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Quantum theory has found a new field of application in the realm of information and computation
during recent years. This paper reviews how quantum physics allows information coding in classically
unexpected and subtle nonlocal ways, as well as information processing with an efficiency largely
surpassing that of the present and foreseeable classical computers. Some notable aspects of classical
and quantum information theory will be addressed here. Quantum teleportation, dense coding, and
quantum cryptography are discussed as examples of the impact of quanta on the transmission of
information. Quantum logic gates and quantum algorithms are also discussed as instances of the
improvement made possible in information processing by a quantum computer. Finally the authors
provide some examples of current experimental realizations for quantum computers and future

prospects.
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lation of quantum theory during the first few decades.
As the century went by, we witnessed a continuous in-
crease in the applications of quantum mechanics, begin-
ning with atomic physics and continuing with nuclear
and particle physics, optics, condensed matter, and
countless other developments. As the century was clos-
ing a new field of applications emerged that gave quan-
tum physics a refreshing twist. While it seems inevitable
that physics would be affected by the availability of
more and more powerful computers, which have revolu-
tionized many areas of science, it is more surprising to
find that quantum physics may influence the fields of
information and computation in a new and profound
way. For instance, fundamental aspects of quantum me-
chanics such as those entering Einstein, Podolsky, and
Rosen (1935) states have found unexpected applications
in information transmission and cryptography.

Why has this happened? It began with the realization
that information has a physical nature (Landauer, 1961,
1991, 1996). It is imprinted on a physical support (the
rocky wall of a cave, a clay tablet, a parchment, a sheet
of paper, a magneto-optic disk, and so forth), it cannot
be transmitted faster than light in vacuum, and it abides
by natural laws. The statement that information is physi-
cal does not simply mean that a computer is a physical
object, but in addition that information itself is a physi-
cal entity. In turn, this implies that the laws of informa-
tion transmission are restricted or governed by the laws
of physics—in particular, those of quantum physics. In
fact these laws implying linearity, entanglement of states,
nonlocality, and the indetermination principle make pos-
sible new and powerful transmission tools and informa-
tion treatments, as well as a prodigious efficiency of
computation.

A typical computation is implemented through an al-
gorithm in a computer. This algorithm is now regarded
as a set of physical operations, and the registers of the
quantum computer are considered to be states of a
quantum system. The familiar operation of initializing
data for a program to run is replaced by the preparation
of an initial quantum state, and the usual tasks of writing
programs and running them correspond, in the new for-
mulation, to finding appropriate Hamiltonians for their
time-evolution operators to lead to the desired output.
This output is retrieved by a quantum measurement of
the register, which has deep implications for the way
quantum information must be handled.

We shall see that information and computation blend
well with quantum mechanics. Their combination has
led to unexpected new ways that information can be
transmitted and processed, extending the known capa-
bilities in the field of classical information to unsus-
pected limits, sometimes entering the realm of science
fiction, sometimes surpassing it.

The advances have been especially remarkable in the
field of cryptography, where they have provided abso-
lutely secure systems for the quantum distribution of
keys. Quantum computation is also one of the hot re-
search fields in current physics, where the challenge is to
realize experimentally a computer complex enough to
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implement the new algorithms exploiting massive paral-
lelism. Such a quantum computer would offer a dramatic
improvement for solving hard or classically intractable
problems.

We first review the essentials of quantum information
theory and then discuss several of their consequences
and applications, some specifically quantum, such as
quantum teleportation and dense coding, and some with
a classical echo, such as quantum cryptography. Next we
review the fundamentals of quantum computation, de-
scribing the notion of a quantum Turing machine and its
practical implementation with quantum circuits. We de-
scribe the idea of elementary quantum gates for univer-
sal computation and examine how this extends the clas-
sical counterpart. We also provide a discussion of the
basic quantum algorithms. Finally we give a general
overview of some of the possible physical realizations of
quantum computers.

In both the information and computation sections we
place special emphasis on providing an introduction to
the classical aspects of these disciplines in order to bet-
ter clarify what quantum theory adds to them. Actually,
this is also what we do in physics.

Il. CLASSICAL INFORMATION

Information is discretized: it comes in irreducible
packages. The elementary unit of classical information is
the bit (or cbit, for classic bit), a classical system with
only two states, 0 and 1 (false and true, no and yes, . . . ).
Any text can be coded into a string of bits; for instance,
it is enough to assign to each symbol its ASCII code
number in binary form and append a parity check bit.
For example, quanta can be coded as

11100010 11101011 11000011 11011101 11101000
11000011.

Each bit can be stored physically; in classical comput-
ers, each bit is registered as a charge state of a capacitor
(0=discharged,] =charged). They are distinguishable
macroscopic states and rather robust or stable. They are
not spoiled when they are read in (if carefully done) and
they can be cloned or replicated without any problem.

Information is not only stored; it is usually transmitted
(communication) and sometimes processed (computa-
tion).

A. The theorems of Shannon

The classical theory of information is due to Shannon
(1948, 1949), who in two seminal works definitively laid
down its principles in 1948. With his celebrated noiseless
coding theorem he showed how compressible a message
can be, or equivalently, how much redundancy it has.
Likewise with his coding theorem in a noisy channel, he
also found the minimum redundancy that must be
present in a message in order for it to be comprehen-
sible when reaching the receiver, despite the noise.

Let A:={ay,...,ay4} be a finite alphabet, endowed
with a probability distribution p 4:a;—p4(a;), with
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Zi<i=|apa(a;)=1. Sometimes we shall write this as A
={a;,p(a ,-)}‘f:”l . Let us consider messages or character
strings x;x, --x,€ A", originating from a memoryless
source, i.e., a symbol a appears in a given place with
probability p 4(a), independently of the symbols enter-
ing the remaining sites in the chain.! Shannon’ first
theorem asserts that, if n>1, the information supplied
by a generic message of n characters [and thus
(nlogy|A]) bits long] essentially coincides with that
transmitted by another shorter message, of bit length
nH(A), where H is Shannon’s entropy,

H(A)= ZlAl pala)log, pa(a;) e[0]og|All.

IS
1
In other words, each character is compressible up to
H(A) bits on average; moreover, this result is optimal
(Roman, 1992; Schumacher, 1995; Welsh, 1995; Preskill,
1998).

The basic idea underlying the proof is simple: to take
notice only of the typical messages. Let us assume for
clarity a binary alphabet (A={0,1}). Let p,1—p be the
probabilities of 0,1, respectively. In a long message of n
bits (n>1), there will be approximately np 0s. Let us
call typical messages those with a number of 0’ of the
order of np. Asymptotically (n—o) there are 2"7(4)
of them, among a total of 2" messages. The prob-
ability P:(xq,...,x,)—~p(xy) --p(x,) of the messages
n (>1) bits long tends to get concentrated on this re-
duced ensemble consisting of the typical strings, which
explains Shannon’s result. The atypical messages can be
ignored in probability. It suffices to transmit through the
communication channel (assumed to be completely
noiseless) the binary number of length n H(A) assigned
to each typical message upon common agreement be-
tween the sender and the recipient, so that the emitted
message can be identified on reception.” The optimality
of Shannon’s first theorem is easily arguable: all 2//(4)
typical sequences are asymptotically equiprobable and
thus they cannot be represented faithfully with fewer
than nH(A) bits.

If the transmission channel is noisy (the common
case), the fidelity of the information is lost, since some
bits may get corrupted along the way. To counteract the
noise of a given channel one resorts to redundancy, by
cleverly coding each symbol with more bits than strictly
necessary so that the erroneous bits might be easily de-
tected and restored. A price is paid however, since the

The natural languages are not like these (for instance, in

ordinary Spanish there exists no digram like QN). Neverthe-
less, they can be considered, to a good approximation, as a
limit of ergodic Markovian languages to which the Shannon
theorem can be extended (Welsh, 1995).

’There exist very practical methods for classical coding with
an efficiency close to the optimal value, such as the Huffman
code (Roman, 1992), with multiple applications (facsimile,
digital TV, etc.). The essence of this code is to assign shorter
binary strings to the most frequent symbols.
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transmission of essential information is thus made
slower. Shannon’s wonderful second theorem quantifies
this issue.

Let X be the alphabet of the transmitter station (of a
memoryless source) and Y be that of the receiver sta-
tion. Let [py|x(y;|x;)] be the stochastic matrix for that
channel, with entries given by the probabilities that the
input symbol x;e X appears as y;e Y on output. The
marginal probability distribution for Y is given by
py(y)=Zilpyx(y;.xi) =pyix(yjlxi)px(x;)]. The
channel’s ability to transmit information is measured by
its  capacity C:=sup, I(X:Y)=max, I(X:Y), where
I(X:Y)=1(Y:X) is the mutual information,

pY,X(yj X;)
PY()’j)PX(Xi) ’

or the information about X (Y) conveyed by Y (X).
The convexity of the log makes /(X:Y)=0 (knowing Y
can never decrease the information about X).

The capacity C may be viewed as the number of out-
put bits per input symbol that are correctly transmitted.
Its computation is usually very difficult.

Many channels are binary symmetric: each transmit-
ted bit has the same probability p of being reversed, i.e.,
of being erroneous upon arrival. These are the channels
considered here. For them we have C=1-H,(p)
=:C(p), with  Hy(p):=—plog,p—(1-p)log(1-p).
Note that a channel with p =1} has capacity C(3)=0 and
would be totally useless for transmission since it would
transform any input binary word into a random ouput
sequence. Thus we shall assume that p<%.

In the transmission of a word w e{0,1}", an error e
€{0,1}" may be produced such that the received word is
w'=w+e (addition mod 2). A subset of words
C,C{0,1}" encoding (i.e., in bijective correspondence
with) a collection of messages is said to be an error-
correcting classical code for ee&,C{0,1}" if (w
+&)N(w'+E,)=0 for any w#w'eC,. That is, re-
gardless of the distortion produced by the errors on a
code word w eC,, there is no overlap between the dif-
ferent sets w+¢&,, and decoding is possible without am-
biguities. If, upon previous agreement, it is known which
specific message corresponds to each code word, it will
be enough to send this one word instead of the message;
the message can be recovered at the other end of the
channel after “cleaning up” the received word from the
possible errors that might affect it. In this way the trans-
mitted code word can be identified and decoded. In the
practical use of a code C,, mistakes can occur in the
restoration of the message, caused by errors outside &, ,
that is, out of the security framework of the code. But as
long as the frequency of failures remains very low, the
risk will be bearable. It is apparent that, to minimize this
risk, the words of the code should be as far apart from
each other as possible (in the Hamming sense, i.e., in the
number of bits in which they differ) so that errors
caused by overlap between two distinct words of code
will diminish.

I(X:Y) =2 2 Py.x(yj.xp)log, 2)
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One defines the rate of the code C, as R:=log,|C,|/n.
This measures the number of informative bits per trans-
mitted bit. It is easy to argue that in order for the code
to be reliable, its rate must not exceed the capacity of
the channel: R<C. In fact, when transmitting a code
word w with length n, a number of np reversed bits will
be produced on average, hence an error e that will likely
be one of the 2"2() typical sequences. For the decod-
ing to be reliable, there should be no overlap between
the error spheres with centers at the code words, and
thus 2"/2(P)|C,|<2", thereby R<C. This result suggests
that the capacity C is an upper bound to all faithful
transmission rates.

Shannon’s second theorem closes this issue in the
asymptotic limit. Suppose, given a binary symmetric
channel, a transmission rate R not exceeding the capac-
ity of the channel (0<R<C), an >0 arbitrarily small,
and any sequence {N,}; of integers such that 1<N,
<2"R_ Then the theorem asserts that there exist codes
{C,C75}] with N,, elements (code words), appropriate
decision schemes for decoding, and an integer n(e),
such that the fidelity F(C,) or probability that a given
decoded message coincides with the original is =1—¢
(that is, the maximum probability of error in the identi-
fication of the code word on reception is <€) for all n
=n(e) (Roman, 1992; Welsh, 1995). Moreover, it is pos-
sible to make the error probabilities tend to 0 exponen-
tially in #.

The theorem is optimal: the capacity C should not be
exceeded if the transmission is to be faithful. As a mat-
ter of fact, it is known that for each sequence of codes
{C,}T with |C,|=[2"R], whose rate exceeds the capacity
of the channel (R>C), the average error probability
tends asymptotically to 1.

The proof of this theorem relies on codes chosen at
random and decoding schemes based on the maximum-
likelihood principle; unfortunately it is not constructive
but existential, leaving open the practical problem of
finding codes that cleverly combine good efficiency in
correcting errors, simple decoding, and a high rate of
transmission.

B. Classical error correction

Errors in the storage and processing of information
are unavoidable. A classical way of correcting them is by
resorting to redundancy (repetition codes): each bit is
replaced by a string of n=3 bits equal to it,

0—~00---00, 1—11---11,
n 0's n 1s

and, if by any chance an error occurs in such a way that
one of the bits in one of those strings gets reversed (for
instance 00000—01000), to correct the error it is enough
to invoke the majority vote. Let p be the probability of
any bit’s getting spoiled. In general, several bits of the
n-tuple may be reversed. When p <3, the probability of
the majority rule failing can be made as small as desired,
if n is sufficiently large. It is apparent that if the n-tuples
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of bits are systematically and frequently examined, so
that it is very unlikely that errors will occur at two or
more bits, then the application of this simple method
will clean up the n-tuples and their error-free state will
be restored. However, the price paid might be too high,
since with codes of length n sufficiently large so as to
ensure a small degree of error during the detection, the
transmission rate can turn out to be prohibitively slow
(in our case it is 1/n source bits per channel bit).

So far we have been describing correction codes
CC{0,1}" for errors in £EC{0,1}". More generally, we can
consider g-ary alphabets (whose symbols we shall as-
sume to be the elements of the finite field I, with g
=p/ elements, p being a prime). Given two words X,y
e{0,1,...,q—1}", let dy(x,y) be the Hamming distance
between them (number of locations in which x,y differ).
Let d:=dy(C):=inf, ., cdy(x,y) be the minimum dis-
tance of the code. Then the code C allows correction of
errors that affect up to a maximum number ¢:=|3(d
—1)] of positions:® it is enough to replace each received
word by the closest code word in the Hamming metric.*
Therefore the most convenient codes are those with a
high d, but this is at the expense of decreasing |C|. If M
is the number of code words, we shall call it a (n,M,d),
code. Its rate is defined as R:=n 1logq

When C is a linear subspace of I, the code is called
linear. The linear codes are of the form (n,q*,d) .
where k is the dimension of the linear subspace C; for
them d coincides with the minimal Hamming length of a
nonvanishing code word, and the search for the code
word nearest to each received word is greatly simplified.
It is customary to represent a linear code as [n,k,d], , or
simply as [n,k], when d is irrelevant. Its rate is k/n.
Given a code C of type [n,k], , the matrix G, k Xn, with
rows given by the components of the vectors in a basis of
C, is called a generator matrix for C. Defining now a sca-
lar product in Iy in the canonical way, we can introduce
the dual code C* of C. A generator matrix H for C* is
known as a parity-check matrix for C. Notice that C={u
e I, :Hu=0}, which justifies in part the name “parity
check” given to H, for it allows us to easily check
whether a vector in lF‘" belongs to the subspace C.

The coding apphes bljectlvely and linearly ]Fk to a
code CCIy of type (n, q*.d) q¢» and it is 1mplemented as
follows. Let {e1,...,e,CIY; be a basis of C. Given a
source word w'=(wy,...,w;) € ]F it gets assigned a
code word c¢(w):=2;w;e;. In terms of the generator ma-
trix, w—w'G. Let us call m:wr—>c(w) this injection.
During the transmission, c(w) could get corrupted, be-
coming u:=c(w)+e, where e € £ is a possible error vec-
tor. It is evident that e e u+C. In order to decode it, the

3Notation: | x| is the largest and [x] the smallest integer <x or
=x, respectively.

4For instance, for the repetition code C={0---0,1---1, ... ,(q
—1)---(¢g—1)}, with ¢ code words of length n, we have d
=n. Thus this code exactly corrects | (n—1)/2] errors.
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criterion of minimal Hamming distance is applied, re-
placing u by 7~ '(u—u,), where u, is an element of the
coset u+C, which minimizes the distance to the origin
(such a u is known as a leader of u+C). The linearity of
the code allows us to economize in this last step. We
make a lookup table containing for each coset v+C
e]FZ/C its syndrome Hv (which uniquely characterizes
the coset) and a leader v. Upon receiving u as a mes-
sage, we compute the syndrome Hu and search for its
corresponding leader u in the table; next, decoding pro-
ceeds as stated earlier (Macwilliams and Sloane, 1977;
Roman, 1992; Welsh, 1995). The original message is
faithfully retrieved if and only if the error coincides with
one of the leaders in the table.

Some of the most relevant linear codes are as follows
(Macwilliams and Sloane, 1977; Roman, 1992; Welsh,
1995):

(1) The repetition code C={0---0,1---1,--,(¢—1) (¢
—1)}, of type [n,1,n],. Although its minimum dis-
tance is optimal, its rate is dreadful.

(2) The Hamming codes H,(r), arguably the most fa-
mous. These are codes of the type [n=1+¢g+---
+qr_1,k=n—r,d=3]q, and they are perfect in the
sense that the set of Hamming spheres with radius
[(d—1)/2] and center at each code word fills ]FZ.
These codes have rates R=1—r/n that tend to 1 as
n—o, but they correct only one error.

For instance, H,(3) is of type [7,4,3], and rate
4/7. A parity-check matrix for this code is

0001111
H=[0 1 1.0 0 1 1] (4)
1010101

Its decoding is particularly simple. Let u be the
word received instead of the code word w, and as-
sume that u# has only one corrupted bit. The syn-
drome s(u):=Hu coincides in this case with the bi-
nary expression of the position occupied by the
erroneous bit. Negating this single bit will thus suf-
fice to clean up the word and get the correct code
word. For example, if #=0110001, then s(u)=110,
so that the incorrect bit is the sixth one, and hence
w=0110011.

(3) The Golay codes G,4 and G,3. These are binary, of
type [24,12,8], and [23,12,8],, respectively. They
are probably the most important codes.

The code Gy, is self-dual, i.e., C=C*, which sim-
plifies decoding. Its rate is R=1/2 and allows the
correction of up to three errors; it was used by
NASA in 1972-1982 for the transmission of color
images of Jupiter and Saturn from the Voyager
spacecrafts.

The code Gys is perfect and it gives rise to Gy
when augmented with a parity bit.

The Golay codes Gy, and Gy are ternary, of type
[12,6,6]5 and [11,6,5]5, respectively. As before, Gy,
is self-dual, while Gy; is perfect and produces G,
when a parity bit is appended.
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The codes Gy, and Gy, have very peculiar combi-
natorial properties; their groups of automorphisms
are My, and 2.M;,, where M,,; and My, are the
famous sporadic groups of Mathieu. This latter
group is the subgroup of Sy, generated by two spe-
cial permutations of 12 cards labeled from 0 to 11:
0,12,...,11—~11,10,9,...,0 and 0,1,2,...,11
—0,2,4,6,8,10,11,9,7,5,3,1. It is also the group of mo-
tions of the form T,»T]fl on a “Rubik” icosahedron,
where 7; indicates a rotation of angle 27/5 degrees
around the ith axis of the icosahedron (Conway and
Sloane, 1999). As a matter of fact, it was the discov-
ery of the Golay codes that drove further the study
of the sporadic groups, which resulted in the com-
plete classification of the finite simple groups with
the discovery by Griess in 1983 of the “monster” or
“friendly giant” group, finite and simple, an enor-
mous subgroup of SO(47X59x71) with about 10°*
elements.

(4) The Reed-Muller binary codes RM(r,m), with 0
<r<m. These are of the type [n=2"k
=Z,<,( ]’-"),d=2m_’]2. Their rates, for fixed r, tend
to 0 when increasing m. They rank among the oldest
codes known. The code RM(1,5), of type
(32,64,16),, is able to correct up to seven errors
with a rate of R=3/16. It was used in 1969-1972 to
transmit from the Mariner spacecrafts the black and
white photos of Mars.

(5) The Reed-Solomon codes generalize the Hamming
codes. They have been heavily employed by NASA
in the transmission of information during the Gali-
leo, Ulysses, and Magellan missions to deep outer
space, and currently they are used everywhere, from
CD-ROMs to the hard disks of computers.

(6) The algebraic-geometric Goppa codes G,(D,G).
These interesting generalizations of the Reed-
Solomon codes have led to the discovery of families
of codes that are asymptotically good, that is, fami-
lies containing infinite sequences {[n;,k;,d;],} of
codes, with n;—%, such that the sequences
{k;/n;,d;/n;} of rates and minimum relative dis-
tances are bounded from below by certain positive
numbers (Macwilliams and Sloane, 1977; Roman,
1992; Stichtenoth, 1993; Blake et al., 1998).

To obtain good encodings it is advisable to use long
codes that not only permit sending many different mes-
sages but also have a large minimum distance that allows
for correcting sufficiently many errors. Given a code C
=[n.,k.d],, let R(C):=k/n be its rate and &6(C) :=d/n its
minimum relative distance. A theorem of Manin asserts
that the set of limit points of {(8(C),R(C))e[0,1]%},
where C is a code on F, is of the form {(J,R)
€[0,1]%5€[0,1].0sR=<a,(0)}, where a,(d) is a con-
tinuous function of §e[0,1], decreasing in [0,1—q '],
such that a,(0)=1,a,(8)=0 if 1—g '<ds<1 (Stich-
tenoth, 1993).

Let H, be the g-ary entropy function H,(xe[0,1
—q ')=x log,(q—1)—xlog,x—(1—x)log,(1—x). The
following bounds for the function a,(d) in the relevant
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FIG. 1. Asymptotic bounds for ¢=2 (above) and g=11? (be-
low). The dark zone is limited by the lower and upper bounds
given in the text by Egs. (5)—(9).

interval e[0,1—¢ '] are known (Roman, 1992; Stich-
tenoth 1993; Blake et al., 1998):

¢ The Plotkin upper bound:
a(d)<1-(1-q¢ H7's (5)
e The Hamming or sphere-packing upper bound:
a,(O)<1—Hy(32). (6)
e The Bassaligo-Elias upper bound:

ay(O)<1-H][6—0(6—0)], with 6:=(1—q").
(7

e The Gilbert-Varshamov lower bound:

a,()=1—H,(9). 8)
This last one is very important, since it ensures the
existence of codes as long as desired with minimum
relative distance & and rate R, both asymptotically
positive.

e The Tsfasman-Vladut-Zink lower bound: if g is a
square, then on [0,1—(\Jg—1) '] one has

1
aq(S)B(l— @_1) -4, )

which is stronger than the Gilbert-Varshamov bound
in some places from g=7 on.

For an illustration see Fig. 1.

Rev. Mod. Phys., Vol. 74, No. 2, April 2002

o>

e

-

1
¥
!

FIG. 2. Parametrization of the states of one qubit: the Bloch
sphere.

lll. QUANTUM INFORMATION

The quantum information theory, being an extension
of the classical theory, is essentially a product of the past
decade (Bouwmeester, Ekert, and Zeilinger, 2000;
Nielsen and Chuang, 2001).

In quantum information, the analog of the classical bit
is the qubit or quantum bit (Schumacher, 1995). It is a
two-dimensional quantum system (for instance, a spin 7,
a photon polarization, an atomic system with two rel-
evant states, etc.), with Hilbert space isomorphic to (2.
Besides the two basis states |0),|1), the system can have
infinitely many other (pure) states given by a coherent
linear superposition «|0)+ g|1). The Hilbert space of n
qubits is the tensor product (@ - ®(2=(2", and its
natural basis vectors are [0)®---®|0)=:|0--- 0), |0)
®-@[1)=/0--- 1),...,]1)®---®|1)=:1--- 1).  For
this basis, also known as the computational basis, we
shall assume lexicographic ordering. When appropriate,
we shall briefly write |x) to denote |x, ;- x), with
x=xg+2x;+--+2" 1x,_;. Thus |5)=]0---0101).

It is possible to extend two-level qubits to qudits or
d-dimensional systems (d=2; Rungta et al., 2001). This
leads to an extension of the binary quantum logic. Using
d computational levels we can reduce the number n, of
qubits needed for a computation by a factor of |log, d|,
since the Hilbert space of n,; qudits contains the space of
n, qubits provided that d"¢=2"2.

Given an arbitrary state vector |W)=c|0)+c,|1) of a
qubit, the complex coefficients ¢(,c; € C amount to four
real parameters. However, if we parametrize them as c;
=r;e'% i=0,1 and factor out a global irrelevant phase,
we find |[W)=r(|0)+re!(¥17%0)|1). Imposing |¥) to be
of unit norm, we can write it as

| )= (cos 3 6)[0)+¢'*(sin 5 0)| 1), (10)

where ry,r; are now parametrized by the angles 6,¢
=1~ .

These two angles represent a point in an S? sphere,
called the Bloch sphere, as shown in Fig. 2. The (projec-
tive) Hilbert space of pure states of a single qubit can be
parametrized by the points on this sphere. As a by-
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product, this construction provides a nice representation
of the classical bits as particular points on the sphere.
The classical bit 0 (the qubit state |0)) marks the north
pole and the bit 1 sits at the south pole. Any other point
on the sphere amounts to a nontrivial linear superposi-
tion of the basis states. The angle 6 is related to the
proportion of |1) to |0) in the composition of that state,
while the angle ¢ is their relative quantum phase.

It is immediately clear from Fig. 2 that the informa-
tion contained in a qubit is infinite as compared with the
information in a classical bit. In other words, at a given
time, a classical bit can take on only one of the two
values, either 0 or 1, while a qubit can be in any of the
infinitely many possible quantum states in Eq. (10). As
we shall see later in detail, this fact is basic to what is
known as “quantum parallelism,” a source of the un-
precedented capabilities exhibited by a quantum com-
puter.

A quantum logic gate® acting on a collection or quan-
tum register of k qubits is just any unitary operator in

the associated Hilbert space 2 (Deutsch, 1989). For
instance, in addition to the identity, we have for 1 qubit
the unary gates X (or Uyor), Y, Z, given by the Pauli
matrices o, (in the natural basis {|0),|1)}):

(11)

The particular linear combination Uy:=2""4(X+Z) is
the important Hadamard gate.

The unary gates are easy to implement (for instance,
on polarized photons, with 1\, I\ plates).

On 2 qubits, the most important gate is the controlled
NOT (Ucnor), or exclusive OR (Uxor), gate defined by
Ucnot»>Usxor:|X)|y)—|x)|x®y), where x,y are either 0
or 1, and @ means addition mod 2. This gate can be
represented by the matrix

=—i0,,

Unor=X:=0,, y

Z:=0,.

Ucnor=Uxor:=0){0|®1+|1)(1]® Unor
“ll+o)el+i(1-0)®0,. (12)

The physical implementation of this gate is central to the
applications of quantum information and will be ad-
dressed later in Sec. XI.

The quantum partner of the Shannon entropy is the
von Neumann entropy,

(13)

where p is the density operator describing a normal
quantum state. Given a convex decomposition p
=3Pl #:){ ;| in pure states, it can be shown that
S(p)<H(I):=—2,p;log, p;, equality holding if and only
if the state vectors ¢; are pairwise orthogonal. The von
Neumann entropy has the well-known properties of con-
cavity, strong subadditivity, and triangularity (Thirring,
1983; Galindo and Pascual, 1989, 1990a):

S(p)=—Tr(plog, p),

SA more extended study of quantum logic gates and their
classical counterparts is presented in Secs. VIIL.D and IX.B.
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NiS(p1) +NS(p2)<S(Nip1+N2p2),
S(papc)+S(pp)<S(pap)+S(psc),
1S(pa)—S(pp)|=<S(pap)<S(pa)+S(ps),

with Ny,=0, Ny +\,=1. The subscripts A,B,C denote
subsystems.

The first two relations also hold in the classical theory
of information. But the third property (whose second
part is just the property of simple subadditivity) is pecu-
liar. While in Shannon’s theory the entropy of a compos-
ite system can never lower the entropy of any of its
parts, quantumly this is not the case. The Einstein-
Podolsky-Rosen (EPR) states of the form 2 "*(|aa’)
+|bb")),°® where a,b and a’,b’ are given orthonormal
pairs, provide us with an explicit counterexample.

A basic difference between classical and quantum in-
formation is that while classical information can be cop-
ied perfectly, quantum cannot. This is relevant to quan-
tum communication protocols because, should a
quantum copier exist, then safe eavesdropping of quan-
tum channels would be possible. In particular, we cannot
create a duplicate of a quantum bit in an unknown state
without uncontrollably perturbing the original. This fol-
lows from the no-cloning theorem of Wootters and
Zurek (1982). Let H:="Hyiy® Hcopy be the joint Hilbert
space of the original and of the copy, and let Ugcy be
the linear (unitary) operator in H representing the ac-
tion of an alleged quantum copier machine:

UQCM :|q,>0rig| ¢0>H|\P>Orig|q,>copy 5 V|1P> € Horigils)

(14)

where | ) is the “blank” state of the copy.

We claim that such a machine cannot exist. This is a
remarkably simple application of the linearity of quan-
tum mechanics. For a contradiction, suppose it does ex-
ist. Assume for simplicity that the object to be copied is
just a single qubit, and let [¥) = a|0) + a1[1). Then
linearity implies

Uqoeml W) o) = al0)|0)+ a1 [1)[1),
whereas the definition of a quantum copier yields
Uocml )| o) =) V)
= a(|0)[0) + age|0)|1) + 1| 1)[0)
+ai|1)[1). (17)

The results, Egs. (16) and (17), are in general incompat-
ible, which proves the assertion.

A more general proof of the no-cloning theorem takes
into account the environment and makes use of the uni-
tarity of Uqgcm: NOW H:=H g ® Heopy® Heny » and

Uacml W) orig 90} Eo)
= |\P>orig|w>copy|E\l’>’ V|\I’> € Horig >

(16)

(18)

®Actually they are EPR states a la Bohm, that is, Einstein-
Podolsky-Rosen-Bohm states (Bohm, 1951).
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where |E) is the “rest state” of the “remaning world”
(environment) before copying, and |Ey) its state after
copying. Let us consider two actions of the quantum
copier machine,

Uoeml Y 1) do) | Eo) =W D)W1) Ew)),
Ueml W)l o) | Eo) = W) [ W,)| By ). (19)

Taking the scalar product of these two actions and using
unitarity yields (‘I’1|‘lf2)=(\I’1|‘I’2>2<E\1,1|Eq,2>. There-
fore, since all these probability amplitudes have modu-
lus <1, either (¥,|¥,)=0 or it equals 1, and hence
copying two different and nonorthogonal states ¥,V
is impossible.

However, a known quantum state can be copied at
will. Moreover, if one drops the requirement that copies
be perfect, approximate quantum copier machines may
exist (Buzek and Hillery, 1996). Should it be possible to
make close to perfect copies then quantum crypto-
graphic schemes might still be at risk. Quantum copying
can also become essential in the storage and retrieval of
information in quantum computers.

A. Entanglement and information

A quantum pure state |¥) in a Hilbert space H
=®"_H; of n qubits is said to be separable (with re-
spect to the factor spaces {H;,H>,...,H,}) when it can
be factorized as follows:

n
W)= |¢), |g)eH;. (20)
i=1
Otherwise the state | V) is called entangled. Famous ex-
amples of entangled states include the Einstein-
Podolsky-Rosen pairs or Bell states like

* ._L -+
(¥ =)= lon)=10)].

: e
®7):=—[|00)=|11)],
|[@7)=—1100)+[11)]
which may be physically represented by a spin-3 singlet
and triplet or by entangled polarized (vertical and hori-
zontal) photons (Kwiat ef al., 1995). They also include

the GHZ state (Greenberger, Horne, and Zeilinger,
1989),

1
|GHZ>::‘E[|OOO>+|111>], (22)

which has been observed experimentally in polarization
entanglement of three spatially separated photons
(Bouwmeester et al., 1999).

The concept of entanglement is the distinctive feature
that allows quantum information to overcome some of
the limitations posed by classical information, as exem-
plified by the new notions of teleportation, dense cod-
ing, etc., to be explained in the following sections. Al-
though it is simple to state mathematically,
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entanglement leads to profound experimental conse-
quences like nonlocal correlations: when two distant
parties A (Alice) and B (Bob) share, say, an EPR pair,’
the measurement by A of her state univocally deter-
mines the state on the B side. Apparently this implies
instant transmission of information, in sharp contrast
with Einstein’s relativity. However, to reconcile both
facts we must notice that the only way the B side can
know about his state (without measuring it) is by receiv-
ing a classical communication from the A side, which
propagates no faster than the speed of light.

For these basic reasons, entanglement is considered as
a resource in quantum information (Bennett, 1998),
something that we must have available if we want to
take advantage of the new communication possibilities
exhibited by quantum protocols.

When the system has two parts, namely, H:=TH,
®Hp, it is called bipartite. In general, a multipartite sys-
tem is of the form H:=®/_,H;. We may think of en-
tanglement as a manifestation of the superposition prin-
ciple when applied to bipartite or multipartite systems.
Thus genuine multiparticle or many-body states exhibit
entanglement properties, which in the theory of strongly
correlated systems are known as quantum correlations
(Fulde, 1993).® We may state that entanglement and
quantum correlations are closely linked.

Being a nonlocal concept, entanglement must be inde-
pendent of local manipulations performed on each of
the A and B parties. These operations are represented
by unitary operators U,® Ug, in a factorized form, act-
ing on the states of H=H,®Hg, or they may be local
measurements on either side. Moreover, classical com-
munication is also permitted by the two parties. En-
tanglement cannot be created by these local operations.
However, factorized states can be obtained by local op-
erations, like measurements. Altogether, these types of
local operations plus classical communications are
known as LOCC transformations. The set LOCC is not
a group but a semigroup, for the inverse of a given trans-
formation is not guaranteed to exist, due to possible ir-
reversible measurements by each party.

The characterization of entanglement for general
quantum states (pure or mixed, bipartite or multipartite)
is very difficult, due in part to the type of transforma-
tions allowed in the set LOCC. For entangled pure
states of two qubits or general bipartite systems A and B
with dimensions d, ,dg, respectively, entanglement is
well understood in terms of the Schmidt (1906) decom-
position: given an arbitrary state

dp dg
|‘P>AB==21 21 Cijlajalbj)pe H=Hs®Hg (23)
i=1j=

"It is usual in information theory to introduce a set of char-
acters named Alice (the sender), Bob (the recipient), and Eve
(the eavesdropper).

8These types of correlations are responsible for novel quan-
tum phase transitions (Sachdev, 1999) in which the transition is
driven by quantum fluctuations instead of standard thermal
fluctuations.
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with {|a,~)A}fA,{|b,->B}fB orthonormal bases of H, ,Hg,
the state admits a biorthonormal decomposition of the
form

r r
|\I,>AB=/(§=:1 VWilug)alve)s, wi>0, k§=:l wi=1,
(24)

where {|u;)a}] and {|v,)g}] are sets of orthonormal vec-
tors for subsystems A and B, and r<d:=min{d, ,dg} is
the so-called Schmidt rank of |W),g (Schmidt, 1906;
Hughston, Jozsa, and Wootters, 1993; Ekert and Knight,
1995).” The coefficients w are called Schmidt weights.

The Schmidt decomposition is essentially unique in
the following sense: the weights (multiplicities included)
are unique (up to order), and hence the rank; given a
nondegenerate weight w , the state vectors |u)a,|vi)s
are unique up to reciprocal phase factors. When the
weight w, is degenerate, the corresponding states on Al-
ice’s side are unique up to an arbitrary unitary transfor-
mation U to be compensated by a simultaneous unitary
transformation U= U on the associated vectors on
Bob’s side.

From the Schmidt decomposition it immediately fol-
lows that a bipartite pure state |¥') o5 is entangled if and
only if its Schmidt rank r is greater than 1.

From the point of view of the subsystem A, the de-
scription of its quantum properties is realized by means
of the reduced density matrix p, (and likewise for sub-
system B with pg):

PA::TrB|qr>AB<\P|,
pB’zTrA|\I,>AB<\P|,

where Trg denotes the partial trace over the B sub-
system (similarly for Tr, and subsystem B). The Schmidt
decomposition (24) implies that

(25)

r

PA:kZ1 Wk|uk>A<”k|7

, (26)

PB:kZl wilv i s(vil.
Another important implication of (24) is that as r<d,
when a qubit state d ,=2 is entangled with a qudit state
dg=2 then the Schmidt decomposition has at most two
terms, no matter how large dy is.
Interestingly enough, the Schmidt decomposition has
appeared independently in the field of strongly cor-

9The Schmidt decomposition is equivalent to the singular
value decomposition of the d X dg matrix C:=(C;) in linear
algebra (Press et al., 1992). Let dy<dg. Then C=UDV/,
where U is an orthogonal d 5 X d 5, matrix (U‘U=1dA), Visa
d A X d matrix representing a Euclidean isometry from €% to
€% (ie, VV'=1,,), and D is the dyXd, diagonal matrix
diag(\wy,...,yw,.0,...,0). Using the singular value decom-
position Cij:EZilU,»k\/w_ijk in Eq. (23), we inmediately ar-
rive at the Schmidt decomposition, Eq. (24).
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related  systems  through  the  density-matrix
renormalization-group method (White, 1992, 1993).'

Once we know whether or not a given bipartite pure
state is entangled, the next task is to get entanglement
ordered: given two states |W)ap,|' V1) ap, Which one is
more entangled? No sufficiently general answer to this
question is known. A tentative simple choice would be
to measure entanglement through the partial von Neu-
mann entropies (Bennett, Brassard, et al., 1996):

E(|W ap))=S(pa)=S(pp). 27)

Such entropies do not increase under LOCC, but having
E(|®ap))<E(|Wagp)) does not guarantee that an
LOCC action may bring |W op) to |® »p).

The theory of majorization provides us with a crite-
rion to ascertain when any two entangled states can be
LOCC connected (Nielsen, 1999). Given two vectors x
=(X1,X2,.,%3), y=(¥1,¥2,...,y4) in R? decreasingly
ordered x{=x,="=x,,y 1 =y,="=y,, we say that x
is majorized by y, denoted x<y (equivalently, y ma-
jorizes x) if the following series of relations holds true:

X1SY1,
X1tx,sy;tys,

(28)
X1txo+ o Fxg g Syty, oty
x1~|—x2+-"+xd=y1+y2+'"+yd.

