the case of the semimetallic graphite (quasi-2D system)
it has been shown by Spataru et al. (2001) that G, W, describes
the observed energy dependence of the electron lifetimes but
not the absolute value.
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Groot etal. (1996) to partially cancel the self-
consistency effects in the case of a quasi—one-
dimensional semiconducting wire. Their results show
that, after systematic inclusion of all lowest-order cor-
rections both to the RPA polarizability and to the GW
self-energy, the band gap is roughly the same as at the
first iteration GyW,. Cancellation of the first-order ver-
tex and self-consistency corrections, however, has been
found only to a minor extent for the band gaps of bulk
silicon and diamond (Ummels et al., 1998). The authors
have included vertex and self-consistency corrections to
first order and found that corrections to the polarizabil-
ity largely compensate each other, while this is not true
for the gaps which become larger than the GW ones by
0.7 and 0.4 eV for diamond and silicon, respectively.?’

There are also cancellations between the same vertex
correction used in different places; in fact, Mahan and
Sernelius (1989) emphasize that a consistent way of han-
dling vertex corrections is to include identical vertex cor-
rections in both the polarization and the self-energy op-
erator.

The simplest improvement to the GW approximation
in Eq. (3.22) consists in introducing a vertex correction
consistent with the starting LDA calculation of the one-
electron orbitals. The DFT exchange-correlation poten-
tial is regarded as an approximation to the self-energy
(Del Sole et al., 1994). Based on this idea, the vertex I’
can be easily expressed in terms of the functional deriva-
tive 6V,./0p. This so-called GWI' approximation
(Rice, 1965; Hybertsen and Louie, 1986; Mahan and Ser-
nelius, 1989; Del Sole ef al., 1994; Mahan, 1994) reads in
compact notation

e 1
a 1_fxcPO’
_ (1_fxcP0)v _
W—W1=m, G—GO (3.28)
and thus
. I U
EZZGOWlF_lGO—l—(U-f—fxc)PO. (329)

3, is hence again of the GW form, but with an effective
screening Wy:=v/[1—(v+f,.)Po] which is in fact the
testcharge electron dielectric function of linear-response
theory (Del Sole et al., 1994; Hedin, 1999). The correc-
tions given by f,. hence account for exchange-
correlation effects at two levels. The first level concerns
the electrons of the “screening medium,” with an
exchange-correlation hole around the electrons; when
an electron is participating in the dielectric screening

2Note that there are also cancellations in the 7-matrix ap-
proximation where short-range interactions between two local-
ized holes (electrons) can be described by a series of ladder
diagrams exactly representing all repeated binary collisions
(Kanamori, 1963). Due to the effects of the vertex corrections,
the self-consistent version of the 7 matrix (using dressed
propagators in the ladder) is found to be inferior to the non-
self-consistent one (Cini and Verdozzi, 1986).



620 Onida, Reining, and Rubio: Density-functional vs many-body

others are less likely to be found nearby. Second, the
potential induced by the additional electron or hole also
includes exchange-correlation interactions between the
particle and the system electrons, and not only the clas-
sical Coulomb interaction (since the particles are in fact
indistinguishable). The vertex correction has to be put in
both P and X in order to obtain this result (a vertex
correction in P alone yields the testcharge-testcharge di-
electric function). Results for silicon (Del Sole et al.,
1994) show that the quasiparticle energy gaps obtained
using the RPA screening (as is done in standard GW
calculations) or W, are close, whereas using 3
=iGyWq, i.e., putting the vertex correction only in P,
alters the results, which gives evidence for the impor-
tance of consistent corrections. Support for this sort of
GWT approximation can already be found in the work
of Rice (1965). He showed that, using Hubbard’s energy
expression corrected for exchange effects in an electron
gas, a functional derivative of the total energy with re-
spect to the electron occupation number gave a quasi-
particle energy corresponding to S =iGyW,.

The main drawback of the LDA-based GWT ap-
proximation is the fact that results for bandgaps in semi-
conductors as well as valence bandwidths are very close
to the standard GW values. Further improvements
might be obtained by using better approximations to the
TDDFT kernel, including nonlocality and memory ef-
fects (see Sec. V.C), or it might be necessary to work
with the true nonlocality of the exchange-correlation
self-energy, which means using a four-point kernel (see
Sec. I1.C). An example of such a calculation has been
given by Shirley and Martin (1993), who performed GW
calculations for atoms starting from Hartree-Fock and
using a vertex correction consistent with the Fock ex-
change term. Shirley and Martin found that the results
for Group I, II, IV, and VIII elements are similar to
those of ordinary G W without vertex corrections, again
suggesting large cancellations. It should, however, be
noted that the choice of the “reference” state was cru-
cial. For example, electron removal energies from the
neutral state were calculated as electron addition ener-
gies to the corresponding singly ionized state. This might
be seen as a partial inclusion of important vertex and
self-consistency corrections already in the reference
state, for calculations both with and without explicit ver-
tex corrections.

Systematic vertex corrections can hence be obtained
through an iterative solution of Hedin’s equations. One
can push this scheme further by using the GW approxi-
mation for 3, in the equation for the vertex function, and
so on. An explicit formula for the vertex function corre-
sponding to the full second cycle of iteration can be ob-
tained which mixes certain diagrams of different orders
in the screened interaction. Schindlmayr and Godby
(1998) have shown that the vertex to order (n+1),

53" (12)
T+ 1(123) = §(12) 8(13) + f d(4567) 5G(45)

X G (46)G (75T D(673),
(3.30)
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can be expressed in terms of the lowest-order equiva-
lents of all quantities except 3 ()

53 (12)
T (123) = 5(12) 8(13) + J A7) 5G5T07(a35)

X GO (46)G V(75T (673).  (3.31)

The appearance of the lowest order reduces the numeri-
cal effort substantially. In particular G(°) can be chosen
such that it contains no satellite spectrum, but only a set
of robust quasiparticle excitations. In the self-consistent
limit n—o the previous equation implies a relation be-
tween the exact self-energy and vertex function. Nu-
merical results for a model of strongly correlated elec-
trons have indicated that this method yields improved
excitation energies, in particular concerning the satellite
spectrum. Nevertheless, to our knowledge this approach
has never been applied to real systems. Instead, a
slightly different version of the first iteration step is
widely used, namely, the expression

53(M(12)

r0(123)= 6(12)8(13) + | d(4567) 50T 43y

X G (46)GM (75T 1D (673)

(3.32)
in its lowest-order version,
) (123)=8(12) 5(13) + f d(4567) i(;@
5G0)(45)
X G (46)G M (75T P (673). (3.33)

Note that the only difference between Egs. (3.30) and
(3.32) is the version of the Green’s function with respect
to which the functional derivative of X is taken. The
consequences might, however, be important, because
whereas it is obvious that already the first-iteration so-
lution of the integral equation (3.33) will shift the poles
of P=—iGGT, this is not obvious in the case of Eq.
(3.31). Rather, for n=1 Eq. (3.31) multiplied by
—iGWGWM yields a first-order polarizability with poles
coming from the poles of both G(» and G(V).

In fact, Eq. (3.33) is the starting point for the deriva-
tion of the Bethe-Salpeter equation, which correctly
yields features like bound excitons in the absorption
spectra, as we shall show in Sec. IV.B.3.

Obviously, choices like the one between Egs. (3.30)
and (3.32) are crucial only because one typically does
not want to iterate to infinity, but to find the “best” first-
iteration step, which is not well defined. This kind of
problem regularly shows up when one is dealing with
many-body Coulomb equations.

Another way of partially summing higher-order dia-
grams for describing vertex corrections to the valence
electron Green’s function is given by an exponential ex-
pression very similar to the (almost exact) solution ob-
tained for the core electron Green’s function, as first
shown by Hedin (1980). This approximation can also be
derived as the first term in a cumulant expansion (Ar-
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yasetiawan and Gunnarsson, 1998). The spectral func-
tion in the cumulant expansion for a state below the
Fermi level is expressed as

o

n . .
A(k,w):ﬁf dte'@'e ekt T CkD, (3.34)

where n; is the occupation number of state k, €, is the
single-particle eigenvalue, and C(k,t) is the cumulant
operator, which can be derived in different ways (Hedin,
1980).2! The cumulant expansion contains only boson-
type diagrams describing emission and reabsorption of
plasmons; it does not contain diagrams corresponding to
the interaction between a hole and particle-hole pairs.
For this reason, the cumulant expansion primarily cor-
rects the satellite description, whereas the quasiparticle
energies are to a large extent determined by GW. This
approximation has been applied successfully to describ-
ing the multiple plasmon satellite structure in the spec-
tra of alkali metals (Aryasetiawan et al., 1996) as well as
to substantially improving the calculated electron mo-
mentum spectroscopy of graphite in regions of energy
where no intensity is predicted from the LDA band
structure (Vos et al., 2001).

IV. GREEN’S FUNCTIONS IN PRACTICE

From the previous subsection it emerges that the way
quasiparticle energies and electron-hole excitations
should be calculated is not unique. In practice schemes
have been designed which allow one to obtain satisfac-
tory results in many applications. An important variable
in this strategy is the starting point of the calculations,
i.e., one has to find the charge density (and often the
lattice parameters and other ground-state properties)
and some suitable one-electron eigenvalues and eigen-
functions which allow construction of a starting one-
particle Green’s function. This task can be successfully
carried out using the Hartree-Fock approximation in
cases like atoms and molecules where screening is weak,
or, most often, starting from static density-functional
theory. In the following we shall summarize how the cal-
culations are done in practice.

A. Calculations of one-particle excited states

First-principles GW calculations are today standard
practice in many solid-state theory groups. Several re-
views on quasiparticle calculations and the derivation
and analysis of Hedin’s equations have been published
in recent years (e.g., Aryasetiawan and Gunnarsson,
1998; Aulbur ef al. 1999; Hedin, 1999) and we refer the

2The simplest way is to identify the cumulant expan-
sion {G(k,t)=ie ¥+ CN =G (k,t)[1+C(k,t)+5C*(k,1)
+ --+ ]} with the self-energy expansion of the Green’s function
(G=Gy+Gy2Gy+Gy2Gy2Gy+ ---). In practice, using the
GW approximation for the self-energy and a G, determined
from a DFT calculation, the cumulant is obtained equating
GyC=GyXGywith 3 =355~ V,,.
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reader to those for further details. The fundamental re-
view by Hedin and Lundqvist (1969) focuses on the elec-
tron gas and contains a comprehensive introduction to
all concepts and physical quantities and the connection
to measurable spectra. In the recent reviews by Aryase-
tiawan and Gunnarsson (1998) and Aulbur et al. (1999)
the successes and shortcomings of the GW approxima-
tion and numerical implementations (plane waves, local
orbital basis, real-space/imaginary-time) and tricks to
improve the computational efficiency are described, to-
gether with a detailed compilation of results obtained
for semiconductors, transition-metal oxides, fullerenes,
superlattices, interfaces, surfaces, defects, Schottky bar-
riers, and atoms and molecules. Apart from their impor-
tance on their own, quasiparticle energies also serve as
an input to further spectroscopy calculations, in particu-
lar for the Bethe-Salpeter equation approach. Therefore
in the following we outline the way GW calculations are
usually performed and give some illustrative examples.

1. GW calculations

A GW calculation requires in principle solution of
Eq. (3.16) for the quasiparticle energies and amplitudes,
taking for 3 the product of the Green’s function G and
the screened Coulomb interaction W. The complexity of
GW leads, in practical applications, to approximations
in the construction of G and W, which we shall examine
in the following.

a. Evaluation of the Green'’s function G

In practice G is constructed using single-particle or-
bitals from a Kohn-Sham (or, less often, from a Hartree-
Fock) calculation. One considers the single-particle or-
bitals and eigenvalues as a zeroth-order approximation
to the quasiparticle amplitudes and energies (see Hedin,
1995, for a discussion of this issue. This suggests the pos-
sibility of looking for a first-order, perturbative solution
of Eq. (3.16) with respect to (X—V,.) or to (2—-3,),
where V. is the exchange-correlation potential of
Kohn-Sham (or X, is the exchange potential of Hartree-
Fock). This is the approach followed in many practical
GW calculations for real systems.”” The diagonal matrix
elements of (X —V ) give the quasiparticle energies as

Pl = e H ZI{ B2 - VS 8), (4.1)
with Zi_1=1—(¢f<s|d2/d6|el{<s|¢f<3). In the case of
simple bulk semiconductors, this approximation turns
out to be very close to the exact result obtained by di-
agonalizing H ;;+3 5w (but without any self-consistent
update of G and W; Hybertsen and Louie, 1986). In
other cases, such as transition metals and finite and low-
dimensional systems, the validity of the perturbative ap-
proach in 3— V. should be checked explicitly. For in-

ZThe solution of the exact local Kohn-Sham exchange has
also been used as input for the GW quasiparticle calculation
(Aulbur et al., 2000). The quasiparticle corrections seems to be
smaller in this case.
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stance, Pulci et al. (1999) have shown that for the (110)
surface of GaAs, even if quasiparticle energies are not
altered when doing the full diagonalization of the quasi-
particle Hamiltonian, the quasiparticle wave functions
corresponding to nearly degenerate states, with different
degrees of surface/bulk localization, strongly hybridize,
making the quasiparticle wave functions significantly dif-
ferent from the LDA ones. Differences between LDA
and GW wave functions have also been found in the
case of SiH, for states crossing the level of zero poten-
tial (Rohlfing and Louie, 2000). In general, differences
between LDA and quasiparticle wave functions can at
least be expected in any nonbulk system, i.e., when there
are regions of space where the density goes to zero. In
these regions, LDA produces an exchange-correlation
potential with an incorrect asymptotic behavior (e.g.,
missing the —1/r tail in the case of atoms and clusters);
hence, LDA wave functions may have a wrong spatial
localization. The G W potential, on the other hand, does
have the correct asymptotic behavior (Charlesworth,
et al., 1993; Garcia-Gonzalez and Godby, 2002).23

b. Evaluation of the screened Coulomb interaction W=g v

One of the main difficulties is the evaluation of the
full dielectric response of the system. In fact, even within
the chosen zeroth-order scheme, i.e., within RPA-LDA,
the calculation of £ !(r,r',w) remains a difficult task
from a numerical point of view (due to the spatial non-
locality and frequency dependence of ¢). For this rea-
son, approximated schemes have been developed:

e The model dielectric function (Levine and Louie, 1982;
Hybertsen and Louie, 1988; Bechstedt, Del Sole,
et al., 1992). These approaches allow one to consider-
ably reduce the computational effort or even to avoid
completely the ab initio calculation of e.

e The plasmon-pole approximation (Hybertsen and
Louie, 1986; von der Linden and Horsch, 1988; Ha-
mada et al., 1990; Engel and Farid, 1993). Most mod-
els are based on the observation that £(G,G’,w) ! is
generally a peaked function in w that can be approxi-
mated by a single-pole function in w. The pole posi-
tion and strength are determined by imposing sum
rules (Hybertsen and Louie, 1986), or by fitting each
element ¢ '(G,G’) at two points w along the imagi-
nary energy axis (Godby and Needs, 1989). Since the
evaluation of ¥ involves an integration over the en-
ergy, the fine details of the energy dependence are not
critical, and the plasmon-pole approximation turns
out to work reasonably well. One important drawback
is that quasiparticle lifetimes cannot be computed
within a plasmon-pole approximation, as Im(3) is
zero everywhere except at the pole. The validity of
the plasmon-pole approximation has not been system-

20ne recent GW application touching this point is the work
of White er al. (1998) on the image potential at the Al(111)
surface.
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atically tested, except in a very few cases (see, for
example, Aulbur efal, 1999; Arnaud and Alouani,
2000).

When the full energy dependence of the dielectric ma-
trix is retained, the integration in w may be performed
along the imaginary axis, where &£ ! is well behaved
(Godby et al. 1988; Schone and Eguiluz, 1998), by pick-
ing up all the poles along the real axis (Aryasetiawan,
1992; Fleszar and Hanke, 2000), or by using the
transition-space spectral representation of &~ !, which
allows one to perform the frequency integration analyti-
cally (Shirley and Martin, 1993).%*

c. Application of the self-energy >

For many applications, the simple prescriptions de-
scribed above have yielded results within 10—15 % of the
experimental ones, the typical example being the direct
quasiparticle gap of diamond, as discussed in the intro-
duction. An agreement of the same quality between
quasiparticle energies and photoemission or inverse
photoemission data has also been obtained for more
complex systems like surfaces, atoms, and nanostruc-
tures (Aulbur et al., 1999), and the GW calculations are
systematically used to study quasiparticle excitations in
realistic systems of practical interest. For example, in the
case of an ethylene molecule (C,H,;) adsorbed on the
Si(001)-(2%x1) surface GW seems to improve the cal-
culated tunneling currents measured in scanning tunnel-
ing microscopy (Rignanese et al., 2001).>> A recent GW
study on YHj illustrates the important consequences of
self-energy corrections (Miyake et al, 2000; van
Gelderen et al., 2000). It turns out that GW corrections
remove the band overlap responsible for erroneous me-
tallic LDA behavior in YH; that has a measured optical
gap of 2.8 eV. Hence the gap is of electronic origin
rather than structural, and not due to strong correlation
(Eder et al., 1997, Ng et al., 1997).

Another physical quantity that can be obtained from a
knowledge of the full, complex self-energy 2 is the qua-
siparticle lifetime, i.e., the electron-electron scattering
contribution to the linewidth. The damping rate of an
excited electron in the state i,(r) with energy E is in
fact obtained as (Echenique et al., 2000)

2Mixed-space (Blase et al., 1995) and real-space/imaginary-
time techniques (Rojas et al., 1995), as well as a technique to
eliminate the unoccupied state summations (Reining et al.,
1997), can also be used to reduce the computational effort (see
the reviews by Aulbur et al., 1999; and Aryasetiawan and Gun-
narsson, 1998, for a detailed comparison of different numerical
imsplementations).

BGimilar studies concerning the interpretation of scanning
tunneling microscopy images have also been performed in the
framework of the LDA+U approach [see, for example, the
work by Dudarev et al. (1997) on the NiO(100) surface]. We
refer the reader to Anisimov et al. (1997) for a description of
the relation between GW and LDA+U.
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FIG. 2. Comparison of the calculated and experimental band
structures for copper: solid line, GW quasiparticle excitation
energies (Marini et al., 2002); dashed line, DFT-LDA eigenval-
ues; O, experimental data compiled by Courths and Hufner
(1984). A comparison to more recent experimental data (Stro-
cov et al., 1998, 2001) yields the same agreement.

771=—2Jdrf dr' g5 (1) Im X (x,x’ E) ho(x'). (4.2)

In the GW approximation, the imaginary part of 3 is
determined by the imaginary part of ¢! that contains
all decay processes of the initial state. Quasiparticle
damping times were calculated for diamond by Strinati
et al. (1980, 1982), who found results consistent with
photoemission data. A treatment of the electron dynam-
ics, including band structure and dynamical screening ef-
fects, is necessary for quantitative comparisons with ex-
periment (see, for instance, Burgi ef al., 1999; Valla et al.,
1999b). An illustrative example is given by Campillo
et al. (1999; Campillo, Pitarke, et al., 2000; Campillo, Ru-
bio, et al., 2000) and Gerlach et al. (2001), who evaluated
the quasiparticle lifetimes of electron and holes in bulk
Cu within the GW scheme, showing an increase in the
lifetime close to the Fermi level as compared to the pre-
dictions of a free-electron-gas model of the solid. How-
ever, the lifetimes get closer to those of a free-electron
gas for hole energies below ~3 eV, whereas the experi-
mental data show a distinct asymptotic behavior. This
discrepancy between theory and experiment may be a
signature of important departures of the DFT-LDA
band structure of Cu, which is used in the calculation of
W, from the actual quasiparticle band structure (see Fig.
2; Marini et al., 2002).

GW results for Cu agree with photoemission data
within 30 meV for the highest d band, correcting 90% of
the LDA error. The energies of the other d bands
throughout the Brillouin zone are reproduced within 300
meV, and the maximum error (=600 meV) is found for
the bottom valence band at the I" point, where only 50%
of the LDA error is corrected. This level of agreement
for the d bands cannot be obtained without including
self-energy exchange contributions coming from 3s and
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3p atomic levels,?® demonstrating the importance of
those contributions. On the other hand, the total band-
width is still larger than the measured one. This overes-
timate of the GW bandwidth with respect to the experi-
mental one seems to be a quite general feature, which is
not yet properly understood. (See Yasuhara et al., 1999,
for a discussion about Na, Ku et al., 2000 for a comment,
and Yasuhara et al., 2000 for reply.)

