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A long-standing limitation of first-principles calculations of substitutional alloy phase diagrams is the
difficulty in accounting for lattice vibrations. A survey of the theoretical and experimental literature
seeking to quantify the effect of lattice vibrations on phase stability indicates that they can be
significant. Typical vibrational entropy differences between phases are of the order of 0.1 to
0.2kB /atom, which is comparable to the typical values of configurational entropy differences in binary
alloys (at most 0.693kB /atom). This article presents the basic formalism underlying ab initio phase
diagram calculations, along with the generalization required to account for lattice vibrations. The
authors review the various techniques allowing the theoretical calculation and the experimental
determination of phonon dispersion curves and related thermodynamic quantities, such as vibrational
entropy or free energy. A clear picture of the origin of vibrational entropy differences between phases
in an alloy system is presented that goes beyond the traditional bond counting and volume change
arguments. Vibrational entropy change can be attributed to the changes in chemical bond stiffness
associated with the changes in bond length that take place during a phase transformation. This
so-called ‘‘bond stiffness vs bond length’’ interpretation both summarizes the key phenomenon driving
vibrational entropy changes and provides a practical tool to model them.
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I. INTRODUCTION

New materials having desirable properties are often
discovered by alloying elements (or compounds) that
possess some of the wanted qualities. As both comput-
ing power and the efficiency of computational methods
are steadily increasing, it is becoming possible to inves-
tigate new alloys through computer simulations, before
they have even been synthesized. However, before such
a ‘‘virtual’’ material can make its way into the real world,
it must pass the stringent test of thermodynamic stabil-
ity. For this reason, the determination of alloy phase dia-
grams from first principles is among the most important
steps required to build a ‘‘virtual laboratory’’ where ma-
terials could be designed from first principles without
relying on experimental input.

The field of first-principles alloy theory, whose focus is
the calculation of solid-state phase diagrams, has made
substantial progress over the last two decades. Several
excellent reviews on the topic exist (de Fontaine, 1994;
Ducastelle, 1991; Zunger, 1994). As the thermodynami-
cally stable form of most solid compounds is crystalline,
alloy theory traditionally investigates the relative stabil-
ity of phases characterized by a distinct ordering of
atomic species on a given set of candidate lattices, allow-
ing for small displacements away from the ideal lattice
sites. Within that framework, it is now possible to pre-
dict relatively complex solid-state phase diagrams start-
ing from the basic principles of quantum mechanics and
statistical mechanics. Since no experimental input is re-
quired, these ab initio calculations have been useful for
clarifying the phase diagram of several new materials
(Ceder et al., 1990; van der Ven et al., 1998).
©2002 The American Physical Society
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The accuracy of calculated phase diagrams is currently
limited by two factors. First, one needs, as a starting
point, the energy of the alloy in various atomic configu-
rations and hence one is limited by the accuracy of the
quantum-mechanical calculations used to obtain these
energies. Typically, methods based on density-functional
theory (DFT), such as the local-density approximation
(LDA) or the generalized gradient approximation
(GGA), are used.

A second shortcoming arises from the fact that, in or-
der to reduce computational requirements, the sampling
of the partition function to obtain the free energy is only
done over a limited number of degrees of freedom. Typi-
cally, these include substitutional interchanges of atoms
but no atomic vibrations. Attempts to either assess the
validity of this approximation or to devise computation-
ally efficient ways to account for lattice vibrations are
currently the focus of intense research. This interest is
fueled by the observation that phase diagrams obtained
from first principles often incorrectly predict transition
temperatures. It is hoped that lattice vibrations could
account for some of the remaining discrepancies be-
tween theoretical calculations and experimental
measurements.

Three main questions are addressed in this paper.

(1) Do lattice vibrations have a sufficiently important
impact on phase stability that their thermodynamic
effects need to be included in phase diagram
calculations?

(2) What are the fundamental mechanisms that explain
the relationship between the structure of a phase
and its vibrational properties?

(3) How can the effect of lattice vibrations be modeled
at a reasonable computational cost?

This paper is organized as follows. First, Sec. II pre-
sents the basic formalism that allows the calculation of
phase diagrams, along with the generalization needed to
account for lattice vibrations. A review of the theoretical
and experimental literature seeking to quantify the im-
pact of lattice vibrations on phase stability is then pre-
sented in Sec. III. The main mechanisms through which
lattice vibrations influence phase stability are described
in Sec. IV. Section V describes the methods used to cal-
culate vibrational properties while Sec. VI presents the
experimental techniques allowing their measurement.
Finally, Sec. VII discusses the strengths and weaknesses
of a variety of models of lattice vibrations.

II. THE FORMALISM OF ALLOY THEORY

Phase stability at constant temperature is determined
by the free energy1 F . The free energy can be expressed

1Strictly speaking, at constant pressure, the Gibbs free energy
G5F1PV should be used instead of the Helmoltz free energy
F , but at atmospheric pressure, the PV term is negligible for
an alloy.
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as a sum of a configurational contribution Fconfig and
vibrational contributions Fvib . The configurational con-
tribution accounts for the fact that atoms can jump from
one lattice site to another, while the vibrational contri-
bution accounts for the vibrations of each atom around
its equilibrium position. The first part of this section pre-
sents the traditional formalism used in alloy theory to
determine the configurational contribution. The second
part introduces the basic quantities that determine
whether lattice vibrations have a significant effect on
phase stability. The third part describes how the tradi-
tional formalism can be adapted when lattice vibrations
do need to be accounted for.

A. The cluster expansion formalism

One of the goals of alloy theory is to determine the
relative stability of phases characterized by a distinct or-
dering of atomic species on a given periodic array of
sites. This array of sites, called the parent lattice, can be
any crystallographic lattice augmented by any motif. Al-
though the cluster expansion formalism apparently as-
sumes a single parent lattice, alloy systems where the
thermodynamically stable phases are based on multiple
parent lattices can be handled by constructing a separate
cluster expansion for each parent lattice.

A convenient representation of an alloy system is the
Ising model. In the common case of a binary alloy sys-
tem, the Ising model consists of assigning a spinlike oc-
cupation variable s i to each site i of the parent lattice,
which takes the value 21 or 11 depending on the type
of atom occupying the site. A particular arrangement of
spins of the parent lattice is called a configuration and
can be represented by a vector s containing the value of
the occupation variable for each site in the parent lat-
tice. Although this framework can be extended to arbi-
trary multicomponent alloys (Sanchez et al., 1984), we
focus on the case of binary alloys, since all the studies
we review consider binary alloys only.

When all the fluctuations in energy are assumed to
arise solely from configurational changes, the Ising
model is a natural way to represent an alloy. The ther-
modynamics of the system can then be summarized in a
partition function of the form

Z5(
s

exp@2bE~s!# , (1)

where b51/(kBT), and E(s) is the energy when the
alloy has configuration s. It would be computationally
intractable to compute the energy of every configuration
from first principles. Fortunately, the configurational de-
pendence of the energy can be parametrized in a com-
pact form with the help of the so-called cluster expan-
sion (Sanchez et al., 1984). The cluster expansion is a
generalization of the well-known Ising Hamiltonian. The
energy (per atom) is represented as a polynomial in the
occupation variables:
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E~s!

N
5(

a
maJaK )

iPa8
s iL , (2)

where a is a cluster (a set of sites i). The sum is taken
over all clusters a that are not equivalent by a symmetry
operation of the space group of the parent lattice, while
the average is taken over all clusters a8 that are equiva-
lent to a by symmetry. The coefficients Ja in this expan-
sion embody the information regarding the energetics of
the alloy and are called the effective cluster interaction
(ECI). The multiplicities ma indicate the number of clus-
ters that are equivalent by symmetry to a (divided by
the number of lattice sites).2

It can be shown that when all clusters a are consid-
ered in the sum, the cluster expansion is able to repre-
sent any function E(s) of configuration s by an appro-
priate selection of the values of Ja . However, the real
advantage of the cluster expansion is that, in practice, it
is found to converge rapidly. A sufficient accuracy for
phase diagram calculations can be achieved by keeping
only clusters a that are relatively compact (e.g., short-
range pairs or small triplets). The unknown parameters
of the cluster expansion (the effective cluster interac-
tion) can then be determined by fitting them to the en-
ergy of a relatively small number of configurations ob-
tained, for instance, through first-principles
computations. The cluster expansion thus presents an
extremely concise and practical way to model the con-
figurational dependence of an alloy’s energy.

How many ECI and structures are needed in practice?
A typical well-converged cluster expansion of the energy
of an alloy consists of about 20–30 effective cluster in-
teractions and necessitates the calculation of the energy
of around 40–50 ordered structures (see, for instance,
Garbulksy and Ceder, 1995; Ozoliņš et al., 1998a; van
der Ven et al., 1998). A faithful modeling of the qualita-
tive features of the phase diagram (correct stable phases
and topology) typically requires far fewer effective clus-
ter interactions (as little as one pair interaction) and cor-
respondingly less structures, as illustrated by the numer-
ous examples given in de Fontaine (1994) and
Ducastelle (1991). In general multicomponent systems,
the number of effective cluster interactions and ordered
structures required to achieve a given precision unfortu-
nately grows rapidly with the number of species
(Sanchez et al., 1984). For instance, in ternaries, each
pair interaction is characterized by three interaction pa-
rameters instead of only one in the binary case. For this
reason, very few first-principle calculations of ternary
phase diagrams have been attempted [see McCormack
and de Fontaine (1996) for a recent example, or de Fon-
taine (1994) for a survey].

Although the cluster expansion usually allows a very
compact representation of the energetics of an alloy sys-

2Both the number of clusters and the number of sites are
infinite but their finite ratio can be obtained by ignoring all but
one periodic repetitions of the clusters (or the atoms) by the
translational symmetry operations of the lattice.
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tem, there are two situations where a standard cluster
expansion is known to converge slowly. Systems where
long-range elastic interactions are important due to a
large atomic size mismatch between the alloyed species
may require that elastic interactions be explicitly ac-
counted for through the use of a so-called reciprocal
space cluster expansion (Ozoliņš et al., 1998a, 1998b;
Zunger, 1994). Another situation, as recently identified
by Johnson et al. (2000), is when the electronic structure
of the system exhibits a very strong configurational de-
pendence due to symmetry-breaking effects.

In the cases where a short-range cluster expansion
does provide a sufficient accuracy, the process of calcu-
lating the phase diagram of an alloy system can be sum-
marized as follows. First, the energy of the alloy in a
relatively small number of configurations is calculated,
for instance through first-principles computations. Sec-
ond, the calculated energies are used to fit the unknown
coefficients of the cluster expansion (the effective cluster
interaction Ja). Finally, with the help of this compact
representation, the energy of a large number of configu-
rations is sampled, in order to determine the phase
boundaries. This latter step can be accomplished with
either the cluster variation method (CVM) (Ducastelle,
1991; Kikuchi, 1951), the low-temperature expansion
(LTE) (Kohan et al., 1998), or Monte Carlo simulations
(Binder and Heermann, 1988).

B. The effect of lattice vibrations

The previous section described the framework allow-
ing the calculation of phase diagrams under the assump-
tion that the thermodynamics of the alloy is determined
solely by configurational excitations. Accounting for vi-
brational excitations introduces corrections to this sim-
plified treatment. This section presents the basic quanti-
ties that enable an estimation of the magnitude of the
effect of lattice vibration on alloy thermodynamics. To
understand the effect of lattice vibrations on phase sta-
bility, it is instructive to decompose the configurational
(‘‘config’’) and vibrational (‘‘vib’’) parts of the free en-
ergy Fa of a phase a into an energetic contribution E
and an entropic contribution S :

Fa5Econfig
a 2TSconfig

a 1Evib
a 2TSvib

a . (3)

We take the convention that Econfig
a is the energy of the

alloy system when all atoms are frozen at their average
position at a given temperature. In the approximation of
harmonic lattice vibrations and in the limit of high tem-
perature, the vibrational energy Evib

a is simply deter-
mined by the equipartition theorem and is independent
of the phase a considered. Hence as long as these ap-
proximations are appropriate, lattice vibrations are
mainly expected to influence phase stability through
their entropic contribution Svib

a .
Intuitively, the vibrational entropy Svib

a is a measure of
the average stiffness of an alloy, as can be best illustrated
by considering a simple system made of a large number
of identical harmonic oscillators. The softer the oscilla-
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tors are, the larger their oscillation amplitude can be, for
a fixed average energy per oscillator. Hence the system
samples a larger number of states and the entropy of the
system increases. In summary, the softer the alloy, the
larger the vibrational entropy.

A phase with a large vibrational entropy is stabilized
relative to other phases, since a larger vibrational en-
tropy results in a lower free energy, as seen by Eq. (3).
From a statistical-mechanics point of view, this fact can
be understood by observing that a phase that encloses
more states in phase space is more likely to be visited, as
the system undergoes microscopic transitions, and there-
fore exhibits an increased stability.

The central role of vibrational entropy can be further
appreciated by considering the effect of vibrations on a
phase transition between two phases a and b which dif-
fer only by their average configuration (e.g., an order-
disorder transition). If the vibrational entropy difference
between the two phases is DSvib

a→b , the transition tem-
perature obtained with both configurational and vibra-
tional contributions (Tconfig1vib

a→b ) is related to the transi-
tion temperature obtained with configurational effects
only (Tconfig

a→b ) by

Tconfig1vib
a→b 'Tconfig

a→b S 11
DSvib

a→b

DSconfig
a→b D 21

, (4)

where DSconfig
a→b is the change in configurational entropy

upon phase transformation (Garbulsky and Ceder,
1994). This result is exact in the limit of small vibrational
effects, high temperature, and harmonic vibrations. A
correction to this result that accounts for anharmonicity
can be found in Ozolinš et al. (1998c). Equation (4) in-
dicates that the quantity determining the magnitude of
the effect of lattice vibration on phase stability is the
ratio of the vibrational entropy difference to the con-
figurational entropy difference. For this reason, most in-
vestigations aimed at assessing the importance of lattice
vibrations focus on estimating vibrational entropy differ-
ences between phases. Since the configurational entropy
(per atom) Sconfig for a binary alloy at concentration c is
bracketed by

0<Sconfig<2kB@c ln c1~12c !ln~12c !#

<kB ln 2'0.693kB , (5)

Eqs. (4) and (5) provide us with an absolute scale to
gauge the importance of vibrations. As we will see, typi-
cal vibrational entropy differences are of the order of
0.2kB , indicating that corrections of the order of 30% to
the transition temperature may not be uncommon.

While it is clear that vibrational excitations introduce
quantitative corrections to the simple picture of alloy
thermodynamics based on configurational excitations
only, more profound effects of a qualitative nature are
also possible. Vibrational effects may lead to deviations
from the traditional belief that, at high enough tempera-
ture, all short-range order in a disordered material dis-
appears (Garbulsky and Ceder, 1994; Miller, 1989).
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While a fully disordered state clearly maximizes configu-
rational entropy Sconfig , it is not clear that the total en-
tropy Sconfig1Svib is necessarily maximized in the state of
maximum configurational disorder. The presence of
short-range order may increase the total entropy, rela-
tive to a fully disordered alloy, through an increase of
the vibrational entropy. Vibrational entropy somewhat
challenges our intuition, which is largely derived from
tacitly assuming that configurational disorder is all dis-
order. It is even conceivable that vibrational entropy
could induce a transition from a disordered to an or-
dered phase with increasing temperature, if the vibra-
tional entropy difference between the ordered and dis-
ordered phases is larger and opposite to the
configurational entropy difference. While this phenom-
enon has, so far, not been observed in metallic alloys,
presumably because of the large configurational entropy
associated with disordering, it does occur in molecular
systems, such as in diblock copolymer melts, where the
configurational entropy (per monomer) is small (Russell
et al., 1994).

C. Coarse graining of the partition function

The cluster expansion formalism presented in Sec.
II.A appears to focus solely on configurational excita-
tions. This section shows that, in fact, nonconfigurational
sources of energy fluctuations can naturally be taken
into account within the cluster expansion framework
through a process called ‘‘coarse graining’’ of the parti-
tion function3 (Ceder, 1991, 1993). This procedure also
clarifies the nature of the physical states that are repre-
sented by a configuration of the Ising model.

All the thermodynamic information of a system is
contained in its partition function:

Z5(
i

exp@2bEi# , (6)

where Ei is the energy of the system in state i . In the
case of a crystalline alloy system, the sum over all pos-
sible states of the system can be conveniently factored as
follows:

Z5(
L

(
sPL

(
vPs

(
ePv

exp@2bE~L ,s ,v ,e !# , (7)

where

• L is a so-called parent lattice: it is a set of sites where
atoms can sit. In principle, the sum would be taken
over any Bravais lattice augmented by any motif;

• s is a configuration on the parent lattice: It specifies
which type of atom sits on each lattice site;

3This coarse graining process is, of course, unrelated to any
processing aimed at increasing the grain size in a polycrystal-
line material.
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• v denotes the displacement of each atom away from
its ideal lattice site;

• e is a particular electronic state (both the spatial wave
function and spin state) when the nuclei are con-
strained to be in a state described by v ;

• E(L ,s ,v ,e) is the energy of the alloy in a state char-
acterized by L , s, v , and e .

Each summation is taken over the states that are in-
cluded in the set of states defined by the ‘‘coarser’’ levels
in the hierarchy of states. For instance, the sum over
displacements v includes all displacements such that the
atoms remain close to the undistorted configuration s
on lattice L .

While Eq. (7) is in principle exact, practical first-
principles calculations of phase diagrams typically rely
on various simplifying assumptions. The sum over elec-
tronic states is often reduced to a single term, namely,
the electronic ground state. The validity of this approxi-
mation can be assessed by ensuring that different struc-
tures have a similar electronic density of states in the
vicinity of the Fermi level.4 If needed, the contribution
of electronic entropy is, at least in its one-electron ap-
proximation, relatively simple to include without pro-
hibitive computational requirements (Wolverton and
Zunger, 1995).

A simplifying assumption that is much more difficult
to relax is the reduction of the sum over displacements v
to a single term. This simplification has been extensively
used in alloy theory, because calculating the summation
over v involves intensive calculations. The particular dis-
placement representing a given configuration s is typi-
cally chosen to be a local minimum in energy that is
close to the undistorted ideal structure where atoms lie
exactly at their ideal lattice sites. Usually, this state is
found by placing the atoms at their ideal lattice positions
and relaxing the system until a local minimum of the
energy is obtained. In this fashion, the state chosen is
the most probable one in the neighborhood of phase
space associated with configuration s. In this approxi-
mation, the partition function takes the form of an Ising
model partition function:

Z5(
L

(
sPL

exp@2bE* ~L ,s!# (8)

with E* (L ,s)5minv,e$E(L,s,v,e)%.
It turns out that the same statistical-mechanics tech-

niques developed in the context of the Ising model can
also be used in the more general setting where atoms are
allowed to vibrate (and where electrons are allowed to
be excited above their ground state). All that is needed
is to replace the energy E* (L ,s) by the constrained free
energy F(L ,s ,T), defined as

4Unless strong electron correlation effects are present, such
as charge ordering or metal-insulator transitions (Imada et al.,
1998), the electronic free energy can be calculated from the
single-electron density of states (DOS) in the neighborhood of
the Fermi level.
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F~L ,s ,T !52kBT lnS (
vPs

(
ePv

exp@2bE~L ,s ,v ,e !# D .

