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Electronic structure of quantum dots
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The properties of quasi-two-dimensional semiconductor quantum dots are reviewed. Experimental
techniques for measuring the electronic shell structure and the effect of magnetic fields are briefly
described. The electronic structure is analyzed in terms of simple single-particle models,
density-functional theory, and ‘‘exact’’ diagonalization methods. The spontaneous magnetization due
to Hund’s rule, spin-density wave states, and electron localization are addressed. As a function of the
magnetic field, the electronic structure goes through several phases with qualitatively different
properties. The formation of the so-called maximum-density droplet and its edge reconstruction is
discussed, and the regime of strong magnetic fields in finite dot is examined. In addition,
quasi-one-dimensional rings, deformed dots, and dot molecules are considered.
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I. INTRODUCTION

Low-dimensional nanometer-sized systems have de-
fined a new research area in condensed-matter physics
within the last 20 years. Modern semiconductor process-
ing techniques allowed the artificial creation of quantum
confinement of only a few electrons. Such finite fermion
systems have much in common with atoms, yet they are
man-made structures, designed and fabricated in the
laboratory. Usually they are called ‘‘quantum dots,’’ re-
ferring to their quantum confinement in all three spatial
dimensions. A common way to fabricate quantum dots is
to restrict the two-dimensional electron gas in a semi-
conductor heterostructure laterally by electrostatic
gates, or vertically by etching techniques. This creates a
bowl-like potential in which the conduction electrons
are trapped. In addition to the many possibile techno-
logical applications, what makes the study of these ‘‘ar-
tificial atoms’’ or ‘‘designer atoms’’ (Maksym and
Chakraborty, 1990; Chakraborty, 1992, 1999; Kastner,
1992, 1993; Reed, 1993; Alivisatos, 1996; Ashoori, 1996;
McEuen, 1997; Kouwenhoven and Marcus, 1998; Gam-
mon, 2000) interesting are the far-reaching analogies to
systems that exist in Nature and have defined paradigms
of many-body physics: atoms, nuclei, and, more recently,
metallic clusters (see, for example, the reviews by Brack,
1993 and de Heer, 1993) or trapped atomic gases [see
the Nobel lectures by Cornell, 2001, Ketterle, 2001, and
Wieman, 2001, and, for example, the reviews by Dalfovo
et al., 1999, and Leggett, 2001 and the recent book by
Pethick and Smith (2002)]. Quantum dots added an-
other such paradigm. Their properties can be changed in
a controlled way by electrostatic gates, changes in the
dot geometry, or applied magnetic fields. Their techno-
logical realization gave access to quantum effects in fi-
nite low-dimensional systems that were largely unex-
plored.

After the initial success in the fabrication and control
of mesoscopic semiconductor structures, which are typi-
cally about one hundred nanometers in size and confine
several hundred electrons, many groups focused on the
further miniaturization of such devices. A breakthrough
to the ‘‘atomic’’ regime was achieved with the experi-
mental discovery of shell structure in fluctuations of the
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charging energy spectra of small, vertical quantum dots
(Tarucha et al., 1996): the borderline between the phys-
ics of bulk condensed matter and few-body quantum
systems was crossed. Much of the many-body physics
that was developed for the understanding of atoms or
nuclei could be applied. In turn, measurements on arti-
ficial atoms yielded a wealth of data from which a fun-
damental insight into the many-body physics of low-
dimensional finite fermion systems was obtained
(Kouwenhoven, Austing, and Tarucha, 2001). With fur-
ther progress in experimental techniques, artificial atoms
will continue to be a rich source of information on
many-body physics and undoubtedly will hold a few sur-
prises.

The field of nanostructure physics has been growing
rapidly in recent years, and much theoretical insight has
been gained hand in hand with progress in experimental
techniques and more device-oriented applications. Re-
viewing the whole, very broad and still expanding field
would be an almost impossible task, given the wealth of
literature that has been published in the last decade. We
thus restrict this review to a report on the discovery of
shell structure in artificial atoms (with a focus on well-
controlled dots in single-electron transistors) and sum-
marize aspects of theoretical research concerning the
electronic ground-state structure and many-body physics
of artificial atoms. (A review of the statistical theory of
quantum dots, with a focus on chaotic or diffusive elec-
tron dynamics, was recently provided by Alhassid,
2000.) In our analysis of shell structure, we shall be
guided by several analogies to other finite quantal sys-
tems that have had a major impact on both theoretical
and experimental research on quantum dots: the chemi-
cal inertness of the noble gases, the pronounced stability
of ‘‘magic’’ nuclei, and enhanced abundances in the mass
spectra of metal clusters.

A. Shell structure

The simplest approach to a description of finite quan-
tal systems of interacting particles is based on the idea
that the interactions, possibly together with an external
confinement, create an average ‘‘mean field,’’ which, on
an empirical basis, can be approximated by an effective
potential in which the particles are assumed to move
independently. This a priori rather simple idea forms the
basis of Hartree, Hartree-Fock, and density-functional
theories. The last, with its many extensions, provides
powerful techniques for electronic structure calculations
and is nowadays applied extensively in many different
areas of both physics and chemistry (see the Nobel lec-
tures by Kohn, 1999, and Pople, 1999).

The distribution of single-particle energy levels of the
mean-field potential can be nonuniform, and bunches of
degenerate or nearly degenerate levels, being separated
from other levels by energy gaps, can occur. Such group-
ing of levels or the formation of shells (as shown sche-
matically in Fig. 1) is a consequence of both the dimen-
sionality and the symmetry of the mean-field potential.
A high degree of symmetry results in a pronounced level
bunching (Brack et al., 1972). This level bunching is
manifested in many of the physical properties of finite,
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quantal many-fermion systems, such as, for example,
their stability, ionization energies, chemical reactivity, or
conductance.

The density of single-particle states at the Fermi sur-
face is of particular importance for the stability of the
system. If it is at a minimum, the particles occupy states
with a smaller energy on average, and consequently the
system is more bound: shell filling leads to particularly
stable states. If a shell is not filled, however, the system
can stabilize itself by spontaneously breaking its internal
symmetry. For atomic nuclei, for example, such a spatial
deformation of the mean field was confirmed by an
analysis of rotational spectra (see Bohr and Mottelson,
1975, and the review by Alder et al., 1956). More re-
cently, similar effects were observed from plasmon reso-
nances of metallic clusters, as reviewed by Brack (1993),
and de Heer (1993).

In a finite quantal system of fermions, the stability
condition is that there be no unresolved degeneracy at
the Fermi surface. This condition is met for certain num-
bers of confined particles, for which a degenerate shell
with a large energy gap to the next unoccupied shell can
be filled. We illustrate this with the example of an aniso-
tropic harmonic-oscillator confinement in two dimen-
sions (x ,y),

V~x ,y !5
1
2

m* v2S dx21
1
d

y2D , (1)

as an empirical mean-field potential in which a number
N of fermions with an effective mass m* are assumed to
move independently. The ratio d5vx /vy with frequen-
cies vx5vAd and vy5v/Ad defines the ratio of semi-
axes of the ellipse equipotentials. Imposing the con-
straint v25vxvy conserves their area with deformation.
The corresponding single-particle energy spectrum,

«nx ,ny
~d!5\vF S nx1

1
2 DAd1S ny1

1
2 D YAdG , (2)

FIG. 1. Schematic illustration of the bunching of single-
particle states (shell structure) in a finite fermion system. The
binding energy is lower if the single-particle level density at the
Fermi energy has a minimum. After Brack et al., 1972.
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is shown as a function of deformation d in Fig. 2 (left).
In the isotropic case d51, one clearly recognizes the
(N011)-fold degeneracy for a principal quantum num-
ber N05nx1ny50,1,2, . . . . By filling the states with
noninteracting fermions, respecting the Pauli principle,
and including spin degeneracy with a factor of 2, one can
reach closed shells for a sequence of N52,6,12,20, . . .
particles. For these configurations, particular stability is
reached, as the degeneracy of the shell is resolved and
the density of states is minimal at the Fermi energy.
Adding one more electron to a closed shell would result
in single occupancy of an orbit belonging to the next
higher shell, and the system would be less stable. In the
case of open shells, however, the degeneracy can be low-
ered by deformation and an energetically more favor-
able configuration can be reached. (This phenomenon is
known as the Jahn-Teller effect; Jahn and Teller, 1937.)
In particular, for noncircular shapes, subshells with de-
generacies comparable to the nondeformed case can oc-
cur, leading to a pronounced stability at the correspond-
ing deformation (Geilikman, 1960; Wong, 1970). Figure
2 (right) shows the total energies (nx ,ny

«nx ,ny
(d). We

see that depending on the number of confined particles
and deformation, cusps and minima in the total energy
occur for d.1 at frequency ratios where more pro-
nounced subshells are formed. As is obvious from the
shell patterns in the single-particle spectra, configura-
tions with N52, 6, or 12 particles have the lowest ener-
gies in the isotropic case, while for N54, 8, or 10, the
energy can be lowered by deformation.

Despite the simplicity of this example, it contains
some of the basic features of a finite, fermionic quantum
system: the occurrence of shells and the corresponding
stability for closed-shell configurations, and the ten-

FIG. 2. Effects of deformation. Left: Single-particle states of a
two-dimensional anisotropic harmonic oscillator as a function
of deformation (d.1). Degeneracies in the isotropic case (d
51) lead to closed shells for N52,6,12,20, . . . (for noninter-
acting fermions, including spin degeneracy) and subshells oc-
cur at frequency ratios d5q/p for integer q ,p . Right: Total
energies (nx ,ny

«nx ,ny
of the anisotropic harmonic oscillator for

N52, 4, 6, 8, 10, and 12 noninteracting particles as a function
of deformation.
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FIG. 3. Shell structure and
‘‘magic numbers’’ in finite fer-
mion systems. Upper left,
atomic ionization energies;
lower left, separation energies
of atomic nuclei (after Bohr
and Mottelson, 1975); upper
right, abundance spectra of me-
tallic clusters (counting rate in
arbitrary units), (after Knight
et al., 1984); lower right, differ-
ences in the chemical potential
m(N11)2m(N) of disk-
shaped quantum dots; inset, de-
vice setup, schematic (from
Tarucha et al., 1996).
dency to spontaneously break the symmetry of the mean
field in the case of open shells. Subshell closings enhance
the stability of the broken-symmetry states compared to
the nondeformed, open-shell system.

B. ‘‘Magic numbers’’ in finite fermion systems

The Periodic Table, with the appearance of its eight
groups of elements showing similar chemical properties,
is the most widely appreciated example of shell struc-
ture. Atomic shells are most strikingly seen in the pro-
nounced maxima of the ionization energies of neutral
atoms for certain atomic numbers Z52,10,18, . . . , cor-
responding to the noble gases He, Ne, Ar, . . . (see up-
per left panel of Fig. 3). The spherical symmetry of the
very rigid confinement of the electrons caused by the
strong Coulomb potential of the nucleus results in large
degeneracies at the midshell regions. These shells are
then populated according to Hund’s rules: due to the
Pauli principle and the repulsive Coulomb interaction,
the spin is maximized for half filled orbitals. (Note that
in nuclei the interaction is attractive, and consequently
the spins are paired off.)

In nuclei, the separation energy (i.e., the energy that is
required to remove a nucleon from the nucleus) of neu-
trons and protons shows distinct steps for certain par-
ticle numbers, originating from the shell structure (lower
left panel of Fig. 3). These steps are very similar to the
abrupt decrease of the atomic ionization potentials for
electron numbers that exceed the atomic shell closings
by one.

Parametrizing an average mean-field potential and in-
cluding spin-orbit coupling, Goeppert-Mayer (1949) and
Haxel, Jensen, and Suess (1949) could formulate a shell
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
model that successfully explained the ‘‘magic numbers’’
of nucleons for which particular stability was observed.

In the early 1980s, finite-size clusters of atoms at-
tracted much interest: they provided a link between the
physics of single atoms or the smallest molecules, and
the solid. Knight et al. (1984) succeeded in fabricating
clusters consisting of from a few up to hundreds of alkali
atoms by supersonic expansion of a mixture of metal
atoms and a carrier gas through a tiny nozzle. Conden-
sation of droplets and subsequent evaporation of single
atoms until equilibrium was reached produced stable
clusters that could then be counted and size selected.
The anomalies in the mass abundance spectra, i.e., the
counting rates of clusters with a given number of atoms
per cluster, are striking: for certain numbers of atoms,
one observes an enhanced stability of the cluster. The
upper right panel of Fig. 3 shows the cluster counting
rate (in arbitrary units) as a function of the number of
atoms per cluster: pronounced maxima are observed for
clusters with 2, 8, 20, 40, and 58 atoms. This reminds us
of the magic numbers in nuclei mentioned above. A
metal cluster can be described in a simple model that
assumes that the delocalized valence electrons experi-
ence a homogeneous positively charged background
(‘‘jellium’’) of the atom ions. This approach has long
been used in solid-state physics to describe, for example,
metal surfaces (Lang and Kohn, 1970; Monnier and Per-
dew, 1978) or voids in metals (Manninen et al., 1975;
Manninen and Nieminen, 1978). Indeed, the jellium
model of metals provided an explanation for the en-
hanced stability of clusters with specific sizes. Density-
functional calculations for electrons confined by a
spherical jellium of sodium ions (Martins et al., 1981,
1985; Hintermann and Manninen, 1983; Beck, 1984;
Chou et al., 1984; Ekardt, 1984) actually had suggested
the enhanced stability of closed-shell configurations for
sodium clusters with N52, 8, 20, 34(40), or 58 atoms
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shortly before their experimental discovery in 1984. For
large cluster sizes, theoretical and experimental evi-
dence for a supershell structure, i.e., a beating pattern
that envelopes the shell oscillations, was found in 1990
(Nishioka, Hansen, and Mottelson, 1990; Pedersen et al.,
1991). Much experimental and theoretical effort was de-
voted in the following years to detailed studies of the
electronic and geometric structure of metallic clusters
and their physical and chemical properties. (For a re-
view of shell structures in metallic clusters, see Brack,
1993, de Heer, 1993, and the recent monograph by
Ekardt, 1999).

In beautiful analogy to atoms, nuclei, or clusters, shell
structure can also be observed in the conductance spec-
tra of small semiconductor quantum dots. As an ex-
ample, the inset to Fig. 3 (lower right panel) schemati-
cally shows the device used by Tarucha et al. (1996): in
an etched pillar of semiconducting material, a small,
quasi-two-dimensional electron island is formed be-
tween two heterostructure barriers. The island can be
squeezed electrostatically by applying a voltage to the
metallic side gate that is formed around the vertical
structure. The dot is connected to macroscopic voltage
and current meters via the source and drain contacts.
Measuring the current as a function of the voltage on
the gates at small source-drain voltage, one observes
current peaks for each single electron subsequently en-
tering the dot (see Sec. II.B). The spacing between two
subsequent current peaks is proportional to the differ-
ence in energy needed to add another electron to a dot
already confining N particles. This quantity is plotted in
Fig. 3 (lower right panel) for two different dots with
diameters D50.5 mm and D50.44 mm and shows large
amplitudes at electron numbers N52, 6, and 12. Indeed,
these numbers correspond to closed shells of a two-
dimensional harmonic oscillator. As we shall see, the ad-
ditional structures at the midshell regions are a conse-
quence of spin alignment due to Hund’s rules, in analogy
to the atomic ionization spectra (Zeng, Goldman, and
Serota, 1993; Tarucha et al., 1996; Franceschetti and
Zunger, 2000).

II. QUANTUM DOT ARTIFICIAL ATOMS

Quantum dots constitute an excellent model system in
which to study the many-body properties of finite fermi-
onic systems. Without attempting to review the many
experimental techniques that have been developed, we
provide in this section a brief introduction to the fabri-
cation of these man-made structures (Sec. II.A). A sub-
stantial amount of information on the electronic proper-
ties of quantum dots is drawn from conductance
measurements. Here the discrete nature of the electron
charge manifests itself as a Coulomb blockade. This im-
portant feature is discussed in Sec. II.B, and more de-
tails are given in Sec. II.C regarding the different types
of experimental setups for studying the level spacing.
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
A. Fabrication

The development in the early 1970s of superlattice
structures (Esaki and Tsu, 1970; Chang et al., 1973) and
the demonstration of carrier confinement in reduced di-
mensions by electron and optical spectroscopy in GaAs-
AlGaAs quantum wells (Chang, Esaki, and Tsu, 1974;
Dingle, Gossard, and Wiegmann, 1974; Esaki and
Chang, 1974) were of crucial importance for further de-
velopments in semiconductor physics. With the trend to-
ward miniaturizing electronic devices, systems based on
a quasi-two-dimensional electron gas (which can form in
heterostructures, quantum wells, or metal-oxide semi-
conductor devices; see Ando, Fowler, and Stern, 1982)
attracted much attention. By applying metallic gate pat-
terns or etching techniques, it became possible to further
restrict a two-dimensional electron gas to geometries in
which the carriers are confined to a ‘‘wire’’ (i.e., a quasi-
one-dimensional system) or a ‘‘dot,’’ where the carrier
motion is restricted in all three spatial directions (i.e., a
‘‘zero-dimensional’’ system).

Experiments on quantum wires like those, for ex-
ample, reported in the very early work of Sakaki (1980),
led to further investigations of the localization and inter-
action effects in one-dimensional systems (Wheeler
et al., 1982; Thornton et al., 1986). For the fabrication of
zero-dimensional artificial atoms and the search for ex-
perimental evidence of energy quantization, various ap-
proaches were taken in the beginning.1 Regarding the
observation of energy quantization, Reed et al. (1988)
performed pioneering experimental studies on etched
heterostructure pillars. Figure 4 shows a scanning elec-
tron micrograph of these dot structures, which had elec-
tric contacts on their top and bottom, respectively.

1See, among others, Smith et al., 1987, 1988; Hansen et al.,
1989, 1990; Sikorski and Merkt, 1989; Demel et al., 1990;
Lorke, Kotthaus, and Ploog, 1990; Silsbee and Ashoori, 1990;
Meurer, Heitmann, and Ploog, 1992.

FIG. 4. Scanning electron micrograph showing etched quan-
tum dots. (The white bars have a length of 0.5 mm.) Inset,
schematic picture of a single dot structure. After Reed et al.,
1988.
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(A schematic drawing of the double-barrier heterostruc-
ture is shown as an inset in Fig. 4.) Measuring the
current-voltage characteristics of single dots, Reed et al.
(1988) reported evidence that electron transport indeed
occurred through a discrete spectrum of quantum states.

Single-electron tunneling and the effect of Coulomb
interactions in asymmetric quantum pillars was also dis-
cussed by Su, Goldman, and Cunningham (1992a,
1992b). Guéret et al. (1992) built an etched double-
barrier vertical-dot structure, surrounded by a metallic
and a separately biased Schottky gate, that allowed a
variable control of the lateral confinement. In addition
to avoiding edge defects and allowing for a rather
smooth confinement of the electrons, with this device
one can control the effective size of the quantum dot by
varying the voltage on the vertical gate. Despite these
efforts, it was not until 1996 when, with a rather similar
setup (see the inset to the lower right panel in Fig. 3),
Tarucha et al. could obtain for the first time very clear
experimental evidence for energy quantization and shell
structure on a truly microscopic level. We shall return to
these measurements and their theoretical analysis later
on.

Another method frequently used to create quantum
confinement in a semiconductor heterostructure is the
lithographic patterning of gates, i.e., the deposition of
metal electrodes on the heterostructure surface. An ex-
ample is shown in Fig. 5, here for an inverted GaAs-
AlGaAs heterostructure. Application of a voltage to the
top gate electrodes confines the electrons of the two-
dimensional electron gas that is formed at the interface
between the different semiconductor materials (see Mei-
rav, Kastner, and Wind, 1990).

Other examples of the creation of quantum dots are
the selective and self-assembled growth mechanisms of
semiconducting compounds (Petroff et al., 2001). In the
Stranski-Krastanow process (Stranski and von Krast-
anow, 1939), a phase transition from epitaxial structure
to islands with similar sizes and regular shapes takes
place, depending on the misfit of the lattice constants
(strain) and the growth temperature. For a description
of the self-organized growth of quantum dots at the sur-
faces of crystals we refer the reader to the monograph
by Bimberg, Grundmann, and Ledentsov (1999). The

FIG. 5. Lateral device structure. Left, schematic drawing of a
lateral device structure; right, scanning electron micrograph of
the sample. From Meirav, Kastner, and Wind, 1990.
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growth conditions determine the form of self-assembled
dots, which, for example, can be pyramidal, disk shaped
or lens shaped (Marzin et al., 1994; Petroff and Den-
baars, 1994; Grundmann et al., 1995; Notzel et al., 1995).
Drexler et al. (1994), Fricke et al. (1996), Miller et al.
(1997), and Lorke and Luyken (1997, 1998) probed the
ground states and electronic excitations of small self-
assembled quantum dots and rings by far-infrared and
capacitance spectroscopy. Double layers of vertically
aligned quantum dots were investigated by Luyken et al.
(1998). A theoretical analysis of the few-electron states
in lens-shaped self-assembled dots compared well with
the experimental results of Drexler et al. (1994) and
showed that the calculated charging and infrared ab-
sorption spectra reflect the magnetic-field-induced tran-
sitions between different states of interacting electrons
(Wójs and Hawrylak, 1996). Ullrich and Vignale (2000)
were the first to provide time-dependent spin-density-
functional calculations of the far-infrared density re-
sponse in magnetic fields and were able to reproduce the
main features of the far-infrared spectroscopy measure-
ments by Fricke et al. (1996) and Lorke et al. (1997).
Fonseca et al. (1998) performed an analysis of the
ground states of pyramidal self-assembled dots within
spin-density-functional theory, as discussed briefly in
Sec. III.J.

Quantum dots and quantum wires can also be fabri-
cated by the so-called cleaved-edge overgrowth (Pfeiffer
et al., 1990; see also Wegscheider, Pfeiffer, and West,
1996 and Wegscheider and Abstreiter, 1998). Much ex-
perimental and theoretical work has concentrated on
optical excitations, as summarized in the monograph by
Jacak, Hawrylak, and Wójs (1998). The latter work also
provides a comprehensive review on studies of excitons
in quantum dots.

B. Coulomb blockade

Electron transport through a quantum dot is studied
by connecting the quantum dot to surrounding reser-
voirs. The fact that the charge on the electron island is
quantized in units of the elementary charge e regulates
transport through the quantum dot in the Coulomb
blockade regime (Kouwenhoven and McEuen, 1999).
Here the transport between the reservoirs and the dot
occurs via tunnel barriers, which are thick enough that
the transport is dominated by resonances due to quan-
tum confinement in the dot (Tanaka and Akera, 1996).
This requires a small transmission coefficient through
the barriers, and thus the tunnel resistance has to be
larger than the quantum resistance h/e2. If the dot is
fully decoupled from its environment, it confines a well-
defined number N of electrons. For weak coupling, de-
viations due to tunneling through the barriers are small,
leading to discrete values in the total electrostatic en-
ergy of the dot. This energy can be estimated by N(N
21)e2/(2C), where C is the capacitance of the dot.
Thus the addition of a single electron requires energy
Ne2/C , which is discretely spaced by the charging en-
ergy e2/C . If this charging energy exceeds the thermal
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energy kBT , the electrons cannot tunnel on and off the
dot by thermal excitations alone, and transport can be
blocked, which is referred to as a Coulomb blockade
(Averin and Likharev, 1986, 1991; Grabert and Devoret,
1991; see also Kouwenhoven, Marcus, et al., 1997, Kou-
wenhoven, Oosterkamp, et al., 1997, and Kouwenhoven
and McEuen, 1999).

Single-electron charging effects in electron tunneling
were first studied by transport measurements on thin
films of small metallic grains (Gorter, 1951; Giaever and
Zeller, 1968; Lambe and Jaklevic, 1969; Zeller and Gi-
aever, 1969). In 1975, Kulik and Shekter pointed out that
in a double-junction system, the current through a small
grain at low bias voltages is blocked by the charge on the
island, whereas the differential conductance can vary pe-
riodically at a higher bias. The Coulomb blockade and
the Coulomb ‘‘staircase’’ were observed by Kuzmin and
Likharev (1987) and by Fulton and Dolan (1987) for
granular systems and thin-film tunnel junctions, respec-
tively. Single-electron charging effects were further in-
vestigated for one-dimensional arrays of ultrasmall tun-
nel junctions by Kuzmin et al. (1989) and Delsing et al.
(1989a, 1989b). Scott-Thomas et al. (1989) found peri-
odic variations in the conductance of a narrow disor-
dered channel in a Si inversion layer, for which van
Houten and Beenakker (1989) suggested an interpreta-
tion in terms of single-electron charging effects. Their
explanation was based on the assumption that charged
impurities along the narrow channel would form a par-
tially isolated segment, and the conductance oscillations
should arise from its sequential, quantized charging.
Groshev (1990) argued that the experiment by Reed
et al. (1988) mentioned above can be better understood
by taking Coulomb charging effects into account. To be
able to observe the conductance oscillations in a more
controlled way, Meirav, Kastner, and Wind (1990) sug-
gested the construction of a narrow channel by a litho-
graphically defined gate structure, as shown in Fig. 5.
The two barriers define the coupling of the channel to its
surroundings. Figure 6 shows the result of the experi-

FIG. 6. An example of the first measurements of Coulomb
blockade as a function of the gate voltage, observed for a lat-
erally confined narrow channel. The figure is taken from Meir,
Wingreen, and Lee, 1991 and goes back to the experimental
work of Meirav, Kastner, and Wind, 1990. (a),(c) regions of
Coulomb blockade; (b) conductance region, as schematically
illustrated in Fig. 7.
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ment, in which the conductance of the double-barrier
channel was measured as a function of the gate voltage
at different temperatures (see also Meir, Wingreen, and
Lee, 1991). One can see how the Coulomb blockade af-
fects transport: clear peaks, equidistantly spaced, are
separated by regions of zero conductance. For an early
review on conductance oscillations and the related Cou-
lomb blockade, see Kastner, 1992.

The possibility of forming quantum dots by gates on a
heterostructure was later used by many different groups,
and measurements of Coulomb blockade spectra for
dots of various sizes and geometries were analyzed. We
restrict our discussion here to the most elementary argu-
ments needed to understand the basic features in the
experimental spectra and—for the sake of simplicity—
discuss the Coulomb blockade mechanism only on a
qualitative level. For a more thorough analysis, see, for
example, Meir, Wingreen, and Lee (1991) and the recent
review by Aleiner, Brouwer, and Glazman (2001) on
quantum effects in Coulomb blockade.

Following Kouwenhoven and McEuen (1999), the up-
per panel of Fig. 7 schematically illustrates an electron
island connected to its environment by electrostatic bar-
riers, the so-called source and drain contacts, and a gate
to which one can apply a voltage Vg . (In this example,
the quantum dot is formed by the positively charged
back gate, in contrast to Fig. 5, where negatively charged
gates surrounded a region in which the dot is formed.)