Fully self-consistent GW calculations have been per-
formed by Schone and Eguiluz (1998) for crystalline sili-
con and potassium, with the conclusion that for real ma-
terials, self-consistent G W without vertex corrections in
2, yields quasiparticle energies and bandwidths that dis-
agree with experiment; for example, the absolute gap of
Si turns out to be 1.91 eV, compared with the experi-
mental 1.17 eV. On the other hand, Massidda et al.
(1995) have calculated self-consistently the electronic
structure of MnQO, using a frequency-independent model
>, derived by Gygi and Baldereschi (1989). An encour-
aging agreement was found with experiment concerning
the energy gap, magnetic moment, bandwidth, and spec-
tral distribution of Mn 3d states. The fact that self-
consistency leads to poorer results in the calculations of
Schone and Eguiluz (1998), but leads to an improvement
in the calculations of Massidda et al. (1995) shows that
the dynamical aspect of the self-energy is very problem-
atic in this context.

Few works including vertex corrections exist to date
on real materials. One example is given by the GWT
calculation on silicon, described in Sec. II1.C.2, where I'
is taken from a DFT-LDA approach. However, the ef-
fects of this approximate kernel are rather small. It is
difficult to guess what the effect would be if a better (in
particular more long-range) approximation of the kernel
were used. The work of Ummels et al. (1998), discussed
in the same section, suggests that some changes might be
found.

The effects of vertex corrections can also explain why
GW calculations have not always been successful in de-
scribing self-energy effects, for example for d-electron
bands (where the problem might come from strong cor-
relation or simply from self-interaction effects, i.e., from
the strong localization). A critical discussion about the
extent to which the GW approximation is capable of
describing highly correlated systems such as NiO is
given by Aryasetiawan and Gunnarsson (1995).

Computationally, the evaluation of 3 as GW is a hard
task.?” Calculations can scale as badly as N*, where N is
the number of atoms, hence reaching the limit of com-
puter power well before DFT-LDA calculations, which
usually scale as N°.

2The relevance of semicore states in the self-energy was also
pointed out by Rohlfing et al. (1995, 1998).

ZTA typical bottleneck is given by the summations over the
empty states (Reining et al., 1997), both for the determination
of the screening and for G. Another difficulty comes from the
convergence of Brillouin zone integrals (i.e., k-point sampling)
of functions that have a factor |k+ G|? in the denominator as
the exchange term (Pulci, 1998).
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It turns out that, whereas the “standard” prescription
for GW calculations yields good results for many appli-
cations, one has to be careful when effects beyond this
perturbative-RPA scheme have to be included. In order
to gain some insight concerning the choices to be made,
it is useful to resort to the outcome of model calcula-
tions.

2. Comparison of GW and DFT results

As mentioned in Sec. II.A, the Kohn-Sham eigenval-
ues, appearing as Lagrange multipliers in the minimiza-
tion of the density functional, do not carry a direct
physical meaning, even though they can be considered
as well-defined approximations to the excitation ener-
gies (Gorling, 1996; Filippi, 1997). In particular, they can
be viewed as a good zero-order starting point for pertur-
bative self-energy calculations (see Sec. IV.A.1). In fact,
there is no equivalent of Koopman’s theorem for the
Kohn-Sham eigenvalues, and a direct comparison of the
LDA energy gap of a semiconductor or insulator with
the experimental (photoemission and inverse photo-
emission) band gap normally yields a severe underesti-
mate, of the order of 30-50 % or more (see, for ex-
ample, Bechstedt, 1992). This error is corrected in a GW
calculation of quasiparticle energies.

For a more precise and general comparison between
DFT and GW, one has to distinguish between the ef-
fects of the approximated exchange-correlation func-
tional, for example LDA (which affects the total energy
differences and the effective potential, hence the eigen-
values) and the effect of interpreting Kohn-Sham eigen-
values as electron addition and removal energies (see,
for example, Jones and Gunnarsson, 1989). Almbladh
and von Barth (1985) showed that in exact DFT the
highest occupied eigenvalue (highest occupied molecu-
lar orbital level, or HOMO) does have a physical inter-
pretation: it corresponds to the ionization potential.
Hence, in exact DFT, the ionization potential could be
derived directly from a single calculation for the ground
state of an N-electron system. Unfortunately, the use of
approximated exchange-correlation functionals (like
LDA) quite severely affects the Kohn-Sham highest oc-
cupied level. Hence, when comparing excitation ener-
gies directly with Kohn-Sham eigenvalues, one must dis-
tinguish two cases: the highest occupied level, for which
the error is due only to the LDA, and the other levels
[e.g., the lowest unoccupied molecular orbital (LUMO)
eigenvalue], for which, even in exact DFT, a discrepancy
could be found. For example, in the Be atom (Jones and
Gunnarsson, 1989), both errors are large: the LDA
HOMO (—5.6 eV) misses the ionization potential
(—9.32 eV) by almost 4 eV, and the HOMO-LUMO gap
1s 3.5 eV in LDA, 3.62 eV in exact DFT, and larger than
9 eV experimentally. Part of the error comes from the
spurious self-interaction which is contained in the LDA.
Perdew and Zunger (1981) have proposed a self-
interaction-corrected approach in order to eliminate this
contribution. This is also the case in realizations of DFT
which allow the inclusion of the exact local exchange
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potential as an optimized effective potential (OEP) (de-
fined as the functional derivative of the exact exchange
energy E, with respect to the electron density) and
which have been introduced with great success (Gross
et al., 1996; Gorling et al., 1999).

On the other hand, in a finite system it is possible to
compute quasiparticle energies directly as energy differ-
ences, provided one is able to compute the total energy
of the system with N electrons in the ground state, and
that of the system with N=1 electrons in the ground
state or some excited state. This scheme, known as the
delta-self-consistent-field method, has been successfully
used within DFT to describe bound one-electron excita-
tions and the ionization potential of atoms and mol-
ecules (Jones and Gunnarsson, 1989).

Hence, DFT- or Hartree-Fock—based delta-self-
consistent-field calculations can be directly compared
with GW results. For atoms in the iron series, Shirley
and Martin (1993) have shown that GW yields results of
a quality similar to, or slightly worse than, those com-
puted from Hartree-Fock or local-spin-density total en-
ergy differences (Baroni, 1984; Vukajlovic et al., 1991).
Small sodium clusters can be taken as another example:
Na, and Nag vertical and adiabatic ionization potentials
obtained with the delta-self-consistent-field approach
(Martins et al., 1985) compare well with DET+GW re-
sults for jellium spheres (Saito et al., 1989) and for the
real clusters (Onida et al., 1995; Reining et al., 2000).
Similarly, Ogilt ef al. (1997) studied the evolution of the
quasiparticle and optical gaps of hydrogenated silicon
clusters as a function of cluster size. Delta-self-
consistent-field LDA calculations were used to estimate
the quasiparticle correction to the HOMO-LUMO gap.
Oglit et al. concluded that quantum confinement, as well
as reduction of screening due to finite size, leads to ap-
preciable excitonic corrections. This correction turns out
to be large and size dependent. The delta-self-consistent
field results point out that for finite systems the Hartree
relaxation of the wave functions when the electron is
added or removed is essential, while it is of no relevance
for delocalized states in bulk solids, as pointed out by
Godby and White (1998; see also the reply of Ogiit et al.,
1998). In infinite systems, the correlation part takes over
in relevance (see the discussion in Sec. VI.C).

Finally, another way to overcome the “gap problem”
without performing a self-energy calculation has been
proposed by Mackrodt et al. (1996): Hartree-Fock calcu-
lations on nickel oxide (NiO) and on the lithium-doped
material have allowed the determination of the band
gap of the former, by taking eigenvalue differences be-
tween two empty states of the latter. Simply taking the
difference between Hartree-Fock eigenvalues of an oc-
cupied and an empty state of NiO would lead to far too
large a gap.

In conclusion, Kohn-Sham eigenvalues are generally
in disagreement with photoemission and inverse photo-
emission energies, both for finite and for extended sys-
tems, with errors of 30-50 % or more. On the other
hand, self-energy-corrected quasiparticle energies (ob-
tained via the GW method) usually agree well with pho-
toemission and inverse photoemission data: the reported
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errors are typically in the range of 10—15 % of the band
energies measured with respect to the Fermi level, hence
being in absolute value larger for systems with a larger
gap. In the case of finite systems, the delta-self-
consistent-field method also yields accurate excitation
energies, since wave-function localization allows for fi-
nite relaxation effects. In infinite systems with delocal-
ized wave functions the delta-self-consistent-field
method is inadequate, since Hartree relaxation effects
vanish and correlation must be taken into account. GW
contains both relaxation and correlation and is therefore
suitable to describe electron addition and removal ener-
gies.

In the next section we shall discuss the use of Green’s-
function theory for the study of two-particle excited
states, such as the electron-hole pairs that are created in
absorption measurements. For an overview of earlier
and some more recent work, see Hanke et al. (1983) and
Rohlfing and Louie (2000), respectively.

B. Calculations of two-particle excited states

The key quantity in the calculation of two-particle ex-
cited states is the polarizability P, as introduced in Eq.
(1.3).

1. Independent-quasiparticle approximation

As discussed in Sec. I11.B, P is given by Eq. (3.24). In
Sec. III.C we defined the RPA form P=-iGG [Eq.
(3.26)], from which the screened interaction in GW cal-
culations is usually obtained. In principle, Eq. (3.26)
could also be used for the calculation of absorption spec-
tra and other spectra that involve the creation of
electron-hole pairs. P is then just the product of two
one-particle Green’s functions. Using Eq. (3.4) and after
a Fourier transformation from time to frequency space,
one obtains for the independent-(quasi)particle P the
result (1.4) in its time-ordered form, from which the re-
tarded version can be deduced. As in the case of the
one-particle Green’s function, the irreducible polariz-
ability P (which is derived from a two-particle Green’s
function) can be understood in its Lehmann representa-
tion or in the complex plane. In the second case, which is
the representation used in practical applications, the
electron and hole energies entering the denominator can
be complex, leading to a finite lifetime of the two-
particle excitation (because of the finite lifetime of the
electron and/or the hole). Additional deexcitation chan-
nels are included when the electron-hole interaction is
taken into account; this will be discussed below.

Formula (1.4) is at present still the standard expres-
sion used for many ab initio calculation of optical spec-
tra of real materials. Note that, whereas the form of P is
prescribed by Eq. (3.26), the iteration approach is again
not uniquely defined concerning the ingredients. Hence
the Green’s functions entering Eq. (3.26) may be consid-
ered to stem, for example, from a Kohn-Sham or from a
GW calculation. In practice, most often DFT Green’s
functions are used when the approximation P=P;yp
[see Eq. (1.4)] is made. This can be understood as an
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approximation to the Green’s-function iteration scheme,
but also as an approximation to TDDFT, as will be ex-
plained in Sec. V. Sometimes a mixed DFT-G W Green’s
function is used; the eigenvalues entering G are taken to
be GW ones, whereas the wave functions are Kohn-
Sham orbitals. This approach (called GW-RPA in the
introduction) was first tried in order to overcome the
redshift of DFT-based absorption spectra with respect to
experiment, but in general it overcorrects, and, more-
over, does not improve line shapes.” Today, GW-RPA is
mostly seen as a good approximation to the first-
iteration result for P;gp, which is then used to include I
in the second iteration, i.e., it is the starting point of the
Bethe-Salpeter approach, which will be outlined in the
following. We shall concentrate on absorption spectra,
i.e., on the calculation of P [Eq. (2.9)], where going be-
yond the RPA gives the most visible effects. All results
can be easily generalized to the case in which one is
instead interested in y, replacing the local field effects
contribution v by v (see Sec. II.B).

2. Electron-hole attraction

The inclusion of vertex corrections [i.e., the inclusion
of I' in Eq. (3.24) for P] can be achieved through a sec-
ond iteration of Hedin’s equations. This means that one
has to go again from Eq. (3.22) to Eq. (3.25), now using
% =iGW in the latter. This yields an integral equation
for I,

T'(123)=8(12)5(13)

+iW(1+2)f d(67)G(16)G(72)T (673).

(4.3)

Here, the approximation 6%/8G=iW is used. This
means that (i) one neglects the term iG (6W/8G),
which contains information about the change in screen-
ing due to the excitation and is considered to be small,
and that (ii) Eq. (3.32), and not Eq. (3.30), has been
used. As discussed above, this latter choice in the itera-
tion scheme can be crucial when only one or a few itera-
tions are performed.
One can transform Eq. (4.3) to an integral equation
for a generalized P, defined as
3P(312)E—iJ d(67)G(16)G(72)I'(673), (4.4)
by multiplying with —iG(41)G(25) on the left and in-
tegrating over d(12):

3P(345)=—iG(43)G(35)

+if d(12)G(41)G(25)W(1+2) 3P(312).

(4.5)

21t does, however, yield rather good static dielectric con-
stants (Levine and Allan, 1989). For silicon and germanium,
the error decreases by one order of magnitude when GW in-
stead of LDA eigenvalues are used.
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FIG. 3. Feynman diagrams representing the Bethe-Salpeter
equation for y.

The polarization P can hence in principle be obtained
from P(31)=°P(311). However, the kernel GGW of
the integral equation (4.5) is a four-point function.
Therefore, as outlined in Sec. II.C, it is equally conve-
nient to introduce a four-point P, which has the advan-
tage that local field effects can be included on the same

footing, i.e., one can directly obtain P (or ). In fact,
closely following the prescriptions in Sec. II.C, one can
introduce the four-point dynamically screened interac-
tion

YW (1234)=W(12)8(13) 5(24). (4.6)
Then one gets for Eq. (4.5) the four-point integral equa-
tion

4P:4PIQP_4P 4W 4PIQP9 (47)
with the obvious generalization from Py p to ‘p 1op [see

Egs. (1.4) and (B16)]. One can now also write Eq. (2.10)
for four-point quantities, namely,

4P(1234)="P(1234)
+ f d(5678) *P(1256)5(56) 5(78)v(57)

X 4P(7834). (4.8)

Putting these equations together, one obtains the Bethe-
Salpeter equation for *P:

4F:4P1Qp+4P1QpK 4?, (49)
where the kernel K contains an electron-hole exchange
contribution v and electron-hole attraction — W:

K(1234) = 8(12) 8(34)0(13) — 8(13) 8(24) W(12).
(4.10)

The equation for the corresponding *y differs only by
the fact that v instead of v appears. The diagrams rep-
resenting the Bethe-Salpeter equation for y are shown
in Fig. 3. The Green’s-functions lines are dressed, i.e.,
they are quasiparticle lines.

One can make an immediate connection to the discus-
sion of the four-point equations in Sec. II.C. In fact,
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most often W is taken to be the statically screened Cou-
lomb interaction. Equation (4.10) for K corresponds
then to the time-dependent screened Hartree-Fock
approximation.” In particular, one can follow the
scheme of Sec. II.C and Appendix B.2, and derive the
effective two-particle Hamiltonian H?? defined in Eq.
(2.22), which is often used in the context of the Bethe-
Salpeter equation approach. In fact, when static screen-
ing is used in W the effective two-particle equation takes
the particularly simple, energy-independent form,

2 {(enz_ 6n1)5n1n35n2n4+ (fnl _fnz)[v_(nlnz)(n3n4)

niny

_W("]"z)(”s"z&)]}A;n}“):E)\A;HMZ) > (4'11)
where it is understood that matrix elements of the ker-
nel (4.10) are taken with respect to four one-particle
orbitals 71" 14t V(nmy)(ngn, = (M1N2[vIn3Ng)  and
W(nlnz)(n3n4)=(n1n3|W|n2n4>. The solution of this
equation allows one to construct then the absorption
spectrum from Eq. (2.23). If one considers only the reso-
nant part of H?”, i.e., the part mixing only transitions of
positive frequency, the resulting operator is Hermitian
and its eigenstates orthogonal. Therefore one obtains
the simpler formula

|En1n2<n1|eiiq.r|n2>‘4Zln2|2

wo—E,tin

ey(@)=1—1limvo(q) X
q—0 A

(4.12)

As discussed below, this turns out to be a very good
approximation for the calculation of bulk absorption
spectra.

Summarizing this section, we recall that (i) the Bethe-
Salpeter approach to the calculation of two-particle ex-
cited states is a straightforward extension of the GW
approach for the calculation of one-particle excited
states; and (ii) it leads to an effective two-particle
Hamiltonian H?? which is of the general form found in
time-dependent problems, as explained in the introduc-
tion. The electron-hole interaction that appears in H>?
has two contributions: the first involves the bare Cou-

lomb interaction (v or v, depending on whether y or P
are calculated), which connects the electron and hole
indexes in an exchangelike manner and is therefore also
called electron-hole exchange. In order to avoid confu-
sion, however, it should not be forgotten that this con-
tribution stems from the density variation of the Hartree
term and contains just the local field effects in the case
of v. The second contribution involves W, which con-
nects the electron and hole indexes like a direct Cou-

21t corresponds only for the kernel K, because the eigenval-
ues entering P;qp are in practice calculated in the full (dy-
namic) GW scheme, and the eigenfunctions are approximated
with LDA ones, not screened Hartree-Fock ones.
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2lomb interaction and is therefore called the screened
electron-hole interaction. It comes from the variation of
the self-energy, in other words, from an exchangelike
term in the one-quasiparticle Hamiltonian. It is this last
term that is responsible for the appearance of bound
states, and it can even lead to hydrogenlike spectral fea-
tures in insulators.

In practice, the spin o, is most often not considered
explicitly. One then makes use of the fact that only (v,c)
transitions with o, = o, (i.e., singlet excitons) contribute
to the optical spectrum. Since W does not contain a spin
interaction, and because of the way the & functions con-
nect indexes, the matrix elements W, .)(,.) are diago-
nal in spin, i.e., o,=0,,. Instead, the matrix elements
U(ye)(v’ery are independent of o, and o,/ . Hence spin is
implicitly included via a factor of 2 for v in Eq. (4.11).

3. The effects of the electron-hole interaction

Exciton calculations for real systems within a fully
first-principles scheme, starting from DFT, have recently
been performed. However, the importance of the exci-
tonic effects has been known for a long time, even in
cases in which the features are less characteristic than,
the appearance of a hydrogenic series of bound states in
the band gap. Excitonic effects in the absorption line
shape of semiconductors above the fundamental gap
were calculated some time ago (Hanke and Sham, 1974,
1975, 1980; del Castillo and Sham, 1985). Hanke and
Sham (1980) solved the Bethe-Salpeter equation [Eq.
(4.9)] for the particle-hole response function of bulk sili-
con, using a linear combination of atomic orbitals basis,
with a semiempirical band structure fitted to optical ex-
periments. They found important corrections to the
independent-particle result, in particular a strong in-
crease in the lowest main absorption peak (E1), leading
for the first time to a calculated absorption spectrum of
bulk silicon in qualitative agreement with experiment.

The ab initio approaches used today for solution of
the Bethe-Salpeter equation (Albrecht et al, 1998a,
1998b; Benedict et al., 1998a; Rohlfing and Louie,
1998b) mostly follow the scheme introduced by Onida
et al. (1995) for the spectrum of the cluster Na, and that
of Albrecht et al. (1997) for the optical gap of bulk
Li,O. This procedure consists of (i) a ground-state DFT
calculation; (ii) a GW calculation to correct the eigen-
values; and (iii) solution of the Bethe-Salpeter equation
using GW eigenvalues, Kohn-Sham orbitals, and static
RPA screening for the electron-hole interaction. It thus
includes several steps and choices, which are schemati-
cally represented by the flow diagram in Fig. 4.

This scheme, using the approach of the effective two-
particle Hamiltonian, has again been applied to the cal-
culation of the absorption spectrum of bulk silicon (Al-
brecht et al., 1998a), showing that the Bethe-Salpeter
method used without any adjustable parameter can yield
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FIG. 4. Flow diagram sketching the solution of the Bethe-
Salpeter equation in practice.

absorption spectra of continuum excitons in bulk semi-
conductors in quantitative agreement with experiment
(see Fig. 5).%°

On the other hand, as pointed out above, the electron-
hole attraction can also lead to bound excitons in insu-

9The present curve has been calculated by Olevano and

Reining (2000) using an improved Brillouin-zone sampling
with respect to the original publication of Albrecht et al.
(1998a). See also the discussions by Cardona et al. (1999) and
Albrecht et al. (1999).



628 Onida, Reining, and Rubio:

o T T A\ T T T ]
L)
- I L] ® " .
8 . L T
*» [ .
40 |- ..' " -
[ d .
L k K S
L ry p
30+ . ‘ . . _
8 - -
s A
E T S A T '
20— .’\ N ., ’0‘\ .‘ —
o I : * . . .. "o «* "ty
o : -~ e, ™k
) -
10 — L
I o ¢
. ® 5
L P+ -
’.’.
Ol T s[ge , | 1 | 1 | 1 | 1 |
2.5 3 35 4 4.5 5 55
o [eV]

FIG. 5. Silicon absorption spectrum [Im(gy,)]: ®, experiment
(Lautenschlager et al., 1987); dash-dotted curve, RPA, includ-
ing local field effects; dotted curve, GW-RPA; solid curve,
Bethe-Salpeter equation.

lators, where the interaction is only weakly screened.
The resulting spectra can also be well described by the
ab initio Bethe-Salpeter approach, as has been illus-
trated by the work of Benedict ez al. (1998a). These au-
thors use a recursive method (Haydock, 1980) to invert
the Bethe-Salpeter equation (4.9), which has the advan-
tage that one can make use of the § functions in the W
contribution to the kernel in order to make calculations
less cumbersome.’! Figure 6 shows the result for bulk
LiF (Shirley, 2001).** The sharp peak in the absorption
spectrum at about 12 eV is clearly due to excitonic
effects—the spectrum without excitons is essentially fea-
tureless in the range of the absorption onset. The 12-eV
peak defines the optical gap, which turns out to be only
about 0.5 eV lower than the experimental one, whereas
the independent-quasiparticle result shows a consider-
able overestimate.

