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The theory of pure type-II superconductors at high magnetic fields and low temperatures has recently
attracted much attention due to the discovery of de Haas–van Alphen oscillations deep in the vortex
state. In this article the authors review the state of the art in this rapidly growing new field of research.
The very existence of quantum magnetic oscillations deep in the vortex state poses challenging
questions to the theorists working in this field. For a conventional extreme type-II superconductor in
magnetic fields just below the upper critical field Hc2 , the quasiparticle spectrum is gapless and the de
Haas–van Alphen effect is suppressed with respect to the corresponding normal-state signal due to
superconducting induced currents near the vortex cores, which are of paramagnetic nature. Numerical
simulations of the quasiparticle band structure in the Abrikosov vortex lattice show the existence of
well-separated Landau bands below Hc2 . An analytical perturbative approach, which emphasizes the
importance of phase coherence in quasiparticle scattering by the pair potential in the Abrikosov
lattice, predicts a relatively weak magnetic breakdown of the corresponding cyclotron orbits. In
contrast to the situation in the Abrikosov lattice state, a theory based on a random vortex lattice
model yields large exponential decay of the de Haas–van Alphen oscillations with the
superconducting order parameter below Hc2 . The disordered nature of the vortex state near Hc2 in
real superconductors, where long-range phase coherence in the superconducting order parameter is
destroyed, could explain the success of this model in interpreting experimental data below Hc2 . In the
Abrikosov vortex lattice state, which usually stabilizes well below Hc2 , the residual damping of the de
Haas–van Alphen amplitude is significantly reduced. In quasi-two-dimensional superconductors,
phase fluctuations associated with sliding Bragg chains along principal axes in the vortex lattice lead
to a weak first-order melting transition far below the mean-field Hc2 . Superconducting fluctuations
dominate the additional damping of the de Haas–van Alphen oscillations in this vortex liquid state.
Below the first-order freezing point, this damping is predicted to weaken signifiFantly.
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I. INTRODUCTION

The discovery of high-temperature superconductivity
in the cuprates caused a flurry of activity in various sub-
fields of condensed-matter research, stimulating not only
studies of the basic mechanisms leading to this phenom-
enon, but also a widespread search for new technologi-
cal applications. In particular, the extreme type-II char-
acter of these materials, which near optimal doping is
associated with huge upper critical magnetic fields, Hc2 ,
has posed challenging new problems to the community
of researchers in high-magnetic-field laboratories.

It was natural that the standard technique of de
Haas–van Alphen (dHvA) oscillations (de Haas and
van Alphen, 1930), which has been so successful in map-
ping the Fermi surfaces of many metals (Shoenberg,
1984a, 1984b), would be proposed as a tool in the search
for a Fermi surface in this class of materials. However,
since dHvA oscillations are observable only at low tem-
peratures T (Lifshitz and Kosevich, 1956), the huge val-
ues of Hc2(T) at such temperatures immediately im-
plied that, under the constraints imposed by the
stationary high-magnetic-field equipment in the existing
laboratories, the experiments would have to be carried
out in the superconducting state.

This situation provoked a debate as to whether quan-
tum magnetic oscillations could exist in the supercon-
ducting state, raising fundamental questions concerning
the nature of the low-temperature states of pure type-II
superconductors in strong magnetic fields. Some of these
questions still remain open even though significant
progress in understanding important aspects of the prob-
lem has been achieved during the last decade.

The purpose of this review is therefore to present a
coherent account of the major developments occurring
in this field during the last decade or so. Since some
fundamental aspects of the problem are far from being
well understood even within the conventional BCS
theory, and since most experimental work in this field
Rev. Mod. Phys., Vol. 73, No. 4, October 2001
was done with conventional superconductors, we shall
restrict ourselves in the present review to this class of
superconducting materials.

A. Superconductivity in high magnetic fields: General
aspects

As indicated by the title of this article, the connection
between the observation of quantum magnetic oscilla-
tions and the nature of the vortex states in type-II super-
conductors is at the core of the present discussion. Since
both of these topics usually seem highly technical to the
nonspecialist reader, it will be helpful in this introduc-
tion to place the subject in a broader context by describ-
ing the more general aspects of the phenomenon of
type-II superconductivity under high magnetic fields.

It is well known that an external magnetic field de-
stroys superconductivity in a spin-singlet supercon-
ductor. This effect is usually described as a pair-breaking
process, taking place at a sufficiently strong magnetic
field that the gain in magnetic energy associated with
spin polarization of the normal electrons overcomes the
gain in the superconducting condensation energy of the
unbroken Cooper pairs. An estimate of the (Pauli) pair-
breaking critical field Hp was first obtained by Clogston
(1962) and by Chandrasekhar (1962), who simply com-
pared the Zeeman energy with the value of Tc at zero
field. As will be explained below, this criterion is too
rough to yield the actual critical field. Furthermore, un-
der these highly simplified circumstances the phase tran-
sition to the superconducting state as a function of mag-
netic field would be of the first order (see, for example,
Fulde, 1969).

Within this framework it would also be expected that
a magnetic field could critically diminish the range of
singlet superconductivity. The reason can be seen by at-
tempting to pair two electrons with linear momenta,
equal in magnitude but opposite in direction, on the
Fermi surface and with opposite spin projections in a
magnetic field. Here the Zeeman spin splitting prevents
the occurrence of the well-known Cooper singularity in
the two-electron correlation function (Schrieffer, 1964).
One may recover the Cooper singularity in this case by
allowing a superconducting state with a nonzero linear
momentum of the Cooper pairs to offset the Zeeman
spin splitting (Fulde and Ferrel, 1964; Larkin and
Ovchinikov, 1964).

These considerations ignore the far more important
ingredient of the superconductor’s response to the exter-
nal magnetic field—the orbital (diamagnetic) response.
Unlike the sharp Pauli pair-breaking effect, the mag-
netic orbital response in type-II superconductors acts
smoothly but more effectively: the penetrating magnetic
field induces a collective cyclotron motion of Cooper
pairs, which coexists with the superconducting order.
The price paid for this coexistence is an inhomogeneity
in the superconducting order parameter, which follows
the penetrating magnetic flux lines by a dual network of
vortex lines. A continuous transition from the supercon-
ducting to the normal state in this picture occurs when
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the kinetic energy of the collective cyclotron motion of
the Cooper pairs overcomes the superconducting con-
densation energy. The state with the minimum kinetic
energy, which corresponds to the lowest Landau level of
the Cooper pairs, is the state that sustains the maximal
magnetic field—the upper critical field, Hc2(T). The
corresponding condition for the transition can be thus
obtained by equating the cyclotron energy of a Cooper
pair in the ground Landau level, 1

2 (\2eH/2mc)
5 1

2 \vc , with the condensation energy per Cooper pair,
\2j(T)22/2(2m). Here m is the single-electron mass
and j(T) is the Cooper-pair coherence length. Alterna-
tively, one may express this condition in terms of the
length scales j(T) and the magnetic length aH
5Ac\/eH : the former is a measure of the size of the
vortex core while the latter is approximately equal to the
distance between neighboring vortices. Clearly at H
;Hc2(T), where the vortices form a close-packed lat-
tice, these two length scales coincide [the exact condi-
tion is &j(T)5aH].

A typical phase diagram is shown in Fig. 1: Near the
bottom of the superconducting-normal phase boundary,
where Hc2(T→Tc)→0, thermal excitations are the
dominant mechanism of pair breaking. The characteris-
tic length scale that controls this type of excitation is the
thermal mean free path z(T)5\vF /pkBT , T'Tc ,
where vF is the velocity of an electron on the Fermi
surface. At lower temperatures (or higher magnetic
fields) along the Hc2(T) line, where z(T).aH , or
equivalently kBT,\vcAEF /\vc, the cyclotron currents
provide the dominant pair-breaking mechanism over the
thermal excitations. A small magnetic field, i.e., corre-
sponding to \vc;kBT/AEF /\vc, is therefore sufficient
to enter this regime, since the Fermi energy EF is typi-
cally much larger than \vc .

Under these circumstances the effect of the Pauli pair
breaking is usually not very important. A simple esti-
mate in the spirit of the original Clogston-
Chandrasekhar criterion can show that the correspond-
ing critical field is very close to Hc2 and that the
magnitude of the discontinuous jump of the order pa-
rameter is very small. The corresponding calculation
goes as follows: considering the energetic advantage of
breaking spin-singlet pairs in a magnetic field, the sup-
pression of the superconducting condensation energy by
the magnetic field H leads at a certain critical field H
5Hcp to the situation in which the gain in energy of the
normal-state electrons due to spin polarization, i.e.,
2«P(H)5 1

2 N(0)(\eH/m0c)2, exceeds the gain in en-
ergy in the superconducting state 2«SC(H)
;1.57N(0)D0

2(H), so that the system will become nor-
mal. Here N(0) is the single-electron density of states at
the Fermi energy, m0 is the free-electron mass, and
D0(H);1.76kBTcA12H/Hc2. The condition for such a
transition to occur is thus «P(Hcp);«SC(Hcp). A
simple calculation shows that as long as kBTc!EF ,

Hcp'Hc2@12~1.76kBTc /EF!2# ,

which implies a discontinuous jump of the superconduct-
ing order parameter at H5Hcp&Hc2 of very small mag-
nitude, i.e., dD0(Hcp)/1.76kBTc;(1.76kBTc /EF).
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In approaching the highest sector of the Hc2(T) line
shown in Fig. 1, where the thermal smearing of the
Fermi distribution function is smaller than the cyclotron
energy of an electron \vc (that is, where 2p2kBT
,\vc), one enters a new region in which the Landau
quantization of the normal-electron spectrum (Landau,
1930; Landau and Lifshitz, 1976) can significantly inter-
fere with the process of Cooper pairing. In the normal
metallic state this quantization (across a sufficiently
abrupt Fermi surface) leads to dHvA oscillations. The
condition for entering the new quantum region can be
expressed in terms of the elementary length scale of the
problem—the magnetic length aH : the uncertainty in
the electron wavelength due to thermal excitations, LT

5A\2/4p2mckBT , should be larger than aH . It is inter-
esting to note here that, since Hp /Hc2(T)
'@j(T)/pLT#2, the original Clogston-Chandrasekhar
limiting field Hp is usually much larger than the upper
critical field Hc2(T) except for the quantum magnetic
oscillation regime, in which they are comparable.

As noted by Gunther and Greunberg (1966), in this
quantum regime the transition temperature Tc2(H)
should be an oscillatory function of the magnetic field.
This effect can be easily understood by examining a
simple BCS formula for Tc , in which the effect of Lan-
dau quantization on the normal-electron density of
states N(0) is taken into account. Gunther and Gruen-
berg (1966) also pointed out that at the maxima of the
oscillations a (singlet) superconducting state can exist at
arbitrarily large magnetic field, provided the tempera-
ture is reduced to the exponentially small value
;Tc(H50)e21.1AnF, where nF5EF /\vc@1. Their con-
clusion regarding the possible observation of such a dra-
matic effect was, however, quite pessimistic, dismissing
its realistic value by emphasizing the destructive influ-
ence of a minute amount of impurity scattering or spin
misalignment. A more optimistic and creative attitude
towards this possibility was adopted by Rasolt and Te-
sanovic (1992), who described the fascinating scenario of
reentrant (singlet) superconductivity in three-
dimensional (3D) low-density electron systems in very
high magnetic fields, where only a few electronic Landau
levels are occupied. In 2D, or quasi-2D models, where
the effective Zeeman spin splitting can be reduced to
zero by tilting the magnetic-field direction with respect
to the conducting planes (Wosnitza, 1996), the effect is
dramatically enhanced even for metallic densities, due
to the possibility of ‘‘resonant pairing’’ (see Maniv et al.,
1992, and Sec. II.C.2 below).

In fact, by combining orbital (Landau) quantization
with Zeeman spin splitting in a consistent fashion, a
large variety of pairing states, as illustrated in Fig. 2, can
in principle be constructed. It is evident, however, that
as long as the Zeeman spin splitting \ve5 1

2 gmB (where
g is the Lande g factor and mB is the Bohr magneton) is
not a multiple integer of the cyclotron energy \vc , any
attempt to pair two electrons on the Fermi surface with
opposite spin projections and with linear momenta kz ,
kz852kz along the magnetic-field direction will fail. This
failure means that the Zeeman splitting usually prevents
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the occurrence of the desired Cooper singularity. How-
ever, an idea of Fulde and Ferrel (1964) and of Larkin
and Ovchinikov (1964) provides a way to recover the
Cooper singularity. For any Landau level with index n
destructive effect of the Zeeman spin splitting can be
compensated by allowing the pair to have a nonzero lin-
ear momentum Qn along the field direction (i.e., by let-
ting kz85Qn2kz ; see Fig. 2). The number of possible
solutions Qn to this pairing problem on the Fermi sur-
face is equal to the number of occupied Landau levels
(i.e., ;nF@1).

B. Coexistence of quantum magnetic oscillations and
superconductivity

One may conclude from the above discussion that
Cooper pairing of electrons in Landau levels can be re-
alized in various, sometimes intriguing, ways and that
very unusual effects are theoretically expected. Such ef-
fects have not been observed so far in magnetotransport
experiments. What is the reason for this failure? To an-
swer this question one should be equipped with a better
understanding of the phenomenon of quantum magnetic
oscillations in the mixed superconducting state.

Considering a simple BCS type-II superconductor,
three questions immediately arise, relevant to the obser-
vation of quantum magnetic oscillations below the upper
critical field.

(1) Does the superconducting energy gap D0 , charac-
terizing the quasiparticle spectrum near the Fermi en-
ergy at low magnetic fields, also exist in the mixed state
at high fields just below Hc2? Such a gap would have
drastically damped the oscillations at low temperatures,
by a factor of e2D0 /kBT (mechanism 1).

(2) Does the inhomogeneity of the magnetic induction
B within the bulk of the superconductor, associated with
the creation of the flux lattice, significantly broaden the
Landau levels (mechanism 2)?

(3) Does the intrinsic inhomogeneity in the supercon-
ducting order parameter D associated with the creation
of the vortex lattice lead to significant inhomogeneous

FIG. 1. Schematic phase diagram of a pure type-II supercon-
ductor, showing the regions of thermal and diamagnetic pair
breaking and the region of strong quantum magnetic oscilla-
tions.
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broadening of the Landau levels in the quasiparticle
spectrum near the Fermi surface (mechanism 3), which
would thus make the detection of dHvA oscillations
even more difficult?

To summarize the list of questions: Can the dHvA
oscillations observable in the normal state of many su-
perconducting metals survive all these potentially de-
structive effects in the vortex state?

These theoretical obstacles to the observation of
dHvA oscillations in the vortex state convinced most
people active in the field before 1994 that quantum mag-
netic oscillations are unlikely to be observable in the
superconducting state even under ideal conditions.
Graebner and Robbins’ pioneering experiment (Graeb-
ner and Robbins, 1976), in which magnetothermal oscil-
lations were clearly seen deep in the vortex state of su-
perconducting 2H-NbSe2, thus drew only scant
attention, awaiting verification for almost 20 years. Only
in 1992 did Onuki et al. confirm the observation of
Graebner and Robbins in the same material, interpret-
ing, however, the lack of the expected strong attenuation
of the dHvA amplitude in the vortex state as an indica-
tion that the observed signal was not associated with
superconducting quasiparticles but with a normal-
electron part of the Fermi surface.

At about the same time, several new papers appeared
in the literature reporting the observation of dHvA os-
cillations in the superconducting state of other materials,
namely, in V3Si (Mueller et al., 1992) and even in the
high-Tc compound YBa2Cu3O72d (Kido et al., 1991;
Fowler et al., 1992; Haanappel et al., 1993). In all of
these experiments, however, there was no clear evidence
for the superconducting nature of the detected fermionic
quasiparticles.

Only the series of papers published during 1994 by the
Bristol group, in which they reported on dHvA mea-
surements in the A15 compounds V3Si (Corcoran, Har-
rison, et al., 1994) and Nb3Sn (Harrison et al., 1994), as
well as in the classic material 2H-NbSe2 (Corcoran,
Meeson, et al., 1994), eventually convinced the skeptics
that quantum magnetic oscillations associated with su-
perconducting quasiparticles in the vortex state of
type-II superconductors were a reality. This group suc-
ceeded where others failed because they adopted the
strategy of studying carefully and systematically several
conventional superconductors, such as the A15 com-
pounds, instead of rushing into the race of searching for
quantum magnetic oscillations in high-Tc superconduct-
ors. The importance of the results reported in these pa-
pers was that for the first time the variation of the su-
perconducting order parameter with magnetic field
below Hc2 was clearly shown to significantly influence
the measured oscillations.

To appreciate how large this influence could be, let us
compare two characteristic energy scales, the zero-field
superconducting energy gap D0'1.7kBTc and the cyclo-
tron energy \vc5\eB/mc , at magnetic field B close to
the zero-temperature upper critical field, Hc2(0)
5f0/2pj(0)2. Here f05ch/2e is the Cooper-pair flux
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quantum, and j(0)50.18\vF /kBTc is the zero-
temperature Cooper-pair coherence length.

Using these relations we can show that

D0

\vc
'0.61AnF, nF[

EF

\vc
, (1)

which is typically a large ratio since nF@1. It is therefore
striking that many experiments failed to observe the
large effect expected on the basis of such an estimate.

In the next subsections we shall discuss the main
qualitative features of the fermionic quasiparticles in the
vortex state of an extreme type-II superconductor
placed under high magnetic fields. Exploiting a simple
quasiparticle picture, we shall explain why no real ob-
stacle to the observation of quantum magnetic oscilla-
tions originating from mechanism (1) or (2) is expected
in the mixed state near and below Hc2 . Combining the
conclusion of Sec. I.B.3 below with the large character-
istic ratio between the nominal strength of the pair po-
tential and the Landau-level spacing, reflected in Eq.
(1), it seems plausible that mechanism (3) is potentially
the most dangerous killer of the dHvA oscillations in the
superconducting state below Hc2 . An important part of

FIG. 2. Illustration of different pairing possibilities in a 3D
electron gas, depending on the Fulde-Ferrel-Larkin-
Ovchinikov wave number Qn , selected to offset the Zeeman
splitting of the nth Landau branch of the kz dispesion curve at
m'EF .
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this article is therefore devoted to a detailed investiga-
tion of this mechanism. Our model also reveals the ex-
istence of an additional mechanism in which the dHvA
oscillations in the vortex state are suppressed.

1. Gapless superconductivity

The behavior of a quasiparticle in the vortex lattice
state is in some sense similar to that of an electron in a
periodic crystal potential under the influence of an ex-
ternal magnetic field. Both systems have the same sym-
metry, namely, invariance under magnetic translations
(see Zak, 1964; Brown, 1968; Bychkov and Rashba,
1983). However, in contrast to the periodic field govern-
ing the electronic motion in a crystalline atomic lattice,
the pair potential in the vortex lattice is a complex func-
tion of space coordinates, which mixes quasiparticle
wave functions with quasihole wave functions.

Clearly, in contrast to an atomic (or molecular) lattice
in a magnetic field, the very existence of the vortex lat-
tice is a consequence of the magnetic field. Thus the two
length parameters controlling the single-particle energy
spectrum, the size of the unit cell of the periodic lattice
and the magnetic length aB5Ac\/eB , have fundamen-
tally different relationships in the two cases. In the vor-
tex lattice the unit cell and the magnetic length are in-
herently related physical quantities, which differ only by
a proportionality constant of order unity, while in the
atomic (or molecular) lattice the size of the unit cell a is
a field-independent parameter, which is usually much
smaller than aB .

To gain a physical understanding of this complicated
problem, let us first work out a highly simplified model
for the dynamics of a quasiparticle under high magnetic
field. We may invoke the semiclassical nature of the qua-
siparticle wave functions in a typical superconductor,
which arises from the large value of the Fermi energy
EF in comparison with the cyclotron energy \vc for a
typical magnetic-field strength. Disregarding the com-
plex particle-hole nature of the actual quasiparticle, we
consider it as a simple charged particle moving under
the influence of a uniform magnetic field, that is, on a
surface of constant energy. These energy surfaces in a
uniform superconductor are determined by the well-
known BCS-Bogoliubov expression

«~k !56Ajk
21uDu2, (2)

where jk5\2k2/2m* 2EF , and D is the superconduct-
ing energy-gap parameter.

In the presence of the magnetic field the order param-
eter is no longer constant in space. In a pure supercon-
ductor at thermodynamical equilibrium it has the Abri-
kosov lattice form, with N zeros of D(rW) determining the
normal cores, N being the number of magnetic flux lines
that thread the superconductor in a regular triangular
lattice (Abrikosov, 1957). Introducing this spatial depen-
dence into Eq. (2) by replacing the constant D with
D(rW), and then using the relation between the position
vector rW and the vortex crystal momentum kW (rW), via the
Lorenz equation of motion
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dkW

dt
52

e

c\ FdrW

dt
3BW G , (3)

where BW is the magnetic induction, we obtain the classi-
cal energy surfaces in the reciprocal space from «(kW )
56Ajk

21uD(rW)u2.
Using now the classical equation of motion for rW in

terms of this dispersion relation, i.e.,

drW

dt
5

1

\

d

dkW
«~kW !, (4)

we may quantize the resulting classical orbits in a way
similar to the Lifshitz-Onsager quantization scheme
(Lifshitz and Kosevich, 1956) used for a Bloch electron
in a magnetic field.

