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In the last decade, minimal kinetic models, and primarily the lattice Boltzmann equation, have met
with significant success in the simulation of complex hydrodynamic phenomena, ranging from slow
flows in grossly irregular geometries to fully developed turbulence, to flows with dynamic phase
transitions. Besides their practical value as efficient computational tools for the dynamics of complex
systems, these minimal models may also represent a new conceptual paradigm in modern
computational statistical mechanics: instead of proceeding bottom-up from the underlying
microdynamic systems, these minimal kinetic models are built top-down starting from the macroscopic
target equations. This procedure can provide dramatic advantages, provided the essential physics is
not lost along the way. For dissipative systems, one essential requirement is compliance with the
second law of thermodynamics. In this Colloquium, the authors present a chronological survey of the
main ideas behind the lattice Boltzmann method, with special focus on the role played by the H
theorem in enforcing compliance of the method with macroscopic evolutionary constraints (the
second law) as well as in serving as a numerically stable computational tool for fluid flows and other
dissipative systems out of equilibrium.
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I. INTRODUCTION

The quest for a better understanding of the macro-
scopic world in terms of underlying ‘‘fundamental’’ mi-
croscopic laws has informed the history of science and
natural philosophy. Modern science has provided an ad-
mirably powerful theory, and mathematical tool as well,
to address this issue in a sensible and productive way,
the gift of Newtonian mechanics. Newtonian mechanics
is a theory of amazing depth and breadth, extending as it
does from scales of planetary motion all the way down
to molecular trajectories, encompassing almost 20 orders
of magnitude.

In addition to an array of practical results, the appli-
cation of Newtonian mechanics at the molecular scale
generates a profound puzzle: the origin of irreversibility
and the nature of time itself. Newton’s equations are
manifestly reversible, that is, invariant under time and
velocity inversion, which means that molecular motion is
basically like a movie which can be indifferently rolled
forwards or backwards in time with no loss of informa-
©2002 The American Physical Society3
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tion. This is in blatant contrast to our daily experience of
a time evolution that is inexorably one sided: the arrow
of time travels only one way. This puzzle has remained
outstanding for more than a century and is still open to
a large extent, and in any case is beyond the scope of the
present work. But apart from its profound philosophical
implications, irreversibility also bears upon the practical
question of predicting the macroscopic behavior of com-
plex systems comprising a huge number of (nonlinearly)
interacting individual units. The application of Newton-
ian mechanics at the molecular level inevitably leads to
immense computational complexity due to the enor-
mous number of atoms/molecules constituting macro-
scopic systems. This problem is circumvented by formu-
lating continuum models, typically based on partial
differential equations describing the space-time evolu-
tion of a few macroscopic fields, such as fluid density,
pressure, temperature, and so on. This approach is in-
deed quite successful, but when confronted with com-
plex systems out of equilibrium, e.g., fully turbulent
flows, it shows clear limitations. Owing to strong nonlin-
earities and multidimensionality, the aforementioned
partial differential equations are often just too compli-
cated to be solved by even the most powerful numerical
techniques. It therefore makes sense to go back to
Newtonian-style dynamics, namely, large sets of ordi-
nary differential equations, and develop minimal ficti-
tious particle dynamics designed so as to relinquish as
many microscopic details as possible without corrupting
the ultimate macroscopic target.

In this work, we shall be concerned precisely with this
type of modeling strategy. In particular, we shall turn our
attention to alternative ways to gain understanding
about the predictability of macroscopic phenomena out
of hyperstylized ‘‘Newton-like’’ microscopic models. We
hasten to add that these alternative routes are highly
influenced by advances in computational modeling, and
therefore they naturally fit into the general framework
of computational statistical mechanics. Like their real-
life physical counterparts, these hyperstylized models
are required to display irreversible behavior as a basic
requisite of stability, whence the importance of design-
ing them in compliance with the second law of thermo-
dynamics. In this Colloquium we shall be concerned
with the lattice Boltzmann equation, a minimal form of
the Boltzmann equation which retains just the least
amount of kinetic information needed to recover correct
hydrodynamics as a macroscopic limit. The lattice Boltz-
mann equation has proved quite effective in describing a
variety of complex flow situations using a very simple
and elegant formalism built upon the aforementioned
hyperstylized approach.

II. STATISTICAL-MECHANICS BACKGROUND

The theory of the lattice Boltzmann equation belongs
to the general framework of nonequilibrium statistical
mechanics. In this section we shall therefore present a
brief review of the cornerstones of classical statistical
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
mechanics, starting from the most fundamental (atomis-
tic) level, all the way up to the macroscopic level.

For most practical purposes, our ability to predict the
behavior of the world around us depends upon the time
evolution of macroscopic variables, e.g., pressure, tem-
perature, flow speeds, etc., which result from the collec-
tive average over an enormous number of individual tra-
jectories. Since we can only experience average
quantities, it makes sense to think of mathematical for-
mulations dealing directly with these average quantities,
which is the chief task of statistical mechanics.

A. The BBGKY hierarchy

The traditional approach to macroscopic variables is
the celebrated BBGKY (Bogoliubov-Born-Green-
Kirkwood-Yvon) hierarchy (Cercignani, 1975; Liboff,
1998), leading from atomistic equations to fluid-dynamic
equations, typically the Navier-Stokes equation of fluid
flow (Landau and Lifshitz, 1953).

The BBGKY path is based on four basic levels (see
left branch of Fig. 1):

• Atomistic level (Newton-Hamilton)
• Many-body kinetic level (Liouville)
• One-body kinetic level (Boltzmann)
• Macroscopic level (Navier-Stokes)

Let us discuss these four levels in greater detail.

B. The atomistic level

The atomistic description of (classical) macroscopic
systems is based on Newtonian mechanics. The math-

FIG. 1. The BBGKY hierarchy and its lattice analog. Lack of
microscopic detail becomes less and less relevant as one pro-
ceeds upwards along the hierarchy. From Succi, 2001.
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ematical problem generated by Newtonian mechanics is
to solve a set of N nonlinear ordinary differential equa-
tions:

mi

d2xi

dt2 5Fi , (1)

with the initial conditions

xi~ t50 !5x0i ,

vi~ t50 !5v0i , i51,.. . ,N , (2)

where N is of the order of Avogadro’s number NA;6
31023. In the above, mi are the molecular masses, vi
5dxi /dt the molecular speeds, and Fi the force acting
upon the ith molecule due to intermolecular interactions
(Huang, 1987).

The application of Newtonian mechanics to the mo-
lecular world poses a daunting computational challenge.
A centimeter cube of an ordinary substance, say water,
contains the order of Avogadro’s number of molecules.
Keeping track of the motion of this many molecules in
the way portrayed by Laplace, namely, by tracing in time
the 6N variables xi(t) and vi(t), would be an incredibly
complex scientific undertaking. Even assuming one had
enough capacity to store so much information, one
would still be left with the problem of dynamic instabili-
ties in phase space: any tiny uncertainty in the initial
microscopic state would blow up exponentially in time,
thereby shrinking the predictability horizon of the sys-
tem virtually to zero. It is a great gift that such a huge
amount of information, besides being unmanageable, is
also needless as well, as we shall see in the next section.

C. Many-body kinetic level

The atomistic level deals with molecular positions and
speeds and is governed by the Newton-Hamilton equa-
tions which describe a world of trajectories. The N-body
kinetic level deals with distribution functions
fN(x1 ,v1 , . . . ,xN ,vN ,t), namely, smooth fields describ-
ing the joint probability of finding molecule 1 at position
x1 with speed v1 , and molecule 2 at position x2 with
speed v2 , and so on up to molecule N around position
xN with speed vN , all at the same time t . Trajectories are
replaced here by the notion of phase-space fluids obey-
ing a 6N-dimensional continuity equation, known as the
Liouville equation:

F ] t1(
i51

N

vi•]xi
1ai•]viG fN50, (3)

where ai5Fi /mi are the molecular accelerations. The
underlying assumption is ergodicity: the time spent by
the trajectory of the 6N-dimensional coordinate P(t)
[@x1(t)¯vN(t)# in a given differential volume element
DG of phase space is proportional to the measure of DG.

The Liouville equation does not by any means reduce
the amount of information to be handled via the New-
tonian approach. In fact, since fN is a continuum
6N-dimensional field, the amount of computational in-
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formation blows up exponentially! Nonetheless, the
Liouville equation represents a very valuable step, not
because we can solve it, but because it sets the stage for
a very elegant and powerful procedure that consistently
eliminates irrelevant information. We simply integrate
fN over unwanted single-particle coordinates, to define
low-order reduced distribution functions fM[f12 ¯ M,N
5*f12 ¯ NdzM11¯ dzN , where dzk[dxkdvk , k5M
11, . . . , N . The result is a chain of equations,

F ] t1(
i51

M

vi•]xi
1ai•]viG fM5CM , (4)

known as the BBGKY hierarchy. Note that the right-
hand side collects the effects of intermolecular interac-
tions. In the presence of a b-body potential, CM involves
only b upper-lying distributions fM11 , . . . ,fM1b . Fortu-
nately, most interesting macroscopic observables, such
as density, pressure, temperature, and energy, often de-
pend only on one- or two-body distributions, so that our
efforts can be channeled into the lower levels, M51,2,
of the BBGKY hierarchy.