The same approach has also been used by Benedict
et al. (1998b) to obtain the absorption spectra of bulk Si,
C, Ge, and GaAs. Moreover, they have studied the
wide-gap semiconductor GaN (in its wurtzite and zinc-
blende structures), and the insulating CaF, crystal
(Benedict and Shirley, 1999). In all cases, the inclusion
of excitonic effects turned out to be crucial for a quan-
titative agreement between theory and experiment.
Rohlfing and Louie (1998b) have introduced a different
way of extending the applicability of the Bethe-Salpeter

3 The calculations are simplified further by the use of a model
electron-hole screening.

32Shirley’s calculation is the same as that of Benedict et al.
(1998a), but with an improved Brillouin-zone sampling and
including more bands.
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FIG. 6. LiF, absorption spectrum [&,=1Im(g))]. Continuous
curve with crosses, experimental (Roessler and Walker, 1967).
Dashed curve, Eq. (2.8) using GW eigenvalues. Plain continu-
ous curve, Bethe-Salpeter equation (Shirley, 2001).

approach: they noticed that one of the bottlenecks in the
calculation of bulk spectra is the determination of the
(N,XN.XN,)? matrix elements of H(sz,ck)(v’k’,c’k’)’
where N, and N, are the numbers of valence and con-
duction bands that have to be taken into account in the
construction of the spectrum, and N is the number of k
points at which the direct vk— ck transitions are consid-
ered. They hence proposed an interpolation scheme in k&
for the H?fk’ck)(v,k,’c,k,), which allowed them to calcu-
late the absorption spectrum of bulk GaAs including the
extremely weakly bound exciton states (some meV of
binding energy) in the gap. The description of the latter
feature in fact required the use of about 1000 k points in
a sphere of 0.015-a.u. radius around k=0.

Rohlfing and Louie (1998b) and Benedict and Shirley
(1999) also noticed that the excitonic effects above the
gap are due to the mixing of transitions given by the
coefficients Ag\"an) in Eq. (4.12), in other words, inter-
ference effects. This can be shown by looking at the den-
sity of excitation energies, which turns out to be almost
unchanged by the inclusion of the electron-hole interac-
tion (see, for example, Fig. 6 in Benedict and Shirley,
1999). This means that the apparent shift of peak posi-
tions [about 0.4 eV for the E2 peak in silicon (Albrecht
et al., 1998a)] is not due to a negative shift of the transi-
tion energies.

Of course, this is not true in the case of bound exci-
tons, which, apart from the above-mentioned insulators,
includes systems having discrete energy levels, like at-
oms (Rohlfing and Louie, 2000), molecules and clusters
(Onida et al, 1995; Rohlfing and Louie, 1998a), and
other low-dimensional systems. In these cases, excitation
energies are shifted; moreover, the effect can be very
strong, since screening is not efficient and the electron
and hole are localized.

A good illustration of excitons in low-dimensional sys-
tems is given by the case of conjugated polymers like
trans-polyacetylene and poly-phenylene-vinylene
(PPV). The optical absorption spectra of these mol-
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FIG. 7. Normal-incidence differential reflectivity spectrum of
the Ge(111)(2X 1) surface: solid lines, the spectrum including
self-energy and excitonic effects; dashed lines, spectra ob-
tained using Eq. (2.8) and GW eigenvalues. The upper panel is
for the positively buckled isomer, the lower for the negatively
buckled isomer. Dots are experimental data by Nannarone
et al. (1980).

ecules have been studied by Rohlfing and Louie (1999a).
The electron-hole interaction gives rise to exciton bind-
ing energies of the order of one eV and strongly modi-
fies the spectral line shapes. Similar results for polymers
have also been found by van der Horst et al. (1999) and
by Ruini et al. (2002).

Surfaces can also be considered as low-dimensional
systems, in particular in certain reconstructions like the
quasi—one-dimensional chain structures of Si(111)2X1
and Ge(111)(2X1). A strong excitonic effect has been
found for Si(111)2X1 in semiempirical (Reining and
Del Sole, 1991) and ab initio calculations (Rohlfing and
Louie, 1999b). The excellent agreement found allows
one to use the theoretical results as reference spectra for
the interpretation of experiments. For example, an ab
initio exciton calculation by Rohlfing et al. (2000) for
Ge(111)(2X1) has demonstrated how optical differen-
tial reflectivity spectra can be used to distinguish be-
tween the two possible isomers of the reconstructed sur-
face. This distinction was made possible by the fact that
a quantitative comparison between the calculated and
experimental spectra is possible when electron-hole ef-
fects are treated correctly (see Fig. 7).

Rohlfing and Louie (2000) have recently published an
extended paper in which their first-principles exciton ab-
sorption calculations are reviewed. They present the
theoretical framework, compare different choices of ba-
sis sets, and discuss the applications to both finite sys-
tems (namely, He, Ne, and Ar atoms, and SiH, and
larger Si,H,, clusters) and infinite crystals (GaAs, Si,
LiF, and LiCl).
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The importance of excitonic effects can also be seen in
electron-energy-loss spectra, linked to the imaginary
part of the inverse dielectric function. Recently,
Soininen and Shirley (2000) applied the ab initio exciton
scheme to the calculation of the dynamic structure fac-
tor S(q,w) of diamond, LiF, and wurtzite GaN for vari-
ous momentum transfers q. As in the case of the macro-
scopic dielectric function, the inclusion of the electron-
hole interaction in & ! was found to substantially
redistribute the spectral weight with respect to a GW
(independent-quasiparticle) calculation, being crucial in
interpreting the experimental dynamical structure factor
over a wide range of energies. Essentially, an overall
shift to lower energies and an enhancement of the inten-
sities on the low-energy side are found. The latter effect
can be traced back to the nontrivial excitonic effects in
the imaginary part of the dielectric function. Concerning
the overall, essentially rigid shift, one might wish to dis-
cuss in detail the extent to which the electron-hole at-
traction and self-energy corrections cancel in the dy-
namical structure factor. For the plasmon peak of silicon
at vanishing momentum transfer, it has in fact been
shown that strong cancellations occur (Olevano and
Reining, 2001a). In other words, whereas it is clear that,
at present, absorption spectra of bulk materials most of-
ten necessitate the inclusion of self-energy and electron-
hole attraction effects, it is less obvious how much these
effects improve loss spectra in general and to what ex-
tent improvements obtained with respect to using Eq.
(2.8) are essentially due to local field effects. This latter
point will also be discussed in Sec. VI.D.

In conclusion, it is important to note that a large va-
riety of problems has by now been studied via the ab
initio approach, ranging from absorption to energy-loss
spectra; from applications to atoms, molecules, and clus-
ters to applications to bulk materials; and showing exci-
tonic effects as different as the continuum exciton in
silicon, the very weakly bound Wannier excitons in
GaAs, or the strongly bound exciton in LiF. Models exist
which allow each of these situations to be described, the
two best known being the hydrogenic Wannier model
for weakly bound excitons and the Frenkel model for
strongly bound excitons (see Bassani and Pastori Par-
ravicini, 1975 for an overview). In fact, certain features
in the spectra can be very easily predicted by these mod-
els. In particular, the knowledge of the effective masses
(band curvatures) at the direct gap, and of the dielectric
constant, often yield a very good estimate of exciton
binding energies and allow one to estimate strongly
bound excitons like those in LiF. However, none of the
simple models could ever predict an entire spectrum.
Solid argon, for example, exhibits a hydrogenlike series
of peaks below the continuum, the first of which is
Frenkel-like, and the others of which are well described
by the Wannier model. More refined model approaches
manage to include both types of bound excitons (Resca
et al., 1978), but are not meant to predict excitonic ef-
fects in higher parts of the spectrum, where other details
of the band structure become important. Instead, the ab
initio approach has been shown to treat all those fea-
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tures equally well, and hence to be flexible and predic-
tive. Of course the agreement with experiment is still
somewhat limited by the various approximations that
are commonly used.

In the following section, several possible choices will
be discussed.

4. Different levels of sophistication

One of the main difficulties one encounters when dis-
cussing the quality of Bethe-Salpeter results is the fact
that, as can be seen from Fig. 4, the ab initio approach is
a three-step method. First, a Kohn-Sham ground-state
calculation is performed. Second, GW corrections are
added in order to obtain correct quasiparticle energies.
Third, the Kohn-Sham and G W results are used in order
to construct the Bethe-Salpeter equation. At each step,
approximations are made and one has to be careful in
order to keep the error bar in the final results small.

In the following, we shall examine a list of the main
approximations that are often used.

(i)  Pseudopotentials. All above-cited ab initio calcu-

lations use pseudopotentials. The use of pseudo
wave functions for the construction of transition
matrix elements might, however, introduce some
error in the results, even when the nonlocality of
the pseudopotential is correctly taken into
account.*® The influence of strongly nonlocal
pseudopotentials on the calculation of transition
matrix elements has been analyzed by Read and
Needs (1991), who have found differences of up
to 10-15 %, depending on the element. See also
Marini et al. (2001) for an example.
Arnaud and Alouani (2000, 2001) have calculated
quasiparticle energies and optical spectra includ-
ing self-energy and excitonic effects, using the all-
electron full-potential projector-augmented wave
method of Blochl (1994). For Si, GaAs, and dia-
mond their GW band structure agrees with the
available pseudopotential results to within 1% for
GaAs and AlAs, 2% for Si, and 5% for InP (Ar-
naud and Alouani, 2000). Optical spectra com-
puted within the Bethe-Salpeter scheme (Arnaud
and Alouani, 2001) are also in agreement to
within a few percent with pseudopotential results,
except for the case of diamond, where they found
differences in the peak positions of the order of
0.5 eV.

(i)  Kohn-Sham-LDA wave functions. In the Bethe-
Salpeter approach, P;op and other matrix ele-
ments are most often constructed using GW ei-
genvalues but LDA wave functions. This has been
justified by the fact that quasiparticle and Kohn-
Sham orbitals are supposed to be close to each

#Naturally, when using nonlocal pseudopotentials, the cor-
rect definition of the velocity operator must be adopted, since
macroscopically wrong results can be obtained otherwise (Van
Dyke, 1972; Read and Needs, 1991).
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other (Hybertsen and Louie, 1986; Godby et al.,
1986, 1988). However, this is not always the case.
For example, for finite systems the missing —1/r
tail of the VEPA potential can strongly distort the
wave functions, and it may be necessary to correct
their spatial behavior. This has been done by
Rohlfing and Louie (2000). For the small clusters
studied, the authors have shown that the wave
functions of the empty states become clearly more
delocalized with respect to the LDA Kohn-Sham
ones. This has a sizable effect on the exciton bind-
ing energies, which are reduced by as much as
20%. Note that it would be much more compli-
cated to include exact quasiparticle wave func-
tions. In fact, in order to obtain Eq. (4.11), the
wave functions used for the construction of the
matrix elements have to derive from a static op-
erator. Otherwise, they might be nonorthogonal
for different states (energies), the above basis
transformation would become more complicated,
and the calculation could yield different results.
(iii)  Static electron-hole screening. This approximation
is often justified, since the plasma frequencies of
the investigated systems are much larger than the
excitonic binding energies. Moreover, it has been
found that dynamical effects in the electron-hole
screening and in the one-particle Green’s function
tend to cancel each other, at least in simple semi-
conductors (Bechstedt et al., 1997), which suggests
that both should be neglected. This might not be
true in other systems where the exciton binding
energy is large. Dynamical effects in the Bethe-
Salpeter equation have been studied for core ex-
citons by Strinati (1982, 1984), who derived the
more general effective two-particle equation®

2 H(EVAY (E)=E\ALE)). (4.13)

vc
Note that, as in the case of the one-particle ex-
cited states, it is the dielectric function that intro-
duces the energy dependence (and hence finally
the possibility of complex eigenvalues) into the
equation: the two-particle excited state may now
have a finite lifetime, shorter than the electron
and hole lifetimes. And again, since this comes
through £ !, energy is conserved, since one exci-
tation is decaying by exciting others. Dynamical
effects have been studied for SiH, by Rohlfing
and Louie (2000); they are found to increase the
exciton binding energy by about 0.1 eV.

(iv)  RPA electron-hole screening. The kernel W is usu-
ally evaluated in the RPA. Since the neglect of
exchange-correlation effects in the screening can
lead to an underestimate of the dielectric con-
stant, this approximation might overestimate exci-

34Strinati found that dynamical screening effects significantly
narrow the core-excitation spectral width, which goes along
with an increase in the exciton binding energy.
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ton binding energies. Chang ef al. (2000) have
tried to estimate the effect for a-quartz by rescal-
ing the electron-hole screening self-consistently,
with the dielectric constant calculated including
excitonic effects. In fact, they find a shift of the
main absorption peak towards higher energies,
closer to the experimental one. A quantitative dis-
cussion is difficult, since it should include a recal-
culation of the dielectric matrix for all momentum
transfers and a consistent inclusion of vertex cor-
rections (i.e., an additional vertex, because the
Bethe-Salpeter equation should now be derived
from 3 =iGWT).

(v)  Neglect of resonant-antiresonant coupling. Gener-
ally, Eq. (4.12) is used for the calculation of ab-
sorption spectra. This supposes that transitions at
positive (resonant part) and negative (antireso-
nant part) frequencies do not mix (see Appendix
B.2). The effects of the resonant-antiresonant
coupling on the exciton binding energy have been
discussed by Zimmermann (1970) and Del Sole
and Selloni (1984). Neglecting the coupling can
bias the results, especially for quantities based on
the real part of epsilon, like the dielectric constant
or the electron-energy-loss spectra. This has been
illustrated by Olevano and Reining (2001a) for
the case of the plasmon resonance of silicon.

To summarize, we stress that the Bethe-Salpeter ap-
proach has up to now yielded results that agree with the
measured ones within 10% for the peak positions and
20% for the peak strengths. The error bar is given by the
sum of several contributions, and it has not yet been
completely elucidated where the main sources of error
lie. Well-generated ab initio pseudopotentials should af-
fect the results by less than =0.1 eV.* Also, as men-
tioned in Sec. IV.A.2, GW transition energies may be off
by 10—15 %, and one suspects that the quality of the GW
result dominates the agreement between the experimen-
tal and the theoretical peak positions. The way the
screening is taken into account (e.g., with a model di-
electric function, or in the static RPA) also contributes
to the error bar by at least another 0.1 eV. As for present
limitations of the approach, one should mention the ne-
glect of the dynamical screening of the electron-hole in-
teraction, which could become relevant when looking at
the dielectric function at frequencies comparable with
the plasma frequency, and the complete neglect of the
lattice vibrations. Finally, there are the limitations due to
the computational heaviness of the approach, which is in
part necessarily cumbersome, since it involves four-point
quantities. This point is, among others, a strong motiva-
tion to search for alternative approaches, the most
prominent being the TDDFT approach, to be discussed
in the next section.

3The choice of the lattice constant—experimental or
theoretical—can also contribute 50-200 meV.
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V. TIME-DEPENDENT DENSITY-FUNCTIONAL THEORY

Several reviews on general foundations of TDDFT
and some applications have appeared recently, including
those of Gross et al. (1994, 1996), Casida (1995, 1996),
Dobson, Vignale, and Das (1997), Burke et al. (2002),
and van Leeuwen (2001). Once more we focus the dis-
cussion below on the points that are essential for the
comparisons that are within the scope of this review. In
the following, we summarize the foundations of TDDFT,
and its connections with excited-state properties and
with many-body perturbation theory (a detailed com-
parison between TDDFT and the Green’s-function ap-
proach will be given in Sec. VI).

A. Formalism

The Hohenberg-Kohn-Sham theory as described in
Sec. IILA is a ground-state theory, and is hence not
meant for the calculation of electronic excitations. How-
ever, one can extend the idea of static DFT by analogy
with classical mechanics: the ground state is determined
by the minimum of the total energy. When one asks for
the evolution of the system under the influence of a
time-dependent external potential, one should search
the extrema of the quantum-mechanical action,

31 RN
A:ft AW (0)li— AW (1)),

0

(5.1)

just as in classical mechanics the trajectory of a system is
determined by the extrema of the action [ ;:)d tL(1),

where L is the Lagrangian. Theorems have now been
established for time-dependent DFT which are parallel
to those of static DFT. Many-body effects are included
in a local exchange-correlation potential, which is now
time dependent and, as in the case of static DFT, is un-
known (for more details see Gross et al., 1996). The first
applications of TDDFT response theory were made be-
fore the formal development and relied on analogies
with time-dependent Hartree-Fock theory (Stott and
Zaremba, 1980; Zangwill and Soven, 1980). In the work
of Runge and Gross (1984) a theory similar to that of
Hohenberg, Kohn, and Sham is developed for time-
dependent potentials in terms of the action functional.
The first theorem proves a one-to-one mapping between
time-dependent potentials and time-dependent densities
(that are v representable); the second proves the
stationary-action principle. The scheme is very similar to
the ground-state Kohn-Sham formalism. The proof of
the first theorem is based directly on the evolution of the
time-dependent Schrodinger equation from a fixed ini-
tial many-particle state W (zq) =¥, under the influence
of a time-dependent potential V,,,(t) (required to be
expandable in a Taylor series around ¢,). The initial
state W, does not need to be the ground state or any
other eigenstate of the initial potential. As one does not
rely on the adiabatic connection in standard zero-
temperature many-body perturbation theory, the for-
malism is able to handle external perturbations varying
rapidly in time.
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By virtue of the first theorem, the time-dependent
density determines the external potential uniquely up to
an additive purely time-dependent function. On the
other hand, the potential determines the time-
dependent wave function; therefore the expectation
value of any quantum-mechanical operator is a unique
functional of the density. This theorem has been gener-
alized by van Leeuwen (1999) by showing that a time-
dependent density obtained from an initial many-body
system can be, in principle, reproduced by a time-
dependent external potential in a many-body system
with different (and possibly null) two-particle interac-
tion. This mapping between densities and time-
dependent potentials in TDDFT demonstrates the non-
interacting v representability of a general many-body
system. That is, if one takes the two-particle interaction
of the second system to be zero, this theorem establishes
that for a given initial state having the proper initial
density and time derivative, there is a unique potential
(up to a purely time-dependent function) in a noninter-
acting system that reproduces the given time-dependent
density at all times. This result is important for the
Kohn-Sham formalism of TDDFT (see below).

Moreover, in addition to their dependence on the
density, the time-dependent functionals depend on the
initial state W,.’® The time-dependent particle and
current density can be calculated exactly from the con-
tinuity equation and the equation of motion of the

paramagnetic current-density operator jp(r)
= (1/2i) Ejil[v,j&(r—w d(r=r)V, ], that is,
dp(r,t) .
aj(r’t) . n 2
S = =i, AW (). (5:3)

In particular, the current density j(r,z) following from
the time-dependent Kohn-Sham orbitals and the true in-
teracting current density may differ only by the curl of
an arbitrary function (Dobson, Vignale, and Das, 1997).
The second theorem deals with the variational principle
of the action functional with the initial condition W (¢)
=W¥,. From the previous one-to-one mapping between
time-dependent potentials and densities, the action [Eq.
(5.1)] is a functional of the density A[p], which must
have a stationary point at the correct time-dependent
density. Thus the Euler equation corresponding to the
extrema of A[p], SA[p]/Sp(r,t)=0 determines the
time-dependent density, just as in the Hohenberg-Kohn
formalism the static ground-state density is given by the
minimum of the total energy E(SE[p]/Sp(r)=0). Simi-
larly, one can define a time-dependent Kohn-Sham
scheme by introducing a noninteracting system that re-

%In general there are many wave functions leading to the
same density. Any of them will work properly, because the
dependence of the effective time-dependent potential is such
that the interacting density will be reproduced in each case.
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produces the exact interacting density p(r,7). Assuming
the (demonstrated) v representability of the time-
dependent densities (van Leeuwen, 1999), one gets the
following time-dependent Kohn-Sham equations:

—lV2+V (rt)}z,/ﬁ(r t)=ii1,b~(rt) (5.4)

2 e R gty :
N

p(r0=2, |gi(r.0)f? (5.5)

where V u(r,t)=Vg(r,t)+V, . (r,t)+V,.,(r,t) is the ef-
fective time-dependent potential felt by the electrons. It
consists of the sum of the external time-dependent ap-
plied field, the time-dependent Hartree term, plus the
exchange-correlation potential (defined via the equiva-
lence between the interacting and fictitious noninteract-
ing systems). The variational principle yields

0ALp]
Vie(r,t)= Sp(rt)

(5.6)
where A, [p] is the exchange-correlation part of the ac-
tion functional.’