The level structure of the quantum dot connected to
source and drain by tunneling barriers is sketched sche-
matically in Figs. 7(a)–(c). The chemical potential inside
the dot, where the discrete quantum states are filled with
N electrons [i.e., the highest solid line in Figs. 7(a)–(c)],
equals mdot(N)5E(N)2E(N21), where E(N) is the
total ground-state energy (here at zero temperature).
When a dc bias voltage is applied to the source s and the
drain d , the electrochemical potentials ms and md are
different, and a transport window ms2md52eVsd opens
up. In the linear regime the transport window 2eVsd is
smaller than the spacing of the quantum states, and only
the ground state of the dot can contribute to the conduc-
tance. By changing the voltage on the back gate, one can
achieve an alignment of mdot(N11) with the transport
window [Fig. 7(b)], and electrons can subsequently tun-
nel on and off the island at this particular gate voltage.
This situation corresponds to a conductance maximum,
as marked by the label (b) in Fig. 6. Otherwise transport
is blocked, as a finite energy is needed to overcome the
charging energy. This scenario corresponds to zero con-
ductance as marked by the labels (a) and (c) in Fig. 6.
The mechanism of discrete charging and discharging of
the dot leads to Coulomb blockade oscillations in the
conductance as a function of gate voltage (as observed,
for example, in Fig. 6): at zero conductance, the number
of electrons on the dot is fixed, whereas it is increased by
one each time a conductance maximum is crossed. (If
the gate voltage is fixed but the source-drain voltage is
varied instead, the current-voltage characteristic shows
current steps occurring at integer multiples of the
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FIG. 7. Single-electron transport in a quantum dot: upper panel, setup for transport measurements on a lateral quantum dot, after
Kouwenhoven and McEuen (1999); lower panel, (a)–(c) schematic picture of the level structures for single-electron transport
(courtesy of A. Wacker). The solid lines represent the ionization potentials where the upper equals mdot(N), whereas the dashed
lines refer to electron affinities, where the lowest one equals mdot(N11). The gate bias increases from (a) to (c) [Color].
single-electron charging energy threshold; see, for ex-
ample, Kouwenhoven et al., 1991.)

The distance between neighboring Coulomb peaks is
the difference between the (negative) ionization poten-
tial I(N)5E(N21)2E(N) and the electron affinity
A(N)5E(N)2E(N11) of the artificial atom (Kastner,
1993). It equals the difference in the electrochemical po-
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
tentials of a dot confining N11 and N electrons, i.e., the
second differences of the corresponding total ground-
state energies E(N):

D2~N !5mdot~N11 !2mdot~N !

5E~N11 !22E~N !1E~N21 !. (3)
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Following Kouwenhoven et al. (1991; Kouwenhoven and
McEuen, 1999), in the simple, constant-capacitance
model (Silsbee and Ashoori, 1990; McEuen et al., 1991,
1992) it is assumed that the difference between the
chemical potential of a dot confining N or N11 elec-
trons can be approximated by the differences of the
single-particle energies D«5«N112«N , plus the single-
electron charging energy e2/C :

D2~N !'D«1e2/C . (4)

As the capacitance of the dot increases and thus leads to
a reduced charging energy, the addition energy (the en-
ergy required to add an electron to the system) de-
creases with increasing number of confined electrons.
From Eq. (4) we see that when e2/C@kBT@D« , quan-
tum effects can be neglected, and the Coulomb blockade
oscillations are periodic in e2/C . (This, for example, was
the case for the Coulomb oscillations shown in Fig. 6,
measured for a fairly large sample in the mesoscopic
regime.)

For a larger transport window 2eVsd , i.e., in the non-
linear transport regime, additional structures in the Cou-
lomb blockade occur: the excitation spectrum leads to a
set of discrete peaks in the differential conductance
dI/dVsd (Johnson et al., 1992; Wies et al., 1992, 1993;
Foxman et al., 1993). Plotting the positions of these
peaks as a function of Vsd and the gate voltage, one
observes a characteristic diamond-shaped structure,
which reveals information about the ground and excited
states; see Fig. 8. (The details of these structures depend
on the particular experimental setup; a further descrip-
tion is given, for example, by Kouwenhoven, Marcus,
et al., 1997 and Kouwenhoven and McEuen, 1999.) In
the linear regime, i.e., Vsd'0, we observe Coulomb
blockade as described above. Upon increasing Vsd , ex-
cited states (though usually only a few low-lying ones)
become accessible and additional transport channels are
provided (see Fig. 7). The vertical gap (Fig. 8) reflects
the charging energy causing the Coulomb blockade. Be-
tween successive diamonds touching at the Vsd50 axis,
the electron number increases from N to N11. Similar

FIG. 8. Peak positions in the differential conductance dI/dVsd
as a function of Vsd (converted to an energy by some factor
eb) and gate voltage (see Foxman et al., 1993) for a quantum
dot structure as shown in Fig. 5 above.
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observations were reported on vertical quantum dot
structures, which allowed a more detailed analysis of the
ground and excited states in magnetic fields (see Kou-
wenhoven, Oosterkamp, et al., 1997, and Sec. VI).

Studying the ground and excited spectra of a quantum
dot by linear and nonlinear magnetoconductance mea-
surements, Stewart et al. (1997) demonstrated that
strong correlations exist between the quantum dot
energy-level spectra of successive electron numbers in
the dot. They observed a direct correlation between the
ith excited state of an N-electron system and the ground
state of the (N1i)-electron system for i&4. This was
surprising, as a notable absence of spin degeneracy and
deviations from the simple single-particle picture are ex-
pected due to the interactions of the particles.

C. Probes of single-electron charging

For metallic systems, signatures of quantum effects in
the Coulomb blockade spectra were discussed at an
early stage by Korotkov et al. (1990), Averin and
Likharev (1991), Beenakker (1991), and Meir et al.
(1991). More recent experiments were performed on ul-
trasmall and very clean metallic nanoparticles (Ralph,
Black, and Tinkham, 1997; Davidović and Tinkham,
1999). For a recent review, see von Delft and Ralph,
(2001).

For semiconductor quantum dots, different experi-
mental techniques for probing single-electron charging
effects on single dots or arrays of dots have been ap-
plied, allowing a detailed spectroscopic study of the
ground and excited states of individual artificial atoms.
Infrared and optical spectroscopy was reported for ar-
rays of quantum dots (Sikorski and Merkt, 1989; Ba-
wendi, Steigerwald, and Brus, 1990; Meurer, Heitmann,
and Ploog, 1992). Brunner et al. (1992) were among the
first to apply optical spectroscopy to individual dots. The
first capacitance measurements of quantum dots were
reported by Smith et al. (1988). Single-electron capaci-
tance spectroscopy has been applied both to arrays
(Hansen et al., 1989; Silsbee and Ashoori, 1990; Ashoori,
Silsbee, et al., 1992) and to individual quantum dots
(Ashoori, Stormer, et al., 1992).

From a microscopic approach to electron tunneling
through a quantum dot based on a Hartree-Fock calcu-
lation, Wang, Zhang, and Bishop (1994) inferred that,
for a small number of electrons, the Coulomb oscilla-
tions are nonperiodic and become periodic only in the
large-N limit. Such irregularities in the single-electron
transport spectra of quantum dots were observed experi-
mentally rather early (see Ashoori et al., 1993, and
Schmidt et al., 1995). However, sample-dependent inho-
mogeneities probably inhibited a very clear observation
of shell structure in these pioneering experiments. For
gated vertical-dot structures, Tarucha et al. (1995, 1996)
and Austing et al. (1996) were the first to demonstrate
very clearly the electronic shell structure of small verti-
cal dots.
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The methods of gated transport spectroscopy, single-
electron capacitance spectroscopy, and single-electron
transport through a vertical quantum dot are briefly
treated in what follows, before we turn to a theoretical
analysis of the electronic structure of quantum dots.
Many of the experimental data can be well understood
within a model that assumes the quantum dot to be iso-
lated from its environment.

1. Gated transport spectroscopy

A measurement of the Coulomb blockade peaks as a
function of gate voltage for a lateral gate structure was
shown in Fig. 6 above. As this dot was rather large,
quantization effects were negligible and the Coulomb
blockade peaks were equidistant. The sensitivity of
‘‘gated transport spectroscopy’’ (Ashoori, 1996) on Cou-
lomb blockade and quantum level splittings was demon-
strated by McEuen et al. (1991, 1992) for systems confin-
ing ;100 electrons. For transport measurements on
small lateral quantum dots in both the linear and the
nonlinear regime, Johnson et al. (1992) observed a com-
bined effect of zero-dimensional quantum states and
single-electron charging. Oscillations in the conductance
measured on a lateral gated quantum dot with circular
shape, formed electrostatically by gates on top of a
GaAs-AlGaAs heterostructure, were later reported by
Persson et al. (1994), Persson, Lindelof, et al. (1995), and
Persson, Petterson, et al. (1995). Here the dot was fairly
large, confining between about 600 and 1000 electrons.
While the discreteness of the quantum states could not
be observed directly from the measurements, the pro-
nounced oscillations in the conductance could be related
to regular shell patterns in the quantum density of
states, modeled by a simple single-particle model for a
circular disk confinement with ideally reflecting walls. A
semiclassical interpretation of these experiments in
terms of periodic orbits was suggested by Reimann et al.
(1996; see also Brack and Bhaduri, 1997). For metallic
clusters, a similar analysis had been performed earlier by
Nishioka, Hansen, and Mottelson (1990). They pre-
dicted a supershell structure, as we briefly mentioned in
the Introduction: a beating pattern in the density of
states is superposed on the individual shell oscillations
(Balian and Bloch, 1970, 1971, 1972). Such a supershell
structure was experimentally discovered in mass abun-
dance spectra of metallic clusters (Pedersen et al., 1991),
but has not yet been observed in two-dimensional quan-
tum dot systems (Bøggild et al., 1998).

If the Fermi wavelength is small compared to both the
device dimensions and the phase coherence length, and
if the mean free path exceeds the dot size, the electron
motion in the dot becomes ballistic. Such dots can be
treated like electron billiards, where the electrons move
as classical particles but do carry phase information. In-
terference effects of trajectories scattered from the con-
fining walls of microstructures with irregularly shaped
boundaries have been compared to disordered materi-
als, in which the electron motion is diffusive and quan-
tum interference adds to the classical conductance.
These studies of mesoscopic transport, quantum inter-
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ference, and classically chaotic systems constitute a large
field of research in themselves. We refer the reader to
Beenakker and van Houten (1991) and Altshuler, Lee,
and Webb (1991) for reviews of mesoscopic phenomena
in semiconductor nanostructures. The recent review by
Alhassid (2000) discusses statistical theories in the me-
soscopic regime. A description of chaos in ballistic nano-
structures was further provided by Baranger and West-
ervelt (1998).

Large electron numbers are rather typical for lateral
quantum dot structures: it is very difficult to decrease
the number of confined electrons to below about 20
(Kouwenhoven, Marcus, et al., 1997), as the tunnel bar-
riers formed by the depletion potential become too large
for observation of a current. Progress was made only
recently, when Ciorga et al. (2000) demonstrated that by
designing specially formed gates on a GaAs-AlGaAs
heterostructure, one can create lateral quantum dots
even in the few-electron regime.

2. Single-electron capacitance spectroscopy

Ashoori, Störmer, et al. (1992), and Ashoori et al.
(1993) applied capacitance spectroscopy to a GaAs tun-
nel capacitor containing a microscopic region for charge
accumulation (see Fig. 9, upper panel) in which the
charge could be varied from zero to thousands of elec-
trons. The structure consisted of a thin AlGaAs layer
(forming a tunnel barrier), followed by a layer of GaAs
forming the quantum well, and a thick layer of AlGaAs

FIG. 9. Single-electron capacitance spectroscopy. Upper panel,
scheme of the quantum dot device used in single-electron ca-
pacitance measurements by Ashoori, Störmer, et al. (1992),
Ashoori et al. (1993), and Ashoori (1996). The arrow indicates
the tunneling of an electron back and forth between the dot
and the bottom electrode in response to a (periodic) voltage
applied to the top gate. Lower panel, capacitance measured as
a function of the gate voltage Vg . From Ashoori, 1996.
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that acted as an insulator, prohibiting the tunneling of
electrons to the top electrode. A circular GaAs disk was
grown on top of this AlGaAs layer, right above the
quantum well, and the wafer was covered with a top
electrode. This capacitor was shaped so that when a gate
voltage was applied, electrons were confined in the
GaAs quantum well. The quantum dot formed between
the two electrodes (top and bottom) was close enough to
the bottom electrode that single electrons could tunnel
on and off. Single-electron capacitance spectroscopy
measures the capacitance signal due to the tunneling of
a single electron into the dot, which induces charge on
the top electrode. Detection of this charge makes it pos-
sible to accurately determine the gate voltage at which a
single electron can enter the dot.

Figure 9 shows a plot of the capacitance versus gate
bias. With increasing positive bias on the top plate, elec-
trons tunnel subsequently into the dot. The spacing be-
tween the peaks is approximately constant, similar to
what was observed by Meirav, Kastner, and Wind (1990)
for larger, lateral quantum dots. For smaller bias, how-
ever, the data of Ashoori, Störmer, et al. (1992) and
Ashoori et al. (1993) show irregularities: the distances
between subsequent peaks are increased and are non-
uniform. These deviations from the equidistant Cou-
lomb blockade spectra can be attributed to energy quan-
tization in the dot structure, as we shall explain later.

3. Transport through a vertical quantum dot

Despite the early success in obtaining very clear Cou-
lomb blockade spectra (Kastner, 1992), for a rather long
time it remained a challenge to fabricate dots so regular
and clean that clear signals of energy quantization and
shell structure in the small-N limit could be observed.

In vertical dots (as already described briefly in Secs.
I.B and II.A above) one uses thin heterostructure barri-
ers that are only very weakly affected by the gate poten-
tial. Such dots were the most promising candidates for
achieving a truly quantum-mechanical confinement of a
small number of electrons. Their fabrication, however, is
difficult, and until about 1996, transport measurements
on such structures were reported by only a few groups
(Reed et al., 1988; Dellow et al., 1991; Goodings et al.,
1992; Guéret et al., 1992; Kolagunta et al., 1995).
Tarucha et al. (1996) worked with a gated vertical quan-
tum dot structure (as schematically shown earlier in the
inset to Fig. 3, lower right panel). The quantum dot was
made from a double-barrier heterostructure by etching
techniques, and the electron puddle was located be-
tween two heterostructure barriers that separated it
from the outside environment. A metallic Schottky gate
was wrapped around the circular etched pillar close to
the dot region. Tunnel junctions allowed Tarucha et al.
to vary the electron number N by applying a negative
voltage Vg to the Schottky gate. The energy gap be-
tween conductance and valence band could be reduced
by includingly indium in the well. The bottom of the
conduction band was then below the Fermi level of the
contacts, i.e., electrons could accumulate in the dot even
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if no voltage was applied. This made it possible to study
electron transport even at very small bias voltages. The
gate changed the effective diameter of the island. In the
experiment, the current flowed vertically through the
dot in response to a small dc voltage applied between
the contacts (i.e., in the linear transport regime as
sketched in Fig. 7). By measuring this conductance as a
function of the gate voltage Vg , Tarucha et al. (1996)
could observe clear Coulomb oscillations, corresponding
to a one-by-one increase in the number of confined elec-
trons in the dot each time a Coulomb blockade peak was
crossed. The period of the Coulomb peaks showed a
very pronounced N dependence: the spacings between
the second and third, sixth and seventh, and twelfth and
thirteenth peaks were larger than the spacings between
the neighboring peaks (Fig. 10). This becomes even
more clear when looking at the addition energy differ-
ences D2(N), which are proportional to the spacings be-
tween the Coulomb blockade peaks, as shown in Fig. 3.
[Note that Tarucha et al. (1996) used a scaling factor for
converting gate voltages to energies.] Pronounced
maxima at N52, 6, and 12 can be seen in D2(N) for
devices with a diameter of 0.5 and 0.44 mm.

The vertical quantum dot structure has a diameter
that is about ten times larger than its thickness in the
vertical direction. To a good approximation one can as-
sume that the motion of the electrons in the z direction
is frozen, i.e., only the ground state is occupied, and the
dot can be well approximated by a smoothly confined
circular electron island in two dimensions (x ,y). It is
obvious that the maxima in the spacings of the conduc-
tance peaks or in the addition energy differences D2(N)
are related to shell structure. In fact, the numbers coin-
cide with the lowest closed shells of the two-dimensional
harmonic oscillator confinement in the isotropic case,
N52,6,12, . . . (see Fig. 2 for d51). Keeping in mind
the discussion of atomic ionization spectra, we should
furthermore expect that as a consequence of Hund’s
rules the pronounced structures at the midshell regions
are related to spin alignment. These issues are discussed
in the next section.

III. ADDITION ENERGY SPECTRA

The independent-particle model provides an intuitive
understanding of the shell structure. At low electron

FIG. 10. Coulomb blockade oscillations in the linear regime as
a function of gate voltage, measured on the vertical gated
quantum dot structure by Tarucha et al. (1996). The quantum
dot is estimated to have a diameter of 0.5 mm. The measure-
ment was performed at 50 mK.
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densities or in strong magnetic fields, however, one
should turn to more sophisticated models for an accu-
rate description.

Hartree-Fock calculations give a first estimate of ex-
change effects. The correlation energy can be included
within density-functional theory (DFT), while keeping
the description on a mean-field level. This restriction can
be overcome by numerical, ‘‘exact’’ diagonalization of
the many-body Hamiltonian (the configuration-
interaction method), in which one must necessarily re-
strict the Hilbert space to a finite basis (i.e., the ‘‘exact’’
method is not truly exact), or by quantum Monte Carlo
methods. All these methods have been applied to a va-
riety of different systems such as circular or deformed
quantum dots, rings, and quantum wires.

After some general remarks in Sec. III.A, we turn to a
brief discussion of spin-density-functional theory in Sec.
III.B. Most authors consider a parabolic confinement for
the external quantum dot potential, which is explained
in Sec. III.C. After setting the stage, results for addition
energy spectra and spin configurations in quantum dots
are discussed in Secs. III.D, III.H, and III.I; these results
can be directly related to the experimental results ad-
dressed in the previous section.

A. Many-body effects in quantum dots

The electrons in the quantum dot belong to the con-
duction band of the semiconductor. The conduction-
electron density is low, the mean electron-electron dis-
tance being of the order of 10 nm. Consequently effects
due to the underlying lattice and to interaction with the
valence and core electrons can be taken into account
using the effective-mass approximation: the conduction
electrons in the quantum dot form a separate interacting
electron system with an effective mass m* , and their
mutual Coulomb interaction is screened with the static
dielectric constant of the semiconductor in question.

The many-body Hamiltonian H of a quantum dot, de-
coupled from its environment, is usually written as the
sum of a single-particle part (kinetic and potential con-
tributions) and the two-body part, describing the Cou-
lomb interaction between the electrons confined in the
dot:

H5(
i51

N S pi
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1V~ri! D 1(
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N e2
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Here, m* is the effective electron mass and e is the di-
electric constant of the corresponding background mate-
rial. [The energy and length units are frequently given in
effective atomic units, with the effective rydberg Ry*
5m* e4/2\2(4pee0)2 or hartree Ha* 52 Ry* and the ef-
fective Bohr radius aB* 5\2(4pee0)/m* e2, as this allows
a scaling to the actual values for typical semiconductor
materials. For GaAs, aB* 59.8 nm and Ry* 56 meV.]

Interacting electrons confined in a two-dimensional
harmonic trap form a seemingly simple many-body
problem: if the number of electrons is not too large,
standard methods can be applied. Bryant (1987) was the
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first to point out the importance of electron correlations
that give rise to many intriguing properties of quantum
dots. For a two-electron system in a long and narrow
rectangular box, he studied theoretically the continuous
evolution from single-particle-level structure to a regime
in which the electron-electron interactions dominate and
a Wigner crystal can form (see also Sec. IV.A). A quan-
tum dot confining two electrons (the so-called quantum
dot helium; Pfannkuche, Gerhardts, et al., 1993) is the
simplest example for which the eigenstates and spectra
of the two-particle Schrödinger equation can be ob-
tained analytically (Taut, 1994; see also El-Said, 1996;
González, Quiroga, and Rodriguez, 1996; Dineykhan
and Nazmitdinov, 1997). For realistic interactions like
the Coulomb repulsion, analytic solutions for N.2 are
impossible to obtain. Only for some modified forms of
the interparticle interaction, which, however, are of
more academic interest, have exact analytic solutions
been obtained; see, for example, Johnson and Payne,
1991; Quiroga, Ardila, and Johnson, 1993; Johnson and
Quiroga, 1994, 1995.)

The traditional way to attack a correlated few-
electron problem (Bryant, 1987; Maksym and
Chakraborty, 1990; Pfannkuche, Gerhardts, et al., 1993,
Pfannkuche, Gudmundsson, et al., 1993) is to apply
configuration-interaction methods, which are also fre-
quently used in quantum chemistry. (For a detailed de-
scription of the exact diagonalization method for quan-
tum dots, see Chakraborty, 1999.) In many cases,
however, we have to face the drawback that numerical
diagonalization methods are applicable only to fairly
small numbers of electrons at not too low densities. If
enough configurations, i.e., linear combinations of Slater
determinants made up from the single-particle basis
states, are included in the calculation, the solution con-
verges to the exact result and both ground and low-lying
excited states are obtained with rather high accuracy.
The advantage of exact diagonalization methods is that,
in addition to the ground-state energy and wave func-
tion, all low-lying excitations are computed with essen-
tially no extra cost or reduction of accuracy. This is im-
portant, since the excitation spectrum can also provide
insight into the electronic structure of the ground state.
On the experimental side, transport spectroscopy can be
used to identify the quantum numbers of excited states
and offers a direct link between theory and experiment
(Kouwenhoven, Oosterkamp, et al., 1997; see Sec.
VI.A).

Configuration-interaction calculations have been par-
ticularly useful for a description of dots in strong mag-
netic fields (see Sec. VI), where restrictions of Hilbert
space allow us to obtain accurate results for dots confin-
ing up to about ten electrons (Maksym and Chakraborty,
1990; Hawrylak and Pfannkuche, 1993; Pfannkuche,
Gudmundsson, and Maksym, 1993; Yang, MacDonald,
and Johnson, 1993; Palacios et al., 1994).

An alternative to the configuration-interaction
method is the use of quantum Monte Carlo calculations,
which have been performed for quantum dots in mag-
netic fields [see Bolton, 1994a, 1994b (fixed-node quan-
tum Monte Carlo), Harju et al., 1999, and Pederiva, Um-
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rigar, and Lipparini, 2000 (diffusion quantum Monte
Carlo)] as well as in the low-density regime [see Egger
et al., 1999 (variational quantum Monte Carlo) and Secs.
VI.A and IV.E].

B. Density-functional method

The mean-field approach offers considerable simplifi-
cation: it models a many-body system by noninteracting
particles confined in an average potential into which the
interactions are incorporated. To study large electron
systems in the presence of correlations, density-
functional theory in the self-consistent formulation of
Kohn and Sham (1965) provides a particularly powerful
tool. (For reviews see, for example, Jones and Gunnars-
son, 1989; Dreizler and Gross, 1990; Gross, Runge, and
Heinonen, 1991.) Density-functional theory is based on
the theorem by Hohenberg and Kohn (1964) and its
generalization by Levy (1979): the exact ground-state
energy of a many-body system is a unique functional of
the electron density n(r). Its variation with respect to
the density yields an absolute energy minimum for the
true-ground state density. Initially, DFT was developed
in a spin-independent formalism. Effects of spin polar-
ization (as they can occur in open-shell atoms or systems
with broken spin symmetry, such as ferromagnets) were
later incorporated by von Barth and Hedin (1972). This
so-called spin-density-functional theory (SDFT) relies
on the assumption that orbital currents give only a neg-
lible contribution to the energy functional. A further ex-
tension of the theory to include gauge fields was later
formulated by Vignale and Rasolt (1987, 1988) and be-
came known as the current-spin-density-functional
theory (CSDFT). This method, which was frequently ap-
plied to the description of artificial atoms in magnetic
fields, is further described in Sec. VII.

In SDFT, the total energy is a functional of the
spin-up and spin-down densities ns(r), where s5(↑ ,↓)
labels the spin. Equivalently, we can use the total density
n(r)5n↑(r)1n↓(r) and the spin polarization z(r)
5@n↑(r)2n↓(r)#/n(r). By minimizing this functional
one obtains the well-known Kohn-Sham equations,

S 2
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consisting of the external potential, the Hartree contri-
bution, and the variational derivative of the exchange-
correlation energy. Because the mean-field potential
VKS depends on the single-particle wave functions or
densities, the equations have to be solved self-
consistently by iteration. For a finite system with non-
uniform density n(r) one often makes the assumption
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that locally, the exchange-correlation energy per particle
can be approximated by that of the corresponding infi-
nite system at constant density. We label this energy by
exc„n(r),z(r)… and write

Exc
LSDA@n ,z#5E dr n~r!exc„n~r!,z~r!…. (8)

[The most frequently used parametrizations of exc in the
local spin-density approximation (LSDA) are discussed,
for example, by Dreizler and Gross (1990).] For the two-
dimensional electron gas, Tanatar and Ceperley (1989)
provided a parametrized form of exc as a Padé form for
nonpolarized (z50) and ferromagnetic (z51) cases,
obtained by a fit to a small set of numerical Monte Carlo
data for a few discrete values of the electron density. For
intermediate polarizations, a standard practice is the ad
hoc assumption that the unknown polarization depen-
dence of the correlation energy can be adopted from the
analytical expression for the exchange energy. [This ap-
proach has been implemented for the electron gas in
three dimensions by von Barth and Hedin (1972) and
Perdew and Zunger (1981).] For the interpolation, one
writes

exc~n ,z!5exc~n ,0!1f~z!@exc~n ,1!2exc~n ,0!# , (9)

with the polarization dependence (in the two-
dimensional case)

f~z!5
~11z!3/21~12z!3/222

23/222
. (10)

It should be emphasized that the mean-field equations
given in Eq. (6) in principle need to be solved in a geo-
metrically unrestricted scheme, i.e., the symmetry of the
solution should not be constrained by the symmetry of
the confinement. In the quantum dot literature, many
authors choose to simplify the solution of the Kohn-
Sham equations by imposing axial symmetry. We refer to
this scheme in the following discussion as the restricted
(spin) density-functional approach. A more general so-
lution requires unrestricted symmetries in both the spa-
tial and the spin parts of the single-particle wave func-
tions. We shall return to this point later when discussing
the broken-symmetry ground states in the mean-field
description. We note that the degree to which the re-
stricted DFT scheme gives a reliable approximation to
the exact ground-state energies and densities depends
on the average electron density in the dot. In two dimen-
sions for high densities n , i.e., small values of the
Wigner-Seitz parameter rs51/Apn , the single-particle
part of the Hamiltonian Eq. (5) dominates over the in-
teractions. In this case, the solutions of the restricted
DFT scheme compare well with those found in the un-
restricted approach. Broken-symmetry solutions origi-
nating from spatial deformation of the mean field occur
for larger values of rs , i.e., in the correlated regime.
Here, the energies usually are lower than those of the
symmetry-restricted DFT approach, reflecting the gain
in correlation energy.

From the Hohenberg-Kohn theorem we know that
the ground state is characterized by the single-particle
ground-state density n , which can be determined varia-
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tionally by minimizing the total energy functional. This
argument applies to the lowest state of a given symmetry
(Gunnarsson and Lundqvist, 1976). Starting the self-
consistent iterations of the Kohn-Sham equations with
different initial configurations in general leads to a set of
converged solutions out of which we have to identify the
true ground state. (Note that in order to achieve a reli-
able scan of the potential-energy surface, it is essential
to start with a rather large set of initial conditions.) The
addition energy differences D2(N) are then computed
from the Kohn-Sham ground-state energies after Eq.
(3). In this connection, it is useful to note that Koop-
mans’s theorem (Koopmans, 1933) connects the negative
of the ionization energy with the highest occupied
single-particle level. This theorem was originally formu-
lated for the Hartree-Fock approximation and was later
generalized to density-functional theory by Schulte
(1974, 1977) and Janak (1978).

Capelle and Vignale (2001) have recently shown that
in the spin-dependent formalism the effective potentials
are not always unique functionals of the spin densities.
While this notion is important for many applications of
SDFT, it does not invalidate the use of LSDA as an
approximate method for calculating ground-state prop-
erties using local approximations based on the homoge-
neous electron gas.