(9)

In other words, it is the free energy of the alloy, when its
state in phase space is constrained to remain in the
neighborhood of the ideal configuration s. This process,
called the coarse graining of the partition function, is
naturally interpreted as integrating out the ‘‘fast’’ de-
grees of freedom (e.g., vibrations) before considering
‘‘slower’’ ones (e.g., configurational changes) (Ceder,
1993). This process is illustrated in Fig. 1. The quantity
to be represented by a cluster expansion is now the con-
strained free energy F(L ,s ,T). The only minor compli-
cation is that the effective cluster interactions become
temperature dependent.

There is some level of arbitrariness in the precise defi-
nition of the set of displacement v over which the sum-
mation is taken in Eq. (9). However, in the common case
where there is a local energy minimum in the neighbor-
hood of s and where the system spends most of its time
visiting a neighborhood that can be approximated by a
harmonic potential well, the set of displacements over
which the summation is taken has little effect on the
calculated thermodynamic properties. Under the above
assumptions, calculating the partition function of a con-
strained harmonic system and a harmonic system that
allows infinite displacements gives essentially the same
result:

(
vPs

exp@2bE~L ,s ,v ,T !#

' (
vPs

exp@2bEH~L ,s ,v ,T !#

'(
all v

exp@2bEH~L ,s ,v ,T !# ,

FIG. 1. The coarse graining approach. The global energy sur-
face of an alloy system, which gives the energy Ei of each state
i , can be partitioned into a set of local energy surfaces, each of
which is associated with a distinct configuration sk of an Ising
model. Within each configuration sk , the local energy surface
gives the energy as a function of the atomic displacements v
(or any other nonconfigurational degrees of freedom). The
thermodynamics of the system thus reduces to the one of a
traditional Ising model, where the ‘‘energy’’ of each configura-
tion now becomes the free energy associated with the corre-
sponding local energy surface. If the local energy surfaces can
be considered quadratic, their associated free energy can be
determined by solving a Born–von Kármán phonon problem.
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where E(L ,s ,v ,T)52kBT ln (ePv exp@2bE(L,s,v,e)#
and EH(L ,s ,v ,T) denotes a harmonic approximation to
E(L ,s ,v ,T). In this framework, all that is needed to
account for lattice vibrations is the determination of the
free energy of a harmonic solid in the neighborhood of
any configurations s. (Appendix F discusses the case
where the above assumptions are violated, that is, when
no local minimum exists in the phase space neighbor-
hood of s.)

The problem of calculating F(L ,s ,T) for a set of con-
figurations s is much more demanding than calculating
the energy E* (L ,s) for a set of s. Devising an efficient
way to calculate F(L ,s ,T) is the fundamental problem
that needs to be resolved in order to include vibrational
effects in phase diagram calculations.

D. Conclusion

After presenting the basic framework enabling the
calculation of the configurational free energy, this sec-
tion has presented two important aspects of the thermo-
dynamics of lattice vibrations.

(1) Vibrational entropy differences between phases in-
troduce corrections to transition temperatures calcu-
lated with only configurational entropy.

(2) The basic alloy theory framework can be adapted to
account for lattice vibrations by replacing the energy
E* (L ,s) associated with each configuration s by
the free energy F(L ,s ,T) of a system constrained
to remain in the phase space neighborhood of the
ideal configuration s.

III. EVIDENCE OF VIBRATIONAL EFFECTS

In light of the large computational requirements asso-
ciated with the inclusion of lattice vibrations, is it impor-
tant to ensure that such an endeavor is worth the effort.
This section reviews the experimental and theoretical
evidence that supports the view that vibrational effects
are important in the context of phase diagram calcula-
tions. There exists a large literature aimed at determin-
ing the vibrational properties of solids [see, for instance,
Born and Huang (1956), Maradudin et al. (1971), Ash-
croft and Mermin (1976)]. Here, the focus is on investi-
gations directly related to the determination of vibra-
tional entropy (or free-energy) differences between
phases which differ solely by the ordering of the chemi-
cal species on an otherwise identical parent lattice.

This relatively narrow choice is driven by two obser-
vations. First, while there have been numerous investi-
gations of the absolute vibrational properties of solids,
the more difficult issue that needs to be addressed in the
context of phase stability is the determination of accu-
rate differences in vibrational properties. Second, it has
already been established that many structural phase
transformations (e.g., from fcc to bcc) are driven by lat-
tice vibrations (Grimvall and Ebbsjo, 1975; Petry et al.,
1991). This fact does not pose major difficulties for the
purpose of phase diagram calculations: one can easily
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compute the vibrational properties of a few lattice types.
The real difficulty is to calculate the vibrational entropy
of many configurations on each of these lattices, a task
which is only needed if vibrational properties differ sub-
stantially across distinct configurations on an identical
parent lattice.

The presentation will be mainly chronological, al-
though deviations from that intention will be made for
the sake of clarity. We leave a more precise description
of the methods used for subsequent sections, focusing
here on the results obtained. The key theoretical and
experimental results are summarized in Tables I–III re-
spectively.

A. Calculations and predicted effects on phase stability

The idea that the state of order of an alloy could be
coupled with its lattice dynamics is not new. During the
1960s, as the foundations of alloy thermodynamics were
being established, the question of the effect of lattice
vibrations was already being raised. Studies on the
order-disorder transition of b-brass (Booth and Rowlin-
son, 1955; Wojtowicz and Kirkwood, 1960), for instance,
have indicated that lattice vibrations are crucial to accu-
rately model the magnitude of the experimentally ob-
served discontinuity in heat capacity at the phase transi-
tion, which determines the change in vibrational entropy
upon disordering.

After these initial investigations, increasingly accurate
models for the coupling between lattice vibration and
the state of order of an alloy were then developed (Bak-
ker, 1982a, 1982b; Bakker and Tuijn, 1986; Garbulksy
and Ceder, 1994; Matthew et al., 1983; Moraitis and
Gautier, 1977; Tuijn and Bakker, 1989). These models
generally involved unknown parameters that need to be
estimated from available experimental thermodynamic
data. A recurring theme among these studies is the idea
that, for sensible choices of the stiffness of the springs
connecting the atoms, the effect of lattice vibrations is
likely to be important. The estimated vibrational entro-
pies of disordering lie between 0.05kB , for the most
conservative estimates (Moraitis and Gautier, 1977), up
to the order of 0.5kB (Tuijn and Bakker, 1989).

With the increased availability of computing power,
the application of first-principles methods became a
practical possibility and the unknown parameters of the
theoretical models of lattice vibration have become di-
rectly computable, without relying on experimental in-
put. Initially, only simple bulk properties, such as the
bulk modulus, were computable at a reasonable cost.
This prompted the development of methods to infer vi-
brational properties from the knowledge of elastic con-
stants. A particularly popular scheme, the Moruzzi-
Janak-Schwarz (MJS) method (Moruzzi et al., 1988), was
used in many phase diagram calculations (Abrikosov
et al., 1993; Asta et al., 1993; Becker and Sanchez, 1993;
Colinet et al., 1994; Mohri, 1994; Mohri et al., 1993; Na-
kamura and Mohri, 1993; Oh et al., 1994; Sanchez and
Becker, 1994; Sanchez et al., 1991; Tseng and Stark,
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TABLE I. Calculated vibrational entropy differences. (form): Vibrational entropy of formation from pure elements. rnd: Disor-
dered solid solution. See Table II for other abbreviations.

Composition transition

DS

S kB

atomD T
(K) Methods Refs.

AgCu L10
a (form) 20.11 high ASW,MJS (Sanchez et al., 1991)b

Ag3Cu L12
a (form) 20.22 high ASW,MJS (Sanchez et al., 1991)b

Ag3Cu L12
a (form) 20.02 high ASW,MJS (Sanchez et al., 1991)b

Cu3Au L12→fcc rnd 0.12 663 TB,BvK,QH,VCA (Cleri and Rosato, 1993)
CdMg hcp rnd (form) 0.13 900 LMTO,MJS,CE (Asta et al., 1993)
CdMg B19 (form) 0.14 high LMTO,MJS (Asta et al., 1993)b

Cd3Mg D019 (form) 20.03 high LMTO,MJS (Asta et al., 1993)b

CdMg3 D019 (form) 20.10 high LMTO,MJS (Asta et al., 1993)b

Cu3Au L12→fcc rnd 0.10 high EAM,BvK,H,SC (Ackland, 1994)
Ni3Al L12→fcc rnda 0.29 high EAM,BvK,H,SC (Ackland, 1994)
SiGe B3a (form) 20.02 high PP,BvK,H (Garbulsky, 1996)
ArKr L10 (form) 20.06 high pot.,BvK,H (Garbulsky, 1996)
Ca0.5Mg0.5O fcc rnd (form) 0.04 high SCPIB,BvK,H,CE (Tepesch et al., 1996)b

Ni3Al L12→fcc rnda 0.27 1400 EAM,BvK,QH,SC (Althoff et al., 1997)
NiCr fcc rnd (form) n.a. 1550 FLASTO,VCA (Craievich and Sanchez, 1997)
Ni3Al L12→fcc rnda 0.20 1500 EAM,MC,SC (Morgan, 1998)
Ni3Al L12→fcc rnda 0.22 1200 EAM,MD,SC (Ravelo et al., 1998)
Ni3Al L12→fcc rnda 0.00 high PP,BvK,QH,SQS (van de Walle et al., 1998)
Ni3Al L12→D022

a 0.04 high PP,BvK,QH (van de Walle et al., 1998)
CuAu L10→fcc rnd 0.18 800 PP,LR,QH,CE (Ozoliņš et al., 1998c)
Cu3Au L12→fcc rnd 0.08 800 PP,LR,QH,CE (Ozoliņš et al., 1998c)
CuAu3 L12→fcc rnd 0.05 800 PP,LR,QH,CE (Ozoliņš et al., 1998c)
CuAu L11

a (form) 0.58 800 PP,LR,QH (Ozoliņš et al., 1998c)
CuAu L10 (form) 0.21 800 PP,LR,QH (Ozoliņš et al., 1998c)
Cu3Au L12 (form) 0.20 800 PP,LR,QH (Ozoliņš et al., 1998c)
CuAu3 L12 (form) 0.26 800 PP,LR,QH (Ozoliņš et al., 1998c)
Al3Li L12

a→D022
a 0.04 high PP,BvK,H (Sluiter et al., 1999)

Fe3Al D03→bcc rnd 0.11 high TB-LMTO,pot.,H,SC (Shaojun et al., 1998)
Pd3V D022→fcc rnd 20.07 high PP,BvK,QH,SQS (van de Walle and Ceder, 2000)
Pd3V L12→D022 0.08 high PP,BvK,QH (van de Walle and Ceder, 2000)
Al3Sc (form) 20.70 high PP,LR,QH (Ozoliņš and Asta, 2001)
Al26Sc (form, per Sc atom) 0.50 high PP,LR,QH (Ozoliņš and Asta, 2001)
Al2Cu uc8→theta 0.37 high PP,LR,H (Wolverton and Ozoliņš, 2001)

aMetastable compound.
bCalculated from the data presented in the paper.
1994). In the Cd-Mg (Asta et al., 1993), Ag-Cu (Sanchez
et al., 1991), and Au-Ni (Colinet et al., 1994) systems,
agreement with the experimentally measured phase dia-
grams was substantially improved by including vibra-
tions in this way. In retrospect, such an improvement
was to be expected because first-principles phase dia-
gram calculations often greatly overestimate transitions
temperature and any downward correction to the calcu-
lated transition temperatures yields improved agree-
ment. The Moruzzi-Janak-Schwarz approximation
nearly always yields a downward correction when or-
dered compounds are stiffer (softer) than the elements
in ordering (phase separating) systems, a very likely
situation.

More recently, other techniques were used to obtain
vibrational properties from elastic constants. The so-
Rev. Mod. Phys., Vol. 74, No. 1, January 2002
called virtual crystal approximation (described in Ap-
pendix C) was used to calculate the vibrational free en-
ergy of a disordered alloy in the Ni-Cr system (Craievich
and Sanchez, 1997). The calculated vibrational free en-
ergy exhibited qualitatively the same concentration de-
pendence as the vibrational free energy obtained by sub-
tracting the experimentally determined free energy from
the calculated configurational free energy. The virtual
crystal approximations were also used in calculations of
the lattice dynamics of ordered and disordered Cu3Au
(Cleri and Rosato, 1993). These calculations, which re-
lied on a tight-binding Hamiltonian [see, for instance,
Harrison (1989) and Pettifor (1992)], predicted a 0.12kB
increase in the vibrational entropy upon disordering.

In view of the large computational requirements of
accurate ab initio methods, many researchers have
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TABLE II. Abbreviations used in Tables I and III.

pot.: pair potentials H: harmonic approximation
EAM: embedded atom method QH: quasiharmonic approximation
TB: tight binding MC: Monte Carlo
TB-LMTO: tight-binding LMTO MD: molecular dynamics
LMTO: linear muffin-tin orbitals D: Debye model
ASW: atomic spherical waves BvK: Born–von Kármán spring model
PP: pseudopotential calculations SC: supercell method

LR: linear response
cal.: differential calorimetry measurements VCA: virtual crystal approximation
1xtal: single crystal phonon dispersion measurements MJS: Moruzzi-Janak-Schwarz model
INS: incoherent neutron scattering measurements CE: cluster expansion
anh.: anharmonicity included. SQS: special quasirandom structures
sought to calculate vibrational properties with simpler
energy models, whose lower computational require-
ments enable a more accurate handling of issues such as
anharmonicity or the representation of the disordered
state. The development of the embedded atom method
(EAM) (Daw and Baskes, 1984) offered the opportunity
to accurately model metallic alloys at a reasonable com-
putational cost. Investigations based on the embedded
atom method have typically found a large vibrational
entropy change upon disordering in metallic alloys. The
vibrational entropy change for Cu3Au was predicted to
be 0.10kB (Ackland, 1994), while for Ni3Al, values rang-
ing from 0.22kB to 0.29kB were obtained (Ackland,
1994; Althoff et al., 1997, 1998; Ravelo et al., 1998).5

Other researchers constructed pair potentials from an
equation of state determined from first-principles calcu-
lations (Shaojun et al., 1998). The resulting pair poten-
tials were then used to calculate disordering vibrational
entropies with no further approximations. This method
attributed a vibrational entropy change of 0.11kB to the
disordering reaction of the Fe3Al compound.

Rather unexpected results were uncovered as it be-
came possible to compute vibrational entropy differ-
ences from a complete lattice dynamics analysis as well
as state-of-the-art ab initio techniques. Calculations on
the Si-Ge system (Garbulsky, 1996) found almost no ef-
fect of lattice vibrations: the vibrational entropy of for-
mation of the metastable zinc-blende structure was a
mere 20.02kB . The first ab initio calculation of a vibra-
tional entropy of disordering (van de Walle et al., 1998)
placed an upper bound of 0.05kB in the case of the
order-disorder transition of the Ni3Al compound, in
sharp contrast with previous embedded atom method
calculations (Ackland, 1994; Althoff et al., 1997, 1998)
which found a much larger value. Although the dis-
agreement simply originated from a difference in the
predicted volume expansion of the alloy upon disorder-

5Disordered Ni3Al is actually a metastable phase. The values
quoted here are at the highest temperatures reported by the
investigators, as close as possible to the true disordering tem-
perature that would be observed if the alloy did not melt
before.
., Vol. 74, No. 1, January 2002
ing, the difference between EAM and ab initio results
does indicate that vibrational entropy differences are
very sensitive to the energy model used. In another in-
termetallic compound, Pd3V, the vibrational entropy
change upon disordering (van de Walle and Ceder, 2000)
was calculated to be 20.07kB , although the simplest
theories put forward in the earliest investigations of lat-
tice vibrations in alloys would predict this value to be
large and positive.

In the first phase diagram calculation based on a full
lattice dynamics analysis (Tepesch et al., 1996), the self-
consistent potential-induced breathing (SCPIB) method
(Boyer and Mehl, 1993) was used to calculate that vibra-
tional effects lower the top of the miscibility gap by
about 10% in the CaO-MgO system. Subsequently, first-
principles calculations on the Cu-Au system (Ozoliņš
et al., 1998c) reported a reduction of about 20% in the
transition temperatures. However, in both cases, the re-
sulting correction on the phase boundaries decreased
the agreement with the experimentally determined
phase diagram, suggesting that other potential sources
of error, such as the precision of the energy method used
or the convergence of the cluster expansion, have to be
investigated.

Very recently, two rather striking examples of systems
where lattice vibrations do have an important effect and
where their inclusion results in a dramatically improved
agreement with experimental measurements have been
uncovered. Lattice vibrations are responsible for a 27-
fold increase in the solubility of scandium in aluminum
(Ozoliņš and Asta, 2001), resulting in a nearly perfect
agreement with experimentally determined solubility
limits. Vibrational contributions were also shown
(Wolverton and Ozoliņš, 2001) to be essential to cor-
rectly predict the relative stability of the different pre-
cipitates which constitute the well-known Guinier-
Preston zones responsible for precipitation hardening in
the Al-Cu system. It is interesting to note that these two
successful examples did not require the use of a cluster
expansion and did not necessitate a large number of
separate first-principles calculations. Each calculation
could therefore be carried out with an extremely high
precision. When all other sources of errors are well con-
trolled, the effect of lattice vibrations can be more accu-
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TABLE III. Experimental measurements of vibrational entropy differences. See Table II for abbreviations.

Composition transition

DS

S kB

atomD T
(K) Methods Refs.

