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Quantum mechanics and information theory are among the most important scientific discoveries of
the last century. Although these two areas initially developed separately, it has emerged that they are
in fact intimately related. In this review the author shows how quantum information theory extends
traditional information theory by exploring the limits imposed by quantum, rather than classical,
mechanics on information storage and transmission. The derivation of many key results differentiates
this review from the usual presentation in that they are shown to follow logically from one crucial
property of relative entropy. Within the review, optimal bounds on the enhanced speed that quantum
computers can achieve over their classical counterparts are outlined using information-theoretic
arguments. In addition, important implications of quantum information theory for thermodynamics
and quantum measurement are intermittently discussed. A number of simple examples and
derivations, including quantum superdense coding, quantum teleportation, and Deutsch’s and
Grover’s algorithms, are also included.
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I. INTRODUCTION

Quantum physics not only provides the most complete
description of physical phenomena known to man, it
also provides a new philosophical framework for our un-
derstanding of nature. It enables us to accurately model
systems ranging in size from quarks and atoms to large
cosmic objects such as black holes. Information theory,
on the other hand, teaches us about our physical ability
to store and process information. Without a formalized
information theory, many of the recent developments in
telecommunications, computer science, and engineering
would simply not have been possible. Although quan-
tum physics and information theory initially developed
separately, their recent integration is seen as yet another
important step towards understanding the fundamental
properties and limitations of Nature.

One of the central information-theoretic concepts in
science is that of distinguishability. Inevitably an ani-
mal’s survival depends on its ability to distinguish a mate
from a predator or prey. In the same way, physical ex-
periments aim to be sensitive enough to be able to dis-
tinguish one hypothesis from another. It is, however, no
surprise that the influence of the concept of distinguish-
ability is felt far beyond science. Life consists of a series
of decisions that have to be made. This we do, con-
sciously or unconsciously, by evaluating all the alterna-
tives and distinguishing the consequences of various al-
ternative actions.

The purpose of this review is to show that the appar-
ently simple concept of distinguishability is at the root of
information processing. Ultimately how well we can dis-
tinguish different physical states determines how much
information we can encode into a certain system and
how quickly we can manipulate it. Distinguishability in
turn is completely dependent upon the laws of physics,
and quantum physics naturally allows for more versatile
information processing than does classical physics. The
reasoning behind this is that unlike classical states, two
©2002 The American Physical Society
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different quantum states are not necessarily fully distin-
guishable. It is interesting to note that although this at
first seems like a limitation, it in fact presents us with
significantly more possibilities for information encoding
and transmission.

In this review I first plan to argue that relative entropy
is the most appropriate quantity for measuring distin-
guishability between different states. The proper frame-
work in which to talk about states is, of course, quantum
mechanics, so it is necessary to define quantum relative
entropy. I prove that relative entropy, both classical and
quantum, does not increase with time. Thus two states
can only become less distinguishable as they undergo
any kind of evolution. This result will be central to my
review, as subsequent results will follow from this simple
fact.

I then go on to show that the ‘‘no increase of relative
entropy’’ principle tells us about the ability of quantum
states to store and process information. Information has
to be encoded and manipulated in physical systems.
Therefore distinguishability of different states within a
physical system is a prerequisite. Looking at this from
the point of view of communication, what does it mean
to send and receive a message? Sending a message suc-
cessfully means encoding the information we wish to
send into a structured format that the receiver must be
able to distinguish unambiguously. Communication ca-
pacity can then be thought of as the rate at which we can
send and receive messages. The rate of successful trans-
mission is determined by the relative entropy between
various encoding states.

What is less obvious, but nonetheless equally true, is
that computation can also be viewed as a special kind of
communication. This will allow the use of relative en-
tropy to quantify the efficiency (i.e., speed) of quantum
computation in general.

The role of measurement within quantum mechanics
and therefore information theory is paramount. Classi-
cally the measurement process is implicit because physi-
cal quantities have well-defined preexisting properties.
For example, a classical bit is either in the state 0 or 1,
whereas a quantum bit can exist in a combination of the
two states. A measurement is necessary to ‘‘collapse’’
this combination to a classical result that we can then
read. The very concept of measurement efficiency can
also be quantified using relative entropy. A measure-
ment, like a communication process, creates correlations
between a system and an apparatus whose purpose is to
receive an amount of information from the system. The
opposite of this process, namely, the deletion of informa-
tion, can be seen to be at the root of irreversibility, and
this invariably contributes to an increase in the entropy
of the environment. This amount is exactly quantified
using the relative entropy between the environmental
state and the apparatus state, and it provides an exciting
link between information theory, computation, thermo-
dynamics, and quantum mechanics. However, before we
reach this exciting stage, our long journey has to begin
with a much simpler question: how do we quantify un-
certainty in a physical state?
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II. RELATIVE ENTROPY

Fundamental to our understanding of distinguishabil-
ity is the measure of uncertainty in a given probability
distribution. This uncertainty can be quantified by intro-
ducing the idea of ‘‘surprise.’’ Suppose that a certain
event happens with a probability p . We would then like
to quantify how surprised we are when that event does
happen. The first guess would be 1/p : the smaller the
probability of an event, the more surprised we are when
the event happens, and vice versa. However, an event
might be composed of two independent events that hap-
pen with probabilities q and r , respectively, so that the
probability of both events occurring is p5q3r . We
would now intuitively expect that the surprise of p is the
same as the surprise of q plus the surprise of r . But
1/pÞ1/q11/r , so that 1/p is not really a satisfactory defi-
nition from this perspective. Instead, if we define sur-
prise as ln(1/p), then the above property called additiv-
ity is satisfied, since 2ln p1p252ln p12ln p2 . With a
probability distribution (npn51, the total uncertainty is
just the average of all the surprises. Additivity of uncer-
tainties of statistically independent events is such a strin-
gent condition that it basically leads to a unique measure
(Shannon and Weaver, 1949) up to a constant and loga-
rithmic base.

Definition. The uncertainty in a collection of possible
states ai with corresponding probability distribution
p(ai) is given by its entropy,

S~p !ª2(
i

p~ai!ln p~ai!, (1)

called the Shannon entropy. We note that there is no
Boltzmann constant term in this expression as there is
for the physical entropy, since it is by convention set to
unity. This measure is suitable for the states of systems
described by the laws of classical physics, but it will have
to be changed, along with other classical measures, when
we present the quantum information theory.

We ultimately wish to be able to talk about storing
and processing information. For this we require a means
of comparing two different probability distributions,
which is why I introduce the notion of relative entropy
(first introduced by Kullback and Leibler, 1951). Sup-
pose that a collection of events has the probability dis-
tribution $pi%, but we mistakenly think that this prob-
ability distribution is $qi%. For example, we have a coin
that we think is fair, i.e., the probability of getting a head
or a tail when the coin is tossed is equal. If we toss this
coin n times, on average we expect heads half of the
time and tails the other half. In reality, the coin, by vir-
tue of its uneven weight distribution, will not be com-
pletely fair, so our expectation will turn out to be wrong.
There will consequently be a discrepancy between our
expected and real probability distribution. This discrep-
ancy is very frequently the case in real life, and it is, in
fact, very rare that we have complete information about
any event. Therefore we can formalize that when a par-
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ticular outcome j happens, we associate surprise 2ln qj

with it. The average surprise, or information, according
to this erroneous belief, is

2(
i

pi ln qi .

Since events happen with probabilities $pi% (in spite of
our belief), these are the correct ones to feature in the
averaging process. However, the real amount of infor-
mation we are obtaining is, as defined earlier, given by
the Shannon entropy S(p)52( ipi ln pi . It is not so dif-
ficult to show that S(p)<2( ipi ln qi (equality holds if
and only if pi5qi for all i) so that there is an ‘‘uncer-
tainty deficit,’’ as it were, stemming from our wrong as-
sumption and equal to the difference between the two
averages. This deficit quantity is called the relative en-
tropy.

Definition. Suppose that we have two sets of discrete
events ai and bj with the corresponding probability dis-
tributions, p(ai) and p(bj). The relative entropy be-
tween these two distributions is defined as

S@p~a !ip~b !#ª(
i

p~ai!ln
p~ai!

p~bi!
. (2)

This function is a measure of the ‘‘distance’’ between
p(ai) and p(bj), even though, strictly speaking, it is not
a mathematical metric since it fails to be symmetric:
S@p(a)uup(b)#ÞS@p(b)uup(a)# . This is interesting,
since at first it looks as if there should be no difference
between mistaking the probability distribution pi for qi ,
or vice versa. Intuitively this can be explained using our
coin example. Suppose that someone gives us a coin that
is either fair or completely unfair, e.g., it always gives
heads. Now we have to toss this coin a number of times
and infer which of the two coins we have. If we toss the
fair coin and obtain tails, then our inference will imme-
diately be that we have the fair coin. If, however, we
obtain heads, then it could be either coin. If we tossed it
more times, the fair coin would eventually give us tails.
If, however, we were holding the completely unfair coin
from the beginning, then even after 100 heads we could
never really eliminate the possibility that it is the fair
coin, since this outcome is statistically possible (although
highly unlikely). Therefore how certain we are about
which coin we hold is clearly dependent on whichever
coin we hold and how different it is from the other one.
As we shall see shortly, our uncertainty is quantified by
the relative entropy, and it is thus to be expected that it
is asymmetric. I now describe this statistical approach in
more detail.

A. Statistical significance

A more operational interpretation of both the Shan-
non entropy and the relative entropy comes from the
statistical point of view. The generalization of this for-
malism to the quantum domain will be presented in the
next section and I shall offer an operational interpreta-
tion of the measures of quantum correlations to be in-
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troduced therein. I now follow the approaches of Cover
and Thomas (1991), and Csiszár and Körner (1981); the
reader interested in more detail should consult these
two books.

Let X1 ,X2 , . . . ,Xn be a sequence of n symbols from
an alphabet A5$a1 ,a2 , . . . ,a uAu%, where uAu is the size
of the alphabet. We denote a sequence x1 ,x2 , . . . ,xn by
xn or, equivalently, by x. The type Px of a sequence
x1 ,x2 , . . . ,xn will be called the relative proportion of
occurrences of each symbol of A , i.e., Px(a)
5N(aux)/n for all aPA , where N(aux) is the number of
times the symbol a occurs in the sequence xPAn. Thus,
according to this definition, the sequences 011010 and
100110 are of the same type. Pn will denote the set of
types with denominator n . If PPPn , then the set of
sequences of length n and type P is called the type class
of P , denoted by T(P), i.e., mathematically

T~P !5$xPAn:Px5P%.

We now approach the first theorem about types, which is
at the heart of the success of this theory and states that
the number of types increases only polynomially with n .

Theorem 1.

uPnu<~n11 ! uAu.

Proof of this is left for the reader, but the rationale is
simple. Suppose that we generate an n string of 0’s and
1’s. The number of different types is then n11, i.e., poly-
nomial in n : the zeroth type has only one string—all
zeros; the first type has n strings—all strings containing
exactly one 1; the second type has n(n21)/2 strings—all
those containing exactly two 1’s, and so on; the nth type
has only one sequence—all ones. The most important
point is that the number of sequences is exponential in
n , so that at least one type has exponentially many se-
quences in its type class, since there are only polynomi-
ally many different types. A simple example is a coin
tossed n times. If it is a fair coin, then we expect heads
half of the time and tails the other half of the time. The
number of all possible sequences for this coin is 2n (i.e.,
exponential in n) where each sequence is equally likely
(with probability 22n). However, the size of the type
class in which there is an equal number of heads and
tails is Cn/2

n (the number of possible ways of choosing n/2
element out of n elements), the log of which tends to n
for large n . Hence this type class is in some sense as-
ymptotically as large as all the type classes together.

We now arrive at a very important theorem that, in
fact, presents the basis of the statistical interpretation of
the Shannon entropy and relative entropy.

Theorem 2. If X1 ,X2 , . . . ,Xn are drawn according to
Q(x), then the probability of x depends only on its type
and is given by

Qn~x!5e2n[S(Px)1S(PxuuQ)].
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Proof.

Qn~x!5)
i51

n

Q~xi!5 )
aPA

Q~a !N(aux)

5 )
aPA

Q~a !nPx(a)

5 )
aPA

enPx(a)ln Q(a)

5expH n (
aPA

2Px~a !ln
Px~a !

Q~a !
1Px~a !ln Px~a !J

5e2n[S(Px)1S(PxuuQ)]. j

Therefore the probability of a sequence becomes expo-
nentially small as n increases. Indeed, our coin-tossing
example shows this: a probability for any particular se-
quence (such as, for example, 0000011111) is 22n.
(Note: the reason that we are using e in our theorems
instead of 2 is that we are also using ln instead of log.)
This is explicitly stated in the following corollary.

Corollary. If x is the type class of Q , then

Qn~x!5e2nS(Q).

The proof is left to the reader.
As n gets large, most of the sequences become typical

and are all equally likely. Therefore the probability of
every typical sequence times the number of typical se-
quences has to be equal to unity in order to conserve
total probability (e2nS(Q)N51). From this we can see
that the number of typical sequences is N5enS(Q) (we
consider this point more formally below). Hence the
above theorem has very important implications in the
theory of statistical inference and the distinguishability
of probability distributions. To see how this comes about
we state two theorems that give bounds on the size and
probability of a particular type class. The proofs follow
directly from the above two theorems and the corollary
(Csiszar and Korner, 1981; Cover and Thomas, 1991).

Theorem 3. For any type PPPn ,

1

~n11 ! uAu enS(P)<uT~P !u<enS(P).

This theorem provides the exact bounds on the number
of typical sequences. Suppose that we have a probability
distribution p1 and p2 for heads and tails, respectively,
and we toss the coin n times. The typical (most likely)
sequence will be the one in which we have p1n heads
and p2n tails. The number of such sequences is

Cp1n
n 5

n!

~p1n !!~p2n !!
;en(2p1 ln p12p2 ln p2),

i.e., an exponential in n (more tosses, more possibilities)
and entropy (higher uncertainty, more possibilities). The
next theorem offers a statistical interpretation of the
relative entropy.

Theorem 4. For any type PPPn , and any distribution
Q, the probability of the type class T(P) under Qn is
e2nS(PuuQ) to first order in the exponent. More precisely,
Rev. Mod. Phys., Vol. 74, No. 1, January 2002
1

~n11 ! uAu e2nS(PuuQ)<Qn@T~P !#<e2nS(PuuQ).

The meaning of this theorem is that if we draw results
according to Q , the probability that it will look as if it
was drawn from P is exponentially decreasing with n
and relative entropy between P and Q . The closer Q is
to P , the higher the probability that their statistics will
look the same. Alternatively, the higher the number of
draws n , the smaller the probability that we will confuse
the two. (We can see an explicit example below.) The
above two results can be succinctly written in an expo-
nential fashion that will be useful to us as

uT~P !u→e2nS(P), (3)

Qn@T~P !#→e2nS(PuuQ). (4)

The first statement also leads to the idea of data com-
pression, in which a string of length n generated by a
source with entropy S can be encoded into a string of
length nS . The second statement says that if we are per-
forming n experiments according to distribution Q , the
probability that we will get something that looks as if it
was generated by distribution P decreases exponentially
with n , depending on the relative entropy between P
and Q . This idea immediately leads to Sanov’s theorem,
whose quantum analog will provide a statistical interpre-
tation of one measure of entanglement presented in Sec.
IV. We now consider data compression and Sanov’s
theorem.

1. Classical data compression

Suppose that we have a binary source generating 0’s
with twice as great a probability as that of 1’s, so that the
Shannon entropy is S5ln 322/3 ln 250.64. Imagine that
we have a string of 15 digits coming out of this source.
Then, according to the above considerations [Eq. (3)],
the most likely type will be the one with ten 0’s and five
1’s. But the size of this class is only 0.64315'10, so we
can use only 10 digits to encode all the above sequences
of 15 numbers just by assigning the following conven-
tional mapping: The first sequence of 15 numbers is to
be encoded in 0000000000, the second sequence is to be
encoded in 0000000001, . . . , the e10th sequence is to be
encoded in 1111111111. This encoding is for obvious
reasons called data compression. This, in fact, offers a
statistical reason for employing the Shannon entropy as
a measure of uncertainty. This result is known as Shan-
non’s lower bound (or Shannon’s First Theorem) on data
compression, i.e., a message cannot be compressed per
bit to less than its Shannon entropy (Shannon and
Weaver, 1949). There are a number of different methods
used for compression, each with varying degrees of suc-
cess dependent on the statistical distribution of the mes-
sage; see, for example, Cover and Thomas (1991).

Now we look at the distinguishability of two probabil-
ity distributions. Suppose we would like to check
whether a given coin is fair, i.e., whether it generates a
head-tail distribution of f5(1/2,1/2). When the coin is
biased it will produce some other distribution, say uf



201V. Vedral: Relative entropy in quantum information theory
5(1/3,2/3). So the question of the coin’s fairness boils
down to how well we can differentiate between two
given probability distributions given a finite number n of
experiments to perform on one of the two distributions.
In the case of a coin we would toss it n times and record
the number of 0’s and 1’s. From simple statistics (Cover
and Thomas, 1991) we know that if the coin is fair then
the number of 0’s, N(0), will be roughly n/22An
<N(0)<n/21An , for large n , and the same for the
number of 1’s. Therefore if our experimentally deter-
mined values do not fall within the above limits the coin
is not fair. We can look at this from another point of
view, which is in the spirit of the method of types;
namely, what is the probability that a fair coin will be
mistaken for an unfair one with the distribution of
(1/3,2/3) given n trials of the fair coin? For large n the
answer is given in the previous subsection,

p~fair→unfair!5e2nS(ufuuf ),

where Scl(ufuuf )51/3 ln 1/312/3 ln 2/321/3 ln 1/2
22/3 ln 1/2 is the Shannon relative entropy for the two
distributions. So

p~fair→unfair!53n22 ~5/3! n,

which tends exponentially to zero with n→` . In fact we
see that after ;20 trials the probability of mistaking the
two distributions is vanishingly small, ,10210. This leads
to the following important result (Sanov, 1957).

2. Sanov’s theorem

If we have a probability distribution Q and a set of
distributions E,P, then

Qn~E !→e2nS(P* uuQ), (5)

where P* is the distribution in E that is closest to Q
using the Shannon relative entropy (see Fig. 1).

This can also be rephrased in the language of distin-
guishability: when we are distinguishing a given distribu-
tion from a set of distributions, then what matters is how
well we can distinguish that distribution from the closest
one in the set (see Fig. 1). When we turn to the quantum
case later, the probability distributions will become
quantum densities representing various states of a quan-

FIG. 1. The concept of distinguishability. What do we mean by
the distance from the cyclist to the city in the figure? It is
defined as the distance from the cyclist to the closest house in
the city. Also, which distance measure is the most appropriate
for measuring this? In the text I argue that when it comes to
distinguishing between two or more probability distributions,
the most appropriate measure is the relative entropy.
Rev. Mod. Phys., Vol. 74, No. 1, January 2002
tum system, and the question will be how well we can
distinguish between these states. Note that we could also
talk about Q coming from a set of states, in which case
we would have S(PuuQ* ), where Q* is the state that
minimizes the relative entropy (i.e., the closest state).

B. Other information measures from relative entropy

Another important concept derived from relative en-
tropy concerns the gathering of information. When one
system learns something about another, their states be-
come correlated. How correlated they are, or how much
information they have about each other, can be quanti-
fied by the mutual information.

Definition. The Shannon mutual information between
two random variables A and B , having a joint probabil-
ity distribution p(ai ,bj) and therefore marginal prob-
ability distributions p(ai)5( jp(ai ,bj) and p(bj)
5( ip(ai ,bj), is defined as

IS~A :B !ªS@p~a !#1S@p~b !#2S@p~a ,b !# . (6)

There are two very instructive ways of looking at this
quantity, which will form a basis for this review. Math-
ematically, IS can be written in terms of the Shannon
relative entropy. In this sense it represents a distance
between the distribution p(a ,b) and the product of the
marginals p(a)3p(b). As such, it is intuitively clear
that this is a good measure of correlations, since it shows
how far a joint distribution is from the product one in
which all the correlations have been destroyed, or alter-
natively, how distinguishable a correlated state is from a
completely uncorrelated one. So we have

IS~A :B !5S@p~a ,b !uup~a !3p~b !# .