The time-dependent version of DFT can be used to
study collective excitations. For applications to quantum
dots, see, for example the work by Serra and Lipparini
(1997), Serra et al. (1998, 1999), Lipparini and Serra
(1998), and Ullrich and Vignale (2000).

C. Parabolic confinement

Kumar, Laux, and Stern (1990) determined the effec-
tive single-particle confinement for a square-shaped
quantum dot of the type shown in Fig. 5 in a self-
consistent Hartree approach, where the electrostatic
confinement was incorporated by a self-consistent solu-
tion of the combined Hartree and Poisson equations.
They found that in the limit of small particle numbers,
the effective confinement can have a symmetry very
close to circular, even if the confinement was formed by
a square-shaped metallic gate pattern. On the basis of
their work, the simple isotropic harmonic oscillator was
adopted as the standard quantum dot model potential
for electronic structure calculations, in both exact diago-
nalization studies and mean-field approaches. We used
this model above when we identified oscillatorlike shell
structure and magic numbers in the addition energy
spectra (see Sec. I.A).

In many cases, measurements of far-infrared absorp-
tion spectra on ensembles of quantum dots (see, for ex-
ample, Sikorski and Merkt, 1989; Demel et al., 1990;
Lorke, Kotthaus, and Ploog, 1990; Meurer, Heitmann,
and Ploog, 1992) correspond to those of a noninteracting
system. In the view of the generalized Kohn theorem
(Kohn, 1959, 1961; Brey et al., 1989; Yip, 1991), this fur-
ther supports the assumption of parabolic confinement:
the center-of-mass motion separates out and the only
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
possible dipole excitation is the center-of-mass excita-
tion. Kohn’s theorem implies that the effects of electron-
electron interactions in a quantum dot can be observed
by far-infrared spectroscopy only if the anharmonicity of
the confinement is sufficiently strong (Gudmundsson
and Gerhardts, 1991; Darnhofer and Rössler, 1993;
Pfannkuche et al., 1994; Gudmundsson, Braatas, et al.,
1995).

Much of the theoretical work modeling the addition
energy spectra for small, parabolic quantum dots has
been performed under the assumption that the finite
thickness of a quantum dot, typically much smaller than
the lateral extension of the electrostatic confinement,
can be neglected. As a compromise between realistic
simulation and numerical feasibility (Macucci, Hess, and
Iafrate, 1993), one can separate the effective confine-
ment into an in-plane and perpendicular part, V
5V(x ,y)1V(z). With the assumption that in the z di-
rection only the ground state is occupied, the solution
can then be restricted to the (x ,y) plane. For the 2D
parabolic confinement V(x ,y)5 1

2 mv2(x21y2), if we
keep the oscillator parameter v constant, the electron
density in the dot increases with N . Experimentally,
however, if one makes the voltage on the (side or top)
gates less negative, the effective confinement strength v
decreases. At the same time, the number of electrons in
the dot increases. Thus we may also consider keeping
the average electron density in the dot constant, i.e., fix-
ing the density parameter rs and varying v with N . In-
deed, for vertical dots it turns out that as N increases,
the confinement weakens so that the particle density
tends to a constant (Austing, Tokura, et al., 1999). The
average value of the electron-density parameter rs for
the circular quantum dot sample studied by Tarucha
et al. (1996) is estimated to be between 1.3aB* and 1.4aB* .
This value is close to the equilibrium value of the two-
dimensional electron gas, rs51.5aB* . For a constant av-
erage density the N dependence of the oscillator param-
eter v can be approximated by

v25
e2

4p«0«m* rs
3AN

(11)

(Koskinen et al., 1997).

D. Addition energy spectra described by mean-field
theory

Macucci, Hess, and Iafrate (1993, 1995) extended the
work by Kumar, Laux, and Stern (1990), including the
exchange and correlation contributions within density-
functional theory. As a consequence of the degeneracies
introduced by the symmetry of the dot confinement,
they observed a shell-like grouping of the values of the
chemical potentials m(N). Extensive density-functional
calculations were performed by Stopa (1993, 1996) for
studying the Coulomb blockade in 2D dots containing
50–100 electrons. Fujito, Natori, and Yasunaga (1996)
used an unrestricted Hartree-Fock approach to study
both the effects of electron spin and the vertical extent



1297S. M. Reimann and M. Manninen: Electronic structure of quantum dots
of the trapping potential. Oscillations in the dot capaci-
tance caused by shell structure clearly demonstrated the
occupation of single-particle levels in accordance with
Hund’s rules. The unrestricted Hartree-Fock method
was also applied to a calculation of the addition energy
spectra of cylindrical quantum dots by Szafran, Ad-
amowski, and Bednarek (2000).

Macucci, Hess, and Iafrate (1997) determined the ad-
dition energy differences D2(N) [see Eq. (3)] for 2D
quantum dots confining up to 24 electrons. They worked
in the symmetry-restricted DFT formalism and ne-
glected the spin degree of freedom. Figure 11 shows the
addition energy spectra obtained in the local-density ap-
proximation (LDA) for material parameters m*
50.0648 m0 (where m0 is the bare electron mass) and
e512.98. Macucci et al. assumed a parabolic confine-
ment for dot radii r<a and ‘‘hard walls’’ for r.a , where
a is a maximum value for the quantum dot radius. As
expected, pronounced maxima are seen for shell closings
N52, 6, 12, (20), and 24. At fairly high electron densi-
ties the system very closely resembles the noninteracting
one. As we saw above, a harmonic 2D oscillator filled
with noninteracting particles has shells at N
52,6,12,20,30, . . . , while the spectrum of a 2D disk with
hard walls shows major shell fillings for N
52,6,12,24,34, . . . with weaker subshells at 16 and 20. In
LDA, the spin-degenerate single-particle orbitals are oc-
cupied in pairs, following the Pauli principle. Conse-
quently the addition energies do not show much struc-
ture in between the closed shells. We see a small hump
at N516 and a more pronounced maximum at N524,
the latter corresponding to a closed shell in hard-wall
disk confinement. This change in the shell structure
originates both from the hard-wall boundary conditions
at larger radii and from the fact that the bottom of the

FIG. 11. Shell structure of a parabolic quantum dot with con-
stant \v53 meV in the dot center and hard walls at three
radii: d, r.75 nm; j, r.90 nm; h, r.120 nm. The inset
shows the self-consistent potential of a quantum dot with a
hard wall at r590 nm for different electron numbers. After
Macucci et al., 1997.
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effective self-consistent potential flattens with increasing
number of electrons due to the effect of the Hartree
term (see inset in Fig. 11).

Let us now proceed to include the spin degree of free-
dom in the local-density approximation in order to ob-
tain a more accurate description of the midshell regions.
For the spin polarization one usually applies the Barth-
Hedin interpolation, Eqs. (9) and (10). To obtain the
electron densities which minimize the total-energy func-
tional E@n↑ ,n↓# , the Kohn-Sham equations Eq. (6) are
then solved self-consistently. Koskinen et al. (1997) per-
formed these calculations for 2D parabolic quantum
dots in a symmetry-unrestricted approach. (Note that
the energy differences to a symmetry-restricted solution
can be significant. In the unrestricted scheme, a Fermi
gap opens and the self-consistent energy is lowered with
respect to the energy of the restricted solution with cir-
cular symmetry. However, if the electron density is rela-
tively high, the differences in addition energy between
the restricted and the unrestricted solutions are very
small.)

Figure 12 shows the addition energy differences
D2(N) obtained from the Kohn-Sham ground-state en-
ergies E(N) and compares them to the experimental
data (Tarucha et al., 1996) for a quantum dot with a di-
ameter of about 0.5 mm. Here the oscillator confinement
v was taken to be N dependent [Eq. (11)], with the
average electron density kept approximately constant at
rs51.5aB* .

FIG. 12. Addition energies compared with experimental data:
upper panel, ground-state spin S as a function of N . At closed
shells N52,6,12,20, S50, while Hund’s rule leads to maxima in
S at midshell. Lower panel, addition energies D2(N) as a func-
tion of the number N of electrons in a quantum dot with
circular symmetry: solid line, energies obtained in spin-density-
functional theory; dashed line, experimental results of Tarucha
et al., 1996. From Reimann, Koskinen, Kolehmainen, et al.
(1999).
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For closed-shell configurations with N52, 6, and 12, a
large energy gap between the highest occupied and the
lowest unoccupied Kohn-Sham single-particle levels is
found. The dot is nonmagnetic with ‘‘total’’ spin zero
(which in Kohn-Sham theory implies that it has equal
spin-up and spin-down electron densities). The system-
atic development of the total spin S is plotted in the
upper panel of Fig. 12. Comparing the two panels, the
fine structure at midshell (i.e., the peaks at N54 and
N59) is clearly associated with maximized spin (Zeng,
Goldmann, and Serota, 1993; Tarucha et al., 1996; Hi-
rose and Wingreen, 1999; Reimann, Koskinen, Koleh-
mainen, et al., 1999; Austing et al., 2001). This is ex-
pected, as Hund’s first rule implies that the electron
spins align up to half filling of a degenerate shell. The
total energy is lowered, as exchange energy is gained by
the maximized spin. In the large-N limit, deviations
from the above picture (Hirose and Wingreen, 1999) are
a simple consequence of the increasing nonparabolicity
of the mean-field potential (see Fig. 11).

At relatively large electron densities, the 2D SDFT
addition energy spectra compare rather well to results
obtained in the unrestricted Hartree-Fock formalism
(Yannouleas and Landman, 1999). The Hartree-Fock
formalism was also applied to spherical quantum dots, in
which the 3D spherical confinement yields the lowest
closed shells at N52,8,20 (Bednarek, Szafran, and Ad-
amowski, 1999). These magic numbers were also ob-
served in metallic clusters (Sec. I.B and Fig. 3, upper
right panel). However, as the jellium clusters are not
rigidly confined, their physical behavior at midshell is
different: Jahn-Teller deformation is often energetically
more favorable than spin alignment due to Hund’s rule
at maintained spherical symmetry.

E. Reproducibility of the experimental addition energy
spectra

We have seen above that the unrestricted spin-
density-functional formalism with the quantum dot elec-
tron density as the only fitting parameter indeed seems
to provide a fairly accurate description of the addition
spectra. However, we notice from Fig. 12 that the agree-
ment between the theoretical data and the experimen-
tally measured addition energies becomes worse with in-
creasing electron number N . Comparing the peak
structures in the third and fourth shells, i.e., between
N56, N512, and 20, the theoretical and experimental
values D2(N) show very clear deviations. Recently a se-
ries of experimental addition energy spectra for 14 dif-
ferent structures was published (Matagne et al., 2001),
with diameters between 0.44 and 0.6 mm, similar to the
vertical quantum dot device used in the earlier work by
Tarucha et al. (1996). This work very clearly reveals
strong variations in the spectra from device to device:
While all structures show the first shell at N52, only
71% of them show shells at both N52 and 6, 64% at
N52, 6, and 12, and 21% at N52, 6, 12, and 20. In view
of these recent data, which seems to indicate each single
quantum dot has its own properties, one should be cau-
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tious about a quantitative comparison between theory
and experiment like that was in Fig. 12. An explanation
for the disagreement at larger shell fillings could, for
example, be either nonparabolicity of the confining po-
tential or the unavoidable inaccuracies in device fabrica-
tion that randomly disturb the perfect circular symmetry.

F. Oscillator potential with flattened bottom

The effect of deviations from a pure parabolic exter-
nal confinement on D2(N) in the midshell regions was
further analyzed by Matagne et al. (2001), taking into
account components of the electrostatic quantum dot
confinement in the vertical direction. They solved a 3D
Poisson equation for a charge model that included the
doped material above and below the quantum dot in a
cylindrical configuration. The resulting contributions ef-
fectively add an anharmonicity ;lr4 to the potential.
Such a perturbation does not affect the single-particle
states of the lowest two shells. In the third shell, how-
ever, where the single-particle states un ,m&5u1,0& and
u0,62& (with radial and azimuthal quantum numbers n
and m) are degenerate in the nonperturbed system, the
states u0,62& with nonzero angular momentum are
shifted downwards2 by an energy difference El . Mat-
agne et al. (2001) discuss the addition energy spectra for
the three cases Ex.El , Ex;El , and Ex,El , where
Ex labels the exchange energy between two spin-parallel
electrons. The chemical potential values m(N)5E(N
11)2E(N) were obtained within SDFT in a manner
similar to that used by Nagaraja et al. (1999; see also
Jovanovic and Leburton, 1994).

Figures 13 and 14 summarize the results of Matagne
et al. (2001) for the filling of the third shell, i.e., between
N56 and N512. For Ex.El (see upper panel of Fig.
13) the situation is similar to that of a purely harmonic
external confinement. When all single-particle states in
the third shell are exactly degenerate, the shells are
filled according to the sequence ((m)((sz)521/2→21

→03/2→21→21/2→00 when proceeding from the second
shell at N56 to the third shell at N512 (see Fig. 14).

The addition energy spectra in Fig. 13 are consistent
with the addition energies and spin fillings in Fig. 12
above. If the degeneracy between the u0,62& and u1,0&
states is lifted by a small difference in energy (see Fig.
14, middle panel), the shell-filling sequence changes to
((m)((sz)521/2→01→03/2→21→01/2→00. For very
small splitting the addition energy spectrum does not
change significantly. For larger splitting, at midshell N
59 the spin remains at its maximum value (Hund’s
rule). The enhanced energy difference between the

2Note the similarity to the Nilsson model in nuclear physics,
in which phenomenological l2 term for angular momentum l
and a spin-orbit contribution, which we may neglect here, were
subtracted from the oscillator Hamiltonian to flatten the bot-
tom of the harmonic well: states with higher single-particle
angular momenta are shifted to smaller energies (Nilsson,
1955; Bohr and Mottelson, 1975).
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u0,62& and u1,1& states, however, leads to a reduction in
D2(9) and to a higher value of the addition energy at
N58 (Ex;El , Fig. 13, middle panel). For an even
larger energy splitting between the u0,62& and u1,0&
states, maximum spin alignment is first reached for the
subshell formed by the u0,62& states. The u1,0& state is
filled subsequently (Fig. 14, lower panel). Thus the ad-
dition energies show a small maximum at N58 and an
even smaller one at N510 (Ex,El , Fig. 13, lower
panel). Matagne et al. (2001) concluded that maximum
spin alignment at midshell does not guarantee the occur-
rence of corresponding maxima in the addition energy
spectra. They also pointed out that for Hund’s first rule
to apply, the states do not necessarily need to be
quasidegenerate (see also Austing et al., 2001).

G. Three-dimensionality of the confinement

The actual thickness of a quantum dot relative to its
lateral extent depends on both the fabrication method
and the applied gate voltages. Experimentally, for typi-
cal quantum dots the depth in the growth direction of
the heterostructure material is about one order of mag-
nitude smaller than the lateral extent. Thus, neglecting a

FIG. 13. Addition energy differences for different magnitudes
of El compared to Ex , where Ex labels the exchange energy
between two spin-parallel electrons and El is the energy shift
due to an anharmonicity 2lr4 of the confining potential. After
Matagne et al., 2001.
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possible extension of the electron cloud in the z direc-
tion, the above description of quantum dots in two di-
mensions seemed justified. Within this approximation,
the addition energy spectra from both exact diagonaliza-
tion and mean-field approaches compare well with the
experimental results. [This also holds for the depen-
dence of D2(N) on magnetic fields; see Sec. V.] How-
ever, as pointed out by several authors, such a compari-
son may be obscured by an adjustment of the average
electron density, which (as it defines the strength of the
Coulomb interactions between the particles) can mask
3D effects (Fujito et al., 1996; Maksym and Bruce, 1997;
Nagaraja et al., 1997; Lee et al., 1998; Rontani et al.,
1999a, 1999b; Jiang et al., 2001; Pi, Emperador, et al.,
2001).

Rontani et al. (1999a, 1999b) compared the exact en-
ergies and pair correlations for a two-electron quantum
dot to results of Hartree-Fock and a single-site Hubbard
model. They showed that the differences between these
approximate approaches and the exact solution are re-
duced in the three-dimensional case. This is due to the
fact that the 2D description artificially enhances the
strength of the Coulomb and exchange matrix elements.

Bruce and Maksym (2000) used the exact diagonaliza-
tion method to study the effects of the three-
dimensionality of the confinement potential in a realistic
quantum dot (here with N53), including the screening
of the electrons by the metallic gates.

FIG. 14. Schematic single-particle configurations un ,m& and
occupation sequences in the third shell from N57 to N512.
After Matagne et al., 2001.
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The most important 3D effect in small dots seems to
be the change in the effective Coulomb interaction be-
tween the electrons. However, while important for a de-
tailed quantitative description, this effect seems not to
lead to qualitatively new features when compared to the
strictly 2D model. This holds as long as the dot is quasi-
two-dimensional in the sense that only the lowest single-
particle state perpendicular to the dot plane is occupied.
In this review we concentrate mainly on the strictly 2D
case, which has turned out to be surprisingly rich and
difficult. When comparing with experiments, the reader
should note, however, that the parameters (such as elec-
tron density, confinement strength, etc.) providing a
good agreement with experiment might be slightly dif-
ferent in a 3D model.

H. Triangular quantum dots

Ezaki et al. (1997, 1998a, 1998b) determined the addi-
tion energy spectra from numerical diagonalization of
the full many-body Hamiltonian, Eq. (5) (excitations
along the z direction of the confinement were ignored).
In addition to a circular oscillator, they considered a tri-
angular deformation of the confinement,

V~r ,f!5
1
2

m* v2r2S 11
2
7

cos~3f! D , (12)

with polar coordinates (r ,f). For material parameters
m* 50.065me , «512.9 (corresponding to values be-
tween InAs and GaAs), and an oscillator shell spacing
\v53 meV, the addition energy spectra obtained from
the many-body ground-state energies E(N) are shown
in Fig. 15.

In the single-particle model, the lowest shells of both
circular (spherical) and triangular (tetrahedral) geom-
etries in 2D (3D) are similar (Hamamoto et al., 1991;
Brack et al., 1997; Reimann et al., 1997; Reimann, Koski-
nen, Helgesson, et al., 1998). Thus it is not surprising
that at relatively large densities, the addition energy
spectra for both symmetries differ only very little. In
both cases, shell closings are found at N52 and N56,
with additional maxima at N54 and 9 due to spin po-
larization.

FIG. 15. Addition energy differences and density distribution
for (a) circular and (b) triangular quantum dots with three
electrons. The length unit is l0520 nm. From Ezaki et al.,
1997.
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Naturally, for a confinement with circular symmetry,
the density distribution obtained from the ‘‘exact’’ wave
function, as shown in the upper right panel of Fig. 15,
has azimuthal symmetry. Triangular deformation breaks
this symmetry, and localization of electrons due to their
Coulomb repulsion becomes visible in the electron den-
sity: Three electrons confined by a triangular potential
localize in the corners of the triangle. [Similar results
were reported by Creffield et al. (1999), who studied two
interacting electrons in polygonal quantum dots by exact
diagonalization techniques. They observed a transition
from a weakly correlated charge distribution for small
dots to a strongly correlated Wigner molecule. See also
Jefferson and Häusler (1997). A further discussion of
Wigner crystallization in parabolic quantum dots is given
in Sec. IV.A.]

I. Elliptic deformation

For a rectangular dot structure like that displayed in
the upper right panel of Fig. 16, one should expect the
effective lateral confinement to have an elliptic shape: at
the corners, the electrostatic potential is rounded off,
provided that the number of electrons in the dot is not
too large. The left panel of Fig. 16 shows the experimen-
tal addition energy changes D2(N) for deformed quan-
tum dots with estimated ratios of side lengths L/S
51.375 [curve (b)], 1.44 [curve (c)] and 1.5 [curve (d)].
We notice that the shell structure for circular dot shape
[curve (a) in Fig. 16] has been smeared out in the de-
formed case: for the rectangular dot structures [curves
(b)–(d)], no prominent maxima of D2(2,6,12) are found.

FIG. 16. Measured addition energy differences D2(N) as a
function of electron number N for different rectangular quan-
tum dot structures with estimated length/side ratios: (b) L/S
51.375; (c) 1.44; and (d) 1.5. The different curves are offset by
3 meV and the results for the circular dot (a) are shown for
comparison. From Austing, Sasaki, et al., 1999.
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Exact numerical diagonalization methods (Ezaki
et al., 1997, 1998a, 1998b; Maksym, 1998; Zhu, 2000), as
well as spin-density-functional methods (Lee et al., 1998,
2001; Reimann, Koskinen, Helgesson, et al., 1998, Rei-
mann, Koskinen, Lindelof, et al., 1998; Austing, Sasaki,
et al., 1999; Hirose and Wingreen, 1999; Reimann,
Koskinen, Kolehmainen, et al., 1999) predict significant
modifications of the addition energy spectra, accompa-
nied by transitions in the spin states with increasing de-
formation. One can model such a rectangular quantum
dot by an anisotropic oscillator potential V
5 (1/2) m* (vx

2x21vy
2y2) with deformation-dependent

frequencies vx5vAd and vy5v/Ad [see Eq. (1)]. We
impose the constraint v25vxvy , which is equivalent to
conserving the area of the quantum dot with deforma-
tion. For d51, the dot shape is circular, whereas d.1
corresponds to an elliptical shape. The oscillator fre-
quency v is approximated by Eq. (11). Minimizing the
Kohn-Sham energy density functional in a manner simi-

FIG. 17. Calculated addition energy differences D2(N) for el-
liptic quantum dots with deformation d, obtained within the
local spin-density approximation. The curves are offset by 1
meV. There is an additional offset of 1 meV between (f) and
(g). The different symbols correspond to the different spins, as
defined in the figure. The inset shows D2(4) versus d. Between
d51.2 and d51.3, a transition between a spin-triplet and a
spin-singlet state occurs. From Austing, Sasaki, et al., 1999.
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lar to that described in Sec. III.D above allows us to
determine the addition energy spectra D2(N) for vari-
ous values of the deformation d, as displayed in Fig. 17
[where the circular shell structure in local spin-density
approximation is included again in panel (a) for com-
parison]. By deforming the confinement slightly, one can
still identify the shell closures at N52, 6, and 12, but
with significantly suppressed amplitudes: even a very
small deviation from perfect circular symmetry, where
the single-particle level degeneracies are lifted by just a
small amount, can have a very noticeable effect on
D2(N). For d>1.2, the circular shell structure is com-
pletely eliminated. At certain deformations one expects
accidental degeneracies, leading to subshells (see Fig. 2),
for which the sequence of magic numbers differs from
the circular case. At d52, for example, shell closures
occur at 2, 4, 8, 12, and 18. Compared to circular sym-
metry, however, the reduced separation between the
subshells makes any shell structure less clear to observe.
A systematic comparison between curves (b)–(d) in Fig.
16 and curves (b)–(h) in Fig. 17 fails: although the ex-
perimental data of curve (b) in Fig. 17 partly resemble
the theoretical addition energies for deformations be-
tween d51.1 and d51.3, the data of curves (c) and (d)
do not compare well to the SDFT values for d.1.3. For
d>2 we observe a tendency to odd-even oscillations.

The SDFT calculations described here are strictly two
dimensional, so the strength of the Coulomb interac-
tions may be overestimated. Lee et al. (2001) take the
finite thickness into account and provide a systematic
study of addition energies as a function of the dot defor-
mation for N&12. They point out that, due to electron-
electron interactions, the anisotropy of the elliptic effec-
tive potential is higher than the deformation of the trap,
in agreement with the results of Austing, Sasaki, et al.
(1999).

In practice, screening by the metal contacts surround-
ing a dot is also believed to reduce the influence of Cou-
lomb interactions (Bruce and Maksym, 2000). The
three-dimensional model of Lee et al. (1998) incorpo-
rated the self-consistent solution of the Poisson equation
into the spin-density-functional calculation for an aniso-
tropic oscillator. Since the confinement strength was
considerably larger, a direct comparison to the above
results is difficult. Qualitatively, however, their results, as
well as those of Hirose and Wingreen (1999), are in
agreement with those of Fig. 17. When comparing the
experimental spectra to the predictions of LSDA as well
as to exact diagonalization results, however, one meets a
major difficulty: even a small deformation can make a
big difference, as is evident from the very different pat-
terns in spectra (a)–(d) in Fig. 16. It is nearly impossible
to determine the actual ratio of semiaxes of the dot with
an accuracy high enough to allow a comparison with the
theoretical model at the corresponding deformation.
Furthermore, the precise details are device dependent:
we saw in Sec. III.E that even for two circular structures,
the addition energy spectra can vary considerably from
dot to dot.
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Transitions in the ground-state spin configurations
with deformation are indicated in Fig. 17. These transi-
tions are particularly numerous for, but not restricted to,
dots with an even electron number. The change of spin
with deformation is most easily understood for the ex-
ample N54. The inset in Fig. 17 shows D2(4) versus
deformation up to d51.5. In the circular dot, the degen-
eracy at the Fermi surface leads to a spin-triplet state
(Hund’s rule). The deformation resolves the degeneracy
and, at a certain energy splitting of the two single-
particle levels, it is energetically favorable to form a
spin-singlet state (see the single-particle spectra of an
elliptic harmonic oscillator in Fig. 2 above). For N56 a
transition from S50 at circular shape (corresponding to
a shell closing with nonmagnetic ground state) to an S
51 triplet state at d51.5 occurs. As a function of defor-
mation, the dots can show piezomagnetic behavior, i.e.,
changes in the magnetization with deformation. Clearly
these spin changes are very sensitive to the actual value
of the deformation. Such behavior was also predicted
from exact diagonalization studies for ellipsoidal quan-
tum dots with up to 10 electrons (Ezaki et al., 1998a,
1998b). These calculations revealed a transition from
spin singlet to triplet at d'1.2 for N54, as well as the
consecutive filling of states by spin-up and spin-down
electrons [see curves (g) and (h) in Fig. 17]. Experimen-
tally, evidence for such singlet-triplet transitions as a
function of deformation came from a careful study of
the magnetic-field dependence of the addition energy
spectra. We refer the reader to the work by Austing,
Sasaki, et al. (1999), in which a detailed discussion is
given of the four-electron case. [For a given deformation
as a function of N , the spin changes only in steps of 1/2.
This indicates that spin blockade (Weinmann, Häusler,
and Kramer, 1995), which requires DS.1, should not
occur in small deformed quantum dots.]

J. Self-assembled pyramidal quantum dots in the local
spin-density approximation

Fonseca et al. (1998) studied the electronic structure
of pyramidal self-assembled InAs-GaAs quantum dots
in the local spin-density approximation. An example of
such a dot structure is shown in Fig. 18(a), where the
pyramidal InAs quantum dot is embedded in a GaAs
matrix. A continuum model for the strain in the pyra-
mid, the thin InAs layer from which the pyramidal dots
are formed, and the surrounding GaAs matrix was ap-
plied. The electron-electron interactions were treated in
density-functional theory in the LSDA. For different
heights of the pyramids, Fig. 18(b) shows the number of
electrons in the dot as a function of the applied voltage
Vg . As in the above example of a two-dimensional para-
bolic dot, it could be shown that the electron filling of
the InAs dots follows Hund’s rule, the results being in
good agreement with the experimental data of Fricke
et al. (1996).

In a similar study, Shumway et al. (2000) quantified
the error introduced by the LSDA by comparison to the
diffusion quantum Monte Carlo method. They showed
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that the LSDA errors in this case are small, the largest
error coming from the local approximation to the ex-
change.

