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This article reviews the generalization of field theory to space-time with noncommuting coordinates,
starting with the basics and covering most of the active directions of research. Such theories are now
known to emerge from limits of M theory and string theory and to describe quantum Hall states. In
the last few years they have been studied intensively, and many qualitatively new phenomena have
been discovered, on both the classical and the quantum level.
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I. INTRODUCTION

Noncommutativity is an age-old theme in mathemat-
ics and physics. The noncommutativity of spatial rota-
tions in three and more dimensions is deeply ingrained
in us. Noncommutativity is the central mathematical
concept expressing uncertainty in quantum mechanics,
where it applies to any pair of conjugate variables, such
as position and momentum. In the presence of a mag-
netic field, even momenta fail to mutually commute.
©2001 The American Physical Society



978 Douglas et al.: Noncommutative field theory
One can just as easily imagine that position measure-
ments might fail to commute and describe this using
noncommutativity of the coordinates. The simplest non-
commutativity one can postulate is the commutation re-
lation

@xi,xj#5iu ij, (1)

with a parameter u which is an antisymmetric (constant)
tensor of dimension (length)2.

As has been realized independently many times, at
least as early as 1947 (Snyder, 1947), there is a simple
modification to quantum field theory obtained by taking
the position coordinates to be noncommuting variables.
Starting with a conventional field theory Lagrangian and
interpreting the fields as depending on coordinates sat-
isfying Eq. (1), one can follow the usual development of
perturbative quantum field theory with surprisingly few
changes, to define a large class of ‘‘noncommutative field
theories.’’

It is on this class of theories that our review will focus.
Until recently, such theories had not been studied very
seriously. Perhaps the main reason for this is that postu-
lating an uncertainty relation between position measure-
ments will a priori lead to a nonlocal theory, with all of
the attendant difficulties. A secondary reason is that
noncommutativity of the space-time coordinates gener-
ally conflicts with Lorentz invariance, as is apparent in
Eq. (1). Although it is not implausible that a theory de-
fined using such coordinates could be effectively local on
length scales longer than that of u, it is harder to believe
that the breaking of Lorentz invariance would be unob-
servable at these scales.

Nevertheless, one might postulate noncommutativity
for a number of reasons. Perhaps the simplest is that it
might improve the renormalizability properties of a
theory at short distances or even render it finite. With-
out giving away too much of our story, we should say
that this is of course not obvious a priori and a noncom-
mutative theory might turn out to have the same or even
worse short-distance behavior than a conventional
theory.

Another motivation is the long-held belief that in
quantum theories including gravity, space-time must
change its nature at distances comparable to the Planck
scale. Quantum gravity has an uncertainty principle
which prevents one from measuring positions to better
accuracies than the Planck length: the momentum and
energy required to make such a measurement will itself
modify the geometry at these scales (DeWitt, 1962). One
might wonder if these effects could be modeled by a
commutation relation such as Eq. (1).

A related motivation is that there are reasons to be-
lieve that any theory of quantum gravity will not be local
in the conventional sense. Nonlocality brings with it
deep conceptual and practical issues which have not
been well understood, and one might want to under-
stand them in the simplest examples first, before pro-
ceeding to a more realistic theory of quantum gravity.

This is one of the main motivations for the intense
current activity in this area among string theorists. String
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theory is not local in any sense we now understand, and
indeed has more than one parameter characterizing this
nonlocality: in general, it is controlled by the larger of
the Planck length and the string length, the average size
of a string. It was discovered by Connes et al. (1998) and
Douglas and Hull (1998) that simple limits of M theory
and string theory lead directly to noncommutative gauge
theories, which appear far simpler than the original
string theory yet keep some of this nonlocality.

One might also study noncommutative theories as in-
teresting analogs of theories of more direct interest, such
as Yang-Mills theory. An important point in this regard
is that many theories of interest in particle physics are so
highly constrained that they are difficult to study. For
example, pure Yang-Mills theory with a definite simple
gauge group has no dimensionless parameters with
which to make a perturbative expansion or otherwise
simplify the analysis. From this point of view it is quite
interesting to find any sensible and nontrivial variants of
these theories.

Now, physicists have constructed many variations of
Yang-Mills theory in the search for regulated (UV finite)
versions as well as more tractable analogs of the theory.
A particularly interesting example in the present context
is the twisted Eguchi-Kawai model (Eguchi and Na-
kayama, 1983; Gonzalez-Arroyo and Okawa, 1983),
which in some of its forms, especially that of Gonzalez-
Arroyo and Korthals Altes (1983), is a noncommutative
gauge theory. This model was developed in the study of
the large-N limit of Yang-Mills theory (’t Hooft, 1974)
and we shall see that noncommutative gauge theories
show many analogies to this limit (Filk, 1996; Minwalla
et al., 2000), suggesting that they should play an impor-
tant role in the circle of ideas relating large-N gauge
theory and string theory (Polyakov, 1987; Aharony et al.,
2000).

Noncommutative field theory is also known to appear
naturally in condensed-matter theory. The classic ex-
ample (though not always discussed using this language)
is the theory of electrons in a magnetic field projected to
the lowest Landau level, which is naturally thought of as
a noncommutative field theory. Thus these ideas are rel-
evant to the theory of the quantum Hall effect (Prange
and Girvin, 1987), and indeed, noncommutative geom-
etry has been found very useful in this context (Bellis-
sard et al., 1993). Most of this work has treated nonin-
teracting electrons, and it seems likely that introducing
field-theoretic ideas could lead to further progress.

It is interesting to note that despite the many physical
motivations and partial discoveries we just recalled, non-
commutative field theory and gauge theory were first
clearly formulated by mathematicians (Connes and
Rieffel, 1987). This is rather unusual for a theory of sig-
nificant interest to physicists; usually, as with Yang-Mills
theory, the flow goes in the other direction.

An explanation for this course of events might be
found in the deep reluctance of physicists to regard a
nonlocal theory as having any useful space-time inter-
pretation. Thus, even when these theories arose natu-
rally in physical considerations, they tended to be re-
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garded only as approximations to more conventional
local theories, and not as ends in themselves. Of course
such sociological questions rarely have such pat answers
and we shall not pursue this one further except to re-
mark that, in our opinion, the mathematical study of
these theories and their connection to noncommutative
geometry has played an essential role in convincing
physicists that these are not arbitrary variations on con-
ventional field theory but indeed a new universality class
of theory deserving study in its own right. Of course this
mathematical work has also been an important aid to
the more prosaic task of sorting out the possibilities, and
it is the source for many useful techniques and construc-
tions that we shall discuss in detail.

Having said this, it seems that the present trend is that
the mathematical aspects appear less and less central to
the physical considerations as time goes on. While it is
too early to judge the outcome of this trend and it seems
certain that the aspects which traditionally have ben-
efited most from mathematical influence will continue to
do so (especially the topology of gauge-field configura-
tions, and techniques for finding exact solutions), we
have to some extent deemphasized the connections with
noncommutative geometry in this review. This is partly
to make the material accessible to a wider class of physi-
cists, and partly because many excellent books and re-
views cover the material from this point of view, starting
with that of Connes (1994), and including those of
Nekrasov (2000) focusing on classical solutions of non-
commutative gauge theory, Konechny and Schwarz
(2000b) focusing on duality properties of gauge theory
on a torus, and Gracia-Bondia et al. (2001) and Varilly
(1997). We maintain one section which attempts to give
an overview of aspects for which a more mathematical
point of view is clearly essential.

Although many of the topics we discuss were moti-
vated by and discovered in the context of string theory,
we have also taken the rather unconventional approach
of separating the discussion of noncommutative field
theory from that of its relation to string theory, to the
extent that this was possible. An argument against this
approach is that the relation clarifies many aspects of the
theory, as we hope will become abundantly clear upon
reading Sec. VII. However, it is also true that string
theory is not a logical prerequisite for studying the
theory, and we feel the approach we took better illus-
trates its internal self-consistency (and the points where
this is still lacking). Furthermore, if we hope to use non-
commutative field theory as a source of new insights into
string theory, we need to be able to understand its phys-
ics without relying too heavily on the analogy. We also
hope this approach will have the virtue of broader ac-
cessibility and perhaps help in finding interesting appli-
cations outside of string theory. Reviews with a more
string-theoretic emphasis include that of Harvey (2001a)
which discusses solitonic solutions and their relations to
string theory.

Finally, we must apologize to the many whose work
we were not able to treat in the depth it deserved in this
review, a sin we have tried to atone for by including an
extensive bibliography.
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II. KINEMATICS

A. Formal considerations

Let us start by defining noncommutative field theory
in a somewhat pedestrian way, by proposing a configu-
ration space and action functional from which we could
either derive equations of motion or define a functional
integral. We shall discuss this material from a more
mathematical point of view in Sec. VI.

Conventions. Throughout the review we use the fol-
lowing notations: Latin indices i ,j ,k , . . . denote space-
time indices, Latin indices from the beginning of the al-
phabet a ,b , . . . denote commutative dimensions, Greek
indices m ,n , . . . enumerate particles, vertex operators,
etc., while Greek indices from the beginning of the al-
phabet a ,b , . . . denote noncommutative directions.

In contexts where we simultaneously discuss a non-
commuting variable or field and its commuting analog,
we shall use the ‘‘hat’’ notation: x is the commuting ana-
log to x̂ . However, in other contexts, we shall not use the
hat.

1. The algebra

The primary ingredient in the definition is an associa-
tive but not necessarily commutative algebra, to be de-
noted A. The product of elements a and b of A will be
denoted ab , a•b , or a!b . This last notation (the star
product) has a special connotation, to be discussed
shortly.

An element of this algebra will correspond to a con-
figuration of a classical complex scalar field on a space
M . Suppose first that A is commutative. The primary
example of a commutative associative algebra is the al-
gebra of complex-valued functions on a manifold M ,
with addition and multiplication defined pointwise: (f
1g)(x)5f(x)1g(x) and (f•g)(x)5f(x)g(x). In this
case, our definitions will reduce to the standard ones for
field theory on M .

Although the mathematical literature is usually quite
precise about the class of functions (continuous, smooth,
etc.) to be considered, in this review we follow standard
physical practice and simply consider all functions that
arise in reasonable physical considerations, referring to
this algebra as A(M) or (for reasons to be explained
shortly) as M0 . If more precision is wanted, for most
purposes one can think of this as C(M), the bounded
continuous functions on the topological manifold M .

The most elementary example of a noncommutative
algebra is Matn , the algebra of complex n3n matrices.
Generalizations of this, which are almost as elementary,
are the algebras Matn@C(M)# of n3n matrices whose
matrix elements are elements of C(M), and with addi-
tion and multiplication defined according to the usual
rules for matrices in terms of the addition and multipli-
cation on C(M). This algebra contains C(M) as its cen-
ter (take functions times the identity matrix in Matn).

Clearly elements of Matn@C(M)# correspond to con-
figurations of a matrix field theory. Just as one can gain
some intuition about operators in quantum mechanics
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by thinking of them as matrices, this example already
serves to illustrate many of the formal features of non-
commutative field theory. In the remainder of this sub-
section we introduce the other ingredients we need to
define noncommutative field theory in this familiar
context.

To define a real-valued scalar field, it is best to start
with Matn@C(M)# and then impose a reality condition
analogous to the reality of functions in C(M). The most
useful in practice is to take the Hermitian matrices a
5a†, whose eigenvalues will be real (given suitable ad-
ditional hypotheses). To do this for general A, we would
need an operation a→a† satisfying (a†)†5a and (for c
PC) (ca)†5c* a†, in other words an antiholomorphic
involution.

The algebra Matn@C(M)# could also be defined as the
tensor product Matn(C) ^ C(M). This construction gen-
eralizes to an arbitrary algebra A to define Matn(C)
^ A, which is just Matn(A) or n3n matrices with ele-
ments in A. This algebra admits the automorphism
group GL(n ,C), acting as a→g21ag (of course the cen-
ter acts trivially). Its subgroup U(n) preserves Hermit-
ian conjugation and the reality condition a5a†. One
sometimes refers to these as U(n) noncommutative
theories, a bit confusingly. We shall refer to them as rank
n theories.

In the rest of the review, we shall mostly consider non-
commutative associative algebras which are related to
the algebras A(M) by deformation with respect to a pa-
rameter u, as we shall define shortly. Such a deformed
algebra will be denoted by Mu , so that M05A(M).

2. The derivative and integral

A noncommutative field theory will be defined by an
action functional of fields F ,f ,w , . . . defined in terms of
the associative algebra A (it could be elements of A, or
vectors in some representation thereof). Besides the al-
gebra structure, to write an action we shall need an in-
tegral * Tr and derivatives ] i . These are linear opera-
tions satisfying certain formal properties:

(a) The derivative is a derivation on A, ] i(AB)
5(] iA)B1A(] iB). With linearity, this implies that the
derivative of a constant is zero.

(b) The integral of the trace of a total derivative is
zero, * Tr] iA50.

(c) The integral of the trace of a commutator is zero,
* Tr@A ,B#[* Tr(A•B2B•A)50.

A candidate derivative ] i can be written using an ele-
ment diPA; let ] iA5@di ,A# . Derivations that can be
written in this way are referred to as inner derivations,
while those that cannot are outer derivations.

We denote the integral as * Tr, as it turns out that, for
general noncommutative algebras, one cannot separate
the notations of trace and integral. Indeed, one normally
uses either the single symbol Tr (as is done in mathemat-
ics) or * to denote this combination; we do not follow
this convention here only to aid the uninitiated.

We note that just as condition (b) can be violated in
conventional field theory for functions that do not fall
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off at infinity, leading to boundary terms, condition (c)
can be violated for general operators, leading to physical
consequences in noncommutative theory which we will
discuss.

B. Noncommutative flat space-time

After Matn@C(M)# , the next simplest example of a
noncommutative space is the one associated with the
algebra Ru

d of all complex linear combinations of prod-
ucts of d variables x̂ i satisfying

@xi,xj#5iu ij. (2)

The i is present because the commutator of Hermitian
operators is anti-Hermitian. As in quantum mechanics,
this expression is the natural operator analog of the
Poisson bracket determined by the tensor u ij, the Pois-
son tensor or noncommutativity parameter.

By applying a linear transformation to the coordi-
nates, one can bring the Poisson tensor to canonical
form. This form depends only on its rank, which we de-
note as 2r . We keep this general as one often discusses
partially noncommutative spaces, with 2r,d .

A simple set of derivatives ] i can be defined by the
relations

] ix
j[d i

j , (3)

@] i ,] j#50, (4)

and the Leibnitz rule. This choice also determines the
integral uniquely (up to overall normalization), by re-
quiring that *] if50 for any f such that ] ifÞ0.

We shall occasionally generalize Eq. (4) to

@] i ,] j#52iF ij , (5)

to incorporate an additional background magnetic field.
Finally, we shall require a metric, which we shall take

to be a constant symmetric tensor gij , satisfying ] igjk
50. In many examples we take this to be gij5d ij , but
note that one cannot bring both gij and u ij to canonical
form simultaneously, as the symmetry groups preserved
by the two structures, O(n) and Sp(2r), are different.
At best one can bring the metric and the Poisson tensor
to the following form:

g5 (
a51

r

dzadz̄a1(
b

dyb
2 ,

u5
1
2 (

a
ua] z̄a

∧]za
, ua.0. (6)

Here za5qa1ipa are convenient complex coordinates.
In terms of p ,q ,y the metric and the commutation rela-
tions Eq. (6) read as

@ya ,yb#5@yb ,qa#5@yb ,pa#50,

@qa ,pb#5iuadab , ds25dqa
2 1dpa

2 1dyb
2 . (7)
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1. Symmetries of Ru
d

An infinitesimal translation xi→xi1ai on Ru
d acts on

functions as df5ai] if . For the noncommuting coordi-
nates xi, these are formally inner derivations, as

] if5@2i~u21! ijx
j,f# . (8)

One obtains global translations by exponentiating these,

f~xi1« i!5e2iu ij«
ixj

f~x !eiu ij«
ixj

. (9)

In commutative field theory, one draws a sharp dis-
tinction between translation symmetries (involving the
derivatives) and internal symmetries, such as df
5@A ,f# . We see that in noncommutative field theory,
there is no such clear distinction, and this is why one
cannot separately define integral and trace.

One often uses only @] i ,f# and if so, Eq. (8) can be
simplified further to the operator substitution ] i
→2i(u21) ijx

j. This leads to derivatives satisfying Eq.
(5) with F ij52(u21) ij .

The Sp(2r) subgroup of the rotational symmetry xi

→Rj
ixj which preserves u , Ri

i8Rj
j8u i8j85u ij can be ob-

tained similarly, as

f~Rj
ixj!5e2iAijx

ixj
f~x !eiAijx

ixj
, (10)

where R5eiL, Lj
i5Akju

ik, and Aij5Aji . Of course only
the U(r) subgroup of this will preserve the Euclidean
metric.

After considering these symmetries, we might be
tempted to go on and conjecture that

df5i@f ,e# (11)

for any e is a symmetry of Ru
d . However, although these

transformations preserve the algebra structure and the
trace,1 they do not preserve the derivatives. Neverthe-
less, they are important and will be discussed in detail
below.

2. Plane-wave basis and dipole picture

One can introduce several useful bases for the algebra
Ru

d . For discussions of perturbation theory and scatter-
ing, the most useful basis is the plane-wave basis, which
consists of eigenfunctions of the derivatives:

] ie
ikx5ikie

ikx. (12)

The solution eikx of this linear differential equation is
the exponential of the operator ik•x in the usual opera-
tor sense.

The integral can be defined in this basis as

E Treikx5dk ,0 , (13)

where we interpret the delta function in the usual physi-
cal way (for example, its value at zero represents the
volume of physical space).

1Assuming certain conditions on e and f; see Sec. VI.A.
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More interesting is the interpretation of the multipli-
cation law in this basis. This is easy to compute in the
plane-wave basis, by operator reordering:

eikx
•eik8x5e2 ~ i/2! u ijkikj8ei(k1k8)•x. (14)

The combination u ijkikj8 appearing in the exponent
comes up very frequently, and a standard and conve-
nient notation for it is

k3k8[u ijkikj85k3uk8,

the latter notation being used to stress the choice of
Poisson structure.

We can also consider

eikx
•f~x !•e2ikx5e2u ijki] jf~x !5f~xi2u ijkj!. (15)

Multiplication by a plane wave translates a general func-
tion by xi→xi2u ijkj . This exhibits the nonlocality of
the theory in a particularly simple way and gives rise to
the principle that large momenta will lead to large non-
locality.

A simple picture can be made of this nonlocality
(Sheikh-Jabbari, 1999; Bigatti and Susskind, 2000) by
imagining that a plane wave corresponds not to a par-
ticle (as in commutative quantum field theory) but in-
stead to a ‘‘dipole,’’ a rigid oriented rod whose extent is
proportional to its momentum:

Dxi5u ijpj . (16)

If we postulate that dipoles interact by joining at their
ends (Fig. 1), and grant the usual quantum field theory
relation p5\k between wave number and momentum,
the rule Eq. (15) follows immediately.

3. Deformation, operators, and symbols

There is a sense in which Ru
d and the commutative

algebra of functions C(Rd) have the same topology and
the same size, notions we shall keep at an intuitive level.
In the physical applications, it will turn out that u is
typically a controllable parameter, which one can imag-
ine increasing from zero to go from commutative to non-

FIG. 1. The interaction of two dipoles.
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commutative (this does not imply that the physics is con-
tinuous in this parameter, however). These are all
reasons to study the relation between these two algebras
more systematically.

There are a number of ways to think about this rela-
tion. If u is a physical parameter, it is natural to think of
Ru

d as a deformation of Rd. A deformation Mu of C(M)
is an algebra with the same elements and addition law (it
is the same considered as a vector space) but a different
multiplication law, which reduces to that of C(M) as a
(multi)parameter u goes to zero. This notion was intro-
duced by Bayen et al. (1978) as an approach to quanti-
zation, and has been much studied since, as we shall
discuss in Sec. VI. Such a deformed multiplication law is
often denoted f!g or star product to distinguish it from
the original pointwise multiplication of functions.

This notation has a second virtue, which is that it al-
lows us to work with Mu in a way that is somewhat more
forgiving of ordering questions. Namely, we can choose
a linear map S from Mu to C(M), f̂°S@ f̂# , called the
symbol of the operator. We then represent the original
operator multiplication in terms of the star product of
symbols as

f̂ ĝ5S21
†S@ f̂#!S@ ĝ#‡. (17)

One should recall that the symbol is not ‘‘natural’’ in
the mathematical sense: there could be many valid defi-
nitions of S , corresponding to different choices of opera-
tor ordering prescription for S21.

A convenient and standard choice is the Weyl ordered
symbol. The map S , defined as a map taking elements of
Ru

d to A(Rd) (functions on momentum space), and its
inverse, are

f~k ![S@ f̂#~k !5
1

~2p!n/2 E Tre2ikx̂f̂~ x̂ !, (18)

f̂~ x̂ !5S21@f#5
1

~2p!n/2 E dnkeikx̂f~k !. (19)

Formally these are inverse Fourier transforms, but the
first expression involves the integral equation (13) on
A(Ru), while the second is an ordinary momentum-
space integral.

One can get the symbol in position space by perform-
ing a second Fourier transform; e.g.,

S@ f̂#~x !5
1

~2p!n E dnkE Treik(x2 x̂) f̂~ x̂ !. (20)

We shall freely assume the usual Fourier relation be-
tween position and momentum space for the symbols,
while being careful to say (or denote by standard letters
such as x and k) which we are using.

The star product for these symbols is

eikx!eik8x5e2 ~ i/2! u ijkikj8ei(k1k8)•x. (21)

Of course all of the discussion in Sec. II.B.2 above still
applies, as this is only a different notation for the same
product, Eq. (14).

Another special case that often comes up is
Rev. Mod. Phys., Vol. 73, No. 4, October 2001
E Trf!g5E Trfg . (22)

4. The noncommutative torus

Much of this discussion applies with only minor
changes to define Tu

d , the algebra of functions on a non-
commutative torus.

To obtain functions on a torus from functions on Rd

we would need to impose a periodicity condition, say
f(xi)5f(xi12pni). A nice algebraic way to phrase this
is to instead define Tu

d as the algebra of all sums of prod-
ucts of arbitrary integer powers of a set of d variables
Ui , satisfying

UiUj5e2iu ij
UjUi . (23)

The variable Ui takes the place of eixi
in our previous

notation, and the derivation of the Weyl algebra from
Eq. (1) is familiar from quantum mechanics. Similarly,
we take

@] i ,Uj#5id ijUj

and

E TrU1
n1
¯Ud

nd5dnW ,0 .

There is much more to say in this case about the to-
pological aspects, but we postpone this to Sec. VI.

C. Field theory actions and symmetries

Field theories of matrix scalar fields are very familiar
and are treated in most textbooks on quantum field
theory. The matrix generalization is essential in discuss-
ing Yang-Mills theory. In a formal sense we shall now
make explicit any field theory Lagrangian that is written
in terms of matrix fields, matrix addition and multiplica-
tion, and the derivative and integral, can be equally well
regarded as a noncommutative field theory Lagrangian,
with the same equations of motion and (classical) sym-
metry properties as the matrix field theory.

Let us consider a generic matrix scalar field theory
with a Hermitian matrix valued field f(x)5f(x)† and
(Euclidean) action

S5E ddxAgS 1
2

gijTr] if] jf1TrV~f! D , (24)

where V(z) is a polynomial in the variable z , ] i5]/]xi

are the partial derivatives, and gij is the metric. The con-
straint we require in order to generalize a matrix action
to a noncommutative action is that it be written only
using the combination * Tr appearing in Eq. (24); we do
not allow either the integral * or the trace Tr to appear
separately. In particular, the rank of the matrix N cannot
appear explicitly, only in the form Tr1 combined with
the integral.

Under this assumption, it is an easy exercise to check
that if we replace the algebra MatN@C(M)# by a general
associative algebra A with integral and derivative satis-
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fying the requirements above, the standard discussion of
equations of motion, classical symmetries, and Noether’s
theorem all go through without change. The point is that
formal manipulations which work for arbitrary matrices
of functions can always be made without commuting the
matrices. Another way to think about this result is to
imagine defining the theory in terms of an explicit ma-
trix representation of the algebra A.

Thus the noncommutative theory with action Eq. (24)
has the standard equation of motion

gij] i] jf5V8~f!

and conservation laws ] iJ
i50 with the conserved cur-

rent Ji associated to a symmetry df(e ,f) determined by
the usual variational procedures,

dS5E TrJi] ie .

For example, let us consider the transformations Eq.
(11). In matrix field theory, these would be the infinitesi-
mal form of a U(N) internal symmetry f→U†fU . Al-
though in more general noncommutative theories
@] i ,e#Þ0 and these are not in general symmetries, we
can still consider their action, and by exponentiation de-
fine an analogous U(N) action. We will refer to this
group as U(H), the group of unitary operators acting on
a Hilbert space H admitting a representation of the al-
gebra A. In more mathematical terms, discussed in Sec.
VI, H will be a module for A.

Of course, if we do not try to gauge U(H), it could
also be broken by other terms in the action, for example,
source terms * TrJf , position-dependent potentials
* Tr fV(f), and so forth.

Application of the Noether procedure to Eq. (11)
leads to a conserved current Ti, which for Eq. (24)
would be

Ti5igij@f ,] jf# . (25)

As we discussed in Sec. II.B.1, Eq. (11) includes transla-
tions and the rotations which preserve u ij, so Ti can be
used to define momentum and angular momentum op-
erators, for example,

Pi52i~u21! ijE TrxiT0. (26)

Thus we refer to it as the restricted stress-energy tensor.
One can also apply the Noether definition to the gen-

eral variation xi°xi1v i(x), to define a more conven-
tional stress-energy tensor Tij , discussed in Gerhold
et al. (2000) and Abou-Zeid and Dorn (2001a). In gen-
eral, the action of this stress tensor changes u and the
underlying algebra and its interpretation has not been
fully elucidated at present (see Secs. VI.G and VII.C.2
for related issues).

Finally, there is a stress-energy tensor for noncommu-
tative gauge theory which naturally appears in the rela-
tion to string theory, which we shall discuss in Secs.
II.D.3 and VII.E.

We could just as well consider theories containing an
arbitrary number of matrix fields with arbitrary Lorentz
Rev. Mod. Phys., Vol. 73, No. 4, October 2001
transformation properties (scalar, spinor, vector, and so
on). However, at this point we shall only consider a gen-
eralization directly analogous to the treatment of higher
spin fields in Euclidean and Minkowski space. We shall
discuss issues related to curved backgrounds later; at
present the noncommutative analogs of manifolds with
general metrics are not well understood.

Although one can be more general, let us now assume
that the derivatives ] i are linearly independent and sat-
isfy the usual flat space relations @] i ,] j#50.

Given Poincaré symmetry or its subgroup preserving
u, one can use the conventional definitions for the action
of the rotation group on tensors and spinors, which we
do not repeat here. In particular, the standard Dirac
equation also makes sense over Ru

d and Tu
d , so spin-1/2

particles can be treated without difficulty.
The discussion of supersymmetry is entirely parallel to

that for conventional matrix field theory or Yang-Mills
theory, with the same formal transformation laws. Con-
straints between the dimension of space-time and the
number of possible supersymmetries enter at the point
we assume that the derivatives ] i are linearly indepen-
dent. With care, one can also use the conventional su-
perfield formalism, treating the anticommuting coordi-
nates as formal variables which commute with elements
of A (Ferrara and Lledo, 2000).

Finally, as long as time is taken as commutative, the
standard discussion of Hamiltonian mechanics and ca-
nonical quantization goes through without conceptual
difficulty. On the other hand, noncommutative time im-
plies nonlocality in time, and the Hamiltonian formalism
becomes rather complicated (Gomis et al., 2001); it is
not clear that it has any operator interpretation. Al-
though functional integral quantization is formally sen-
sible, the resulting perturbation theory is problematic as
discussed in Sec. IV. It is believed that sensible string
theories with timelike noncommutativity exist, discussed
in Sec. VII.G.

D. Gauge theory

The only unitary quantum field theories including vec-
tor fields are gauge theories, and the standard definitions
also apply in this context. However, there is a great deal
more to say about the kinematics and observables of
gauge theory.