Taking for uD(rW)u in «(kW ) the modulus of the Abriko-
sov lattice order parameter, we find that the equations of
motion (3) and (4) have extended cyclotron orbit solu-
tions for energies « higher than D0[maxuD(rW)u, as well as
localized solutions within the vortex cores for energies
«<D0 . Near Hc2 the distance between neighboring vor-
tex cores, which is of the order of the magnetic length
aB , and the size of the vortex core region, which is of
the order of the zero-temperature coherence length
j(0), are comparable. Thus quantum-mechanical tun-
neling of quasiparticles with energies «<D0 between
neighboring vortex cores is expected to be significant,
allowing extended cyclotron orbitals at all energies near
the Fermi energy.

Our simple semiclassical picture shows that near and
below Hc2 the quasiparticle spectrum across the Fermi
surface is gapless. The early theoretical works of de
Gennes (1966) and Brandt et al. (1967) suggested this
possibility, whereas experimentally it has been known
for many years (Tinkham, 1969) that the superconduct-
ing energy gap disappears at high magnetic fields.

2. Inhomogeneous broadening by the flux lattice

In a pure type-II superconductor below Hc2 the mag-
netic induction BW follows the spatial modulation of the
order parameter, creating a lattice of magnetic flux lines
that is induced by the supercurrents generating the vor-
tex lattice. Consequently the unit cell of the flux lattice is
identical to that of the vortex lattice, having dimensions
of the order of the magnetic length aB . For B&Hc2 the
size of the vortex core region j;aB and so the vortices
are arranged as impenetrable objects in a close-packed
structure. In contrast, the size of a magnetic flux line is
of the order of the magnetic penetration depth l. The
reason for selecting extreme type-II superconductors for
our study will become apparent in a moment. In such a
material l@j , so that the flux lines are arranged in a
highly overlapping structure that yields a very weak spa-
tial modulation of the magnetic induction. The maximal
amplitude of this variation is known to be (Fetter and
Hohenberg, 1969)
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B1[H2B'
Hc22H

2k2 ,

where k[l/j@1.
An estimate of the Landau-level broadening due to

this inhomogeneity can be made on the basis of a simple
calculation in which the quasiparticle is modeled by a
charged particle in a 2D space placed in a periodic mag-
netic field (Rom et al., 1996). For a small modulation
B1 , the envelope of the time-dependent Green’s func-
tion G(rW ,rW ;t2t8) was found, as expected, to be Gauss-
ian at short times, leading to a Gaussian Landau-level
broadening, the spectral width at the Fermi energy being

S Dv

v D5S p

G lvc
D50.351nF

1/4S B1

B0
D ,

where B0 is the mean value of B over the flux lattice.
This result shows that the relative width is of the or-

der of nF
1/4/k2, which is typically very small compared to

unity, since nF;100 and k*10. It is interesting to note
that this broadening effect is relatively weak due to the
ordered arrangement of the flux lines. A comparison of
this result to the expression for the Landau-level width
derived by Aronov et al. (1995) for a completely random
distribution of flux lines is instructive. The result of this
calculation may be written as

S p

Grvc
D5nF

1/2S B1

B0
D ,

meaning that inhomogeneous broadening of the Landau
level by the random distribution of flux lines is larger by
a factor nF

1/4 than the broadening by a regular lattice of
the same flux-line density.

3. Magnetic breakdown picture

The complex nature of the Landau quantization in the
vortex state may be illuminated by further developing
the model described in Sec. I.B.1 above. Of special in-
terest is the interplay between the ‘‘extended’’ cyclotron
trajectories of a quasiparticle near the Fermi surface,
i.e., with Larmor radii rF;A2nF11aB , nF@1, and the
localized orbits near the vortex cores. Starting with a
single cyclotron orbit, one can assure its stability by se-
lecting the initial conditions in such a way that the guid-
ing center of the orbit obtained in the D50 limit coin-
cides with one of the vortex cores [i.e., with zeros of
D(rW)]. Such a selection corresponds to a self-consistent
description of the ‘‘extended’’ quasiparticle cyclotron
current and the vortex currents. The corresponding so-
lutions of Eqs. (3) and (4) are closed (periodic) orbits
slightly distorted with respect to the normal-state cyclo-
tron orbits, like that shown in Fig. 3.

The distortion is most pronounced near the vortex
cores, where the pairing force ¹uD(rW)u is relatively
strong. Note, however, that despite the distortions, the
orbital guiding center remains completely stationary,
fixed to a vortex core. Thus semiclassical (Lifshitz-
Onsager) quantization of such orbits leads to a discrete
(Landau-level) energy spectrum. In the semiclassical
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limit rF@aB , each orbit intersects with many other simi-
lar orbits (i.e., with different orbital centers).

Quantum-mechanical tunneling between different or-
bits is expected to be relatively strong near these inter-
sections. The ‘‘attractive pairing force’’ deflecting a qua-
siparticle towards a nearby vortex core (see Fig. 3)
further enhances the tunneling probability by increasing
the overlap between the intersecting orbitals. Thus the
tunneling in the entire vortex lattice between any such
orbits near vortex cores, which may also be described as
tunneling of the orbital guiding center from one vortex
core to another, transforms the localized cyclotronlike
states into extended magnetic Bloch-like states in the
entire superconducting sample (see Fig. 4).

This delocalization mechanism is reminiscent of the
phenomenon of coherent magnetic breakdown in metals
placed in high magnetic fields (Kaganov and Slutskin,
1983), which results in the broadening of the Landau
levels into magnetic bands and their splitting into sub-
bands (Gvozdikov, 1986). As a consequence, the ampli-
tude of the dHvA oscillations in the vortex state will
be damped in comparison with the normal-state
oscillations.

The magnitude of this damping mechanism can be de-
termined only by a detailed quantitative theory, which
will be described in Sec. II. The tunneling probability
may be estimated, however, within a WKB-like approxi-
mation (Kaganov and Slutskin, 1983) by considering
only the dominant exponential factor W[e2B* /B

(Gvozdikov, 1986), where the magnetic breakdown field
can be written as B* 5F0/2p§2, with F05ch/e the
magnetic-flux quantum and § a characteristic length. For
a typical crystalline lattice, § is of atomic length scale a ,
whereas for the vortex lattice it is of the order of the
magnetic length aB . Thus one finds for the former case
W5e2(aB /a)2

, which is usually much smaller than unity

FIG. 3. A classical orbit of a quasiparticle satisfying the dis-
persion relation, Eq. (2), with an energy slightly above the
superconducting gap D0 , in a 2D square Abrikosov lattice.
The initial conditions were selected such that the orbital center
coincides with a vortex core.
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and strongly field dependent, while for the latter case W
is ;1 and field independent.

This simple analysis shows that the magnetic break-
down phenomenon in the vortex lattice state can be very
significant at any magnetic-field strength, unlike its
counterpart in a typical crystalline lattice; this becomes
apparent only at very high fields, or under very special
circumstances (e.g., for crystals with very large unit
cells).

4. Suppression of dHvA oscillations by paramagnetic vortex
currents

The model presented above indicates another mecha-
nism for suppressing dHvA oscillations in the vortex
state. This can be clearly seen in Fig. 5, where typical
empty («.0) and occupied («,0) orbits are sketched.
Considering the occupied orbits, which dominate the or-
bital magnetization at low temperatures, one can see
that near a vortex core the effect of the pairing force is
attraction toward the core, leading to rotation of the
quasiparticle around the core in an opposite sense to
that of the large cyclotron orbit. As a result there is an
overall reduction in orbital magnetization with respect
to normal-state magnetization. Note in contrast that for
the empty orbits the vortex currents and the large cyclo-
tron orbit have the same sense of rotation.

This picture is reminiscent of the classic picture of
electron diamagnetism (see, for example, Peierls, 1979),
where the (paramagnetic) effect of the edge currents
cancels that of the (diamagnetic) bulk currents.

It will be instructive to elaborate on this result by the
following little calculation. Consider our model quasi-
particle near a vortex core located at rW1 , where uD(rW
→rW1)u→0; since the zeros of D(rW) in the Abrikosov lat-
tice state are of the first order (see Sec. II.B.1), the gra-
dient in this region ¹„uD(rW)u2

… can be approximated by
2h(rW2rW1)uD0u2/aH

2 , where h is a constant of order unity.
Thus, with the help of Eq. (3), Eq. (4) can be approxi-
mated (with lengths measured in units of magnetic
length) by

FIG. 4. A magnetic breakdown picture of the occupied orbit
shown in Fig. 5, obtained by translating the orbital center from
vortex core to vortex core. The size of the unit cell is approxi-
mately aB , the size of the core region is j, and rF is the Larmor
radius.
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drW

dt
'

kW

«~kW !
S vcjk1

1

\
uD0u2h D , rW→rW1 . (5)

For an occupied orbit we replace «(kW ) in this expres-
sion with 2«(kW ), and jk with 2ujku, so that

drW

dt
'

kW

«~kW !
S vcujku2

1

\
uD0u2h D , rW→rW1 . (6)

This equation can be rewritten in terms of the local
radius vector rW [rW2rW1 as

drW

dt
'

ujku

«~kW !
S vc2

uD0u2h

\ujku D @rW 3nW #

'S vc2
uD0u2h

\ujku D @rW 3nW # ,

where nW [BW /B , which looks like an equation for a
charged particle rotating about the core with an effec-
tive angular velocity,

vc* 'S vc2
uD0u2h

\ujku D . (7)

The first term in the brackets represents the cyclotron
motion of the quasiparticle in the external magnetic field
BW , while the second term represents the effect of the
pair potential, which leads to the vortex current around
the core. The negative sign in front of this term reflects
the paramagnetic nature of the vortex current, which
tends to cancel the diamagnetic effect of the cyclotron
current. The dependence of this suppression effect on
the amplitude of the pair potential D0 is approximately
quadratic, provided jk is not too close to zero. Very

FIG. 5. Typical occupied and empty quasiparticle orbits ob-
tained in a manner similar to that used in Fig. 3.
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close to the Fermi energy, however, the quadratic depen-
dence crosses over to a linear one, that is,

vc* →2
uD0uh

\
, jk→0. (8)

This result is in agreement with the fully quantum self-
consistent calculation reported by Gygi and Schluter
(1991), who studied quasiparticle excitations for an iso-
lated vortex line in a type-II superconductor by solving
numerically the corresponding Bogoliubov–de Gennes
equations. They found that the current density near the
vortex core, which is associated mainly with the bound
states inside the core, is paramagnetic, whereas the cur-
rent density far away from the core is mostly due to
scattering states and is diamagnetic.

II. MEAN-FIELD THEORIES IN THE ABRIKOSOV VORTEX
LATTICE

A. Formulation of the problem

The appearance of dHvA oscillations is a genuinely
thermodynamical equilibrium phenomenon, taking
place when the external magnetic field H is quasistati-
cally varied and the sample magnetization M is mea-
sured as a function of H . The resulting crossing of quan-
tized energy surfaces of a quasiparticle through the
Fermi surface leads to oscillatory dependence on mag-
netic field, which is periodic in 1/H . To evaluate
Mosc(1/H), we need to take into account any contribu-
tion to M induced by electrical current loops associated
with these fermionic quasiparticles near the Fermi sur-
face. This includes both ground and thermally excited
states of the interacting many-electron system.

The BCS-Bogoliubov theory places the excited states
(i.e., quasiparticle-quasihole pairs) in one-to-one corre-
spondence with those of the free-electron gas, namely,
electron-hole pair excitations. In the free-electron gas
the same single-electron states are involved in the many-
body ground and excited states, the only difference be-
ing in the occupation numbers of these states. This sim-
plicity enables one to calculate both the ground-state
and excited-state contributions to Mosc(1/H) using the
same single-particle spectrum. In a superconducting
many-electron system, however, the ground state and
the quasiparticle excitations are not so simply con-
nected. The ground state is a condensate of a macro-
scopic number of highly correlated bound electronic
states, whereas a quasiparticle excitation is constructed
from this state by first breaking a single pair and remov-
ing it from the condensate, and then adding an electron
to one of the vacant single-particle states. Obviously, this
unpaired electron contributes to the magnetization M .
However, its contribution alone cannot produce oscilla-
tions in M , since the corresponding energy is always
positive (i.e., always above the Fermi energy) and so no
Fermi-surface crossing can take place. This conclusion
remains true even when no superconducting energy gap
exists in the quasiparticle spectrum.
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An alternative description of the superconducting
state can clarify the situation: In the absence of magnetic
field all superconducting electrons participating in the
pairing interaction are constructed from single-electron
states within some cutoff energy around EF . These
states are in one-to-one correspondence with the fermi-
onic quasiparticle states, whose energies are distributed
outside the energy-gap region (see Fig. 6). This means
that at T50 all quasiparticle states above EF1D0 are
empty and all states below EF2D0 are occupied. This
filled Fermi sea of quasiparticles constitutes the ground
state of the superconductor. At high magnetic field B
&Hc2 where the energy gap disappears (see Fig. 6 and
Tinkham, 1969), the corresponding quantized fermionic
quasiparticles contribute to magnetic oscillations.

This heuristic description can be put on a solid formal
footing, thanks to an elegant result derived more than 30
years ago by Bardeen et al. (1969) on the basis of earlier
work due to Eilenberger (1965). To see how this can be
done, let us formulate the problem within a more gen-
eral framework using a more modern approach, which
will enable us to treat a broader range of problems.

Starting from the BCS Hamiltonian in a uniform ex-
ternal magnetic field corresponding to vector potential
AW (rW) but neglecting, for the sake of simplicity, the Zee-
man energy term associated with the electron spin, we
write

H5H01Hint5H01VE c↑
†~rW !c↓

†~rW !c↓~rW !c↑~rW !d3r ,

(9)

with H0 representing the single-electron part

H05E (
s

H 1
2m

cs
† ~rW !F\i ¹W 2

e

c
AW ~rW !G2

cs~rW !2EFJ d3r ,

(10)

where cs
† (rW) are the creation field operators for the two

spin components s5↑ ,↓ , and V,0 is the effective
electron-electron interaction. The energy is measured
relative to the Fermi energy EF .

Note that magnetic induction associated with super-
currents is neglected here so that BW 'HW 5¹W 3AW . All
thermodynamic properties of the system are determined
by the partition function (Zagoskin, 1998),

FIG. 6. Bardeen-Cooper-Schrieffer (BCS) density of states at
zero magnetic field vs the actual state density obtained from
tunneling experiments at strong field. From Tinkham, 1969.
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Z5tre2b(H01Hint)5trFe2bH0Tt expS 2E
0

b

dtHint(t) D G
[K Tt expS 2E

0

b

dtHint(t) D L
0

Z0 , (11)

where Z05tre2bH0, b51/kBT , Tt is the time-ordering
operator, and Hint(t) is Hint in the (Matsubara)
imaginary-time interaction representation Hint(t)
5eH0tH inte

2H0t.
Using the Hubbard-Stratonovich transformation [to

express the exponential of the quadratic form in
c↓(rW)c↑(rW), appearing in Hint(t), as an integral over an
auxiliary complex field D(rW ,t) with a Gaussian weight of
the exponential of a linear form in c↓(rW)c↑(rW)], it is
possible to rewrite the partition function as a functional
integral,

Z5Z0E DD~rW ,t!DD* ~rW ,t!

3expS 2 ~1/uVu! E
0

b

dtE d3ruD(rW ,t)u22bVBD , (12)

where e2bVB[^Tt exp@2*0
bdtHB(t)#&0 and

HB~t!52E d3r@D~rW ,t!c̄↑~rW ,t!c̄↓~rW ,t!

1D* ~rW ,t!c↓~rW ,t!c↑~rW ,t!# ,

with the field operators in the Matsubara representation:
cs(t ,rW)5eH0tcs(rW)e2H0t and c̄s(t ,rW)
5eH0tcs

† (rW)e2H0t.
The stationary-phase approximation (or more pre-

cisely, the steepest-descent approximation) for the func-
tional integral over the fields D and D* is equivalent to
the mean-field approximation. It yields the well-known
self-consistency relation

D* ~rW ,t!5uVu^Ttc̄↑~rW ,t!c̄↓~rW ,t!&, (13)

where ‘‘mean’’ stands for ^A&
5tr$e2bH0TtA exp@2*0

bdtHB(t)#%/Z.
The auxiliary field D in the stationary-phase approxi-

mation is therefore identical to the superconducting or-
der parameter defined within BCS (mean-field) theory.
The physical meaning of D(rW ,t) in the general case (i.e.,
as a variable of functional integration) is now also clear:
it describes all possible pairing configurations, including
fluctuating superconducting droplets as well as the
mean-field configuration with long-range superconduct-
ing order.

Neglecting fluctuations (see, however, Sec. IV), the
thermodynamic potential of the superconductor is then

V[2b21 ln Z

52b21 ln tre2bHP1
1

uVu E d3ruD~rW !u2, (14)

where HP[H01HB(0). This result is identical to the
large-k limit (i.e., B→H) of the expression derived by
Eilenberger (Eilenberger, 1966). The first term on the
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right-hand side of Eq. (14) was expressed in terms of the
thermal Green’s function Gv(rW ,r8W ) obtained from the
solution of Gorkov’s equations (Gorkov, 1959),

2b21 ln tre2bHP5ib21 (
n52`

` E
vn

`sgnn

dv

3E d3r@G~rW ,rW ;v!2c.c.# , (15)

where vn5(2n11)p/b , n50,61, . . . are the Matsub-
ara frequencies.

The mean-field pairing Hamiltonian,

HP5H02E d3r@D~rW !c↑
†~rW !c↓

†~rW !

1D* ~rW !c↓~rW !c↑~rW !# , (16)

which was first proposed on rather intuitive grounds by
de Gennes (1966), can be diagonalized by a generalized
version of the Bogoliubov transformation,

c↑~rW !5(
l

@ul~rW !gl ,↑2vl* ~rW !gl ,↓
† # ,

c↓
†~rW !5(

l
@vl~rW !gl ,↑1ul* ~rW !gl ,↓

† # , (17)

where the quasiparticle operators gl ,↑ , gl ,↓ satisfy fer-
mionic commutation relations. In order to satisfy these
relations, the functions ul(rW) and vl(rW) must satisfy the
orthonormality conditions

E @ul* ~rW !um~rW !1vl* ~rW !vm~rW !#d3r5dl ,m ,

E @ul~rW !vm~rW !2vl~rW !um~rW !#d3r50,

and the completeness conditions

(
l

@ul~rW !ul* ~rW8!1vl* ~rW !vl~rW8!#5d~rW2rW8!,

(
l

@ul~rW !vl* ~rW8!2vl* ~rW !ul~rW8!#50.

The Hamiltonian HP is diagonal in the new fermionic
quasiparticle representation, i.e.,

HP5E01 (
l(«l.0)

«l~gl ,↑
† gl ,↑1gl ,↓

† gl ,↓!, (18)

provided that the functions ul ,vl satisfy the following
‘‘eigenvalue’’ equations with respect to the eigenener-
gies «l :

ĵul~rW !1D~rW !vl~rW !5«lul~rW !,

2 ĵ* vl~rW !1D* ~rW !ul~rW !5«lvl~rW !, (19)

where ĵ is the kinetic-energy operator ĵ

5 (1/2m) @(\/i) ¹2 (e/c)AW #22EF .
It is important to note that the resulting quasiparticle

spectrum obeys particle-hole symmetry. Indeed, Eqs.
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(19) have both positive and negative values of «l , for if
«l.0 corresponds to the spinor solution (ul ,vl), then
the spinor (vl* ,2ul* ) is also a solution with energy
2«l . The set (ul ,vl) with «l.0 is, however, a com-
plete set of functions.

The first term, E0 , on the right-hand side of Eq. (18) is
the ground-state energy of the superconductor. The sec-
ond is the quasiparticle term, corresponding to the el-
ementary excitations above the ground state. Equation
(15) provides the basis for the alternative picture
sketched in Fig. 4; indeed, as shown by Bardeen et al.
(1969), substitution of the quasiparticle spectral repre-
sentation of the Green’s function,

G~rW ,rW8;v!5(
l

S ul~rW !ul* ~rW8!

iv2«l
1

vl* ~rW !vl~rW8!

iv1«l
D ,

in Eqs. (15) and (14) leads to the formula

V[2b21 ln Z

522b21 (
l(«l,EF)

lnS 2 cosh
1
2

b«lD
1

1
uVu E d3ruD~rW !u2. (20)

The sum over l is just what one would expect from
the free energy of an assembly of independent fermions
with energies «l . As in the Hartree-Fock approxima-
tion, one should subtract from this expression the inter-
action energy 2 (1/uVu) *d3ruD(rW)u2, because of double
counting. It should be noted that, as far as the magneti-
zation in the mean-field approximation is concerned, the
similarity to an assembly of independent fermions is not
disturbed by this additional term, since the stationary
condition ]V/]D 50 guarantees that

M52
]V

]B
52b21

]

]B (
l

lnS 2 cosh
1
2

b«lD
D

, (21)

where the subscript D means that the term in parenthe-
ses is assumed constant under the differentiation.