The majorization relation is a partial order in R%: 1/ x
<x, Vx; 2/ x<y and y<x if and only if x=y; 3/ if x
<y and y<z then x<z. When the components of the
vector x are positive, x,=0, and normalized, Z,x,=1,
they may be thought of as probability distributions as in
Sec. II. The central result is the following: a bipartite
state |¥) 45 can be transformed via LOCC operations
into another state |®),p if and only if w(|¥)) is ma-
jorized by w(|®)),

V) ap—=|P)apew(|¥))<w(|D)), (29)

where w(|W)) is the ordered vector of eigenvalues or
weights (multiplicities included) of the reduced density
matrix p, (25) and (26) associated with | W) 4 5 [similarly
for w(|®))].

For example, let us consider the parties A and B shar-
ing this pair of qutrit states in the basis {|0),|1),|2)}:

2 2 1
(W) ap=5100)+ 3 [11)+ 3[22),
(30)
2 1 1
(@) 5= \[§|oo>+ \[g|11>+ \[g|22>-

19The Schmidt weights govern the truncation process inher-
ent to the density-matrix renormalization-group method: the
highest weights are retained while the smallest (beyond a cer-
tain desired value) are eliminated. This truncation makes an
exponentially large problem much more tractable.
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Both states are entangled, but |¥), 5 cannot be trans-
formed into |®), 5 or vice versa: they possess different
types of entanglement. They are said to be incomparable
or incommensurate (Nielsen, 1999; Vidal, 1999).

However, for general multipartite systems the issue of
how to relate the LOCC action with entanglement in a
given pure state is an open question (Lewenstein et al.,
2000).

A definition of entanglement for finite-dimensional
systems with mixed states characterized by a density ma-
trix p goes as follows (Werner, 1989): p is called sepa-
rable when it can be written as a convex combination of
product states,

Ae=0, X A =1. (31)
k

When p is not separable, it is called an entangled mixed
state. The situation for quantifying and qualifying en-
tanglement is even worse for mixed quantum states
(Horodecki et al., 1996a; Peres, 1996; Dur, Cirac, and
Tarrach, 1999; Giedke et al, 2001). There are partial
characterizations of entanglement like the Peres crite-
rion (1996): a necessary condition for separability of p is
that the matrices p'/, j=1,...,r, obtained by partial
transposition'! of p with respect to an arbitrary ortho-
normal basis of the factor space H; of the j component,
be non-negative (p/=0). The converse is true in the
special cases (?®(? and (*®C® (Horodecki et al.,
1996Db).

There are also complete characterizations of entangle-
ment in terms of entanglement witness operators and
positive maps (Horodecki et al., 1996a), but their classi-
fication turns out to be as complicated as the original
problem of entangled mixed states.

B. Quantum coding and Schumacher’s theorem

Let A:={| ¢i>,pl~}‘i‘il1 be a “quantum alphabet” consist-
ing of a set of distinct pure states (not necessarily or-
thogonal) and their corresponding probabilities (Z;p;
=1). We assign to it the density operator p(A)
=3,p:| i) #i|. A message emitted by a source of quan-
tum  signals is now a sequence ¢l1 ;

’:|¢il>|</’i2 |¢in>

tum symbols,” each produced with probability pi, inde-

n

of “quantum characters” or “quan-

pendently of the others. The collection of messages with
n symbols is representable by the density operator p®

which lives in a Hilbert space of maximum dlmensmn
|A|"—2" ol The question naturally arises whether it
is possible to compress the information contained in
p®". And the answer, found by Schumacher (1995), is
similar to Shannon’s first theorem: asymptotically (n
>1) the state p®" is compressible to a state in a Hilbert

Note that p%:=3}_ AP @ - @p{'@ - @p{"=0, since
the coefficients and each factor matrix are non-negative, no
matter which basis is chosen in H; to define the transpose.
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space of dimension 2"5(P), with a fidelity F (the prob-
ability that the decoded state coincides with the state
prior to coding) arbitrarily close to 1. In other words, it
is compressible to nS(p) qubits. Then S(p) can be
thought of as the average number of qubits of essential
quantum information, per character of the alphabet.
The idea of the proof follows the same guideline as
for the classical theorem (Jozsa and Schumacher, 1994;
Schumacher, 1995; Preskill, 1998). Let us diagonalize p
=3,\,|r)(r|. The von Neumann entropy S(p) clearly
commdes with the Shannon entropy H(D) of the classi-
cal alphabet D :={r,\ }lD | . Introducing the typical mes-
sages as those strings or tensor-product vectors l/fil oy

=[y )
izes p, such that its probability A

'|l,/fin> in the orthonormal basis that diagonal-
c =1 )\ satisfies

N =27 nH(D) for n>1, it is shown that p®" 1s asymp-
totically concentrated on the typical subspace T spanned
by them: Tr(Pp®")~1. Here Py is the orthogonal pro-
jection onto 7. The strategy of compression amounts to
making a measurement that projects the original mes-

sage ¢; ..; onto either T or 7. If the former is the
case, the projected state Pre; ... ;
upon coding it into n H(D) qubits. What one does in the
remaining case is irrelevant, for the probability that the
result will be (1—P7)¢; ..., is asymptotically negligible.

The average fidelity in this procedure is perfect in the
limit n—o0, and as in the classical theory, the quantum
compression thus obtained is 0pt1ma1

If the alphabet A:={p; ,p,} 2, is made up of mixed
states, the issue of message compressibility gets more
involved. To properly measure it, the Shannon entropy
S(p:=2;p;p;) must yield to another more general con-
cept, the so-called Holevo information of the alphabet or
ensemble A:={p,,p; } 2 (Levitin, 1969; Holevo, 1973;
Preskill, 1998):

is faithfully sent,

x(A)=S(p)— Epsm (32)

The Holevo information is similar to the classical mu-
tual information. As I(X:Y) measures how the entropy
of X gets reduced when Y is known, y(A) represents
the reduction of the entropy S(p) of p when the actual
preparation of this state as a convex combination p
=2,p;p; 1s known.

Assuming the states p; of the alphabet to be mutually
orthogonal, that is, Tr(p; p]) 0 for i#j, it is not difficult
to see that the state p®” is asymptotically (n>1) com-
pressible to a state of n y(A) qubits, with fidelity tending
to 1. Moreover, this result is optimal.

When the states are not orthogonal, the results are
only partial: it is known that there is no asymptotically
faithful compression below y(A) per letter of the alpha-
bet, but the problem is still open of whether or not a
compression of y(A) qubits/character is accessible in
the limit n—oo.
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C. Capacities of a quantum channel

The capacities of a quantum transmission channel in-
clude its capacity C for transmitting classical data, its
capacity Q for transmitting quantum states exactly, and
its mixed capacities Q1 , for transmitting quantum states,
also exactly, but with the assistance of a classical side
channel between sender and receiver.

Given a quantum channel A, usually noisy, Shannon’s
second theorem suggests defining the classical capacity
C(N) as the supremum of the transmission rates R
:=k/n of classical words k cbits long such that (1) trans-
mission is carried out after an appropriate word coding
as n-bit words that are sent by n forward uses of the
channel WV, followed by an associated decoding upon ar-
rival (yielding words of k bits); (2) the fidelity of the
transmission is asymptotically 1. The quantum capacity
Q(N) is similarly defined by replacing the classical
input/output words of k cbits by pure/mixed states of k
qubits (Bennett and Shor, 1998).

The assisted quantum capacities Q,(/N) are defined
in a similar fashion as Q(N), but now the coding-
decoding protocol may include arbitrary local opera-
tions on input and output states and may resort to a
classical communication channel in the input-to-output
direction (subscript 1) or in both directions (subscript 2).

It is possible to show that Q=Q; (Bennett, DiVin-
cenzo, et al., 1996; Bennett and Shor, 1998); that is, send-
ing classical messages from origin to destination does
not increase the channel capacity. On the other hand, it
is evident that O=<(Q,, and using orthogonal states to
transmit cbits leads to O<C. But it is not known
whether or not C<(Q, holds. Channels are known for
which Q< Q,, and others for which Q,<C.

It is not surprising that the computation of these ca-
pacities, as asymptotically defined, is usually difficult. In
some instances they are known, as in the case of the
quantum erasure channel, in which there is a probability
p that the channel replaces the qubit by an erasure sym-
bol orthogonal to the states {|0),|1)}, and there is also
the complementary probability 1 —p that the qubit goes
through exactly. For this type of channel C=0Q,=1
—p, and Q=max{0,1-2p} (Bennett, DiVincenzo, and
Smolin, 1997; Bennett and Shor, 1998).

Unlike the classical case, in which the capacity can be
computed by maximizing the mutual information be-
tween input and output in a single use of the channel,
the capacities (whether classical or quantum) of quan-
tum channels do not usually allow for a similar compu-
tation. This is because in the quantum case it is permis-
sible to code by entangling several successive states on
input, and to decode by means of joint measurements on
several states on output. However, for the case C, (clas-
sical capacity with classical encoding and quantum de-
coding), it is known that C,(N)=sup,x[M(p)] (Ben-
nett and Shor, 1998).

Finally, prior entanglement between sender and re-
ceiver improves the transmission capacity. Let Cg,0
be the classical and quantum entanglement-assisted ca-
pacities of a quantum channel. A direct consequence of
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dense coding and quantum teleportation, to be discussed
later, is the relation Cg=2C for noiseless quantum
channels, and the relation Q<Qg=73Cg for any quan-
tum channel (Bennett et al., 1999).

D. Quantum error correction

It is not possible in the quantum case simply to imitate
the classical methods of error correction, for merely try-
ing to check which qubits have been affected by errors
irremediably damages the information content. Nor can
we make strings of equal quantum states, for the unitar-
ity of quantum mechanics forbids the cloning of arbi-
trary unknown quantum states. This explains the initial
pessimism about the possible functioning of a quantum
computer (Unruh, 1995; Landauer, 1997). Then, what to
do? Fortunately, in 1995 Shor provided us with a first
solution showing an encoding system (of 9:1 bits) ca-
pable of detecting and correcting one erroneous qubit.'?
Soon after, new and more economical codes were dis-
covered, such as the 7:1 code of Steane (1996a, 1996b)
and Calderbank and Shor (1996), and the 5:1 code of
Bennett, Brassard, efal. (1996) and Bennett, DiVin-
cenzo, et al. (1996).1 It is not possible to present here a
full account of the many remarkable contributions in
this field during the last seven years. It is currently a
developing field that, as happened with the classical er-
ror correction codes, has also found unexpected connec-
tions with pure mathematics (Shor and Sloane, 1998).

The underlying idea of quantum error correction is to

hide the information in subspaces of (2" in order to pro-
tect it against decoherence and errors that affect only a
few qubits. To this end, if our system has k qubits (called
“logical qubits”), a quantum error-correction code en-
codes their states by means of a linear isometric embed-

ding 712", with n>k. We shall denote by Q the
image subspace of 7, and its states will be called code
states (or code words). The additional n—k qubits help
us in protecting the information. The map = should dis-
guise the information by delocalizing it, with the aim
that errors (which often affect just one or a few qubits
locally) may alter it not at all or as little as possible
(Aharonov, 1998; Preskill, 1998; Steane, 1998).

A system of n qubits in an initial pure state # is not
absolutely isolated. Upon interaction with the environ-
ment in a state a;,, it suffers a transformation of the
form ¢y®a;;—2,(E,y)®a,, where the operators E,,
0=<r<22"—1 are Pauli operators (elements of the set

12 Actually, the very first idea of quantum error correction, at
the time called “recoherence,” was proposed by Deutsch in
1993 during his talk at the Rank Prize Funds Symposium on
Quantum Communication and Cryptography. This idea was
later developed further (Berthiaume, Deutsch, and Jozsa,
1994; Barenco et al., 1997). Even the idea of decoherence-free
subspaces (Palma, Suominen, and Ekert, 1996) preceded
Shor’s nine-qubit code.

13An n:1 code embeds 1 qubit into the space of n qubits.
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PM:={1,X,Y,Z}®") and the environment states a, are
not necessarily orthogonal or normalized. Let us call the
weight of an element in P the number of its nontrivial
(i.e., X,Y,Z) tensor factors. If ¢ is a code state, then
each term (E,y)®a, represents a component with a
number of errors equal to the weight of E,.

Given a collection of errors EC P formed by all the
Pauli operators of weight =<z, a quantum error-
correction code is said to amend up to ¢ errors when it is
capable of correcting every error in £. For that to hap-

pen it is necessary and sufficient that (ﬂEIE ,|1_)
=m,6;; be fulfilled, for any arbitrary orthonormal basis

{|i)} of the code subspace Q and all E, ,E e £, where m
is a self-adjoint matrix. This condition means something
quite natural: first, that given any two orthogonal code
words |i),|j), the sets &]i), &|j) of corrupted code
words must be mutually orthogonal, otherwise the per-
fect distinguishability of those words might get lost, and
second, should (i|E{E,|i) depend on |i), the detection
of the error would yield information about the code
state, thereby perturbing it. If m=id, the code is called
nondegenerate, and the error subspaces E,Q,1#FE,.e&
are orthogonal to the code subspace Q and perpendicu-
lar to one another. In this case it suffices to make a
measurement, which is possible because of the orthogo-
nality, that determines in which subspace the
(n-qubit system) ® environment lies. If the result of that
measurement is (E,¢)®a,, by applying to the resulting
state of the system the unitary operator E| we shall re-
trieve the original state ¢ free of error. In the degenerate
case, an error syndrome does not singularize the error,
and the retrieval strategy gets more involved.

The distance d of a quantum error-correction code is
defined as the lowest weight of a Pauli operator E such

that (j|E|i)#cg6;;. In analogy with the notation for
classical error-correcting codes, we shall write [n,k,d],
to denote a binary quantum error-correction code (i.e.,
with qubits) of parameters n,k,d. It is easy to see that a
code [n,k,d], allows the correction of ¢:=|(d—1)/2] er-
TOorS.

There are also asymptotic bounds for the quantum
error-correction codes [n,k,d], similar to those pre-
sented for classical error-correcting codes (Ekert and
Macchiavello, 1996; Preskill, 1998).

e Hamming’s quantum upper bound:

Ri=kin<1—H,(tln)—(tIn)log, 3, n>1. (33)

e The Gilbert-Varshamov quantum lower bound:

R=1-H,(2t/n)—(2t/n)log,3, n>1. (34)

As in the classical case, there exist quantum error-
correction codes that are asymptotically good. A differ-
ent question (still open) is their explicit construction.

Example: Let C; be a linear and binary classical error-
correction code of type [n,k,d{],, and C,CC; a sub-
code [n,k,,d,], of Cy, with k,<k;. Let C:=C; /C, be the
quotient space, of dimension 217 %2,
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Let us introduce a quantum error-correction code
QC(?" of dimension 2%, with k=k,—k,, spanned by
the vectors

|W)==2*"2/2§% lw+v), wel. (35)
ve 2

Note that this definition does not depend on the element
w chosen to represent the class w+C, and that the vec-
tors |w) thus constructed form an orthonormal system.

It can be shown that this quantum code recognizes
and corrects (up to) ty:=[(d;—1)/2| bit-flip errors X,
and t,,:=| (d5 — 1)/2] phase-flip errors Z, where d; is the
distance of the code C5 dual to C,. Likewise, the dis-
tance d of this quantum code satisfies d=min(d,; ,d5).

The quantum error-correction codes [n,k,d], thus
constructed are called Calderbank-Shor-Steane codes
(Calderbank and Shor, 1996; Steane, 1996a, 1996b;
Preskill, 1998).

The simplest and most illustrative example of a
Calderbank-Shor-Steane code is the [7,1,3], code of
Steane, or a quantum code of seven qubits. It is obtained
taking as C; the Hamming code H,(1) of type [7,4,3],,
and as C, its dual (C,=C7), which is of type [7,3,4], and
coincides with the even subcode (that is, the code
formed by the code words of even weight)!* of C;. It
corrects one bit-flip error X and one phase-flip error Z.
Thus it also corrects a mixed error Y, but not a double
bit-flip (or phase-flip) error.

A generator matrix for H,(1) is

1010101
0110011

S=lo 0011 11 (36)
1110000

and an associated parity matrix (generator for the dual)
is

10 1
H=|0 1 0
0001 1 11
Thus a basis of code states is given by
10):=8~2(]1010101) +[0110011)+|0001111)
+10000000) +[1100110) +[1011010) + |0111100)
+(1101001)),

10101
100 11 (37)

_ 38
|1):=8"12(|0100101) +]1000011) +|1111111) (38)

+]1110000) + [0010110) +]0101010) + | 1001100)
+]0011001)).

Let us assume that we have a qubit with a state coded
as |¢):=a|0)+ B|1), in which a bit flip has occurred at

4The weight of a binary word is defined as the number of its
nonzero coordinates.
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the third place (X3 error). How can we detect and cor-
rect it? With the help of an auxiliary system or ancilla A
that is (n—k;=3) qubits long we form the state
(X3|#))®]000) 4, which we transform by the unitary
map defined on e c? by |v)®]000) 4~ |v)®|Hv) 4,
with the result (X;|¢))®|He),, where e:=0010000 is
the binary word that signals the place number 3 at which
the bit-flip error occurred. But He=110, which is also
number 3 in (reversed) binary form. That is, we have
marked in the ancilla the syndrome of the error made. It
is essential that the ancilla remain in a state depending
only on the error, and not on the particular state of the
system. Now it is enough to measure the state of the
ancilla in order to find out that the error made has been
X5, to apply the operator X5 ! to the system in order to

retrieve the state free of error |¢), and to bring back the
ancilla to its neutral state |000), . Finally, suppose in-
stead that the error to detect and correct is a phase flip
at the fifth place (Zs error). Since Zs= U XsU§ , with
Uy being the unary Hadamard application, it is enough
for the system to go through the operation U 27 , then to
apply the previous strategy, and finally to act with U §7
once more.

E. Entanglement distillation

In addition to quantum error-correction codes there is
another method for beating decoherence that is espe-
cially suitable when communicating over noisy channels.
It is based on the notion of entanglement distillation or
purification: two spatially separated parties A and B
sharing a collection of entangled pairs, are allowed to
perform quantum local operations and classical commu-
nication (LOCC; see Sec. III.A) to extract a reduced
sample of pairs with a higher purity of entanglement.
Entanglement distillation serves as a useful tool for
quantum communication, providing us with more pow-
erful protocols for dealing with errors (decoherence)
than quantum error correction (Bennett, Brassard, et al.,
1996).

First we need a measure of entanglement (Vedral and
Plenio, 1998). In distillation an appropriate measure of
entanglement for a pure bipartite state |W,g) is
E(|W Ag)) [Eq. (27)]. This is because given n pure bipar-
tite states |W o), local actions and classical communica-
tions are enough to prepare m perfect singlet states with
a yield m/n approaching E(|W og)) as n— (Bennett,
Brassard, etal, 1996; Bouwmeester, Ekert, and
Zeilinger, 2000).

Finding optimal purification procedures in full gener-
ality is an open problem. However, explicit examples of
entanglement distillation protocols are known to work
at least with particular types of mixed states, like the
initial entanglement distillation protocol introduced by
Bennett, Brassard, et al. (1996), which we shall refer to
as the BBPSSWY96 protocol. 1t is neither optimal nor
fully general, but it is the basic protocol from which
other generalizations are derived.

Rev. Mod. Phys., Vol. 74, No. 2, April 2002

In the BBPSSWY6 protocol, there are two parties, A
and B, Alice and Bob, who communicate over a noisy
channel. They share entangled pairs of states and they
aim to obtain singlets (21) from them. Their basic strat-
egy is to coordinate their actions through classical mes-
sages sacrificing some of the entangled pairs to increase
the purity of the remaining ones.

Alice and Bob want to distill some pure entangle-
ment, say in the form of singlet states |¥~) [Eq. (21)],
from a given collection of shared entangled pairs in an
arbitrary bipartite mixed state p. The purity of p is mea-
sured through the fidelity

Fe=(¥~|p|¥") (39)

relative to a perfect singlet. To be specific, in this proto-
col Alice and Bob share two entangled pairs, each one in
the state

1
W= I )0+ 2 (1= F)[[W ) (0

o) (@ o) @) (40)

These are called Werner states (Werner, 1989). Note

that they are depolarized in the space orthogonal to the

singlet. The initial state in (Ha ®Hg ) ®(Ha,®Hp,) is
therefore

PO‘:WF(X)WF- (41)

We assume that the Werner pairs have fidelity £>1/2.
Step 1. Unilaterally, Alice applies the gate Y on each
of her two pairs of qubits. This brings p, to

p1:=(Y®1)®(Y®1)py(Y®1)(Y®1). (42)

The Pauli operators map the Bell states (21) onto one
another in a 1:1 pairwise fashion, leaving no state un-
changed (up to irrelevant phase factors, which we shall
ignore); in particular, Y®1:|W )« |®*). Then
pI=WieWj (43)

with
1
Wi=F|® )@+ 3 (1= F)[|®7 (7|

IR ANS NERL ANIS ARl (44)

The outcome is a new bipartite state with a large com-
ponent F>1/2 of |®") and equal components of the
other three Bell states.

Step 2. Bilaterally, Alice and Bob apply a CNOT opera-
tion (12) to each of their pairs of qubits. Let us denote
this joint operation as Ugcnor- Thus

p1—>p2:=Ugcnotp1 Uscnor - (45)

This composite operation acts conditionally on qubits 3
and 4 (target qubits) depending on the states of qubits 1
and 2 (source qubits), namely,

Ugenor=([0)(0[@1@1@1+[1)(1[®1® Unor® 1)
X(1®|0){0[®101+1®|1){1|®1® Uxor)-
(40)
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TABLE I. The two columns on the right list the states after
the action of BCNOT (46) starting from the states on the left
two columns. The notation n.c.=no change.

Before After
Source Target Source Target
| D) D) n.c. n.c.
|D*) |w*) n.c. n.c.
[T |D") n.c. |+
| W) |w*) n.c. [DF)
|D*) |d7) |D7) n.c.
D) [P ™) |&7) n.c.
) [®7) ) ™)
=) v7) v) [®7)

The possible results of acting with BCNOT on the Bell
states as source and target states are summarized in
Table L.

Step 3. Alice and Bob measure (with respect to the
computational basis) their target qubits, i.e., Alice mea-
sures qubit 3 and Bob qubit 4. They then share their
results by classical communication. If their results agree,
they each keep their unmeasured source qubits, other-
wise they discard them.

The source state p, thereby obtained is a convex com-
bination of the Bell projections, with a weight of
| ") (DT| given by

1
F?+ §(1—F)2
F':= (47)

T PR
F+SF(1=F)+5(1-F)

The rest 1—F' is not equally distributed among the
other three Bell states.

Step 4. Unilaterally, Alice applies Y on her source qu-
bit in order to convert p; into a state p, of fidelity F’
(relative to | 7)).

Step 5. The state pg is not a Werner state. But there is
a depolarizing procedure, called bilateral random opera-
tion, that mutates it back into such a state while preserv-
ing its fidelity (Bennett, Divincenzo, ef al., 1996).

The net result of this protocol is that, with probability
greater than }, one Werner pair of fidelity F’'>F>1
[Eq.1 (47)] is distilled out of two Werner pairs of fidelity
F>5.

An initial supply of N Werner states of fidelity F is
halved by a single run of the above protocol to a sample
of Werner states of fidelity F'>F. Iterating the proce-
dure as much as necessary, Werner states of purity F,
arbitrarily close to 1 can be distilled from a supply of
input mixed states p of any purity F;,>3."

The overall result of the BBPSSW96 protocol is to
simulate a noiseless quantum channel by a noisy one
with the assistance of local actions and classical commu-

>The map F—F' is strictly increasing in the interval [,1]
and has an attractive fixed point at F=1.
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nication. It assumes tacitly that the quantum channel is
shorter than its coherence length; otherwise one might
resort to the assistance of quantum repeaters (Dur,
Briegel, et al., 1999).

There are also entanglement distillation protocols us-
ing one single pair of qubits (Gisin, 1996; Kwiat et al.,
2001).

Finding the optimal distillation protocols for a general
state and any number of copies is the unsolved distill-
ability problem. While it has not been solved, a surpris-
ing result has emerged: the existence of entangled states
that cannot be distilled, called bound entangled states
(Horodecki et al., 1998). Explicit examples of such states
were found by Horodecki ez al. (1999). These states are
useless for quantum communication protocols, and it is
important to distinguish them from distillable states,
also known as free entangled states. In some general in-
stances, it is possible to conclude that a mixed state is
bound entangled: if p is entangled and satisfies the Peres
criterion p=0 (Sec. I1I.A), then p is a bound entangled
state (Horodecki et al., 1998).

In summary, entanglement is a new resource for com-
putation processing and communication, able to change
information theory both qualitatively and quantitatively.
The concept of entanglement is a genuinely quantum
phenomenon that allows us to extend the theory of in-
formation beyond its classical limitations. We have al-
ready seen error-correction codes as one essential appli-
cation of entanglement. Other examples, such as
teleportation, dense coding, quantum key distribution,
and quantum computation, are addressed in the sections
that follow.

IV. QUANTUM TELEPORTATION

Copying a classical system (be it an Etruscan fibula, a
Goya painting, or a banknote) has never posed insur-
mountable difficulties to experts. It suffices to thor-
oughly observe the original as much as may be required,
taking care not to damage it, to retrieve the information
needed to make a copy of it. This careful observation
does not alter in a noticeable way its state. But if the
original to be reproduced is a quantum system in an
unknown state ¢, then any measurement (incompatible
with P,) made on the system to get information on ¢
will uncontrollably perturb the state, destroying the
original (Sec. III). Moreover, even if we have an unlim-
ited number of copies of that state, infinitely many mea-
surements will be necessary to determine that unknown
state.

For example, let us assume that Alice has a qubit (say
one spin-3 particle) in a pure state. Bob needs it, but
Alice does not have any quantum channel to transmit it
to him. If Alice knows the precise state of her qubit (for
example, if she knows that her spin 3 is oriented in the
direction n), it is enough for her to give Bob in a letter
(classical channel) that information (the components of
n) to enable him to prepare a qubit exactly equivalent to
hers. But if she happens not to know the state, she may
choose to tell Bob, who would then be obliged to pre-
pare his qubit in a random way, obtaining a 50% fidelity
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FIG. 3. Scheme for quantum teleportation.

on average. But Alice can also try to be more coopera-
tive, making, for example, a measurement on her qubit
of n- o, with n arbitrarily chosen, and then transmitting
to Bob both the components of n and the result e==*1
thus obtained. Armed with this information, Bob can
prepare his qubit in the state $(1+ en- ). The average
fidelity so obtained is larger than before: 2/3. However, it
is not enough.

If Alice and Bob share an Einstein-Podolsky-Rosen
pair, there exists a protocol, devised by Bennett et al.
(1993), known as quantum teleportation, which, resorting
to the quantum entanglement of states and the nonlocal-
ity of quantum mechanics, allows Bob to reproduce Al-
ice’s unknown quantum state with the assistance of only
two cbits of information sent by Alice to Bob through a
classical channel. This procedure necessarily destroys
Alice’s state (otherwise it would violate the quantum no-
cloning theorem; Sec. III). Let us have a closer look at
the aforementioned protocol (see Fig. 3; Rieffel and Po-
lack, 2000).

Let |¢4)=al0)+B|1) be Alice’s qubit, with «
=cos 36, B=€'?sin3 6. And let |P):=2"12(|00)+|11)) be
the EPR state shared by Alice and Bob, with Alice hav-
ing the first of its qubits and Bob the second. The initial
state is thus |¢)®|®), of which Alice can locally ma-
nipulate the first two bits and Bob the third one.

Step 1. Alice applies to the initial state the unitary
operator U:=[(Ug®1) UcnoT]®1, acting with the CNOT
gate on the first two qubits and next with the Hadamard
gate H on the first one. The resulting state is

2([00)y@|y)+|01) @ X[y) +[10)© Z|y) + [11)© Y| ¢>)-(48)

Step 2. Alice then measures the first two glubits, ob-
taining |00), |01), |10), or |11) equiprobably.'® Alice lets

16Steps 1+2 amount to performing a Bell measurement on
the initial state, thus correlating the Bell states 00+=11,01=10
of Alice’s two qubits with the states of Bob’s qubit. It suffices
to note that

1
[BID)=—(00)-+ 1)

1
= ﬁ[(lOOH|11>)|¢>+(|01>+|10>)

X X[ ) +(100) = [11)) Z| )+ (|01) = [10)) Y[ )]
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Bob know the result, sending him two cbits: the pair of
binary digits 00,01,10,11 thus obtained. As a by-product
of Alice’s measurement, the first bit ceases to be in the
original state |i), while the third qubit gets projected
onto |),X| ), Z| ), Y| ), respectively.

Step 3. Once Bob receives the classical information
sent by Alice, he needs only to apply on his qubit the
corresponding gate 1, X,Z,Y, in order to drive it to the
desired state |#).

Notice that this teleportation sends an unknown quan-
tum state from one place (whence its vanishes) to an-
other place (where it shows up) without really traversing
the intermediate space. It does not violate causality,
though. In the first part of the process, quantum corre-
lations get established between the Bell states obtained
by Alice and the associated states of Bob’s qubit. In the
remaining part, to conclude the teleportation, informa-
tion is transmitted by classical means, in the standard
nonsuperluminal fashion. Notice also that in this “non-
corporeal” process, it is the information about the quan-
tum state, the qubit, and not the physical state itself, that
gets passed from Alice to Bob. There has been no trans-
portation whatsoever of matter, energy, or information
at a speed greater than the speed of light.

It is nevertheless surprising in quantum teleportation
that all the information needed to reproduce the state
| )= (cos 36)|0)+e'%(sin 30)|1) [information that is infi-
nite for it requires fixing a point (6,¢) on the Bloch
sphere with infinite precision, thus requiring infinitely
many bits] can be accomplished with only two cbits, pro-
vided that an EPR state is shared. This state, by itself,
generates only potentially an infinite number of random
and correlated bit pairs.

An ebit is the amount of entanglement in a two-qubit
state maximally entangled (usually in a bipartite pure
state with entanglement entropy 1; Bennett, Divincenzo,
et al., 1996). As an “exchange currency,” one ebit is a
computing resource made up of a shared EPR pair.
Writing a<1b to indicate that a resource a is implement-
able upon spending the resource b, the following rela-
tions are quite apparent: 1 cbit<l1 qubit (to transmit 1
cbit it is enough to send 1 qubit in one out of two or-
thogonal states), and 1 ebit<{1 qubit (to have 1 ebit it is
enough to produce an EPR pair and to send half of it to
the other partner). With this formulation, quantum
teleportation allows us to write 1 qbit<{1 ebit+ 2 cbits
(Bennett, 1995).

Quantum teleportation was realized experimentally
with photons for the first time in two laboratories
(Bouwmeester ef al., 1997; Boschi et al., 1998). At least,
this is what these authors claim, although their results
have been questioned (Braunstein and Kimble, 1998;
Vaidman, 1998; Braunstein, Fuchs, and Kimble, 2000;
see, however, Bouwmeester et al. 1998, 2000). In the ex-
periment by the Roma group (Boschi et al., 1998), the
initial state to be teleported from Alice to Bob was a
photon polarization, but not an arbitrary one, for it co-
incided with that of Alice’s photon in the shared EPR
photon pair. In the experiments by the Innsbruck group
(Bouwmeester et al., 1997), however, the teleported
state was arbitrary. Teleportation was reached with a
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high fidelity of 0.80+0.05,"” but with a reduced effi-
ciency (25% of cases).

It does not seem to be easy to implement the theoret-
ical protocol with 100% effectiveness. The Bell operator
(which distinguishes among the four Bell states of two
qubits) cannot be measured unless both qubits interact
appreciably with each other (as occurs with the CNOT
gate used in the protocol explained above), something
that is very hard to achieve with photons. However,
hopes are high that this will be easier with atoms in
electromagnetic cavities.

Teleportation has also been realized in states that are
parts of entangled states (Pan et al., 1998).

We should also mention that work has been done on
quantum teleportation of states of infinite-dimensional
systems (Furuzawa et al., 1998), specifically, the telepor-
tation of coherent optical states based on pairs of EPR
squeezed states. In this experiment, whose fidelity is
0.58=0.02 (higher than the maximum 5 expected with-
out resorting to entanglement), a third party, the verifier
Victor, supplies Alice with one state that is known to
him but not to her. After that state is teleported from
Alice to Bob, Victor verifies on output if Bob’s state is
similar to the one he provided to Alice. This experiment,
quite different from the others, led the authors to claim
priority in the realization of teleportation.

Quantum teleportation, which doubtlessly will be ex-
tended to entangled states from different kinds of sys-
tems (photons and atoms, ions and phonons, etc.), could
lead to remarkable applications for quantum computers
and computer networks (for example, combined with
prior distillation of good EPR pairs). Moreover, quan-
tum memory records could be created by teleportation
of information on systems such as photons to other sys-
tems as trapped, well-isolated ions in cavities (Bennett,
1995; Bouwmeester et al., 1997).

V. DENSE CODING

Classical information can also be sent through quan-
tum channels: to transmit the word 10011, it is enough
that Alice prepare 5 qubits in the states
[1),]0),]0),/1),|]1) and send them to Bob through the
quantum channel, and that Bob measure each of them in
the basis {|0),|1)}. Each qubit carries a cbit, and this is
the most it can do in isolation. But if Alice and Bob
share beforehand an entangled state, then two cbits of
information can be sent from Alice to Bob with a single
qubit. This is cast in the formula 2 cbits<l1 ebit
+1 qubit.

In fact, entanglement is a computing resource that
makes possible more efficient ways of coding informa-
tion (Bennett and Wiesner, 1992). One of these goes by
the name of quantum dense coding (or superdense cod-
ing). Assume, for instance, an entangled state of two

UThis fidelity overcomes the value 3 corresponding to the
case in which Alice measures her qubit and communicates the
result to Bob classically.
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FIG. 4. Scheme for dense quantum coding.

photons. One of the photons goes to Alice, the other
one to Bob. She performs one of the following opera-
tions on the polarization of her arriving photon: identity,
flipping (that is, <=, or ©O=0), change of  in the
relative phase, and the product of the last two. Once this
is done, she sends the photon back to Bob, who mea-
sures in which of the four Bell states the photon pair is.
In this fashion they have been able to share two bits of
information over one single particle with only two states,
that is, by means of a qubit. This is twice what can be
accomplished classically, hence the name dense coding.
Moreover, if Eve intercepts the qubit, she cannot get
from it alone any information whatsoever, for its state is
11. All the information lies in the entangled state, and
Bob possesses half of the pair. Actually, Alice has sent
Bob two qubits, but sent the first one long ago, as part of
the initial entangled state. This fact has allowed them to
communicate more efficiently, using the entangled state
they shared.

Dense coding is in some sense the inverse process to
teleportation. In the latter the communication of two
cbits allows us to reproduce a qubit state, while in the
former the communication of a qubit carries along two
cbits of information.

The following is a protocol that thoroughly imple-
ments what we have just explained (Rieffel and Polack,
2000): an Einstein-Podolsky-Rosen source supplies Al-
ice and Bob with EPR two-particle states like |®)
:=2"12(]00)+|11)), one of whose particles goes to Alice
and the other to Bob, who keep them. Alice is supplied
with two cbits, which represent the numbers 0,1,2,3 as
00,01,10,11 (see Fig. 4).

Step 1. Coding. According to the value of that number,
Alice effects on her EPR state half the unitary operation
1,Z,X,Y, which brings the EPR state to 00+ 11,00
—11,10+01,10—01. Once this is done, she sends her half
to Bob.

Step 2. Decoding. Upon reception, Bob first effects on
the EPR pair a CNOT operation, such that the state be-
comes 00+10,00—10,11+01,11—01. He then measures
the second qubit; if he finds 0, he already knows that the
message was 0 or 1, and if he finds 1, the message was 2
or 3. That is, he has gotten the first bit of the two-bit
message. In order to know the second one, Bob next
applies a Hadamard transformation on the first qubit;
thereby the state becomes 00,10,01,—11. Measuring the
first bit, if he finds 0, he knows that the message was 0 or
2, and if he finds 1, the message was 1 or 3; that is, he has
just gotten the second bit of the message.
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An experiment of this nature was performed in Inns-
bruck (Mattle et al., 1996), using as a source of en-
tangled photons the parametric down conversion that a
nonlinear crystal of S-barium borate produces: UV pho-
tons are disintegrated (though with low probability) in a
pair of softer photons, with polarizations that in a cer-
tain geometric configuration are entangled. In that ex-
periment one qutrit/qubit was sent, that is, log, 3=1.58
cbits per qubit.

In a recent experiment, in which the qubits were the
spins of 'H and "*C in a chloroform molecule *CHCl,
marked with 3C, and nuclear magnetic resonance
(NMR) techniques were employed to initialize, manipu-
late, and read out the spins, the authors claim to have
reached two cbits per qubit (Fang ef al., 2000).

The initial preparation of the entangled pair and the
subsequent transmission of the information qubit may
be done in the opposite senses; for example, Bob sends
Alice one half of the entangled state, keeping the other
half for himself, and then Alice uses her qubit to send
Bob the desired information. This may be of interest if
the cost of transmission in one direction is higher than
the cost in the reverse direction. Moreover, distribution
of the entangled state prior to the communication, can
be scheduled so as to profit from transmission hours at
lower charges.

On the other hand, intercepting the message from Al-
ice to Bob does not provide one whit of information to
an eavesdropper, for the message is entangled with the
part of the EPR system possessed by Bob. Therefore it
is automatically an encrypted emission (except if Eve
intercepts both the original pair and the message and
she replaces them).

VI. CRYPTOGRAPHY
A. Classical cryptography

Cryptography has been a very important part of infor-
mation theory since 1949 and the pioneering works of
Shannon at Bell Labs. He proved that there exist un-
breakable codes or perfectly secret systems (Shannon,
1949). As a matter of fact, one had been known since
1918 (but not that it was unbreakable). This was the
one-time pad system (ONETIMEPAD), also named the
VERNAM code (Vernam, 1926); it was devised by the
young engineer Vernam at AT&T in December 1917
and proposed to the company in 1918 (Kahn, 1967).
With Vernam’s system both ciphering and deciphering of
messages became automatic tasks for the first time.