A gauge connection will be a one-form Ai , each com-
ponent of which takes values in A and satisfies Ai
5Ai

† . (See Sec. VI.D for a more general definition.)
The associated field strength is

Fij5] iAj2] jAi1i@Ai ,Aj# , (27)

which under the gauge transformation

dAi5] ie1i@Ai ,e# (28)

transforms as dFij5i@Fij ,e# , allowing us to write the
gauge invariant Yang-Mills action

S52
1

4g2 E TrF2. (29)
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All this works for the reasons already discussed in Sec.
II.C.

Gauge invariant couplings to charged matter fields
can be written in the standard way using the covariant
derivative

Dif[] if1i@Ai ,f# . (30)

Finite gauge transformations act as

~] i1iAi ,F ,f!→U†~] i1iAi ,F ,f!U

and these definitions gauge the entire U(H) symmetry.
One can also use MatN(A) to get the noncommutative
analog of U(N) gauge theory, though (at this point) not
the other Lie groups.

As an example, we quote the maximally supersym-
metric Yang-Mills (MSYM) Lagrangian in ten dimen-
sions, from which N54 SYM in d54 and many of the
simpler theories can be deduced by dimensional reduc-
tion and truncation:

S5E d10xTr~Fij
2 1ix̄ID” xI!, (31)

where x is a 16-component adjoint Majorana-Weyl fer-
mion. This action satisfies all of our requirements and
thus leads to a wide variety of supersymmetric noncom-
mutative theories. Indeed, noncommutativity is the only
known generalization (apart from adding irrelevant op-
erators and taking limits of this) which preserves maxi-
mal supersymmetry.

Because one cannot separately define integral and
trace, the local gauge invariant observables of conven-
tional gauge theory do not carry over straightforwardly:
only *TrO is gauge invariant. We now discuss this point.

1. The emergence of space-time

The first point to realize is that the gauge group in
noncommutative theory contains space-time transla-
tions. This is already clear from the expression Eq. (8),
which allows us to express a translation dAi5v j] jAi in
terms of a gauge transformation Eq. (28) with e
5v j(u21) jkxk. Actually, this produces

dAi5v j] jAi1v j~u21! ji ,

but an overall constant shift of the vector potential
drops out of the field strengths and has no physical ef-
fect in infinite flat space.

Taking more general functions for e will produce more
general space-time transformations. As position-
dependent translations, one might compare these with
coordinate definitions or diffeomorphisms. To do this,
we consider the products as star products and expand
Eq. (21) in u, to obtain

df5i@f ,e#5u ij] if] je1O~]2f]2e!. (32)

→$f ,e%, (33)

($,% is the Poisson bracket), so at leading order the
gauge group is the group of canonical transformations
preserving u (we discuss this further in Sec. II.E.5). Of
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course, the higher derivative terms modify this result. In
fact, the full gauge group U(H) is simpler, as we shall
see in Sec. II.E.2.

Another aspect of this unification of space-time and
gauge symmetry is that if the derivative is an inner deri-
vation, we can absorb it into the vector potential itself.
In other words, we can replace the covariant derivatives
Di5] i1iAi with connection operators in Ru

d ,

Ci[~2iu21! ijx
j1iAi (34)

such that

Dif→@Ci ,f# . (35)

We also introduce the ‘‘covariant coordinates,’’

Yi5xi1u ijAj~x !. (36)

If u is invertible, then Yi5iu ijCj and this is just another
notation, but the definition makes sense more generally.

In terms of the connection operators, the Yang-Mills
field strength is

Fij5i@Di ,Dj#→i@Ci ,Cj#2~u21! ij , (37)

and the Yang-Mills action becomes a simple ‘‘matrix
model’’ action,

S5Tr(
i ,j

$i@Ci ,Cj#2~u21! ij%
2. (38)

Now, although we motivated this from Eq. (29), we
could look at this the other way around, starting with the
action Eq. (38) as a function of matrices Ci and postu-
lating Eq. (34), to derive noncommutative gauge theory
(and Yang-Mills theory in the limit u→0) from a matrix
model. This observation is at the heart of most of the
common ways that noncommutative gauge theory arises
in particle physics, as the action Eq. (38) and its super-
symmetrization is simple enough to arise in a wide vari-
ety of contexts. For example, it can be obtained as a
limit of the twisted Eguchi-Kawai model (Eguchi and
Nakayama, 1983; Gonzalez-Arroyo and Okawa, 1983),
which was argued to reproduce the physics of large N
Yang-Mills theory. The maximally supersymmetric ver-
sion obtained in the same way from Eq. (31), often re-
ferred to as the ‘‘IKKT model’’ (Ishibashi et al., 1997),
plays an important role in M theory, to be discussed in
Sec. VII.

Having so effectively hidden it, we might well wonder
how d-dimensional space-time is going to emerge again
from Eq. (38). Despite appearances, we do not want to
claim that noncommutative gauge theory is the same in
all dimensions d . Now in the classical theory, to the ex-
tent we work with explicit expressions for Ai in Eq. (34),
this is generally not a problem. However, in the quan-
tum theory, we need to integrate over field configura-
tions Ci . We shall need to argue that this functional
integral can be restricted to configurations which are
similar to Eq. (34) in some sense.

This point is related to what at first appears only to be
a technical subtlety involving the u21 terms in Eq. (38).
They are there to cancel an extra term
@(u21x) i ,(u21x) j# , which would have led to an infinite
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constant shift of the action. The subtlety is that one
could have made a mistake at this point by assuming
that Tr@Ci ,Cj#50, as for finite dimensional operators.

Of course the possibility that Tr@Ci ,Cj#Þ0 probably
comes as no surprise, but the point we want to make is
that Tr@Ci ,Cj# should be considered a topological aspect
of the configuration. We shall argue in Sec. VI.A that it
is invariant under any variation of the fields which (in a
sense) preserve the asymptotics at infinity. This invariant
detects the presence of the derivative operators in Ci
and this is the underlying reason one expects to consis-
tently identify sectors with a higher dimensional inter-
pretation in what is naively a zero-dimensional theory.

2. Observables

All this is intriguing, but it comes with conceptual
problems. The most important of these is that it is diffi-
cult to define local observables. This is because, as noted
from the start, there is no way to separate the trace over
H (required for gauge invariance) from the integral over
noncommutative space. We can easily enough write
gauge invariant observables, such as

E TrF~x !n,

but they are not local.
A step forward is to define the Wilson loop operator.

Given a path L , we write the holonomy operator using
exactly the same formal expression as in conventional
gauge theory,

WL5P expS iE
L

dsA@x~s!# D ,

but where the products in the expansion of the path
ordered exponential are star products. This undergoes
the gauge transformation

WL→U†~x1!WL(x1 ,x2)U~x2!,

where x1 and x2 are the start and end points of the path
L1,2 .

We can form a Wilson loop by taking for L a closed
loop with x15x2 , but again we face the problem that we
can only cyclically permute operators, and thus cancel
U21(x1) with U(x1), if we take the trace over H, which
includes the integral over noncommutative space.

We can at least formulate multilocal observables with
this construction, such as

E TrO1~x1!W@L1,2#O2~x2!W@L2,3#¯O~xn!W@Ln ,1#

with arbitrary gauge covariant operators Oi at arbitrary
points xi , joined by Wilson loops. This allows us to con-
trol the distance between operators within a single trace,
but not to control the distance between operators in dif-
ferent traces.

Actually one can do better than this, using what are
called open Wilson loops (Ishibashi et al., 2000). The
simplest example is
Rev. Mod. Phys., Vol. 73, No. 4, October 2001
WL~k ![E TrW@L1,2#eikx̂2.

If the distance between the end points of L and the
momentum k satisfy the relation Eq. (16), u ijki5(x1
2x2), this operator will be gauge invariant, as one can
see by using Eq. (15).

This provides an operator which carries a definite mo-
mentum and which can be used to define a version of
local correlation functions. There is a pleasing corre-
spondence between its construction and the dipole pic-
ture of Sec. II.B.2; not only can we think of a plane wave
as having a dipole extent, we should think of the two
ends of the dipole as carrying opposite electric charges
which for gauge invariance must be attached to a Wilson
line.

The straight line has a preferred role in this construc-
tion, and the open Wilson loop associated to the straight
line with length determined by Eq. (16) can be written

W~k ![E Trek3C5E Treik•Y,

where Yi are the covariant coordinates of Eq. (36). This
construction can be used to covariantize local operators
as follows: given an operator O(x), transforming in the
adjoint, and momentum k , we define

W@O#~k !5E Trek3CO~x !5E TreikmYm(x)O~x !,

O@y#5E ddkE Treik•(Y2y)O~x !. (39)

3. Stress-energy tensor

As we discussed above, the simplest analog of the
stress-energy tensor in noncommutative field theory is
Eq. (25), which generates the noncommutative analog of
canonical transformations on space-time. However, in
noncommutative gauge theory, this operator is the gen-
erator of gauge transformations, so it must be set to zero
on physical states. This leads to a subtlety analogous to
one known in general relativity: one cannot define a
gauge invariant local conserved momentum density. This
is compatible with the difficulties we just encountered in
defining local gauge invariant observables.

One can nevertheless regard Eq. (26) as a nontrivial
global conserved momentum. This is because it corre-
sponds to a formal gauge transformation with a param-
eter e;xi which does not fall off at infinity (on the torus,
it is not even single valued), and as such can be consis-
tently excluded from the gauge group. This type of con-
sideration will be made more precise in Sec. VI.A.

One can make a different definition of stress-energy
tensor, motivated by the relation Eq. (34) between the
connection and the noncommutative space-time coordi-
nates, as the Noether current associated to the variation

Ci→Ci1ai~k !eik•Y

which for the action Eq. (38) can easily be seen to
produce
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Tij~k !5(
l
E

0

1
dsE Treisk•Y@Ci ,Cl#ei(12s)k•Y@Cj ,Cl# ,

(40)

which is conserved in the sense that kmumnTnl(k)50
for a solution of the equations of motion. This appears
to be the natural definition in string theory, as we discuss
in Sec. VII.E.

4. Fundamental matter

Another type of gauge invariant observable can be
obtained by introducing new fields (bosons or fermions)
which transform in the fundamental of the noncommu-
tative gauge group. In other words, we consider a field c
which is operator valued just as before, but instead of
transforming under U(H) as c→UcU†, we impose the
transformation law

c→Uc .

More generally, we need to define multiplication a•c by
any element of A, but this can be inferred using linearity.

Bilinears such as c†c , c†Dic , and so on will be gauge
invariant and can be used in the action and to define
new observables, either by enforcing an equation of mo-
tion on c or doing a functional integral over c (Ambjorn
et al., 2000; Rajaraman and Rozali, 2000; Gross and
Nekrasov, 2001).

Although in a strict sense this is also a global observ-
able, an important point (which will be central to Sec.
VI.D) is that one can also postulate an independent rule
for multiplication by A (and the unitaries in A) on the
right,

c→ca .

Indeed, if we take cPA, we shall clearly get a nontrivial
second action of this type, since left and right multipli-
cation are different. In this case, we can think of c†c as
a function on a second, dual noncommutative space. For
each fPA one obtains a gauge invariant observable
Trc†cf , which is local on the dual space in the same
sense that an noncommutative field is a local observable
in an ungauged theory.

Taking cPA is a choice. One could also have taken
cPH, which does not lead to such a second multiplica-
tion law. The general theory of this choice is discussed in
Sec. VI.D.

The two definitions lead to different physics. Let us
compare the spectral density. If we take the Dirac op-
erator g iDi acting on cPHr , this has dr(E)
;dEEr21, as for a field in r dimensions.

If we take the same Dirac operator with cPA, we
would get infinite spectral density. A more useful defini-
tion is

D” c5g i~Dic2c] i!,

which fixes this by postulating an ungauged right action
of translations, leading to a spectral density appropriate
to 2r dimensions.
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5. The Seiberg-Witten map

Having discovered an apparent generalization of
gauge theory, we should ask ourselves to what extent
this theory is truly novel and to what extent we can un-
derstand it as a conventional gauge theory. This question
will become particularly crucial once we find noncom-
mutative gauge theory arising from open string theory,
as general arguments imply that open string theory can
always be thought of as giving rise to a conventional
gauge theory. Is there an inherent contradiction in these
claims?

Seiberg and Witten (1999) proposed that not only is
there no contradiction, but that one should be able to
write an explicit map from the noncommutative vector
potential to a conventional Yang-Mills vector potential,
explicitly exhibiting the equivalence between the two
classes of theories.

One might object that the gauge groups of noncom-
mutative gauge theory and conventional gauge theory
are different, as is particularly clear in the rank 1 case.
However, this is not an obstacle to the proposal, as only
the physical configuration space—namely, the set of or-
bits under gauge transformation—must be equivalent in
the two descriptions. It does imply that the map between
the two gauge transformation laws must depend on the
vector potential, not just the parameter.

Thus the proposal is that there exists a relation be-
tween a conventional vector potential Ai with the stan-
dard Yang-Mills gauge transformation law with param-
eter e, Eq. (28), and a noncommutative vector potential
Âi(Ai) and gauge transformation parameter ê(A ,e)
with noncommmutative gauge invariance d̂Âi5] iê

1iÂ i* ê2i ê* Âi , such that

Â~A !1 d̂ êÂ~A !5Â~A1deA !. (41)

This equation can be solved to first order in u without
difficulty. Writing u5du , we have

Âi~A !2Ai52
1
4

dukl$Ak ,] lAi1Fli%11O~du2!,

(42)

ê~A ,e!2e5
1
4

dukl$]ke ,Al%11O~du2!, (43)

where $A ,B%1[AB1BA . The corresponding first-
order relation between the field strengths is

F̂ ij2Fij5
1
4

dukl~2$Fik ,Fjl%12$Ak ,DlFij1] lFij%1!.

This result even admits a reinterpretation which de-
fines the map to all finite orders in u. Consider the prob-
lem of mapping a noncommutative gauge field Â(u) de-
fined with respect to the star product for u, to a
noncommutative gauge field Â(u1du) defined for a
nearby choice of u. To first order in du, it turns out that
the solution to the corresponding relation (41) is again
Eqs. (42) and (43), now with the right-hand side evalu-
ated using the star product for u. Thus these equations
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can be interpreted as differential equations (Seiberg-
Witten equations) determining the map to all orders.

Equation (42) can be solved explicitly for the case of a
rank one gauge field with constant F . In this case, it
reduces to

dF̂52F̂duF̂ ,

where Lorentz indices are contracted as in matrix mul-
tiplication. It has the solution (with boundary condition
F at u50)

F̂5~11Fu!21F . (44)

This result can be used to relate the conventional and
noncommutative gauge theory actions at leading order
in a derivative expansion, as we shall discuss in detail in
Sec. VII.C.

All this might suggest that the noncommutative
framework is merely a simpler way to describe theories
which could have been formulated as conventional
gauge theories, by just applying the transformation F̂
→F to the action. This, however, ignores the possibility
that the map might take nonsingular field configurations
in the one description, to singular field configurations in
the other. Indeed, Eq. (44) gives an explicit example.
When F52u21, the noncommutative description ap-
pears to break down, as F̂ would have a pole. Con-
versely, F is singular when F̂5u21.

As we continue, we shall find many examples in which
noncommutative gauge theory has different singular so-
lutions and short-distance properties from conventional
gauge theory, and despite this formal relation between
the theories it will become clear that their physics is in
general rather different.

A solution to the Seiberg-Witten equation was re-
cently found (Liu, 2000; Liu and Michelson, 2001a;
Mukhi and Suryanarayana, 2001; Okawa and Ooguri,
2001b). Namely, the following inhomogeneous even de-
gree form on Rd, defined as the integral over the super-
space Rdud, is closed:

E ddkddq TrHFexpS F
2pi D Gr~k !F

5ki~Yi2yi!2q idyi1q iq j@Yi,Yj# , (45)

where y’s are the coordinates on Rd, and r(k) can be
any smooth function such that r(0)51 (this slightly gen-
eralizes the references, which take r51). This expres-
sion has an expansion in differential forms on Rd, whose
two-form part is the conventional F1u21. Deeper as-
pects of this rather suggestive superspace expression will
be discussed in Nekrasov (2001).

E. Bases and physical pictures

The algebra Ru
d of ‘‘functions on noncommutative

Rd, ’’ considered as a linear space, admits several useful
bases. Since it is just a product of Heisenberg algebras
and commuting algebras, all of this formalism can be
traced back to the early days of quantum mechanics, as
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can much of its physical interpretation. In quantum me-
chanics, it appears when one considers density matrices
(the Wigner functional) and free Fermi fluids (in one
dimension, this leads to bosonization and W` algebra).

However, we stress that the noncommutativity under
discussion here is not inherently quantum mechanical.
Rather, it is a formal device used to represent a particu-
lar class of interactions between fields, which can exist in
either classical or quantum field theory. In particular, an
essential difference with the standard quantum-
mechanical applications is that these involve linear
equations, while we are going to encounter general non-
linear equations.2

1. Gaussians and position-space uncertainty

While the plane-wave basis is particularly good for
perturbation theory, nonperturbative studies tend to be
simpler in position space. However, in noncommutative
theory the standard position space basis tends not to be
the most convenient, because of the nonlocal nature of
the interactions. One is usually better off using a basis
which simplifies the product.

One expects the noncommutativity Eq. (1) to lead to
a position-space uncertainty principle, which will ex-
clude the possibility of localized field configurations. Al-
though there is truth to this, the point is a bit subtle, as
it is certainly possible to use delta functions d(d)(x
2x0) as a basis (for the symbols) which from the point
of view of the kinetic term is local.

Of course, the star product is not diagonal in this ba-
sis. Computing the star product of two delta functions
leads to a kernel, which can be used to write an integral
representation of the product:

~f!g !~z !5E ddxddyK~x ,y ;z !f~x !g~y !,

K~x ,y ;z !5d~z2x !!d~z2y !

5
1

~2p!d E ddkeik(z2x)d~z2y2uk !

5
1

~2p!d det u
ei(z2x)u21(z2y). (46)

In particular, the star product

d~z !!f~y !5
1

~2p!d det u E ddyei yu21zg~y ! (47)

is a highly nonlocal operation: it is the composition of a
Fourier transform with the linear transformation z
→u21z .

As in quantum mechanics, one might expect the
Gaussian to be a particularly nice basis state, since it is

2The special case of the equation f25f defining a projection
can arise as a normalization condition in quantum mechanics.
Also, somewhat similar nonlinear equations appear in the ap-
proximation methods of quantum statistical mechanics.
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simultaneously Gaussian in both conjugate coordinates.
Let cM,a be a Gaussian with center a, covariance M, and
maximum 1:

cM,a5exp@2~xi2ai!Mij~xj2aj!# ,

which satisfies *ddxucu25@det (2M/p)#2 1/2.
The star product of two Gaussians can be easily

worked out using Eq. (46). In particular, for concentric
Gaussians of width a and b , we have

c~1/a2! 1,0!c~1/b2! 1,05C~a ,b !c@1/D(a ,b)2 #1,0 (48)

with

D~a ,b !25
a2b21u2

a21b2 ,

C~a ,b !5S 11
u2

~ab !2D 2 d/2

. (49)

This result illustrates the sense in which interactions in
noncommutative theory obey a position-space uncer-
tainty principle. Formally, we can construct a Gaussian
configuration of arbitrarily small width in the noncom-
mutative theory; its limit is the delta function we just
discussed. Unlike commutative theory, however, multi-
plication by a Gaussian of width b2,u does not concen-
trate a field configuration but instead tends to disperse
it. This is particularly clear for the special case a5b of
Eq. (49). More generally, the operation of multiplication
by a Gaussian cb1,0 (for any b) will cause the width to
approach u, decreasing (D,a) if a2.u and increasing if
a2,u .

For some purposes, one can think of a Gaussian as
having a minimum ‘‘effective size’’ max$a,1/(ua)%. This
is a bit imprecise, however. For example, the result can
be a Gaussian with D(a ,b)2,u , which will be true if and
only if (a22u)(b22u),0. A better picture is that star
product with a small Gaussian is similar to the Fourier
transform (47).

The configuration with the minimum effective size is
evidently the Gaussian of width a25u . One of its special
features is that its product with any Gaussian will be a
Gaussian of width u, and thus a basis can be defined
consisting entirely of such Gaussians. This can be done
using coherent states and we shall return to this below.

2. Fock space formalism

A nice formal context which provides a basis includ-
ing the minimal Gaussian is to use as noncommutative
coordinates creation and annihilation operators acting
on a Fock space. These are defined in terms of the ca-
nonical coordinates of Eq. (7) in the usual way,

aa5
qa1ipa

A2ua

, a†
a5

qa2ipa

A2ua

,

za5A2uaaa , z̄a5A2uaa†
a ,

@aa ,a†
b#5dab . (50)
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We can now identify elements of Ru
d with functions of

the ya valued in the space of operators acting in the
Fock space Hr of r creation and annihilation operators.
The Fock space Hr is the Hilbert space H of our previ-
ous discussion, and this basis makes the nature of U(H)
particularly apparent: it is the group of all unitary opera-
tors on Hilbert space. Explicitly,

Hr5 % Cun1 ,. . . ,nr&,

aau. . . ,na , . . .&5Anau. . . ,na21,.. .&,

a†
au. . . ,na , . . .&5Ana11u. . . ,na11,.. .&,

n̂a5a†
aaa . (51)

We have also introduced the number operator n̂a . Real
functions of the original real coordinates correspond to
the Hermitian operators.

In this language, the simplest basis we can use consists
of the elementary operators ukW &^ lWu. These can be ex-
pressed in terms of a†

a and aa as

ukW &^ lWu5(
nW

)
a

~21 !na
aa

†ka1naaa
la1na

na!Aka!la!
.

Using Eq. (8), the derivatives can all be written as com-
mutators with the operators aa ,a†

a . The integral (13)
becomes the standard trace in this basis,

E d2rxTr→)
a

~2pua!Tr. (52)

The operators ukW &^kW u, their sums and unitary rotations
of these, provide a large set of projections, operators P
satisfying P25P . This is in stark contrast with the alge-
bra C(M) (where M is a connected space) which would
have had only two projections, 0 and 1, and this is a key
difference between noncommutative and commutative
algebras. Physically, this will lead to the existence of new
solitonic solutions in noncommutative theories, as we
discuss in Sec. III.

A variation on the projection which is also useful in
generating solutions is the partial isometry, which by
definition is any operator R satisfying

RR†R5R . (53)

Such an operator can be written as a product R5PU of
a projection P and a unitary U . The simplest example is
the shift operator Sa

† with matrix elements

Sa
† u. . . ,na , . . .&5u. . . ,na11,.. .&. (54)

It satisfies

SaSa
† 51

and

Sa
† Sa512 (

nb ;bÞa
unb,0a&^nb,0au. (55)

3. Translations between bases

In this subsection we assume for simplicity that d
52r .
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The translation between this basis and our previous
descriptions involving commutative functions and the
star product, as we commented above, can be done using
the plane-wave basis and Fourier transform.

A standard tool from quantum mechanics which facili-
tates such calculations is the coherent state basis
(Klauder and Sudarshan, 1968). Note that this is not a
basis of Ru

d but rather is a basis of Hr . We recall their
definition

~ju5^0uejaaa, uh!5ehaa†
au0&, (56)

a useful formula for matrix elements of f̂ in this basis,

~ju f̂uh!5E f~z , z̄ !
drz drz̄

)apua
ej•h2 ~1/u!( z̄2jA2u)•(z2hA2u),

(57)

~ z̄2jA2u!•~z2hA2u!5(
a

~ z̄2jaA2ua!~z2haA2ua!

and a formula which follows from this for matrix ele-
ments between Fock basis states with vectors of occupa-
tion numbers kW and lW :

^kW u f̂u lW&5)
a

1

Aka!la!
]ja

ka]ha

la uj5h50~ju f̂uh!. (58)

For example, let us consider the projection operator
f̂0[u0&^0u. We have (hu f̂0uj)51, and using Eq. (58) we
can reproduce this with f0(z , z̄)52r exp@2z• (1/u) z̄# , so
f̂0 is precisely the minimal Gaussian we encountered ear-
lier. One could extend this to use

f̂ h̃ , j̃5e2 j̃•h̃uh̃)~ j̃u↔f h̃ , j̃52re2( z̄2 j̃A2u)•u21(z2h̃A2u)

(59)

as an overcomplete basis for Ru
d , consisting of minimal

Gaussians with centers x5( z̃ , z̃* ) [see, e.g., Eq. (15)]
multiplied by plane waves with momentum k5(k̃ ,k̃* ),
with

k̃5
1

2u
~ j̃2h̃* !, z̃5Au

2
~ j̃1h̃* !

(where * denotes complex conjugation). As another
example, the delta function d(d)(x) has matrix ele-
ments [from Eq. (57)] (hud̂uj)5e2hj, leading to the
expressions

^kW ud̂u lW&5dkW , lW~21 ! ukW u, d̂5~21 ! unŴ u (60)

with ukW u5(aka ,unŴ u5(an̂a .
Let us now express the general radially symmetric

function in two noncommutative dimensions in the two
bases (we take u5 1/2). These are functions of r25p2

1q2;zz̄5n̂ , so the general such function in the Fock
basis is

(
n>0

cnf̂n5 (
n>0

cnun&^nu. (61)

The corresponding symbols fn can be found as solutions
of the equations zz̄* fn5(n1 1/2)fn (Fairlie, 1964;
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Curtright et al., 2000). A short route to the result is to
form a generating function from these operators,

f̂5 (
n>0

unun&^nu, (62)

whose matrix elements are (hu f̂uj)5exp(uhj). This can
be obtained from Eq. (57) by taking for f the generating
function

f~zz̄ ;u !5S l2
1
2 D exp~lzz̄ !

with 12u51/(l2 1
2 ). Substituting u for l in this expres-

sion leads to a generating function for the Laguerre
polynomials Ln(4r2) (Bateman, 1953).

The final result for the symbol of Eq. (62) is

f52 (
n>0

unLn~4r2!e22r2
.

4. Scalar Green’s functions

We now discuss the Green’s function of the free non-
commutative scalar field. This is very simple in the
plane-wave basis, in which the Klein-Gordon operator is
diagonal:

~2] i]
i1m2!eikx5~k21m2!eikx.

The Green’s function satisfying

S 2(
i

]2

]xi
2 1m2D G~x ,y !5d~x ,y ! (63)

is then just

G~k ,k8!5
dk ,k8

k21m2 . (64)

This result can be easily transformed to other bases
using coherent states. We set ua5 1

2 and start from

~hueikz̄1ik̄zuj!5e2 ~1/2! kk̄1ik̄h1ikj1hj (65)

which is derived from Eq. (57) by Gaussian integration.
This allows us to derive the matrix elements of the

Greens function Ĝ by Fourier transform:

S hU E ddk
eikx

k21ieUj D
5E drkdrk̄dd22rp

kk̄1p21ie
e2 ~1/2! kk̄1ik̄h1ikj1hj1ipy.

It is convenient to express this as a proper time integral.
We can then easily include commuting dimensions as
well; let there be 2r noncommuting and d22r commut-
ing dimensions, with momenta k and p , respectively. We
include a separation y in the commuting directions for
purposes of comparison. We then have

~huĜuj!5E
0

`

dtE drkdrk̄dd22rpe2tp21ipy

3e2tkk̄2 ~1/2 !kk̄1ik̄h1ikj1hj. (66)
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The integrals over momenta are again Gaussian:

5~2p!d/2ehjE
0

` dt

~2t !~d22r !/2~2t11 !r e2 2hj/~2t11 ! 2 y2/4t.

(67)

This is the result. Let us try to compare its behavior in
noncommutative position space with that in commuta-
tive space. This comparison can be based on Eq. (59),
which tells us that e2a2

(h5auĜuj5a) evaluates the
Green’s function on a Gaussian centered at x5a . The
IR (long-distance) behavior is controlled by the limit t
→` of the proper time integral, and we see that it has
the same dependence on a as on y . Thus, in this sense,
the IR behavior is the same as for the commutative
Green’s function.

The UV behavior is controlled by short times t→0,
and at first sight looks rather different from that of the
commutative Greens function, due to the shifts t→t
1 1/2. However, this difference is only apparent and
comes because the noncommutative Greens function in
effect contains a factor of the delta function Eq. (60),
which is hiding the UV divergence. To see this, we can
compute Trd̂Ĝ , which is the correct way to take the
coincidence limit.