It should be stressed that the particle-hole symmetry
inherent to the quasiparticle spectrum in the supercon-
ducting state does not exist in the normal-state (Landau-
level) spectrum (except for discrete values of the applied
magnetic field; see Sec. II.B.2)—a fundamental compli-
cation associated with the theory of quantum magnetic
oscillations in the superconducting state.

B. Quasiparticles in a quantizing magnetic field

The physical picture emerging from the general analy-
sis presented above leads to some modification of the
highly simplified picture outlined in Sec. I.B.3. The
Bogoliubov–de Gennes Eqs. (19) describe Andreev re-
flections (Andreev, 1964a, 1964b, 1964c) of a quasihole
with amplitude ul(rW) by a quasielectron with amplitude
vl(rW) at the ‘‘interfaces’’ between the normal domains
[i.e., near the zeros of the order parameter D(rW)] and
the interstitial regions of significant superconducting or-
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der. Thus a quasielectron is transformed near a vortex
core into a quasihole that carries the same current in the
same direction. In the picture drawn in Sec. I.B.3 the
quasiparticle trajectory should therefore be regarded as
partly quasielectronlike and partly quasiholelike. Using
for ul and vl a basis set with magnetic translational
symmetry automatically takes into account the magnetic
breakdown of the cyclotron orbitals, as depicted in Fig.
4. The self-consistency condition [Eq. (13); see also Eq.
(22) below] reflects the common origin of the currents in
the vortex core and the quasiparticle cyclotron currents.

The problem under consideration now reduces to the
calculation of the magnetization from Eq. (21) with the
quasiparticle energies «l obtained from solution of the
Bogoliubov–de Gennes Eqs. (19). The pair potential
D(rW) should be determined self-consistently by Eq. (13).
The latter condition can be rewritten in terms of the
above solution as

D* ~rW ,b!5uVu(
l

ul* ~rW !vl~rW !tanh@b«l~D* !/2# . (22)

Using for the spatial dependence of D a form corre-
sponding to the Abrikosov lattice of vortices (Abriko-
sov, 1957), the mean-field pairing Hamiltonian (16) is
seen to be invariant under the magnetic translations as-
sociated with this lattice. A basis set of eigenfunctions of
these symmetry operators (Bychkov and Rashba, 1983)
can in principle diagonalize the Hamiltonian and satisfy
the self-consistency condition (22). In practice, however,
the complete solution of this problem is a formidable
task.

1. The magnetic Bloch quasiparticle

Several attempts to solve the Bogoliubov–de Gennes
Eqs. (19) by exploiting magnetic translational symmetry
have been described in the literature. The most compre-
hensive efforts are those of Dukan, Andreev, and Te-
sanovic (1991), Norman, Akera, and MacDonald (1992,
1995), Dukan and Tesanovic (1994), and Norman and
MacDonald (1996). Let us describe here in some detail
the general framework of the theory before discussing
its applications.

Assuming an isotropic 3D electron-gas model in a sta-
tionary and uniform external magnetic field HW , oriented
along the z axis, we can write the corresponding vector
potential in the Landau gauge as AW 5H(2y ,0,0). The
corresponding Abrikosov form (Abrikosov, 1957) of the
superconducting order parameter can be written in
terms of an arbitrary 2D lattice spanned in the x-y plane
by the primitive vectors aW 5(ax,0,0), bW 5(bx ,by,0),

D~rW !5D0 (
k52AN/2

AN/2

ck exp@ iqkx2~y1qk/2!2# , (23)

with ck5eigk2
,g5pbx /ax ,qk52pk/ax . Here it is as-

sumed that spatial distances are measured in units of the
magnetic length, aH5A\c/eH . The relation axby5p
states that a single Cooper-pair flux quantum f0
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5ch/2e (or alternatively 1/2 electronic flux quantum F0
5ch/e) threads a unit cell in this lattice.

Let us consider the geometrical meaning of the coef-
ficients ck5eiwk, with wk5gk2. Each coefficient de-
scribes a set of AN guiding centers, periodically ar-
ranged within a certain chain along the principal
crystallographic axis x of the vortex lattice (see Fig. 7).
The index k labels the vertical (along the y axis) posi-
tion of the chain, whereas the phase wk determines the
relative ‘‘horizontal’’ position xk52wk /qk52axgk/2p
of the kth chain. The totality of this family of Bragg
chains spans the entire Abrikosov lattice. An equivalent
family of Bragg chains can be identified along the other
principal axis denoted by x8 in Fig. 7, with a period ax8 .

Note that for an arbitrary 2D lattice the lattice con-
stant ax (in units of magnetic length) and the angle Q/2
between the principal axes are expressed via g as ax

2

5p2/g tan Q. For a general rhombic lattice ax
2

5p/A12(g/p)2, cos Q5(g/p), while in the special case
of the triangular Abrikosov lattice, g5p/2.

Equation (23) describes a coherent superposition of
N@1 ground Landau orbitals of Cooper pairs w0(x ,y
1qk/2)5exp@iqkx2(y1qk/2)2# , arranged with their
guiding centers in a lattice equivalent to that described
in Fig. 7, such that a single flux quantum f0 is attached
to each orbital.

An alternative, more general form of the supercon-
ducting order parameter in the lowest Landau-level ap-
proximation, illuminating this point, was used in the lit-
erature by several authors (Rajagopal and Vasudevan,
1966a, 1966b; Tesanovic et al., 1989, 1991; Rasolt and
Tesanovic, 1992). It is written in symmetric gauge,

Dsym~rW !5eixyD~rW !5D0e2 ~1/2! uzu2f~z !, (24)

where f(z), z5x1iy , is an arbitrary entire function
with N5f/f0 zeros in the complex plane, where f is
the total magnetic flux threading the sample. The func-
tion f has the general form

f~z !})
j51

N

~z2zj!.

The power 1 of all factors (z2zj) in this expression
stems from the physical fact stated above that in the
ground state each vortex will carry a single flux quantum
f0 . It is more general than Eq. (23), since the positions
of the vortices are not necessarily restricted to a regular
periodic lattice. This lowest-Landau-level description is

FIG. 7. Two families of Bragg chains in a triangular Abrikosov
lattice along the principal axes x and x8.
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a good approximation almost everywhere around
Hc2(T) [actually down to . 1

3 Hc2(T)], except for a
small region around Tc(H→0) where the Ginzburg
critical regions of the lowest Landau level and higher
Landau levels start to overlap (see Tesanovic and An-
dreev, 1994).

The basis set selected by Dukan et al. (1991) was cho-
sen as the common eigenfunction eikzzfqW ,n(x ,y) of the
magnetic translation operators and the kinetic-energy
operator ĵ , where z and kz are the spatial coordinate
and momentum, respectively, along the magnetic-field
direction. The function fqW ,n(x ,y) (a magnetic Bloch
function) is constructed as a (tight-binding-like) coher-
ent superposition of localized Landau orbitals wn(x ,y
1y0)5 (1/A2nn!Ap) eiy0x2(1/2)(y1y0)2

Hn(y1y0), where
Hn(y) is the Hermitian polynomial of degree n , with a
given energy jn5\vc(n11/2)2EF , centered on a lat-
tice spanned by the vectors 2aW ,bW (i.e., with projections
y0,m5qx1 pm/ax on the y axis):

fqW ,n~x ,y !}(
m

e ~ i/2! gm2
e2iqypm/axwnFx ,y1S qx1

pm

ax
D G .

The selection of the lattice as a double superlattice of
the original Abrikosov lattice assures that a single elec-
tronic flux quantum F05ch/e threads its unit cell. The
quasicontinuous wave vector qW is restricted to the mag-
netic Brillouin zone defined by the vectors aW *
5(by ,2bx),bW * 5(0,2ax).

The coefficients of the quasiparticle annihilation-
creation operators in the Bogoliubov transformation,
Eq. (17), are given in this representation by

ukz ,qW ~x ,y !5eikzz (
n50

`

un~qW !fqW ,n~x ,y !, (25)

vkz ,qW
* ~x ,y !5e2ikzz (

n50

`

vn* ~qW !f2qW ,n~x ,y !,

showing clearly the characteristic Andreev reflection
mixing mechanism of a quasihole, which carries a mo-
mentum qW , with a quasielectron carrying a momentum
2qW . This exact relation guarantees that the electrical
current carried by the quasiparticle, regarded as a mix-
ture of a quasielectron with a quasihole, is uniquely
defined.

The technical advantage of this representation, in ad-
dition to its elegant similarity to the paired states at zero
magnetic field, is that the corresponding matrix elements
of the pairing Hamiltonian are diagonal in momentum
space. The price paid for this advantage, however, is
quite heavy, since basis functions with different Landau-
level indices nÞn8 are strongly mixed by the pairing
Hamiltonian. The origin of this complication is, of
course, the matrix elements of the pair potential (obvi-
ously H0 is diagonal):
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Dn ,n8~qW ![E d2rf2qW ,n8
* ~rW !D~rW !fqW ,n

* ~rW !

5
D0~21 !n8

&2n1n8An!n8!

3(
k

exp@ igk212ikbyqy2~qx1pk/ax!2#

3Hn1n8@&~qx1pk/ax!# , (26)

where rW denotes here a position vector in the x-y plane.
Note that D0,0(qW ) is just the real-space order parameter
D(rW) after the 90° rotation (x ,y)→(qy ,qx). This result
is consistent with the description presented in Sec. I.B.1,
where D(rW) was expressed in terms of the classical mo-
mentum kW (rW) through the Lorenz equation of motion,
Eq. (3), which implies that kW is always rotated by 90°
with respect to rW .

This immediately implies that the positions of the ze-
ros of D0,0(qW ) are just the positions of the zeros of the
Abrikosov order parameter rotated by 90°, and that
these zeros are all of the first order since, as shown
above, the zeros of D(rW) are of the first order.

Clearly, the matrix elements Dn ,n8(qW ) of importance
to us are not D0,0 but those corresponding to Landau-
level indices n ,n8 of the order of nF , which is much
larger than unity. However, as found in the numerical
calculations of Dukan et al. (1991), the first-order zeros
of Dn ,n(qW ) are at the same positions as those of D0,0(qW ),
while zeros of higher orders also appear but with rela-
tive abundances of 1/nF to the first-order zeros. This
property is of crucial importance in the behavior of the
quasiparticle under high magnetic fields, as will be dis-
cussed later.

2. Magnetic bands and pseudogaps in the quasiparticle
spectrum

The analysis presented in the previous subsection en-
ables us now to address the general question of the fate
of the Landau-level structure of the quasiparticle spec-
trum in the vortex state. This problem is closely related
to the fundamental particle-hole symmetry requirement
imposed by the pair potential in the superconducting
state. Indeed, as indicated above, the exact diagonaliza-
tion of the pairing Hamiltonian in momentum subspace
is not followed by a diagonalization in Landau-level sub-
space. On the contrary, strong Landau-level mixing of
the magnetic Bloch basis functions by the pair potential
seems to imply that the Landau-level structure should
be quickly destroyed by the increasing superconducting
order parameter below Hc2 . Unfortunately this mixing
also makes any analytical approach to this problem, ex-
cept for narrow limiting cases, an extremely complicated
task. A very popular limiting case of this type has been
advocated by Tesanovic and co-workers in several pa-
pers. To explain this type of approximation, let us con-
sider the relatively transparent case of a 2D electron
system, and add to the model Hamiltonian analyzed
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above the Zeeman spin energy term. We make the fol-
lowing change in the kinetic-energy operator: ĵ→ ĵ� ,�
5 ĵ7 1

2 gmBB , where g is the Lande g factor and mB is
the Bohr magneton. We then obtain two sets of sepa-
rable Bogoliubov–de Gennes equations for (ul ,� ,vl ,�)
and for (ul ,� ,vl ,�). Using the expansions (25) in the
magnetic translations basis, we find that the first set of
equations reads

(
n8

@~jn8,�2«!dn8,nun8~qW !1Dn ,n8~qW !vn8~qW !#50,

(
n8

@Dn ,n8
* ~qW !un8~qW !2~jn8,�1«!dn ,n8vn8~qW !#50,

where the spin index was dropped from the functions
u ,v .

The limit considered by Tesanovic et al. corresponds
to the special situation in which the g factor vanishes
and the chemical potential is very close to one of the
Landau levels, say jn→0 (or nF→n11/2). If, in addi-
tion, the strength of the pair potential D0 is much
smaller than the cyclotron energy \vc , the off-diagonal
elements Dn8,n(qW ), n8Þn can be neglected and the qua-
siparticle energies are given approximately by

«~qW !'6Ajn
21uDn ,n~qW !u2→6uDn ,n~qW !u. (27)

This simple ‘‘diagonal approximation’’ reflects, in a
very transparent way, three important features of the
quasiparticle spectrum in a strong magnetic field: the
broadening of the Landau levels into energy bands, the
magnetic Bloch bands; the disappearance of the super-
conducting energy gap from the Fermi surface (see Sec.
I.B.1), and the opening of pseudogaps within the Lan-
dau bands. The first feature, which is due to the q dis-
persion of Dn ,n in Eq. (27), is of course not surprising in
light of the extended nature of the quasiparticle wave
function in the entire vortex lattice. The second feature
is a direct consequence of the zeros of Dn ,n(qW ) (see an
extensive discussion of this aspect by Dukan and Te-
sanovic, 1994). The third feature is less obvious. It can
be readily seen, following the original analysis of Dukan
et al. (1991), by considering the quasiparticle density of
states D(«) near the center of the band. Here Dn ,n(qW )
'0, which implies that the dominant contributions to
the density of states come from the close vicinities of the
zeros of Dn ,n(qW ). Since for nF@1 most of these zeros,
q̃ j5qx ,j1iqy ,j , are of the first order, a leading-order ex-
pansion yields

«~qW !→6uDn ,n~qW !u}6uq̃2q̃ ju, q̃→q̃ j ,

which results in the quasiparticle density of states’ also
linearly vanishing near the band center, i.e.,

D~«!}u«u→0.

It is clear that this break at the center of the n5nF
21/2 Landau band is due to the linear dispersion rela-
tion «(qW ) near the first-order zeros of uDn ,n(qW )u. The
existence of this kind of zero is a consequence of the
fundamental condition of flux quantization and its real-
Rev. Mod. Phys., Vol. 73, No. 4, October 2001
ization in the Abrikosov lattice, where each unit cell is
threaded by 1/2 electronic flux quantum F0 (or alterna-
tively by a single Cooper-pair flux quantum f0). Thus it
seems that one should expect the appearance of
pseudogaps in all Landau levels broadened by the pair
potential, as first suggested by Maniv et al. (1997).

To convince ourselves that this phenomenon is indeed
not a peculiarity of the Landau band containing the
chemical potential [the conduction (Landau) band], let
us consider the situation when the chemical potential m
is in between two adjacent Landau levels jn and jn21
(illustrated in Fig. 8). We may also assume a somewhat
more general situation when the Zeeman splitting is not
zero. To make the calculation analytically tractable,
however, we assume as above that D0!\vc .

This situation allows us to neglect all matrix elements
Dn ,n8(qW ) except for n85n ,n21, so that after using the
symmetry relation Dn ,n21(qW )52Dn21,n(qW ), the rel-
evant Bogoliubov–de Gennes Hamiltonian matrix re-
duces to the 434 block (with all energies measured in
units of \vc),

S f2g d1 0 d3

d1* 212g2f 2d3* 0

0 2d3 212g2f d2

d3* 0 d2* 2g2f

D ,

where g[jn21,�2 j̄ , f[j̄2m , j̄[ 1
2 (jn211jn), d1

[Dn ,n(qW ), d2[Dn21,n21(qW ), and d3[Dn21,n(qW )
52Dn21,n(qW ).

This matrix can be diagonalized exactly to yield four
quasiparticle energies around the chemical potential,

«1
652

1
2

2g1
1
2

f6 , «2
652

1
2

2g2
1
2

f6 ,

where f65(114f212ud1u212ud2u214ud3u262AQ)1/2,
Q54f214ud3u214f(ud1u22ud2u2)1O(d4).

Assuming the chemical potential to be located exactly
in the middle of the quartet (electron-hole symmetry),
i.e., taking f50 and neglecting second- and higher-order
terms in di , we find for the occupied quasiparticle
energies

FIG. 8. A quartet of Landau spin-split sublevels around the
Fermi energy which are dominantly involved in superconduct-
ing pairing in the extreme limit D0!\vc .
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«1
6~qW !→2g6uDn21,n~qW !u,

«2
6~qW !→212g6uDn21,n~qW !u.

The unoccupied energies can be obtained from the
dual set of Bogoliubov–de Gennes equations corre-
sponding to (ul ,� , vl ,�). Here we find again the same
type of behavior as in the previous example, namely,
that the two normal-state Landau sublevels jn ,�52g
and jn21,�5212g broaden into magnetic bands, which
break into subbands by the pair potential. The density of
states vanishes linearly with the energy distance from
the band centers, i.e., D(«)}u«1gu→0, or }u«111gu
→0, due to the first-order zeros of Dn21,n(qW ). Note,
however, that in contrast to the previous case in which
the pairing was ‘‘diagonal in the Landau levels,’’ in the
present case it is ‘‘off diagonal.’’ The reason in the
present case is, of course, the location of the chemical
potential in the cyclotron gap between two Landau sub-
levels.

The problem becomes much more complicated in
cases of lower symmetry, e.g., when the chemical poten-
tial is shifted from the Landau level or from the center
of the cyclotron gap, or when the strength of the pair
potential is not small compared to this gap. In these
cases more distant Landau levels should be taken into
account and the problem quickly becomes very cumber-
some due to the presence of many significant matrix el-
ements far from the diagonal.

However, numerical diagonalizations carried out by
Norman and MacDonald (1996), as well as by Tesanovic
and Sacramento (1998) for cases when D0 is no longer
small compared to \vc (see Figs. 9 and 10), confirmed
the general pattern of the quasiparticle density of states
obtained above.

Specifically they found that as long as D̃05D0 /\vc

does not exceed some critical value D̃0,c , the supercon-
ducting quasiparticle spectrum for a 2D electron system,
with the chemical potential in a symmetrical electron-
hole position, consists of broadened Landau levels, each
of which splits into two subbands separated by a
pseudogap. In this region the broadened levels do not
show any apparent shift with respect to the correspond-
ing free-electron Landau levels, implying the absence of

FIG. 9. Quasiparticle density of states calculated numerically
by Tesanovic and Sacramento (1998) for a 2D system in which
D̃05D0 /\vc50.5 and nF540. The chemical potential position
is at the center of the Landau band.
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a superconducting energy gap. The critical value D̃0,c
was found to be significantly larger than unity, but its
dependence on relevant parameters, such as, for ex-
ample, nF , could not be reliably determined from these
numerical calculations (see Sec. V for more details).

No result for the quasiparticle density of states for
asymmetrical position of the chemical potential has been
reported so far. Such a calculation is particularly cum-
bersome since the quasiparticle spectrum in the super-
conducting state obeys particle-hole symmetry [see the
remark following Eqs. (19)], whereas the normal-state
Landau-level representation used above lacks this sym-
metry at all magnetic fields; discrete values when nF is
integral or half integral are exceptions.

In light of Eq. (21), which is identical (in its general
structure) to the well-known formula derived for a gas
of normal-state quasiparticles (see, for example, Shoen-
berg, 1984b), one can readily understand the implica-
tions of the main features of the quasiparticle density of
states shown above. It is, of course, quite obvious that
the broadening of the Landau levels into bands leads to
superconducting-induced damping of the dHvA ampli-
tude. The splitting of each Landau band into two sub-
bands is reminiscent of the Zeeman spin splitting. This
observation has a deeper origin than may appear at first
sight. Indeed, as discussed in Sec. I.B.3, the extremal
cyclotron orbit near the Fermi surface, which constitutes
the dominant contribution to the dHvA oscillations,
consists of many small sectors around the vortex cores
where the current density has a paramagnetic nature, in
contrast to the diamagnetic character of the intervortex
current density (see Fig. 11). These small current loops,
which are ‘‘attached’’ to the large diamagnetic cyclotron
loop near many vortex cores, can be regarded as spin-1/2
quantum paramagnets.

The quantum analogy to the spin-1/2 case can be de-
scribed as follows: a paramagnetic current loop is gener-
ated by the quasielectron-quasihole (Andreev) mixture
rotating in opposite directions around the core in its
close vicinity. The corresponding angular momenta
along the z axis, equal in magnitude but opposite in
direction, may be regarded as the two quantized projec-
tions of the ‘‘spin’’ along this axis. Furthermore, the

FIG. 10. A result similar to Fig. 9 for D̃051 and nF520 calcu-
lated by Norman and MacDonald (1996), showing the opening
of pseudogaps in all Landau bands.
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charge carried by each branch of the quasiparticle is the
electron charge e , so that the phase acquired by each
component of its wave function in a full rotation around
the core is p [the corresponding phase acquired by the
Cooper-pair wave function D(rW) in such a rotation is
2p]. This feature again characterizes a particle of angu-
lar momentum 1/2. The first-order vanishing of D(rW) at
the vortex cores is responsible for the pseudogap in the
quasiparticle density of states (and the breaking of a
Landau band into two subbands); it reveals the deep
connection between the spin-1/2 character of the vortex
core paramagnets and the splitting of the Landau bands
into two magnetic subbands.