IV. INTERNAL ELECTRONIC STRUCTURE

In this section we turn to a discussion of correlated
states in quantum dots, which typically exhibit a compli-
cated internal structure and lead to characteristic fea-
tures in the excitation spectrum. It is well established
that for low electron densities the repulsion between the
electrons causes an ordered spatial structure, the Wigner
lattice, which breaks the translational symmetry in the
infinite electron gas. Corresponding phenomena for
finite-size electron droplets are discussed in Sec. IV.A.
Spin-density-functional calculations predict broken-
symmetry states for both the spin and charge densities of
quantum dots (see Sec. IV.B), while a priori these fea-
tures are less obvious in the many-body correlated states
evaluated by the configuration-interaction method. A
comparison of these approaches is made in Secs. IV.C
and IV.D, where we demonstrate that characteristic fea-
tures related to Wigner crystallization and spin-density
waves indeed are present in the configuration-
interaction results. We conclude with a discussion of
quantum Monte Carlo results, which provide an alterna-
tive method (Sec. IV.E).

FIG. 18. Pyramidal structure of a self-assembled InAs quan-
tum dot: upper panel, schematic picture; lower panel, number
of electrons vs gate voltage for different pyramid height d/2.
From Fonseca et al., 1998.
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A. Classical electron configurations

In 1934, Wigner predicted that electrons crystallize
and form a lattice if the density of the three- or two-
dimensional electron gas is lowered beyond a certain
critical value. This is due to the fact that the Coulomb
energy increases relative to the kinetic energy and cor-
relations begin to strongly dominate the electronic struc-
ture. For a homogeneous three-dimensional electron
gas, such crystallization is expected at very low densities,
i.e., at large values of the average Wigner-Seitz radius
rs . For the critical value at which this transition occurs,
Ceperley and Alder (1980) reported the value rs
5100aB* . In two dimensions, however, this transition to
a Wigner-crystal-like state occurs at densities corre-
sponding to rs.37aB* (Tanatar and Ceperley, 1989). Ac-
cording to Rapisarda and Senatore (1996), the forma-
tion of the Wigner crystal is preceeded by a transition to
a polarized phase. If translational invariance is broken in
a two-dimensional electron gas, the critical density for
the transition to the Wigner crystal is shifted to the con-
siderably smaller value rs'7.5aB* (Chui and Tanatar,
1995). Thus one may speculate that, in finite systems
with broken translational invariance, localization should
occur at significantly larger densities than in the 2D
bulk. Studies along these lines were recently performed
by various authors (see, for example, Creffield et al.,
1999; Egger et al., 1999; Yannouleas and Landman, 1999;
Filinov, Bonitz, and Lozovik, 2001) using different cal-
culational methods. For circular and ring-shaped quan-
tum dots, we shall compare these results (which were
mostly based on the quantum Monte Carlo approach)
with those obtained by exact diagonalization.

In the low-density limit, where the electron gas be-
comes crystallized, it is not a priori obvious how the
electrons, now behaving as classical point charges, will
arrange geometrically in the harmonic trap. In the 2D
bulk, the crystal would form a triangular lattice (Tanatar
and Ceperely, 1989). For finite sizes, however, a compro-
mise must be found between the triangular lattice and
the shape of the confinement. Early studies of this prob-
lem were performed by Lozovik and Mandelshtam
(1990, 1992). Bolton and Rössler (1993) modeled the
classical charge distribution in Wigner-like states of a
quantum dot using a Monte Carlo algorithm (see Date,
Murthy, and Vathsan, 1998, for a general analytic ap-
proach.)

For the smallest systems N<5, simple polygons are
formed. The first nontrivial configurations are found for
N56: in addition to the ground state with five particles
surrounding a single particle in the trap center, meta-
stable states and isomers at very similar energies exist.
The bent triangle shown in Fig. 19 is practically degen-
erate, with a perfect hexagon (not shown in Fig. 19). For
N510, the ground state with a ‘‘dimer’’ in the center
and eight surrounding electrons has an isomer with a
triangular center and seven electrons on the outer ring.
The lowest-energy geometries obtained for 15, 19, 30,
and 34 point charges are shown in the other panels of
Fig. 19. Following Bolton and Rössler (1993), for the
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smaller sizes the formation of a geometric shell pattern
can be observed, in which the electrons are arranged in
concentric rings. This was noticed earlier by Lozovik
and Mandelshtam (1990, 1992) and was also confirmed
by Bedanov and Peeters (1994) for somewhat larger N .
Each of these ringlike geometric shells can be filled with
a certain maximum number of particles, independent of
the confinement frequency. Bedanov and Peeters used
this property to group the configurations by the point
symmetry of the inner shell. When all geometric shells
are filled up to a maximum number of particles, a new
singly occupied shell is created in the center. If two
neighboring shells are filled with particle numbers that
are incommensurate, low-energy excitations in the form
of inner-shell rotations are found (Lozovik and Man-
delshtam, 1992; Schweigert and Peeters, 1994, 1995). In
the commensurate case, however, the configuration is
particularly stable against structural excitations and is
frequently called ‘‘magic,’’ in some analogy to the magic
shell closings discussed in the previous sections. We em-
phasize that the terminology of a ‘‘shell’’ used here must
not be confused with the grouping of levels in the
eigenspectra, which is why we should actually prefer
‘‘geometric shells’’ and ‘‘geometric magic numbers’’ to
describe the most stable classical electron configura-
tions. For large systems N.200, the center region of the
system very closely resembles a triangular lattice in
which all the particles are sixfold coordinated, while the
outer electrons form ringlike shells (Bedanov and
Peeters, 1994). Schweigert and Peeters (1994, 1995)
found that the melting of the classical configurations at
finite temperature begins by the rotation of neighboring

FIG. 19. Classical electron configurations: Left, schematic view
of the classical electron configurations in a parabolic potential
for N56, 10, 15, 19, 30, and 34, after Bolton and Rössler, 1993;
right, classical ground-state configurations with geometric
shells (n1 ,n2 , . . . ), after Bedanov and Peeters, 1994. In some
cases, in particular for large N , the calculated configurations
differ from those observed in a macroscopic experimental
setup by Saint Jean, Even, and Guthmann, 2001. These con-
figurations are marked with a star.
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shells relative to each other, finally leading to a radial
broadening and overlap of the shells.

Experimental investigations of classical Wigner clus-
ters were performed by Saint Jean, Even, and Guth-
mann (2001) with a macroscopic setup consisting of elec-
trostatically interacting charged balls of millimetric size.
These balls moved in an electrostatically created, cylin-
drically symmetric confining potential, which could be
considered as parabolic. In agreement with the numeri-
cal simulations discussed above, regular polygons were
formed for N<5. For N56, they confirmed the centered
pentagon (Fig. 19) as the ground state, together with the
hexagonal metastable states. In the experiment, for in-
creasing N one finds the configurations (1,6), (1,7), (1,8),
and then (2,8), labeled by the number of particles
(n1 ,n2 , . . . ) in each geometric shell, starting from the
dot center.

Differences in the results reported by Bolton and
Rössler (1993), Bedanov and Peeters (1994), Schweigert
and Peeters (1995), and Lai and Lin (1999) were ob-
served for N59 and N>15. Using a Monte Carlo ap-
proach, Campbell and Ziff (1979) predicted (1,8) and
(4,11) as the ground-state configurations for N59 and
N515, respectively. In contrast to the previously men-
tioned numerical results, which predicted the configura-
tions (2,7) and (5,10), these data coincide with the ex-
perimental result. For larger N , generally the data by
Campell and Ziff are closer to the experiment. Accord-
ing to Saint Jean et al. (2001), the explanation for these
discrepancies could lie in the fact that, with increasing
N , the number of metastable states and isomers, all be-
ing very close in energy, increases drastically. This intro-
duces difficulties that could account for the observed dif-
ferences.

In a three-dimensional harmonic confinement, the
classical electrons tend to form concentric spheres with,
again, several isomers (Manninen, 1986).

B. Spin polarization in the local spin-density
approximation

Let us now consider the liquid regime at higher elec-
tron densities, i.e., smaller values of the two-dimensional
density parameter rs51/Apn . It was mentioned above
that in addition to providing a reliable approximation to
the ground-state energy and the spin, spin-density-
functional theory also yields the ground-state density
n(r)5n↑(r)1n↓(r) for which the energy functional
E@n↑ ,n↓# is minimal. Surprisingly, in some cases the
mean-field solution predicts a spatial modulation of the
spin density (i.e., the spin polarization z5@n↑2n↓#/n).
Such ground states with broken symmetry were recently
much debated and it was argued that they are an artifact
of spin-density-functional theory. To resolve this ques-
tion, after summarizing the controversial SDFT results,
we shall compare them with the results of the exact di-
agonalization method (see Secs. IV.B.3, IV.C, and IV.D).
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1. Circular and elliptic quantum dots

Dots with closed shells have a large Fermi gap and are
nonmagnetic, with spin S50. For nonclosed shells, the
spin in most cases is determined by Hund’s first rule. For
larger dots, one finds different spin isomers, all slightly
higher in energy than the ground-state configuration.

As an example, Fig. 20 shows the spin-up and spin-
down densities n↑ and n↓ and the polarization z5(n↑
2n↓)/n of four different spin states with S52, 0, 1 and 0
(with increasing energy) for a quantum dot with 16 elec-
trons, calculated in SDFT. The ground state has a total
spin S52 in agreement with Hund’s first rule. Intrigu-
ingly, the distribution of excess spin at both S52 and
S51 is nonhomogeneous, with some similarity to the
spin-inversion states found by Gudmundsson and Páls-
son (1994) and Gudmundsson and Palacios (1995) for
finite magnetic fields. If the total spin is zero, one would
expect the system to be unpolarized, z(r)50. However,
in both cases with S50 one notices that the densities n↑
and n↓ are spatially deformed and twisted against each
other by p/2. The total density n↑1n↓ retains circular
symmetry. However, the spin density n↑2n↓ and corre-
spondingly the spin polarization show a spatial depen-
dence reminiscent of the spin-density-wave states in the
bulk (Overhauser, 1960, 1962, 1968). For larger N or
below a critical density, in the local spin-density approxi-
mation such spin-density-wave-like states with S50 can

FIG. 20. Ground state (S52, first row) and isomeric states for
a circular dot with 16 electrons at rs51.5aB* . The maximum
amplitude for the polarization corresponds to z'0.23. The en-
ergy differences with respect to the ground state are
18.1 mRy* (S50, second row), 20.2 mRy* (S51, third row),
and 20.7 mRy* (S50, fourth row). From Koskinen et al., 1997.
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occur as ground states. At rs51.5aB* , for example, this is
the case for N524 and N534.

The occurrence of S50 spin-density-wave states is ac-
companied by a change in the single-particle spectrum:
one always finds a pair of degenerate spin-up and spin-
down orbitals and a large Fermi gap. The latter effect is
well known: in the case of degeneracy (as, for example,
at nonclosed shells), spontaneous Jahn-Teller (1937)
symmetry breaking of the effective field, accompanied
by a lowering of the density of states at the Fermi sur-
face, leads to an energetically more stable situation (see
also the discussion in Sec. I.A). In this context one
should be aware that the mean-field solution maps out
the internal structure of the wave function, in contrast to
the exact wave function, which naturally retains rota-
tional symmetry. The spin-density-wave internal symme-
try breaking is closely related to the internal deforma-
tion found in nuclei and atomic clusters (Häkkinen et al.,
1997).

If within the Hartree-Fock approximation one consid-
ers a linear combination of all possible single Slater de-
terminants, one can generate a proper eigenfunction to
S2 and Sz . The symmetry-restored state would then
show two-particle correlations which are consistent with
the single-determinant state. While the LSDA scheme
does not formally yield a single determinantal wave
function and the Kohn-Sham single-particle wave func-
tions lack a direct physical interpretation (as do the cor-
responding single-particle energies), a similar reasoning
applies (Yakimenko, Bychkov, and Berggren, 2001). The
Kohn-Sham mean-field ground-state density mimics the
internal structure of the exact wave function, trying to
reveal correlations inherent in the true ground state (see
Sec. IV.B.3).

Looking more systematically at the polarization of
dots with different N , one finds that for rs51.5aB* at
closed shells, N56, 12, 20, and 30, the dot is completely
unpolarized and S50. For nonclosed shells, Hund’s first
rule favors the spin alignment. In cases where SÞ0,
naturally the spin polarization takes nonzero values and
furthermore shows a strong spatial dependence. As ob-
served for N516 in Fig. 20, such a nonuniform spin po-
larization can also occur when the total spin is zero. For
increasing values of rs , i.e., at lower densities, shell
structure gets disrupted and spatial variations in z can
also be found for closed shells N52,6,12,20, . . . . The
spin-density-wave states can then occur together with
the formation of charge-density-wave states, as dis-
cussed by Hirose and Wingreen (1999) and Yannouleas
and Landman (1999, 2000b) in the framework of geo-
metrically unrestricted spin-density-functional and
Hartree-Fock calculations.

If we deform the external harmonic confinement ellip-
tically as described by Eq. (1), the S50 spin-density-
wave states occur frequently as ground states even at
rather high densities of the 2D electron gas. (The
changes in spin structure as a function of deformation
are displayed in Fig. 17 above.) For example, at rs
51.5aB* and circular shape (d51), a closed-shell quan-
tum dot with N56 is unpolarized. By deformation, the
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shell structure changes considerably and an S50 spin-
density-wave state is formed. For d.1.5 this state
changes to a ground state with spin S51, and then it
changes back to a spin-density-wave state (d52). This
piezomagnetic behavior originates from the fact that the
level structure at the Fermi surface changes with defor-
mation (Reimann, Koskinan, Lindelof, et al., 1998).

2. Quantum wires and rings

a. Quantum wires

Turning to extreme deformations vx!vy of the oscil-
lator potential, the occupied single-particle orbitals are
mostly determined by the quantization in the x direc-
tion, i.e., the system becomes quasi-one-dimensional. An
example is shown in Fig. 21 for a finite quantum wire
with 12 electrons at a deformation d525, where the pa-
rameter v equals that of a 2D system at rs51.5aB* . Den-
sities and spin polarizations are plotted along the x axis
at y50. Spin-up and spin-down densities show a pro-
nounced oscillation and are shifted against each other,
leading to a very pronounced spin-density wave, with a
weak charge-density wave superimposed. The fully po-
larized solution is 88.2 mRy* higher in energy than the
spin-density wave. The single-particle energies show a
Fermi gap that is a factor 1.6 larger than the full band-
width of 125 mRy* (i.e., the energy difference between
the highest and the lowest occupied single-particle
level). In the quasi-one-dimensional electron gas the
spin-density wave results from a spin Peierls transition
opening a Fermi gap. In such finite quantum wires the
electron states can be localized at the ends of the wire,
similar to the way in which surface states can appear in a
crystal lattice (Tamm, 1932; Zangwill, 1988; Ohno et al.,
1990), but with the periodic potential now created by the
spin-density wave (Reimann, Koskinen, and Manninen,
1999).

b. Quantum rings

A ring-shaped quasi-one-dimensional quantum wire
can be modeled by a potential of the form V(r)
5 1/2 m* v2(r2r0)2, which for moderate confinement
corresponds to a harmonic dot with its center removed.
The parameters determining the properties of the quan-
tum ring are its radius r0 , the number of electrons N ,

FIG. 21. Spin polarization (upper panel) and densities (lower
panel) of a finite quantum wire with 12 electrons at deforma-
tion d525, plotted along the x axis (y50). From Reimann,
Koskinen, and Manninen, 1999.
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and the strength v of the harmonic confinement in the
radial direction. The quantities r0 and v are related to
the one-dimensional density n51/(2rs) along the ring,
r05Nrs /p , and a dimensionless parameter CF describ-
ing the excitation energy of the next radial mode. The
latter is defined to be CF times the 1D Fermi energy, and
one thus obtains \v5CF\2p2/(32m* rs

2) (see Koskinen
et al., 2001).

Figure 22 shows the LSDA densities and spin polar-
izations of quantum rings with N512 and N513 elec-
trons at rs'2aB* , with r058aB* and CF'17. In the 12-
electron case, the spin-down density (not shown in Fig.
22) is rotated against the spin-up density [panel (b)] by
an angle of p/6, forming a strong spin-density wave with
antiferromagnetic order. The spin-density wave is
213 mRy* lower in energy than the fully polarized case
and 227 mRy* lower than the nonmagnetic LDA solu-
tion. The Fermi gap with 220 mRy* is a factor of 3.6
larger than the bandwidth of the occupied levels, point-
ing to the possibility that the low-energy excitations are
collective in nature as for a strictly 1D Coulomb gas
(Kolomeisky and Straley, 1996).

For both N512 and N513 [where the ‘‘unpaired’’
spin has led to two parallel spins for neighboring elec-
trons; see panel (d) in Fig. 22], a small-amplitude
charge-density modulation occurs, which can be inter-
preted as a precursor to a charge-density-wave state or,
in the low-density limit, to a 1D ‘‘Wigner molecule’’
(Häusler and Kramer, 1993; Jauregui, Häusler, and
Kramer, 1993; Maksym, 1993; Schulz, 1993).

3. Artifacts of mean-field theory?

The above mean-field results for circular, elliptical and
ring-shaped quantum dots very clearly revealed the pos-
sible occurrence of Jahn-Teller-type solutions with bro-
ken symmetries in both the spin and charge densities
(Jahn and Teller, 1934). Hirose and Wingreen (1999) and

FIG. 22. Quantum rings with N512 and N513 electrons (pa-
rameters as defined in the text): (a) total electron density
(nmax50.157aB*

22); (b) spin-up density; (c) spin polarization;
(d) like (c) but for N513. The maximum spin polarization in
(c) and (d) is z50.8. From Reimann, Koskinen, and Man-
ninen, 1999.
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later Pederiva et al. (2000) argued that for a circular
quantum dot the eigenstates can always be chosen to
have definite angular momentum, and hence the density
distribution should be rotationally invariant. Indeed,
one encounters the conceptual difficulty that the symme-
try of the solution differs from the symmetry of the
Hamiltonian. The underlying problem, however, is that
the single-determinant wave function of the mean field
is a poor approximation to the full many-body ground
state, which naturally cannot account for its full
quantum-mechanical description. Ring and Schuck
(1980) pointed to this general difficulty in any descrip-
tion of strongly correlated many-particle systems: trying
to describe the system by simple wave functions (such
as, for example, the single-determinantal states in
Hartree-Fock) and taking into account important corre-
lations becomes impossible, if one at the same time re-
quires the solution to have the proper symmetry.

The orientation of the mean-field wave function (or,
correspondingly, the single-particle density distributions
and associated spin polarizations, as shown in Figs. 20
and 22 above) is arbitrary, and mean-field wave func-
tions cMF(r,u) rotated by different angles u are all
equivalent solutions. This degeneracy can be used to im-
prove the wave function by projection techniques, as
pointed out by Peierls and Yoccoz (1957) and Peierls
and Thouless (1962). The symmetry-violating mean-field
wave functions and their corresponding single-particle
densities can be interpreted as ‘‘intrinsic’’ states. States
with different angular momenta projected from this in-
trinsic state form a rotational band. These issues were
first discussed in nuclear physics in the case of open-shell
nuclei, in which the assumption of a nonspherical shape
was found essential for a description of nuclear spectra
in terms of rotations (Bohr and Mottelson, 1953, 1975;
see also the recent reviews by Butler and Nazarewicz,
1996, and Frauendorf, 2001).

We show in Secs. IV.C and IV.D that such broken-
symmetry states in quantum dots can be identified by an
analysis of the rotational and vibrational states (Häusler,
2000; Yannouleas and Landman, 2000a; Koskinen et al.,
2001) or from conditional probabilities obtained within a
truncated diagonalization of the full many-body Hamil-
tonian (Maksym et al., 2000; Reimann et al., 2000; Yan-
nouleas and Landman, 2000a).

A similar discussion will be taken up again in Sec. VI,
where broken symmetry states in the electronic struc-
ture of quantum dots in large magnetic fields are dis-
cussed.

C. Mean-field versus exact diagonalization

Let us now look at the results of a numerical diago-
nalization of the many-body Hamiltonian, Eq. (5) for a
circular, parabolic quantum dot. [Similar exact diagonal-
ization studies for deformed dots by Ezaki et al. (1998a,
1998b) were discussed in Sec. III.H.] Unfortunately,
nowadays numerical resources restrict us to relatively
high densities and small electron numbers. (The maxi-
mum values of rs and N for which a convergence of the
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many-body spectrum could still be reached were rs
<4aB* and N56.) Figure 23 shows the lowest many-
body states, each labeled by its angular momentum and
spin, for a quantum dot confining six electrons for den-
sity parameters rs53aB* and rs54aB* (Reimann et al.,
2000). The ground state has S50. The fully polarized
state with S53 lies at much higher energies, and many
states are found in between these two configurations. A
systematic analysis of the evolution of the energy differ-
ence between the spin-polarized state with S53 and the
S50 ground state did not indicate any crossing between
the energies of these states unless rs became significantly
larger than 4aB* . An extrapolation of the configuration-
interaction energies to higher rs values supported the
result of Egger et al. (1999) that the ground state of a
six-electron dot is not polarized for rs,8aB* .

Previously reported LSDA results give a surprisingly
accurate estimate for the energy difference between the
fully polarized and the nonmagnetic state. Although
LSDA suffers from the self-interaction problem, it could
correctly reproduce the nonmagnetic state as the ground
state. The density of the configuration-interaction results
is shown in Fig. 24 for the ground state with S50 and
the polarized state S53, plotted along the dot radius.
(The LSDA densities are included for comparison.) Be-
ing an azimuthal average, the density profile in the po-
larized case with the maximum at the center can be
identified with the C5v symmetry of the classical Wigner
molecule. This polarized state lies higher in energy than

FIG. 23. Sequence of lowest many-body states for a quantum
dot with N56 electrons at rs53aB* and rs54aB* , obtained
from a configuration-interaction calculation. Angular momen-
tum and spin are indicated by the labels LS. The energy dif-
ference between the S50 ground state and the polarized state
with S53 amounts to 126 mRy* at rs53aB* and 52 mRy* at
rs54aB* [Color].
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the S50 ground state, which shows a minimum in the
dot center, pointing to a sixfold symmetry in which all
particles are localized at the perimeter of the dot.

Yannouleas and Landman (1999) studied the forma-
tion of Wigner molecules in a six-electron dot within the
unrestricted Hartree-Fock approximation, which (like
the unrestricted SDFT formalism discussed previously)
allows for internal symmetry breaking and shows the
electron localization directly in the electron density.
They found that, in contrast to LSDA and exact results,
for rs'4aB* the ground state has S53 and the density
exhibits the same geometry as classical electrons in a
harmonic trap (i.e., a fivefold ring with one electron in
the center). The S50 state had the classical geometry of
a deformed hexagon, but was higher in energy. While
the unrestricted Hartree-Fock approach in some cases
might reveal the internal structure of a quantum state, it
is well known that it often fails to give the correct
ground state (Pfannkuche, Gudmundsson, and Maksym,
1993). Reusch, Häusler, and Grabert (2001) reconsid-
ered the Hartree-Fock studies of Yannouleas and Land-
man. For strong correlation the densities indeed are azi-
muthally modulated for an even number of electrons.
However, within unrestricted Hartree-Fock the density
was still found to be azimuthally symmetric for an odd
number of electrons.

FIG. 24. Density profile of ground state (S50; upper panel)
and polarized state (S53; lower panel) for a six-electron
quantum dot at rs54aB* . The dashed line shows the corre-
sponding LSDA result. From Reimann et al., 2000.
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Let us finally look at the pair-correlation function to
map out the internal symmetry of the ‘‘exact’’ many-
body wave function. In polar coordinates, the pair cor-
relation is defined as

g↑s~f!5^n̂↑~r ,0!n̂s~r ,f!& (13)

and describes the probability of finding a (spin-up or
spin-down) particle at (r ,f), if another particle (with
spin up) is placed at (r ,0). Taking for r the radius of
maximum density and varying f, Fig. 25 shows for N
56 the quantities g↑↓(f) and g↑↑(f) for both the
configuration-interaction ground state and the polarized
state at rs54aB* . Clearly the S50 state has symmetry
C6v and antiferromagnetic spin ordering, much like the
spin-density-wave states discussed in Sec. IV.B.2 above.
The fully polarized case shows four maxima in g↑↑(f),
corresponding to C5v symmetry. We note that the geo-
metrically unrestricted Kohn-Sham formalism tends to
overestimate the rs values at which (for a given N)
spontaneous symmetry breaking (spin- and/or charge-
density waves) can occur in the internal structure of the
wave function. For rs54aB* the converged Kohn-Sham
densities are azimuthally symmetric, with no signs of an-
tiferromagnetic order. The onset of the spin-density
wave at a critical density is indeed an artifact of the
LSDA: In the full many-body state, the antiferromag-
netic order is seen in the pair-correlation function prior
to the LSDA transition point (Koskinen et al., 1997;
Reimann et al., 2000).

We noted above that in the classical case for N<5, all
particles are located on a single geometrical shell, and
only one possible stable configuration exists. For a dot
and ring confining four electrons, for example, this cor-
responds to a square with the electrons localized at its

FIG. 25. Pair-correlation functions g↑↓(w) and g↑↑(w) for N
56 and rs54aB* , calculated at the outer maxima of the density
distribution (see Fig. 25), as a function of the angle w. Upper
panel, excited state, S53; lower panel, ground state, S50.
From Reimann et al., 2000.
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corners. Figure 26 compares the rotational spectra (see
also Sec. IV.D). The low-lying rotational bands are in
both cases very similar and are consistent with electron
localization, as explained in the next section. The only
difference between the dot and the ring is that for the
four-electron dot, at L54 the spins of the two lowest
states have opposite order from that at L50. This may
result from the possibility of radial oscillations in the
dot, which are inhibited in the ring. Within the
configuration-interaction approach, the ground state of
the four-electron quantum dot remains S51 at least up
to rs56aB* . This contradicts the result of Chengguang
et al. (1996), who obtained a ground-state spin S50, but
it is in agreement with a quantum Monte Carlo calcula-
tion by Harju et al. (1999); (see also the discussion in
Sec. IV.E.1).

D. Quasi-one-dimensional systems

1. One-dimensional square well

By using numerical diagonalization including the spin
degree of freedom, Häusler and Kramer (1993) and Jau-
regui, Häusler, and Kramer (1993) investigated the spec-
tral properties and density distribution of up to N54
electrons in a finite-length one-dimensional square-well

FIG. 26. Rotational spectra (low-lying states) for (upper
panel) a quantum dot confining four electrons (rs54aB* ) and
(lower panel) a ring (rs52aB* and CF510), each confining four
electrons (see text). The spin S is given for the low-lying states
(as also indicated by different colors of the levels). The ener-
gies are rescaled for comparison; the energy difference
between the yrast states for L50 and L54 is for the dot
69 mRy* and for the ring 287 mRy* , respectively. After Man-
ninen, Koskinen, et al., 2001 [Color].
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potential. The electron-electron interaction potential
was approximated by V(x ,x8)}1/A(x2x8)21l'

2 ), for
larger distances reproducing the usual long-range Cou-
lomb form. The parameter l' measures the width of the
wave function in the transverse direction. Häusler and
Kramer chose l' /l!1 (where l is the length of the
wire). Typical spectra for N,4 are shown in Fig. 27.
One observes that at strong correlations, groups of mul-
tiplets are formed, the total number of states within each
multiplet being 2N, corresponding to the dimensionality
of the spin space. The energy splitting within a multiplet
is much smaller than the energy differences between the
multiplets. The near degeneracy of the states in a mul-
tiplet can be understood if one bears in mind that in a
Wigner crystal the spin orientation of the crystallized
electrons becomes irrelevant. Indeed, looking at the to-
tal charge density of the system, which is plotted in Fig.
28 for N53 as an example, at l>9.5aB* one observes
three distinct peaks, forming a Wigner-crystal-like con-
figuration with the single electrons being equidistantly
separated to minimize the Coulomb energy. Surprisingly,
this picture was found to hold down to rather small val-

FIG. 27. Many-body spectra of a linear quantum dot with N
<4 and length l59.45aB* . The lowest multiplets are magnified
and indicate the total spin of each level. From Häusler and
Kramer, 1993.