This can be done in the coherent state basis, but we
instead make a detour to expand the Green’s function in
the Fock basis. This can be done using Eq. (58); one
finds that the matrix elements are nonzero only on the
diagonal and are a function only of the sum of the occu-
pation numbers (ana—this reflects rotational invari-
ance. Changing variables from t to l51/(t1 1/2), setting
y50, and going to the Fock basis, we obtain

^nuĜun&5E
0

2
dlld/2 22~22l!r2 d/2~12l!n. (68)

This result makes it easy to answer the previous ques-
tion: the sum over modes Trd̂Ĝ5(n^nuĜun& produces
(22l)2r, which is exactly the UV divergent factor
which was missing from Eq. (68).

In effect, the coincidence limit of the Green’s function
diverges in the same way in noncommutative theory as
in conventional theory. This was clear in the original
plane-wave basis, and will imply that many loop ampli-
tudes have exactly the same UV divergence structure as
they would have had in conventional theory, as we shall
discuss in Sec. IV.

We shall find ourselves discussing more general
Green’s functions in the interacting theory. Given a two-
point function G(2)(k) in momentum space, the same
procedure can be followed to convert it to the coherent
state basis and thus interpret it in noncommutative po-
sition space. We shall not try to give general results but
instead simply assert that this allows one to verify that
the standard relations between asymptotic behavior in
momentum and position space are valid in noncommu-
tative space.

First, the long-distance behavior is controlled by the
analytic behavior in the upper half plane; if the closest
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pole to the real axis is located at Im k5m, the Euclidean
Green’s function will fall off as e2mr in position space.

Similarly, the short-distance behavior is controlled by
the large-k asymptotics, G(2)(k);k2a implies G(r)
;ra2d.

5. The membrane/hydrodynamic limit

The formal relation between Ru
d and the Heisenberg

algebra of quantum mechanics suggests that it should be
interesting to consider the analog of the \→0 limit.
Since u is not \, this is not a classical limit, but rather a
limit in which the noncommutative fields can be treated
as functions rather than operators. This limit helps pro-
vide some intuition for the noncommutative gauge sym-
metry, and has diverse interpretations in the various
physical realizations of the theory.

We consider noncommutative gauge theory on Ru
d and

take the following scaling limit: let

u5l2u0 ; A5l22A0 ; g25g0
2l24, (69)

and take l→0, keeping all quantities with the 0 subscript
fixed. This corresponds to weak noncommutativity with
strong gauge coupling, fixing the dimensionful combina-
tion l25gu .

Assume that u ij is invertible, and define the functions

yi5xi1u ijAj~x !. (70)

In the limit, the Yang-Mills action (29) becomes

Sh5
1
l4 E ddx(

i ,j
~$yi,yj%2u ij!2, (71)

where

$f ,g%5u0
ij] if] jg

is the ordinary Poisson bracket on functions.
Infinitesimal gauge transformations take the form Eq.

(32) in the limit. The corresponding finite gauge trans-
formations are general canonical transformations, also
called symplectomorphisms, which are diffeomorphisms
x° x̃(x) which preserve the symplectic form:

u ij
21dx̃i∧dx̃j5u ij

21dxi∧dxj. (72)

In general, not all symplectomorphisms are generated
by Hamiltonians as in Eq. (6); those which are not are
the analogs of large gauge transformations.

The model Eq. (71) is a sigma model, in the sense that
the fields yi can be thought of as maps from a base space
Rd to a target space, also Rd in this example. One can
easily generalize this to let y be a map from one Poisson
manifold (M ,u) to another Poisson manifold (N ,p),
which must also have a volume form m and a metric
i•i2 on the space of bi-vectors. The action Eq. (71) will
read

S5E
N

m iy* u2pi2

and will again have the group Diffu(M) of symplecto-
morphisms of M as a gauge group. This generalization
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also appears very naturally; for example if one starts
with d1k-dimensional Yang-Mills theory, dimensionally
reduces to d dimensions, takes these to be Ru

d , and takes
the limit, one obtains M5Rd and N5Rd1k.

If some of the coordinates are commuting, one gets a
gauged sigma model. The case of a single commuting
timelike dimension is particularly simple in the canoni-
cal formulation: one has canonically conjugate variables
(pi ,yi), a Hamiltonian H5( ipi

21Sh , and a constraint
05J5( i$pi ,yi%. In this form, the construction we just
described essentially appears in Hoppe (1982), while its
maximally supersymmetric counterpart is precisely the
light-cone gauge fixed supermembrane action of de Wit
et al. (1988). Thus one interpretation of the fields yi is as
the embedding of a d-dimensional membrane into d
1k-dimensional space.

Although this picture is a bit degenerate if k50, the
configuration space of such maps is still nontrivial. The
related time-dependent theory describes flows of a fluid
satisfying Eq. (72). This is particularly natural in two
dimensions, where u ijdxidxj is the area form, and these
are allowed flows of an incompressible fluid. This hydro-
dynamic picture has also appeared in many works, for
example, Bordemann and Hoppe (1993), and is also
known in condensed-matter theory.

We shall use this hydrodynamic picture in what fol-
lows to illustrate solutions and constructions of the non-
commutative gauge theory. As an example, the hydrody-
namic limit of the Seiberg-Witten map Eq. (45) is
(Cornalba, 1999)

Fij1u ij
215@$yk,yl%# ij

21. (73)

As Susskind (2001) points out, for d52 this is just the
translation between the Euler and Lagrange descrip-
tions of fluid dynamics.

Similarly, the hydrodynamic analog of the straight
Wilson line is the Fourier transform of fluid density,

W@k#5E ddxPf~u21!eikiy
i(x). (74)

6. Matrix representations

In a formal sense, any explicit operator representation
is a matrix representation. In this subsection we discuss
Tu

d as a large-N limit of a finite dimensional matrix alge-
bra, and how this might be used to formulate regulated
noncommutative field theory. We take d52 for definite-
ness, but the ideas generalize.

One cannot, of course, realize Eq. (1) using finite di-
mensional matrices. One can realize Eq. (23) for the
special case with u1252pM/N , for example, by U1
5G1

M and U25G2 , where (G1)m ,n[dm ,n exp@2pi (n/N)#
is the clock matrix, and (G2)m ,n[dm2n ,1(modN) is the
shift matrix.

Products of these matrices form a basis for MatN(C)
[we assume gcd(M ,N)51] and in a certain sense this
allows us to regard MatN(C) as an approximation to Tu

2 :
namely, if we write
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F@x#[ (
0<m1 ,m2,N

U1
m1U2

m2epiu ijmimj22pimix
i
,

we find that the F@x# evaluated at lattice sites xi

5ni/N provide a basis in terms of which the multiplica-
tion law becomes Eq. (46), with the integrals replaced by
sums over lattice points. This construction is sometimes
referred to as a ‘‘fuzzy T2’’ and was independently pro-
posed in several works (de Wit et al., 1988; Hoppe, 1989;
see also the references in Bars and Minic, 2000) as a
starting point for regulated field theory on T2, since we
can regard the bound 0<mi,N as a UV cutoff.

One can obtain Tu
2 with more general u by taking the

limit M ,N→` holding u52pM/N fixed, and obtain Ru
2

by taking gij (and thus the volume) large in an obvious
way. Formulating this limit precisely enough to make
contact with our previous discussion requires some
mathematical sophistication, however, as there are many
distinct algebras which can be obtained from MatN(C)
by taking different limits. For example, in Sec. VI.B we
shall discuss a sense in which the large-N limit of
MatN(C) leads to functions on a sphere, not a torus.

For most physical purposes, the definitions of Ru
d we

gave previously are easier to use. On the other hand,
making the limit explicit is a good starting point for
making a nonperturbative definition of quantum non-
commutative field theory and for a deeper understand-
ing of the renormalization group. Physically, one usually
thinks of the continuum limit (at least at weak coupling)
as describing modes with low kinetic energy, so to decide
which algebra will emerge in the limit, we need to con-
sider the derivatives.

Candidate derivatives for fuzzy T2 are operators Di
satisfying

DiF@x#Di
†5F@x1ei# ,

where (ei)
j5d i

j/N is the lattice spacing; e.g., take D1

5G2
a with aM521modN and D25G1 . Thus a plausible

regulated form of Eq. (24) might be

S5
N2

2
Tr(

i
~DiFDi

†2F!21TrV~F!. (75)

The same approach could be followed for noncommu-
tative gauge theory, leading to a rather ugly action. One
aspires to the elegance of Eq. (38), in which the deriva-
tives emerge from a choice of background configuration.
It should be clear at this point (and will be made more
so in Sec. VI.A) that one cannot simply take A
5MatN(C) in Eq. (38); the derivatives must be specified
somehow.

Perhaps the best proposal along these lines at present
is due to Ambjorn et al. (1999). We shall just state this as
a recipe; the motivation behind it will become clearer
upon reading Sec. VI.E.

The starting point is the lattice twisted Eguchi-Kawai
model, a matrix model whose dynamical variables are d
unitary matrices UiPU(N), and the action

S52
1
g2 (

iÞj
ZijTrUiUjUi

†Uj
† .
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This is Wilson’s lattice gauge theory action restricted to
a single site, which is a natural nonperturbative analog
of Eq. (38), generalized by the twist factors Zij which
are constants satisfying Zij5(Zji)* .

This action is supplemented by the constraints

V iUjV i
†5e2pid ijri /NUj

which for suitable matrices V i and constants ri can be
shown to admit Ui5DiŨi as solutions, where Di are
derivatives as above, and Ũi are unitary elements of Tu

d .
Following the ideas above, one can show that this re-

produces perturbative noncommutative gauge theory,
and captures interesting nonperturbative structure of
the model, namely, the Morita equivalence described in
Sec. VI.F, for rational u. It would be interesting to justify
this further, for example, by detailed analysis in two
dimensions.

III. SOLITONS AND INSTANTONS

Field theories and especially gauge theories admit
many classical solutions: solitons, instantons, and branes,
which play important roles in nonperturbative physics.

In general, solutions of conventional field theory carry
over to the analogous noncommutative theory, but with
any singularities smoothed out, thanks to position-space
uncertainty. In particular, the noncommutative rank 1
theory has nonsingular instanton, monopole, and vortex
solutions, and in this respect (and many others) is more
like conventional Yang-Mills, not Maxwell theory.

An even more striking feature of noncommutative
theory is that solitons can be stable when their conven-
tional counterparts would not have been. As we shall
see, noncommutativity provides a natural mechanism for
stabilizing objects of size Au .

Another striking feature is how closely the properties
of noncommutative gauge theory solutions mirror the
properties of corresponding Dirichlet brane solutions of
string theory. We shall discuss this aspect in Sec. VII.D.

A. Large u solitons in scalar theories

In commutative scalar field theories in two and more
spatial dimensions, there is a theorem which prohibits
the existence of finite-energy classical solitons (Derrick,
1964). This follows from a simple scaling argument:
upon shrinking all length scales as L→lL , both kinetic
and potential energies decrease, so no finite-size mini-
mum can exist.

This argument will obviously fail in the presence of a
distinguished length scale Au and in fact one finds that
for sufficiently large u, stable solitons can exist in the
noncommutative theory (Gopakumar et al., 2000).

The phenomenon can be exhibited in 211 dimensions
and we consider such a field theory with action (24). It is
convenient to work with canonically commuting non-
commutative coordinates, defined as x11ix25zAu and
x12ix25 z̄Au . In terms of these, the energy becomes
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E5E d2z
1
2

~]f!21uV~f!.

In the limit of large uV , the potential energy dominates,
and we can look for an approximate solitonic solution by
solving the equation

]V

]f
50. (76)

For example, if we consider a cubic potential, this equa-
tion would be

V8~f!5gf21f50. (77)

While in commutative theory these equations would ad-
mit only constant solutions, in noncommutative theory
the story is rather more interesting. It is simplest in the
Fock space basis, in which the field can be taken to be an
arbitrary (bounded) operator on Hr , and for which the
multiplication is just operator multiplication. Since f is
self-adjoint it can be diagonalized, so we can immedi-
ately write the general solution of Eq. (77):

f52
1
g

U†PU ,

where U is a unitary and P25P is a projection operator,
characterized up to unitary equivalence by Tr P (which
must be finite for a finite-energy configuration) or
equivalently the number of unit eigenvalues. As dis-
cussed in Sec. II.E.3, the diagonal operators correspond
to radially symmetric solutions, from which unitary ro-
tations produce all solutions.

The simplest solution of this type uses the operator
P05u0&^0u, of energy 2puV(21/g)5pu/3g2. It is re-
markable that this energy depends only on the value of
the potential at the critical point, and nothing else.

As we discussed in Sec. II.E.2, this is a Gaussian of
width Au which squares to itself under star product. We
see that the scaling argument for instability is violated
because of the position-space uncertainty principle,
which causes the energy of smaller Gaussians to
increase.

The general solution in this sector is f
52 (1/g) U†u0&^0uU . This includes Gaussians with arbi-
trary centers, the higher modes discussed in Sec. II.E.2,
and various ‘‘squeezed states.’’ Neglecting the kinetic
term, they are all degenerate and are parametrized
by an infinite-dimensional moduli space
limN→`U(N)/U(N21). This infinite degeneracy will,
however, be lifted by the kinetic term. The story is simi-
lar for solutions with Tr P5n ; this moduli space has a
limit in which the solutions approach n widely spaced
n51 solitons, with exponential corrections.

This example and all of its qualitative features gener-
alize immediately to an arbitrary equation Eq. (76). Its
most general solution is

f5U†S (
i

l iPiD U , (78)

where the l i are the critical points V8(l i)50, and the Pi
are a set of mutually orthogonal projections whose sum
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is the identity. The analysis also generalizes in an obvi-
ous way to higher dimensional theories with full spatial
noncommutativity (d52r11), by tensoring projections
in each Fock space factor.

Solutions for which all l i are minima of V(l) are
clearly locally stable, if we neglect the kinetic energy
term. We now consider the full energy functional, which
in the Fock basis becomes

E5Tr@z ,f#@f , z̄#1uTrV~f!.

The kinetic term breaks U(Hr) symmetry and might be
expected to destabilize most of the infinite-dimensional
space of solutions Eq. (78). On the other hand, for low
modes (un&^nu with n;1), the kinetic energy will be
O(1), so for sufficiently large u a stable solution should
survive. This was checked by Gopakumar et al. (2000)
by an analysis of linearized stability, with the result (for
the n51 solutions in d5211) that only the minimal
Gaussian u0&^0u and its translates are stable.

The solution cannot exist at u50 and it is interesting
to ask what controls the critical value uc at which it dis-
appears (Zhou, 2000; Durhuus et al., 2001; Jackson,
2001). One can easily see the rather surprising fact that
this does not depend directly on the barrier height. This
follows because we can obtain a family of equivalent
problems with very different barrier heights by the re-
scaling f→af and E→E/a2, all with the same uc .

Rather, the condition for noncommutative solitons to
exist is that noncommutativity be important at the scale
set by the mass of the f particle in the asymptotic
vacuum, i.e., uV9@1. Consider the symmetric f4 poten-
tial. By the above argument, uc can only depend on V9
at the minimum; numerical study leads to the result

ucV9~0 !513.92. (79)

There is some theoretical understanding of this result,
which suggests that this critical value is roughly indepen-
dent of the shape of the potential. It is plausible that
only radially symmetric configurations are relevant for
stability and if one restricts attention to this sector, the
equation of motion reduces to a simple three-term re-
currence relation for the coefficients cn in Eq. (61),

~n11 !cn112~2n11 !cn1ncn215
u

2
V8~cn!, n>0.

(80)

Suppose that V(f) is bounded below, the vacuum is f
50, and we seek a solution which approximates the u
5` one soliton solution (c05l ; cn50,n.0). Finiteness
of the energy requires limn→`cn50, and we can get the
large n asymptotics of such a solution by ignoring the
nonlinear terms in V8(l); this leads to

cn;n1/4e2AnuV9(0). (81)

This shows that cn varies smoothly when uV9(0)!1,
and can be approximated by a solution of the differen-
tial equation analog of Eq. (80). However, correspond-
ing to the nonexistence of a solution in the commutative
theory, one can show on very general grounds that no
solution of this differential equation can have the
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boundary value c(0)5l , even with the nonlinear terms
in V8 included. A nontrivial soliton is possible only if
this continuous approximation breaks down, which re-
quires the control parameter uV9(0) to be large.

In particular, a nontrivial one soliton solution must
have a discontinuity uc02c1u@0, and matching this on to
Eq. (81) for c1 provides a lower bound for uV9(0). This
analysis leads to an estimate which is quite close to Eq.
(79).

Multisoliton solutions have been studied recently in
Lindstrom et al. (2000), Gopakumar et al. (2001), and
Hadasz et al. (2001). Solutions on Tu

d have been studied
in Bars et al. (2001).

B. Vortex solutions in gauge theories

Derrick’s theorem does not hold in gauge theories and
as is well known, the Abelian Higgs model (Maxwell
theory coupled to a complex scalar field) has vortex so-
lutions, which (among other applications) describe the
flux tubes in superconductors (Nielsen and Olesen,
1973).

We proceed to discuss analogous solutions in the non-
commutative gauge theory (Nekrasov and Schwarz,
1998; Bak, 2000; Gross and Nekrasov, 2000a; Poly-
chronakos, 2000; Aganagic et al., 2001;) We work in 2
11 dimensions with uxy51 and look for time-
independent solutions in A050 gauge. Using Eq.
(35) and the Fock basis, the energy is

E5
2p

g2 E dtTr
1
2

F21 (
i51,2

DifDif
†1V~f!. (82)

Here

F5@C ,C̄#11

and f is a complex scalar field (satisfying no Hermiticity
condition).

We first note that unlike Maxwell theory, even the
pure rank one noncommutative gauge theory admits
finite-energy solitonic solutions. The pure gauge static
equation of motion is

05†C ,@C ,C̄#‡.

Of course, it is solved by the vacuum configuration C
5 z̄ and C̄5z , and gauge transformations of this,

C5U†z̄U , C̄5U†zU . (83)

What is amusing is that U does not need to be unitary
in order for this transformation to produce a solution
(Harvey, Kraus, and Larsen, 2000; Witten, 2000). It
needs to satisfy UU†51, but U†U need not be the iden-
tity. This implies the partial isometry condition Eq. (53)
and is a bit stronger.

The simplest examples use the shift operator Eq. (54):
U5Sm. To decide whether these are vortex solutions,
we should compute the magnetic flux. This is

F5~S†!m@ z̄ ,z#Sm11512~S†!mSm5 (
n50

n21

Pn ,
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where Pn[un&^nu. The total flux is TrF5m . Thus non-
commutative Maxwell theory allows nonsingular vortex
solutions, sometimes called fluxons, without needing a
scalar field or the Higgs mechanism.

Physically, we might interpret this as an noncommuta-
tive analog of the commutative gauge theory vortex Ai
5g21] ig with g5eimu. This is pure gauge except at the
origin where it is singular, so we might regard this as an
example of noncommutative geometry smoothing out a
singularity.

The soliton mass M is proportional to TrF25m . To
restore the dependence on the coupling constants, we
first note that (as for any classical soliton) the mass is
proportional to 1/g2. This quantity has dimensions of
length in 211 dimensions, so on dimensional grounds
the mass must be proportional to 1/u , consistent with the
nonexistence of the fluxon in the conventional limit. In
the conventions of Eq. (82),

M5
pm

g2u
. (84)

The most general solution is slightly more general than
this; it is

C5~S†!mz̄Sm1 (
n50

m21

cn~x0!un&^nu, (85)

C̄5~S†!mzSm1 (
n50

m21

c̄n~x0!un&^nu. (86)

The 2m functions cn , c̄n must satisfy ]0
2cn5]0

2c̄n50 and
can be seen to parametrize the world lines of the m
fluxons. This is particularly clear for m51 by recalling
Eq. (34).

A peculiar feature to note is that fluxons exist with
only one sign of magnetic charge, F aligned with u. It is
also rather peculiar that they exert no force on one an-
other; the energy of the configuration is independent of
their locations.

Even more peculiar, the equations ]0
2cn5]0

2c̄n50 ad-
mit as solutions cn5xn1vnt and c̄n5 x̄n1 v̄nt with no
upper bound on v . In other words, the fluxons can move
faster than light (Bak et al., 2000; Hashimoto and
Itzhaki, 2000). Of course u defines a preferred rest
frame, and there is no immediate contradiction with cau-
sality in this frame.

These peculiarities may be made more palatable by
the realization that all of these solutions (with no scalar
field) are unstable, even to linearized fluctuations. For
example, the m51 solution admits the fluctuation

C1T5S†z̄S1tS†P0 , (87)

where t is a complex scalar parametrizing the fluctuation
and S†P05u1&^0u. One can straightforwardly
compute

@C1T ,C̄1T̄#115P01utu2~P12P0!.

The total flux TrF is constant under this variation, while
the energy is proportional to
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TrF25~12utu2!21utu4

which exhibits the instability. This is of course just like
the commutative case; the flux will tend to spread out
over all of space in the absence of any other effect to
confine it.

There is no stable minimum in this topological sector.
This follows if we grant that TrF is topological and can-
not change under any allowed variation of the fields.
This of course depends on one’s definitions, but in con-
ventional gauge theory one can make a definition which
does not allow flux to disappear. Starting with a localized
configuration, the flux may disperse or go to infinity, but
one can always enlarge one’s region to include all of it,
because of causality. Similarly, energy cannot be lost at
infinity.

Since noncommutative theory is not causal and indeed
a fluxon can move faster than light, this argument must
be reexamined. The belief at present is that flux and
energy are also conserved in noncommutative gauge
theory; they are conserved locally and cannot run off to
infinity in finite time. In the case of the fluxon, a given
solution will have some finite velocity, and as it dis-
perses, it would be expected to slow down, so that once
it has spread over length scales large compared to Au
conventional causality will be restored. This point could
certainly use more careful examination, however.

This physical statement underlies the conventional
definition which leads to topological sectors character-
ized by total flux; one only considers variations of the
fields which preserve a specified falloff at infinity. An
analogous definition can be made in noncommutative
theory, as we shall discuss in Sec. VI.A.

One can use the same idea to generate exact solutions
to the noncommutative Abelian Higgs theory, even with
a general scalar potential V(f). Now one starts with the
scalar in a vacuum configuration V8(f)50 and Dif
50 (so f}1,) and again applies an almost gauge trans-
formation with UU†51, but U†UÞ1. The same argu-
ment as above shows that this will be a solution for any
U . This ‘‘solution generating technique’’ has been used
to generate many exact solutions (Harvey et al., 2000;
Hashimoto, 2000; Schnabl, 2000; Tseng, 2000; Bergman
et al., 2001; Hamanaka and Terashima, 2001)

Of course, the properties of these solutions, including
stability, depend on the specific form of the scalar poten-
tial and the choice of matter representation; both adjoint
matter with Dif5@Ci ,f# and fundamental matter as
defined in Sec. II.D.3 have been studied.

A particularly nice choice of potential (Jatkar et al.,
2000) is

V5
1
2

~ff†2m2!2,

as in this case the energy can be written as the sum of
squares and a total derivative as in Bogomolny (1976),
leading to a lower bound E>uTrFu. Solutions saturating
this bound are called BPS and are clearly stable.

For adjoint matter and um252, the exact solution dis-
cussed above is BPS. For fundamental matter, the bound
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can be attained in two ways.3 One can have

F5m22ff†, D̄f50,

which has positive flux solutions. For um251 the exact
solution as above with f5S† is BPS. Bak et al. (2000)
show that BPS solutions only exist for um2<1, and ar-
gue that for um2.1 the exact solution is a stable non-
BPS solution.

One can also have

F5ff†2m2, Df50.

This has been shown to have a negative flux solution for
any value of um2 (Jatkar et al., 2000; Lozano et al., 2001)
which in the u→0 limit reduces to the conventional
Nielsen-Olesen solution.

The vortex solutions admit a number of direct gener-
alizations to higher-dimensional gauge theory. If one has
2r noncommuting coordinates, one can make simple di-
rect products of the above structure to obtain solutions
localized to any 2(r2n)-dimensional hyperplane. One
can also introduce additional commuting coordinates,
and it is not hard to check that the parameters cn , c̄n in
the solution Eq. (85) must then obey the wave equation
05h ij] i] jc (respectively, c̄) in these coordinates. This is
as expected on general grounds (they are Goldstone
modes for space-time translations and for the symme-
tries df5e) and fits in with the general philosophy that
a soliton in d11-dimensional field theory which is local-
ized in d2p dimensions should be regarded as a p
brane, a dynamical object with a p11-dimensional
world volume which can be described by fields and a
local effective action on the world-volume. While the
vortex in 311-dimensional gauge theory, which is a
string with p51, may be the most familiar case, the story
in more dimensions is entirely parallel.

One can get a nontrivial fluxon solution in the hydro-
dynamic limit (as in Sec. II.E.5 with k50) by rescaling
the magnetic charge as m;l2d. The solution becomes

yi5xiA12
Ld

rd , r.L ,

yi50, r<L ,

r25(
i

~xi!2. (88)

The vortex charge m}(L/l)d is no longer quantized, but
it is still conserved.

C. Instantons

To obtain qualitatively new solutions of gauge theory,
we must move on to four Euclidean dimensions. As is

3In the references, the two types of solution are sometimes
referred to as self-dual and anti-self-dual, but not consistently.
It seems preferable to speak of positive flux (F aligned with u)
and negative flux.
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well known, minima of the Euclidean action will be self-
dual and anti-self-dual configurations,

~P7!kl
mnFmn50, (89)

~P6!kl
mn[

1
2

dk
md l

n6
1
4

« kl
mn , (90)

where P1 and P2 are the projectors on self-dual and
anti-self-dual tensors. These solutions are classified to-
pologically by the instanton charge:

N52
1

8p2 E TrF∧F . (91)

Note that u breaks parity symmetry, and the two types of
solution will have different properties. Let u be self-
dual; then one can obtain self-dual solutions by the di-
rect product construction mentioned in the previous
subsection, while the anti-self-dual solutions turn out to
be the noncommutative versions of the Yang-Mills in-
stantons.

Instantons play a central role in the nonperturbative
physics of Yang-Mills theory (Schafer and Shuryak,
1998) and have been studied from many points of view.
The most powerful approach to constructing explicit so-
lutions and their moduli space is the so-called ADHM
construction (Atiyah et al., 1978), which reduces this
problem to auxiliary problems involving simple alge-
braic equations. Although when it was first proposed,
this construction was considered rather recherché by
physicists (Coleman, 1985), modern developments in
string theory starting with Witten (1996) have placed it
in a more physical context, and in recent years it has
formed the basis for many practical computations in
nonperturbative gauge theory, see, e.g., Dorey et al.
(2000). We shall explain the stringy origins of the con-
struction in Sec. VII.D.

It turns out that the ADHM construction can be
adapted very readily to the noncommutative case
(Nekrasov and Schwarz, 1998). Let us quote the result
for anti-self-dual gauge fields, P1F50, referring to
Nekrasov (2000) for proofs, further explanations, and
generalizations. See also Furuuchi (2000).

To construct charge N instantons in the U(k) gauge
theory we must solve the following auxiliary problem
involving the following finite-dimensional matrix data.
Let Xi, i51,2,3,4, be a set of N3N Hermitian matrices,
transforming as a vector under SO(4) space rotations
and in the adjoint of a dual gauge group U(N). Let la ,
a51,2 be a Weyl spinor of SO(4), transforming in
(N ,k) of U(N)3U(k). Instanton solutions will then be
in correspondence with solutions of the following set of
equations:

05~P1! ij
kl~@Xi,Xj#1l̄s is̄ jl2u ij1N3N!. (92)

These equations admit a U(N) symmetry
(Xi,la)°(gNXigN

21 ,lagN
21), and two solutions related

by this symmetry lead to the same instanton solution.
Thus the moduli space of instantons is the nonlinear
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space of solutions of Eq. (92) modulo U(N) transforma-
tions. By counting parameters, one finds that it has di-
mension 4Nk .

The only difference with the conventional case is the
shift by u. This eliminates solutions with l5l̄50, which
would have led to a singularity in the moduli space. In
conventional Yang-Mills theory, instantons have a scale
size parameter which can be arbitrary (the classical
theory has conformal invariance), and the singularity is
associated with the zero size limit. The scale size is es-
sentially r;Al̄l , and in the noncommutative theory is
bounded below at Au , again illustrating that position-
space uncertainty leads to a minimal size for classical
solutions.