Let us now view this from another angle. Suppose that
we wish to know the probability of observing bj if ai has
been observed. This is called a conditional probability
and is given by

pai
~bj!ª

p~ai ,bj!

p~ai!
.

This motivates us to introduce a conditional entropy,
SA(B), as

SA~B !52(
i

p~ai!(
j

pai
~bj!ln pai

~bj!

52(
ij

p~ai ,bj!ln pai
~bj!.

This quantity tells us how uncertain we are about the
value of B once we have learned about the value of A .
Now the Shannon mutual information can be rewritten
as

IS~A :B !5S~B !2SA~B !5S~A !2SB~A !. (7)

Hence, the Shannon mutual information, as its name in-
dicates, measures the quantity of information conveyed
about the random variable A(B) through measurements
of the random variable B(A). This quantity, being posi-
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tive, tells us that the initial uncertainty in B(A) can in
no way be increased by making observations on A(B).
Note also that, unlike the Shannon relative entropy, the
Shannon mutual information is symmetric (see Fig. 2).
The following example demonstrates the symmetry of
the Shannon mutual information.

Let us briefly go back to our original idea of a surprise
to interpret the Shannon mutual information as a mea-
sure of correlations. Suppose that one of our friends
likes to wear socks of two colors only: red and blue. In
addition, we know that her socks are always the same
color and that when she gets up in the morning she ran-
domly chooses the color, but we know that she prefers
blue to red with the ratio 3:1. So when we meet our
friend, before we have looked at the color of her socks,
we know that she wears blue socks with the probability
p(b)50.75 and red socks with the probability p(r)
50.25. However, when we look at one sock and observe,
say, the color blue, we immediately know that the other
sock must be blue, too. This means that the colors of her
two socks are correlated. Before we look at one of the
socks, we are uncertain about the color of the other sock
by an amount of 20.75 ln 0.7520.25 ln 0.25. But when
we look at one of them the uncertainty immediately dis-
appears. We therefore expect that the information we
gain about one sock by looking at the color of the other
is given by 20.75 ln 0.7520.25 ln 0.25. The Shannon mu-
tual information predicts exactly the same thing. We see
that the largest correlations would be if p(r)5p(b)
50.5 and this would be ln 2. This, of course, agrees with
our intuitive notion of surprise, since before looking at
our friend’s one sock, we would be completely uncertain
about the color of the other sock. By observing its color
we obtain the largest possible amount of information
(i.e., remove the largest possible uncertainty in this
case).

Although it will be seen that the Shannon mutual in-
formation is a good measure of correlation between two
random variables, its natural generalization to three or
more random variables fails. It is easy to see that from
three random variables the Shannon mutual information
should be of the following form:

FIG. 2. Venn diagram representation of the joint Shannon en-
tropy of two random variables as well as the marginal Shannon
entropies. It is clear that geometrically the Shannon mutual
information is obtained by summing the marginal entropies
and subtracting the total entropy. It is interesting to note that
its generalization fails for three or more random variables.
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IS~A :B :C !5S~A ,B ,C !2S~A ,B !2S~A ,C !

2S~B ,C !1S~A !1S~B !1S~C !. (8)

However, there exist A ,B ,C such that IS(A :B :C),0 (I
leave this as an exercise for the reader), and since we
regard the amount of correlation as being strictly posi-
tive, this is automatically ruled out as a good measure of
correlation. A way to sidestep this difficulty is to define
mutual information via the relative entropy as
S@p(A ,B ,C)uup(A)p(B)p(C)# . This is a positive quan-
tity representing the distance of the joint probability dis-
tribution of three random variables A ,B ,C from the
product of the corresponding marginal probability distri-
butions. This, of course, immediately generalizes to any
number of random variables. Next I show why the rela-
tive entropy and mutual information are also very useful
from the dynamical perspective.

C. Classical evolution and relative entropy

The above application of relative entropy to physics
via the concept of distinguishability might seem con-
trived. This is, however, not at all the case, and this sec-
tion shows the great importance of relative entropy for
the dynamics of classical systems. A state of a physical
system in classical mechanics can be represented as a
vector whose entries are various probabilities for the
system to occupy its different possible states. The evolu-
tion of this system is seen as the change of these prob-
abilities with time. Hence evolution is a linear transfor-
mation of one state into another state, i.e., of a vector
into another vector,

qj5(
k

P~ juk !pk ,

where P(juk) is the conditional probability for the sys-
tem to change from the state k to the state j . Because
the probability has to be conserved (( jqj51), we have
(kP(juk)51. Matrices with this simple property,
namely, that their entries are positive and columns sum
up to 1, are called stochastic. The above can be general-
ized to continuous systems and continuous time evolu-
tion, but this will not be relevant for the rest of this
review.

A very important property of any measure that aims
to quantify the amount of correlation between two ran-
dom variables (i.e., two states of the same system or two
different systems in classical mechanics) is the following:
if either or both of the variables undergo a local stochas-
tic evolution, then the amount of correlation cannot in-
crease (in fact, it usually decreases). I shall now prove
this in the case of the Shannon mutual information, fol-
lowing an approach similar to that given by Everett
(1973); see also Penrose’s excellent book on statistical
mechanics (Penrose, 1973).

First, let us establish without proof two inequalities
following from the convex properties of the logarithmic
functions (Everett, 1973). Lemma 1 states that entropy
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is a concave function, whereas lemma 2 states that rela-
tive entropy is a convex function.

Lemma 1. ( iPixi ln (iPixi<(iPixi ln xi , where xi>0,
Pi>0 and ( iPi51.

Physically, this inequality means that the average un-
certainty (negative of the right-hand side) is less than or
equal to the uncertainty of the average (negative of the
left-hand side); in other words, mixing probability distri-
butions increases entropy. This is a very important prop-
erty of entropy as a measure of uncertainty, since when
we mix probability distributions we expect to increase
our uncertainty.

Lemma 2. ( ixi ln ((ixi /(iai) <(ixi ln (xi /ai), where xi
>0 and ai>0 for all i .

This is just a statement of the fact that mixing de-
creases distinguishability. Note that this is in accord with
lemma 1, since the more mixed the probability distribu-
tions, the less distinguishable they are.

These two simple and self-evident statements lead to
a very important result, that the Shannon relative en-
tropy between two probability distributions decreases
when the same two undergo a stochastic process. This is
a very satisfying property from the physical point of
view, where two probability distributions undergoing
stochastic changes in fact represent two evolving physi-
cal systems. It says that two probability distributions are
in some sense closer to each other (i.e., harder to distin-
guish) after a stochastic process, or analogously, that two
physical systems become more alike.

Let us consider a sequence of transition-probability
matrices Tij

n
ªPn(iuj), where ( jTij

n 51 for all n , i , and
0<Tij

n<1. We also introduce a sequence of positive
measures (i.e., probability distributions) ai

n having the
property that

aj
n115(

i
ai

nTij
n .

Transition probabilities T tell us the probability that at
the nth step of evolution the system will ‘‘jump’’ from
the jth to the ith state. Thus constructed transition ma-
trices are stochastic for all n . Let us further suppose that
we have a sequence of probability distributions pi

n gen-
erated by the action of the above stochastic process,
such that

pj
n115(

i
pi

nTij
n .

This is the law describing the system’s evolution in time,
and the state of the system at time n is given by the
probabilities pi

n . For each of these probability distribu-
tions the relative entropy Sn is defined as

Sn~puua !ªS~pnuuan!5(
i

pi
n ln

pi
n

ai
n .

Let us now prove the following theorem:
Distinguishability never increases,

Sn11~puua !<Sn~puua !. (9)

Proof. Expanding Sn11(puua) we obtain
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Sn11~puua !5(
j

pj
n11 ln

pj
n11

aj
n11

5(
j

H(
i

pi
nTij

n J ln
(

i
pi

nTij
n

(
i

ai
nTij

n
.

However, using lemma 2 we have the following inequal-
ity:

(
i

pi
nTij

n ln
(

i
pi

nTij
n

(
i

ai
nTij

n
<(

i
pi

nTij
n ln

pi
nTij

n

ai
nTij

n .

From the above two it follows that

Sn11~puua !<(
j

H(
i

pi
nTij

n ln
Pi

n

ai
n J

5(
i

pi
nTij

n ln
pi

n

ai
n 5(

i
pi

n ln
pi

n

ai
n 5Sn~puua !

and the proof is completed. j

This property means that a distance between two
states cannot increase with time if the states evolve un-
der any stochastic map. The proof can be immediately
specialized to the cases in which T is stationary, i.e., T is
independent of n , and when T is doubly stochastic, i.e.,
( iTij51 for all j . A corollary to this important lemma is
the following.

Corollary. If we take p5p(a ,b) and a5p(a)p(b),
and suppose that the stochastic processes acting sepa-
rately on A and B are uncorrelated, we see that the
Shannon mutual information does not increase under
these local stochastic processes (by local we mean that
they act separately on A and B).

This is a very important, and physically intuitive,
property of any measure of correlation; its quantum ana-
log will be of central importance for quantifying quan-
tum correlation between entangled subsystems. This cor-
ollary, in fact, can be taken as a guide for a ‘‘good’’
measure of correlation. We can state that any measure
of correlation has to be nonincreasing under local sto-
chastic processes. In other words, this means that the
only way that systems can become more correlated, i.e.,
that they gain more information about each other, is if
they interact. Without mutual interaction the correla-
tions can only decrease or at best stay the same. The
nature of quantum local stochastic processes will form
the physical basis for our argument in the next section.
A condition similar to property above, but employing
quantum stochastic processes, will be a key element in
our search for measures of entanglement. When we go
to quantum mechanics, the notion of a probability dis-
tribution will be replaced by that of a quantum state
(i.e., a density matrix), and a stochastic process will be-
come a measurement process in quantum theory. The
formulation of probability theory that is most naturally
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generalized to quantum states is provided by Kolmog-
orov (1950), and the quantum generalization expressing
similarities with von Neumann’s Hilbert-space formula-
tion (von Neumann, 1932) can be found in Mackey
(1963; see also Holevo, 1982). However, knowledge of
this approach will not be necessary for the rest of the
review. Finally it is important to stress that if the local
stochastic processes are correlated they virtually become
global, and therefore the correlations between the sys-
tems can increase as well as decrease.

D. Schmidt decomposition and quantum dynamics

The difference between classical and quantum physics
can be seen in the fact that quantum states are described
by a density matrix r (and not just vectors). The density
matrix is a positive semidefinite Hermitian matrix,
whose trace is unity (representing the fact that all the
probabilities add up to 1). An important class of density
matrices is the idempotent one, i.e., r25r . The states
these matrices represent are called pure states. When
there is no uncertainty in the knowledge of the system’s
state its state is then pure. Another important notion is
that of a composite system. A composite quantum sys-
tem is one that consists of a number of quantum sub-
systems. When those subsystems are entangled it is im-
possible to ascribe a definite state vector to any one of
them. The most often cited entangled system is a pair of
two photons, being in the Einstein-Podolsky-Rosen state
(Einstein et al., 1935; Bell, 1987). The composite system
is then mathematically described by

uC&5
1

&
~ u↑&u↓&1u↓&u↑&), (10)

where the first ket in either product belongs to one pho-
ton and the second to the other. The property that is
described is the direction of spin or polarization along
the z axis, which can either be up (u↑&) or down (u↓&). A
two-level system of this type is the quantum analog of a
bit, which we shall henceforth call a qubit. We can im-
mediately see that neither of the photons possesses a
definite state vector. The best that one can say is that if
a measurement is made on one photon and it is found to
be in the up state, for example, then the other photon is
certain to be in the down state. This idea cannot be ap-
plied to a general composite system unless the former is
written in a special form. This motivates us to introduce
the so-called Schmidt decomposition (Schmidt, 1907),
which not only is mathematically convenient, but also
gives a deeper insight into correlations between the two
subsystems.1

According to the rules of quantum mechanics the
state vector of a composite system, consisting of sub-
systems U and V , is represented by a vector belonging

1In the context of quantum theory see Everett (1957; 1973, p.
3). A graduate-level textbook by Peres (1993, Chap. 5) in-
cludes a brief description of the Schmidt decomposition.
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to the tensor product of the two Hilbert spaces HU
^ HV . The general state of this system can be written as
a linear superposition of products of individual states:

uC&5(
n

(
m

cnmuun&uvm&, (11)

where $uun&%n51
N and $uvm&%m51

N are the orthonormal ba-
sis of the subsystems U and V , respectively, whose di-
mensions are dimU5N and dimV5M . This state can
always be written in the so-called Schmidt form:

uC&5(
n

gnuun8&uvn8&, (12)

where uun8& and uvn8& are orthonormal bases for U and V ,
respectively. Note that in this form the correlations be-
tween the two subsystems are fully displayed. If U is
found in the state uu28& , for example, then the state of V
is uv28&. This is clearly a multistate generalization of the
Einstein-Podolsky-Rosen state mentioned earlier.

I shall now prove this assertion by showing how to
derive Eq. (12) from Eq. (11). To that end, let us assume
that M.N , which in no way affects our line of argument
since the procedure is symmetric with respect to the sub-
systems. Then we have the following five steps.

(1) First we construct a density matrix describing uC&
5(n(mcnmuun&uvm& . Once the density matrix is
known, all the properties of the system can be de-
duced from it. Moreover, ensembles that are pre-
pared differently but have the same density matrix
are statistically indistinguishable and therefore
equivalent. Generally, if we have a mixed state in-
volving vectors uC1&,uC2&, . . . ,uCD& with correspond-
ing classical probabilities w1 ,w2 ,. . . ,w3 , then the
density matrix is defined to be

r5(
d51

D

wduCd&^Cdu.

Since in our case uC& is a pure state, the density
matrix is a projection operator onto uC&, i.e.,

r5uC&^Cu5(
nm

(
pq

rnmpquun&^upu^uvm&^vqu ,

where rnmpq5cnmcpq* . If, however, we wish to deal
with only one of the subsystems, then we employ the
concept of the reduced density matrix.

(2) We find the reduced density matrix of the subsystem
U , obtained by tracing r over all states of the sub-
system V , so that

rU5(
q

^vquruvq&5(
nm

(
p

rnmpmuun&^upu.

Note that the partial trace (or the trace itself) does
not depend on the choice of basis. Partial tracing is
analogous to finding marginal probability distribu-
tions from a joint probability distribution in classical
probability theory. The crucial step in the Schmidt
decomposition is diagonalizing the above. I shall call
the eigenvalues of rU ug1u2,ug2u2,. . . ,ugNu2, and the
corresponding eigenvectors uu18&,uu28& , . . . ,uuN8 &.
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(3) We then reexpress the above in terms of uu8&’s, i.e.,

uC&5(
n

(
m

cnm8 uun8&uvm&.

(4) Now we construct a new orthonormal basis of the
subsystem V such that each new vector is a ‘‘clever’’
linear superposition of the old ones, so that

uvi8&5(
m

cim8

gi
uvm&.

The matrix given by the coefficients cim8 /gi is unitary,
which is why the new basis is orthonormal.

(5) The Schmidt decomposition of uC& is now given by

uC&5(
n

gnuun8&uvn8&.

There are two important observations to be made,
which are fundamental to understanding the correlation
between two subsystems in a joint pure state.

• The reduced density matrices of both subsystems,
written in the Schmidt basis, are diagonal and have
the same positive spectrum. In particular, the overall
density matrix is given by

r5(
nm

gngm* uun8&^um8 u^uvn8&^vm8 u

whereas the reduced ones are

rU5(
m

^vm8 uruvm8 &5(
n

ugnu2uun8&^un8u,

rV5(
n

^un8uruun8&5(
m

ugmu2uvm8 &^vm8 u.

• If a subsystem is N dimensional it can then be en-
tangled with no more than N orthogonal states of an-
other one.

I should like to point out that the Schmidt decompo-
sition is, in general, impossible for more than two en-
tangled subsystems. To clarify this, consider three en-
tangled subsystems as an example. Here our intention
would be to write a general state such that by observing
the state of one of the subsystems we could instanta-
neously and with certainty know the state of the other
two. But this is impossible in general, for the presence of
the third system makes the prediction uncertain.
Loosely speaking, while we know the state of one of the
subsystems, the other two might still be entangled and
cannot have definite vectors associated with them [an
exception to this general rule is, for example, a state of
the Greenberger-Horne-Zeilinger type (1/&)(u↑&u↑&u↑&
1u↓&u↓&u↓&)]. Clearly, involvement of even more sub-
systems complicates this analysis even further and pro-
duces, so to speak, an even greater mixture and uncer-
tainty. The same reasoning applies to mixed states of
two or more subsystems (i.e., states whose density op-
erator is not idempotent r2Þr), for which we cannot
have the Schmidt decomposition in general. This reason
alone is responsible for the fact that the entanglement of
two subsystems in a pure state is simple to understand
Rev. Mod. Phys., Vol. 74, No. 1, January 2002
and quantify, while for mixed states, or states consisting
of more than two subsystems, the question is much more
involved.

Let us now consider the way in which quantum sys-
tems evolve. An isolated system, of course, follows a
unitary dynamics generated by Schrödinger’s equation
(nonrelativistic). This evolution is fully reversible (mani-
festing itself in the fact that the quantum entropy does
not increase during this process, as we shall see below).
However, we know that most of the processes in Nature
are irreversible (think of spontaneous emission and the
nonexistence of its reverse, ‘‘spontaneous absorption’’).
These processes are nonunitary and arise from the inter-
action of the system with the environment; thus the sys-
tem is no longer closed. Mathematically, the evolution of
a quantum state is then most generally of the form
(Davies, 1976)

r85(
a

AarAa
† , (13)

where, because of the conservation of probability, or,
more precisely, trace preservation, (aAa

† Aa51. The
above map is the most general completely positive
(trace-preserving) linear map (CP map; Choi, 1975).
Positivity means that density matrices are mapped into
density matrices (strictly speaking, positive operators
are mapped onto positive operators). To define ‘‘com-
plete,’’ we first need to introduce the idea of an ex-
tended state. By extension of a state I mean any state on
a larger Hilbert space that reduces itself to the original
state when the extended part is traced out. In turn, com-
pleteness means that any extension of the density matrix
is also mapped into a density matrix. To clarify this I
shall present a few examples of CP maps.

• Projectors are Hermitian idempotent operators (P†

5P and P25P) and the evolution of the form r
→( iPirPi is a CP map;

• Addition of another system to r is also a CP map, r
→r ^ r1 ;

• Let Ei>0 and ( iEi5I . Then r→pkªTr(rEk) is a
CP map that generates a probability distribution from
a density matrix.

• Unitary evolution is a special case of a CP map, where
only one operator is present in the sum, i.e., UrU†.

I leave it for the reader to show that the above CP maps
can indeed be written in the form of Eq. (13). We shall
see other examples in the next subsection.

Remarkably not all positive maps are completely posi-
tive, transposition being a well-known example. Positiv-
ity of transposition follows from the fact that for any
state r, its transposition rT>0. However, a counterex-
ample to completeness comes from, for example, a sin-
glet state of two subsystems A and B . Namely, if we
transpose only A (or B), then the resulting operator is
not positive (so that it is not a physical state), i.e., rAB

TA

,0. Confirmation of this is left as an exercise.
The reader might wonder what the physical imple-

mentation of the canonical form (aAarAa
† is. I shall
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now introduce another kind of CP map that will explain
its physical importance and will be crucial for the rest of
the review. Loosely stated, any CP map can be repre-
sented as a unitary transformation on a higher Hilbert
space (see Fig. 3). That is, from Schmidt decomposition
we know that a density matrix can be represented as a
‘‘reduction’’ of a state in an enlarged Hilbert space. Sup-
pose that rPH and that rEPH^ Ha is an ‘‘extension’’ of
the state r such that TrarE5r . Then a CP map s
5F(r) can be represented as

r→rE→UrEU†→Tra~UrEU†!5s . (14)

Here we have first ‘‘lifted’’ r to rE , then evolved rE
unitarily into UrEU†, which, after tracing over the
Hilbert-space extension (i.e., lowering), yields the final
state s as in Fig. 3. The fact that for any CP map there
exists a unitary operator U that will execute this map on
some higher Hilbert space is guaranteed by a theorem
proved independently by Kraus (1983) and Ozawa
(1984; see Schumacher, 1996 for a modern presentation).
I shall now present only a plausibility argument for this
correspondence. Let rE5r ^ u0&^0ua where u0&^0ua
PHa . Then

s5Tra~Ur ^ u0&^0uaU†!5(
i

^iuaUr ^ u0&^0uaU†ui&a

5(
i

^iuUu0&r^0uU†ui&,

which has the same form as Eq. (13) providing that we
define Aiª^iuUu0&. Thus, given a unitary evolution on
the extended Hilbert space, we can always find corre-
sponding positive operators that describe the evolution
of the original system. Note that the choice of the op-
erators is not unique.