The advantage of the time-dependent Kohn-Sham-
scheme lies in its computational simplicity compared to
other quantum-chemical methods such as time-
dependent Hartree-Fock or configuration interaction
(Langhoff et al., 1972; Jensen, 1999). Up to here, the
formalism presented deals with the quantum nature of
the electrons only. The equations can be generalized to
treat the quantum-mechanical coupling of the nuclear
and electronic motions (Kreibich, 2000; Kreibich and
Gross, 2001), the quantum nature of the electromagnetic
field, and even superconductors (Gross et al, 1996;
Kurth et al., 1999).

B. Excitation energies in TDDFT

Formally, TDDFT allows the -calculation of the
(bound and unbound) excited-state energies and transi-
tion probabilities of a many-body system, based on in-
formation gleaned from an ordinary DFT self-consistent
calculation. In the time-dependent approach, one stud-
ies how the system behaves when subject to a time-
dependent external perturbation. In this case, the sys-
tem’s response is directly related to the N-particle
excited states of an N-particle system, in a manner simi-
lar to the way the one-particle Green’s function is re-

3 As with the total energy in the static case, here the action
functional has been decomposed as

Alp]=2 [ dr(gi(D)]i (9191) +3V2 = Vo (D] (1))
_AH[p]_Axc[p]7

where ¢;(¢) are the wave functions of the fictitious noninter-
acting Kohn-Sham system, A  is the time-dependent Hartree
contribution [ [drdtp(x,t)V y(x,t), and A, includes all ex-
change and dynamical correlation effects due to the many-
body interacting system. A . is not known and has to be ap-
proximated.
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lated to the (N+1)- and (N —1)-particle excited states
of the same system (see Sec. I1I.A).

Petersilka ef al. (1996) have developed a formalism
for calculating the neutral excitations in finite systems.
The key formula is a Dyson-like representation of the
exact linear density response y of an interacting many-
electron system in terms of the noninteracting Kohn-
Sham response y,. To prove this relation, one can start
from the physical definition of the retarded linear-
response function,

o 9p(r0)
)((l‘,[,l‘ 7t )_5V

|, 57

Ve =0

which measures the degree to which the density re-
sponds to first order in the external potential. Equiva-
lently, the linear response y of the fictitious Kohn-Sham
system that can be described in terms of the Kohn-Sham
orbitals is given by

. o op(rr)
Xo(l’,t,l' N )_ %

eri(X',1") ’ 58

Ver=0

where V 4=V, +VytV,.. Using 6p/ SV ,.,=(Sp/ 6V o)
X(6Veit/ OV o) = X0V it/ 6V oy ONE 0Obtains
OV egi(r,1)

—5Vexz(1",f') =0(r—r")o(t—1t")

+ J [5(;? +fxc(l‘,t,l‘",t")}

[r—r
Xx(",t"x' t")dr"dt", (5.9)
where the time-dependent exchange-correlation kernel
OV yclp(r.1)]

op(r',t") |, _,

ext

fxc(r7t7r,7t,): (510)

has been introduced. Now it is straightforward to get the
Dyson-like equation

X(rr' o) = xo(r,r', o)

+ f dl‘]dl‘zXO(l‘,l‘l ,(,())K(l'l I ,O))X(rz 7r,’w)’

(5.11)

which has to be solved iteratively and where the kernel
K has been introduced as
K(rl I, (,!))

+fxc(rlsr2’w)- (512)

|t — 15

Equation (5.11) corresponds to Eq. (2.17) of the In-
troduction. In fact, Eq. (5.11) and Eq. (5.10) can be ob-
tained directly, as discussed in the Introduction, for the
case in which the total potential in the time-dependent
Hamiltonian is V4 + V.. As also pointed out there, due
to the density-only dependence of these potentials the &
functions that appear in the derivation are such that only
two-point functions are involved from the beginning.
Equation (5.11) is hence the contraction of Eq. (2.20).
Of course, the nontrivial point is that the response func-
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tion y calculated from the fictitious noninteracting sys-
tem using Eq. (5.11) is equal to the true response func-
tion of the interacting system.

This scheme provides an exact representation of the
full interacting linear density response as

P1(l‘,w):f dr’ xo(r,x";0)Veg(r',m)

Ef dr’ x(r,x";0)V, (' o).

In other words, the exact linear density response of an
interacting system can be written as the linear density
response of a noninteracting system to the effective per-
turbation V4. The exact time-dependent exchange-
correlation kernel is of course unknown, and practical
calculations must rely on some approximation. The most
commonly used one, due to its simplicity, is the adiabatic
local-density approximation, also called the time-
dependent LDA (TDLDA), in which f,.(r{,r;,) is ap-
proximated by the (w-independent) functional deriva-
tive of the LDA exchange-correlation potential:

ﬂV,%cDA (p(r),r1)
dp(ry)

Apart from this approximation for f,., another approxi-
mation has to be made in practical calculations: the
static Kohn-Sham orbitals and eigenvalues used to con-
struct y, are in fact calculated with an approximate
exchange-correlation potential V., typically the same
as the one used in ground-state calculations.

Formally inverting Eq. (5.11), one obtains a compact
two-point matrix equation,

x(@)=[1=xo(@)K ()] xo(w), (5.14)

where the problem of finding the excited-state energies
of an interacting system (poles of x) has been mapped to
searching the values of w for which the operator R(w)
=1-xo(w)K(w) is not invertible. In fact, y has poles at
the true excitation energies w={);, while x, has poles at
the Kohn-Sham eigenvalue differences. Hence the sin-
gularities of y must be canceled by the zeros of R(w)
[and those of x, by the zeros of R~ !(w)]. The true ex-
citation energies {); can be characterized as those fre-
quencies where the eigenvalues of R vanish. In other
words, the energies of the resulting electron-hole excita-
tions will be renormalized with respect to those of the
noninteracting electron-hole pairs. This formalism pro-
vides a convenient starting point for calculating the ex-
citation spectrum.

Of course, for the practical solution of Eq. (5.14) all
points discussed in the Introduction apply. In particular,
when adding a finite small imaginary part to the fre-
quency, the two-point equation can be inverted for each
frequency in order to obtain the spectrum. Alternatively,
Eq. (5.14) can be transformed into an effective eigen-
value problem, which implies that one is now working
with four-point quantities. This second procedure is
equivalent to solving the generalized four-point eigen-

TDLDA
xc (r1,1,)=3(xr;—17)

(5.13)
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value problem *R(w)|\)=0 (see Appendix, B.2, in par-
ticular *R=I1"'=[1—-*x,K]) and yields the equation

K(nlnz),(n3n4)(w) B

(5.15)

where the kernel K (1) (nyn,) (@)

=(®,, |K(@)|®, ), with ®,, ()=, ()9} ().
The index n embodies the spin as well as orbital degrees
of freedom.*®

Looking at the Coulomb contribution to K, one rec-
ognizes the effective exchange interaction between elec-
tron and hole (electron-hole exchange), which also ap-
pears in the Bethe-Salpeter equation (4.11) (for y and v

instead of P and v). The diagonal element reads

Cn1n2_ n§4 Cn3n4(fn1 _fnz)

a)—(e,,z—en1

1
*
f f drler(I)n]nz(rl)mq)nlnz(rZ)? (516)
whereas the f,. contribution within the simple TDLDA
introduces a local and static attractive electron-hole in-
teraction:

anc(rl)

f f dl’ldl‘zq)zlnz(l’l)fs(fl_l'z) p

q)n]nz(rz)

AR
- [ drp, 0 =2 0 0.

(5.17)
One can see the effects of these two different contribu-
tions on the calculated optical spectrum of a finite sys-
tem, e.g., a small cluster: the Coulomb part shifts the
independent electron spectrum to high energies,
whereas the exchange-correlation brings it partially back
(this can to a certain extent be compared with the exci-
tonic corrections computed in the framework of the
many-body theory, as will be discussed in Sec. VI).
These effects are clearly seen in Fig. 8, where the optical
spectrum calculated within TDLDA for three different
clusters is reported.

Equation (5.15) can be simplified by an expansion
around one particular Kohn-Sham transition 1—2, i.e.,
by calculating the transition energy w={) in first-order
perturbation theory (single-pole approximation). Fol-
lowing Petersilka et al. (1996) and considering explicitly
the spin degrees of freedom,” one obtains from Eq.
(5.15)

Q=0+ Re[K 1121 1121(012) T K112 112 (012) ]

18)

The transition-space representation is based on similarities
with the quantum-chemistry time-dependent Hartree-Fock ap-
proach (Langhoff er al., 1972; Casida, 1995). However, a simple
two-point matrix problem has been transformed into a more
complex four-point representation. Note also that Eq. (5.15)
can be derived from the condition det (H?*—E,)=0 with H?"
of the form of Eq. (B20), and K of the form defined in Eq.
(2.15) without the term involving w.

*In the present section we treat spin effects explicitly, as is
natural when considering atomic transitions.
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FIG. 8. Calculated optical absorption spectrum (given as the
dipolar strength function) for several clusters (Marques et al.,
2001), compared to experimental data (Itoh et al., 1986; Wang
et al., 1990): solid black line, full TDLDA calculations; dashed
line, independent Kohn-Sham particle approximation (xg);
dotted line, an RPA calculation, ie., putting f,.=0 in Eq.
(5.12); gray line, the experimental results. In the inset of Nag
are the results for the sodium dimer: heavy solid line, full
TDLDA calculation; gray line, experimental results (Sinha
et al., 1949), but now the dashed line (almost indistinguishable
from previous one) is for a calculation using an exact-exchange
functional (Marques et al., 2001). As discussed in the text the
kernel includes an effective attractive part (electron-hole at-
traction), which reduces the Coulomb term (electron-hole ex-
change).

Note that the noninteracting Kohn-Sham response func-
tion is diagonal in the spin variables and exhibits poles
at the Kohn-Sham energy differences corresponding to
noninteracting electron-hole excitations within the same
spin space. The mixing of spin channels comes into play
simply by the spin-dependent exchange-correlation ker-
nel, and the magnetization response naturally involves
spin-flip processes. In order to make more explicit the
fact that the approximation in Eq. (5.18) embodies the
spin-multiplet structure of the excitation spectrum of
otherwise spin-unpolarized ground states, one can re-
write the f,. kernel in terms of the two independent
combinations of the spin components of the kernel: f}w
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:O'S(fchT +fxcH) and f)zcc: O'S(fchT _fxcﬂ) '40 Thus the
singlet and triplet solutions of Eq. (5.18) are (note again

the similarity to the Bethe-Salpeter equation concerning
the contribution of v)

Ogingler= 01212 Redeldl’z‘DTz(h)

X

1
Tt i ,l‘z,wlz)> D5(ry)
1) — 1,

and

Wiripler= W12

+2Ref drdr,d () frc (1) .1y, 012) P1p(ry).

Promising results are obtained for the lowest excitation
energies of atoms and molecules by using different ap-
proximations for V.. and f,. (Petersilka et al., 1996;
March et al., 1999; Casida et al., 2000; Petersilka et al.,
2000).

Results for finite systems beyond the single-pole ap-
proximation which have been particularly discussed are
those of TDLDA (Rubio efal., 1996; Yabana and
Bertsch, 1996, 1999a, 1999b; Vasiliev et al., 1999, 2002;
Casida et al., 2000; Marques et al., 2001) and the results
obtained within the OEP scheme* (Gorling, 1999;
Gross et al., 1996; Petersilka et al., 1996, 2000; Grabo
et al., 2000a, 2000b). The latter approach gives an
exchange-correlation potential with the correct —1/r be-
havior at long distances (Casida and Salahub, 2000). The
optimized effective potential yields a uniform shift of
the energies of transitions to Rydberg states (Petersilka
et al., 2000; Stener et al., 2001) that mimics to some ex-
tent the results obtained using the exact V. available
for some atoms (Petersilka et al., 2000). From this work
the importance of a good description of the static
exchange-correlation potential is clear, as is also the fact
that only ground-state quantities are needed in the cal-
culation of excitations. V. is especially important for
the higher atomic excited states, which are almost uni-
formly shifted from the true excitation energies (the
shift can be related to the difference between the ioniza-
tion potential and the highest occupied orbital, which in
exact DFT should be zero). Further developments of
time-dependent functionals to treat problems involving
excited-state dissociation (Cai et al., 2000; Aryasetiawan
et al., 2002a) and autoionization resonances (Stener
et al., 2001) are needed. In the latter case, even if the
atomic photoionization cross sections are well described
using the exact V. and the TDLDA kernel, this is not

“The f2, part of the kernel describes exchange-correlation
processes in the Kohn-Sham system related to the linear re-
sponse of the frequency-dependent magnetization density,
whereas f.. is related to the frequency-dependent density.

#The calculations in the OEP scheme handle exchange ex-
actly, and correlations are treated in a local or gradient-
corrected adiabatic functional.
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the case for the autoionization resonances that turn out
to be very sensitive to the particular choice of f,..

In extended systems with delocalized states one can
directly solve Eq. (5.14) in the complex plane. [The
secular Eq. (5.15) becomes a four-point integral equa-
tion and is computationally not advantageous]. The ze-
ros of R provide both the excitations as well as the cor-
responding lifetimes. This technique has been
successfully used to describe the plasmon dispersion of a
homogeneous electron gas (Tatarczyk et al., 2001). How-
ever, the TDLDA has only limited success in describing
excitations in extended systems, and most likely both
nonlocality in space and time are needed in order to get
this renormalization. The successes and failures of
TDLDA in finite and infinite systems, respectively, are
not yet fully understood. However, it appears that im-
provements might more easily be found through an im-
proved V. in the case of finite, and an improved f,. in
the case of infinite, systems. In any case, f,. is a quantity
of interest which (i) has been discussed in less detail
than V. and (ii) is necessarily more complicated, since
it is its functional derivative. Therefore we look more
closely at f,. in the following section.

C. The exchange-correlation kernel f,

In the previous section we introduced the exchange-
correlation kernel f,. to take into account all the dy-
namical exchange and correlation effects in the response
of a system to an external perturbing potential. An exact
representation of f,. in terms of the response functions
is obtained directly from Eq. (5.11):

Freemtsr' 6 =xo '(e,t50 ¢ ) — x Nr, 6517 ")
S(t—t")

. (5.19)
r—r'|

Note that for finite systems the frequency-dependent re-
sponse operators can be noninvertible at isolated fre-
quencies (isolated real poles). However, this is no longer
the case for infinite bulk systems. In Appendix A we
provide a summary of the known exact properties of f,.
that can be used as constraints to build new approxima-
tions to the exchange-correlation kernel.

As a consequence of causality, response functions
must be zero for t'>t. Therefore the f,. kernel cannot
be symmetric under the exchange of (r,) and (r',t").
Since, on the other hand, f,,. is the functional derivative
of the exchange-correlation potential, one concludes
that either the exact V,.(r,t) cannot be a functional de-
rivative of the A,. functional (i.e., f,, is not a second
functional derivative; see Gross et al., 1996; van Leeu-
wen, 1998, 1999), or there is a contradiction with the
stationary-action principle that we have described as a
basic ingredient of time-dependent density-functional
theory. This problem applies to all twice-differentiable
action functionals defined with respect to the physical
time. It appears when applying the variational principle
to the action in Eq. (5.1). In fact, from the Runge-Gross
(1984) theorem, the wave function is determined up to a
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time-dependent phase factor; this makes the action not
uniquely defined unless one fixes this phase factor (in
particular it can be chosen such that A[¥]=0). There-
fore the action is not a density functional as the density
by itself does not fix the phase of the wave function (van
Leeuwen, 2001). This apparent contradiction has been
formally resolved by van Leeuwen (1998, 2001) by de-
fining a new action functional** that properly incorpo-
rates causality effects, and it is not made stationary but
rather used as a generating function for the density and
response functions as in statistical mechanics.

One of the most widely used approximations to time-
dependent phenomena is the adiabatic LDA or time-
dependent LDA (TDLDA) in which the static LDA
functional is used for the dynamical properties. This
means that the f,. kernel is a contact function in time
and space [Eq. (5.13)]. Thus f,. is not frequency depen-
dent at all. TDLDA gives rather accurate results for sys-
tems with rapidly varying densities such as atoms, sur-
faces, and clusters.*” Gross and Kohn (1985) have
presented an extension of the LDA approximation to
include dynamical effects in the f,, kernel, and we refer
the reader to their work for the details of
parametrization.* The idea is to use the homogeneous
electron-gas kernel f"2"(|r—r'|,w) and make the as-
sumption that the linear-induced density is a slowly
varying function (as in the traditional static LDA). This
amounts to  the  approximation  f .(r,r,m)

fh”m(p(r) w), where fh”m is the ¢=0 Fourier com-
ponent of 2" (p(r),[r' —1"]).

Other kernels proposed in the literature are the fol-
lowing (spin variables are omitted for simplicity):

e Petersilka, Grossman, and Gross (PGG) kernel. This
was derived by Petersilka et al. (1996) in the context
of exact exchange time-dependent optimized effective
potentials and kernels (Gross et al., 1996; Gorling,
1998) (x-TDOEP), and it is equivalent to the so-called
Slater approximation in Hartree-Fock calculations
(Langhoff et al., 1972). It is a frequency-independent
kernel that in real space reads

“The new action is defined using the time contour method of
Keldysh (1965) in which the physical time is parametrized in
terms of a parameter called pseudotime. By construction, the
response functions obtained as higher-order derivatives of the
action functional are symmetrical in the Keldysh pseudotime.
A back-transformation to the physical time directly provides
the desired causal response functions (see van Leeuwen, 2001
for mathematical details of this technique).

BSee, for example, (Stott and Zaremba, 1980; Zangwill and
Soven, 1980; Dobson et al., 1988; Tsuei et al., 1990; Casida,
1995; Petersilka et al., 1996; Rubio et al., 1996, 1997; Liebsch,
1997; Vasiliev et al., 1999, 2002).

#Note that the lower the density the larger the frequency
dependence of the kernel. The parametrization can be ex-
tended to nonvanishing g and to include spin polarization.
However, it fails to reproduce some exact relations, such as the
harmonic-potential theorem (Dobson, 1994).
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Note that the general expression of the TDOEP ker-
nel (similar to time-dependent Hartree-Fock) is fre-
quency dependent even at the exchange-only level
(Petersilka et al., 1996, 1998), a feature that is not ac-
counted for in the PGG approximation. However for
a two-electron system at the exchange-only level the
TDOEP and PGG kernels are equivalent, explicitly
showing that the dynamical part of the kernel stems
from processes involving multiple valence transitions.
TDOEP-SIC kernel. This is an attempt to improve
over both TDLDA and exact exchange (TDOEP) by
correcting the TDLDA for the self-interaction error
(SIC=self-interaction-corrected). This correction
does not affect antiparallel spin contributions. In this
case, the kernel reads

TDOEP-SIC

TDLDA
xe X)=fe T (nr)

; Fel () g ()2

p(r)p(r’)
IVELA(py(x).p) 1
Ipi(r') [r—r'|

N =

where p, is the density of the orbital k. This expres-
sion is exact in the one-electron case and, for more
electrons, it corrects the spurious self-interaction of
parallel spin, but keeps the antiparallel contributions
as in TDLDA. This functional is nevertheless ill de-
fined, since it is not invariant upon a unitary transfor-
mation of the Kohn-Sham wave functions.

BPG kernel. Burke et al. (2002) proposed a hybrid
method to improve the excitation spectra of small at-
oms by combining the previous PGG expression for
symmetric spin orientations and the TDLDA for an-
tisymmetric spin orientations. For the case of a homo-
geneous  electron gas it  reads BP G(q)
—0.5+[75% @)+ 121D (g) .

CDOP kernel. Corradini et al. (1998) gave a param-
etrization of the quantum Monte Carlo data of Mo-
roni et al. (1995) for the homogeneous electron gas
that satisfies the theoretically known limits for small
and large q. This kernel has an analytical space Fou-
rier transform that simplifies its implementation in
standard first-principles techniques.

RA kernel. Richardson and Ashcroft (1994) proposed
a dynamical parametrization of the kernel based on a
summation of self-energy and fluctuation terms in the
diagrammatic expansion of the polarization function
for the homogeneous electron gas. It is constructed to
satisfy many known exact conditions (static and dy-
namic). This parametrization is assumed to be very
close to the exact dynamical exchange-correlation ker-
nel of the homogeneous electron gas. A corrected ver-
sion of the RA parametrization can be found in Lein
et al. (2000).
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e TP kernel. Tokatly and Pankratov (2001), based on a
many-body diagrammatic expansion, have derived an
expression for the f,. kernel in terms of the regular
part x, of the Kohn-Sham response function y, with
respect to a given resonance frequency w;;:

fxc(rar,9wij)

f dl’ldl'2)(r_1(T,l‘l)‘bij(l‘l)‘b;}(l'z))(r_l(1'2»l")
=A

2 k]

ij
[ J drydry @ (r) x; ' (6,1 @ 5(xy)

where A;=(®;|f (w;)|®;) [®; was defined after
Eq. (5.15)]. It is shown that the spatial nonlocality is
strongly frequency dependent and diverges for the
case of infinite systems at the excitation energies. This
result is similar in form to the correction obtained by
Gonze and Scheffler (1999) and it is also equivalent to
the Gorling-Levy perturbation theory (Gorling and
Levy, 1994).