To find the explicit instanton configuration corre-
sponding to a solution of Eq. (92), one must solve an
auxiliary linear problem: find a pair (ca ,j), with the
Weyl spinor ca taking values in N3k matrices over Au ,
and j being a k3k Au-valued matrix, such that

Xis ic1lj50,

c†c1j†j51k3k . (93)

Then the instanton gauge field is given by

Ai5c†] ic1j†] ij , (94)

Ci52iu ij~c†xjc1j†xjj!. (95)

One can make these formulas more explicit in the k
5N51 case. We follow the conventions of Eq. (6). Let

L5

(
a

ua~ n̂a11 !

(
a

uan̂a

, D15C11iC2 , D25C3

1iC4 .

Then

Da5
1

Aua

SL2 1/2z̄aL1/2S†,

where the operator S is the shift operator in Eq. (54).
This solution is nonsingular with size Au . One can

take the limit u→0 to return to conventional Maxwell
theory, obtaining a configuration which is pure gauge
except for a singularity at the origin. Whether or not this
counts as an instanton depends on the underlying defi-
nition of the theory; in string theory we shall see later
that it is.

D. Monopoles and monopole strings

One might at this point suspect that in general non-
commutative gauge theory solitons look quite similar to
their Yang-Mills counterparts, if perhaps less singular.
The monopole will prove an exception to this rule.

We consider static field configurations in 311 gauge
theory with an adjoint scalar field f, and the energy
functional
Rev. Mod. Phys., Vol. 73, No. 4, October 2001
E5
1

4gYM
2 E Tr (

1<i,j<3
~Fij!

21(
i51

3

~¹ if!2. (96)

Just as in the conventional theory, one can rewrite this as
a sum of a total square and a total derivative:

E5
1

4gYM
2 E d3xTr~¹ if6Bi!

27Z , (97)

Z5
1

4gYM
2 E d3xTrDi~Bi!f1f!Bi!. (98)

The total derivative term Z depends only on the bound-
ary conditions and in the conventional case would have
been proportional to the magnetic charge of the soliton.
Minimizing the energy with fixed Z leads to E5uZu and
the equations (Bogomolny, 1976)

¹ if56Bi . (99)

We are only going to consider nonsingular configura-
tions, and the first observation to make is that this im-
plies that the diagonal part of the total magnetic charge
is zero,

05Q5E d3xTr@Di ,Bi# ,

by the Bianchi identity, analogous to the conventional
theory.

This would seem to rule out the possibility of a non-
singular rank 1 monopole solution. Nevertheless, it turns
out that such a solution exists, as was discovered by ex-
plicit construction (Gross and Nekrasov, 2000b) making
use of the Nahm equations (Nahm, 1980). These equa-
tions are very analogous to the ADHM equations and
admit an equally direct noncommutative generalization.
They are ordinary differential equations and their analy-
sis is somewhat intricate; we refer to Nekrasov (2000)
for this and approach the solution in a more elementary
way.

We start with the fact that in three spatial dimensions
(we assume only spatial noncommutativity), since the
Poisson tensor has at most rank 2, there will be a com-
mutative direction. Call its coordinate x3. This theory
will admit the vortex solution of Sec. III.B, a string ex-
tending to infinity along x3, say

B35u0&^0u.
This can be used to find a simple rank 1 solution of Eq.
(99) by postulating A350 and

f5x3u0&^0u.

Now, we might not be tempted to call this solution a
monopole. However, it is only one point in a moduli
space of solutions. The linearized equation of motions
around the solution take the form

DiDidf50, DiDidAj50, DjdAj1@f ,df#50.

Besides variations of the location of the vortex in the
(x1,x2) plane and constant shifts of f, these also include

df}e2(x3)2/uu0&^1u.

Turning on this mode corresponds to splitting the string
in two, as one can see by looking at the eigenvalues of
the operator f1df .
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This linearized variation extends to a finite variation
of the solution which can be used to send one-half of the
string off to infinity. The remaining half is a rank 1
monopole attached to a physical analog of the Dirac
string, the flux tube of Sec. III.B stretching from the
monopole to infinity carrying magnetic flux and energy,
and canceling the monopole magnetic flux at infinity. Its
energy diverges, but precisely as the string tension Eq.
(84) times the length of the string. Thus the noncommu-
tative gauge theory has found a clever way to produce a
solution despite the absence of U(1) magnetic charge in
three dimensions.

One can express the solution in closed form in terms
of error functions (Gross and Nekrasov, 2000b). Self-
dual solutions to gauge theory generically admit closed-
form expressions; the deep reason for this is the inte-
grable structure of these equations (Ablowitz and
Clarkson, 1991). The noncommutative deformation re-
spects this; for example, the noncommutative Bogo-
molny equations for axially symmetric monopoles are
equivalent to non-Abelian Toda lattice equations.

Multimonopoles also exist, and as for the vortices, this
moduli space will have limits in which it breaks up into
U(1) monopoles. In particular, the noncommutative
analog of the ’t Hooft–Polyakov monopole of the U(2)
theory is better thought of as a multimonopole solution,
with two centers associated to the two U(1) subgroups,
connected by a string.

A simple observation following from the form of the
noncommutative Nahm equations is that (in contrast to
the instantons) this multimonopole moduli space is the
same as that of the conventional theory. Since the con-
ventional solutions and moduli space were already non-
singular, this fits with the general picture of desingular-
ization of solitons by noncommutativity, but is still
nontrivial (it was not forced by symmetry).

There are pretty string theory explanations for all of
this, discussed in Sec. VII.D. In string theory, monopoles
turn out naturally to be associated with D strings ex-
tending in a higher dimension. In commutative gauge
theory, the string extends perpendicular to the original
dimensions, and its projection on these is pointlike.
Noncommutativity tilts the string in the extra dimen-
sions, leading to a projection onto the original dimen-
sions which is itself a string.

IV. NONCOMMUTATIVE QUANTUM FIELD THEORY

In this section we discuss the properties of quantized
noncommutative field theories. We start by developing
the Feynman rules and explain the role of planarity in
organizing the perturbation theory (Filk, 1996).

We then give examples illustrating the basic structure
of renormalization: the UV properties are controlled by
the planar diagrams, while nonplanar diagrams generally
lead through what is called UV/IR mixing (Minwalla
et al., 2000) to new IR phenomena. The limit u→0 in
these theories is nonanalytic. We cite a range of ex-
amples in scalar and gauge theory which illustrate the
possibilities; there is some physical understanding of its
Rev. Mod. Phys., Vol. 73, No. 4, October 2001
consequences. We also discuss the question of gauge in-
variance of the effective action.

We then discuss a variety of results for physical ob-
servables, including finite-temperature behavior and a
universal high-energy behavior of the Wilson line opera-
tor. We also outline the Hamiltonian treatment of non-
commutative gauge theory on a torus, and conclude with
miscellaneous other results.

A. Feynman rules and planarity

We start by considering the theory of a single scalar
field f with the action

S5E Tr
1
2

~]f!22V~f!, V~f![
m2

2
f21 (

n.2

gn

n!
fn.

Functional integral quantization can be done in the stan-
dard way and leads to Feynman rules which are almost
the same as for conventional scalar field theory. In par-
ticular the propagator is the same thanks to Eq. (22).
The only difference is an additional momentum depen-
dence in the interaction vertices following from Eq. (21):
a fn vertex with successive incoming momenta km has
the phase factor

expS 2
i

2 (
1<m,n,n

km3knD , (100)

where [as in Eq. (21)] k3k8[u ijkikj8 . The same holds
in the presence of derivative interactions, multiple fields,
and so on.

The factor Eq. (100) is not permutation symmetric but
is only cyclically symmetric. This is just as for a matrix
field theory, and the same double line notation can be
used to represent the choice of ordering used in a spe-
cific diagram (’t Hooft, 1974; Coleman, 1985). In this
notation, propagators are represented as double lines,
while the ordering of fields in a vertex is represented by
connecting pairs of lines from successive propagators.
See Fig. 2.

This additional structure allows defining faces in a dia-
gram as closed single lines and thus the Euler character
of a graph can be defined as x5V2E1F , with V , E ,
and F the numbers of vertices, edges, and faces, respec-
tively. For connected diagrams, x<2 with the maximum
attained for planar diagrams, those which can be drawn
in a plane without crossing lines. A diagram with x52
22g for g>1 is nonplanar of genus g and can be drawn
on a surface of genus g without crossings.

In matrix field theory, summing over indices provides
a factor NF, while including appropriate N dependence

FIG. 2. Double line notation and phase factors.
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in the action (an overall prefactor of N will do it) com-
pletes this to a factor Nx. This is the basis for the famous
’t Hooft limit in which the dynamics of certain field theo-
ries is believed to reduce to that of a free string theory:
as N→` , planar diagrams dominate.

In noncommutative field theory, planarity plays an im-
portant role in organizing the phase factors Eq. (100).
The basic result is that a planar diagram in noncommu-
tative theory has the same amplitude as that of conven-
tional theory multiplied by an overall phase factor Eq.
(100), where the momenta ki are the ordered external
momenta. This can be seen by checking that the dia-
grams in Figs. 3 and 4 can each be replaced by a single
vertex while preserving the phase factor, and that these
operations can be used to reduce any planar diagram
with n external legs to the single vertex Trfn.

Since this additional phase factor is completely inde-
pendent of the internal structure of the diagram, the
contribution of a planar diagram to the effective action
will be the same in noncommutative theory and in the
corresponding u50 theory (the noncommutative phase
factor will be reproduced in the course of evaluating the
vertex in the effective action). In particular, divergences
and renormalization will be the same for the planar sub-
sector as in a conventional theory.

We can obtain the phase factor for a nonplanar dia-
gram by comparison with the planar case. Given a spe-
cific diagram, we choose a way to draw it in the plane,
now with crossing propagators. Let Cmn be the intersec-
tion matrix, whose mn matrix element counts the num-
ber of times the mth (internal or external) line crosses
the nth line (with sign; a crossing is positive as in the
figure). Comparing this diagram with the corresponding
planar diagram obtained by replacing each crossing with
a vertex, we find that it carries the additional phase
factor

expS 2
i

2 (
m ,n

Cmnkm3knD . (101)

FIG. 3. The contraction (Tr fm)(Tr fn)↔Tr fm1n22.

FIG. 4. Tadpoles come with no phase factor.
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Although the matrix Cmn is not uniquely determined by
the diagram, the result Eq. (101) is.

Since the phase factor Eq. (101) depends on the inter-
nal structure of the diagram, nonplanar diagrams can
have very different behavior from their u50 counter-
parts. Since the additional factor is a phase, one would
expect it to improve convergence of integrals, leading to
better UV behavior. This expectation will be borne out
below, leading to the principle that the leading UV di-
vergences (in particular the beta function) come from
the planar diagrams (no matter what the rank) and are
thus the same as for the large-N limit of a matrix field
theory.

In practice, this principle might be obscured by the
presence of other divergences. A more precise state-
ment one can make is that in the limit u ij→` , with fixed
external momenta, UV and IR cutoffs, integrating over
this phase factor would cause the general nonplanar dia-
gram to vanish. Thus this limit would keep only planar
diagrams. This observation goes back to the early works
on the twisted Eguchi-Kawai models, as mentioned in
the Introduction, and indeed was the main focus of in-
terest in these works.

B. Calculation of nonplanar diagrams

The most important features are already visible in the
one-loop renormalization of the scalar field theory
propagator. We consider two examples, the f4 theory
and the f3 theory in d Euclidean noncommutative di-
mensions. We shall not be careful about O(1) numerical
factors in our discussion and often substitute generic
positive real constants c , c8, etc., to better make the
qualitative points. We shall try to keep track of signs.

The f4 theory has two one-loop self-energy diagrams,
one planar and one nonplanar. They contribute

G1 planar
(2) 5

g4

3~2p!d E ddk

k21m2 , (102)

G1 nonplanar
(2) 5

g4

6~2p!d E ddk

k21m2 eik3p. (103)

The planar contribution is proportional to the one-loop
diagram of the u50 theory, and is divergent for d>2. If
we introduce a momentum space cutoff L, we shall find

G1 planar
(2) 5

g4

3~4p2!d/2 ~Ld221¯ !,

a mass renormalization which can be treated by stan-
dard renormalization theory.

Compared to this, the nonplanar contribution has an
oscillatory factor eik3p, arising from the noncommuta-
tive nature of space-time, which will play the role of a
cutoff. On general grounds, this cutoff will come in for
momenta k such that d/dk(k3p);O(1), i.e., ki;Lp
[uu ijpju21, and produce

G1 nonplanar
(2) ;g4~cLp

d221¯ !.
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This cutoff goes to infinity as we take the limit p→0 of
the external momentum. To get a finite result in this
limit, we shall need to keep the original cutoff L in the
calculation as well. This can be done in many ways; the
usual approach is a proper time cutoff e21/L2t in the in-
tegrand of Eq. (67) which leads to the result

Lp
2[

1
1/L21p+p

, (104)

p+p[piu
iku jkpj (105)

(in fact this is the simplest function with the qualitative
behavior we want). The notation p+p for the quantity
controlling the cutoff is standard; it is positive definite if
u0i50 (purely spatial noncommutativity). If u ij has
maximal rank and all its eigenvalues are 6u , then p+p
5u2p2. If there are commutative directions as well, they
will not enter into this quantity.

Adding the classical and one-loop contributions to the
two-point function leads to a 1PI effective action,

G@f#5E ddp
1
2

f~p !f~2p !G(2)~p !1¯ , (106)

G(2)~p !5p21M21
cg4

~p+p11/L2!d22 1¯ , (107)

where M25m21c8g4Ld22 is the renormalized mass. At
d52 the powerlike divergences become logarithmic in
the usual way.

The novel feature of this result is that the limit L
→` is finite, and the UV divergence of the nonplanar
diagram has been eliminated, but only if we stay away
from the IR regime p→0. The limiting theory has a new
IR divergence, arising from the UV region of the mo-
mentum integration. This type of phenomenon is re-
ferred to as UV/IR mixing and is very typical of string
theory, but is not possible in local field theory. However,
it is possible in noncommutative theory, thanks to the
nonlocality.

One way to see that this is not possible in local field
theory is to observe that it contradicts the standard
dogma of the renormalization group. Let us phrase this
in terms of a Wilsonian effective action, defined by inte-
grating out all modes at momentum scales above a cut-
off L. The result is an effective action

SWilson@f ;L#5E d4x
Z~L!

2
@~]f!21m2~L!f2#

1
g2~L!Z2~L!

4!
f4. (108)

Renormalizability in this framework means that one can
choose the functions Z(L), m(L), and g2(L) in such a
way that correlation functions computed with this La-
grangian have a limit as L→` , and correlation functions
computed at finite L differ from their limiting values by
terms of order 1/L for all values of momenta.

However, one sees from Eq. (107) that this is mani-
festly untrue of noncommutative scalar f4 theory, and
indeed the generic noncommutative field theory with
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UV divergences. The two-point function at any finite
value of L differs drastically from its L→` value, for
small enough momenta @(pu)2!1/L2# .

The arguments above lead to the general expectation
that a nonplanar diagram with UV cutoff dependence
f(L2) will obtain an IR divergence f(1/p+p) in the non-
commutative theory. One might further expect that, if
the conventional amplitude had no IR divergences, the
leading IR divergence of the noncommutative theory
would take precisely this form. We shall refer to this as
the standard UV/IR relation. It is typical but not univer-
sal and in particular is violated in gauge theory.

Another example is the one-loop self-energy diagram
in f3 theory (Fig. 5). The expectations we just stated are
indeed valid (van Raamsdonk and Seiberg, 2000) and we
find

G(2)~p !5p21M21
cg3

2M2

~p+p11/L2!d24 1¯ , (109)

where M2 is again the renormalized mass. At d54 this
becomes a logarithmic divergence.

The effects we have seen so far drastically change the
IR behavior and we refer to this case as strong UV/IR
mixing. There are also theories, particularly supersym-
metric theories, in which the IR behavior is not qualita-
tively different from conventional theory, and we can
speak of weak UV/IR mixing. This would include mod-
els where renormalization is logarithmic and only affects
the kinetic terms (assuming the standard UV/IR rela-
tion), such as the d54 Wess-Zumino model (Girotti
et al., 2000).

In proceeding to higher loop orders, one faces the
danger that the new IR divergences will mix with other
divergences in an uncontrollable way. In fact the IR di-
vergences under discussion are rather similar to those
appearing in thermal field theory, in that they give a
large effective mass to low momentum modes (we shall
discuss this point further below), and can be addressed
by similar techniques (Fischler et al., 2000; Gubser and
Sondhi, 2000; Griguolo and Pietroni, 2001a).

One easy way to do this is to add and subtract a coun-
terterm to the bare action which represents the leading
divergence, so that it can be taken into account in the
bare propagator. This leads to the next correction to Eq.
(107) being

G(2,1)~p !5c8g4E ddk ~11eik3p!

k21M21cg4~p+p !22d

2
cg4

~p+p !d22

FIG. 5. A nonplanar diagram.
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with the IR divergence explicitly subtracted.
The main feature of this result is that the IR divergent

term in the propagator (for d>2) causes it to vanish at
low momenta, and thus the resummed loop corrections
are controlled in this region.

In fact, at weak coupling these corrections to G(2)(p)
are small for all momenta. They do exhibit nonanalytic-
ity in the coupling similar to that in finite-temperature
field theory (Griguolo and Pietroni, 2001a), beginning at
O(g4

3 ln g4) in the massive theory and O(g4
3/2) in the

massless theory. This brings new difficulties into the per-
turbation theory; one could try to work at finite coupling
by using a self-consistent Hartree equation, or any of the
many other approximation methods available for field
theory.

In any case, this discussion appears to justify consid-
ering Eqs. (107) and (109) as valid approximations to
the Green’s function at weak coupling, and we discuss
physics following from this idea in the next subsection. It
falls short of a proof, which would require discussing (at
the least) all Green’s functions which obtain large UV
renormalizations in conventional theory, such as the
four-point function in f4 theory in d<4. The argument
we just gave generalizes to some extent to these dia-
grams as their IR corrections will be controlled by the
propagator in the same way. This might fail for special
values of external momenta, however, and a real proof
of these ideas has not yet appeared. Relevant work in-
cludes Chepelev and Roiban (2000).

See also Chen and Wu (2001), Kinar et al. (2001), and
Li (2000).

C. Physics of UV/IR mixing

The UV/IR mixing observed by Minwalla et al. (2000)
appears to be the main qualitative difference between
conventional and noncommutative perturbation theory.
One cannot say that its full significance, and the issue of
whether or not it spoils renormalizability or leads to
other inconsistencies, is well understood at present. On
the other hand, there is an emerging picture which we
shall outline.

A reason for caution at this point is that, for the rea-
sons we just discussed, we cannot blindly assume that
the general framework of the renormalization group,
which underlies most of our understanding in the con-
ventional case, is applicable. This is not to say that it is
obviously inapplicable, but that to justify it one must
show how to clearly separate UV and IR phenomena,
taking into account the higher loop subtleties mentioned
above.

If this can be done, justifying the idea that the high-
energy behavior is controlled by the planar diagrams,
then the question of whether a noncommutative theory
is renormalizable will have the same answer as for the
corresponding conventional theory in the planar limit
(normally this limit has the same UV behavior as the
finite N theory). It has recently been argued by Griguolo
and Pietroni (2001b) that this can be done in the Wilso-
nian renormalization-group approach to proving renor-
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malizability (Polchinski, 1984). There are also argu-
ments against this in certain cases (Akhmedov et al.,
2000), which we return to below.

We assume for the sake of discussion that this is in-
deed true and now discuss the physics of strong UV/IR
mixing. Before we start, we note that the supersymmet-
ric theories of primary interest to string theorists have
weak or no UV/IR mixing, and the considerations we
are about to discuss, except for those regarding unitarity,
have not played a role in this context so far. On the
other hand, they are likely to be important in other
applications.

Once one observes new IR effects at the quantum
level, the first question one must ask is whether the
original perturbative vacuum f50 (the disordered
phase, in the language of statistical field theory) is
stable, or whether these effects are a signal that we are
expanding around the wrong vacuum. This question
could be answered if we knew the exact quantum effec-
tive action; in particular the perturbative vacuum will be
at least metastable if the inverse propagator G(2)(p) in
Eq. (106) is positive at all momenta. This includes the
usual condition on the effective potential V9(0).0 but
since the effects we are discussing modify the dispersion
relation so drastically, we need to entertain the possibil-
ity that a phase transition could be driven by modes with
nonzero momentum, perhaps leading to a stripe phase
as one finds in certain condensed-matter systems.

This is a real possibility here, as is clear from Eqs.
(107) and (109). One expects, and it might be possible to
prove, that with certain hypotheses, the standard UV/IR
relation will hold for the exact (cutoff) quantum effec-
tive action. This would mean that G(2)(p);DM2(1/pu)
in theories whose planar limit has a UV divergent mass
renormalization DM2(L).

Then the relevant question is whether this mass renor-
malization is positive or negative (for large L). If it is
negative, the perturbative vacuum is clearly unstable to
condensing p→0 modes. On the other hand, if it is posi-
tive, the resulting dispersion relation will make the low
p modes stiff and there might or might not be a phase
transition, but if there is, it will be driven by a mode with
pÞ0. Gubser and Sondhi (2000) have argued that such a
phase transition is indeed expected (in scalar field
theory in d.2) and will be first order.

If we grant that the perturbative vacuum is stable, we
can go on to ask about the meaning of the propagator
G(2)(p)21. This discussion will depend on whether the
noncommutativity is purely spatial (u0i50) or has a
timelike component.

It is not hard to see that timelike noncommutativity
combined with UV/IR mixing leads to violations of per-
turbative unitarity. This shows up in unphysical branch
cut singularities in loop diagrams (Gomis and Mehen,
2000) and can also be seen from the behavior of the
propagator and commutators of fields (Alvarez-Gaume
et al., 2001; see also Seiberg et al., 2000a). We now give a
simple argument along these lines.

A theory with timelike noncommutativity will be in-
variant under boosts along the conjugate spatial momen-
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tum (e.g., pi}u01) and therefore, if we set the other mo-
menta to zero, the propagator will be a function of the
111 Lorentz invariant p252E21(pi)

2. Thus we can
write a spectral representation

1
G(2)~p !

5E
0

` dm2

p21m2 r~m2!

with r(m2)>0 in a unitary theory. Unitarity requires

lim
p2→0

1
G(2)~p !

5E
0

` dm2

m2 r~m2!.0 (110)

assuming this limit exists (it might also diverge). On the
other hand, the general behavior produced by UV/IR
mixing is

lim
p2→0

G(2)~p !51` ,

which is incompatible with Eq. (110).
We turn to consider purely spatial noncommutativity.

This will lead to a dispersion relation of the form

E25pW 21m21DM2S 1
pu D .

If DM2(L) grows at infinity, we again find low-
momentum modes are stiff.

We first discuss the Euclidean theory. The Green’s
function G(2)(p)5G(2)(p)21 can be transformed to po-
sition space following our discussion in Sec. II.E.4. As
discussed there, the long-distance behavior is controlled
by the pole in the upper half plane nearest the real axis,
as in conventional field theory. Let us consider DM2

51/4 g2L2 for definiteness, then the poles in G(2)(p)
can be found by solving a quadratic equation, leading to
the following two limiting behaviors. If g!um2 (weak
coupling or strong noncommutativity), the closer root
will be at p5ig/4um . This can be interpreted as a new
mode with mass m25g/4um , and the precondition is
equivalent to m2!m , i.e., this is the limit in which the
new mode dominates the long-distance behavior. In the
other limit, there are two poles at equal distance
(g/8u)1/2, leading to oscillatory-exponential behavior.

Thus, in either case, the IR effects appear to have a
sensible description at finite g , in terms of a new mode.
One can go on to ask whether the new mode can be
described by adding an additional field to the effective
Lagrangian. This question is best discussed in the con-
text of the connection to string theory and we postpone
it for Sec. VII.E.

We now discuss the quantum noncommutative field
theory in Minkowski space. The primary question is
whether it is unitary. Formally, the main thing to check is
that the (]0f)2 term in the effective action is positive
for all spatial momenta (we also assume that higher time
derivative terms are not significant). This is necessary
for perturbative unitarity of the effective action but al-
most certainly will be true if the analog conventional
theory was renormalizable and unitary. The cutting rules
can also be checked and appear compatible with unitar-
ity in this case (Gomis and Mehen, 2000). Since these
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theories admit a (cutoff) Hamiltonian formulation, any
problem with unitarity would almost certainly be tied to
instability as well.

However, the position space Green’s function in this
case is quite bizarre at low momenta. Its main features
can be understood by considering wave propagation in a
medium with an index of refraction n(v)5k(v)/v
which grows as v→0 faster than 1/v .4 In our example,
v;g/uk . This leads to a negative group velocity vg
5]v(k)/]k . One can still proceed formally to derive a
position space Green’s function, which exhibits super-
liminal propagation. In a non-Lorentz invariant theory,
this might not be considered a major surprise; however,
its short-time propagation is dominated by long wave-
lengths and it does not satisfy the usual defining prop-
erty limt→0G(x ,t)5d(x). This certainly looks un-
physical and at present further interpretation would
seem to be a purely academic exercise. On the other
hand, perhaps the usual position space interpretation is
inappropriate and there is something deep here yet to be
discovered.

Finally, we return to our original assumption of the
validity of the Wilsonian RG, and discuss the work of
Akhmedov et al. (2000, 2001) and Girotti et al. (2001) on
the noncommutative Gross-Neveu model. This is a
model of N flavors of interacting massless fermions
whose perturbative vacuum is unstable. In the 111 con-
ventional theory a nonperturbative condensate forms, as
can be shown exactly in the large N limit by solving a
gap equation, leading to a vacuum with massive fermi-
onic excitations. This theory exhibits dimensional trans-
mutation; the bare coupling g can be eliminated in favor
of the mass gap M;L exp(21/g2).

Following the procedure we just outlined for the non-
commutative theory leads to G(2)(p),0 at low p (for
the condensate) and instability. However, Akhmedov
et al. argue that instead of following the standard Wilso-
nian approach and defining the continuum theory as a
flow out of a UV fixed point, one should enforce the gap
equation. This leads to a stable vacuum but spoils di-
mensional transmutation and results in a trivial con-
tinuum limit. Akhmedov et al. also point out the inter-
esting possibility of a nontrivial double scaling limit with
fixed LMu .

One cannot a priori say that one of these definitions is
correct; this depends on the underlying microscopic
physics and the application. What we would insist on is
that one can choose to define the theory as a flow from
a UV fixed point and that in this sense the theory is
renormalizable; one, however, does not know (at
present) whether it has a stable vacuum.

Furthermore, we feel that even the alternate defini-
tion can be fit within the conventional renormalization-
group picture, allowing for IR physics to determine a
condensate which will then react back on the UV phys-
ics, determining the couplings through dynamics at vari-

4Strictly speaking, we are discussing spatial dispersion (Lan-
dau et al., 1960), but the difference is not relevant for us.



1002 Douglas et al.: Noncommutative field theory
ous scales. In itself, this phenomenon is not new but has
fairly direct analogs in conventional field theory, particu-
larly supersymmetric field theory where IR physics can
lift a flat direction, leading to large scalar vevs and large
masses for other degrees of freedom.

However, one has opened Pandora’s box as the larger
point seems to be that strong UV/IR mixing can lead
to very different physics for condensates, which is not
understood. For example, if the noncommutative
Gross-Neveu model defined as a UV fixed point has a
stable vacuum, it might not be translationally invariant
and perhaps not even be describable by a classical
condensate.

The tentative conclusion we shall draw from all of this
is that quantum field theories with spatial noncommuta-
tivity and strong UV/IR mixing can be consistent, often
with rather different physics from their conventional
analogs.

D. Gauge theories

The usual discussion of perturbative gauge fixing and
the Fadeev-Popov procedure go through essentially un-
changed. The Feynman rules for noncommutative gauge
theory are the standard ones for Yang-Mills theory, with
the Lie algebra structure constants augmented by the
phase factors Eq. (100).

Gauge theories can have IR divergences which are
stronger than the standard UV/IR relation would sug-
gest (Hayakawa, 1999; Matusis et al., 2000). Consider,
for example, the one-loop contribution to the noncom-
mutative QED photon self-energy due to a massless fer-
mion. Standard considerations lead to the amplitude

iP ij~p !52
4g2

~2p!4 E d4k
~2kikj2h ijk

2!

k4 ~12eik3p!.