We thus find that the vortex currents near the cores
can be regarded as a coherent ensemble of spin-1/2
quantum paramagnets, in an effective ‘‘magnetic field’’
growing with the pair-potential amplitude uD0u, as sug-
gested by Eqs. (7) and (8). It will be shown in Secs.
II.C.3 and II.C.4 that the suppression mechanism of the
dHvA oscillations associated with these vortex currents
is the leading superconducting effect just below Hc2 , as
proposed in Sec. I.B.3.

C. The Gorkov-Ginzburg-Landau approach

We have already discussed in the previous section the
advantages and the disadvantages of approaching the
problem of quantum magnetic oscillations in the vortex
state through its ultimate microscopic structure—the
quasiparticle spectrum. For the somewhat limited physi-
cal insight gained from a very detailed analysis of the
quasiparticle microscopic features, one pays a high price
in the quantitative aspects concerned, e.g., when one
needs concrete answers about the magnetic-field depen-
dence of the dHvA amplitude in the vortex state. This
‘‘differential’’ approach produces a very complex band
structure, which can be further used in calculating the
thermodynamic potential in two possible ways: either by
‘‘brute force’’ numerical computation, or by pursuing
limiting cases when simple analytical forms for the qua-
siparticle dispersion relation exist. Unfortunately, both
ways have serious shortcomings. The numerical calcula-
tions with their obvious limitations are also restricted to

FIG. 11. The vortex core paramagnets ‘‘attached’’ to a diamag-
netic cyclotron orbit in the vortex lattice.
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a relatively small number of Landau levels, whereas all
attempts made so far to find a simple analytical model of
the quasiparticle density of states have failed to produce
a valid result at magnetic fields that are not extremely
close to Hc2 .

An alternative, ‘‘integral’’ approach has been taken by
several investigators (Maniv, Markiewicz, et al., 1992;
Maniv, Rom, et al., 1992; Bruun et al., 1997; Vavilov and
Mineev, 1997). Here one deliberately gives up some de-
tailed microscopic information by directly dealing with
the thermodynamic potential, in order to be able to
make progress in calculating the relevant observables.
Basically such an approach is based on the Green’s-
function formalism developed by Gorkov for spatially
inhomogeneous superconductors (Abrikosov, Gorkov,
and Dzaloshinski, 1975). Since later in this review we
shall be concerned with situations in which fluctuations
of the superconducting order parameter are important,
we present here a more general formulation than the
mean-field approximation used in the classic work of
Gorkov by following the functional-integral formalism
outlined in Sec. II.A.

1. Perturbative expansions in the superconducting order
parameter

Considering the partition function in the functional-
integral form, Eq. (12), one may integrate over the elec-
tronic fields and then generate a new exponent, which is,
however, a complicated functional of the pair field
D(rW ,t). At this point one is forced to make a major
approximation: if we assume that the magnitude of D is
small, we may proceed by expanding the new exponent
in powers of D and terminate at a desired order. This
procedure may be justified sufficiently close to the
second-order phase transition at Hc2 where the super-
conducting order parameter is small enough.

A careful reader may note here that due to the Pauli
paramagnetic pair-breaking effect (Fulde, 1969), the
transition should turn first order, in which case the dis-
continuous jump of the order parameter at the transition
point may not allow the proposed expansion. As shown
in the Introduction, however, the magnitude of this jump
is very small on the full scale of the order parameter.

A more serious problem concerns the use of the
normal-state Hamiltonian for a uniform electron gas in
an external magnetic field as the zeroth-order Hamil-
tonian, since the infinite degeneracy of the correspond-
ing unperturbed eigenfunctions invalidates the expan-
sion in the zero-temperature limit. At finite
temperatures and/or in the presence of Landau-level
smearing by disorder, however, the convergence of this
expansion is quickly recovered (for more detailed dis-
cussions see Secs. II.C.2 and II.C.5).

Thus, assuming a second-order or nearly second-order
phase transition at Hc2 , neglecting quantum fluctuations
(i.e., time dependence) of the pair field, and terminating
the expansion in D at fourth order, we recover the form
(Maniv, Markiewicz, et al., 1992; Maniv, Rom, et al.,
1992; Tesanovic and Andreev, 1994)
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Z5Z0E DD~rW !DD* ~rW !exp$2bFG@D~rW !,D* ~rW !#%,

(28)

where

FG5E d3r1d3r2F 1
V

d~rW12rW2!2K2~rW1 ,rW2!GD~rW1!D!~rW2!

1
1
2 E d3r1d3r2d3r3d3r4K4~rW1 ,rW2 ,rW3 ,rW4!D~rW1!

3D!~rW2!D~rW3!D!~rW4!1O~D6! (29)

and the electronic kernels K2 and K4 are expressed in
terms of the normal-state electronic Green’s function
Gs

0 (rW1 ,rW2 ;vn) with spin components s5� ,� and Mat-
subara frequencies vn5(2n11)pkBT as

K2~rW1 ,rW2!5
kBT

\2 (
n52`

`

G�
0~rW2 ,rW1 ;vn!G�

0~rW2 ,rW1 ;2vn!

(30)

and

K4~rW1 ,rW2 ,rW3 ,rW4!5
kBT

\4 (
n52`

`

G�
0~rW2 ,rW1 ;2vn!

3G�
0~rW2 ,rW4 ;vn!G�

0~rW3 ,rW4 ;2vn!

3G�
0~rW3 ,rW1 ;vn!.

As discussed in Sec. II.A, the mean-field approxima-
tion can be obtained from the stationary condition of FG
with respect to the variation of D(rW) [or D* (rW)]. This
yields a Ginzburg-Landau-like equation, which is very
difficult to solve exactly because of its nonlinear term.
The linear equation

1
V

D~rW !5E d3r1K2~rW1 ,rW !D~rW1! (31)

is useful sufficiently close to the second-order phase
transition H→Hc2 , where D(rW)→0. It is therefore an
equation determining the critical field Hc2(T). To solve
this equation one may attempt to solve the eigenvalue
problem of the integral operator *d3r1K2(rW1 ,rW), i.e.,

E d3r1K2~rW1 ,rW !D~rW1!5AD~rW !, (32)

thus reducing Eq. (31) to an algebraic equation 1/V
5A.

The schematic phase diagram shown in Fig. 1 corre-
sponds to such a solution. As discussed in the Introduc-
tion, near the bottom of the Hc2(T) line where Hc2(T
→Tc)→0, thermal excitations provide the dominant
mechanism of pair breaking. The spatial decay of the
pair-correlation function K2(rW8,rW) is governed by the
thermal mean free path z(T)5\vF /pkBT , T'Tc . The
latter, which is of the order of the Cooper-pair coher-
ence length at zero temperature j(T50)
50.18\vF /kBTc , is much smaller than the magnetic
length aH [which is approximately equal to the pair-
correlation length near the critical temperature j(T
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→Tc)→`]. Since the order parameter D(rW) varies on the
scale of j(T)@z(T), T→Tc , one is allowed to use a
gradient expansion of K2 . To second order in this ex-
pansion (the first-order term vanishes by symmetry) one
recovers the well-known Ginzburg-Landau equation,
first derived from the microscopic BCS theory by
Gorkov (1959); hence

2S ¹W 2
2ie

c
AW D 2

D~rW !'j~T !22D~rW !, (33)

where j(T)5j(0)/Aln @Tc(0)/T# is the temperature-
dependent coherence length, Tc(0)
5(2g\vD /pkB)exp@2 1/VN(0)# is the well-known
BCS (zero-field) transition temperature, vD is the De-
bye cutoff frequency, and g'0.5772 is Euler’s constant.

This equation has the form of the Schrödinger equa-
tion for a free particle with charge 2e in a magnetic field
HW 5¹W 3AW . For the ground Landau level of this ‘‘par-
ticle,’’ (\/2)(2eH/2m* c), where m* is an effective elec-
tronic mass, Eq. (33) reduces to the simple equation
2eH/ch 5j(T)22, or &j(T)5aH , and so determines
Hc2(T)5 f0/2pj(T)2.

Climbing up the Hc2(T) line with the magnetic field
by lowering the temperature, such that kBT,\vcAnF or
z(T).aH (see Fig. 1), one enters the broad region of
diamagnetic pair breaking. In this region the spatial
variation of the electronic kernels is governed by the
magnetic length. Since the order parameter varies on the
same length scale, the gradient expansion is not valid in
this region. It was noted by Helfand and Werthhamer
(1964), however, that as in the situation in the thermal
regime, a ground-state Landau (gauge) wave function
for a particle with charge 2e in a magnetic field with an
arbitrary guiding-center projection is an exact eigen-
function of the integral operator in Eq. (32). A particu-
lar symmetric gauge version of this solution, given by
Eq. (24) with f(z)5const, was proposed two years later
by Rajagopal and Vasudevan (1966a, 1966b), who pro-
vided an explicit expression for the eigenvalue A, that is,

A5
1

4paH
2 (

n ,n850

`
~n1n8!!

2n1n8n!n8!

3E dkz

2p

tanh~bjn ,kz
/2!1tanh~bjn8,kz

/2!

jn ,kz
1jn8,kz

, (34)

where jn ,kz
5\vc(n11/2)1 \2kz

2/2m* 2EF .
Three aspects of this solution should be emphasized.
(1) The energy eigenvalue A, Eq. (34), is infinitely

degenerate, a condition associated with the complete ar-
bitrariness of the guiding-center projections qk in Eq.
(23). In the symmetric gauge picture the degeneracy is
also associated with the arbitrariness of the zeros of the
function f(z) in Eq. (24). This degeneracy is just a math-
ematical reflection of an important physical fact, namely,
that the quadratic term in the superconducting free en-
ergy (29) does not include any interaction between vor-
tices. The quartic term introduces such an interaction
and is therefore crucially important for the determina-
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tion of the stable vortex configuration of the supercon-
ductor even infinitesimally close to Hc2 .

(2) For any solution of Eq. (32) the quadratic term of
the free energy (29) is a local functional of D(rW),

FSC
(2)5S 1

V
2AD E d3r1uD~rW1!u2, (35)

and so is independent of the phase of the order param-
eter. This feature is again exclusive to the quadratic term
only; the quartic term (and all higher-order terms as
well) has a very significant phase dependence, which will
be discussed in Sec. II.C.3.

(3) The mixing of different Landau levels involved in
pairing is very strong. This aspect of Eq. (34), which is
consistent with what was established in Sec. II.B, can be
illustrated by considering the asymptotic behavior of the
combinatorial factor:

~n1n8!!

2n1n8n!n8!
→S 1

pn D 1/2

expF2
~n2n8!2

4n G (36)

for large Landau-level indices n ,n8, which reflects a
slow decay of the overlap integral between the two Lan-
dau orbitals as a function of the relative pair energy.
Note that in this limit the Landau-level energy may be
replaced by the kinetic energy of a free particle, namely,
\vc(n11/2)→\2k2/2mc , or n→ 1

2 (kaH)2. In this repre-
sentation the exponent in Eq. (36) becomes (k2

2k82)2aH
2 /8k2, implying that the relative momentum of

the electron pair Dk;1/aH , or that the relative spatial
distance Dr;aH .

The highest sector of the Hc2(T) line in Fig. 1 is the
region of significant quantum magnetic oscillations; here
\vc*2p2kBT , or alternatively LT>aH . As we have al-
ready indicated, the parameter nF5EF /\vc is a large
number, of the order of 100 in a typical situation. Con-
sequently, the quantum effects under study here are of
an evident semiclassical nature. It was concluded in the
previous section, following the detailed study of Dukan
et al. (1991, 1994), that for large nF values the relative
abundance of the zeros of the matrix element Dn ,n(qW ),
which are of order higher than 1, is much smaller than
that of first-order zeros (i.e., by a factor of 1/nF). The
inclusion of off-diagonal matrix elements further com-
plicates the calculations but does not change the nature
of the zeros of the quasiparticle spectrum. This feature
has important implications concerning the Landau band
density of states, as discussed in Sec. II.B.1.

It is therefore desirable to find the explicit depen-
dence of the dHvA amplitude, not only upon the
strength D0 of the superconducting order parameter but
also on the parameter nF . With this aim in mind we
shall now follow an approach taken by Maniv et al.
(Maniv, Rom, Vagner, and Wyder, 1992, 1994, 1997;
Zhuravlev, Maniv, Vagner, and Wyder, 1997, 1999), in
which the semiclassical nature of the electronic propaga-
tors is exploited to derive analytical expressions for the
relevant physical observables, and thus to reveal their
dependence on nF .
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For the sake of simplicity, and without missing the
main physical point, we may use here a 2D electron-gas
model. This is because for an isotropic 3D electron-gas
model the dHvA oscillations in the semiclassical limit
are dominated by an effective 2D momentum subspace,
which corresponds to the extremal cross section kz50 of
the 3D Fermi sphere. It should be stressed, however,
that under some extreme (quantum) conditions the ex-
tremal orbit approximation may not be valid; this will be
discussed in Secs. II.C.2 and II.C.4.

An important technical advantage of this approach is
avoidance of the strong Landau-level mixing encoun-
tered in the previous section by using the analytical ex-
pression for the electronic Green’s function in the sym-
metric gauge (Bychkov and Gorkov, 1962),

Gs
0 ~rW2 ,rW1 ;vn!5exp@ ix~rW2 ,rW1!#G̃s

0 ~r ;vn!, (37)

where x(rW2 ,rW1)[@rW23rW1#•HW /H , G̃s
0 (r ;vn)

}e2r2/2(nLn(r2/2)/(ivn2jn ,s), r[urW12rW2u, and Ln is
the Laguerre polynomial. Summing over the Landau-
level index by means of the Poisson summation formula
(Zhuravlev et al., 1997), it is guaranteed that all possible
off-diagonal Landau-level pairing will be automatically
included. Useful approximations can thus be employed
due to the fact that only large values of the Landau-level
index (i.e., for n;nF) are of importance.

The order parameter used in calculating the free en-
ergy (29) has a variational form based on the degenerate
lowest-Landau-level solutions of the linear Eq. (31)
since, as shown by Eilenberger (1967a, 1967b), the total-
ity of these solutions constitutes a complete basis set of
functions in the subspace of the lowest-Landau-level
wave functions. The form selected for D(rW) is given by
Eq. (23), where D0 , as well as g and ax , which deter-
mine the specific vortex lattice geometry, are variational
parameters. The explicit form of the variational coeffi-
cients ck appearing below Eq. (23) can be shown to con-
stitute a set of exact stationary solutions for Gorkov’s
free-energy functional (29) with respect to D(rW) (see
Maniv, Markiewicz, et al., 1992; Maniv, Rom, et al.,
1992).

The result of this calculation for the eigenvalue A in
Eq. (35) is instructive since the three regions shown on
the phase diagram in Fig. 1 can be readily identified.
Thus we find

A52D2D

1
z~T ! (

n50

nD21

Re~qn!E
0

`

dr

3expF22~2n11 !
1

z~T !
r2

1

2aH
2 r2G , (38)

where

qn5
exp~2puṽnu1ipm̃c!

cos 2pnF1cosh~2pṽn1ipm̃c!
,

ṽn5vn /vc , m̃c5mc /m0 , and nD5TD/2T with TD de-
noting the Debye cutoff temperature.

In this expression the integration variable is the com-
mon distance [see Eq. (30)] r5urW12rW2u propagated by
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the two electrons forming a Cooper pair (see Fig. 12).
The integral measures the probability amplitude for
both electrons to propagate over a common distance in
space. It can be seen that in the thermal regime T
'Tc , aH@z(T), so the first term in the exponent in Eq.
(38) dominates the integral, which is effectively carried
out over a (pair-propagation) distance of the order of
z(Tc). In this case the simple integral yields the well-
known BCS result

A5D2D (
n50

nD21 1

~n11/2!
5D2DE

0

pnD dn

n
tanh n .

In the diamagnetic region aH!z(T) the second expo-
nent dominates the integral as long as the thermal exci-
tation frequency n does not exceed the value z(T)/aH
@1; the effective pair-propagation distance in this re-
gion is aH . Larger thermal frequencies n.z(T)/aH are
still important, however, due to the well-known logarith-
mic divergence, and the final result requires a careful
calculation that leads to the superconducting condensa-
tion energy in the diamagnetic regime (Helfand and
Werthamer, 1966; Werthamer et al., 1966),

A21/V'D2D lnFpkBTDe21/ye1.147

~\vcEF!1/2 G
5D2D lnF aH

&j~0 !
G , (39)

where D2D5mc/2p\2 is the single-electron density of
states (per spin) in a 2D electron gas, and y5D2DV .
Note, however, that in this case the effective pair-
propagation distance does not exceed the magnetic
length aH .

At this point it is worth emphasizing the short-range
character of the pair propagation in space implied from
the essentially Gaussian integration over r in Eq. (38),
and its complete separation from the pair center-of-mass
position in the entire vortex lattice, as reflected by the
separable integration over rW1 in Eq. (35). The origin of

FIG. 12. The semiclassical picture of paired orbits in a 2D
electron gas under a perpendicular magnetic field. The paired
electrons are in close mutual proximity within a small region of
the order of a magnetic length where their local momenta are
nearly antiparallel (kW 8'2kW ).
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this feature is described in Fig. 12, where the mechanism
of electron pairing near the extremal orbit is illustrated.

The relevant physical meaning of this localization is
that the orbital guiding centers of the two electrons can-
not move with respect to each other as a result of the
pairing interaction over a distance larger than the size of
a unit cell. It can therefore be immediately concluded
that, to second order in Gorkov’s perturbation theory,
no magnetic breakdown of the cyclotron orbits by the
vortex lattice takes place.

2. Pairing in the presence of Landau quantization

It is now possible, with the aid of the perturbative
scheme presented above (Sec. II.C.1), to investigate in
some detail the exotic possibilities discussed in the In-
troduction of electron pairing in Landau levels. Within
the framework of this scheme the Landau quantization
of the normal-electron states should be reflected
(through the condensation energy A) as quantum mag-
netic oscillations in the transition temperature Tc2(H).
Let us first consider the ideal 2D model, for which the
effect of Landau quantization is complete. We choose
the limit of zero g factor, i.e., when m̃c50 [see Eq. (38)].
Such a situation can be realized in experiment by tilting
the magnetic-field direction with respect to the axis of
the cylindrical Fermi surface (Wosnitza, 1996). The ef-
fective density-of-states function for a pair of electrons
with opposite spins at the Fermi energy

qn5
eXn

cosh Xn1cos~2pnF!
, (40)

where Xn52puvnu/\vc , is strongly divergent (like qn

.4/Xn
2) in the very-low-temperature limit Xn!1, at cer-

tain discrete values of the magnetic field where a Lan-
dau level coincides with the Fermi energy (i.e., when
nF5n11/2). This divergence is due to the fact that the
quantized electronic orbits are crossing the cylindrical
Fermi surface in pairs of degenerate spin-up and spin-
down states, and so are leading to a resonantly enhanced
Cooper-pair density of states. This resonant phenom-
enon also occurs for nonzero integer values of the g
factor, i.e., whenever m̃c is an integer (see, for example,
Fig. 13).

FIG. 13. Single-electron spectrum of a 2D electron gas with a
finite Zeeman spin splitting corresponding to g54, where elec-
tron pairing under an external magnetic field occurs on degen-
erate spin-up and spin-down levels (resonant pairing).
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Under these circumstances the condensation energy
term in the linearized self-consistency Eq. (31) diverges
at T→0 like 1/T , i.e.,

A→D2DS \vc

16kBT D S \vc

pEF
D 1/2

,

so that the corresponding transition temperature in-
creases with the strength of the magnetic field as (see
Fig. 14)

Tc~H !→y* S 1

16Ap
D S \vc

kB
DnF

21/2 ,

where 1/y* 51/y21.15. The effective enhancement of
the electron-electron coupling constant y is due to non-
singular contributions to A (associated with the off-
diagonal terms in the Landau-level representation).

This highly singular behavior is peculiar to the 2D
model: introduction of an energy dispersion along the
magnetic field (z) direction significantly weakens the
singularity. It is also evident that a slight change in the g
factor to a fractional value leads, by destroying the reso-
nance condition, to a quick suppression of this singular-
ity. However, as will be shown below, singularities of
similar origin, though less dramatic, also exist in 3D
electron systems with fractional g factors.

It will therefore be instructive to consider here a
model of quasi-2D electron gas in an external magnetic
field oriented perpendicularly to the easy-conduction
planes, with energy dispersion along the field (z) axis
given by the simple tight-binding form jkz

5t'(1
2cos kzd), where d is the corresponding lattice constant,
and t' is the miniband width. We also assume a general
value (i.e., not necessarily integer) for the g factor. To
offset the destructive influence of the Zeeman splitting,
one can follow Gruenberg and Gunther (1966), who ex-
ploited the idea of Fulde and Ferrel (1964) and Larkin
and Ovchinnikov (1964), by allowing for a spatially non-
uniform order parameter along the field (z) direction,
i.e.,

D~x ,y ,z !5D~x ,y !eiQz,

where Q is a wave number yet to be determined.