D. The Boltzmann equation and the H theorem

The most important one-body equation is the cel-
ebrated Boltzmann equation:

] tf1v•]xf1a•]vf5C@f ,f# , (5)

where f(x,v,t) is the probability density of finding a clas-
sical pointlike particle at position x at time t with speed
v. The left-hand side represents free streaming in phase
space (x,v) and the right-hand side denotes the effects of
binary collisions, typically a very complicated integral
operator encoding the details of molecular interactions.
The Boltzmann equation relies on the famous molecular
chaos (Stosszahlansatz) assumption,

f12~x1 ,v1 ,x2 ,v2 ,t !5f~x1 ,v1 ,t !f~x2 ,v2 ,t !, (6)

which asserts the absence of correlations between mol-
ecules entering a binary collision. It is precisely this
arbitrary—if plausible—assumption which breaks time-
reversal symmetry, since it is clear that after a collision
molecules must be correlated because of mass-
momentum-energy conservation. The essence of the mo-
lecular chaos assumption is that these postcollisional
correlations decay exponentially fast in time so that the
probability of the two particles’ colliding with each other
again in a correlated state after any finite time lapse is
virtually zero. Breaking time-reversal symmetry opens
the door to irreversible behavior, and one of the most
profound Boltzmann’s contributions to statistical me-
chanics rests with his discovery of a quantitative mea-
sure of irreversibility, the celebrated H theorem. This
quantitative measure of irreversibility is provided by the
Boltzmann H function (in what follows, we shall also
call it the entropy function, the physical entropy being
S52kBH):
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H~ t !5E f~x,v,t !ln f~x,v,t !dvdx. (7)

This function was shown by Boltzmann to be monotoni-
cally nonincreasing in time, dH/dt<0, regardless of the
details of the collision operator. The H theorem stands
out as a conceptual bridge between microdynamics and
macrodynamics. Yet, it is difficult to think of a more
debated and controversial issue in theoretical physics
(see Wehrl, 1978). We shall not discuss here the details
of the various arguments that were raised against the H
theorem, nor shall we discuss the fact that Boltzmann
derived it without demonstrating under which condi-
tions his equation, a complicated integro-differential
initial-value problem, does indeed have solutions. While
leaving mathematical rigor somehow behind, the H
theorem is nonetheless a monumental contribution to
modern science, since it showed for the first time the
way to a grand unification of two fundamental and hith-
erto disconnected domains of science: mechanics and
thermodynamics.

The practical importance of Boltzmann-like equations
was furthered by modern developments in theoretical
physics, primarily the emergence of the fundamental no-
tion of quasiparticles as collective excitations of nonlin-
ear field theories (Kadanoff and Baym, 1962). With this
shift in focus from actual particles (real atoms or mol-
ecules) to quasiparticles, the Boltzmann equation be-
came applicable well beyond the original framework
from which it was derived (i.e., rarefied gas dynamics).
Today it is used in a huge variety of fields in statistical
mechanics, including neutron and radiation transport,
electron transport in semiconductors, hadronic plasmas,
and many others. Quasiparticles also play a central role
in the top-down approach to statistical mechanics that is
to be described shortly.

E. The macroscopic level

Macroscopic observables such as fluid mass density,
speed, and energy density are obtained from the one-
body kinetic distribution by integration over velocity
space,

r~x,t !5mE f~x,v,t !dv,

ru~x,t !5mE f~x,v,t !vdv, (8)

re~x,t !5mE f~x,v,t !
v2

2
dv,

where m is the atomic/molecular mass. Supplementing
these formal integrations with additional assumptions
(e.g., small deviations from local thermodynamic equi-
librium), one finally arrives at the desired equations for
the macroscopic observables, typically the Navier-Stokes
equations of fluid dynamics (for the time being, we re-
strict ourselves to the case of isothermal fluids, for which
the energy equation is not needed):
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
] tr1div~ru!50,

] tru1div~ruu!52¹P1div~m¹u1l1 div u!, (9)

where r is the fluid density, u the fluid speed, P the fluid
pressure, the overbar denotes the symmetric dyad ¹u
1(¹u)T, the superscript T indicates the transpose, m
and l are the shear and bulk dynamic viscosities, respec-
tively, and 1 denotes the tensor identity. The Navier-
Stokes equations keep no track of the discrete nature of
the underlying microscopic world and are paramount for
the quantitative description of macroscopic systems.

F. The top-down approach

Each step down the BBGKY ladder removes irrel-
evant information so that, in the end, the 1023 atomistic
trajectories are replaced by the evolution of a handful of
continuum hydrodynamic fields. The BBGKY approach
is formally elegant and very fruitful for further theoret-
ical insight and analysis. In fact, it is perfectly positioned
to borrow the powerful mathematical machinery of clas-
sical and quantum-statistical field theory, such as pertur-
bative methods, diagrammatic techniques, and the like.
Less noted, perhaps, is the fact that the resulting equa-
tions prove exceedingly difficult to solve in actual prac-
tice. This is true even at the coarsest level: the Navier-
Stokes equations are notorious for posing one of the
hardest problems left in classical (i.e., nonquantum)
physics, namely, fluid turbulence. It makes sense there-
fore to think of complementary routes to the BBGKY
equation, more aligned with the spirit of model building
and computational tractability rather than with amena-
bility to analytical treatment.

An emerging and rapidly developing strategy along
these lines is provided by fictitious dynamics methods.
The idea is to introduce effective molecules (pseudopar-
ticles), each representing a huge number, say R , of real
ones, so that the number of effective molecules we must
deal with is no longer of the order of Avogadro’s num-
ber, but of order NR5NA /R!NA instead. In terms of
these effective molecules, the Newtonian equations are
as follows:

MI

d2XI

dt2 5FI~X!1DI , I51, . . . ,NR , (10)

where XI represents a coarse-grained coordinate, and
MI5( i51

R mi is the total mass of the effective ‘‘macro-
molecule.’’ The term DI collects all the details of the
underlying fine scales and disappears only in the trivial
case of a linear dependence of the force FI on the mo-
lecular coordinates. Realistic forces are generally in-
verse powers of the intermolecular distance and, conse-
quently, DIÞ0. A proper renormalization/closure
procedure would attempt to incorporate the effects of
the fine scales into appropriate (and most likely very
complicated) expressions for a renormalized force F̃I

5FI1ĈDI , where Ĉ is some form of projection opera-
tor making the renormalized force available in terms of
the coarse-grained coordinates. Most simply, one sets
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DI50 and proceeds with the solution of the same New-
tonian equations, only applied to a much smaller set of
molecules. This is the very successful path taken by mo-
lecular dynamics (Alder and Wainwright, 1959).

However, once it is agreed that the ultimate aim is
macroscopic physics, say solving the Navier-Stokes
equations, even molecular dynamics is still encumbered
by needless microdetails. We may want greater simplifi-
cation than just setting DI50, and look for expressions
of the coarse-grained force F̃I that are simpler than
those associated with true intermolecular interactions.
The principle of Occam’s razor, i.e., maximum simplicity,
implies that one should choose the simplest coarse-
grained dynamics compatible with the target macro-
scopic equations. This is the hard-core idea of ‘‘minimal
molecular dynamics’’: relinquish as many microscopic
details as possible right at the outset (atomistic level),
making sure, however, that the basic symmetries, conser-
vation laws, and evolutionary constraints needed to en-
sure the correct macroscopic behavior are preserved in
the process. As to the first principle of thermodynamics,
this means conserving all the microscopic invariants
(mass, momentum, energy), while compliance with the
second principle of thermodynamics imposes the exis-
tence of a suitable monotonically increasing function of
time, the Boltzmann H function and the related entropy.
The actual realization of the top-down approach is by no
means unique (for a recent form of dissipative particle
dynamics, see Hoogerbrugge and Koelman, 1992; Es-
panol and Warren, 1995; Flekkoy and Coveney, 1999). In
the following, however, we shall refer to lattice-gas cel-
lular automata, a particularly appealing instance of mini-
mal particle dynamics developed in the mid 1980s, which
provided the roots of the lattice Boltzmann method.

III. LATTICE-GAS CELLULAR AUTOMATA

The theory of lattice-gas cellular automata is a rich
subject that has been recently made accessible in full
detail by a series of beautiful monographs (Rothman
and Zaleski, 1997; Chopard and Droz, 1998; Wolf-
Gladrow, 2000; Rivet and Boon, 2001). Here we shall
take a substantial shortcut and proceed by example.

FIG. 2. The hexagonal lattice of the Frisch-Hasslacher-
Pomeau cellular automaton. Particles move along the six dis-
crete links and meet at lattice nodes, where they interact ac-
cording to mass and momentum-conserving collision rules.
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
A. The Frisch-Hasslacher-Pomeau automaton

Let us begin by considering a regular lattice with hex-
agonal symmetry such that each lattice site is sur-
rounded by six neighbors identified by six connecting
speeds vi[v ia , i51–6, the index a51,2 running over
the spatial dimensions x ,y (see Fig. 2, which also in-
cludes a rest particle with zero speed). Each lattice site
hosts up to six particles with the following prescriptions:

• All particles have the same mass m51.
• Particles can move only along one of the six directions

defined by the discrete displacements v ia .
• In a time cycle (set at unity for convenience) the par-

ticles hop synchronously to the nearest neighbor in
the direction of the corresponding discrete vector v ia .
Longer or shorter jumps are both forbidden, which
means all lattice particles have the same energy.