FIG. 28. Many-body densities of linear quantum dots with N
53 electrons for various lengths l . From Jauregui, Häusler,
and Kramer, 1993.
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ues of l , i.e., large densities. Pronounced oscillations are
observed even when the mean electron separation was
of the order of aB* (see, for example, the density distri-
bution for l51.9aB* in Fig. 28).

2. Quasi-one-dimensional quantum rings

The formation of Wigner molecules in quasi-one-
dimensional systems was also studied for quantum rings,
as discussed in Sec. IV.B.2 above in connection with the
density-functional approach in the local spin-density ap-
proximation. By applying the configuration-interaction
method to a quantum ring confining N56 electrons at a
one-dimensional density corresponding to rs52aB* and
CF54 [where \v5CF\2p2/(32m* rs

2); see Eq. (11) for
the definition of v] one obtains for fixed angular mo-
mentum L a set of many-body eigenstates, as displayed
in Fig. 29, with each state characterized by its angular

FIG. 29. Many-body spectra of a quantum ring with N56
electrons. The spin S is given for the low-lying states (as also
indicated by different colors of the levels). Upper panel, rs

52aB* and CF54. The energy difference between the yrast
states for L50 and L56 is 286 mRy* . Lower panel, rs56 and
CF525. The seven lowest vibrational bands are shown. The
L50 levels are shown in a magnified scale; the energy ratios
are the same as for the much wider ring shown in the upper
panel. From Koskinen et al., 2001 [Color].
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momentum and the total spin S . The lowest energy at a
given angular momentum L defines the yrast line, a term
that was originally introduced in nuclear physics and
comes from the Swedish word ‘‘yrast’’ for ‘‘the most
dizzy.’’ From Fig. 29 we observe that a band of low-lying
states close to the yrast line is separated from the states
at higher energies by a sizable energy gap. One further
notices a sixfold periodicity in angular momentum: the
lowest levels at L50, 1, and 2 have the same total spin
and level spacing as the levels corresponding to L
56, 5, and 4, respectively. An analysis of these se-
quences by group-theoretical methods pointed to a mol-
eculelike structure of rigidly arranged electrons with un-
derlying antiferromagnetic spin order in the rotational
ground state. One can describe the eigenenergies in a
similar way to the spectra of a planar, polygonal mol-
ecule composed of N identical spin-1/2 atoms
(Herzberg, 1945) with an effective Hamiltonian

Heff5
L2

2I
1(

a
\vana1J(

i ,j

N

Si•Sj (14)

in terms of independent rotation, vibration, and the in-
trinsic spin degrees of freedom. The first term describes
rigid rotations of a ring of electrons with a moment of
inertia I ; the second describes the vibrational modes.
The third term is an antiferromagnetic Heisenberg
Hamiltonian of localized electrons with nearest-
neighbor coupling J . It was found that the whole rota-
tional spectrum close to the yrast line can be determined
by such a spin model combined with a rigid center-of-
mass rotation (Koskinen et al., 2001). If the ring is made
much narrower, the higher vibrational states separate to
individual bands. The energy differences agree well with
a classical model of six vibrating electrons. The lowest
band is the vibrational ground state and consists of the
rotational levels. The different spin levels become al-
most degenerate, as localization reaches a degree at
which the spin-spin interactions become less important.
These results agree well with the observations of
Häusler and Kramer (1993) and Jauregui, Häusler, and
Kramer (1993) in the linear case described above.

Jefferson and Häusler (1997) suggested a ‘‘pocket-
state’’ analysis in the spirit of the Hubbard model. They
noted that an effective Heisenberg model with antifer-
romagnetic exchange and a low-spin ground state (Lieb
and Mattis, 1962) was obtained in the one-dimensional
case.

The ground-state antiferromagnetic order, as clearly
observed in the rotational spectra, was actually pre-
dicted by density-functional studies within the local spin-
density approximation, where a strong spin-density-
wave state occurred in the ground state (see Fig. 22 in
Sec. IV.B.2). We have already noted from the simple
mean-field picture in LSDA, that low-lying excitations
most likely will be collective in nature. The above many-
body spectra and their one-to-one comparison to a
Heisenberg model (Koskinen et al., 2001) confirm that,
indeed, the LSDA can to a surprisingly large degree cor-
rectly map out the internal symmetry of the many-body
ground state.
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
E. Quantum Monte Carlo studies

Three different quantum Monte Carlo methods have
been applied to the study of electronic structure in small
circular quantum dots: variational Monte Carlo, path-
integral Monte Carlo, and diffusion Monte Carlo. A
common difficulty in applying Monte Carlo methods to
fermionic systems lies in preserving the proper antisym-
metry of the wave function. In the variational Monte
Carlo method, the many-body ground state is approxi-
mated by a suitably chosen variational wave function
with a large number of parameters. The Monte Carlo
method is then used to perform multidimensional inte-
grals and to find the set of parameters minimizing the
total energy. The advantage of the method is that the
Pauli exclusion principle can be taken into account by
building antisymmetry into the variational wave func-
tion, usually consisting of a Jastrow factor for the two-
body correlations (Bolton, 1994b; Harju et al., 1999). In
diffusion Monte Carlo the lowest energy state is pro-
jected from an antisymmetric trial wave function in
keeping the nodal structure fixed (the fixed-node ap-
proximation; Pederiva et al., 2000). Path-integral Monte
Carlo applies the path-integral description of quantum
mechanics and uses, for example, blocking algorithms
(Mak et al., 1998) to keep the solution antisymmetric.
This method was used in electronic structure calcula-
tions for small quantum dots by Egger et al. (1999) and
Harting et al. (2000).

1. Hund’s rule

The results of the Monte Carlo methods generally
agree with those obtained by other many-body methods.
However, recent studies have pointed to a disturbing dif-
ference for a four-electron dot: using diffusion Monte
Carlo, two independent groups (Bolton 1994b, 1996; Pe-
deriva et al., 2000) have found that the ground state has
spin zero, i.e., it violates Hund’s first rule. This result was
also reported by Harting et al. (2000) based on a path-
integral Monte Carlo study. However, Harju et al.
(1999), using variational Monte Carlo, and Egger et al.
(1999) using path-integral Monte Carlo both find S51
for the ground state according to Hund’s rule.
Configuration-interaction calculations (Manninen,
Koskinen, et al., 2001) predicted that the S51 state
would be below the S50 state regardless of rs (from 0
up to 6). Häusler (2000) generalized the ‘‘pocket-state
method’’ (Hüller and Kroll, 1975; Häusler, 1994) for the
low-density regime of quantum dots. This model also
confirmed the S51 ground state.

Although the energy difference is small, the number
of electrons in this case is so small that an essentially
exact energy can be obtained even for such small rs val-
ues. Moreover, the low-energy rotational spectrum is
nearly identical to that obtained for a four-electron ring
(Fig. 26). We conclude that the exact many-body state of
four electrons in a quantum dot indeed obeys Hund’s
first rule and the gound state has S51. The diffusion
Monte Carlo method with fixed-node approximation
was not able to predict the correct ground state.
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2. Wigner crystallization

Quantum Monte Carlo methods have also been ap-
plied to studies of Wigner crystallization in circular
quantum dots and quantum rings. Egger et al. (1999)
performed path-integral Monte Carlo calculations that
also indicate the beginning formation of spatial shell
structure at rather high densities.

Figure 30 compares the density profiles for the ratios
of oscillator length ,0 to Bohr radius l5,0 /aB* 52 and
l58 (Egger et al., 1999) to the configuration-interaction
result (Reimann et al., 2000), for both the lowest S50
and the S53 state for N56 at l53.52 [where Eq. (11)
was used to obtain ,0]. The densities are multiplied by a

FIG. 30. Density profiles of quantum dots confining a small
number of particles, as obtained from path-integral Monte
Carlo simulations (after Egger et al., 1999) for different values
of l5,0 /aB* . The densities are multiplied by a factor 2pr .
The configuration-interaction (CI) results (Reimann et al.,
2000) for N56 at rs54aB* with S50 and S53, corresponding
to l53.52, are plotted in (c) for comparison. Here we use the
symbol n for the electron density, while Egger et al. used r.
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factor of 2pr , so that a maximum in the center (see Fig.
24 above) now appears as a broad shoulder [Fig. 30(b)]
towards the dot center.

As expected from the classical configurations, no such
shoulder is seen for N<5. The particles are located on a
single shell even at large densities. With increasing l, the
onset of shell formation can be seen clearly. As pre-
dicted by the classical model (see. Fig. 19), a second
geometrical shell is formed for N.5. For N56, for
weak correlations Egger et al. (1999) report a ground-
state spin zero, while at about l58 a transition to a S
51 state forms. In the configuration-interaction result,
which was calculated at a density intermediate between
the two values reported by Egger et al., the ‘‘shoulder’’
visible in Fig. 30(a), pointing to a (5,1) geometric shell
structure (i.e., a C5v symmetry with one particle at the
center), is not seen in the S50 ground state.

We conclude from the above comparison that al-
though some signals for the formation of geometric
shells can be identified at rather small values of rs
'4aB* , the sequence of geometries in ground and ex-
cited states still can be rather different from that of a
truly classical picture. In addition, for values below rs
54aB* and N.5, in the configuration-interaction spectra
no clear signals for rotational spectra were identified,
which could indicate a truly crystallized ground state.
For N<5, however, where only one classical configura-
tion is seen, for densities as large as rs52aB* the low-
lying spectra could be well understood by assuming a
regular Wigner molecule for the internal structure of the
wave function and analyzing its rotational structure (see
the discussion of the four-electron quantum dot above).

Filinov, Bonitz, and Lozovik (2001) studied the distri-
bution of closed electron paths obtained by the path-
integral Monte Carlo technique. They found that if the
kinetic energy is small as compared to the electron-
electron interaction, the internal structure of the state is
a Wigner molecule consistent with the classical geometry
discussed in Sec. IV.A. Increasing the interaction causes
‘‘orientational melting’’ of the molecule. By analyzing
the angular and distance fluctuations, Filinov et al.
(2001) determined that the onset of Wigner crystalliza-
tion happens only at rs'60 (n510, . . . ,20) and that the
orientational ordering occurs only at even larger values
of rs . These results seem to contradict the above-
mentioned results of small values of rs at which Wigner
crystallization occurred in a few-electron system. How-
ever, the analyzing method is different and at this point
a direct comparison of these two approaches could not
be made.

V. MAGNETIC FIELDS: ADDITION ENERGY SPECTRA
AND A SINGLE-PARTICLE APPROACH

The electronic structure of quantum dots in magnetic
fields displays a rich scenario of different phases in the
ground state. An overwhelming amount of literature on
this topic has been published, mostly concerning exact
diagonalization studies and mean-field approaches. Dif-
ferent milestones were set by measurements of the
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magnetic-field dependence of the addition energy spec-
tra (McEuen et al., 1991, 1992; Ashoori, Störmer, et al.,
1992, 1993; Tarucha et al., 1996; Austing, Tokura, et al.,
1999; Oosterkamp et al., 1999), and by the discovery of
spin-singlet-triplet oscillations (Wagner, Merkt, and
Chaplik, 1992) and the polarization transition with sub-
sequent formation of the maximum-density droplet and
its reconstruction (MacDonald, Yang, and Johnson,
1993; de Chamon and Wen, 1994).

A. Harmonic oscillator in a magnetic field

When studying the field-free case we saw earlier that
the harmonic oscillator is a realistic potential for a quan-
tum dot. As a first simple approach, let us now consider
N particles in a harmonic trap with a homogeneous
magnetic field in the z direction, B5(0,0,B), and ignore
the interactions between the particles for the moment.

1. Fock-Darwin spectrum and Landau bands

The single-particle spectrum of a two-dimensional
harmonic oscillator in a homogeneous magnetic field
was discussed by Fock (1928) and Darwin (1930) in the
early days of quantum mechanics (see also Landau,
1930). The Fock-Darwin energy spectra have been re-
derived in many recent articles and monographs (see,
for example, Jacak, Hawrylak, and Wójs, 1998; Chak-
raborty, 1999). Nevertheless, we shall briefly repeat this
discussion here, as the Fock-Darwin model forms an es-
sential and simple analytic concept for the analysis of
single-particle effects in quantum dots and furthermore
provides the basis for more sophisticated many-body
calculations when the interactions between the particles
are taken into account.

For parabolic confinement with circular symmetry and
a homogeneous magnetic field with A5 (1/2) B(2y ,
x ,0) in symmetric gauge the single-particle Hamiltonian
equals

Hsp5
p2

2m*
1

1
2

m* S v21
1
4

vc
2D r21

1
2

vclz , (15)

with the cyclotron frequency vc5eB/m* c and lz being
the z component of the angular momentum operator.
The single-particle spectrum at fixed magnetic field is
given by

«nm5\vh~2n1umu11 !1
1
2

\vcm , (16)

where n50,1,2,3, . . . is the radial and m
50,61,62,63, . . . is the azimuthal quantum number.
The effective length scale is given by the effective oscil-
lator length ,h5A\/mvh with vh

25v21vc
2/4. The evo-

lution of the single-particle energies «nm with magnetic
field is illustrated schematically in Fig. 31. We note that
the spectrum is very similar to that of a deformed oscil-
lator (cf. Fig. 2).

In the Fock-Darwin spectrum displayed in Fig. 31, for
B*0 energy levels with positive or negative m move up
or down in energy as they have magnetic moments
pointing opposite or along the magnetic field. At large
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fields, free-electron behavior prevails over the confine-
ment of the oscillator and the energy levels form a se-
quence of so-called Landau bands. From the spectrum
in Fig. 31 we clearly see that at high magnetic fields it is
energetically favorable to populate only the lowest
states sequentially with single-particle angular momenta
m50,21,22, . . . ,2(N21), and the energy is increas-
ing monotonically with B . (We note that in the lowest
Landau band, the sign of m is frequently omitted to
simplify the notation. In the following, we shall use this
convention.)

The pronounced shell structure at zero magnetic fields
is reduced in a magnetic field B.0 until for integer ra-
tios of v1 :v2 (where v65vh61/2 vc) accidental de-
generacies occur, again leading to enhanced bunching of
single-particle levels, as seen in Fig. 31 at vc /v
51/& ,2/) ,3/2, etc. In the limit vc /v→` , the eigenval-
ues asymptotically approach the degenerate Landau lev-
els \vc(NL1 1/2) with Landau level index NL
50,1,2, . . . .

The strength of the magnetic field is often described in
terms of the filling factor n, which in an infinite system is
the number of filled Landau levels (considering spin-up
and spin-down states to be different levels). In a quan-
tum dot, for n52 the states m50,1, . . . ,(N/221) are
doubly occupied, while n51 is a spin-polarized state
with m50,1, . . . ,(N21) singly occupied. [For the defi-
nition of fractal filling factors for n,1, see Eq. (17).]

2. Constant-interaction model

In relatively weak magnetic fields and for small rs , the
ground-state properties of typical GaAs-AlGaAs quan-
tum dots confining a smaller number of electrons can be
described in the simple single-particle picture to a good
degree of approximation. We argued in Sec. II.B that the
addition energy to put the Nth electron in the dot can be
approximated in a simple model where we still treat the
electrons as independent particles, but add a constant
charging energy e2/C , as it costs energy to place the Nth
electron in a dot already confining N21 electrons

FIG. 31. Fock-Darwin energy spectra as a function of vc /v .
The bold lines indicate the addition energies for N52, 6, 12,
and 20 independent particles. (Note that some states with
larger m values were omitted in order to make the formation
of Landau bands in strong fields more visible.)
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(McEuen et al., 1991; Tarucha et al., 1996; Kouwen-
hoven, Austing, and Tarucha, 2001).

For an even number of electrons, assuming spin de-
generacy and neglecting the Zeeman energy, the Nth
electron occupies the same orbital as the (N21)th elec-
tron. Then only the charging energy is needed for the
electron to tunnel into the dot. Figure 32 shows the ad-
dition energy spectra obtained in this way, plotted as a
function of magnetic field. A constant charging energy
e2/C5 2/3 \v was assumed. One clearly recognizes a
‘‘wiggling’’ in the single addition energy curves and ad-
ditional subshell closings at nonzero B , originating from
the level crossings in the Fock-Darwin spectrum (Fig.
31). For fixed N , above a certain field strength only
single-particle states belonging to the lowest Landau
band become occupied (here with spin degeneracy). No
more level crossings occur, and the addition energy in-
creases smoothly with B .

Let us now see how far our simple model can reach in
providing an understanding of the experimentally deter-
mined B2N dependence of the addition energies.

B. Measurements of addition energy spectra

1. Tunneling spectroscopy of vertical dots

Tarucha et al. (1996) measured the Coulomb blockade
spectra of a vertical quantum dot (see. Figs. 3 and 10) as
a function of a magnetic field applied perpendicular to
the dot plane (i.e., parallel to the tunneling current). The
development of the current peak positions [being pro-
portional to the addition energy m(N)5E(N11)
2E(N); see Sec. II.B] with increasing B is displayed in
Fig. 33. Just as predicted by the constant-interaction
model (Fig. 32), one observes that the lowest curves de-
pend smoothly on B , while the peak positions that are
higher in addition energy show pronounced ‘‘wiggles,’’
the number of which increases with the number of con-

FIG. 32. Addition energies in the constant-interaction model

(a charging energy e2/C5
2
3 \v was assumed).
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fined electrons. One also notices that the current peaks
shift in pairs with B until they get out of phase just
before the wiggling stops at a certain field strength and
the Coulomb blockade curves for all dot sizes N show a
very smooth B dependence.

In the simple Fock-Darwin single-particle model for a
quantum dot in a magnetic field, we saw that level cross-
ings occur as the magnetic field is increased (Fig. 31).
Such level crossings then appear as cusps in the addition
energies of the constant-interaction model, as shown in
Fig. 32. We can identify these cusps with the wiggles in
the small-B range in the experimental data, and, indeed,
the constant-interaction model can reproduce many of
the observed features. On an enlarged scale, the current
peaks for 3<N<6 are shown in Fig. 34 (Tarucha et al.,
1996). Below 0.4 T, one observes a rearrangement of the
pairing between (otherwise neighbored) current peaks,
which can be interpreted in terms of Hund’s first rule,
favoring spin alignment at midshell. As a first and simple
approach, Tarucha et al. (1996) incorporated the spin
alignment into the constant-interaction model by intro-
ducing a constant energy shift due to exchange interac-
tions between electrons with parallel spins. They ob-
tained remarkable agreement with the experimental
data (see the comparison given in Fig. 34): at B50, m(4)
is decreased due to the energy gain by spin alignment
(the spin configuration is illustrated by the pictorial dia-
gram), while correspondingly m(5) is increased as only
one unpaired spin occupies the highest single-particle
orbital. As the magnetic field splits the degeneracy of
oscillator states with quantum numbers (n ,6m), at a
certain field strength the spin flips back to a paired con-

FIG. 33. Evolution of the peak positions (voltages) of the Cou-
lomb blockade oscillations with magnetic field. The large gaps
for closed shells with N52, 6, and 12 at B50 are clearly seen.
The particle numbers N are indicated at each of the Coulomb
peaks. From Tarucha et al., 1996.
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figuration. Note, however, that ‘‘accidental’’ degenera-
cies occur for B.0, which may also lead to spin align-
ment at finite fields (see Sec. VII.C).

2. Gated transport spectroscopy in magnetic fields

An early report on gated transport spectroscopy of
artificial atoms in a magnetic field was given by McEuen
et al. in 1991. With increasing B or, equivalently, a de-
creasing number of occupied Landau bands, they ob-
served regular oscillations in the conductance peaks.
These were associated with the properties of the quan-
tized single-particle spectra, resulting from changes in
the occupation of the two lowest Landau bands.

In analogy to Figs. 31 and 32 above, Fig. 35(a) shows
the noninteracting level spectrum as a function of B , but
now also taking into account a constant charging energy
and a Zeeman term g* mBBSz with an effective g factor
g* . Note that the bare electron mass enters mB . Thus
g* mBB!\vc in contrast to free electrons, in which both
magnitudes are almost equal. The total energy is indi-
cated by the solid line for N539 electrons as an example
(from McEuen et al., 1992). Very few level crossings are
found for n&2. This is in obvious disagreement with the
frequent and rather regular oscillations observed in the
experimental data [shown in Fig. 35(b)]. The failure of

FIG. 34. Hund’s rule in quantum dots. (a) Current peaks as in
Fig. 33 above, on an enlarged scale for N53, 4, 5, and 6; (b)
constant-interaction model, taking into account exchange ef-
fects. The energy splitting D accounts for the energy gain by
spin alignment, following Hund’s rule for orbital degeneracy at
B50. From Tarucha et al., 1996.
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the single-particle picture is not too surprising, as stron-
ger fields effectively increase the interaction between
the electrons, and many-body effects lead to significant
deviations.

For filling factors between n52 and n51, McEuen
et al. (1992, 1993) developed a semiclassical self-
consistent model for the charge distribution in the dot.
In the spirit of the Thomas-Fermi model, they approxi-
mated the kinetic-energy contribution to the energy
functional by its bulk value. The finite z extent of the
dot was taken into account by a modified electron-
electron interaction. A self-consistent minimization of
the total energy yielded an electrochemical potential
m(N), which appeared in reasonable agreement with
the experimental data [see Fig. 35(c)]. McEuen et al.
noted that an incompressible ring separates a compress-
ible dot center from a compressible edge. With increas-
ing field, electrons transfer from the center region to
states with opposite spin in the lowest Landau band at
the edge, leading to N/2 wiggles in the conductance peak
positions as a function of B . Level crossings for n&2
occur whenever a flux quantum is added. Then one
more electron flips its spin and can be accommodated in
the lowest Landau band.

FIG. 35. Effect of magnetic field on level spectrum and con-
ductance: (a) Noninteracting level spectrum as a function of
magnetic field B in units vc /v , taking into account a constant
charging energy and a Zeeman term. The solid line indicates
the total energy for N539 electrons as an example. (b) Experi-
mental conductance peak position as a function of B (in T) at
T'30 mK. (c) Chemical potential obtained from a semiclassi-
cal self-consistent model. From McEuen et al., 1992.
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The magnetic-field dependence of the Coulomb
blockade spectra was recently measured by Ciorga et al.
(2000) for small lateral quantum dots (see. Sec. II.C.1).
Removing the charging energy in the addition energy
spectrum, they obtained a B-N phase diagram with simi-
larities to the spectra shown above, although a direct
comparison appeared difficult.

3. B-N phase diagram obtained by single-electron
capacitance spectroscopy

Ashoori et al. (1993; Ashoori, 1996) used single-
electron capacitance spectroscopy (as briefly discussed
earlier in Sec. II.C.2) to systematically measure ground-
state energies and their magnetic-field dependence for a
single quantum dot confining up to 35 electrons. The
B-field evolution of the ground-state energies for N
,35 is shown in Fig. 36.

Trivially, the single-electron state [Eq. (16), with the
Zeeman energy added] increases with magnetic field due
to the enhancement of the effective confinement. The
two-electron case, however, shows a kink at B'1.5 T.
This kink can be understood from a spin flip of one of
the electrons, such that the state changes from a singlet
to a triplet. Su et al. (1994) observed such an effect for
N52 in single-electron tunneling measurements. It was

FIG. 36. Color scale plot of the B-N diagram from single-
electron capacitance spectroscopy (from Ashoori et al., 1993)
for (a) N,10 and (b) 6<N<35. The vertical axis is propor-
tional to the gate voltage, i.e., the energy scale of electron
addition. White, red, and black regions correspond to highest,
intermediate, and lowest capacitance. (a) Dots mark the
singlet-triplet transitions. (b) Triangles mark the filling factor
n52 [Color].
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noticed by Wagner, Merkt, and Chaplik (1992; see also
Maksym and Chakraborty, 1992) that it is actually the
Coulomb interaction between the particles, rather than
the Zeeman effect alone, that leads to these spin-singlet-
triplet oscillations with magnetic field. For larger N , the
data of Ashoori et al. show kinks similar to that associ-
ated with singlet-triplet transition for N52 (marked by
the white dots). These kinks shift to higher fields as N
increases. They are related to the flipping of the last
electron moment in line with the magnetic field (Pala-
cios et al., 1994; Ashoori, 1996).

In larger dots at lower densities, a bunching pattern in
the addition spectrum was observed, indicating that two
or more successive electrons could enter the dot at
nearly the same energy. A strong magnetic field created
a sharp boundary between paired and unpaired regions
in the electron addition spectrum (Ashoori, Störmer,
et al., 1992; Zhitenev et al., 1997, 1999). It was surmised
that the bunching was caused by electron localization in
the low-density droplet, splitting it into smaller frag-
ments caused by disorder and electron-electron interac-
tions (localization-delocalization transition). Further ex-
perimental studies of an artificially disordered dot
consisting of two potential minima separated by a bar-
rier (i.e., a quantum dot molecule, as further discussed in
Sec. IX.D) supported this interpretation (Brodsky et al.,
2000). A similar phenomenon was discussed by Canali
(2000), who numerically investigated the addition en-
ergy spectra of quantum dots in the presence of disorder
and associated the observed pairing with electron tun-
neling into the distinct fragments of the droplet.

4. B-N phase diagram of large vertical quantum dots

Oosterkamp et al. (1999) systematically extended the
measurements of the B-N phase diagram by Ashoori
et al. (1993) and Klein et al. (1995) to stronger fields and
larger sizes. They used a vertical quantum dot as de-
scribed by Tarucha et al. (1996). The positions of the
Coulomb blockade peaks as a function of magnetic field
are displayed in Fig. 37.

While the low-field limit could be well understood in
the constant-interaction model, in stronger magnetic
fields features are observed which can be associated with
many-body effects as a consequence of enhanced corre-
lations. The dotted line in Fig. 37 marks the B value at
which all electrons occupy spin-degenerate states corre-
sponding to n52, i.e., the value at which the ground
state has total spin S50 and angular momentum N(N
22)/4 (Austing, Sasaki, et al., 1999; Austing, Tokura,
et al., 1999). Beyond n52, as discussed previously, elec-
trons successively flip the spin and move to the dot edge,
filling empty states with higher angular momenta. Con-
sequently the polarization of the dot starts at the dot
edge and continues inwards, until the dot is fully polar-
ized. (A similar edge polarization is also obtained in
quantum wires; see Dempsey, Gelfand, and Halperin,
1993.)

In the data by Oosterkamp et al. (1999), the overall
appearance of the spin flips and their number is found to
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be somewhat different from that in the planar dots in-
vestigated by McEuen et al. (1992, 1993). In Fig. 37 the
solid dot labeled S-T marks the singlet-triplet transition
for N52. For N.2 the dots mark the polarization tran-
sition, where the last spin flip has occurred.