FIG. 14. The Hc2(T) line near the critical point to reentrant
superconductivity associated with Landau quantization in a 2D
electron gas. From Maniv, Rom, et al., 1992.
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As discussed in Sec. II.C.1, pair propagation in the
plane perpendicular to the external magnetic field is re-
stricted to real-space distances r of the order of the mag-
netic length aH (see Figs. 12 and 15), which is much
smaller than the Larmor radius rF of an electron on the
quasicylindrical Fermi surface under study. Thus it is ac-
ceptable to linearize the action integral of the semiclas-
sical pair propagator [i.e., the 3D version of Eq. (30)] in
the corresponding small parameter r/2rF , provided that
only large-Landau-level indices (i.e., when n@1) are
considered (see Maniv, Markiewicz, et al., 1992; Maniv,
Rom, et al., 1992). Assuming for simplicity that g,1, we
denote by n0(kz ,s) the index of the Landau sublevel
with spin projection s crossing the Fermi energy quite
close to kz (see Fig. 2), that is, n0(kz ,s)5Int@(EF
2jkz

)/\vc 2 1
2 2 1

4 gs# . We also denote by m̃(kz ,s) the
corresponding fractional residue of the chemical poten-
tial, i.e., m̃(kz ,s)[(nF2 j̃kz

2 1
4 gs)2@n0(kz ,s)11/2# ,

where the tilde means energy in units of \vc .
In the very anisotropic limit, where t'&\vc , the ei-

genvalue A can be written in the same form as Eq. (38),
but with qn replaced by

qn~Q !5 ~1/2p! E dkz Re@Is~kz ,vn!I2s~Q2kz ,2vn!# ,

Is~kz ,vn!51/$12exp@2Xn12pim̃~kz ,s!sgn~vn!#%.

It should be stressed that the assumption n0(kz ,s)@1
implies that pairings involving small Landau-level indi-
ces and large kz (i.e., ;kF) are not taken into account
here.

Thus in the zero-temperature limit, where ṽn50→0, a
resonant pairing situation [i.e., when Is(kz ,vn)I2s(Q
2kz ,2vn).4/Xn

2] can be realized at a certain value of
kz5kz ,0 if the wave number Q is selected in such a way
that

m~kz ,0 ,s!5m~Q2kz ,0 ,2s!50 (41)

(see Fig. 16). The wave numbers kz ,0 and Q depend on
the magnetic-field strength H and, as clearly shown in

FIG. 15. The semiclassical picture of paired orbits in an isotro-
pic 3D electron gas in a mixed real-space/reciprocal-space rep-
resentation (in units of magnetic length and inverse magnetic
length, respectively). Note the paired extremal orbits with kz

50,n5nF21/2, as well as the lowest-Landau-level orbits with
kz'6kF ,n50.
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Fig. 16, such simultaneous solutions exist only within
magnetic-field intervals below certain critical values
Hcr , for which the Fermi energy crosses both of the
Zeeman split Landau sublevels. Considering such a situ-
ation, it can be shown that

A→ 1
8p2v~kz ,0 ,Q !

Dq2D

1

nF
1/2 S \vc

t'
D lnS \vc

2pkBT D ,

(42)

where v(kz ,0 ,Q)5sin(kz,0d)1sin@(kz,02Q)d# , and
Dq2D5(1/d) D2D .

Note that, as long as gÞ0, v(kz ,0 ,Q)Þ0 since the
vanishing of the Fermi velocity along the magnetic-field
direction, i.e., sin(kz,0d)50, or sin@(kz,02Q)d#50, can
take place only separately for each of the paired elec-
trons (see Fig. 16). Only for zero Zeeman splitting are
there certain magnetic-field values at which the longitu-
dinal Fermi velocities of both electrons vanish simulta-
neously, so that v(kz ,0 ,Q)50, resulting in a stronger di-
vergence of the pair condensation energy, i.e.,

A→ 1
8p2 Dq2D

1

nF
1/2 F \vc

~ t'kBT !1/2G . (43)

It should be stressed again that in the above analysis
the wave number Q was selected following Fulde and
Ferrel (1964; see also Larkin and Ovchinnikov, 1965) to
offset the Zeeman splitting of the Landau level with the
extremal index n'nF21/2. In considering more isotro-
pic 3D systems, however, different selections of the wave
number Q could be more favorable, in particular those
corresponding to a large momentum along the field di-
rection (i.e., kz'kF) and small Landau-level indices
n ,n8; see Fig. 2. Indeed, the combinatorial factor (n
1n8)!/2n1n8n!n8! for n'n8'1 is considerably larger
(by pnF

1/2) than its value at n5n8'nF . Let us look more
closely at such a 3D model. The parameter A can be
expressed by the exact quantum-mechanical formula

FIG. 16. A figure similar to Fig. 2 for a quasi-2D electron gas.
Note the critical behavior of the Fulde-Ferrel-Larkin-
Ovchinikov wave number Q as a function of magnetic field.
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A5
kBT

4paH
2 (

n52nD

n5nD E dkz (
n ,n850

`
~n1n8!!

n!n8!2n1n8

3gn
1S kz2

Q

2
,ivnD gn8

2 S kz1
Q

2
,2ivnD , (44)

where @gn
6(kz ,ivn)#215EF2\vc(n11/26g/4)2jkz

6ivn . For t'*EF the corresponding energy dispersion
is essentially 3D.

In the singular situation investigated here the domi-
nant contribution to A originates in the diagonal ele-
ments n5n8. Selecting the Fulde-Ferrel-Larkin-
Ovchinnikov wave number Q to offset the Zeeman
splitting of the n50 Landau level [i.e., taking Q
5 (1/aH)(g/A8nF); see Fig. 2], we get

A→ 1
8p2 Dq2DS \vc

2t'
D 1/2

(
n50

nm ~2n !!

~n! !222n

1

AnF2n

3lnS \vD

A~pkBT !21Gn
2 D , (45)

where Gn5(gn/8nF) \vc(g,1), with the Matsubara
frequency cutoff vD5(2nD11)pkBT!m , and the
Landau-level cutoff nm!nF . If the Zeeman splitting is
not too small and T→0, the dominant contribution
originates from the lowest Landau level (n50) and

A→ 1
8p2 Dq2D

1

nF
1/2 S \vc

2t'
D 1/2

lnS \vD

pkBT D . (46)

Note the similarity to Eq. (42) derived with Q corre-
sponding to the extremal Landau level, n'nF . The na-
ture of the singularity in the present case, in contrast to
the resonant pairing situation described by Eq. (43),
does not change in the limit g→0; only the prefactor of
the (logarithmic) singularity is enhanced. The enhance-
ment [i.e., when the small factor 1/nF

1/2 in Eq. (46) is
replaced by unity] is quite significant due to the large
value of nF . Under these circumstances the global field
dependence of the condensation energy A, obtained
within the fully isotropic 3D model (i.e., for t';EF) in
the semiclassical limit nF@1, is similar to that found by
Rasolt and Tesanovic (1992) in the extreme quantum
limit nF;1, where a new (reentrant) branch of the
Hc2(T) line (similar to the upper branch in Fig. 14) was
discovered.

In the low-field region (Helfand and Werthamer,
1966), the great number of nonsingular off-diagonal
paired Landau-level channels overwhelms the diagonal
channels, leading to a condensation energy

A QC'
1

8p2 Dq2D lnS \vD

A\vcEF
D

for which the Hc2(T) curve turns back to the nearly
temperature-independent (i.e., the lower) branch shown
in Fig. 14.

It is evident that the exotic pairing states described in
this section are very sensitive to the scattering of paired
electrons by impurities. According to the conventional
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wisdom, this singularity should be quickly washed out by
impurities. A more careful treatment would reveal, how-
ever, that the conventional averaging procedure over im-
purity realizations, which leads to an imaginary self-
energy part in the single-electron propagators, is not
valid for the extremely low temperatures studied here.
At such low temperatures, the presence of long-range
coherent paths of electron pairs (Altshuler, 1985; Lee
and Stone, 1985), which are not influenced by static dis-
order, could lead to the creation of mesoscopic super-
conducting droplets at magnetic fields far above the qua-
siclassical Hc2 (see Spivak and Zhou, 1995). A proper
theoretical treatment of this problem is, however, far be-
yond the scope of this article.

Finally, it should be noted that the strength of the
divergences described above increases progressively
with increasing order in the perturbative expansion
of the free energy in the superconducting order param-
eter, resulting in the breakdown of the entire expansion
at some nonzero (though low) temperature. In this case
a nonperturbative approach yields in the zero-
temperature limit a regular, nonanalytic dependence on
D0

2. The explicit form of this dependence is known only
in very special limiting cases (see, for example, Sec.
II.C.5, or Zhuravlev et al., 1999 and Maniv et al., 1998).
Strictly speaking, the nature of the true ground state of
the microscopic Hamiltonian in a stationary, uniform ex-
ternal magnetic field is poorly understood. The conven-
tional ladder approximation for the two-particle Green’s
function, which leads to the Cooper instability at H50
(Schrieffer, 1964), is not rigorously valid at HÞ0 and
T50. Divergences in the electron-electron channel (see
MacDonald et al., 1992), which are equivalent to the sin-
gularities discussed above, as well as in the electron-hole
channel (Bychkov, 2000), may reflect competition be-
tween the superconducting and charge-density-wave-
type instabilities. The electron-hole channel is expected
to be particularly dangerous in the more isotropic 3D
systems, where Fermi-surface nesting corresponding to
the effective 1D energy dispersions becomes significant.

A possible scenario, proposed by Tesanovic (1995),
describes the low-temperature phase as a charge-density
wave of Cooper pairs, which contains no Abrikosov vor-
tices and exhibits no macroscopic phase coherence at
finite T (see Sec. IV for more details). It is determined
by a new saddle point of the BCS Hamiltonian, unre-
lated to the superconducting saddle point.

At present the problem is, however, far from fully
settled. Adopting a phenomenological approach, one
might argue that the coexistence of superconductivity
and quantum magnetic oscillations, verified in many
dHvA experiments, justifies the use of the postulated
effective BCS model Hamiltonian, whereas the apparent
nonanalytic nature of the relevant thermodynamic po-
tentials can be eliminated by introducing a small amount
of Landau-level smearing, as explained in Sec. II.C.5.

3. Phase coherence and weak magnetic breakdown in the
semiclassical limit

As indicated in the Introduction, potentially the most
dangerous killer of dHvA oscillations in the vortex state
Rev. Mod. Phys., Vol. 73, No. 4, October 2001
is the Landau-level broadening effect associated with
delocalized orbitals, described heuristically in Sec. I.B.3
and studied systematically in Sec. II.B.2. Here we con-
sider further evidence for the preliminary conclusion of
Sec. II.C.1, stating that the pair potential does not lead
to significant breakdown of the localized quasiparticle
cyclotron orbits. This remarkable phenomenon, which
was presented in Sec. II.C.1 by examining only the lead-
ing term in the perturbation theory, also seems to hold
to higher orders. In contrast to the second-order term,
however, in the higher-order terms the existence of
phase coherence in the corresponding propagators is of
crucial importance. Let us discuss now only the fourth-
order term. Integrating the quartic term in Eq. (29) over
the four-electron center-of-mass vector RW 5 1

4 ( l51
4 rW l , one

gets an expression in which the local gauge factors of the
electronic propagators are grouped together with the or-
der parameters but are separated from the translation-
ally invariant parts of the electronic propagators, i.e.
(with all lengths measured now in units of magnetic
length),

FSC
(4)5E d2Qe24Q2E d2Sd2TD~SW ,TW !

1
b (

n
K̃4,n~$r i%!,

(47)

where

K̃4,n~$r i%!5G̃0~r1 ,2vn!G̃0~r2 ,vn!

3G̃0~r3 ,2vn!G̃0~r4 ,vn! (48)

and

D~SW ,TW !}Ne4i(SyTx1SxTy) (
m1 ,m2

e22igm1m214im1Tx14im2Sx

3exp@2~m112Sy!22~m212Ty!2# . (49)

In these expressions rW l5rW l112rW l , l51, . . . ,4, rW5[rW1 ,
and QW 5 1

8 (rW 21rW 42rW 12rW 3), SW 5 1
4 (rW 32rW 1), TW 5 1

4 (rW 4
2rW 2) are the various relative coordinates of the four
electrons involved. The discrete variables m1[ 1

2 qk22k1

and m2[ 1
2 qk32k1

are distances between the Bragg
chains labeled k1 ,k2 ,k3 in the Abrikosov lattice (see
Fig. 7). The factor N (i.e., the total number of vortices),
appearing in the right-hand side of Eq. (49), arises from
the translational invariance of the corresponding free-
energy density in the Abrikosov lattice with respect to
the center-of-mass coordinates.

Equations (47)–(49) provide an exact expression for
the quartic term in the Gorkov expansion. Note that it
depends only on relative coordinates of electrons (and
vortex chains), a result consistent with the nature of the
pair potential D(rW) as representing quasiparticle-
quasihole interaction.

The Gaussian decaying factors in Eq. (49) allow a
considerable simplification by approximating the lattice
sum with the dominant contribution at m1'22Sy and
m2'22Ty , resulting in the following expression:

D~SW ,TW !}Ne24i(2gSyTy1SyTx1SxTy).
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It is very important to stress here that, unlike the situa-
tion with the quadratic term, the function D(SW ,TW ),
which includes all phase-dependent factors of the pair
potentials and all gauge factors of the electronic propa-
gators, has a very significant effect. By varying the rela-
tive coordinates rW l over distances much larger than the
magnetic length [actually the spatial extent of
G̃0(r l ,vn), which is bound only by the cyclotron diam-
eter of an electron at the Fermi surface], the function
D(SW ,TW ) oscillates violently, interfering strongly with the
oscillatory behavior of the electronic kernel K̃4,n($r i%).
Thus, when one integrates over the independent coordi-
nates SW and TW , there is a great deal of destructive inter-
ference except near stationary points. The stationary
points for a fixed QW are restricted to S ,T<Q and corre-
spond to the collinear vectors

rW 15r1nW , rW 252r2nW , rW 35r3nW , rW 452r4nW ,

where nW 52QW /Q and (rW i50.
A graphic depiction of the situation is shown in Fig.

17; the circles represent the cyclotron orbits of four elec-
trons near the Fermi surface, with radii r;A2nFaH
@aH corresponding to the reduced Green’s functions
appearing in Eq. (48). The whole picture is translation-
ally invariant but very sensitive to relative translations
of orbits with respect to each other. The contributions to
the free energy from most orbital configurations inter-
fere destructively, whereas only the collinear configura-
tions shown in the figure interfere constructively.

Thus, as in the second-order case, no motion of orbital
centers relative to each other over a distance larger than
the size of a unit cell (;aH) is caused by the pair poten-
tial to fourth order. Similar behavior is also expected to
any higher order. We shall see later how this ‘‘coherent’’
picture is broken down by disorder of the vortex lattice

FIG. 17. Four-electron orbits near the Fermi surface with the
dominant contributions to the quartic term of the supercon-
ducting free energy. Note the collinear configurations of the
propagation vectors and their restriction to a region on the
order of a magnetic length.
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(Sec. III) or by vortex lattice thermal fluctuations (Sec.
IV.B). These effects lead to relative motions of orbitals
over distances much larger than aH , which result in a
significant incoherent magnetic breakdown of the cyclo-
tron orbits and the destruction of small paramagnetic
current loops.

The restriction of all propagation vectors to lie within
a region of unit-cell size (which is the smallest length
scale of the problem) suggests that the higher-order
terms in Gorkov’s expansion may be written approxi-
mately by a local expression similar to Eq. (35). For the
quartic term, Zhuravlev et al. (1997) showed that

FSC
(4)'BE d2RuD~RW !u4, (50)

where

B}~1/nF
3/2!E dQf~Q !e24Q2E

2Q

Q
dSE

2Q

Q
dTe2(S21T2)

and f(Q)5(nqn
2e28(2n11)aHQ/z(T).

This result is of fundamental importance since it
shows that the well-known local form of the Ginzburg-
Landau free-energy functional, derived originally by
Gorkov in the thermal regime near Hc2(T→Tc)→0, has
a much broader range of validity, extending all the way
through the diamagnetic regime into the region of quan-
tum oscillations. In addition, we have found that this
locality is closely related to the relatively small effect of
magnetic breakdown in the semiclassical limit of the
Landau levels.

It should be noted here that the coherence effect dis-
cussed in this section is a very delicate feature, which
can easily be overlooked. For example, Vavilov and
Mineev (1997) recently presented an analytical calcula-
tion of the quartic term using the diagonal approxima-
tion in the Landau-level representation. This approxi-
mation eliminates the violently oscillating phase factors
that are responsible for gross cancellations of nonlocal
terms as discussed in detail above. Another approxima-
tion that leads to a similar situation will be discussed in
Sec. III.A.

4. Self-consistent harmonic expansion

In a typical dHvA experiment, various mechanisms of
Landau-level broadening and phase smearing (Shoen-
berg, 1984a) lead to strong progressive damping of the
Fourier series such that all harmonics may be neglected
with respect to the fundamental. In such an experiment
the superconducting order parameter always acts in par-
allel with these mechanisms. The most fundamental type
of smearing is, of course, thermal smearing of the Fermi
distribution function. Other smearing effects, such as
those due to disorder, may be described by an effective
temperature, the Dingle temperature (Dingle and
Shoenberg, 1950; Springford, 1980). Let us assume here
for the sake of simplicity that only thermal smearing is
present, which is sufficiently strong [2p2kBT/\vc;1, or
z(T)/aH;2pA2nF] to guarantee the quick convergence
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of the harmonic expansion. In the next section we shall
discuss specifically the influence of nonmagnetic impu-
rity scattering.

Using the local forms of the quadratic and quartic
terms, Eqs. (35) and (50), respectively, in the free-energy
functional FG with the order parameter D(rW) given by
the generalized Abrikosov expression Eq. (23), FG can
be written in variational form (Maniv, Markiewicz, et al.,
1992; Maniv, Rom, et al., 1992)

fs[
FG

NpaH
2 5D2DF2ãD0

21
B̃

~pkBTc!2 D0
4G , (51)

where ã5A/D2D21/l , with A given by Eq. (38).
In Eq. (51)

B̃5ba

2paH
3

z~T !z~Tc!2 (
n50

nD

Re~qn
2!

3E
0

`

dre24(2n11)aHr/z(T)2r2
erf2~r/& ! (52)

and ba is the well-known Abrikosov parameter (Kleiner,
Roth, and Autler, 1964), which depends on the geometry
of the lattice through the variational parameters g and
ax . A particularly useful expression for ba can be writ-
ten as

ba5Az/p (
s ,p52`

`

exp@2z~s21p2!#cos~2gsp !, (53)

with z5p2/ax
2 . The variations over the geometrical pa-

rameters g and ax lead to a minimum in the free energy
for g5p/2, ax5(2p/))1/2, as well as for ax8
5(2p))1/2, depending on whether the family of Bragg
chains is selected parallel to the principal axis x or to x8
(see Fig. 7). Both minima describe a triangular Abriko-
sov lattice with bA.1.159 (Kleiner et al., 1964; see Fig.
18). Note that each axis can be selected in three equiva-
lent ways in this lattice. All equivalent configurations
can be obtained by exploiting the invariance of the Abri-

FIG. 18. Dependence of the Abrikosov parameter bA on z
5(p/ax)2. The two minima at z15p/2) and z25)p/2 cor-
respond to a triangular Abrikosov lattice (bA51.16) with dif-
ferently selected Bragg-chain axes. The maximum at z15p/2,
corresponds to the square lattice.
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kosov parameter, Eq. (53), under the transformations
z85p2z/(z21g2), g85p2g/(z21g2), and z85z , g8
52g , or g85g1np with an arbitrary integer n .

As already indicated in the calculation of the conden-
sation energy in the diamagnetic regime z(T)@aH , Eq.
(39), the uniform (nonoscillatory) part gains a large con-
tribution from many low-lying thermal excitations
within the Debye frequency range. Similarly, as can be
seen from Eq. (52), the sum over the Matsubara fre-
quency n for the zeroth harmonic (for which qn→an

[0]

52) is undamped as long as n&z(T)/aH;AnF. The re-
sulting expression for the uniform part of the supercon-
ducting free energy (per unit cell in the Abrikosov lat-
tice) is

fs
[0]'

\vc

2paH
2 F2D̃0

2 lnS aH

&j~0 !
D 1

1.38
nF

D̃0
4G , (54)

where D̃0[D0 /\vc .
In contrast, thermal excitations contributing to the

fundamental oscillatory part of the free energy are
strongly damped by the attenuation factor an

[1]

;e22(2n11)p2kBT/\vc, appearing in the harmonic expan-
sion qn5an

[0]1an
[1] cos(2pnF)1¯ . This restricts the

Matsubara sum to the first few terms only, leading to the
following expression for the total magnetization oscilla-
tions (Maniv et al., 1994):

M [1]'MN
[1]F12

p3/2D̃0
2

nF
1/2 1

&bAp3/2D̃0
4

nF
3/2 G . (55)

Here MN
[1] is the fundamental oscillatory part of the

normal-electron magnetization. The additional factor of
1/nF

1/2 in the superconducting terms of Eq. (55) in com-
parison with Eq. (54) reflects the remarkable difference
between the uniform and the oscillatory parts of the free
energy. Since both M [1] and MN

[1] are of first order in the
harmonic expansion, the order-parameter amplitude D̃0
within the brackets should be kept of zeroth order. The
self-consistent mean-field value of D̃D is determined by
minimizing Eq. (54), a condition leading to

D̃0
250.36nF lnF aH

&j~0 !
G

'
~1.7kBTc!2

~\vc!2 @12H/Hc2~0 !# , H→Hc2~0 !,

(56)

which is identical to the well-known high-field limit of
the Gorkov-Ginzburg-Landau superconducting order
parameter.