1. One-time pad

To encode with the one-time pad one starts from the
plain or source text to be ciphered, written as a series
{P1,p2,....pN} of integers p;eZpz; then a key
{ki,kyy ... kyte Zg, M= N, randomly chosen, is used
to produce a ciphered text or cryptogram {cy,c,, . ..,cn}
by combining the key with the plain text in modular
arithmetic ¢;=p;+k; mod B,1<j<N. The module B is
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the maximum number of distinct symbols [2 for binary,
10 for digits, 27 for letters (English text and blank space
symbol), etc.].

Both the sender (Alice) and the receiver (Bob) need
to have the same key of random numbers, so that upon
reception of the cryptogram, Bob undoes the algorithm
with that key, thereby recovering the original text.

Possible repetitions in the source text (to which code-
breakers resort for decoding) are washed out by the ran-
dom key. The length of the random sequence must be
greater than or equal to that of the source text and must
not be employed more than once.'® Shannon showed
that if the key length is smaller than the text length and
one reuses the key cyclically to encrypt the message,
then it is possible to extract information from the en-
coded text (Shannon, 1949). These requirements make
this procedure very burdensome when there is a large
amount of information to encrypt. Moreover, it is not
easy to have long series of truly random numbers at our
disposal.

This cipher system was used by German and Russian
diplomats during the Second World War and by Soviet
espionage during the Cold War (Hughes et al., 1995). It
is popularly known as “one-time pad” because the keys
were written on a notebook or pad, and each time one
was used, the corresponding sheet with the key was torn
off and destroyed. It is said that the continued use of the
same key was what allowed the unmasking of the
Rosenberg spy ring and the atom spy Fuchs (Hughes
et al., 1995). This system was also used by Che Guevara
to communicate secretly with Fidel Castro from Bolivia
(Bennett, Brassard, and Ekert, 1992). And it is routinely
used for White House and Kremlin communications
through the “hot line.”

Although invulnerable, the VERNAM cryptosystem has
the shorthcoming of demanding keys at least as long as
the text to be ciphered. This is why it is used only to
cipher highly valuable information. For less delicate or
sensitive business it is replaced by shorter (though
breakable) encryption keys. It was precisely the goal of
breaking secret messages that fostered the development
of computers.

2. Public-key cryptographic system

The public-key cryptographic system is of great inter-
est, since it avoids some of the shorthcomings of the
Vernam system. It was devised in the middle of the
1970s by Diffie and Hellman at Stanford (Diffie and
Hellman, 1976; Hellman, 1979; Diffie, 1992) and later
implemented at MIT by Rivest, Shamir, and Adleman
(1978)."” This system is nowadays used worldwide, for
instance, on the Internet.

18]f two binary cryptograms encoded with the same key are
intercepted, their sum modulo 2 eliminates the key and makes
it Eossible to decrypt messages with ease (Collins, 1992).

Y Apparently, some years before Diffie and Hellman, the
British Secret Service knew about this system, but kept it a
military secret (Ellis, 1970; Ekert, Hayden, and Inamori, 2000).
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Two keys are involved: one person X gives away a
public key, which anybody can use, and he/she keeps
secret a private key, which is the inverse of the former.
The public key is used by any sender S to send coded
messages to X; on receipt, X decodes them with the
private key. Clearly this is of interest only if X alone, but
nobody else, knows how to undo the coding at a reason-
able cost. How can we accomplish this? In a subtle and
cunning way: to encrypt messages, the public-key system
uses trapdoor one-way functions. These are injective
maps of complexity P, i.e., (computationally) tractable
functions, the inverse of which are intractable in prac-
tice, that is, highly costly to evaluate unless additional
information is supplied (a nondeterministic polynomial-
time or NP problem). See the Appendix for details. In-
teger factorization stands out in this type of inverse
function, as well as discrete logarithms in finite fields
and on elliptic curves (Koblitz, 1994; Welsh, 1995).

The public-key cryptographic system allows one to
leave wide open both the encryption algorithm and
“half” of the total key, namely, the public key, without
suffering any extra insecurity; this contrasts sharply with
the controversial DES system (data encryption stan-
dard), which discloses only the algorithm, but whose vul-
nerability has been shown (Electronic Frontier Founda-
tion, 1998).

3. Rivest-Shamir-Adleman system

One of the most interesting ways of implementing the
public-key cryptographic system is the RSA method of
Rivest, Shamir, and Adleman (1978) based on the ex-
treme difficulty of factoring large integer numbers. In
particular, it is used to protect electronic bank accounts
(for instance, against bank transfers electronically re-
quested). The public key of X consists of a pair of inte-
gers (N(X),c(X)), the first one very large, say 200—-300
digits, and the other one in the interval (1,o[ N(X)]) and
coprime to ¢[ N(X)], where ¢ is Euler’s totient function
[¢(n) is the number of coprimes to n in the interval
[0,n)]. The sender S, upon transforming his/her mes-
sage M into an integer following some public bijective
prescription upon which both sender and receiver have
agreed, partitions it into blocks B;<<N(X) as lengthy as
possible, and encodes each block B as

B—C(B)=B‘¥X) mod N(X). (49)

The sender then sends the sequence of cryptograms
{C(B))} to X. Let us denote this coding operation as
M—P (M), with the symbol Py meaning that it was
done with the public key c¢(X) of X. The receiver X
decodes each C(B) as

C(B)~B=C(B)*® mod N(X), (50)

where the exponent d(X) for decoding is the private
key, which is nothing but a solution to

c(X)d(X)=1 mod ¢[N(X)]. (51)
That solution is (Koblitz, 1994)
d(X)=c(X)?INOL=T mod o[ N(X)]. (52)
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We shall indicate the decoding as
Py(M)—Sy[Px(M)]=M, where the symbol S y refers
to the secret key of X.

In principle, since ¢(X) and N(X) are known, any-
body can compute d(X), and hence break the code. But
it is here that the shrewdness of X enters the picture. In
order to make it extremely difficult for Eve, the
eavesdropper, to decode the message, it is better that X
abide by certain rules (Salomaa, 1996), among which we
highlight the following.

(1) He/she must choose N(X) as the product p;,p, of
two large and random prime numbers (with at least 100
digits each), not very close to one another (for this it is
enough that the lengths of their expressions differ in a
few bits); the numbers must also not be tabulated or
have some special form. Algorithms for testing primal-
ity, such as the probabilistic Miller and Rabin algorithm
(Miller, 1976; Rabin, 1980) or the deterministic
Adleman-Pomerance-Rumely-Cohen-Lenstra algo-
rithm, discovered by Adleman, Pomerance, and Rumely
(1983) and later simplified and improved by Lenstra and
Cohen (Cohen and Lenstra, 1984; Cohen, 1993), facili-
tate enormously the selection of py, p,.

(2) As X knows p{,p,, he/she knows how to compute
¢[N(X)], namely, ¢[N(X)]=(p1—1)(p,—1). Now X
has to choose an integer d(X) (the private key) ran-
domly in the interval (1,p[N(X)]), coprime to
¢[N(X)], and then compute the public key c(X) by
means of

c(X)=d(X)?CINOD=1 mod [ N(X)], (53)

o, much  better, by solving c(X)d(X)
=1 mod ¢[ N(X)] with the classical Euclidean algo-
rithm.

One should reject small private keys d(X) in order to
avoid their discovery by plain trial and error. That is why
it is convenient to start by fixing d(X). It is not advis-
able to have ¢(X) very small either, for then the inter-
ception of the same message sent to several addressees
sharing the same public key could lead to its breakup
without much effort.

Anybody knowing only N(X) but not its factors
should “apparently” first factorize N(X) to compute
¢[N(X)], and hence find out the exponent for
decoding;® but factorization of a number 250 digits long
would take about 10 million years on a 200-MIPS*! work
station with the best algorithm known today (Hughes,
1998).

The RSA system also allows digital authentication of
messages, as well as the appending of an electronic or

2OWe say “apparently,” because it is unknown so far whether
there exist alternative procedures to decode C(B) that do not
go through getting the inverse exponent. Nor is it known
whether the computation of this key necessarily requires
knowing the prime factors of N.

ZMillion of instructions per second; this gives a general idea
of a computer’s speed, but refers only to CPU speed—real
speed also depends on other factors like input/output speed.
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digital signature (Koblitz, 1994; Stinson, 1995; Welsh,
1995; van der Lubbe, 1998).

In 1977 Martin Gardner published an encoded mes-
sage in his Mathematical Games in Scientific American
using the RSA method, with the promise of a $100 re-
ward (payable by the Rivest et al. group at MIT) for the
first person who could decode it (Gardner, 1977):

96869613754622061477140922254355882905759991124
57431987469512093081629822514570835693147662288

3989628013391990551829945157815154.

This cryptomessage had been obtained using the RSA
method starting from an English sentence and the dic-
tionary U(blank space)—00,a—01,...,z—26, and using
as a public key (RSA-129,9007), where RSA-129 was the
following number 129 digits long:

RSA-129
=114381625757888867669235779976146612
01021829672124236256256184293570693524573389783

0597123563958705058989075147599290026879543541.

Decoding this message required factorizing RSA-129
into two prime factors of 64 and 65 digits each. It was
then estimated then that the time needed to reach that
goal would be about 4x10'° years, at least. In 1994 new
factorization algorithms®> and the combined effort in
idle time of a cluster of about a 1000 work stations on
the Internet did factorize it in about eight months, after
a CPU time of 5000 MIPS years, using the quadratic
sieve algorithm. These factors are

34905295108476509491478496199038981334177646384
93387843990820577X
32769132993266709549961988190834461413177642967
992942539798288533.

With this knowledge, it is straightforward to recover
the original message: the magic words are squeamish os-
sifrage (Atkins, 1995).

Two years later, RSA-130 was broken with the most
powerful factorization algorithm to date (the general
number field sieve), and after a computation time almost

2There exist efficient methods, such as those based on the
quadratic sieve (QS; Pomerance, 1982; Gerber, 1983; Pomer-
ance, 1996), elliptic curves (EC; Lenstra, 1987), and the gen-
eral number field sieve (GNFS; Lenstra, 1993; Pomerance,
1996). Their complexities are subexponential, but superpoly-
nomial:

QS:  O(exp{[1+o(1)]Vlog Nloglog N}),
EC:  O(exp{[1+o(1)]Vlog p loglog p}),
GNFS:  O(exp{[1.923+0(1)](log N)3(loglog N)*3}),

where p is the smallest prime factor of N. From 120—130 digits
on, the number field sieve seems to overcome the other meth-
ods.
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FIG. 5. Factorization with 1000 work stations with increasing
power according to Moore’s law, starting from 800 MIPS (mil-
lion instructions per second) in 2000. The vertical axis shows
the factorization time 7,(n), in years, for an integer number of
n bits. The horizontal axis shows the calendar year.

one order of magnitude lower than that employed for
RSA-129. In February 1999, the factorization of the next
number in the RSA list was over: the RSA-140, after
about 2000 MIPS years and the same general number
field sieve method. And in August 1999 the factorization
of RSA-155 was achieved, also using the general number
field sieve and after about 8000 MIPS years.? It has 512
bits and is the product of two prime numbers 78 digits
long. To give some idea of the magnitude of this prob-
lem, in its solution 35.7 CPU years were employed to
perform the sieve, distributed among about 300 work
stations and PCs, and 224 CPU hours of Cray C916 op-
eration and 2 Gbytes of central memory in order to find
the relations between the rows of a giant sparse matrix
of 6.7 million rows and as many columns, with an aver-
age of 62.27 nonvanishing elements per row.

A few years ago, it was considered very safe to use
512-bit modules.”* The preceding example shows that
the general number field sieve factorization algorithm
renders this bit length insufficient. Today, the use of
(768,1024,2048)-bit modules is recommended for per-
sonal, corporate, or high security use. In Fig. 5, the esti-
mated factorization times under the joint use of 1000
work stations is represented, assuming that the process-
ing power follows Moore’s law (doubling every 18
months; Hughes, 1998). See Sec. VII for more details.
We take the RSA-155 time as a reference.”

Even though the factorization problem remains a dif-
ficult one in computer science, nobody knows for sure
whether one day a mathematician may come up with a
radically new and faster algorithm such that ordinary
classical computers could cope with the task of factoriz-
ing large integer numbers in polynomial time. As a mat-

We thank A.K. Lenstra and H. te Riele for sharing with us
their information about the latest RSA factorizations.

24The number of bits in the integer N is |log, N|+1.

BMiniaturization of classical devices has the atomic/
molecular scale as a limit, which at the pace of Moore’s will be
reached within a couple of decades.
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ter of fact, quantum computation has raised high expec-
tations in this regard, with Shor’s algorithm (Shor, 1994)
to be discussed in Sec. X.D. That is why security agen-
cies closely follow the new advances in number theory
and computation.

B. Quantum cryptography

Quantum physics provides us with a secure method
for coding, guaranteed by the very laws of physics. The
pioneering idea dates back to Stephen Wiesner, who as
early as 1969%° suggested this possibility, as well as the
fabrication of forgery-proof, “quantum banknotes”
(Wiesner, 1983). In the mid-1980s Bennett and Brassard
(1984) devised a quantum cryptosystem based on the
Heisenberg uncertainty principle, which soon afterwards
was implemented experimentally by sending secret in-
formation with polarized photons to a distance of 30 cm
apart (Bennett, Bessette, ef al., 1992). This system em-
ploys quantum states, not all mutually orthogonal, in or-
der to keep them from being cloned by a possible inter-
ceptor. Because it uses four distinct states, it is called the
four-state scheme. The use of nonlocal quantum correla-
tions in pairs of entangled photons (produced, for ex-
ample, by parametric down conversion) was subse-
quently proposed by Ekert (1991). Within Ekert’s
system the Bell inequalities (Bell, 1964, 1966, 1987) are
in charge of keeping the security; hence this system is
also called the Einstein-Podolsky-Rosen scheme. For a
recent detailed review see Gisin et al. (2001).

1. Counterfeit-safe “quantum banknotes”

A possible forgery-proof banknote could be provided
with a printed ID number and a small collection of (say
twenty) photons trapped indefinitely in individual cells
of perfectly reflecting walls, and with secret polariza-
tions O, O, ], <> randomly distributed, which the issuing
bank would keep a record of along with the identifica-
tion number (see Fig. 6). The bank could therefore at
any moment check the legitimacy of the note without
ruining it, because it would know beforehand how to
place the polarizers to check each photon polarization
without destroying it. However, any forger who at-
tempted to copy a note, ignorant of the directions in
which the photons were polarized, would perturb the
initial polarization, projecting it onto one of two corre-
sponding orientations of the polarizer chosen to mea-
sure with (Wiesner, 1983; Bennett, 1992b).

2. Quantum key distribution

Although the quantum notes business may seem like a
subject for science fiction, this is not the case for proce-
dures of quantum key distribution. Among the commu-
nication protocols, we may highlight the BB84 of Ben-

%His work was finally published in 1983 after being rejected
from the journal to which it was first submitted. An unpub-
lished version appeared in 1970.
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FIG. 6. Counterfeit-safe banknotes: the identification number
printed on the bill is correlated with a secret polarization
scheme of photons trapped in the individual cells represented
by small colored boxes. The allegedly invisible false colors of
these boxes are pictured to show the different photon polar-
izations.

nett and Brassard (1984), E91 of Ekert (1991), B92 of
Bennett (1992a), and an EPR approach without Bell’s
inequalities, due to Bennett, Brassard, and Mermin
(1992). These protocols provide a way for two parties to
share keys in absolute secrecy in principle, and thus they
are an ideal complement to the Vernam code.

Suppose Alice and Bob want to exchange secret infor-
mation without recourse to middlemen who bring key
pads from one to the other and without fear that some-
one will break their code. To this end, they must share a
key known only to them. They proceed according to a
given communication protocol, or set of instructions, ei-
ther to detect any nonauthorized eavesdropper or to de-
termine the secret key that only they will share for cod-
ing and decoding.

a. BB84 protocol, or four-state scheme

This is the first protocol devised in quantum cryptog-
raphy. Alice and Bob are connected by two channels,
one quantum and another public and classic. If photons
are the vehicle carrying the key, the quantum channel is
usually an optical fiber. The public channel can also be
so, but with one difference: in the quantum channel,
there is in principle only one photon per bit to be trans-
ported, while in the public channel, in which eavesdrop-
ping by any nonauthorized person does not matter, the
intensity is hundreds of times bigger.

Step 1. Alice prepares photons with linear polariza-
tions randomly chosen among the angles 0°, 45°, 90°,
and 135°, which she sends “in a row” through the quan-
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tum channel, while keeping a record of the sequence of
the prepared states and of the associated sequence of 0’s
and 1’s obtained representing by 0 the choices of 0 and

clearly random. For instance, denoting by H, V, D, and
A the horizontal, vertical, 45°, and 135° polarizations,
respectively, and by +, X the polarization basis {H,V},

45 degrees, and by 1 otherwise. This sequence of bits is ~ {D,A}, Alice’s possible sequences are

+++ XXX F XXX XXX XXX XX XXX XX XX, L
VVVHAVAAVAHVHHDDVDDHHAAAVHDHVVDVDADVDAAHVDVHHHVA. . .
111011111101000010000111100011010101011010100011.. ..

Step 2. Bob has two analyzers, one “rectangular” (+type), the other “diagonal” (Xtype). Upon receiving each of
Alice’s photons, he decides at random what analyzer to use, and writes down the aleatory sequence of analyzers used
as well as the result of each measurement. He also produces a bit sequence associating 0 to the cases in which the
measurement produces a 0° or 45° photon, and 1 in cases of 90° or 135°. With the following analyzers chosen at
random a possible result of Bob’s action on Alice’s previous sequence is

X+X+HXXXX+H++XH+HX+HXFXXXXHH+H+ XXX XXX XX XXX+, .,
DVAHADAAVVHDHHDHAVDADAHHVHVHVDDADHVVDVAAADADHHDH. . .
011010111100000011010100101010010011011110100000. ..

Step 3. Next they communicate with each other through the public channel the sequences of polarization basis and
analyzers employed, as well as Bob’s failures in detection, but never the specific states prepared by Alice in each basis
nor the resulting states obtained by Bob upon measuring.

Alice to Bob: ++++X+xX+X++++XX+XX++HXXX+H+x+H+H+X+HXXX. ..
Bob to Alice: x+X+XXXX+++X++X+X+XXXX+++++++XXXX+T. ..

Step 4. They discard those cases in which Bob detects no photons, and also those cases in which the preparation basis
used by Alice and the analyzer type used by Bob differ. After this distillation, both are left with the same random
subsequence of bits 0, 1, which they will adopt as the shared secret key:

Alice 111011111101000010000111100011010101011010...
FH+H+X+HXX XXX XX XXX XX XXX XXX XL

Bob  X+X+XXXX+++X++X+XFXXXN++H+HHHHXXXX+HHHXHXXXX. . .
011010111100000011010100101010010011011110...

Alice -1-01-111-6—000-——0-—1--10-01-0-0--10-1--0...
Bob -1-01-111-0-000---0--1--10-01-0-0--10-1--0

Therefore the distilled key is that Eve “taps” the quantum channel and that, having
the same equipment as Bob, analyzes the polarization
state of each photon, forwarding them next to Bob. Eve,
much like Bob, ignorant of the state of each photon sent
by Alice, will use the wrong analyzer with probability
1/2 and will replace Alice’s photon by another one, so
that upon measurement Bob will get Alice’s state with
probability only 3/8, instead of the probability 1/2 in the

absence of eavesdropping. Therefore this intervention of

1011110000011001001010---

and its length is, on average, and assuming no detection
failures, one-half of the length of each initial sequence.

b. Eavesdropping effects

All of this holds in the ideal case in which there are no
eavesdroppers, no noises in the transmission, and no de-
fects in the production, reception, or analysis: the dis-
tilled keys of Alice and Bob coincide. But let us assume
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Eve induces on each photon a probability of error 1/4.
Returning to the previous example, let us assume that
Eve’s measurements on Alice’s photons produce the fol-
lowing results:
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Eve x++x++++X++XXX++++++X+XXXX++HXX+HX+H+H+HX+HXXX4X. . .
DVVAVVVVDVHADAVHVHHHAVAAADHHADHDVVVDHAADVD. ..

Eve’s states are now those reaching Bob, who with his sequence of analyzers will obtain, for instance,

Proceeding as in Step 4:

X+X+XXXX+H++X++ XX XX XX +FH+++ XXX XX EXXXXXX++XF, .

DVDVADADHVHAHHDHAHAAAAHHHHHHHDDDAVVVAVADDDAAHHAH. . .

010110100101000010111100000000001111111000110010. ..

Alice 111011111101000010000111100011010101011010. ..

+tttX+HXXHXHHFFXXEXX XXX XX XXX XXX XL ..
Bob X+X+HXXXX+H+H+X+FX+HXFXXXXH+HH+HHH XX XXX HXXXX. ..
010110100101000010111100000000001111111000...

Alice -1-01-111-0-000---0--1--10-01-0-0--10-1--0...
Bob -1-11-100-0-000---1--1--00-00-0-1--11-1--0...

We see that the coincidences in the distilled lists get
disrupted: in one out of four cases, the coincidence dis-
appears. Sacrificing for verification a piece of the lists
taken at random from the final sequences, Alice and
Bob can publicly compare them, and their differences
will detect Eve’s intervention. If the length of that
checked partial sequence is N, the probability that Eve’s
listening has not produced discrepancies is (3/4)" and is
thus negligible for N large enough. Therefore, should
they not find any discordance, they can feel safe about
the absence of eavesdroppers. But they must clearly dis-
regard the binary string they have made public and not
use it for coding.

In practice, the emitting source, the transmission
channel, and the receiving equipment all display noise,
which will spoil, even without Eve’s intervention, the
perfect fit of the bit sequences distilled by Alice and
Bob. It is necessary then to live with error, so long as this
stays within a tolerable limit. In these circumstances,
Eve will try to restrain herself, taking care that the ef-
fects of her listening stay below a certain threshold and
do not sound the alarm.

Cryptanalysts like Eve usually are a good deal more
subtle than the previous simple analysis might suggest.
Aware as they are of the quantum subtleties, they are
not satisfied with incoherently tapping the quantum
channel qubit to qubit; they know that a coherent attack
on strings of qubits, with probes analyzed after the pub-
lic exchange of information between Alice and Bob, can
be much more rewarding. To test the safety of a protocol
such as BB84 under any type of imaginable attack by a
malicious and cunning Eve is neither a trivial nor an
uninteresting issue, especially bearing in mind that other
protocols which were considered to be unconditionally
secure have fallen. One such is the bit commitment
quantum protocol: Alice sends something to Bob under
the firm commitment of having chosen a bit b that Bob
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does not know, but that Alice can later show to him
when he claims it. Resorting to entangled EPR states
makes it possible for either party of the couple to be-
have dishonestly (a cheating Alice could change her
commitment at the end without Bob’s being aware, or an
untrustworthy Bob could obtain some information on b
without asking Alice; Mayers, 1996, 1997; Brassard et al.,
1997).

There exists a proof of the unconditional security of
quantum key distribution through noisy channels and up
to any distance, by means of a protocol based upon the
sharing of EPR pairs and their purification, and under
the hypothesis that both parties (Alice and Bob) have
fault-tolerant quantum computers (Lo and Chau, 1999).
Likewise, the unconditional security of the BB84 proto-
col is also claimed (Mayers, 1998).

c. B92 protocol

Unlike the previous protocol, which uses a system in
four pairwise orthogonal states, in the somewhat simpler
B92 protocol, only two nonorthogonal states are in-
volved. We shall not discuss it here, as it is similar to the
previous one. The interested reader is referred to the
oiginal article of Bennett (1992a).

d. Einstein-Podolsky-Rosen protocols

In 1991 Ekert, relying on earlier ideas of Deutsch
(1985), proposed an elegant method for secret key dis-
tribution, in which the generalized Bell’s inequality safe-
guards confidentiality in the transmission of pairs of
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FIG. 7. Aerial view of St. Louis airport (left), image encrypted with a quantum-generated key (center), and decrypted image

(right). From Hughes and Nordholt (1999).

spin-3 particles entangled a la Einstein, Podolsky,
Rosen, and Bohm (Deutsch, 1985; Ekert, 1991).

Six months after Ekert’s work appeared, Bennett,
Brassard, and Mermin (1992) presented a very simple
scheme for key distribution that still uses Einstein-
Podolsky-Rosen-Bohm states in the singlet state
[272(]01)—|10))], but does not need to invoke Bell’s
theorem to detect Eve’s listening. Alice and Bob mea-
sure the spin of their respective subsystems (halves of
Einstein-Podolsky-Rosen-Bohm pairs) randomly along
Ox or Oz. Through a public channel, they inform each
other about their sequences of selected observables, but
not of the results + 3 obtained. They discard the cases in
which their selections differ. They keep the remainder;
the results of the latter are evidently anticorrelated. Bob
now reverses all his outcomes (=3~>¥*3), and then
both Alice and Bob add 3 to their results, thereby ob-
taining the secret key to be shared. Sacrificing as before
a piece of the key in the interest of public comparison,
they can detect Eve’s listening.

Although it can be shown that this protocol is essen-
tially equivalent to the BB84 (Bennett, Brassard, and
Mermin, 1992), it offers a potential bonus (Collins,
1992): the users, Alice and Bob, can wait to establish the
key until they are about to use it (should they know how
to keep the EPR states expectant for a while between
their production and use), in this way removing the pos-
sibility of Eve’s stealing the shared key.

C. Practical implementation of quantum key distribution

The BB84 protocol was implemented for the first time
at the IBM T.J. Watson Research Center (1989-1992)
with polarized photons sent over 32 cm through air
(Brassard, 1989; Bennett, Bessette, et al., 1992). In 1995
the B92 protocol was realized experimentally, also with
polarized photons, transmitted this time through optical
fiber 22.8 km long in the Swisscom cable connecting the
cities of Geneva and Nyon under Lake Leman (Muller,
Breguet, and Gisin, 1993; Muller, Zbinden, and Gisin,
1996).
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The use of photon polarization states for long dis-
tances has a disadvantage: birefringency in the non-
straight parts of the fiber transforms linearly polarized
states into states of elliptic polarization, with accompa-
nying losses in transmission, and further produces dis-
persion of the orthogonal polarization modes. Hence the
interest in other ways to codify the states, for example,
by means of phases instead of polarizations. A group
from British Telecom took this approach in 1994 with
optical fiber over a distance of 30 km, using interferom-
etry with phase-encoded photons (Marand and
Townsend, 1995). They saw no major obstacles to ex-
tending transmission to around 50 km. In 1999 a group
from Los Alamos reached 48 km using this procedure
(Hughes, Luther, efal, 1996; Hughes, Buttler, et al.,
1999; Hughes, Morgan, and Peterson, 2000). The use of
phase-encoded photons shows promise for safely con-
necting diverse government agencies in Washington. To
cover distances larger than 100 km would require the
use of safe repeaters where key material for rebroad-
casting might be generated.

With the B92 protocol, it was possible in 1998 to quan-
tumly transmit the secret key, at a rate of 5 kHz and over
0.5 km in broad daylight and free space, with polarized
photons (Hughes, Buttler, et al, 1999; Hughes and
Nordholt, 1999). The key was then used to encrypt a
photograph (with eight bits per pixel), which the recipi-
ent decrypted to reconstruct the primitive image, with
the results shown in Fig. 7.

In the near future this procedure will be able to gen-
erate secret keys, shared by earth-satellite or satellite-
satellite links, that protect the confidentiality of the
transmissions.

More recently, quantum key distribution over 360 m
has been achieved using variants of E91 and BB84 (Jen-
newein et al., 2000). Pairs of entangled photons were
employed to generate keys at a rate of 0.4—0.8 kHz with
an error bit rate of about 3%.
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VIl. QUANTUM COMPUTATION

A simple and intuitive way to arrive at the notion of
quantum computation is through miniaturization.”” This
has been the driving force in the modern upgrade of
ordinary computers. As a matter of fact, the computer
industry has grown at the same time as integrated cir-
cuits have decreasd in size. This rapid growth in the in-
dustry will continue as long as it is possible to include
more and more circuits in a single chip. However, this
pace cannot last forever and at some point we will reach
the limits of integrated circuit technology. Even if we
can overcome the technological barriers, this trend will
lead us to the quantum realm, where the laws of quan-
tum physics will impose fundamental limitations on the
size of the circuit components and on their performance.
Thus, if the computer industry is to keep growing at the
same rate, it will require another technological revolu-
tion.

Although such a revolution may seem far in the fu-
ture, it is estimated that around the year 2020 we shall
reach the atomic size for storing one bit. Instead of just
waiting for this situation to arrive, some theoretical
physicists have decided to move ahead and have already
started to wonder about the radical changes and possible
advantages that a computer may have if based upon the
principles of quantum mechanics.

The estimates for reaching the atomic scale are based
on a remarkable observation made by Gordon Moore
(1965), later known as Moore’s law, that the number of
transistors per square inch on integrated circuits had
doubled every year since the integrated circuit was in-
vented. Explicitly, the original curve for the density of
silicon integrated circuits (transistors per square inch)
was o2(71%62) where ¢ is the calendar year. In subse-
quent years, the trend slowed down a bit, but chip ca-
pacity has doubled approximately every 18—24 months,
and this is the current definition of Moore’s law (see Fig.
8).

VIIl. CLASSICAL COMPUTERS

To pave the way for the concept of quantum comput-
ers let us first consider a classical concept, namely, the
notion of parallel computation. To properly understand
this let us first recall the basic operating principles of the
ordinary computers we work with as they were intro-
duced by Turing in 1936 and subsequently developed by
von Neumann in 1945 (von Neumann, 1945, 1946),
among others.

A. The Turing machine

The concept of a Turing machine was the foundation
of the modern theory of computation and computability:

YFeynman’s famous speech addressing the American Physi-
cal Society (Feynman, 1959), with his provocative bets on
building microengines and writing on pinheads, signaled the
birth of nanotechnology.
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FIG. 8. Moore’s law for processor capacity (number of transis-
tors per square inch).

the study of what computers can and cannot do. Turing
arrived at this concept in 1936 (Turing, 1936) in his at-
tempt to answer one of the questions posed by Hilbert.
This was the problem of decidability (Ent-
scheidungsproblem): Does there exist, at least in prin-
ciple, a definite method or process by which all math-
ematical questions can be decided (Hodges, 1992)?

Turing realized that addressing this problem would re-
quire a precise and compelling definition of “a definite
method,” as it appears in the statement of Hilbert’s
problem. He analyzed what a person does during a me-
thodical process of reasoning. His guiding idea was to
translate the human thought process into something
purely mechanical. He then went on to map that process
into a “theoretical machine” that would operate on sym-
bols on a paper tape according to precisely defined el-
ementary rules. Turing also provided convincing argu-
ments that the capabilities of such a machine would be
enough to encompass everything that would amount to
“a definite method,” which in modern language is what
we call an algorithm.

We shall see later how Turing answered the question
of decidability in the negative using his concept of a
Turing machine, which we should first introduce.

A Turing machine is a type of machine that has a finite
set of states S={s,57,...,5¢;55+1=5ha},» a finite al-
phabet of symbols A={a;,a,,...,a,;a,,1=Dblank},
and a finite set of instructions Z={i,i,, ...,i;}. In ad-
dition, it has an external infinitely long memory tape.
This is called an S-state, A-symbol Turing machine.

The states s; correspond to the functioning modes of
the machine, and the Turing machine is exactly in one of
these states at any given time. The symbols in the alpha-
bet serve to encode the information processed by the
machine: they are used to code input/output data and to
store the intermediate operations. The instructions are
associated with the states in S, and they tell the machine
what action to perform if it is currently scanning a cer-
tain symbol, and what state to go into after performing
this action. There is a single halt state sy, (or halt, for
short) from which no instructions emerge, and this halt
state is not counted in the total number of states. There
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FIG. 9. Components of a Turing machine. The alphabet {1;0} is
unary, with 0 denoting blank. “Stop” means that (sy,,.) has
no assigned instruction.

is also a blank symbol that serves to separate strings of
data coded with the rest of the alphabet symbols.

The elements (S, A, Z) are physically arranged as fol-
lows. A Turing machine consists of three components
(Salomaa, 1989; Papadimitriou, 1994; Welsh, 1995; Li
and Vitanyi, 1997; Aharonov, 1998; Yan, 2000):

e The tape, which is a doubly infinite tape divided into
distinct sections or cells. Each cell can hold only one
symbol a; e A.

e A read/write (R/W) head or cursor, which can read or
write the symbol a; € A in each tape cell.

e A control unit, which is a device (or box) that controls
the movements of the R/W head based on the current
state of the Turing machine and the content of the cell
currently scanned by the R/W head, i.e., based on a

pair (s;,a;).
The read/write head is capable of only three actions:

e Writing on the tape (or erasing from the tape) only
the cell being scanned.

e Changing the internal state.

e Moving the head one cell to the left or right. Let us
denote this variable as ye{L,R}.

The behavior of a Turing machine is governed by the
set of instructions Z. These are rules that describe the
transition from an initial pair (s;,a;) to a final pair
(sf;ap) plus the movement y of the read/write head.
Thus each instruction jeZ is a  5S-tuple
[(s;»a;),(sf,az;y)] representing the following transition:

Iaj:(sia)—>(sp,ap;y). (54)

A consistency condition is required: no two instructions
j1,J>€Z have the same initial pair (s;,a;).

In Fig. 9 we plot a schematic picture of a Turing ma-
chine.

An alternative and efficient way to describe a Turing
machine is by means of a flow or state diagram (see Fig.
10). Here each state s;e S is enclosed in a circle, and the
instructions associated with a couple of states are repre-
sented by arrows also showing the change of symbols on
the tape and the head movement.
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FIG. 10. An example of a flow diagram for a (two-state, one-
symbol) Turing machine as shown in Fig. 9.

In Fig. 10 we show a (two-state, one-symbol) Turing
machine. It is customary in this case to use 1 for the
symbol and 0 for the blank, i.e., A={1;0}. When A=1
and §=2 we talk of a two-state Turing machine for
brevity. This, then, is a unary machine, which should not
be confused with a binary system, since each number n
is represented as a string of n 1’s on the tape, and not by
its binary representation. The state set is S
={s1,5,;halt}. In this simple example of a Turing ma-
chine, when it is in state s, scanning a 1, the machine will
move right one cell and stay in state s; (this is the loop
in Fig. 10). When it is in state s, scanning a blank sym-
bol, it will change this symbol to a 1 and go to state s,.
When it is in state s,, it will change both symbols 0,1 to
a 1, move right, and stop.

In summary, unless it is in the halt state, this simple
Turing machine will march rightward as long as it scans
1’s, and when it meets its first blank symbol, it will
change this into a 1 and then it will move right twice and
stop.

Let us now describe a Turing machine performing a
more interesting task like adding two numbers. This is
an adding Turing machine. Suppose we want to sum n,
+n,. The input data on the tape is a string of n; 1’s
separated by a 0 from another string of n, 1’s. The out-
put data on the tape must be a string of n;+n, 1%. To
achieve this output, we need to remove the leftmost 1 in
the first string of 1’s and convert the intermediate 0 into
a 1. Then we can use a two-state Turing machine defined
as follows (see Fig. 11). When it is in state s; and the
R/W head scans a 1, there is a transition to state s,, the
1 is replaced by 0, and the head moves to the right.
Similarly, there are three other instructions that we plot
in Fig. 11 in the form of a table of instructions. In Fig. 11
the input is 2+2 and the output 4.

1. Computability

Despite their simplicity, Turing machines can be de-
vised to compute remarkably complicated functions. In
fact, a Turing machine can compute anything that the
most powerful ordinary classical computer can compute.
Until the formulation of quantum computing, no one
had yet proposed a model of computation more power-
ful than the Turing machine. Thus, if we stick to classical
machines and we have to solve problems that a Turing
machine cannot solve, it seems that we will have to re-
sort to “supermachines” performing infinitely many
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FIG. 11. An example of an adding Turing machine. Following the sequence of instructions in the control unit, the machine

performs 2+2=4.

steps in a finite time or to guess the answer out of the
blue or something similar. This idea was formalized into
a proposition independently by Church and Turing and
goes by the name Church-Turing hypothesis (Church,
1936; Turing, 1936, 1950; Hodges, 1992). Following Tur-
ing, it is stated as follows: Every function that would
naturally be regarded as computable can be computed
by some Turing machine.

This is a hypothesis because it cannot be proved un-
less we provide a formal definition of what “naturally”
means. This hypothesis has not been refuted within the
realm of classical physics, but we shall see that the no-
tion of a quantum Turing machine requires the reformu-
lation of the Church-Turing hypothesis.

As a consequence of the Church-Turing hypothesis, a
function is called computable when it can be computed
by a Turing machine, while it is declared a noncomput-
able function otherwise.

2. The universal Turing machine

A further crucial concept introduced by Turing is that
of the universal Turing machine (Turing, 1936). So far
we have considered Turing machines built for a specific
purpose and for that purpose only. The universal Turing
machine allows us to run all Turing machines on a gen-
eral machine. Thus a universal Turing machine is de-
fined as a single machine that comprises all Turing ma-
chines and is therefore capable of computing any
algorithm.

Just as an ordinary Turing machine 7 is defined by a
set (S,A,7) with the instructions in Z being described by
a S-tuple [(s;,a;),(s¢,ar;v)], a universal Turing ma-
chine Ty is likewise constructed by providing a set
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(Sy,Ay,Zy) and a description of its instructions
[(S:,A4,),(Sf,Af;T)]. These instructions must be gen-
eral enough to accommodate any possible Turing
machine. This is accomplished by supplying it with
the information of a Turing machine and the data of its
tape.