Ni3Al L12→fcc rnda 0.27 high cal.,D,H (Anthony et al., 1993)
Ni3Al L12→fcc rnda 0.19 343 cal. (Anthony et al., 1993)
Fe3Al D03→bcc rnd 0.1060.03 high cal.,D,H (Nagel et al., 1997)
Cu3Al L12→fcc rnd 0.1460.05 high cal.,1xtal,H,VCA (Nagel et al., 1995)
Fe0.70Cr0.30 bcc rnd (form) 0.1460.05 high 1xtal,H,VCA (Fultz, Anthony, Robertson, et al., 1995)
Fe0.53Cr0.47 bcc rnd (form) 0.2060.05 high 1xtal,H,VCA (Fultz, Anthony, Robertson, et al., 1995)
Fe0.30Cr0.70 bcc rnd (form) 0.2160.05 high 1xtal,H,VCA (Fultz, Anthony, Robertson, et al., 1995)
Ni3Al L12→fcc rnda 0.10 high INS,H (Fultz, Anthony, Nagel, et al., 1995)
Ni3Al L12→fcc rnda 0.30 high INS,H,VCA (Fultz, Anthony, Nagel, et al., 1995)
Ni3V D022→fcc rnd 0.0460.02 300 cal.,INS (Nagel et al., 1996)
Co3V L12

a→fcc rnd 0.1560.02 high INS (Nagel, Fultz, and Robertson, 1997)
Cu3Au L12 (form) 0.0660.03 300 INS,anh. (Bogdanoff et al., 1999)
Cu3Au L12 (form) 0.1260.03 800 INS,anh. (Bogdanoff et al., 1999)
Co3V hP24→fcc rnd 0.07 high INS,QH (Robertson et al., 1999)
CeSn3 g-Ce1b-Sn→L12 20.5460.09 high 1xtal,H (Bogdanoff and Fultz, 1999)
LaSn3 hcp-La1b-Sn→L12 20.4360.09 high 1xtal,H (Bogdanoff and Fultz, 1999)
Ni3Al L12 (form) 20.2060.03 high 1xtal,H (Bogdanoff and Fultz, 1999)
Ni3Fe fcc-Ni1bcc-Fe→L12 0.0960.03 high 1xtal,H (Bogdanoff and Fultz, 1999)
Pt3Fe fcc-Pt1bcc-Fe→L12 0.1460.03 high 1xtal,H (Bogdanoff and Fultz, 1999)
Pd3Fe fcc-Pd1bcc-Fe→L12 0.0560.03 high 1xtal,H (Bogdanoff and Fultz, 1999)
Cu3Zn fcc-Cu1hcp-Zn→L12 20.0160.03 high 1xtal,H (Bogdanoff and Fultz, 1999)
Cu3Au L12 (form) 0.0760.03 high 1xtal,H (Bogdanoff and Fultz, 1999)
Fe3Pt bcc-Fe1fcc-Pt→L12 0.5560.03 high 1xtal,H (Bogdanoff and Fultz, 1999)
Fe3Al bcc-Fe1fcc-Al→D03 20.0660.03 high 1xtal,H (Bogdanoff and Fultz, 1999)

aMetastable compound.
rately quantified. These examples offer good hope that
ab initio calculations of a complete phase diagram that
include lattice vibrations can provide an accuracy com-
parable to experiments, provided that a well converged
cluster expansion can be obtained and that highly accu-
rate first-principles calculations are used to construct it.

B. Comparison with experiments

Over the last ten years, advances in experimental
techniques have made it possible to directly measure vi-
brational entropy differences, instead of inferring them
from discrepancies between measured thermodynamical
data and calculated estimates of configurational contri-
butions to the free energy. Experimental investigations
have thus provided independent assessments of the role
of lattice vibration on phase stability.

The first direct measurement was obtained from dif-
ferential calorimetry measurements on the Ni3Al com-
pound (Anthony et al., 1993) and found the vibrational
entropy of disordering to be at least 0.19kB . This finding
was corroborated with subsequent incoherent neutron-
scattering measurements (Fultz, Anthony, Nagel, et al.,
1995), which bracketed its value between 0.1kB and
0.3kB . These findings fueled much of the interest of the
recent theoretical literature on the Ni3Al compound
Rev. Mod. Phys., Vol. 74, No. 1, January 2002
(Ackland, 1994; Althoff et al., 1997, 1998; Ravelo et al.,
1998; van de Walle et al., 1998). Unfortunately, the
agreement between experimental and theoretical deter-
minations is relatively poor. Even among studies in
which the magnitude of the vibrational entropy is simi-
lar, its proposed physical origin differs substantially: ac-
cording to experiments, the vibrational entropy change
occurred with essentially no change in volume, while
most calculations (Althoff et al., 1997, 1998; Ravelo
et al., 1998) attribute the vibrational entropy change al-
most entirely to a volume change. Many of these con-
flicting findings were clarified by first-principles calcula-
tions (van de Walle et al., 1998), which predicted both a
very small volume change and a very small vibrational
entropy change upon disordering. These results indi-
cated that (i) the apparent large vibrational entropy
change observed experimentally could very well be en-
tirely explained by the nanocrystalline nature of the
samples and the use of the virtual crystal approximation
in interpreting the data and (ii) the large volume expan-
sion upon disordering predicted by the embedded atom
method is probably an artifact of the method, as it would
have otherwise been clearly visible experimentally. To
be fair, Fultz et al. and Althoff et al. were fully aware of
these potential problems; ab initio calculations merely
made it possible to better quantify the errors introduced.
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The general consensus among researchers is now that
given the numerous difficulties faced when studying
Ni3Al, unambiguous evidence of the importance of lat-
tice vibrations should probably be sought in other sys-
tems.

Similar calorimetry measurements were then per-
formed on the Fe3Al (Anthony et al., 1994) and Cu3Au
(Nagel et al., 1995) compounds, where more conclusive
results could be obtained. The vibrational entropy of
disordering of Fe3Al was determined to be 0.10kB , a
result which was later corroborated by calculations
(Shaojun et al., 1998). In the case of Cu3Al the experi-
mental result, (0.1460.05)kB , showed very good agree-
ment with the earlier theoretical predictions of 0.12kB
(Cleri and Rosato, 1993). Subsequent linear-response
calculations (Ozoliņš et al., 1998c) yield values ranging
from 0.06 to 0.08kB (depending on temperature), which
also compares favorably with the experimental results.

The estimation of vibrational effects was also ad-
dressed by directly probing the lattice dynamics through
neutron-scattering measurements. The vibrational en-
tropy of formation of a disordered alloy in the Fe-Cr
system was obtained from single-crystal measurements
of phonon dispersion curves (Fultz, Anthony, Robert-
son, et al., 1995) in the virtual crystal approximation.
Values ranging from 0.14kB to 0.21kB were obtained,
depending on concentration.

In order to determine the lattice dynamics of disor-
dered alloys beyond the virtual crystal approximation,
the incoherent neutron-scattering technique was exten-
sively used and refined (Bogdanoff et al., 1999; Fultz,
Anthony, Nagel, et al., 1995; Nagel et al., 1996; Nagel,
Fultz, and Robertson, 1997; Robertson et al., 1999).
With this technique, the analysis of the experimental
data is considerably simplified when the species present
have comparable incoherent neutron-scattering intensi-
ties, which lead to the study of two compounds satisfying
this requirement: Ni3V and Co3V. Measurements on the
Ni3V compound (Nagel et al., 1996) found a surprisingly
small vibrational entropy change upon disordering,
0.04kB , while the Co3V compounds exhibited a rela-
tively large value 0.15kB (Nagel, Fultz, and Robertson,
1997). A related study found the vibrational entropy
change associated with the fcc-hcp transition of the
Co3V compound to be 0.07kB (Robertson et al., 1999).
It is interesting to note that the disordering reaction ex-
hibits a larger vibrational entropy change than the allo-
tropic transformation in Co3V. Perhaps more impor-
tantly, the investigations of the Ni3V and Co3V
compounds presented the first experimental evidence of
important anharmonic effects.

The same technique of incoherent neutron scattering
was employed to revisit the Cu-Au system (Bogdanoff
et al., 1999). The vibrational entropy of formation of the
Cu3Au compound was found to be 0.06kB at 300 K,
corroborating earlier estimations based on phonon dis-
persion curve measurements (Bogdanoff and Fultz,
1999). At 800 K, the measured value of (0.1260.04)kB
is consistent with the value of 0.20kB obtained with ab
initio calculations (Ozoliņš et al., 1998c).
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The vibrational entropy of formation of various or-
dered compounds, obtained from single-crystal phonon
dispersion measurements, were recently compiled
(Bogdanoff and Fultz, 1999) and show formation values
of up to 0.5kB . However, this compilation contains
many systems where the alloy has a crystal structure that
differs from the one of the pure elements and the for-
mation values thus also include the vibrational entropy
change associated with a structural transition. When all
these cases are excluded, the maximum vibrational en-
tropy change decreases to a more conservative upper
bound of 0.20kB , which is reached in the ordered phase
of Ni3Al.

C. Conclusion

Although early investigations of the impact of vibra-
tional effects on phase stability consistently found large
effects, it is now becoming apparent, as more precise
theoretical and experimental techniques became avail-
able, that vibrational effects are often, but not always,
large. It is therefore important to identify the factors
which determine when they are, so that the effort de-
voted to calculating them is proportional to their ex-
pected magnitude.

IV. THE ORIGIN OF VIBRATIONAL ENTROPY
DIFFERENCES BETWEEN PHASES

We have presented the framework that allows for the
inclusion of vibrational effects in phase diagram calcula-
tions. However, the formalism presented so far does not
directly provide any intuition regarding the origin of vi-
brational entropy differences. This intuition is important
to be able the predict when vibrational effects should be
important and, when they are, which approximation
should be used to calculate them.

Three mechanisms have been suggested to explain the
origin of vibrational entropy differences in alloys. We
will discuss them in turn.

A. The ‘‘bond proportion’’ effect

In most theoretical studies based on simple models
systems (Bakker, 1982a; Bakker and Tuijn, 1986; Gar-
bulsky and Ceder, 1994; Matthew et al., 1983; Tuijn and
Bakker, 1989), the effect of the state of order of an alloy
on its vibrational entropy has been attributed to the fact
that bonds between different chemical species have a
different stiffness than the bonds between identical spe-
cies. When the proportion of each type of bond in the
alloy changes during, for instance, an order-disorder
transition, the average stiffness of the alloy changes as
well, resulting in a change of its vibrational entropy. This
so-called bond proportion mechanism is illustrated in
Fig. 2 in the case of an order-disorder transition. In a
system with ordering tendencies, the bond between un-
like atoms are associated with an increased stability and
are thus expected to be stiffer than bonds between like
atoms. Since disordering reduces the number of bonds
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between unlike atoms in favor of bonds between similar
atoms, the disordered state is expected to be softer, and
thus have a large vibrational entropy. Vibrations would
then tend to stabilize the disordered state relative to the
ordered state, reducing the transition temperature. A
similar reasoning in the case of a phase separating sys-
tem shows that the disordered state should be softer
than a phase separated mixture, indicating that the mis-
cibility gap should be lowered as a result of vibrational
effects.

The presence of a bond proportion effect can be
readily identified from the nature of the changes taking
place in the phonon densities of states during an order-
disorder transition. In the ordered alloy, the very stiff
nearest-neighbor bonds should be associated with high-
frequency optical modes peaks. As the alloy disorders,
the height of these peaks should decrease since the num-
ber of stiff bonds decreases. This characteristic signature
of the bond proportion mechanism in the phonon DOS
has been repeatedly observed in experiments (Anthony
et al., 1994; Fultz, Anthony, Nagel, et al., 1995) as well as
in theoretical calculations (Althoff et al., 1997) (al-
though, in the latter study the bond proportion mecha-
nism was dominated by other effects discussed
below).

B. The volume effect

It is well known that vibrational entropy of a given
compound varies with volume: This dependence is re-
sponsible for thermal expansion. It is thus expected that
the volume change that typically occurs during solid-
state transitions should also result in a change in vibra-
tional entropy. As the alloy expands (or contracts), as a
result of a change in its state of order, the stiffness of all

FIG. 2. The bond proportion mechanism. Ordered alloys are
characterized by the fact that a large proportion of the nearest-
neighbor bonds join unlike atoms. As these types of bonds are
presumably stiffer, they are responsible for an increased den-
sity of high-frequency optical-phonon modes. Disordering re-
duces the proportion of stiff nearest-neighbor bonds, and the
density of high-frequency optical modes decreases correspond-
ingly, resulting in an increase in vibrational entropy.
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chemical bonds decreases (or increases). The resulting
change in vibrational entropy is entirely due to anhar-
monicity, in contrast to the bond proportion effect.
When the volume mechanism operates alone, the pho-
non DOS should exhibit an overall shift when the vol-
ume changes (see Fig. 3).

This shift is usually accompanied by a change in the
shape of the phonon DOS, so that visual inspection of
the phonon DOS is usually not sufficient to identify the
shift due to the effect of volume. Theoretical investiga-
tions of this effect have thus relied on a simple thought
experiment consisting in separating the vibrational en-
tropy change upon disordering at constant volume from
the vibrational entropy change resulting solely from the
volume expansion of the disordered state. In this fash-
ion, the importance of volume changes was first ob-
served in embedded atom method (EAM) calculations
of disordering reaction of the Ni3Al and Cu3Au com-
pounds (Ackland, 1994) and later corroborated by sub-
sequent embedded atom method calculations on the
Ni3Al compound (Althoff et al., 1997; Ravelo et al.,
1998). These more recent calculations also found that
the volume effect is magnified by the fact that the linear
thermal expansion coefficient of different phases can dif-
fer substantially (by about 531026 K21 relative to an
absolute value of about 1531026 K21). First-principles
calculations on the Cu-Au system (Ozoliņš et al., 1998c)
revealed a similar finding. In contrast, first-principles
calculations on the Ni3Al (van de Walle et al., 1998) and
Pd3V (van de Walle and Ceder, 2000) compounds found
only a small difference between the thermal-expansion
coefficients of the ordered and the disordered phases
(less than 131026 K21).

Even though the temperature dependence of vibra-
tional entropy can be large, it is important to keep in
mind that a given vibrational entropy difference arising
from anharmonic contributions has a smaller impact on

FIG. 3. The volume mechanism. Disordering is typically asso-
ciated with an increase in volume. Since chemical bonds tend
to soften as they lengthen, an overall increase in volume
should be associated with a corresponding decrease in the fre-
quency of all phonon modes, resulting in an increase in vibra-
tional entropy.



22 A. van de Walle and G. Ceder: Lattice vibrations and substitutional alloys
the vibrational free energy than a harmonic contribution
of the same magnitude. The reason is that anharmonic
contributions to the vibrational entropy are always
partly canceled by anharmonic contributions to the vi-
brational enthalpy. In contrast, such cancellation does
not occur for harmonic contributions.6 The quasihar-
monic approximation predicts that anharmonic contri-
butions have exactly half the effect of harmonic contri-
butions (see Ozoliņš et al., 1998c or Appendix B) when
the volume dependence of the energy is quadratic while
the volume dependence of the vibrational entropy is
linear.

Experimental measurements have not identified the
volume mechanism as a major source of entropy differ-
ences since the simple thought experiment that allows its
identification in calculations cannot be performed ex-
perimentally. The effect of thermal expansion on the
phonon DOS, however, is clearly seen experimentally
(Nagel et al., 1996; Nagel, Fultz, and Roberston, 1997),
due to the fact that thermal expansion causes shifts in
the phonon DOS that are not accompanied by substan-
tial changes in its shape. Measurements on Ni3V (Nagel
et al., 1996), Co3V (Nagel, Fultz, and Robertson, 1997),
and Cu3Au (Bogdanoff et al., 1999) all show that anhar-
monic contributions are not negligible.

C. The size mismatch effect

The third advocated source of vibrational entropy
changes is the effect of atomic size mismatch. When at-
oms of different sizes are constrained to coexist on a
lattice, the atoms can experience compressive (or ten-
sile) stress that results in locally stiffer (or softer) re-
gions. When large atoms sit on neighboring lattice sites,
the amplitude of their vibrations is reduced, i.e., the al-
loy tends to be locally stiffer. Conversely, when small
atoms sit on neighboring lattice sites, the extra room
available results in a locally softer region.

The phenomenon was first noted in EAM calculations
on the Cu3Au compound (Auckland, 1994), where, in
the disordered state, the presence of highly compressed
pairs of Au atoms lowers the vibrational entropy of the
disordered state. A similar effect was found in first-
principles calculations on Ni3Al (van de Walle et al.,
1998), where very compressed pairs of Al atoms were

6A temperature dependence of vibrational entropy necessar-
ily introduces a temperature dependence of the vibrational en-
thalpy, as a consequence of the following thermodynamic rela-
tion: ]Hvib /]T 5T (]Svib /]T) . The anharmonic vibrational
free energy is then a sum of two competing contributions:
Fvib5Hvib2TSvib . In contrast, harmonic contributions to the
vibrational enthalpy are configuration independent in the high-
temperature limit, by the equipartition theorem, and give no
net contribution to vibrational free-energy differences. Vibra-
tional entropy differences originating from harmonic contribu-
tions thus enter the expression for vibrational free-energy dif-
ferences directly, without any partial cancellation from the
enthalpic term.
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found in the disordered state. In first-principles calcula-
tions on Pd3V (van de Walle and Ceder, 2000), an even
more intriguing size-related effect was observed: all
three types of chemical bonds have incompatible equi-
librium lengths and the vibrational entropy changes can
be explained solely by the large relaxations of the atoms
away from their ideal lattice sites in the disordered state.
A summary of these observations can be found in Mor-
gan et al. (2000).

In the experimental literature, the size mismatch ef-
fect has been described with the help of a stiff sphere
picture first introduced in an investigation of the Cu3Au
compound (Nagel et al., 1995). The fundamental intu-
ition behind this picture is that a chemical bond becomes
stiffer when the two bonded atoms have touching atomic
‘‘spheres.’’ Further evidence for this stiff sphere picture
was provided by a systematic analysis of the vibrational
entropy of formation of various L12 compounds
(Bogdanoff and Fultz, 1999), which shows a correlation
with the difference in radii between the two alloyed
species.

V. COMPUTATIONAL TECHNIQUES

To understand the nature of the difficulties encoun-
tered, it is instructive to first consider how, in principle,
the vibrational properties of a single configuration s can
be calculated with an arbitrary accuracy. The techniques
presented in this section are the tools that were used to
investigate the importance of lattice vibrations pre-
sented in Sec. III.A.

Phase diagram calculation involves computing vibra-
tional properties for a set of configurations s. Carrying
out the full phonon problem for each configuration re-
sults in undue computational requirements. Neverthe-
less, the formal solutions presented here play an impor-
tant role in devising practical ways to include vibrational
effects in phase diagram calculations. This section first
focuses on the treatment lattice vibration within the har-
monic approximation, before addressing the issue of an-
harmonicity. Finally, important consideration concerning
the energy models used as an input for these procedures
are discussed.

A. Lattice vibrations in the harmonic approximation

In this section, we review the problem of determining
the constrained free energy of a system in the neighbor-
hood of a configuration s, under the assumption that the
system spends most of its time in a region near a local
energy minimum, where a harmonic approximation to
the energy surface is accurate. In this approximation, the
free energy determination reduces to the well-known
phonon problem (Ashcroft and Mermin, 1976; Maradu-
din et al., 1971).