The nonplanar part of this is

iP ij
(np)~p !5

4ig2

~2p!4 ~] i] j2h ij]
2!ln~p+p11/L2! (111)

52
16ig2

~2p!4

u ikpku jlp
l

~p+p11/L2!2 . (112)

If we remove the cutoff, this diverges as 1/u2p2 as p
→0.

Physically, this term would lead to different dispersion
relations for the two photon polarizations. Peculiar as
this is, it is consistent with gauge invariance in this non-
Lorentz invariant theory. A similar one-loop contribu-
tion can be found to the three-point function. It behaves
as (up) i(up) j(up)k /(p+p)2 at low momenta and di-
verges as 1/up as p→0. It is not clear at present what the
significance of these effects might be.

In any case, it has been observed that these effects
vanish in supersymmetric theories. The logarithmic ef-
fects expected from our previous discussion will still be
present. A detailed discussion at one loop is given by
Khoze and Travaglini (2001); see also Ruiz (2001) and
Zanon (2001a).
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All of the UV and IR divergences found in any com-
putation done to date are gauge invariant, and it is gen-
erally believed that these theories are renormalizable. It
has also been argued that spontaneously broken non-
commutative gauge theories are renormalizable (Petri-
ello, 2001).5 Unitarity has recently been discussed in
Bassetto et al. (2001).

Thus we turn our attention to the structure of the
noncommutative effective action. It turns out to be
somewhat subtle to write this in a gauge invariant form
(Liu and Michelson, 2000; Zanon, 2001b) [this was also
seen in related string computations by Garousi (2000)].
One cannot use the usual rule for Yang-Mills theory,
according to which one can infer higher-point functions
by completing an operator ] iAj2] jAi to the gauge-
invariant Fij . The basic problem is apparent from the
analogy with conventional large-N field theory. The
rules of Sec. IV.A tell us that nonplanar diagrams will
produce contributions of the form

E )
i

ddki TrO1~k1!¯TrOn~kn!G~k1 ,. . . ,kn!.

Such terms do not follow the rule from Sec. II.C of as-
sociating a single trace with each integral and thus we
cannot apply the arguments made there.

Clearly this problem is related to the problems with
defining local gauge invariant operators discussed in Sec.
II.D.2, and it is believed that the effective action will be
gauge invariant if expressed in terms of the open Wilson
loop operator (Liu, 2000; Mehen and Wise, 2000) This
has been checked in examples (Pernici et al., 2001) and
one can also make strong arguments for it from string
theory (see Sec. VII.E).

The basic gauge invariant local Green’s function then
is the two-point function of two open Wilson loops,
^W(k)W(2k)&. A particularly interesting question is
the high-energy behavior of this quantity, which was
found by Gross et al. (2000). Our general arguments that
high-energy behavior reduced to planar diagrams ap-
plied to naive local observables, but do not apply to the
open Wilson line, because its extent grows with energy.

At high energy, the open Wilson loops will become
very long and the computation becomes identical to that
for the expectation value of a single rectangular Wilson
loop, a well-known result in the conventional theory.
Since the leading large momentum behavior is given by
the sum of planar ladder diagrams, the result can be
applied directly. For a rectangular Wilson loop of sides
L and r (with L@r), it is exp@2(E1M)L# with the Cou-
lomb interaction energy E52g2N/4pr and M a non-
universal mass renormalization. This result can then be
Fourier transformed, leading to a growing exponential
in momentum space, exp(1Ag2NukuL/4p).

5There is some controversy about this and about the renor-
malizability of the related nonlinear sigma model, possibly re-
lated to issues discussed at the end of Sec. IV.C; see Campbell
and Kaminsky (2001), Girotti et al. (2001), and Sarkar and
Sathiapalan (2001).
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The main adaptation required to compute the open
Wilson loop Green’s function is just to use Eq. (16) and
take L5uuku. This produces

^W~k !W~2k !&;expS 1Ag2Nukuuuku
4p D . (113)

This exponential growth with momentum is universal
and applies to correlators of Wilson loops with operator
insertions W@O#(k) as well.

This result cannot be properly interpreted without
knowing something about the higher point correlators,
as the overall normalization of the operator is not a mat-
ter of great interest. Thus we consider a ratio of corre-
lation functions in which this cancels,

^W~k1!W~k2!¯W~kn!&

A^W~k1!W~2k1!&¯^W~kn!W~2kn!&
.

Gross et al. (2000) argue that generic higher point func-
tions do not share the exponential growth, essentially
because more than two Wilson lines will not generally be
parallel and thus the dependence on L will not exponen-
tiate.

Thus Eq. (113) should be interpreted as leading to a
universal exponential falloff of correlation functions at
large momentum. This is another strong analogy be-
tween noncommutative gauge theory and string theory,
as it is a very characteristic feature of string theory
[however, see the caution in Gross et al. (2000) about
this analogy].

Rozali and Van Raamsdonk (2000) have further ar-
gued that in a multipoint function in which a pair of
momenta become antiparallel (within a critical angle f
,f0;1/ukiuuukju), the exponential growth is restored,
which would again be consistent with field theory behav-
ior. See also Dhar and Kitazawa (2001a).

The main motivation for this computation was to
check it against the AdS/CFT dual supergravity theory
(Aharony et al., 2000), and we discuss this aspect in Sec.
VII.F.

Loop equations governing these correlators are dis-
cussed in Abou-Zeid and Dorn (2001b) and Dhar and
Kitazawa (2001b)

E. Finite temperature

Another limit which will probe noncommutativity is
the high-temperature limit uT2@1. We now discuss this
regime, following Arcioni and Vazquez-Mozo (2000)
and Fischler, Gomis, et al. (2000; Fischler, Gorbatov,
et al. 2000) and using standard techniques of finite-
temperature field theory (Kapusta, 1990). The tempera-
ture is T and b51/T , and we take u125u and x3 and
time commutative.

The leading nonplanar diagram contributing to the
finite-temperature free energy of f4 theory is the two-
loop diagram obtained by contracting the external legs
in Fig. 5. This contributes (for d54)
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2g2T2 (
n ,l52`

` E d3p

~2p!3

d3k

~2p!3

3eip3k
1

S 4p2

b2 n21p21m2D S 4p2

b2 l21k21m2D .

If we neglect the mass (appropriate if m@T), this can
be reduced using standard techniques to

2g2TE d3p

~2p!3

112nb~ upu!
2upu

112n1/b~2puupu!
4puupu

,

where nb(upu)5(ebupu21)21 is a Bose distribution at
temperature b51/T .

This expression shows intriguing similarities to string
theory, and Fischler, Gomis, et al. (2000) interpret the
second thermal distribution as describing ‘‘winding
states’’; see also Arcioni et al. (2000). It also leads to an
IR divergence which must be addressed, either along the
lines of the resummation discussed above, or by consid-
ering supersymmetric theories with better convergence
properties.

In either case, one finds the following fascinating be-
havior for the the nonplanar contribution to the free
energy. While the regime uT2!1 is essentially as for
conventional field theory, results for the regime uT2@1
are very much as if the theory had many fewer degrees
of freedom in the UV than conventional field theory.
For f4 theory, supersymmetric f4 theory (the Wess-
Zumino model) and N54 NCSYM (all in D54), one
finds (at two loops)

Fnc

V
;2

g2

u2 T2u ln T2u . (114)

In f3 theory in D56, one finds

Fnc

V
;2

g2

u2 T2u . (115)

This latter result is even more amusing as it can be de-
rived from classical statistical mechanics. This is essen-
tially the same as quantum field theory in one lower
dimension and leads to an integral

F;T2E d5kd5p
eik3p

k2p2~k1p !2 .

While normally such integrals are badly UV divergent
(the famous ultraviolet catastrophe of classical physics),
this one actually converges and reproduces Eq. (115).
This would seem a very concrete demonstration of the
idea that the number of UV degrees of freedom has
been drastically reduced, presumably to a finite number
per ud/2 volume or Moyal cell in noncommutative space.

However, the more general situation is that the corre-
sponding classical integrals are still UV divergent. In
particular, this is true in the cases summarized in Eq.
(114). It must also be remembered that the planar con-
tributions are still present and dominate the contribu-
tions we are discussing. Thus the full import of these
rather striking results is not clear.
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See also Landsteiner et al. (2001), who argue for a
finite-temperature phase transition in noncommutative
gauge theory.

F. Canonical formulation

In general terms, canonical quantization of noncom-
mutative field theory and gauge theory with purely spa-
tial noncommutativity can be done by following stan-
dard procedures, which we assume are familiar. This
leads to commutation relations between free fields, say
f and a conjugate momentum p, which in momentum
space take the same form as conventional theory. One
furthermore has standard expressions for energy and
momentum operators associated to commutative dimen-
sions. Possible quantum corrections to their Ward iden-
tities have not been much studied.

One can define momentum operators Pi for the non-
commutative dimensions by using the restricted energy-
momentum tensor T05i@f ,p# , as in Eq. (26). In non-
commutative gauge theory, this makes sense for the
reasons discussed in Sec. II.D.3.

A point where interesting differences from the con-
ventional case appear is in discussing the action of gauge
transformations and charge quantization. Consider 2
11 Maxwell theory on a square torus T2 defined by the
identifications xi>xi12p . The total electric flux has two
components *d2xEi, each conjugate to a Wilson loop
Wi5exp(i*dxiAi):

@Ei,Wj#5d j
iWi .

This theory admits large gauge transformations, acting
on a charge 1 matter field c as c→einix

i
c , with niPZ to

make the transformation single valued. Thus the zero
mode of Ai is a periodic variable, and eigenvalues of Ei

must be integrally quantized.
A similar argument can be made in the rank 1 non-

commutative theory on Tu
d , but now the corresponding

gauge transformations c→UicUi
† (notation as in Sec.

II.B.2) act on the nonzero modes of c as well as in Eq.
(15), taking c(xj)→c(xj2u ji). Thus the wave function
must be invariant under a simultaneous shift of the zero
mode of Ai and an overall translation (Hofman and Ver-
linde, 1999), leading instead to a quantization law for the
quantity

E TrEi2u ijPj . (116)

One also finds modified quantization laws for magnetic
charges, which we shall discuss in Sec. VI.D.

Taking into account these considerations, one can find
the quantum Hamiltonian and its perturbative spectrum
along standard lines. We quote as an example the
ground-state energy in 211 noncommutative Yang-
Mills on Matp(Tu

2) at leading order in perturbation
theory (this can be shown to be the exact result given
enough supersymmetry). Sectors of this theory are la-
beled by conserved integral quantum numbers ni [re-
lated to electric flux as in Eq. (116)], q (magnetic flux),
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and mi (momentum). Finally, we write N5Tr15p
2uq ; as we explain in Sec. VI, the naive expression
Tr15p is not valid on Tu .

One then has (Connes et al., 1998; Brace and Morariu,
1999; Hofman and Verlinde, 1999; Konechny and
Schwartz, 1999)

E5
gY

2 M

2AgN
gij~ni1u ikmk!gij~nj1u jlml!

1
p2

2gY
2 MAgN

q21
2p

N
umip2qe ijn

ju. (117)

The first two terms are the energies associated to zero
modes, while the last term is the energy E5upu associ-
ated to a state with massless excitations carrying mo-
mentum mi as well as a contribution from E3B .

G. Other results

Unfortunately, space does not permit us to discuss all
of the interesting results obtained in quantum noncom-
mutative field theory, but let us mention a few more.

The Seiberg-Witten solution of N52 supersymmetric
Yang-Mills (Seiberg and Witten, 1994), giving a prepo-
tential which encodes the dependence of BPS masses
and low-energy couplings on the choice of vacuum, is a
benchmark for nonperturbative studies. It turns out that
the solution is the same for noncommutative as for con-
ventional theory; this can be seen from instanton com-
putations (Hollwood et al., 2001) and M theory consid-
erations (Armoni et al., 2001; see also Bellisai et al.,
2000).

One may wonder what happened to the UV/IR mix-
ing. The noncommutative theory necessarily includes a
U(1) sector, and one can show that only this sector is
affected. It is not visible in the prepotential, which is
independent of the diagonal component of the scalar
vev. This sector (and the rank 1 theory) is nontrivial, and
does not reduce to Maxwell theory as u→0 (Armoni,
2001). It is not understood at present.

Noncommutative sigma models are discussed by Lee
et al. (2001). The noncommutative Wess-Zumino-Witten
model is discussed in Lugo (2000) and Moreno and
Schaposnik (2000, 2001).

Anomalies have been studied in Ardalan and
Sadooghi (2000), Bonora, Schnabl, and Tomasiello
(2000), Gracia-Bondia and Martin (2000), and Martin
(2001). Gauge anomalies appear to be directly analo-
gous to those of conventional theory, consistent with
their topological origin, and can be described using fairly
straightforward noncommutative generalizations of the
Wess-Zumino consistency conditions, descent equations,
etc. Somewhat surprisingly, however, these formulas ap-
pear to lead to more restrictive conditions for anomaly
cancellation, because more invariants appear. For ex-
ample, while the conventional d54 triangle anomaly
only involves the invariant dabc5trta$tb,tc%, which can
cancel between different representations, its noncom-
mutative generalization involves trtatbtc, which cannot.
This apparent contradiction to the general similarity we
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have seen between noncommutative and conventional
quantum effects as well as to the topological nature of
the anomaly deserves further study.

V. APPLICATIONS TO THE QUANTUM HALL EFFECT

A physical context leading directly to noncommutativ-
ity in the Fock space basis is the dynamics of electrons in
a constant magnetic field BW , projected to the lowest Lan-
dau level (LLL). This is well known in the theory of the
quantum Hall effect (QHE) (Prange and Girvin, 1987;
Girvin, 1999), and we summarize the basic idea here.

More recently, it has been proposed that a good de-
scription of the fractional quantum Hall effect (FQHE)
can be obtained using noncommutative rank 1 Chern-
Simons theory (Polychronakos, 2001; Susskind, 2001)
and we give a brief introduction to these ideas as well.

It seems fair to say that so far, the noncommutative
framework has mainly provided a new language for pre-
viously known results. However, it also seems fair to say
that this formulation connects these problems to a very
large body of field theory results whose potential rel-
evance had not been realized, and one can hope that
these connections will prove fruitful.

A. The lowest Landau level

The Lagrangian of a system of interacting electrons in
two dimensions, subject to a perpendicular magnetic
field, is

L5 (
m51

Ne 1
2

mexẆ m
2 2

ieB

2c
« ijxm

i ẋm
j 1V~xW m! (118)

1 (
m,n

U~xW m2xW n!. (119)

Defining a projection operator P to the first Landau
level for each electron, one finds that the projected co-
ordinates Pxm

i P do not commute, but instead satisfy

@xm
i ,xn

j #5idmn« ij
\c

eB
[idmnu ij. (120)

Heuristically, this is because in the limit of strong mag-
netic field one can neglect the kinetic term, i.e., formally
put me50. The resulting Lagrangian is first order in time
derivatives, turning the original coordinate space into an
effective phase space defined by Eq. (120). A more pre-
cise argument can be made by taking coordinates z , z̄ as
in Sec. II.B and showing that

Pz̄P5u]/]z1z (121)

acting on LLL states

uk&5
1

Ak!
zke2zz* /2u. (122)

The resulting single-particle Hamiltonian has been much
studied and we refer to Bellissard et al. (1993) for a dis-
cussion of the uses of noncommutative geometry in this
context.
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To obtain a field theory, one introduces electron cre-
ation and annihilation operators c†(x) and c(x), in
terms of which the electron density is

r~xW !5
1

ANe
(
m

d2~xW m2xW ![c†~x !c~x !. (123)

The single-particle and pairwise interaction Hamilto-
nians then become

HV5E dxV~x !r~x !, (124)

HU5E dxdx8U~x2x8!r~x !r~x8!. (125)

The effects of truncation to the LLL are now expressed
by noncommutativity, and more specifically enter when
we use the star product to compute the commutators of
density operators. In momentum space,

r~qW !5E eiqxr~x !,

we have

@r~qW !,r~qW 8!#5siniqW 3uqW 8r~qW 1qW 8!

which leads to deformed equations of motion, etc.
This type of description has been used by many au-

thors; we cite Sinova et al. (2000) on localization in
quantum Hall states and Gurarie and Zee (2000) on its
classical limit, as the tip of a large iceberg.

B. The fractional quantum Hall effect

The generally accepted explanation of the FQHE is
that interactions lead to a state similar to the filled LLL
but allowing fractionally charged quasiparticle excita-
tions. A good microscopic description of such a state is
provided by the N-electron wave function (Laughlin,
1983)

C5 )
m,n

~zm2zn!mexpS 2(
m

zmzm* /2u D , (126)

where m is an odd integer. This state has charge density
1/m that of a filled Landau level and was argued by
Laughlin to be a ground state of Eq. (118), at least for
small m .

States with quasiparticles are obtained by simple
modifications of this. An operator creating a quasihole
at z0 acts as multiplication by ) i(zi2z0), while the con-
jugate operator (which can create quasiparticles) is
) i( z̄ i2z0* ) with z̄ i as in Eq. (121). Acting m times with
one of these operators adds or subtracts a particle, so
the quasiparticles have charge 1/m .

A more subtle property of the quasiparticles is that
they satisfy fractional statistics; a 2p rotation of a state
of two quasiparticles produces a phase exp(2pi/m), as
can be seen by a Berry phase argument (Arovas et al.,
1984).

The low-energy excitations of this ground state can
also be described by a Landau-Ginzburg theory of a su-
perfluid density f and a fictitious vector potential A ,
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such as Eq. (82) (Kallin and Halperin, 1984; Girvin et al.,
1985; Laughlin, 1985). See also Fradkin (1991). In this
picture, the original quasiparticles are vortex solutions,
and their fractional statistics is reproduced by an Abe-
lian Chern-Simons term in the action

SCS5
im

2p E e ijkAi] jAk . (127)

With this term, a vortex with unit magnetic charge will
also carry electric charge 1/m , so the Aharonov-Bohm
effect will lead to fractional statistics (Wilczek, 1982).

Recently Susskind (2001) has proposed that noncom-
mutative Chern-Simons theory is a better description of
fractional quantum Hall states, which can reproduce the
detailed properties of these quasiparticles. Perhaps the
simplest argument one could give for this is simply to
combine the arguments leading to Landau-Ginzburg
theory with the arguments leading to noncommutativity
in a magnetic field.

One way to make this claim precise has been pro-
posed by Polychronakos (2001). One first observes that
Eq. (126) (considered as a function of one-dimensional
positions xm5Re zm) is the ground state for a Calogero
model, defined by the quantum-mechanical Hamiltonian

H5(
m

1
2

pm
2 1

1
2u2 xm

2 1
1
2 (

m,l

m~m11 !

~xm2xl!2 . (128)

One can continue and identify all the excited Calogero
states with excited Laughlin wave functions (Hellerman
and Van Raamsdonk, 2001).

It is furthermore known (Olshanetsky and Perelomov,
1976) that this model can be obtained from a matrix-
vector U(N) gauged quantum mechanics, with action
(Polychronakos, 1991)

S5E dt TrS e ijX
iD0Xj2

1
2u2 Xi

212mA0D
1c†D0c , (129)

where Xi are Hermitian matrices with i51,2 and c is a
complex vector. The gauge field in this action is nondy-
namical but enforces a constraint which selects the sec-
tor with c charge m , for which the Hamiltonian is Eq.
(128).

Reversing the procedure which led to Eq. (38), we can
regard Xi as covariant derivative operators, to obtain an
noncommutative gauge theory action, whose kinetic
term [coming from the first term of Eq. (129)] is pre-
cisely Eq. (127). The other terms are secondary: the X2

term localizes the state in space, while c, although re-
quired for consistency at finite N , plays no dynamical
role.

In this sense, one has a precise noncommutative field
theory description of the fractional Hall state. In par-
ticular, the quasiparticles are well-defined excitations of
the noncommutative gauge field; for example, the quasi-
hole is rather similar to the fluxon Eq. (83). We refer to
the cited references for more details.
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VI. MATHEMATICAL ASPECTS

As we mentioned in the Introduction, noncommuta-
tive gauge theory was first clearly formulated by math-
ematicians to address questions in noncommutative ge-
ometry. Limitations on length would not permit more
than the most cursory introduction to this subject here,
and since so many introductions are already available,
starting with the excellent Connes (1994), much of which
is quite readable by physicists, and including Connes
(1995, 2000a, 2000b), Douglas (1999), Gracia-Bondia
et al. (2001), as well as the reviews cited in the Introduc-
tion, we shall content ourselves with a definition: Non-
commutative geometry is a branch of mathematics
which attempts to generalize the notions of geometry,
broadly defined, from spaces M whose function algebras
C(M) are commutative, to ‘‘spaces’’ associated to gen-
eral algebras. The word ‘‘space’’ is in quotes here to em-
phasize that there is no a priori assumption that these
spaces are similar to manifolds; all of their attributes
emerge through the course of formulating and studying
these geometric notions.

The remainder of this section provides an introduc-
tion to other examples of noncommutative spaces, and
other topics for which a more mathematical point of
view is advantageous. We shall only be able to discuss a
few aspects of noncommutative geometry with direct
relevance for the physics we described; there are many
others for which such a role may await, or for which we
simply lack the expertise to do them justice. Among
them are cyclic cohomology and the related index theo-
rems (Connes, 1982), and the concept of spectral triple
(Connes, 1996).

A. Operator algebraic aspects

The origins of noncommutative geometry are in the
theory of operator algebras, which grew out of func-
tional analysis. Certain issues in noncommutative field
theory, especially the analogs of topological questions in
conventional field theory, cannot be understood without
these ideas. The following is loosely inspired by a discus-
sion of the meaning of the instanton charge in Schwarz
(2001); we also discuss a proposed definition of the non-
commutative gauge group (Harvey, 2001b).

A good example of a topological quantity is the total
magnetic flux in two spatial dimensions, *TrF . In com-
mutative theory, this is the integral of a total derivative
F5dA . In a pure gauge background, this integral will be
quantized; furthermore, it cannot change under varia-
tions A1dA by functions dA which are continuous,
single-valued, and fall off faster than 1/r at infinity. Thus
one can argue with hardly any dynamical input that
the total flux in a sufficiently large region must be
conserved.

Let us return to the question raised in Sec. III.B, of
whether this argument can be generalized to noncom-
mutative theory. The magnetic flux has the same formal
expression. In operator language, it is the trace of a
commutator,
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TrF5Tr@C ,C̄#11. (130)

We need to understand in what sense this is a boundary
term, which is preserved under continuous variation of
the fields with a suitable falloff condition.

If one does not try to define these conditions, one can
easily exhibit counterexamples, such as the path

C̄5lz1~12l!S†zS (131)

which purports to continuously interpolate between the
fluxon and the vacuum. Is this a continuous variation?
We have to decide; there is no single best definition of
continuous in this context.

The minimal criterion we could use for a continuous
variation of the fields is to only allow variations by
bounded operators. A bounded operator has finite op-
erator norm uAu [this is the largest eigenvalue of
(A†A)1/2]. A small variation C8 of the connection C
then has small uC82Cu, so will be a bounded operator
times a small coefficient. Boundedness is mathematically
a very natural condition as it is the weakest condition we
can impose on a class of operators which guarantees that
the product of any two will exist, and thus the definition
of an operator algebra normally includes this condition.

However, boundedness is not a strong enough condi-
tion to force traces of commutators to vanish: one can
have Tr@A ,B#Þ0 even if both A and B are bounded
operators (e.g., consider Tr@S†,S# where S is the shift
operator). The operator O5z2S†zS appearing in Eq.
(131) is bounded.

A condition which does guarantee Tr@A ,B#50 is for
A to be bounded and B to be trace class, roughly mean-
ing that its eigenvalues form an absolutely convergent
series. More precisely, A is trace class if uAu1 is finite,
where uAup5@Tr(A†A)p/2#1/p is the Schatten p norm.
More generally, the p-summable operators are those for
which uAup is finite. This is more or less the direct analog
of the conventional condition that a function (or some
power of it) be integrable. A related condition which
also expresses falloff at infinity is for A to be compact,
meaning that the sequence of eigenvalues of A†A has
the limit zero.

Although these are important conditions, they do not
solve the problem at hand, because they are not pre-
served by the derivatives Eq. (3), so do not give strong
constraints on Eq. (130). In particular, one can have
Tr@z ,K#Þ0 (and even ill defined) for K in any of the
classes above (e.g., try Tr@O , z̄#).

Another approach is to adapt a falloff condition on
functions on Rn to Ru

n by placing the same falloff condi-
tion on the symbol Eq. (18). An important point to re-
alize about the noncommutative case is that one cannot
separately define growth at large radius from growth
with large momentum. The only obvious criterion one
can use is the asymptotics of matrix elements at large
mode number, which does not distinguish the two. Physi-
cally, as we saw in our considerations of Gaussians in
Sec. II.E.2, interactions easily convert one into the other.
Thus questions about whether configurations disperse or
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go off to large distance are hard to distinguish from
questions about the possibility of forming singularities.

Thus, useful falloff conditions must apply to both po-
sition and momenta. Such conditions are standard in the
theory of pseudodifferential operators, and can be used
to define various algebras which are closed under the
star product (Schwarz, 2001). Perhaps the simplest is the
class of operators S(Ru

d), which can be obtained as the
transform Eq. (18) of smooth functions with rapid de-
crease, i.e., which fall off both in position and momen-
tum space faster than any power. This condition is very
much stronger than boundedness (roughly, it requires
matrix elements in the Fock basis to fall off exponen-
tially) and is preserved under differentiation, so TrF will
certainly be preserved by this type of perturbation.

As we discussed in Sec. III.B, the question of physical
flux conservation is whether time evolution allows flux
to get to infinity at finite time. This is a dynamical ques-
tion, but might be addressed by finding conditions on
the fields which are preserved under time evolution. For
example, in the conventional case one can take fields
which are pure gauge outside a radius r5R , and then
causality guarantees that they will stay pure gauge out-
side of r5R1t . Since S(Ru

d) is preserved by both the
product and the Laplacian, it is a good candidate for an
analogous class of noncommutative fields which is pre-
served under time evolution. The fluxon and its pertur-
bations by finitely many modes fall into this class, so an
argument along these lines should show that flux is con-
served, and thus the decay of the fluxon does not lead in
finite time to a stable ground state. Of course, conserva-
tion of TrF (and energy TrF2) is surely true for a larger
class of initial conditions.

A related question, discussed by Harvey (2001b), is
the precise definition of the gauge group U(H). In con-
ventional gauge theory, the topology of the group G0 of
gauge transformations which approach the identity at
infinity is directly related to that of the configuration
space of gauge fields (connections modulo gauge trans-
formations) by a standard argument: since the space of
connections A is contractible, we have pn(A/G0)
>pn21(G0). One might expect the topology of U(H) to
play an analogous role and in fairly direct correspon-
dence to the considerations above, this would imply that
we cannot identify U(H) with the group of unitary
bounded operators on Hilbert space; this group is con-
tractable (Kuiper, 1965). One can get the expected non-
trivial topology, pk(G)5limN→`pk@U(N)#5Z for k
52n11, by using the unitaries 11K with K compact or
p summable (Palais, 1965). Harvey (2001b) suggests us-
ing K compact, as the largest of these groups. Alterna-
tively, one might try to use a smaller group defined by
imposing conditions involving the derivatives.

A similar open question about which less is known at
present is that of what class of fields to integrate over in
the functional integral (the functional measure). As we
commented in Sec. II.D.1, formally all pure bosonic
noncommutative gauge theories have the same action;
however, we expect that different quantum theories ex-
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ist, distinguished by the choice of measure. In particular,
this subsumes the choice of the dimension of space-time.

Again, the minimal proposal is that one uses an action
such as Eq. (38), expands around a pure gauge configu-
ration Ci5 z̄ i and C̄i5zi for 1<i<r , and integrates over
all variations of this by bounded operators. This type of
prescription does make sense in the context of the per-
turbation theory of Sec. IV with IR and UV cutoffs, and
would specify the dimension of space-time there. This
dimension can also be inferred from the nature of one-
loop divergences; see Connes (1994) and Varilly and
Gracia-Bondia (1999)

For the reasons we discussed above, this prescription
probably does not make sense beyond perturbation
theory. One might address this by proposing a smaller
class of variations to integrate over. At our present level
of understanding, however, it may be better to work
with an explicit cutoff, such as that provided by the
large-N limit of matrix approximations as discussed in
Sec. II.E.6. We described there the proposal of Ambjorn
et al. (1999) along these lines; while concrete, this ap-
pears to share the problems of conventional lattice defi-
nitions of breaking the symmetries of the continuum
theory, and of not admitting supersymmetric generaliza-
tions. Thus the problem of finding the best regulated
form of noncommutative field theory remains open.