There are several ways to construct explicitly a univer-
sal Turing machine 7y (Minsky, 1967; Herken, 1995;
Feynman, 1996). For simplicity, let us assume that the
alphabet Ay={a;=0,a,=1;.A{;} has a binary part corre-
sponding to A. This is not a restriction, since any alpha-
bet A can be mapped onto a binary alphabet. At any
given step in the functioning of 7y, the initial pair
(S;,A;) will know about the current description of the
tape 7of T, and as it also knows about the set of instruc-
tions Z, the universal Turing machine will output exactly
the same data as the Turing machine 7 it is simulating.
In order to implement this, we need to accommodate a
large, but finite, amount of information on the universal
Turing machine’s tape. Namely, the input data for the
tape of Ty is precisely all we need to know about the
Turing machine it reproduces: [ 7;(S,.A4,Z)]. These ele-
ments are disposed on the tape of T’y consecutively and
separated by marks belonging to A{;. The R/W head of
Ty is positioned at the initial cell of the string encoding
the data pair (sg,a). Then the universal Turing ma-
chine starts working, resorting to its set of instructions
Zy. Without going into further detail, this set contains
rules specifying how to bring the R/W head to read a
pair (s;,a;), change it to a new pair (s¢,as), and find the
movement y of the tape 7. This is repeated until the
given Turing machine 7 is fully imitated.

The number of states Sy, and symbols Ay is variable
in a universal Turing machine. Minsky constructed one
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with S;=7, Ay=4 (Minsky, 1967). In fact, one can in
principle always construct a universal Turing machine
with only Sy=2 and finitely many symbols, or only Ay
=2 and finitely many states.

The importance of the universal machine is clear. We
do not need to have an infinity of different machines
doing different jobs. A single one will suffice. The engi-
neering problem of producing various machines for vari-
ous jobs is replaced by the office work of programming
the universal machine to do these jobs (Turing, 1948). In
summary, a Turing machine is comparable to an algo-
rithm much as the universal Turing machine is to a pro-
grammable computer.

3. Undecidability: The halting problem

Turing was able to answer the problem of decidability,
rephrased in terms of the Turing machine: is it possible
to compute any function by designing an appropriate
Turing machine? Turing showed that this is not possible
because the set of possible functions is much larger than
the set of possible Turing machines. In fact, the set of
Turing machines is denumerable (and so is the set of
inputs). This is because any Turing machine can be en-
coded into a finite binary string. However, it is possible
to find sets of functions that are uncountable. Turing
provided one such example due to Cantor: the set F of
all functions f:N—N. Cantor had shown 50 years earlier,
with his dilemma of diagonalization, that this set F was
not countable. The proof is simple, by reductio ad absur-
dum: assume F is denumerable, then label each function
fe Fwith an integer: F={f,,f1,....f»"**}. Next construct
a function g:N— N by defining g(k):=f,(k)+1, Vk. This
function g is not contained in the initial set F since it
differs for at least one value of the argument from each
function in F. Thus the set F is not complete, which is a
contradiction.

This analysis implies that there must be noncomput-
able functions. Turing provided the first explicit ex-
ample, known as the halting problem: Is it possible to
design a Turing machine H that tells us whether or not
any Turing machine will halt when executing its proce-
dure for any input? Turing showed that there does not
exist such a Turing machine H (Turing, 1936); in other
words, the halting problem is undecidable, or equiva-
lently, the predicate ({0,1}-valued function) A:NXN
5 (i,j)—1 if the ith Turing machine 7; will halt for in-
put j,h:(i,j)=>0 otherwise, is noncomputable.”® In fact,
suppose that the contrary holds, i.e., that there exists an

H, which computes 4, and define a function hix—1 if
h(x,x)=0, being h(x) undefined otherwise.zg_The func-
tion 4 is computable by a Turing machine H obtained

from H just by replacing 0 by 1 when H halts and out-
puts 0, and by entering an endless loop when H is ready

28 Any form of input/output can be encoded into non-negative
integers (Salomaa, 1989).

PNote that the same integer x singles out here both a Turing
machine and an input.

Rev. Mod. Phys., Vol. 74, No. 2, April 2002

TABLE II. Busy-beaver Turing machines for small-S num-

ber of states. For S=6, 3(6)=95524079, X'(6)
=8 690333381 690951 (Marxen, 1997).

N 2(S) 2'(S)

1 1 18

2 4 62

3 6 212

4 13 107°

5 =4098 =47176 870°

aLin and Rado (1965).
"Brady (1983).
“Marxen and Buntrock (1990).

to halt with output 1. Let H= Timy; if h(i(H))=1, then
h(i(H),i(H))=0 and thus H should not halt for input
i(H). This is a contradiction. Similarly, if #(i(H)) is not
defined, then #(i(H),i(H))=1 and thus H should halt

for input i( H): another contradiction. Therefore H can-
not exist.

Another example was provided by Rado (1962) with
the so-called Rado’s % function: assume that the Turing
machine has S states, A=1 symbols and that the input
data is a completely blank tape. Then 3(S) is defined as
the maximum number of 1’s left on the tape after this
S-state Turing machine halts. This type of Turing ma-
chine is now known as the busy-beaver machine. Busy-
beaver Turing machines are difficult to find for two rea-
sons (Shallit, 1998): first, the search space is extremely
large—there are [4(S+1)]*S Turing machines with S
states (for each nonhalting state there are two transi-
tions out, so the total of transitions is 25, and each tran-
sition has two possibilities for the symbol being written,
two possibilities y= L, R for the direction to move, and
S+1 possibilities for what state to go to, including the
halting state). Second, due to the halting problem, it is in
general not possible to determine whether a particular
Turing machine will halt. We have to content ourselves
with finding busy beavers for small S by a brute-force
approach. In Table II we show the current status of this
search. Another Rado’s function %' (S) appears, which
is the maximum number of moves performed by the Tur-
ing machine before halting. Clearly ' (S)=3(S).

In Fig. 12 we plot a flow diagram of a three-state busy
beaver (Shallit, 1998). When this Turing machine starts

(LLR)

Set | (CRED) ALLR)
e > e Sy T s @
©.151)

(1.1:L)

FIG. 12. A three-state “busy-beaver” Turing machine.
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with a tape completely blank of input data it executes 13
moves and writes six 1%. Thus %(3)=6 and 3'(3)
=13. Lin and Rado (1965) showed that for S=3 the
3(3) lower bound in fact yields the correct solution.
From S=5 on, only lower bounds are known. For ex-
ample, 3(8)>10* (Rozenberg and Salomaa, 1994).

The proof that %(S) is a noncomputable function
goes by reductio ad absurdum. One shows that X(S)
grows with § faster than any computable function, i.e., if
F(S) is an arbitrary computable function, then there ex-
ists Sy such that 3(S8)>F(S) for S=S, (Shallit, 1998).
As a by-product, 3'(S) is not computable either.

4. Other types of Turing machines

The Turing machines considered so far are determin-
istic: the instructions i € Z follow the transition rules in
Eq. (54). It is possible to design other Turing machines
called nondeterministic for which, given an initial pair
(s;,a;), there exists a group of possible final triplets
(Yan, 2000). This means that the transition mapping (54)
is no longer a function, but a relation given by

(S, A)—subsets(S, A;7y), (55)

where subsets(S,.4;y) denote all possible subsets of the
Cartesian product SX AX y. A probabilistic Turing ma-
chine is a type of nondeterministic Turing machine with
some distinguished states called coin-tossing states.
When the machine goes into one of these coin-tossing
states, the control unit chooses between two possible le-
gal next triplets in SXAXy. The computation of a
probabilistic Turing machine is deterministic except that
in coin-tossing states the machine tosses an unbiased
coin to decide between two possible legal next moves.
The class of nondeterministic Turing machines is more
powerful than the class of deterministic machines in the
sense that anything computable with a Turing machine is
also computable with a nondeterministic Turing machine
and is usually faster. A nondeterministic Turing machine
is closer to the idea of a quantum computer, but still it is
far from one of them, as we shall see in Sec. IX.

The Turing machines introduced so far are irrevers-
ible: given the output of a computation we cannot gen-
erally reconstruct the input data. A reversible Turing
machine is one for which the input determines the out-
put and conversely, the output determines the input.
More explicitly, to each Turing machine M we can asso-
ciate a directed configuration graph I'(M): each node of
the graph is a possible configuration C e SX A, and two
nodes C,C’ are arc connected when there is some in-
struction i € Z of M bringing C to C’ in a single compu-
tation step.

A Turing machine M is reversible if and only if its
graph of configurations I'(M) has only nodes with the
number of incoming and outgoing lines <1.

We know that a nonreversible Turing machine has a
number of outgoing lines <1. It is apparent that requir-
ing the number of incoming lines <1 implies that M can
be executed in reverse deterministically, since every con-
figuration has only one possible predecessor.
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FIG. 13. von Neumann machine.

Lecerf (1963) and Bennett (1973) independently
showed that an irreversible Turing machine can be simu-
lated with a reversible Turing machine, at the expense of
extra computer space and time. This is a remarkable fact
for quantum computing, since a quantum Turing ma-
chine must be reversible (see Sec. IX).

Not only did Turing devise a theoretical computer, but
he also pursued the practical construction of one of
them. At the end of the war Turing was invited by the
National Physical Laboratory in London to design a
computer. His report proposing the Automatic Comput-
ing Engine (ACE) was submitted in March 1946 (Tur-
ing, 1946). Turing’s design was at that point an original
detailed design and prospectus for a computer in the
modern sense. The size of storage he planned for the
ACE was regarded by most who considered the report
as hopelessly overambitious, and there were delays in
the project’s being approved. In the long run, the Na-
tional Physical Laboratory design made no advance and
other computer plans at Cambridge and Manchester
took the lead. One year earlier, von Neumann had
pushed forward another project for constructing a com-
puter machine.

B. The von Neumann machine

The foundations of von Neumann’s work on comput-
ers were laid down in the “First Draft of a Report on the
EDVAC,” written in the spring of 1945 and distributed
to the staff of the Moore School of Engineering at the
University of Pennsylvania, where the Electronic Dis-
crete Variable Automatic Computer (EDVAC) was
originally developed, in late June (Aspray, 1990). It pre-
sented the first written description of the stored-program
concept and explained how a stored-program computer
processes information. von Neumann collaborated with
Mauchly and Eckert on the design for the EDVAC.

We can summarize the functioning of an ordinary
computer by saying that it does one single thing at a
time. von Neumann was the first to formalize the prin-
ciples of a “program-registered calculator” based in the
sequential execution of the programs registered in the
memory of the computer. This is called a von Neumann
machine (VNM). A VNM has the following parts, which
are depicted in Fig. 13.
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e Processor: The active part of the computer in which
the information contained in the programs is pro-
cessed step by step. It is in turn divided into three
main parts:

(i)  Control Unit: The unit that controls all the parts
of the computer in order to carry out all the
operations requested by other parts, such as ex-
tracting data from the memory, executing and
interpreting instructions, etc.

(i)  Registers: A very fast memory unit inside the
processor, which contains that part of the data
currently being processed.

(iii)  Arithmetic and logic unit: This unit is devoted to
the real computations such as sums, multiplica-
tions, logic operations, etc., executed on the
data supplied by the registers or memory upon
demand by the control unit.

e Memory: The part of the computer devoted to the
storage of the data and instructions to be processed. It
is divided into individual cells, which are accesible by
means of a number called the address.

The functioning of a von Neumann machine is cyclic.
One of these cycles contains the following operations:
the control unit reads one program instruction from the
memory, which is executed after being decoded. De-
pending on the type of instruction, a piece of data can
either be read from or written into the memory, or an
instruction can be executed. In the next cycle to be per-
formed, the control unit reads another program instruc-
tion, which is precisely next in the memory to the one
processed in the previous cycle.

It is the simplicity of this sequentially operating model
that makes it advantageous for many purposes because
it facilitates the design of machines and programs.

C. Classical parallelism

There are complex problems that demand a very large
number of operations to be performed as well as a large
amount of computer resources. These problems include
image processing such as satellite images, meteorologi-
cal predictions, scientific calculations arising in strongly
correlated many-body systems, computation of the had-
ronic spectrum in quantum chromodynamics on the lat-
tice, real-time calculations in plasma physics, turbulence
in fluids, and many more. It was soon noticed that an
ordinary computer based on the VNM architecture
would take a very long time to cope with problems in
which a massive number of operations must be per-
formed.

A classical parallel computer is the natural way to ad-
dress these problems. The idea of parallelism may be
simply summarized as doing many things at a time. We
shall see that a quantum computer would realize this
goal at the highest possible degree of parallelism.
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Although the idea of parallelism is very simple to
state, its practical implementation has faced many ob-
stacles for several reasons that we shall briefly describe.
This will be quite illustrative later when we refer to the
principles of quantum computation.

The way to extend the sequential von Neumann ma-
chine into a parallel computer is not unique. The com-
ponents entering a parallel machine are already present
in the VNM, but their number and organization differ.
One way to understand the various possibilities is by
recalling the organization of a program in any computer.
A program is divided into instructions and data. These
are its building blocks. This distinction means that we
may have several degrees of parallelism depending on
how many instructions and/or data the parallel machine
handles at a time. This leads to a first classification of
parallel machines known as Flynn’s classification (Flynn,
1966, 1972), which describes in four categories how a
computer functions without reference to the details of
its architecture.

(i)  Single instruction stream, single data stream
(SISD): This executes one instruction at a time
(single instruction stream) and fetches/stores one
data value at a time (single data stream). It has
only one CPU. Example: the von Neumann ma-
chine (specifically, processors like Motorola, Intel,
and AMD).

(i)  Multiple instruction stream, single data stream
(MISD): This corresponds to multiple programs
operating on the same data (performing different
computations) Example: none is available. This
category does not seem to be useful.

(iii)  Single instruction stream, multiple data stream
(SIMD): This executes one instruction at a time
(single instruction stream) and the same opera-
tion is performed on many data values at the
same time (multiple data stream). Example: the
vector machines like Thinking Machine’s Connec-
tion Machine CM-2. A vector operation with n
elements can be executed by one instruction cycle
on a SIMD parallel machine.

(iv)  Multiple instructions stream, multiple data stream
(MIMD): These are multiprocessor systems, with
each processor executing a different program on
its own data. Thus there are multiple instruction
streams (programs) and multiple data streams.
Example: most distributed memory parallel pro-
cessors, like Thinking Machine’s Connection Ma-
chine CM-5, Cray T3D, IBM SP-2, and work-
station clusters fit in this category.

Of these machines, those of the SIMD and MIMD
types are parallel machines, the latter having a higher
degree of parallelism. In Fig. 14 we show a schematic
representation of Flynn’s classification. Only processors
and memory units are represented, without going into
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FIG. 14. Flynn’s classification of parallel machines (P
=processor, M =memory).

finer details about the interconnection network, types of
memories (shared, distributed, cached,...), pipelines,
ete.”

At first glance it may appear that what counts in a
parallel machine is simply the number of processors.
However, what really matters is the way the many pro-
cessors are organized and how the information is ex-
changed among them. This is because for two processors
to intercommunicate, it is necessary that they be syn-
chronized, and consequently they have to wait for each
other. Thus, the functioning of a parallel machine is
slowed down if only the number of processors is in-
creased without taking care of their organization.

We therefore arrive at the conclusion that to scale up
a parallel machine one has to multiply the number of
processors and to provide as well interconnecting struc-
tures for them. These structures or networks need be
regular, efficient, and low cost. The determination of the
best interconnecting network for the processors in a par-
allel machine is especially crucial when their number in-
creases considerably.

For an interconnecting network (or lattice) to be good
it has to minimize at the same time the total number of
physical connections (or links) and the average distance
between processors. This average distance is measured
in terms of the number of connections to be traversed.
Furthermore, the network has to be regular enough to
allow scalability when more processors are added.

In order to understand these requirements let us enu-
merate and analyze some typical networks.

e Fully connected lattice: This is an extreme case that is
made up of, say, N processors in such a way that all of
them are connected to one another, as shown in Fig.
15. The number of connections is § N(N—1), and thus
it is of order O(N?). This fact makes it impractical
because there are other more economical alternatives
for connections.

Flynn’s classification is too coarse for classifying multipro-
cessor systems, and there exist modifications to it (Hwang and
Briggs, 1985) and new ones, as well, like Handler’s classifica-
tion (Handler, 1982) and others.
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(a)

FIG. 15. Ring vs fully connected processor lattices.

® Ring lattice: The network of processors forms a ring
(see Fig. 15), which has the advantage of needing only
two connections per processor, no matter their num-
ber. In this sense it is the opposite of the full lattice.
However, it has a very important disadvantage, be-
cause in the worst case a message has to traverse N/2
processors (half of the lattice) to reach its destination.
This is also impractical when N is large.

® Binary tree: The processors are organized such that
each node is connected to three nodes, namely, one
parent and two children (Fig. 16). The problem with
this type of lattice is that the inner nodes deep inside
the tree are very badly connected among themselves.

e Hypercube: This is the solution that has turned to be
optimal in meeting the desired requirements (Fig. 17).
In the simplest possibility, one processor is installed at
each vertex of the cube, which can be of any dimen-
sion D. In the familiar case of a D=3 cube, each
processor is connected to three others and, more im-
portantly, each one is at a maximum distance of three
connections from any other. For a D-dimensional hy-
percube the number of processors is 2°; each one is
connected to D neighbor processors and is at most a
distance D apart from any other. The most famous
parallel machine based on this hypercube architecture
is the original Connection Machine and the Crays. It
is not surprising that Feynman, who played a para-
mount role in the beginning of quantum computers,
worked on the design of this parallel machine and
made some notable contributions (Hillis, 1998).

The interconnecting networks of processors consid-
ered so far are called static because the structure is fixed

by construction. There also exists the possibility of dy-
namic networks where the configuration is changeable.

root

interior

leaves

FIG. 16. Binary tree processor lattice.



A. Galindo and M. A. Martin-Delgado: Classical and quantum information 377

4D
1D 2D 3D

FIG. 17. Hypercube networks.

In this case the processors are connected not directly but
through commuters that can be switched in different
ways.

One of the fundamental problems posed by the paral-
lel computer is its control. There are several strategies
for addressing this issue. One possibility is to have a
central processor working as a control unit for the rest
of processors, as in the SIMD. This is a model of cen-
tralized control in which the control unit sends instruc-
tions to the other processors which never interfere with
the central processor. In order to simplify their working,
generally the same instruction is sent to all the proces-
sors, which in turn operate on different sets of data. This
mode of control has the same disadvantage as the origi-
nal von Neumann machine: it is slow. The control unit
has to send many electrical pulses to perform the control
task.

An alternative to centralized control consists in allow-
ing each processor to make its own decisions, usually
consulting only its nearest-neighbor processors. This so-
lution also has difficulties because the programs must be
written in a way very different from the standard. More-
over, such decentralized control can become very ineffi-
cient because the processors might spend most of their
time exchanging messages rather than making computa-
tions.

The problem of organizing and controlling the paral-
lelism in a classical computer very much resembles orga-
nization problems in human societies, which is as open a
problem there as for networks of computers. We shall
see in Sec. IX that in a quantum computer one also faces
similar synchronization problems, and we shall discuss
how they are solved in terms of physical principles.

D. Classical logic gates and circuits

A Turing machine is by no means a practical com-
puter, despite being a powerful theoretical machine. In
practice, computers are made of electronic circuits,
which in turn contain logic gates. A logic gate is a device

TABLE III. Truth tables for the basic logic operators: NOT
(), anD (0), or (0).

X x X y x0y x0y
1 0 0 0 0
1 0 1 0 1
1 0 0 1
1 1 1 1
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FIG. 18. Basic classical logic gates.

that implements a classical logic operator like the AND
operator. A logic operator or function f is an application
£:{0,1}"—{0,1}"", which maps an input of n bit-valued
operands into an m-bit-valued output. When the target
space of f is {0,1}, one usually says that f is a Boolean
operator or function. Boolean calculus is useful for elu-
cidating situations that can be true or false, making ap-
propriate reasonings to draw conclusions correctly. They
are therefore helpful in building practical computers and
in programming. Furthermore, it is possible to show that
classical Turing machines are equivalent to classical logic
circuits. This means that they both have the same com-
plexity classes. This is a mathematical result that legiti-
mates the use of electronic circuits in the construction of
real computers.

Before stating this important result as a theorem, let
us take a closer look at some rudiments of Boolean logic
that will also help in understanding the peculiarities of
quantum logic gates (see Sec. IX).

An operator with one operand is called a unary op-
erator, with two operands is a binary operator. There are
three basic Boolean or logic operators: (1) The unary
operator NOT: x—>NOTx:=x:=1—x, also denoted by

overlining the argument ( ); (2) the binary operator
AND: (x,y)—x AND y:=x[y:=xy, also denoted by [}
and (3) the binary operator OR, (x,y)—x OR y:=x[y
:=x+y—xy, denoted also by [I. As usual, Boolean arith-
metic is done in the field Z,: 1+1=0.

The action of a logic operator is represented by a truth
table. A truth table contains as many columns as input
operands and ouput bits, and 2#°P¢ra1% rows. The inputs
are shown on the left, and the outputs are shown on the
right. The truth tables for the basic operators are shown
in Table III. An important Boolean expression involving
two variables x,y is r=(xUy)0(x0y), ie., r(x,y)=x
+y.3 Boolean expressions can be represented by logic
circuits. A logic circuit is a directed acyclic graph with
incoming lines carrying input Boolean variables
X1,X5,...,X, and outgoing lines carrying the output vari-
ables yq,...,y,, of the circuit. Every node in the graph is
a logic gate that represents a logic operator of Boolean
algebra. In real computers, circuits consist of electronic
devices such as switches and wires.

To each logic operator we can associate a logic gate
with a specific form. That logic gate has a number of
incoming lines, one per input operand, and outgoing
lines for the output result. In Fig. 18 we show the con-

3IThis r corresponds to the XOR operation.
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FIG. 19. A classical logic circuit: adder for two bits x,y. The
bifurcating wires at the nodes are achieved with FANOUT gates.

vention for the basic logic gates. In the same way as the
basic operators of algebra make up more complicated
expressions, the basic gates are combined to construct
complex circuits.

Additional gates that duplicate the input values on
wires are frequently needed. These are called FANOUT
or COPY gates and are schematically represented by —*<
(see Fig. 19). In classical computation, these are obvious
gates, for they simply correspond to splitting the wire
into two or more leads, which is an easy operation. This
is why they are usually taken for granted throughout
classical computing. Nevertheless, these FANOUT gates
are logically necessary when discussing the important is-
sue of the universality of classical gates. By contrast,
these duplicating gates have no place in the insides of a
quantum circuit due to the linearity of quantum me-
chanics (no-cloning theorem; see Sec. I11I).

A logic circuit computes a logic function in a natural
way by following its directed path (usually from left to
right) upon application of its constituent gates. The size
of a circuit C is its number of gates, and the depth of C
is the length of the longest directed path in it. A typical
circuit is depicted in Fig. 19.

Suppose that we are given a tractable decision prob-
lem, i.e., a problem in class P (see the Appendix). This
means that there exists a Turing machine M able to de-
cide it [M(x,)=0,1] for initial data x, of arbitrary
length n, in polynomial time. This problem is said to
have polynomial circuits when there is a family
{Cy,...,C,,...} of logic circuits, of polynomial size in the
input length n, such that M(x,)=0,1 iff C,(x,)=0.1.

It can be shown that all problems in class P have poly-
nomial circuits. The converse, however, is not true: there
exist intractable decision problems that have polynomial
circuits (Papadimitriou, 1994). This shortcoming is rem-
edied by restricting the circuit family to be a uniform
circuit family: for each n, the description of each C,, is
an output of an auxiliary Turing machine in polynomial

time when entered with an appropriate input of length
32
n.

2Actually the auxiliary Turing machine should be
(log n)-space bounded, which implies polynomial time bound-
edness.
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TABLE IV. Truth tables for the logic operators NAND, NOR,
XOR.

x y X NAND y X NOR y X XOR y
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 0 0 0

The equivalence between classical Turing machines
and logic circuits is stated in the following theorem (Sav-
age, 1972; Schnorr, 1976; Pippenger and Fisher, 1979; Pa-
padimitriou, 1994).

Turing machines and uniform circuit families: A deci-
sion problem is in class P, i.e., it can be solved for inputs
of length n by a Turing machine in polynomial time
p(n), if and only if it has a uniform family of polynomial
circuits. Moreover, the minimum size of C, is
O[p(n)logp(n)]-

This theorem legitimates the simulation of Turing ma-
chines by logic circuits. Dealing with gates and circuits is
simpler and more practical than with Turing machines.
Actually, gates are packaged into hardware chips.

So far we have introduced a set of three basic logic
operators (NOT, AND, OR). It will also prove useful to
introduce three additional gates: NAND, NOR, and XOR.
The gates NAND and NOR are the negation of AND and
OR, respectively. The gate XOR is called exclusive OR
and is also denoted by @. Their truth tables are shown in
Table IV.

With the basic set {NOT, AND, OR} one can build any
logic function, provided that FANOUT gates and ancilla
or work bits are freely used. Because of this property,
{NOT, AND, OR} is called a universal set of logic gates.
However, this set is not minimal. To see this we use de
Morgan’s laws, which are the following Boolean identi-
ties:

(xOy)=x0y,

(xy)=xLy. (56)

These two algebraic equations are dual each other. Ne-
gation of the first produces xOy=(xy). This is telling
us that OR gates are not essential: the AND and NOT
gates can by themselves reproduce the functionality of
the OR gate. Similarly, the second relation in Eq. (56)
leads to (xOy)=(xy), that is, AND gates can be imple-
mented with OR and NOT gates. Then the set {AND, NOT}
is universal, and so is the set {OR, NOT}.

Can we further reduce the number of elements in a
universal set? The answer is yes. The surprising result is
that NAND gates alone (or, similarly, NOR gates alone)
are sufficient for constructing any circuit (up to FANOUT
and work bits). We know this from the following simple
laws:

x=1 NAND ux,

xOy=(x NAND y)=1 NAND (x NAND y). (57)
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FIG. 20. From a Turing machine to a real computer.

Therefore we see that {NAND} (or {NOR}) can do every-
thing that the set {AND, NOT} does, and hence {NAND}
and {NOR} are also universal sets.

IX. PRINCIPLES OF QUANTUM COMPUTATION

In the previous section we described some basic as-
pects of Turing machines and their practical implemen-
tations by means of the von Neumann architecture. Yet
it is a long way from there towards the construction of a
real computer like those we have on our desks. In Fig.
20 we provide a visualization of the route we have to
follow. This long route starts with the abstract notion of
a classical computer embodied in a Turing machine. No
real computer has a Turing machine inside. Instead, the
operations carried out by a Turing machine can be re-
placed by logic gates. These logic gates can do sums,
multiplications, logic operations, and the like. With just
a few logic gates we can do almost none of the daily
tasks we are used to nowadays. To get the power and
speed of an ordinary computer we need millions of logic
gates interconnected and integrated into tiny circuits or
chips. Finally, these integrated circuits are arranged into
the computer motherboard with other components, and
along with a screen, keyboard, and mouse we have a
universal machine capable of doing many tasks, like
writing this article.

All four stages pictured in Fig. 20 have been accom-
plished in the case of classical computers. What is the
current state of the art in the case of quantum comput-
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ers? The first step in Fig. 20 has also been achieved for
quantum computers. This is the topic of Sec. IX.A,
where we discuss the notion of quantum Turing ma-
chines, the quantum version of the classical Turing ma-
chines introduced thus far. Moreover, the second step
regarding the design of quantum logic gates has also
been accomplished, as we shall explain in Sec. IX.B.
These quantum gates are used as the basic components
of a quantum computer to design quantum algorithms
that surpass certain very important classical algorithms
(see Sec. X). More important is the fact that, in recent
years, an experimental realization of these quantum
gates has been made (see Sec. XI), which allow us to
cherish the possibility of building a real operative quan-
tum computer on equal footing with the current classical
precursors. However, to achieve this goal we need to
move farther, to find the quantum equivalent of an inte-
grated circuit (third step). This step amounts to the
problem of scalability in a quantum computer: so far, the
experimental realizations mentioned previously are
made of only a few gates and, although a quantum gate
is more powerful than a classical one, we also need a
large number of them to perform nontrivial tasks. We
need to scale up our current quantum technology. Fi-
nally, the fourth step will be to have a real operative
quantum computer in our hands, with all the external
devices to communicate with it. Although there is still a
long way ahead to achieve this goal, the fact that the
fundamental first and second steps have been already
taken is very encouraging. In the following we shall de-
scribe these two steps for quantum computers.

From a fundamental point of view, a quantum com-
puter is a quantum Turing machine, and this is a concept
that we shall next define.

A. The quantum Turing machine

Several achievements led to the concept of a quantum
Turing machine, and it is not our purpose to give a full
account of all of them; instead we shall mention some of
the most representative constructions or machines. The
first of these was the model introduced by Benioff (1980,
1981, 1982). Benioff’s goal was to use quantum-me-
chanical systems to construct reversible Turing ma-
chines. His motivation was that the unitary evolution of
an isolated quantum system provides a way to imple-
ment reversible computations. The issue of reversibility
had attracted much attention since Bennett (1973) con-
structed a classical model of a reversible computing ma-
chine equivalent to a Turing machine. Landauer (1961)
had shown that reversible operations dissipate no en-
ergy, while a Turing machine as described in Sec. VIII
generally performs irreversible changes during computa-
tions. Although Benioff’s machine is a quantum ma-
chine, it is not a quantum computer, for it is equivalent
to a reversible Turing machine. Feynman (1982) went
one step further towards the notion of the quantum
computer with his “universal quantum simulator.” He
proposed using quantum systems to simulate quantum
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FIG. 21. Pictorial view of a quantum Turing machine. There
are qubits (Bloch spheres, Fig. 2) in the tape and in the control
unit.

mechanics more efficiently than do classical com-
puters.*> He showed (Feynman, 1985) that classical Tur-
ing machines exponentially slow down when simulating
quantum phenomena, while a universal quantum simu-
lator would do the job efficiently. However, Feynman’s
machine is not fully a quantum computer in the sense
described below because it cannot be programmed to
perform an arbitrary task.

Deutsch (1985) took the final step in the quest for a
sensible definition of a quantum computer. His starting
point is a critique of the Church-Turing hypothesis (see
Sec. VIII.A), which he considers very vague as com-
pared to physical principles such as the gravitational
equivalence principle. Deutsch proposes to make more
concrete the statement “functions that would naturally
be regarded as computable” in the Church-Turing hy-
pothesis. He identifies such functions as those which can
be computed by a real physical system. This is quite ap-
parent, since it is hard to believe that something can be
naturally computable if it cannot be computed in Na-
ture. Thus Deutsch goes on to transform the Church-
Turing hypothesis into a physical principle, which he
states as the Church-Turing Principle: Every finitely re-
alizable physical system can be perfectly simulated by a
universal model computing machine operating by finite
means.

The content of this principle is more physical than the
corresponding hypothesis, since it appeals to objective
concepts such as measurement and physical systems in-
stead of the subjective notion of “naturally comput-
able.” The “finite means” in the Church-Turing principle
are more general and expand the role of the Turing ma-
chine in the corresponding hypothesis (Sec. VIIL.A).

Deutsch follows a natural way to introduce the defini-
tion of a quantum Turing machine. Starting from the
knowledge we have of its classical counterpart (see Sec.
VIIIL.A), he replaces some of the classical components of
an ordinary Turing machine, like bits, by quantum ele-
ments, like qubits (see Fig. 21).

A quantum Turing machine is a finite-state machine
that has three components: a finite processor, an infinite
memory unit (of which only a finite portion is ever

3Manin (1980) had already envisaged that the complexity of
quantum systems surpassed the capabilities of classical com-
puters.

Rev. Mod. Phys., Vol. 74, No. 2, April 2002

used), and a cursor. The description of these compo-
nents is as follows:

(i)  Finite Processor: This is the control unit as in a
Turing machine but it consists of a finite number
P of qubits. Let us denote the Hilbert space of
these processor states as

Hps=span{®[p;):p;=0,1}{-,'. (58)

(i)  Memory Tape: This has a similar functionality to
that in a Turing machine but it consists of an infi-
nite number of qubits.** Let us denote the Hilbert
space of these memory states as

Hyp=span{®,;|m;y:m;=0,1}," . (59)

(iii)  Cursor: This is the interacting component be-
tween the control unit and the memory tape. Its
position is scanned by a variable x e Hc=7, and
the associated Hilbert space is

He:=span{|x):x e Z}. (60)

Therefore there is a Hilbert space of states associated
with a quantum Turing machine that altogether takes
the form

HQC:=HC® HP® HM (61)

The basis vectors in the Hilbert space Hgc of the quan-
tum Turing machine are of the form

|X;p;m>:=|x;p03pl seesDP o, M1, M,y "")a (62)

and are called the computational basis states.

We may wonder about the relationship between the
defining features of a classical Turing machine (see Sec.
VIII.A) and those of a quantum Turing machine. The
set of states S corresponds to the Hilbert space Hp of
states in a quantum Turing machine. The alphabet A is
just the qubit space 2. As for the set of instructions Z of
a Turing machine, we need to specify the way a quantum
Turing machine works.

A quantum Turing machine operates in steps of fixed
duration 7', and during each step only the processor and
a finite part of the memory unit interact via the cursor.
We stress that a quantum Turing machine, much like a
Turing machine, is a mathematical construction; we shall
present explicit experimental realizations of equivalent
quantum circuits in Sec. XI.

The set of instructions Z of a Turing machine is re-
placed by the unitary time evolution of the quantum
states |W) e Hoc. After a number neN of computa-
tional steps, the state will be transformed into

[W(nT))=U"[¥(0)), (63)

with U a unitary evolution operator, UU'=U"U=1. A
valid quantum program takes a finite number of steps n.
With each quantum Turing machine there is associated a
unitary evolution operator U to perform a certain job or

3Even if ideally there is a qubit per cell, only a finite number
of them are active during each running of the quantum Turing
machine.
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program, much as a Turing machine has a unique set of
instructions Z, and each Turing machine performs a cer-
tain task. To specify the initial state |¥(0)), we set to
zero both the cursor position x =0 and the prepared pro-
cessor states p=0. The memory states m are prepared
allocating the input data and other program instructions,
conveniently encoded into a finite number of qubit
strings, with the rest of the memory qubits set to |0).
The initial state is then

[W(0))=2 cl0:0:m), with > |e,[*=1.  (64)

The notion of a quantum Turing machine operating
“by finite means” according to the Church-Turing prin-
ciple means that the machine cannot do infinitely many
operations at a given time nor at arbitrary positions
along the memory tape. This notion suggests the follow-
ing constraint on the matrix elements of the evolution
operator:

(x"5p"sm’|Ulx;p;m)

:[5x',x+lU+(p,am;/|p’mx)

+ 6x’,xflU7(p,,m;'|p»mx)] H

x'#x=1

S - (65)

In these matrix elements, the infinite product guarantees
that only a finite number of memory qubits participate
in a single computational step. Once the qubit at the xth
cursor position is singled out, the two deltas appearing
in the brackets guarantee that the cursor position cannot
change by more than one unit, either backward, for-
ward, or both. This operating mode amounts to locality
in the tape space. We call the parts U™ (p’,m. . |p,m )
of U forward and backward matrices at x, respectively.
They represent the operators P,.;UP, in the computa-
tional basis, where P, is the projection onto the Hilbert
subspace of Hqc consisting of the states with the cursor
at the xth position. Unitarity of U is equivalent to
U=TUT=0,U""U"+ U TU ™ =1. Each unitary operator
U{U~,U"} defines a quantum Turing machine.

As with any other computer, we need a mechanism to
cause the machine to halt when the computation ends.
In a quantum machine there is a severe constraint to do
this because the principles of quantum mechanics do not
allow us to observe or measure the machine’s operation
until it terminates. To know when this happens, we may
set aside one of the qubits of the processor to signal the
end. Let us choose the first qubit |g,) to acquire the
value 1 when the computation is over while it is O during
the operations. The program does not interact with |g,)
until it has reached the end. Thus the state |g,) can be
monitored periodically from the outside without affect-
ing the operation of a quantum Turing machine.

So far we have set up several analogies between the
components of quantum and classical Turing machines.
To complete this comparison, we can also think about
the relationships concerning their functioning. Does a
quantum Turing machine somehow extend the notion of
a classical Turing machine? Yes, and this relation turns
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out to be very physical and will sound familiar to us.
First, not all classical Turing machines are closely related
to a quantum Turing machines, only reversible classical
Turing machines will be, as follows from the discussion
above. It is possible for a quantum Turing machine to
reproduce the functioning of a reversible classical Turing
machine (Deutsch, 1985) if we choose its unitary evolu-
tion operator to have the following form:

Ui(p, ’m)lct1 |pamx) = 5p’,A(p,mx)5m)’Ci L B(pmy)
X3[1=C(p,m,)], (66)

where A,B,C are maps of 75 X11*%7, into 7,7, and
{—=1,1}, respectively.

This form of dynamics guarantees that this particular
quantum Turing machine will remain in a computa-
tional basis state (62) at the end of each time step. This
is precisely the way a classical Turing machine operates.
The requirement of reversibility is guaranteed by
demanding that the mapping (p,m)—(A(p,m),
B(p,m),C(p,m)) be bijective.

Therefore there is a particular limiting case in which a
quantum Turing machine becomes a reversible classical
Turing machine. This fact is somewhat reminiscent of
the familiar correspondence principle of quantum me-
chanics to recover classical mechanics. This principle
played a fundamental role in the development of the old
quantum theory and the beginnings of modern quantum
mechanics. Here we are following a similar path by
starting with a revision of the classical fundamentals of
information and computation to develop their quantum
versions.

1. Quantum parallelism

The ability of a quantum Turing machine to be in sev-
eral computational basis states at the same time is called
quantum parallelism and is one of the defining features
of a quantum Turing machine. The classical counterpart
of this is the notion of classical parallelism introduced in
Sec. VIII.C. The quantum version of doing many things
at a time in a classical parallel computer is the possibility
of being in many states at a time in a quantum computer.
Furthermore, in a classical computer it is not enough to
have a large number of processors connected in parallel
in order to perform computations efficiently. It is also
necessary to have all of them appropriately synchro-
nized to avoid message jams and disruptive functioning
of the several processors, which would not operate co-
herently. Likewise, quantum parallelism is not enough
for a successful quantum computation. Recall that the
result of a quantum computation is probabilistic. There
is not a 100% certainty that after measuring the final
output state it will contain the correct result for which
we are searching. We need to repeat the measurement
several times in order to retrieve the correct value of the
function or procedure for which the computer was de-
vised. If we program the quantum computer carelessly,
this number of measurements would be exponentially
large, and all the potential advantages of quantum par-
allelism would be spoiled. What do we need to make
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TABLE V. Principles of quantum computation.