Finally, I should like to discuss another frequently
used concept that is in some sense derived from the no-
tion of the CP map. It can be loosely stated that the CP
map represents the evolution of a quantum system when
we do not update the knowledge of its state based on the

FIG. 3. Completely positive trace-preserving map. The most
general evolution in quantum mechanics is represented by a
completely positive trace-preserving map (CP map). This fig-
ure shows two equivalent forms for such a map: (a) the canoni-
cal form A(•)A†; (b) the extension to a larger Hilbert space
HE and an appropriate unitary transformation therein. The
connection is explained in the text.
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particular measurement outcome. This is why we have a
summation over all measurements in Eq. (13). If, on the
other hand, we know that the outcome corresponding to
the operator Aj

†Aj occurs, then the state of the system
immediately afterwards is given by AjrAj

†/tr(Aj
†Ajr).

This type of measurement is the most general one and is
commonly referred to as the positive operator valued
measure (POVM). It is positive because operators of the
form A†A are always positive for any operator A and
taking the trace of it together with any density matrix
generates a positive number (i.e., a probability for that
particular measurement outcome). For a more detailed
overview of POVM’s see Peres (1993). The concept of
the POVM will play a significant role when defining the
quantum relative entropy in the next subsection.

E. Quantum relative entropy

When two subsystems become entangled, the compos-
ite state can be expressed as a superposition of the prod-
ucts of the corresponding Schmidt basis vectors. From
Eq. (12) it follows that the ith vector of either subsystem
has a probability of ugiu2 associated with it. We are,
therefore, uncertain about the state of each subsystem,
the uncertainty being larger if the probabilities are
evenly distributed. Since the uncertainty in the probabil-
ity distribution is naturally described by the Shannon
entropy, this classical measure can also be applied in
quantum theory. In an entangled system this entropy is
related to a single observable. The general state of a
quantum system, as I have already remarked, is de-
scribed by its density matrix r. If A is an observable
pertaining to the system described by r, then by the
spectral decomposition theorem A5( iaiPi , where Pi is
the projection onto the state with the eigenvalue ai . The
probability of obtaining the eigenvalue aj is given by
pj5Tr(rPj)5Tr(Pjr). The uncertainty in a given ob-
servable can now be expressed through the Shannon en-
tropy. Let the observables A and B , pertaining to the
subsystems U and V , respectively, have a discrete, non-
degenerate spectrum, with corresponding probabilities
p(ai) and p(bj) of observables A being ai and B being
bj . In addition, let the joint probability be p(ai ,bj).
Then

S~A !52(
i

p~ai!ln p~ai! (15)

52(
ij

p~ai ,bj!ln (
j

p~ai ,bj!, (16)

S~B !52(
j

p~bj!ln p~bj! (17)

52(
ij

p~ai ,bj!ln (
i

p~ai ,bj!, (18)

S~A ,B !52(
ij

p~ai ,bj!ln p~ai ,bj!, (19)
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where I have used the fact that ( jp(ai ,bj)5p(ai) and
( ip(ai ,bj)5p(bj). We have seen that a signature of
correlation is that the sum of the uncertainties in the
individual subsystems is greater than the uncertainty in
the total state. Hence, the Shannon mutual information
is a good indicator of how much the two given observ-
ables are correlated. However, this quantity, as it is in-
herently classical, describes the correlations between
single observables only. The quantity that is related to
the correlations in the overall state as a whole is the von
Neumann mutual information. Since it is assigned to the
state as a whole, it is of little surprise that it depends on
the density matrix. First, however, I define the von Neu-
mann entropy (von Neumann, 1932), which can be con-
sidered as the proper quantum analog of the Shannon
entropy (Wehrl, 1978; Ohya and Petz, 1993; Ingarden
et al., 1997).

Definition. The von Neumann entropy of a quantum
system described by a density matrix r is defined as

SN~r!ª2Tr~r ln r! (20)

(I shall drop the subscript N whenever there is no pos-
sibility of confusion). The Shannon entropy is equal to
the von Neumann entropy only when it describes the
uncertainties in the values of the observables that com-
mute with the density matrix, i.e., the Schmidt observ-
ables. Otherwise

S~A !>SN~r!,

where A is any observable of a system described by r.
This means that there is more uncertainty in a single
observable than in the whole of the state, a fact that
entirely contradicts our expectations.

I now discuss a relation concerning the entropies of
two subsystems. One part of it is somewhat analogous to
its classical counterpart, but instead of referring to ob-
servables it is related to the two states. This inequality is
called the Araki-Lieb inequality (Araki and Lieb, 1970)
and is one of the most important results in the quantum
theory of correlations. Let rA and rB be the reduced
density matrices of subsystems A and B , respectively,
and let r be the matrix of a composite system; then

SN~rA!1SN~rB!>SN~r!>uSN~rA!2SN~rB!u.

Physically, the left-hand side implies that we have more
information (less uncertainty) in an entangled state than
if the two states are treated separately. This arises natu-
rally, since by treating the subsystems separately we
have neglected the correlations (entanglement). We
note that if the composite system is in a pure state, then
S(r)50, and from the right-hand side it follows that
S(rA)5S(rB) [cf. Schmidt decomposition Eq. (12)]. To
appreciate the extent to which this is a counterintuitive
result, consider the following example. Suppose a two-
level atom is interacting with a single mode of an elec-
tromagnetic field as in the Jaynes-Cummings model
(Jaynes and Cummings, 1963). If the overall state is ini-
tially pure, and the whole system is isolated, then the
entropies of the atom and the field are equally uncertain
at all times. This is not expected, since the atom has only
Rev. Mod. Phys., Vol. 74, No. 1, January 2002
two degrees of freedom and the field infinitely many.
However, it is so, as, by the second observation, the
atom, as a two-dimensional subsystem, is entangled with
only two dimensions of the field.

I present without proofs two important properties of
entropy that will be used in later sections (Wehrl, 1978).
These are

~1! additivity: SN~rA ^ rB!5SN~rA!1SN~rB!;
(21)

~2! concavity: SNS (
i

l ir iD>(
i

l iSN~r i!. (22)

The first property is the same as in classical information
theory, namely, the entropies of independent systems
add up. The concavity simply reflects the fact that mix-
ing increases uncertainty.

Following the definition of the Shannon mutual infor-
mation, I introduce the von Neumann mutual informa-
tion, which refers to the correlation between whole sub-
systems rather than that relating only two observables.

Definition. The von Neumann mutual information be-
tween two subsystems rU and rV of a joint state rUV is
defined as

IN~rU :rV ;rUV!5SN~rU!1SN~rV!2SN~rUV!. (23)

As in the case of the Shannon mutual information this
quantity can be interpreted as a distance between two
quantum states. For this we first need to define the von
Neumann relative entropy, in a direct analogy with the
Shannon relative entropy [in fact, this quantity was first
considered by Umegaki (1962), but for consistency rea-
sons I name it after von Neumann; I shall also refer to it
as the quantum relative entropy].

Definition. The von Neumann relative entropy be-
tween the two states s and r is defined as

SN~sir!5Trs~ ln s2ln r!. (24)

This measure also has the same statistical interpretation
as its classical analog: it tells us how difficult it is to
distinguish the state s from the state r (Hiai and Petz,
1991). To that end, suppose we have two states s and r.
How can we distinguish them? We can choose a POVM
( i51

M Ai51 that generates two distributions via

pi5trAis , (25)

qi5trAir , (26)

and use classical reasoning to distinguish these two dis-
tributions. However, the choice of POVM is not unique.
It is therefore best to choose that POVM which distin-
guishes the distributions most, i.e., for which the classi-
cal relative entropy is largest. Thus we arrive at the fol-
lowing quantity:

S1~sir!ªsupA’sH(
i

trAis ln trAis2trAis ln trAirJ ,

where the supremum is taken over all POVM’s. The
above is not the most general measurement that we can
make, however. In general we have N copies of s and r
in the state
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(27)

(28)

We may now apply a POVM ( iAi51 acting on sN and
rN. Consequently we define a new type of relative en-
tropy,

SN~sir!ªsupA’sH 1
N (

i
trAis

N ln trAis
N

2trAis
N ln trAir

NJ . (29)

Now it can be shown that (Donald, 1986, 1987)

S~sir!>SN , (30)

where S(sir) is the quantum relative entropy. (This re-
ally is a consequence of the fact that the relative entropy
does not increase under general CP maps, a fact that will
be proven later in this subsection.) Equality is achieved
in Eq. (30) if and only if s and r commute (Fuchs, 1996).
However, for any s and r it is true that (Hiai and Petz,
1991)

S~sir!5 lim
N→`

SN .

In fact, this limit can be achieved by projective measure-
ments that are independent of s (Hayashi, 2001). From
these considerations it would naturally follow that the
probability of confusing two quantum states s and r (af-
ter performing N measurements on r) is (for large N)

PN~r→s!5e2NS(sir). (31)

We should like to stress here that classical statistical rea-
soning applied to distinguishing quantum states leads to
the above formula. There are, however, other ap-
proaches. Some take Eq. (31) for their starting point and
then derive the rest of the formalism thenceforth (Hiai
and Petz, 1991). Others assume a set of axioms that must
be satisfied by the quantum analog of the relative en-
tropy (for example, it should reduce to the classical rela-
tive entropy if the density operators commute, i.e., if
they are classical) and then derive Eq. (31) as a conse-
quence (Donald, 1986, 1987). In any case, as I have ar-
gued here, there is strong reason to believe that the
quantum relative entropy S(sir) plays the same role in
quantum statistics as the classical relative entropy plays
in classical statistics (see also the review by Schumacher
and Westmoreland, 2000).

The von Neumann mutual information can now be
understood as the distance of the state rUV from the
uncorrelated state rU ^ rV ,

IN~rU :rV ;rUV!5SN~rUVirU ^ rV!.

The quantum relative entropy will be the most impor-
tant quantity in classifying and quantifying quantum cor-
relations. It will be seen that this quantity does not in-
crease under CP maps, which are quantum analogs of
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the stochastic processes. I list three properties of the
relative entropy without proof.

(F1) Unitary operations leave S(sir) invariant, i.e.,
S(sir)5S(UsU†iUrU†). Unitary transformations
represent a change of basis (i.e., a change in our ‘‘per-
spective’’) and the distance between two states should
not (and does not in this case) change under this.

(F2) S(TrpsiTrpr)<S(sir), where Trp is a partial
trace. Tracing over a part of the system leads to a loss of
information. The less information we have about two
states, the harder they are to distinguish, which is what
this inequality says. (This property is closely related to
the strong subadditivity of relative entropy as shown in
Lieb and Ruskai, 1973; see also a more recent proof by
Lesniewski and Ruskai, 1999.)

(F3) The relative entropy is additive S(s1 ^ s2ir1
^ r2)5S(s1ir1)1S(s2ir2). This inequality is a conse-
quence of the additivity of entropy itself.

These properties of relative entropy have profound im-
plications for the evolution of quantum systems, as I
now show.

Quantum distinguishability never increases. For any
completely positive, trace-preserving map F, given by
Fs5(VisVi

† and (Vi
†Vi51, we have S(FsiFr)

<S(sir).
I shall first present a physical argument as to why we

should expect this theorem to hold. As I have discussed,
a CP map can be represented as a unitary transforma-
tion on an extended Hilbert space. According to (F1),
unitary transformations do not change the relative en-
tropy between two states. However, after this, we have
to perform a partial tracing to go back to the original
Hilbert space, which, according to (F2), decreases the
relative entropy as some information is invariably lost
during this operation. Hence the relative entropy de-
creases under any CP map. I now formalize this proof.

Proof. I have discussed the fact that a CP map can
always be represented as a unitary operation1partial
tracing on an extended Hilbert space H^ Hn , where
dim Hn5n (Lindblad, 1974, 1975). Let $ui&% be an ortho-
normal basis in Hn and ua& be a unit vector. I define

W5(
i

Vi ^ ui&^au. (32)

Then W†W51 ^ Pa , where Pa5ua&^au, and there is a
unitary operator U in H^ Hn such that W5U(1 ^ Pa)
(Reed and Simon, 1980). Consequently

U~A ^ Pa!U†5(
ij

ViAVj
†

^ ui&^ju, (33)

so that

Tr2$U~A ^ Pa!U†%5(
i

ViAVi
† .

This shows that the unitary and ( iVirVi
† representa-

tions are equivalent. Now using properties (F2), then
(F1), and finally (F3) we find
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S@Tr2$U~s ^ Pa!U†%iTr2$U~r ^ Pa!U†%#

<S@U~s ^ Pa!U†iU~r ^ Pa!U†#

5S~s ^ Pair ^ Pa!5S~sir!. (34)

This proves the result. j
Corollary. Since for a complete set of orthonormal

projectors P , ( iPisPi is a CP map, then

(
i

S~PisPiiPirPi!<S~sir!. (35)

[The sum can be taken outside as it can be easily shown
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that S(( iPisPii( iPirPi)5( iS(PisPiiPirPi).] Now
from (F1), (F2), (F3), and Eq. (35) we have the follow-
ing theorem.

Theorem 5. If s i5VisVi
† then (S(s iir i)<S(sir),

where r i5VirVi
†/tr(VirVi

†).
Proof. Equations (32) and (33) are introduced as in

the previous proof. From Eq. (33) we have

Tr2$1 ^ PiU~A ^ Pa!U†1 ^ Pi%5ViAVi
† ,

where Pi5ui&^iu. Now, from (F2), the Corollary, and
(F3) it follows that
(
i

S@Tr2$1 ^ PiU~s ^ Pa!U†1 ^ Pi%iTr2$1 ^ PiU~r ^ Pa!U†1 ^ Pi%#

<(
i

S@1 ^ PiU~s ^ Pa!U†1 ^ Pii1 ^ PiU~r ^ Pa!U†1 ^ Pi#

<S@U~s ^ Pa!U†iU~r ^ Pa!U†#5S~s ^ Pair ^ Pa!5S~sir!. (36)
This proves theorem 5. j

This theorem will be important in the next section. A
simple consequence of the fact that the quantum relative
entropy itself does not increase under CP maps is that
correlations (as measured by the quantum mutual infor-
mation) also cannot increase, but this is now true under
local CP maps.

Correlations cannot increase without interaction. Cor-
relations, as measured by the von Neumann mutual in-
formation, do not increase during local complete mea-
surements carried out on two entangled quantum
systems.

The Shannon mutual information, although having
this desired property, does not distinguish between
quantum and classical correlations (rather, it measures
total correlations). In order to distinguish between
quantum and classical, we shall have to introduce the
possibility of classical communication between A and B .
This will allow classical correlations to increase while
leaving quantum correlations intact, as will be seen in
the following section. Now let us put the theory devel-
oped so far to practical use in communication.

Digression on the second law of thermodynamics. The
second law of thermodynamics states that the entropy of
an isolated system never decreases. This does not follow
directly from the inability of the quantum relative en-
tropy to increase under CP maps. Strictly speaking, an
isolated system in quantum mechanics evolves unitarily
and therefore its entropy never changes. Under CP
maps, however, the entropy can both increase and de-
crease. If, however, the state r is maximally mixed—I/n
for example—then the quantum relative entropy is given
by

S~sir!5lnn2S~s!. (37)
If in addition the evolution is such that I/n is the equi-
librium state, then the monotonic decrease in the quan-
tum relative entropy implies a monotonic increase in
S(s), just as in the second law of thermodynamics. Oth-
erwise the entropy itself could both increase and de-
crease. A detailed discussion of the statistical founda-
tions of the second law can be found in Tollman’s classic
work, The Principles of Statistical Mechanics (Tolman,
1938).

III. QUANTUM COMMUNICATION: CLASSICAL USE

The central objective of communication theory is to
allow a person, often referred to as Alice, to communi-
cate accurately with another person, called Bob, even in
the presence of noise. Alice encodes her message into a
number of different (distinguishable) states, with each
state representing a different symbol in the message. For
example, Alice encodes the bit value 1 into the excited
state of a two-level atom and sends this atom to Bob. On
its way to Bob the atom may transform into its ground
state due to either stimulated or spontaneous emission,
thereby giving Bob the impression that Alice transmit-
ted 0. This unwanted state transition is a form of channel
noise.

The key question is: what is the largest amount of
information (per symbol) that Alice can send to Bob,
i.e., what is the capacity of the communication channel
taking into account any possible noise? In classical infor-
mation theory the capacity for communication is given
by the mutual information between Alice’s sent message
and Bob’s received message (Shannon and Weaver,
1949). This is intuitively clear, since mutual information
quantifies correlations between sent and received mes-
sages and it thus tells us how faithful the transmission is.
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If we use quantum states to encode symbols, then the
capacity is not given by the quantum mutual information
introduced earlier. We derive a new quantity for this
purpose called the Holevo bound (Holevo, 1973; for the
continuous case see Yuen and Ozawa, 1993). The benefit
of performing the full quantum derivation is that this is a
more fundamental approach to information processing.
We can then deduce the classical capacity as a special
case.

A. The Holevo bound

A quantum communication channel consists of a num-
ber N of quantum systems prepared in states
r1 ,r2 , . . . ,rN and whatever physical medium is used to
send the states from Alice to Bob. These states encode
N different symbols with certain a priori probabilities,
p1 ,p2 , . . . ,pN . Bob then performs a set of measure-
ments to determine the correct sequence of states com-
prising Alice’s symbols, which he can then use to recon-
struct the entire message (Ingarden, 1976). If the states
suffer no error on the way to Bob, then the channel is
called noiseless; otherwise it is called noisy. I consider
only the capacity of a noiseless quantum communication
channel, since the generalization to a noisy channel is
straightforward.

Let S(r)52Trr ln r be the standard von Neumann
entropy of a density matrix r. The capacity of a quantum
communication channel is then defined as

Cªmax
$p%

C~$p%,r!,

where

C~$p%,r!5SS (
i

pir iD 2(
i

piS~r i! (38)

is the Holevo bound. Note that the above can be ex-
pressed succinctly as

C~$p%,r!5(
i

piS~r iir!, (39)

where S(i) is the von Neumann relative entropy and r
5( ipir i . When there is no possibility of confusion I
write C($p%,r)[C($p%). The reader may ask why we
need to maximize symbol probabilities in order to com-
pute the capacity. This is because the channel can be
used with different input probabilities and the capacity
represents the maximum that can be communicated us-
ing this channel.

To see the physical motivation behind this quantity
consider N states r1 , . . . ,rN sent by Alice to Bob ac-
cording to probabilities p1 , . . . ,pN , respectively. Bob
now performs a set of complete measurements POVM
( iEi5I , where Ei>0, in order to determine which state
was sent to him (a complete measurement is like a CP
map, but one in which we record each of the outcomes).
The accessible information to Bob is given by the mutual
information between his measurement and r1 , . . . ,rN
(Holevo, 1973; Davies, 1976). This quantity tells us how
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well Bob’s measurement can distinguish between the
message states and is given by

I~E :r!5H(
i

2Tr~rEi!ln@Tr~rEi!#

1(
j

pjTr~r jEi!ln@Tr~r jEi!#J .

The rationale behind this expression is that the uncer-
tainty in the message before any measurement is per-
formed is given by the first term, and the second term
represents the uncertainty after the measurement has
identified (partially in general) the message states. The
Holevo bound is an upper bound to the above accessible
information, i.e.,

SS (
i

pir iD 2(
i

piS~r i!>max
E

I~E :r!. (40)

This equality is saturated if and only if @r i ,r j#50 for all
i and j . Therefore, since the Holevo bound is an upper
bound to accessible information that Bob can gain about
Alice’s message, we identify its maximum over all pos-
sible initial probabilities with the classical capacity of a
quantum channel.