1. Theory

Consider a system consisting of N atoms. Let Mi be
the mass of atom i and u(i) be its displacement away
from its equilibrium position. Time derivatives are de-
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noted by dots while greek letter subscripts denote one of
the Cartesian components of a vector. In the harmonic
approximation, the energy of the system can be written
as

H5
1
2 (

i
Mi@ u̇~ i !#21

1
2 (

i ,j
uT~ i !F~ i ,j !u~ j !, (10)

where

Fab~ i ,j !5
]2E

]ua~ i !]ub~ j ! U
u(l)50;l

. (11)

The 333 matrices F(i ,j) are called the force constants
tensors, as they relate the displacement of atom j to the
force f exerted on atom i :

f~ i !5F~ i ,j !u~ j !. (12)

Such a harmonic approximation of a solid is often re-
ferred to as a Born–von Kármán model.

Note that contrary to usual treatment, we do not im-
mediately impose translational symmetry, in order to de-
rive a few general results that also apply to systems such
as disordered alloys.

The substitution e(i)5AMiu(i) yields

H5
1
2 S (

i
ė2~ i !1(

i ,j
eT~ i !

F~ i ,j !

AMiMj

e~ j !D . (13)

The 3N eigenvalues lm of the matrix,7

D5S F~1,1!

AM1M1

¯

F~1,N !

AM1MN

A � A

F~N ,1!

AMNM1

¯

F~N ,N !

AMNMN

D , (14)

then give the frequencies nm5(1/2p)Alm of the normal
modes of oscillation. In the harmonic approximation,
the knowledge of these frequencies is sufficient to deter-
mine the thermodynamic quantities we are interested in.
This information is conveniently summarized by the
phonon density of states (DOS), which gives the number
of modes of oscillation having a frequency lying in the
interval @n ,n1dn# :

g~n!5
1
N (

m51

3N

d~n2nm!. (15)

It can be shown that the free energy of the system (re-
stricted to remain close to a given configuration s) is
given by (Maradudin et al., 1971)

7Among the 3N eigenvalues, the six eigenvalues associated
with rigid body translations and rotations are zero. In the ther-
modynamic limit, these few degrees of freedom are inconse-
quential. To avoid notational complications, we simply assume
that the solid is fixed to a reference frame by springs so that
the resulting dynamical matrix has 3N nonzero eigenvalues.
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F
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lnF2 sinhS hnm
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where E* is the potential energy of the system at its
equilibrium position and h is Planck’s constant. Phase
transitions in alloys typically occur at a temperature
where the high-temperature limit of this expression is an
accurate approximation:

F

N
5

E*

N
1kBTE

0

`

lnS hn

kBT D g~n!dn

5
E*

N
1

kBT

N (
m

lnS hnm

kBT D .

The usual criterion used to determine the temperature
range where high-temperature limit is reached is the De-
bye temperature. Note that the factor h/kBT is often
omitted because it cancels out when calculating vibra-
tional free-energy differences. In the high-temperature
limit, another important form of cancellation occurs:
The atomic masses have no effect on the free energies of
formation (Garbulsky and Ceder, 1994; Grimvall and
Rosen, 1983). This important result, shown in Appendix
A, rules out that masses play any significant role in de-
termining phase stability at high temperatures.

As mentioned before, a convenient measure of the
magnitude of the effect of lattice vibrations on phase
stability is the vibrational entropy, which can be ob-
tained from the vibrational free energy by the well-
known thermodynamical relationship Svib52 ]Fvib /]T .
Contrary to the vibrational free energy of formation, the
vibrational entropy of formation8 is temperature inde-
pendent in the high-temperature limit of the harmonic
approximation, allowing a unique number to be re-
ported as a measure of the importance of vibrational
effects.

In a crystal, the determination of the normal modes is
somewhat simplified by the translational symmetry of
the system. Let n denote the number of atoms per unit
cell. Let u( i

l) denote the displacements of atom i in cell
l away from its equilibrium position. Let F( i j

l l8) be the
force constant relative to atom i in cell l and atom j in
cell l8 and let e( i

l)5AMiu( i
l). Bloch’s theorem indicates

that the eigenvectors of the dynamical matrix are of the
form

eS l
i D5exp@i2p~k•l !#eS 0

i D , (16)

where i5A21, l denotes the Cartesian coordinates of
one corner of cell l , and k is a point in the first Brillouin

8The absolute value of the vibrational entropy is not constant
at high temperature, but its temperature dependence does not
vary across distinct phases and thus formation values are tem-
perature independent.
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zone. This fact reduces the problem of diagonalizing the
3N33N matrix D to the problem of diagonalizing a
3n33n matrix D(k) for various values of k . This can
be shown by a simple substitution of Eq. (16) into Eq.
(13).9 The dynamical matrix D(k) to be diagonalized is
given by10

D~k !5(
l

exp@i2p~k•l !#S F~1 1
0 l !

AM1M1

¯

F~1 n
0 l !

AM1Mn

A � A

F~n 1
0 l !

AMnM1

¯

F~n n
0 l !

AMnMn

D .

(17)

As before, the resulting eigenvalues l i(k) for i
51, . . . ,n give the frequencies of the normal modes
@n i(k)5(1/2p)Al i(k)# . The function n i(k) for a given i
is called a phonon branch, while the plot of the k depen-
dence of all branches along a given direction in k space
is called the phonon dispersion curve. In periodic sys-
tems, the phonon DOS is defined as

g~n!5(
i51

3n E
BZ

d@n2n i~k !#dk , (18)

where the integral is taken over the first Brillouin zone.

2. Force-constant determination

The above theory relies, of course, on the availability
of the force-constant tensors. The determination of
these force constant tensors is the focus of this section.
Before describing the methods used for their determina-
tion, we will first review important properties of the
force constant tensors.

While the number of unknown force constants to be
determined is in principle infinite, it can, in practice, be
reduced to a manageable finite number with the help of
the following two observations. First, the force constant
F(i ,j) between two atoms i and j beyond a given dis-
tance can be neglected. Second, the symmetry of the
crystal imposes linear constraints between the elements
of the force-constant tensors.

The accuracy of the approximation made by truncat-
ing the range of force constant can be tested by gradu-
ally increasing the range of interactions, until the quan-
tities to be determined no longer vary substantially. It is
important to note that most thermodynamic quantities
can be written as a weighted integral of the phonon
DOS and their convergence rates are thus much faster

9The summation over atoms needs to be replaced by summa-
tions over atoms and cells.

10The reader should be aware that there are many possible
conventions regarding the phase factor: for instance,
exp@i2p(k•l)#, exp@2i2p(k•l)#, exp@i(k•l)#, exp„i2p$k•@ l
1x(j)#%… where x(j) is the coordinate of atom j within the cell.
While all conventions yield different dynamical matrices, they
all have the same eigenvalues.
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than the pointwise convergence rate of the phonon DOS
itself (Garbulsky, 1996; van de Walle et al., 1998). That
is, the errors on the DOS at each frequency tend to be
quickly averaged out when the contributions of each fre-
quency are added.

The restrictions on the force constants imposed by the
symmetry of the lattice can be expressed as follows.
Consider the force constant F(i ,j) of atoms i and j lo-
cated at x(i) and x(j) and consider a symmetry trans-
formation that maps a point of coordinate x to Sx1t ,
where S is a 333 matrix and t and 331 translation
vector. In general, if the crystal is left unchanged by such
a symmetry operation, the force-constant tensors should
be left unchanged as well. This fact imposes the follow-
ing constraints on the spring tensors:

Sx~ i !1t5x~ i8!

Sx~ j !1t5x~ j8!J ⇒F~ i ,j !5STF~ i8,j8!S . (19)

Additional constraints on the force constants can be de-
rived from simple invariance arguments. The most im-
portant constraints, obtained by noting that rigid trans-
lations and rotations must leave the forces exerted on
the atoms unchanged, are

F~ i ,i !52(
jÞi

F~ i ,j !,

F~ i ,j !5FT~ j ,i !.

Additional constraints can be found in Maradudin et al.
(1971) and Born and Huang (1956).

There are essentially three approaches to determining
the force constants: analytic calculations, supercell cal-
culations, and linear-response calculations. Analytic cal-
culations are only possible when the energy model is
sufficiently simple to allow a direct calculation of the
second derivatives of the energy with respect to atomic
displacements, as in the case of empirical pair potential
models. For first-principles calculations, either one of
the two following methods have to be used.

a. The supercell method. The supercell method (Wei
and Chou, 1992; Garbulsky, 1996) consists of slightly
perturbing the positions of the atoms away from their
equilibrium position and calculating the reaction forces.
Equating the calculated forces to the forces predicted
from the harmonic model yields a set of linear con-
straints that allows the unknown force constants to be
determined,11

F~ i !5F~ i ,j !u~ j !. (20)

11Equalities between calculated and predicted energies can
be used as well. Using energies alone to determine the force
constants would be a rather inefficient use of the information
provided by ab initio calculations. Once a first-principles cal-
culation of the energy of a distorted structure has been com-
pleted, the calculation of the forces acting on the atoms is
computationally inexpensive. The knowledge of the energy
provides a single equation while the knowledge of the forces
provides up to three equations per atom.



25A. van de Walle and G. Ceder: Lattice vibrations and substitutional alloys
When the force constants considered have a range
that exceeds the extent of the primitive cell, a supercell
of the primitive cell has to be used. (The simultaneous
movement of the image atoms introduces linear con-
strains among the forces that prevent the determination
of some of the force constants.)

While any choice of the perturbations that allows the
force constants to be determined is in principle equally
valid, a few simple principles drastically narrow down
the number of perturbations that need to be considered.
For a given supercell, there is only a finite number of
nonredundant perturbations to consider.

A minimal set of nonredundant perturbations can be
obtained as follows.

• Consider in turn each atom in the asymmetric unit of
the primitive cell.

• Mark the chosen atom (and its periodic images in the
other supercells) and consider it as distinct from other
atoms of the same type. (This operation effectively
removes some of the symmetry operation of the space
group of the crystal.)

• Construct the point group $Si% of the site where this
atom is located. (Si is a 333 matrix.)

• Move the chosen atom along a direction u1 such that
the space spanned by the vectors Siu1 (for all i) has
the highest dimensionality possible.

• If the resulting dimensionality is less than three, con-
sider an additional direction u2 such that the space
spanned by the vectors Siuj for j51,2 has the highest
dimensionality possible.

• If the resulting dimensionality is less than three, con-
sider a direction u3 orthogonal to u1 and u2 .

The resulting displacements uj for all atoms in the
asymmetric unit give a minimal list of perturbations that
is sufficient to find all the force constants that can pos-
sibly be determined with the given supercell. This result
follows from the observation that any other possible dis-
placement can be written as a linear combination of the
displacements considered above (or displacements that
are symmetrically equivalent to them).

When determining force constants with the supercell
method, it is important to verify that the presence of
small numerical noise in the calculated forces does not
result in too much error in the fitted force constants. To
minimize noise in the fitted force constants, it may be
necessary to use more than the minimum possible num-
ber of perturbations. The additional perturbations
should ideally be based on different supercells, to mini-
mize the systematic errors introduced by the movement
of the image atoms.

When ab initio calculations are used to calculate the
forces, it is especially important to iterate the electronic
self-consistency steps to convergence. Even though the
energy may appear to be well converged, the forces may
not yet be. Energy is the solution to a minimization pro-
cedure, while forces are not. As a result, errors on the
energy are of a second order in the minimization param-
eters, while the errors on the forces are of the first order
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in the minimization parameters. For the same reason,
special attention should be given to the structural
relaxations.

The true system is not exactly harmonic and the cal-
culated forces may exhibit anharmonic components that
introduce noise into the fitted force constants. This
problem can be alleviated by considering an additional
set of perturbations, where the displacements have the
opposite sign. Subtracting the calculated forces obtained
for this new set of displacements from the corresponding
displacements of the opposite sign exactly cancels out all
the odd-order anharmonic terms. Of course, for pertur-
bations such that the negative displacement is equivalent
by symmetry to the corresponding positive displace-
ment, this duplication is unnecessary, because the terms
of odd order are already zero by symmetry.

Additional guidelines for fitting force constants can be
found in Ackland et al. (1997), Wei and Chou (1992),
and Garbulsky (1996).

b. Linear response. Linear-response calculations seek
to directly evaluate the dynamical matrix for a set of k
points. The starting point of the linear-response ap-
proach is evaluation of the second-order change in the
electronic energy induced by atomic displacements from
perturbation theory. Within this framework, practical
schemes to compute vibrational properties in semicon-
ductors (Baroni et al., 1987; Giannozzi et al., 1991;
Gonze et al., 1992; Waghmare, 1996) and metalllic sys-
tems (de Gironcoli, 1995; Ozoliņš, 1996; Quong and
Klein, 1992) have been devised. In this section we will
not discuss the theory behind linear response calcula-
tions which can be found in a recent review (Gonze,
1997; Gonze and Lee, 1997), but rather focus on how the
results of linear-response calculations can be used in the
context of alloy phase diagram calculations.

The dynamical matrices calculated from linear-
response theory are exact in the sense that they account
for arbitrarily long-range force constants. While in the
supercell method inaccuracies arise from the truncation
of the force constants, the limit in precision for linear
response calculations arises from the use of a small num-
ber of k points to sample the Brillouin zone. To address
this issue, two methods can be used.

A set of special k points can be selected through the
Chadi-Cohen (Chadi and Cohen, 1973) or Monkhorst-
Pack (Monkhorst and Pack, 1976) schemes. Special k
points are selected so that the integral over the Brillouin
zone of a function h(k) that contains no Fourier com-
ponents above a given frequency can be exactly evalu-
ated by a weighted average of the function at each spe-
cial point. Since thermodynamic quantities can be
written as integrals of functions of the dynamical matrix
f„D(k)… over the Brillouin zone, the procedure is
straightforward to apply in this context.

The other approach is the so-called Fourier inversion
method [see, for instance, Giannozzi et al. (1991) and
Quong and Klein (1992)]. The calculated dynamical ma-
trices from a set of k points are used to determine the
value of the force constants up to a certain interaction
range. The resulting harmonic model can then be used
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to calculate the dynamical matrix at any point in the
Brillouin zone, allowing a much finer sampling of the
Brillouin zone for the purpose of performing the nu-
merical integration required to determine any thermo-
dynamic quantity.

The Fourier inversion method is preferable when the
function f„D(k)… to be integrated exhibits high-
frequency components, while the dynamical matrix it-
self, D(k), does not. Such a situation would arise when
the function f is highly nonlinear. The smoothness of
D(k) then ensures that it can be represented with a
small number of Fourier components. The less well-
behaved function f„D(k)… can then be accurately inte-
grated with as many k points as needed, using the dy-
namical matrix D(k) calculated from the spring model.

In the case of vibrational free-energy calculations, the
special k points method has been observed to converge
rapidly with respect to the number of k points (Garbul-
sky and Ceder, 1996),12 so that the Fourier inversion
method is probably unnecessary.13

For a given set of special k points, there is an approxi-
mate correspondence between the number of Fourier
components that can be integrated exactly and the range
of force constants that can be determined. The corre-
spondence is exact only when the lattice has one atom
per cell and when the function f is linear.14

While supercell and linear-response calculations are in
principle equivalent in terms of the information they
provide, they have complementary advantages in terms
of computational efficiency. The linear-response method
is the most efficient way to perform high-accuracy calcu-
lations that would otherwise be tedious and computer
intensive with the supercell method. However, when a
high accuracy is not needed, the supercell method has
the advantage that various simplifying assumptions re-
garding the structure of the force constant tensors can
transparently be used to drastically reduce computa-
tional requirements. It is not clear at which level of ac-
curacy the crossover between the efficiency of each ap-
proach occurs, but it is important to keep both
approaches in mind. Another consideration is that in the
continuously evolving field of computational solid-state
physics, new first-principles energy methods are continu-
ally developed, and the derivation of the appropriate
linear-response theory always follows the derivation of
simple force calculations. Hence, despite the elegance of

12Calculations of the authors, based on data from Ozoliņš
et al. (1998c) also support this finding.

13Note that the function whose integral gives the free energy
exhibits a logarithmic singularity at the G point, which could
lead to high-frequency components that are difficult to inte-
grate accurately. However, in three-dimensional systems, this
logarithmic singularity contributes very little to the value of
the free energy, so that the rate of convergence of the integral
as a function of the number of k points is not dramatically
slowed down by the presence of the singularity. As a result, the
special k point method can safely be used in practical calcula-
tions of the vibrational free energy.

14As can be shown by a simple Fourier transform.
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linear-response theory, it is to be expected that the su-
percell method will always remain of interest.

B. Anharmonicity

While the harmonic approximation is remarkably ac-
curate given its simplicity, it has one important limita-
tion: It is unable to model thermal expansion and its
impact on vibrational properties. Both the free energy F
and the entropy S can be obtained from the the heat
capacity Cp :

S5E
0

T Cp

T
dT and F5EuT502E

0

T
S dT , (21)

Hence a simple way to account for thermal expansion is
to use the following well-known thermodynamic rela-
tionship between the heat capacity at constant pressure
Cp and at constant volume Cv :

Cp5Cv1BVTa2, (22)

where a is the coefficient of volumetric thermal expan-
sion while B is the bulk modulus. In a purely harmonic
model, there is no thermal expansion and Cv is equal to
Cp . The term BVTa2 can thus be viewed as correction
arising from anharmonic effects.

Equation (22) is directly useful in the context of ex-
perimental measurements where Cp , V , and a can be
directly measured (Nagel et al., 1996; Robertson et al.,
1999). In the following section, we describe the compu-
tational techniques used to handle anharmonicity.

1. The quasiharmonic model

A simple modification to the harmonic approxima-
tion, called the quasiharmonic approximation, allows the
calculation of thermal expansion at the expense of a
moderate increase in computational cost. In the quasi-
harmonic approximation, the phonon frequencies are al-
lowed to be volume dependent, which amounts to as-
suming that the force constant tensors are volume
dependent [see, for instance, Grimvall (1986)]. This ap-
proximation has recently been shown to be extremely
reliable, enabling accurate first-principles calculations of
the thermal-expansion coefficients of many elements up
to their melting points (Quong and Lui, 1997).

The best way to understand this approximation is to
study a simple model system where it is essentially exact.
Consider a linear chain (with periodic boundary condi-
tions) of identical atoms interacting solely with their
nearest neighbors through a pair potential of the form

U~r !5a1r1a2r21a3r3. (23)

Let L be the average distance between two nearest
neighbors and let u(i) denote the displacement of atom
i away from its equilibrium position. The total potential
energy (per atom) of this system is then given by

U

N
5

1
N (

i
a1@L1u~ i !2u~ i11 !#1a2@L1u~ i !