® RORO kernel. This is a static kernel derived by Rein-
ing et al. (2002) from a direct comparison between the
time-dependent  density-functional and Bethe-
Salpeter equations. In Appendix C we develop this
kernel in greater detail by formally comparing the
Bethe-Salpeter equation and TDDFT. The kernel
consists of a contribution stemming from the energy
shift between Kohn-Sham and G W eigenvalues, and a
second one describing the electron-hole interaction.
One can absorb the first, positive contribution into an
energy shift of the starting y,. Important excitonic
effects are then obtained by using only the static long-
range term Af,.(q,G,G') = — ¢ g a/|q+ G|%.

Some of these kernels have been tested in two limiting
cases, for helium and beryllium atoms (Petersilka et al.,
2000) and for the correlation energy (Lein et al., 2000)
and plasmon dispersion (Tatarczyk et al., 2001) of a ho-
mogeneous electron gas. In the case of atoms the de-
tailed form of the V. potential is the crucial part in
getting the absolute position of most excitation energies,
and the TDLDA kernel provides reasonable results.
The results are marginally improved using more compli-
cated kernels, always keeping the “exact” V. fixed. In
fact the results obtained by Petersilka et al. (1998, 2000)
for the helium and beryllium atom using different ker-
nels indicate that the influence of the f,. on the calcu-
lated spectra is less important than the choice of a good
V.. potential. However, this is no longer true for the
lower excitation energies of beryllium and for singlet-
triplet splittings, where the effects coming from V. can-
cel. Furthermore, Aryasetiawan et al. (2002a) looked at
the singlet excitation of the H, molecule as a function of
the internuclear distance. The results are summarized in
Fig. 9, where it can be seen that the simple TDLDA is
good for intermediate distances only. The inclusion of
spin dependence improves the large-distance results. By
comparing with exact results of a simple two-site Hub-
bard model it was found that, indeed, f,. should be
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FIG. 9. The excitation energy AE in the hydrogen molecule
for the transition from the 'S/ state to the 'Y, state as a
function of the nuclear separation d. LDA stands for the ei-
genvalue difference in LDA, whereas TDLDA and TDSLDA
correspond to the calculation of the excitation energy within
time-dependent LDA without and with spin polarization, re-
spectively. The full line corresponds to the exact results, pro-
vided for comparison (Aryasetiawan et al., 2002).

strongly nonlocal in space and has an important energy
dependence. The nonlocality has been clearly shown by
Baerends (2001). He proposed an orbital-dependent
exchange-correlation potential for the H, molecule that
yields the exact dissociation regime within the Kohn-
Sham formalism.

Similar conclusions were obtained by Marques et al.
(2001) in a study of the optical absorption spectrum of
small sodium and silicon hydrogenated clusters.*> More-
over, it is observed that exchange-correlation kernels fit-
ted to reproduce atomic properties perform poorly in
the case of an extended electron gas, due mainly to in-
correct behavior at long wavelengths. This limit is well
reproduced in the TDLDA but not in the PGG kernel.
Furthermore, the static CDOP kernel gives results of
similar quality to those of the more elaborated dynami-
cal RA kernel. This indicates that the frequency depen-
dence of the kernel is of little importance in providing
good total correlation energies and plasmon dispersion.
Note that TDLDA does not perform too badly in this
last case (Larson et al., 1996).

Finally, Reining et al. (2002) have tested the above-
mentioned long-range contribution to the static RORO
kernel by performing a TDDFT calculation for bulk sili-
con in the following way. First, they determined the
LDA electronic structure. Second, they constructed x,,
but with the eigenvalues shifted to the GW ones, in or-
der to simulate the first part of the kernel as explained
above. Third, they used Af,.(r,x')=—a/(4m|r—1']),
with the empirical value a«=0.2. The result of the
TDDFT-RORO calculation is shown in Fig. 10. The dots
are the experimental results for the absorption spectrum
measured by Lautenschlager et al. (1987). The dotted
and dot-dashed curves are the results of a RPA and a

Al the results for the optical spectrum of small Na clusters
are very similar, regardless of the exchange-correlation poten-
tial used. In contrast, hydrogenated silicon clusters show that a
much better agreement with diffusion quantum Monte Carlo
calculations (Grossman et al., 2001; Porter et al., 2001) and
with experiments can be obtained when the exact exchange
potential is used.
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FIG. 10. Optical spectrum [ Im(ey,)] for silicon: @, experiment
(Lautenschlager et al., 1987); dotted curve, RPA; dot-dashed
curve, TDLDA; long-dashed curve, Bethe-Salpeter equation;
continuous curve, TDDFT using RORO kernel (Reining et al.,
2002; see text for details).

TDLDA calculation. The well-known discrepancies with
experiment are found. The solid curve is the result of the
approximate TDDFT-RORO calculation, visibly in close
agreement with the Bethe-Salpeter result (dashed) and
with experiment.

Similarly good agreement has been found for the op-
tical spectra of other semiconductors (Botti et al., 2002).
It turns out that this static long-range contribution to the
kernel is sufficient to reproduce strong continuum exci-
tonic effects in semiconductors. Promising results were
also obtained for the optical spectrum of some simple
semiconductors by Kim ez al. (2002) using the exact ex-
change Kohn-Sham formalism together with a TDLDA
fec, and by de Boeij et al. (2001) using a polarization-
dependent functional within the current-density func-
tional proposed by Vignale and Kohn (1996). This pro-
cedure shows the influence of macroscopic electric fields
in the response function. However, none of these ap-
proaches has up to now managed to describe bound ex-
citons, and one should certainly at least go beyond the
simple —1/g> approximation for the RORO kernel in
order to describe such effects.

One can conclude that the use of TDDFT for the cal-
culation of neutral excitations is promising: in the low-
energy range of the absorption spectra of clusters,
TDDFT, even in the adiabatic local-density approxima-
tion, significantly corrects peak positions with respect to
those found when Kohn-Sham eigenvalue differences
are interpreted as excitation energies. Typically, the er-
ror in excitation energy reduces from an amount of the
order of 50% to an order of magnitude of 10% (often,
the main correction comes from v or v, i.e., the variation
of the Hartree potential). Also, valence plasmons in sol-
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ids are well described in TDLDA for small, momentum
exchange, yielding plasmon frequencies that agree with
the experimental ones within 0.5-2 eV, and good line
shapes. However, the optical absorption spectra of solids
are not improved by TDLDA with respect to the sum of
Kohn-Sham transitions (see also Sec. VI.D.1). More pre-
cisely, calculations performed on many different semi-
conductors (Gavrilenko and Bechstedt, 1996; Kootstra
et al., 2000) demonstrate that TDLDA spectra are, on
average, redshifted by about 40% of the gap. Even when
the gap is corrected with a scissor operator [as is com-
monly done for LDA calculations (Levine and Allan,
1989)], significant discrepancies with experiment remain:
typically, in zinc-blende semiconductors the strength of
the E, peak is underestimated by 0—40 %, that of E, is
overestimated by 30—100 %, and the absorption onset is
overestimated by 0.5 eV (e.g., in GaSb, InAs, ZnTe) or
even by 0.8 eV (in CdTe and InSb). It is clear that better
exchange-correlation potentials V. and kernels f,,. must
be found in order to make TDDFT become the ap-
proach for the calculation of absorption spectra, just as
static DFT is today the predominant method for ab ini-
tio calculations of ground-state properties. In fact, f,,
must be a strongly nonlocal functional of the density,
and, in principle, frequency dependent. It seems to be
crucial to include in f,. at least a contribution going as
—1/g? for g—0, in order to reproduce continuum exci-
tonic effects in the absorption spectra of infinite systems.
See also Appendix C.

VI. TDDFT VERSUS BETHE-SALPETER

TDDFT and the Green’s-function approach represent
two complementary ways to calculate a dynamical di-
electric matrix and the spectra derived from it. The ulti-
mate goal should of course be either to decide whether
one of the two approaches is clearly superior in a given
situation, or whether it is possible to combine the advan-
tages of both in order to design a reliable and efficient
way to calculate electronic spectra for a broad range of
applications. It is therefore useful to compare the two
approaches on different levels: from the mathematical
point of view, by trying to work out which effects the
different approximations might cause, and by comparing
results for different systems and types of spectroscopies.
It should not be forgotten that in principle both ap-
proaches are exact, and failures can only be explained
by the unavoidable approximations, or by an application
that is in principle not adequate for a particular problem
(as in the case of static DFT and the interpretation of
Kohn-Sham eigenvalues as electron addition or removal
energies).

A. The equations

Let us first examine the structure of the equations. It
should be kept in mind that, whether absorption or loss
spectra are to be calculated, and whether TDDFT or the
Bethe-Salpeter approach is used, the equation to be
solved is of the form §=P;p+ P;opKS [see Egs. (4.10)

and (5.12)]. Here S may be either y or P (describing loss



Onida, Reining, and Rubio: Density-functional vs many-body 639

and absorption spectra, respectively), depending on
whether the kernel K contains the full Coulomb interac-
tion v or the truncated v. Moreover, K has a contribu-
tion F containing the exchange-correlation -effects.
There are two important differences between the
TDDFT and the Bethe-Salpeter approaches. First, P p
is either the Kohn-Sham (yx,) or the quasiparticle
independent-particle response. The second difference
concerns F. In particular, since the Bethe-Salpeter ap-
proach derives from Green’s functions (i.e., density-
matrix-like quantities), it naturally leads to a four-point
function F, whereas the TDDFT equation, which is
dealing with density-only potentials, can be contracted
and yields a two-point equation, since the delta func-
tions in the v or v part of the kernel [Eq. (4.10)] are such
that one can contract Eq. (4.9) and get the two-point S
without solving the four-point equation first [this corre-
sponds to using the f,. defined in the previous section,
Eq. (5.10)].

The Bethe-Salpeter equation with the full kernel [Eq.
(4.10)] cannot be contracted, because of the fact that the
¢ functions of the exchange-correlation part are connect-
ing different indices from those of the local field part. If
one supposes for a moment that the self-energy could be
approximated by the DFT exchange-correlation poten-
tial, for the calculation of one-quasiparticle eigenvalues
but also for the functional derivative leading to the ker-
nel, one would obtain

5ch(r1)

N1 3Gty ra)

OV e(r)  6p(rs)
=6(r1—l'2)fdfs Sp(rs) OG(xz,ry)

:fxc(rl ,1'3)5(1'1_1'2) 5(1’3_1'4), (61)

the same structure of connecting & functions as in the
Hartree (i.e., v) part. Again, one can contract the equa-
tion and obtain the TDDFT two-point form. This is of
course true for any form of the exchange-correlation po-
tential that is purely density dependent and local,
whereas for the nonlocal and Green’s-function-
dependent potentials of many-body perturbation theory
the equations are necessarily four-point ones. Of course
this reasoning should not cause the misunderstanding
that TDDFT is an approximation to the Bethe-Salpeter
equation; besides the fact that it is a true and in principle
exact alternative, there are also subtleties linked to the
use of time-ordered and retarded quantities which pro-
hibit an easy switching between the two. However, the
discussion of the structure of the equations still remains
valid.

Equations (4.9) and (5.11) are not the only way to
write the Bethe-Salpeter and TDDFT schemes. In fact,
in the previous sections we have already seen that it is
often convenient to transform these equations to an ef-
fective eigenvalue equation, namely, Eq. (4.11) for the
Bethe-Salpeter equation, and Eq. (5.15), multiplied by
(0—wj), for TDDFT. It should be pointed out that in
this case both equations have become four-point equa-
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tions, because they have been obtained by a basis trans-
formation to a basis of pairs of occupied and empty
states. The two equations now look exactly identical, the
only differences being the meaning of the one-
(quasi)particle eigenvalues and the content of the ker-
nel. Clearly, this way of rewriting the equations is con-
venient if (a) the single diagonalization to be performed
is less onerous than the inversion of y for many frequen-
cies (which necessarily assumes that the kernel does not
depend on frequency), and/or (b) if the basis of pairs of
states which must be considered is smaller than a real-
space (or reciprocal-space) basis. This is naturally true
for the Bethe-Salpeter equation, where those basis sets
would also be quadratic. In the case of TDDFT, the qua-
dratic basis of states must be compared to the linear
basis in real or reciprocal space. In that case, the choice
of the four-point form can only be convenient for small
finite systems with well-spaced energy levels and in
which only a limited part of the spectrum is needed. A
larger energy range would require a higher number of
states, increasing considerably the computational effort
in this four-point approach. This explains why one finds
this form mostly in applications of quantum chemists.

Writing the equation in the basis of transitions has the
additional drawback that the full Hamiltonian [Eg.
(B20)], i.e., that including resonant, antiresonant, and
coupling contributions, is non-Hermitian. It has been
shown that this problem can be avoided by transforming
the equation into a simple quadratic one of the size of
the resonant contribution only (Casida, 1995; Bauern-
schmitt and Ahlrichs, 1996):

(R—C)(R+C)a=w’a, (6.2)

where R and C are the resonant and coupling matrices,
respectively, and a is a linear combination of the two
corresponding parts of the full eigenvector A, (see Ap-
pendix B.2 for details). In the case of TDDFT and for
real wave functions, R, .,/ .'=®,:0,,0ccr + Kyepror and
Coevrer=Kyeprer- Then R—C is diagonal, and the qua-
dratic equation can be simplified; it reads (in its symme-
trized form)

[w/zk 0i10km T 2Nf ik @ik Kk im( @) Nf 1m @ pm 1€ 1= wzcjk ,( )
6.3

where all the spin degrees are embodied in the i,j in-
dexes, and fj, = f;— fi . Here one is explicitly taking into
account transitions of the type /—m where [ is occupied
and m is unoccupied. In the Bethe-Salpeter equation,
the electron-hole attraction term does not show the sym-
metry Cpeprer=Kyeprer, and Eq. (6.2) cannot be simpli-
fied. This can be a considerable problem in applications
like the calculation of electron-energy-loss spectra,
where the resonant-antiresonant coupling cannot be ne-
glected, since in that case the non-Hermitian Hamil-
tonian [or, equivalently, Eq. (6.2)], do not allow the ap-
plication of fast inversion techniques like the Haydock
recursion method (Haydock, 1980).

The third main representation of the TDDFT equa-
tion is the explicitly time-dependent one. In fact, the
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spectra we are interested in are due to the response of
the system to a time-dependent external field. It is hence
possible to extract the desired information from a calcu-
lation of the time evolution of the density when such a
perturbation is applied to the system. This corresponds
to going one step back in the derivation of the equa-
tions, as was done, for example, in the introduction to
this review. Since in TDDFT the density is easily con-
structed from the time-dependent wave functions, it is
sufficient to solve the time-dependent Schrodinger equa-
tion for ¢ and construct the density at every step. This is
particularly easy when approximations for the potential
are chosen that do not contain memory effects, which
means that not only are the requirements of computer
time modest but the storage requirements are low. This
method thus uses a direct solution of the time-
dependent single-electron Schrodinger equation for the
occupied states,

. alrbi(r?t)
i ——=

o = His(Oii(rn)  (i=1

--0cc.), (6.4)
where H gy is the Kohn-Sham Hamiltonian and p is the
time-dependent density p(r,t) =27 (r,1) ;(x,t). The
solution of this equation relies on very simple sparse-
matrix-vector multiplications and on a numerical imple-
mentation of the unitary time evolution operator (Ya-
bana and Bertsch, 1996, 1999a, 1999b; Bertsch, Iwata,
et al., 2000; Bertsch, Rubio, and Yabana, 2000). Hence,
for example, in the case of the TDLDA approximation
for a cluster, the solution of the matrix equation (5.15)
with a given kernel f,. is equivalent to propagating the
equation above for some femtoseconds (the number de-
pending on the accuracy in energy for the spectrum; Ya-
bana and Bertsch, 1996, 1999a) with a given (now time-
dependent) V.. The real-time method has two major
advantages: it is nonperturbative and therefore allows
nonlinear effects of large fields to be calculated with the
same effort, and it uses the same energy functional for
the dynamical calculation as for the static calculation
used to prepare the ground state, i.e., the potential and
its density variation are automatically consistent, with-
out the need to calculate the kernel explicitly.

In principle, the Bethe-Salpeter equation can also be
put into the same form, since the time-dependent den-
sity can be obtained as the diagonal of the time-
dependent Green’s function (Kadanoff and Baym,
1962). In that case, the time evolution equation for the
Green’s function must be solved. This has already been
proposed by Kwong and Bonitz (2000) and applied to
the model case of plasma oscillations, including damping
effects on a correlated electron gas. The technique is
similar in nature to solving the time-dependent Hartree-
Fock equation (Langhoff et al., 1972); in principle, using
the proper self-energy as in the GW approximation, the
time evolution propagation is equivalent to solving the
Bethe-Salpeter equation. An application to real systems
has never been tried, although the idea seems appealing,
since instead of solving a four-point equation one need
only perform a sequence of (two-point) matrix-matrix
multiplications, giving the action of 3 on G. However,
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since G is nonlocal, and since the time dependence of %,
(and hence memory effects) cannot be neglected, it is
not obvious whether such an application would be fea-
sible, not least because of storage requirements.

B. The limit of isolated electrons

Before discussing results, it is useful to make a few
remarks using a model system and/or simplified equa-
tions. To this end, working with exchange only already
allows one to understand many things. Note that, at least
for finite systems, exchange only should be a much bet-
ter approximation to reality for the two-particle excited
states than for, say, photoemission, since screening is less
important for a neutral than for a charged excitation.

This exchange-only approximation has the advantage
that one can work with relatively simple (explicitly
known) exchange operators, and with the DFT exact-
exchange potential (Gross et al., 1996). This latter po-
tential (assuming from now on all wave functions to be
real for simplicity) is given by

x<r>=2§ 2 f dr’ f dr, f dry i, (1))
a@»%uw

€, €

XE wu’(rl)lﬂv’(rZ)

v )=y

lﬂc(l'z)

Xxp H(rr'), (6.5)

where xo(r,x’) is the static independent particle re-
sponse function. To simplify the following consider-
ations further, let us suppose that the system has only
one electron; V is then (Taut, 1992)

Vlpn=- [ ar 250

The “quasiparticle correction” (| |i,)— (| V| i,)
is hence zero for the occupied state, and for the lowest
unoccupied state it becomes

AQP:<¢C|2X|¢C>_<¢C|VX|¢C>
f Jd (1) i, (1) 4, (") (1)

r=r’
2
J fd N0 |¢v|(r )|

Now, when considering only one occupied and the low-
est empty state (single-pole approximation), the effect
of the Hartree kernel and the electron-hole interaction
is a change of the optical gap by the matrix elements of
the Coulomb interaction v and the electron-hole inter-
action (in this case also unscreened) taken with respect
to the pair (v,c). The latter contribution is

2
Cc r v r

Ao f Jd,ldf( ||l/f|( )| ’

which exactly cancels the second term —{i.|V |i.) of

the quasiparticle correction [Eq. (6.7)], whereas the
electron-hole exchange interaction (the Hartree kernel)

(6.6)

(6.7)

(6.8)
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cancels the first term of Eq. (6.7), (¢.|2,|#.). On the
other hand, in the TDDFT approach, the total correc-
tion is simply the matrix element

ATPDFT— f dr f dr’ (1) i (1)

X

1
W+fx(r,r’))w:(r’)wc(r’>, (6.9)
which, using f,(r,x")=6V,/8p(x’)=—1/[r—r'| with the
above V. [Eq. (6.5)], yields exactly the same result.
Hence in both approaches the net correction to the ei-
genvalue gap is zero, as it should be. This is of course
due to the fact that in this simple model the valence
exchange term is simply the self-interaction correction,
and it completely cancels the Hartree term. Neverthe-
less, it is instructive to study this case, since it illustrates
how the matrix elements of f, simulate the sum of self-
energy corrections and the electron-hole interaction.
Moreover, even in more realistic systems, such as mol-
ecules or clusters, the self-interaction contributions can
be very strong. In particular, for other approximate ker-
nels that do not treat exchange exactly, this cancellation
can be incomplete and the one-electron limit may be
wrong.