The Holevo bound has an even more suggestive form:
the uncertainty in the initial message is S(r), but after
the states are correctly identified the average uncer-
tainty is ( ipiS(r i). The difference between these two
quantities when maximized over all pis is the classical
communication capacity of a quantum channel. Note
that one of the most profound implications of the
Holevo bound is that a quantum bit cannot store more
information than a classical bit. In spite of this limita-
tion, quantum information processing is more efficient
than its classical analog. This is due to the different na-
ture of information encoding, which is reflected in the
existence of superpositions of different states as well as
entanglement between different qubits (see also the sec-
tion on dense coding).

Proof of the Holevo bound in Eq. (40). The Holevo
bound is a direct consequence of the fact that the quan-
tum relative entropy does not increase under CP maps
as in theorem 1. [Note that Holevo’s original proof is
much more complicated and does not involve using the
quantum relative entropy. Here I follow Yuen and
Ozawa in spirit (1993); for an alternative proof see King
and Ruskai, 2001.] One such map is

t~A !5
1
n

Tr~A !,

where A is any n3n positive matrix. This leads to the
Peierls-Bogoliubov inequality (Bhatia, 1997);

t~A !@ ln t~A !2ln t~B !#<t~A ln A2A ln B !. (41)

To prove the Holevo bound I first use that fact that
(theorem 5)

S~r iir!>(
j

S~Ajr iAj
†iAjrAj

†!.
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The Peierls-Bogoliubov inequality now implies that

S~Ajr iAj
†iAjrAj

†!>Tr~Ajr iAj
†!$ln@Tr~Ajr iAj

†!#

2ln@Tr~AjrAj
†!#%

5p~ jui !@ ln p~ jui !2ln p~ j !# ,

where p(jui)5Tr$Ajr iAj
†% is the conditional probability

that the message r i will lead to the outcome Ej5Aj
†Aj

and p(j)5( ip(jui). Thus we now have

S~r iir!>(
j

p~ jui !@ ln p~ jui !2ln p~ j !# .

Multiplying both sides by the (positive) pi and summing
over all i leads to the Holevo bound. j

Since Holevo’s result is one of the key results in quan-
tum information theory, I present another simple way of
understanding it via the quantum mutual information.
This, of course, is only an additional motivation for the
Holevo bound and by no means proves its validity.
Namely, if Alice encodes the symbol (sym) i into the
state (st) r i , then the total state (sym1st) is

rsym1st5(
i

piui&^iu ^ r i ,

where the kets ui& are orthogonal (we can think of these
as representing different states of consciousness of Al-
ice!). Bob now wants to learn about the symbols by dis-
tinguishing the states r i . He cannot learn more about
the symbols than is already stored in the correlations
between the symbols and the message states. This as we
know is given by the quantum mutual information

I~rsym1st!5S~sym!1S~st!2S~sym1st!

5SS (
i

pir iD 2(
i

piS~r i!, (42)

which is the same as the Holevo bound.
I would now like to derive the capacity of a classical

communication channel from the Holevo bound. I fol-
low the reasoning of Gorden (1964), who was, in fact,
the first person to conjecture the Holevo bound. As I
mentioned earlier, the Holevo bound itself contains the
classical capacity of a classical channel as a special case.
This, as we might expect, happens when all r i’s are di-
agonal in the same basis, i.e., they commute (classically
all the states and observables commute because they can
be simultaneously specified and measured, which is in
contrast with quantum mechanics). Therefore density
matrices are reduced to classical probability distribu-
tions. Let us call this basis the B representation, with
orthonormal eigenvectors ub&. Then the probability that
the measurement of the symbol represented by r i will
yield the value b is just ^bur iub&. I call this the condi-
tional probability, pi(b), that if r i was sent the result b
was obtained. Now the Holevo bound is

C5S~r!2(
i

piS~r i!5S~r!2SB~r i!,

where SB(r i) is the conditional entropy given by
Rev. Mod. Phys., Vol. 74, No. 1, January 2002
SB~r i!5(
i

pi(
b

^bur iub&ln^bur iub&5(
i

piS~r i!.

Thus the Holevo bound reduces itself to the Shannon
mutual information between the commuting messages
and the measurement in the B representation.

The usual rule of thumb for obtaining quantum
information-theoretic quantities from their classical
counterparts is by convention

( →trace,

( p~a !→rA ,

so that, for example, the Shannon entropy S@p(a)#
52( ip(ai)ln p(ai) now becomes the von Neumann en-
tropy S(rA)52TrrAlnrA .

Example. As the first application of the Holevo bound
I shall compute the channel capacity of a bosonic field,
e.g., an electromagnetic field (for an excellent review,
see Caves and Drummond, 1994). The message informa-
tion will now be encoded into modes of frequency v and
average photon number m̄(v). The signal power is as-
sumed to be S . The noise in the channel is quantified by
the average number of excitations n̄(v) and is assumed
to be independent of the signal (i.e., the power of signal
and noise is additive). We saw that when there is no
noise in the channel the Holevo bound is equal to the
entropy of the average signal. In order to compute the
capacity we need to maximize this entropy with the con-
straint that the total power (or energy) is fixed. It is well
known that thermal states are those that maximize the
entropy. We thus assume that both the noise and signal
1noise are in thermal equilibrium and follow the usual
Bose-Einstein statistics. The noise power is

N5
p~kT !2

12\
.

The power of the output of the channel (signal1noise)
is

P5S1N5
p~kTe!2

12\
,

where Te is the equilibrium temperature of signal
1noise. Therefore it follows that

Te5~12\S/pk21T2!1/2.

The state of the noise in the mode v is

rN~v!5(
n

12e2\v/kT

en̄(v)\v/kT un&^nu,

while the state of the output is

rN1S~v!5(
n

12e2\v/kTe

en̄(v)\v/kTe
un&^nu.

The capacity of the channel is given by the Holevo
bound, which is
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C5E
2`

`

$S@rS1N~v!#2S@rN~v!#%dv

5
pkT

6\ln2
$@12\S/p~kT !211#1/221%. (43)

The integration is there to take into account all the
modes of the field. Let us look at the two extreme limits
of this capacity. In the high-temperature limit we obtain
the classical capacity

CC5
S

kT ln 2
, (44)

a result derived by Shannon and Weaver (1949). This
states that in order to communicate one bit of informa-
tion with this setup we need exactly kT ln 2 amount of
energy. In the low-temperature limit, on the other hand,
quantum effects become important and the capacity be-
comes independent of T :

CQ5
Ap

ln 2 H S

\J 1/2

, (45)

a result which was derived by Stern (1960), Lebedev and
Levitin (1963), Gordon (1964), and Yamamoto and
Haus (1986), among others. Note also the appearance of
Planck’s constant, which is a key feature of quantum me-
chanics. If we wish to communicate one bit of informa-
tion in this limit we need only \/p(ln 2);10234 J of en-
ergy. This is significantly less than the corresponding
energy in the classical limit. Let us now compare the
classical and quantum capacity limits to the total energy
of N harmonic oscillators (bosons) in the same two lim-
its. In the high-temperature limit the equipartition theo-
rem is applicable and the total energy is 3NkT (i.e., it
depends on temperature). In the low-temperature limit
all the harmonic oscillators settle down to the ground
state so that the total energy becomes N\v/2 (i.e., it is
independent of temperature and we see the quantum
dependence through Planck’s constant \).

B. Schumacher’s compression

The optimal communication through a noiseless chan-
nel using pure states is equivalent to data compression.
We saw in Eq. (3) that the limit to the classical data
compression is given by the entropy of the data’s prob-
ability distribution. We would thus guess that the limit to
quantum data compression is given by the von Neumann
entropy of the set of states being compressed. This, in
fact, turns out to be a correct guess, as was first proven
by Schumacher (1995). So, Alice now encodes letters of
her classical message into pure quantum states and
sends these to Bob. For example, if a→uca& and b
→ucb&, then Alice’s message aab will be sent to Bob as
the sequence of pure quantum states uca&uca&ucb& .

The exact problem can be phrased in the following
equivalent fashion: suppose a quantum source randomly
prepares different qubit states uc i& with the correspond-
ing probabilities pi . A random sequence of n such states
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is produced. By how much can this be compressed, i.e.,
how many qubits do we really need to encode the origi-
nal sequence (in the limit of large n)? First of all, the
total density matrix is

r5(
i

piuc i&^c iu.

This matrix can now be diagonalized as

r5(
i

r iuri&^riu,

where ri and uri& are the eigenvectors and eigenvalues.
This decomposition is, of course, indistinguishable from
the original one (or any other decomposition for that
matter). Thus we can think about compression in this
new basis, which is easier as it behaves completely clas-
sically (since ^riurj&5d ij). We can therefore invoke re-
sults from the previous section on classical typical se-
quences and conclude that the limit to compression is
n(2( ir i ln ri), i.e., n qubits can be encoded into nS(r)
qubits. No matter how the states are generated, as long
as the total state is described by the same density matrix
r its compression limit is its von Neumann entropy. This
protocol and result will be very important when we dis-
cuss entanglement measures in the following section.

Example. Suppose that Alice encodes her bit into
states uC0&5 cos(u/2)u0&1sin(u/2)u1& and uC1&
5sin(u/2)u0&1cos(u/2)u1& with p05p151/2 (see Fig. 4).
Classically it is not possible to compress a source that
generates 0 and 1 with equal probability. Quantum me-
chanically, however, compression can be achieved not
only by the nature of the probability distribution but
also due to the nonorthogonality of the states encoding
symbols of the message. In our example the overlap
between the two states is ^c0uc1&5sin u and they are
orthogonal only when u5p , in which case no compres-
sion is possible. Otherwise, the compression ratio is di-

FIG. 4. Two nonorthogonal states on the Bloch sphere that are
used to encode a message. The overlap between them is sin u;
the smaller the overlap, the more the total message can be
compressed. In terms of information, the less distinguishable
the states (i.e., the smaller the overlap), the less information
they carry.
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rectly proportional to the overlap between the states.
Suppose Alice’s messages are only three qubits long.
Then there are eight different possibilities,
uC0C0C0& , . . . ,uC1C1C1&, which are all equally likely
with 1/8 probability. In general these states will lie with a
high probability within a subspace of the eight-
dimensional Hilbert space. Let us call this likely sub-
space a ‘‘typical’’ subspace. Its orthogonal complement
will be unlikely and hence called an ‘‘atypical’’ subspace.
In order to find the typical and atypical subspaces we
need to diagonalize the average signal,

r5
1
2

~ uC0&^C0u1uC1&^C1u!.

Its diagonal form is

r5
1
2

~11sin u!u1&^1u1
1
2

~12sin u!u2&^2u,

where u6&5u0&6u1&. Now we look at the probabilities
that each of the eight messages will lie along the new
orthogonal basis u111&, . . . ,u222& of the Hilbert
space of three qubits:

u^111uc ^ 3&u25@cos~u/2!1sin~u/2!#6,

u^112uc ^ 3&u25@cos~u/2!1sin~u/2!#4

1@cos~u/2!2sin~u/2!#2,

u^122uc ^ 3&u25@cos~u/2!1sin~u/2!#2

1@cos~u/2!2sin~u/2!#4,

u^222uc ^ 3&u25@cos~u/2!2sin~u/2!#6,

where uc ^ 3& represents any three-qubit sequence of uc0&
and uc1&. In addition, all the probabilities for
u112&,u121& ,u211& are equal and so are the prob-
abilities for u122&,u221&,u212&. Thus the above
equation contains 64 probabilities in total. Suppose now
that cos(u/2);sin(u/2). Then we see that the states con-
taining two or more 1 become much more likely. This
means that the message states are much more likely to
be in this particular subspace. Therefore the compres-
sion would be as follows. First the source generates
three qubits in some state. Then we project this message
onto the typical subspace. If we are successful, this will
lie in that four-dimensional typical subspace for which
we need only two qubits rather than three. Otherwise,
our projection will fail and the message will end up in
the atypical subspace, in which case Alice does not com-
press it. The probability of ending up in the atypical
space asymptotically goes to zero (the law of large num-
bers). Therefore in this example the limit to our com-
pression is given by 2@1/2(11sin u)#ln@1/2(11sin u)#
2@1/2(12sin u)#ln@1/2(12sin u)#, which is of course the
von Neumann entropy of r. The number of dimensions
of the total Hilbert space’s typical subspace is likewise in
general equal to enS(r).

Interestingly, if instead of pure states a quantum
source generates mixed states r i with probabilities pi ,
then the best compression limit is in general unknown.
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We can, of course, use the above protocol to compress
the sequence to the von Neumann entropy of the aver-
age signal, S(( ipir i). However, in some cases it is
known that a better compression can be achieved. The
lower bound to compression is the Holevo bound,
S(( ipir i)2( ipiS(r i), but it is not known whether this
bound can in general be attained (see Horodecki, 1998).

Next we look at a protocol for classical communica-
tion that involves entanglement. At first sight this proto-
col seems to violate the Holevo bound on classical com-
munication, i.e., that it is possible to communicate only
one bit per single qubit. However, a closer inspection
will show that this is not the case.

C. Dense coding

Now let us consider the case of dense coding, which
was introduced by Bennett and Wiesner (1992). In this
protocol entanglement plays a crucial role, and this will
give us a first indication of the fact that entanglement
can be quantified like any other resource, such as energy,
for example. Alice and Bob initially share an entangled
pair of qubits in some state W0 , which may be mixed.
Alice then performs local unitary operations on her qu-
bit to put this shared pair of qubits into any of the states
W0 , W1 , W2 , or W3 . In general, Alice may use a com-
pletely arbitrary set of unitary operations to generate
these states:

Wi5Ui^ IW0Ui
†

^ I, (46)

and the number of generated states is completely arbi-
trary. In the above equation, Ui acts on Alice’s qubit and
I acts on Bob’s qubit. By sending her encoded qubit to
Bob, Alice is essentially communicating with Bob using
the states W0 , W1 , W2 , and W3 as separate letters. The
number of bits she can communicate to Bob using this
procedure is thus bounded by the Holevo bound. More-
over, if some block coding is done on a large enough
collection of qubits in addition to the dense coding, then
the number of bits of information communicated is
equal to the Holevo function. We shall thus take

C5S~r!2(
i

piS~r i!, (47)

assuming that any additional necessary block coding will
automatically be performed to supplement the dense
coding. This coding is essential in order to achieve the
capacity given by the Holevo bound in the asymptotic
limit. [The fact that the bound is achievable follows from
a complicated argument and cannot really be derived
using the arguments presented in this review. Hausladen
et al. (1996) have proved this for pure states, and Schu-
macher and Westmoreland (1997) and independently
Holevo (1998) have proved it for mixed states.] Exactly
the same assumption has been used by Hausladen et al.
(1996) to calculate the capacity for dense coding in the
case of pure letter states. Equations (46) and (47) define
the most general version of dense coding, and I shall
refer to this as completely general dense coding.
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A simpler example of dense coding is the case in
which the letter states are generated from the initial
shared state W0 by

W05I^ IW0I^ I, (48)

W15s1^ IW0s1^ I, (49)

W25s2^ IW0s2^ I, (50)

W35s3^ IW0s3^ I. (51)

In the above set of equations, the first operator of the
combination s i^ I acts on Alice’s qubit and the second
operator acts on Bob’s qubit. I shall refer to this case
[i.e., in which the letter states are generated by Eqs.
(48)–(51)] as simply general dense coding. The general-
ity present in general dense coding is that Alice is al-
lowed to prepare the different letter states with unequal
probabilities.

In the more special case in which Alice not only gen-
erates the four letter states according to Eqs. (48)–(51)
but also does so with equal probability, the ensemble is
given by

W5
1
4 (

i50

3

Wi (52)

and the capacity becomes

C5
1
4 (

i50

3

S~WiiW !. (53)

I shall call this simplest case special dense coding.
Among all the possible ways of doing general dense cod-
ing, special dense coding is the optimal way to commu-
nicate when W0 is a pure state (Bose, Plenio, and Ve-
dral, 2000) or a Bell diagonal state.

Now I derive the most general bound on completely
general dense coding (Bowen, 2001). Furthermore, this
bound can be attained by the same protocol as special
dense coding (Bowen, 2001). The proof is achieved by
first finding an upper bound to the capacity for com-
pletely general dense coding and then showing that spe-
cial dense coding actually saturates this bound. Suppose
that the initial state of Alice and Bob is rAB . Then we
have

C5max SS (
k

pk~Uk
^ I !rAB@~Uk!†

^ I# D
2(

k
pkS$~Uk

^ I !rAB@~Uk!†
^ I#%

5max S~rAB8 !2S~rAB!<S~rA8 !1S~rB8 !2S~rAB!

<11S~rB!2S~rAB!. (54)

Since this bound is achievable as shown by Bowen
(2001), the capacity for completely general dense coding
is given by Eq. (54).

I shall now restrict my attention to a calculation of C
for pure letter states. Consider the initial shared pure
state W0 to be
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uc0&5~au00&1bu11&). (55)

Then, according to Eqs. (48)–(51), the other letter states
are given by

uc1&5~au10&1bu01&), (56)

uc2&52i~au10&2bu01&), (57)

uc3&5~au00&2bu11&), (58)

from which we obtain Wi5uc i&^c iu. As all Wi are pure
states we have

S~Wi!50. (59)

Thus we have

C5S~W !. (60)

I shall consider only the case of special dense coding as
it is optimal. Thus the ensemble used is obtained from
Eq. (52) to be

W5
uau2

2
u00&^00u1

ubu2

2
u01&^01u1

uau2

2
u10&^10u

1
ubu2

2
u11&^11u.

Thus from Eq. (60) for the capacity C we get

C52S uau2 log
uau2

2
1ubu2 log

ubu2

2 D
512~ uau2 loguau21ubu2 logubu2!. (61)

[Note that this agrees with Eq. (54), as for pure states
the total entropy is zero.] This implies that a good mea-
sure of entanglement for a pure state of a system com-
posed of two subsystems A and B can be given by the
von Neumann entropy of the state of either of the sub-
systems. Let us call this measure the von Neumann en-
tropy of entanglement and label it by Ev (Bennett,
Bernstein, et al. 1996; Popescu and Rohrlich, 1997).
Thus

Ev~ uc&^cuA1B!5S@TrA~ uc&^cuA1B!# ,

FIG. 5. The dependence of capacity for dense coding for pure
states au00&1bu11& as a function of the Schmidt coefficient x
5uau2. When the state is disentangled, i.e., when either a50 or
b50, the capacity becomes 1 bit per qubit, the same as the
classical capacity.
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where TrA stands for partial trace over states of system
A. Therefore, for all the states Wi ,

Ev~Wi!52~ uau2 log uau21ubu2 log ubu2!.

Thus

C511Ev~Wi!

(see Fig. 5). We can prove that for pure states, special
dense coding (using all alphabet states with equal a pri-
ori probability) is the optimal way to communicate
among all possible ways of doing general dense coding
[i.e., when the letter states are generated by Eqs. (48)–
(51); Bose, Plenio, and Vedral, 2000]. It is important to
understand that the amount of entanglement determines
exactly how much information Alice can convey to Bob.
Note that if there is no entanglement shared between
them, then the amount of information is exactly one bit
per Alice’s qubit (which is what can be achieved classi-
cally after all). At the other extreme, when they share a
maximally entangled state, the amount of information is
two bits per Alice’s qubit. This is an amount that no
purely classical communication can achieve. However,
while the von Neumann entropy is a good measure of
entanglement for pure states (in fact, there are argu-
ments that it is unique for pure states; Popescu and
Rohrlich, 1997), it fails when we try to apply it to mixed
states. A possibility is to follow the logic of the pure-
state dense coding and call S(rB)2S(rAB) a measure of
entanglement for mixed states as in Eq. (54). This mea-
sure has been called the ‘‘coherent information’’ and is
used to describe information transmission through a
noisy quantum channel (Barnum et al., 1998). But is this
measure consistent with other natural requirements for
quantifying entanglement? This question will be ad-
dressed in the next section. Before this, we show that in
order to delete a certain amount of correlation we need
to increase the entropy of the environment by at least
this amount. This is known as Landauer’s erasure (Lan-
dauer, 1961; Toffoli, 1981; Bennett, 1988) and is seen to
be linked directly to the relative entropy.