Given such a regulated theory, one then wants to
study the continuum limit. Of course the analogous
questions in conventional quantum field theory are not
trivial, and their proper understanding requires the ideas
of the renormalization group. We already made such a
discussion in Sec. IV, following the usual paradigm in
which the momentum-space behavior of Green’s func-
tions is central. It is not yet clear that this is the best
paradigm for noncommutative quantum theory; perhaps
other classes of fields such as those discussed here will
turn out to be equally or more useful.

B. Other noncommutative spaces

Our discussion so far was limited to noncommutative
field theory on Ru

d , mostly because it and Tu
d are the only

examples for which field-theoretic physics has been ex-
plored sufficiently at present to make it worth writing a
review. There are many other examples which allow de-
fining noncommutative field theories, whose physics has
been less explored.

For example, let us try to define a noncommutative
sphere Su

d . This should be a space associated to an alge-
bra of d11 operators xi, 1<i<d11, satisfying the
relation

(
i51

d11

~xi!25R2 1. (132)

We next need to postulate some analog of Eq. (1).
Although one can define algebras without imposing
commutation relations for each pair of variables, these
will be much larger than the algebra of functions on Sd.
For d52, there is a natural choice to make,
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@xi,xj#5iue ijkxk,

which preserves SO(3) symmetry.
In fact, there is a very simple way to define such an

algebra, called the fuzzy two-sphere, discussed in depth
by Madore (1992), in Madore (1999), and many other
works. It is to consider the 2j11-dimensional irreduc-
ible representation of the SU(2) Lie algebra, defined by
Hermitian generators t i satisfying the commutation rela-
tions @ t i,t j#5ie ijktk. One can then set

xi5
R

Aj~ j11 !
t i

from which Eq. (132) follows easily, and one finds u
5R/Aj(j11).

This algebra can serve as another starting point for
defining noncommutative field theory. One cannot use
Eq. (3) to define the derivatives, however, as this is in-
consistent with Eq. (132). A simple choice which works
is to define a linearly dependent set of derivatives ] if
5@Xi,f# and use gij5d ij in this basis as a metric. Since
these derivatives do not commute, the natural definition
of curvature becomes

Fij5i@] i1Ai ,] j1Aj#2i@] i ,] j#

[as in Eq. (37)], in terms of which one can again use the
Yang-Mills action. This and related theories have been
discussed by Grosse, Klimčik, and Presnajder (1996).

Unlike Ru
d and Tu

d , this algebra is finite dimensional. If
we base our theory on it directly, it will have a finite
number of degrees of freedom, and one might question
the use of the term field theory to describe it.

One can certainly take the limit j→` , but if we take
R}j→` as well to keep u finite, we lose the curvature of
the sphere, and end up with Ru

2 .
Finally, if we keep R fixed and take j→` , it is a theo-

rem that (with suitable definitions) this algebra goes
over in the limit to the algebra of continuous functions
on ordinary S2, so we obtain a conventional field theory.
This feature of restoring commutativity in the limit ap-
plies to a wide class of constructions, as we shall discuss
further in Sec. VI.G. It should be said that this theorem
is classical, and there might be a way to quantize the
theory which does not commute with the large j limit,
leading to a nontrivial noncommutative quantum field
theory.

One can still argue that for large but finite j , a theory
based on this algebra deserves the name noncommuta-
tive field theory. We would suggest that the nomencla-
ture be based, first, on the extent to which a theory dis-
plays physical characteristics similar to those we have
seen for theories on Ru

d , and second on the extent to
which it shows universality (e.g., has finitely many pa-
rameters) analogous to field theory; this is not usually
the case for constructions with a finite number of de-
grees of freedom. These questions have not been settled
and we shall not take a position on this here.
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We move on and discuss other noncommutative alge-
bras comparable to function algebras which can clearly
serve to define field theories. The simplest possibility
was of course Matn@C(M)# . Interesting variations on
this can be obtained by imposing further conditions
which respect the product. For example, one could con-
sider an algebra and a Z2 automorphism preserving the
metric, call it g . A simple example would be to take Ru

d

and let g be the reflection about some hyperplane. One
could then impose a†5g(a) where g acts on each matrix
element. This idea has been used to propose noncom-
mutative gauge theories with analogy to the other clas-
sical (SO and Sp) Lie algebras (Bonora, Schnabl, et al.,
2000; Bars, Sheikh-Jabbari, and Vasiliev, 2001).

One can go on in this vein, using nonsimple finite al-
gebras and more complicated automorphisms. Indeed,
one can obtain the complete action for the standard
model by choosing the appropriate algebra (Connes and
Lott, 1991). Obviously the significance of this observa-
tion is for the future to judge, though any example of a
formalism which only describes a subset of all possible
gauge theories but can lead to the standard model prob-
ably has something important to teach us.

C. Group algebras and noncommutative quotients

A large class of more noncommutative algebras are
provided by the group algebras. Given a group G , we
define AG to be the algebra of all linear combinations of
elements of G , with multiplication law inherited from
G . For example, consider G5Z2 with elements 1 and g
satisfying g251. The general element of AG is a1bg ,
and (a1bg)(c1dg)5(ac1bd)1(bc1ad)g .

It is well known that for a finite group G , AG is a
direct sum of matrix algebras, one for each irreducible
representation of G . One goal of representation theory
is to try to make analogous statements for infinite
groups. This requires being more precise about the par-
ticular linear combinations allowed, and leads one deep
into the theory of operator algebras. We shall not go
into detail, but these algebras are clearly a good source
of noncommutative field theories, as the original defini-
tions of Connes and Rieffel (1987) can be applied di-
rectly to this case. One of the main problems in trying to
define noncommutative field theories on more general
spaces is to either define a concept of metric, or get
away without one. Since group spaces are homogeneous
spaces, this problem becomes very much simpler.

A variation on this construction is the twisted group
algebra AG ,e , which can be defined if H2@G ,U(1)#Þ0.
This allows for nontrivial projective representations g
characterized by a two-cocycle e,

g~g1!g~g2!5e~g1 ,g2!g~g1g2!, (133)

and AG ,e is just the group algebra with this multiplica-
tion law. Since the phases Eq. (21) are a two-cocycle for
Zd, Tu

d itself is an example.
A very important source of noncommutative algebras

is the crossed product construction. One starts with an
algebra A, with a group G acting on it, say on the left:
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a→U~g !a .

One then chooses a representation R of G acting on a
Hilbert space H , g°g(g)PB(H), considers the tensor
product A^ B(H), and imposes the condition

g21~g !ag~g !5U~g !a . (134)

The simplest example of this construction would be to
take A finite dimensional. If G is Abelian, we can even
take A5C, and the general solution for a will be some
particular solution added to an arbitrary element of AG .
As we discuss below, the particular solution has the in-
terpretation of a connection, and this construction leads
directly to gauge theory on AG .

Suppose we had started with A5C(M). If we take
g(g) to be the trivial representation, Eq. (134) defines
the algebra of functions on the quotient space C(M/G).
More general choices of g(g) thus lead to a generalized
concept of quotient. The striking feature of this is that it
provides a way to define quotients by ‘‘bad’’ group ac-
tions, those for which the quotient space M/G is patho-
logical, as is discussed in Connes (1994). This definition
of quotient also follows from the standard string theory
definition of orbifolds, as discussed in Douglas (1999),
Konechny and Schwarz (2000a), and Martinec and
Moore (2001).

A natural generalization of this construction is the
twisted cross product, whose definition is precisely the
same except that we take g to be a projective represen-
tation as in Eq. (133). This leads to gauge theory on
AG ,e ; we shall discuss the toroidal case below.

Another construction with a related geometric pic-
ture, the foliation algebra, is discussed in Connes (1994).

D. Gauge theory and topology

A good understanding of the topology of conventional
gauge field configurations requires introducing the no-
tions of principal bundle and vector bundle. We recall
that conventional gauge fields are connections in some
principal G bundle, while matter fields are sections of
vector bundles with structure group G . On a compact
space such as a torus, the topological classication of
these bundles has direct physical implications.

The noncommutative analog of these ideas is a central
part of noncommutative geometry. We refer to
Konechny and Schwarz (2000b) for a detailed discussion
focusing on the example of the noncommutative torus,
but we give the basic definitions here. See also Harvey
(2001a) for a related discussion.

One aspect of a conventional vector bundle is that one
can multiply a section by a function to get another sec-
tion. This will be taken as the defining feature of a non-
commutative vector bundle associated to the algebra A;
one considers the (typically infinite dimensional) linear
space of sections and requires it to be a module over the
algebra A.

A module E over A is a linear space admitting a mul-
tiplicative action of A which is bilinear and satisfies the
rule
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a•~b•v !5~ab !•v ~a ,bPA; vPE !, (135)

and carrying whatever other structure A has (e.g., con-
tinuity, smoothness, etc.) The simplest example is just an
N-component vector with elements in A, which is called
a free module of rank N . Sections of a trivial rank N
conventional vector bundle form the free module
C(M)N, and this is the obvious generalization.

We chose the multiplication in Eq. (135) to act on the
left, defining a left module, but one can equally well let
it act on the right, defining a right module, or postulate
independent multiplication laws on both sides, defining
a bimodule. One can also speak of a (A, B) bimodule,
which admits an action of A on the left and another
algebra B on the right.

A simple example of a bimodule would be the space
of M3N matrices of elements of A, with A^ 1M acting
on the left and A^ 1N on the right. These sit inside left
and right actions of MatM(A) and MatN(A), respec-
tively. An obvious but important point is that these two
actions commute, i.e., (a•v)•b5a•(v•b).

We can regard the free module A N as a bimodule (the
13N matrices) and this comment shows that it admits a
right action of MatN(A) which commutes with the ac-
tion Eq. (135). There is a general term for the linear
maps acting on a module E which commute with Eq.
(135); they are the endomorphisms of the module E ,
and the space of these is denoted EndAE . In fact
EndA(A N)>MatN(A) so we know all endomorphisms
of the free module. For more general E , EndAE will
always be an algebra, but need not be a matrix algebra.

We can now obtain more examples by starting with
free modules and applying a projection. We use the fact
that the left module A N admits a right action of
MatN(A). Given a projection PPMatN(A), the space of
solutions of v•P5v is a module with multiplication law
a3v5a•v . These examples are known as finitely gener-
ated projective modules and in fact it is only these mod-
ules which are natural generalizations of vector bundles,
so one normally restricts attention to them. The endo-
morphisms of these modules also admit a simple de-
scription: they are the elements in MatN(A) of the form
PaP .

We are now prepared to make a more general defini-
tion of connection (Connes, 1980). So far we have been
taking a connection to be a set of operators Di5] i1Ai
where the components Ai are taken to be elements of
MatN(A), in direct analogy to conventional Yang-Mills
theory. We used this in several ways; as Eq. (30) acting
on fields in MatN(A) (the adjoint action), in the curva-
tures Eq. (37), and finally acting on fundamental matter
in Sec. II.D.3. The last of these is the point where vector
bundles enter the conventional discussion, and where
our generalization will apply most directly.

More generally, a connection on the module E could
be any set of linear operators Di which act on E and
satisfy the Leibniz rule,

Di~a•v !5] i~a !•v1a•Di~v !. (136)
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To see the relation to our previous definition, we first
note that the difference between two connections Ai
[Di2Di8 will commute with the action of A, and is thus
an endomorphism of E . Thus we can also describe the
general connection of this class by choosing a fiducial
connection Di

(0) and writing

Di5Di
(0)1Ai , AiPEndAE .

Let us consider E5A N so we can compare with Sec.
II.D.3. One can clearly take Di

(0)5] i for the free mod-
ule, and as we discussed, the endomorphisms are just
MatN(A), so we see that in this case the new and old
definitions of connection agree.

All of the modules constructed from projections as
above also admit a natural candidate for Di

(0) , namely,
we apply ] i and project back:

Di
(0)~v !5~] iv !•P .

Thus connections on E can be identified with elements
of EndAE , which as we discussed will be some subalge-
bra of matrices MatN(A), but not itself a matrix algebra.

Finally, the gauge theory action uses one more ingre-
dient, the trace. This can also be defined in terms of the
projection P ; an endomorphism which can be written
PaP as above has trace TruMatN(A)PaP . In particular, we
can define the dimension of the module as

TrE15TrMatN(A)P .

These definitions can be used to obtain all the non-
commutative vector bundles, and largely reduces the
classification problem to classifying the projections in
MatN(A). The next step in such a classification is to find
invariants which tell us when two projections are related
by a continuous deformation. A natural guess is that one
wants to generalize the Chern classes of the conven-
tional theory, and indeed we have been implicitly doing
this in claiming that quantities like Eq. (130) are topo-
logical quantum numbers. This turns out to be true for
the noncommutative torus and indeed there is a well-
developed formalism generalizing this to arbitrary alge-
bras, based on cyclic cohomology (Connes, 1982).

E. The noncommutative torus

The noncommutative torus and its associated modules
can be obtained using almost any of the constructions
we cited, so besides its physical relevance it serves as a
good illustration. We follow the definition of Tu

d made in
Connes (1980), as the algebra of linear combinations of
products ) iUi

ni of generators with the relations Eq. (23),
with coefficients decreasing faster than any power of unu.
Our discussion will mostly stick to Tu

2 .
One can regard commutative C(T2) as the group al-

gebra GZ2, i.e., all linear combinations of products of
two commuting generators U15g(g1) and U25g(g2).
We can think of g as the regular representation; it de-
composes into the direct sum of all irreducible represen-
tations of Z2, which can be written Ui5eis i, param-
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etrized by s i coordinates on T2. Each such
representation is a one-dimensional module over GZ2.

Taking instead a projective representation Eq. (133)
with e(g1 ,g2)5e2iu/2 leads directly to Eq. (23). The
regular representation can be written explicitly as

U15eis1Ss2 ,2u , U25eis2, (137)

where Ss ,af(s)[f(s1a)Ss ,a . This can again be de-
composed into irreducibles, each labeled by a fixed
value of s1 . All of these are equivalent, however (if we
take this to act on functions on R2), under conjugation
by eias2.

This gives us an example of an projective module E
over Tu

2 : to repeat, we take for E the smooth functions
on a real line S(R), and define the action of the opera-
tors Ui on them as

~U1f !~s!5f~s2u!, ~U2f !~s!5eisf~s!. (138)

In terms of the general construction of the previous
subsection, we obtained E from A 1 by a projection,
which should allow us to compute dimE5TrE1. Naively
P5d(s1); this is too naive as this operator is not
bounded. A correct projector can be found using the
ansatz

P5U2
†g~U1!†1f~U1!1g~U1!U2

for functions f and g chosen to satisfy P25P (Connes,
1980; Rieffel, 1981; Bars et al., 2001), and this can be
used to compute dimE5u/2p .

Rather than continue by following the general theory,
in this case it is easier to write explicit results. For ex-
ample, the endomorphisms of E are

~Z1f !~s!5f~s12p!, ~Z2f !~s!5e2pis/uf~s!.
(139)

These operators also satisfy the defining relations of a
noncommutative torus, but one with u854p2/u .

The fact that two dual tori are involved may seem
counterintuitive. However, there is a sense in which the
tori Tu

2 and Tu8
2 are equivalent, called Morita equiva-

lence, based on the observation that E is also a module
for Tu8

2 (since we have an action of the Zi). We return to
this below.

A reference gauge connection Di
(0) on E satisfying

Di
(0)(Uj)52pid i ,jUj can now be defined as

D1
(0)f52

2pis

u
f , D2

(0)f52p
]f

]s
. (140)

The general connection is a sum Di
(0)1Ai with Ai

PEndT
u
2E . In other words, the vector potential naturally

lives on a dual noncommutative torus Tu8
2 . Note that

(1/2pi)Tr@D1 ,D2#51 is integrally quantized, even
though dimE was not.

This construction can be generalized to produce all
modules over Tu

2 . These modules Ep ,q are characterized
by two integers p and q , and can be produced by ten-
soring a representation with u15p/q constructed in Sec.
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II.E.6, with Eq. (138) with u2 chosen to satisfy u5u1
1u2 . The computations above then generalize to

dimEp ,q5up2qu/2pu, (141)

TrEp ,q
F52piq . (142)

The example E of Eq. (138) is E0,1 , while regarded as a
module on Tu8

2 it turns out to be E1,0 .
The same construction generalizes to produce all

modules on Tu
d (at least for irrational u) (Connes, 1980;

Rieffel, 1988) and thus we can get the topological clas-
sification of gauge field configurations on Tu

d . This turns
out to be the same, in a sense, as for the commutative
torus. In both cases, the topological class of a connection
is determined by its Chern classes (Connes, 1980), which
can be defined as *Tr 1, *TrFi1i2

*TrFi1i2
∧Fi3i4

, etc. and
which obey additive quantization rules corresponding to
the group Z2d21

. This is reasonable as a continuous
variation of u should not change a topological property.

Many properties of these modules are easier to see
from other constructions. In particular, one can also re-
gard T2 as the quotient R2/Z2, and then define this quo-
tient using the crossed product. Let niPZ2 act on R2 as
xj→xj1ni(ei)

j, and take XiPR2
^ B(H), then Eq. (134)

becomes

Ui
21XjUi5Xj1~ei!

j. (143)

If we take the regular representation as above, and
(ei)

j5d i
j for simplicity, these equations are solved by

Xj52i
]

]s j 1Aj , (144)

where Aj commute with the Ui ; i.e., are general func-
tions on T2. It is no coincidence that these solutions look
like covariant derivatives; we can rewrite Eq. (143) as

XjUi5UiX
j1~ei!

jUi (145)

which is precisely Eq. (136) with Xj5Dj .
To get Tu

2 , we instead take the twisted crossed prod-
uct, which amounts to solving Eq. (143) with Ui satisfy-
ing Eq. (23). Using the representation Eq. (137) for this,
the solutions become

Xi5Di
(0)1Ai (146)

with Di
(0) as in Eq. (140), and Ai general elements of

Tu8
2 .
This generalizes to a procedure for deriving connec-

tions on Tu
d , which by taking more general Ui produces

all constant curvature connections. It corresponds di-
rectly to the string and M(atrix) theory definition of
quotient space, and thus we shall find in Sec. VII.B that
Tu appears naturally in this context.

Although we started with the continuum definition
Eq. (137), one could also obtain this as an explicit limit
of matrix representations. Using this in the constructions
we just discussed leads to the regulated gauge theory
discussed in Sec. II.E.6.
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F. Morita equivalence

Two algebras A and Â are Morita equivalent if there
is a natural one-to-one map carrying all modules and
their associated structures from either algebra into the
other. On the face of it, this is quite a strong relation,
which for commutative algebras C(M) and C(M̂)
would certainly imply that M>M̂ .

We first note that if such a map exists, we can derive
the general map just knowing the counterpart in Â of
A 1, the free module of rank 1. Call this P ; it is an (Â,A)
bimodule, because we know that A 1 also admits a right
action of A. There is then a general construction (the
mathematical notion of tensor product) which produces
the map

E→Ê5P ^ AE . (147)

An example is that Â5MatN(A) is Morita equivalent to
A, by taking P to be A N. Thus we do not want to think
of Morita equivalent algebras as literally equivalent;
however, their K theory and many other properties are
the same.

A more striking example of a Morita equivalence is
that Tu

2 is Morita equivalent to Tu8
2 as above. The module

E constructed in Eqs. (138) and (139) is the bimodule
which provides this equivalence. Thus every module
Ep ,q on Tu

2 is associated by Eq. (147) to a module E2q ,p

on Tu8
2 .

There is a second, simpler equivalence of this type
obtained by taking u→u12p , which manifestly pro-
duces the same algebra. Considering Eq. (141) shows
that this acts on the modules as Ep ,q→Ep11,q .

These two transformations generate the group
SL(2,Z) of 232 matrices

S a b

d d D
with integer entries and determinant 1, acting on t
[u/2p as t→(at1b)/(ct1d) and on (p ,q) as a vector.
This is an example of a duality group which is a candi-
date equivalence between gauge theories based on the
pair of Morita equivalent modules. This equivalence can
be further strengthened by introducing a stronger notion
of gauge Morita equivalence (Schwarz, 1998), which
produces a map between the spaces of connections on
the two modules which preserves the Yang-Mills action.

Although somewhat abstract, in this example these
equivalences have a simple geometric origin, which can
be understood in terms of the constructions of the pre-
vious subsection (Connes, 1994; Douglas, 1999). It is
that Tu

2 can be obtained as a quotient of R by the iden-
tifications x;x12p;x1u , in other words by a two-
dimensional lattice, and as such its moduli space will
admit the SL(2,Z) symmetry of redefinitions of the lat-
tice, just as in the construction of T2 as R2/Z2 . Indeed, as
this suggests, Tu

2 can be regarded is a zero-volume limit
of T2, a picture which will reappear in the string theory
discussion.
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Morita equivalence between higher-dimensional non-
commutative tori is also understood (for irrational u at
least). The basic result is the following (Rieffel and
Schwarz, 1998): two tori Tu

d and Tu8
d are Morita equiva-

lent if they are related as

u85~Au1B !~Cu1D !21,

where

S A B

C D D
is a 2d32d matrix belonging to the group SO(d ,d ;Z).
The simplest example is A5D50, B521, C51 which
corresponds to the Morita equivalence on Tu

2 we de-
scribed above. The corresponding transformation on the
modules is also given by a linear action of SO(d ,d) on
the Chern class data, which can be regarded as a spinor
of this group.

These transformations agree precisely with the action
of T duality in toroidal compactifications of string
theory (in the limit of a zero volume torus) and this is
how they were first conjectured. Conversely, the math-
ematical proof of these equivalences is part of a new
argument for these dualities in M theory.

G. Deformation quantization

Deformation quantization (Bayen et al., 1978; Stern-
heimer, 1998) is a reformulation of the problem of quan-
tizing a classical mechanical system as follows. One first
considers the algebra of observables A of the classical
problem; if one starts with a phase space M (perhaps the
cotangent space to some configuration space, but of
course it can be more general), this will be the algebra of
functions C(M). One then finds a deformation of this
algebra in the sense of Sec. II.B.3, i.e., a family of alge-
bras Ah depending on a parameter h which reduces to
C(M) as h→0, and for which the leading term in the
star commutator in a power series expansion in h is the
Poisson bracket,

f* g2g* f5ih$f ,g%1¯ . (148)

One can then reinterpret Heisenberg picture equations
of motion such as

]f

]t
5

i

h
@H ,f#

as equations for observables in Ah involving star
commutators.

As discussed in Sec. II.B.3, the Moyal product is pre-
cisely such a deformation of the multiplication law of
functions, and deformation quantization would appear
to be a very direct way to generalize the construction of
noncommutative field theory on Ru and Tu to general
noncommutative spaces. Not only is it more general, it
can be formulated geometrically, without recourse to a
specific coordinate system. The primary input, the Pois-
son bracket, can be specified by the choice of an anti-
symmetric bivector field u ij,
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$f ,g%5u ij] if] jg ,

such that $f ,g% satisfies the Jacobi identity.
For the further discussion, it will be useful to recall a

bit of the canonical formulation of classical mechanics
and its underlying mathematics. A simplifying assump-
tion which often holds is that u ij is everywhere nonde-
generate, in which case one speaks of a manifold with
symplectic structure. The symplectic form is v ij
5(u ij)21 (the matrix inverse at each point), and the Ja-
cobi identity for the Poisson bracket is equivalent to
dv50. More generally, u ij can degenerate at points or
be of less than full rank, in which case one speaks of a
manifold with a Poisson structure.

The simplest symplectic structure is constant u ij, in
which case by a linear transformation we can go to ca-
nonical coordinates as in Eq. (6). Indeed, one can make
a coordinate transformation to canonical coordinates in
any contractable region in which u ij is everywhere non-
degenerate (Darboux’s theorem). One then distin-
guishes a special class of coordinate transformations
which preserve u, the canonical transformations, or sym-
plectomorphisms as they are called in mathematics. In
infinitesimal form, these are defined by dx5$S ,x% for
some generating function S [if p1(M)Þ0, one must al-
low multivalued generating functions]. One can regard
these transformations as generating an infinite dimen-
sional Lie algebra, for which the symplectomorphisms
are the corresponding Lie group.

Having defined the deformations of interest, we can
now discuss the question of whether they exist. Con-
structing one involves postulating additional terms in
Eq. (148) at all higher orders in h to make the star prod-
uct associative, (f* g)* h5f* (g* h). One might wonder
if this procedure requires more data than just the Pois-
son bracket, and a little reflection shows that it surely
will. After all, we know of a valid star product for con-
stant u ij, the Moyal product Eq. (21), and if this were
the output of a general prescription depending only on
u ij, we would conclude that the Moyal product inter-
twines with canonical transformations; i.e., if f→T(f ) is
a canonical transformation, we would have

T~f* g !5T~f !* T~g !.

However, a little experimentation with nonlinear ca-
nonical transformations should convince the reader that
this is false. Thus the question arises of what is the ad-
ditional data required to define a star product, and what
is the relation between these different products.

Deformation quantization has been fairly well under-
stood by mathematicians and we briefly summarize the
main results, referring to Fedosov (1996) and Kont-
sevich (1997) for more information. First, deformation
quantization always exists. In the symplectic case this
was shown by DeWilde and Lecomte (1983) and by Fe-
dosov (1994), who also constructed a trace. For more
general Poisson manifolds, it was shown by Kontsevich
(1997). As we shall discuss in Sec. VI.C, Kontsevich’s
construction is in terms of a topological string theory,
and has been rather influential in the physical develop-
ments already.
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In the symplectic case, it is known that the additional
data required is a choice of symplectic connection,
analogous to the connection of Riemannian geometry
but preserving the symplectic form, ¹v50. Unlike Rie-
mannian geometry, this compatibility condition does not
determine the connection uniquely, and acting with a
canonical transformation will change the connection. In
this language, the special role of the canonical coordi-
nates is analogous to that of normal coordinates; they
parametrize geodesics of the symplectic connection,
¹xi50.

Although the precise form of the star product de-
pends on the connection, different choices lead to gauge
equivalent star products, in the sense that one can make
a transformation

G~f* g !5G~f !* 8G~g !

of the form

G~f !5f1hg1
i ] if1h2g2

ij] i] jf1¯

which relates the two. Thus the two algebras are (for-
mally) equivalent.

We now ask what is the relation between deformation
quantization and more conventional physical ideas of
quantization, or other mathematical approaches such as
geometric quantization. Now the usual intuition is that
the dimension of the quantum Hilbert space should be
the volume of phase space in units of (2p\)d, so a
finite-volume phase space should lead to a finite number
of states.

This fits with our earlier discussion of fuzzy S2 but
leads us to wonder how we obtained field theory on Tu .
This appears to be connected to the fact that p1(T2)
5Z2Þ0, and a nice string theory explanation of how this
changes the problem can be found in Seiberg and Witten
(1999); because a string can wind about p1 , the phase
space of an open string on T2 is in fact noncompact.

In any case, deformation quantization gets around all
of these questions in a rather peculiar way: the series
expansions in h one obtains are usually formal in the
sense that they do not converge, not just when applied
to badly behaved functions but for any sufficiently large
class of functions. Thus they typically (i.e., for generic
values of h) do not define algebras of bounded opera-
tors, and do not even admit representations on Hilbert
space of the sort which explicitly or implicitly lay behind
many of our considerations (Fedosov, 1996; Rieffel,
1998).

Given some understanding of this point, in the general
case one also needs to define a noncommutative metric
gij(x) to make sense of Eq. (29); other field theory ac-
tions require even more structure.

At this writing, the question of whether and when de-
formation quantization can be used to define noncom-
mutative field theory is completely open. Some sugges-
tions in this direction have been made in Asakawa and
Kishimoto (2000) and Jurco et al. (2001).

VII. RELATIONS TO STRING AND M THEORY

We now discuss how noncommutative field theories
arise from string theory and M theory, and how they fit
into the framework of duality.



1014 Douglas et al.: Noncommutative field theory
Historically, the first use of noncommutative geometry
in string theory was in the formulation of open string
field theory due to Witten (1986), which uses the Chern-
Simons action in a formal setup much like that of Sec. II,
with an algebra A defined using conformal field theory
techniques, whose elements are string loop functionals.
Noncommutativity is natural in open string theory just
because an open string has two ends, and an interaction
which involves two strings joining at their end points
shares all the formal similarities to matrix multplication
which we took advantage of in Sec. II.C.