The above analysis provides a critical test of consis-
tency for the small D expansion presented in this section.
Naturally in such a situation one looks for the small di-
mensionless expansion parameter of the perturbation
theory. The D expansion appearing in Eq. (55) is con-
trolled by the dimensionless parameter x5 D̃0

2/&bAnF

; D̃0
2/nF . The self-consistency condition, Eq. (56), sug-
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gests that this determines a universal critical parameter
of the theory, since according to Eq. (56),

x[
D̃0

2

&bAnF

50.22 lnF aH

&j~0 !
G

'0.22@12H/Hc2~0 !# , H→Hc2~0 !.

Finally, one should be aware of the use of a 2D model
to describe the quantum magnetic oscillations in the vor-
tex state of 3D superconductors, as is done in this sec-
tion. Indeed, the analysis presented in Sec. II.C.2 indi-
cates that the possibility of dominant pairing of
electrons with small Landau-level indices could seriously
call into question the validity of the extremal orbit ap-
proximation. It can be shown, however, that as long as
the harmonic expansion described here is quickly con-
vergent, the extremal orbit scheme is a very good ap-
proximation for the oscillatory part of the free energy.
Furthermore, the corresponding calculation shows that
within this approximation the ratio M [1]/MN

[1] calculated
explicitly for a 2D model [Eq. (55)] is not influenced at
all by the kz dispersion.

5. Scattering by nonmagnetic impurities

In the absence of magnetic field the effect of electron
scattering by nonmagnetic impurities on the quasiparti-
cle properties of a conventional superconductor is
known to be insignificant (Anderson, 1959). In the pres-
ence of strong magnetic field, however, scattering by im-
purities may have a significant effect due to the break-
down of translational invariance and the consequent
removal of the Landau-level degeneracy. The effect is
expected to be particularly strong at extremely low tem-
peratures, where thermal smearing of the Fermi distri-
bution function is very small. The problem has been ad-
dressed in the literature by several authors (Vavilov and
Mineev, 1997; Gvozdikov and Gvozdikova, 1998;
Zhuravlev et al., 1999), who considered only the leading
(i.e., quadratic) term in Gorkov’s expansion and so were
restricted to the close vicinity of Hc2 . Furthermore, the
standard technique of averaging over impurity configu-
rations (Abrikosov et al., 1975) was used in these works.
This may not be valid at very low temperatures because
of the neglect of coherent electron paths (Altshuler,
1985; Lee and Stone, 1985), which may influence elec-
tron pairing significantly (Spivak and Zhou, 1995).

Following Vavilov and Mineev (1997), we expand the
superconducting free-energy average over impurity con-
figurations to second order in the impurity-dressed pair
potential D(rW ,vn),

F̄SC
(2)5

1
V E d2ruD~rW !u2

2kBT(
n
E d2r1d2r2F~rW1 ,rW2 ;vn!,

where
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F~rW1 ,rW2 ;vn!5D~rW1 ,vn!Ḡ0~rW1 ,rW2 ,vn!D* ~rW2 ,vn!

3Ḡ0~rW1 ,rW2 ,2vn!

and Ḡ0(rW1 ,rW2 ,vn) is the normal-electron Green’s func-
tion averaged over impurity configurations, where Zee-
man spin splitting is neglected. It was shown by Vavilov
and Mineev (1997) that in the semiclassical limit the cor-
rection to the pair potential (i.e., the vertex correction)
due to impurities is small (;1/AnF). Neglecting this cor-
rection, and using the relaxation time approximation for
Ḡ0(rW1 ,rW2 ,vn) (with an electronic momentum relaxation
time tsc51/2G), we recover Eq. (38) obtained for the
pure material with the replacement of uvnu by uvn1Gu in
the function qn , defined by Eq. (40) with Xn52p(uvn
u1G)/\vc .

As discussed in detail in Sec. II.C.2, for a clean mate-
rial in the low-temperature limit, Xn!1, this effective
Cooper-pair density-of-states function diverges as qn

.4/Xn
2 whenever a Landau level coincides with the

Fermi energy (i.e., when nF5n11/2). The summation
over thermal excitation (Matsubara) frequencies signifi-
cantly weakens this divergency. To see how this happens
one may use the Fourier series expansion of qn to carry
out the Matsubara summation term by term. This pro-
cedure determines the damping of each harmonic of the
dHvA oscillations. Thus, writing

qn5an
[0]12 (

p51

`

~21 !pan
[p] cos~2ppnF! (57)

with

an
[p]5

exp@22pp~ G̃1uṽnu!#

12exp@24pp~ G̃1uṽnu!#

and G̃5G/\vc , and replacing the Matsubara sum of the
fundamental term by an integral, it is found that the
suppression factor of the fundamental dHvA oscillation
in the vortex state, JSz/JS , is

Rs
[1]512lnF \vc

2p~G1pkBT !G p3/2 D̃0
2

nF
1/2 . (58)

It can be shown that the strength of the divergency
increases with increasing harmonic. For the entire har-
monic series at very strong resonance conditions (i.e., at
nF5half integer) one finds a suppression factor

Rs;12
\vc

Gef

D̃0
2

nF
1/2 . (59)

To complete the discussion let us present here an al-
ternative calculation of the suppression factor in the
limit of small D̃0 , when the diagonal approximation de-
scribed in Sec. II.B.2 is valid. An analytical result de-
rived recently by Zhuravlev et al. (1999) in this limiting
case sheds light on the relationships between different
approaches to the problem. In this calculation the for-
malism developed by Shoenberg (1984b) for various
types of redistribution of the Landau sublevels was
modified to include the effect of the pair potential. As-
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suming an isotropic 3D electron system, the thermody-
namic potential is written as

VQP
osc5

kBT

2p2aH
3 (

p51

`
Q~p !

p3/2 cosF2ppS F

H
2

1
2 D2

p

4 G ,

(60)

where

Q~p !5E
0

` d¸

¸

e2(2pG/\vc)¸

sinhS 2p2kBT

\vc
¸ D Jp~¸!. (61)

The integrand is a product of the Fourier transforms
of three distributions: the Fermi distribution function ac-
counting for thermal smearing, the Lorenz distribution
arising from scattering by nonmagnetic impurities in the
relaxation-time approximation and the distribution asso-
ciated with ‘‘scattering’’ by the pair potential, Jp(¸).
For a small order parameter this integrand is reduced to

Jp~¸!5pd~¸2p !2 K J1~x !

2x UD̃nF

(p)~qW !U2L S ¸

p D u~¸2p !,

(62)

where D̃nF

(p)(qW )52ppDn ,n(qW )/\vc at n5nF21/2, x

[uD̃nF

(p)(qW )uA¸2p , J1(x) is the Bessel function of the

first order and ^¯& stands for integration in qW space
over the magnetic Brillouin zone. It is obvious that for a
vanishing order parameter, Jp(¸)→pd(¸2p) and Eq.
(60) leads to the well-known Lifshitz-Kosevich (1956)
formula. The superconducting contribution to the ther-
modynamic potential is represented by the second term
on the right-hand side of Eq. (62). The negative sign in
front and the proportionality to D0

2 are reminiscent of
the paramagnetic effect discussed in Sec. II.B.2. Using
Eq. (62) in Eq. (61), we can readily see that the integral
over ¸ diverges logarithmically in the limit when the
smearing parameters pkBT ,G , as well as D [p]

;A^uD̃nF

(p)(qW )u2& , all go to zero.
Using the form of the diagonal matrix element pre-

sented in Eq. (26), it can be shown that ^uD̃nF
(qW )u2&

5D̃0
2/ApnF. Defining an effective Landau-level width by

Gef[max~pkBT ,G ,D [1]!, (63)

one then finds that, in the limit when Gef!\vc/2p , the
suppression factor of the fundamental (i.e., p51) dHvA
oscillation is

Rs
[1]512lnS \vc

2pGef
D p3/2D̃0

2

AnF

. (64)

This result is similar to that derived by Miyake (1993)
and by Miller and Gyorffy (1995) in the limiting case
when Gef[D [1]!\vc/2p . In these works the spatial de-
pendence of the order parameter was neglected, so a
superconducting gap appeared around the Fermi sur-
face. The similarity to the gapless situation in the
small-D limit is due to the fact that the opening of a
small superconducting gap on both sides of the Fermi
Rev. Mod. Phys., Vol. 73, No. 4, October 2001
energy is similar to the opening of the magnetic
pseudogap in the middle of the Landau band. There is,
however, a significant difference between the two ap-
proaches even in the present small-D limit, reflected in
the nonlogarithmic prefactor of D̃0

2; in Miller and Gyor-
ffy’s (1995) paper this prefactor is independent of nF , in
contrast to the 1/AnF dependence appearing in Eq. (64).
The appearance of such a dependence is due to the spa-
tial dependence of the order parameter (or in other
words to the q dispersion of the quasiparticle energy),
which is missing in the former models.

It is interesting to note that Eq. (64), derived within
the diagonal approximation for D0!G , pkBT
!\vc/2p , is almost identical to Eq. (58) obtained from
Gorkov’s expansion, where the off-diagonal Landau-
level pairing is taken into account exactly. The presence
of D0 in the logarithmic prefactor in Eq. (64) is obvi-
ously due to the nonperturbative nature of the present
approach in contrast to the derivation of Eq. (58). How-
ever, the former procedure, though nonperturbative in
D̃0 , is severely restricted to very small values of D̃0 since
it should satisfy the stringing conditions imposed by the
diagonal approximation. These conditions can be sum-
marized by

2p~G1pkBT !,2p3/4D0 /nF
1/4!\vc .

In the limit when both the thermal and the disorder
smearing parameters tend to zero, the effective width
Gef is determined by the pair potential, Gef5D [1]

5D0 /(pnF)1/4. In this case the pair-potential effect
renormalizes Rs given by Eq. (59), leading to a linear
dependence (nonanalytic in D̃0

2) on D0 :

Rs;12p1/4S D̃0

nF
1/4D . (65)

This result is consistent with that reported by Norman
and MacDonald (1996), which was obtained from a nu-
merical solution of the Bogoliubov–de Gennes equa-
tions for the corresponding quasiparticle spectrum.

In the more realistic situation when the combined im-
purity and thermal smearing parameter is not small, i.e.,
for 4p(G1pkBT)/\vc *1, the fundamental term in Eq.
(57) is dominant, and Rs is given by Eq. (55), which
means that impurity scattering does not significantly in-
fluence the suppression mechanisms of the dHvA oscil-
lations in the vortex state.

III. MEAN-FIELD THEORIES FOR DISORDERED VORTEX
LATTICES. THE RANDOM VORTEX LATTICE MODEL

Real superconductors always contain some crystal de-
fects and impurities. These usually lead to irregular pin-
ning of vortices, which produces some deviations from
the ideal structure of the Abrikosov lattice. The analysis
presented in Sec. II.C.3, which revealed the importance
of phase coherence in the vortex lattice in suppressing
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magnetic breakdown, is a clear indication of the great
sensitivity of the dHvA amplitude to disorder in the vor-
tex lattice. Thus, without a careful examination of the
effects of disorder, the conclusions of the previous sec-
tions should be regarded as somewhat academic.

In the present section we describe the relevant models
that account for this important effect.

Generally speaking, in evaluating the free energy at
magnetic fields H sufficiently close to Hc2 that Gorkov’s
expansion can be truncated at the quadratic term in D,
Eq. (35), the effect of disorder in the Abrikosov lattice is
trivially obtained simply by averaging uD(rW)u2 over real-
izations of the vortex lattice. This extreme simplicity is
associated with the fact, discussed in Sec. II.C.1, that any
arbitrary distribution of vortices assumed in constructing
the lowest-Landau-level wave function, Eq. (24), yields
an exact solution of the linear self-consistent Eq. (31).
This feature reflects the absence of interactions between
vortices in the quadratic term. It can be immediately
concluded that to leading order in Gorkov’s expansion,
disorder in the vortex lattice does not introduce any sig-
nificantly new effect.

The simplicity is completely lost as H is varied away
from Hc2 and higher-order terms become important. To
make some progress, the desire for a self-consistent or-
der parameter should be abandoned, thus opening the
way for more phenomenological approaches. The sim-
plest option is to postulate a completely random distri-
bution of vortices. This approach was first taken by
Stephen (1992) in his study of the dHvA effect in the
mixed state, arguing that the structure of the densely
packed vortex lattice does not significantly influence the
large cyclotron orbits of quasiparticles near the Fermi
surface and only its average is important. This idea has
been defended on the grounds that in orbiting through a
large number of vortices the quasiparticle is scattered as
if the vortices were random scatterers.

The following analysis reveals the flaw of this appeal-
ing argument when applied to the ideal Abrikosov lat-
tice. Consider Gorkov’s free energy (29) for a com-
pletely random distribution of vortices. The
corresponding order parameter can be written in the
generalized form of Eq. (23),

D~rW !5D0(
q

cqexp@ iqx2~y1q/2!2# ,

where cq are random variables defined on a quasicon-
tinuous lattice q5 (2p/ax) (k1m/AN), k ,m52AN/2
11, . . . ,AN/2 and satisfying the condition

^cqcq8
* &}dq ,q8 .

Using this white-noise condition and exploiting the qua-
sicontinuous nature of the guiding-center projection q
by replacing summation with integration, one can
readily see that the pair correlation function is

^D~rW1!D* ~rW2!&5D0
2 expF2

1
2

~rW12rW2!2G
3exp@ i~x11x2!~y12y2!# . (66)
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After averaging the free energy (29) over the realiza-
tions of the vortex lattice, one finds that the first non-
trivial term is the quartic one. The white-noise condition
leads to the factorization

^D~rW1!D* ~rW2!D~rW3!D* ~rW4!&

5^D~rW1!D* ~rW2!&^D~rW3!D* ~rW4!&

1^D~rW1!D* ~rW4!&^D~rW3!D* ~rW2!& . (67)

Similar factorization holds to any order in the perturba-
tion expansion.

Examining each term on the right-hand side of Eq.
(67) with the aid of the pair-correlation function Eq.
(66) and the exact sum rule ( l51

4 rW l50 characterizing the
diagram shown in Fig. 19, one can be readily convinced
that, in all regions where the Gaussian factors are not
negligibly small, the corresponding total phase is always
of the order one or smaller. This means that in the
present case there are no violent oscillations of the cor-
responding phase factor that occur in the ideal Abriko-
sov lattice case [i.e., the function D(SW ,TW ) in Eq. (49)] for
any nonlocal configuration of the four electrons in-
volved. Consequently, nonlocal configurations of elec-
tron pairs (see Fig. 19) contribute significantly to the
superconducting free energy, in contrast to the ideal vor-
tex lattice case. Note that the Gaussian factors localize
each pair, i.e., they impose rW1'rW2 and rW3'rW4 on the first
term and rW1'rW4 and rW3'rW2 on the second term in Eq.
(67).

Thus, in contrast to the ideal Abrikosov lattice case,
the loss of phase coherence in the random vortex lattice
model allows different pairs to propagate independently
over distances much larger than the magnetic length,
leading to complete breakdown of the local semiclassical
picture shown in Fig. 17. In particular, it implies that the
corresponding cyclotron orbital centers move relative to

FIG. 19. Feynman diagram corresponding to the quartic term
of the superconducting free energy averaged over realizations
of the random vortex lattice. Single lines stand for free-
electron propagators. Double parallel lines correspond to pair
propagators. Note the local character of the pair propagators
and the nonlocal nature (on the magnetic length scale) of the
free-electron lines.
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each other over distances much larger than the unit cell
of the vortex lattice, which is the essence of a strong
magnetic breakdown effect associated with the pair
potential.

A. The Stephen approach

Assuming the random vortex lattice model discussed
above, it is most convenient to follow the procedure
used by Stephen (1992) in evaluating the influence of the
superconducting order parameter on the dHvA oscilla-
tions for a disordered arrangement of vortices caused,
for example, by pinning.

Starting from the equation for the ordinary single-
electron Green’s function [which can be derived from
Gorkov’s equations (Abrikosov et al., 1975)],

G~rW ,rW8,vn!5G0~rW ,rW8,vn!2E d3r1d3r2G0~rW ,rW1 ,vn!

3G0~rW2 ,rW1 ,2vn!D~rW1!

3D* ~rW2!G~rW2 ,rW8,vn! (68)

(where for the sake of simplicity any spin dependence
was dropped), and averaging over the realizations of the
vortex lattice, the factorization expressed in Eq. (67) can
be used to construct a diagram technique in which

D~rW1 ,rW2![^D~rW1!D* ~rW2!& (69)

plays the role of a pair propagator.
The resulting Dyson-like equation in the self-

consistent Born approximation (Ando, Fowler, and
Stern, 1982) is

^G~rW ,rW8,vn!&5G0~rW ,rW8,vn!

2E d3r1d3r2G0~rW ,rW1 ,vn!

3S!~rW1 ,rW2 ,vn!^G~rW2 ,rW8,vn!&, (70)

with the corresponding proper self-energy

S!~rW1 ,rW2 ,vn!5D~rW1 ,rW2!^G~rW2 ,rW1 ,2vn!&.

This set of equations has a simple solution in the rep-
resentation wnqkz

(x ,y ,z)5eikzzwn(x ,y1q), where
wn(x ,y1q) is a Landau gauge wave function with a
Landau-level index n and guiding-center projection q ,
and kz is a momentum along the field direction. It can
be written in the form

^G~rW ,rW8,vn!&5 (
n ,q ,kz

wnqkz
~rW !wnqkz

* ~rW8!

ivn2jn ,kz
2Sn ,kz

~vn!
, (71)

where jn ,kz
5\vc(n11/2)1\2kz

2/2m* 2EF . The sim-
plicity is due to the diagonal form of the self-energy S!

in this basis set, namely, to the property

^wnqk~1 !uS!~rW1 ,rW2 ,vn!uwn8q8k8~2 !&

5dnqk ,n8q8k8Sn ,k~vn!.
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A self-consistent equation can thus be derived for the
reduced self-energy, Sn ,k(vn), by combining Eq. (71)
with Eq. (70), i.e.,

Sn ,kz
~vn!5D0

2(
n1

In ,n1

ivn1jn1 ,kz
1Sn1 ,kz

~2vn!
, (72)

where In ,n1
5(n1n1)!/n!n1!2n1n111.

Two limiting cases are of interest, the high-
temperature limit and the limit of very low
temperatures.

1. The high-temperature limit, 2p2kBT/\vc;1

This case was considered in Sec. II.C.4. In this limit
only the first harmonic of the dHvA oscillations is of
interest to us. Thus the sum over n1 in Eq. (72) can be
replaced by an integral, since the self-energy should be
kept to zeroth order in the harmonic expansion. As in
Sec. II.C.3, we also assume small values of D0

2, so that
we may neglect the self-energy in the denominator of
Eq. (72). Using the asymptotic form, Eq. (36), of In ,n1

,
the integral over n1 yields for the reduced self-energy at
the extremal orbit kz50, n'nF ,

S̃nF,0~vn!'2i
ApD̃0

2

2AnF

sgn~vn!. (73)

Such an imaginary self-energy corresponds to a scat-
tering rate \/tv5D0

2(p/EF\vc)1/2 of quasiparticles by
the random vortex lattice, which leads to the following
superconducting-induced damping of the fundamental
dHvA frequency:

M [1]'MN
[1] expS 2

p3/2D̃0
2

nF
1/2 D . (74)

This extremely simple result was first derived by Maki
(1991) on the basis of an averaging technique first intro-
duced by Brandt et al. (1967). Wasserman and Spring-
ford (1996) have provided a detailed analysis of this ap-
proach, which will be described in Sec. III.B.

A comparison of this result with the corresponding
expression [Eq. (55)] obtained for an ideal Abrikosov
lattice is instructive. Expanding the exponential up to
second order, we find that the quadratic term in D̃0 is
identical to the corresponding term in Eq. (55), whereas
the quartic term is larger by a factor of the order nF

1/2

than the corresponding term in Eq. (55). The identity of
quadratic terms is in full accord with the well-known
property of the quadratic term in the superconducting
free energy, discussed at the beginning of Sec. III,
namely, that it is independent of the vortex
configurations—a reflection of the absence of interac-
tion between vortices. The large difference between the
quartic terms can be attributed to the great sensitivity of
the quartic term (and all higher-order terms as well) to
the presence or absence of phase coherence in the vor-
tex state. The large factor of nF

1/2 reflects the dramatic
increase in the spatial region traveled by the two elec-
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tron pairs in Fig. 19 relative to each other after disorder
has been introduced into the vortex lattice (see Sec.
III.B).

Another interesting difference between the two limit-
ing cases concerns the paramagnetic vortex currents de-
scribed in Sec. I.B.3 and analyzed in Sec. II.B.2. This
effect is completely destroyed in the random vortex
state due to the breakdown of the cyclotron orbital
structure discussed above. The destruction is reflected in
the absence of the magnetic pseudogap from the
(Lorenzian) quasiparticle density of states correspond-
ing to Eq. (73). It can be related to the Gaussian form of
the pair-correlation function, Eq. (66), which does not
contain any remnant of the individual zeros of the vor-
tex lattice order parameter due to averaging over ran-
dom configurations of vortices.