If one admits more conduction states, it turns out
again that in this exchange-only TDDFT all off-diagonal
elements are zero, since the total kernel v+f, is zero.
This is not true for the Bethe-Salpeter approach, where
the contributions to the kernel coming from the Hartree
part and the Fock part do not cancel, since they connect
different indices. Therefore, in order to see whether the
one-electron limit is correct, one should check the con-
tribution of the off-diagonal elements. This is most eas-
ily done in perturbation theory. Going beyond the diag-
onal (first-order) approximation of the Bethe-Salpeter
equation yields a second-order correction to the excita-
tion energy which happens to be

E§\2)= Z |_<¢c|2x|¢c’>_<¢c|VH|¢c’>|2

P P )
(27— €5

(6.10)

¢ #c
where the first term in the numerator is the matrix ele-
ment between particle-hole pairs (v,c) and (v,c") of the
electron-hole exchange, and the second term in the nu-
merator is exactly equal to the matrix element of the
direct electron-hole interaction. In the denominator, one
has quasiparticle eigenvalues of empty states. This sug-
gests a deviation from the correct one-electron result, by
a shift —|E§\2)| to lower excitation energies. However,
there are further corrections, due to the fact that the
above formulas have been obtained (as is usually the
case in a GW calculation) using Kohn-Sham wave func-
tions, i.e., performing the GW calculation in first-order
perturbation theory. One has in fact to calculate the cor-
rection obtained by going to second order in the quasi-
particle eigenvalues and taking into account the corre-
sponding correction to the wave functions in the
evaluation of the matrix elements of the exciton Hamil-
tonian. It turns out that the change in eigenvalues adds
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another —|E§\2) | to the excitation energy, whereas the
update of the wave functions shifts the optical gap by
+2|E(?)|. Moreover, in this model system the resonant-
antiresonant coupling terms are exactly vanishing. The
final result is hence again correct.

This suggests the following observation concerning
TDDFT in the exact-exchange approximation and
Bethe-Salpeter calculations for very small systems: It is
reasonable to neglect off-diagonal elements in the
TDDFT equation (single-pole approximation), as well
as in the Bethe-Salpeter method, if Kohn-Sham wave
functions are used and GW corrections are calculated to
first order. However, if off-diagonal elements are in-
cluded in the Bethe-Salpeter equation, it may be neces-
sary to go beyond first-order perturbation theory in the
GW calculation. On the other hand, resonant-
antiresonant coupling terms can be neglected for those
systems.

One can also examine in detail whether the predic-
tions made on the basis of these model calculations are
valid. This can be deduced from the results of calcula-
tions on SiH,; done by Rohlfing and Louie (2000), in
which Bethe-Salpeter results are compared to quantum
Monte Carlo results (Grossman et al., 2001) and to ex-
periment. First, Table III of Rohlfing and Louie (2000)
confirms that the resonant-antiresonant coupling is in-
deed completely negligible. Second, the same table con-
firms that the inclusion of off-diagonal elements of the
resonant electron-hole Hamiltonian lowers the excita-
tion energy (by 0.41 eV for the first singlet transition).
Then, Table II shows an increase of the transition energy
by 0.67 eV due to the off-diagonal elements of 3
—V,.. This is in agreement with the above qualitative
predictions concerning the cancellation of both effects.
It suggests, moreover, as also pointed out by Rohlfing
and Louie (2000), that most of what is going on can be
understood on the basis of Hartree-Fock, self-
interaction corrections and long-range potentials. In
fact, the (not self-consistent) time-dependent Hartree-
Fock results presented in the second column of Table II
are clearly in acceptable agreement with the correspond-
ing Bethe-Salpeter results.

On the other hand, these findings should not be ex-
trapolated to larger systems: in a solid, in fact, 3 pre-
serves the crystal symmetry and can therefore not mix
functions of different k points. The exciton Hamil-
tonian, on the contrary, does strongly mix those transi-
tions which are close in energy and which often come
from the same band but different k points. Normally,
one will find that quasiparticle wave functions are close
to the Kohn-Sham ones, as has been pointed out by Hy-
bertsen and Louie (1986), whereas a strong excitonic ef-
fect that is entirely due to the mixing of transitions at
different k points drastically alters the absorption spec-
trum. Note that in a solid first-order perturbation theory
with respect to the electron-hole interaction yields a
vanishing shift of transition energies, and in fact the
modifications in the spectra (even those appearing as
shifts of peak positions) are essentially due to the mixing
of transition matrix elements. As pointed out in Sec.
IV.B, the joint density of states remains virtually un-
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changed (Rohlfing and Louie, 1998b; Benedict and Shir-
ley, 1999). Of course, this question about wave functions
does not arise in the TDDFT approach: since the latter
never pass through electron addition and removal ener-
gies, only the Kohn-Sham wave functions resulting from
the ground-state calculation are needed at all steps.

To go further, one can now extend the model and con-
sider the case of more than one valence orbital, but in
the approximation that these orbitals are nonoverlap-
ping. Again, one can start from the exact-exchange po-
tential. Because the orbitals are nonoverlapping, one has
v=v' in Eq. (6.5), which yields

Vx(r)=22 2 Jdr’ f dry f dr,
|l//v(r1)|2 l/lu 1‘2)‘/&(1‘2)%(1‘ )l//v(r ))

|1'1_1'2|

€, €.

X xo L(r',x). (6.11)

Now, since the valence orbitals are nonoverlapping,
Xxo(r,r") is of block form in (r,r"), each of these blocks
being given by a region R; which contains both r and r’
and having contributions from one valence orbital v,
only. We call these contributions xg, (r.r"). The inverse

of xq is then given by the inverse of each block, and the
above formula yields

V.n)=— > | dr'drdr,
vy,vgr
|, (1)

X |1. _1.| XOvl(rZ’ )XOU,(r l') (612)

The integral in r' has nonvanishing contributions of the
form &8(r,—r) when /=/" and r is in Re, and one gets

p(ry)
Vx(l’):—f dl‘lm

The integration is limited to the region R, where r is
situated. The total quasiparticle correction stemming
from both occupied and empty states is hence

AQP:<¢C|2X|{IIC>
_<¢'v|2x|l//v>_<¢c|vx|¢c>+<lr/}v| Vx|¢v>’
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In the diagonal approximation to the Bethe-Salpeter
equation, the electron-hole exchange and the electron-
hole interaction give, respectively, the contributions

(6.13)

(6.14)

Affh:Jffdrf dr’ (1), (1) ¢, (1) h(x") /[ r =1’
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and

acti= [ e[ ar'lu Pl P,

as in the simpler model above. Adding these terms to
ACP one finds that the total correction of the optical
gap to the bare potential (T+ V) gap is

AE;pt:fdrf dl‘1 pc(r)[p(rl)_pv(rl)]

|r;—xf

(the Coulomb interaction of the electron with the valence
charge density after excitation),

J Jr f o1y (1) iy (1) (1)
v’ #v

r—r'|

(the exchange interaction of the electron with the valence
charge density after excitation),

pu(r)p(ry)
_J dl‘f dr1—|rl_r|

(which subtracts the artificial Coulomb interaction of the
now missing valence electron with valence charge density)

+Jdrf ar'S (1) by (1), (1) 5, (1)

r—r'|

(which subtracts the artificial exchange interaction of the
now missing valence electron with the valence charge
density, and, for the nonoverlapping orbitals, exactly can-
cels the Coulomb self-interaction term).

This result is very intuitive. In order to get the TDDFT
result, one could now simply take the form (6.13) of V,
derived above for the case of nonoverlapping orbitals,
and obtain a kernel

8V (r)
1) (r)_

Hence in the diagonal approximation the optical gap
would turn out to be identical to the Kohn-Sham eigen-
value gap, as in the case of only one electron, since f,
cancels the Hartree part of the kernel. This is however
not due to a failure of the exact-exchange approach; in
fact, the kernel (6.15) has been derived from V, which
was approximated for the case of the model of nonover-
lapping valence states. Instead, one should first perform
the functional derivative and then do the approximation.
In that case, one gets additional terms, which should
finally yield the correct result for the exchange-only
case, as has been shown by Gonze and Scheffler (1999).

It is also interesting to note that in the case of non-
overlapping valence orbitals, the PGG kernel in the di-
agonal approximation yields the same (wrong) result as
Eq. (6.15).

In summary, one should note that the exchange-
correlation kernel has to simulate the result of self-
energy corrections to the exact Kohn-Sham eigenvalues,
plus the direct electron-hole interaction. In the one-
occupied-level limit cancellations occur (for example be-
tween the electron-hole interaction and the conduction-

OR R,

fulex')= (6.15)

r—r'|"
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state matrix element of V,.) which might be used as an
input for the design of kernels in systems with more
electrons. From the case of several well-localized occu-
pied states, one can see the importance of a kernel that
is derived from a V, that well reproduces not only the
ground-state density, but also density variations.

C. Relaxation and correlation

It is also worthwhile to analyze and compare the ef-
fects of relaxation and correlation. For the N—N+1
electrons excitation, one has of course a strong relax-
ation (Hartree-like for localized states, and through cor-
relation for delocalized states). Then, when going over
from an N—N+1 to the N— N* excitation, one has to
subtract the spurious electron-hole interaction and ex-
change. Now there is also relaxation due to the presence
of the hole. One can suppose that the relaxation due to
the electron and the hole cancel to first order, so the
total N— N* problem should have much less relaxation
than the N—N+1 electron problem.

The scenario describing exchange and correlation ef-
fects in the one- and two-quasiparticle excitation spectra
of many-body systems is hence the following: the screen-
ing that explicitly appears in the GW self-energy comes
from the electronic relaxation (classical or through cor-
relation, as discussed in the introduction) due to the ad-
ditional electron. The diagonalization of the G W Hamil-
tonian takes into account the fact that the GW potential
is different from the initial potential, which can be either
Hartree, Hartree-Fock, V., or unknown if one does
GW from scratch. Then, the diagonalization of the
Bethe-Salpeter equation creates a correlated electron-
hole wave function. Before the diagonalization, the
electron-hole wave function is ®(r.r;,)= ¢ (r,) ¥.(r,),
which is uncorrelated. After the diagonalization, ® has
the correlated form @, (r.r,) ==, A (x,) . (r,). In
a molecule or cluster one can assume that one would get
some reasonable result even by taking into account only
diagonal elements; this is an uncorrelated, but interact-
ing, electron-hole pair. It might also happen that only
one occupied state is contributing, and the resulting
wave function @, (r.r,)=y} (r,)[2.AS¢.(r,)] would
still be uncorrelated; only the electron has relaxed, i.e.,
adjusted itself to the fact that the hole is present. These
mixing effects on the wave functions can in fact be easily
visualized in a cluster (see, for example, Albrecht et al.,
1998b). In a solid, on the other hand, taking just one
valence Bloch state would mean that one does not in-
clude more than one k point, i.e., one would not get an
excitonic effect. As in the case of the one-particle exci-
tation, Hartree relaxation alone is not enough to de-
scribe the solid: one must consider correlation.

On the other hand, in TDDFT (and in the time-
dependent Hartree approach) the off-diagonal elements
immediately yield the correlated electron-hole pair, and
the same discussion as above holds concerning the dif-
ference between an extended crystal and a finite system.
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D. Comparison of some applications

In real applications, of course, details of the system
already at the independent-particle level are often the
main ingredient for a first explanation of spectra. For
example, bandstructure effects turn out to be decisive in
determining not only the existence of interband transi-
tions as observed in optical spectroscopy, but also the
properties of plasmonic excitations in simple and noble
metals. Indeed, ab initio calculations of the dynamical
response have properly described the plasmon disper-
sion in a variety of metals (Quong and Eguiluz, 1993;
Aryasetiawan and Karlsson, 1994; Maddocks et al.,
1994a, 1994b; Fleszar et al., 1997; Ku and Eguiluz, 1999;
Cazalilla et al., 2000). Since, however, the independent-
particle approach often fails to yield quantitative, or
even qualitative, agreement with experiment, it is useful
to compare the performance of various approaches ap-
plied to these realistic cases.

In the previous section, we have shown or cited sev-
eral examples for successful TDDFT calculations of the
absorption spectrum of atoms and clusters. Far fewer
examples exist for TDDFT calculations of the absorp-
tion spectrum of bulk materials. The influence of an
adiabatic LDA kernel f,. on the absorption spectrum of
silicon has been calculated by Gavrilenko and Bechstedt
(1996), who showed that its effect is negligible. These
results have been confirmed by Koostra er al. (2000, al-
though no comparison to the RPA result is given in that
paper), and can also be seen in Fig. 10. In fact, since the
independent-particle response function y, goes to zero
as ¢°, any kernel that does not have a 1/¢* divergence
does not contribute to the head (i.e., the G=0, G'=0
element) of the matrix f,.xo and can at the best yield
visible effects through off-diagonal elements, i.e., medi-
ated by local field effects. Therefore it is often heard
that “TDLDA works in clusters, but not in solids.” We
use this statement as a guideline for the following dis-
cussions and to provide some explanations. In order to
allow for a meaningful comparison, it is useful to con-
centrate first on the effect of the part of the kernel which
is common to the TDDFT and the Bethe-Salpeter ap-
proaches, namely, the v (or v) part. In this way one can
single out the rest and determine to what extent TDDFT
and the Bethe-Salpeter approaches, respectively, actu-
ally improve on P—the only quantity that is treated dif-
ferently in the two approaches.

1. Common ingredient: the bare Coulomb interaction

As pointed out in Sec. II.B, the G=0 element of v
determines the macroscopic screening 1 —vyPg,, which
accounts for the essential difference between absorption
and EELS spectra of solids. The rest of the Coulomb
interaction, i.e., v, gives rise to what is called “local field
effects” in the language of solid-state physics. This
means that it reflects the fact that an inhomogeneous
system will exhibit an electronic response that is position
dependent (and not only distance dependent). It is intu-
itively clear that such an effect will be the stronger the
more a system is inhomogeneous. It is also obvious that



644 Onida, Reining, and Rubio: Density-functional vs many-body

an atom, a molecule, or a cluster of whatever size is by
itself a strong inhomogeneity in the empty space, and
that the electronic response must depend strongly on the
distance and on the position of the perturbation and the
probe.* Therefore one can expect that the effect of v
alone will already be a strong modification of the spectra
in a cluster, whereas in a solid it will depend on details of
the charge density of the latter, with a tendency to have
very weak effects in, say, nearly free electron metals (ho-
mogeneous systems) like simple metals. This is in fact
the case. In Fig. 8 we have already shown the results for
three different clusters, and discussed the fact that the
Coulomb term has a very strong effect and removes
most of the discrepancy between the LDA curves and
experiment.

When moving to solids, a good example is the loss
function of bulk silicon, in which the localization of the
charge on the bonds gives rise to a non-negligible inho-
mogeneity. The results of local field effects on the plas-
mon resonance of silicon have already been discussed,
for example, by Louie ef al. (1975), who found that the
local field effects are not as pronounced as in the case of
the cluster, but are sizable. Moreover, as in the case of
the cluster, agreement with experiment is improved
when v is included; in particular, the height of the plas-
mon peak is considerably lowered.

When local field effects are included, good-quality
loss spectra are also obtained in transition-metal com-
pounds like Ni and NiO (Aryasetiawan, 1994). The good
quality of RPA loss function results and the importance
of local field effects is illustrated for rutile TiO, in Fig.
11 (Vast et al., 2002). One can see that local field effects
are particularly important at higher energies, in the re-
gion of transitions from the Ti 3p semicore level, yield-
ing good agreement with experiment. This almost seems
to suggest that one could, in a first approach, always
neglect the cumbersome exchange-correlation effects.
This is of course not true. It is instructive to look, not
only at the loss spectrum, but also at the absorption
spectrum of bulk silicon [Im(gy,)], shown in Fig. 5. The
dot-dashed curve (RPA result) is in fact in poor agree-
ment with experiment. Another striking example is the
absorption spectrum of solid argon, shown in Fig. 12.
The strong absorption peaks in the experiment (Saile,
1976; Saile et al., 1976) on the low-energy side, which are
known to be of excitonic nature, are completely missing
in both the RPA and the G W-RPA results (Olevano and
Reining, 2001b). Note that local field effects are in-
cluded in these calculations, but they cannot remove the
discrepancies. The effect of v on Im(gy,), in its more or
less pronounced form, is in fact essentially to shift oscil-
lator strength to higher energy. This is due to the fact
that v is positive, being the Coulomb interaction be-

The essential difference between even a very big cluster and
an infinite solid is the presence of a surface between the cluster
and vacuum, implying boundary conditions for the electric
field.
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FIG. 11. Integrated loss function at g~0.4 A~ for rutile TiO,
(Vast et al., 2002): solid line, experiment; dashed line, RPA
results. The dot-dashed line in the inset shows the results with-
out local field effects.

tween charge-density waves (Hanke and Sham, 1975). It
never creates or even significantly enhances structures
on the low-energy side.

Hence v, or local field effects, are generally not suffi-
cient to obtain quantitative (for £ ~!) or even qualitative
(for &),) agreement between theory and absorption ex-
periments, and one has to add the exchange-correlation
effects. In other words, one has to use the interacting P
(instead of P=P;p) in Egs. (2.10) and (2.11). With re-
spect to the RPA-plus-local-field result, these effects
should cause a variety of modifications in the spectra, if
they are supposed to restore agreement with experi-
ment. Essentially, from the above results one can see
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FIG. 12. Optical spectra for argon: @, experiment (Saile,
1976); dashed line, RPA; dot-dashed line, TDLDA; solid line,
GW-RPA. From Olevano and Reining, 2001b.
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= —2hfdrdr’eii‘l('7") Im x(r,r',w) of aluminum, calculations
from Fleszar et al. (1995). Open circles are experimental data
from Platzman et al. (1992). In the left panel, they are com-
pared with the Kohn-Sham independent particle response (full
line labeled Skg, obtained taking y= x, in the above expres-
sion for §) (the double-bump structure was already obtained
by Maddocks et al., 1994a, 1994b). The dotted line, labeled
S Lindnard » 18 the corresponding noninteracting response of jel-
lium with r;=2.07. In the right panel, the same experimental
data are compared with S calculated using y from Egs. (5.11)
and (5.12). Full line, TDLDA (f,.) from Eq. (5.13); dashed
line, RPA (f,.=0).

that a shift is needed, which can be towards either lower
energies (as in the case of the loss spectra of both clus-
ters and solids) or higher energies (as in the case of the
absorption spectrum of bulk silicon), together with a re-
distribution of oscillator strength towards lower ener-
gies, which may enhance existing peaks and/or create
new ones, as in the case of solid argon (see Fig. 12).

2. Exchange and correlation effects

Concerning these exchange-correlation effects, the
Bethe-Salpeter and the TDDFT approaches act in a
completely different way. In fact, the Bethe-Salpeter ap-
proach can be seen as a two-step method, where first a
GW calculation yields a strong shift of the whole spec-
trum towards higher energies, and the subsequent inclu-
sion of the electron-hole interaction redistributes oscil-
lator strength towards the low-energy peaks, and
eventually shifts peaks, or even creates peaks in the qua-
siparticle gap. It is clear that there must be a partial
cancellation of the self-energy corrections and the
electron-hole interaction. In the small cluster discussed
above, and also for bulk plasmons, where the RPA plus
local fields calculation already gives very good results,
this cancellation is almost perfect. TDDFT, on the other
hand, should describe directly the complete electron-
hole excitation, but in an effective way, which may be
more difficult to understand [see also the discussion in
Appendix A, after Eq. (AS5)]. In this case, too, partial
cancellations occur. Figure 13 shows an example of these
cancellations. Fleszar et al. (1995) have calculated the
dynamical structure factor of bulk aluminum within
TDDFT. The independent-particle response y, closely
simulates the measured spectrum, and even the double-
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hump structure is correctly predicted. However, when a
full RPA calculation, including the Coulomb kernel, is
performed, the result worsens. Exchange-correlation ef-
fects should hence completely cancel the Coulomb re-
pulsion in that case (i.e., a kernel f,.= —1/|[r—r’| would
do the job). Depending on the situation and the system,
different aspects of f,. will become important. For ex-
ample, Sturm and Gusarov (2000) have shown that in
order to describe the aluminum inelastic x-ray scattering
cross section for large momentum transfer and large o,
dynamical correlation effects in f,. are more important
than band-structure effects (interband transitions are in-
sufficient to explain the observed magnitude of the high-
energy tail of the spectrum, while multiple particle exci-
tations give the correct order of magnitude).

a. Some applications to finite systems

For clusters, the majority of DFT-based calculations
today rely on the use of the static LDA kernel, since the
optical spectra turn out to be in very good agreement
with experiment even at the TDLDA level (Casida,
1995; Rubio et al., 1996; Yabana and Bertsch, 1996; Va-
siliev et al., 1999, 2002). Although, as pointed out above,
the improvement with respect to a static LDA calcula-
tion essentially comes from the Coulomb part of the ker-
nel, and not from f,., these findings have led to an im-
portant breakthrough in the calculation of excitation
spectra of finite systems and make the TDDFT tech-
nique very popular. One example is the benzene mol-
ecule (Fig. 14). It is clear that apart from small differ-
ences due to the resolution of vibrational modes in the
experimental spectrum, the overall response is very well
described by the TDLDA approach.*’ Satisfactory
agreement is also obtained for other molecular clusters
as shown in Fig. 8. This figure however, also shows the
need for improvements over the simple TDLDA.