D. Relative entropy, thermodynamics, and information
erasure

We have seen that communication essentially creates
correlations between the sender and the receiver. Creat-
ing correlations is therefore very important in order to
be able to convey any information. However, I should
now like to talk about the opposite process—deleting
correlations. Why would one want to do this? The rea-
son is that one might want to correlate one system with
another and might need to delete all its previous corre-
lations to be able to store new ones. I should like to give
a more physical statement of information erasure and
link it to the notion of measurement. I shall therefore
introduce two correlated parties—a system and an appa-
ratus. The apparatus will interact with the system,
thereby gaining a certain amount of information about it
(the full quantum description of this process will be pre-
sented in Sec. V). Suppose that the apparatus needs to
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measure another system. We first need to delete infor-
mation about the last system before we can make an-
other measurement. The most general way of conduct-
ing erasure (resetting) of the apparatus is by employing
a reservoir in thermal equilibrium at a certain tempera-
ture T . To erase the state of the apparatus we just throw
it into the reservoir and introduce a new pure state. The
entropy increase of the operation now consists of two
parts. First, the state of the apparatus evolves to the
state of the reservoir, and this entropy is added to the
reservoir’s entropy. Second, the rest of the reservoir
changes its entropy due to this interaction, which is the
difference in the apparatus’s internal energy before and
after the resetting (no work is done in this process). This
quantum approach to equilibrium was also studied by
Partovi (1989). A good model is obtained by imagining
that the reservoir consists of a great number of systems
(of the same ‘‘size’’ as the apparatus) all in the same
quantum equilibrium state v. Then the apparatus, which
is in some state r, interacts with these reservoir systems
one at a time. Each time there is an interaction, the state
of the apparatus approaches more closely the state of
the reservoir, while that single reservoir system also
changes its state away from equilibrium. However, the
systems in the bath are numerous, so that after a certain
number of collisions the state of the apparatus will ap-
proach the state of the reservoir, while the reservoir will
not change much since it is very large (this is equivalent
to the Born-Markov approximation which leads to irre-
versible dynamics of the apparatus described here).

Bearing all this in mind, we now reset the apparatus
by plunging it into a reservoir in thermal equilibrium (a
Gibbs state) at temperature T . Let the state of the res-
ervoir be

v5
e2bH

Z
5(

j
qju« j&^« ju,

where H5( i« iu« i&^« iu is the Hamiltonian of the reser-
voir, Z5Tr(e2bH) is the partition function, and b21

5kT , where k is the Boltzmann constant. Now suppose
that due to the measurement the entropy of the appara-
tus is S(r) [and an amount S(r) of information has
been gained], where r5( ir iuri&^riu is the eigen expan-
sion of the apparatus state. The total increase of entropy
in the erasure (there are two parts as I argued above:
change in the entropy of the apparatus and change in
the entropy of the reservoir) is

DSer5DSapp1DSres .

We immediately know that DSapp5S(v), since the state
of the apparatus (no matter what state it was before) is
now erased to become the same as that of the reservoir.
However, the entropy change in the reservoir is the av-
erage over all states uri& of heat received by the reservoir
divided by the temperature. This is minus the heat re-
ceived by the apparatus divided by the temperature; the
heat received by the apparatus is the internal energy
after the resetting minus the initial internal energy
^riuHuri&. Thus
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DSres52(
k

rk

Tr~vH !2^rkuHurk&
T

5(
k

S rk(
j

u^rku« j&u22qkD ~2log qk2log Z !

52Tr~r2v!~ log v2log Z !5Tr~v2r!log v .

Altogether we have an exact expression for the increase
in entropy due to deletion:

DSer52Tr~rlog v!.

This result (Vedral, 2000) generalizes Lubkin’s result,
which applies only when @r ,v#50. In general, however,
the information gain is equal to S(r), the entropy in-
crease in the apparatus. This entropy increase is a maxi-
mum; the information between the system and appara-
tus is usually smaller, as in Eq. (42). Thus we see that

DSer52Tr~rlog v!>S~r!5I ,

and Landauer’s principle is confirmed [the inequality fol-
lows from the fact that the quantum relative entropy
S(riv)52Tr(rlog v)2S(r) is non-negative]. So the
erasure is the least wasteful when v5r , in which case
the entropy of erasure is equal to S(r), the information
gain. This is when the reservoir is in the same state as
the state of the apparatus we are trying to erase. In this
case we just have a state swap between the new pure
state of the apparatus and the old state r which it re-
places. Curiously enough, creating correlations is not
costly in terms of the entropy of environment (such as
when Alice and Bob communicate).

Landauer’s erasure is a statement that is equivalent to
the second law of thermodynamics. If we could delete
information without increasing entropy, then we could
construct a machine that completely converts heat into
work with no other effect, which contradicts the second
law. The opposite is also true. Namely, if we could con-
vert heat into work with no other effect, then we could
use this energy to delete information with no entropy
increase (Landauer, 1961; Penrose, 1973; Toffoli, 1981;
Bennett, 1988). Thus the relative entropy provides an
interesting link between thermodynamics, information
theory, and quantum mechanics [see also Brillouin’s ex-
cellent book (Brillouin, 1956)].

I shall now show how Landauer’s principle can be
used to derive a limit to quantum data compression. The
free energy lost in deleting information stored in a string
of n qubits all is the state r is nb21S(r). However, we
could first compress this string and then delete the re-
sulting information. The free-energy loss after compres-
sion is mb21 log 25mb21, where the string has been
compressed to m qubits. The two free energies before
and after compression should be equal if no information
is lost during compression, i.e., if we wish to have maxi-
mal efficiency, and therefore m/n5S(r) as shown pre-
viously (see Feynman, 1996). The equality is, of course,
only achieved asymptotically.

So far we have seen that entropy plays a pivotal role
in communication theory and data compression as a
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limit to both communication capacity and compression.
It also quantifies the amount of entanglement in a pure
bipartite state. Finally, it plays a thermodynamical role
in characterizing the mixedness in a certain quantum
state. This last role was first introduced by von Neu-
mann. Now we go beyond the classical use of quantum
states and address the question of how we can achieve
quantum communication of quantum states.

IV. QUANTUM COMMUNICATION: QUANTUM USE

In this section the problem of entanglement quantifi-
cation is analyzed. Previously we have seen that the re-
duced von Neumann entropy is a good measure of en-
tanglement for two subsystems in a joint pure state (see
also Bennett, Bernstein, et al., 1996). This is a conse-
quence of the Schmidt decomposition procedure intro-
duced earlier and was exemplified by dense coding.
However, for the mixed states of two subsystems, or for
more than two subsystems, this procedure does not exist
in general. Therefore it is not immediately clear how to
understand and quantify correlations for these states.
Initially we might think that Bell’s inequalities (Clauser
et al., 1969; Bell, 1987; Redhead, 1987) would provide a
good criterion for separating quantum correlations (en-
tanglement) from classical correlations in a given quan-
tum state. States that violate Bell’s inequalities would be
entangled and other states would be disentangled. How-
ever, while it is true that a violation of Bell’s inequalities
is a signature of quantum correlation, not all entangled
states violate Bell’s inequalities (Gisin, 1996). Therefore
in order to completely separate quantum from classical
correlations we need a different criterion.

I shall present here an approach that has proven to be
very fruitful in understanding entanglement in general.
It begins with a set of conditions that any reasonable
measure of entanglement has to satisfy. I then discuss
possible candidates based on these criteria.

A. Quantifying entanglement

In this section I shall mainly focus on understanding
the entanglement of bipartite systems, i.e., systems con-
taining only two subsystems. The term entanglement, or
versränkung as it was originally called, was introduced
by Schrödinger (1935) to emphasize the bizarre implica-
tions of quantum mechanics. The reason for studying
bipartite entanglement is that it is the simplest and most
basic kind of entanglement and is well understood at
present. Starting from bipartite entanglement we can
construct a theory that can be generalized to any num-
ber of systems.

To determine the basic properties that every ‘‘good’’
entanglement measure should satisfy (Vedral, Plenio,
Rippin, et al., 1997; Vedral and Plenio, 1998), we have to
discuss what we actually mean when we say that some-
thing is ‘‘disentangled.’’ By definition a bipartite state is
disentangled if it can be written in the separable form
rAB5( ipir i

A
^ r i

B (Werner, 1989). It is clear why we
choose to define disentangled states in this manner:
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these are the most general states that Alice and Bob can
create by local operations and classical communication
(LOCC). Thus these states contain no entanglement, as
entanglement can be created only through global opera-
tions. All other states will be entangled to some degree.
In addition, note that the set of all disentangled states is
convex: a convex combination (mixture) of any two dis-
entangled states is itself disentangled. This fact will be
important when we quantify entanglement later.

The first question to answer is the following: When
can a given matrix be written in a separable form? The
necessary and sufficient condition is known in general in
terms of positive (but not necessarily completely posi-
tive) maps (Horodecki et al., 1996; Peres, 1996). Suppose
that L is any positive map; then

IA ^ LBS (
i

pir i
A

^ r i
BD 5(

i
pir i

A
^ LB~r i

B! (62)

is always a positive operator. Remarkably, the converse
is also true. If, for all positive maps L, the state IA
^ LB(rAB) is positive, then rAB is separable (disen-
tangled). Therefore, if we want to know whether a given
state rAB is entangled, we need to find a positive map
whose action on B will result in a negative operator and
hence not a physical state (Horodecki, 2001a). This con-
dition is still not operational, since there is an infinite
number of positive maps to search. In fact, there is no
operational condition in general, but it exists only in
some special cases. For example, for two qubits or a
qubit and a qutrit (a three-level system), this condition
simplifies to the following (Horodecki et al., 1996; Peres,
1996): such a state is entangled if and only if a transpo-
sition of B results in a negative operator, i.e., rAB

TB ,0.
The relationship between positive maps and entangle-
ment is a very active field of research and I refer the
interested reader to some papers investigating this issue:
Bennett, DiVincenzo, Mor, et al. (1999); DiVincenzo
et al. (2000); Kraus et al. (2000); Lewenstein et al. (2000).
With this in mind, let us turn to quantifying entangle-
ment.

The first property we need from an entanglement
measure is that a disentangled state not have any quan-
tum correlations. This gives rise to our first condition.

(E1) For any separable state s the measure of en-
tanglement should be zero, i.e.,

E~s!50. (63)

Note that we do not ask the converse, i.e., that if
E(s)50, then s is separable. The reason for this
will become clear below.

The next condition concerns the behavior of the
entanglement under simple local unitary trans-
formations. A local unitary transformation sim-
ply represents a change of the basis in which we
consider the given entangled state. But a change
of basis should not change the amount of en-
tanglement that is accessible to us, because at
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any time we could just reverse the basis change
(since unitary transformations are fully revers-
ible).

(E2) For any state s and any local unitary transforma-
tion, i.e., a unitary transformation of the form
UA ^ UB , the entanglement remains unchanged.
Therefore

E~s!5E~UA^UBsUA
†

^UB
† !. (64)

The third condition is the one that really restricts
the class of possible entanglement measures. Un-
fortunately it is also the property that is usually
the most difficult to prove for potential measures
of correlation between two subsystems should
increase under local operations on the sub-
systems separately. However, quantum entangle-
ment is even more restrictive in that the total
amount of entanglement cannot increase locally
even with the aid of classical communication.
Classical correlations, on the other hand, can be
increased by the use of local operations and clas-
sical communication.

Example. Suppose that Alice and Bob share n
uncorrelated pairs of qubits, for example, all in
the state u0&. Alice’s computer then interacts
with each of her qubits such that it randomly
flips each qubit with probability 1/2. However,
whenever a qubit is flipped, Alice’s computer
(classically) calls Bob’s computer and informs it
to do likewise. After this action on all the qubits,
Alice and Bob end up sharing n (maximally) cor-
related qubits in the state u00&^00u1u11&^11u, i.e.,
whenever Alice’s qubit is zero so is Bob’s and
whenever Alice’s qubit is one so is Bob’s. The
state of each pair is mixed because Alice and
Bob do not know whether their computers
flipped their respective qubits or not.

We can always calculate the total amount of en-
tanglement by summing up the entanglement of
all systems after we have applied our local op-
erations and classical communications.

(E3) Local operations, classical communication, and
subselection cannot increase the expected en-
tanglement, i.e., if we start with an ensemble in
state s and end up with probability pi in suben-
sembles in state s i then we shall have

E~s!>(
i

piE~si!, (65)

where s i5Ai ^ BisAi
†

^ Bi
†/pi and pi5Tr(Ai

^ BisAi
†

^ Bi
†). The form A ^ B shows that Al-

ice and Bob perform their operation locally (i.e.,
Alice cannot affect Bob’s system and vice versa).
However, Alice’s and Bob’s operations can be
correlated, as is manifested in the fact that they
have the same index. It should be pointed out
that although all the local operations and classi-



218 V. Vedral: Relative entropy in quantum information theory
cal communication can be cast in the above
product form, the opposite is not true: not all the
operations of the product form can be executed
locally (Bennett, Divincenzo, Fuchs, et al., 1999).
This means that the above condition is more re-
strictive than necessary, but this does not have
any significant consequences as far as I am
aware. An example of (E3) operation is the local
addition of particles on Alice’s and Bob’s side.
Note also that (E2) operations are a subset (spe-
cial case) of (E3) operations.

The last condition is there to make sure that our
measure is consistent with pure states.

(E4) Entanglement of a pure state is equal to the re-
duced von Neumann entropy.

The above conditions are natural and easy to under-
stand physically. However, they can be reduced to sim-
pler and more elementary conditions, which I now
briefly discuss. Suppose that we ask that the measure of
entanglement be

(1) weakly additive, i.e., E(r ^ r)52E(r);
(2) continuous, i.e., if r is close to s, then E(r) is close

to E(s).

Then, it can be shown (Popescu and Rohrlich, 1997;
Vidal, 2000) that (E4) is a consequence of the weak ad-
ditivity and continuity (providing we assume that the
entanglement of a maximally entangled state is normal-
ized to log 2). In addition, in (E3) we use the most gen-
eral local POVMs, but we know that these can be imple-
mented by adding ancillas locally, performing a unitary
transformation on the system and ancilla locally, and
then tracing out the ancillas. So, (E2)–(E4) can be pre-
sented in a more elementary way, as was done by Vidal
(2000). However, I chose to introduce entanglement
measures via (E1)–(E4) as I think that they are more
intuitive and capture the main ideas. Readers interested
in further analysis of these conditions are advised to
read Vidal (2000) and Horodecki et al. (2000).

Before I introduce different entanglement measures I
should like to discuss the following question: What do
we mean by saying that a state s can be converted into
another state r by local operations and classical commu-
nication? Strictly speaking, we mean that there exists an
LOCC procedure that, given a sufficiently large number
of copies n of s, will convert them arbitrarily close to m
copies of the state r; i.e.,

~;e.0 !~;mPN !~'nPN ;'FPLOCC!

3iF~s ^ n!2r ^ mi,e , (66)

where is2ri is some measure of distance (metric) on
the set of density matrices. Now, if s is more entangled
than r, we expect that there is an LOCC procedure such
that m.n ; otherwise, we expect that we can have n
<m . Measuring entanglement now reduces to finding an
appropriate function on the set of states to order them
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according to their local convertibility. This is usually
achieved by letting either s or r be a maximally en-
tangled state.

Entanglement of formation. I now introduce three dif-
ferent measures of entanglement, all of which obey
(E1)–(E4). First I discuss the entanglement of formation
of Bennett et al. (Bennett, Divincenzo, et al., 1996). We
define the entanglement of the formation of a state r by

EF~r!ªmin (
i

piS~rA
i !, (67)

where S(rA)52TrrA ln rA is the von Neumann entropy
and the minimum is taken over all the possible real-
izations of the state, rAB5( jpjuc j&^c ju with rA

i

5TrB(uc i&^c iu). This measure satisfies (E1)–(E4). The
basis of formation is that Alice and Bob would like to
create an ensemble of n copies of the nonmaximally en-
tangled state, rAB , using only local operations, classical
communication, and a number m of maximally en-
tangled pairs (see Fig. 6). Entanglement of formation is
the asymptotic conversion ratio, m/n , in the limit of in-
finitely many copies. The form of this measure given in
Eq. (67) will be more transparent after the next subsec-
tion and the relationship between the entanglement of
formation and other proposed measures will be analyzed
in more detail below. It is worth mentioning that a
closed form for this measure exists for two qubits
(Wootters, 1998).

Related to this measure is the entanglement of distil-
lation, also introduced by Bennett, Divincenzo, et al.
(1996).

Entanglement of distillation. This measure defines the
amount of entanglement of a state s as the asymptotic
proportion of singlets that can be distilled using a puri-
fication procedure (for a rigorous definition see Rains,

FIG. 6. The formation of entangled states: a certain number of
maximally entangled pairs is manipulated by local operations
and classical communication and converted into pairs in some
state r. The asymptotic conversion ratio is known as the en-
tanglement of formation. The converse of formation is distilla-
tion of entanglement. The asymptotic rate of converting pairs
in state r into maximally entangled states is known as the en-
tanglement of distillation. The two measures of entanglement
are in general different, distillation being greater than or equal
to formation. This surprising irreversibility of entanglement
conversion is explained in the text as a consequence of the loss
of classical information about the decomposition of r.



219V. Vedral: Relative entropy in quantum information theory
1999a, 1999b). This is the opposite process to that lead-
ing to the entanglement of formation (Fig. 6), although
its value is generally smaller, implying that the formation
of states is in some sense irreversible. The reason for this
irreversibility will be explained in the next subsection.
This measure fails to satisfy the converse of (E1),
namely, for all disentangled states the entanglement of
distillation is zero, but the converse is not true. There do
exist states that are entangled, but from which no en-
tanglement can be distilled. For this reason they are
called bound entangled states (Horodecki et al., 1998; see
also DiVincenzo et al., 2000). This is why the condition
(E1) is not stated to be both necessary and sufficient.

Relative entropy of entanglement. I now introduce the
final measure of entanglement, which was first proposed
by Vedral, Plenio, Rippin, and Knight (1997). This mea-
sure is intimately related to the entanglement of distilla-
tion by providing an upper bound for it. If D is the set of
all disentangled states, the measure of entanglement for
a state s is then defined as

E~s!ªmin
rPD

S~sir!, (68)

where S(sir) is the quantum relative entropy. This
measure, which I shall call the relative entropy of en-
tanglement, tells us that the amount of entanglement in
s is its distance from the disentangled set of states. In
statistical terms, as introduced in Sec. II, the more en-
tangled a state is, the more it is distinguishable from a
disentangled state (Vedral, Plenio, Jacobs, and Knight,
1997). To better understand all three measures of en-
tanglement we need to introduce another quantum pro-
tocol that relies fundamentally on entanglement.

Another condition that might be considered intuitive
for a measure of entanglement is convexity. That is, we
might require that

ES (
i

pis
iD<(

i
piE~s i!.

This states that mixing cannot increase entanglement.
For example, an equal mixture of two maximally en-
tangled states u00&1u11& and u00&2u11& is a separable
state and consequently contains no entanglement. I did
not include convexity as a separate requirement for an
entanglement measure as it is not completely indepen-
dent from (E3). This is because (E3) and the strong ad-
ditivity @E(r ^ s)5E(r)1E(s)# imply convexity,

n(
i

piE~r i!5E~r1
^ p1n

r2
^ p2n

¯ rN
^ pNn

!

>EF S (
i

pir iD ^ nG5nES (
i

pir iD ,

where the equalities follow from the strong additivity
assumption and the inequality is a consequence of (E3).
The symbol r ^ m means that we have m copies of the
state r. Nevertheless, it is interesting to point out that
any convex measure that satisfies continuity and weak
additivity has to be bounded from below by the en-
tanglement of distillation and from above by the en-
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tanglement of formation (Horodecki et al., 2000). We
shall see that most entanglement measures can in fact be
generated using the quantum relative entropy.