Although these deceptively simple but deep observa-
tions combined with the existence of the string field
framework strongly suggested that noncommutative ge-
ometry has a deep underlying significance in string
theory, it was hard to guess just from this formalism
what it might be. Further progress in this direction
awaited the discovery of the Dirichlet brane (Dai et al.,
1989; Polchinski, 1995), which gave open strings a much
more central place in the theory, and allowed making
geometric interpretations of much of their physics.

Now contact between string theory and conventional
geometry, as epitomized by the emergence of general
relativity from string dynamics, relies to a large extent
on the curvatures and field strengths in the background
being small compared to the string length ls . Con-
versely, when these quantities become large in string
units, one may (but is not guaranteed to) find some
stringy generalization of geometry.

The simplest context in which noncommutative field
theory as we described it arises, and by far the best un-
derstood, is in a limit in which a large background anti-
symmetric tensor potential dominates the background
metric. In this limit, the world-volume theories of Di-
richlet branes become noncommutative (Connes et al.,
1998; Douglas and Hull, 1998). This can be seen from
many different formal starting points, as elucidated in
subsequent work, and it provides very concrete pictures
for much of the physics we discussed in Secs. III and IV.
It will also lead to new theories: noncommutative string
theories, and even more exotic theories such as open
membrane (OM) theory.

After reviewing a range of arguments which lead to
noncommutative gauge theory, we focus on its origins
from the string world-sheet, following Seiberg and Wit-
ten (1999), who were the first to precisely state the limits
involved. We also describe related arguments in topo-
logical string theory, originating in work of Kontsevich
(1997). We then give the string theory pictures for the
solitonic physics of Sec. III, and other contacts with du-
ality such as the AdS/CFT proposal (Maldacena, 1998).
Finally, we discuss some of the limits which have been
proposed to lead to new noncommutative theories.

A. Lightning overview of M theory

Obviously space does not permit a real introduction
to this subject, but it is possible to summarize the defi-
nition of M theory so as to provide a definite starting
point for our discussion. Details of the following argu-
Rev. Mod. Phys., Vol. 73, No. 4, October 2001
ments can be found in Polchinski (1996a, 1996b).
Throughout this section, we shall try to state the central
ideas at the start of each subsection, though as the dis-
cussion progresses we shall reach a point where we must
assume prior familiarity on the part of the reader.

A unified way to arrive at the various theories which
are now considered part of M theory is to start with one
of the various supergravity actions with maximal super-
symmetry (32 supercharges in flat space-time), compac-
tify some dimensions consistent with this supersymmetry
(the simplest choice is to compactify n dimensions on
the torus Tn), find the classical solutions preserving as
much supersymmetry as possible (16 supercharges),
make arguments using supersymmetry that these are ex-
act solutions of the quantum theory, and then claim that
in a given background (say, with specified sizes and
shapes of the torus), the lightest object must be funda-
mental, so some fundamental formulation should exist
based on that object.

Thanks to the remarkable uniqueness properties of
actions with maximal supersymmetry, in each case only
one candidate theory survives even the simplest consis-
tency checks on these ideas, and thus one can be surpris-
ingly specific about these fundamental formulations and
see some rather nontrivial properties of the theory even
in the absence of detailed dynamical understanding.

The simplest and most symmetric starting point is 11-
dimensional supergravity (Cremmer et al., 1978), a
theory with no free parameters and a single preferred
scale of length, the Planck length lp . Its fields are the
metric, a spin-3/2 gravitino, and a third rank antisym-
metric tensor potential, traditionally denoted Cijk . Such
a potential can minimally couple to a 211-dimensional
extended object, and indeed a solution exists corre-
sponding to the background fields around such an object
and preserving 16 supersymmetries. One can also find a
supersymmetric solution with magnetic charge emanat-
ing from a 511-dimensional hypersurface. We can thus
define M theory as the well-defined quantum theory of
gravity with the low-energy spectrum of this supergrav-
ity, containing solitonic branes, the 2-brane (or super-
membrane) and 5-brane, whose long-range fields (at dis-
tances large compared to lp) agree with the solutions
just discussed. These branes have tensions (energy per
unit volume) c2 /lp

3 and c5 /lp
6 as is clear by dimensional

analysis; arguments using supersymmetry and charge
quantization determine the constants cn .

This is not a constructive definition and indeed one
might doubt that such a theory exists at all, were it not
for its connections to superstring theory. The simplest
connection is to consider a compactification of the
theory on R9,13S1 with a flat metric, circumference 2pR
for the S1, and no other background fields. One can
derive the resulting ten-dimensional supergravity by
standard Kaluza-Klein reduction and find IIa super-
gravity, a theory which can be independently obtained
by quantizing the IIa superstring. Indeed, the super-
string itself can be identified with a 2-brane with one
spatial dimension identified with (or wrapped on) the
S1; in the small R limit this will look like and has pre-
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cisely the action for a string in ten dimensions. This re-
lation determines the string length ls , the average extent
of a string, and the string tension, 1/ls

25cR/lp
3 (again

with a known coefficient).
The claim is now that this compactification of M

theory exhibits two limits, one with R@lp which can be
understood as 11-dimensional supergravity with quan-
tum corrections, and one with R!lp which can be un-
derstood as a weakly coupled superstring theory. Con-
siderations involving supersymmetry as well as many
nontrivial consistency checks have established this claim
beyond reasonable doubt, as part of a much larger web
of dualities involving all of the known string theories
and many of their compactifications.

The string theory limits are still much better under-
stood than the others, because the string is by far the
most tractable fundamental object. One can use them to
make a microscopic definition of certain branes, the Di-
richlet branes. A Dirichlet brane is simply an allowed
end point for open strings. The crucial generalization
beyond the original definition of open string theory is
that one allows Dirichlet boundary conditions for some
of the world-sheet coordinates and this fixes the end
point to live on a submanifold in space-time. For a
simple choice of submanifold such as a hyperplane, the
world-sheet theory is still free, so the physics can be
worked out in great detail.

The central result in this direction and the starting
point for most further considerations is that the quanti-
zation of open strings ending on a set of N Dp-branes,
occupying coincident hyperplanes in ten-dimensional
Minkowski space-time, leads to p11-dimensional U(N)
MSYM. Its field content is a vector field, 92p adjoint
scalars and their supersymmetry partner fermions, and
its action is the dimensional reduction of Eq. (31).

A crucial point is the interpretation of the adjoint sca-
lars. Let us denote them as Hermitian matrices Xi; the
action contains a potential

V52(
i,j

Tr@Xi,Xj#2

(the sign is there for positivity). A zero energy configu-
ration satisfies @Xi,Xj#50 and is thus given by a set of
92p diagonal matrices (up to gauge equivalence).

The point now is that the N vectors of eigenvalues
Xnn

i must be identified as the positions of the N branes
in the 92p transverse dimensions. This identification is
behind most of the geometric pictures arising from
D-brane physics, and the promotion of space-time coor-
dinates to matrices is at the heart of the noncommuta-
tivity of open string theory.

As the simplest illustration of this, a generic configu-
ration of adjoint scalars will break U(N) gauge symme-
try to U(1)N by the Higgs effect, giving masses uXmm
2Xnnu to the (m ,n) off-diagonal matrix elements of the
fields. This corresponds to the mass of a string stretched
between two branes at the positions Xmm and Xnn and
we see that the Higgs effect has a simple picture in terms
of the geometry of an extra dimension.
Rev. Mod. Phys., Vol. 73, No. 4, October 2001
This picture shows some resemblance to pictures from
noncommutative gauge theory appearing in Connes
(1994), and this observation (Douglas, 1996; Ho and Wu,
1997) led to a search for a more direct connection be-
tween noncommutative gauge theory and D-brane phys-
ics.

B. Noncommutativity in M(atrix) theory

As we commented in Sec. II.D.1, the simplest deriva-
tion of noncommutative gauge theory from a more fa-
miliar physical theory is to start with a dimensionally
reduced gauge theory (or matrix model) action such as
Eq. (38), and find a situation in which the connection
operators Ci of Eq. (34) obey the defining relations of a
connection on a module over a noncommutative algebra
as given in Sec. VI.D, perhaps after specifying appropri-
ate boundary conditions or background fields.

A particularly significant theory of this type is maxi-
mally supersymmetric quantum mechanics, the p50
case of MSYM, with action

S5E dt Tr (
i51

9

~DtX !22(
i,j

@Xi,Xj#2

1x†~Dt1G iX
i!x . (149)

Here Dt5]/]t1iA0 , and varying A0 leads to the con-
straint that physical states be invariant under the action
of U(H).

This action first entered M theory as a regulated form
of the action for the supermembrane, which as we dis-
cussed one might try to use as a fundamental definition
of the theory (de Wit et al., 1988). How this might work
was not properly understood until the work of Banks
et al. (1997), who argued that a simpler and equally valid
way to obtain Eq. (149) from string theory was to take
the theory of D0-branes in IIa string theory and boost it
along the x11 dimension to the infinite momentum
frame. Bound states of these D0-branes would be inter-
preted as the supergravity spectrum, while the original
membrane configuration could also be obtained as a
nontrivial background. An important feature of this in-
terpretation is that the compact eleventh dimension of
our previous subsection does not disappear in taking this
limit; one should think of the resulting theory as M
theory compactified on a lightlike circle. See Taylor
(2001) for a recent review.

In this framework, compactification on the torus Tn is
quite simple to understand, in more than one way. One
can first compactify the IIa string and take a similar
limit to obtain n11-dimensional MSYM, with a similar
interpretation. The case n51 reproduces the original
string theory in a slightly subtle but convincing way
(Dijkgraaf et al., 1997; Motl, 1997) and this is one of the
main pieces of confirming evidence for the proposal.

Another approach, spelled out by Taylor (1997), is to
define toroidal compactification using the general theory
of D-branes on quotient spaces discussed in Sec. VI.C.
Letting Ui5g(gi) for a set of generators of Zn, and tak-
ing A5Matn(C), this leads to Eqs. (143),
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Ui
21XjUi5Xj1d i

j2pRi .

These are solved by the connection Eq. (144), and sub-
stituting into Eq. (149) leads to MSYM on Tn3R.

This construction admits a natural generalization,
namely, one can impose the relations

UiUj5eiu ijUjUi .

Again as discussed in Sec. VI.C, Eq. (143) now defines a
twisted crossed product, and its solutions (146) are con-
nections on the noncommutative torus. Substituting
these into Eq. (149) leads directly to noncommutative
gauge theory. This was how noncommutativity was first
introduced in M theory by Connes et al. (1998).

Having seen this possibility, one next must find the
physical interpretation of this noncommutativity. Since
M theory has no dimensionless parameters, one is not
allowed to make arbitrary modifications to its definition
but rather must identify all choices made in a particular
construction as the values of background fields. Al-
though u had not been previously noticed as such a
choice, it appears naturally given the interpretation of
M(atrix) theory as M theory on a lightlike circle, as a
background constant value for the components Cij2 of
the three-form potential, where 2 denotes the compact
lightlike direction. This interpretation was supported by
comparing the expected duality properties of the non-
commutative gauge theory and of M theory in this back-
ground, a subject we return to below.

Having seen how M(atrix) theory can lead to noncom-
mutativity and then to a string, one wants to close the
circle and show that string theory can lead to noncom-
mutativity on brane world volumes, from which non-
commutative M(atrix) theory can be derived. The IIa
string interpretation of Cij2 is as the ‘‘Neveu-Schwarz B
field,’’ a field which minimally couples to the string
world sheet as in the action

S5
1

4pls
2 E

S
~gij]axi]axj22pils

2Bije
ab]axi]bxj!.

(150)

We consider space-time R92n ,13Tn where the torus has
metric gij5R2d ij and constant Neveu-Schwarz B field
Bij . In this case, the term in Eq. (150) involving B is an
integral of a total derivative, and will be nonzero either
because of the nontrivial topology of the torus or in the
presence of a world-sheet boundary.

Contact with M(atrix) theory suggests that we study
the physics of D0-branes in this theory. One way to pro-
ceed (Douglas and Hull, 1998) is to apply a T duality
along one axis (say x1) of the torus, which one can show
turns the D0-branes into D1-branes extending along the
x1 axis, and the T2 into another T2 with B50 and met-
ric defined by the identifications (0,0);(ls,0);(u5B ,e
5V/ls). See Fig. 6.

This gets rid of the B field and thus one must be able
to understand the physics in conventional geometric
terms. The point is that while general arguments lead to
a 111-dimensional gauge theory on the world volume
of this brane, in the limit of small e, open strings which
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wind about the x2 dimension will also become light and
must be included in the action; their winding number w2

becomes a new component of momentum in
211-dimensional gauge theory. In this anisotropic ge-
ometry, the two ends of a winding open string will have
different locations in x1, with separation uw2. Thus the
fundamental objects turn out to be dipoles in exactly the
sense described in Sec. II.B.2, with the corresponding
noncommutative interactions. This construction directly
reproduces the quotient construction of Tu as C(S1)/Z.

A world-sheet argument treating D0-branes on the
original torus leads to the same conclusion (Cheung and
Krogh, 1998). Now one must take the size R of both
axes of the torus small and keep winding strings in both
directions. The point now is that since the term *B in
Eq. (150) is a total derivative, it contributes to the inter-
action of two strings with winding numbers (w1 ,w2) and
(w18 ,w28) about the two axes of the torus by a phase
proportional to the product w1w282w2w18 , directly pro-
ducing Eq. (21). This argument can be generalized to
other string theory situations involving similar phases,
such as discrete torsion on orbifolds (Vafa, 1986), and
leads to the twisted crossed product with finite groups
(Douglas, 1998; Ho and Wu, 1998).

These derivations arose naturally in the consideration
of M(atrix) theory, and in this context there is a rather
striking test one can make. The original derivation led to
an identification of M theory compactified on Td as a
large N limit of d11-dimensional MSYM, and the most
basic prediction of this identification is that the two
theories share the same duality properties. Connes et al.
(1998) discussed compactification on T3, which accord-
ing to M theory considerations must be invariant under
an action of the U-duality group SL(3,Z)3SL(2,Z) on
the moduli and brane spectrum. The SL(3,Z) can easily
be identified with large diffeomorphisms of the T3, but
the SL(2,Z) symmetry is a prediction: in fact it is just
the SL(2,Z) duality of N54 SYM proposed by Mon-
tonen and Olive (1977).

The generalized compactifications with C2ijÞ0 allow

FIG. 6. T duality to an anisotropic torus.
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accessing more dualities, namely, those which can be
seen in the limit of compactification on a Td11 contain-
ing a lightlike dimension. For example, the noncommu-
tative 211 MSYM is predicted to have SL(2,Z)
3SL(2,Z) duality symmetry, the subgroup of SL(3,Z)
3SL(2,Z) preserving the choice of lightlike direction.
Now the second, nonclassical duality is manifest: it is the
SL(2,Z) Morita duality group of Tu

2 , and one can verify
that the spectrum predicted in Eq. (117) is invariant un-
der this change of parameters.

This type of argument has been extended in many
directions, and an in-depth treatment would require an-
other full length review, which happily already exists
(Konechny and Schwarz, 2000b). In the M(atrix) theory
context, it has been argued (Verlinde, 2001) that by care-
ful treatment of the limit, one can extend the duality to
a general Td11, not necessarily preserving the lightlike
dimension. In the string theory context, as we discuss
below, one can see that the nonclassical duality arises
from T duality, leading to the prediction that noncom-
mutative gauge theory on Td will have SO(d ,d ;Z) du-
ality, which was the motivation behind the theorem of
Rieffel and Schwarz (1998) discussed in Sec. VI.E.

C. Noncommutativity in string theory

The arguments we just gave established that limits of
M theory and string theory compactified on a torus will
lead to noncommutative gauge theory, realizing the in-
trinsic noncommutativity of open strings. However, the
torus is not the simplest noncommutative space; one is
led to ask whether noncommutativity can also emerge
without compactification, leading to gauge theory on
Ru

d . This question gained particular focus after the dis-
covery of noncommutative instantons on Ru

d (Nekrasov
and Schwarz, 1998).

While the arguments of the previous section lead di-
rectly to this result (to obtain Ru

d , one just adjusts the
parameters to make the string modes light, which takes
the volume of Tu

d to infinity), many other string theory
computations on Rd with general background B had
been done previously and noncommutativity had not
been seen. Indeed, there are general arguments which
lead from open strings to conventional gauge theory,
making the new claim appear paradoxical.

On the other hand, Kontsevich (1997) had argued that
deformation quantization and the Moyal product in par-
ticular could come from open string theory, at least in a
mathematical sense. This was turned into an argument
in topological string theory by Cattaneo and Felder
(2000) and in physical string theory by Schomerus
(1999), proving that Ru

d could indeed emerge directly
from world-sheet considerations.

The paradox was resolved by (Seiberg and Witten,
1999) who explained how both conventional and non-
commutative descriptions could be correct, along the
general lines we already indicated in Sec. II.D.4. Their
careful treatment of the limit leading to noncommuta-
tive field theory has spurred numerous further develop-
ments.
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The first point to make is that on Rd and unlike Td, a
constant background potential Bij is pure gauge and
thus cannot affect closed string physics. However, this is
not true in the presence of a Dirichlet brane extending
along the directions i ,j , because the gauge transforma-
tion also acts on its world-volume gauge potential A as

dB(2)5dl~x !, dA5l~x !. (151)

This can be seen by rewriting the total derivative term in
Eq. (150) as a boundary term, as is appropriate in the
presence of open strings, and adding the gauge coupling:

Sb5iE
]S

@Aj~x !2Bijx
i#] tx

j, (152)

where ] t and ]n denote the tangential and normal de-
rivatives along the boundary ]S of the world sheet S.
The transformation Eq. (151) can be undone by an inte-
gration by parts.

Equation (151) implies that the open string effective
action can only depend on the combination F1B , not F
or B separately. In particular, one can gauge B to zero,
replacing it by a background magnetic field. However,
because of stringy effects, in the limit ls

2B@1, this could
lead to physics quite different than that of a magnetic
field in the usual Yang-Mills action.

To proceed, we shall need to make use of the standard
relation between world-sheet correlation functions of
vertex operators, the S matrix for string scattering, and
effective actions which can reproduce this physics
(Green et al., 1987; Polchinski, 1998). The basic relation
is that each local world-sheet operator Vn(z) corre-
sponds to a space-time field Fn . Operators in the bulk
of the world-sheet correspond to closed strings, while
operators on the boundary correspond to open strings
and thus fields which propagate on the world volume of
a D-brane. A term in the effective Lagrangian

E dp11xAdet GTrF1 F2¯Fn (153)

is obtained as a correlation function

K E dz1V1~z1!E dz2V2~z2!¯E dznVn~zn!L
(154)

on a world sheet S with the disk topology, with opera-
tors Vi at successive points zi on the boundary ]S , in-
tegrated over all zi satisfying the same ordering as in Eq.
(153).

Taking only vertex operators for the massless fields,
one finds that the leading ls→0 limit of the S matrix is
reproduced by the MSYM effective action. It turns out
that these considerations also lead to a simple universal
effective action which describes the physics of a D-brane
with arbitrarily large but slowly varying field strength,
the Nambu-Born-Infeld action

SNBI5
1

gsls~2pls!
p E dp11xAdet@g12pls

2~B1F !# .

(155)
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Here gs is the string coupling, and g is the induced met-
ric on the brane world volume. See Schwarz (2001) for
its supersymmetrization, and other references on this
topic.

The original string computations leading to the Born-
Infeld action were done by Fradkin and Tseytlin (1985)
and Abouelsaood et al. (1987) in the context of type-I
open string theory, i.e., the case p59. For p,9, the in-
duced metric g contains the information about the em-
bedding of the brane, and substituting F50, Eq. (155)
reduces to the Nambu action governing its dynamics.
Finally, the prefactor is the D-brane tension as com-
puted from string theory. Besides detailed computation,
there are simple physical arguments for the Born-Infeld
form (Bachas, 1996; Polchinski, 1998).

This action summarizes essentially all weakly coupled
and weakly stringy physics of a single D-brane and is
even valid in the large ls

2(B1F) limit, so one might at
first hypothesize that it is valid in the limit of large B we
just discussed, without need of noncommutativity. How-
ever, it is not in general valid for rapidly varying field
strengths ls]F;1, nor is its non-Abelian generalization
understood. Thus we can reconcile our earlier argu-
ments for noncommutativity with the Nambu-Born-
Infeld action if u,ls

2 , as all of the new physics we ob-
served would be associated with length scales at which
the Nambu-Born-Infeld action broke down.

1. Deformation quantization from the world sheet

The key point in arguing that string theory will lead to
noncommutative field theory is to see that a correlation
function Eq. (154) will obtain the phase factors Eq.
(100). Since this is a product of terms for each successive
pair of fields, it should also be visible as a phase Eq. (21)
in the operator product expansion of two generic bound-
ary operators carrying momenta k and k8, say

Vk~z1!Vk8~z2!

→~z12z2!Dk1k82Dk2Dk8e2 ~ i/2! u ijkikj8Vk1k81¯

(156)

with

Vk~z !5..eik•x(z):

or any operator obtained by multiplying this by confor-
mal fields ]x , fermions in the superstring, etc.

Since the action (150) is quadratic, the world-sheet
physics is entirely determined by the propagator
^xi(z)xj(w)& . The boundary conditions which follow
from varying the action Eq. (150) are

gij]nxj12piBijls
2] tx

ju]S50. (157)

Now, taking S to be the upper half plane with the coor-
dinate z5t1iy , y.0 we find the boundary propagator
to be

^xi~ t !xj~s !&52a8Gij ln~ t2s !21
i

2
u ije~ t2s !, (158)
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where e(t)521,0,11 for t,0,t50,t.0, respectively,
and

Gij5S 1

g12pls
2B D

S

ij

, (159)

u ij52pls
2S 1

g12pls
2B D

A

ij

, (160)

where S and A denote the symmetric and antisymmetric
parts, respectively. From this expression we deduce

@xi,xj#ªT@xi~ t20 !xj~ t !2xi~ t10 !xj~ t !#5iu ij. (161)

Thus the end points of the open strings live on a non-
commutative space with

@xi,xj#5iu ij

with u ij a constant antisymmetric matrix. Similarly, Eq.
(156) becomes

Vp~ t !Vq~s !5~ t2s !2ls
2Gijpiqje2 ~ i/2! u ijpiqjVp1q~s !.

(162)

Indeed, in this free world-sheet theory, it is no harder to
compute the analogous phase factor for an n-point func-
tion: it is precisely Eq. (100).

In the formal limit gij→0, one finds from Eqs. (159)
and (160) that Gij50 and u ij52pls

2(Bij)
21. Thus the

dependence on the world-sheet coordinates s and t
drops out (the vertex operators have dimension zero),
and the operator product expansion (OPE) reduces to a
conventional multiplication law. For Eq. (162), this is the
Moyal product Eq. (21), and by linearity this extends to
the product of two general functions.

We have again found that background Bij leads to
noncommutativity. A precise connection to the previous
discussion of toroidal compactification can be made by
applying T duality to turn the D2-branes of the present
discussion into D0-branes, and then taking the zero-
volume limit of the torus. This T duality leads to the
relation u ij52pls

2(Bij)
21. However, the present argu-

ment also works for Ru
d .

A rather similar argument shows that world volumes
of D-branes in the Wess-Zumino-Witten model are de-
scribed by field theory on fuzzy spheres as described in
Sec. VI.B (Alekseev et al., 1999). An interesting differ-
ence is that here dBÞ0 and the corresponding algebra
is not associative, except in suitable limits.

2. Deformation quantization from topological open string
theory

The idea that by considering only vertex operators of
dimension zero, a vertex operator algebra such as Eq.
(162) will reduce to an associative algebra, is rather gen-
eral and is best thought of in the framework of topologi-
cal string theory (Witten, 1988; Dijkgraaf, 1998). For
present purposes, these are string theories for which cor-
relation functions depend not on the locations of opera-
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tors but only on their topological arrangement on the
world sheet, which is exactly the property we used of the
gij→0 limit of Eq. (162).

One can use topological string theory to construct a
deformation quantization corresponding to a general
Poisson structure, generalizing the discussion we just
gave. We summarize this, following the work of Baulieu
et al. (2001). See also Cattaneo and Felder (2001).

We start with the action (150), not assuming that
gij ,Bij are constant, and rewrite it in the first-order
form:

S5
1

4pls
2 E

S
~gij]axi]axj22pils

2Bije
ab]axi]bxj!

5E pi∧dxi2pls
2 Gijpi∧!pj2

1
2

u ijpi∧pj , (163)

where

2pls
2G1u52pls

2~g12pils
2B !21.

Now take the ls
2→0 limit keeping u and G fixed. The

remaining part *p∧dx1 1
2 up∧p of the action (163) ex-

hibits an enhanced gauge symmetry (Cattaneo and
Felder, 2000),

pi°pi2dl i2] iu
jkpj lk , xi°xi1u ijl j . (164)

To quantize, this symmetry must be gauge fixed, which
can be done by standard Batalin-Vilkovisky (BV) proce-
dures, leading to a topological string theory with some
similarities both with the type-A and type-B sigma mod-
els. Its field content is conveniently described by pro-
moting pi and xi to twisted superfields, with an expan-
sion in world-sheet differential forms ds i with
components of all degrees 0,1,2. The original fields are
the 0-form part of xi and the 1-form part of pi ; the other
components are the additional ghosts and auxiliary fields
of the BV framework.

A basic observable in this theory is the three-point
function on the disk,

^f„x~0 !…g„x~1 !…@h~x !x¯x#~`!&u ,S5disk5E
X

f!g h

(165)

for f ,gPC(X), hPVdimX(X). As the notation indi-
cates, this will be identified with the star product of a
deformation quantization associated to u. This can be
seen by developing the perturbation series in powers of
u; each term in the expansion can be expressed as an
explicit sum over Feynman diagrams, producing Kont-
sevich’s construction of deformation quantization.

An important advantage of this approach is that many
properties of the formalism have simple arguments from
string theory. In particular, the associativity of the !
product defined by Eq. (165) follows in a sense from
associativity of the OPE. This is best expressed in terms
of a more general set of Ward identities obeyed by the
string amplitudes in the theory, which allow making con-
tact with and generalizing the discussion in Sec. VI.G.
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As an example of a new result derived from Eq. (163),
we give an expression for the u-deformed action of in-
finitesimal diffeomorphisms dxi5v i(x) on functions and
covariant derivatives (Baulieu et al., 2001), which can be
used to make Eq. (24) generally covariant. One defines
these in terms of the conventional action on functions
df5v i] if , with u transforming as a conventional tensor,
du ij5vk]ku ij2uki]kv j1ukj]kv i. In the topological field
theory (TFT), this becomes

df5Uvf~x !5 K f„x~0 !… R @piv
i~x !#(1)@d„x~`!2x…# L

u ,S
,

where the integral is taken over an arc surrounding the
point 0 and ending on the boundary of the disk S. This
leads to

Uvf~x !5v i] if~x !1ukl]kv i] li
2 f~x !1¯ .

3. The decoupling limit

Many of the deeper aspects of the connection to string
theory require a more careful treatment of the decou-
pling limit leading to noncommutative field theory, as
was first made by Seiberg and Witten (1999).

String theories have many more perturbative degrees
of freedom than field theories, so to get field theories
one looks for controlled limits in which almost all of
these degrees of freedom go away, usually by sending
their masses to infinity. In the context of D-branes, the
generic such limit takes ls→0 and thus the string tension
T51/ls

2 to infinity, and simultaneously takes the trans-
verse distance L between branes to zero holding LT
fixed. This is the energy scale of the lightest open strings
stretched between branes, so in this limit we keep these
degrees of freedom while sending excited string energies
to infinity as 1/ls . Finally, one rescales the coupling con-
stant to keep it fixed in the limit. This leads to a field
theory of the lightest open strings, which for flat
D-branes will be MSYM. Similar limits in other brane
theories can lead to more exotic results, as we shall men-
tion below.

However, there are other massless states in the string
theory as well, the closed strings which lead to the gravi-
tational sector, and we need to argue that these de-
couple. A naive but often correct argument for this is
that their couplings are gravitational and are suppressed
by a factor GNE which will also go to zero in this limit.
This requires detailed consideration in examples, how-
ever. It will turn out to be true in the case at hand at
least up to 311 dimensions; we will discuss a potential
subtlety below.