A good and widely studied example is the silane mol-
ecule SiH,, for which quantum Monte Carlo (Grossman
et al., 2001), Bethe-Salpeter (Rohlfing and Louie, 1998a,
2000; Grossman et al., 2001), and TDDFT results (Ogit
et al., 1997, Marques et al., 2001) are available. In par-
ticular, TDLDA or gradient corrected functionals pre-
dict that bound excitations will be resonances. This arti-
fact is clearly corrected by the exact-exchange potential
and a method proposed by van Leeuwen and Baerends
(1994) to impose the correct asymptotic behavior on the
exchange potential (Marques et al., 2001). Within this
scheme the TDDFT results for SiH, have the same ac-

#For the chiral Cy4 fullerene, TDLDA also provides a con-
sistent description of the optical absorption spectrum, the cir-
cular dichroism spectrum, and the optical rotatory power (ex-
cept for an overall shift of the total spectrum; Yabana and
Bertsch, 1999a, 1999b). Similarly, the optical spectrum can be
used to elucidate the ground-state structure of the smallest
possible carbon cage C,, (Castro et al., 2001), which has been
elusive to ground-state calculations in both quantum Monte
Carlo (Grossmann et al., 1995) and DFT (Jones and Seifert,
1997).
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FIG. 14. Optical absorption of the benzene molecule, in units
of eV~!. The TDLDA calculation is from Yabana and Bertsch
(1999a), whereas the experiment is from Koch and Otto
(1972).

curacy as the GW or quantum Monte Carlo
calculations.*® This fact is illustrated in Fig. 15.
TDLDA gives good results for Nay as well as for small
and large clusters of simple and noble metal atoms (Ru-
bio and Serra, 1993; Rubio et al., 1996, 1997; Yabana and
Bertsch, 1996; Serra and Rubio, 1997; Vasiliev et al.,
1999, 2002) and fullerenes (Yabana and Berstch, 1999a,
1999b; Castro et al., 2001) but works less well in small
hydrogenated silicon clusters (see Fig. 15).* This prob-
lem might be due to the presence of more localized
bonds. The exact-exchange calculation does help in this
case and keeps nearly the same accuracy as in the so-
dium cluster. Both calculations are in slightly better
agreement with experiment than the Bethe-Salpeter cal-
culation (Onida et al., 1995). Note that the two peaks at
about 3 eV in both the exact-exchange and the Bethe-
Salpeter calculations are very similar. However, in both
clusters we see an overall tendency of the TDDFT cal-
culations with approximate kernels to give larger excita-
tion energies (peak positions blueshifted with respect to
experiment). By looking carefully at the different contri-
butions coming from the correct asymptotic behavior of
the potential, as well as at variations of the f,. kernel,
Marques et al. (2001) show that there is an inherent

*Very good results are obtained in the three approaches—
quantum Monte Carlo, Bethe-Salpeter and TDDFT with exact
exchange. In particular, they overestimate the energy of the
first singlet excitation by 3%, 4.5%, and 1.5%, respectively,
whereas the ionization potential (exactly reproduced in quan-
tum Monte Carlo) is only 4% overestimated by TDDFT with
exact exchange. The quantum Monte Carlo results are equiva-
lent to the best quantum-chemical (coupled-cluster and com-
plete active space self-consistent-field) calculations (for details
see Grossmann et al., 2001 and references therein).

“Here it is important to remark that for the optical gaps, the
calculated values within TDLDA for large-size hydrogenated
silicon clusters (Oglit et al., 1997; Vasiliev et al., 2001) agree to
within =10% with experiment.
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FIG. 15. Calculation of the strength function for Na, and SiH,
within TDDFT using different kernels (Marques et al., 2001):
solid line, TDLDA; dotted line, exact-exchange. Gray solid
line, experimental results; dashed line, the Bethe-Salpeter
equation results of Onida et al. (1995) for Na,. Vertical lines
are the lowest excitation energies obtained by Grossman et al.
(2001) for SiH,: solid vertical line, quantum Monte Carlo cal-
culations; dashed vertical line, Bethe-Salpeter equation. In the
inset: solid line, self-interaction correction; dotted line, van
Leeuwen and Baerends (LB94) prescription.

source of error in the approximated kernels coming
from neglect of dynamical (correlation) effects. These
tend to shift the spectrum to lower energies and are also
responsible for improving the excitation energies of
Rydberg-like states (where exchange effects are small
due to the nearly zero overlap between the Rydberg un-
occupied state and the other valence states; thus the usu-
ally weak polarization effects are going to play an im-
portant role here).

For these small molecules, there are thus various
methods to get good transition energies: quantum
Monte Carlo, the Bethe-Salpeter equation, and TDDFT
yield satisfactory results. One might of course wonder
whether the calculation of spectra involving empty (ex-
tended) states is not questionable in a supercell ap-
proach. In fact, high-energy, extended states do repre-
sent a problem if they are really needed as the physical
final (one-electron) state (e.g., in absorption at higher
frequency, or for a photoemitted electron, if one wants
to go beyond the usual approximation of neglecting the
final-state effects). Most often, however, these states are
used only as intermediate states in summations, i.e., for
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a closure relation, which is a mathematical property de-
riving from the completeness of the basis set. Since the
validity of the closure relation does not depend on the
chosen boundary conditions (even if the actual shape of
the individual states does), this does not present a prob-
lem.

Concerning the Bethe-Salpeter approach for SiH,, it
should be noted that (i) the results depend on the
choices made for the different steps of this rather com-
plicated technique, e.g., the diagonalization of the GW
Hamiltonian discussed above; and (ii) only transition en-
ergies, not line shapes, are shown. However, in TDDFT
the results depend of course on the choice made for the
kernel, as discussed above.

b. Some applications to extended systems

In solids one should look at both absorption and
electron-energy-loss spectra. As discussed in the previ-
ous sections, TDLDA fails to describe the absorption
spectra of solids. In fact, at least in the case of silicon,
the failure of the TDLDA f,. to reproduce the correct
long-range behavior of the kernel explains its bad per-
formance, as shown above in Fig. 10. On the other hand,
Olevano and Reining (2001a) have calculated the
electron-energy-loss spectrum of silicon including local
field effects, GW corrections, and excitonic effects, for
vanishing momentum transfer. The inclusion of excitonic
effects improves the results with respect to both the
RPA and, more drastically, the GW calculations (see
Fig. 16): GW and excitonic corrections cancel to a large
extent. In contrast to the case of small molecules and to
absorption spectra in bulk, here the correct result could
only be obtained by taking into account the coupling
between transitions at positive and negative frequencies
[blocks K in Eq. (B20)]. Figure 16 also shows that
TDLDA improves with respect to the RPA calculation
(including local field effects), which means that even the
TDLDA f,. has a visible effect on the electron-energy-
loss spectrum. However, as in the case of clusters, local
field effects are more important than f,. for the
electron-energy loss spectra. This is a very general find-
ing in TDLDA electron-energy-loss calculations (see the
results of Waidmann et al., 2000 and references therein).

For nonvanishing momentum transfer, one can com-
pare the TDDFT results of Waidmann et al. (2000) on
diamond to the Bethe-Salpeter results of Caliebe et al.
(2000). The comparison is limited, however, to the low-
energy region well below the plasmon. First of all, the
work of Waidmann et al. (2000) shows the increasing im-
portance of local field effects with increasing ¢g. Local
field effects start to be visible at g=1.0 A~! (about 1.1
I'X). At g=15A"" (about 1.7 T'X) they are already
very strong. Second, TDLDA gives a reasonable de-
scription of the low-energy part of the spectrum. It
should be pointed out that the authors state that the
LDA kernel f,. itself has only a negligible effect on this
result. On the other hand, in the work of Caliebe et al.
(2000) the Bethe-Salpeter method is applied to the cal-
culation of the same spectra. Results of comparable
quality are obtained in the end. A more detailed com-
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FIG. 16. Energy-loss spectra of bulk silicon: @, experiment
(Stiebling, 1978); dotted line, Bethe-Salpeter equation without
resonant-antiresonant coupling; dash-dotted line, G W-RPA;
dashed line, RPA; dash—double-dotted line, TDLDA; solid
line, Bethe-Salpeter equation with coupling (Olevano and
Reining, 2001a).

parison is difficult, since the Bethe-Salpeter results are
compared to those obtained when GW corrections are
added to the Kohn-Sham eigenvalues in the
independent-particle polarization. Moreover, as is often
the case in the Bethe-Salpeter approach, the local field
effects are treated as part of the electron-hole interac-
tion kernel. In other words, part of the electron-hole
effect shown is due to the local field effects. The net
improvement due to the electron-hole interaction is
hence very strong (although not systematic for all spec-
tra), but it is difficult to estimate the total improvement
due to self-energy plus electron-hole attraction effects,
in comparison to RPA (including local field effects), or
better, TDLDA, results. A detailed comparison of
TDDFT and Bethe-Salpeter results for the g #0 case is
in fact still missing in the literature. Bethe-Salpeter re-
sults should be superior to TDLDA results in those
parts of the loss spectra that are dominated by interband
transitions, i.e., by the structures in the imaginary part of
the dielectric function, which are not well reproduced in
TDLDA.

VIl. CONCLUSIONS—FREQUENTLY ASKED QUESTIONS
AND OPEN QUESTIONS

Since the very beginning of physics and chemistry, the
interaction of photons and electrons with matter has
been a major topic of study. Today, most characteriza-
tion tools as well as electro-optical devices are based on
our understanding of these interactions. Technological
applications are rapidly progressing, but many funda-
mental questions concerning theoretical and numerical
descriptions are still open.
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This has motivated us to discuss in the present review
the two most widely used techniques for describing elec-
tronic excitations in finite and infinite systems, namely,
the Green’s-function approach to many-body perturba-
tion theory calculations, and time-dependent density-
functional theory. We have presented the foundations
and approximations of the two approaches as well as the
advantages and drawbacks of the methods. A special ef-
fort has been made to provide a unified picture of the
underlying equations, in order to facilitate the compari-
son and to analyze the most frequently used approxima-
tions. We have stressed the fact that the two approaches
are somewhat complementary and that one should work
on both sides in order to optimize the search for system-
atic improvements.

We have not presumed to give a complete view of all
theoretical descriptions of spectroscopies, but rather
looked at the field from a particular point of view, with
the aim of motivating some possible future develop-
ments. Some points have been treated in more detail
than others; we have made our choices on the basis of
the very lively discussions which are now going on in this
field. As a conclusion, we summarize below a set of fre-
quently asked questions, which we have tried to answer
in the present paper. Many points are not new, and they
will be obvious for a specialized reader, but we think
that it is useful to put them in a common context. This
should also be helpful to those who wish to enter the
field.

Other questions do not have an answer yet. They will
be treated at the end of this section—as a motivation for
future research.

e The delta-self-consistent field approach, i.e., explicitly
calculating total energy differences, is known to work
well. Why can’t we just always calculate total energy
differences in DFT, instead of struggling with the mean-
ing of Kohn-Sham eigenvalues? First, ASCF in DFT
supposes that one can simulate the initial and the final
state of the excitation by occupying selected one-
particle orbitals. This excludes excitations that are not
easily described in terms of isolated single-particle
transitions (for example, the collective plasmon exci-
tations). Second, whereas the choice of the N and N
+1 states can be straightforward in a small system, it
is not necessarily well defined in the bulk; in fact,
when Bloch states are chosen to describe the elec-
trons, Hartree relaxation effects vanish and hence the
main advantage of ASCF is lost. One should then in-
clude dynamical correlation effects, which go beyond
static DFT-ASCEF. See discussions in Secs. IV.A.2 and
VI.C.

e Does TDDFT give electron removal or addition ener-
gies? In Sec. V we described how TDDFT provides an
exact framework for getting the excitation energies of
an N-particle system. The theory handles only neutral
excitations, that is, excitations in which the number of
particles does not change. Concerning N—N*1 pro-
cesses, TDDFT is only supposed to have the correct
ionization potential threshold, as this should be guar-
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anteed by the exact DFT exchange-correlation poten-
tial (Almbladh and von Barth, 1985).

e [f quasiparticle energies are electron addition and re-
moval energies, i.e., total energy differences, how can
they be complex? In the Lehmann representation of
the Green’s function the excitation energies involved
are always differences of total energies between the N
and N*1 systems; hence they are always real. The
infinitely close-lying peaks of the spectral function in
the Lehmann representation merge into broad struc-
tures that can be identified as quasiparticle peaks.
These structures have a finite width and can hence be
described by a real part (peak position) and an imagi-
nary part (width) of a quasiparticle’s energy. See dis-
cussion in Sec. IIT.A.

e Why can TDDFT yield absorption spectra, when DFT
is a ground-state theory? DFT is a ground-state theory
because it is based on a minimization of the total en-
ergy. TDDFT, on the other hand, is derived from the
extrema of the quantum-mechanical action, and hence
describes the evolution of the system instead of its
ground state. This difference is equivalent to that in
classical mechanics, where the equilibrium position of
a particle in space can be found by looking for the
minimum of the potential, whereas its trajectory is de-
rived from the extrema of the classical action. See dis-
cussion in Sec. V.

e Can one in principle get excitonic effects in TDDFT?
Yes, excitonic effects are in principle exactly contained
in the TDDFT equations, if the exact exchange-
correlation potential V. and kernel [f,.(r,r’,w)] are
used. However, the practical implementations use
simple functionals, which lack, for example, the
proper spatial nonlocality. Therefore direct electron-
hole interaction effects are only partially described in
finite systems, and in general still out of reach of to-
day’s TDDFT calculations for solids. See Sec. V.C and
Appendix C.

e [s the fact that Kohn-Sham eigenvalue differences un-
derestimate the gap a problem for the calculation of
absorption spectra within TDDFT? No. The Kohn-
Sham eigenvalue differences are not meant to repro-
duce the (optical) gap. The optical gap is determined
by the Kohn-Sham potential (eigenvalues) and by
variations of the Kohn-Sham potential, through the
kernel. This latter contribution changes the optical
gap with respect to the Kohn-Sham eigenvalue differ-
ence. Of course, results improve when better poten-
tials (eigenvalues) are used—but “better” does not
mean “close to quasiparticle energies.”

e Why does the RPA often yield good results for
electron-energy loss, but not for absorption in solids?
This can be traced back to the crucial role played by
the long-range part of the Coulomb potential in the
kernel: the exchange-correlation contribution f,,. is in
fact added to the Hartree term v in the case of the loss
spectra [see Egs. (2.3) and (2.11)], but to the differ-
ence between the bare v and the long-range part
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v(G=0) in the case of absorption [see Egs. (2.9) and
(2.10)]. In the latter case, the only long-range term
comes from f,., which makes it so crucial. See Secs.
II.B and VI.D.

e Why does TDLDA work for clusters, but not for the
absorption spectra of solids? First, the main difference
between the results of TDLDA and those of Eq. (2.8)
[the IP-RPA dielectric function] in clusters stems from
the contribution v in the kernel, which is always exact.
Second, for finite systems fxTCD LDA brovides an effec-
tive electron-hole attraction, which gives a significant
contribution to the spectra. In infinite nonmetallic sys-
tems, the LDA f,. only contributes through local field
effects, since the head of the matrix f,.xo vanishes as
q—0. See Secs. V.C, VI.D, and Appendix C.

e What is the link between the Hartree potential, the
electron-hole exchange interaction, and local field ef-
fects in a solid? The variation of the Hartree potential
with respect to the density yields a contribution v to
the kernel of both the TDDFT and the Bethe-
Salpeter equations. This contribution has to be taken
with or without (v or v) its long-range (G=0) contri-
bution in the case of electron-energy loss or absorp-
tion, respectively. Neglecting v in the screening equa-
tions is equivalent to neglecting local field effects. The
matrix elements of v and v in an electron-hole basis
are dipole-dipole like, and one calls this contribution
therefore the “electron-hole exchange” in the Bethe-
Salpeter framework. See Secs. II.LB and IV.B.2 for
more details.

e [s the electron-hole exchange interaction screened or
unscreened? The electron-hole exchange interaction
stems from the density variation of the Hartree poten-
tial and is therefore exactly the unscreened Coulomb
interaction (see Secs. II.B, II.C, and 1V.B.2). Some-
times model calculations can be found in the literature
where this interaction is screened. This procedure is
justified when (and only when) an extremely re-
stricted space of transitions is explicitly mixed by the
exciton; the neglected transitions are then implicitly
put back into the calculation by an effective screening
of the electron-hole exchange.

e To describe two-particle excited states one resorts to the
two-particle Bethe-Salpeter equation. What about
three-, four-, or more-particle excitations? Do we need
three- or more-particle analogies to the Bethe-Salpeter
equation? No. In fact, even for the case of two-particle
excited states we do not need the two-particle Bethe-
Salpeter equation, since it would be formally sufficient
to solve Hedin’s equation for the vertex [Eq. (3.25)].
The situation is similar to the case of electron addition
or removal energies, where the set of higher-order en-
tangled Green’s functions is decoupled by introducing
the concept of the self-energy, which implicitly con-
tains all higher-order electron interactions. Similarly,
the complex equation for the polarization operator in
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terms of higher-order polarization operators can be
formally solved by introducing the vertex function.
See Sec. IV.B.

e TDDFT equations can be written as a quadratic equa-
tion (6.3) or as a Dyson—like equation (5.11): are the
two forms equivalent, and what are the reasons to
choose one of them? Yes, the two forms are indeed
equivalent. The TDDFT equation can be written for
four-point response functions or for two-point (con-
tracted) functions [see Eqs. (2.15) and (2.19)]. The
two-point formulation (which does not exist for the
Bethe-Salpeter equation) leads to the Dyson-like
equations for two-index matrices [Eq. (5.11)], with the
obvious advantage of a better scaling with the system
size. On the other hand, the four-point formulation
allows one to switch easily to transition space and to
compare directly with the Bethe-Salpeter equation.
The transition-space formulation can be written as an
eigenvalue equation like Eq. (5.15) or as a quadratic
equation for w like Eq. (6.3). It is advantageous for
cases in which only a limited number of transitions
contribute to the spectrum. See Secs. V.B, VI.A, and
II.C.

e Since most calculations use supercells or finite do-
mains, can we trust the higher-energy eigenstates, which
can “sense” the boundary conditions? If one is explic-
itly interested in these states, that can actually be a big
problem. However, most often (e.g., in the calculation
of a Green’s function) they are just virtual states that
are summed over, and one does not care. See also Sec.
VI.D.2.a.

One important question now is actually which way
one should go—is the Bethe-Salpeter equation or
TDDFT more promising? Since both approaches are ex-
act, the answer depends of course on whether—and
when—the remaining open questions in the two ap-
proaches can be solved. Some questions are common to
both. An important point is whether pseudopotentials
are always adequate for describing spectra with the pre-
cision one asks for today. For certain applications, one
should perhaps migrate towards all-electron schemes.
Other questions are specific to the Bethe-Salpeter or the
TDDFT approach.

The Bethe-Salpeter approach offers a clear physical
picture and straightforward possibilities for the analysis
of results. It seems to work over a wide range of systems.
The TDDFT approach, on the other hand, is appealing
since it calculates things in a more direct way (without
passing through electron addition and removal energies)
and is, in principle, easier to use.

Open problems in the Bethe-Salpeter approach in-
clude, of course, the need for technical developments to
overcome the bottlenecks linked to the four-point equa-
tions. Moreover, just as in G W, not all the “ingredients”
of the method are uniquely defined: how, for example,
should vertex corrections and dynamical screening be
included consistently? It is clear that the level of ap-
proximation which should be used for each ingredient in
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the various Green’s-function-based approaches is a deli-
cate and nontrivial question. One should wonder why in
the calculation of an electron-energy-loss spectrum it is
a good approximation to use £ ! constructed from a P
=Pop with DFT eigenvalues, and a much worse one
when GW eigenvalues are used, whereas in GW calcu-
lations, especially for large-gap systems, an update of
the energies entering in £ ! yields improvements for the
resulting quasiparticle energies. At first sight, this seems
contradictory. At this point we propose that one answer
may be to put all choices on the basis of a consistent
iteration scheme. This means that one starts with a GW
calculation and subsequently iterates Hedin’s equations.
The iteration first yields P, which contains a vertex cor-
rection. This explains why the electron-energy-loss spec-
trum using P=P;op with GW eigenvalues yields poor
results, but using P with GW eigenvalues and a vertex
correction yields good results. Then one can go further
and put this P into the equation for 3. Now a second
vertex is appearing, and it is has been shown that there
are cancellations between the vertex in P and the ex-
plicit one in X. It is known that it is better to consistently
neglect the vertex in both W and X, which in practice
means that a simple update of the energy denominator is
in general the most consistent thing to do in a GW cal-
culation, if one does not want to include both vertices.
Note that one quickly runs into trouble when also up-
dating the wave functions, because of the dynamical ef-
fects, whereas it sometimes turns out to be necessary to
update their spatial behavior. These are handwaving ar-
guments, though essentially these—and the success of an
approach in real calculations—justify the choices that
are made in the iteration of the equations. More
successes—and failures—of the Bethe-Salpeter ap-
proach in its actual form are needed in order to sort out
this question.