After complete polarization of the electron droplet,
the particles occupy neighboring orbitals with angular
momenta m50,1,2, . . . ,(N21), belonging to the lowest
Landau band with filling factor n51. The exchange en-
ergy results in the formation of a compact and stable
configuration, the maximum-density droplet (Mac-
Donald, Yang, and Johnson, 1993); see Sec. VI. A fur-
ther increase in the magnetic field continuously squeezes
the compact electron droplet until the Coulomb interac-
tion between the particles forces the maximum-density
droplet to rearrange. At n,1, different scenarios for the
reconstruction of the maximum-density droplet (i.e., a
redistribution of the charge and/or the spins) are pos-
sible, depending on the relative strength of confinement
and the Hartree energy, the Zeeman energy, and ex-
change and correlation effects. Suggested mechanisms
for such a reconstruction include a charge redistribution
either by creating holes in the center (MacDonald,
Yang, and Johnson, 1993) or by splitting off a ring of
electrons (de Chamon and Wen, 1994). Formation of
spin textures in quantum dots was also discussed (Oak-

FIG. 37. Coulomb blockade peak positions as a function of
magnetic field. The beginning and end of the maximum-
density droplet (MDD) phase is marked by a dot. Different
mechanisms for reconstruction of the maximum-density drop-
let in high magnetic fields (Secs. VI and VII), such as forma-
tion of a spin-polarized Chamon-Wen edge, reconstruction
from the dot center, or spin textures, are indicated schemati-
cally. After Oosterkamp et al., 1999.
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nin et al., 1997; Heinonen, Kinaret, and Johnson, 1999).
Theoretical concepts to describe the different phases of
quantum dots in high magnetic fields mostly have in-
volved exact diagonalization studies in the small-N limit,
but also have included mean-field approaches such as
(restricted and unrestricted) Hartree-Fock methods or
current-density-functional theory for larger N . These
approaches and their results will be summarized in the
following sections.

VI. ROLE OF ELECTRON-ELECTRON INTERACTIONS IN
MAGNETIC FIELDS

A. Exact diagonalization for parabolic dots in magnetic
fields

We saw above that the single-particle Hamiltonian for
a harmonic confinement, in the presence of a magnetic
field, is exactly solvable (Fock, 1928; Darwin, 1930). For
two interacting electrons, separating out the center-of-
mass coordinate leads to an exact analytic solution
(Dineykhan and Nazmitdinov, 1997), but this procedure
is impractical when the number of electrons is larger.
Performing configuration-interaction calculations or ex-
act diagonalization (see Sec. III.A), it is then natural to
use, as well, the Fock-Darwin states for the basis in the
interacting case. At weak magnetic fields the single-
particle basis must include states for both spins and sev-
eral Landau bands. This makes the convergence of the
many-body spectra very slow with respect to the number
of included configurations. Full convergence can be ob-
tained only if the particle number is small, typically
much less than N510 (Maksym and Chakraborty, 1992;
Eto, 1997; Reimann et al., 2000). The slow convergence
is related to the fact that, for large N , the single-particle
spectrum approaches the continuous spectrum of the in-
finite electron gas (Koskinen et al., 1994). In the strong-
magnetic-field limit, where the electron system is fully
polarized, the configuration-interaction problem be-
comes easier due to the large reduction of configuration
space. Often one can keep the number of configurations
small by restricting the basis to the lowest Landau band.
In any case, however, the basis size needed to obtain
convergence of the many-body spectra increases rapidly
for increasing particle number and magnetic field, or for
decreasing average electron density, so that these micro-
scopic approaches could be followed only for a very lim-
ited range of system parameters.

The relative simplicity of the exact diagonalization
technique resulted in a vast literature. A rich scenario
with many unexpected properties was revealed (as, for
example, the nonmonotonic increase of spin and the
magic orbital angular momentum values; see Maksym,
1996; Eto, 1997, 1999; Wójs and Hawrylak, 1997).

Exact diagonalization calculations for dots in mag-
netic fields were first performed for N<10 in the spin-
polarized case by Maksym and Chakraborty (1990).
Quantum dots confining two and three electrons were
studied by Pfannkuche, Gerhardts, et al. (1993) and
Pfannkuche, Gudmundsson, and Maksym (1993) as well



1317S. M. Reimann and M. Manninen: Electronic structure of quantum dots
as by Hawrylak and Pfannkuche (1993). Yang, Mc-
Donald, and Johnson (1993), Palacios et al. (1994), Teje-
dor et al., (1994), and Eto (1997, 1999) used this method
to systematically calculate the addition energies. At
smaller magnetic fields, oscillations in the addition en-
ergy as a function of B were identified with different
‘‘phases.’’ At filling factor n'1, the smooth evolution of
the addition energy was brought into connection with
the stability of the maximum-density droplet. Quantum
dots at fractional filling n,1 have also been much stud-
ied in connection with edge phenomena in quantum
Hall states (see, for example Palacios et al., 1993, 1994;
Yang, MacDonald, and Johnson, 1993; de Chamon and
Wen, 1994; Oaknin et al., 1995).

Maksym and Chakraborty (1990, 1992) studied the
magnetism of dots confining three or four electrons as a
function of the magnetic field. They observed that while
the orbital angular momentum increases monotonically
with the field, the spin does not. The four-electron case
is shown in Fig. 38.

When the field increases from zero, the state first has
L52, S50 (note that at zero field L50 and S51). In
this state the Zeeman splitting is so small that both up
and down electrons fill a similar maximum-density drop-
let and consequently we can associate it with filling fac-
tor n52. Increasing the field causes transitions between
different spin and angular momentum states until a
stable region with S52 and L56 persists in a wider

FIG. 38. Effects of magnetic field according to the exact diago-
nalization method: top panel, ground-state magnetization M ;
middle panel, total orbital angular momentum J ; lower panel,
total spin S for a four-electron dot as a function of magnetic
field. From Maksym and Chakraborty, 1992. Note that here the
authors used J instead of L for the total angular momentum.
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range of magnetic fields. This state is the spin-polarized
maximum-density droplet with n51. Wagner, Merkt,
and Chaplik (1992) studied the magnetization and spin
transitions in a two-electron dot. For larger dots with up
to ten electrons, transitions between the nonpolarized
compact state at n52 and the fully polarized maximum-
density droplet (n51) were analyzed by Wójs and
Hawrylak (1997). They found periodic oscillations of the
spin as a function of the magnetic field until the n51
state was reached. This was caused by an interplay be-
tween a maximization of spin and the formation of com-
pact configurations, in which each spin component fills a
maximum-density droplet of different size. We should
note that Wójs and Hawrylak used only the lowest Lan-
dau band in the basis set. However, even in the
maximum-density droplet (n51) the higher Landau
bands have an important contribution to the electron-
electron correlation. In real systems the completely po-
larized state with n51 (our definition of the maximum-
density droplet) is reached at a field strength at which
mixing with higher Landau bands is important (Palacios
et al., 1994). In the limit of an infinitely strong magnetic
field, the Hartree-Fock approximation becomes exact
for the maximum-density droplet (MacDonald et al.,
1993).

For dots containing up to five electrons, Eto (1999)
calculated the addition energies for both the ground
state and the first two excited states. Figure 39 (left)
shows the addition energies as a function of magnetic
field (expressed as the ratio of the cyclotron frequency
vc to the confinement frequency v).

Experimentally, the transitions between the different
many-body states can be seen in the addition energies

FIG. 39. Addition energies of small dots in magnetic fields:
Left, addition energy spectra obtained by exact diagonalization
for 2,N,5 (\v55 meV, GaAs), shown for the ground state
(solid line) and the first two excited states (dashed lines). The
different symbols indicate transitions in the ground state.
Right: current as a function of gate voltage and magnetic field,
measured in the nonlinear regime. The ground state as well as
the lowest excited states can contribute to the current. It is
large (.10 pA) in the red regions and small (,0.1 pA) in the
blue regions. The dark blue regions indicate Coulomb block-
ade, corresponding to the hatched regions in the configuration-
interaction spectra (left). After Kouwenhoven, Oosterkamp,
et al., 1997 [Color].
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obtained by conductance spectroscopy. If the transport
window 2eVsd is large (i.e., in the nonlinear regime; see
Sec. II.B), so that the current is nonzero over a wider
range of gate voltages, instead of single Coulomb peaks
one observes the stripes shown in Fig. 39 (right). Kou-
wenhoven, Oosterkamp, et al. (1997) give a detailed
comparison between the experimental data and the ex-
act diagonalization study and argue that excited states
can be identified with the pronounced curves inside
these stripes.

Maksym and Chakraborty (1990, 1992) studied in de-
tail the interplay between the single-particle orbital en-
ergies and the interaction energy and showed how it re-
sulted in a nonmonotonic increase of the total angular
momentum as a function of the field.

Figure 40 shows the single-electron energy of the
Fock-Darwin states (linear in L) and the interaction
contribution for a three-electron quantum dot, obtained
by exact diagonalization of the many-body Hamiltonian.
The interaction energy decreases with L as the occupa-
tion of orbitals with higher angular momentum reduces
the Coulomb interaction. The total energy shows down-
ward cusps at angular momentum values L53,6,9,12,
etc. [In a four-electron system, the corresponding cusps
would occur at L56,10,14, etc., as indicated by the pla-
teaus of J(B) in Fig. 38.] The strength of the magnetic
field determines the angular momentum at which the
total energy minimum occurs. At high fields, this mini-
mum coincides with a cusp. Maksym and Chakraborty
(1990) concluded that the ground state in a magnetic
field occurs only at certain values of angular momentum,
which they called ‘‘magic’’ (again pointing to the en-
hanced stability). As the magnetic field is varied, transi-
tions from one magic angular momentum to another oc-
cur.

The usual way to define the filling factor in a finite
quantum dot for n&1 is

FIG. 40. Single-electron energy, interaction energy, and the
total energy for a three-electron quantum dot at B510 T and
\v54 meV (for GaAs). After Maksym and Chakraborty,
1990. As in Fig. 38, here J labels the total angular momentum.
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n5
N~N21 !

~2L !
. (17)

Maksym and Chakraborty converted the magic angular
momenta to such effective filling factors [Eq. (17)] and
found a sequence 1,1/2,1/3,1/4, etc. in the case of three
particles. (However, this simple sequence holds only in
this particular case. If N.3, the effective filling factors
are those familiar from the fractional quantum Hall ef-
fect: 1/3,1/5,1/7, etc.) Figure 41 shows the ground-state
energy as a function of the angular momentum in a
strong magnetic field for particle numbers 3<N<7
(Wójs and Hawrylak, 1997). Up to N55 the period of
magic L values is equal to N . These periods originate
from rigid rotations of the classical configuration of elec-
trons (Maksym, 1996; Maksym et al., 2000), in analogy
to what we discussed earlier for the rotational-
vibrational spectra of quantum rings (see Sec. IV.B.2).
The case N56 is more complicated due to the interplay
between two stable classical geometries. Ruan et al.
(1995) and Bao (1997) used general symmetry argu-
ments applied to the nodal structure of the wave func-
tion to explain the origin of these magic angular mo-
menta.

As a probe of the many-body effects, heat capacity
and magnetization measurements were suggested, also
taking into account the spin degree of freedom at lower
magnetic fields (Maksym and Chakraborty, 1992).

At this point, we should add that drastic truncations
of Hilbert space, like those obtained for example by as-
suming spin polarization or restricting the basis to the
lowest Landau band, seem to be reasonable in the high-
field case. In the transition regions, however, such ap-
proximations might not be valid, as can be seen in Fig.
38, where a spin reduction is still observed at a filling
factor n'0.4.

FIG. 41. Ground-state energy as a function of angular momen-
tum for N53, . . . ,7 electrons, obtained by exact diagonaliza-
tion. The angular momentum is shifted so that L50 corre-
sponds to the maximum-density droplet (see text). The inset
shows the dependence of the angular momentum on the mag-
netic field in the case of six electrons. From Wójs and Hawry-
lak, 1997.
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B. Electron localization in strong magnetic fields

1. Laughlin wave function

In a strong magnetic field the electrons in a quantum
dot will be spin polarized and eventually reach a state
related to the incompressible quantum fluid of the frac-
tional quantum Hall effect. For a filling factor n51/q
(with q>3) this state can be approximated by the
Laughlin wave function (Laughlin, 1983)

cL~q !5)
i,j

~zi2zj!
q expS 2

1
4 (

k
uzku2D , (18)

where coordinates are expressed as complex numbers
z5x1iy , and the normalization is omitted. In the fol-
lowing we examine the relation of exact solutions of
small electron systems to Laughlin-type wave functions.

If q51 (n51), the product in Eq. (18) forms a Slater
determinant of single-particle levels with angular
momenta ranging from 0 to N21 (N being the number
of electrons). This follows from the fact that, in a har-
monic confinement, in the lowest Landau band the
single-particle states with angular momentum m are
zm exp(2uzu2/4) (these correspond to the Fock-Darwin
states discussed earlier). The role of the external con-
finement is only to change the single-particle frequency
to vh5Av21vc

2/4. The Laughlin state, Eq. (18), with
q51 is similar to the Hartree-Fock approximation of
the maximum-density droplet. This state has total angu-
lar momentum L15N(N21)/2.

The total angular momentum of the ground state de-
pends on the magnetic field. The Laughlin state with q
53 becomes an estimate of the ground state when L3
53N(N21)/2. In such a high magnetic field the single-
particle states of the higher Landau bands have been
pushed up in energy and a good approximation is to
assume that the exact ground state consists only of con-
figurations of the lowest Landau band. Indeed, several
studies have shown that the overlap of the cL(3) with
the exact ground state is close to 1 in finite systems,
more than 0.99 when N,10 (Laughlin, 1983; Jain and
Kawamura, 1995; Seki et al., 1996; Manninen, Viefers,
et al., 2001).

Johnson (1992) studied an exactly solvable model with
r2 interaction between the electrons and showed that in
this case the exact wave functions are generalizations of
the Laughlin state.

2. Close to the Laughlin state

For N electrons confined in an isotropic harmonic po-
tential, the Laughlin wave function has angular momen-
tum Lq5qN(N21)/2. The lowest energy states for an-
gular momenta above Lq can be composed by
multiplying the Laughlin wave function with a symmet-
ric polynomial. The order of the polynomial with respect
to z determines the change in the angular momentum.
Every power of z increases the angular momentum by 1.
For Lq11 the only symmetric polynomial is ( izi
5Nz0 , where z0 is the center-of-mass coordinate. In-
deed, exact configuration-interaction calculations con-
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firm that the lowest energy state with L5Lq11 is
within numerical accuracy a center-of-mass excitation,
the excitation energy being \vh (Trugman and Kivelson,
1985; Jain and Kawamura, 1995; Maksym, 1996). The
center-of-mass state cannot increase the electron-
electron correlation.

Laughlin (1983) suggested that an important low-
energy excitation corresponds to a fractional charge 1/q
and can be approximated by the wave function

cL
N~q !5)

i

N

~zi2z0!cL~q !, (19)

where the angular momentum is increased by the num-
ber of particles N in the finite system. For small systems
this wave function gives a good overlap with the exact
solution (Laughlin, 1983). In the case of a finite quantum
dot the fractionally charged excitation corresponds to
angular momentum L5Lq1N . For intermediate angu-
lar momenta L5Lq1n (1,n,N) one can interpolate
between the wave functions cL(q) and cL

N(q) [Eqs.
(18) and (19)] and multiply the Laughlin state with the
polynomial

Fn5 (
i,j,¯,n

N

~zi2z0!~zj2z0!¯~zn2z0!, (20)

where the sum is used to guarantee that the polynomial
is symmetric. Such a construction was suggested by
Bertsch and Papenbrock (1999) for describing weakly
interacting rotating Bose condensates.

In the case of n52 it is easy to see that the above
ansatz increases the pairwise correlation between the
electrons. The polynomial can be written as

F25(
i,j

~zi2zj!
2. (21)

Related expansions can be carried out for larger n val-
ues. The increased correlation significantly reduces the
energy as compared to the center-of-mass excitations.
This can be seen in Fig. 42, where the lowest many-body
states for a six-electron quantum dot are plotted as a
function of the angular momentum. The spectrum is
qualitatively similar after L515 at B50.9 T* (corre-
sponding to q51) and after L545 at B52.5 T* (corre-
sponding to q53). Note that the results presented in
Fig. 42 are not based on the trial wave functions pre-
sented above, but are computed with the configuration-
interaction method.

Jain (1989) proposed a somewhat different construc-
tion for the excited states in the fractional quantum Hall
regime. Applied to finite dots, the wave function can be
written as (Jain and Kawamura, 1995; Kamilla and Jain,
1995)

cJ~L !5P)
j,k

~zj2zk!2mfL* , (22)

where m is an integer, fL* is an antisymmetric wave
function of noninteracting electrons with angular mo-
mentum L* , and P is a projection to the lowest Landau
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FIG. 42. Calculated many-body spectrum of a six-electron quantum dot as a function of the angular momentum for three different
values of the external magnetic field, B50.9 T* , 1.2 T* , and 2.5 T* , corresponding approximately to filling factors 1, 2/3, and 1/3.
Using material parameters for GaAs, one effective atomic unit of the magnetic field corresponds to T* 56.68 T. The blue line
marks the yrast line. The lowest energy states corresponding to a fivefold (sixfold) internal symmetry are connected with red
(green) lines. The right panel shows the same many-body spectrum as in the left panel, but with the center-of-mass excitation
energy L\vh subtracted. After Manninen, Viefers, et al., 2001 [Color].
level. Note that in this case the product is symmetric and
the antisymmetry is provided by the noninteracting
wave function.

For L* 5L1 the ground state of the noninteracting
electrons is just the Slater determinant cL(1) corre-
sponding to the maximum-density droplet, and the wave
function is equal to cL(2m11), i.e., the Laughlin state
with q52m11.

The Jain construction, Eq. (22), makes it possible to
construct the lowest states, the yrast states (see the dis-
cussion in Sec. IV.D), for all angular momenta larger
than or equal to that of the maximum-density droplet.
The results are published by Jain and Kawamura (1995)
and agree excellently with those of complete
configuration-interaction calculations even when higher
Landau bands are taken into account. This shows that
the role of the higher Landau bands is only to decrease
the total energy while the the lowest Landau band de-
termines overall structure of the yrast spectrum. It was
also noticed (Jain and Kawamura, 1995; Kamilla and
Jain, 1995) that it is the noninteracting part of the wave
function that determines the structure of the yrast line,
and the correlations are taken into account similarly for
all angular momenta via the Jastrow factor. Figure 42
(right) shows that the structure of the yrast line agrees
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
with the structure predicted by the Jain construction. All
the kinks of the spectrum are determined by noninter-
acting electrons up to L535 in the case of six electrons
(L1515).

Seki et al. (1996) studied in detail the applicability of
the Jain construction in six- and seven-electron dots and
found that it explains well all the magic angular momen-
tum values.

It is important to note that the Jain construction is not
limited to the states just above the maximum-density
droplet, but that a similar construction can be used
above the q53 region. The wave function is the same
[Eq. (22)], but the exponent is m52. Again, above L
5L3 (45 for six electrons) the noninteracting electron
part dominates the structure of the yrast line, as can be
seen in Fig. 42, and the structure of the spectrum is very
similar to that above L1 .

3. Relation to rotating Bose condensates

The rotational spectrum of polarized electrons is very
similar for high magnetic fields and for large angular
momenta at zero magnetic fields (Manninen, Viefers,
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et al., 2001): the electrons will mainly occupy those
single-particle states with the largest angular momenta
in each energy shell.

The theory of rotating polarized electrons in a mag-
netic field is closely related to that of weakly interacting
rotating Bose condensates with repulsive interaction be-
tween the atoms (Bertsch and Papenbrock, 1999; Butts
and Rokshar, 1999; Cooper and Wilkin, 1999; Mottelson,
1999; Kavoulakis, Mottelson, and Pethick, 2000; Viefers,
Hansson, and Reimann, 2000; Jackson et al., 2001). In a
3D harmonic trap the states with high angular momenta
become essentially two dimensional, as in the quantum
dot. In the Bose condensates the atom-atom interaction
has a very short range and is weak in the limit of a dilute
gas. In this case the many-body wave function can be
approximated as a linear combination of states in which
all the particles belong to the lowest Landau band and
the interaction between the levels is vanishingly small.
The situation is then similar to that of (polarized) elec-
trons in a quantum dot in a high magnetic field, the only
difference being that electrons are fermions.

The Laughlin wave function [Eq. (18)] describes
bosons if the exponent q is an even integer. The Jastrow
factor tries to keep the particles apart from each other.
This can be achieved in a rotating system by distributing
the particles at different single-particle states. The lack
of the Pauli exclusion principle does not help in the
bosonic case, since the multiple occupation of single-
particle states is unfavorable due to the repulsive inter-
action. The only difference between the fermion and bo-
son cases is then (apart from the form of the interaction)
the exponent q , which dictates the symmetry of the
wave function. Similar approximations can then be used
for both. The Jain wave function [Eq. (22)] can be ap-
plied for bosons by replacing the Jastrow exponent 2m
with an odd number (Cooper and Wilkin, 1999; Viefers,
Hansson, and Reimann, 2000). Since the main property
of the yrast line is again dictated by the noninteracting
particles, the yrast spectra should be similar. At least for
small systems this is indeed the case. Trugman and Kiv-
elson (1985) have calculated the yrast spectrum of four
electrons using a short-range interaction, and Viefers,
Hansson, and Reimann (2000) have studied the four-
atom Bose condensate with a similar interaction (see
Fig. 43). Note that L56 in the case of electrons corre-
sponds to the maximum-density droplet (q51), which
should be compared to L512 (q52) in the case of four
bosons.

Bertsch and Papenbrock (1999) have suggested that
the beginning of the yrast line of a weakly interacting
Bose condensate is described by the polynomial Fn of
Eq. (20), multiplied by the bosonic ground state. Replac-
ing the bosonic ground state with the maximum-density
droplet or the q53 state and taking n5N , the Bertsch-
Papenbrock state equals the Laughlin (1983) ansatz for
the low-energy excitations (with fractional charge). As
discussed before, beyond the Laughlin states the
Bertsch-Papenbrock ansatz is a good approximation to
the exact wave function for interacting electrons.
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
4. Localization of electrons and the Laughlin state

Let us now look at electron localization in a strong
magnetic field in terms of the trial wave functions. As
noted earlier, the circular symmetry hides the possible
localization in the laboratory frame of reference. The
internal localization can be seen by looking at correla-
tion functions or at the many-body spectrum.

Yoshioka (1984) determined the pair-correlation func-
tion in an infinite 2D electron gas with filling factor 1/3
using numerical diagonalization with periodic boundary
conditions. He obtained a modulation in the pair corre-
lation that corresponded to localization in a triangular
lattice. A much stronger Wigner crystallization was ob-
tained at filling factor 1/7 by Yang et al. (2001).

Maksym (1996) used the rotating-frame theory of
Eckardt (1935) to study the internal correlation of few-
electron systems in a strong magnetic field. The results
clearly show the electron localization to Wigner crystal
molecules with geometries determined by classical
charged particles in quantum dots (see Sec. IV.A).

Laughlin (1983) pointed out the relation of the trial
wave function [Eq. (18)] to the localization of classical

FIG. 43. The four-particle yrast spectrum: upper panel, spin-
less rotating Bose condensates, from Viefers, Hansson, and
Reimann, 2000; lower panel, rotating polarized electrons, from
Trugman and Kivelson, 1985. Both spectra are calculated using
a similar short-range interaction between the particles.
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electrons. It is easy to determine the N-particle correla-
tion function, which is just the square of the many-body
wave function. Writing this as

ucL~q !u25e2F/q, (23)

determining the maximum correlation is equivalent to
finding the minimum of

F52(
i,j

2q2 lnuzi2zju1
1
2

q(
k

uzku2. (24)

This is the energy of a classical one-component plasma
in two dimensions, i.e., particles confined in a harmonic
trap (v5Aq) and with repulsive logarithmic interpar-
ticle interactions.

Classical electrons in a 2D harmonic confinement
form Wigner molecules consisting of rings of electrons
(Bedanov and Peeters, 1994), as we have seen in Sec.
IV.A. In small systems the geometries are not sensitive
to whether the interaction is logarithmic or 1/r (in large
systems the number of electrons in each ring changes in
some cases when going from 1/r to the logarithmic inter-
action). The geometry of the classical plasma cluster
gives only the coordinates of the maximum correlation.
The degree of localization can be studied, for example,
by looking at the sensitivity of F to the position of the
particles. It is easy to show that

S ]2

]xi
2 1

]2

]yi
2D ucL~q !u2522qucL~q !u2. (25)

This demonstrates that the localization of electrons in-
creases rapidly with q , as is known from the theory of
the fractional quantum Hall effect. (For a review of the
quantum Hall effect see Prange and Girvin, 1990.)

Laughlin (1983) showed that a similar analysis of the
trial wave function, Eq. (19), leads to a classical plasma
with a phantom charge of 1/q at point z0 . In the case of
a finite quantum dot this excitation means a vortex at
the center of the dot. In the single-particle picture the
Jastrow factor in Eq. (19) means that the angular mo-
mentum of each particle is increased by one. Conse-
quently there will be no electrons at the m50 state. If

FIG. 44. Geometry of the ‘‘localized’’ electrons in a six-
electron quantum dot determined from the maximum ampli-
tude of the trial wave function of Eq. (20) for different values
of the angular momentum.
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
the classical system has an electron in the center, the
geometry of this excitation will be different from that of
the ground state. In the six-electron case the geometry
of the L5Lq state is a pentagon with one electron at the
center, while the geometry of the L5Lq1N state is a
hexagon of six electrons, as shown in Fig. 44. Note that
these internal geometries are independent of q . The
polynomial of Eq. (20) combined with the Laughlin state
is a good approximation to the exact wave function
along the yrast line (above L3) and can be used to ana-
lyze how the internal geometry changes with L . Figure
44 shows the geometries dictated by this assumption.
The order of the polynomial (L245 in this case) deter-
mines how many electrons form the outer ring.

In the de Chamon–Wen (1994) edge reconstruction,
at a certain field strength a ring of electrons becomes
separated from the maximum-density droplet, as dis-
cussed in Sec. VII.D. A suggestion for the Chamon-Wen
edge state is FncL(q), where n is the number of elec-
trons in the outer ring. The increase of angular momen-
tum when the Chamon-Wen edge is formed is then sim-
ply determined by the number of electrons in the outer
ring. This is in good agreement with existing calculations
(Goldmann and Renn, 1999; Reimann, Koskinen, Man-
ninen, and Mottelson, 1999). This geometrical interpre-
tation also explains the successive formation of rings
when further increasing the magnetic field. Moreover,
similar low-energy excitations where rings of electrons
are excited further out should also appear after each
‘‘fractional’’ Laughlin state (q53,5, . . . ; Manninen,
Viefers, et al., 2001).

5. Localization and the many-body spectrum

As discussed previously (Sec. IV.D), for quantum
rings the localization of electrons was most convincingly
seen by folding the exact many-body spectrum into that
of a model Hamiltonian of localized electrons (Koskinen
et al., 2001). Similarly, the rotational spectrum of four
electrons (Fig. 26) in a quantum dot (without a magnetic
field) indicated localization of electrons in a square ge-
ometry. In the presence of a strong magnetic field the
electron system will be fully polarized and the analysis
of the rotational spectrum becomes even simpler. If the
electron system were a rigid rotor the yrast spectrum
would show a periodicity determined by the rotational
symmetry of the Wigner molecule. In the case of four
electrons only rotations with L52,6,10, etc. would be
allowed (apart from center-of-mass excitations). A pe-
riod of four is indeed seen clearly in Fig. 43.

In the case of six or more electrons the classical con-
figuration can have more than one energetically close-
lying stable geometry. The quantum state then also in-
cludes properties of several isomers, since the Laughlin
state corresponds to a classical plasma. Consequently
the many-body spectrum becomes more complicated, as
pointed out by Maksym (1996). Figure 42 showed the
the many-body spectra of six electrons in a quantum dot.
Classically the six-electron system has two isomers that
are very close in energy: a pentagon with one atom in
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the center and a slightly deformed hexagon (see Sec.
IV.A). Periods of five and six are marked in the spectra
with red and green lines, respectively. Increasing the
magnetic field after formation of the maximum-density
droplet (L515) the next minimum occurs at L521,
which is a sixfold ring. In this region of the spectrum the
sixfold ring and the fivefold ring alternate at the yrast
line. However, when the field is so strong that we have
reached the q53 state the yrast line is dominated by the
fivefold rings. The reason is the increased localization of
the Laughlin state when q increases [Eq. (25)], causing
the classical ground state, the fivefold ring, to be favored
over the sixfold ring.