It is interesting to note that the relative entropy of
entanglement does in fact satisfy both convexity and
continuity (Donald and Horodecki, 1999) although not
additivity (Vollbrecht and Werner, 2001). Furthermore,
we can easily show that it is an upper bound to the en-
tanglement of distillation. For any pure state uc&,
minvPD S(c ^ niv)5minvPD2^c ^ nulog vuc^n&. But the
logarithmic function is concave, so that

min
vPD

2^c ^ nulog vuc ^ n&>min
vPD

2log^c ^ nuvuc ^ n& .

However, according to the recent result of Horodecki
(Horodecki et al., 1996), since v is a disentangled state,
its fidelity with the maximally entangled state cannot be
larger than the inverse of the half dimension of that
state, so that ^c ^ nuvuc ^ n&<1/2n. Thus

min
vPD

S~c ^ niv!>2log~1/2n!5n . (69)

But we know that this minimum is achievable by the
state v5r ^ n, where r is obtained from c by removing
the off-diagonal elements in the Schmidt basis. Conse-
quently, if we are starting with n copies of state s and
obtaining m copies of c by local operations and classical
communication, then

D5
m

n
5

1
n

min
vPD

S~c ^ miv!<
1
n

min
vPD

S~s ^ niv!,

where the equality follows from Eq. (69) and the in-
equality from the fact that the relative entropy is nonin-
creasing under LOCC [strictly speaking, D
5limn→`(m/n) and, of course, m is a function of n , m
5m(n)]. Thus the distillable entanglement is bounded
from above by the relative entropy of entanglement.

A similar argument can be given to show that the rela-
tive entropy of entanglement is bounded from above by
the entanglement of formation (Vedral and Plenio,
1998). Since most of the measures of entanglement can
be derived from the relative entropy they will possess
similar properties. In order to see this, we first need to
introduce quantum teleportation.

B. Teleportation

Let us begin by describing quantum teleportation in
the form originally proposed by Bennett et al. (1993).
Suppose that Alice and Bob, who are distant from each
other, wish to implement a teleportation procedure. Ini-
tially they need to share a maximally entangled pair of
qubits. This means that if Alice and Bob each have one
qubit, then the joint state may, for example, be

uCAB&5~ u0A&u0B&1u1A&u1B&)/A2, (70)

where the first ket (with subscript A) belongs to Alice
and second (with subscript B) to Bob. Note that this
state is maximally entangled and is different from a sta-
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tistical mixture (u00&^00u1u11&^11u)/2, which is the most
correlated state allowed by classical physics.

Now suppose that Alice receives a qubit in an un-
known state uF&5au0&1bu1& and she wants to teleport
it to Bob. The state has to be unknown to her because
otherwise she can just phone Bob up and tell him all the
details of the state, and he can then recreate it on a
particle that he possesses. Given that Alice does not
know the state, she cannot measure it to obtain all the
necessary information to specify it. If she could, this
would lead to a violation of the uncertainty principle.
Therefore she has to resort to using the state uCAB& that
she shares with Bob to transfer her state to him without
actually learning this state. This procedure is what we
mean by quantum teleportation.

I first write out the total state of all three qubits,

uFAB&ªuF&uCAB&5~au0&1bu1&)~ u00&1u11&)/A2.

However, the above state can be conveniently written in
a different basis,

uFAB&5~au000&1au011&1bu100&1bu111&)/&

5
1
2

@ uF1&~au0&1bu1&)1uF2&~au0&2bu1&)

1uC1&~au1&1bu0&)1uC2&~au1&2bu0&)],

where

uF1&5~ u00&1u11&)/& , (71)

uF2&5~ u00&2u11&)/& , (72)

uC1&5~ u01&1u10&)/& , (73)

uC2&5~ u01&2u10&)/& , (74)

form an orthonormal basis of Alice’s two qubits (re-
member that the first two qubits belong to Alice and the
last qubit belongs to Bob). The above basis is frequently
called the Bell basis. This is a very useful way of writing
the state of Alice’s two qubits and Bob’s single qubit
because it displays a high degree of correlation between
Alice’s and Bob’s parts: for every state of Alice’s two
qubits (i.e., uF1& ,uF2& ,uC1&,uC2&) there is a corre-
sponding state of Bob’s qubit. In addition, the state of
Bob’s qubit in all four cases looks very much like the
original qubit that Alice has to teleport to Bob. It is now
straightforward to see how to proceed with the telepor-
tation protocol (Bennett et al., 1993).

(1) Upon receiving the unknown qubit in state uF& Al-
ice performs projective measurements on her two
qubits in the Bell basis. This means that she will
obtain one of the four Bell states randomly and with
equal probability.

(2) Suppose Alice obtains the state uC1&. Then the
state of all three qubits (Alice1Bob) collapses to
the following state:

uC1&~au1&1bu0&)

(the last qubit belongs to Bob as usual). Alice now
has to communicate the result of her measurement
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to Bob (over the phone, for example). The point of
this communication is to inform Bob how the state
of his qubit now differs from the state of the qubit
Alice was holding before the Bell measurement.

(3) Now Bob has to apply a unitary transformation on
his qubit that simulates a logical NOT operation:
u0&→u1& and u1&→u0&. He thereby transforms the
state of his qubit into the state au0&1bu1&, which is
precisely the state that Alice had to teleport to him
initially. This completes the protocol. It is easy to see
that if Alice obtained some other Bell state, then
Bob would have to apply some other simple opera-
tion to complete the teleportation. They can be rep-
resented by the Pauli spin matrices.

An important fact to observe in the above protocol is
that all the operations (Alice’s measurements and Bob’s
unitary transformations) are local in nature. This means
that there is never any need to perform a (global) trans-
formation or measurement on all three qubits simulta-
neously, which is what allows us to call the above proto-
col a genuine teleportation. It is also important that the
operations that Bob performs are independent of the
state that Alice tries to teleport to him. Note also that
the classical communication from Alice to Bob in step
(2) above is crucial because otherwise the protocol
would be impossible to execute. (There is a deeper rea-
son for this: if we could perform teleportation without
classical communication, then Alice could send mes-
sages to Bob faster than the speed of light; see, for ex-
ample, Vedral, Rippin, and Plenio, 1997.)

It is important to observe that the initial state to be
teleported is destroyed immediately after Alice’s mea-
surement, i.e., it becomes maximally mixed of the form
(u0&^0u1u1&^1u)/2. This has to happen since otherwise
Alice and Bob would end up with two qubits in the same
state, effectively cloning an unknown quantum state,
which is impossible by the laws of quantum mechanics.
This is the no-cloning theorem of Wootters and Zurek
(1982), which is a simple consequence of the linearity of
quantum dynamical laws. We also see that at the end of
the protocol the quantum entanglement of uCAB& is
completely destroyed. Does this have to be the case in
general or might we save that state at the end (perhaps
by performing a different teleportation protocol)? The
answer is yes, the state must be destroyed (Plenio and
Vedral, 1998), because if this were not the case, then
entanglement could increase under local operations and
classical communication, which as we have seen is pro-
hibited by definition.

Teleportation has been experimentally performed in
three different setups (Bouwmeester et al., 1997; Boschi
et al., 1998; Furusawa et al., 1998). It will now be used to
link the three measures of entanglement. I shall show
that all the different measures of entanglement can be
understood as special cases of the relative entropy of
entanglement (Henderson and Vedral, 2000). This unifi-
cation relies on adding an ancilla, which I shall call a
memory system and which will help us keep track of the
various decompositions of a given bipartite density ma-
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trix. How much access is available to this memory deter-
mines which measure of entanglement is used.

C. Measures of entanglement from relative entropy

Suppose that Alice and Bob share a state described
by the density matrix rAB . The state rAB has an
infinite number of different decompositions «
5$ucAB

i &^cAB
i u,pi% into pure states ucAB

i &, with prob-
abilities pi . We denote the mixed state rAB written in
decomposition « by

rAB
« 5(

i
piucAB

i &^cAB
i u. (75)

As we have seen, measures of entanglement are associ-
ated with the formation and distillation of pure and
mixed entangled states. The known relationships be-
tween the different measures of entanglement for mixed
states are ED(rAB)<ERE(rAB)<EF(rAB) (Vedral and
Plenio, 1998). Equality holds for pure states, in which all
the measures reduce to the von Neumann entropy,
S(rA)5S(rB).

Formation of an ensemble of n nonmaximally en-
tangled pure states, rAB5ucAB&^cABu, is achieved by
the following protocol. Alice first prepares the states she
would like to share with Bob locally. She then uses the
Schumacher compression (Jozsa and Schumacher, 1994;
Schumacher, 1995), to compress subsystem B into
nS(rB) states. Subsystem B is then teleported to Bob
using nS(rB) maximally entangled pairs. Bob decom-
presses the states he receives and so ends up sharing n
copies of rAB with Alice. The entanglement of forma-
tion is therefore EF(rAB)5S(rB). For pure states, this
process requires no classical communication in the
asymptotic limit (Lo and Popescu, 1999). The reverse
process of distillation is accomplished using the Schmidt
projection method (Bennett, Bernstein, et al., 1996),
which allows nS(rB) maximally entangled pairs to be
distilled in the limit as n becomes very large. No classi-

FIG. 7. Formation of a state by local operations and classical
communication and with the help of teleportation. First, Alice
creates the joint state of subsystems A and B locally. Then, she
performs quantum data compression on the subsystem B and
teleports the compressed state to Bob. Finally, Bob decom-
presses the received state. Hence Alice and Bob end up shar-
ing the joint state of A and B initially prepared by Alice.
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cal communication between the separated parties is re-
quired. Therefore pure states are fully interconvertible
in the asymptotic limit.

The situation for mixed states is more complex. When
any mixed state, denoted by Eq. (75), is created, it may
be imagined to be part of an extended system whose
state is pure. The pure states ucAB

i & in the mixture may
be regarded as correlated to orthogonal states umi& of a
memory M . The extended system is in the pure state
ucMAB&5( iApiumi&ucAB

i &. If we have no access to the
memory system, we trace over it to obtain the mixed
state in Eq. (75). In fact, the lack of access to the
memory is of a completely general nature. It may be due
to interaction with another inaccessible system, or it may
be due to an intrinsic loss of information. The results I
shall present are universally valid and do not depend on
the nature of the information loss. We shall see that the
amount of entanglement involved in the different en-
tanglement manipulations of mixed states depends on
the accessibility of the information in the memory at
different stages. Note that a unitary operation on
ucMAB& will convert it into another pure state ufMAB&
with the same entanglement, and tracing over the
memory yields a different decomposition of the mixed
state. Reduction of the pure state to the mixed state may
be regarded as due to a projection-valued measurement
on the memory with operators $Ei5umi&^miu%.

Consider first the protocol of formation by means of
which Alice and Bob come to share an ensemble of n
mixed states rAB as in Fig. 7. Alice first creates the
mixed states locally by preparing a collection of n states
in a particular decomposition, «5$ucAB

i &^cAB
i u,pi%, by

making npi copies of each pure state ucAB
i &. At the same

time we may imagine a memory system entangled with
the pure states to be generated, which keeps track of the
identity of each member of the ensemble. I consider first
the case in which the states of subsystems A and B to-
gether with the memory are pure. Later I shall consider
the situation in which Alice’s memory is decohered.
There are then three ways for her to share these states
with Bob. First of all, she may simply compress sub-
system B to nS(rB) states and teleport these to Bob
using nS(rB) maximally entangled pairs. The choice of
which subsystem to teleport is made so as to minimize
the amount of entanglement required, so that S(rB)
<S(rA). The teleportation in this case would require no
classical communication in the asymptotic limit, just as
for pure states (Lo and Popescu, 1999). The whole sys-
tem that is created by this process is an ensemble of pure
states ucMAB& , where subsystems M and A are on Al-
ice’s side and subsystem B is on Bob’s side. In terms of
entanglement resources, however, this process is not the
most efficient way for Alice to send the states to Bob.
She may do it more efficiently by using the memory sys-
tem of ucMAB& to identify blocks of npi members in each
pure state ucAB

i & and applying compression to each
block to give npiS(rB

i ) states. Then the total number of
maximally entangled pairs required to teleport these
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states to Bob is n( ipiS(rB
i ), which is clearly less than

nS(rB), by concavity of the entropy.
The amount of entanglement required clearly de-

pends on the decomposition of the mixed state rAB . In
order to decompress these states, Bob must also be able
to identify which members of the ensemble are in which
state. Therefore Alice must also send him the memory
system. She now has two options. She may either tele-
port the memory to Bob, which would use more en-
tanglement resources, or she may communicate the in-
formation in the memory classically, with no further use
of entanglement. When Alice uses the minimum en-
tanglement decomposition, «5$ucAB

i &^cAB
i u,pi%, this

process, originally introduced by Bennett, DiVincenzo,
et al. (1996), makes the most efficient use of entangle-
ment, consuming only the entanglement of formation of
the mixed state, EF(rAB)5( ipiS(rB

i ).
We may think of the classical communication between

Alice and Bob in one of two equivalent ways. Alice may
either measure the memory locally to decohere it and
then send the result to Bob classically, or she may send
the memory through a completely decohering quantum
channel. Since Alice and Bob have no access to the
channel, the state of the whole system created by this
process is the mixed state

rABM
« 5(

i
piucAB

i &^cAB
i u ^ umi&^miu, (76)

where Bob is classically correlated to the AB subsystem.
Bob is then able to decompress his states using the
memory to identify members of the ensemble.

Once the collection of n pairs is shared between Alice
and Bob, it is converted into an ensemble of n mixed
states rAB by destroying access to the memory which
contains the information about the state of any particu-
lar member of the ensemble. It is the loss of this infor-
mation that is responsible for the fact that entanglement
of distillation is lower than entanglement of formation,
since it is not available to parties carrying out the distil-
lation. If Alice and Bob, who do have access to the
memory, were to carry out the distillation, they could
obtain as much entanglement from the ensemble as was
required to form it. In the case in which Alice and Bob
share an ensemble of the pure state ucMAB&, they would
simply apply the Schmidt projection method (Bennett,
Bernstein, et al., 1996). The relative entropy of entangle-
ment gives the upper bound to distillable entanglement,
ERE(uc(MA):B&^c(MA):Bu)5S(rB), which is the same as
the amount of entanglement required to create the en-
semble of pure states, as described above. Here M , A ,
and B are spatially separated subsystems on which joint
operations may not be performed. In my notation, I use
a colon to separate the local subsystems.

On the other hand, if Alice uses the least entangle-
ment for producing an ensemble of the mixed state rAB ,
together with classical communication, the state of the
whole system is an ensemble of the mixed state rABM

« ,
and the process is still reversible. Because of the classi-
cal correlation to the states ucAB

i &, Alice and Bob may
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identify blocks of members in each pure state ucAB
i & and

apply the Schmidt projection method to them, giving
npiS(rB

i ) maximally entangled pairs, and hence a total
entanglement of distillation of ( ipiS(rB

i ). The relative
entropy of entanglement again quantifies the amount of
distillable entanglement from the state rABM

« and is
given by ERE(rA :(BM)

« )5minsABMPDS(rABM
« isABM). The

disentangled state that minimizes the relative entropy is
sABM5( ipisAB

i
^ umi&^miu, where sAB

i is obtained from
ucAB

i &^cAB
i u by deleting the off-diagonal elements in the

Schmidt basis. This is the minimum because the state
rMAB is a mixture of the orthogonal states umi&ucAB

i &,
and for a pure state ucAB

i & , the disentangled state that
minimizes the relative entropy is sAB

i . The minimum
relative entropy of the extended system is then

S~rABM
« isABM!5(

i
piS~rB

i !.

This relative entropy, ERE(rA :(BM)
« ), has previously

been called the entanglement of projection (Garisto and
Hardy, 1999) because the measurement on the memory
projects the pure state of the full system into a particular
decomposition. The minimum of ERE(rA :(BM)

« ) over all
decompositions is equal to the entanglement of forma-
tion of rAB . However, Alice and Bob may choose to
create the state rAB by using a decomposition with
higher entanglement than the entanglement of forma-
tion. The maximum of ERE(rA :(BM)

« ) over all possible
decompositions is called the entanglement of assistance
of rAB (DiVincenzo et al., 1999). Because ERE(rA :(BM)

« )
is a relative entropy, it is invariant under local opera-
tions and nonincreasing under general operations, prop-
erties that are conditions for a good measure of en-
tanglement (Vedral and Plenio, 1998). However, unlike
ERE(rAB) and EF(rAB), it is not zero for completely
disentangled states. In this sense, the relative entropy of
entanglement, ERE(rA :(BM)

« ), defines a class of en-
tanglement measures interpolating between the en-
tanglement of formation and the entanglement of assis-
tance. Note that an upper bound for the entanglement
of assistance, EA , can be shown using concavity (DiVin-
cenzo et al., 1998) to be EA(rAB)<min@S(rA),S(rB)#.
This bound can also be shown from the fact that the
distillable entanglement from any decomposition,
ERE(rA :(BM)

« )<EA(rAB), cannot be greater than the
entanglement of the original pure state.

Note that here we are really creating a state r ^ n5r
^ r¯r . The entanglement of formation of such a state
is, strictly speaking, given by EF(r ^ n), so the entangle-
ment of formation per one single pair is EF(r ^ n)/n . It is
at present not clear if this is the same as EF(r) in gen-
eral, i.e., whether the entanglement of formation is ad-
ditive. Bearing this in mind we continue our discussion,
whose conclusions will not depend on the validity of the
additivity assumption of the entanglement of formation
(for more on this issue see, for example, Hayden et al.,
2001).
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We may also derive relative entropy measures that
interpolate between the relative entropy of entangle-
ment and the entanglement of formation (Horodecki
et al., 2000) by considering nonorthogonal measure-
ments on the memory. First of all, the fact that the en-
tanglement of formation is in general greater than the
upper bound for entanglement of distillation emerges as
a property of the relative entropy, namely, it cannot in-
crease under the local operation of tracing one sub-
system [this is property (F2) of the quantum relative
entropy given in Sec. II; Lindblad, 1974]:

EF~rAB!5 min
sABMPD

S~rABMisABM!

> min
sABPD

S~rABisAB!. (77)

In general, the loss of the information in the memory
may be regarded as a result of an imperfect classical
channel. This is equivalent to Alice’s making a nonor-
thogonal measurement on the memory and sending the
result to Bob. In the most general case, $Ei5AiAi

1% is a
POVM [loosely speaking, this is a CP map as in Eq.
(13), where all the individual outcomes are recorded]
performed on the memory. The decomposition corre-
sponding to this measurement is composed of mixed
states, j5$qi ,TrM(AirMABAi

1)%, where qi

5Tr(AirMABAi
1). The relative entropy of entangle-

ment of the state rMAB
j , when j is a decomposition of

rAB resulting from a nonorthogonal measurement on
M , defines a class of entanglement measures interpolat-
ing between the relative entropy of entanglement and
the entanglement of formation of the state rAB . In the
extreme case where the measurement gives no informa-
tion about the state rAB , ERE(rA :(BM)

« ) becomes the
relative entropy of entanglement of the state rAB itself.
In between, the measurement gives partial information.
So far, I have shown that the measures interpolating be-
tween entanglement of assistance and entanglement of
formation result from making orthogonal measurements
on preparations of the pure state ucMAB& in different
bases. I note that they may equally be achieved by using
the preparation associated with entanglement of assis-
tance and making increasingly nonorthogonal measure-
ments.