Computer science Quantum physics

1st quantum parallelism
2nd quantum programming =

superposition principle
constructive interference

good quantum programs? We need to reduce the num-
ber of trials to just a few. This fact will depend on how
the evolution operator U{U",U”} and the initial
memory states |m) are prepared. In order to become
good quantum programmers we must be smart enough
to devise them in such a way that the maxima of the
probability distribution in the output state correspond to
the desired result, while the rest of the possible results,
which are useless for the purpose of our computation,
must be somehow damped. We recognize this pattern of
behavior for the unitary operator U{U",U"} as the
phenomenon of constructive interference of amplitudes
in quantum mechanics. The typical example is the two-
slit experiment.

We shall present explicit examples of how quantum
parallelism and constructive interference work together
when we deal with quantum algorithms in Sec. X. Here,
we summarize these correspondences between classical
parallel and quantum computers as follows:

Classical parallel computers

(i) many things at a time
(ii) synchronization of many processors

!

Quantum Computer

(i) many states at a time
(ii) constructive interference of many states

The quantum version of parallelism exceeds the clas-
sical one, for whereas in a quantum computer it is pos-
sible to have an exponentially large number of available
states within a reduced space, this capacity seems un-
reachable in any known classical parallel computer.

In quantum mechanics there are some basic prin-
ciples, such as the correspondence principle, Heisen-
berg’s uncertainty principle, or Pauli’s principle, that en-
code the fundamentals of that theory. The knowledge of
those principles provides us with the essential under-
standing of quantum mechanics at a glance, without go-
ing into the complete formalism of that subject. A simi-
lar thing happens with other areas in physics. In
computer science there are guiding principles for the ar-
chitecture of a computer (hardware) and the programs
to be run (software). Likewise, in quantum computing
we have seen that there are basic principles associated
with the ideas of quantum parallelism and quantum pro-
gramming. It is useful to synthesize the relationships be-
tween quantum computation and the principles of quan-
tum physics in the form of basic principles, as shown in
Table V.

By principles of quantum computation we mean those
rules that are specific to the act of computing according
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to the laws of quantum mechanics. In this table we indi-
cate that the quantum version of parallelism is realized
through the superposition principle of quantum me-
chanical amplitudes; likewise the act of programming a
quantum computer should be closely related to con-
structive interference of those amplitudes involved in
the superposition of quantum states in the registers of
the computer. We shall see these principles in action
when studying quantum algorithms (see Sec. X) that su-
persede their classical counterparts. The superposition
principle, when applied to multipartite quantum systems
like those of a quantum register [see Eq. (71) below],
yields the notion of entanglement (see Secs. III.A and
IILE).

2. Universal quantum Turing machine

The notion of a universal Turing machine can also be
extended to quantum Turing machines. A standard
quantum Turing machine is capable of performing only
the job for which it has been set up. This is so because
the unitary operator U{U*,U"} and the memory quan-
tum states |m) are chosen to do one specific task.
Deutsch (1985) has shown that the elements U{U*,U"}
and |m) of a quantum Turing machine can be devised to
simulate with arbitrary precision any other quantum
computer. This is the concept of a universal quantum
Turing machine or programmable quantum computer.
We now give more explicit details about how such a ma-
chine is programmed.

Let f be any function that we want to compute with
the universal quantum Turing machine and let 7(f) be a
quantum program to do the job. The quantum computer
will take the program 7(f) and a given input value i
and then compute the desired value f(i). This process is
implemented as follows. There exists an integer ng, such
that

U"in0:0;r(f),i,0)=0:1,0; 7 (f),i,£(0),0), (67)

where the halting qubit is set to |1) after the computa-
tion ends. In this expression we assume that the initial
quantum memory states are

lmy,) =|7(f),,0), (68)
while the final memory states contain the answer f(i):

If in Eq. (67) we focus only on the memory states,
then we can use a shorthand notation for the unitary
evolution,* namely,

|7 (). )= m(f).ijefD). (70)

Although a quantum Turing machine has an infinite-
dimensional memory space, much like a classical Turing
machine, we remark that only a finite-dimensional uni-
tary transformation need be applied at every step of the
computation to simulate the associated evolution.

3See Sec. IX.C for more on quantum function evaluation.
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The concept of a quantum Turing machine has many
implications, which we shall continue to explore. Most
of these implications amount to a revision of the typical
areas of classical computation in light of the new prin-
ciples of computation. For instance, we can now address
how the theory of complexity will be affected. In Sec.
VIII.A we mentioned that this theory deals with the is-
sue of what a computer can do. Namely, it studies not
only which function can be computed, but also how fast
and how many memory resources are needed. This
scheme must be modified for conversion into a quantum
theory of complexity. In this new theory we must pose
another question: with what probability can a quantum
computer achieve a certain task? See the Appendix for
details.

B. Quantum logic gates

The quantum Turing machine is a basic model for
quantum computation. However, it is not a practical
starting point for designing a quantum computer, in
much the same way as a classical Turing machine is not a
handy computer.

A key step towards the realization of a practical quan-
tum computer is to decompose its functioning into the
simplest possible primitive operations or gates. The
identification of universal logic gates, such as NAND, in
classical computers (see Sec. VIII.D) was of great help
in the development of the field. A universal gate such as
NAND operates locally on a very reduced number of bits
(actually, two). However, by combining NAND gates in
the appropriate number and sequence we can carry out
arbitrary computations on arbitrarily many bits. This
was very useful in practice for it allowed device engi-
neers to focus on creating only a few devices, leaving the
rest to the circuit designer. The same rationale applies to
a quantum computer and the relation of a quantum Tur-
ing machine to quantum circuits.

When a quantum computer is working, it is a unitary
evolution operator that is effecting a predetermined ac-
tion on a series of qubits. These qubits form the memory
register of the machine, or a quantum register. A quan-
tum register is a string of qubits with a predetermined
finite length. The space of all the possible register states
makes up the Hilbert space of states associated with the
quantum computer. If 7 is the Hilbert space of a single
qubit and |¥;,)eH, i=1,2, a given basis state, then a
basis vector |®) for the states of the quantum register is
a tensor product of qubit states

|P)=[V)®|V,y)® - @|¥,) e H". (71)

A quantum memory register can store multiple se-
quences of classical bits in superposition. This is a mani-
festation of quantum parallelism.

A quantum logic gate is a unitary operator acting on
the states of a certain set of qubits. If the number of such
qubits is n, the quantum gate is represented by a 2"
X2 matrix in the unitary group U(2"). It is thus a re-
versible gate: we can reverse the action, thereby recov-
ering the initial quantum state from the final one. Ge-
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FIG. 22. A generic quantum logic gate. The wavy lines indi-
cate that the output state is a generic superposition of product
quantum states.

nerically a quantum logic gate can have any finite
number of input qubits, but in practice we shall be inter-
ested in gates that are elementary for quantum compu-
tation, and those have a small number of input qubits.
Diagrammatically a quantum gate is represented by a
“black box,” wherein the operation takes place, and a
number of input (output) lines, used to wire up a set of
gates, equal to the number of qubits involved in the
computation (see Fig. 22). Let us see more explicitly
how quantum gates look by considering some represen-
tative gates in increasing order of complexity.

1. One-qubit gates

These are the simplest possible gates because they
take one input qubit and transform it into one output
qubit. The quantum NOT gate is a one-qubit gate. Its
unitary evolution operator Uyor is [Eq. (11)]

0 1
UNOT:(l 0)- (72)

The truth table and the diagram representing this gate
are shown in Table III and Fig. 23, respectively. We see
that this quantum NOT gate coincides with its classical
counterpart. However, there is a basic underlying differ-
ence: the quantum gate acts on qubits while the classical
gate operates on bits. This difference allows us to intro-
duce a truly quantum one-qubit gate: the {NOT gate. Its
matrix representation is

U /Not :=%ei"/4(1 —io,). (73)
NOT
@ 12 x |1 —z)
(b) |z) ‘W U, ~orl?)
© 2 H Cule)

FIG. 23. Quantum unary gates: (a) NOT gate; (b) yNOT gate;
(c) Hadamard gate.
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TABLE VI. Truth table for the quantum CNOT gate.

!

X y X y
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

This gate, when applied twice, gives NOT. Explicitly
1+i 1-i 1+i 1-i

2 2 2 2
U NotU \wot = 1—1 1+i ' 1—1 1+i
2 2 2 2
0 1
= 1 O :UNOT' (74)

This gate has no counterpart in classical computers since
it implements nontrivial superpositions of basis states.
Another one-qubit gate without analog in classical cir-
cuitry and heavily used in quantum computations is the
so-called Hadamard gate H (see Sec. III). It is defined as

1/1 1

2. Two-qubit gates

The XOR (exclusive-OR), or CNOT (controlled-NOT)
gate, is an example of a quantum logic gate on two qu-
bits [Eq. (12)]. It is instructive to give the unitary action
Uxor cnor of this gate in several forms. Its action on the
two-qubit basis states is

Ucnotl00)=[00), Ucnor/10)=|11),
UCN0T|01>:|01>, UCNOT|11>: |10>~ (76)

From this definition we see that the name of this gate is
quite apparent, for it means that it executes a NOT op-
eration on the second qubit conditioned to have the first
qubit in the state |1). Its matrix representation is

1 0 0 0
01 00

Ucnor = Uxor= 00 0 1 (77)
0 0 1 0

The action of the CNOT operator (76) immediately
translates into a corresponding truth table as in Table
VI. The diagrammatic representation of the CNOT gate is
shown in Fig. 24.

We shall see how this quantum CNOT gate plays a
paramount role in both the theory and experimental re-
alization of quantum computers. It allows the implemen-
tation of conditional logic at a quantum level.

Unlike the CNOT gate, there are two-qubit gates with
no classical analog. One example is the controlled-phase
gate or CPHASE:
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|z1) |z1)

(a)
|z2) |z2 @ 1)
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FIG. 24. Quantum binary gates: (a) CNOT gate; (b) CPHASE
gate; (c) SWAP gate.

100 0
010 0

Ueny=[ 0 0 1 0 |- (78)
00 0 e

It implements a conditional phase shift e’? on the second
qubit.

An important result is that we can reproduce the
CNOT gate with a controlled-phase gate of ¢= 7 and two
Hadamard transforms on the target qubits as shown in
Fig. 25. This is a simple consequence of the relation

UHO-ZUH:UX' (79)

Other interesting two-qubit gates are the SWAP gate,
which interchanges the states of the two qubits, and the
VSWAP gate, whose matrix representations are

1 0 0 O

0 0 1 0
Uswapi= 010 0l

0 0 0 1

FIG. 25. Relation between CNOT gate and controlled phase
using Hadamard gates.
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TABLE VII. Truth table for the Toffoli gate.

’

X y z X v z
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0
1 0 0 0
1+i 1-i
0 — — 0
U 2 2
VSWAP*— 1_1 1+1 (80)
0O — — 0
2
0 O 0 1

3. Three-qubit gates

An immediate extension of the CNOT construction to
three qubits yields the CCNOT gate (or C>NOT),*® which
is also called Toffoli gate T (Toffoli, 1981). The matrix
representation is a one-qubit extension of the CNOT
gate, namely,

Ucenor=Urs=

S O O O O O O =
S O O O o o V- O
o O O O o = O O
o O O O = O O O
o O O = O O O O
o O =, O O O O O
_ o O O O O o ©
o R O O O O O O

(81)

The associated truth table is shown in Table VII. The
first two input qubits x,y are copied to the first two out-
put qubits x',y’ (see Fig. 26), while the third output
qubit z’ is the XOR of the third input z and the AND of
the first two inputs x,y.

The Deutsch gate D(6) (Deutsch, 1989) is also an im-
portant three-qubit gate. It is a controlled-controlled-S
or C2S operation (see Fig. 26), where

Ug(g=ie 12%=icos;0+0,sinz0 (82)

is a unitary operation that rotates a qubit about the x
axis by an angle 6 and then multiplies it by a factor i. We
require # to be incommensurate to 7, that is, not a ra-
tional multiple of 7. Two properties follow: (1) Let |q)
be a given qubit. Then for any fixed value of a« R we

%Controlled-controlled-not gate.
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[z1) 1)

(a) |z2) |£2)
|z3) |z3 ® z12)
X
1) [z1)
(b) [z2) z2)
|z3) (62122,01 + 02:22,1Us(a))|3)
5(0)
1) E2)
(C) [z2) |z3)

(E2))

FIG. 26. A set of three-qubit gates: (a) Toffoli gate; (b)
Deutsch gate; (c) Fredkin gate.

can get arbitrarily close to ¢'*°x|q) by successive appli-
cation of Ugy to |q) a finite number of times. (2) The
Deutsch gate generates as closely as needed the Toffoli
gate. This is because the C2S” gate is just the D" gate.
Since we can make ;(n6/m—1), with n=4k+1, as near
to a given arbitrary integer as desired, D" will thereby
closely approach the Toffoli gate.

Another instance of a three-qubit gate is the Fredkin
gate F (Fredkin and Toffoli, 1982). It is a controlled
SWAP operation, schematically shown in Fig. 26 and rep-
resented by the matrix

1000000 0
01000000
00100000
00010000

U=lo 0001000 (83)
000000 T10
00000T100

00 0 0O0O0O01

Needless to say, these unitary linear gates act not only
on the individual basis states, but also on any linear
combination of them.

We have enumerated a series of quantum logic gates
whose use and importance will be explained in the fol-
lowing sections. We shall address the experimental
implementation of some of these quantum gates in Sec.
XL

C. Quantum circuits

The simple gates introduced in the previous section
can be assembled into a networklike arrangement that
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al0) + b|1)

o —=—
|0) a|000)
+
) b111)

FIG. 27. An example of a quantum circuit implementing a
Greenberger-Horne-Zeilinger state.

$—e

enables us to perform more complicated quantum op-
erations than those initially carried out by those gates.
This is the basic idea of a quantum circuit. Deutsch
(1989) generalized the classical reversible circuit model
to produce the idea of quantum circuits. A quantum cir-
cuit is a computational network composed of intercon-
nected elementary quantum gates.

The following example illustrates a simple use of a
quantum circuit. Let us prepare initially a one-qubit
state as an arbitrary superposition of the logical states
|0),|1), namely,

|iho)=al0)+b|1). (84)
We want to obtain a final state of the Greenberger-
Horne-Zeilinger type [Eq. (22)]:

|44y =a|000) + b|111). (85)

To this end, instead of writing a sequence of algebraic
operations, we can simply arrange the following quan-
tum circuit using the CNOT gate as pictured in Fig. 27.

Quantum circuits are widely used in quantum compu-
tation, where most of the problems can be formulated in
terms of them. Indeed, standard quantum mechanics
might be flooded with quantum circuits in the future,
something similar to what happened with Feynman dia-
grams in quantum field theory. This is because quantum
circuits are able to condense graphically much more in-
formation than the use of several formulas. Besides, this
form of presenting and reasoning is closer to what ex-
perimental physicists really do with their devices.

In Sec. VIIL.LD we presented the basic result that a
classic Turing machine is equivalent to a classical logic
circuit. In quantum computing there is a similar result
due to Yao (1993) showing that a quantum Turing ma-
chine is equivalent to a quantum circuit. This theorem
justifies replacing the more complicated study of quan-
tum Turing machines by that of quantum circuits, which
are simpler to analyze and design. In fact, experimental
approaches to quantum computers are presented in
terms of quantum circuits (see Sec. XI).

Let K be a quantum logic circuit with n input qubits.
Suppose that |W,)=3, ¢, (y)|y) is the final quan-
tum state of K for an input x €{0,1}". The distribution
generated by K for the input x is defined as the map
Py ef0,1}—]|c(y)|>. The quantum circuit K is said
to (n,t)-simulate a quantum Turing machine Q if the
family of probability distributions p,, x{0,1}", coin-
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cides with the probability distributions of the O configu-
rations after ¢ steps with input x.%’ Yao’s theorem is the
following statement.

Quantum Turing machines and quantum circuits: Let
Q be a quantum Turing machine and #n,¢ positive inte-
gers. There exists a quantum logic circuit K of polyno-
mial size in n,t, that (n,t)-simulates Q.

This result implies that quantum circuits can mimic
quantum Turing machines in polynomial time and vice
versa. Thus quantum circuits provide a sufficient model
for quantum computation that is easier to implement
and manipulate than quantum Turing machines. This
situation goes in parallel with similar results about clas-
sical logic circuits and Turing machines (Sec. VIIL.D).
From now on when talking about a quantum computer
we shall usually refer to an underlying equivalent quan-
tum circuit.

1. Universal quantum gates

After the works of Deutsch (1989) and Yao (1993) the
concept of a universal set of quantum gates became cen-
tral in the theory of quantum computation. A set §
={G1,,,--.,G,, } of quantum gates Gj,,,j acting on n;
qubits, j=1,...,r, is called universal if any unitary action
Uy on N input quantum states can be decomposed into
a product of succesive actions of Gj’”/‘ on different sub-
sets of the input qubits. More explicitly, given any Uy
acting unitarily on N qubits, there exists a sequence
S1,S,,...,8, of subsets of {1,2,...,N}, with Rg oo lls el-
ements, and a map m:{1,2,...,s}—{1,2,...,r} such that
l’lﬂ.(j):}’lsj, V], and

Uy= UN,Gw(S) S0 'UN,G,”(]) .Sy (86)
Here

UN,GW(]-) ,sj‘zl{l,z ..... Np-5,® UGW(].) Sp (87)
where Ij15  ay- s; is the identity on the qubits not in §;,

and U G oy S, stands for the unitary action of the gate
G ;) on the Hilbert space of the n s; qubits in the set ;.
For instance, a generic unitary k X k matrix of dimen-
sion k=2 can be represented as the product of k(k
—1)/2 two-level unitary matrices (Reck et al., 1994).
This notion of a universal set of gates is exact because
the generic transformation Uy is reproduced exactly in
terms of a finite number of elements in G. We denote
this situation by writing the universal set as G.,. How-
ever, this notion is too strong. Dealing with practical
quantum devices, it is not conceivable to work with a set
of gates implementing any other gate with perfect accu-
racy. Thus we are inevitably led to work with approxi-
mate simulations of gates. Underlying this idea is the

concept of distance between two unitary gates.

3We assume that a given configuration is encoded as a list of
the tape symbols from cell —¢ to ¢, followed by the state and
the position of the cursor, all encoded as strings of qubits (see
Sec. IX.A).
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A quantum gate Uy is said to be approximated by
another gate Uy with error <e when the distance
d(Uy,Up):=inf,_p||[Uy—e'?U}|| between both matri-
ces as projective operators is < e.’>* This means that if
the gate Uy is replaced by gate Uy in a quantum circuit
K, then the unit rays of the associated output states will
differ in norm by at most €.

With this definition, we also introduce the notion of
an approximate set of universal quantum gates as before
but with the weaker requirement that it simulates any
other quantum gate in an approximate sense. We denote
these sets as G,,, and by universality we shall mean it in
this sense henceforth, unless the exact notion is explic-
itly indicated.

Some examples of universal sets of quantum gates, to
be discussed next, are the following (for a more math-
ematical and general approach, see Brylinski and Brylin-
ski, 2001):

(1) G..:=={U,:U, e U(2%)} (DiVincenzo, 1995).

(2) GY:={U,,cNOT:U, € U(2)} (Barenco, Bennett,
et al., 1995).

3) Q;I;:{D}, Deutsch gate [Eq. (82)] (Deutsch,
1989).

(‘E)2 QLXZ{CZU,CzW}, , with Q(a? =R (4ma)
=e "% W(a):=diag(l,e’“"™), « an irrational root of
a degree-2 polynomial (Aharonov, 1998).

5) Q;/pzz{H,CPh( 7/2)}, Egs. (75) and (78) (Solovay,
1995; Kitaev, 1997; Cleve, 1999).

(6) Gyp:={H,W,cNOT}, with W:=diag(1.e’™) (Cleve,
1999).

Of these examples, (1) and (2) correspond to infinite
sets of universal gates. However, a practical quantum
computer must have a set with a finite number of uni-
versal gates. Examples (3)—(6) are finite suitable cases.
Although with a finite set of gates we are limited to
simulating a countable subset of all possible quantum
gates, it is possible to reproduce an arbitrary gate within
a given small error €. Moreover, a finite universal set G,
is closer to the spirit of the Church-Turing principle stat-
ing that a computing machine must operate by finite
means (Sec. IX.A).

A first example of a three-qubit universal gate is the

®The norm ||A| of the (finite) matrix A is usually defined as
SUp,.||=1/Ax|. Other norms are topologically equivalent to it.

¥ A compactness argument shows that the infimum in the
definition of d is attainable, i.e., 36, such that d(Uy,Uy)
:=|Uy—e"%U}]|. From now on, we shall assume that the phase
factor is included in the approximating unitary operator Uy, .

“OThe unit ray of a state vector |¢) is the set [ ¢]:={e'’| p): 0
eR}. A distance between unit rays can be defined as
dist([ ¢11.[ &,]) =infy_ ||y —e'?¢h,||, which justifies the pres-
ence of a phase factor in the notion of an appproximate gate.
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Deutsch gate (Deutsch, 1989),*! which is an extension of
the Toffoli gate Uccnor [Eq- (81); Toffoli, 1981] for clas-
sical logic circuits. Toffoli gates are exactly universal for
reversible (classical) circuits.*” Deutsch showed that his
gate D(6,) with a fixed angle 6, that is an irrational
multiple of 7 is universal.

A further improvement in the analysis of universal
quantum gates was provided by DiVincenzo (1995) who
showed that the set of two-qubit gates is exactly univer-
sal for quantum computation. This is a remarkable re-
sult, since it is known that its classical analog is not true:
classical reversible two-bit gates are not sufficient for
classical computation. The NAND gate, although binary,
is not reversible.

After DiVincenzo’s result it was shown that a large
subclass of two-qubit gates are universal (Barenco,
1995) and moreover that almost any two-qubit gate is
universal.

The reduction from three to two qubits amounts to a
large simplification in the analysis of quantum circuits
and in their experimental implementation. It is much
simpler to deal with two-body quantum interactions
than with a three-body problem.

The race towards reducing the number of necessary
qubits in the elementary gates culminated with the joint
work of Barenco, Bennett, ef al. (1995), in which it is
shown that even one-qubit gates are enough for quan-
tum computation (in the exact sense) provided they are
combined with the CNOT gate. This result, another mani-
festation of the superposition principle, is quite surpris-
ing, since in classical computation the classical CNOT is
not universal.

We shall refer to this important result as the univer-
sality theorem of elementary quantum gates. The proof of
this result (Barenco, Bennett, et al., 1995) can be simply
stated in terms of quantum circuits and it has three
parts. First, we need to prove that with one-qubit gates
plus CNOT it is possible to generate any controlled-
unitary two-qubit gate. Second, this result is extended to
a controlled-unitary gate with an arbitrary number of
qubits. And third, one applies these results to construct
any unitary gate with one-qubit and CNOT gates.

Part 1. The proof of the first part is contained in the
identity between quantum circuits shown in Fig. 28. In
the lower part we show a controlled-unitary CU gate of
two qubits associated with a unitary 2 X2 matrix U. The
upper part shows its decomposition in terms of one-
qubit gates U;,U,,U;,E and CNOT’s. The rationale of
this decomposition comes from group theory: any uni-
tary 2 X2 matrix U can be decomposed as

#Previously Deutsch (1985) had already given a universal set
of eight 2 X2 matrices.

“To see that C?NOT is classically universal, notice
that: (1) NOT(x3)=[ccNOoT(1,1,x3)]5; (2) AND(x;,X5)
=[ceNOT(x1,x,,0)]3. Now apply the result (Sec. VIIL.D) that
{AND,NOT} is a classical universal set. See in addition that the
COPY operation is also reproduced as COPY(x,)
=[ceNoT(1,x,,0)]55-
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FIG. 28. Decomposition of an arbitrary two-qubit CU gate
into one-qubit gates and CNOT’s. The symbol E denotes the
gate E:|0)—|0),[1)—e™|1).

U=Ph(3)U, U:=R,(a)R,(B)R(y)eSU(2),
(88)
where &is the phase (mod ) of the U(1) factor of U(2),
and a,B,y are the Euler angles parametrizing the SU(2)
matrix U. More explicitly,

NI e-ita2
Ph(6)= 0 e R ()= 0 pila ]
cosz  —sinz
R,(B)= 3 ,
sin- cosy
e i(¥2) 0
R (y)= 0 el | (89)

With the help of this decomposition we can further

show that for any unitary matrix U in SU(2) there exist
matrices U;,U,,U; in SU(2) such that

U1U2U3:1,

U,o,Uyo,U;=U. (90)

The proof for this is by construction, namely,
Ui=R.(a)R,(5B),
Uy=R,(=1B)R.[—1(a+t )], o1
Us=R.[;(—a+y)]

Now the equivalence between the quantum circuits of
Fig. 28 proceeds by considering the two possibilities for
the first qubit.

(i) |x1)=10). In this case the CNOT gates are not op-
erative and using Eq. (90) we find that the second qubit
|x,) is not altered.

(ii) [x1)=]1). In this case the CNOT gates do act on the
second qubit producing the chain of operations
Ph(8)U,0,U,0,Us|x,), which using Eq. (90) turns out
to be Ulx,). Recall that the controlled-o, gate is CNOT.

Part 2. The proof of the second part is represented in
Fig. 29 by another identity between quantum circuits.
The proof is by induction on the number of qubits. We
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) %22
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FIG. 29. Building up a controlled-controlled-U? three-qubit
gate from elementary gates.

illustrate the simplest case. In the lower part we show a
controlled-controlled-unitary C2U? gate of three qubits
associated with the square of an arbitrary unitary 2 X2
matrix U. The upper part shows its decomposition in
terms of controlled two-qubit gates (which in turn were
already decomposed into one-qubit gates and CNOT’s in
the first part) and CNOT’s.

The proof of this equivalence proceeds by considering
the possible actions on the third qubit depending on the
state of the other two qubits.

(i) |x;)=10). In this case, the two CNOT gates become
inactive and so does the second controlled-U gate. We
have two possibilities: (a) if |x,)=|0) then neither of the
remaining controlled gates operate and the net result is
to leave |x3) unchanged; (b) if |x,)=|1) then the effect
is now U'U|x;)=|x3), as before.

(i) |x1x,)=|10). Now the CNOT gates do operate on
the second qubit |x,), and the second controlled-U gate
acts on the third qubit. However, the first U gate is in-
active. Thus the first CNOT gate changes the state of |x,)
to |1) and this makes the U’ gate become operative.
Later the action of the second CNOT brings the second
qubit back to |0). Altogether, the final effect on |x3) is
to yield UU"|x3)=|x3) and remains unchanged again.

(i) |xx,)=|11). In this case we need to produce the
action of U? on the third qubit. Now all the gates in Fig.
29 become operative and we make a sequential counting
of their effects. As |x,)=|1), the first U gate does oper-
ate on the third qubit. Next, the action of the first CNOT
gate sets |x,)=|0) so that the U' gate becomes inactive.
Then the second CNOT gate puts the second qubit back
to |1). Altogether, the final effect on |x3) is to yield
UU|x3)=U?|x3), as required.

Finally, we can always choose the initial matrix U as
the square root of a unitary matrix, say U2=V, such that
the output in Fig. 29 is a C?V gate. For instance, if we

choose U=e!™*R (% 6) we reproduce the Deutsch gate
[Eq. (82)].

Moreover, we can go on and provide a construction of
an arbitrary C"V transformation (useful in quantum al-
gorithms) by extending the construction in Fig. 29 to an
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arbitrary number of qubits. For instance, for a C3U?
gate of four qubits we would have another qubit line on
Fig. 29(b); the construction then holds by adding only a
similar line to Fig. 29(a) so that the two CNOT gates
become CCNOT (C?NOT) gates and the last CU gate also
picks up another control qubit gate. In general, for an
n-qubit C"1U? gate that has n—1 control qubits and
one target qubit where U? acts, the construction in Fig.
29 is generalized by simply using generalized C"~>NOT
gates with n—2 control qubits and a last C" 2U gate
with n—2 control qubits. The proof of this generalized
construction follows straightforwardly.

Part 3. Combining the results of Parts 1 and 2 with the
previously known construction of an arbitrary unitary
matrix U as a product of two-level (not necessarily one-
qubit) unitary matrices of Reck et al (1994), one can
easily represent U through one-qubit and CNOT gates, in
this way concluding the proof that one-qubit gates plus
CNOT is a set of elementary gates for exact universal
computation (Barenco, Bennett, et al., 1995).

So far we have cared only about the possibility of re-
constructing a generic quantum gate from a given set of
gates. The complexity of these constructions, measured
by the number of basic gates necessary to achieve a cer-
tain gate simulation, is of great interest.

As an example of this issue, it is also interesting to
count how many elementary gates in G'. are needed to
simulate a general C"U gate. For instance, for a C*U
gate the first part of the proof yields four one-qubit
gates and two CNOT’s. For a generic controlled gate of n
control qubits C"U, the second part of the proof yields a
quadratic dependence on n. To see this, let us denote by
C,, the cost (in number of gates) of simulating a C'U
gate. From the first part of the proof we know that the
cost of simulating the U and U' gates in Fig. 29 is order
0(1);* moreover, it is not difficult to show that the cost
of the two C" !NOTs is ®(n+1) (Barenco, Bennett,
et al., 1995). The cost of the generalized C"~'U gate is
C, 1. Altogether, the cost of a gate satisfies a recursion
relation like this:

C,=C, 1+0(n+1), (92)

whose solution yields C,=0[(n+1)?].

What is the size (number of gates) for exactly simu-
lating an arbitrary gate of n qubits in U(2")? Barenco,
Bennett, et al. (1995) showed that using the universal set
G this cost is O(n°4");* Knill (1995) reduced this
bound to O (n4").

However, we are also interested in the efficiency of
the approximate simulation of a generic gate. The uni-
versality property of a set of gates G,, means that, given

$0ne writes y=0(x) to denote that both y=0(x) and x
=O(y) hold simultaneously.

#The factor n® arises from the cost O(n) to bring a generic
two-level matrix to a C"~ l-unitary matrix which in turn costs
O(n®). The dominant factor 4" counts asymptotically the
maximum number of two-level unitary factors in the Reck
et al. decomposition.
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an arbitrary quantum gate U e U(2") and >0, we can
always devise an approximate quantum gate U’ gener-
ated by G, such that d(U,U")<e. The errors scale up
linearly with the number of gates: given N gates U; and
their approximations U, , then the telescopic identity

UIUN_UIU;V

= >

1<k<N

U Up (U= U Upyp - Uy

yields immediately ||U,--- Uy—U;j-+- Upy||<Ne.

This construction can be done efficiently using
poly(1/e) gates from the universal set (Lloyd, 1995;
Preskill, 1998). Although we shall not prove it, the un-
derlying reasons are simple: (1) any universal set gener-
ates unitary matrices having eigenvalues with phases in-
commensurate relative to m; (2) if 6/7eR is irrational,
then the integral powers e’%? k € 7 are dense in the unit
circle S;, and given €>0, any e¢’“c S, is within a dis-
tance € of some e? with n=0(1/¢).

As a matter of fact, we can do much better than ap-
proximating a given n-qubit gate with circuits of size
poly(1/e€) in the universal set G,,. A theorem of Solovay
and Kitaev shows that an exponentially improved ap-
proximation is possible (Solovay, 1995; Kitaev, 1997):
Let G,, be an arbitrary finite universal set of gates, i.e.,
Gap generates a dense subset in U(2"). Then any matrix
UeU(2") can be approximated within an error € by a
product of O{poly[log(1/€)]} gates in G,, (more pre-
cisely, O{poly[log(1/€) ]} = O[log‘(1/€) ], with c~2). The
idea of the proof is to construct thinner and thinner nets
of points in U(2") by taking group commutators of uni-
taries in previous nets. It turns out that in this way the
width of the resulting nets decreases exponentially.

Finally, when the above Solovay-Kitaev theorem is
combined with the complexity for exactly simulating
gates with G and the linearity of the error propagation
with the number of gates, it immediately follows that
any unitary gate UeU(2") can be approximated to
within error € with O[n4" log‘(n4"/€)] gates in any G,,.
Note that this represents an exponential complexity in
the number of qubits, i.e., most gates will be hard to
simulate.

2. Arithmetic with quantum computers

The universality theorem of elementary quantum
gates is a central result in the theory of quantum com-
putation because it reduces the implementation of con-
ditional quantum logic to a small set of simple opera-
tions. However, with a computer we are typically
interested in doing arithmetic operations and thus we
need to know how to perform quantum arithmetic with
universal quantum gates. Vedral, Barenco, and Ekert
(1996) provided efficient ways of doing arithmetic op-
erations such as addition, multiplication, and modular
exponentiation building on the Toffoli gate. The key
point in their constructions is that we have to preserve
the coherence of quantum states and make those opera-
tions reversible, unlike in a classical computer. For in-
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|z1) |lz1)

|z2) |z1 @ z2): Sum

|0) |z122): Carry

b/

FIG. 30. The quantum addition from a Toffoli gate.

stance, the AND operation of Sec. VIIL.D can be made
reversible by embedding it into a Toffoli gate (Ekert,
Hayden, and Inamori, 2000): setting the third qubit to
zero in Eq. (81) we get

UCCNOT|x1,x27X3:O>:|xlsx2’x]Dx2>- (93)

Similarly, the quantum addition can be embedded into
a Toffoli gate as shown in Fig. 30 with the help of a CNOT
gate for the first two qubits. The result of the addition
mode 2 is stored in the second qubit whereas, the third
qubit carries the bit necessary to complete addition in
base 2.

Quantum multiplication can be implemented in a
similar fashion, as can exponentiation modulo N (Ve-
dral, Barenco, and Ekert, 1996). This latter operation is
central in the Shor algorithm (Sec. X.D).

Another important operation that must be imple-
mented in a quantum circuit is the evaluation of a func-
tion f. This must again comply with the requisite of re-
versibility, which is accomplished with a U; gate as
shown in Fig. 31, where Uy is a unitary transformation
that implements the action of f on certain qubits of the
circuit. In this figure the box representing the evaluation
of the gate is a kind of black box, also called a quantum
oracle, which represents the way in which we call or
evaluate the function f. These evaluations are also
called queries.

Reversible implementation of f requires splitting the
quantum register storing an initial state |W,) into two
parts: the source register and the target register, namely,

[Wo)=[¥ye|¥y), (94)

where |W,) stores the input data for the computation
and |W) stores the output data, that is, the results of the
quantum evolution or application of logic gates.

Thus, in order to implement a Boolean function
£:{0,1}"—{0,1} in a quantum circuit, we need the action
of a unitary gate Uy acting on the target register as fol-
lows:

[z1) |z1)

|Zm) : * |2m)

|zm+1) [@m+1 @ f(21,-- -, 2m))

FIG. 31. A gate for function evaluation.
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Uf|x1x2'“xm>s|xm+1>t

:|x1x2'”xm>s|xm+1@f(-x1»x2a---,xm)>t' (95)

Why is it not possible to evaluate directly the action of f
by a unitary operation that evolves |x) into |f(x))? The
answer lies in unitarity of computation: we know that
orthonormality is preserved under unitary transforma-
tions; thus if f is not a one-to-one mapping then two
states |x;x, -*x,,) and |xjx}---x,,) that are initially or-
thonormal could evolve into two nonorthonormal states,
say |f(xl ’x27"'7xm)>: |f(xi »xé""vx),n)>'

In the following we shall omit for simplicity the sub-
scripts denoting source and target registers.

X. QUANTUM ALGORITHMS

In this section we present a survey of the most repre-
sentative quantum algorithms to date, named after
Deutsch-Jozsa, Simon, Grover and Shor, without dis-
cussing the many spinoffs and ramifications that they
have led to (for example, Bernstein and Vazirani, 1993;
Kitaev, 1995; Hogg, 1998; etc.). We also use these quan-
tum algorithms to emphasize and show in action the
main ideas concerning the principles of quantum com-
putation introduced in Sec. IX.

Due to space constraints, we have left out some inter-
esting developments, including quantum clock
synchronization* (Chuang, 2000; Jozsa et al., 2000) and
quantum games (Eisert, Wilkens, and Lewenstein, 1999;
Meyer, 1999).4

The merging of quantum mechanics and information
theory has proved to be very fruitful. One of the prod-
ucts of this merger is the discovery of quantum algo-
rithms that outperform classical ones. It is appealing to
think that we can take classical algorithms and devise
quantization processes in order to discover new modi-
fied quantized versions of classical algorithms. By quan-
tizing a classical algorithm is simply meant the possibil-
ity of using quantum bits in a quantum computer as
opposed to the classical bits, and all the consequences
thereof. This way of thinking reflects the well-known
procedure of studying a quantum system by starting with
its classical analog and making a quantization of it, us-
ing, for instance, Dirac’s prescription. One instance of
this approach is Shor’s algorithm (Sec. X.D). In fact,
Shor’s algorithm relies on its ability to find the period of
a simple function in number theory. The known classical
algorithms for this task are inefficient because, as men-
tioned in Sec. VI, they have subexponential complexity
in the input length (unless hard information is supplied).
However, when qubits are used to implement the com-

A way to make two atomic clocks start ticking at once. This
can also be considered as an application of the quantum Fou-
rier transform (see Sec. X.D) for quantum phase estimation
(Cleve et al., 1998).

*Quantum games appear so far to be more related to quan-
tum communication protocols (Sec. III) or to applications of
the above quantum algorithms.
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mon algorithm (we quantize it in our language), then the
principles of quantum computation shorten the task to
polynomial time. For this drastic improvement are liable
the peculiar properties of the discrete quantum Fourier
transform (Sec. X.D).

Shor’s algorithm also illustrates another common fea-
ture of the quantum algorithms known so far: they are
best suited for studying global properties of a function
or a sequence as a whole, such as finding the period of a
function, the median of a sequence, etc., and not indi-
vidual details. When the value of the function is needed
for a particular choice of the argument, no real advan-
tage is gained: one has to extract it from the quantum
superposition and this may generally require measuring
many times on the output to compensate for the low
probability, exponentially small in the register length, of
getting the desired result.