• No two particles sitting on the same site can move
along the same direction v ia (the exclusion principle).

These prescriptions identify a very stylized gas analog,
whose dynamics are made purposely unaware of micro-
scopic details of real-molecule Newtonian dynamics. In
a real gas, molecules move along any direction (isot-
ropy), whereas here they are confined to a hexagonal
cage. Also, real molecules can move at virtually any
(subluminal) speed, whereas here only six monoener-
getic beams are allowed. Amazingly, this apparently
poor representation of true molecular dynamics has all it
takes to simulate realistic hydrodynamics! With the pre-
scriptions given above, the state of the system at each
lattice site is unambiguously specified in terms of a plain
yes/no option indicating whether or not a particle sits on
the given site. This situation is readily coded with a
single binary digit (bit) per site and direction so that the
entire state of the lattice gas is specified by 6N bits, N
being the number of lattice sites. Borrowing the lan-
guage of second quantization, we introduce an occupa-
tion number ni , such that

ni~x,t !5$1,0% (11)

depending on whether or not the lattice site x hosts a
particle with speed vi at time t . The collection of occu-
pation numbers ni(x,t) over the entire lattice defines a
6N-dimensional time-dependent Boolean field whose
evolution takes place in a Boolean phase space consist-
ing of 26N discrete states. This field is called a cellular
automaton to emphasize the idea that not only space and
time, but also the dependent variables (matter) take on
discrete (Boolean) values. The fine-grain microdynamics
of this Boolean field cannot be expected to reproduce
the true molecular dynamics to any reasonable degree of
microscopic accuracy. However, as has been known since
Gibbs, many different microscopic systems can give rise
to the same macroscopic dynamics, and it can therefore
be hoped that the macroscopic dynamics of the lattice
Boolean field will replicate real-life hydrodynamic mo-
tion even if its microdynamics do not.
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B. Boolean microdynamics

Let us now prescribe the evolution rules of our cellu-
lar automaton. Since we aim at hydrodynamics, we
should address two basic mechanisms:

• Free streaming.
• Collisions.

Free streaming consists of simple particle transfers
from site to site with discrete speeds vi . Thus a particle
sitting at site x at time t with speed v ia will move to site
x1vi at time t11.

We can express this as

ni~x1vi ,t11 !5ni~x,t !. (12)

The discrete free-streaming operator Si is defined as

Sini[ni~x1vi ,t11 !2ni~x,t !. (13)

This operator is a direct transcription of the Boltzmann
free-streaming operator, Dt[] t1va]a , to a lattice in
which space-time variables are discretized according to
the synchronous ‘‘light-cone’’ rule

FIG. 3. A typical collision in the Frisch-Hasslacher-Pomeau
cellular automaton. Both post-collisional outcomes (bottom)
are equally probable. The left-hand hexagon shows two par-
ticles initially at 12 o’clock and 6 o’clock moving in one time
step to the central site. In the next time step, indicated by the
hexagons on the bottom, their collision (conserving energy and
momentum) results in the particle’s occupying the sites at 8
o’clock and 2 o’clock or 10 o’clock and 4 o’clock. They could
return to their initial locations at 12 o’clock and 6 o’clock, but
this event is ruled out since it would not produce any observ-
able effect—the particles are indistinguishable.
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
Dxia5v iaDt . (14)

Once on the same site, particles interact and reshuffle
their momenta so as to exchange mass and momentum
among the different directions allowed by the lattice
(see Fig. 3).

This models the collisions taking place in a real gas,
with the crude restriction that all precollisional and post-
collisional momenta are forced to ‘‘live’’ on the lattice.
As compared with continuum kinetic theory, the theory
of lattice-gas cellular automata introduces a very radical
cut in the degrees of freedom in momentum space: just
one speed (all discrete speeds share the same magnitude
c51, hence the same energy) and only six different
propagation angles. Not bad for an original set of sixfold
infinite degrees of freedom! Space-time is also dis-
cretized [see Eq. (14)], but this is common to all com-
puter simulations of dynamical systems. At this stage, it
is still hard to believe that such a stylized system could
display all of the complexities of fluid phenomena, and
yet it does. The reader acquainted with modern statisti-
cal mechanics smells the sweet scent of universality: for
all its simplicity, the Frisch-Hasslacher-Pomeau automa-
ton may display the same large-scale properties as a real
fluid (Kadanoff, 1986), such as propagation of sound
waves, vortex interactions, and energy dissipation. This
magic is owing to symmetry and conservation.

Let us consider the Frisch-Hasslacher-Pomeau colli-
sion depicted in Fig. 3: Albeit stylized, this collision
shares two crucial features with a real molecular colli-
sion:

• It conserves particle number (2 before, 2 after).
• It conserves total momentum (0 before, 0 after).

Symbolically, its effect on the occupation numbers is a
change from ni to ni8 on the same site,

ni82ni5Ci~nI !, (15)

where nI [@n1 ,n2 , . . . ,nb# denotes the set of occupation
numbers at a given lattice site.

To sum up, the final lattice-gas cellular automata up-
date rule reads as follows:

Sini5Ci (16)

or, which is the same,

ni~x1vi ,t11 !5ni8~x,t !, (17)

where all quantities have been defined previously. Equa-
tions (16) and (17) represent the microdynamic equation
for a Boolean lattice gas, the analog of Newton’s equa-
tions for real molecules. This equation constitutes the
starting point of a lattice BBGKY hierarchy, ending up
with the Navier-Stokes equations. At each level, one for-
mulates a lattice counterpart of the various approxima-
tions pertaining to the four levels of the hierarchy (see
Fig. 1).

C. Merits and pitfalls of lattice-gas automata

The major appeals of lattice-gas cellular automata are

• Roundoff-free computing (Boolean algebra is exact).
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• Memory savings (only one bit per degree of freedom).
• Virtually unlimited potential for parallel computing.

These points fueled great excitement over lattice-gas
cellular automata as a potentially revolutionary tool for
computational fluid dynamics (and more). In particular,
the hope was to attack the infamous problem of fluid
turbulence. Let us just mention that this relates to the
dynamics of flows where dissipative effects are very
small as compared with advection. The relative strength
of advection versus dissipation is measured by a dimen-
sionless number known as the Reynolds number,

Re5
UL

n
, (18)

where U is a typical flow speed on a macroscopic scale L
(the size of the device) and n is the kinematic viscosity of
the fluid. Based on dimensional scaling theories (Kol-
mogorov, 1941), it can be shown that the number of de-
grees of freedom associated with a turbulent flow at a
given Reynolds number Re is approximately Re9/4.
Since Re;106 is commonplace in daily life (that is, more
or less what we experience by driving a car at a cruising
speed of about 100 Km/h), the simulation of such flows
implies the solution of about 1014 degrees of freedom:
less than Avogadro’s number, to be sure, but still too
much for any foreseeable computer. These figures say it
all as to the need for innovative mathematical and nu-
merical methods for modeling fluid turbulence! Unfor-
tunately, on closer inspection, the details of the lattice-
gas cellular automata method reveal a number of
difficult problems:

• Statistical noise.
• Complexity of the collision operator.
• Small number of collisions.

Statistical noise relates to the fact that in order to
extract a smooth hydrodynamic signal, averages over
many Boolean variables are required, thereby offsetting
the memory savings provided by the Boolean micrody-
namic representation.

Exponential complexity relates to the exponential es-
calation of the collision operator as more physics is
added to the model, say, more than one fluid species, or
simply by moving to higher dimensions. The problem is
that the complexity of the corresponding collision opera-
tor grows exponentially, roughly as 2b, where b is the
number of bits per site, so that the original simplicity is
rapidly lost.

Low collisionality is also related to the paucity of dis-
crete speeds. Only a relatively small fraction of phase
space is collisionally active, since many collisions are
simply not compatible with conservation principles. Few
collisions mean a long mean free path, hence high-
momentum diffusivity n, hence low Reynolds numbers,
and the dream of simulating highly turbulent flows fades
away.

In spite of the remarkable progress achieved in the
late 1980s (d’Humières, Lallemand, and Frisch, 1986;
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
Hénon, 1987), the lattice-gas cellular automaton algo-
rithms remained rather heavy and stiff with respect to
the collision rules. On the other hand, these inconve-
niences were not compensated by a dramatic advantage
in terms of accessible Reynolds numbers. As a result,
the interest in lattice-gas cellular automata as a tool for
high-Reynolds-flow simulations leveled off in the early
1990s. This was precisely the time the lattice Boltzmann
method took off.