2. The limit of very low temperatures 2p2kBT/\vc!1

In this case one should be careful not to make any
approximation that would destroy the self-consistent na-
ture of Eq. (72), since otherwise the divergences dis-
cussed in Secs. II.C.2 and II.C.5 could not be avoided.
Thus, considering again small values of D0

2 and assuming
the exact half filling condition n5nF21/2, we find that
the dominant contribution to the sum over n1 corre-
sponds to n15n5nF21/2 and Eq. (72) reduces to

Sn ,0~vn!'D0
2 ~1/2Apn !

ivn1Sn ,0~2vn!
. (75)

An additional equation can be obtained by replacing vn

with 2vn in Eq. (75). Combining the two equations
yields Sn ,0(vn)52Sn ,0(2vn) so that the solution of the
resulting quadratic equation is

SnF,0~vn!'
ivn

2
6iAS vn

2 D 2

1
D0

2

2Apn

→6i
D0

21/2~pnF!1/4 , T→0. (76)

Note that the solution with the negative (positive) sign is
of physical meaning for positive (negative) vn .

This result is consistent with the form proposed by
Norman et al. (1995) on the basis of their numerical so-
lution of the Bogoliubov–de Gennes equations in the
low-temperature region kBT/\vc&0.04. The corre-
sponding limiting expression for the damping factor of
magnetization is

Rs→12
21/2p3/4D̃0

nF
1/4 .

This is essentially in agreement with the nonanalytic ex-
pression obtained in Sec. II.C.5, Eq. (65).

B. Nonlocal behavior

As indicated in the previous section, an alternative
averaging procedure based on the original idea of
Brandt et al. (1967) was first used by Maki (1991) and
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later by Wasserman and Springford (1996) in analyzing
dHvA oscillations in the vortex state. The latter authors
utilized a Green’s-function technique in momentum
space, which neglects the effect of Landau quantization
on the self-energy. Furthermore, they used a spatial av-
eraging procedure, which sets severe restrictions on the
validity of their approach.

However, the method, which exploits momentum rep-
resentation, can be useful in illuminating the origin of
the dramatic change to the dHvA effect occurring in a
random vortex lattice and in analyzing the nonlocal be-
havior of the corresponding superconducting free en-
ergy in real space.

Starting with a slightly modified form of Gorkov’s Eq.
(68) by redefining G̃(rW ,rW8,vn)[e2ix(rW ,rW8)G(rW ,rW8,vn),
where eix(rW ,rW8) is the gauge factor of the normal-electron
Green’s function defined in Eq. (37), we can rewrite this
equation in terms of the reduced Green’s function
G̃0(urW2rW8u,vn) and the effective two-particle interaction

V~rW1 ,rW2![D~rW1!D* ~rW2!e22ix(rW1 ,rW2). (77)

Brandt et al. (1967), who first introduced such a form of
Gorkov’s equation in their extensive studies of the qua-
siparticle density of states at high magnetic fields (see
also a review by Tewordt, 1969), have shown that in the
Landau gauge, where x(rW1 ,rW2)5 1

2 (x11x2)(y12y2), the
effective interaction Eq. (77) is a periodic function of
the center-of-mass coordinates RW 5 1

2 (rW11rW2), with the
periodicity of the Abrikosov lattice. Writing this as a
function of the center-of-mass coordinates RW and the
relative coordinates rW 5(rW12rW2), it is then possible to
use the double Fourier transform

V~rW ,RW !5(
pW ,KW

V~pW ,KW !eipW •(rW2rW8)eiKW •RW

with KW running over all discrete points of the 2D lattice
reciprocal to the Abrikosov lattice (see Sec. II.B.1). Us-
ing a Fourier transform for the full Green’s function, the
momentum-space representation of Eq. (68) can be
written as

GvnS pW 2
1
2

kW ,2kW D
5dkW ,0Gvn

0 ~pW !2Gvn

0 ~pW 2kW !

3(
KW 8

Gvn
S pW 2

kW 1KW 8

2
,2kW 2KW 8D

3(
pW 8

V~pW 8,KW 8!G2vn

0 S pW 2pW 81kW 1
1
2

KW 8D . (78)

The key step made by Brandt et al. was to average the
Green’s function G̃(rW ,RW ,vn) over the mean coordinates
RW . This was a physically meaningful step in their calcu-
lation, which focused on evaluating the quasiparticle
density of states for a tunneling experiment, in which the
spatial average of the local density of states is what was
actually measured. In evaluating magnetization oscilla-
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tions there is no apparent physical reason for such aver-
aging at the intermediate stage of the self-energy calcu-
lation. Furthermore, as we shall see below, this
averaging destroys the delicate phase coherence dis-
cussed in Sec. II.C.2, exactly as happens after averaging
over realizations of the random vortex lattice (Sec.
III.A). The latter averaging is, however, fully justified in
cases when the vortex lattice is disordered.

Thus, proceeding along the lines drawn above, aver-
aging over the mean coordinates RW is equivalent to sub-
stituting kW 50 in Eq. (78). The resulting equation is still
not in a closed form for Gvn

(pW ), but can be converted
into such a form by neglecting all umklapp terms, i.e., by
taking into account only the term with KW 850 in the re-
ciprocal Abrikosov lattice.

This approximation was justified by Brandt et al.
(1967) on the basis of the Gaussian form of the interac-
tion V ,

V~pW ,KW !}D0
2e2 ~1/2! p2

expF1
2

iS Kxpy2Kypx1
1
2

KxKyD G ,

and of the discrete nature of the vector KW at high mag-
netic fields. It is equivalent to the diagonal form of the
self-energy obtained by Stephen (1992) in the Landau-
level representation after averaging over the random
vortex lattice (see Sec. III.A). Note, however, that the
latter is an exact result of the ensemble-averaging pro-
cess while the former is only an approximation of the
expression obtained after spatial averaging.

The resulting equation for Gvn
(pW ) can be easily

solved, yielding

Gvn
~pW !5Gvn

0 ~p !@11Gvn

0 ~p !SpW
0~vn!#21, (79)

where SpW
0(vn)5(pW 8V(pW 8,0)G2vn

0 (upW 2pW 8u) is the self-
energy part. By using the zero-magnetic-field limit of
Gvn

0 (p), one can readily calculate the self-energy at p
near the Fermi surface, obtaining

S̃pW
0~vn!'2i

ApD̃0
2

2AnF

expF2
~p22pF

2 !2

8pF
2 Gsgn~vn!, (80)

where it is understood that every momentum appearing
in an exponent is measured in units of \/aH .

This result can be derived from Eq. (72) in the
asymptotic limit of In ,n1

, Eq. (36), after replacing the
Landau energy level \vc(n11/2) with the free-electron
energy p2/2mc [see the remark following Eq. (36)] and
integrating over momentum corresponding to n1 . At p
5pF , it is precisely the limiting expression for the
Stephen self-energy [Eq. (73)] calculated at the extremal
cross section of the Fermi surface. However, in the low-
temperature limit discussed in Sec. III.A, this approach
fails to properly handle the singularity discussed in Sec.
II.C.5, since the electron propagator in the self-energy
SpW

0(vn) is not dressed. Unlike the spatial averaging dis-
cussed here, ensemble averaging over random vortex
lattice realizations leads to a self-consistent equation for
the self-energy that avoids this singularity. The former
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procedure introduces additional freedom into the elec-
tronic Hilbert space, which results in a field-theoretic
problem similar to the well-known electron-phonon or
electron-photon problem. The Hartree-Fock approxima-
tion used in the context of the latter problems (Fetter
and Walecka, 1971) is equivalent to the self-consistent
Born approximation (Ando, Fowler, and Stern, 1982)
outlined in Sec. III.A. In the field of transport properties
of disordered media (Ziman, 1979) a similar approxima-
tion is known as the coherent potential approximation
(CPA). A closely related functional-integral approach
will be described in Sec. IV, when thermal fluctuations of
the vortex lattice will be taken into account.

The diagonal form of the self-energy in the Landau-
level representation obtained by Stephen, and its weak
dependence on the thermal frequency vn , allow the use
of a simple formula for the thermodynamic potential de-
rived by Wasserman and Springford (1996) for this case.
The oscillatory part of this expression can be written in
the form

Vosc52
kBT

paH
2 Re (

n52`

`

(
kz ,n

ln@Gvn

21~En ,kz
!# , (81)

where Gvn
(En ,kz

) is the Green’s function obtained from

Eq. (79) after approximating S̃pW
0(vn)'2is sgn(vn),

where

s[
ApD̃0

2

2AnF

, (82)

and replacing upW u2/2mc with \vc(n11/2)1 \2kz
2/2m*

5jn ,kz
1EF . The ‘‘complex energy’’ argument of the

Green’s function is defined as En ,kz
[jn ,kz

1EF

2is sgn(vn)\vc .
Using the Dyson Eq. (79) in the form G21

5(G0)21(11G0S), the logarithm in Eq. (81) can be
expanded in power series of S. The first factor yields the
thermodynamic potential of the normal-electron gas Vn
whereas the second factor, ln(11G0S), is expanded to
infinite order in s. Substituting this expansion into Eq.
(81), and using the Poisson summation formula, one
finds for the oscillatory part of the thermodynamic po-
tential in the quasiclassical limit nF@1

Vosc5Vn ,osc2
kBT

paH
2 Re (

n52`

`

(
l51

` 1
l E0

`

dn

3 (
k51

e2piknF is sgn~vn!\vc

ivn2En ,01EF
G l

. (83)

It is easy to show that the right-hand side of this equa-
tion can be written in the simple form

Vosc52
kBT

paH
2 Re (

n52`

`

(
k51

e22pk(uvnu/\vc1s)

3
cos 2pk~nF21/2!

k
. (84)

The term for k51 in this harmonic series reproduces
the exponential damping factor Eq. (74). A detailed ex-
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amination of Eq. (83) can reveal the origin of the strong
exponential damping of the dHvA amplitude in the ran-
dom vortex lattice limit. The sum over l corresponds to
the perturbation expansion in the superconducting order
parameter. The quartic term (l52) consists of the effec-
tive self-energy s and the energy denominator (ivn

2En ,01EF)21, both to the second power, which corre-
spond to the pair propagators and the free-electron
lines, respectively, shown in Fig. 19. Each pair propaga-
tor contains an intermediate sum over the Landau-level
index [n1 in Eq. (72)] restricted by the Gaussian in Eq.
(80) to a few Landau levels near nF . This reflects the
localized nature of each pair propagator (i.e., within a
spatial region of the order of a magnetic length).

The free-electron lines connecting the two self-energy
parts in Fig. 19 have no such restriction; the integral
over n in Eq. (83) may be transformed into an integral
in momentum space, which is dominated by the contri-
bution from the region Dn;1/k;DEn ,0 /\vc

;vFDp/\vc , that is, the region Dp;\/aHAnF for k
;1. The corresponding real-space propagation distance
of this electron is Dr;AnFaH , which is much larger
than the magnetic length aH . Such extremely nonlocal
behavior in real space (or localized behavior in momen-
tum space) is due to the rapidly oscillating exponential
e2pikn appearing in Eq. (83) for k.0; this does not oc-
cur in the nonoscillatory (zero harmonic, k50) compo-
nent of the thermodynamic potential.

In contrast, the important contributions in the ideal
Abrikosov lattice case originate from configurations in
which all four electrons are in a close mutual proximity
within a spatial region of the order of a magnetic length,
resulting in a reduction factor of 1/AnF [see Eq. (55)]
relative to the random vortex lattice case.

IV. SUPERCONDUCTING FLUCTUATION EFFECTS AND
VORTEX LATTICE MELTING

The discussions presented in the previous sections
lead towards one main conclusion, namely, that the am-
plitude of dHvA oscillations in the mixed superconduct-
ing state is very sensitive to the presence or absence of
phase coherence in the order parameter. A very impor-
tant consequence of this sensitivity, discussed in some
detail in Sec. III, is the strong additional damping of the
dHvA amplitude expected to occur in the mixed state as
a result of disorder in the vortex lattice that may be
caused by irregular pinning. Theoretical treatments of
this situation so far have an important shortcoming: lack
of a truly self-consistent framework, since the white-
noise condition introduced in Sec. III was not derived
from the original free-energy functional, Eq. (29).

A very important, closely related physical situation,
which allows a self-consistent treatment, arises when
thermal fluctuations of the superconducting order pa-
rameter are significant. In conventional superconductors
at zero magnetic field, fluctuation effects are primarily
very small because the coherence length is much larger
than the characteristic interatomic distance. In the pres-
ence of a magnetic field the situation changes signifi-
Rev. Mod. Phys., Vol. 73, No. 4, October 2001
cantly. The resistive transition is no longer a sharp tran-
sition (see Mun et al., 1996), whereas the specific-heat
jump at the thermodynamical transition is strongly
smeared at high magnetic fields (see, for example,
Wanka et al., 1998). It is believed that thermal fluctua-
tions significantly influence the transition to the mixed
state at high magnetic fields, though in this region of the
phase diagram temperature is relatively low. Fluctua-
tions in the superconducting order parameter are, in-
deed, expected to be significantly enhance at high mag-
netic fields when the Landau quantization of the
Cooper-pair energy leads to an effective dimensionality
reduction of 2 (Brezin et al., 1985).

Naturally, one may consider in this context phase fluc-
tuations, which are known to play a crucial role in con-
trolling the stability of the vortex lattice and its possible
melting processes. To begin with, it is most instructive to
consider a simple 2D electron gas-model, in particular
since 2D systems are much more susceptible to thermal
fluctuations than 3D ones, and in view of the unusual
melting transitions that characterize 2D solids (Koster-
litz and Thouless, 1973; Halperin and Nelson, 1978).
Furthermore, as we shall see in Sec. IV.A.1, the high-
field melting transition occurs in 2D systems at a tem-
perature well below the mean-field Tc , which makes this
phenomenon relevant to the study of quantum magneto-
oscillations. Fortunately, many experimental reports on
measurements of the dHvA effect in quasi-2D supercon-
ductors are available (Wosnitza, 1993, 1996). Some of
these measurements have been carried out successfully
in the mixed superconducting state (van der Wel et al.,
1995; Sasaki et al., 1998).

A. Phase fluctuations and melting of the vortex lattice in
2D superconductors

In the mixed state of a 2D type-II superconductor for
magnetic fields H,Hc2(T) at low temperatures T
!Tc , amplitude fluctuations of the superconducting or-
der parameter are suppressed, but at a certain magnetic
field Hm(T), Hc1,Hm,Hc2 phase fluctuations can lead
to melting of the vortex lattice (Friemel et al., 1996;
Sasaki et al., 1998). This remarkable melting phenom-
enon results from a soft-shear, Goldstone mode, which
can be described by long-wavelength phase fluctuations
(Moore, 1989). Unfortunately, rigorous analytical ap-
proaches to this problem have encountered fundamental
difficulties: large-order high-temperature perturbation
expansion with Borel-Padé approximants to the low-
temperature behavior (Ruggeri and Thouless, 1976;
Brezin et al., 1990) gives no indication of an ordered vor-
tex lattice even at zero temperature. The existing non-
perturbative approaches have not completely clarified
the situation. Indeed, renormalization-group studies
(Radzihovsky, 1995; Newman and Moore, 1996), as well
as Monte Carlo simulation (O’Neil and Moore, 1992),
failed to predict a crystal vortex state in a pure 2D su-
perconductor at finite temperatures, while in the
density-functional formalism of Tesanovic and co-
workers (Tesanovic and Andreev, 1994; Herbut and Te-
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sanovic, 1994, 1995) the low-temperature phase is a
charge-density wave of Cooper pairs with no long-range
superconducting phase order. Several Monte Carlo
simulations have shown (Hikami, Fujita, and Larkin,
1991; Tesanovic and Xing, 1991; Xing and Tesanovic,
1992; Hu and MacDonald, 1993; Kato and Nagaosa,
1993; Sasik and Stroud, 1994) that in a 2D supercon-
ductor a true vortex lattice melting phase transition
takes place at a finite temperature and that the transi-
tion is of first order.

A simple analytical model of vortex lattice melting in
2D extreme type-II superconductors was recently pre-
sented by Zhuravlev and Maniv (1999). The model is
based on the observation that at low temperature the
main correction to the mean-field free energy arises
from ‘‘Bragg chain fluctuations,’’ that is, fluctuations that
preserve long-range periodic order along the principal
crystallographic axes in the vortex lattice as depicted in
Fig. 7. As a result of these fluctuations the sharp mean-
field transition to the Abrikosov lattice state becomes a
smooth crossover. Since the strength of the phase-
dependent terms in the superconducting free energy is
relatively small (;2% of the condensation energy), the
scale of the crossover temperature Tcm is well below the
mean-field Tc . At temperatures higher than Tcm the or-
dered set of Bragg chains transforms to an ensemble of
uncorrelated chains, fluctuating independently around
equilibrium lattice positions. Because of a discontinuous
(rotational) symmetry change in the average chain struc-
ture, there is a weak first-order transition superimposed
on the smooth solid-liquid crossover, which is reflected
in a small jump of the vortex system entropy at a certain
melting temperature Tm'Tcm .

Calculation of the structure factor showed that exact
long-range translational order exists only at zero tem-
perature, in agreement with previous results (Newman
and Moore, 1996), whereas at finite temperatures below
the melting point Tm quasi-long-range (i.e., power-law)
translational order (Hu and MacDonald, 1993) was
found with only short-range superconducting order (Te-
sanovic, 1995). Results for various thermodynamic pa-
rameters agree well with the numerical calculations of
Kato and Nagaosa (1993).

1. The sliding Bragg-chain model of vortex lattice melting

As indicated above, the melting transition occurs at
temperature Tm well below the mean-field Tc where
amplitude fluctuations are strongly suppressed and
phase fluctuations do not completely destroy the order
along the principal crystallographic axes, described in
Sec. II.B.1. It is thus reasonable to assume that the local
form of the Gorkov-Ginzburg-Landau free-energy func-
tional derived in Sec. II.C.2 is valid in this region.

Thus, combining Eq. (35) with Eq. (50), the free-
energy functional projected on the subspace of the low-
est Landau level can be written in the Ginzburg-Landau
form

FGL5E d2rF2auC~rW !u21
1
2

buC~rW !u4G , (85)
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where C(rW) is the Ginzburg-Landau wave function,
which is related to the order parameter via C(rW)
[(2EFD2D)1/2D(rW)/pkBTc , with the Ginzburq-Landau
coefficients expressed in terms of the microscopic pa-
rameters [see Eqs. (51) and (52)] a5ã(pkBTc)2/2EF

and b5B̃(pkBTc)2/2D2DEF
2 bA .

As discussed in Secs. II.A and II.C.1, all possible con-
figurations of the order parameter in the lowest-Landau-
level subspace can be taken into account by considering
the partition function Z defined in Eq. (28), which re-
duces in the local approximation to

Z5E DCDC* exp@2FGL /kBT# . (86)

As in Sec. III, it is possible to write an arbitrary wave
function from the lowest-Landau-level subspace in an
infinite superconductor as a one-dimensional integral,

C~x ,y !5E dqc~q !fq~x ,y !, (87)

where fq(x ,y)5exp@iqx2(y1 q/2)2# . Note that all spa-
tial lengths are measured here in units of magnetic
length aH . A system of N vortices with size Lx5axAN
along the x direction is described by c(q)
5( j52N/211

N/2 Cjd(q2Qj), where Qj5(2p/axAN) j , j
52N/211, . . . ,N/2. The discussions of Secs. II.B.1 and
II.C.3 show that the minimal value of the Ginzburg-
Landau free-energy functional is obtained when only
AN coefficients from the whole set of N coefficients Cj

differ from zero, i.e., ck[CkANÞ0, for k52AN/2
11, . . . ,AN/2. At sufficiently low temperatures, when
amplitude fluctuations are suppressed, this minimum
corresponds to the minimum of the Abrikosov param-
eter

ba5S 1
V E d2r^uCu4& D Y S 1

V E d2r^uCu2& D 2

, (88)

where V is the (2D) volume of the superconductor.
From the definition of ba we see that the absolute mini-
mum ba51 is obtained for a spatially uniform order pa-
rameter. Any deviation from uCu5const leads to an in-
crease in ba . Under the constraint of the lowest-
Landau-level subspace, however, uCuÞ0 cannot be a
constant (since uCu50 at the vortex cores), and the
minimum ba5bA.1.159 is obtained for a triangular
Abrikosov lattice, which is the closest configuration to
the homogeneous one. Other periodic lattices yield
small positive deviations from bA , while any departure
of C from the quasiuniform distribution of the vortex
lattice towards a localized structure leads to a drastic
increase of the free energy (Zhuravlev et al., 1999).

Thus at low temperatures the main correction to the
mean-field order parameter arises from fluctuations of
ck and ax where

c~q !5 (
k52AN/211

AN/2

ckdS q2
2pk

ax
D . (89)

Note that regardless of the choice of ck , C(x ,y) is a
periodic function of x with a period ax . Selecting the x
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direction to be along the principal crystallographic axis
shown in Fig. 7, the corresponding Bragg chains are al-
lowed to slide independently along this axis, where the
relative horizontal position, xk , of the kth chain is de-
termined by the phase wk52i ln(ck /ucku) and the chain’s
vertical position qk52pk/ax , namely, xk52wk /qk (see
Sec. II.B.1).