Let us point out that it is possible to give a unified
picture of most of the forthcoming algorithms in terms
of the hidden subgroup problem: to find a generating set
for a subgroup K of a finitely generated group G, given
a function f:G— X, where X is a finite set and f is con-
stant and distinct on the K cosets. Some instances of this
problem are the Deutsch-Jozsa, Simon, and Shor algo-
rithms (Boneh and Lipton, 1995; Mosca and Ekert,
1999). Likewise, one may profitably view the quantum
computation process as a multiparticle quantum inter-
ference (Cleve et al., 1998). However, we have adhered
to a more traditional and historical pathway of present-
ing these quantum algorithms.

A. Deutsch-Jozsa algorithm

This is the quantum algorithm first introduced by
Deutsch (1985), providing an explicit and concrete ex-
ample of how a quantum computer can beat a classical
computer. It was later extended to more complex situa-
tions by Deutsch and Jozsa (1992). We shall present first
an improved version (Cleve et al.,, 1998) of this algo-
rithm for the simplest case of a Boolean function of a
single qubit.

Suppose we are given an oracle that upon request
computes a function f:{0,1}"—{0,1}. No other informa-
tion on f is available, just the promise or assumption
that f is either constant [i.e., Vxi,x,e{0,1}",f(x})
=f(x,)] or balanced [in the sense that #f '(0)
=#f"1(1), i.e., the numbers of arguments mapping to 0
and to 1 are equal]. The problem is to ascertain whether
f is constant or balanced with as few queries to the
oracle as possible.

The result of the Deutsch-Jozsa algorithm is that we
need only one query or function evaluation to determine
the nature of f, while classically 2" '+1 consultations
would be necessary in the worst case.

Let us see this first when n=1. Now f is balanced if
and only if f(0)#f(1), and thus the promise is worth-
less. The quantum circuit in Fig. 32 implements the
Deutsch-Jozsa algorithm and embodies the following
steps.
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FIG. 32. Quantum circuit for the Deutsch-Jozsa algorithm.

Step 1. An initial quantum register is prepared with two
qubits in the state |W,):=|01).

Step 2. The Hadamard gate [Eq. (75)] is applied bitwise
to this quantum register, producing the state

[W5)=Upl0)® Unl1)=5(|0)+[1))®(|0)—[1)). .

Step 3. We query the f oracle with the state |¥,) and get
the answer |W;):=U/]¥,). Using Eq. (95) we readily
find

W3)=Up 2 1)(0)=]1)

=0,1

=3 2 (=DOI)(0)=[1)). (97)
Step 4. The Hadamard gate is applied again to the first
qubit, which yields

1
(Wa)i=5 2 (=1/®(Unlx)([0)= 1))

1
=5m 2 [(=D/O0)+(= 1) )]

®(|0)=1)). (98)
Step 5. Finally we measure (in the computational basis)
the first qubit (the second qubit no longer plays a role).
There are two possibilities: (i) either f is constant, and
then the first-qubit amplitude of |1) in Eq. (98) vanishes
and we measure |0) with certainty; or (ii) f is not con-
stant and consequently it is balanced, in which case it is
the amplitude of |0) in Eq. (98), which vanishes and we
measure |1) with certainty.

Therefore with this Deutsch-Jozsa algorithm we need
only query the function once in order to determine
whether it is constant or balanced.

Let us point out how the peculiarities of quantum me-
chanics enter in the algorithm and provide its power. In
Step 2 it is possible to prepare a superposition of all the
basis states using the Hadamard gates, which have no
classical analog. In Step 3 we evaluate the function on all
the basis states at one go. However, this is not enough
and we need to use interference of the quantum ampli-
tudes in Step 5 to discriminate between the two possi-
bilities for which we were searching. This is a simple
manifestation of the idea of using constructive interfer-
ence to distill the desired results, as was advanced in
Sec. IX.A (see Table V).
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FIG. 33. Extended Deutsch-Jozsa algorithm.

The extension of the Deutsch-Jozsa algorithm to a
function of n qubits f:{0,1}"—{0,1} constrained to be
either constant or balanced can be done with the help of
the quantum circuit shown in Fig. 33. Following this cir-
cuit we can extend the previous five steps immediately.
We prepare a source register with n qubits initialized to
|0) and a target register with one qubit initialized to |1).
With x we denote the integer x:=3""x;2" associated
with the string of bits x, ;--~x;xy, and |x)
=[x, -1 X1 X0).

Let |®;):=|0)|1). After the bitwise application of the
Hadamard gate to |®,) we find

|®2>::U%}(n+l)|¢]>
=(Uyl0))(Uyl0)) - (UpylO))(Uyl1))

n

1231
:WZO |X>Ey;0,l (—=1)"]y). (99)

Using Eq. (95), we find that the function evaluation
on |®,) yields the following state:

1G] 1
- 1))y — _
(@) =z 2 (-1 = 2 (~1']y). (100)

In the next step we again apply the Hadamard gates
but only on the n source qubits. After some algebra we
arrive at the final state |®,), given by

|®,)=(UR"®1)|d3)

2"-1 2"—1
1 1

- -1 xx!Hf(x)| 50\ —1y
7 2 2 (D) )5 2%, D),

(101)

where x-x':=3""lx.x/ €7,.

If f is constant, then it produces an overall sign factor
in Eq. (101), and after the double summation only the
state |x')=|0) survives. Conversely, if f is balanced, then
the same reasoning shows that such a state has zero am-
plitude in |®,). In summary, only when all the final
source qubits are |0) is the function constant; otherwise
it is balanced.
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FIG. 34. Quantum circuit for Simon’s algorithm.

Thus by measuring the state of the source qubits we
can determine the nature of f with certainty. This final
measurement step allows us to take advantage of the
interference among amplitudes obtained in previous
stages.

A single query to the function black box has proved
sufficient. However, with the classical algorithms known
so far we would require a number of 2" '+1 function
evaluations (in the worst case) to determine with cer-
tainty which type of function f is. This represents an
exponential speedup for this quantum algorithm.

Let us point out that classically, given any 1>€>0, it
is also possible to devise an efficient probabilistic algo-
rithm such that running it a large enough number of
times M (independent of the input length n) will deter-
mine whether any given function f is constant or bal-
anced, with error probability <e. This is the procedure:
the function f is evaluated for M random choices of the
argument. When any two of the values differ, then we
know that f is balanced. However, when all values are
equal then the error probability in claiming that f is con-
stant will be less than 2~ ™. Thus it suffices to choose M
such that 2 M<e. In this sense, the quantum Deutsch-
Jozsa algorithm is not such an impressive improvement
over classical algorithms.

B. Simon algorithm

Simon’s algorithm (Simon, 1994) uses several tools of
the Deutsch-Jozsa algorithm. It deals with a vector-
valued Boolean function f:{0,1}"—{0,1}"* which is con-
strained by the following condition or promise: There
exists a non-null vector p € {0,1}", called the period of f,
such that f(x)=f(y) if and only if either x=y or x=y
®p. Note that such an f is forcefully a 2-to-1 function.

This algorithm finds the period p after a number
O(n) of function evaluations, while the known classical
algorithms would require an exponential number of que-
ries.

The steps in Simon’s algorithm can be seen in Fig. 34.
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Both the source and the target registers have n qubits
each. The algorithm proceeds as follows.*’

Step 1. The quantum registers are initialized to the state
|¥1):=[0)[0)=]00---0)[00---0).

Step 2. The Hadamard gate [Eq. (75)] is applied bitwise
to the source register, producing the state

271
1
|¥5)=(Uyl0))---(Unl0))|0)= San ;::0 |x)|0).

(102)

Step 3. The vector-valued function f is evaluated on the

target qubits by applying the gate Uy. Using Eq. (95) we

readily find the entangled state (Sec. III)

21

1
W3)s=Up¥o)=5am 2, [x)If(x). (103)
Step 4. A further application of the Hadamard gate to
the source qubits results in the state

21 2"—1

1
V=g 2 2 (1))

2"—1

[(—=1)* 7+ (=)= |y) f(x)).

0
(104)

Note that only those qubit states |y) such that p-y=0
enter with nonvanishing amplitudes in |W,). The re-
maining states are washed out by destructive interfer-
ence.

Step 5. An ideal measurement of the source qubits (in
the computational basis) will necessarily yield a state |y)
such that p-y=0 with probability 2~ (*~ 1.

Step 6. Repeating the previous steps M times we will get
M vectors y;y such that

1
:2n_+1'

M7

X

(105)
Solving this linear system with the Gaussian elimination
algorithm will yield the period p with probability large
enough provided M=0(n).

p~y(,~)=O, izl,...,M.

The cost in time of Simon’s algorithm is O[n?
+nCxn)], where Cg(n) is the cost of evaluating the
function f on inputs of length 7. The term n? is just the
cost of the Gaussian elimination over 7,.

However, a classical blind search would require 2!
+1 calls to the oracle in the worst case, and on average
a number O(2"?) of function evaluations (Shor, 2000).
Thus Simon’s algorithm represents an exponential
speedup.

We note in passing that Simon’s algorithm resorts to a
classical algorithm (Gaussian elimination) to finish off
the job. We shall find another interesting collaboration
between quantum and classical procedures in Shor’s al-
gorithm.

#’Sometimes one introduces, for didactical purposes, a fur-
ther step in which the target qubits are measured (Jozsa, 1998).
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C. Grover algorithm

The previous quantum algorithms show explicitly
some instances in which a quantum computer beats a
classical computer, as was advanced in Sec. VIII.A de-
voted to quantum Turing machines. However, they also
present several drawbacks:

(i) wtility: it is not clear what they are useful for in
practical applications.

(ii) structure: the searched functions are constrained
to comply with certain promises. Thus we may feel as if
those constraints quantumly conspire in favor of the
Deutsch-Jozsa and Simon algorithms.

Grover’s algorithm (Grover, 1996, 1997) represents an
example of an unstructured problem: one in which no
assumptions are made about the function f under scru-
tiny. Thus we can contrast classical and quantum algo-
rithms on equal footing. Although it came after Shor’s
algorithm (Shor, 1994), we present it first because it is
quite related to the previous algorithms.

The algorithm by Grover solves the problem of
searching for an element in a list of N unsorted ele-
ments, similar to searching a database like a telephone
directory when we know the number but not the per-
son’s name. When the size of the database becomes very
large, this is known to be one of the basic problems in
computational science (Knuth, 1975). The utility of such
an algorithm is guaranteed. Classically one may devise
many strategies to perform this search, but if the ele-
ments in the list are randomly distributed, then we shall
need to make O(N) trials in order to have a high con-
fidence of finding the desired element. Grover’s quan-
tum searching algorithm takes advantage of quantum-
mechanical properties to perform the search with an
efficiency of order O(\/N) (Grover, 1996, 1997).

Let us state the searching problem in terms of a list
L[0,1,...,N—1] with a number N of unsorted elements.
We shall denote by x, the marked element in £ that we
are looking for. The quantum-mechanical solution to
this searching problem goes through the preparation of
a quantum register in a quantum computer to store the
N items of our list. This will allow exploit quantum par-
allelism. Let us assume that a quantum register is made
of n source qubits so that N=2". We shall also need
another register with a target qubit to store the output
of function evaluations or calls.

To implement the quantum search we need to con-
struct a unitary operation that discriminates between the
marked item x, and the rest. The following function,

0 if x#xg o

LoV=11 i x=x,, (106)
and its corresponding unitary operation (95),

Uy, o)y =lalyefy,(x), (107)

will do the job. We shall need to count how many appli-
cations of this operation or oracle calls are needed to
find the item. The rationale behind the Grover algo-
rithm is (1) to start with a quantum register in a state in
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FIG. 35. Quantum circuit (up to an irrelevant global sign fac-
tor) for Grover’s algorithm.

P
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-
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which all the computational basis states are equally
present; and (2) to apply several unitary transformations
to produce an output state in which the probability of
catching the marked state |x,) is large enough.

We now present the steps in Grover’s algorithm, with
the quantum circuit shown in Fig. 35.

Step 1. Initialize the quantum registers to the state
|W):=[00---0)|1).

Step 2. Apply bitwise the Hadamard one-qubit gate [Eq.
(75)] to the source register so as to produce a uniform
superposition of basis states in the source register, and
also to the target register:

|‘I’2>’=U§(”H)|‘I’1>

21
1
= 5mr0n > ) > (1)), (108)
x=0 y=0,1
Step 3. Apply the operator Uy, -
W)= fo“|‘1'2>
21
=27 DR R (— D) 2 (—1)]y).
x=0 y=0,1
(109)
Let Uy, be the operator defined by
—|xg) if x=x,
UX0|X>=:(1_2|X0><XO|)|X>_ |x> if X#:X(),
(110)

that is, it flips the amplitude of the marked state, leaving
the remaining source basis states unchanged. Grover

uniform

01 ... oo N=1

l

||||||||II||||||||||||L|J||||||||||||||||||||||

FIG. 36. Schematic representation of Grover’s operator Uy, in
Eq. (110).
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01 ... LoN-1

FIG. 37. Schematic representation of Grover’s operator D in
Eq. (112). The dashed line represents the mean amplitude.

presents this operator graphically as in Fig. 36, with a
sort of “quantum comb” in which the spikes denote the
uniform amplitudes of state (108) and the action of U,

is to flip over the spike corresponding to the marked
item. We realize that the state in the source register of
Eq. (109) equals precisely the result of the action of U, ,

ie.,
|W3)=([1-2|xg){xo|]®1)|¥5). (111)

Step 4. Apply the operation D known as inversion about
the average (Grover, 1996, 1997). This operator is de-
fined as follows:

D==(Uj'e DUy (U1, (112)

where Uy, is the operator in Eq. (109) for x,=0. The

effect of this operator on the source qubits is to trans-
form Z,a x)—>Z (—a,+2{(a))|x), where (a)
:=2""% «a, is the mean of the amplitudes, so its net ef-
fect is to enhance the amplitude of |x,) over the rest.
This is graphically represented in Fig. 37 (Grover, 1996,
1997).

Step 5. Iterate Steps 3 and 4 a number of times m.

Step 6. Measure the source qubits (in the computational
basis). The number m is determined such that the prob-
ability of finding the searched item x is maximal.

The basic component of the algorithm is the quantum
operation encoded in Steps 3 and 4, which is repeatedly
applied to the uniform state |¥,) in order to find the
marked element. Although this procedure resembles the
classical strategy, Grover’s neatly designed operation en-
hances by constructive interference of quantum ampli-
tudes (see Table V) the presence of the desired marked
state.

It is possible to give a more general formulation to the
operators entering Steps 3 and 4 of the algorithm (Gal-
indo and Martin-Delgado, 2000). To this end it is suffi-
cient to focus on the source qubits and introduce the
following definitions.

(1) A Grover operator G is any unitary operator with
at most two different eigenvalues, i.e., G a linear
superposition of two orthogonal projectors P and
0:

G=aP+BQ, P*=P, Q’=Q, P+Q=1, (113)
where «,8 e C are complex numbers of unit norm.

(i) A Grover kernel K is the product of two Grover
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operators:

K=G,G,. (114)

Some elementary properties follow immediately from
these definitions:

(a) Any Grover kernel K is a unitary operator.
(b) Let the Grover operators G;,G, be chosen such
that

Gi=aP, +BQ,, Py+0=1
G,=yP+50, P+Q=1,
with P, =
trix

(115)
|x0){xo|, and P given by the rank 1 ma-

1 - 1
1

P:—N : N (116)
1 - 1

This is clearly a projector P=|k){ko| on the sub-
space spanned by the state |ko)
= (1/YN)(1,...,1)", where the superscript de-
notes the transpose. Then, if we take the following

set of parameters,
B=1, y=—1, &=1, (117)

the Grover kernel (114) reproduces the original
Grover’s choice (1996, 1997). This property follows
immediately by construction. In fact, we have in
this case G1=1—2PxO==Gx0 while the operator

Gy,=1 —2P coincides (up to a sign) with the diffu-
sion operator D (112) introduced by Grover to
implement the inversion about the average of Step
4.

a=—1,

The iterative part of the algorithm in Step 5 corre-
sponds to applying m times the Grover kernel K to the
initial state |x;,):=2""2%,|x), which describes the
source qubits after Step 2, searching for a final state |x;)
of the form

|xp) :=K"|xin), (118)

such that the probability p(x,) of finding the marked
state is above a given threshold value. We may take this
value to be 1/2, meaning that we choose a probability of
success of 50% or larger. Thus we are seeking under
which circumstances the condition

p(x0) =Kxol K" |xip) =172

holds true.

The analysis of this probability gets simplified if we
realize that the evolution associated with the searching
problem can be mapped onto a reduced 2D space
spanned by the vectors

(119)

(120)

{lxo).lxr)s= J_E ).
Then we can easily compute the projections of the

Grover operators G1,G, in the reduced basis with the
result
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a 0
G1=<0 B)’ (121)
1 N—1
5 0 N N
G2:<0 y+(7—5) N=T -1 (122)
N N

From now on, we shall fix two of the phase parameters
using the freedom we have to define each Grover factor
in Eq. (114) up to an overall phase. Then we decide to
fix them as follows:

a=y=—1. (123)
With this choice, the Grover kernel (112) takes the fol-
lowing form in this basis:
1+6(1—N)

N\(1+8)yN=1

The source state |x;,) has the following components in
the reduced basis:

1 N—1
|xin>:\/_ﬁ|x0>+ Vv

In order to compute the probability amplitude in Eq.
(119), we introduce the spectral decomposition of the
Grover kernel K in terms of its eigenvectors {| «;),| k2)},
with eigenvalues e'“1,¢“2, Thus we have

a(xo) :=(xo| K" |xip)

—B(1+8)N—1

B(1+6—N)

) . (124)

(125)

1< |
) \/_Nle {1Grol )2+ VN = T¢xol i)kl e

(126)

This in turn can be cast into the following closed form:

(x| K™ |x;p) =€ 1)(xo|x2)

1 +( imAw
- e _
VN

X<K2|xin>> ; (127)

with Aw:=w,— w.
In terms of the matrix invariants
1
DetK=86, TrK=—(B+&)+(1+8)(1+ 5)N’
(128)

the eigenvalues {;,:=e'“12 are given by

£12= LTk F /= DetK + }(TrK )%, (129)
The corresponding un-normalized eigenvectors are
AF\—4(DetK)N>+A?

2(1+96)YyN—-1 ,

1

| K12} (130)

with
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¢
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FIG. 38. Probability of success p as a function of the time step
for N=1000 and B= 8=¢'™>.

A=(B—)N+(1—-B)(1+9). (131)

Although we could work out all the expressions for a
generic value N of elements in the list, we shall restrict
our analysis to the case of a large number of elements,
N—w (see Fig. 38). Thus, in this asymptotic limit, we
need to know the behavior for N>1 of the eigenvector
| k), which turns out to be

(132)

|Kp)
1

For generic values of 3,6 we observe that the first com-
ponent of the eigenvector dominates the second one,
meaning that asymptotically |«,)~|x,) and then
(xo| k2){Kks|x;y=O(1/y/N). This implies that the prob-
ability of success in Eq. (127) will never reach the
threshold value (119). Then we are forced to tune the
values of the two parameters in order to have a well-
defined and nontrivial algorithm, and we require

B=6%—1. (133)

Now the asymptotic behavior of the eigenvector
changes and is given by a balanced superposition of
marked and unmarked states, as
1 (i51/2>

k)~ —|" (134)

V2
This is normalized, and we see that none of the compo-
nents predominates. When we insert this expression into
Eq. (127) we find

Kol K™ |xin)|~ 3|6l e™ 4= 1]~ [sin(3mAw)|.  (135)

This result means that we have succeeded in finding a
class of algorithms that are appropriate for solving the
quantum searching problem. Now we need to find out
how efficient they are. To do this let us denote by M the
smallest value of the time step m at which the probabil-
ity becomes maximum; then, asymptotically,*®

M~[|m/Aw|]. (136)

#8The symbol [x] stands for the closest integer to x.
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As it happens, we are interested in the asymptotic be-
havior of this optimal period of time M. From Eq. (129)
we find the following behavior as N—:

4
Aw~ —Re\/g.

JN

If we parametrize 5=e'?, we finally obtain the expres-
sion

(137)

M~ p VN |. (138)

4 cos >

Therefore we conclude that Grover’s algorithm of the
class parametrized by ¢ is a well-defined quantum
searching algorithm with an efficiency of order O(\/N).

There have been many applications of Grover’s work
to quantum searching: for example, finding the mean
and median of a given set of values (Grover, 1996),
searching the maximum/minimum (Durr and Hoyer,
1996), searching more than one marked item (Boyer
et al., 1998), and quantum counting, i.e., finding the
number of marked items without caring about their lo-
cation (Brassard, Hoyer, and Tapp, 1998). There is also a
nice geometrical interpretation of the Grover kernel K
=—G,Gq in terms of two reflections G and —G,, one
about |x, ) and the other about |x;,), producing a simple
rotation of the initial state (Jozsa, 1999) by an angle 6
=2 arcsin(1/\/N) in the plane spanned by |x,) and |x, ).
With this construction it is straightforward to arrive at
the following exact condition for the optimal value m of
iterations:

m=

~-1 1. (139)

2 arcsin —
JN
Finally, it has been shown that Grover’s algorithm is
optimal (Bennett, Bernstein, et al., 1997; Zalka, 1999),
that is, its quadratic speedup cannot be improved for
unstructured lists.

1
2

D. Shor algorithm

Shor’s algorithm (1994) came as a wake-up call for
cryptographers working with codes based on the diffi-
culty of factoring large integer numbers® (see Sec.
VI.A), and now it represents a Damocles’s sword hang-
ing over this type of cryptosystem.

The algorithm of Shor has several parts that make it
somewhat involved. It may be useful to keep in mind the
main ingredients of this algorithm:

(i) A periodic function.

(i) Quantum parallelism.

#«The problem of distinguishing prime numbers from com-
posite numbers and of resolving the latter into their prime
factors is known to be one of the most important and useful in
arithmetic” (Gauss, 1801).
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(iii) Quantum Fourier transform.

(iv) Quantum measurement.

(v) Euclid’s classical algorithm for finding the greatest
common divisor ged(7,n,) of two integers n,n;.

Quantum computation opens the door to a new fac-
torization method in polynomial time (Shor, 1994). This
is why, although the technological difficulties of succeed-
ing in their construction are enormous,” it is highly in-
teresting to find systems for key distribution whose se-
curity (see Sec. VI.B) does not rely upon the practical
difficulty of factoring large integers. Quite ironically,
quantum physics provides both a fast factorization
method and a secure key distribution (Sec. VI.B).

Let N=3 be an odd integer to factorize. Let a be an
integer in (1,N). Let us assume that gcd(N,a)=1, that
is, N and a are coprimes; otherwise gcd(N,a) would be
a nontrivial factor f of N and we would restart with N/f.
The integral powers a* of a form a cyclic group in Zy
:=7/NZ7, and there exists a smallest integer re (1,N),
called the order of a mod N, such that a"=1 in Zy.
Several cases may arise:

(1) r is odd;

(2) ris even and a"?=—1 in Zy;

(3) r is even and a"?# —1 in Zy.

Only case (3) is of interest because then gcd(N,a™
*+1) are nontrivial factors of N.

It can be shown that, for any given odd N, the prob-
ability of picking up at random an integer ae[1,N]
coprime to N and fulfilling case (3) is =1/(2log N), pro-
vided that N is not a pure prime power (Ekert and
Jozsa, 1996).3! Therefore it will be enough to analyze
O[log(1/e)log N] randomly chosen values of a to suc-
ceed in obtaining a nontrivial factor of N with a prob-
ability larger than 1—e. For example, if N=21823 and
a=12083, the order of ¢ mod N is r=3588, and
1208317%4=4866 mod 21823, thereby gecd(12083'74
+1,21823)={139,157} are factors of 21 823. By contrast,
although the order of a=14335 mod N is also even,
namely, r=1794, we have 14 335%7=—1 mod 21 823,
and ged(14335%751,21823)={1,21823}, so that no
nontrivial factor of N is now obtained.

The big problem lies in computing the order r of a
mod N for large N. And here is where the Shor algo-
rithm comes in to quantumly search for the order r of an
integer x in the multiplicative group Z) of integers
modulo N, by producing a state with periodicity r.

0 As Preskill (1997) recalls, it is quite risky to make guesses in
this field; 50 years ago it was foreseen that “Where a calculator
on the ENIAC is equipped with 18,000 vacuum tubes and
weighs 30 tons, computers in the future may have only 1,000
tubes and perhaps only weigh 1 1/2 tons” (Popular Mechanics,
March 1949). The “future” has surpassed these expectations
amply.

S There are fast power tests to detect whether N is a prime
power, say N=p°, and to find p in that case (Cohen, 1993). A
rudimentary transcendental and not very efficient procedure
consists in trying with the integers |NY¥|[NV¥]k
=2,3,...[log, N], until hopefully finding one being a divisor of
N.
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FIG. 39. A quantum circuit representing the Shor algorithm.
QFT=quantum Fourier transform.

As usual, we need two quantum registers: a source
register with K qubits such that Q:=2% ¢ (N?2N?), and
a target register with at least N basis states (i.e., with
[log, N] qubits).

These are the main steps of Shor’s algorithm (see Fig.
39).

Step 1. Initialize the source and target qubits to the state
[¥,):=[0)®]0).

Step 2. Apply on the source register the quantum Fou-
rier transform (which is just the discrete Fourier trans-
form F in ZQ):52

0-1

_— z eZm’qq'/Q|qr>‘
0 q'=0

Here, as wusual, q==2jQ;01 q]»Zj, q;=0,1, and lq)
= EPEEE . The following output state is pro-
|C]Q 1°°q140) g P p

duced:

UFQ3|Q> (140)

0-1

[¥2)s=(Ur, @ DIT)=07"" 2 [g)@]0).  (14D)

This particular case of the quantum Fourier transform
corresponds to the Hadamard gate acting bitwise on the
source qubits.

Step 3. Next apply the gate U, implementing the modu-
lar exponentiation function g—a? mod N:

0-1
[W3):=U,|¥2)=07"" X |q)®a’ mod N). (142)
iz

This operation computes at one go a? mod N for all ¢
as a manifestation of the quantum parallelism (see Sec.
IX. A).

Step 4. Again apply the Fourier transform UFQ on the

source register. Then the state becomes

2This is especially fast when Q =2%.
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prob(q)

0.1

CQ = 28 r = 10

J |‘ . I ,1|
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250 ¢

FIG. 40. The probability prob(q) for the case Q=28,r=10. It
becomes concentrated around the integers [sQ/r|, with s inte-
ger.

|‘I’4>‘=(UFQ®1)|‘I’3>

[ e-1o-t
=—> > "0 4\@]a? mod N).
q=0 q'=0
(143)

Step 5. Measure the source qubits in the computational
basis. The probability of finding them in the state |q) is
prob(q)= E;;& prob;(q), where

Bj*l
2 (6277iqr/Q)k
k=0

with Bj:=1+[(Q—1-/)/r].

To simplify the algebra, an intermediate step is intro-
duced in most discussions of Shor’s algorithm in which
the target qubits are measured prior to the second ap-
plication of the quantum Fourier transform (Shor, 1995;
Ekert and Jozsa, 1996). If |b) is the result, the source
register will be projected onto a state B~ 12 Ef;(ﬂdb
+ kr), superposition of basis states with the periodicity r
of a. Here d, is the minimum non-negative integer
such that a?» mod N=b, and B:=1+[(Q—1—d,)/r| is
the length of the series. After applying the quantum
Fourier transform and measuring the source qubits, the
probability to obtain |g) now is just (Q/B,,)probgy,(q).

2

1
prob;(q) :Z@ (144)

Let us see how to pull out the order r of a from the
study of the above probability prob(g). The analysis of
the geometrical series in Eq. (144) shows that prob(q)
peaks around those gs for which all the complex num-
bers in the sum fall on a semicircle, and thus they en-
hance each other constructively. It can be shown that
such g¢’s are characterized by |(gr mod Q)|<?%r, they
number r, and satisfy prob(q)=(2/m)?r~!; therefore
the probability of hitting upon any one of them is
=(2/m)?=0.405... . In Fig. 40 the form of prob(q) is
shown.

The condition of constructive interference (see Table
V) for each ¢>0 amounts to the existence of an integer
q'€(0,) such that |[(g/Q)—(q'/r)|<3Q " '. As we
have chosen Q>N?, and r<N, there exists a unique g’
such that the fraction g'/r satisfies that inequality. This
rational number ¢'/r can be easily found as a conver-
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FIG. 41. Factorization times with a hypothetical quantum
computer at a nominal clock frequency of 100 MHz. The time
t(n), in minutes, is shown as a function of the number of bits.

gent to the (finite simple) continued fraction expansion
of q/Q. If this convergent is the irreducible fraction
q./rq, it may happen that a"'=1 mod N, which implies
r=ry, and we are done. Otherwise, we would only know
that 4 is a divisor of r, and we would have to carry on,
choosing another g with constructive interference, to see
if this time we are luckier. It can be shown that the prob-
ability of finding an appropriate g is of order
O(1/loglogr), and therefore with a number O(loglog N)
of trials it is highly probable to obtain r.

For example, let N=15 (this is a sort of “toy model”)
and a=7. We can effortlessly see that r=4. Suppose,
however, that we insist on following the Shor way (quite
a luxury in this case, but a necessity if N had half a
thousand digits). We would take Q=28 to comply with
N?<Q<2N?. After Step 5 we would obtain the state
|g) of the source qubits, where, for instance, ¢
=0,64,128,192 with probabilities 0.25,0.25,0.25,0.25. The
first value is useless, for ¢g/Q does not allow us to deter-
mine r if g=0. From the continued fraction series ex-
pansion {ag,a,a,,...}:=ag+1/[a;+1/(ay+--+)] of q/Q
(64/256=1{0,4},128/256={0,2},192/256={0,1,3}) we see
that for g=64 (respectively, 128,192), the fraction 1/4
(respectively, 1/2,3/4) approximates g/Q with an error
less than 1/2Q. Thus 4 is a divisor of r, i.e., r=4,8,12,
and so on. A direct check selects r=4 as the order of 7
mod 15. And since 7%?#—1 mod 15, then gcd(49
+1,15)={5,3} are factors of 15.

As a little more complicated example, take N
=25397,a=71. Then Q=23=1073741824. There are
many values of g for which the probability is appre-
ciable and similar. One of those is ¢=6170930, for
which prob(q) is about 2x1073. The approximation
1/174 to q/Q 1is the only convergent with denominator
<N provided us by the continued fraction expansion
{0,174,1542732,2} of q/Q. Therefore the order r of 71
mod 25397 is a multiple of 174, say r=174, 348, 522, etc.
A direct check shows that r=522. Also in this case
a™%-1 mod N, and ged(71%6'+1,25397)={109,233}
are divisors of 25397.

In Fig. 41 the factorization time with a hypothetical
quantum computer at 100 MHz is represented as a func-
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FIG. 42. Implementation of the quantum Fourier transform with Hadamard and controlled-phase gates (up to a reversion of

output qubits). By U; we denote the unary gate U;:=|0)(0| +62’Ti/2j|1)(1|. For typographical reasons a factor of 2~ 2 has been

omitted in each output qubit.

tion of binary length of the integer to be factorized. The
spectacular efficiency of the Shor algorithm stands out,
with a time of 20 years for an integer of about 40000
digits (Hughes, 1998).

Shor’s algorithm may seem a bit miraculous after
those several “manipulations” or steps. The rationale is
the same as we described in Sec. IX: to drive the system
into an appropriate outcome state that upon measure-
ment yields the desired result with high probability.
Where does the constructive interference ingredient
(Table V) come into the algorithm? It is by means of the
second quantum Fourier transform operation. This is
designed to produce the interference among qubit am-
plitudes in such a way as to enhance those aspects of the
output that favor the determination of the order r.

1. The quantum Fourier transform

Let us take a closer look at the discrete Fourier trans-
form U Fo when Q=2X. It is at the core of Shor’s algo-

rithm and is responsible for its exponential speedup. To
analyze the efficiency of the Shor algorithm it proves
convenient to implement the quantum Fourier trans-
form by means of one- and two-qubit gates. The result,
shown in Fig. 42, will follow from Eq. (140), duly
worked out.
The phase factor e2miaa' 2% in Eq. (140) is a periodic
function of ¢, and of ¢’ as well, with period 2X. The
numbers ¢ and ¢’ have the following binary decompo-
sitions: ¢=3/")" q;2/, ¢;=0,1 and ¢q'==[ q;2', q;
=0,1. Their product can then be written as
K-1
qq’:”ZO q;9i2"'= >

0<j+I<K

q;q;2"' mod Zg.
(145)
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By entering this expression into Eq. (140) and defin-
ing q,=qk_,_;,[=0,....K—1, O.abc---=2"ta+272b

+273¢+---, we find
1 2!
Up lg)=—= > exp(2miqq'/2%)q’)
© \/Eq’=0
1 2!

=— > eXp<2m' > qul,2j+1K)|q,>
—0 0=/FI<K

Vo

Q

-1

Q

1 .
— exp| 2 i ;27" g,
\/57 Xp( WlOS];<K CI/QZ )|q >

0

(146)
and hence
1 &k A
FQ|q)— E ® exp(Zm’ ;ﬂ qj2]—l—1a)|a>

1
> exp(zm'E quf“cT,)m

0osj=

1
=— ® [|0)+exp(27i0.q,q,-1 " q0)|1)].
1=0

(147)

In particular, the transformed state U FQ|q> is separable.
The quantum Fourier transform gate UFQ can be ex-

plictly written as a product of Hadamard, controlled-
phase, and SWAP gates:
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UF:

|K/2)-1
Q )

Ho Uswar,ik—1-i
i

’

[( I1 Uj,l(alj))UH,l
I=K—-1,..., 1,0 0sj<I-1

(148)

where 6;:= W/Zf,USWAP,,»,j exchanges the qubit states la-
beled by i,j, and
eiﬁqlﬂl. . E’ . .>’

Upl-qr-y=2""" X
q,=01

Uj,l( 0)|"'Ql'"q/'"'>‘:eiqlqj9|"'f]l' "61/'"'>

are the Hadamard gate action of the one-qubit |g;) and
the controlled-phase gate action on the two-qubit state
lq.q j)» respectively. From the factorization (148) we can
read off the quantum circuit (see Fig. 42) implementing
the quantum Fourier transform (up to a reversion of the
output qubits).

The number of Hadamard gates in this implementa-
tion of the quantum Fourier transform is K, and that of
the controlled-phase gates is $ K (K —1). Altogether this
implies that the size of the quantum circuit for Shor’s
algorithm is of order O(K?) regardless of the SWAP
gates for the final reversion (Coppersmith, 1994) .5

The quantum Fourier transform can be extended to
deal with qubits with a number of states d not necessar-
ily equal to 2 (see Sec. III). In this case the dimension of
the Hilbert space of K source qubits is Q =dX, and Egs.
(140) and (149) for the quantum Fourier transform, the
Hadamard and the controlled-phase gates hold true pro-
vided the phase angle is taken to be

2

(149)

(150)

For instance, for qubits with d =3 state or qutrits, the
Hadamard gate takes the following explicit form:

UD10y= ]0y+ 1) +]2)]
H ‘/3 )
1
U%%>|1>=%[|0>+w|1>+w2|2>],

US)|2>=}3[|0>+w2|1>+w|2>], (151)

with w:=e2™",

In this general case, the sequence of one- and two-
qubit gates for the decomposition of the quantum Fou-
rier transform as well as their counting, remains valid.
This implies that using qudits for the quantum Fourier
transform does not spoil its superb performance, and

>In contrast, the classical fast Fourier transform requires or-
der O(K2X) elementary operations to transform a K-bit vec-
tor (Press et al., 1992).
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retains the advantage of reducing by a factor of |log, d|
the length of the quantum registers (see Sec. I1I).

2. Cost of Shor’s algorithm

We finally evaluate the complexity of Shor’s algo-
rithm. The first quantum Fourier transform (Step 2) is
just a Hadamard operation applied bitwise, and its cost
is O (log, N). The modular exponentiation in step 3 con-
sumes O (log3 Nlog, log, Nlog, log, log, N) time (Shor,
1994). The second quantum Fourier transform gate
(Step 4) is, according to the results just mentioned,
O(log; N). Therefore the total cost to determine the or-
der r of @ mod N, with a probability of success O(1), is
O(logs " *N), any €>0.

Once r is determined, it remains to calculate gcd(a
+1,N) in order to find a factor of N. This arithmetical
operation is more resource demanding, since it takes
O (logj N) time steps when Euclid’s celebrated algorithm
is applied.**

Altogether we end up with a total cost O(log; N) for
the complete factorization algorithm with high
probability,”® which represents in practice a subexponen-
tial gain over the best classical algorithms (quadratic
sieve, general number field sieve) known nowadays.

rl2

E. On the classification of algorithms

One of the most important issues in quantum comput-
ing is the design of quantum algorithms. Very few of
them are known. Apparently we lack the basic principles
underlying the quantum version of algorithm problem
solving. We want in part to address this question and we
believe that one approach is via a comparison with the
known strategies of designing classical algorithms in
computational science. This is suggested by the relation-
ships between classical and quantum computations pre-
sented in Secs. VIII and IX.A. In this regard, we need to
distinguish between fundamentals of quantum computa-
tion and strategies for designing algorithms. Although
the latter are still unknown, the former have been de-
scribed in Table V. The fact that we can understand the
fundamentals of quantum computation does not mean in
principle that we know the keys to setting up quantum
algorithms, although it can be of great help.

To analyze the classical strategies of algorithm design
from the point of view of quantum computation, let us
first consider the classification introduced by Levitin
(1999), who has done a reformulation that includes and
categorizes in a nice fashion other classification schemes
(Brassad and Bratley, 1996). According to Levitin, there
are four classical general design techniques, which we
shall describe briefly, with a simple example to illustrate

A more refined implementation of the gcd algo-
rithm (Knuth, 1981) reduces its cost to
O[log N(log log N)? log log log N].

550, better, O(log3 "¢ N), if the previous footnote is consid-
ered.
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TABLE VIII. Classification of classical algorithms.