The key new point in the present context is that the
masses of open strings in this limit are determined by
the metric Gij defined in Eq. (159), which has nontrivial
B dependence. This follows from the standard string
theory relation between the mass of a state and the
world-sheet dimension of the corresponding vertex op-
erator, which [as is visible in Eq. (162)] is controlled by
Gij. Thus the decoupling limit, sometimes referred to as
the Seiberg-Witten limit in this context, takes ls→0
while holding G and u fixed.
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The nontrivial relation between the original metric gij
and Gij will show up at many points in the subsequent
discussion. One refers to gij as the closed string metric
and Gij as the open string metric as they each govern
the kinetic terms and the energies of the lightest states
in their respective sectors.

Once this realization is made, the subsequent steps in
the derivation of the D-brane world-volume action go
through without major changes from the conventional
case, leading to noncommutative MSYM and even the
noncommutative Nambu-Born-Infeld action, defined by
taking Eq. (155), replacing products with star products,
and setting the metric to Gij and B50.

The remaining step is to determine the prefactor and
thus the gauge coupling. This follows directly if we ac-
cept that the Seiberg-Witten map of Sec. II.D.4 between
conventional and noncommutative gauge theories maps
the conventional action Eq. (155) into the noncommuta-
tive action Eq. (155), as we can just specialize to F5F̂
50. This leads to the relation

Adet~G !

Gsls~2pls!
p 5

Adet~g12pls
2B !

gsls~2pls!
p (166)

which determines an open string coupling constant Gs
and the corresponding noncommutative gauge coupling.

The decoupling limit now will take ls→0 in Eqs.
(159), (160), and (166), scaling the original string cou-
pling as gs;ls

(32p1r)/4 to end up with noncommutative
Yang-Mills theory with finite parameters,

u5B21, Gij5~2pls
2!2BikBjlg

kl. (167)

4. Gauge invariance and the Seiberg-Witten map

An important point which can be seen by carrying out
this discussion more explicitly is the precise point at
which conventional gauge invariance is replaced by non-
commutative gauge invariance. As we mentioned in Sec.
II.D.4, there is a very general world-sheet argument for
conventional gauge invariance, and indeed this argu-
ment is not incorrect; rather, one obtains noncommuta-
tive gauge invariance by choosing different conventions,
and there is a formal equivalence between conventional
and noncommutative gauge theories (Seiberg and Wit-
ten, 1999; Andreev and Dorn, 2000b; Seiberg, 2000).

The origins of gauge invariance can be seen in open
bosonic string theory. In this theory, the vertex operator
for a gauge boson is

ei~p !:] tx
ieip•x:↔A5Ai~x !dxi, (168)

as was already implicit in Eq. (152).
The Abelian gauge invariance,

dAj5] j« , (169)

then follows by varying Aj in Eq. (152), by taking the
integral of the total derivative *dz] t(«) as zero. Extra
terms can appear in Eq. (169) if there are divergences
when the operator under consideration (say Vi) coin-
cides with its neighbors Vi21 and Vi11 . In Yang-Mills
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theory, this leads to contact terms Vi21«2«Vi11 which
become the nonlinear terms in the gauge transformation
law.

The previous discussion makes it very plausible that
such an argument will carry through in the noncommu-
tative case with the star product appearing as in Eq.
(162). However, making this argument precise requires
choosing a cutoff on the world sheet, and different
choices at this step can lead to different results. If one
point splits and uses the propagator (158), one obtains
the star product, but one can also find prescriptions in
which the term proportional to u ij goes away in the co-
incidence limit, leading to conventional gauge invariance
instead. In particular, this will be the result if one defines
a propagator and cutoff at B50, treating the B term in
Eq. (150) using world-sheet perturbation theory.

Physics cannot depend on this choice and in general a
change of renormalization prescription on the string
world sheet corresponds to a field redefinition in space-
time. By the preceding arguments, this field redefinition
must be the Seiberg-Witten map of Sec. II.D.4. The two
descriptions are therefore equivalent, at least in some
formal sense, but they are each adapted to different re-
gimes, with conventional gauge theory simpler for small
B and noncommutative gauge theory simpler for large
B .

Once we understand that the resulting gauge invari-
ance depends on the choice of world-sheet regulariza-
tion, we can consider choices that lead to different star
products. A simple choice to consider is one which leads
to the same star product Eq. (21), but defined using a
parameter u which does not satisfy Eq. (160), which
would be obtained by treating part of the B term in Eq.
(150) as a perturbation. Denote this part as F; it will
enter Eq. (155) as did B , so we would obtain a descrip-
tion in terms of a noncommutative action depending on
F̂1F .

This description can be obtained from string theory by
a simple generalization of the discussion above. The re-
sult is again Eqs. (159) and (160) but now with an anti-
symmetric term in the metric on both sides [analogous
to the B term in Eq. (150)]. Combining this with Eq.
(166) to determine the gauge coupling, we obtain

S 1

G12pls
2F D

S

5S 1

g12pls
2B D

S

, (170)

S 1

G12pls
2F D

A

1
1

2pls
2 u5S 1

g12pls
2B D

A

, (171)

Gs5gsS det~G12pls
2F!

det~g12pls
2B !

D 1/2

(172)

which determines the parameters in the noncommuta-
tive form of Eq. (155),
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SNCNBI5
1

Gsls~2pls!
p E TrAdet@G12pls

2~ F̂1F!# .

(173)

Using Eq. (42), one can show that for slowly varying
background fields ls

2F!1, the descriptions with different
values of u are equivalent.

In the special case of F52u21, these relations sim-
plify even further to Eq. (167), even at finite ls . As men-
tioned in Sec. II.B.1, this is what one gets if one defines
the derivatives as inner derivations, so this is what
emerges naturally from matrix model arguments
(Seiberg, 2000).

More generally, it has been shown that the techniques
of Kontsevich’s deformation quantization can be used to
write a Seiberg-Witten map for arbitrary (nonconstant)
u (Jurco et al., 2000).

D. Stringy explanations of the solitonic solutions

So far we have only discussed the simplest arrange-
ment of Dirichlet branes, N parallel branes of the same
dimension. There are a bewildering variety of more
complicated possibilities, with branes of lower dimen-
sion sitting inside of those of higher dimension, inter-
secting branes, curved branes, and so forth.

Not all of the possibilities are actually distinct, how-
ever. For example, a configuration of lower-dimensional
D-branes sitting inside a higher-dimensional D-brane, is
topologically equivalent to and can often be realized as a
limit of a smooth configuration of gauge fields on the
higher-dimensional brane. Another example is that an
intersecting brane configuration, say of branes A and B ,
can often be described as a single object, a nontrivial
embedding of brane A in the higher-dimensional space
and thus by some configuration of scalar fields on brane
A . Thus the solitons and instantons in D-brane world-
volume gauge theory themselves have interpretations as
D-branes. We refer to Polchinski (1996b, 1998) for an
introduction and overview of this subject.

A great deal of this structure survives the limit taking
string theory to noncommutative field theory, leading to
stringy pictures for the gauge theory solutions of Sec.
III. What is quite striking is that the agreement is not
just qualitative but even quantitative, with brane ten-
sions and other properties agreeing, apparently for rea-
sons other than supersymmetry (Dasgupta et al., 2000;
Gross and Nekrasov, 2000b; Harvey et al., 2000). Estab-
lishing this detailed agreement of course requires a good
deal of string theory input and we refer the reader to
Nekrasov (2000) and Harvey (2001a) for detailed re-
views of this class of results, but provide an introduction
here.

The simplest examples are the D(p2k)-branes em-
bedded in Dp-branes. There is a general result to the
effect that a collection of N Dp-branes carrying gauge
fields with Chern character,

ch~F !5Tr eF5N1chi1i2

(1) 1chi1i2i3i4

(2) 1¯ ,
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carries the same charges as (and is topologically equiva-
lent to) a collection with no gauge fields, but with addi-
tional D-branes whose number and orientation is given
by the quantized values of the Chern characters. For
example, chij

(1) counts D(p22)-branes which are local-
ized in the i and j dimension, and so forth.

Carrying this over to the noncommutative theory in
the obvious way, the fluxon of Sec. III.B is an embedded
D(p22)-brane, and the instanton of Sec. III.C is an
embedded D(p24)-brane. According to this identifica-
tion and the results of Sec. III, the D(p22) should be
unstable to decay, while the D(p24) should be stable,
and this is borne out by computation in string theory;
the destabilizing mode in Eq. (87) is a tachyonic open
string.

The agreement is much more detailed and striking
than this. Another qualitative point is that m coincident
D(p22)-branes must themselves carry U(m) gauge
symmetry; this is manifestly true of the m-fluxon solu-
tion Eq. (83) with U5Sm. A similar discussion can be
made for higher codimension branes and even for pro-
cesses such as the annihilation of a D-brane with an
anti-D-brane, which are quite difficult to study in the
original string theory. A very general relation between
the topology of gauge field configurations in noncommu-
tative gauge theory, and the classification of D-branes in
string theory, has been found in Harvey and Moore
(2000), based on the K theory of operator algebras.

Even better, paying careful attention to conventions,
one finds that Eq. (84) exactly reproduces the tension of
the D(p22)-brane in string theory. It is somewhat sur-
prising that the noncommutative field theory limit would
preserve any quantitative properties of the solutions.
The agreement of the tension is related to a deep con-
jecture of Sen (1998), as explained by Harvey et al.
(2000). Witten (2000) has shown how the noncommuta-
tive field theory and these arguments can be embedded
in the framework of string field theory, and much recent
progress has been made in this direction (Gross and
Taylor, 2001; Rastelli et al., 2001; Shatashvili, 2001).

The monopole in Sec. III provides another example,
which is now related to intersecting brane configura-
tions. One can start from the B50 description of a
monopole in the 311 U(2) MSYM gauge theory of 2
D3-branes, which is a D1-brane suspended between the
branes, i.e., extending in a transverse dimension perpen-
dicular to the D3-branes, and with one end on each
brane. One can show that this configuration not only
reproduces the magnetic charge of the solution, but even
obtain the full Nahm formalism from D-brane world-
volume considerations (Diaconescu, 1997).

If one turns on B along the D3-branes, the essential
point is now that the D1-brane is no longer perpendicu-
lar, it tilts. The end points of the D1-brane are magneti-
cally charged with respect to the U(1) gauge fields on
the D3-branes. The background B field acts as a mag-
netic field, which pulls these charges apart. Tilting of the
D1-brane makes its tension work in the opposite direc-
tion and stabilizes the configuration. This qualitative pic-
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ture is confirmed by the profile of the explicit analytic
solution (Gross and Nekrasov, 2000b).

Finally, let us mention the work of Myers (1999),
which shows that Dp-branes in background Ramond-
Ramond fields form bound states which can be thought
of as D(p12)-branes whose world volume is a product
space with a fuzzy S2. This noncommutativity plays a
number of interesting roles in M theory (Myers, 2001)
and its slightly different origin poses the challenge to
find a broader picture which would incorporate it into
our previous discussion.

E. Quantum effects and closed strings

The string theory derivation of noncommutative
gauge theory allows one to compute its coupling to a
background metric, at least for small variations of the
flat background, by adding closed string graviton (and
other) vertex operators in the world-sheet computations
discussed above. Results of this type are given by many
authors; we mention Das and Trivedi (2001), Liu and
Michelson (2001b), and Okawa and Ooguri (2001a,
2001c) as representative. Analysis of these couplings to
Ramond-Ramond closed string fields (Liu and Michel-
son, 2001a; Mukhi and Suryanarayana, 2001; Okawa and
Ooguri, 2001b) was an important input into the result
(45).

As a particularly simple example, the coupling to the
graviton defines a stress-energy tensor in noncommuta-
tive gauge theory, which turns out to be precisely Eq.
(40).

The general type of UV/IR relation we discussed at
length in Sec. IV is very common in string theory. Per-
haps its simplest form is visible in the computation of
the annulus world sheet with one boundary on each of a
pair of D-branes. This amplitude admits two pictures
and two corresponding field theoretic interpretations: it
can be thought of as describing emission of a closed
string by one D-brane and its absorption by the other, a
purely classical interpretation, and it can equally well be
thought of as the sum of one-loop diagrams over all
modes of the open string stretched between the pair of
branes, a purely quantum interpretation. World-sheet
duality implies that the two descriptions must be equal.

As discussed by Douglas et al. (1997), this leads very
generally to the idea that for D-branes at substringy dis-
tances (i.e., with separation L as above satisfying L!ls),
conventional gravity is replaced by quantum effects in
the world-volume gauge theory. In general this leads to
different predictions from Einstein gravity or supergrav-
ity, but in special circumstances (e.g., with enough super-
symmetry or in the large N limit) the substringy predic-
tions can agree with gravity. Conversely, since L/T is a
world-volume energy scale, taking L@ls accesses the
UV limit of gauge theory amplitudes, and one sees that
these are replaced by the IR limit of the gravitational
description.

Although the decoupling limit takes L→0 and is thus
in the substringy regime, one can ask whether neverthe-
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less this potential connection to gravity can shed light on
the nature of UV/IR mixing.

A strong sense in which this could be true would be if
the new IR divergences could be described by adding
additional light degrees of freedom in the effective
theory, which would be directly analogous to the closed
strings. This picture was explored in Minwalla et al.
(2000) and Van Raamsdonk and Seiberg (2000). For ex-
ample, if we introduce a field x describing the new
mode, we can then reproduce a singularity such as Eq.
(107) by adding

E x~u iku jlGkl] i] j!
d/2 21x1xf

to the effective Lagrangian. This particular example
looks quite natural in d54; one can also produce differ-
ent power laws by postulating that x propagates in a
different number of dimensions than the original gauge
theory, as is true of the closed strings in the analogy.

The main observation is then that, comparing with
Eq. (167), the kinetic term for x contains precisely the
closed string metric gij, which is compatible with the
idea. Indeed, there are cases in which this interpretation
seems to be valid (Rajaraman and Rozali, 2000), namely,
those in which the divergence is produced by a finite
number of closed string modes because of supersymmet-
ric cancellations, e.g., as in N52 SYM (Douglas and Li,
1996).

In general, however, the closed string picture is more
complicated than this and one cannot identify a simple
set of massless modes which reproduce the new IR ef-
fects (Andreev and Dorn, 2000a; Bilal et al., 2000; Go-
mis et al., 2000; Kiem and Lee, 2000). Furthermore the
effective field theory required to reproduce higher loop
effects does not look natural (Van Raamsdonk and
Seiberg, 2000).

One can also argue that if this had worked in a more
complicated situation, it would signal the breakdown of
the decoupling limit we used to derive the theory from
string theory (Gomis et al., 2000). This is because ex-
change of a finite number of closed string modes would
correspond to exchange of an infinite number of open
string modes, including the massive open strings we
dropped in the limit. Explicit consideration of the annu-
lus diagram, however, shows that these massive open
strings do not contribute in the limit.

F. AdS duals of noncommutative theories

One of the beautiful outcomes of string theory is the
description of strongly coupled large N gauge theories
by the AdS/CFT correspondence (Maldacena, 1998;
Aharony et al., 2000). In particular, one expects that the
D3-brane realization of noncommutative gauge theory
has a supergravity dual in the large-N , strong ’t Hooft
coupling limit. This was found in Hashimoto and Itzhaki
(1999) and Maldacena and Russo (1999) and takes the
form
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ds25ls
2AlFU2~2dt21dx1

2!

1
U2

11l D4U4 ~dx2
21dx3

2!1
dU2

U2 1dV5
2G ,

U25
1

lls
22 ~x4

21¯1x9
2!,

ef5
l

4pN

1

A11lD4U4
,

B52ls
2 lD2U4

11lD4U4 dx2∧dx3 . (174)

It is dual to the N54 U(N) noncommutative gauge
theory, with the noncommutativity @x2 ,x3#;D2, and ’t
Hooft coupling l5gYM

2 N . The transverse geometry is a
five-sphere of radius R , R25ls

2Al . For U!1/(Dl1/4) the
solution (174) approaches the AdS53S5 supergravity
background, dual to ordinary large N N54 super-Yang-
Mills theory. However, for large U , corresponding to the
large energies in the gauge theory, the solution differs
considerably: the dilaton flows, the B field approaches a
constant in 23 directions, and the 23 directions collapse.

The large-U limit of anti–de Sitter space is a timelike
boundary, and in the usual AdS/CFT correspondence
the boundary values of fields are related to couplings of
local operators in the gauge theory. The drastic modifi-
cations to Eq. (174) in this region have been argued by
many authors to be associated with the lack of conven-
tional local gauge invariant observables. Das and Rey
(2000) have argued that the proportionality Eq. (16) be-
tween length and momenta, characteristic of the open
Wilson loop and exploited in Eq. (113), emerges natu-
rally from this picture.

See Berman et al. (2001), Danielsson et al. (2000), Li
and Wu (2000), and Russo and Sheikh-Jabbari (2001)
for further physics of this correspondence, and Elitzur
et al. (2000) for a discussion of duality and Morita
equivalence.

G. Timelike u and exotic theories

So far we discussed the theories with spatial noncom-
mutativity, which arise from Dirichlet branes with a B
field along the spatial directions. There are also limits
with timelike B field, leading to exotic noncommutative
string and membrane theories, the noncommutative
open string theory (Gopakumar, Maldacena, et al., 2000;
Seiberg et al., 2000b), the open membrane theory (Berg-
shoeff et al., 2000; Gopakumar, Minwalla, et al., 2000),
and the open Dp-brane theories (Gopakumar, Min-
walla, et al., 2000; Harmark, 2001). These appear to
evade the arguments against timelike noncommutativity
in field theory.

Let us start with the D3-brane in Ib string theory in a
large spatial B field. This theory exhibits S duality,
which maps electric field to magnetic field and vice
versa. Since constant spatial B-field is gauge equivalent
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to a constant magnetic field on the brane, S duality must
map this background into one with large electric field.
This should, in turn, lead to space-time noncommutativ-
ity, with u i0Þ0.

Thus, combining accepted elements of M/string dual-
ity, one concludes that our previous arguments against
timelike noncommutativity must have some loophole.
This is correct and one can in fact take the large electric-
field limit for any of the Dp-brane theories, not just p
53. However, the details are rather different from the
spacelike case. An electric field in open string theory
cannot be taken to be larger than a critical value Ec
51/2pls

2 (Burgess, 1987; Bachas, 1996). As one ap-
proaches this limit, since the ends of the open string
carry opposite electric charges, its effective tension goes
to zero, and any attempt to reach E.Ec will be
screened by string formation in the vacuum.

So, one takes the limit E→Ec while keeping the ef-
fective open string tension lso

2 5ls
2AE2/(Ec

22E2) finite.
It turns out that while one manages to decouple closed
string modes, the open string excitations remain in the
spectrum. The resulting theory, noncommutative open
string theory, is apparently a true string theory with an
infinite number of particlelike degrees of freedom. This
is consistent both with the earlier arguments and with
the general idea that an action with timelike noncommu-
tativity effectively contains an infinite number of time
derivatives, thereby enhancing the number of degrees of
freedom.

The noncommutative open string theory contradicts
standard arguments from world-sheet duality that the
open string theory must contain closed strings. How this
works can be seen explicitly in the annulus diagram; ex-
tra phases present in the nonplanar open string diagrams
make the would-be closed string poles vanish. These ef-
fects apparently resolve the unitarity problems of Sec.
IV.C as well.

Since this string theory decouples from gravity, it pro-
vides a system in which the Hagedorn transition of string
theory can be analyzed in a clean situation, free from
black-hole thermal effects and other complications of
gravitating systems (Gubser et al., 2000; Barbon and
Rabinovici, 2001).

A similar limit can be taken starting with the
M-theory five-brane (the M5-brane). Its world-volume
theory is also a gauge theory, but now involving a rank
two antisymmetric tensor potential. The membrane is
allowed to end on an M5-brane and thus parallel M5-
branes come with light degrees of freedom (open mem-
branes) directly analogous to the open strings which end
on a Dirichlet brane. In the limit that the branes coin-
cide, the resulting light degrees of freedom are governed
by a nontrivial fixed-point theory in 511 dimensions,
usually called the (2,0) theory after its supersymmetry
algebra. A similar limit in IIa theory leads to little string
theory, these theories have recently been reviewed by
Aharony (2000).

To get a noncommutative version of the open mem-
brane theory, we start with N coincident M5-branes with
the background 3-form strength and the metric:
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H0125Mp
3tanh b , H34552A8Mp

3 sinh b

~eb cosh b!3/2 ,

gmn5hmn , m ,n50,1,2,

gij5
1

eb cosh b
d ij , i ,j53,4,5,

gMN5
1

eb cosh b
dMN M ,N56,7,8,9,11, (175)

where Mp is the gravitational mass scale, and b is the
parameter to tune. The critical limit is achieved by tak-
ing b→` , while keeping

Meff5MpS 1
eb cosh b D 1/3

(the mass scale for the membrane stretched spatially in
the 1,2 directions) finite. In this limit Mp /Meff→` and so
the open membranes propagating along the M5-branes
will decouple from gravity.

Finally, one can start with the NS five-brane in either
of the type-II string theories. Dirichlet p-branes can end
on the NS five-brane, with all even p in IIa and all odd
p in IIb , leading to open Dp-brane degrees of freedom.
Each of these is charged under a specific Ramond-
Ramond gauge field, and by taking a near critical elec-
tric background for one of these fields, one can again
reach a decoupling limit in which only the corresponding
open brane degrees of freedom remain, discussed in Go-
pakumar, Minwalla, et al. (2000) and Harmark (2001).

All of these theories are connected by a web of duali-
ties analogous to those connecting the conventional de-
coupled brane theories and the bulk theories which con-
tain them. For example, compactifying OM theory on a
circle leads to the noncommutative open string 411
theory; conversely the strong coupling limit of this non-
commutative open string theory has a geometric descrip-
tion (OM theory) just as did the strong-coupling limit of
the IIa string (M theory).

VIII. CONCLUSIONS

Field theory can be generalized to space-time with
noncommuting coordinates. Much of the formalism is
very parallel to that of conventional field theory and
especially with the large-N limit of conventional field
theory. Although not proven, it appears that quantum
noncommutative field theories under certain restrictions
(say with spacelike noncommutativity and some super-
symmetry) are renormalizable and sensible.

Their physics is similar enough to conventional field
theory to make comparisons possible, and different
enough to make them interesting. To repeat some of the
highlights, we found that noncommutative gauge sym-
metry includes space-time symmetries, that nonsingular
soliton solutions exist in higher-dimensional scalar field
theory and in noncommutative Maxwell theory, that UV
divergences can be transmuted into new IR effects, and
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that noncommutative gauge theories can have more du-
alities than their conventional counterparts.

Much of our knowledge of conventional field theory
still awaits a noncommutative counterpart. Throughout
the review many questions were left open, such as the
meaning of the IR divergences found in Sec. IV.C, the
potential nonperturbative role of the solitons and instan-
tons of Sec. III, the meaning of the high-energy behavior
discussed in Sec. IV.D, and the high-temperature behav-
ior.

One central problem is to properly understand the
renormalization group. Even if one can directly adapt
existing renormalization-group technology, it seems very
likely that theories with such a different underlying con-
cept of space and time will admit other and perhaps
more suitable formulations of the renormalization
group. This might lead to insights into nonlocality of the
sort hoped for in the Introduction. Questions about the
existence of quantized noncommutative theories could
then be settled by using the renormalization group start-
ing with a good regulated nonperturbative definition of
the theory, perhaps that of Ambjorn et al. (1999) or per-
haps along other lines as discussed in Sec. VI.A.

The techniques of exactly solvable field theory, which
are so fruitful in two dimensions, await possible non-
commutative generalization. These might be particularly
relevant for the quantum Hall application.

It is not impossible that noncommutative field theory
has some direct relevance for particle physics phenom-
enology, or possible relevance in the early universe. Pos-
sible signatures of noncommutativity in QED and the
standard model are discussed by several authors6 who
work with a general extension of the standard model
allowing for Lorentz violation (see Kostelecky, 2001, and
references therein) and argue that atomic clock-
comparison experiments lead to a bound in the QED
sector of uuu,(10 TeV)22. A noncommutative brane
world scenario is developed by Pilo and Riotto (2001),
and cosmological applications are discussed by Alex-
ander and Magueijo (2001) and Chu et al. (2000).

This motivation as well as the motivation mentioned
in the Introduction of modeling position-space uncer-
tainty in quantum gravity might be better served by
Lorentz-invariant theories, and in pursuing the second
of these motivations it has been suggested by Doplicher
(2001; Doplicher et al., 1994) that such theories could be
defined by treating the noncommutativity parameter u
as a dynamical variable. The space-time stringy uncer-
tainty principle of Yoneya (1987) leads to related con-
siderations (Yoneya, 2001).

While we hope that our discussion has demonstrated
that noncommutative field theory is a subject of intrinsic
interest, at present its primary physical application stems
from the fact that it emerges from limits of M theory and

6See, for example, Arfaei and Yavartanoo, 2000; Hewett
et al., 2000; Mazumdar and Sheikh-Jabbari, 2000; Mocioiu
et al., 2000; Baek et al., 2001; Carroll et al., 2001; and Mathews,
2001.
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string theory, and it seems clear at this point that the
subject will have lasting importance in this context. So
far its most fruitful applications have been to duality and
to the understanding of solitons and branes in string
theory. It is quite striking how much structure which had
been considered essentially stringy is captured by these
much simpler theories.

Noncommutativity enters into open string theory es-
sentially because open strings interact by joining at their
ends, and the choice of one or the other of the two ends
corresponds formally to acting on the corresponding
field by multiplication on the left or on the right; these
are different. This is such a fundamental level that it has
long been thought that noncommutativity should be cen-
tral to the subject. So far, the developments we discussed
look like a very promising start towards realizing this
idea. Progress is also being made on the direct approach,
through string field theory based on noncommutative
geometry, and we believe that many of the ideas we have
discussed will reappear in this context.

Whether noncommutativity is a central concept in the
full string or M theory is less clear. Perhaps the best
reason to think this is that it appears so naturally from
definition of the M(atrix) theory definition, which can
include all of M theory in certain backgrounds. On the
other hand, this also points to the weakness of our
present understanding: these are very special back-
grounds. We do not now have formulations of M theory
in general backgrounds; this includes the backgrounds of
primary physical interest with four observable dimen-
sions. A related point is that, in string theory, one thinks
of the background as defined within the gravitational or
closed string sector, and the role of noncommutativity in
this sector is less clear.

An important question in noncommutative field
theory is to what extent the definitions can be general-
ized to spaces besides Minkowski space and the torus,
which are not flat. D-brane constructions in other back-
grounds analogous to what we have discussed for flat
space seem to lead to theories with finitely many degrees
of freedom, as in Alekseev et al. (1999). It might be that
noncommutative field theories can arise as large-N lim-
its of these models, but at present this is not clear.

Even for group manifolds and homogeneous spaces,
where mathematical definitions exist, the physics of
these theories is not clear and deserves more study. As
we discussed in Sec. VI, there are many more interesting
noncommutative algebras arising from geometric con-
structions, which would be interesting test cases as well.

At the present state of knowledge, it is conceivable
that, contrary to our intuition from the study of both
gravity and perturbative string theory, special back-
grounds such as flat space, anti–de Sitter space, orbi-
folds, and perhaps others, which correspond in M theory
to simple gauge theories and noncommutative gauge
theories, play a preferred role in the theory, and that all
others will be derived from these. In this picture, the
gravitational or closed string degrees of freedom would
be derived from the gauge theory or open string theory,
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as has been argued to happen at substringy distances, in
M(atrix) theory and in the AdS/CFT correspondence.

If physically realistic backgrounds could be derived
this way, then this might be a satisfactory outcome. It
would radically change our viewpoint on space-time and
might predict that many backgrounds that would be ac-
ceptable solutions of gravity are in fact not allowed in M
theory. It is far too early to judge this point, however,
and it seems to us that at present such hopes are
founded more on our lack of understanding of M theory
in general backgrounds than on anything else. Perhaps
noncommutative field theories in more general back-
grounds, or in a more background-independent formu-
lation, will serve as useful analogs to M/string theory for
this question as well.

In any case, our general conclusion has to be that the
study of noncommutative field theory, as well as the
more mysterious theories which have emerged from the
study of superstring duality (a few of which we men-
tioned in Sec. VII.G), has shown that field theory is a
much broader concept than had been dreamed of even a
few years ago. It surely has many more surprises in store
for us, and we hope this review will stimulate the reader
to pick up and continue the story.
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