2u~ i11 !#21a3@L1u~ i !2u~ i11 !#3.
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This expression can be simplified by noting that all the
terms that are linear in @u(i)2u(i11)# cancel out when
summed over i ,

U

N
5a1L1a2L21a3L31~a213a3L !

3
1
N (

i
@u~ i !2u~ i11 !#21O$@u~ i !2u~ i11 !#3%.

The first three terms, a1L1a2L21a3L3, give the elastic
energy of a motionless lattice while the remaining terms
account for lattice vibrations. The important feature of
this equation is that, even within the harmonic approxi-
mation, the prefactor of the harmonic term (a2
13a3L) depends on the anharmonicity of the potential
(through a3L). In the more realistic case of three-
dimensional systems, this length dependence translates
into a volume dependence15 of the harmonic force con-

stants F( i j
l l8).

The volume dependence of the phonon frequencies
induced by the volume dependence of the force con-
stants is traditionally modeled by the Grüneisen param-
eter

gkj52
] ln n j~k !

] ln V
(24)

which is defined for each branch j and each point k in
the first Brillouin zone. But since we are interested in
determining the free energy of a system, it is convenient
to directly parametrize the volume dependence of the
free energy itself. This dependence has two sources: the
change in entropy due to the change in the phonon fre-
quencies and the elastic energy change due to the expan-
sion of the lattice:

F~T ,V !5E* ~V !1FH~T ,V !, (25)

where E* (V) is the energy of a motionless lattice con-
strained to remain at volume V , while FH(V) is the vi-
brational free energy of a harmonic system constrained
to remain at volume V . The equilibrium volume V* (T)
at temperature T is obtained by minimizing this quantity
with respect to V . The resulting free energy at tempera-
ture T is then given by F@T ,V* (T)# .16

Let us consider a particular case that illustrates the
effect of temperature on the free energy, at the cost of a
few reasonable assumptions. We assume that

• the elastic energy of the motionless lattice is quadratic
in volume;

15Of course, in general, it could be a general strain depen-
dence, if the symmetry of the crystal is sufficiently low.

16Formally, the free energy should be determined by a sum
over every possible volume: 2kBT ln$(V exp@2bF(V)#%. How-
ever, since the volume is a macroscopic quantity, its distribu-
tion can be considered a delta function and the sum reduces to
a single term: the free energy at the volume that minimizes the
free energy.
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• the high-temperature limit of the free energy can be
used.

As shown in Appendix B, in this approximation, the
volume expansion DV as a function of temperature
takes on a particularly simple form:

DV

N
5

3kBTḡ

B
, (26)

where ḡ is an average Grüneisen parameter:

ḡ5
1

3N (
m51

3N V

nm

]nm

]V
. (27)

The resulting temperature dependence of the free en-
ergy is given by

F~T !

N
5

F~T ,V0!

N
2

~3kBTḡ !2

2B~V0 /N !
. (28)

These expressions provide a simple way to account for
thermal expansion. They also allow us to estimate the
changes in vibrational entropy as a function of tempera-
ture that is due to thermal expansion:

dSvib

dT
5

9kBḡ2

B~V0 /N !
kB . (29)

In metallic alloys, this quantity is typically of the order
of 1024kB /K.

2. Simulation

There are two main simulation-based approaches to
handling anharmonicity: Monte Carlo (MC) (Binder and
Heermann, 1988) and molecular dynamics (Allen and
Tildesley, 1987). While both approaches are able to
model anharmonicity at any level of accuracy, they suf-
fer from two limitations. First, they are computationally
demanding and therefore have, to date, been limited to
simple energy models. Second, they are unable to model
quantum-mechanical aspects of vibrations and are there-
fore limited to the high-temperature limit.17 There is an
interesting and useful complementarity between the
quasiharmonic model and simulation techniques (de
Fontaine et al., 1998; Morgan, 1998). Quantum effects
typically become negligible in the temperature range
where strong anharmonic effects, which cannot be mod-
eled accurately within the quasiharmonic framework,
become important.

The use of simulation techniques to determine vibra-
tional properties bypasses the coarse graining frame-
work presented in Sec. II.C: Both configurational and
vibrational excitations are treated on the same level.
When a simple energy model provides a sufficient accu-
racy, one can calculate thermodynamic properties di-
rectly from MC simulations where both atomic displace-

17Monte Carlo simulations that include quantum effects are
possible for systems containing a small number of particles.
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ments and changes in chemical species are allowed
during the simulation (Rittner et al., 1994; Silverman
et al., 1995).

While a full determination of a phase diagram from
simulations has, to our knowledge, not been attempted,
both MD (Ravelo et al., 1998) and MC (de Fontaine
et al., 1998; Morgan, 1998) have been used to determine
differences in vibrational free energy between two
phases. Because neither MD nor MC are able to provide
free energies directly, a special integration technique
needs to be used. The idea is to express a thermody-
namic quantity inaccessible to MC as an integral of a
quantity that can be obtained through MC. A simple
example is the change free energy F as a function of
temperature at constant pressure, which can be derived
from the Gibbs-Helmholtz relation

F~T2!5F~T1!2E
1/T1

1/T2
Ed~1/T !, (30)

where E is the internal energy. Another example is the
change in entropy as a function of temperature (at con-
stant pressure) which can be expressed in terms of the
heat capacity:

S~T2!5S~T1!1E
T1

T2 Cp

T
dT . (31)

Often, the most computationally efficient path of in-
tegration between two states is not physically meaning-
ful. For instance, one can gradually change the inter-
atomic potentials during the course of the simulation,
in order to model a change in the configuration of the
alloy, without requiring atoms to jump between lattice
sites. This task is achieved by defining an effective
Hamiltonian

Hl5~12l!Ha1lHb (32)

that gradually switches from the Hamiltonian Ha asso-
ciated with phase a to the Hamiltonian Hb associated
with phase b as the switching parameter l goes from 0 to
1. This convenient path of integration permits the calcu-
lation of free energy differences between phases at a
reasonable computational cost, with the help of the fol-
lowing thermodynamic relation:

Fb5Fa1E
0

1
~^Hb&l2^Ha&l!dl , (33)

where ^Ha&l is the average of the energy calculated us-
ing Hamiltonian Ha (and similarly for ^Hb&l ).

C. Energy models

Force constants and anharmonic contributions are ul-
timately always derived from an energy model. In this
section, we discuss various energy models, from empiri-
cal potential models to first-principles techniques, and
the error or bias they may introduce in the vibrational
properties.

Simple pairwise potentials or functionals (such as the
embedded atom method) are computationally efficient
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so that all vibrational properties can often be deter-
mined without any approximations beyond the ones as-
sociated with the specific energy model. For this reason,
the use of simple energy models has proven to be an
invaluable tool to understand trends in vibrational en-
tropies and to test a number of approximations (de Fon-
taine et al., 1998; Garbulsky, 1996; Garbulsky and Ceder,
1996; Morgan, 1998; Morgan et al., 1998).

Several potential sources of error can arise when us-
ing pair potentials or pair functionals. The first one is
that vibrational entropy is extremely sensitive to the
precise nature of the relaxations that take place in an
alloy and a simple energy model may not be able to
accurately predict these relaxations. This problem is par-
ticularly apparent when considering the wide range of
values found in the different calculations of the vibra-
tional entropy change upon disordering of the Ni3Al
compound (Ackland, 1994; Althoff et al., 1997; Ravelo
et al., 1998; van de Walle et al., 1998). But, as shown in
Table IV, most of the discrepancies can be explained
from differences in the predicted volume change upon
disordering.

This is often aggravated by the fact that simple energy
models are often not fitted to phonon properties. The
problem was noted in Althoff et al. (1997) where the
embedded atom potentials used were fitted to various
structural energies and elastic constants (Voter and
Chen, 1988). The acoustic modes were accurately ex-
trapolated from the fit to the elastic constants, but the
phonon frequencies associated with the optical modes
were overestimated by about 10%.18 The question of the
accuracy of simple energy models clearly merits further
attention. In this respect, the fit of simple energy models
to the results of ab initio calculations (Silverman et al.,
1995; Shaojun et al., 1998) offers a promising way to in-
clude vibrational effects.

In oxides, electronic polarization has to be included in
order to correctly model both the low-frequency acous-
tic modes and the high-frequency optical modes. Elec-
tronic polarization in oxides can be approximated with
the so-called core and shell model (Dick and Over-
hausser, 1958).

While quantum-mechanical methods are computa-
tionally more intensive, they generally provide more ac-
curate force constants. The most obvious error intro-
duced by the common local-density approximation
(LDA) is its systematic underprediction of lattice con-
stants which leads to an overestimation of elastic con-
stants and phonon frequencies. This systematic error
makes it difficult to compare the absolute values of cal-
culated vibrational properties with experimental mea-
surements. However, for the purpose of calculating
phase diagrams, this bias may be less of a concern, be-

18Most of the bias in the vibrational entropy introduced by
this problem should, however, cancel out when taking the dif-
ference in vibrational entropy between two phases where the
same problem is present.
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TABLE IV. Relation between the vibrational entropy change upon disordering and the volume
change upon disordering in various theoretical investigations of the Ni3Al compounds.

T (K) Svib
o→d DVo→d/Vo (%) Refs.

high 0.29 3% (Ackland, 1994)
1200 0.22 2% (Ravelo et al., 1998)
1000 0.15 2% (Althoff et al., 1997, 1998)
1000 0.11 1.6% (Morgan, 1998) Foiles-Daw embedded atom

method potentials
high 0.00 0.5% (van de Walle et al., 1998)
cause phase stability is determined by differences in free
energies, and one would expect a large part of this sys-
tematic error to cancel out.

A practical way to alleviate the LDA bias is to per-
form calculations at a negative pressure such that the
calculated equilibrium volume agrees with the experi-
mentally observed volume. As shown in van de Walle
and Ceder (1999), a very good estimate of the required
negative pressure can be obtained by a concentration-
weighted average of the pressure associated with the el-
emental solids. For the purpose of calculating elastic
properties, this approach appears to outperform the
most popular alternative to LDA, the generalized gradi-
ent approximation (GGA).19

D. Convergence issues

The basic formalisms presented in Secs. II.A and V.A
provide two natural ways to control the tradeoff be-
tween accuracy and computational requirements. In the
context of alloy theory (Sec. II.A), the range of the ef-
fective clusters interactions included in the cluster ex-
pansion controls how accurately the configurational de-
pendence of vibrational properties is modeled. In the
context of the harmonic (or quasiharmonic) treatment
of lattice vibrations (Sec. V.A), the range of the force
constants included in the Born–von Kármán model con-
trols the accuracy of the calculated vibrational proper-
ties for a given configuration. In principle, any desired
accuracy can be reached, given sufficient computing
power, by increasing the range of the interactions in
both the cluster expansion and the Born–von Kármán
models. This section seeks to answer the important
question of how far these two ranges of interactions
need to be pushed in order to reach the accuracy re-
quired in a typical phase diagram calculation.

1. Short-range force constant

The evidence that spring models including only short-
range force constants are able to correctly model vibra-
tional quantities comes from various sources.

19Part of the success of the ‘‘negative pressure’’ LDA is due
to the fact that it uses information regarding the true experi-
mental volume instead of being fully ab initio. But the knowl-
edge of one pressure per element is a relatively small amount
of information.
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First- and second-nearest-neighbor spring model are
routinely used to fit data obtained from neutron-
scattering measurement of phonon dispersion curves
(Fultz, Anthony, Nagel, et al., 1995; Nagel et al., 1995).
In the theoretical literature, there have been direct stud-
ies of the convergence as a function of the range of in-
teraction considered. All ab initio studies find that short-
range force constants (first- or second-nearest neighbor)
permit an accurate determination of thermodynamical
quantities in metals (van de Walle et al., 1998; van de
Walle and Ceder, 2000) and group-IV semiconductors
(Garbulsky, 1996). It is important to note that this rapid
convergence of most thermodynamic quantities occurs
even when the pointwise convergence rate of the pho-
non DOS is slow. As noted before, this property arises
from the fact that thermodynamic quantities are aver-
ages taken over all phonon modes and errors tend to
average out.

In ionic systems, the presence of long-range electro-
static interactions may require long-range force con-
stants. However, this electrostatic effect can easily be
modeled using pair interactions at a moderate computa-
tional cost. Once the forces predicted from a simple
electrostatic model have been subtracted, the residual
forces should be parametrizable with a short-range
spring model.

Some of the ab initio studies of convergence have sug-
gested additional simplifications to force-constant ten-
sors (Garbulsky, 1996; van de Walle and Ceder, 2000):
instead of attempting to compute all force constants in
each tensor, is it possible to obtain reliable results by
keeping only the largest terms. We now present a hier-
archy of approximations that is a formalization of these
findings.

To obtain a more intuitive representation of a given
force-constant tensor Fab(i ,j), we express it in a basis
such that the first Cartesian axis is aligned along the line
joining atom i and j . The second axis is then taken along
the highest symmetry direction orthogonal to the first
axis while the third axis is chosen to obtain a right-
handed orthogonal coordinate system.

In the absence of symmetry, the most general force
constant tensor has nine independent elements. The first
simplification is to neglect the three-body terms in the
harmonic model of the energy „e.g., @xa(i)
2xa(j)#@xb(i)2xb(k)# with aÞb…. Physically, such
terms arise from the deformation of the electronic cloud
surrounding atom i that is caused by moving atom j and
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that affect the force acting on atom k . Clearly, for any
force constant other than the nearest neighbor, this ef-
fect is negligibly small. Even for nearest-neighbor ten-
sors, it is the most natural contribution to neglect first.
In can be readily shown that for a solid consisting only
of pairwise harmonic interaction, the tensor associated
with a pair of atoms is symmetric:

Fab~ i ,j !5Fba~ i ,j !. (34)

[This constraint is distinct from the conventional con-
straint: Fab(i ,j)5Fba(j ,i).]

The elements of the force-constant tensor can be
ranked in decreasing order of expected magnitude based
on three simple assumptions:

(1) Force constants associated with stretching a bond
are larger than the ones associated with bending it.

(2) Terms relating orthogonal forces and displacements
are smaller than those relating parallel forces and
displacements.

(3) In the plane perpendicular to the bond, the anisot-
ropy in the force constants is smaller than the mag-
nitude of the force constants themselves.

We then obtain

F~ i ,j !5S a d1e d2e

d1e b1c f

d2e f b2c
D (35)

with

uau.ubu.ucu.udu.ueu.ufu. (36)

This hierarchy of force constants is important to keep in
mind, given that the off-diagonal elements of the spring
tensors are the most difficult to obtain from supercell
calculations, requiring much bigger supercells than diag-
onal elements. There is evidence (van de Walle and
Ceder, 2000) that even keeping only the stretching (a)
and isotropic bending (b) terms of the nearest-neighbor
spring tensor can provide vibrational entropies with an
accuracy of about 0.03kB . If this observation turns out
to be generally applicable, this offers a simple way
to account for vibrational effects in phase diagram
calculations.

2. Short-range effective cluster interactions

If a cluster expansion of the vibrational free energy
only requires a small number of effective cluster inter-
actions to accurately model the configurational depen-
dence of the vibrational free energy, it then becomes
practical to determine the values of these effective clus-
ter interactions from a small number of very accurate
calculations of the vibrational free energy of a few
structures.

The issue of the speed of convergence of the cluster
expansion is also related to the task of devising efficient
ways to compute vibrational properties of disordered al-
loys: The faster the cluster expansion converges, the
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easier it is to model a disordered phase (see Appendix
C). The calculations of the vibrational entropy change
upon disordering has proven to be a very effective way
to assess the importance of lattice vibrations (Althoff
et al., 1997; Ravelo et al., 1998; van de Walle et al., 1998;
van de Walle and Ceder, 2000), since this quantity can be
straightforwardly used to estimate the effect of lattice
vibrations on transition temperatures with the help of
Eq. (4).

The central question is thus whether the cluster ex-
pansion of the vibrational free energy converges quickly
with respect to the number of effective cluster interac-
tions. This is a question distinct from the range of force
constants needed to obtain accurate vibrational proper-
ties. The range of effective cluster interactions needed to
represent the configurational dependence of vibrational
free energy may very well exceed the range of the force
constants. Even in simple Born–von Kármán model sys-
tems, there is no direct correspondence between effec-
tive cluster interactions and force constants, except in
special cases (see Sec. VII.A). Once relaxations are in-
troduced in the model, then all hope of a simple corre-
spondence is lost (Morgan et al., 1998).

In this context, the question of the existence of a rap-
idly converging cluster expansion of vibrational proper-
ties has to be answered through numerical experiments.
Simple energy models offer the possibility to test, at a
reasonable computational cost, the speed of conver-
gence of a cluster expansion. Explicit calculations of a
well converged cluster expansion of vibrational entropy
in a Lennard-Jones solid (Garbulsky and Ceder, 1996)
have indicated that a small number of effective cluster
interactions (9) can provide a good accuracy
(60.03kB). Other benchmarks of the speed of conver-
gence, based on studies of disordered alloys (de Fon-
taine et al., 1998; Morgan, 1998; Morgan et al., 1998,
2000), also indicate that concise and accurate cluster ex-
pansions are possible. Experiments that seek to link fea-
tures of projected phonon DOS to the local chemical
environment of the atoms (Fultz et al., 1998) suggest
that short-range effective cluster interactions should be
able to successfully model vibrational entropy differ-
ences. One potential source of concern is the difficulty
associated with accounting for the size mismatch effect
using a short-range effective cluster interaction (Morgan
et al., 1998, 2000; van de Walle and Ceder, 2000). In the
context of cluster expansions of the energy, relaxations
of the atoms away from their ideal lattice site as a result
of size mismatch are known to introduce both non-
negligible long-range pair effective cluster interactions
and numerous multiplet effective cluster interactions. A
cluster expansion of the vibrational free energy is ex-
pected to exhibit the same problems.

All the full phonon DOS ab initio calculations of vi-
brational entropies in alloy systems performed so far
have relied on the rapid convergence of the cluster ex-
pansion (Garbulsky, 1996; Ozoliņš et al., 1998c; Tepesch
et al., 1996; van de Walle et al., 1998; van de Walle and
Ceder, 2000). While efforts to quantify the error intro-
duced by truncating the cluster expansion in ab initio
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calculations have been made (Garbulsky, 1996; van de
Walle et al., 1998; van de Walle and Ceder, 2000), the
issue of the speed of convergence of the cluster expan-
sion in the context of vibrational properties clearly mer-
its further study, especially in light of the importance of
the size mismatch effect (van de Walle and Ceder, 2000).