Classical technique Algorithm example

Brute force
Divide-and-conquer
Decrease-and-conquer
Transform-and-conquer

Searching the largest
Quicksort
Euclid’s algorithm
Gaussian elimination

them. This example is the problem of computing a” mod
p, which is of great importance in public-key encryption
algorithms (Secs. VI and X.D). We have the following
generic types.

(1) Brute-force algorithms. This amounts to solving a
problem by directly applying its crude formulation.
Example: a"=a-a---a,n times.

(2) Divide-and-conquer algorithms. The original prob-
lem is partitioned into a number of smaller subprob-
lems, usually of the same kind. These in turn are
solved and their solutions combined to get a solu-
tion to the bigger problem. This strategy usually em-
ploys recursivity in order to obtain a greater profit.
Example: an:a[n/Zj.a[n/ZJ.an*Z[n/ZJ.

(3) Decrease-and-conquer algorithms. The original
problem is reduced to a smaller one, which is usually
solved by recursion and the solution so obtained is
applied to find a solution of the original problem.
Examples: (a) a"=a""'-a (decrease-by-one vari-
ety); (b) a"=(a"?? if n even, a"=(a")?.a if n
odd (decrease-by-half variety).

(4) Transform-and-conquer algorithms. The original
problem is transformed into another equivalent
problem that is more amenable to solution with sim-
pler techniques. Example: a” is computed by ex-
ploiting the binary representation of n.

These four types of strategies in turn have several sub-
types that we shall not go into.

Table VIII contains these classical strategies with
some well-known and less trivial examples of represen-
tative algorithms. There are important algorithms built
upon a mixture of these basic techniques; for example,
the fast Fourier transform employs both divide-and-
conquer and transform-and-conquer techniques.

It can be quite revealing to set up the quantum ver-
sion of Table VIII by classifying the most useful of the
quantum algorithms known to date. This we do in Table
IX. Several remarks are in order.

TABLE IX. Classification of quantum algorithms.

Quantum technique Algorithm example

Grover’s algorithm
Deutsch-Jozsa’s algorithm
Simon’s algorithm

Divide-and-conquer 1G]
Decrease-and-conquer 1G]
Transform-and-conquer Shor’s algorithm

Brute force
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First, we have placed Grover’s algorithm in the cat-
egory of brute-force algorithms. The strategy is similar
to its classical counterpart, which is of the brute-force
type. The difference lies in the fact that the quantum
operation is realized through a unitary operator that
implements the reversible quantum computation.”® Al-
though the brute-force technique usually produces low-
efficiency algorithms, it is very important for several rea-
sons. One is that there are important cases, like the
searching problem, in which it outperforms more sophis-
ticated strategies like divide-and-conquer. We find Grov-
er’s algorithm as a realization of the brute-force tech-
nique at the quantum level and this is why it is so simple
and of general utility at the same time.

Second, we have included Shor’s algorithm in the cat-
egory of transform-and-conquer algorithms. As we have
explained in Sec. X.D, Shor solves the factorization
problem by reducing it to the problem of finding the
period of a certain function in number theory, which in
turn is solved with the aid of the fundamentals of quan-
tum computation. Having realized this, we point out that
classical versions of transform-and-conquer algorithms
are very rare (Levitin, 1999). This may explain why
Shor’s algorithm, although more powerful than Grovers,
has a more reduced range of applications.

Third, the most notable aspect of Table IX is the ab-
sence of quantum algorithms based on the divide-and-
conquer technique, which is by far the most general and
widely used strategy in classical computation. This may
partly account for the shortness of the list of quantum
algorithms. Moreover, if we consider the basic features
of quantum computation (Table V) we may better un-
derstand why this entry is empty in Table IX. We know
that a quantum register supports the superposition of
many states at the same time. This implies that the qu-
bits of the quantum registers are strongly correlated (en-
tangled) and that their joint state is not separable into a
product of states of smaller subregisters. Thus quantum
parallelism and entanglement render unnatural any at-
tempt to implement the strategy of divide-and-conquer
in a quantum register, at least in a straightforward and
naive fashion.”’

XI. EXPERIMENTAL PROPOSALS FOR QUANTUM
COMPUTERS

The great challenge of quantum computation is to
build real quantum computers capable of implementing
the quantum logic operations of Sec. IX and of perform-
ing the quantum algorithms of Sec. X. In this section we
present some of the experimental proposals to this end.
Some of these proposals have actually been carried out,
and this is already a significant advance, for it means
that the theoretical constructs can be checked experi-

By a similar rationale, we have placed the Deutsch-Jozsa
and Simon algorithms in the same class.

S7A blend of classical and quantum algorithms might make
room for a divide-and-conquer strategy.
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mentally. However, these devices are very modest in size
and the real breakthrough will be to scale them up to
sizes capable of doing tasks not yet done with classical
computers, like code breaking with Shor’s algorithm or
database searching with Grover’s algorithm.

Before giving an overview of a few experimental pro-
posals, it is convenient to summarize what they all have
in common. There is a generic foundation for building a
quantum computer.”® We basically need

(i) any two-level quantum system,
(ii) interaction between qubits, and
(iii) external manipulation of qubits.

The two-level system is used as a qubit and the interac-
tion between qubits is used to implement the conditional
logic of the quantum logic gates (Sec. IX). The system of
qubits must be accessible to external manipulations, to
read in the input state and read out the output, as well as
during the computation if the quantum algorithm re-
quires it.

Interestingly enough, some of the possible qubits and
quantum logic gates have been with us since the time of
Bohr. For example, the quantum NOT gate is obtained,
at least in principle, either by exciting an atomic ground
state to an upper level with a photon of apppropriate
frequency and duration, or by induced emission. If the
length of light pulses is halved, a Hadamard-like gate
will result.”” Quantum computation has provided us with
a new insight on these operations.

There are several settings in which one can fulfill the
above three requirements. We shall not go into all the
technical details of the experimental proposals below
but instead present the basic physical foundations under-
lying these ideas for quantum computers. We shall
choose as our qubit system a spin-3 massive particle with
magnetic moment, whose translational motion will be
ignored.®® Placing this qubit in a suitably oscillating ex-
ternal magnetic field will allow us to theoretically imple-
ment the unary quantum gates.

A. One- and two-qubit logic gates with spin qubits

This is one of the few examples in which one can fol-
low exactly the evolution of the quantum system, and it
is versatile enough to allow building some of the basic
logic gates. We present it as a preparation for more com-
plex setups.

Suppose that our qubit, a spin-3 particle, has a mag-
netic moment u= 7S, where S=1# o is the spin opera-
tor. In the presence of a uniform but time-dependent
magnetic field B(¢) the qubit state |(¢)) will evolve
with the Hamiltonian H(¢)=—yS-B(¢) (Rabi, 1937):

d
ih [ 9(0)=—¥8-B(0)|[¢(1)). (152)

BAt least with our present knowledge.

FStrictly speaking, this halved pulse produces the action of
the so-called pseudo-Hadamard gate.

%00ther simple choices might be the polarization of a photon,
an atomic system with just two relevant levels, etc.
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When the magnetic field rotates uniformly around a
fixed axis (say Oz),

B(t)= (B, cos wt,B; sin wt,B), (153)

then Eq. (152) can be solved explicitly, with the result
(Galindo and Pascual, 1990b)

P(1)=U0)|(0)),

U([) :=efiwt0'Z/Ze7i[(w07w)a'z+a)lax]t/2

(154)

=[cos swt—i(sin s wt)o,][cos At —i(sin Q)0 ],

where wg:=—vyB,, w;=—vyB, Q:=[(w)—w)*+ w’]"?
is the so-called Rabi frequency and o' =0 '[(w,
—w)o,twio,].

As the computational basis (Sec. IX.A) we shall take
the eigenvectors of o, :|0):=|1) (spin-up state) and |1)
:=||) (spin-down state).%!

The probability of spin flip T« | is one if and only if
w=w, (resonance condition), hence Q=|w;|, and tQ
e2m(Z+3). When the oscillating part of the magnetic
field (153) is resonant, i.e., it satisfies w = w, then such a
field is known as a Rabi pulse.

Let us see how to induce one-qubit operations using
Rabi pulses of appropriate durations. In view of Eq.
(88), and up to the global phase factor represented by
Ph(6) in Eq. (89), it suffices to do it for the rotations
R.(a).R,(B).

(a) The rotation R,(«) is emulated by taking a con-
stant field along the z axis and setting to zero the oscil-
lating part (B;=0, i.e., Q=0). The angle is simply «
=Zw,T, T being the pulse length. The rotation R_(y) is
obtained similarly.

(b) To reproduce the rotation R,(f) in the decompo-
sition (88), note that R,(8)=R.(;m)R.(B)R (—357),
and that U(t)=R,(wt)R,(Qt). Therefore to build
R,(B) it suffices to compose with suitable rotations
around Oz, implemented as above, the action of a Rabi
pulse with Q7= p.

For instance, a 7 pulse, i.e., a pulse with duration T
= 7/Q), reproduces in the interaction picture a quantum
NOT gate (up to a global factor —i).°* Similarly, a /2
pulse produces essentially a Hadamard gate.

So far we have manipulated externally the spins 3 to
produce one-qubit gates. To generate two-qubit gates we
need a pair of interacting qubits at sites 1,2. For simplici-
ty’s sake, let us assume the simplest possible type of in-
teraction between them, namely, an Ising interaction:

Hyy=— (785 +v,83) B +2(J11)S3S3. (155)

®IWith this choice, |0) will be the ground state of the mag-
netic Hamiltonian provided that the spin corresponds to a
positively charged particle (y>0).

02At resonance, the time-evolution operator U(t) factorizes
as U(t)=e 01721202 The first factor represents the evo-
lution operator U,(¢) under the static magnetic field, whereas
the second factor is just the total unitary propagator Uj(t)
:==U, '(t)U(r) in the interaction picture.
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FIG. 43. Energy levels of a two-qubit spin system with Ising
interaction (units #=1): On the left are the noninteracting
Zeeman levels; on the right, the levels perturbed by the Ising
term (when w;<w,<—J<0).

The origin of the single spin terms may be the presence
of an external magnetic field. In Eq. (155), this field is
constant and directed along Oz, and the two spins may
have different magnetic moments. The coupling con-
stant J measures the spin-spin interaction. Defining the
frequencies w;:=—vy;B*,i=1,2, the eigenvalues of this
Hamiltonian are

Exlxzz A= 1) T+ (= 1)2w,+ (= 1) 17727,
(156)

where x;=0,1, i=1,2.

These energy levels are represented in Fig. 43 for w;
<wy<—J<0. We can clearly see that if we apply a =
pulse with frequency w=|w,|+J, the states |11) and |10)
are interchanged while the rest are not excited. This is
precisely what a CNOT gate does, with the first spin act-
ing as control qubit and the second spin as a target qubit
(Berman et al., 1997).

Other useful two-qubit gates such as the controlled-
phase gate [Eq. (78)], which enters Shor’s algorithm, can
be built up similarly using the Ising interaction. An ex-
plicit construction of this gate is the following (Jones,
Hansen, and Mosca, 1998):

Ucpn(p)=exp(—is¢p[— 5 +S5+55-28i831), (157)

where S¥:=8%/h=%0%. Of particular interest is the case
¢ = for, as remarked in Sec. IX.B, with this controlled
gate plus two Hadamard gates (on the target qubit) we
can reconstruct the important CNOT gate [Eq. (79)].

B. The ion-trap quantum computer

The ion-trap quantum computer was introduced by
Cirac and Zoller (1995) and since then many other po-
tential and actual realizations of quantum computers
have been pursued by many groups. The quantum hard-
ware is the following: a qubit is a single ion held in a trap
by laser cooling and the application of appropriate elec-
tromagnetic fields; a quantum register is a linear array of
ions; operations are effected by applying laser Rabi
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FIG. 44. Schematic geometry of a radio-frequency quadrupole
linear ion trap. Laser beams address a string of ions in the
middle of the setup with four linear rods and two end caps.

pulses; information transmission is achieved as a result
of the Coulomb interaction between ions and the ex-
change of phonons from collective oscillations. We see
again, at a very fundamental level, that information is
physical. Using the Cirac-Zoller (CZ) technique, Mon-
roe et al. (1995) were soon able to construct a single
quantum gate.

The ion-trap proposal has several advantages: it calls
for manipulation of quantum states that is already
known from precision spectroscopy techniques; it has
low decoherence rates due to the decay of excited states
and the heating of the ionic motion; and it takes advan-
tage of existing very efficient experimental methods for
retrieving the information from the quantum computer,
such as the mechanism of quantum jumps.

1. Experimental setup

The geometry of a radio-frequency (RF) ion trap or
Paul trap is schematically shown in Fig. 44. An RF Paul
trap uses static and oscillating electric potentials to con-
fine particles within small (~1 xm) regions. To obtain a
string of ions for forming the quantum register we need
a quadrupole ion trap with a cylindrical geometry. The
confining mechanism of ions is twofold:

(i) A strong radial confinement, achieved by RF po-
tentials generally produced with four rod elec-
trodes.

(ii) An axial confinement, achieved by applying a
quadrupolar electrostatic potential through two
end caps.

The ions lie along the trap axis and their oscillations
are controlled by the axial potential. The collective os-
cillations of the string center of mass are used as a sort
of computational bus, transferring information from one
ion to another by phonon exchange. The dimensions of
the ion traps used by the Los Alamos group are typically
1 cm long and 1-2 mm wide (Hughes et al., 1998).

Before any computation takes place, the center of
mass of the ion string must be set to its ground state.
This is accomplished by a laser cooling process that
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FIG. 45. Relevant energy levels in Ca™ ions.

brings the ions to the ground state of their vibrational
motion. The result is an ion string configuration as
shown in Fig. 44, crystallizing into a linear array that
makes it possible to address each ion individually by
lasers. The inter-ion spacing can be controlled by balanc-
ing the Coulomb repulsion of the ions and the axially
confining potential (Wineland et al., 1998).

Several kinds of ions (Be™, Ca*, Ba™, Mg*, Hg",
Sr*) and qubit schemes have been proposed. The Cirac-
Zoller qubit {|0),|1)} is built using some appropriate
electronic ion states. For instance, the Los Alamos
group (Hughes et al., 1998) has chosen Ca* ions, whose
most relevant levels are shown in Fig. 45. The state qu-
bits {|0),|1)} and one extra auxiliary level |2) (to be
described below) are identified as follows (see Fig. 45):

|0>:|4 251/2’MJ:]7>,
|1>:|3 2D5/2»MJ:%>»
|2>:|3 2D5/2,MJ:_%>- (158)

The level (4 2S,,,M,;=%) is the ground state, while
(3 2Ds,,M;=3) is a metastable level with a long life-
time (1.06 s). Both the electric dipole transition 4 %S,
—4 2P, at 397 nm wavelength and the electric quadru-
pole transition 4 2S,,—3 2D, at 732 nm are suitable
for Doppler and sideband laser cooling, respectively. In
Doppler cooling the laser radiation pressure slows down
the axial motion of the ions until temperatures 7~a few
mK. To further reduce the temperature (7~a few pK)
until no phonons are present, one resorts to sideband
cooling (Hughes, 1998).

The interaction between Cirac-Zoller qubits is
achieved using two types of degrees of freedom: internal
(the electronic states of the ions) and external (the vi-
brational states of their collective excitations). Thus an
active state for information processing is the tensor
product of an electronic state and a quantum oscillator
state of the axial potential, namely,
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FIG. 46. Schematic representation of the transitions generated
by the V and U pulses.

|W)=|x)|a), x=0,1; a=g,e,

(159)

where |x) refer to the electronic levels and |g),|e) de-
note the ground state and first excited state of the vibra-
tional motion, respectively. In |g) there are no phonons
present in the system, while there is one phonon in |e)
(see Fig. 46).

2. Laser pulses

With this structure of states one can apply two types
of laser Rabi pulses to the ions in order to achieve quan-
tum logic operations. These are called V and U pulses.

The V pulse implements one-qubit operations. Its fre-
quency is tuned to resonate with the optical transition
between the qubit states. It swaps the electronic states
|0)«|1) and leaves the vibrational mode in the ground
state |g). The unitary evolution operator induced by this
pulse is

V(0 ¢)=e VI,

Hys=300e[1)(0] +¢/%|0)(1]1, (160)

where 0:=Q¢, Hy is the V-pulse Hamiltonian, () is the
Rabi frequency (proportional to the square root of the
laser intensity), and ¢ is the laser phase. This pulse then
produces the following action on the electronic states:

|0)—>cos ¥ [0)—ie ®sin ¥ |1)

V(6,4): (161)

[1)~>cos ¢ [1)—ie'?sin ¢ |0).

The U pulse is used to implement two-qubit opera-
tions. The laser frequency is now adjusted to induce si-
multaneously both an electronic and a vibrational tran-
sition. To help perform the desired logic gates, an
auxiliary electronic state |2) (see Fig. 46) is available.
The time-evolution operator led by this pulse is

Us(k,p)i=e oM g=172

. . 162
Hy()= s hn0le ) 0la+e40)(ela’). |
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where H; is the U- pulse Hamiltonian k:=n{dt, nis the
Lamb-Dicke parameter,”® and a,a are phonon creation
and annihilation operators satisfying

a'lg)=le), ale)=lg), [a.a"]=1. (163)

Several physical constraints on these parameters in a lin-
ear ion trap must be fulfilled for it to function stably and
as required (Cirac and Zoller, 1995).

The U pulse acts as follows:

10)|g)—>10)]g)

|0)]e)—

K A K
U6 cosE|0)||e)—ie_’¢sin§|)2>|g>

K K
[9)]g)—>cos s [£)]g)—iesinS]0)]e).
(164)

3. Building logic gates

By controlling the duration of the laser pulses in Egs.
(161) and (164) we can perform logic operations in a
fashion akin to those for spin qubits with Rabi pulses.
The nice thing about the ion-trap quantum computer is
that the same Rabi pulses can drive conditional logic
when phonons are suitably put to work.

For instance, a CNOT gate can be constructed using a
series of V' and U pulses. To this end, we first reproduce
a m controlled-phase gate [Eq. (78)] between qubits at
sites i,j as follows:

U8 (m)= U (m,0) U (27,0) UL (7,0). (165)

The explicit action of this sequence of operations is
shown in Fig. 47. This two-bit gate is constructed only
out of U pulses.

In order to construct CNOT from this gate [see Eq.
(79) and Fig. 25] we need to employ V pulses,

U=V G 7t m) U (m) VO (= Lo,k ar), (166)

where these V pulses correspond to Hadamard gates.
Other logic gates involving a larger number of qubits
can be constructed similarly using these basic pulse op-
erations (Cirac and Zoller, 1995).

Let us note that the 27 auxiliary rotations in Eq. (165)
do not produce any population of the auxiliary atomic
levels nor of the center-of-mass levels. Thus a variation
in the population of these levels when the gate is oper-
ated would indicate a faulty experimental realization.

Upon completion of the quantum operations in the
ion-trap quantum computer, we need to read out the
result (see Sec. IX). This is done by measuring the state

®This quantity is the ratio between the width of the ion os-
cillation in the vibrational ground state of the register and the
(reduced) laser wavelength N, 2m: 7:=(A2NM,y0,)"?
X (2m/Np), where N is the number of cold ions and w, is the
vibrational frequency of the register’s center of mass along the
trap axis. The Lamb-Dicke criterion <1 is required for Eq.
(162) to be a good approximation (Cirac and Zoller, 1995). For
the Ca™ trap, with N~10, w_~100 kHz, then 7~0.2.
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FIG. 47. Sequence of operations for a controlled-phase gate:
(a) Quantum circuit for the controlled-phase gate in an ion-
trap quantum computer. We denote by |p(x;)) the phonon
states p(0):=g,p(1):=e. Note also that the overall final phase
is (—1)%1*2, as it corresponds to a controlled phase ¢=m. (b)
Evolution of a state under the sequence of U pulses in Eq.
(165).

of each qubit in the quantum register using the
quantum-jump technique (Bergquist et al, 1986; Na-
gourney et al., 1986; Sauter et al., 1986) For instance, for
the Ca* qublts (158) the laser is tuned to the dipole
transition 4 2S,,—4 2P, at 397 nm (see Fig. 45). There
are two possibilities for the ion being addressed with the
laser: (i) if the ion radiates (fluoresces), this means that
its state is |0); (ii) if the ion does not radiate (remains
dark), then it was in the |1) state. Therefore just by
observing which ions fluoresce and which remain dark
we can retrieve the bit values of the register. Actually,
there is a third possibility in which 4 2P,,—3 2D5,. In
order to prevent this metastable level from being popu-
lated, a pump-out laser is also required.

4. Further applications

The ion-trap technique has also found applications in
the preparation of entangled states (Molmer and So-
rensen, 1999). This has been experimentally realized by
the NIST group (Sackett et al., 2000), who generated en-
tangled states of two and four trapped ions. In Fig. 48 a
four-qubit quantum register used in these experiments is
shown.

Unavoidable errors impose computational limits on
ion-trap quantum computers. Sources of these con-
straints are the spontaneous decay of the metastable
state, laser phase decoherence, ion heating, and other
kinds of errors. Using simple physical arguments it is
possible to place upper bounds on the number of laser
pulses N sustained by the ion trap before it enters a
decoherence regime (Hughes, James, et al., 1996),

2Z(7/1s)

NUL1'84<A1/2F3/2(M1 m) 72

(167)

where Z is the ion degree of ionization, 7is the lifetime
of the metastable state, L is the number of ions, A is
their atomic mass, F parametrizes the focusing capabil-
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FIG. 48. Micromachined ion trap showing a four-qubit register
in the inset. From Sackett et al., 2000.

ity of the laser, and \ is the laser wavelength. This bound
depends on the ion parameters A and 7, making some
ion species more suitable than others.** With this bound
it is possible to estimate the number of ions needed to
factorize a 438-bit number using ytterbium [with the
transition 4f46s 2S,,—4f36s% 2F,,,, which has a very
long lifetime (1533 days) and a wavelength of 467 nm].
Around 2200 trapped ions and 4.5x 10'° pulses would be
required to perform the desired factorization, in about
100 hours of computation time (Hughes, James, et al.,
1996).

Scalability of the ion-trap quantum computer is a cen-
tral issue if we want to have a useful machine for num-
ber factoring and the like. With current techniques, it is
believed that prospects for reaching a few tens of qubits
are good (Hughes et al., 1998). Cirac and Zoller (2000)
have proposed an ion-trap-based quantum computer
with a two-dimensional array of independent ion traps
and a different ion (head) that moves above this plane.
This setup is still conceptually simple and it is believed
to be within reach of present experimental technologies.

C. NMR liquids: Quantum ensemble computation

We have seen that spin qubits and spin resonance are
natural choices for performing quantum computations.

%The number N refers only to the number of U pulses be-
cause they last much longer than the V pulses, which are thus
neglected.
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Nuclear spins are good candidates for spin qubits but
they pose both theorical and experimental challenges.
There have been independent proposals for overcoming
these difficulties, namely, the logical labeling formalism
of Gershenfeld, Chuang, and Lloyd (1996) and Gershen-
feld and Chuang (1997), and the spatial averaging for-
malism of Cory, Fhamy, and Havel (1997). A time-
averaging formalism was introduced by Knill, Chuang,
and Laflamme (1997). Several groups have attempted to
realize these ideas experimentally.

The quantum hardware in this case consists of a liquid
containing a large number of molecules of a certain
type. The qubit is the spin of a nucleus in a molecule,
and the quantum register is a molecule as a whole, i.e.,
each molecule is an independent quantum computer.
Operations are effected using nuclear magnetic reso-
nance techniques (Rabi oscillations), and information
transmission between nuclei is based on the spin inter-
actions within each molecule.

1. Spins at thermal equilibrium

The choice of nuclear spins as qubits has several pros
and cons. On the one hand, nuclear spins in a molecule
of a liquid are very robust quantum systems, for they are
well screened from other sources of magnetic field by
the electron cloud that surrounds them. This results in
decoherence times of the order of seconds, long enough
to let quantum computations take place. On the other
hand, in a liquid at finite temperature the nuclear spins
form a highly mixed state, not a pure state as we have
been assuming in the formalism for quantum computa-
tion introduced so far. Such a formalism needs to be
modified accordingly, by using density matrices to de-
scribe the mixed states of spins and their evolution.

A consequence of the finite temperature is that the
precise initial conditions of a particular nuclear spin are
not known, as would be required for standard quantum
computation. Instead, we can only know the probability
of finding the spin in one of the two states |0)=|1) or
|1)=|]). In the following, we shall assume that the mol-
ecules in the solution are in thermal equilibrium at some
temperature 7. Hence the density matrix describing the
quantum state of the relevant nuclear spins in each
single molecule is

e PH

P =Tfe P’

where H is the Hamiltonian of the system, B=1/kgT is
the inverse temperature, and the trace is over any ortho-
normal basis of the Hilbert space. Let us take the sim-
plest case of a single spin qubit with a Zeeman-splitting
Hamiltonian H=wS*, w=—vyB,. Equation (168) then
becomes

(168)

o Bl

Poo= e Plol2 = Bhol2> (169)

eﬁﬁw/Z
pll:—eﬁﬁw/2+ o Phol2>
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FIG. 49. Some examples of molecules used in NMR liquid
quantum computation: (a) 2,3-dibromo-thiophene (homo-
nuclear); (b) 1-chloro-2-nitro-benzene (homonuclear); (c)
chloroform (heteronuclear).

po1=0=pyg.

The diagonal terms of p represent the probability of
finding the spin in the state [0) or |1). In contrast, the

density matrix of a pure state |[(1))=ay(1)]0)
+ay(1)|1) is
|aol® aoaf)
pui=| ) =( . 170
4 | >< | aa\- @, |a]|2 ( )

Therefore we see that at finite temperature and thermal
equilibrium, the off-diagonal elements of the density
matrix average to zero, while they are nonvanishing for
a generic pure quantum state.

2. Liquid-state NMR spectroscopy

To overcome these difficulties, the proposal for a
NMR quantum computer takes advantage of techniques
that have been developed in liquid-state NMR spectros-
copy over the past 50 years (Ernst et al., 1987).

In a NMR liquid the molecules are in solution. Only
some of the nuclei in each molecule are active for doing
quantum computation. When the qubits consist of
atomic nuclei of the same chemical element, the mol-
ecules are called homonuclear, when they are of a dif-
ferent element they are called heteronuclear. Figure 49
shows examples of homonuclear molecules, like 2,3-
dibromo-thiophene, in which the active nuclear spins are
those of the two hydrogen atoms; or 1-chloro-2-nitro-
benzene with four active hydrogen atoms. An example
of a heteronuclear molecule is the "C-labeled
chloroform® in which the two active qubits come from

%The nucleus of the most common isotope '2C is spinless.
Adding one extra neutron endows it with an overall operative
spin 3.
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s
T

FIG. 50. Schematic setup of a NMR experiment. The liquid
sample is in the middle tube surrounded by a radio-frequency
cavity that produces a strong, homogeneous magnetic field.
The apparatus is connected to electronic control devices not
shown. From Cory et al. (2000).

the atoms of hydrogen and carbon. The number of qu-
bits in the working register narrows the choice of the
molecule structure.

An appropriate experimental setup for NMR compu-
tation is much like any other instrumentation used in
NMR spectroscopy. In Fig. 50 the basic structure of a
NMR spectrometer is shown. The liquid sample is held
in a probe inside a radio-frequency cavity subjected to a
strong homogeneous magnetic field of around 10 T, usu-
ally produced by a superconducting magnet. The RF
cavity is tuned to the resonance frequencies of the active
nuclear spins.

In a typical sample, the number of molecules N in
solution is ~10'%. The dipole-dipole interactions be-
tween the spins in different molecules as well as other
intermolecular interactions average to zero due to the
random rotational motion of the molecules in the usual
time scale for controlling the spin dynamics and the
measurement (Slichter, 1990). Hence only interactions
within each molecule are observable, and the sample can
be regarded as an ensemble of independent and mutu-
ally incoherent quantum computers. This reasonable ap-
proximation yields a huge reduction in the large density
matrix of dimension ~29) describing the whole en-
semble of active nuclear spins. Such a matrix may be
replaced by a much smaller density matrix of dimension
2", where n is the number of active nuclei in a single
molecule.

Within each molecule, the total Hamiltonian H(t) of
the active spins has two parts (Cory et al., 2000), one
internal and another external:

H(t) ::Hint+Hext(t)' (171)

The internal Hamiltonian describes the interactions
among spins within the molecule, while the external
Hamiltonian controls the spin dynamics under Rabi
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pulses. The operator H;,, embodies (a) the molecule in-
teraction energy with a strong homogeneous magnetic
field that causes a Zeeman splitting of the nuclear-spin
levels; and (b) the spin-spin interactions between active
nuclei, modeled by a magnetic exchange interaction
2(J;j/1)8;-S; mediated by electrons in molecular orbit-
als that overlap both nuclear spins i,j. In most cases this
interaction can be further simplified using the weak-
coupling approximation |J;;|<|w;,— w;|, which assumes
that the spin-spin coupling is much smaller than the Zee-
man splitting. This simplification produces a scalar cou-
pling of Ising type between the spins and yields the fol-
lowing good approximation to the internal Hamiltonian:

1nt~2 w; SZ+2 2

i#j=1

Jij1h)S:S (172)

i ] ’
where J;; measures the coupling between the active
spins at 51tes i,7,% and w; are the resonance frequencies
for each spin. They are different even for homonuclear
molecules due to the unlike screening of each nuclear
spin from the surrounding electrons. This effect is called
a chemical shift. Thus in Eq. (172) one-body terms may
be used to distinguish qubits, while two-body terms
serve to implement the conditional logic of two-qubit
gates. The values of the parameters w; and J;; are deter-
mined by standard NMR spectroscopy techmques prior
to the computation. Standard NMR spectroscopy and
NMR quantum computation share the means but differ
in goals: in the former we aim to determine the param-
eters of the Hamiltonian (172) to study the chemistry
and dynamics of the molecules in solution, while in the
latter the form of Eq. (172) is already known and we set
out to use it to perform controlled logic operations.
The external time-dependent Hamiltonian H(?)
helps to control the evolution of the spins. These form
an ensemble of systems, initially described by the ther-
mal density matrix p [Eq. (169)] and its time evolution is

p(=U)p(0)U' (1), (173)

where U(t) is the unitary propagator generated by the
total Hamiltonian in Eq. (171) and p(0) is the thermal
density matrix (169).

3. High-temperature regime: pseudopure states

The evolution of the density matrix (168) is simplified
in the high-temperature limit kg7>%w;, where the
Zeeman splittings are much smaller than the Bolzmann
energy. We can then approximate Eq. (168) as follows:

1-8H 1 PBH
P pH) P 2
Thus in NMR quantum computing there is no need to

cool down the system until it reaches its ground state as
in other types of quantum computers.

(174)

%In NMR spectroscopy J ;j are typically ~100 Hz.
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Let us analyze step by step the approximation (174)
for quantum computing. First, let us consider the case of
a single spin. The density matrix is simply given by

P1:+= % 51 >
(175)

51125%, €1 :=%ﬁw1 /kBT

where &, is called the deviation density matrix®" and
|€;|~1073 at room temperature for conventional NMR
liquids. The factor €; gives the strength of the NMR
signal relative to background noise. This expression can
be further simplified by dropping out the unit term,
which does not change under time evolution (173): in a
NMR experiment the expectation value of an observ-
able O is given by

(0)=Tr(Op), (176)

and, as it happens, all NMR observables are traceless.
Thus all the information is in €;6;. As €; enters only as
an overall scale factor, we can also drop it from this
description and write the effective thermal density ma-
trix simply as

P1~§§- (177)

Now let us recall that for a qubit in the ground state
or excited state the density matrices are

pi0y=10)(0|=5+57,
piy=|1)(1]=%-57 (178)

Discarding the unit terms, we see that for NMR pur-
poses the one-qubit states |0),|1) are equivalent to

S, — 8%, respectively. The spin operators representing
one-qubit states in this correspondence are called
pseudopure or effective pure states. This is also the case
for a superposition state; for instance, the pure state
|W)y=2"12(|0)+|1)) has a density matrix

Py =4+5%, (179)

equivalent to S~ Actually, the correspondence is one-to-
one in the case of one-qubit states, because the density
matrix of a single pure state (170) is a Hermitian opera-
tor that can be expanded as a real linear combination of
the Pauli matrices {1,0%,0”,0%}.

The time evolution of a NMR density matrix is that of
the spin-3 operators. When the external Hamiltonian
corresponds to a Rabi pulse, the transformation laws are
simple. The evolution operator for a single spin with

Zeeman Hamiltonian H; :=hw1§§ is

UA(1)i=e~ 15T = cos( L 1) — 2i sin(b 1) 87, (180)

whence the evolution of the one-qubit effective pure
states:

U(1)STUL(1)=cos(w;1) S} +sin(w;1)S},

7Sometimes it is also called a reduced density matrix.
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UZ()STUL(1)= —sin(w,1)S] +cos(w;1) 7,

Uz(1)STUL(1)=S57. (181)

The Zeeman propagator Uy(t) rotates the spin
around the z axis through an angle ¢:=w;t. It is custom-
ary to use the spectroscopic notation to denote the uni-
tary action of the RF pulses in the rotating frame or
interaction picture:

[@]f=eie5,

where ¢ is the rotation angle, « is the rotation axis, and
i is the index labeling the rotating qubit. Thus the effect
of a []] pulse

X —iWEX 0 —i
[77-]1_6 1= —i 0

a=x,y, i=12,...,n, (182)

(183)
is

[=]}
ST — =87, e, |0)X0]<|1)(1]. (184)
Therefore, with a [7]] pulse effected on a noninteract-
ing ensemble of single spins in thermal equilibrium, we
can simulate the quantum transition between the qubit
states |0) and |1). In the thermal equilibrium ensemble,
there are more populated ground states than populated

excited states. After applying the pulse, the populations

are reversed. Likewise, a [3]] pulse produces off-
diagonal terms in the density matrix at finite tempera-
ture that simulate quantum superpositions of pure
states.

For multiqubit states, the correspondence between
pure states and spin density matrices is not so simple.
Let us consider the case of two-qubit states. It is possible
to extend the description of a multispin density matrix
using the product operator formalism of the NMR spec-
troscopists. Thus the density matrix for the pure ground
state |W)=00) is

ppwryi=|00)(00] = £ (3 + 55+ S5+257S3). (185)

In general, any density matrix can be expanded in a

tensor product basis of one-spin  operators
{87.87.8{} =1, For n qubits,
pP= E Cal ..... ana-fl ' O.Zn’
5 P ay,
(186)

where «;=0,x,y,z, and a?::l.

This has the advantage that the evolution of the en-
semble density matrix is then simply determined
through the evolution rules for single spin operators.
The problem that we face now is that the thermal equi-
librium matrix in the high-temperature limit kg7>% w;
for the Hamiltonian (172) is
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11
pr=7 ~ ghBdiag(w;+wy+/p, 01~ w3~ T,

187

—oitoy—Jp, eyt ), (187)

which is further approximated assuming a weak-

coupling regime |w;— w,|, |/ 5/ <|w;+ w,|/2 to
— — 1
p2%%—62(S%+S§), 62==§ﬁ(w1+w2)/kBT, (188)

and the corresponding deviation matrix 8,:=S7+ 53 is
not equivalent to the initial quantum ground state (185)
we want to simulate. This is the initialization problem in
NMR computing.

4. Logic gates with NMR

To prepare the ensemble of spins in the reference
state (185) as well as to implement the logical operations
for quantum processing, we use a series of well-known
techniques in NMR liquid spectroscopy to carry out con-
trolled time evolution of spins.

(i) Rabi pulses. The associated external Hamiltonian
(171) corresponds to a harmonically oscillating magnetic
field perpendicular to the Zeeman axis. It is applied at
resonance and its effect on a single spin in the z direc-
tion is

[¢]1: Si—>cos(p)Si—sin(¢)ST,
[e]}: Si—cos(¢)Si+sin(¢)ST, (189)
where ¢:=Qt, t is the time duration, and () is the Rabi
frequency.

(ii) Chemical-shift pulses. These pulses act as the
propagator generated by the Zeeman part of the inter-
nal Hamiltonian (171). Their effect on the spin opera-
tors is given by Eq. (181).

(iii) Scalar pulses. These pulses induce the time evo-
lution under the scalar coupling (two-spin) part of the
internal Hamiltonian (171). For two qubits labeled 1,2,
the scalar coupling propagator is also diagonal in the
computational basis:

Uj(t)=e 225183 = cos(1J 1) — 4i sin(3J 121) S35,
(190)
and its effect on single spin operators is

U(1)STUJ(1)=cos(J 1) St +2 sin(J,) S} 3,
U (0)STU(1)=cos(J 51) 8] — 2 sin(J 151)S1S5,  (191)
U(n)S{Uj(1) =S5

The NMR spectroscopic notation for these pulses is

(192)

where the rotation angle is ¢=J,¢t and the subscript
denotes the spins involved in the scalar pulse.

(iv) Gradient pulses. This is the technique used in the
spatial averaging formalism of Cory, Fhamy, and Havel
(1996, 1997). It consists in applying an external Hamil-

T —i2]18°8E
[e]=e 1272172,
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tonian (171) in the form of a field gradient along the
liquid sample:

n

ngad:_; 'Yi(z(?sz)z:ziSiz’ (193)
where z; is the coordinate of the ith spin in the sample
along the direction of the applied field gradient. This
produces a spatially varying distribution of states
throughout the sample. Its effect is to create a position-
dependent phase shift with zero average, causing the
vanishing of nondiagonal elements of the density matrix.
The notation for these pulses is [ grad]®.