In TDDFT, calculations are less cumbersome (if the
two-point representation is chosen) than in the Bethe-
Salpeter method at the moment, i.e., using the simple
kernels available today, like that of the adiabatic LDA.
Better exchange-correlation potentials and better ker-
nels have to be found, especially if TDDFT is meant to
become a method for the calculation of absorption spec-
tra in solids. These kernels might well turn out to be
very complicated, and as difficult to treat as the Bethe-
Salpeter equation. There is some hope that, at least in
certain cases, relatively simple solutions can be found
(see Appendix C). The Bethe-Salpeter equation seems
to provide a good starting point for the derivation of
such effective kernels, since it contains the essential
physics in a structure that is actually close to that of
TDDFT.

In conclusion, it seems reasonable to suppose that
progress will come from a common effort of people
working in the fields of the Bethe-Salpeter equation and
of TDDFT.
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APPENDIX A: EXACT PROPERTIES OF f,.

Although the development of time-dependent func-
tionals is still at a very early stage compared to that of
static functionals, some of the known results for a homo-
geneous gas can be generalized to the inhomogeneous
case. For example, causality leads to Kramers-Kronig
relations for the real and imaginary parts of f.(r,1',w),
and the fact that f,.(r,z;r',¢t") is a real-valued quantity
implies that f,..(r;r',0)=f(r;r',—w)*. Besides that,
the response functions satisfy the spatial symmetry rela-
tions x(r,r’,w)=x(r',r,w), provided that the unper-
turbed system has time-reversal symmetry (no magnetic
field is applied or generated in the system). Thus one
finds that f,.(r,r',0)=f.(r',r,0).

Further constraints on the potential V. and kernel f,.
can be deduced from the quantum-mechanical equation
of motion applied to the position operator #
(d1dt (¥ (1) x|V (2))=i{ V()| [H(t),F]|¥(1))). The final
and rigorous result is (Gross et al., 1996)

fdrp(r,t)Vch[p](rJ)ZO-

This relation is also satisfied by the Hartree potential.
This is nothing other than a mathematical statement of
the physical fact that the exchange-correlation potential
does not exert a net force on the system. One also ob-
tains the corresponding “zero-torque” expression by
considering the angle operator ¢ and using the rota-
tional invariance of the Coulomb interaction, yielding

(A1)

f drp(r,0)rxXVV, [p](r,t)=0. (A2)
Corresponding properties of the exact exchange-
correlation kernel are obtained by evaluating the two
previous expressions at the density p(r,t)=py(r)
+ 6p(r,t) for arbitrary Sp(r,t). In frequency space one
gets
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f drpo(l‘)thxc[po](r,r’ »w) = _Vr’ch[p()](r’)’ (A3)

f dl’po(l‘)l'x V,fxc[po](l',l" 7w) =—-1'X Vr'vxc[p()](r,)-
(A4)

Concerning the electronic damping mechanism which is
included in f,., we should emphasize that the standard
static approximations for f,. [where f . (w):=f,.(0=0)
is a real quantity] based on the homogeneous gas predict
an infinite lifetime for plasmon excitations at small wave
vectors. This artifact is inconsistent with the fact that the
exact kernel has an imaginary part related to the multi-
pair component of the response function x,,,(q,)
(Sturm and Gusarov, 2000), that is,

4

v(q)* Im x,y,,(q, ),

w
Im[fxc(q7w)]_ [wp
where w), is the plasmon frequency. These higher-order
interactions are beyond the usual description of screen-
ing within the RPA or bubble approximation, and in-
volve the partial summations of many complex diagrams
appearing in the many-body response function.
In the homogeneous electron gas some exact relations
for the f,. kernel must hold. In particular one has the
following relations:

(i)  the compressibility sum rule, lim,_of,.(g,0=0)
=d’pe..(p)/dp®, where e€,.(p) denotes the
exchange-correlation energy per particle;

(ii)  the third frequency moment sum rule:

2/3
4 s de(p)p

limf, (q.w=)=—2p
qﬁo xXc 5 dp
6p1/3d€xc(p)/p”3,
dp ’
(iii) the static and frequency-dependent short-
wavelength  behavior:  lim,_..f.(¢q,0=0)xc

— (b/g*)[1—g(0)] [the correct values of the con-
stants b and ¢ can be found in Moroni ef al.
(1995) instead of the values used by Gross and
Kohn (1985)] and lim, _..fy.(q,07#0)
=— (87/3¢*)[1—g(0)], where g(0) is the pair-
correlation function evaluated at zero distance;

(iv) The following relations satisfied in the high-
frequency limit by the real and imaginary parts of
fxc for q<o: limwﬂxRefxc(q’w) :fxc(()’oo) + C/w3/2
and lim, ., Imf,.(q,0)=—clo’?, with c=23x/15
in the high-density limit evaluation of the irreduc-
ible polarization propagator.

These exact relations were used by Gross and Kohn
(1985) to build a Padé approximation to the f.(g
—0,w). Although these results were obtained for the
three-dimensional electron-gas case, similar relations
were obtained for the two-dimensional case (Iwamoto,
1984; Holas and Singwi, 1989) and extended to include
two electron-hole pairs in both the longitudinal and the
transverse response functions (Nifosi efal., 1998).
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Higher exact sum rules (up to seventh order) have been
derived by Sturm (1995), and they can be used as a strin-
gent test on the quality of the response functions derived
from approximated f,. functionals.”’

Additional constraints on the matrix elements of the
exchange-correlation kernel were obtained by Gonze
and Scheffler (1999) using the Keldysh formalism
adopted by van Leeuwen (1998). In particular, at the
exact exchange level the following exact relation has to
be satisfied close to the Kohn-Sham resonance energy
wl‘]‘ .

(Pylfec(@p|Pi) = (il Z =Vl h)
_<¢j|2x_Vx|¢j>_<njlv|ni>7

(AS)
where v/* is the Hartree-Fock nonlocal operator evalu-
ated with the Kohn-Sham wave functions and V, is the
exact exchange potential in DFT. The last term describes
an unscreened electron-hole attraction in contrast to the
effective interaction in the TDLDA approximation (as
discussed above). This is due to the fact that Eq. (AS)
for the kernel explicitly shows two parts, namely, the
first two contributions containing a shift linked to
Hartree-Fock electron addition and removal energies,
and the second one correcting with respect to those en-
ergies, whereas the TDLDA kernel never passes explic-
itly through electron addition and removal energies. In
the single-pole approximation, expression (A5) leads to
a correction of the excitation energies with respect to
Kohn-Sham eigenvalue differences, which turns out to
be identical to the correction obtained by Gorling (1996)
in a first-order perturbation theory, in the difference be-
tween the many-body and the second-quantized Kohn-
Sham Hamiltonians. In addition, the inclusion of corre-
lation effects leads to dynamically screened matrix
elements through the same unscreened exchangelike
term and an additional screened Coulomb interaction
(Gonze and Scheffler, 1999). The similarities of this ap-
proach to the GW quasiparticle correction and the in-
clusion of electron-hole (excitonic) effects within the
Bethe-Salpeter equation of many-body theory are de-
scribed in Sec. VL

Another rigorous constraint is known as the
harmonic-potential theorem (Kohn, 1961; Dobson,
1994). It deals with the motion of an interacting many-
electron system confined in a parabolic potential well
under a spatially uniform time-dependent external field.
This system exhibits sharp resonances at the bare
harmonic-oscillator frequency, independently of the
electron-electron interaction. This exact result for the
response of an interacting electron system stems from
the invariance of the harmonic potential under a trans-
formation to a homogeneously accelerated reference
frame (Vignale, 1995). In this case the dynamics of the
electronic center of mass is completely decoupled from

In particular, the TDLDA and RPA satisfy the first three
odd-frequency sum rules but not the seventh (Sturm, 1995).
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that of the internal degrees of freedom. This puts inter-
esting constraints on approximate theories of time-
dependent many-body physics such as TDDFT. Note
that the TDLDA approximation to TDDFT satisfies the
harmonic-potential theorem because the exchange-
correlation potential follows the density when the latter
is moved (that is, the exchange-correlation potential is
local in both time and space; see below). The Gross and
Kohn (1985) approximation violates the harmonic-
potential theorem as shown by Dobson (1994), but it is
possible to perform a simple modification for frequency-
dependent local theories to satisfy this theorem (Vignale
and Kohn, 1996; Dobson, Bunner, and Gross, 1997; Vig-
nale et al., 1997). The essential idea is to make the action
functional depend on the relative density p,.,(r,t)=p(r
+ Rcpy(2),t), where Ry (2) is the time evolution of the
center of mass of the system. In this spirit an approxi-
mate frequency-dependent exchange-correlation func-
tional for small displacements from the equilibrium den-
sity p, can be constructed, as was done earlier by Gross
and Kohn (1985), but now satisfying the harmonic-
potential theorem. Thus the exchange-correlation po-
tential reads V,.(r¢)=VEPA(r)+ f;odt’fxc[po(r) 1
—t"18p,(r,t"), with f,. as given in Gross and Kohn
(1985).%1

From the previous general relations for f,, one can
see that a local-density approximation for time-
dependent linear response in general does not exist, as
long as one keeps on describing dynamical exchange-
correlation effects in terms of the density only. This
means that f,. is a strongly nonlocal functional of the
density. This problem can be overcome if the current
density is added as a basic variable in a generalized
Kohn-Sham scheme (Vignale and Kohn, 1996). In this
way one can derive a local current-density-functional
theory of both current and density responses valid for
slowly varying densities and potentials. This scheme was
generalized by Vignale et al. (1997) to include dynamical
contributions beyond the linear response. In particular,
exchange and correlation beyond the TDLDA lead to
the appearance of complex and frequency-dependent
viscoelasticity stresses that, in the homogeneous
electron-gas case, provide an additional damping mecha-
nism to the decay into electron-hole pairs.

The fact that the kernel is very nonlocal is also con-
firmed by the calculation of the correlation energy of the

STA  different perspective in functional development is
achieved by the fact that the virial theorem for the exchange-
correlation potential has been shown to hold for time-
dependent electronic systems (Hessler ez al., 1999). Moreover,
the time dependence of the exchange-correlation energy is
solely determined by the exchange-correlation potential
[0E ../t =fdr dp(x,t)]dt V. (rt)]. These exact relations have
important implications for the construction of approximate
time-dependent functionals. In particular, the TDLDA ap-
proximation is shown to fail badly in regions where the time-
dependent density differs considerably from its ground-state
counterpart (Hessler et al., 1999).
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homogeneous electron gas by Lein et al. (2000). They
have shown that the nonzero spatial range of f,.(r,r",w)
cannot be neglected, whereas the frequency dependence
is less important as far as total correlation energies are
concerned. In fact, Gonze et al. (1997) have indicated
that f,, must have a 1/¢* divergence, for g—0. This con-
tribution is supposed to solve the “metal-insulator para-
dox,” i.e., the seeming contradiction concerning systems
that are in reality nonmetallic, but have a vanishing
Kohn-Sham gap.

APPENDIX B: DERIVATION OF THE EQUATIONS
COMMON TO THE TDDFT AND BETHE-SALPETER
APPROACHES

1. Dyson-like equation for the macroscopic dielectric
function

Given a matrix of the form

M:(moo m{), (B1)
m, m
with m, being a ¢ number, its inverse is
M”:(O ! )+ :
0 m! (moo—mle_lmz)
1 —mim™!
% -m 'my, m T 'mamim ) (B2)

If M is the dielectric function e=1—vP in its matrix
form in reciprocal space (G, G"), then

1

ev=—1=lew—¢e{€ '&,]. (B3)
€00
The quantities £y, &/, €,, and € are given by
eg0=1—voPg, (B4)
[e]]e=—voPog. G#O, (BS)
[82]G’:_UG’PG’0’ GIQEO, (B6)
[G]GG/: 5GG’_UGPGG’ , G,G,#:O (B7)
This yields
-1
SM:1_UOPOO_ E UOPOGEGG'UG’PG’O' (BS)
G,G'#0
Now one defines
£G6'=06,6' ~VePga (B9)
with
. 0, G=0 10
= B
ve UVG» G#O’ ( )

i.e., v indicates that the G=0 contribution is to be left
out in the bare Coulomb interaction. In matrix notation
this yields
1 of

. (B11)

8_ r=
GG (82 €
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Then the inverse of e is given by using Eq. (B2),

T
=i ! 0 B12
Creleln —ele, ) ( )

Thus Eq. (B8) leads to Eq. (2.9), if in the latter P is
defined as

_ .
PGG’EPGG'+ z PGKSKK/UK’(Q)PK’G’ . (B13)
K.K'
This gives the wanted matrix expression,
P=P+Ps 'OP, (B14)

and, together with & '=(1-vP)"!, the Dyson-like
equation (2.10).

2. Effective two-particle equations

In order to solve a Dyson-like equation such as Eq.
(2.20), one has to invert a four-point function for each
frequency. This problem can be reformulated as an ef-
fective eigenvalue problem; in fact, the physical picture
of interacting electron-hole pairs suggests using a basis
of eigenfunctions ¢, of the effective one-particle Hamil-
tonian, from which the starting density matrix had been
constructed, expecting that only a limited number of
electron-hole pairs will contribute to each excitation
(see Fetter and Walecka, 1971). These functions are sup-
posed to form an orthonormal and complete set. Any
four-point function § can then be transformed as

S(ry,r §1'§ »l'é)

= n]z g d’:l(rl ) l//nz(r{) wn3(r2) ¢:4(ré)5(n1n2)(n3n4) .

(B15)
The four-point independent-quasiparticle polarization
4
Piop,

4
PIQP(I’1 T2 ,13,14)

_ 2 (fn_fn’) ¢: (r1)¢n’(r2) lﬂ;:(l'at)lﬂn(fa)

€,— €, — W

(B16)
is then diagonal in this basis and
reads 4PIQP (nyny)(nyny) = (fnz_fn]) 5}11 ,n35n2 My / (enz

—enl—w). With the definition HE[1—4P1QPK]71, Eq.
(2.20) becomes S =T_I4P,Q p. In transition space,
T ) n ) = L€y = €, = ©) By B m,
+(fml_fmz)K(mlmz)(m3m4)]611,"2)("3n4)

X(e,,4—en —w).

3
Defining an effective two-particle Hamiltonian,
2p = —
H(nlnz)(n3n4)_(6n2 6”1)5"1”35"2’”4

+(fn1_fn2)K(n1n2)(n3n4)5 (B17)
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one can then rewrite S as
12 -1
S(nlnz)(n3n4)_ [H P — ]w](nlnz)(n3n4)(fn4_fn3)‘ (B18)

The one-particle transition energies on the diagonal are
the eigenvalues of the starting one-particle Hamiltonian.
Schematically, the effective Hamiltonian [Eq. (B17)] has
the form

A B
H(2£ln2)(n3n4):( 0 D)’ (B19)
with
(niny)|
3 (n3ng)— {v'c’} {c’v’}
 fue =S, Keyero)
{ev} | =[Kpeyeron]* —[H?fc’;fircr)]*
(B20)
‘ {v'o’} {e'e’}
B={vet | Kooy  Keoee)
levd | =Kenwiy  ~Keevyeren
(B21)
| oy {e'e’}
D= {vi} | (€, €,)8,, 65 0
{cc} 0 (€= €.)Ocer Oz
(B22)
The resonant part is defined as
H%II)];;ZIC')E(EC_Ev)6v,v’5c,c’+K(vc)(v’c’)' (B23)

It corresponds to transitions at positive absorption fre-
quencies . Due to the factor (f,,~f,,) in Eq. (B18),

only the first column of

M(nllnz)(n3n4):[Hzp_lw](nllnz)(n3n4) > (B24)
i.e., with (n3ng)={c’v’} and {v’'c’}, contributes to the
calculation of S.

Defining A ,=A — I w, it is clear that only A ! is going
to be relevant, in other words, the part A in Eq. (B20).
This means that only pairs containing one filled and one
empty Bloch state contribute, which is physically mean-
ingful. It reflects the fact that only the hole-particle part
[Eq. (3.7)] of the two-particle Green’s function yields the
absorption and loss spectra, as pointed out in Sec. IILA.

It is this part A in Eq. (B20) which is referred to as
the two-particle Hamiltonian H?” in the present work. It
is in general not Hermitian and can be further separated
into four blocks: two blocks on the diagonal with the
transition energies and the interaction kernel K, and
two off-diagonal coupling blocks with contributions only
from the interaction kernel:
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HZp,res Hcoupling
2p
H" = _[Hcoupling]* _[HZp,res:l* : (B25)
The resonant part is Hermitian, (H?*""*)*

=(H*"*)T while the coupling part alone is symmetric,
Heovpling— ( pyeoupling) T The part in the lower right is de-
noted antiresonant. Neglecting the coupling part is
called the Tamm-Dancoff approximation.

The spectral representation of the inverse two-particle
Hamiltonian is

(nyngyar—1 4 *(n3ny)
AYTIN AL

2p -1 _
[H Iw](nlnz)(”3”4) )\,E)\, E,—o

(B26)

which holds for a system of eigenvectors and eigenval-
ues of a general (not necessarily Hermitian) matrix de-
fined by HY”A,=E,A,, where Ny
EEnlnzA:("an)A irflnz) is the overlap matrix of the gen-
erally nonorthogonal eigenstates of H?”. Hence H? is
diagonalized, and from its eigenvalues E, and eigen-
states A}1"? the four- and two-point quantities of inter-
est are constructed. In particular, one obtains the mac-
roscopic dielectric function given in Eq. (2.23), and an
equivalent expression for y.

APPENDIX C: AN f,. FROM THE BETHE-SALPETER
APPROACH

In this subsection, we derive a time-dependent
density-functional formalism for excitation spectra from
the many-body Bethe-Salpeter equation (Reining et al.,
2002). The results obtained using an approximation to
this kernel, denoted as RORO, were already discussed
in Sec. V.C.

The main idea is to compare the effective two-particle
Hamiltonians H?7-TPPFT and H?P-BSE derived for TD-
DFT and the Bethe-Salpeter equation, respectively. If
the quasiparticle and Kohn-Sham eigenfunctions are
equal, and if all matrix elements of H?P-TPPFT and
H?"-BSE involving those transitions which actually con-
tribute to the spectrum are equal, than the resulting
spectra will be identical. This yields the condition

1
fe4,G,G)= >

ninynzngy (fn1 _fnz)

(@*)"(n3,n45G").

@ (ny,n,;G)

X Fn, (B27)

ny)(nzny)
The factor ( f"1_ fnz) can never be zero for the particle-

hole and hole-particle contributions of a nonmetal. The
matrices ® are defined as

q)(nl %) ,l‘) =:l//n1(l') lﬁ:z(l’)

and the operator F is

_¢ . QP_ _QP__ DFT DFT
F(nlnz)(n3n4)_(6n2 enl Enz +€n1 )5n1n35n2n4

_(fnl_fnz)W(nlnz)(n3n4) . (B29)

(B28)
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It is now clear that, if the transformation from real to
transition space x;— #,(x;) was complete in all four in-
dices, Eq. (B27) could never be satisfied, since otherwise
H?P-TPDET and H?P-BSE should also be equal in real
space—and they cannot be, due to the way the & func-
tions are put. On the other hand, if the two operators
cannot be made equal, then the spectra can be equal
only if at least one of the two operators (in that case, f,.)
is energy dependent. However, in practice only a finite
number of transitions contribute to the optical spectrum.
This means that one can use an incomplete basis in tran-
sition space. Therefore one can still find a static operator
that satisfies the required equality in transition space in
a particular energy range, even though the real-space
operators are not equal. (The invertibility of the matri-
ces ® may, however, be questionable in some particular
cases).

In view of the ongoing discussions about the
exchange-correlation kernel it is interesting to examine
some of its features, and in particular its long-range be-
havior for solids. To this end, we note that
D, k1 qk(G=0) goes to zero as q for small g. Since
W ,c0c behaves as a constant, if @ is invertible this im-
plies immediately that f,.(q,G=G’'=0) behaves as
1/g%. Note that there are two such long-range terms
coming from (a) the electron-hole attraction (of nega-
tive sign) and (b) the energy shift between the quasipar-
ticle and the DFT eigenvalues [of positive sign, as pre-
dicted by Gonze et al., 1997, on the basis of their study
of the polarization-dependence of the exchange-
correlation energy (Gonze et al., 1995; Resta, 1996), and
as verified by a comparison of Kohn-Sham and experi-
mental linear and nonlinear susceptibilities by Aulbur
et al., 1996]. A discussion of how this approximated ker-
nel reproduces the optical spectrum of semiconductors
for the case of bulk silicon is presented in Sec. V.C.
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