VI. EXPERIMENTAL TECHNIQUES

The experimental literature on the thermodynamics
of lattice vibrations in alloys relies on mainly three tech-
niques. In differential calorimetry measurements, the
heat capacity of two samples in a different state of order
is compared over a range of temperatures. If the upper
limit of the range of temperatures is chosen to be suffi-
ciently low, substitutional exchanges will not occur and
the difference in heat capacity can be assumed to arise
solely from vibrational effects. Integration of the differ-
ence in heat capacity (divided by temperature) then
yields a direct measure of the vibrational entropy differ-
ences between the two samples of the range of tempera-
ture considered. This, of course, assumes that the lower
temperature bound is sufficiently low, so that the vibra-
tional entropy of both samples can be assumed to be
zero at that temperature. It also assumes that the elec-
tronic contribution to the heat capacity is negligible. In
practice, both assumptions are typically satisfied. The
main problem with this method is that one is usually
interested in vibrational entropy differences at the tran-
sition temperature of the alloy, which is usually above
the upper limit of the temperature range used in the
heat-capacity measurements. The heat capacity there-
fore needs to be extrapolated to high temperature. This
constitutes the main source of inaccuracies in this
method. Examples of the use of this method can be
found in Anthony et al. (1993, 1994), Nagel, Anthony,
et al. (1997), Nagel et al. (1995, 1996), and Nagel, Fultz,
and Robertson (1997).

A second method is the measurement of phonon dis-
persion curve through inelastic neutron scattering. For
ordered alloys that can be produced in large single crys-
tals, this method is very powerful. Once the dispersion
curves along special directions in reciprocal space are
measured, they can be used to fit Born–von Kármán
spring models which, in turn, yield the normal frequen-
cies for any point in the Brillouin zone. With the help of
the standard statistical-mechanics techniques described
in Sec. V.A, this information is sufficient to determine
the vibrational entropy. Examples of applications of this
method can be found in Anthony et al. (1994), Nagel,
Anthony, et al. (1997), Fultz, Anthony, Nagel, et al.
(1995), Fultz, Anthony, Robertson, et al. (1995), and Na-
gel et al. (1995). The applicability of this method is un-
fortunately limited by the availability of large single
crystals. The case of disordered alloys presents an even
more fundamental problem: Disordered alloys do not
have well-defined dispersion curves and there is no
straightforward way to fit the spring constants of a
spring model from the experimental data. This problem
is usually addressed by using the virtual crystal approxi-
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mation, in which different constituent atoms are re-
placed by one ‘‘average’’ type of atom (see Appendix
C). Unfortunately, this approximation has repeatedly
been shown to have a very limited accuracy for the pur-
pose of measuring vibrational entropy differences (Al-
thoff et al., 1997; Nagel et al., 1997; Ravelo et al., 1998;
Shaojun et al., 1998). Nevertheless, single-crystal pho-
non dispersion curve measurements for ordered alloys
present a unique opportunity to perform a stringent test
of the accuracy of theoretical models.

A third method is the determination of the phonon
density of states from incoherent neutron-scattering mea-
surements. In contrast to the preceding approach, this
method can readily be applied to disordered systems
and to compounds for which single crystals are not avail-
able (Bogdanoff et al., 1999; Fultz, Anthony, Nagel,
et al., 1995; Nagel et al., 1996; Nagel, Fultz, and Robert-
son, 1997; Robertson et al., 1999). The main limitation of
this approach is that different atomic species have differ-
ent neutron-scattering cross sections. The scattered in-
tensity at each frequency measures a ‘‘density of states,’’
where each mode is weighted by the scattering intensity
of the atoms participating in the mode in question. Thus
one needs some prior information about the vibrational
modes in order to reconstruct the true phonon DOS
from the experimental data. In the case of alloys, there
is not a one-to-one correspondence between the mea-
sured data and the vibrational entropy. This problem can
be alleviated by choosing alloy systems where the scat-
tering intensity of each species is similar (Nagel, Fultz,
and Robertson, 1997; Robertson et al., 1999).

Other techniques have been used to measure vibra-
tional entropy differences. Some researchers have used
the fact that vibrational entropy and thermal expansion
are directly related, to estimate vibrational entropy dif-
ferences from accurate thermal-expansion measure-
ments (Mukherjee et al., 1996, 1998). The measurement
of inelastic nuclear resonant scattering spectrum has also
been used to relate changes in the phonon DOS to
changes in the short-range order of a disordered alloy
(Fultz et al., 1998). Finally, relatively noisy estimates of
vibrational entropy differences can be obtained from
x-ray Debye-Waller factors or from the measurement of
mean-square relative displacement (MSRD) of the at-
oms relative to their neighbors through extended elec-
tron energy-loss fine structure (EXELFS) (Anthony
et al., 1993).

VII. MODELS OF LATTICE VIBRATIONS

While the ability to control the level of approximation
discussed in the previous section is extremely useful,
there remains the problem that, very often, only consid-
ering the first few levels in this hierarchy of approxima-
tions already involves substantial computational require-
ments. For this reason, models of lattice vibrations that
involve fewer parameters but more physical intuition
may provide a practical mean of including vibrational
effects in phase diagram calculations. In this section, we
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will present the advantages and weaknesses of each
method, in light of the three fundamental mechanisms
described in the Sec. IV.

A. The ‘‘bond proportion’’ model

There have been many attempts [see, for instance,
Dyson (1953), Wojtowicz and Kirkwood (1960), Bakker
(1982a), Garbulsky and Ceder (1994)] to find ways to
express the relationship between the vibrational free en-
ergy and the dynamical matrix in a form that illustrates
the intuition behind the bond proportion mechanism. In
a variety of simple model systems, a convenient exact
expression can be derived for the nearest-neighbor ef-
fective cluster interaction in the expansion of the vibra-
tional free energy in the high-temperature limit. For
simple nearest-neighbor spring models with central
forces in linear chains (Bakker, 1982a; Garbulsky and
Ceder, 1994; Matthew et al., 1983), square lattices (Bak-
ker, 1982a), or simple cubic lattices (Waegmaekers and
Bakker, 1984), the nearest-neighbor effective cluster in-
teraction is given by

V1nn5
d

8
kBT lnS kAAkBB

kAB
2 D . (37)

where kAA , kBB , and kAB are, respectively, the spring
constants associated with A-A , B-B , and A-B bonds
and d is the dimensionality of the system. It has been
noted, on the basis of numerical experiments, that the
same expression performs well for other lattices (Gar-
bulsky and Ceder, 1994). This success arises from the
fact that, as shown in Appendix E, Eq. (37) is the first-
order approximation to the true vibrational entropy
change in a large class of systems which satisfies the fol-
lowing assumptions:

• the high-temperature limit of the vibrational entropy
is appropriate;

• the nearest-neighbor force constants can be written as
F(i ,j)5ks is j

f(i ,j) where ks is j
denotes the (scalar)

stiffness of the spring connecting sites i and j with
occupations s i and s j while the f(i ,j) are dimension-
less spring constant tensors. The f(i ,j) are assumed
equivalent under a symmetry operation of the space
group of the parent lattice;

• all force constants ks is j
are such that

U ks is j

Aks is i
ks js j

21U!1. (38)

Equation (37) applies to simple harmonic models with
nearest-neighbor springs on the fcc, bcc, or sc primitive
lattices (and, approximately, on the hcp lattice), as long
as the above assumptions are satisfied. Both stretching
and bending terms are allowed in the spring tensors, as
long as their relative magnitude is independent of ks is j

(e.g., when the bending terms are always, say, 10% of
the corresponding stretching term, regardless of the
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magnitude of the stretching term). If force constants,
other than bending or stretching terms, are important,
the bond proportion model ceases to be valid. This can
be seen by the following argument. The bond proportion
picture requires every bond of a certain type (for in-
stance, A-A bonds) to have an identical spring tensor.
However, the point symmetry of each bond can be dif-
ferent and similar chemical bonds in different environ-
ment face different symmetry induced constraints on
their spring tensors (Sluiter et al., 1999). The only way to
reconcile these observations is use a spring tensor that is
compatible with the highest possible symmetry, ensuring
that it is also compatible with any other environment
with a lower symmetry. With the highest possible sym-
metry, only two independent terms remain in the spring
tensor: the stretching and bending terms.

Equation (37) embodies the essential intuition behind
the effect of the alloy’s state of order on its vibrational
free energy. When one replaces an A-A bond and a
B-B bond by two A-B bonds, the vibrational free en-
ergy will decrease only if the stiffness of A-B bonds,
kAB , exceeds the geometrical average stiffness of the
bonds between identical species AkAAkBB. This obser-
vation allows the determination of the expected effect of
vibrations on the shape of the phase diagram by simple
arguments. The link between the nearest-neighbor effec-
tive cluster interaction of the expansion of the vibra-
tional entropy can be summarized by the expression
(Garbulsky and Ceder, 1996)

Tc
config1vib

Tc
config 5

1
17aV1nn /kBT

, (39)

where the ‘‘2’’ and ‘‘1’’ correspond to ordering and
segregating systems, respectively, and where a is a di-
mensionless parameter that only depends on the lattice
type and the ordering tendency of the system (for in-
stance, for fcc, a51.7 in ordering systems and a59.8 in
segregating systems, while for bcc, a56.5 in both cases).

It is straightforward to include vibrational effects in
phase diagram calculations using the bond proportion
model. All that is needed is an estimate of the stiffness
of A-A , B-B , and A-B bonds, which could come, for
instance, from supercell calculations of the nearest-
neighbor force constants in a few simple structures or
from the bulk moduli of the pure elements and one or-
dered compound. The nearest-neighbor effective cluster
interaction then obtained can be simply added to the
cluster expansion of the energy.

While Eq. (37) is useful to estimate the importance of
the bond proportion mechanism in a given system, one
can avoid some of the approximations involved in deriv-
ing Eq. (37) at the expense of only a modest amount of
additional effort. One can find the exact phonon DOS of
the nearest-neighbor Born–von Kármán model for a va-
riety of configurations of the alloy, which allows a more
accurate cluster expansion of the vibrational energy to
be derived. In this fashion, the condition specified in Eq.
(38) is no longer needed and the vibrational entropy can
be calculated at any temperature.
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It is important to keep in mind that two important
assumptions are made when invoking the bond propor-
tion mechanism. First, vibrational entropies are solely
determined by the nearest-neighbor force constants.
There is theoretical evidence that nearest-neighbor
spring models can predict vibrational entropy differ-
ences with an accuracy of about 0.02kB in metallic (van
de Walle et al., 1998; van de Walle and Ceder, 2000) and
semiconductor (Garbulsky, 1996) systems. Given that
configurational entropy differences are typically of the
order of 0.2kB , this precision should be sufficient for
practical phase diagram calculations.

The second assumption is that each type of chemical
bond is assumed to have an intrinsic stiffness that is in-
dependent of its environment. First-principles calcula-
tions on the Li-Al (Sluiter et al., 1999) and on the Pd-V
system (van de Walle and Ceder, 2000) unfortunately
indicate that the stiffness of a chemical bond does
change substantially as a function of its environment.
This problem is serious, as it considerably limits the ap-
plicability of the bond proportion model. These changes
of the intrinsic stiffness of the bonds as a function of
their environment are precisely the focus of the two
other suggested sources of vibrational entropy changes.
In summary, while the bond proportion model gives an
elegant description of one of the mechanisms suggested
to be at the origin of vibrational entropy differences, it
completely ignores the two other mechanisms, namely,
the volume and size mismatch effects.

B. The Debye model

Perhaps the most widespread approximation to the
phonon DOS g(n) is the Debye model [see, for in-
stance, Grimvall (1986) and Ashcroft and Mermin
(1976)], where the phonon problem is solved in the
acoustic limit. In this case, the phonon DOS is approxi-
mated by

g~n!5H 9n2

nD
3 if n<nD

0 if n.nD ,
(40)

where nD5kBQD /h and QD is the Debye temperature,
given by

QD5
h

kB
S 3N

4pV D 1/3

CD , (41)

where CD is the Debye sound velocity, defined by

3

CD
3 5K (

l51

3 1

Cl
3 L , (42)

where the right-hand side is the directional average of a
function of the three sound velocities Cl (Grimvall,
1986). The free energy of a Debye solid is given by
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in the high-temperature limit, where the Debye function
D(u) is given by

D~u !53u3E
0

u x4ex

~ex21 !2 dx . (43)

Since the Debye sound velocity CD is a complicated
function of all elastic constants of the material, an ap-
proximation to the Debye temperature that only in-
volves the bulk modulus proves extremely useful. Such
an approximation was derived by Moruzzi, Janak, and
Schwarz (MJS) (Moruzzi et al., 1988) for cubic
materials:20

QD50.617S 3

4p
D 1/3

h

kB
S V1/3B

M̄
D 1/2

, (44)

where V is the average atomic volume, B is the bulk
modulus, and M̄ is the concentration weighted arith-
metic mean of the atomic masses. As noted in Garbul-
sky and Ceder (1994), in the high-temperature limit, the
MJS model does not exhibit the required property that
the masses have no effect on the vibrational free energy
of formation, although using a geometric average of the
masses (Garbulsky and Ceder, 1996) fixes this problem.

The quasiharmonic approximation can be used, within
Debye theory, to account for mild anharmonicity. In the
so-called Debye-Grüneisen approximation, the volume
dependence of the phonon DOS is modeled by a single
Grüneisen parameter and the effect of volume can be
summarized by simply making the Debye temperature
volume dependent:

QD5QD ,0S V0

V D g

, (45)

where QD ,0 is the Debye temperature at volume V0 and
g is the Grüneisen parameter.

Despite their inaccurate description of the true pho-
non DOS at high frequencies, the Debye and Debye-
Grüneisen models are quite successful at modeling the
changes in vibrational properties of a given compound
as a function of temperature. For instance, the thermal
properties of pure metals (Moruzzi et al., 1988) calcu-
lated in the Moruzzi-Janak-Schwarz approximation are
surprisingly accurate. The reason for this success is that
most thermodynamic quantities (e.g., free energy, en-

20This approximation has also been used for materials with a
lower symmetry (Sanchez et al., 1991; Asta et al., 1993).
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tropy, heat capacity, etc.) exhibit their most dramatic
variations at low temperature, where the low-frequency
phonon modes that are correctly described by the De-
bye model have a dominant effect. In the high-
temperature regime, thermodynamic quantities are de-
termined by the classical equipartition theorem, and any
harmonic model gives the correct behavior.

Debye-like models are expected to perform well in
systems where the differences in vibrational free energy
between compounds can be explained by uniform shifts
of the phonon DOS, such as when the volume effect
operates alone. Such a behavior has been observed in
embedded atom calculations on the Ni-Al system (Ack-
land 1994; Althoff et al., 1997; Ravelo et al., 1998) but in
no other systems so far. The Moruzzi-Janak-Schwarz ap-
proximation has been used to include vibrational effects
in phase diagram calculations and has resulted in an im-
proved agreement with experimental results (Asta et al.,
1993; Colinet et al., 1994; Sanchez et al., 1991).

However, as shown in Garbulsky and Ceder (1996),
the Debye approximation and its successors can have
significant shortcomings when used to calculate phase
diagrams. A significant part of the vibrational free-
energy differences between different compounds arises
from changes in the high-frequency portion of the pho-
non DOS, which Debye-like models describe incorrectly.
In some cases, the MJS approximation can even lead to
an incorrect prediction of the sign of the vibrational en-
tropy difference (Ozoliņš et al., 1998c; van de Walle and
Ceder, 2000).

In summary, the Debye model and its derivatives cap-
ture the essential physics behind only one of the advo-
cated mechanisms responsible for the configurational
dependence of vibrational free energy: the volume ef-
fect. Approximations based on the Debye model, how-
ever, fail to account for the possibility that the state of
order also has a direct impact (i.e., not through the vol-
ume) on the shape of the phonon DOS (as predicted, for
instance, by the bond proportion model).

C. The Einstein model

The perfect complement to the Debye model is the
Einstein model [see, for instance, Ashcroft and Mermin
(1976) and McQuarrie (1973)], which focuses on the
high-frequency region of the phonon DOS, instead of its
low-frequency region. The Einstein model assumes that
a crystalline solid can be modeled by a collection of 3N
independent harmonic oscillators (three per atom) shar-
ing a common frequency. This frequency can, for in-
stance, be determined by computing the natural fre-
quency of oscillation of one atom when all others are
frozen in place. This approach, known as the local har-
monic model (LeSar et al., 1989; Sutton, 1989), has
proven especially useful to calculate vibrational entro-
pies associated with defects (Najafabadi et al., 1991; Sut-
ton, 1989; Zhao et al., 1993). The Einstein model can
also be combined with a Debye model to better fit ex-
perimental calorimetry data (Anthony et al., 1994) or
thermal-expansion data (Mukherjee et al., 1996).
Rev. Mod. Phys., Vol. 74, No. 1, January 2002
The local harmonic model is of little use whenever the
system of interest exhibits translational symmetry, be-
cause the calculations required to determine the un-
known parameters of an Einstein model from first prin-
ciples directly provide force constants. The latter could
be used to obtain a more precise description of the DOS
rather than the single-value DOS characterizing the Ein-
stein model.

The Einstein model is nevertheless extremely useful
for conceptual purposes, as we will now illustrate. As
shown in Appendix D, the vibrational free energy of a
system is bounded by above and by below by the free
energy of two Einstein-like systems:

kBT

2
lnS h

kBT )
i

Mi@~F21! ii#
21D

<Fvib<
kBT

2
lnS h

kBT )
i

MiF iiD . (46)

While the upper bound is obtained from the usual local
harmonic model, where surrounding atoms do not relax,
the lower bound is obtained when the surrounding at-
oms are allowed to relax freely. Another way to inter-
pret these bounds is that at one extreme, each atom sees
the others as having an infinite mass, while at the other
extreme, each atom sees the other atoms as being mass-
less. This result supports the view that vibrational free
energy can be meaningfully considered as a measure of
the average stiffness of each atom’s local environment.

A more rigorous way of defining the contribution of
an atom to the total vibrational free energy is the use of
the projected DOS [see, for instance, Morgan et al.
(1998)]. This approach does not in any way simplify the
calculation of vibrational properties, because the full
phonon DOS is needed as an input, but it is a useful way
to interpret the experimentally measured or calculated
phonon DOS. To obtain the contribution of atom i to
the DOS, the idea is to weight each normal mode by the
magnitude of the vibration of atom i :

gi~n!5
1
N (

j
uej~ i !u2d~n2n i!, (47)

where ej is the eigenvector (normalized to unit length)
associated with the mode of frequency n j . Since exten-
sive thermodynamic properties are linear in the DOS,
atom-specific local thermodynamic properties can be
readily defined from the projected DOS. Note that, by
construction, all the projected DOS sum up to the true
phonon DOS and thus, all the local extensive thermody-
namic quantities sum up to the corresponding total
quantity.