This gradient method is used to selectively turn off the
transverse (x,y) spin factors in the product operator ex-
pansion of the density matrix, while leaving the rest un-
touched. For example, it is possible to induce the follow-
ing transformation:

[grad]?: 85+ 83— 87. (194)

The combined effect of the following series of pulses
(Jones, 2000) produces the reference state %185) starting
from the thermal ensemble of spins (188):°

(7137

- _ _ 3__
Si+585 — S§+§S§—75§
lgrad]*__  1__
[w/4]f1_ 1 1_
> — S8t —87+ = 8%
vailoval 2t
[7/2]{21_ 1 1
— %S?‘FEZSTSé‘FESE
[—w/4]{1_

ol 1 1
= 58T 381+ 528785+ 5 S5+ 525783

lgrad] 1 1 ___
> 55{+ §S§+ EZS%S%. (195)
Once we have the reference state available, we can
proceed to simulate other quantum states, applying a
series of pulses to produce the desired ensemble of spin
states. For instance, the density matrix of the Bell state
|W)=(]00)+|11))/v2 in the product operator formalism
is
11 —— ——
Pl=75 §+ZS§S§+ZS’1‘S)2‘—25{Sy , (196)
which can be reached from the ground state |00) with
the unitary operator
U=e 515, (197)
This propagator, in turn, can be simulated with the
following series of NMR pulses (from right to left):

This sequence is not necessarily unique.
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LBl =z a Rz a1l s w B0 = 3715 2 pjooy—>ppy -
(198)

Likewise, the controlled-NOT gate is simulated by the
following sequence:

(=3Bl —zallmlil mlLle ] (199)

In a similar fashion, one can implement other quan-
tum states and logic gates. Actually, this NMR pulse
technique has been so highly developed that it is pos-
sible to simulate the propagator of a set of interacting
spins with any desired couplings, even turning on and off
certain spin couplings at will. For this reason, this capa-
bility for controlling the NMR dynamics is referred to as
spin choreography (Freeman, 1998).

The logical labeling formalism of Gershenfeld and
Chuang (1997) uses a different strategy to prepare
pseudopure states. It is based on the appropriate embed-
ding of a set of spin states into a larger system. It does
not resort to field gradients but instead uses these aux-
iliary spin states to implement the quantum computation
with several qubits. There are also experimental realiza-
tions of this scheme (Vandersypen et al., 1999).

5. Measurements

Once the NMR computation is completed, we have to
read out the result from the spectrometer. This is done
by measuring the macroscopic magnetization of the lig-
uid sample with a detection coil (see Fig. 50). This bulk
magnetization induces currents in the transverse RF
coil, which is tuned to the resonance frequency. The RF
coil generates a dipole field, and only the dipolar com-
ponents of the density matrix oriented along the trans-
verse magnetic field will couple to the measurement de-
vice.

In computing with NMR ensembles, measuring an ob-
servable (176) entails a perturbation milder than for
pure states, where measurement is a strong projective
process. The measured currents are proportional to the
trace (Cory, Laflamme, et al., 2000)

n
Tr( 2 E—er) ,
=1

with S/ :=S7+iS?. For instance, Fig. 51 shows the signal
(200) due to the precession induced on S7, i=1,2, by
chemical-shift and scalar-coupling pulses acting on a
two-qubit molecule such as the 2,3-dibromo-thiophene
of Fig. 49(a). This is the Fourier-transformed real part of
the signal (Cory, Price, and Havel, 1997) and clearly
shows the population peaks corresponding to the four
states of a two-spin system depicted in Fig. 43. This is
called an in-phase doublet because both peaks have the
same sign. For different series of pulses the pattern of
the signal changes accordingly, and this allows us to re-
trieve the information contained in the ensemble of
states. When implementing simple quantum algorithms
with NMR liquid spectroscopy, the output retrieval is
performed by analyzing a subset of resonances, but in
more general situations the technique of quantum-state

(200)
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FIG. 51. Schematic signal from a NMR liquid spectrometer
corresponding to an in-phase doublet for a two-spin system

with energy levels as in Fig. 43. Notice that here the frequen-
cies are positive.

tomography is used to systematically obtain the final
quantum state (Knill, Chuang, and Laflamme, 1998).

6. Achievements and limitations

There is an extensive list of experimental achieve-
ments in NMR quantum computing (Cory et al., 2000).
To cite only a few of them, two-qubit gates have been
constructed by several groups (Cory, Fahmy, and Havel,
1996; Chuang et al., 1998; Collins et al., 1999), the Toffoli
gate has been implemented by Price ef al. (1999), the
quantum Fourier transform by Weinstein, Lloyd, and
Cory (1999), quantum teleportation by Nielsen, Knill,
and Laflamme (1998), etc. There are also NMR experi-
ments involving seven qubits (Knill ez al., 2000). An al-
ternative approach to implementing NMR quantum
computation uses geometric phase-shift gates (Jones
et al., 2000) in which the controlled phases are Berry
phases.

Despite the list of successes in NMR quantum com-
puting, there are currently strong limitations in the scal-
ability of the pseudopure-state preparation: it is clear
from Eq. (174) that the deviation density matrix used in
high-temperature NMR scales down exponentially with
the factor 27", This is a severe limitation that reduces
the ratio of the observable signal to the background
noise. To overcome this inefficiency we would need an
exponentially large system.% It is currently estimated
that it is not possible to go much beyond ten qubits using
NMR liquid-state methods. This and other shortcomings
have led to the pursuit of other NMR-like proposals, but
this time based on solid-state samples (Cory et al., 2000),
with the aim of using true pure states. The goals set for
these proposals are to reach 10-30 qubits, still not
enough for competitive purposes.

The use of mixed states in NMR computing and the
fact that they are exponentially inefficient have raised
doubts about the truly quantum nature of the computa-
tions carried out by NMR liquid spectroscopy. The main

%This is something that happens in classical DNA computing
(Adleman, 1994), where there is a tradeoff between exponen-
tial computing time for solving a problem and exponential
space for molecular states.
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objection comes from the results of Braunstein, Caves,
et al. (1999) showing that all the pseudopure states used
so far in NMR are separable, with no entanglement.
This does not invalidate the speedup obtained with the
NMR implementation of quantum algorithms (Chuang,
Gershenfeld, and Kubinec, 1998; Jones and Mosca, 1998;
Jones, Mosca, and Hansen, 1998).70

D. Solid-state quantum computers

There are several proposals for building a quantum
computer with some sort of solid-state device. We have
just mentioned that a possible cure for the shortcomings
of bulk NMR liquid computation is precisely resorting
to solid NMR techniques. One type of proposal uses
macroscopic superconducting devices with a radio-
frequency superconducting quantum interference device
(SQUID) as the qubit (Averin, 1998). The presence of 0
or 1 quantum of flux is the two-state system. Several
ways exist to couple the SQUID’s to make logic circuits,
such as using Josephson tunnel junctions (Makhlin,
Schon, and Shnirman, 2001). Another type of design
would rely on quantum-dot nanotechnology. Barenco,
Deutsch, et al. (1995) proposed using both charge and
spin degrees of freedom for qubits in quantum dots, ad-
dressed, respectively, with electric and magnetic fields.
Loss and DiVincenzo (1998) have developed in depth
the theory of spin-based quantum computing. For de-
tails see the recent review of Burkard, Engel, and Loss
(2000).

The list of experimental proposals is too long to be
covered in detail here. Instead we shall focus on one of
the most original proposals for solid-state quantum com-
putation, Kane’s idea (Kane, 1998) of building a silicon-
based quantum computer. This is an appealing program,
for Kane envisages the possibility of using the same
semiconductors now used in most conventional com-
puter electronics. The challenges to achieving this goal
are still enormous, but the belief is that silicon technol-
ogy is a very rapidly developing field and has some
chance of overcoming those challenges.

The quantum hardware in Kane’s proposal is an array
of nuclear spins located on donors in silicon. The qubit is
an individual nuclear spin of phosphor 'P atoms; the
quantum register is the whole array of 3'P dopants in
silicon 28Si; operations are carried out using a combina-
tion of magnetic-resonance techniques (Rabi pulses)
with static electric fields; information is exchanged be-
tween nearby 3'P nuclear spins by means of the sur-
rounding electrons.

1. Semiconductors for quantum computation

The choice of nuclear spins in this case is again moti-
vated by their extreme isolation from the environment,
as in the NMR proposal. A further requirement now is

"OWhether working with separable states in NMR spectros-
copy is a truly quantum computation is still a controversial
issue (Jones, 2001).
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that the dopant spins must not interact appreciably with
the spins of the host semiconductor. To guarantee this
we require that the chemical elements of the host have
zero nuclear spin, S=0, to avoid undesired spin cou-
plings. This singles out the semiconductor group V as a
host candidate and removes other groups like III (with
Ga) and IV (with As). Silicon ?Si is an example of a
stable isotope in group V.

In contrast to NMR liquid spectroscopy, computation
following Kane’s approach neither uses bulk spin nor
resorts to macroscopic magnetization measurements. In-
stead, it truly needs to address spins individually for ini-
tialization and readout, and this is precisely one of the
open challenges.

The basic ingredient in Kane’s proposal is to replace
direct nuclear-spin interactions by electronic detections,
which are likely to be easier to handle. Thus the spin
state of an individual nucleus dopant on a semiconduc-
tor will not be detected directly, but through its hyper-
fine interaction with the surrounding electrons. The hy-
perfine interaction is proportional to the probability
density of the electrons at the nucleus. The electronic
cloud is sensitive to electric voltages and can in principle
be externally manipulated. Moreover, in certain cases
the electronic wave functions extend far enough so as to
overlap with those of a neighboring atom, thereby pro-
ducing an indirect coupling between nuclear spins medi-
ated by the atomic electrons. This indirect electron cou-
pling can also be enhanced by applying external electric
fields.

These conditions are met by shallow-level donors like
3P, for which the range of the electron wave function is
of order 10-100 A. In addition, within the group V, the
only shallow donor in Si with nuclear spin S=3 is pre-
cisely 3'P. Therefore the *'P:Si system is a good candi-
date for a silicon-based quantum computer. For in-
stance, at low *'P concentrations and low temperature,
T=1.5 K, the electron-spin relaxation time is of order
10° s, and the nuclear-spin relaxation time is over 10 h.
If the temperature is further reduced to 7~1 mK, the
phonon-limited *'P relaxation time is likely of the order
of 10'® s (Kane, 1998).

2. External control fields

We see that in Kane’s idea the electrons play a role
similar to that of phonons in the Cirac-Zoller gate: they
mediate the conditional interactions between the real
qubits. Likewise, we also need external electric fields to
bring dopant nuclei close enough to interact. In all, we
need to control three types of external fields:

(1) Electric gates above the donors to control individual
electronic states (see Fig. 52).

(2) Electric gates between the donors to control inter-
actions between qubits.

(3) Constant B and oscillating B,. magnetic fields to ex-
ecute operations on the individual spins much akin
to those we have described for nuclear-spin reso-
nance.
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FIG. 52. Schematic design of a silicon-based quantum com-
puter under study by the group at the University of New South
Wales.

The scenario for replacing a Si vacancy by a P dopant
atom is possible because both elements have similar
sizes. Of the five outer (3p) electrons in a *'P atom (one
more than in Si), four of them will form covalent bonds
with neighoring Si atoms, while the remaining fifth elec-
tron is loosely bound to the 3!'P atom. This outer elec-
tron and the rest of the dopant atom behave in first
approximation as a hydrogenlike atom embedded in a Si
environment. At low temperatures, the electron state is
1s, and this yields a large hyperfine interaction. The ef-
fective Bohr radius is estimated at 30 A. To proceed
with the quantum computation we need this electron to
remain in its ground state and to apply an external con-
stant magnetic field to break the spin degeneracy. These
conditions are met if 2ugB>kgT, as for the typical val-
ues B=2 T and 7T=<100 mK.

3. Logic gates

The description of the basic gate operations is the fol-
lowing.

(i) One-qubit A gate. The terminology is due to the A
coupling constant of the hyperfine interaction between
nuclear and electron spins. Single spin control is
achieved by externally changing the voltage on a gate
electrode (A gate) located on top of each nucleus (see
Fig. 52); spin flips are then driven by a Rabi pulse tuned
to the resonance frequency for the particular spin.

The one-qubit Hamiltonian H; modeling the interac-
tion between the nuclear spin (denoted by n) and the
electronic spin (denoted by e) in the presence of a con-
stant magnetic field B is

Hl ‘=H1,Z+ (A/hz)sn,l' SE,l 5

Hyz:=— 7n5ﬁ,1B - 7e5§,1B’ (201)

where §,,,S.; are the nuclear and electron spins,
YuSn1,YeSe1 their corresponding magnetic moments,
and
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FIG. 53. Pictorial representation of an A gate that controls the
nucleus-electron system (201). An externally applied electric
field shifts the electron wave function from the donor 3'P, re-
ducing the contact hyperfine interaction (202).

8m__ 5 e — _
A::_Tyn')/e|q}(0)| with 7n::h7n")’e::h')’e
(202)

is the contact hyperfine interaction energy, with | W (0)|?
the probability density of the electron wave function at
the nucleus position. Note that y.= —g.(B, Yn=&gnMN
where g.=2.00, is the relevant electron Landé g factor
and g,~2X1.13 is the nuclear gyromagnetic factor in
31P:Si. Under operating conditions the electron remains
in its ground state, and the separation of the nuclear spin
levels is, to second order in the hyperfine coupling A
<%B,71

_ A A?
hw,=vy,B+ 5 W.

In 3'P:Si, A/2h=58 MHz and therefore A>7y B for
B<3.5 T. We can have control over this energy gap with
the static electric field applied with the A gate (see Fig.
52). This shifts the electron wave function away from the
nucleus (see Fig. 53) and reduces the hyperfine interac-
tion A in Eq. (202). Thus the frequency (203) of the
nuclear spins is controlled externally and this allows us
to bring them into resonance with the oscillating pulse
B, in order to effect arbitrary one-spin rotations.

(ii) Two-qubit J gate. The name is suggested by the J
spin-exchange coupling between electron spins. Condi-
tional logic operations are possible because of electron-
mediated interactions between the nuclear spins of two
Kane’s qubits when brought sufficiently close by an ex-
ternally applied voltage (J) gate (see Fig. 52). The two-
qubit Hamiltonian is then

2

Hi,= 21 (Hi,Z+Ai§?'§?)+J§:'_§,

(203)

(204)

where H; 7 are the Zeeman Hamiltonians for each qubit
(201), A; are the hyperfine couplings for each nucleus-
electron system, and J is the exchange coupling interac-
tion between electron spins. This exchange energy de-
pends on the overlap of the electron wave functions.
Treating the *'P dopants as hydrogenlike atoms in first

"'We have also approximated —7.B+7,B by —7.B in the
denominator of Eq. (203).
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(a) V>0 J=0 V>0
A-gate J-gate A-gate

(b) V>0 J>0 V>0
A-gate J-gate A-gate

TeT

FIG. 54. Pictorial representation of a J gate that controls the
nucleus-electron-nucleus system (204). When the electrostatic
potential of the J gate is (a) off or (b) on, the J-exchange
coupling in Eq. (204) is reduced or enhanced, respectively.

approximation, we can estimate the J coupling for well-
separated donors as (Herring and Flicker, 1964)

82 r 512
J(r)~1.6—(—) e 2rlam, (205)

€dg\apg

with r the interdonor distance, e=11.7 the Si dielectric
constant, and ag the Bohr radius of the atom. As the J
coupling depends on the electron overlap, we can again
use a voltage gate between donors to distort the electron
clouds in order to control their coupling strength (see
Fig. 54). This coupling will be significant when J
~[y.| B/2, and this corresponds to a donor separation of
order 100-200 A (Kane, 1998), which is not far from the
current limits of atom-scale lithography.

The relevant energy levels for doing quantum compu-
tation with a two-qubit Hamiltonian (204) are easily
found (Berman et al,, 2000). This Hamiltonian is a 16
X 16 matrix. We shall label the basis states with the z
components of the nuclear and electron spins at each
donor site, with |0),,,|1), denoting nuclear spins (up and
down) and |7).,|] ). for the electron spins; for instance,

[11)al L1 )e (206)

represents a state with both nuclear and electron spins
down.

In the presence of a static magnetic field and for low
temperatures (kgT<|7y.|B), the electrons remain with
the spins down polarized || |).. For example, B=2 T,
T=100 mK meet this requirement. However, we shall
see that switching on the J gate may change such a state,
which will be the basis for doing spin measurements.

The essence of the functioning of the J gate is to en-
hance the overlap between the electron wave functions
of two nearest >'P donors. In this way, the 3'P nuclear
spins (Kane qubits) can be indirectly coupled to one an-
other through the electron-mediated interaction J. To
operate two-qubit quantum logic gates, we need to ad-
dress individually the four nuclear spin states
{]00),,/01),,]10),,|11)},. For simplicity, we assume A,
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=A,=A. In the absence of J coupling the states
[01),]11)e,]10)a| 1 |)e are degenerate. These states be-

long to the sector of total z component of spin ?fot

=(ST1nt 85, (STt S35.)=—1. The role of the J gate
is precisely to control this energy splitting, which we
now try to estimate.

Let us consider the Kane implementation of the CNOT
gate (Goan and Milburn, 2000). There are four steps
involved.

(1) We start with J=A,—A =0, so that the states
{|00>n|ll>e7|01>n|ll>e7|10>n|ll>e» 11>n|ll>e} have ener-

gies

Eooy, 111y, — V(= Yet7n)’B*+A* = 1A,

Ejoy110.= Epoy, 11,

= H(Yet¥) B— (= Yo+ 7n)? B>+ A?],
(207)

Epy 1y, =(Ye= v B+ FA.

(2) Next we introduce a bias between the two A gates
by adiabatically switching on a difference AA:=A;
— A, in their couplings, while keeping J=0. This splits
the degeneracy of the |01),]|]).,|10),4|| | ). states, allow-
ing us to choose one as a control qubit and the other as
a target qubit. The energies in Eq. (207) become

Ejgoy, 11, =~ 2[V(=¥et 7) B>+ A7

+ (=Yt 1)’ B2+ AT]- 1A+ Ay),

Ejony ).~ — i AA+5[(Vet 1) B

— (=7t 1)’ B2+ AT,

tJ+7v.B 0 0 1A
LJ+%.B 1A 0
H-yy= 1 — 1
0 7 A - }TJ-F Vo B 3J
A 0 e ]

As A|=A,=A, the two-qubit Hamiltonian is sym-
metric under the site labels and its eigenvectors can be
either symmetric or antisymmetric under this exchange.
The two symmetric (unnormalized) eigenstates are
given by

s, %) i=(yoB+3J = E; 2)|s)al L |)et 3A]00),]s)e ,
(212)

where
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Epgy 1), =i AA+3[(Vet+70) B

V(= 7+ 7))’ B*+ A3,

E|11)n\u)e:(7e_7n)B+4L(A1+A2)v (208)

and the corresponding eigenstates are = still
{|00>n|ll)e’|01>n|ll>e’|10>n|ll>e’|11>n|ll>e}’ predomi'
nantly.

(3) Once the two qubits are distinguished energeti-
cally it is time to introduce, again adiabatically, the J
coupling to bring the states |10), and |01), to the sym-
metric and antisymmetric combinations,

[10) 5> 5)n=2""2(|01),+[10),,).

|01)y—>la),:=27%(|01), = [10),). (209)

For this purpose it is necessary to keep J at full strength
before adiabatically switching off AA.

The energies of the new eigenstates, in the presence
of both A and J couplings, with AA=0, can be com-
puted exactly by diagonalizing H, in the sectors of a
fixed total third component S5, of the spin, since this is
a conserved quantity. Only the values S{ ;= —2,—1,0 are
relevant for our discussion, since our initial states lie
there. First we need to know the energy splitting A w;
between the symmetric and antisymmetric qubit states
in the sector S¢,,= — 1. Second, to control the Rabi pulse
in the coming step, we must also know the gap energy
hiaye between [s),]| )¢ and [11)] | |)e.

To calculate 7 w; we use the reduced basis

to express the Hamiltonian H, in the sector S7,,=—1 as
the following matrix:

211)

1
|S>e:=5(|lT>e+|Tl>e)’

E, «:=5(Yet ¥a) B+ 1T 25\ (= v+ 7, B2+ A%
(213)

Similarly the two antisymmetric (un-normalized)
eigenstates are

la, =) i=— (=Y B— LI+ E, .)|00),]a).

_%A|a>n|ll>ev (214)
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FIG. 55. Energy levels for a two-donor interacting system as a
function of the exchange coupling J, for A=0.2|y,|B.
with

1
|a>e::_2(|lT>e_|Tl>e),

= I[(—7et 7 B—IT+A”. (215)

In Fig. 55 the energies E; . ,E, . are plotted against
the exchange coupling constant J. For a two-electron
spin system with antiferromagnetic coupling (/>0), the
exchange interaction lowers the energy of the spin sin-
glet with respect to the triplet. When a static magnetic
field is applied, the electron ground state is ||| ). for J
<|¥.|B. The exchange coupling can be increased adia-
batically by external manipulation of the J voltage gate.
For J>|y,| B, the electron ground state is a singlet. The
value J=|7y.|B corresponds to the case in which levels
E, , and E; _ avoid their crossing (Fig. 55). The energy
splitting to be controlled with the J gate is Aw,;:=E _
—E, _, which can be estimated using the exact formulas
(213) and (215) and treating the hyperfine interaction as
a small perturbation (assuming J<|7y.|B):

A? 1 1
4 \[yelB=J [vB)

(216)

ﬁw,’—v

For the *'P:Si system at B=2 T and J/h=30 GHz, Eq.
(216) gives v;=75 kHz as the nuclear-spin exchange fre-
quency. This is roughly the rate at which binary opera-
tions can be performed in the purported quantum com-
puter. Recall that the speed for individual spin
operations is determined by the oscillating field B,., and
this speed is comparable to 75 kHz when B,.~10"3 T.

Finally, to calculate the gap Aw,., we just need the
energy of the state |11),|]|)., which lies in the trivial
sector St = —2:

E|“>n|ll>e:(7€+7n)B+‘L“,+%A' (217)

(4) Now we can carry out the CNOT operation. This
amounts to swapping the states |s), and |11),, which are
well separated in energies by previous steps, while leav-
ing the two other states untouched. To this end, it suf-
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FIG. 56. Implementation of the CNOT gate in a Kane quantum
computer as described in steps (1)—(4) in the text (time ¢ runs
along the horizontal axis): (a) externally driven couplings are
shown; (b) qubit energies are plotted, conveniently shifted by
E—~E-7y.B—1J.

fices to apply a Rabi pulse H,(t)=—v,(S1
+842) Bacsin w,t resonant with the separation energy
between the states to be exchanged. Although the gaps
Ejy 10,7 Eisyliny, and Ejay i), = Ejooy11), are very
close to each other, the spin part of the magnetic inter-
action H,(t) couples only in first order the states |s),
and [11), and thus it does not essentially affect the states
|a), and |00),. To complete the CNOT gate one applies
in reverse order steps (3), (2), and (1) (see Fig. 56).

Other computer operations such as spin measurement
and initialization of the quantum register are also based
on the adiabatic manipulation of the A and J voltages.
The underlying idea has been to correlate nuclear-spin
states adiabatically with states of electron spins, which in
turn affect the symmetry of the electron orbital wave
function (Kane, 2000).

Unlike the quantum computer proposals based on ion
traps or NMR spectroscopy, the silicon-based quantum
computer has not yet been implemented experi-
mentally.”? This will require nanofabrication at the

"There is a funded project in the Semiconductor Nanofabri-
cation Facility of New South Wales University (Australia) for
building a Kane’s quantum computer.
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atomic scale involving specialized techniques such as
quantum electronic measurements with single-electron
transistors for addressing individual qubits, atom-scale
lithography to place phosphorus donors in a silicon crys-
tal with near-atomic precision, and electron-beam lithog-
raphy for building the quantum array of qubits. (Kane,
2000). It remains an open issue whether the current
technologies will be up to the challenge of building a
Kane quantum computer.

Xll. CONCLUSIONS

Although this may look like an extensive review, the
field has grown at such a pace that it is not possible to
cover in detail all the interesting developments going on,
and many have been left out. To mention just a few of
them: universal sets of fault-tolerant quantum gates, a
thorough study of decoherence problems, quantum era-
sure, and further experimental proposals for quantum
computers.

We share a belief in the mutual benefit of the link
between quanta and information. The very knowledge
of the foundations of physics can benefit from the theory
of information and computation (Landauer, 1991, 1996).
We have reviewed some aspects of the idea that infor-
mation is physics. We could further speculate the other
way around: physics is also information. It is even con-
ceivable that a fundamental theory of physics could be
based on the notion of the qubit, from which all the rest
would be derived (Wheeler, 1990; Zeilinger, 1999).

We have made an effort to present both classical and
quantum aspects of information and computation. Clas-
sical aspects have been traditionally associated with
computer science, of interest to computer and electronic
engineers and to mathematicians addressing the funda-
mentals of information theory. Quantum information, by
contrast, has so far been almost exclusively of interest to
quantum physicists. Each community faces its own bar-
riers in entering the field of quantum computation: an
engineer frequently lacks the necessary training in quan-
tum theory, while most physicists are not used to dealing
with the insides of a real computer. Our work is aimed in
part at setting up a bridge between the two communi-
ties. We are confident that in the coming age of quantum
information it will become more commonplace for quan-
tum mechanics to be taught at engineering schools and
for information theory to figure among background
courses in physics. Moreover, as is evident from the pro-
posals we have discussed for quantum computers, other
fields of physics are likely to be involved, like condensed
matter and its many branches, especially the area of
strongly correlated systems.

There is currently widespread interest in building real
quantum computers, capable of doing nontrivial tasks.
Many proposals have been presented and more are
likely. Each physical system or interaction in nature is
being scrutinized as a possible realization of a quantum
computer. In the past, marvelous machines, like aircraft,
were envisaged by Leonardo da Vinci. He described
them on paper but they were not actually built until
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hundreds of years later. We hope that in the case of
quantum computers this process will not take that long.
In any case, there is no doubt that quantum physics has
already influenced in depth the theory of information.
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APPENDIX: COMPUTATIONAL COMPLEXITY

There are countless unsolvable problems like the halt-
ing problem connected with the Turing machine (Sec.
VIII.A). On the other hand, solvable problems can be
classified according to their difficulty. Easy ones, like
computing the determinant of any n Xn matrix, are re-
ferred to as computationally tractable, and difficult ones,
like computing the permanent of the same matrix,”® are
called computationally hard or intractable.

The complexity classes have been devised to group
solvable problems according to their degree of difficulty.
Three features are addressed (Nielsen and Chuang,
2000): (1) time or space resources required for solution;
(2) the machine used for solution (deterministic Turing
machine, nondeterministic Turing machine, probabilistic
Turing machine, or quantum Turing machine); and (3)
the type of problem (decision, number of solutions, op-
timization, etc.).

1. Classical complexity classes

When the computation is done with deterministic or
nondeterministic Turing machines, the relevant classes
are the following (Salomaa 1989; Papadimitriou, 1994;
Welsh, 1995; Li and Vitanyi, 1997; Yan, 2000).”

(i) Class P (polynomial), containing those problems
that can be solved by a deterministic Turing machine in
polynomial time, i.e., the time for the machine to find
the solution increases at most polynomially with the
length n (in bits) of the initial data.

Examples: (1) arithmetic operations such as the addi-
tion and multiplication of integers; (2) Euclid’s algo-

3The definition of the permanent is similar to the determi-
nant. In fact the only difference is the missing sign of the per-
mutations.

" Although the complexity classes P, NP, etc., that we shall
consider here usually contain only decision problems [prob-
lems whose solution is either YES (1) or NO (0)], we shall
implicitly enlarge them by including other computational prob-
lems, like searching, which are defined in a similar fashion to
decision problems by means of the costs in time or space in-
vested in the solution.
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rithm; (3) modular exponentiation; (4) computation of
determinants; (5) sorting a list; and (6) multiplication of
points on elliptic curves by integers.

(ii) Class NP (nondeterministic polynomial), contain-
ing those problems that a nondeterministic Turing ma-
chine can solve in polynomical time.”

As the nondeterministic Turing machines look im-
practical, it is convenient to know that the NP class also
can apply when only deterministic Turing machines are
involved: a problem is NP if, given an arbitrary initial
datum x of binary length n, it admits a succinct certifi-
cate or polynomial witness y (i.e., of polynomial length
in n), such that there exists a deterministic Turing ma-
chine which, given x,y, can solve the problem in poly-
nomial time in 7.

Clearly, PCNP. A central conjecture in computation
theory is P& NP.

Examples: (1) the discrete logarithm problem (compu-
tation in Zy of the solution x to a*=b mod N); (2) the
primality problem (given N, is it prime?); (3) the com-
positeness problem, complement to primality (given N,
is it composite?); (4) the factorization problem (find the
decomposition of N into prime factors); (5) the satisfi-
ability problem [check whether a given Boolean expres-
sion ¢ in conjunctive normal form ¢=0/C;, C;
==Zi1Dzi2D---Dziri, with z;;e(x; — x;;) Boolean vari-
ables or their negations, is satisfiable, that is, there exists
a choice of variables that make ¢ true]; and (6) the trav-
eling salesman problem (given n cities, their mutual dis-
tances d;;=0, and a cost or “travel budget” C find
whether there exists a cyclic permutation 7 of order n,
such that 7 d; ,;)<C).

Factorization is NP since it is apparent that given N,
and the succinct certificate consisting of its prime divi-
sors, the decomposition of N into primes is trivial and of
polynomial cost.

(iii) Class PSPACE (polynomial space) or NSPACE
(nondeterministic polynomial space), containing those
problems that some deterministic (nondeterministic)
Turing machine can solve in polynomial space, i.e., using
a number of cells that grows at most polynomially with
the length (in bits) of the initial data.

It is known that NPC PSPACE=NSPACE.

Examples: (1) In the two-player game Geography,
player A chooses the name of a city, say Madrid, and B
has to name another city, like Dublin, starting with the
last letter D of the previous city; then it is A’s turn to
name another city starting with N, like New York; B
says next Kyoto, and so on. The cities’ names must not
be repeated. The loser is the player who cannot name
another city because there are no more names left. The
Geography problem is: given an arbitrary set of cities
(strings, all different, of alphabet symbols), and A’s ini-
tial choice of one of them, can A win? It can be shown

3As there may be several computational pathways leading to
the solution, the one of shortest duration marks the cost (Salo-
maa, 1989).
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that Geography is PSPACE complete.”® (2) The game
Go suggests a Go problem on nXn boards and the as-
sociated question of whether there exists some winning
strategy for the starting player. This Go problem is like-
wise PSPACE complete.

(iv) Class EXP (exponential) or NEXP (nondeter-
ministic exponential), containing those problems that
some deterministic (nondeterministic) Turing machine
can solve in exponential time, i.e., a time that grows at
most exponentially with the length (in bits) of the initial
data.

Examples: Consider the problems related to the
games Go, Checkers, and Chess on nXn fields: are there
always winning strategies for the first player? Since the
number of movements to analyze grows exponentially
with the board size, such problems are in the class EXP.
Furthermore, it is believed that they are not in the class
NP.

The following inclusions among the previous classes
hold:

PCNPCPSPACECEXPCNEXP.

Moreover, it is also known that P& EXP. Thus at least
one of the first three inclusions in the long previous
chain must be proper. But it is not known which one.
The classification does not end here. There are even
more “monstrous” problems as far as complexity is con-
cerned. For instance, pertaining to the Presburger arith-
metic there exists a problem that is at least doubly ex-

ponential [time complexity O(22") in the size n of the
initial data].

Let us now assume that our computers are probabilis-
tic Turing machines. The corresponding classes are
called random, and some of them stand out.

(i) Class RP (randomized polynomial), consisting of
those decision problems that a probabilistic Turing ma-
chine T, always working in polynomial time (for every
initial datum), can decide with error <%. These prob-
lems are called polynomial Monte Carlo. In other words,
if L denotes the set of input data having answer YES,
i.e., 1, then

xe L=prob[T(x)=1]=3,
x ¢ L=prob[ T(x)=1]=0.

This means that all computational pathways that a
probabilistic Turing machine 7 can take from data x & L
end up with rejection [T(x)=0, i.e., NO], while if x
e L, then at least a fraction 5 of the possible paths end
up with acceptance [ T(x)=1]. Therefore there cannot
be false positives, and at most a fraction 3 of false nega-
tives can happen (that is, cases in which x e L and the
followed path ends with rejection). Repeating the com-
putation with the same xe L a number of times n

"Given a complexity class X, a decision problem PeX is
called X complete when any Q € X is polynomially reducible
to P, i.e., 3 a polynomial-time map f:x—f(x) from the inputs
of Q to the inputs of P such that Q(x)=0,1 iff P(f(x))=0,1.
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FIG. 57. Different classical complexity classes. On the right, we provisionally accept that the BPP class is not a subset of NP.

=[log, 6 1], where 0<5<1, we will find that the prob-
ability of n consecutive false negatives is <J and thus
can be made as small as desired by appropriately choos-
ing 6. Equivalently, the probability of obtaining in that
series of n trials some acceptance of x will turn out to be
=(1-6) and thus can be made as close to 1 as we wish.
In cases of real “bad luck” it might happen that very
long series would not contain any acceptance of x; that
is why it is often said that a probabilistic Turing machine
T decides the problem, in the average case, in polyno-
mial time.

(ii) Class ZPP:=RPNcoRP (zero-error probabilistic
polynomial), where the class coRP is the complement of
RP, that is, it contains those decision problems that an-
swer (YES, NO) to an input if and only if there exists a
problem in RP that answers (NO, YES) to the same
input.

The class ZPP thus contains those decision problems
for which there exist two probabilistic Turing machines
Trp and T ,rp, always working in polynomial time and
satisfying

x € L=prob[ Trp(x)=1]=%,prob[ Togp(x)=0]=0,
x & L=prob[ Trp(x)=1]=0,prob[ T ,rp(x)=0]=73.

These are called polynomial Las Vegas problems: they
are Monte Carlo, and so are their complements. In other
words, they have two Monte Carlo algorithms, one with-
out false positives and another without false negatives.
Most likely any input data will be decidable with cer-
tainty: it is enough that the algorithm without false posi-
tives says YES, or the one without false negatives says
NO. In a case of real bad luck, we shall have to repeat
both until one of them yields a conclusive answer.

Example: Primality is in ZPP. The Miller-Selfridge-
Rabin algorithm (pseudoprimality strong test, 1974) is of
co Monte Carlo type, that is, primality is in coRP (in
fact, the probability of false positives, i.e., that one prob-
able prime is composite, is <1/4). That primality is also
in RP is a harder issue and was proved by Adleman and
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Huang (1987), with the theory of Abelian varieties (gen-
eralization of elliptic curves to higher dimensions).”’

(iii) Class BPP (bounded-error probabilistic polyno-
mial). This class contains those decision problems for
which there exists a probabilistic Turing machine 7 al-
ways working in polynomial time and satisfying

3
xeL=prob[T(x)=1]=—,

1
x¢ L=prob[T(x)=1]< T

BPP problems are perhaps those best representing
the notion of realistic computations. They are accepted
or rejected by a probabilistic Turning machine with the
possibility of error. But the error probability is <% on
both the acceptance and the rejection. Repetition of the
algorithm with the same input allows us to amplify the
probability of success and, using the majority rule, to
decide within polynomial time (average case time, ex-
cept in bad-luck instances) and with an error as small as
required. It is not known whether BPPCNP, although it
is believed that NPZBPP. It is clear that RPC BPP,
and likewise BPP=coBPP. Generically,

PCZPPCRPC (BPP,NP)CPSPACEC EXPCNEXP.

Figure 57 shows the inclusions among the classical
complexity classes (Papadimitriou, 1994).

""Given an integer N, there exists a deterministic primality-
testing algorithm, due to Adleman, Pomerance, and Rumely
(1983) and Cohen and Lenstra (1984), with complexity
O[ (log, N)<lon2loz2lo2 N7 'ywhere ¢ is a constant. A current typi-
cal computer takes about 30 s for N with 100 decimal digits,
about 8 min if N has 200 digits, and a reasonable time for 1000
digits.
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2. Quantum complexity classes

When the computers employed in the computations
are quantum Turing machines, the associated complexity
classes are called quantum. We list here some of the
most relevant:

(i) Class QP (quantum polynomial), containing those
(decision) problems solvable in polynomial time with a
quantum Turing machine.

(ii) Class BQP (bounded-error quantum polynomial),
containing those problems solvable with error <1/4 in
polynomial time by a quantum Turing machine.

(iii) Class ZQP (zero-error probability quantum poly-
nomial), containing problems solvable with zero-error
probability in expected polynomial time by a quantum
Turing machine.

The following relations among the classical and the
quantum complexity classes hold:

PS QP, BPPCBQPCPSPACE.

The proper inclusion of P in QP, shown by Berthi-
aume and Brassard (1992), is remarkable. It means that
quantum computers can efficiently solve more problems
than their classical kin. This amounts to the first clear
victory in the strict separation of classical and quantum
complexities.

The second chain of inclusions is due to Bernstein and
Vazirani (1993). The crucial question of whether or not
BPP & BQP remains open. That is, are there “tractable”
quantum problems that are classically hard? Simon’s al-
gorithm (Sec. X.B) is the first positive indication in the
presence of a quantum oracle. Further support comes
from Shor’s algorithm (Sec. X.D), showing that the fac-
torization and discrete logarithm problems are in BQP,
whereas the current state of the art does not allow us to
assert that they are in BPP. The inclusion of BQP in
PSPACE implies that it is possible to classically simu-
late, and with as good an approximation as desired,
quantum problems with reasonable memory resources,
although the simulation would be exponentially slow in
time. That is why there are not solvable problems with
quantum Turing machines escaping the domain of deter-
ministic Turing machines. Stated in a different way,
quantum computation does not contradict the Church-
Turing hypothesis (Sec. VIII.A). Only by invoking effi-
ciency might classical Turing machines yield to quantum
Turing machines.

Even though we do not know whether BPP is a
proper subset of BQP, we do know particular cases of
classical algorithms (not complexity classes as a whole)
that can be speeded up quantumly with respect to their
classical running time. Simon’s algorithm shows an expo-
nential gain O(2")—O(n) (Sec. X.B), and Grover’s
shows a quadratic improvement O(N)— O(N'?) (Sec.
X.C). But it is not always possible to speed up an algo-
rithm substantially. There are oracle problems that do
not admit an essential quantum speed-up; at most it is
possible to go from N classical queries down to N/2
quantum queries. An example is the parity problem [to
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find the parity of the number of nonzero bits of a string
in {0,1}" (Farhi et al., 1998)].
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