IV. LATTICE BOLTZMANN EQUATIONS

The theory of the lattice Boltzmann equation (LBE)
(for a review see Benzi, Succi, and Vergassola, 1992;
Qian, Succi, and Orszag, 1995; Chen and Doolen, 1998)
begins with a straightforward floating-point recast of the
Boolean evolution equation of lattice-gas cellular au-
tomaton dynamics (Frisch, Hasslacher, and Pomeau,
1986; Frisch et al., 1987). With reference to a set of b
populations, f i(x,t), with $i51,.. . ,b% representing the
probability for a particle to reside on a lattice site x at
time t with discrete velocity vi , the LBE reads as fol-
lows:

f i~x1vi ,t11 !5f i~x,t !1Ci@f1 ,. . . ,fb# , (19)

where Ci@f# is the collision operator, a polynomial of
degree b constructed explicitly out of all allowable
n-body collisions, 2<n<b , among populations sitting
on the same site x at time t . The above LBE has a
simple interpretation: Particle population f i(x1v i ,t
11) is equal to the postcollision f i8(x,t) value advected
from the ‘‘upper wind’’ position x at the previous time t .
Here f i8[f i1Ci . Thus Ci represents the change of the
particle population by collisions. Compliance with mass
and momentum-conservation laws imposes the following
constraints on the collision operator:

(
i

Ci50, (
i

viCi50. (20)

If there is an energy degree of freedom, then we also
have

(
i

e iCi50, (21)

where e i5vi
2/2 for an ideal gas. As in continuum kinetic

theory, this collision operator admits a detailed balance
condition when all populations of different particle ve-
locities are in equilibrium, $f i5f i

eq ,;i%:

Ci@feq#50. (22)

Regardless of the detailed collision processes, the solu-
tion of Eq. (22) takes on a generic form dictated by the
basic conservation laws,

f i
eq5e2Ii, (23)

where Ii5A1B•vi1Ce i is a linear combination of col-
lisional invariants, while A and B, in turn, are functions
of local hydrodynamic quantities,
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r~x,t !5(
i

f i~x,t !, (24)

ru~x,t !5(
i

vif i~x,t !. (25)

Once again, for systems with an energy degree of free-
dom, the total energy can be defined as

r~DT1u2!/25(
i

e if i , (26)

where D is the number of spatial dimensions and T can
be interpreted as the temperature of the fluid.

The lattice Boltzmann equation (19) obeys the so-
called semidetailed balance property for the collision op-
erator, as did its lattice-gas cellular automaton predeces-
sor (Frisch, Hasslacher, and Pomeau, 1986; Frisch et al.,
1987). It can be shown that such a collision operator
admits a local H theorem with the discrete Boltzmann
entropy function hB(x,t)5( if i(x,t)ln fi(x,t). In other
words, an H theorem can be defined on each local lat-
tice site so that, without external disturbances or bound-
ary influences, hB is a nonincreasing function of t satis-
fying the dynamics of Ci . Furthermore, the minimum
value of hB(x,t) is attained when the particle popula-
tions $f i% assume the equilibrium form given by Eq. (23),
where A , B, and C are constants determined by the
values of mass, momentum, and energy. Borrowing from
the terminology of nonlinear dynamic systems, we say
that the existence of an H theorem ensures that the
equilibrium distribution be not only a fixed-point solu-
tion of Eq. (22) but also an attractor of the collisional
dynamics. On the other hand, this is a weaker H theo-
rem than its continuum counterpart, for the above does
not include advection of particles among lattice sites ac-
cording to Eq. (19). We shall realize in Sec. V that, in
contrast to continuum Boltzmann dynamics, the local H
theorem in lattice-gas cellular automata given above
does not automatically lead to a global one, referred to
as the global H theorem (Frisch, Hasslacher, and
Pomeau, 1986; Frisch et al., 1987; Chen, 1995, 1997) (ex-
cept for the isothermal case, in which energy conserva-
tion is replaced by a constant-temperature-like param-
eter). Generally the global H function is given by

H~ t !5(
x

hB~x,t !.

The existence of a global H theorem in lattice Boltz-
mann theory guarantees an asymptotically homoge-
neous spatial distribution of particles as time t ap-
proaches infinity and hence provides a well-defined
global hydrodynamic stability. As in standard kinetic
theory, hydrodynamics concern properties around the
local equilibrium,

f i5f i
eq1f i

ne , (27)

where the nonequilibrium component f i
ne is supposed to

scale like kfi
eq , where the smallness parameter k , known

as the Knudsen number, is the ratio of the particle mean
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free path to a typical hydrodynamic scale. Ordinary flu-
ids feature Knudsen numbers below 0.01 (see Chapman
and Cowling, 1970.) The existence of a local H theorem
makes a perturbation analysis possible since the dy-
namic system always approaches a defined equilibrium
f i

eq and evolves in the neighborhood of such a defined
point. Perturbative treatment of the LBE up to second
order in k (the Chapman-Enskog procedure) is then ex-
pected to yield the hydrodynamic equations

] tr1]arua50,

] trua1]bPab50, (28)

where

Pab[(
i

v iav ibf i
eq1(

i
v iav ibf i

ne

5gruaub1Pdab

1rnF]aub1]bua2
1
D

~]cuc!dabG (29)

is the momentum-flux tensor comprising both nonvis-
cous and dissipative components, the latter being pro-
portional to the fluid viscosity n. In the above, P is the
resulting pressure, and D is the dimensionality of a lat-
tice. Note the prefactor g in the advection term, which
signals a potential breaking of Galilean invariance
whenever gÞ1. On the other hand, since g depends only
on the fluid density r, for incompressible flows in which
the density is constant in space and time, Galilean in-
variance can be recovered by a simple rescaling of time,
pressure, and viscosity:

t85gt , n85n/g , P85P/g .

Clearly, even within the framework of incompressible
flows, this rescaling does not extend to more general
situations, such as multicomponent or multiphase flows.

A. The fully nonlinear LBE

The fully nonlinear LBE, Eq. (19), was first proposed
by McNamara and Zanetti (1988), who realized its po-
tential for doing away with the statistical noise problem
affecting lattice-gas cellular automaton simulations
(Orszag and Yakhot, 1986; Succi, Santangelo, and Benzi,
1989). All other weaknesses still remained. In general,
the factor g is not equal to unity, indicating a violation of
Galilean invariance. Though a choice of sufficient lattice
symmetry ensures a rotationally invariant form of Pab ,
the resulting local equilibrium in typical lattice-gas cel-
lular automaton collisions does not have a suitable func-
tional form for achieving correct Navier-Stokes hydro-
dynamics, which requires g51. Indeed, in order to
obtain the correct form of the Navier-Stokes equation,
the local equilibria must comply with a specific form as a
function of the local hydrodynamic variables r and u
(Chen et al., 1991; Chen, Chen, and Matthaeus, 1992;
Qian, d’Humières, and Lallemand, 1992).

In addition to incorrect hydrodynamics, lattice-gas
collisions have problems in attaining low viscosity. The
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fluid viscosity is approximately given by n53DlvT ,
where l is the particle mean free path and vT the typical
particle thermal speed. In many problems, for instance,
turbulence, we are interested in very-low-viscosity flows,
which means very short mean free paths. On the other
hand, short mean free paths imply many collisions.

We are thus forced to consider as far as possible all
allowable types of collisions among the set of discrete
velocities. Unfortunately, it turns out that the full colli-
sion operator Ci involves an exponential barrier of the
order of 2b operations, in direct contradiction with the
basic commitment of the method to simplicity and com-
putational efficiency.

B. The LBE in scattering form

Building upon the idea that many-body collisions are
not essential for achieving the correct hydrodynamic
limit, Higuera and Jimenez (1989) realized that the col-
lision operator could be reduced to a dramatically sim-
pler two-body scattering expression

Ci→(
j

Aij@f j2f j
eq# , (30)

where the scattering matrix Aij is basically the Jacobian
of the fully nonlinear operator Ci evaluated at the uni-
form equilibrium values f i5r/b . The above expression
turns a daunting 2b complexity into a much more man-
ageable b2 one, thus opening the way to three-
dimensional lattice Boltzmann hydrodynamics. Of
course, compliance with an H theorem is no longer guar-
anteed because the local equilibrium is no longer the
direct result of collisional dynamics.

In addition, since the scattering matrix Aij is still re-
lated one-to-one to the underlying lattice-gas cellular
automaton microdynamics, the corresponding lattice
Boltzmann equation shares the same limitations in terms
of high viscosity, i.e., low Reynolds numbers.

C. The self-consistent LBE

This last limitation can be wiped out by a mere change
in perspective. Instead of deriving the Navier-Stokes
equation bottom-up (here bottom means the atomic
level) from a truly N-body discrete dynamical system,
we can construct it top-down from the sole requirement
of compliance with the Navier-Stokes equations
(Higuera, Succi, and Benzi, 1989; Succi, Benzi, and
Higuera, 1991). The idea is to recognize that, as far as
hydrodynamics is concerned, the key notions of scatter-
ing matrix and local equilibrium can be prescribed at the
outset instead of being derived from underlying (dis-
crete) microdynamics. Mathematically, this amounts to
prescribing the scattering matrix in spectral form:

Aij5 (
k51

b

lkPij
(k) , (31)

where Pij
(k) projects along the kth eigenvector in kinetic

space and lk is the corresponding eigenvalue (lk50 for
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conserved quantities). Of particular interest is the lead-
ing nonzero eigenvalue, which is in direct control of the
fluid viscosity n;l21.