D. Classical information and quantum correlations

The loss of entanglement may be related to the loss of
information in the memory. There are two stages at
which distillable entanglement is lost. The first is in the
conversion of the pure state ucMAB& into a mixed state
rABM . This happens because Alice uses a classical chan-
nel to communicate the memory to Bob. The second is
due to loss of the memory M , taking the state rABM to
rAB . The amount of information lost may be quantified
as the difference in mutual information between the re-
spective states. Mutual information is a measure of cor-
relations between the memory M and the system AB ,
giving the amount of information about AB that may be
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obtained from a measurement on M . The quantum mu-
tual information between M and AB is defined as
IQ(rM :(AB))5S(rM)1S(rAB)2S(rMAB). The mutual
information loss in going from the pure state ucMAB& to
the mixed state in Eq. (76) is DIQ5S(rAB). There is a
corresponding reduction in the relative entropy of en-
tanglement, from the entanglement of the original pure
state, ERE(uc(MA):B&^c(MA):Bu), to the entanglement of
the mixed state ERE(rA :(BM)

« ) for all decompositions «
arising as the result of an orthogonal measurement on
the memory. It is possible to prove, using the nonin-
crease of relative entropy under local operations, that
when the mutual information loss is added to the rela-
tive entropy of entanglement of the mixed state
ERE(rA :(BM)

« ), the result is greater than the relative en-
tropy of entanglement of the original pure state,
ERE(uc(MA):B&^c(MA):Bu) (Henderson and Vedral,
2000). The strongest case, which occurs when
ERE(rA :(BM)

« )5EF(rAB), is

ERE~ uc(MA):B&^c(MA):Bu!<EF~rAB!1S~rAB!. (78)

A similar result may be proved for the second loss,
due to loss of the memory (Henderson and Vedral,
2000). Again the mutual information loss is DIQ
5S(rAB). The relative entropy of entanglement is re-
duced from ERE(rA :(BM)

« ), for any decomposition « re-
sulting from an orthogonal measurement on the
memory, to ERE(rAB), the relative entropy of entangle-
ment of the state rAB with no memory. When the mu-
tual information loss is added to ERE(rAB), the result is
greater than ERE(rA :(BM)

« ). In this case, the result is
strongest for ERE(rA :(BM)

« )5EA(rAB):

EA~rAB!<ERE~rAB!1S~rAB!. (79)

Notice that if rAB is a pure state, then S(rAB)50, and
equality holds. Inequalities (78) and (79) provide lower
bounds for EF(rAB) and ERE(rAB), respectively. They
are of a form typical of irreversible processes in that
restoring the information in M is not sufficient to restore
the original correlation between M and AB . In particu-
lar, they express that the loss of entanglement between
Alice and Bob at each stage must be accompanied by an
even greater reduction in mutual information between
the memory and subsystems AB . The general result can
be derived from Donald’s equality (Donald, 1986, 1987).
We have in general that for any s and r5( ipir i the
following is true:

S~ris!1(
i

piS~r iir!5(
i

piS~r iis!.

Suppose that E(r)5S(ris). Then, since E(r i)
<S(r iis), we have the inequality

E~r!1(
i

piS~r iir!>(
i

piE~r i!.

Thus the loss of entanglement in $pi ,r i%→r is bounded
from above by the Holevo information

(
i

piE~r i!2E~r!<(
i

piS~r iir!. (80)
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This is a physically pleasing property of entanglement. It
says that the amount of information lost always exceeds
the lost entanglement, which indicates that entangle-
ment stores only a part of the information; the rest, of
course, is stored in classical correlations (see also Eisert
et al., 2000, who consider a similar problem, although
not in the full generality of the above analysis).

In summary, the relative entropy of entanglement of
the state rAB depends only on the density matrix rAB
and gives an upper bound to the entanglement of distil-
lation. The other measures of entanglement, which are
given by relative entropies of an extended system, all
depend on how the information in the memory is used
or how the density matrix is decomposed. There are nu-
merous decompositions of any bipartite mixed state into
a set of states r i with probability pi . The average en-
tanglement of states in each decomposition is given by
the relative entropy of entanglement of the system ex-
tended by a memory whose orthogonal states are classi-
cally correlated to the states of the decomposition. This
correlation records which state r i any member of an en-
semble of mixed states rAB

^ n is in. It is available to parties
involved in the formation of the mixed state, but is not
accessible to parties carrying out distillation. When the
classical information is fully available, different decom-
positions give rise to different amounts of distillable en-
tanglement, the highest being entanglement of assis-
tance and the lowest, entanglement of formation. If
access to the classical record is reduced, the amount of
distillable entanglement is reduced. In the limit where
no information is available, the upper bound to the dis-
tillable entanglement is given by the relative entropy of
entanglement of the state rAB itself, without the exten-
sion of the classical memory.

I close this section by discussing generalizations to
more than two subsystems. First of all, it is not at all
clear how to perform this in the case of entanglement
of formation and distillation. The former just does not
have a natural generalization and, for the latter, it is not
clear what states we should be distilling when we have
three or more parties. The relative entropy of entangle-
ment on the other hand, does not suffer from this prob-
lem (Vedral, Plenio, Jacobs, and Knight, 1997; Vedral
and Plenio, 1998). Its definition for N parties would
be ERE(s)ªminrPD S(sir) where r5( ipir1

i
^ r2

i
^¯

^ rN
i .

I shall now use the knowledge we have gained of clas-
sical and quantum correlations to describe quantum
computation. It will be seen, perhaps somewhat surpris-
ingly, that classical correlations will play a more promi-
nent role than quantum correlations in the speedup of
certain quantum algorithms.

V. QUANTUM COMPUTATION

A quantum computer is a physical system that can
accept input states which represent a coherent superpo-
sition of many different possible basis states and subse-
quently evolve them into a corresponding superposition
of outputs. Computation, i.e., a sequence of unitary
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transformations, affects simultaneously each element of
the superposition, generating a massive parallel data
processing albeit within one piece of quantum hardware.
In this way quantum computers can efficiently solve
some problems that are believed to be intractable on
classical computers (Deutsch and Josza, 1992; Bernstein
and Vazirani, 1993; Simon, 1994). The best example is
Shor’s factorization algorithm (Shor, 1996); for overview
of this algorithm see Ekert and Josza (1996). Therefore
the advantage of a quantum computer lies in the exploi-
tation of the phenomenon of superposition. The great
importance of the quantum theory of computation is in
the fact that it reveals the fundamental connections be-
tween the laws of physics and the nature of computation
(Deutsch, 1998).

In order to understand the efficiency of computer al-
gorithms, we have to discuss the theory of computa-
tional complexity. I shall only mention the basics; a more
detailed account can be found in the article of Papadimi-
triou (1995). Computational complexity concerns the
difficulty of solving certain problems, such as the multi-
plication of two numbers, finding the minimum of a
given function, and so on. Complexity theory divides
problems into two basic categories:

(1) Easy problems: the time of computation T is a poly-
nomial function of the size of the input l , for ex-
ample, T5cnln1¯1c1l1c0 , where the coefficients
c are determined by the problem.

(2) Hard problems: the time of computation is an expo-
nential function of the size of the input (for ex-
ample, T52cl, where c is problem dependent).

The size of the input is always measured in bits (qubits).
For example, if we are to store the number 15, then we
need 4 bits. In general, to store a number N we need
about l5log N, where the base of the logarithm is 2.

The division of problems into ‘‘easy’’ and ‘‘hard’’ is, of
course, very rough. First of all, in computation, apart

FIG. 8. The Mach-Zender interferometer. A photon is split at
a beamsplitter and can take two different paths. In each of the
paths we have a different phase introduced to the photon state,
so that, after it encounters the second beamsplitter, the prob-
abilities of detection in two branches have a sinusoidal depen-
dence on the phase difference. In terms of quantum computa-
tion, the beamsplitter implements the Hadamard transform
and the whole interferometer can be seen as implementing
Deutsch’s algorithm (see text for explanation).
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from time, there are other resources that might matter,
such as space, energy, and so on. If time grows polyno-
mially but we require an exponentially increasing en-
ergy, then the problem is clearly difficult. In addition,
suppose that the time complexity of one problem is
1010n and that of another is 102102n. Then for small n
(say, n510), the second algorithm, in spite of being ex-
ponential, is clearly more efficient. These two issues ex-
emplify that the division into hard and easy problems is
not without its own problems. However, this classifica-
tion system is very simple to put into practice and does
illuminate many different aspects of computational
problems, which is why it is so widely used. I refer the
reader to the book by Garey and Johnson (1979), which
presents an introduction to hard problems and their de-
tailed classification.

There is a great simplification in understanding quan-
tum computation: a quantum computer is formally
equivalent to a multiparticle Mach-Zender-like interfer-
ometer (Cleve et al., 1997). I first present the simplest
kind of interferometer in terms of its function as a
simple computer. We see from Fig. 8 that the path of the
photon is in fact a quantum bit in the sense that the
photon can be in a superposition of the two paths. The
first beam splitter acts as the unitary evolution u0&
→u0&1u1&, which is known as the Hadamard gate. Next
is the phase shift, which has the following effect:

u0&→eif(0)u0&,

u1&→eif(1)u1&.

At the end we have another beamsplitter and two detec-
tors measuring contributions to the state u0& and u1&.
The corresponding probabilities of detection are

P05cos2
f~0 !2f~1 !

2
,

P15sin2
f~0 !2f~1 !

2
.

If, for example, f(0)5f(1), then only detector 0 will
be registering counts. If, however, f(0)5f(1)6p , then
only detector 1 will be registering counts. These two
situations are basically identical to what is known as
Deutsch’s algorithm (Deutsch, 1985), the first algorithm
to give an indication that quantum computers are more
powerful than their classical counterparts. This algo-
rithm has also been implemented experimentally in
nuclear magnetic resonance (NMR) (Jones and Mosca,
1998).

A. Deutsch’s algorithm

Deutsch’s algorithm (Deutsch, 1985; see also Deutsch,
1998) is the simplest possible example that illustrates the
advantages of quantum computation. The problem is the
following. Suppose that we are given a binary function
of a binary variable f :$0,1%→$0,1%. Thus f(0) can be
either 0 or 1, and f(1) likewise can be either 0 or 1,
giving altogether four possibilities. However, suppose
that we are not interested in the particular values of the
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function at 0 and 1, but we need to know whether the
function is constant [i.e., f(0)5f(1)], or varying [i.e.,
f(0)Þf(1)]. Deutsch poses the following task: by com-
puting f only once, determine whether it is constant or
varying. This kind of problem is generally referred to as
a promise algorithm, because one property out of a cer-
tain number of properties is initially promised to hold,
and our task is to determine computationally which one
holds (see also Deutsch and Josza, 1992; Bernstein and
Vazirani, 1993; and Simon, 1994) for other similar types
of promise algorithms).

First of all, classically finding out in one step whether
a function is constant or varying is clearly impossible.
We need to compute f(0) and then compute f(1) in
order to compare them. There is no way out of this
double evaluation. Quantum mechanically, however,
there is a simple method for performing this task by
computing f only once. Two qubits are needed for the
computation. In reality only one qubit is really needed,
but the second qubit is there to implement the necessary
transformation. We can imagine that the first qubit is the
input to the quantum computer whose internal (hard-
ware) part is represented by the second qubit. The com-
puter itself will implement the following transformation
on the two qubits (we perform this fully quantum me-
chanically, i.e., we are now not using ‘‘classical’’ devices
such as beamsplitters):

ux&uy&→ux&uy % f~x !& , (81)

where x is the input qubit and y is the hardware, as
depicted in Fig. 9. Note that this transformation is re-
versible and thus there is a unitary transformation to
implement it (but we shall not pay any attention to that
at the moment, as we are interested here only in the
basic principle). Note also that f has been used only
once. The trick is to prepare the input in such a state
that we make use of quantum superpositions. Let us
have at the input

ux&uy&5~ u0&1u1&)~ u0&2u1&), (82)

where ux& is the actual input and uy& is part of the com-
puter hardware. Thus, before the transformation is
implemented, the state of the computer is an equal su-
perposition of all four basis states, which we obtain by
simply expanding the state in Eq. (82),

uC in&5u00&2u01&1u10&2u11&.

Note that there are negative phase factors before the

FIG. 9. A network that implements a phase-flip operation
given the black-box computing the function f(x). The unitary
transformation U implements u0&→2u0& conditionally on the
value of f(x).
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second and fourth terms. When this state now undergoes
the transformation in Eq. (81), we have the following
output state:

uCout&5u0f~0 !&2u0f~0 !&1u1f~1 !&2u1f~1 !&

5u0&„uf~0 !&2uf~0 !&…1u1&„uf~1 !&2uf~1 !&…,

where the overbar indicates the opposite of that value,
so that, for example, 0̄51. Now we see where the power
of quantum computers is fully realized: each of the com-
ponents in the superposition of uC in& underwent the
same evolution of Eq. (81) ‘‘simultaneously,’’ leading to
the powerful ‘‘quantum parallelism’’ (Deutsch, 1985).
This feature is true for quantum computation in general.
Let us now look at the two possibilities.

(1) If f is constant then

uCout&5~ u0&1u1&)„uf~0 !&2uf~0 !&….

(2) If f is varying then

uCout&5~ u0&2u1&)„uf~0 !&2uf~0 !&….

Note that the output qubit (the first qubit) emerges in
two different orthogonal states, depending on the type
of f . These two states can be distinguished with 100%
efficiency. This is easy to see if we first perform a Had-
amard transformation on this qubit, leading to the state
u0& if the function is constant and to the state u1& if the
function is varying. Now a single projective measure-
ment in 0,1 basis determines the type of the function.
Therefore, unlike their classical counterparts, quantum
computers can solve Deutsch’s problem.

Let us now rephrase this in terms of phase shifts to
emphasize its underlying identity with the above-
mentioned Mach-Zender interferometer. The transfor-
mation of the two registers is the following:

ux&u2&⇒eipf(x)ux&u2&,

where x50,1 and u2&5u0&2u1&. Thus the first qubit is
like a photon in the interferometer, receiving a condi-
tional phase shift depending on its state (0 or 1). It is left
to the reader to show that this transformation is formally
identical to the above analysis. The second qubit is there
just to implement the phase shift quantum mechanically.
It should be emphasized that this quantum computation,
although extremely simple, contains all the main fea-
tures of successful quantum algorithms: it can be shown
that all quantum computations are just more compli-
cated variations of Deutsch’s problem (Cleve et al.,
1997). We shall use the introduction of a phase shift as a
basic element of a quantum computer and relate this to
the notion of distinguishability and relative entropy.

Note one important aspect: the input could also be of
the form u2&u2&. A constant function would then lead
to the state u2&u2& and a varying function would lead to
u1&u2&. So the u1& and u2& are equally good as input
states of the first qubit and both lead to quantum
speedup. Their equal mixture, on the other hand, is not.
This means that the output would be an equal mixture
u1&^1u1u2&^2u no matter whether f(0)5f(1) or
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f(0)Þf(1), i.e., the two possibilities would be indistin-
guishable. Thus for the quantum algorithm to work well,
we need the first register to be highly correlated to the
two different types of functions. If the output state of
the first qubit r1 indicates that we have a constant func-
tion and r2 that we have a varying function, then the
efficiency of Deutsch’s algorithm depends on how well
we can distinguish the two states r1 and r2 . This is given
by the Holevo bound,

H5S~r!2
1
2

@S~r1!1S~r2!# ,

where r51/2(r11r2). Thus, if r15r2 , then H50 and
the quantum algorithm has no speedup over the classical
one. At the other extreme, if r1 and r2 are pure and
orthogonal, then H51 and the computation gives the
right result in one step. In between these two extremes
lie all other computations with varying degrees of effi-
ciency as quantified by the Holevo bound. Note that
these are purely classical correlations and that there is
no entanglement between the first and the second qubit.
In fact, the Holevo bound is the same as the formula
I suggested for classical correlations in the previous
section. The key to understanding the efficiency of
Deutsch’s algorithm is therefore through the mixedness
of the first register. If the initial state has the entropy of
S0 , then the final Holevo bound is

S~r!2S0 .

So the more mixed the first qubit, the less efficient the
computation. Note that the quantum mutual informa-
tion between the first two qubits is zero throughout the
entire computation (so there are neither classical nor
quantum correlations between them).

B. Computation: Communication in time

Can we extend the above entropic analysis to other
algorithms as well? The answer is yes, and this is exactly
what I shall describe next (Bose, Rallan, and Vedral,
2000). To explain why this is so, I first need to introduce
a few definitions and a communication model of quan-
tum computation. We have two programmers, the
sender and the receiver, and two registers, the memory
(M) register and the computational (C) register. The
sender prepares the memory register in a certain quan-
tum state ui&M , which encodes the problem to be solved.
For example, in the case of factorization (Shor, 1996),
this register will store the number to be factored. In the
case of a search (Grover, 1996), this register will store
the state of the list to be searched. The number N of
possible states ui&M will, of course, be limited by the
greatest number that the given computer could factor or
the largest list that it could search. The receiver then
prepares the computational register in some initial state
rC

0 . Both the sender and the receiver feed the registers
(prepared by them) to the quantum computer. The
quantum computer implements the following general
transformation on the registers:



227V. Vedral: Relative entropy in quantum information theory
~ ui&^iu!M ^ rC
0 →~ ui&^iu!M ^ UirC

0 Ui
† . (83)

The resulting state rC(i)5UirC
0 Ui

† of the computational
register contains the answer to the computation and is
measured by the receiver. As the quantum computation
should work for any ui&M , it should also work for any
mixture ( i

Npi(ui&^iu)M , where pi are probabilities. For
the sender to use the above computation as a communi-
cation protocol, he has to prepare any one of the states
ui&M with an a priori probability pi . The entire input
ensemble is thus ( i

Npi(ui&^iu)M ^ rC
0 . Due to the quan-

tum computation, this becomes

(
i

N

pi~ ui&^iu!M ^ rC
0 →(

i

N

pi~ ui&^iu!M ^ rC~ i !. (84)

Whereas, before the quantum computation, the two reg-
isters were completely uncorrelated (mutual information
is zero), at the end the mutual information becomes

IMCªS~rM!1S~rC!2S~rMC!

5S~rC!2(
i

N

piS@rC~ i !# , (85)

where rM and rC are the reduced density operators for
the two registers, rMC is the density operator of the en-
tire M1C system, and S(r)52Trr log r is the von
Neumann entropy (for conventional reasons I shall use
log2 in all calculations). Notice that the value of the mu-
tual information (i.e., correlations) is equal to the
Holevo bound H5S(rC)2( i

NpiS@rC(i)# for the classi-
cal capacity of a quantum communication channel
(Holevo, 1973). Note also that rC5( i

NpirC(i). This tells
us how much information the receiver can obtain about
the choice ui&M made by the sender by measuring the
computational register. The maximum value of H is ob-
tained when the states rC(i) are pure and orthogonal.
Moreover, the sender conveys the maximum informa-
tion when all the message states have equal a priori
probability (which also maximizes the channel capacity).
In that case the mutual information (channel capacity)
at the end of the computation is log N. Thus the commu-
nication capacity IMC [given by Eq. (85)] gives an index
of the efficiency of a quantum computation. A necessary
goal of a quantum computation is to achieve the maxi-
mum possible communication capacity consistent with
given initial states of the quantum computer. We cannot
give a sufficiency criterion from our general approach, as
this depends on the specifics of an algorithm. If one
breaks down the general unitary transformation Ui of a
quantum algorithm into a number of successive unitary
blocks, then the maximum capacity may be achieved
only after a number of applications of the block. In each
of the smaller unitary blocks, the mutual information
between the M and the C registers (i.e., the communi-
cation capacity) increases by a certain amount. When its
total value reaches the maximum possible value consis-
tent with a given initial state of the quantum computer,
the computation is regarded as being complete.
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C. Black-box complexity

Any general quantum algorithm has to have a certain
number of queries into the memory register (Bennett
et al., 1997; Beals et al., 1998; Ambainis, 2000). This is
necessitated by the fact that the transformation on the
computational register has to depend on the problem at
hand, encoded in ui&M . These queries can be considered
to be implemented by a black box into which the states
of both the memory and the computational registers are
fed. The number of such queries needed in a certain
quantum algorithm gives the black-box complexity of
that algorithm (Bennett et al., 1997; Beals et al., 1998;
Ambainis, 2000) and is a lower bound on the complexity
of the whole algorithm. The black-box approach is a
simplification for looking at the complexity of an algo-
rithm. A black box allows us to perform a certain com-
putation without having its exact details. It is possible
that physical implementations of a particular black box
may prove to be difficult. Therefore, when we estimate
the complexity of an algorithm by counting the number
of applications of a black box, we have to bear in mind
that there might an additional complexity component
arising in physical implementation.