It should be possible to excite the system in such a
way that only the outer Chamon-Wen ring of localized
electrons is rigidly rotating. The yrast line should then
show a minimum when the angular momentum is in-
creased by the number of atoms in the outermost ring.
This is the case seen in Fig. 42 for six electrons. So far no
detailed many-body computations for larger dots exist in
which one could definitely see these ‘‘surface excita-
tions.’’ The spectrum should be similar after the forma-
tion of the maximum-density droplet and after the frac-
tional Laughlin state, but the surface excitations should
be clearer after the q>3 state in which the localization
is stronger.

6. Correlation functions and localization

For a circular quantum dot, the exact electron density
has circular symmetry in the laboratory frame of refer-
ence, as discussed earlier. This is also the case when the
quantum dot is exposed to a homogeneous external

FIG. 45. Pair-correlation function for a six-electron quantum
dot at different angular momenta L . The black dots mark the
fixed position of one of the electrons. From Maksym, 1996.
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magnetic field. In order to identify broken symmetries in
the internal electronic structure, a rotating frame or cor-
relation functions have to be examined.

Figure 45 (Maksym, 1996) shows the pair-correlation
function for a six-electron quantum dot in a strong mag-
netic field corresponding to a filling factor close to the
fractional quantum Hall regime (n'1/3). The internal
structures of fivefold and sixfold rings are clearly seen
for angular momenta L545 and L551, respectively.

Goldmann and Renn (1999) observed the localization
of electrons in the Chamon-Wen edge region, n&1, for
large quantum dots with N<40. They used a partial di-
agonalization technique in which the occupancies of the
deep inner orbitals of the maximum-density droplet
were frozen. The exact wave function obtained in this
way has 99% overlap with a trial wave function that was
obtained from the angular momentum projection of a
maximum-density droplet surrounded by a ring of local-
ized electrons. The authors called this a ‘‘necklace state.’’
Goldmann and Renn (1999) found that in a 40-electron
dot the necklace has 18 maxima corresponding to the
localization of 18 electrons. This is in fair agreement
with the 16-electron ring obtained by Reimann, Koski-
nen, Manninen, and Mottelson (1999) in a dot with 42
electrons (see Sec. VII.D.1). The actual number of elec-
trons in the outer ring could depend on the density of
electrons and on the magnetic field. (In the large dots
several stable configurations of localized electrons exist.)

We mentioned above that, around n'1, the approxi-
mation to use only the lowest Landau band does not
hold. There accurate configuration-interaction calcula-
tions require a large basis set that includes higher Lan-

FIG. 46. Electron densities in elliptic quantum dots containing
six electrons (rs51.5aB* ). In the upper panel the magnetic field
corresponds to that of the maximum-density droplet (B
56.2 T for GaAs) and in the lower panel it is increased by
30% (B58.1 T). From Manninen, Koskinen, et al., 2001.
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dau bands and thus can be performed only for a small
number of electrons (N,10) even though the electron
system is fully polarized. In such a small system the
Chamon-Wen edge of course loses its meaning and at a
certain field strength all electrons localize simulta-
neously.

As we have seen in the case of a circular dot, localiza-
tion can be studied using correlation functions, a rotat-
ing frame, or the many-body rotational spectrum. Man-
ninen, Koskinen, et al. (2001) suggested another
straightforward way: In an elliptic dot the external po-
tential breaks the symmetry of the Hamiltonian in the
laboratory frame of reference and makes a symmetry-
broken electron density possible in the case of an exact
many-body calculation. Figure 46 shows the ground-
state electron densities for six electrons in an elliptic
quantum dot obtained by a configuration-inter-
action calculation. (The current-spin-density-functional
method discussed below gives very similar densities.) In
a magnetic field corresponding to the maximum-density
droplet, the density is uniform. When the field is in-
creased by 30% the electrons become localized (Man-
ninen, Koskinen, et al., 2001). The result of Fig. 46
shows that, beyond the maximum-density droplet, local-
ization can be seen directly in the electron density if the
symmetry of the system is broken, while in circular sym-
metry the localization is seen only by studying the inter-
nal structure of the exact many-body state or by using a
geometrically unrestricted, approximative mean-field
theory, as discussed in the following section.

VII. DENSITY-FUNCTIONAL APPROACH FOR QUANTUM
DOTS IN MAGNETIC FIELDS

Vignale and Rasolt (1987, 1988) developed an exten-
sion of density-functional theory that makes it possible
to include gauge fields in the energy functional. This for-
malism has been widely used to describe the electronic
structure and addition energy spectra of quantum dots
in magnetic fields (Ferconi and Vignale, 1994, 1997; Lip-
parini et al., 1997; Steffens, Rössler, and Suhrke, 1998;
Steffens, Suhrke, and Rössler, 1998a, 1998b; Koskinen
et al., 1999; Reimann, Koskinen, Manninen, and Mottel-
son, 1999; Steffens and Suhrke, 1999; Ullrich and Vig-
nale, 2000).

A. Current-spin-density-functional theory

In addition to the parabolic confinement V(r) of a
quantum dot with N electrons, we again consider a mag-
netic field B5Bez applied perpendicular to the x-y
plane. The vector field A(r)5B/2(2y ,x) adds extra
terms to the energy functional (special care is needed for
implementing the local-density approximation; we com-
ment on this problem in Sec. VII.B):
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(26)

Here e is the (absolute) electron charge, g* is a reduced
Landé g factor, and mB is the Bohr magneton. The para-
magnetic current density jp(r) is defined as

jp~r!52
i\

2m* (
is

f is@f is* ~r!¹f is~r!

2f is~r!¹f is* ~r!# (27)

with thermal occupation numbers

f i ,s5
1

11exp@~« i ,s2m!/kBT#
, (28)

where m is the chemical potential adjusted at each itera-
tion step to preserve the total electron number.

The first three terms of Eq. (26) describe the energy
expectation value of the internal Hamiltonian, a priori
not containing any references to the external field. In
the bulk, the exchange-correlation energy per particle
exc depends on the field B . This is a consequence of the
fact that the external field changes the internal structure
of the wave function. Formally exc depends on the vor-
ticity

g~r!5¹3
jp~r!

n~r!
U

z

, (29)

which can be related to the external field B via the real
current density,

j~r!5jp~r!1
e

m*
A~r!n~r!. (30)

For the homogeneous bulk, j(r)50. Dividing Eq. (30)
by the density n and taking the cross product ¹3 gives

¹3
jp~r!

n~r!
52

e

m*
B. (31)

Thus one replaces the external field by

B→ m*

e
ug~r!u. (32)
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To minimize the total energy of the system, a functional
derivative of E@f is# is taken with respect to f is* , apply-
ing the constraint of the f is’s being normalized. The
resulting self-consistent one-electron equation is (we
drop the arguments r for simplicity)

F p2

2m*
1

e

2m* ~p•A1A•p!1VsGf is5« isf is , (33)

where p52i\¹ and A5A1Axc , with the exchange-
correlation vector potential

eAxc5
1
n H ]

]y

]@nexc~ns ,g!#

]g
, 2

]

]x

]@nexc~ns ,g!#

]g J .

(34)

The quantity

Vs~r!5
e2

2m*
A~r!21Vs~r!1VH~r!1Vxcs~r! (35)

includes the external potential and Zeeman energy

V↑ ,↓5V6
1
2

g* mBB , (36)

the Hartree term

VH5
e2

4pe0e E dr8
n~r8!

ur2r8u
, (37)

and the exchange and correlation potential

Vxcs5
]@nexc~ns ,g!#

]ns
2

e

n
jp•Axc . (38)

The total canonical angular momentum of the solution is
defined as

Lz5(
is

f is^f isu l̂ zuf is& (39)

5m* E dr @xjp ,y~r!2yjp ,x~r!# . (40)

Further details can be found in the original work of Vig-
nale and Rasolt (1987, 1988).

The numerical solution of Eq. (33) is rather involved
and requires special techniques to obtain good conver-
gence. For details, see Koskinen et al. (1999).

B. Parametrization of the exchange-correlation energy in
a magnetic field

Making use of the local-density approximation, the
exchange-correlation energy per particle exc in a mag-
netic field can be expressed in terms of the total particle
density n , the spin polarization z5(n↑2n↓)/n , and the
filling factor n52p\n/eB , where B is replaced by
m* ugu/e ; see Eq. (32). In the zero-field limit we earlier
approximated the exchange-correlation energy per par-
ticle for the two-dimensional electron gas by a sum of
the exact exchange and the correlation part, exc

TC(n ,z)
5ex

HF(n ,z)1ec
TC(n ,z), using a Padé approximant for

ec
TC(n ,z) as provided by Tanatar and Ceperley (1989).
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In the limit of very strong, spin-polarizing magnetic
fields with filling factors n,1, Levesque, Weis, and Mac-
Donald (1984) suggested a smooth dependence of the
correlation energy on the filling factor n,

exc
LWM~n ,n!@Ha* #

520.782 133A2pn ~120.211n0.7410.012n1.7!. (41)

Fano and Ortolani (1988) interpolated the exchange-
correlation energy from Monte Carlo results by Morf
et al. (1986, 1987) and obtained

exc
FO~rs ,n!5

A2pn

n3/2 F2Ap

8
n220.782133n3/2~12n!3/2

10.683n2~12n!220.806n5/2~12n!5/2G .

(42)

At arbitrary magnetic fields, Rasolt and Perrot (1992)
suggested the following interpolation between the limits
of zero fields (n→`), using the approximation of Tana-
tar and Ceperley, and strong fields (n,1) using the
Levesque-Weis-MacDonald parametrization:

exc~n ,z ,n!5@«xc
LWM~n ,n!1n4«xc

TC~n ,z!#/~11n4!.
(43)

Alternatively, Koskinen et al. (1999) suggested the form

exc~n ,z ,n!5exc
` ~n !e2f(n)1exc

TC~n ,z!~12e2f(n)!, (44)

where f(n)51.5n17n4. This equation interpolates be-
tween the spin-polarized infinite magnetic-field limit,

exc
` ~n !520.782 133A2pn , (45)

as approximated by Fano and Ortolani (1988), and the
zero-field limit exc

TC(n ,j) generalized for intermediate
polarizations [see Sec. III.B and Eqs. (9) and (10)]. For
n,0.9, Eq. (45) closely follows the results of Fano and
Ortolani for polarized electrons in the lowest Landau
level, and quickly saturates to the zero-field result for
n.1.

Due to the correlation in the fractional quantum Hall
regime, the full exchange-correlation energy has cusps
(infinite derivatives) at certain filling factors, which were
ignored in the above approximations. Heinonen, Lubin,
and Johnson (1995) added such cusps to the denomina-
tor of the Padé approximant Eq. (43) (see also Heino-
nen et al., 1999). A similar approach was taken by Price
and Das Sarma (1996).

C. Ground states and addition energy spectra within the
symmetry-restricted current-spin-density-functional
theory

1. Angular momentum transitions

The current-spin-density-functional theory (CSDFT)
was first applied to quantum dots by Ferconi and Vig-
nale (1994), who worked in the symmetry-restricted for-
malism with a parabolic confinement potential. For the
vorticity-dependent exchange-correlation energy in the
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local-density approximation, they used the interpolation
of Rasolt and Perrot (1992) [Eq. (43)]. Ferconi and Vig-
nale (1994) tested the symmetry-restricted CSDFT
against results of exact diagonalizations for quantum
dots confining two and three electrons (Hawrylak and
Pfannkuche, 1993; Pfannkuche, Gudmundsson, and
Maksym, 1993). This comparison is shown in Fig. 47 for
the different spin configurations of the three-electron
quantum dot (where typical GaAs parameters and \v
53.37 meV were used). Ferconi and Vignale noted that
the transitions in orbital angular momentum with in-
creasing field were accurately obtained. The deviation of
the current CSDFT energies from the exact ones is less
than &5%.

2. Addition energy spectra in magnetic fields

Steffens, Rössler, and Suhrke (1998) modeled the ad-
dition energy spectra in the symmetry-restricted current

FIG. 47. Comparison of the ground-state energies between
CSDFT and exact diagonalization (Ref. 8 in Ferconi and Vig-
nale; see Pfannkuche, Gudmundsson, and Maksym, 1993) for a
parabolic quantum dot with three electrons and spin S53/2 or
1/2. The transitions in orbital angular momentum are given as
well. (An energy vh /N was subtracted from the total energy.)
From Ferconi and Vignale, 1994.

FIG. 48. Addition spectrum for N,20 obtained from
symmetry-restricted CSDFT for a parabolic quantum dot
(\v55 meV, g* 520.44, m* 50.067, and e512.4). From
Steffens, Rössler, and Suhrke, 1998.
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spin-density-functional approach, using GaAs system
parameters as in Fig. 47, but a larger confinement energy
\v55 meV and including a Zeeman energy with an ef-
fective Landé factor g* 520.44. They used the same
exchange-correlation energy as Ferconi and Vignale
(1994) [Eq. (43)]. The addition energies, as shown in Fig.
48, agree remarkably well with the measurements of
Tarucha et al. (1996), correctly reproducing the shell
gaps at both zero and (weak) finite magnetic fields. In
the Fock-Darwin spectra (Fig. 31), large orbital degen-
eracies occur as a function of B . Just as in the zero-field
case, when occupying different (quasi)degenerate states
it can be favorable to align the spins in order to maxi-
mize the exchange energy. (This is indicated in Fig. 48 by
arrows, showing the excess spin of the corresponding
ground state at BÞ0.) The main features in the CSDFT
addition spectrum agree well with the constant-
interaction model plus exchange corrections, used by
Tarucha et al. (1996) for a description of the experimen-
tal data.

D. Reconstruction of quantum Hall edges in large
systems

As discussed earlier, de Chamon and Wen (1994)
showed that the n51 edge of an extended quantum Hall
system (or correspondingly a large quantum dot in a
strong magnetic field) may undergo a polarized recon-
struction to a ‘‘stripe phase’’: a lump of electrons sepa-
rates from the bulk at a distance '2,B (where ,B

5A\/eB). Karlhede et al. (1996) noted that for a suffi-
ciently small Zeeman gap, the polarized reconstruction
suggested by Chamon and Wen may be preempted by
edge spin textures. Crossing the edge, the spins tilt away
from their bulk direction. Along the edge they precess
around the direction of the magnetic field. The spin-
textured edge exists only for a sufficiently smooth con-
finement and small Zeeman coupling. From unrestricted
Hartree-Fock calculations, Franco and Brey (1997) ob-
tained a phase diagram that for steep confining poten-
tials predicts a sharp and fully polarized edge. When the
confinement potential is softened and the Zeeman en-
ergy is comparably large, de Chamon and Wen (1994)
predicted the formation of a translation-invariant edge.
It turned out later that reconstruction with a modulated
charge density along the edge can be energetically favor-
able. For large Zeeman energy, a transition into a polar-
ized charge-density-wave edge was found. For a small
Zeeman energy the edge will reconstruct into a spin-
textured state with translation-invariant charge density
along the edge, or a combination of charge modulation
along the edge and spin textures (see also Karlhede and
Lejnell, 1997). (For filling fractions n<1, quantum Hall
edges were also studied within the Chern-Simons-
Ginsburg-Landau theory; see, among others, Zhang
et al., 1988; Lee and Kane, 1990; Leinaas and Viefers,
1998.)

The following discussion of edge reconstruction in
large quantum dots is restricted to the spin-polarized
regime. Reconstruction of the maximum-density droplet
can take place for an increasing ratio of v/vc , i.e., ei-
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ther by softening the confinement (smaller v) or equiva-
lently by increasing the magnetic field (larger vc) since a
higher field effectively compresses the droplet.

1. Edge reconstruction in current-spin-density-functional
theory

For filling factors around n51, Reimann, Koskinen,
Manninen, and Mottelson (1999) applied current-spin-
density-functional theory to calculate the ground states
of N parabolically confined electrons in the symmetry-
unrestricted scheme. Figure 49 shows the ground-state
densities for a 20-electron quantum dot at various field
strengths B , calculated for typical GaAs parameters and
a confinement strength \v54.192N21/4 meV, chosen
such that independent of N , the electron density in the
dot is kept approximately constant (rs'2aB* ).

The droplet becomes completely polarized at B
'2.4 T, forming a maximum-density droplet as shown
in the upper panel of Fig. 49 (here at a field B52.5 T).
This figure also shows the angular momentum occu-
pancy

Pm5 (
i,N ,n

u^nmuf i ,↓&u2 (46)

obtained by projecting the Kohn-Sham single-particle
states uf i ,↓& on the Fock-Darwin states unm&. As ex-
pected, all angular momenta m,N21 have occupancy
one for the maximum-density droplet. As suggested by

FIG. 49. Single-particle densities as obtained in CSDFT for a
20-electron quantum dot: left, together with the angular mo-
mentum occupancies Pm ; right, in the maximum-density drop-
let phase, after edge formation, and at full reconstruction (see
text). From Reimann, Koskinen, Manninen, and Mottelson,
1999.
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de Chamon and Wen (1994) as well as MacDonald,
Yang, and Johnson (1993) (and discussed briefly in Sec.
V.B.4 above), with increasing magnetic field the Cou-
lomb repulsion causes the droplet to redistribute its
charge density. Electrons are moved from lower to
higher angular momentum states, leaving a gap of unoc-
cupied states for m,N21 and forming the Chamon-
Wen edge state, as illustrated in the middle panel of Fig.
49. After reconstruction, the maximum-density droplet
has thrown out a ring of separate lumps of charge den-
sity located at a distance '2,B from the inner droplet,
with each lump containing one electron and having a
radius somewhat larger than the magnetic length ,B .
Figure 51 below shows a similar edge reconstruction for
a larger dot, confining N542 particles. The mean-field
solution breaks the azimuthal symmetry of the underly-
ing Hamiltonian, and the expectation value of the total
angular momentum can take fractional values (here, L
5205.13).

The broken-symmetry edge states appear similar to
the ‘‘Wigner-necklace’’ states reported by Goldmann
and Renn (1999); see Sec. VI.B.6. For even stronger
fields, a sequence of rings is formed until the whole
droplet is reconstructed (lowest panel in Fig. 49). This
process is accompanied by the opening of a large Fermi
gap in the Kohn-Sham single-particle spectrum. Intrigu-
ingly, the distribution of density maxima agrees well with
the predictions of geometric shell structure in classical
Wigner molecules (Sec. IV.A).

Figure 50 shows the real current j(x ,y) [Eq. (30)],
plotted as a vector diagram. It shows vortices that are
located around the individual density maxima.

2. Phase diagram

A systematic study of broken-symmetry edge forma-
tion and subsequent reconstruction into sequences of
rings is displayed in Fig. 51. The polarization line sepa-
rates the maximum-density droplet state from the not
fully polarized states. It approaches the reconstruction
line, which marks the onset for the formation of the
broken-symmetry Chamon-Wen edge. Such narrowing
of the region in which the maximum-density droplet is
stable was noted earlier by MacDonald, Yang, and
Johnson (1993), by de Chamon and Wen (1994), and in a
more recent study by Ferconi and Vignale (1997). (In
the above example, however, the shapes of the phase
boundaries differ from the result of Ferconi and Vignale,
as they used a fixed confinement strength v for different
N .) With increasing B , sequences of rings form until the
maximum-density droplet is fully reconstructed. CSDFT
then yields localization of electrons in the whole dot re-
gion, in agreement with the prediction made within the
unrestricted Hartree-Fock approach by Müller and Koo-
nin (1996).

Observable consequences of the deformed solutions
found within the CSDFT and Hartree-Fock could be ro-
tational spectra (Müller and Koonin, 1996). Analyzing
the Kohn-Sham single-particle orbitals for the first edge
reconstruction of the maximum-density droplet, one no-
tices that they fall into two discrete subsets, the
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FIG. 50. Current j(r), left, for N520 at B53.0 T; and, right, B53.5 T. From Reimann, Koskinen, Manninen, and Mottelson,
1999 [Color].
maximum-density droplet and the broken-symmetry
edge. This further opens up a possibility for collective
excitations localized at the edge.

We earlier discussed the phase diagram obtained from
capacitance spectroscopy (Ashoori, Störmer, et al., 1992;
Ashoori et al., 1993; Ashoori, 1996) as well as resonant
tunneling Coulomb blockade spectra (Oosterkamp
et al., 1999) as a function of magnetic field. Comparing
Fig. 51 with Fig. 37, in fact we note that the phase
boundaries (which in the experimental data correspond
to the pronounced kinks in the addition energy curves)
qualitatively agree with the predictions of CSDFT. (The
fact that the transitions between the different phases are
found at smaller fields, is due to a different electron den-
sity, which for the experimental data was estimated to
correspond to rs'1.3aB* .)

Recently Yang and MacDonald (2002) studied in de-
tail the phase diagram beyond the maximum-density
droplet. They performed Hartree-Fock and exact diago-
nalization calculations and observed that the maximum-
density droplet becomes unstable due to the addition of
interior holes, i.e., moving the occupancies of single-
particle states from smaller to higher angular momenta.
For N<14, the hole was located at the center of the dot,
while for larger N the hole occured for nonzero single-
particle angular momentum, in accordance with the re-
sults of CSDFT.

E. Edge reconstruction and localization in unrestricted
Hartree-Fock theory

The formation of localized states was first predicted
by Müller and Koonin (1996) from a geometrically un-
restricted Hartree-Fock approach. The spectrum of ro-
tational excitations was approximated by projection of
FHF onto eigenfunctions of good angular momentum
(Sec. IV.B.3). To test the validity of the Hartree-Fock
approach, Müller and Koonin improved the wave func-
tions for the polarized localization regime by introduc-
ing Jastrow-type correlations of the form
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
S S )
i,j

uzi2zjukDFHF , (47)

with a symmetrizing operator S and a variational param-
eter k . FHF denotes the Hartree-Fock Slater determi-
nant. They found that the Jastrow-type wave function
did not significantly improve the Hartree-Fock energy.
The phase diagram provided by Müller and Koonin is
only in qualitative agreement with Fig. 51, partly be-
cause Hartree-Fock theory does not correctly predict
the magnetic-field strength at which localization occurs
(Klein et al., 1995, 1996).

Dean, Strayer, and Wells (2001) extended the work of
Müller and Koonin to an investigation of the thermal
response of quantum dots in high magnetic fields, show-
ing that temperature can induce transitions between the
different phases.

F. Ensemble density-functional theory and noncollinear
spins

The standard spin-dependent density-functional
theory assumes the single-particle density matrix to be
diagonal in the spin space. However, in the exact DFT
formalism this does not have to be the case (von Barth
and Hedin, 1972; Gunnarsson and Lundqvist, 1976). If
the off-diagonal elements are nonzero, the Kohn-Sham
equations no longer separate to two coupled equations
for spin-up and spin-down electrons, but the single-
particle states have to be described with two-component
spinors. The solutions then give possibilities for more
complicated spin structures, like the so-called Skyrmions
(Skyrme, 1961) with noncollinear spins, which can lower
the total ground-state energy.

In ensemble DFT (Heinonen et al., 1995, 1999; Lubin
et al., 1997), the effect of the nondiagonality of the den-
sity matrix can be taken into account and still retain
some of the local character of the exchange-correlation
potential. Heinonen et al. (1999) developed the neces-
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FIG. 51. Maximum-density droplet and phase diagram. Upper panel, charge density of a spin-polarized quantum dot with N
542 electrons forming a maximum-density droplet (MDD) and a reconstructed edge (CW); lower panel, phase diagram as a
function of magnetic field B and electron number N . The schematic density profiles on the right indicate the polarization
transition (P), the maximum-density droplet (MDD), formation of the Chamon-Wen edge (CW) and localization (L). After
Reimann, Koskinen, Manninen, and Mottelson, 1999 [Color].
sary exchange-correlation functionals and applied en-
semble DFT to circular quantum dots in a strong mag-
netic field. They found that the spin-textured states with
noncollinear spins were ground states in magnetic fields
corresponding to filling factors close to n51 and n
51/3. The existence of noncollinear spins necessarily
means reduction of the total spin from a fully polarized
state. Within the configuration-interaction method, such
a reduction of the total spin was also found by Maksym
and Chakraborty (1992) for a four-electron system in
corresponding magnetic fields. However, a detailed com-
parison of this spin structure to the type obtained by
Heinonen et al. (1999) was not made.

The ensemble DFT calculations of Heinonen et al. re-
stricted the electron density to a circular symmetry. This
prevents solutions with electron localization, which are
known to be the ground-state solutions in the usual
LSDA in strong magnetic fields. Whether the possible
charge localization will hinder the spin textures or vice
versa is still an open question.
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
VIII. QUANTUM RINGS IN A MAGNETIC FIELD

A. Electronic structure of quantum rings

A narrow quantum ring in a (perpendicular) magnetic
field forms a many-body system with interesting proper-
ties. If the ring is narrow enough it is a quasi-one-
dimensional conductor. The magnetic flux can be re-
stricted (at least in theory) to the inner region of the
ring, making it a perfect Ahanorov-Bohm (1959) system.
The main interest in small rings in a magnetic field is the
possibility of persistent currents, first predicted by Hund
(1938). The Aharonov-Bohm effect and persistent cur-
rents first became important in connection with macro-
scopic superconducting rings with or without Josephson
junctions (Byers and Yang, 1961; Bloch, 1972; Büttiker
et al., 1983). More recently, much attention has been
paid to studies of persistent currents in microscopic
quantum rings with a small number of electrons
(Chakraborty and Pietiläinen, 1995; Niemelä et al., 1996;
Tan and Inkson, 1999; Hu et al., 2000).
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Here we concentrate only on the many-body problem
of small circular quantum rings and on the possibility of
describing it within CSDFT. In a small system the con-
cept of superconductivity as a macroscopic quantum
state loses its meaning. A simple (single-particle) picture
of the persistent current in a ring with circular symmetry
is that electrons occupy orbital angular momentum
states rotating in only one direction around the center.

For a circular ring in two dimensions, we begin with
the single-electron Hamiltonian

H5
\2

2m
~p1eA!21

1
2

m* v2~r2r0!2, (48)

where r0 is the radius of the ring and v determines its
width. Electron-electron interactions can be added as
normal Coulomb e2/(4pe0er) forces. By choosing the
vector potential as (Viefers, Deo, et al., 2000)

Aw5H B0r/2, r<ri

B0ri
2/~2r !, r.ri ,

(49)

Ar50, (50)

where ri!r0 , the magnetic flux is restricted to the inside
of the ring so that the electrons essentially move in a
field-free region.