Once this point of view is endorsed, namely, that local
equilibria can be ‘‘freely’’ chosen within the conserva-
tion constraints, and that the scattering matrix can be
selected a priori on the sole basis of conservation con-
straints, nothing prevents this lattice Boltzmann equa-
tion from attaining as low a viscosity as the lattice dis-
creteness permits. Full contact with classical
computational fluid dynamics is made (Chen, Chen, and
Matthaeus, 1992). More importantly, the top-down ap-
proach, which proved so fruitful and influential for sub-
sequent developments of lattice Boltzmann theory, is es-
tablished.

D. The lattice Bhatnagar-Gross-Krook equation

The LBE story has yet another interesting twist. The
scattering matrix can also be viewed as a multiple-scale
relaxation operator, one scale for each nonzero eigen-
value. Since we are basically interested in a single trans-
port parameter, the fluid viscosity, a single eigenvalue
should do. Indeed we can replace the full matrix Aij
with a single-parameter diagonal form 2vd ij , describ-
ing a single-time relaxation around a prescribed local
equilibrium f i

eq . In its simplest and by now most popular
form, the relaxation approximation corresponds to the
following lattice equation [Bhatnagar, Gross, and Krook
(BGK), 1954]:

f i~x1vi ,t11 !2f i~x,t !52v@f i~x,t !2f i
eq~x,t !# , (32)

where exact Navier-Stokes hydrodynamics are obtained
with the local-equilibrium form

f i
eq5wirH 11

vi•u
T

1
~vivi2v2!:uu

2T2 J , (33)

where the symbol : stands for the tensor scalar product.
In the above, wi is a suitable lattice-dependent weight-
ing factor, and the temperature T51/3 in typical isother-
mal lattice BGK models (Chen et al., 1991; Chen, Chen,
and Matthaeus, 1992; Qian, d’Humières, and Lallemand,
1992; Chen, Teixeira, and Molvig, 1997). Since tempera-
ture is frozen to a constant value, these lattices models
should best be denoted as ‘‘athermal’’ rather than ‘‘iso-
thermal.’’ More comments on this delicate issue will be
presented later in this paper. For a thorough and beau-
tiful discussion of the subtleties of lattice thermohydro-
dynamics, the reader is referred to Chapter IV of Rivet
and Boon (2001).

It is readily recognized that this formulation leads to a
Galilean-invariant Navier-Stokes equation (up to terms
of order M4, where M is the Mach number, namely, the
ratio of fluid to sound speed), for a fluid of viscosity n
;T/v . The LBE scheme in relaxation form has met
with significant success in the last decade in simulating a
variety of fluid flows. Indeed, the lattice BGK equation
and subsequent straightforward extensions to allow a
variable Prandtl number (ratio of momentum to heat
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diffusivity; Keizer, 1987; Chen et al., 1997) represents the
method of choice in the field. Very interesting variants,
combining the best features of the lattice Boltzmann
equation in scattering form and lattice BGK have also
been developed (d’Humières, 1994).

A few years after the introduction of the lattice BGK
equation it was shown that it could be derived from the
continuum Boltzmann BGK equation by a Grad-like
moment expansion supplemented with numerical
quadrature for the actual evaluation of the kinetic mo-
ments (He and Luo, 1997; Shan and He, 1998). Realizing
such a connection might prove very useful for establish-
ing new lattice BGK’s starting from model continuum
Boltzmann equations, hopefully including physics be-
yond the hydrodynamic level.

While focus on the conservation laws (hydrodynamic
constraints) was the leitmotif of all the aforementioned
developments, compliance with the second principle of
thermodynamics, namely, the existence of the H theo-
rem, was somehow overshadowed by the top-down ap-
proach. That neglect had no serious consequences, be-
cause the existence of an underlying H theorem makes
the calculation very robust for isothermal LBE flows,
even at very low viscosities, where numerical stability is
severely probed. By now, we have learned that this fa-
vorable behavior is due to the existence of an underlying
H theorem, as we shall detail in the next section.

V. H THEOREM IN DISCRETE PHASE SPACE

The H theorem is a milestone of nonequilibrium sta-
tistical mechanics, since it provides a conceptual link be-
tween the reversible laws of the microworld and the
one-sided nature of macroscopic phenomena (Lebowitz,
1993; Lieb, 2000). It is also a fundamental concept in
computational physics, where compliance with an H
theorem is often perceived as a byword for numerical
stability (Perthame and Tadmor, 1991; Junk and Klar,
2000; Natalini, 2000). H-compliant discrete-velocity
Boltzmann equations have been known for a long time
(Broadwell, 1964; Gatignol, 1965), but, as discussed pre-
viously, they are not meant to compete with Navier-
Stokes solvers because their main focus is maximum-
likelihood methods to solve the Boltzmann equation in
the high-Knudsen-number regime. This leads to discrete
collision operators which are just too complicated to
serve as a practical tool for purely hydrodynamic pur-
poses.

Computational complexity dissolves with the use of
relaxation approximations, notably the lattice BGK
equation, and it is therefore imperative to explore the
possibility of establishing H theorems for lattice BGK.
Before considering this further, a few reflections on the
classical case are in order.

A. Reflections on the continuum case

The classical Boltzmann H theorem is so familiar that
it is worthwhile to look at it from the perspective of
modeling, in order to better understand what is actually
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
lost and needs to be rearranged when going from the
continuum to the lattice Boltzmann case. First, we find
that the familiar local Maxwell distribution function (the
‘‘Maxwellian’’) minimizes the H function, H5*f ln fdv,
as soon as the five hydrodynamic invariants (mass, the
momentum vector, and energy) are fixed. Furthermore,
we observe that all higher-order moments of the local
Maxwellian distribution are in just the right form for the
Chapman-Enskog expansion to deliver the Navier-
Stokes equations. Given this information, we look for a
kinetic model acting as a continuous-time constrained
minimization process of this H in such a way as to con-
serve the hydrodynamic moments. We readily find sev-
eral such models: the Boltzmann equation itself, the
BGK model, the diffusion equation, and so on. All of
these models differ only in the way relaxation to the
local equilibrium takes place; some of them do require
explicit knowledge of the local Maxwellian (the BGK),
some others do not. They all deliver the Navier-Stokes
equation in the end, with the only differences among
them occurring in the transport coefficients, whose
evaluation is simple for the BGK and requires some
(non-negligible) work for the Boltzmann equation. In all
models the collision integral has the local Maxwellian as
its zero point. The rate at which the H function de-
creases in time is just equal to the entropy production
(we recall that entropy is the space integral of the 2H
function), and entropy production becomes zero in the
local Maxwell state. The local Maxwellian distribution is
then characterized in three different but equivalent
ways: It is the minimum of H , it is the zero point of the
collision integral, and it is the zero point of the entropy
production.

When moving to the lattice world the basic question
to be addressed is how does the H theorem transform in
the discrete-time case? The first good news is that all
velocities are in some finite range, so that we can think
of local equilibria for the given density and velocity
alone, without necessarily including energy. In the (non-
relativistic) continuum, energy must be included, for
otherwise nothing would prevent integrals over veloci-
ties from diverging. The flip side is that since discrete
speeds come in a very(!) finite number, the Boltzmann
H function does not work: For any known lattice, a
straightforward computation demonstrates that the local
Maxwellian equilibrium does not imply correct expres-
sions for the higher-order moments. On the other hand,
a priori, there is a huge class of convex functions at our
disposal, and in order to illustrate the idea of what local
equilibria may look like in the lattice context, we shall
present an example of a solvable lattice entropy, H1/2
5( i51

b fiAf i.
1 For this entropy, the local equilibrium can

be found explicitly (Karlin et al., 1998),

1This entropy function belongs to the class of Renyi (or Tsal-
lis) entropies, Hp5(fp112f )/p , with p51/2. This is a very
useful class of functions in modern statistical physics, for it
provides a stepping stone between the celebrated replica
method in spin-glass theory, multifractal ideas, and nonexten-
sive thermodynamics (Tsallis, 1988).
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f i
eq5

r

b F 1
2

~11A12M2!1
u•vi

cs
2 1

~u•vi!
2

2cs
4~11A12M2!

G .

(34)

Here cs
2 is the speed of sound squared, and M25u2/cs

2 is
the local Mach number squared. The above equilibrium
is Galilean invariant only in the limit of vanishing flow,
M→0. At any finite flow speed, a quadratic (in M)
anomaly is apparent. Because advection terms in the
Navier-Stokes equations are also quadratic in velocity,
such a rapid growth of anomalies rules out the use of the
function H1/2 for constructing the lattice Boltzmann
method. This is a typical situation for first-generation
lattice-gas and lattice Boltzman models. Nevertheless, it
is instructive to look at Eq. (34) and see how lattice
equilibria differ from the local Maxwellian. Recall that
the local Maxwellian is a well-defined function for all
values of the average velocity. In contrast, the local equi-
librium [Eq. (34)] is positive only for M,1, and it does
not exist as a real-valued function for M.1. This means
that no collision mechanism is able to equilibrate the
nonequilibrium deviations produced by supersonic mo-
tion, and therefore no macroscopic dynamics for this re-
gime can exist. This conveys an intriguing flavor of rela-
tivistic mechanics, which is after all not surprising since
lattice molecules move at the lattice speed of light c
equal to the maximal length of the lattice link.