In general we have a function f :$0,1%n→$0,1% (so the
function maps n-bit values to either 0 or 1). Quantum
algorithms, such as a database search, can be expressed
in this form (in the case of a database search, all the
values of f are 0 apart from one that is equal to 1; the
task is to find this value). The black box is assumed to be
able to perform the transformation ux&uy&→ux&uf(x)
% y&, just as in Deutsch’s algorithm. We have the free-
dom to represent this black-box transformation as a
phase flip which is equivalent in power (up to a constant
factor as seen in Fig. 9),

ux&uy&→~21 !f(x) % yux&uy&.

Recently, Ambainis (2000) showed in a very elegant pa-
per that if the memory register was prepared initially in
the superposition ( i

Nui&M , then, in a search algorithm,
O(AN) queries would be needed to completely entangle
it with the computational register. This gives a lower
bound on the number of queries in a search algorithm.
In a manner analogous to his, I shall calculate the
change in mutual information between the memory and
the computational registers [from Eq. (85)] in one query
step. The number of queries needed to increase the mu-
tual information to log N (for perfect communication be-
tween the sender and the receiver) is then a lower
bound on the complexity of the algorithm.

D. Database search

Any search algorithm, whether quantum or classical,
regardless of its explicit form, will have to find a match
for the state ui&M of the M register among the states uj&C
of the C register and associate a marker to the state that
matches (here uj&C is a complete orthonormal basis for
the C register). The most general way of doing such a
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query in the quantum case is the black-box unitary
transformation (Ambainis, 2000),

UBui&Muj&C5~21 !d ijui&Muj&C . (86)

Any other unitary transformation performing a query
matching the states of the M and the C registers could
be constructed from the above type of query. Note that
the black box is able to recognize whether a value in the
C register is the same as the solution, but is unable to
explicitly provide that solution for us. For example,
imagine that Socrates goes to visit the all-knowing an-
cient Greek oracle (black box), who is able to answer
with only ‘‘yes’’ or ‘‘no.’’ Suppose further that Socrates
wants to know who is the wisest person in the world. He
would then have to ask something like ‘‘Is Plato the wis-
est person in the world?’’ and would not be able to ask
directly ‘‘Who is the wisest person in the world?’’ This
‘‘yes-no’’ approach is typical of any black-box analysis.
The advantage of using this black box quantum me-
chanically is that we can query all the individual ele-
ments of the superposition simultaneously. Although we
can identify the solution in one step quantum mechani-
cally, further computations are required to amplify the
right solution so that the subsequent measurement is
more likely to reveal it.

I would like to put a bound on the change of the
mutual information in one such black-box step. Let
the memory states ui&M be available to the sender with
equal a priori probability so that the communication ca-
pacity is a maximum. His initial ensemble is then
1/N ( i

N(ui&^iu)M . Let the receiver prepare the C register
in an initial pure state c0 [in fact, the power of quantum
computation stems from the ability of the receiver to
prepare pure-state superpositions of form
(1/N) ( j

Nuj&C]. This is an equal-weight superposition of
all uj&C as there is no a priori information about the right
uj&C . This can be done by performing a Hadamard trans-
formation on each qubit of the C register. In general,
there will be many black-box steps on the initial en-
semble before a perfect correlation is set up between the
M and the C registers. After the kth black-box step, let
the state of the system be

rk5
1
N (

i

N

~ ui&^iu!M ^ @ uck~ i !&^ck~ i !u#C , (87)

where

uck~ i !&C5(
j

a ij
k uj&C . (88)

The (k11)th black-box step changes this state to rk11

5(1/N) ( i
N(ui&^iu)M ^ @ uck11(i)&^ck11(i)u#C with

uc(k11)~ i !&5(
i ,j

N

a ij
k ~21 !d ijuj&C . (89)

Thus we only have to evaluate the difference of mutual
information between the M and the C register for the
states. This difference of mutual information [when
computed from Eq. (85)] can be shown to be the differ-
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ence uS(rC
k11)2S(rC

k )u (Henderson and Vedral, 2000).
This quantity is bounded from above by (Fannes, 1999)

uS~rC
k11!2S~rC

k !u<dB~rC
k ,rC

k11!log N

2dB~rC
k ,rC

k11!log dB~rC
k ,rC

k11!,

(90)

where dB(s ,r)5A12F2(s ,r) is the Bures metric
(Bures, 1969; Uhlmann, 1976, 1986) and F(s ,r)
5Tr(ArsAr)1/2 is the fidelity. Using methods similar to
those of Ambainis (2000), it can be shown that
F(rC

0 ,rC
1 )> (N22)/N from which it follows that the

change in the first step is

uS~rC
0 !2S~rC

1 !u<
3

AN
log N . (91)

The change uS(rC
k )2S(rC

k11)u in the subsequent steps
has to be less than or equal to the change in the first
step. This is because the Bures metric does not increase
under general completely positive maps (which is what
the query represents when we trace out the M register).
Any other operations performed only on the C register
in between two queries can only reduce the mutual in-
formation between the C and the M registers. This
means that at least O(AN) steps are needed to produce
full correlations (maximum mutual information of value
log N) between the two registers. This gives the black-
box lower bound on the complexity of any quantum
search algorithm. Of course, we know that there also
exists an algorithm achieving this bound due to Grover
(1996), and this has been proven to be optimal (Bennett,
Bernstein, et al., 1996; Zalka, 1999; Ambainis, 2000).
However, the proof presented here is the most general,
as it holds even when any type of completely positive
map is allowed between queries [in Zalka (1999) a heu-
ristic argument was made for the optimality of Grover’s
algorithm under general operations]. Grover’s algorithm
has also been implemented experimentally (Chuang
et al., 1998; Jones, Mosca, and Hansen, 1998).

I now use Grover’s algorithm to show how the mutual
information varies with time in a quantum search. The

FIG. 10. The circuit for Grover’s algorithm. C is the computa-
tional register and M is the memory register. UB is the black-
box query transformation, H is a Hadamard transformation on
every qubit of the C register, and f0 is a phase flip in front of
the u00¯0&C . The block consisting of H , UB , H , and f0 is
repeated a number of times.
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general sequence described by Cleve et al. (1997) for
Grover’s algorithm will be used here. The algorithm con-
sists of repeated blocks, each consisting of a Hadamard
transform on each qubit of the C register, followed by a
UB (our black-box transformation), followed by another
Hadamard transform on each qubit of the C register,
and finally a phase flip f0 of the u00¯0&C state of the C
register (see Fig. 10). This block can then be repeated as
many times as is necessary to bring the mutual informa-
tion to its maximum value of log N, which, as shown in
Eq. (91), is O(AN). Note that the only transformation
correlating the M and C registers is the black-box trans-
formation UB and that all the other transformations are
done only on the C register and therefore do not change
the mutual information between the two registers. In
Fig. 8 I have plotted the variation of mutual information
between the M and the C registers (i.e., the communi-
cation capacity of the quantum computation) with the
number of iterations of the block in Grover’s algorithm.
It can be seen that the mutual information oscillates
with the number of iterations. Figure 11 is plotted for a
four-qubit computational register that can search a data-
base of 16 entries. It reveals that the period is roughly 6,
which means that the number of steps needed to achieve
maximum mutual information is roughly 3. This is well
above our bound for the minimum number of steps,
which is 4/3 in this case.

The fact that the mutual information oscillates peri-
odically (or more precisely, quasiperiodically) follows
from the quantum Poincaré recurrence theorem (Hogg
and Huberman, 1983), which states that if the system has
a discrete spectrum and is ‘‘driven’’ by a periodic poten-
tial (as in Grover’s case, where we repeat the same op-
eration time and again), then its wave function c(t) will

FIG. 11. Dependence of the mutual information between the
M and the C registers as a function of the number of times the
block in Grover’s algorithm is iterated for various values of
initial mixedness of the C register. Each qubit of the C register
is initially in the state pu0&^0u1(12p)u1&^1u; (a) p51; (b) p
50.95; (c) p50.7. The (a) and (b) computations achieve
higher mutual information than classically allowed in the order
of root N steps, while (c) does not.
Rev. Mod. Phys., Vol. 74, No. 1, January 2002
undergo a quasiperiodic motion, i.e., for any e.0, there
exists a relatively dense set $Te% such that

ic~ t1Te!2c~ t !i,e

for all time t and for each Te in the set. This is exactly
the behavior seen in Fig. 11. The distance between the
two states uc&5( iaiui& and uf&5( jbjuj& is defined in the
usual way:

ic2fiª(
i

uai2bi u.

The three graphs (a), (b), and (c) in Fig. 11 are for dif-
ferent values of initial mixedness of the C register. We
find that the mutual information fails to rise to the maxi-
mum value of log N when the state of the computational
register is mixed. Our formalism thus allows us to calcu-
late the performance of a quantum computation as a
function of the mixedness (quantified by the von Neu-
mann entropy) of the computational register. We can put
a bound on the entropy of the second register, after
which the quantum search becomes as inefficient as the
classical search. If the initial entropy S(rC

0 ) of the C
register exceeds 1

2 log N, then the change in mutual in-
formation between the M and the C registers in the
course of the entire quantum computation would be at
most log AN . This can be achieved by a classical data-
base search in AN steps, so there is no advantage in
using quantum evolution when the initial state is too
mixed. Note that our condition

S~rC
0 !>

1
2

log N

is only a sufficient and not a necessary condition for a
quantum enhancement in efficiency.

I also point out that the states of the M register need
not be a mixture, but could be an arbitrary superposition
of states ui&M [such a state was used by Ambainis (2000)
in his argument]. All the above arguments still hold in
that case, and the M and the C registers become
quantum-mechanically entangled and not just classically
correlated. Thus our analysis implies that any quantum
computation is mathematically identical to a measure-
ment process (Everett, 1973). The system being mea-
sured is the M register and the apparatus is the C reg-
ister of the quantum computer. As time progresses the
apparatus (register C) becomes more and more corre-
lated (or entangled) to the system (register M). This
means that the states of register C become more and
more distinguishable, which allows us to extract more
information about the M register by measuring the C
register. The analysis in the last paragraph, in which I
showed the limitations on the efficiency of quantum
computation imposed by the mixedness of the C regis-
ter, also applies to the efficiency of a quantum measure-
ment when the apparatus is in a mixed state. Mixedness
of an apparatus, to the best of our knowledge, has never
been considered in the analysis of quantum measure-
ment. In general practice, any apparatus, however mac-
roscopic, is considered to be in a pure quantum state
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before the measurement. Our approach highlighting the
formal analogy between measurement and computation
offers a way to analyze measurement in a much more
general context.

Finally, I should like to discuss what would happen if
we decided to change the nature of the black box. Sup-
pose that, instead of being able to recognize the right
solution, the black box is much more powerful and can
determine whether the individual bit values coincide
with the bit values of the solution. So, for all k ,

ui0i1¯ik ¯in&uj0i j ¯jk¯jn&

→~21 !d ikjkui0i1¯ik¯in&uj0i j¯jk¯jn& , (92)

where i5i0i1¯ik¯in and j5j0i j¯jk¯jn are the binary
representations of i and j , respectively. It can then easily
be checked that this gate has the power to correlate the
C and the M register by the amount of log 2. Therefore
the search algorithm would take log N steps (instead of
AN), i.e., it would be polynomial instead of exponential.
There is, of course, a hidden complexity here, which is in
the construction of the new black box from the original
black box. It can be shown that this requires an expo-
nential increase in time (or space, which can always be
traded for time), and this then compensates for the ex-
ponential decrease in the number of applications of the
new black box. In fact, this new black box would be
equivalent to the ancient Greek oracle’s being able to
answer the question posed by Socrates: ‘‘Who is the wis-
est person in the world?’’

Can we use entropic measures of the above form to
quantify the complexity of other quantum algorithms?
The answer is unclear at present. The only algorithm
that currently achieves an exponential speedup over its
classical counterpart, Shor’s factorization algorithm
(Shor, 1996), cannot be usefully rephrased in terms of
black-box operations (more precisely, it is rather trivial,
as it requires only one black-box operation). However,
this does not prevent us from deriving fundamental
bounds on information storage and the speed of its pro-
cessing based on the uncertainty principle. In the last
subsection, I show the ultimate limits of processing
power no matter what model of computation is used, so
long as it uses quantum systems (particles or fields
alike).

E. Quantum computation and quantum measurement

I now show that quantum computation is formally
identical to a quantum measurement as described by
von Neumann (1955). The analysis will be performed in
the most general continuous case. Suppose that we have
a system S (described by a continuous variable x) and an
apparatus A (described by a continuous variable y inter-
acting via a Hamiltonian H5xp), where p is the mo-
mentum of A (we shall assume that \51). Suppose in
addition that the initial state of the total system is

uC~0 !&5E
x
f~x !ux&dx ^ h~y !uy&dy
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in an uncorrelated state. The action of the above Hamil-
tonian then transforms the state into an entangled state.
In order to calculate this transformation it will be ben-
eficial to introduce the (continuous) Fourier transform

Fy :uy&→E e2iypup&dp ,

which takes us from the position space of A into the
momentum space of A . This is important because we
know the effect of the Hamiltonian in the momentum
basis. Now, the action of the unitary transformation gen-
erated by H is

uC~ t !&5e2ixptuC~0 !&

5Fye2ixptFyuC~0 !&

5E
x
E

y
f~x !h~y2xy !ux&uy&dxdy ,

and we see that S and A are now correlated in x and y .
This means that by measuring A we can obtain some
information about the state of S . The mutual informa-
tion IAS5H(x)1H(y)2H(x ,y) can be shown to sat-
isfy (Everett, 1973)

IAS>ln t ,

i.e., it is growing at a rate faster than the logarithm of
time passage during the measurement. This gives us a
lower bound to exactly how quickly correlations can be
established between the system and the apparatus. This
is analogous to the way in which I derived the upper
bound on the efficiency of quantum search algorithms in
Sec. V.

Let us now calculate in greater detail the effect of the
measurement Hamiltonian. We define

j~p !ªFy$h~y !%.

The evolution then proceeds as follows:

uC~ t !&5e2xptE
x
f~x !ux&dx ^ h~y !uy&dy

5e2xptE
x
f~x !E

p
H E

y
h~y !e2iypdyJ ux&up&dxdp

5e2xptE
x
E

p
f~x !j~p !ux&up&dxdp

5E
x
f~x !E

y
H E

p
j~p !e2ixpteiypdpJ ux&uy&dxdy

5E
x
E

y
f~x !h~y2xy !ux&uy&dxdy .

This result has the same formal structure as the quantum
algorithms presented earlier: a Fourier transform fol-
lowed by a conditional phase shift and then followed by
another Fourier transform (cf. Deutsch’s and Grover’s
algorithms). Therefore we can see that how efficiently
we can measure something is the same as how efficiently
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we can compute, both of which depend on how quickly
we can establish correlations.

F. Ultimate limits of computation: The Bekenstein bound

Given a computer enclosed in a sphere of radius R
and having available the total amount of energy E , what
is the amount of information that it can store and how
quickly can this information be processed? The Holevo
bound gives us the ultimate answer. The amount of in-
formation that can be written into this volume is
bounded from the above by the entropy, i.e., the number
of distinguishable states that this volume can support. I
shall now use a simple, informal argument to obtain this
ultimate bound (Tipler, 1994), but the rigorous deriva-
tion can be found in Bekenstein (1981). The bound on
energy implies a bound on momentum, and the total
number of states in the phase space is

N5
PR

DPDR
<

PR

\
,

where the inequality follows from the Heisenberg uncer-
tainty relation DPDR>\ , which limits the size of the
smallest volume in the phase space to \ in each of the
three spatial directions. From relativity we have that for
any particle p<E/c , so that

I<ln N<N<
E

c

R

\
<

ER

\c
,

which is known as the Bekenstein bound. In reality this
inequality will most likely be a huge overestimate, but it
is important to know that no matter how we encode
information we cannot perform better than is given by
our most accurate present theory—quantum mechanics.
As an example consider the nucleus of a hydrogen atom.
According to the above result it can encode about 100
bits of information (I assumed that E5mc2 and that R
510215 m). At present, NMR quantum computation
achieves ‘‘only’’ one bit per nucleus (and not per
nucleon)—spin up and spin down being the two states.

From the Bekenstein bound we can derive a bound on
the efficiency of information processing. Again my deri-
vation will be loose, and a much more careful calcula-
tion confirms what I shall present (Bekenstein, 1984).
All the bits in the volume V cannot be processed faster
than it takes light to travel across the volume V
54/3pR3, which is 2R/c . This gives

dI

dt
<

E

2\
.

Again a hydrogen nucleus can process 1024 bits per sec-
ond, which is also in sharp contrast with NMR quantum
computation where a NOT gate takes roughly a few mil-
liseconds, leading to a maximum of 103 bits per second.

The Bekenstein bound shows that there is a poten-
tially great number of underused degrees of freedom in
any physical system. This provides hope that quantum
computation will be an experimentally realizable goal.
At present, there are a number of different practical
implementations of quantum computation, but none of
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them can store and manipulate more than ten qubits at a
time [five was the largest number (Vandersypen, 2000)
that had been manipulated in a genuine quantum com-
putation process at the time this review was finished in
the summer of 2000]. The above calculation, however,
does not take into account the environmental influence
on computation nor the experimental precision. I have
touched not at all on the practical possibility of building
a quantum computer. This is partly for reasons of space,
partly because it would spoil the flow of exposition, and
partly because there are already a number of excellent
reviews of this subject (Steane, 1997; Cory et al., 2000).
It is generally acknowledged that the difficulties in
building a quantum computer are only of a practical na-
ture and there are no fundamental limits that prohibit
such a device. I hope that this section offers convincing
arguments that building a quantum computer is very
much a worthwhile adventure, from both the technologi-
cal and the fundamental perspective. In any case we see
that there is a great deal of currently unused potential in
physical systems for storing and encoding information.
As our level of technology improves we shall find more
and more ways of getting close to the Bekenstein bound.

VI. CONCLUSIONS

We have seen how the distinguishability of different
physical states is at the heart of information processing,
which we quantified using the relative entropy. The rela-
tive entropy told us about the possibility of confusing
two probability distributions, or, in the quantum case,
two density matrices. We have seen that relative entropy
never increases under any general quantum evolution,
meaning that states can become only less distinguishable
as time progresses. The most important consequence of
this was shown to be the Holevo bound, which is the
bound on the capacity for classical communication using
quantum states. This basically told us that n qubits can-
not store more than n classical bits of information.
While this appears to be a severe limitation on quantum
information processing, with the aid of dense coding
quantum communication is in some sense more efficient
than its classical counterpart. Dense coding involves the
use of entangled states, and I therefore showed how the
quantum relative entropy can be used to quantify en-
tanglement. Moreover, I used the Holevo bound to put
limits on the efficiency of quantum computation by
treating it as a communication protocol. Quantum algo-
rithms were shown to be considerably more efficient for
some problems than classical algorithms. In particular, I
have shown in a new way that the quantum database
search has a square-root enhancement in efficiency over
the classical database search. The efficiency of quantum
computation stems from the tradeoff between two oppo-
site effects: on the one hand, superpositions allow us to
compute in parallel, while on the other hand, the Holevo
bound limits the amount of information we can extract
from a quantum state. I also emphasized links between
black-box quantum computation and quantum measure-
ment and I showed that there is a fundamental limit to
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deleting information, leading to Landauer’s principle
that one bit erased increases the environment informa-
tion by kB ln 2.

With every new physical theory comes a new under-
standing of the world we live in. Through Newtonian
physics we understood the universe as a clockwork
mechanism. With the subsequent development of ther-
modynamics the universe became a big Carnot engine,
slowly evolving towards its final equilibrium state after
which no useful work could be obtained—the heat
death. At present we see the universe as an information-
processing machine—a computer. Limits to the amount
of information it can contain and process are given by
the most accurate theory we have, quantum mechanics,
giving rise to quantum information theory.

If there is a single moral to be drawn from the rela-
tionship between information and physics it is that, as
we dig deeper into the fundamental laws of physics, we
also push back the boundaries of information process-
ing. It will not be surprising if all the results presented in
this review are superseded by higher-level generaliza-
tions of which they become approximations in the same
way in which classical information theory today approxi-
mates quantum information theory.
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