In a strictly one-dimensional ring penetrated by a
magnetic flux F5pri

2B0 , the vector potential in the
Hamiltonian, Eq. (48), causes a periodic boundary con-
dition for the single-particle states,

c~r0 ,w!5e2i2pF/F0c~r0 ,w12p!, (51)

where F05h/e is the flux quantum. This is similar to the
one-dimensional Bloch condition in the theory of band
structures (Büttiker et al., 1983). It is then obvious that
single-particle energy levels will be periodic functions of
F with a periodicity of F0 . In the strictly 1D case the
single-particle levels can be written as

em5
\2

2m

1

r0
2 S m1

F

F0
D 2

. (52)

The quantum number m is the orbital angular momen-
tum of the single-particle level as before. As in the case
of a harmonic dot, the effect of the magnetic field (flux)
is to move electrons from low to high angular momen-
tum states. Figure 52 shows the single-particle energy
levels for narrow rings and for rings with finite thickness
(defined by the parameter a5pr0

2m* v /h). When the
ring thickness increases, the second and higher Landau
bands become lower in energy and the low-lying states
start to resemble those of a parabolic quantum dot, like
that shown in Fig. 31. The total energy of a noninteract-
ing system is determined solely as the sum of single-
particle energy levels. In the strictly 1D case it is a peri-
odic function of the magnetic flux. In a quasi-1D ring the
total energy increases with the flux as shown in Fig. 53
for four ‘‘spinless’’ (i.e., polarized) electrons. Figure 53
also shows that the only effect of the electron-electron
interaction in the spinless case is an upward shift of the
total energy. This is due to the fact that in a narrow ring
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
all the close-lying states belong to the lowest Landau
band and cannot be coupled by the Coulomb interaction
because of the conservation of the angular momentum
(Chakraborty and Pietiläinen, 1994). The spin degree of
freedom makes the many-body spectrum more compli-
cated and increases the effect of the electron-electron
interactions. This is understood most easily in the case
of a strictly 1D ring with delta-function interactions be-
tween the electrons. In the spinless case the delta-
function interaction does not have any effect due to the
Pauli exclusion principle, which prevents two electrons
from being in the same place. If the spin degree of free-
dom is included, the spectrum changes as demonstrated
by Niemelä et al., 1996: Figure 54 shows the many-body
spectra as a function of magnetic flux for a four-electron
ring with and without a Coulomb interaction between

FIG. 52. Single-electron energy levels as a function of the flux
for (a) a narrow ring and (b)–(d) rings with finite thickness.
The Fock-Darwin levels belonging to the second Landau band
are shown as dotted lines. a5pr0

2m* v /h . From Chakraborty
and Pietiläinen, 1994.

FIG. 53. Total energy spectrum of four noninteracting and in-
teracting ‘‘spinless’’ electrons, for two different widths of the
ring. Results for the interacting case were obtained by the
configuration-interaction method. From Chakraborty and
Pietiläinen, 1994.
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the electrons. The ring has a finite thickness. The spec-
trum is more complicated than in the spinless case (Fig.
53) and the electron-electron interactions change the
spectrum drastically.

Current-density-functional theory has been used to
compute the ground-state energy of small rings in a
magnetic field. Viefers, Deo, et al. (2000) used the
single-particle Hamiltonian, Eq. (48), and the CSDFT
described in Sec. VII. They computed the ground-state
properties of fairly narrow rings pierced with a magnetic
flux using the vector potential from Eqs. (49) and (50),
which leaves the electron ring in a field-free region. The
results are in fair agreement with the full many-body
results shown in Figs. 54(b) and (d). In both cases the
S50 state has the lowest energy at the flux value F
5F0/2, while at F50 and at F5F0 the lowest energy
state is the S51 state. The total orbital angular momen-
tum increases from 0 to 4 when the flux increases from 0
to F0 . The main difference between the results of the
CSDFT and configuration-interaction calculation is that
in the former the orbital angular momentum changes
gradually as the flux is increased, while in the exact cal-
culation the angular momentum is a good quantum
number and has only integer values. The reason for the
noninteger values of L in the CSDFT is spontaneous
symmetry breaking due to the the mean-field character
of the CSDFT, as discussed previously.

B. Persistent current

In the independent-electron picture the persistent cur-
rent (here along the ring) associated with the single-
particle state n is (Byers and Yang, 1961)

FIG. 54. Lowest (many-body) energy levels of a four-electron
ring: (a) noninteracting electrons with Sz51; (b) interacting
electrons with Sz51 (configuration-interaction method); (c)
noninteracting electrons with Sz50; and (d) interacting elec-
trons with Sz50. Note that all states with Sz51 have a degen-
erate state with Sz50, since for total spin S51, Sz has values
21,0,1. From Niemelä et al., 1996.
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Jn52
]en

]F
, (53)

where en is the energy eigenvalue of the state in ques-
tion. [It is straightforward to derive this equation in the
case of a strictly 1D system where the electron wave
vector is restricted to be kn5(1/r0)F/F0 and conse-
quently the electron velocity is vn5\kn /m
5]En /\]kn .] In the independent-particle model the to-
tal current is a sum over the single-particle currents [Eq.
(53)]. In the framework of a many-body theory, say con-
figuration interaction, the total current for a many-body
state can still be calculated from a similar equation, only
en in Eq. (53) is replaced with the total energy of the
many-body state in question.

At zero temperature the persistent current will have
discontinuities due to level crossings. In unrestricted
CSDFT some of these discontinuities are smeared out
due to internal symmetry breaking (Viefers, Deo, et al.,
2000), although the overall structure of the persistent
current is in fair agreement with the exact result. The
consistency of the CSDFT was tested by integrating the
current density over the cross section of the ring to com-
pute the current. The result was in excellent agreement
with that determined from the total energy by Eq. (53).

In a real physical system the quantum ring does not
have a perfect circular symmetry but is necessarily dis-
torted by the underlying lattice and its impurities. The
effect of an impurity on the persistent current was stud-
ied by Chakraborty and Pietiläinen (1995) using exact
diagonalization and by Viefers, Deo, et al. (2000) using
CSDFT. Another important subject is the effect of the
electron leads on the persistent current (Büttiker, 1985;
Jayannavar and Deo, 1995).

Leggett (1991) proposed that in a one-dimensional
ring the oscillations of the persistent current as a func-
tion of the flux are independent of the interactions. His
conjecture was verified by Chakraborty and Pietiläinen
(1995) using the configuration-interaction technique for
a four-electron system. The effect of the impurity is to
reduce the persistent current, but it does not change the
phase of the oscillations as a function of the flux. The
only effect of the electron-electron interactions is a shift
of the energy spectrum to higher energies.

It should be noted that in the case of ‘‘spinless’’ elec-
trons the electron-electron interactions do not have any
effect on the flux dependence of the current. This does
not hold if the spin degree of freedom is taken into ac-
count (as should be done in the case of a weak field), as
demonstrated above in Fig. 54. Moreover it has been
shown that topological defects, for example, a finite-
length wire connected to an ideal ring, will diminish the
parity effect and affect the persistent current (Deo,
1995, 1996).

IX. QUANTUM DOT MOLECULES

Quantum dot molecules consist of two or more quan-
tum dots that are so close to each other that electrons
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can tunnel between them. Here we shall concentrate on
the double quantum dot, i.e., a system consisting of two
identical quantum dots separated by a tunnel barrier.
For a review on electron transport through double quan-
tum dots, we refer the reader to the forthcoming article
by van der Wiel et al. (2003). Coupled quantum dots
have recently also attracted attention in connection with
research on quantum computing (see, for example, the
work of Loss and Di Vincenzo, 1998, or Burkhard, Loss,
and Di Vincenzo, 1999).

Figure 55 illustrates schematically lateral- and
vertical-dot molecules fabricated by the gating or etch-
ing of heterostructures, as described above for single
dots (Sec. II.A). Another method used to fabricate
quantum dot molecules is the cleaved-edge overgrowth
(see Schedelbeck et al., 1997).

Experimentally it is difficult to manufacture two iden-
tical dots with exactly the same capacitances, tunneling
contacts, and leads (needed for conductance measure-
ments). In the case of a lateral dot this problem can be
partly overcome by constructing the gates (see Fig. 55)
such that their voltages can be independently varied, al-
lowing the electronic tuning of the potential wells and
tunnel barriers (Waugh et al., 1995). In vertical mol-
ecules, the similarity of the two dots is sensitive to the
etching process and it is not easy to make a sample with
two identical dots (Austing et al., 1997).

As with single dots, in a double dot the Coulomb
blockade dominates the conductance. However, differ-
ent charging energies of the two dots complicate the
mechanism. The conductance peaks are usually de-
scribed as a ‘‘phase diagram’’ showing the Coulomb
blockades caused by charging the dots independently
(Hofmann et al., 1995; Blick et al., 1996).

The conductance can be plotted on a plane spanned
by two gate voltages, which are differently coupled to
the two individual dots (Fig. 56). The resulting
honeycomb-shaped phase boundaries determine the
number of electrons in the two dots. This phase diagram
(the details of which depend on the experimental setup)
can be understood by minimizing the charging energy of
the capacitative system, with the restriction that each
dot have an integer number of electrons. Either one can
study the tunneling through the two dots, or the tunnel-
ing current goes through only one of the dots while the
other dot is capacitatively coupled to the conducting dot
(Hofmann et al., 1995). The resulting phase diagram is
qualitatively similar in both cases. This shows that it is
the coupling of the electronic structures of the two dots

FIG. 55. Schematic pictures of lateral and vertical double dots
(top and side view, respectively), made from gated or etched
heterostructures.
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that plays the dominating role in the conductance mea-
surements, and not the leads.

In a tunable double-dot system the coupling between
the potential wells can be varied and the two dots can be
adjusted to be similar (Waugh et al., 1995; Dixon et al.,
1996). The conduction peaks then split into two peaks
reflecting the coupling of the energy levels of the two
dots. For example, a tight-binding model causes each of
the single-dot levels to split into a ‘‘bonding’’ and an
‘‘antibonding’’ level. When these resonances pass the
Fermi surface, a conductance peak is observed. This
simple interpretation is supported by the fact that in a
triple-dot system each conductance peak is split into
three separate peaks (Waugh et al., 1995). More re-
cently, Schmidt et al. (1997) and Blick et al. (1998) stud-
ied in detail the formation of this coherent molecular
mode in the tunneling current through a double dot.

Theoretically conductance spectroscopy through dot
arrays has been studied using model Hamiltonians based
on the Anderson (1961) or Hubbard (1963) models. We
do not go into the details here, but only mention that the
most general model Hamiltonian of this type includes
the energy levels and the charging energy for each dot,
the interdot tunneling as well as the continuous spectra
of the leads, and tunneling between the dots and the
leads (Chen et al., 1994; Klimeck et al., 1994; Stafford
and Das Sarma, 1994; Niu et al., 1995; Sun et al., 2000).
The electron transport can be calculated using Green’s-
function techniques (Meir and Wingreen, 1992). In the
Hubbard model, the splitting of the conductance peaks
into, for example, two separate peaks for a double-dot
molecule depends on the interdot hopping parameter t
and on the charging energy U as illustrated in Fig. 57
(Klimeck et al., 1994).

The qualitative features of the conductance peaks can
be understood as coming from the internal structure of
the dot molecule, while the leads (with a continuous en-
ergy spectrum) play a minor role. Let us now investigate

FIG. 56. Dependence of the positions of the conductance
maxima on the two gate voltages of a double dot, schemati-
cally illustrated by the lines forming a lattice. nA and nB indi-
cate the numbers of electrons in dots A and B, respectively.
Black dots and open circles denote the electron- and hole-
transport processes, as indicated in the inset and on the right-
hand side. From Blick et al., 1996.
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this internal structure in detail, while neglecting the in-
teraction with the contacts.

A. Lateral-dot molecules in the local spin-density
approximation

We return to a description of the double-dot systems
in the density-functional formalism. Again, we restrict
the discussion to the ground-state properties of isolated
systems, i.e., dot molecules without leads. In lateral-dot
molecules, the electrons of the individual dots move in
the same plane, now confined by a potential with two or
more distinctive minima. There are several ways to con-
struct such a model potential. Often two harmonic po-
tentials are superimposed (Wensauer et al., 2000). How-
ever, for extending the molecule from a double dot to
more complicated molecules it is more straightforward
to use a finite-range potential for the single-dot compo-
nents, which overlap only if close. For example, a con-
fining potential can be modeled by inverted Gaussians
(Adamowski et al., 2000; Kolehmainen et al., 2000). For
a double dot we then use

Vext~r!5V0~22e2aur2d/2u22e2aur1d/2u2!, (54)

where V0 and a are parameters adjusting the depth and
the curvature of the potential of a single dot, and d is
the distance between the two dots. The bottom of each
dot is harmonic and the electronic structure of a single
dot is very similar to that obtained by harmonic confine-
ment.

In a double dot molecular states are formed if the two
dots interact. In the simplest case with only one electron
per dot, a symmetric bonding and an antisymmetric an-
tibonding state are formed. The symmetric orbital, cor-
responding to the spin singlet, is the ground state. The
antibonding state is a spin triplet. In the local spin-
density approximation the singlet state will localize one
electron with spin down in one of the dots, while the
spin-up electron localizes in the other dot. This spin-
density-wave-like state is again a manifestation of the
internal symmetry breaking in the LSDA mean-field ap-
proach.

FIG. 57. Calculated conductance for a system of coupled sym-
metric quantum dots as a function of the Fermi energy. U is
the charging energy and t is the coupling between the dots.
The dashed line shows the change in the number of electrons
N . From Klimeck et al., 1994.
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Wensauer et al. (2000) studied double dots with 2, 4,
and 8 electrons with overlapping harmonic confinement
potentials. In the case of two electrons the electronic
structure changes from the ‘‘artificial helium atom’’ to an
‘‘artificial hydrogen molecule’’ when the dot-dot dis-
tance is increased from zero. Wensauer et al. (2000)
found that the closed-shell spin-singlet state of the he-
lium changes to an S51 triplet of the hydrogen mol-
ecule. However, one would expect that in the case of the
molecule, the true ground state should be a singlet. In
the local spin-density approximation, this is expected to
correspond to an antiferromagnetic coupling of the spins
of the two artificial hydrogen atoms due to the fact that
the LSDA tends to reflect the internal structure of the
quantum state. (Note that two electrons in a strongly
deformed ellipsoidal quantum dot already form a spin-
density wave, as we saw in Fig. 17.) When the number of
electrons in each dot increases, the electronic structure
becomes more complicated. If the distance of the dots is
large, at magic electron numbers in the single dots the
molecule is likely also to form closed shells, like a mol-
ecule of noble-gas atoms. For open shells, the individual
dots can have a spin determined by Hund’s rule or can
even form an internal spin-density wave (see Sec. IV.B).
Wensauer et al. (2000) find that for two electrons in each
dot, there is a transition from the well separated closed-
shell dots to open-shell single dots with four electrons.
The molecule with S50 becomes a dot with S51 when
the interdot distance decreases. For molecules with four
electrons in each dot, Wensauer et al. found ferromag-
netic coupling between the dots, the total spin being S
52. Again the possibility of antiferromagnetic coupling
was not considered.

Kolehmainen et al. (2000) studied quantum dot
dimers described with the external potential Eq. (54)
and having 10, 12, or 14 electrons in each dot. Single
dots with 10 or 14 electrons have S51 in accordance
with Hund’s rule. When the dot molecule is formed, the
spins of the individual dots are coupled antiferromag-
netically. At short distances, however, a more compli-
cated spin-density wave is favored.

Yannouleas and Landman (1999, 2000b) studied the
spin structure of a molecule of two closed-shell dots with
six electrons each, using the unrestricted Hartree-Fock
approximation. For molecules consisting of nonmagic
clusters, they reported zero total spin, indicating an an-
tiferromagnetic coupling between the dots, in agreement
with the results of Kolehmainen et al. (2000). Although
an antiferromagnetic coupling between polarized quan-
tum dots seems to dominate in dimers, we should note
that the interaction is very weak and the energy differ-
ence between an antiferromagnetic state and a ferro-
magnetic state is very small, of the order of 1 meV
(GaAs). Surprisingly, in a square of four quantum dots,
with 4N540 electrons, the ground state was ferromag-
netic, with the antiferromagnetic state being clearly
higher in energy. Similarly a row of four dots had a fer-
romagnetic ground state (Kohlehmainen et al., 2000).

A more realistic model for a lateral double dot was
discussed by Nagaraja et al. (1999). They treated the
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whole nanostructure, including gates and leads, in three-
dimensional SDFT. The results show the splitting of the
conductance peaks in excellent agreement with experi-
ments.

B. Vertical double dots in the local spin-density
approximation

In the case of vertical-dot molecules the system is in-
herently three dimensional. Nevertheless, each dot can
be separately approximated by a two-dimensional sys-
tem, if the distance between the two layers is large
enough and the interdot correlation is taken into ac-
count properly. Rontani et al. (1999b) have used a gen-
eralized Hubbard model to study the smallest double
dots with up to six electrons and demonstrated the rich-
ness of the many-body states as a function of the inter-
dot distance. It should be noted that if the distance be-
tween the dots becomes small, the situation approaches
that of a single-layer dot with an extra degree of free-
dom: The electrons at different layers have different
‘‘isospins’’ or ‘‘pseudospins’’ (Hawrylak and Palacios,
1995), as long as they still belong to different layers.

Partoens and Peeters (2000) assumed each layer to be
two dimensional and used the LSDA within the layers,
while describing the actual overlap between electrons in
different layers with a Hubbard-like term. In practice
this is done with an energy shift between symmetric and
antisymmetric single-particle states. In addition to those
terms coming from individual layers, the effective poten-
tial includes the interdot Coulomb potential. In prin-
ciple, the effective potential should also include interdot
correlation, but there is no simple way to approximate it.
The interdot correlation can play an important role in
the low-density limit where, for example, the Wigner
molecules of each dot are strongly correlated (Baker
and Rojo, 2001). The results of Partoens and Peeters
(2000) show that at small distances the addition energy
as a function of the electron number is similar to that for
a single dot, in qualitative agreement with experimental
results of Austing et al. (1998); see Fig. 58. When the
interdot distance increases, the addition energy spectra
depend sensitively on the level crossings of the molecu-
lar levels. A monotonic trend as a function of the inter-
dot distance could not be observed. The situation is
similar to the effect of deformation on the addition spec-
tra of a single dot, studied in Sec. III.I.

Recently, Pi et al. (1998, 2001) have studied the verti-
cal double dot using a three-dimensional LSDA model
and making detailed comparisons with experimental ad-
dition energy spectra. They observe that when the inter-
dot distance is small, the spectrum is similar to that of a
single dot, as expected. When the dot-dot distance in-
creases, the spectrum becomes more complicated until
the molecule ‘‘dissociates.’’ At intermediate distances a
strong addition energy peak is observed at N58 corre-
sponding to two four-electron dots with S51 in each,
according to Hund’s rule.

The comparison with experiment is complicated by
the fact that real dots are not identical. Moreover, since
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
molecules with different interdot distances are fabri-
cated separately, the mismatch differs from molecule to
molecule and can also depend on the number of elec-
trons. Pi et al. (2001) studied in detail the effect of the
mismatch of the confining potentials of the two dots.
With a reasonable mismatch, of the order of 1 meV, they
were able to reproduce most features of the experimen-
tal addition energy spectra.

The results of Pi et al. (2001) provide confirmation of
the conclusions of Partoens and Peeters (2000). More
recently, the latter authors extended their studies to
magnetic fields, making use of the CSDFT approach.
They showed that compared to a single quantum dot,
the spin-polarized maximum-density droplet has a sig-
nificantly reduced stability (Partoens and Peeters, 2001),
as was also observed experimentally (Austing et al.,
2001).

C. Exact results for vertical-dot molecules in a magnetic
field

The exact diagonalization technique (configuration-
interaction method) for a double-dot system is even
more demanding than for a single dot. The single-

FIG. 58. Energy spectra for vertical double dots: Upper panel,
experimental (Austing et al., 1998); lower panel, calculated
(Partoens and Peeters, 2000). In the upper panel, D is the dot
diameter and b the interdot distance, while in the lower panel
d is the interdot distance.
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particle levels will be doubled and the configuration
space increases due to the ‘‘isospin,’’ i.e., the extra de-
gree of freedom provided by the fact that the electrons
can belong to different layers (Hawrylak and Palacios,
1995). Consequently the total number of electrons that
can be treated accurately is smaller than in the case of a
single dot.

Hawrylak and Palacios (1995) studied isospin effects
in double dots with N<6 in a strong magnetic field. For
significant interdot correlations, minimum-isospin states
were found.

Imamura et al. (1996, 1999) studied a vertical-dot sys-
tem with three and four electrons using the exact diago-
nalization method. The dots were assumed to be two-
dimensional harmonic traps and the Fock-Darwin states
were used as a single-particle basis in each dot. The tun-
neling between the dots was included with a Hubbard-
type hopping term in which the energy parameter de-
scribes the energy gap between symmetric and
antisymmetric molecular orbitals made out of the single-
dot states. The interdot Coulomb interaction was explic-
itly included without any further approximations. The
results show the effect of the extra degree of freedom
provided by the second dot. If the distance between the
dots is small, all the electrons are correlated. In the case
of large distances, however, the interdot Coulomb corre-
lation is weak and the dots become independent. As a
function of magnetic field the ground state of the small
double-dot system changes similarly to that in a single
dot, but the jumps in the total spin and angular momen-
tum happen at slightly different places. The strong-field
case is again dominated by magic angular momentum
values associated with the localization of electrons in the
double dot.

Imamura et al. (1999) also studied the case in which
the confining potentials of the two dots have different
strengths. This causes one set of single-particle states to
be higher in energy than the other. Since this effect is
similar to the Zeeman splitting of spin states in a mag-
netic field, it can be called a ‘‘pseudospin Zeeman split-
ting’’ (Hawrylak and Palacios, 1995). The results of Ima-
mura et al. (1999) show that the pseudospin Zeeman
splitting causes complicated transitions of the spin and
angular momentum as a function of magnetic field.

D. Lateral-dot molecules in a magnetic field

In an external magnetic field the electronic structure
of a dot molecule shows transitions as a function of the
field strength that are similar to those in an individual
dot. Kolehmainen et al. (2000) studied the two-dot mol-
ecule with ten electrons in each dot using CSDFT. As
discussed above, in zero field the individual dots have
spin S51. In a molecule they form an antiferromagnet.
At large interdot distances the energy difference be-
tween the antiferromagnetic and ferromagnetic states
disappears and an infinitesimal field changes the antifer-
romagnetic state into a ferromagnetic one. Surprisingly,
when the distance between the dots is small, an increas-
ing magnetic field changes the antiferromagnetic state
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
first to a nonmagnetic state (with zero spin density).
Only for stronger fields does the state become ferromag-
netic and eventually fully polarized. The dot molecule
forms two maximum-density droplets at about the same
field strength as a single dot. When the field is increased
further, the Chamon-Wen edge begins to separate from
the individual maximum-density droplets. In the dot
molecule the localization of electrons begins in the neck
region as shown in Fig. 59.

Oosterkamp et al. (1998) demonstrated that with con-
ductance measurements one can study changes of the
magnetization in a double-dot system.

While a qualitative understanding can be reached in
the single-particle picture or mean-field theories, mea-
surements of magnetic interactions between the many-
body states of quantum dots appear to be so sensitive
that we still have a long way to go before reaching a
quantitative understanding of the magnetic order in
more complex quantum dot molecules.

X. SUMMARY

Finite nanoscale quantal systems exhibit a high poten-
tial for employing quantum electronics in technology

FIG. 59. Dependence of the ground-state electron density (ob-
tained in current-spin-density-functional theory) on the mag-
netic field B50.5 T* , . . . ,0.8 T* in a quantum dot molecule
with 10110 electrons. The equidensity contours are shown us-
ing material parameters for GaAs, T* 56.68 T. From Koleh-
mainen et al., 2000.
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and continue to be a fast-growing area of study in
condensed-matter physics. New spectroscopic methods
applied to a large variety of man-made quantum systems
open up new possibilities for studing basic many-body
phenomena, having at the same time far-reaching pros-
pects for applications. Such technological innovations,
however, clearly require a profound expansion of our
basic theoretical understanding of many-body effects in
finite quantal systems. Artificial atoms provide many ex-
citing opportunities for investigating the physical prop-
erties of many-particle systems with reduced dimen-
sions: experiments have in the past revealed many
surprises (for example, the occurrence of new phases)
and certainly many new phenomena will be discovered
in the future.

Much of the theoretical modeling of artificial atoms
reviewed here was based on density-functional theory.
For small vertical dots with azimuthal symmetry, a com-
parison of measured addition energies (i.e., the energies
needed to put additional electrons sequentially into the
dot) with the results of density-functional calculations
confirmed that, as in atoms, the electronic structure is
systematically determined by the subsequent filling of
shells, obeying Hund’s rules. Closed shells are particu-
larly stable, i.e., the addition energy is large, implying
the existence of a ‘‘noble-gas’’ structure for certain num-
bers of electrons. The orbital degeneracy of the oscilla-
tor shells can lead to spin alignment, resulting in maxi-
mized addition energies also at the midshell
configuration.

Surprisingly, we have seen that, even in the absence of
external magnetic fields, different types of magnetic
ground states can exist: even in cases where one should
expect nonmagnetic behavior, static spin-density waves
were found even for rather moderate densities of the
two-dimensional electron gas. Such spin ordering in the
ground state is particularly pronounced for quasi-one-
dimensional quantum rings, where up and down spins
are regularly arranged in antiferromagnetic order. Re-
garding the many approximations that density-
functional calculations inevitably include, a more de-
tailed comparison to the results of full many-body
calculations was needed to validate this surprising mean-
field result. In the many-body approach the states with
internally broken symmetry were discovered from an
analysis of rotational spectra obtained by exact diago-
nalization. For quantum rings, the fact that the electrons
are rather rigidly arranged in a lattice with antiferro-
magnetic order in the ground state could be understood
from an analysis of the rotational and vibrational excita-
tions.

Studies within density-functional theory also showed
that changing the dot geometry may lead to piezomag-
netic behavior: the total spin of a quantum dot changes
as a function of the deformation of the dot.

When a magnetic field is applied perpendicular to the
plane of the quasi-two-dimensional electron droplet, the
chemical potential is significantly modified as the field
strength is increased. For different densities and mag-
netic fields, the experimental data show clear traces of
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
the Coulomb blockade peak positions, which allow the
identification of transitions to different phases when go-
ing from the weak-field limit to the quantum Hall re-
gime. Above a certain strength of the magnetic field, a
compact droplet, in which the electrons occupy adjacent
orbitals with consecutive angular momentum, is recon-
structed by separating rings of charge density. These
rings consist of nearly localized electrons. The phase
boundaries between transitions from the nonpolarized
to the polarized regime, where the droplet is compact,
and the reconstruction regime in the high-field limit,
where the electrons localize, are in qualitative agree-
ment with experimental results.

Either at a low electron density or in a strong mag-
netic field, the many-body correlations dominate, as
manifested, for example, by the localization of electrons
in Wigner molecules. In the smallest systems the local-
ization is understood qualitatively as an internal prop-
erty of the exact many-body state.
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Büttiker, M., Y. Imry, and R. Landauer, 1983, Phys. Lett. 96A,

365.
Burkhard, G., D. Loss, and D. P. Di Vincenzo, 1999, Phys. Rev.

B 59, 2070.
Butler, P. A., and W. Nazarewicz, 1996, Rev. Mod. Phys. 68,

349.
Butts, D. A., and D. S. Rokhsar, 1999, Nature (London) 397,

327.
Byers, N., and C. N. Yang, 1961, Phys. Rev. Lett. 7, 46.
Campbell, L. J., and R. M. Ziff, 1979, Phys. Rev. B 20, 1886.
Canali, C. M., 2000, Phys. Rev. Lett. 84, 3934.
Capelle, K., and G. Vignale, 2001, Phys. Rev. Lett. 86, 5546.
Ceperley, D. M., and B. J. Alder, 1980, Phys. Rev. Lett. 45, 566.
Chakraborty, T., 1992, Comments Condens. Matter Phys. 16,

35.
Chakraborty, T., 1999, Quantum Dots: A Survey of the Proper-

ties of Artificial Atoms (North-Holland, Amsterdam).
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Wójs, A., and P. Hawrylak, 1996, Phys. Rev. B 53, 10 841.
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