In order to proceed sensibly, three basic requirements
must be met:

• Galilean invariance.
• Realizability.
• Solvability.

We now discuss each in some detail.

B. Galilean invariance

Galilean invariance requires kinetic equilibria to de-
pend on the relative speed v2u (the peculiar speed)
rather than on the absolute molecular speed v itself. In
the continuum, this is ensured by the Maxwellian depen-
dence, ;exp$2(v2u)2/vT

2 %, where vT[A2kBT/m is the
thermal speed, which sets the natural scale for molecular
fluctuations around the fluid speed u. In the lattice
Boltzmann setting, we have already committed our-
selves to low Mach numbers and no compressibility ef-
fects. Therefore it seems reasonable to proceed with an
expansion of the local Maxwellian around the global
equilibrium (u50). Since the Maxwellian is a transcen-
dental function, large departures from global equilib-
rium require a virtually infinite number of terms of this
expansion.

Terms that correspond to kinetic excitations on top of
the uniform ‘‘ground state’’ are described by higher-
order polynomials in the velocity variable. Since a finite
set of discrete speeds can only support a finite number
of these excitations, breaking of Galilean invariance
cannot be avoided. The above considerations suggest
that Galilean invariance can be recouped to some order
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
if local equilibria can be expressed in the form of finite-
order polynomials of the flow speed. The question is
then whether suitable polynomials can be found that still
comply with a discrete H theorem. The answer to this
question appears to be negative (Wagner, 1998): There
are no convex entropy functions whose local equilibria
are polynomials of the form used in the lattice BGK
equation.

In analogy with lattice field theory, we shall discribe as
perfect any Galilean-invariant discrete entropies that
‘‘hide’’ the underlying lattice discreteness. Are there per-
fect entropy functions for the lattice Boltzmann
method? At the time of this writing, no perfect lattice
entropy is known, and most probably there is none, so
that we are led to conclude that the lattice Boltzmann
method is not capable of reproducing the full properties
of the continuum Boltzmann equation.

However, quasiperfect entropies, that is, entropies
that are not affected by lattice discreteness (up to
fourth-order terms in the Mach number) have indeed
been found by a customized, lattice-dependent proce-
dure (Karlin, Ferrante, and Öttinger, 1999). As an illus-
tration, for a three-state one-dimensional lattice with
v050 and v71571, the following quasiperfect
Boltzmann-like H function is identified:

H5f0 ln~f0/4!1f1 ln f11f2 ln f2 . (35)

Given the fact that the lattice Boltzmann equation is
itself a second-order approximation in the M number to
the Navier-Stokes equations, these quasiperfect entro-
pies must be regarded as definitely adequate for hydro-
dynamic purposes.

The explicit form of the local equilibria corresponding
to the quasiperfect Boltzmann-like entropy functions is
not known, in general. However, polynomial approxima-
tions can be found up to the relevant order in M . These
approximations coincide with those established earlier
for the lattice BGK model, and this now explains why
the lattice Boltzmann equation works in this case: These
specific polynomial equilibria survived among other pos-
sible Galilean-compliant polynomials because they are
computationally more stable than others, and it is pre-
cisely these polynomials which are supported by the
quasiperfect entropy functions. The existence of quasi-
perfect lattice entropies achieves a formal compliance
with the second law of thermodynamics and provides
strong incentive to pursue further development of the
lattice Boltzmann method based on the entropy maximi-
zation principle.

C. Realizability

Realizability is simply the condition that local equilib-
ria resulting from an entropy maximization procedure
be real valued and between zero and one:

0,f i
eq,1. (36)

By itself, realizability is neither a necessary nor a suf-
ficient condition for stability, although it generally helps
stability (Renda et al., 1998). At any rate, it is a good
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prerequisite, at least until we learn to deal sensibly with
negative distribution functions.

It should be appreciated that gradient-driven depar-
tures from local equilibrium can violate the realizability
constraints even if the local equilibria do not. Therefore
the stability domain in kinetic space is by necessity a
subset of the realizability domain. Manifestly, the poly-
nomial nature of the discrete local equilibria is a poten-
tial danger to the realizability constraint, a danger which
simply does not exist in the continuum.

Description of realizability domains on the lattice is a
nontrivial problem with an interest of its own. Recently
Boghosian et al. (2001) applied the powerful Fourier-
Motzkin technique of linear programming to the auto-
matic classification of a realizability domain associated
with a given set of constraints. This may help in the
systematic search for optimal lattice entropies.

D. Solvability

Solvability refers to the possibility of expressing local
equilibria as explicit functions of the conserved hydro-
dynamic variables, i.e., density r and flow speed u. This
is very important since it permits one to explicitly recast
kinetic theory in terms of an equivalent set of partial
differential equations for space-time-dependent con-
tinuum fields. Solvability also has a considerable practi-
cal impact on the efficiency of lattice BGK schemes, for
it implies that local equilibria can be encoded once and
for all as analytic functions of the hydrodynamic vari-
ables. Local equilibria resulting from nonsolvable entro-
pies must be recomputed numerically at each time step
by iterative procedures and deprive lattice BGK of (part
of) its simplicity and efficiency. A way out of this prob-
lem is to restore the Boltzmann-like collision operators
which can be constructed from just the knowledge of the
entropy. (We recall that even the single-relaxation-time
approximation is not exclusive to the Bhatnagar-Gross-
Krook equation.) This has been done recently (An-
sumali and Karlin, 2000).

E. Discrete-time effects and the mirage of zero viscosity

Perhaps the most interesting feature of discrete-time
kinetics is that the H theorem is no longer the same
(qualitatively) as in the continuous-time case. The way
the H theorem works in the discrete-velocity models,
where time is still continous, is basically the same as in
the classical theory. When time is discrete, things change
considerably.

The major distinction is that, in order to achieve in-
terestingly low values of the transport coefficients, the
lattice relaxation dynamics must proceed in artificially
long (hence more effective) jumps going across the
maximum entropy point (equilibrium), in a sort of two-
sided over-relaxation process, which bears little resem-
blance to the smooth relaxational trajectory of the con-
tinuum case. The problem is best illustrated in
geometrical terms (see Fig. 4): If f is the set of popula-
tions at time t , then the collision operator gives the di-
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rection, C(f ), in the kinetic space in which the popula-
tions must be moved (these directions change at
different lattice nodes). Let us consider populations f
1bC@f# , where b.0. When tracing the ray f1bC@f# ,
starting with b50, we see that the function H is decreas-
ing (because the classical entropy production,
2( iCi@f#]H/]f i , is positive), comes to the minimum at
some b8, then starts increasing, which would not be al-
lowed if time were continuous. In discrete time we can
still safely place the populations in the increasing branch
until H(f1bC@f#),@H(f )# and finally come to a value
b* where the entropy just equals the initial value H(f ).
Formally, the condition

H~f !5H~f1b* C@f# ! (37)

sets the limit for the over-relaxation. It has been shown
(Karlin et al., 1998; Karlin, Ferrante, and Öttinger, 1999;
Boghosian et al., 2001) that this estimate reduces to the
so-called linear stability interval, 0,v,2 for the lattice
BGK equation, required by the positivity of transport
coefficients, as soon as the state is close to the local equi-
librium. Recall that in the classical continuous-time ki-
netic theory, positivity of transport coefficients is ulti-
mately related to positivity of the local entropy
production. It is remarkable that the local lattice H theo-
rem establishes the same result for the discrete-time case,
since positivity of transport coefficients follows now from
the estimate (37). In other words, it is clear that in the
over-relaxation scenario there is no guarantee that the
postcollisional state generally attains a smaller H value
than the precollisional state. This is controlled by the

FIG. 4. Collisional relaxation procedure. Curves represent en-
tropy levels surrounding the local equilibrium feq. The solid
curve L is the entropy level with the value H(f )5H(f* ),
where f is the initial, and f* is the conjugate population. The
vector D represents the collision integral, the sharp angle be-
tween D and the vector 2¹H reflects the entropy production
inequality. The point M is the minimum-entropy state on the
segment @f ,f* # . The result of the collision update is repre-
sented by the point f(b). The choice of b shown corresponds
to the ‘‘over-relaxation’’: H@f(b)#.H(M) but H@f(b)#
,H(f ). The particular case of the BGK collision (not shown)
would be represented by a vector DBGK , pointing from f to-
wards feq, in which case M5feq.
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global shape of the entropy function far from equilib-
rium. In fact, if the value of v is too large, the end point
may run into a lower entropy state, or some populations
may even become negative. Both such outcomes set the
stage for the type of kinetic instabilities hindering the
application of the lattice Boltzmann method to very-
low-viscosity high Reynolds flows.