D. The ‘‘bond stiffness vs bond length’’ approach

In ab initio calculations, most of the computational
burden comes from the calculation of the force-constant
tensors. It would thus be extremely helpful if the force
constants determined in one structure could be used to
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predict force constants in another structure. From the
failures of the bond proportion model, however, we
know that forces constants obtained from one structure
are not directly transferable to another structure (Sluiter
et al., 1999; van de Walle and Ceder, 2000)

Nevertheless, a simple modification of the transfer-
able force constant approach yields substantial improve-
ments in precision. First-principles calculation the Pd-V
(van de Walle and Ceder, 2000) system revealed that
most of the variation in the stiffness of a given chemical
bond across different structures can be explained by
changes in bond length.21 This suggests that the transfer-
able quantity to consider is a bond stiffness vs bond
length relationship. As a first approximation, a linear
relationship can be used,

a~ l !5a01a1~ l2l0!,

b~ l !5b01b1~ l2l0!,

where a and b denote the stretching and isotropic bend-
ing terms, respectively, and where a0 and b0 describe the
stiffness of the bond at its ideal length l0 while a1 and b1
are analogous to bond-specific Grüneisen parameters.
The other parameters of the spring tensor are unlikely

21The results obtained in the Li-Al system (Sluiter et al.,
1999) also suggest that length is a good predictor of stiffness,
although these authors did not investigate this matter further.

FIG. 4. Stretching (s) and bending (b) terms of the nearest-
neighbor spring tensor as a function of bond length. Each
point corresponds to one type of bond in one of a set of fcc
structures (L12 , D022 , SQS-8, fcc Pd, and fcc V, each taken at
two different volumes).
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to follow such simple relationships because they may be
required to vanish according to the local symmetry of
the bond, independently of its length (this is discussed in
more detail in Appendix E).

This approximation was shown to be successful in the
Pd-V system (van de Walle and Ceder, 2000). Figure 4
illustrates the ability of this simple model to predict
bond stiffness in different structures. A similar analysis
performed with the data on the Ni-Al system from van
de Walle et al. (1998) is shown in Fig. 5. Table V com-
pares the predictions obtained from the bond stiffness vs
bond length model with more accurate calculations.

There are numerous advantages to this approach.
From a conceptual point of view, this model presents a
concise way to represent all three mechanisms suggested
to be the source of vibrational entropy differences. The
bond proportion mechanism is the particular case ob-
tained when little changes in bond length occur. The vol-
ume effect results from expanding all bonds by the same
factor. The size mismatch effect (or the ‘‘stiff sphere’’
picture) is also modeled since the local change in stiff-
ness resulting from locally compressed or expanded re-
gions are explicitly taken into account. A straightfor-
ward way to represent the source of vibrational changes
is to overlap the stiffness vs length relationship and the
changes in average length and stiffness in different states
of order, as shown in Fig. 6.

A second advantage of this method is computational

FIG. 5. Bond stiffness as a function of bond length in the
Ni-Al system. Only stretching terms are shown. Solid lines are
the result of a fit to a second-order polynomial. Each point
corresponds to one type of bond in one of a set of fcc struc-
tures (L12 , D022 , SQS-8, fcc Al, and fcc Ni, each taken at two
different volumes).
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efficiency. The unknown parameters of the model can
be determined by a small number of supercell or linear
response calculations. After that, the knowledge of the
relaxed geometry of a structure is sufficient to deter-
mine the stiffness of all chemical bonds. Finding the vi-
brational entropy of the structure then just reduces to a
computationally inexpensive Born–von Kármán phonon
problem. It is important to note that the knowledge of
the relaxed geometries of a set of structures is a natural
by-product of first-principles calculations of structural
energies, which are needed to construct the cluster
expansion of the energy in phase diagram calculations,
whether vibrational effects are included or not. Since
computational requirements do not grow rapidly
with the number of structures considered, this opens
the way for a much more accurate representation of the
configurational dependence of the vibrational free
energy.

A third advantage of transferable bond stiffness vs
bond length relationships is that they contain all the
information needed to account for thermal expansion as
well, within the quasiharmonic approximation. The
slopes of the stiffness vs length relationships for each
chemical bond explicitly define the changes in phonon
frequencies as volume changes. Since the bulk mod-
ulus of each structure is also a by-product of structural
energy calculations, all the ingredients needed for a
quasi-harmonic treatment of thermal expansion are
available.

FIG. 6. Shift in average bond stiffness (along the stretching
direction) and bond length upon disordering. The fitted line of
Fig. 4 is shown for reference.

TABLE V. Comparison between vibrational entropies ob-
tained from the bond stiffness vs bond length model and from
a first-nearest-neighbor spring model.

Compound
(structure)

Stiffness vs
length model

1 nn
spring model

Pd3V L12 24.39 24.39
Pd3V D022 24.42 24.47

Pd3V SQS-8 24.56 24.54
Ni3Al L12 25.57 25.55

Ni3Al SQS-8 25.54 25.57
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VIII. CONCLUSION

Lattice vibrations can have a significant impact on
phase transition temperatures, short-range order, solu-
bility limits, and the sequence in which phases appear as
a function of temperature. The standard framework of
alloy theory can be straightforwardly extended to ac-
count for lattice vibrations using the concept of coarse
graining of the partition function. Once the degrees of
freedom associated with lattice vibrations are integrated
out, one is left with a standard Ising model, where the
energy of each spin configuration is replaced by its vi-
brational free energy. The efficient evaluation of the vi-
brational free energy of each configuration is the main
problem limiting the inclusion of lattice vibrations in
phase diagram calculations. A number of investigations
have sought to assess the importance of vibrational ef-
fects on phase stability, in order to ensure that the ef-
forts involved in computing vibrational properties are
justified. The conclusion of the most reliable of these
studies is that vibrational entropy differences are typi-
cally on the order of 0.1–0.2kB , which is comparable to
the magnitude of configurational entropy differences (at
most 0.69kB in binary alloys), thereby indicating that
vibrations have a non-negligible impact.

The calculation of the vibrational free energy of a par-
ticular configuration of the alloy reduces to the well-
known phonon problem in crystals. While the standard
harmonic treatment of this problem lacks the ability to
model thermal expansion, which can have a significant
impact on thermodynamic properties in alloys, this limi-
tation is easily overcome with the help of the quasihar-
monic model. An exact solution to the phonon problem
for all possible configurations requires excessive com-
puting power. However, the tradeoff between accuracy
and computational requirements can be controlled in
two ways, namely, through the selection of the range of
force constants in the Born–von Kármán model, and
through a choice of the number of effective cluster in-
teractions used to expand the configuration dependence
of the vibrational free energy. While there is evidence
that the range of force constants can be kept very small
(first-nearest-neighbor springs), the configurational de-
pendence of the vibrational free energy is too complex
to permit a drastic reduction in the number of effective
cluster interactions.

Given the substantial computing power required to
undertake lattice dynamics calculations, many attempts
have been made to devise simpler models. For many
years, the Moruzzi-Janak-Schwarz approximation ap-
peared to be a very promising way to include vibrational
effects in phase diagram calculations, because it system-
atically improved the agreement between first-principles
calculations and experimental measurements. This suc-
cess may have been the result of two fortunate circum-
stances: (i) first-principles phase diagram calculations
typically overestimate transitions temperature, and (ii)
the Moruzzi-Janak-Schwarz approximation nearly al-
ways yields a downward correction to the transition tem-
perature. As the accuracy of phase diagram calculations
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improved through the use of longer-range cluster expan-
sions (Ozoliņš et al., 1998a; Tepesch et al., 1996; van der
Ven et al., 1998), the systematic bias in the calculated
transitions temperature substantially decreased. Simul-
taneously, more sophisticated models of lattice vibra-
tions indicated that lattice vibrations do not always re-
sult in a reduction in the transition temperatures
(Garbulsky, 1996; Garbulsky and Ceder, 1996; van de
Walle and Ceder, 2000). The net effect of these two
trends is that, although the accuracy of first-principles
calculations has increased over the years, obtaining
improved agreement with experiment is now a much
more stringent test. As a result, perfectly valid and ac-
curate calculations of vibrational effects sometimes re-
duce the agreement with experiments (Ozoliņš et al.,
1998c; Tepesch et al., 1996). Hence, before one can un-
ambiguously assess the importance of lattice vibrations
through a full phase diagram calculation, all potential
sources of error have to be carefully controlled, such as
the precision of the energy model used and more impor-
tantly, the accuracy of the cluster expansion. To date, the
most convincing evidence that taking lattice vibrations
into account significantly improves agreement with ex-
perimental results comes from calculations of the lattice
dynamics associated with a specific atomic configuration
(e.g., a given compound or an isolated point defect)
(Ozoliņš and Asta, 2001; Quong and Lui, 1997; Wolver-
ton and Ozoliņš, 2001). In these settings, most sources of
errors are under control and definite answers can be
given.

Although the availability of more accurate computa-
tional tools has revealed that the trends in vibrational
entropy differences between phases is far more complex
that anticipated ten years ago (Althoff et al., 1997; Gar-
bulsky and Ceder, 1996; Morgan et al., 2000; Sluiter
et al., 1999; van de Walle and Ceder, 2000; Wolverton
and Ozoliņš, 2001), a simple picture of the mechanisms
at work is now emerging. All the known sources of vi-
brational entropy differences can be conveniently sum-
marized by the bond stiffness vs bond length model
(Morgan et al., 2000; van de Walle and Ceder, 2000). In
this picture, each type of chemical bond is characterized
by a length-dependent spring constant. Changes in vi-
brational entropy can originate from both changes in the
proportion of each chemical bond and changes in their
lengths as a result of local and global relaxations. This
model not only provides an intuitive understanding of
lattice vibrations in alloys, but also a practical way of
including their effects in phase diagram calculations.
This stiffness vs length relationship of each type of
chemical bond can be inferred from a small number of
lattice dynamics calculations. The vibrational properties
of any configuration can then be obtained at a very low
computational cost from the knowledge of the equilib-
rium geometry of this configuration, an information that
is already a natural by-product of any phase diagram
calculation.

Future investigations of the effect of lattice vibrations
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on phase stability should head toward three main direc-
tions.

(1) While reporting error bars is an important part of
any experimentalists’ work, theorists should devote
significantly more effort to quantifying the uncer-
tainties of their calculations. This would make it
possible to clearly identify situations where the im-
proved agreement with experimental results follow-
ing the inclusion of vibrational effects is truly signifi-
cant or merely the result of fortunate coincidences.
It is admittedly difficult to quantify the errors intro-
duced by the energy model (such as the LDA), but
standard statistical techniques can clearly be used to
quantify any error due to fitting the ab initio data
with a simple model.

(2) Given the difficulty of extracting vibrational entro-
pies from experimental data, theorists should under-
take the computation of quantities that can be di-
rectly measured. For instance, a Born–von Kármán
model directly enables the simulation of incoherent
neutron-scattering data, while the inverse procedure
is a highly nonunique operation. The calculation of
thermal-expansion coefficients would also be a very
sensitive test.

(3) There have so far been very few accurate phase dia-
gram calculations that include the effect of lattice
vibrations. The main limitation remains the determi-
nation of a cluster expansion that accurately models
the configurational dependence of vibrational free
energy. The bond length vs bond stiffness model
should prove to be an extremely useful tool in
achieving this goal. Although this approximation has
been very successful in all systems to which it has
been applied, the confirmation of its validity in a
wider range of systems is crucial. It would also be
interesting to devise a hierachy of increasingly accu-
rate approximations that would include the bond
length vs bond stiffness model as a particular case.
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APPENDIX A: THE ABSENCE OF MASS EFFECTS IN THE
HIGH-TEMPERATURE LIMIT

This appendix shows that the vibrational entropy of
formation is independent of the atomic masses in the
high-temperature limit, as several authors (Garbulsky
and Ceder, 1996; Grimvall and Rosen, 1983) have noted.
In the high-temperature limit, the vibrational entropy is
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determined by the product of the frequencies of all nor-
mal modes of vibrations nm , which can be related to the
eigenvalues lm of the 3N33N dynamical matrix D of
the system (up to a constant):22

(
m

ln~nm!5lnS)
m

nmD
5

1
2

lnS)
m

lmD 1const

5
1
2

ln~det D !1const.

Using the properties of determinants, we can write
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where M is the 3N33N diagonal matrix of all the N
atomic masses of the system (each repeated three times)
while F is 3N33N the matrix obtained by regrouping
all the 333 force constant tensors F(i ,j) in a single
matrix [analogously to Eq. (14)]. Now consider the
change in the value of (m ln(nm) when NA atoms of type
A and NB atoms of type B are combined to form an
alloy. Let the subscripts AB , A , and B , respectively,
denote the properties of an A(NA /N)B(NB /N) alloy, a
pure crystal of element A , and a pure crystal of element
B :
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All the terms involving masses exactly cancel one an-
other.

APPENDIX B: A SIMPLE MODEL OF ANHARMONICITY

The material presented in this appendix combines
standard results regarding the Grüneisen framework
that can be found, for instance, in Grimvall (1986).

Two assumptions are made. First, the elastic energy of
the motionless lattice is assumed quadratic in volume:

E* ~V !5
B

2V0
~DV !2, (B1)

where B is the bulk modulus, V0 the equilibrium volume

22To simplify the exposition and avoid the problem that the
dynamical matrix has three zero eigenvalues associated with
the possibility of a rigid translation of the system, we assume
that some of the atoms of the system are attached to a fixed
point of reference by a weak spring. In the thermodynamic
limit, this assumption becomes inconsequential.
at 0 K (ignoring zero-point motion), and DV5V2V0 .
Second, the high-temperature limit of the vibrational
free energy is used:

Fvib~T ,V !5kBT(
i

lnS hn i

kBT D . (B2)

In this approximation, the volume dependence of Fvib
takes on a particularly simple form:

]Fvib~T ,V !

]V
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3NkBTḡ

V
, (B3)

where

ḡ5
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3N (
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3N V

n i

]n i

]V
(B4)

is an average Grüneisen parameter. In the high-
temperature limit, an average Grüneisen parameter can
easily be defined, because the population of the phonon
modes is no longer temperature dependent, and any
change in entropy can be unambiguously attributed to
shifts in phonon frequencies. At lower temperatures, the
changes in phonon population would need to be ac-
counted for as well.
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If we assume that the volume dependence of the vi-
brational free energy is linear in volume, we have

F~T ,V !5E* ~V !1Fvib~T ,V !

5E* ~V !1Fvib~T ,V0!1
]Fvib

]V U
V5V0

DV

5
B
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~DV !21Fvib~T ,V0!1

3NkBTḡ
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DV .

Minimizing this expression with respect to DV yields

DV

N
5

3kBTḡ

B
, (B5)

where 3kBTg/B is the coefficient of volumetric thermal
expansion. The resulting temperature dependence of the
free energy (for one given configuration s) is given by

F~T !
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2

~3kBTḡ !2

2B~V0 /N !
. (B6)

It is interesting to note that half of the vibrational free
energy decrease due to thermal expansion is canceled by
the energy increase of the motionless lattice. Hence vi-
brational entropy differences originating from differ-
ences in thermal expansion between phases have, rela-
tive to other sources of vibrational entropy changes, half
the effect on phase stability.

APPENDIX C: MODELING THE DISORDERED STATE

Although in phase diagram calculations, the use of the
cluster expansion bypasses the problem of directly cal-
culating the vibrational entropy of a disordered phase,
there are cases where it is of interest to directly calculate
the vibrational properties of the disordered state. For
instance, in studies that seek to assess the importance of
lattice vibrations (Althoff et al., 1997; Ozoliņš et al.,
1998c; Ravelo et al., 1998; van de Walle et al., 1998), it is
instructive to compute the vibrational entropy change
upon disordering an alloy, since this quantity can be
straightforwardly used to estimate the effect of lattice
vibrations on transition temperatures with the help of
Eq. (4). Here are the most common methods used to
model the disordered state.

Perhaps the most obvious and brute force approach to
modeling the disordered state is the use of a large super-
cell where the occupation of each site is chosen at ran-
dom. This approach was chosen in all embedded atom
method calculations (Ackland, 1994; Althoff et al., 1997;
Morgan et al., 1998; Ravelo et al., 1998) as well as in
other investigations (Shaojun et al. 1998). Unfortunately,
it is generally not feasible in the case of ab initio calcu-
lations.

The virtual crystal approximation (VCA) consists of
replacing each atom in a disordered alloy by an ‘‘aver-
age’’ atom whose properties are determined by a con-
centration weighted average of the properties of the
constituents. In the limit where the chemical species
have nearly identical properties, this approximation is
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justified. This model has been commonly used to inter-
pret neutron scattering measurements of phonon disper-
sion curves in the case of disordered alloys (Fultz, An-
thony, Nagel, et al., 1995; Nagel et al., 1995). It has also
been used in a some theoretical investigations (Cleri and
Rosato, 1993; Persson et al., 1999). However, the virtual
crystal approximation has been repeatedly shown to be
insufficiently accurate for the purpose of calculating dif-
ferences in vibrational entropies between distinct com-
pounds (Althoff et al., 1997; Nagel et al., 1997; Ravelo
et al., 1998; Shaojun et al., 1998). Its weaknesses are nu-
merous: It is unable to model bond proportion effects,
volume effects, and local relaxations. It also fails to give
a mass-independent high-temperature limit.

Special quasirandom structures (SQS’s) (Zunger et al.,
1990) combine the idea of cluster expansion with the use
of supercells. Special quasirandom structures are the pe-
riodic structures that best approximate the disordered
state in a unit cell of a given size. The quality of a special
quasirandom structure is described by the number of its
correlations that match the ones of the true disordered
state. There is thus a direct connection between cluster
expansions and special quasirandom structures: If there
exists a truncated cluster expansion that is able to pre-
dict properties of the disordered state there exists a spe-
cial quasirandom structures that provides an equally ac-
curate description of the disordered state.

Special quasirandom structures have been very suc-
cessfully used to obtain electronic and thermodynamic
properties of disordered materials [see, for example,
Hass et al. (1990)]. The accuracy of the special quasiran-
dom structures approach in the context of phonon cal-
culations has been benchmarked using embedded atoms
potentials which allow for the comparison with the ‘‘ex-
act’’ vibrational entropy of the disordered state with a
large supercell (Morgan et al., 1998). It has been found
that, for the purpose of calculating vibrational proper-
ties, a special quasirandom structure having only eight
atoms in its unit cell already provides a good approxi-
mation of the disordered state in the case of an fcc alloy
at concentration 3/4. While the performance of this
small special quasirandom structures is remarkable in a
model system where local relaxations are disallowed, it
tends to degrade somewhat when relaxations are al-
lowed to take place. This effect can naturally be ex-
plained by the fact that relaxations are known to intro-
duce important multibody terms in the cluster
expansion, which translates into the requirement that
the special quasirandom structures must correctly repro-
duce the corresponding multibody correlations.