This discussion shows that the ‘‘mirage’’ of zero vis-
cosity, so crucial for turbulence studies, falls within the
general problem of finding a systematic formulation of
the dynamics of dissipative systems far from equilibrium
(Prigogine, 1962; Ruelle, 1999).

With the quasiperfect entropy at our disposal, we
make full contact with the second law of thermodynam-
ics, and establish the ‘‘smallest’’ Boltzmann system: It
has the properly defined local equilibrium, the H theo-
rem, and the correct hydrodynamics to the minimal re-
quired order of approximation.

The discrete-time H theorem suggests the possibility
of increasing stability at low viscosity by utilizing the
estimate (37). In fact, lattice Boltzmann schemes en-
dowed with quasiperfect entropies, and using the en-
tropy estimate (37), are generally found to exhibit better
numerical stability. Typical instabilities associated with
the lack of the H theorem are shown in Figs. 5 and 6. In
Fig. 5 we show the density profile for a one-dimensional
front in a shock tube at time t5500 (in lattice units) for
the lattice Boltzmann equation with entropy function
(Ansumali and Karlin, 2000; top panel, labeled ELBM),
the lattice BGK model based on the polynomial ansatz
of Qian, d’Humières, and Lallemand (1992; middle
panel labeled LBGK), and the lattice Boltzmann model

FIG. 5. Evolution of a one-dimensional front in a shock tube.
Density profile (dimensionless lattice units) is shown at t
5500 for viscosity n53.333331022. The figure compares three
lattice Boltzmann algorithms on the lattice with 800 nodes.
Fine line, exact solution at zero viscosity; d, simulation;
ELBM, the lattice Boltzmann method based on the entropy
function (from Ansumali and Karlin, 2000); LBGK, the lattice
BGK algorithm based on the polynomial ansatz of Qian,
d’Humières, and Lallemand (1992); LBE, the lattice Boltz-
mann model of Qian, d’Humières, and Lallemand (1991). The
value of viscosity is taken close to the instability of the LBE.
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by Qian, d’Humières, and Lallemand, 1991 (bottom
panel, labeled LBE). The viscosity is set to n51021/3.

The ELBM collision integral in Fig. 5 was derived
from the H function as given in Eq. (35), and it is com-
pactly written using vector notation for populations, f
5(f2 ,f0 ,f1):

C5b~g12g2!$e(]H/]f,g2)2e(]H/]f,g1)%, (38)

where (• ,•) is the scalar product, and g15(1,0,1)† and
g25(0,2,0)† are positive and negative parts of the vec-
tor g5g12g2. The latter is orthogonal to the vectors of
conserved fields. The model labeled LBGK is a special
case of Eq. (32) with the corresponding polynomial
equilibrium (33), whereas the LBE model is a special
case of the Boltzmann-like collision operator. The most
significant difference between these three models here is
that only the model based on Eq. (38) implements the
discrete-time H theorem through parameter b obtained
from solving the entropy estimate of the admissible col-
lision step (37).

From Fig. 5, we notice that, although LBE produces
the most accurate solution almost everywhere, only
ELBM is free of nonphysical oscillations (known as the
Gibbs phenomenon in numerical analysis). These oscil-
lations are typical of nonentropic numerical schemes
and often a precursor of numerical instabilities. Indeed,
a minor decrease in the viscosity is found to disrupt the
stability of the LBE simulation. When the viscosity is
further decreased, LBGK also becomes unstable,
whereas ELBM does not. However, better ELBM stabil-
ity comes at the expense of some oversmoothing of the
fronts, as can be seen by comparison with the fine line
(top figure) giving the exact solution. Figure 6, which
shows the corresponding velocity profile, tells essentially
the same story—the long-standing conflict between sta-
bility and numerical diffusion, a sort of ‘‘numerical un-
certainity principle’’ (Boris, 1989). For very recent im-
provements of the ELBM approach in the direction of

FIG. 6. Velocity profile in the one-dimensional shock-tube
benchmark. Simulation setup and notation are the same as in
Fig. 5
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decoupling the conflicting issues of numerical stability
and accuracy, see Ansumali and Karlin (2002a, 2002b).

F. Overconstrained equilibria

We emphasize that local equilibria of the quasiperfect
entropy are ‘‘classical’’: They minimize the entropy un-
der constraints provided by the locally conserved fields,
whereas the desired conditions for the nonconserved
fields (the local equilibrium momentum-flux tensor in
the above consideration) follow from this solution. What
happens if the set of constraints is enlarged in such a
way as to include higher-order moments?

It should be noted that this is a rather unconventional
move, since the momentum-flux tensor does not origi-
nate from a microscopic collisional invariant. This move
is motivated by the fact that the search for good entro-
pies cannot keep up with the needs raised by various
lattice Boltzmann models. While it is rather easy to es-
tablish a set of constraints on the equilibrium, it is much
less easy, even approximately, to find an entropy whose
maximum, under fixed conserved fields, would also im-
ply the remaining constraints that do not come from the
conservation laws. For this reason, one could try to force
the solution, proceeding with any entropy of choice, but
with more constraints. For instance, it is clear that mini-
mizers of convex functions under constraints,

(
i

f i
eq@1,vi ,vivi#5r@1,u,~P/r!11uu# , (39)

are Galilean invariant by construction, since they en-
code the correct equilibrium form of the momentum-
flux tensor right at the outset. (Any further require-
ments of the equilibrium can be added in the same
manner.) The picture is clear: for D spatial dimensions,
the above set of constraints generates Nc511D
1D(D11)/25(D11)(D12)/2 equations for the set of
Nc Lagrange multipliers A ,B,C forming the quasi-
invariant Qi5A1B•vi1C:vivi , where the symbol ‘‘:’’
stands for the tensor scalar product. These equations are
generally nonlinear (if the entropy function is not qua-
dratic in the populations) and consequently very hard to
solve—if solvable at all—analytically in order to deliver
closed expressions for the overconstrained local equilib-
rium as a function of the hydrodynamic fields. But even
this is not the main drawback. More importantly, such
overconstrained equilibria confine to rather ‘‘thin’’ sub-
sets the domain of phase space in which entropy produc-
tion is positive (Karlin and Succi, 1998). This explains
why the lattice Boltzmann method offers less stability in
such cases than nonisothermal hydrodynamics, where
construction of the equilibria has been focused mostly
on satisfying the conservation constraints regardless of
their origin.

VI. DIRECTIONS FOR FUTURE RESEARCH

To date, there are still several areas in which the lat-
tice Boltzmann theory needs to be strengthened and up-
graded. Here, we shall briefly touch upon just two major
areas of development:
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• Thermal flows.
• Nonideal fluids.

In a nutshell, the problem is to guarantee sufficient
lattice symmetry to ensure the correct evolution of both
kinetic and potential energy, without losing numerical
stability. This is fairly nontrivial, since it involves control
of higher-order local kinetic momenta, such as the heat
flux, as well as control of nonlocal information due to
potential-energy interactions.

As a further prospective area of future development
we mention

• Quantum systems.

Much less has been done on quantum systems to date.

A. Thermal LBE’s

Thermal field theories are notoriously hard
(Umezawa, 1992), and the lattice Boltzmann theory is
no exception. To date, isothermal, or more accurately,
athermal lattice Boltzmann systems2 are much better un-
derstood than their thermal counterparts. The correct
treatment of energy degrees of freedom in a lattice still
poses a number of basic questions.

Energy dynamics in lattice Boltzmann models is ac-
counted for by enlarging the set of discrete speeds, 26
being the number of kinetic moments to be matched by
the set of discrete speeds. Early experiments (Mc-
Namara, Garcia, and Alder, 1995) showed that thermo-
hydrodynamic LBE’s exhibit a high degree of molecular
individualism. Errors in higher-order moments seem to
penetrate down into the low-order thermohydrodynamic
manifold. Similar difficulties have long been recognized
in continuum kinetic theory, as well (Lewis, 1967).

Despite significant progress, starting with the work of
Alexander et al. (Alexander, Chen, and Sterling, 1993),
thermal LBE’s remain less robust than their isothermal
counterparts. Thermal LBE’s might be subject to a sort
of numerical instability similar to that affecting high-
order finite-difference schemes: due to the presence of
high-energy particles, a large set of discrete speeds gives
rise to high-order dispersion relations, which in turn
might develop spurious branches and unphysical solu-
tions.

This situation bears out the importance of a lattice H
theorem. Again, a qualitative effect of lattice discrete-
ness enters the scene. In the continuum, the local H
theorem (positive entropy production due to collisions
alone) does not explicitly involve transition probabilities
from precollisional to postcollisional states, and the de-

2Since the lattice Boltzmann method is based on a collection
of monoenergetic beams d(v2vi) in velocity space, the dis-
crete lattice Boltzmann distribution function is more appropri-
ately classified as a zero-temperature system. We shall none-
theless stick to the more intuitive, if less rigorous, notation of
isothermal schemes, to indicate that temperature is not a dy-
namic variable.
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tailed balance among different states is determined only
by particle distributions with no other weighting factors.
As a result, the H theorem is unaffected by particle ad-
vection, since entropy is passively transported along
collision-free trajectories. Consequently the local H
theorem automatically implies the overall H theorem
(or ‘‘global H theorem’’). In the discrete case, however,
the H theorem does depend explicitly on transition
probabilities, which are functions of local collisional in-
variants (Molvig et al., 1988; Teixeira, 1992; Chen, 1995,
1997; Chen, Teixeira, and Molvig, 1997; Chen and Teix-
eira, 2000). This is necessary to ensure that the resulting
local equilibrium has a suitable form for producing cor-
rect thermohydrodynamic equations satisfying Galilean
invariance (Frisch, Hasslacher, and Pomeau, 1986; Frisch
et al., 1987). The condition for achieving the correct
thermohydrodynamics is the equilibrium form given by
Chen (1995), namely, an expansion up to O(u3) of a
discrete local Maxwellian:

f i
eq5rgi~T !ee i /T exp@2~vi2u!2/2T# , (40)

where T is the local hydrodynamic temperature, and

r~DT1u2!/25(
i

e if i .

This form can be realized via explicit lattice-gas par-
ticle collisions involving transition probabilities of gi(T)
(Chen, 1995, 1997). On the other hand, as per the dis-
cussion above, relaxation to a given local equilibrium
need not proceed through explicit collisions. It can be
shown that Eq. (40) admits a local H function of the
form

h5(
i

f i ln~f i /gi!. (41)

The global H function may be simply defined as

H5(
x

h~x!.

Because of its explicit dependence on transition prob-
abilities, the value of H changes during the LBE advec-
tion phase, the result being that as particles hop in dis-
crete steps from one lattice site to another, the values of
the H function change ahead of the transition probabili-
ties (which change during advection). This hinders trans-
lational invariance and sets the stage for spontaneous
symmetry breaking of the H theorem. Since the transi-
tion probabilities gi are functions of local hydrodynamic
temperature, their value changes from place to place as
particles move around the lattice. The violation of the
global H theorem manifests itself whenever the tem-
perature field acquires a spatial dependence. On the
other hand, though the transition probabilities are not
unity, they become constants in the isothermal lattice
Boltzmann models, which explains why the above prob-
lem disappears for isothermal lattice Boltzmann models.
This essential difference between thermal and isother-
mal lattice models explains why the latter have signifi-
cantly better stability.
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In summary, aside from low-Mach-number expansions
in the usual lattice BGK model, isothermal models have
been shown to possess an H theorem (i.e., a global H
theorem), while thermal models have not. Proving an H
theorem and subsequently constructing an H theorem
obeying the lattice Boltzmann process for thermal mod-
els remains an outstanding problem in lattice Boltzmann
research.

B. LBE for nonideal fluids

Lattice Boltzmann schemes for multiphase, multicom-
ponent fluid flows are often heralded as a most promis-
ing territory for LBE research. Indeed, there exist sev-
eral extensions of the plain lattice Boltzmann schemes
for hydrodynamics that are able to include nonideal-gas
effects (intermolecular interactions; Shan and Chen,
1993, 1994; Swift, Osborne, and Yeomans, 1995; Luo,
1998, 2000). Most of these models can be cast in the
form of a generalized LBE in which the right-hand side
is enriched with a (self-consistent) source term Fi :

f i~x1vi ,t11 !2f i~x,t !52v@f i2f i
eq#~x,t !1Fi . (42)

Formally, Fi is the lattice version of the one-body self-
consistent force (vector notation relaxed for simplicity):

F~1 !f~1 !5E f12~1,2!F12~1,2!d2, (43)

where f12 is the two-body distribution function, F12 the
two-body force, and 1,2 stand for six-dimensional phase-
space coordinates. Since the two-body distribution is
likely to be computationally intractable, lattice Boltz-
mann research has moved in the direction of a dynamic
lattice density-functional theory (Hansen and Mc-
Donald, 1986), in which the effective force F(1) is rep-
resented by a semiempirical functional of the macro-
scopic state of the system, namely, density, flow fields,
and their derivatives:

F~1 !52¹C@r ,u, . . . # . (44)

These schemes have been validated for a series of test
cases and complex flow applications, yielding fairly in-
teresting results (as an illustration, see Fig. 7).

However, none of them has been proven to admit an
underlying H theorem (Rothman, Keller, and Gun-
stensen, 1991; Shan and Chen, 1993, 1994; Swift, Orlan-
dini, and Yeomans, 1995). This is in part due to the fact
that equilibrium distribution functions depend on nonlo-
cal properties. In other words, nonlocal information de-
termines the transition probabilities. Consequently, as in
the thermal lattice Boltzmann models, advection
changes globally defined quantities such as an H func-
tion. Another major theoretical issue is the nature of the
hydrodynamic limit near thin interfaces, where the as-
sumption of a low Knudsen number behind the LBE is
seriously challenged [a similar issue arises in the formu-
lation of LBE-based renormalization-group treatments
of fluid turbulence (Chen, Succi, and Orszag, 1999)].

Finally, as indicated earlier in this paper, the proper-
ties of the H theorem in the presence of a self-consistent
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force are much less understood even in the continuum.
Even though global entropy production in the sense of
decreasing H still exists in the continuum Boltzmann
approach, the issue of convexity and uniqueness of a
minimum point becomes moot because the local condi-
tion dH/dt,0 no longer guarantees that collisional dy-
namics will attain a global minimum. Not only does this
problem underscore the need to formulate better lattice
Boltzmann models, we believe it can be regarded as a
fundamental research topic of general interest in non-
equilibrium statistical mechanics (Lebowitz, 1999).

C. LBE for quantum systems

To date, lattice Boltzmann research is largely domi-
nated by nonquantum physics applications. Nonetheless,
the LBE can be and indeed has been extended to
(simple) cases of quantum-mechanical motion, typically
in the form of the nonrelativistic Schrödinger equation
(Succi and Benzi, 1993; Succi, 1996; Boghosian and Tay-
lor, 1997; Meyer, 1997). The stepping stone to the quan-
tum lattice Boltzmann equation is the identification of a
four-spinor wave function C i obeying the quantum-
relativistic Dirac equation with a complex discrete dis-
tribution function. By writing the Dirac equation as a
complex lattice Boltzmann equation, we can show that

FIG. 7. A typical fluid interface exhibiting a single-mode
Rayleigh-Taylor instability associated with a heavy fluid sitting
on top of a light one. The density ratio of heavy and light fluids
is 3. Re5(gL)1/2L/n51024, t/T053.5 @T05L/(gL)1/2# , g is
the gravitational acceleration driving the instability, and L the
box size. Periodic boundary conditions are used in horizontal
directions and no-slip boundary conditions are used in vertical
directions. From Zhang, Chen, and Doolen (1999), courtesy of
Raoyang Zhang.
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the nonrelativistic limit taking the Dirac equation into
the Schrödinger equation is formally analogous to the
adiabatic limit yielding hydrodynamics from the lattice
Boltzmann equation.

The proof proceeds by writing the Dirac equation (in
one dimension for simplicity) for a relativistic particle of
rest mass m as two coupled LBE’s for a pair of complex
upward- and downward-propagating spinors u(z ,t) and
d(z ,t), respectively:

] tu1]zu5vcd ,

] td2]zd52vcu , (45)

where vc5mc2/\ is the Compton frequency of a mate-
rial particle. By applying the unitary transformation

f65
1

&
~u6id ! eivct,

we find that the above set of equations takes the follow-
ing hydrodynamic form:

] tf
11]zf250,

] tf
22]zf152ivcu . (46)

From these equations it is apparent that the ‘‘slow’’ (hy-
drodynamic) symmetric mode is conserved, whereas the
‘‘fast’’ antisymmetric mode oscillates with a doubled fre-
quency 2vc . It can now be readily checked that the
adiabatic assumption

u] tf
2u!u2ivcf

2u

delivers precisely the Schrödinger equation for a free
particle of mass m . Since the adiabatic approximation
involves an imaginary frequency, unlike the classical
case, the hydrodynamic branch (i.e., the Schrödinger
equation) remains time reversible. This reversibility is
somehow weaker than for the Dirac equation, since it
applies only to real time, whereas the Dirac equation is
reversible in both real and imaginary time. Interesting
connections to a quantum H theorem might arise in the
framework of the N-body quantum lattice Boltzmann
equation, a totally unexplored issue to the best of our
knowledge.

The quantum LBE can be turned into a practical nu-
merical scheme for the nonrelativistic Schrödinger equa-
tion as well as for relativistic wave mechanics (Succi,
2002). It might also be suitable for quantum computing
paradigms.

To say that the quantum LBE is a major issue for
future lattice Boltzmann research would probably be an
overstatement. Still, owing to the growing interest in
quantum computing, the subject might be worth some
attention in the years to come.

VII. CONCLUSIONS

These considerations complete the description of the
lattice Boltzmann method for isothermal Navier-Stokes
equations as a self-contained kinetic theory admitting a
proper H theorem. The corresponding theory for fully
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thermohydrodynamic LBE’s is still in its infancy. Not
only is further understanding of this subject crucial to
the formulation of more stable numerical algorithms,
but it might also stimulate new insight into fundamental
physical questions involving temperature dynamics and
nonlocal intermolecular interactions in discrete dynami-
cal systems.
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