The success of small special quasirandom structures
opened the way for the use of more accurate energy
models to calculate vibrational properties of disordered
alloys. Special quasirandom structures have been ap-
plied to the ab initio calculation of vibrational entropy in
disordered Ni3Al and Pd3V alloys (van de Walle et al.,
1998; van de Walle and Ceder, 2000).

APPENDIX D: THE EINSTEIN MODEL

In the Einstein model of a solid, the free energy, in the
high-temperature limit, is given by



40 A. van de Walle and G. Ceder: Lattice vibrations and substitutional alloys
F5kBT lnS h

kBT )
i

n iD
5

kBT

2
lnS h

kBT
det D D

5
kBT

2
lnS h

kBT
det~M1/2FM1/2! D

5
kBT

2
lnS h

kBT
det M det F D ,

where D and F are, respectively, the 3N33N dynamical
matrix and force-constant matrix of the system while M
is the matrix of the masses:

Mij5d ijMj . (D1)

It can be shown (van de Walle, 1995) that for any posi-
tive definite matrix F,
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where the right-hand side expression is nothing but the
free energy of the system in the Einstein approximation.
A lower bound can be obtained by a similar technique,
by using the inverse of the force-constant matrix

det F>F)
i

~F21! iiG21

. (D4)

The interpretation of the inverse F is simple: It is the
matrix that maps forces F exerted on the atoms to the
resulting displacements u of the atoms,

u5F21F . (D5)

While F ii is related to the oscillation frequency of a
single atom when all other atoms are held in place,
@(F21) ii#

21 is related to the oscillation frequency of an
atom i when all surrounding atoms are allowed to relax
so that the force exerted on them remains zero as atom
i moves. Atom i has mass Mi while all other atoms are
considered massless and relax instantaneously. Atoms
located infinitely far away from atom i are held in place
with an infinitesimal force.

In conclusion, the free energy of a system is bounded
by above and by below by the free energy of two
Einstein-like systems:

kBT

2
lnS h

kBT )
i

Mi@~F21! ii#
21D

<F<
kBT

2
lnS h

kBT )
i

MiF iiD . (D6)
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APPENDIX E: DERIVATION OF THE BOND PROPORTION
MODEL

This appendix generalizes the results found in Bakker
(1982a), Matthew et al. (1983), Garbulsky and Ceder
(1994), and Waegmaekers and Bakker (1984) in order to
handle more general lattice types. We show that, in an
important class of systems, the bond proportion model is
in fact the first-order approximation to the true change
in vibrational entropy induced by a change in the pro-
portion of the different types of chemical bonds.

The alloy system is assumed to satisfy the following
conditions:

• the high-temperature limit is appropriate;
• the nearest-neighbor force constants can be written as

F(i ,j)5ks is j
f(i ,j) where ks is j

denotes the (scalar)
stiffness of the spring connecting sites i and j with
occupations s i and s j while the f(i ,j) are dimension-
less spring constant tensors. The f(i ,j) are assumed
equivalent under a symmetry operation of the space
group of the parent lattice;

• all force constants ks is j
are such that

ks is j

Aks is i
ks js j

!1. (E1)

Consider a d-dimensional solid made of N atoms con-
nected by springs characterized by symmetrically
equivalent tensors kf(i ,j). Without loss of generality,
the masses of all atoms are set to unity since the forma-
tion entropies in the high-temperature limit are indepen-
dent of the atomic masses (see Appendix A). In the
high-temperature limit, the vibrational free energy per
atom is given by

Fvib5
kBT

2N (
m

ln lm , (E2)

where the sum is taken over the nonzero eigenvalues lm
of the dynamical matrix D of the system. (The zero ei-
genvalues correspond the modes where the whole crys-
tal moves rigidly. In the thermodynamic limit, these few
missing degrees of freedom are inconsequential.)

Because all springs in the system are equivalent to
each other, matrix D can be written as

D5kC , (E3)

where C is a matrix of dimensionless geometrical factors
independent of k but specific to the type of lattice. From
this expression of D , it follows naturally that eigenvec-
tors of D are independent of k and that its eigenvalues
can be written as

lm5klm , (E4)

where the lm are geometric factors independent of k .
Consider what happens to Svib when the stiffness of

one of the springs is changed from k to k1Dk . Let DD
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denote the corresponding change in matrix D . To the
first order, the resulting changes in the eigenvalues are
given by

Dlm5um8 DDum , (E5)

where um is the (dimensionless) eigenvector of D asso-
ciated with eigenvalue lm . Since D is linear in the
spring constants, we can write

DD5Dk B , (E6)

where B is matrix of geometrical factors independent of
k and Dk but specific to the type of lattice. While matrix
B also depends on which spring is being modified, the
matrices B corresponding to each spring are equivalent
under a symmetry operation of the crystal’s space group.
The changes in the eigenvalues can then be expressed as

Dl i5Dkum8 Bum[Dk gm ,

where gi is a dimensionless number independent of k
and Dk .

Substituting these results into Eq. (E2), we obtain

Fvib5
kBT

2N (
m

ln~klm1Dk gm!. (E7)

To the first order, we can express the vibrational entropy
change as

DFvib5
]Fvib

]Dk U
Dk50

Dk

5
kBT

2N (
m

gm

klm
Dk

5kBTS 1
2N (

m

gm

lm
D Dk

k

[kBTG
Dk

k
,

where G is a dimensionless geometrical factor depend-
ing only on the lattice type.

In the limit of Dk!k , we can obtain the change in
vibrational entropy due to a change in all the spring
constants by simply summing the effect of the change
Dks in the stiffness of each spring s :

DFvib5kBTG(
s

Dks

k
. (E8)

To determine the value of G , we consider the following
particular case for which the exact vibrational entropy
change is known. Once the value of G is known, it can
be used in any other case sharing a same lattice type.

In a solid bound by springs of stiffness k is given by, if
the stiffness of all springs is increased by Dk , each ei-
genvalue lm becomes lm @(k1Dk)/k# and the vibra-
tional entropy becomes
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Fvib8 5
kBT

2N (
i

lnS l i

k1Dk

k D
5

kBT

2N (
i

S ln l i1ln
k1Dk

k D
5Fvib1

kBT

2N (
i

ln
k1Dk

k

'Fvib1kBT
Nd

2N

Dk

k
1O@~Dk !2#

5Fvib1kBT
Nd

2N

1
ZN/2 (

s

Dk

k

5Fvib1
kBTd

ZN (
s

Dk

k
,

where Z is the number of nearest neighbors and (s de-
notes a sum over all nearest-neighbor bonds. Since this
result is exact to the first order, we can compare it to Eq.
(E8) and identify the unknown constant G to be d/ZN .
We thus obtain the following result:

DFvib5
kBTd

ZN (
s

Dks

k
. (E9)

We now turn to the problem of calculating the vibra-
tional entropy of mixing in a binary alloy. We first define
a normalized Nd3Nd dynamical matrix D̂ as follows:

D̂ab~ i ,j !5
Fab~ i ,j !

Aks is i
ks js j

, (E10)

where ks is i
is the spring constant of an A-A bond if site

i is occupied by an A atom similarly for a site occupied
by a B atom. For the purpose of calculating free energy
of formation, this normalized dynamical matrix gives the
same result as the usual dynamical matrix because the
factors in the denominator exactly cancel out, for the
same reason masses cancel out (see Appendix A). This
transformation normalizes the spring constant associ-
ated with A-A bonds and B-B bonds to 1 while the
spring constant associated with A-B bond becomes
(kAB /AkAAkBB) where kAB , kAA , and kBB , respec-
tively, denote the true spring constants of A-B , A-A ,
and B-B bonds. The usefulness of this normalization is
to extend the applicability of Eq. (E9) to the case where
kAA and kBB are very different.

Let us start with a phase separated mixture of A and
B atoms. Let us think of this system as one where all
atoms are identical but where the springs connecting
them can be either one of three types A-A , B-B , or
A-B , where the springs are placed defines which type of
atom sits at each site. We now replace one A-A bond in
the pure A phase by an A-B bond and one B-B bond in
the pure B phase by an A-B bond. By Eq. (E9), the
resulting change in vibrational entropy per atom is
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DFvib5
kBTd

ZN S kAB

AkAAkBB

211
kAB

AkAAkBB

21 D .

(E11)

To satisfy the assumptions of the above derivation, we
require that kAB /AkAAkBB!1. If we create a total num-
ber nAB of A-B bonds, we perform the above operation
nAB/2 times and the vibrational entropy change is

DFvib5
nAB

2
kBTd

ZN S kAB

AkAAkBB

211
kAB

AkAAkBB

21 D .

(E12)

To the first order (when kAB /AkAAkBB!1), this ex-
pression is equivalent to

DFvib5
nAB

N

kBTd

2Z
lnS kAB

2

kAAkBB
D . (E13)

The nearest-neighbor effective cluster interaction of the
cluster expansion of the vibrational free energy is thus

V1nn5
d

8
kBT lnS kAAkBB

kAB
2 D . (E14)

APPENDIX F: INSTABILITY

An extreme case of anharmonicity occurs when the
energy surface, in the neighborhood of a configuration
s, has no local minimum. As noted in Craievich et al.
(1997) and Craievich and Sanchez (1997), this situation
occurs sufficiently frequently to deserve a particular at-
tention. A typical example of such a situation occurs
when the fcc-based L10 structure is unstable with re-
spect to a deformation along the Bain path, which leads
to a bcc-based B2 structure. While it is possible to con-
struct a separate cluster expansion for the fcc and bcc
phases, the fundamental question that arises is: What is
the free energy of the L10 structure? Since it is unstable,
the standard harmonic expression for the free energy
can clearly not be used.

One suggested solution to this problem, described in
Craievich and Sanchez (1997), is to perform the coarse
graining in a different order than presented in Sec. II.C.
The sum over configurations is performed first, and the
vibrational properties of the configurational averaged al-
loy are then calculated. The main limitation of this ap-
proach is that it would be extremely difficult to compute
the averaged vibrational properties by any other method
than by the so-called virtual crystal approximation (see
Appendix C). Another limitation is that it only ad-
dresses instabilities with respect to cell shape distortions,
ignoring instabilities with respect to internal degrees of
freedom (i.e., atomic positions).

In this section, we present another approach to solve
the instability problem. We argue that the general for-
malism developed in Sec. II.C can in fact be adapted to
allow for instability.
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While the coarse graining technique is most naturally
interpreted as integrating out the ‘‘fast’’ degrees of free-
dom (e.g., vibrations) before considering ‘‘slower’’ ones
(e.g., configurational changes) (Ceder, 1993), the time
scale of the various types of excitations is, in fact, irrel-
evant. The partition function is simply a sum over states
which can be calculated in any order. As long as we can
associate any vibrational state v of the system with a
configuration s, the coarse graining procedure remains
valid.

Under this point of view, it is clear that it does not
matter whether there is even a local minimum of energy
in the portion of phase space associated with configura-
tion s. What is important, however, is that the neighbor-
hood of configuration s in phase space is thoroughly
sampled (i.e., that the constrained system is ergodic)
over a macroscopic time scale. There is no need for er-
godicity within the time scale of the configurational ex-
citations. If the neighborhood of a given configuration s
is not fully sampled before the alloy jumps to another
configuration s8, it is still possible that the unsampled
portion of phase space around s will be visited at a later
time, when the system returns to the neighborhood of
configuration s. The ergodicity requirement at the mac-
roscopic time scale imposes the important but intuitively
obvious constraint that the phase space neighborhood of
configuration s cannot contain states that are associated
to different phases of the system.

This discussion shows that there is no fundamental
limitation to the applicability of the standard coarse
graining framework in the presence of instability. How-
ever, we still need to describe how the free energy of an
unstable configuration could be determined in practice.
The task is simplified by the fact that the free energy of
an unstable state does not need to be extremely accu-
rately determined, because unstable states are relatively
rarely visited, even at high temperatures. Nevertheless,
it is important to assign a free energy to those unstable
states, to ensure that the Ising model used to represent
the alloy is well defined.

The free energy associated with one configuration can
be obtained by integrating exp@2bE(s,v)# with respect
to v over the portion of phase space associated with s.
In the classical limit, we can label the vibrational states v
by the position each particle takes and the integration
limits can be found by geometrical arguments. The
quantum-mechanical equivalent of this operation is
complex,23 but unlikely to be needed in practice. The
unstable states are essentially never visited at low tem-

23The quantum partition function can be written as the trace
of the matrix exp(2bH), where H is the (multibody) Hamil-
tonian of the system. The trace can computed in any conve-
nient basis and in particular one could use Dirac delta func-
tions. In this fashion, it is possible to define a localized free
energy by summing only over the delta functions located in the
neighborhood of one configuration s.
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peratures, where a quantum-mechanical treatment
would be essential.24

Focusing on the classical limit, we consider an un-
stable configuration s. Let D be the dynamical matrix
evaluated at the saddle point of the energy surface clos-
est to the ideal undistorted configuration s.25 We con-
sider that when the state v of the system is such that one
atom moves away from its position at the saddle point
by more than r , it should no longer be considered part
of configuration s. For an instability with respect to in-
ternal degrees of freedom (atomic positions), a natural
choice for r would be half the average nearest-neighbor
interatomic distance. For an instability with respect to
unit cell deformation, r could be half the change in the
average nearest-neighbor distance induced by the dis-
placive transformation.

The boundedness of the portion of phase space asso-
ciated with s can be accounted for by replacing the
usual classical partition function associated with one
normal mode of oscillation i by

1
h E

2Li

Li
expS 2

1
2

b ṡ2DdṡE
2Li

Li
expS 2

1
2

bl is
2Dds ,

(F1)

where l i is the ith eigenvalue of the dynamical matrix, h
is Planck’s constant, and Li is a measure of the size of
the phase space neighborhood of s along the direction
associated with normal mode i . This size parameter can
be expressed in terms of the parameter r just intro-
duced. Let ui(j)5 ei(j)/AMj where ei is the ith eigen-
vector of D and Mj is the mass of atom j . After normal-
izing ui so that ( jui

2(j)5N , the number of atoms in the
system, we can then write

Li5r@ max
nn j ,j8

iui~ j !2ui~ j8!i #21, (F2)

where the maximum is taken over all nearest-neighbor
pairs of atoms j ,j8. This choice of integration bounds
approximately defines a neighborhood of s such that no
atom moves farther than r from its position at the saddle
point (relative to its neighbors). In this approximation,
the free energy of an unstable state is given by

F

N
5

E*

N
2

kBT

N (
i

lnFkBT

hn i
erfS LiA2~pn i!

2

kBT D G ,

(F3)

where n i is the frequency of normal mode i and where
the error function for real or imaginary arguments is
given by

24This observation is related to the fact that quasiharmonic
approximation, which allows a quantum-mechanical treatment,
is accurate up to a temperature where the classical limit is
reached.

25It is possible that an unstable configuration s cannot be
associated with a saddle point and the derivation would have
to be modified. In particular the bounds of integration would
have to be made asymmetric.
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erf~u !5
2u

Ap
E

0

1
e2u2s2

ds . (F4)

The suggested definition of the free energy of an un-
stable configuration has interesting properties. First, as
the neighborhood size Li increases, the expression re-
duces to the usual harmonic expression. The effect of
the correction is not limited to unstable modes: Modes
that are so soft that it is likely that the motion of the
atoms exceeds r are also affected. There may obviously
be other definitions of Li . The above example simply
gives an example of how it could be calculated.

Going back to our initial example of the L10→B2
instability, we can now outline how this problem could
be handled within the traditional coarse graining
scheme. Two separate clusters expansion need to be con-
structed, one for the bcc phases and one for the fcc
phases. But since we now know how to assign a free
energy to the unstable L10 configuration, the fcc cluster
expansion can be successfully defined. The free energy
attributed to the L10 configuration should be sufficiently
high so that the free energy curve of the fcc phase in the
vicinity of 0.5 concentration will lie above the free en-
ergy curve of the bcc phase, as it should. The fact that
both cluster variation method or Monte Carlo calcula-
tions on the fcc lattice would attribute a positive prob-
ability to L10-like structures should not be regarded as a
problem: This is precisely what will ensure that the cal-
culated fcc free energy curve lies above the bcc one.

The discussion has so far been concerned with the
expression of the partition function, which is the rel-
evant quantity to consider when the phase diagram is
calculated with the cluster variation method or the low-
temperature expansion. Let us now consider the impli-
cations of this approach to Monte Carlo simulations.
Thermodynamic quantities derived from averages, such
as the average energy, are obviously unaffected by the
presence of unstable configurations. For quantities de-
rived from fluctuations, such as the heat capacity, slight
modifications are needed. In traditional Monte Carlo
simulations, the heat capacity arising from vibrational
degrees of freedom is consistently neglected, and any
thermodynamic quantity obtained from Monte Carlo
can be unambiguously interpreted as the configurational
contribution. In the more general setting presented here,
there is an overlap between vibrational and configura-
tional fluctuations and the only way to obtain well-
defined thermodynamic quantities is to fully account for
the vibrational fluctuations. Fortunately, there is a
straightforward way to do so. The total variance of the
energy (or any other quantity) can be exactly expressed
as a sum of the variance within each configuration s and
the variance of the average energy of each configuration:

^E2&2^E&25(
s

(
vPs

PsvEsv
2 2S (

s
(
vPs

PsvEsvD 2

5F(
s

PsĒs
2 2S (

s
PsĒsD 2G

1(
s

PsS (
vPs

Psv

Ps
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where Psv is the probability of finding the system
in state s ,v while Ps5(vPsPsv and Ēs

5(vPs (Psv /Ps) Esv . The first term is the usual fluc-
tuation obtained from Monte Carlo. The second term is
a correction which takes the form of a simple configura-
tion average of fluctuations within each configuration.
The fluctuation of a system constrained to remain in the
vicinity of configuration s is usually just as simple to
determine as its average properties. In the case of en-
ergy, the fluctuations within each configuration are sim-
ply related to the heat capacity of a harmonic solid.

The main objective of this section was to show that
there is no fundamental problem associated with un-
stable states in coarse graining formalism. While it is
true that the free energy of an unstable configuration is
not uniquely defined, once a particular way to coarse
grain phase space is chosen, the free energy of all con-
figurations can be defined in a consistent fashion. There
are admittedly some practical issues to be resolved re-
garding the practical implementation of coarse graining
in the presence of instabilities, but the approach sug-
gested in this section indicates that these difficulties can
be overcome.
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Ozoliņš, V., 1996, Ph.D. thesis, Royal Institute of Technology,

Stockholm, Sweden.
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