The partition function (86) can therefore be approxi-
mated by the multiple functional integral

Z'E )
k

dckdck* exp~2pfGL!, (90)

where

fGL[
FGL

pkBTAN

52ā(
k

ucku21
b̄

2 (
k ,s ,t

Ls21t2
ck* ck1s1t* ck1sck1t

(91)

with ā5 aax /A2pkBT , b̄5 bax /A4pkBT , and

L5expS 2
p2

ax
2 D . (92)

Note that the functional Eq. (91) is invariant under an
arbitrary linear shift of the phases wk ,

wk85wk1ak1b , (93)

where a and b are arbitrary constants. This symmetry
follows from the invariance of the Ginzburg-Landau
free-energy [Eq. (85)] under the magnetic translation
group (Zak, 1964; Brown, 1968).

The key approximation at this point is based on the
small value of the parameter L.e2p, which allows us to
neglect in Eq. (91) all terms of order higher than L2.
This implies that, in addition to the first-order terms in
L, only the leading-order terms in the phase
(wk)-dependent part of the free energy are retained.
Thus, up to this order in L, we have

fGL52ā(
k

ucku21
b̄

2 (
k

@ ucku414Lucku2uck11u2

14L2uck21uuck11uucku2 cos xk# . (94)

The angles xk are linear combinations of the phases wk ,

xk522wk1wk211wk11 , (95)

which are clearly invariant under the transformation
(93).

It is therefore concluded that the low-lying excitations
of the Abrikosov vortex lattice are associated with the
sliding motions of the lattice Bragg chains along the
principal crystallographic axes. These excitations are
closely related to the soft shear modes discussed by
Moore (1989) in connection with vortex lattice melting.
It should be noted that the soft mode described above is
associated with the long-wavelength component of the
Rev. Mod. Phys., Vol. 73, No. 4, October 2001
phase fluctuations in Eq. (94); this becomes clear if we
neglect amplitude fluctuations, define the fluctuating
phases

w f~k ![wk2wk
(L)5wk2

1
2

pk2,

and take the continuous limit [see Eq. (95)], i.e., xk
→p1]2w f /]y2, so that the relevant part in the free-
energy functional (94) can be written as

dfph5KAE cos~p1]2w f /]y2!dy

'
1
2

KAE ~]2w f /]y2!2dy , (96)

where KA'L2 (ā2/2b̄). It is instructive to compare this
expression with that derived by Moore (1989) for the
effective Hamiltonian associated with a smoothly vary-
ing phase u(x ,y), namely, Hph5 1

2 c66*d2r(¹2u)2, where
c66 is an isotropic shear modulus of the vortex lattice,
which is given approximately by 1

2 (ā2/b̄).
The two approaches do not agree completely, how-

ever, not only because of the one-dimensional nature of
the present model, but also because of the significant
difference in the ‘‘stiffness’’ parameters KA and c66 ,
namely, KA /c66'L2;1022. The reason for the dis-
agreement can be understood within the present ap-
proach by considering shear motion along families of
Bragg chains with Miller indices higher than those of the
principal chains. For these families the values of ax are
relatively large, and the corresponding values of L2 are
not small compared to unity. In the limit of very large
Miller indices, ax→` and L2→1, so that the corre-
sponding stiffness parameter approaches c66 and be-
comes independent of the chain orientation, as it is in
Moore’s theory.

Thus, in contrast to the isotropic shear model used by
Moore (1989), the appearance of the small parameter
L2 in front of the leading phase-dependent terms of the
free-energy functional appearing in Eq. (94) implies that
shear motion along the two principal crystallographic
axes costs a small fraction of the condensation energy,
and so leads to significant distortions of the vortex lat-
tice along these particular directions at temperatures
very low relative to the mean-field Tc .

In this low-temperature regime, the calculation of the
partition function Z can be simplified considerably since
amplitude fluctuations can be neglected. The functional
integrals in Eq. (86) over the order parameter $c ,c* %
should be replaced by integrals over the new variables
$ck ,ck* %[$ucku,wk%, so that after integration over angle
variables the partition function can be written as

Z5Z v
AN}E

0

`

)
k

uckuduckue2pfs, (97)

where
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fs5(
k

H 2āucku21
b̄

2
~ ucku414Lucku2uck11u2!

2
1
p

lnI0~2b̄L2puck21uuck11uucku2!J (98)

and In(x) is the modified Bessel function of order n .
Neglecting amplitude fluctuations, the integrals in Eq.
(97) can be performed by the stationary phase approxi-
mation. The solution is similar to the mean-field solution
ucku25ā/bb fl with the generalized Abrikosov parameter

b̄ fl.114L24L2
I1~t!

I0~t!
, (99)

where t5 @4L2/(114L)2#(pā2/2b̄) [ Tcm /T . The
temperature Tcm(ax) determines a smooth crossover
from the mean-field lattice state with g5p/2, b̄ fl5b̄ l

[114L24L2 to a new state corresponding to b̄ fl

5b̄m[114L , where the phase-dependent terms in the
free energy are completely destroyed by fluctuations.
Note that the energy difference between these states is
of the order of the small parameter L2.

In the zero-temperature limit, T!Tcm(ax), the pa-
rameter b fl. (Ap/ax) (114L24L2) has a minimum at
ax

252p/) , and at ax8
2

52)p (see Fig. 18), depending
on the choice of Bragg chain family (i.e., along the x or
x8 axis in Fig. 7). Both minima describe a triangular
Abrikosov lattice with b fl5bA.1.1596. Both directions
can be selected in three equivalent ways in the Abriko-
sov lattice.

The above-described equilibrium state at T50 is sta-
bilized by the competition between two types of interac-
tions among parallel chains: the repulsive interaction be-
tween any two neighboring chains, which is linear in the
coupling parameter L, and the attractive three-chain
phase-dependent interaction (i.e., involving any three
neighboring chains), which is quadratic in L [see Eq.
(94)]. At finite low temperatures, i.e., when T;Tcm ,
shear fluctuations destroy the phase coherence among
parallel Bragg chains, thus diminishing the small attrac-
tive interaction and increasing the total free energy. The
relatively large repulsive interaction is affected only at
higher temperatures.

The interchain coupling parameter L depends on the
lattice parameter ax through Eq. (92). Since ax8.ax
(Fig. 7), the chains along x8 are closer to each other than
those along x ; consequently L(ax8).L(ax). Thus, at
low temperatures T&Tcm(ax), when the attractive
three-chain interaction decreases with increasing tem-
perature, the first state (ax8) is more stable than the
second one (ax), since its corresponding free energy in-
creases more slowly with increasing temperature (see
Fig. 20).

At higher temperatures T*Tcm(ax8), the tendency is
reversed and the free energy of the first state (ax8) in-
creases faster with increasing temperature than that of
the second one (ax). There is therefore an intersection
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point Tcm(ax)&Tm&Tcm(ax8) at which the free ener-
gies of these states are equal but the corresponding en-
tropies are a little different.

Thus at T5Tm there is a weak first-order transition
characterized by a small jump of the lattice entropy.
With the parameter t[2aA2p/bkBT , defined after
Kato and Nagaosa (1993), the position of the crossing
point corresponds to t5tm.216 and the jump in en-
tropy @S[2T (]F/]T)# is DS.7.5 1023FMF /T . The
values of tm and DS agree pretty well with the Monte
Carlo simulations carried out by these authors (Kato
and Nagaosa, 1993).

The physical nature of this transition can be illumi-
nated by considering the shear modulus m. The vanish-
ing of the shear modulus in atomic crystals is usually
regarded as a definition of the crystal melting point. In
the present case m can be calculated by evaluating the
limit

m5S ]2FGL

]h2 D
h→0

for the transformation cn85eihn2
cn (Sasik and Stroud,

1994). The shear modulus is proportional to the phase
factor in the free energy, m}^cos xn&. Normalizing by the
mean-field value mMF with cos xn521, it is reduced to

m

mMF
5

I1~t!

I0~t!
. (100)

The dependence of the shear modulus on the param-
eter t is plotted in Fig. 21. At the transition point t
5tm , the value of the parameter ax corresponding to the
minimum free energy changes abruptly and the shear
modulus jumps from m1'1 to m2'0.3. It is remarkable
that, in contrast to the very small entropy rise, the drop
in the shear modulus at t5tm is very significant. How-
ever, its value on the ‘‘liquid’’ side of the transition point

FIG. 20. Free energy of fluctuating Bragg chains (normalized
by the corresponding mean-field value), 2bA /b fl , as a func-
tion of the parameter t (see text): solid line, Bragg chains along
the x direction; dashed line, Bragg chains along the x8 direc-
tion. The intersection point determines the first-order phase
transition. Inset: a schematic illustration of the solid-liquid
crossovers in the two principal Bragg families.
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m2 is not 0. The residual shear energy on the high-
temperature side reflects an incomplete melting at t
5tm . The ‘‘liquid’’ state on this side of the transition
point retains some degree of phase correlation between
different chains, which continues to decrease gradually
to zero with increasing temperature, reaching the com-
plete liquid state only asymptotically. This behavior
seems to be due to neglect of intrachain fluctuations in
the sliding Bragg-chain model, which is invalid at high
temperatures (see Sec. IV.A.2).

The nature of the ‘‘quasiliquid’’ states described above
can be revealed by examining the mean values of the
first and second moments of the angles xk ,

^xk
j &5

1
pI0~t!

E
0

p

dxkxk
j exp~2t cosxk!,

with j51,2.
In the low-(t@1) and high-(t!1) temperature limits

one finds

^xk&5p2A 2
pt

, ^xk
2&5p22S 8p

t D 1/2

1
1
t

for t@1,

(101)

^xk&5p/212t/p , ^xk
2&5p2/312t for t!1.

The square root of the relative variance s
5A^xn

2&2^xn&2/^xn& is found to be s. (p22)/pt !1
for t@1, while for t!1, s.1/) , implying significant
fluctuations in the high-temperature regime. However,
since the mean values in Eq. (101) are the same for all
chains (i.e., they are independent of the chain index k),
on average the fluctuations do not destroy the periodic
structure of the Bragg chains, but only change the point
symmetry of the corresponding lattice by changing the
effective geometrical parameter g from the Abrikosov
lattice value p/2 to ^xk&/2. The first-order ‘‘melting’’
point at t5tm thus corresponds to a discontinuous (ro-
tational) symmetry breaking in the lattice of average
Bragg chains. One should be careful, however, not to
push the picture emerging from the above analysis too

FIG. 21. Dependence of the normalized shear modulus m on
the parameter t (see text). The jump at t5tm reflects the melt-
ing transition.
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far, since it relies on an approximation in which intra-
chain fluctuations are completely neglected. This ap-
proximation can be well justified near and below the
melting point, but certainly not in the high-temperature
region far above Tm . It is thus conceivable that intra-
chain fluctuations would completely break the periodic
order along the chain axis at sufficiently high tempera-
tures leading to an isotropic liquid phase at high T (see
Sec. IV.A.2).

2. Bragg-chain pinning and phase coherence

An important aspect of vortex lattice melting con-
cerns the spatial range over which superconducting
phase coherence exists in the mixed state. A related
phenomenon is the pinning of vortex lines to crystal de-
fects. The fluctuating phases wk are not uniquely deter-
mined from the angles xk ; they depend on the choice of
boundary conditions for Eq. (95). Since the general so-
lution of the homogeneous equation (xk50) is a linear
function of n [Eq. (93)], two constants, a and b , are
required to determine wk uniquely. A possible choice is
to take a5b50, which corresponds to the selection w0
50 and w215w1 . The physical meaning of the first con-
dition is that the chain, labeled k50 (i.e., located verti-
cally at y50), is pinned to a fixed horizontal position
(i.e., along the x axis). The second condition has a clear
physical meaning in the long-wavelength limit, namely,
that the horizontal displacement ux5(]u/]y) of the vor-
tex lines vanishes at the pinning site y50.

The solution of Eq. (95) that satisfies this particular
pinning condition is (for n.0)

w6n5(
l51

n

~n2l !x6l1
n

2
x0 . (102)

This transformation enables one to calculate any corre-
lation function of phase factors; in particular, the pair-
correlation function

^ei(wk82wk)&5

)
n

E
0

p

dxne2t cos xnei(wk82wk)

)
n

E
0

p

dxne2t cos xn

can be readily evaluated by using Eq. (102) (see Zhurav-
lev and Maniv, 1999). In the high-temperature limit t
!1 far above the melting point one finds

^ei(wk82wk)&}t~1/2! uk22k82u→dk ,k8 , (103)

meaning no phase correlation at all. In the low-
temperature limit t@1 one finds

^ei(wk82wk)&'expF i^xk&~k822k2!2
k̄

2t
~Dk !2G ,

(104)

where Dk5k82k and k̄5k8/312k/321/2. Equation
(104) is identical to a second-order cumulant expansion
with ^wk&5 1

2 ^xk&k2'( 1
2 p2A1/2pt)k2.
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This result shows that a genuine long-range phase cor-
relation exists only at zero temperature; it also shows
that a cluster of highly correlated chains can grow only
around a pinned chain, since the phase fluctuations di-
verge with distance from the pinning chain [see Eq.
(102)]. Note that the position of such a chain is arbitrary,
since in the Ginzburg-Landau theory used there is no
energy cost to pinning. In real samples the translational
symmetry is broken by impurities, crystal defects, and
the termination of the lattice at the sample surface,
which can pin chains of orbital guiding centers to fixed
positions. A single pinning center located near a given
chain may pin the entire chain due to its rigidity. To
maximize the pinning strength, however, additional pin-
ning centers should be distributed uniaxially along the
same chain, rather than randomly.

The range of translational order existing in the vortex
state at finite temperature can be evaluated by consider-
ing the size dependence of the structure factor (Kato
and Nagaosa, 1993),

S~GW !5
1
N

^uI~GW !u2& ,

where

I~GW !5E d2ruc~rW !u2ei(GW •rW),

by5p/ax , bx5^xk&ax/2p , n and m are integers, and GW
is a reciprocal lattice vector of the Abrikosov lattice with
Gx52pn/ax , Gy52pm/by 22nbx . At zero tempera-
ture the long-range order is manifested by the Bragg
peaks with S(GW )}N . At a finite temperature,

S~qW !5
pax

2

2
e2q2/4 (

k ,k8,n
dqx , ~2p/ax! n

3C4~k81n ,k ,k8,k1n!e2i ~p/ax!(k2k8)qy,

(105)

where at t@1

C4~k1 ,k2 ,k3 ,k4![^ei(wf(k1)1wf(k2)2wf(k3)2wf(k4))&

5expF2
s2~p2s/311/3!

2t

1i~^xk&2p!n~k2k8!G , n>0,

(106)

with s5min(n,uk82ku), p5max(n,uk82ku), k15k81n , k2
5k , k35k8, and k45k1n . Note that C4 is the four-
chain phase correlation function appearing in the quartic
term of the Ginzburg-Landau free energy.

Now, since ^xk&[x̄ is independent of k , the sum over
k yields a factor AN and Eq. (105) can be rewritten as
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S~GW !5AN
pax

2

2
e2G2/4H (

ulu<n
expF il(nx̄2byGy)

2ulu2S n2
1
3

ulu DY2tG1 (
ulu.n

expF il~nx̄

2byGy!2n2S ulu2
1
3

n D Y 2tG J . (107)

This expression reflects the extreme anisotropy charac-
terizing the Bragg-chain model. Indeed, along the
reciprocal-lattice axis Gx50 [i.e., for n50 in Eq. (107)],
one finds perfect long-range order, since S(Gx50,Gy)
;N . For any GxÞ0, however, the corresponding Bragg
peaks reflect the 1D long-range order within the real
lattice chains, i.e., S(GxÞ0,Gy);N1/2. This power-law
dependence on the macroscopic size of the system is due
to the remarkable property that the average ^xk&[x̄ is
independent of the chain index k .

In an ideal triangular Abrikosov lattice there are
three equivalent ways to select the principal axes. In the
presence of pinning interactions due to random defects
there are, however, many different orientations, deter-
mined by the local pinning interaction in the macro-
scopic sample, along which clusters of Bragg chains pre-
fer to grow. Since the reciprocal-lattice points with Gx
50 depend on the specific choice of these axes, it is
expected that by averaging over all three equivalent ori-
entations, one will obtain anisotropic size dependence of
the structure factor, satisfying S;Ns with 1/2,s,1.
This result is similar to the quasi-long-range positional
order predicted by the Kosterlitz-Thouless-Halperin-
Nelson-Young theory of 2D melting (Kosterlitz and
Thouless, 1973; Young, 1979; Halperin and Nelson,
1998), according to which S;Ns with s&5/6 (see also
Hu and MacDonald, 1993; Kato and Nagaosa, 1993).

3. The picture of 2D vortex lattice melting

The simple analytical approach described above en-
ables one to draw a clear picture of the vortex lattice
melting process in a 2D superconductor at high mag-
netic fields. The skeleton of this picture consists of the
principal crystallographic axes in a triangular Abrikosov
lattice; owing to thermal fluctuations, families of almost
rigid Bragg chains slide along these axes nearly freely at
low temperatures (see Fig. 7). Similar motion along crys-
tal axes with higher Miller indices costs significantly
more energy and is therefore frozen at low
temperatures.

Melting of the lattice occurs, essentially, when these
fluctuations overcome the weak attractive phase-
dependent interactions between chains. This interaction
is not the same for the two principal axes; it is stronger
for a closely packed Bragg family of chains. Thus the
fluctuations at low temperature suppress the phase cor-
relation within a loosely packed Bragg family more ef-
fectively than within a closely packed one, and so the
stable thermodynamic equilibrium state at low tempera-
tures (i.e., below Tm) corresponds to sliding chains in a
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FIG. 22. Contours of (a) ^uC(rW)u2& and (b) u^C(rW)&u2, calculated within the framework of the Bragg-chain model at t[Tm /T
52 (i.e., below the melting point). Note the perfect periodic lattice created by the minima of these contours, which is, however,
distorted with respect to the triangular Abrikosov lattice.
closely packed Bragg family. However, at higher tem-
peratures (i.e., above Tm) when the phase correlation
within this family is also effectively suppressed, the equi-
librium state corresponds to sliding chains in a loosely
packed Bragg family, since the dominant interactions be-
tween chains at these temperatures are repulsive (and
are weaker for a loosely packed Bragg family).

The first-order transition at Tm is therefore a discon-
tinuous transformation between two different configura-
tions of Bragg chains. The low-temperature configura-
tion is characterized by small fluctuations about the
mean positions of chains that form an ideal periodic lat-
tice very close to an Abrikosov triangular lattice (i.e.,
with angle Q/2'30° between the principal axes). In the
high-temperature configuration the phase fluctuations
are significantly larger than in the low-temperature one,
whereas the mean positions of the Bragg chains still cor-
respond to an exactly regular (but no longer rhombic)
lattice, with a somewhat larger Q, Q'arctan@)/(1
2p23/2A1/2t)# .

This picture is reminiscent of the Cooper-pair charge-
density-wave state described by Sasik, Stroud, and Te-
sanovic (1995), which shows, at a given configuring of
C(rW), considerable positional disorder, while the aver-
age ^uC(rW)u2&, taken over the full ensemble of such con-
figurations, exhibits a perfectly periodic triangular
modulation. It should be stressed, however, that in the
Bragg-chain model the average superfluid density
^uC(rW)u2& is not a perfect periodic function of rW ; only the
positions of the local minima (or maxima) of this aver-
age density form a perfectly periodic lattice, as can be
inferred from Eq. (104) (see Fig. 22). Note also that, in
contrast to the average superfluid density, which
exhibits—asymptotically far from the pinned chain k
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50—periodic order perpendicular to the chain axis, the
superconducting order parameter decays to zero over a
distance of a few chains only [see the plot of u^C(rW)&u2 in
Fig. 22]. This picture is similar to the 2D flux-line-lattice
phase described by Kato and Nagaosa (1993), which has
a strong positional correlation and nonvanishing shear
modulus without long-range superconducting order.

The discontinuous nature of the melting transition is
peculiar to the Abrikosov vortex lattice. In 2D solids
melting (as described by the Kosterlitz-Thouless-
Halperin-Nelson-Young theory) is associated with the
thermally activated proliferation of dislocations, which
reduce the elastic shear modulus to zero in a continuous
fashion. In a 2D Abrikosov lattice the discontinuous
transition is due to the localized (Gaussian) nature of
the ground-state Landau orbitals, which considerably re-
duces shear stiffness along the principal Bragg families
with respect to all the other families. It also allows us to
distinguish clearly between the shear moduli of the two
principal axes, as explained in Sec. IV.A.1.

Plainly, complete 1D periodic order within a single
chain, which characterizes the Bragg-chain model, does
not exist at arbitrarily high temperatures. It can be
shown that a certain type of amplitude fluctuation,
which can be described as a deviation of guiding-center
projections qk from their perfect periodic positions, be-
comes important at intermediate temperatures Tm,T
!Tc . The energy cost of these fluctuations arises from
the two-chain interaction term in the free energy [Eq.
(91)], so that at kBT*10L (pa2/2b) @kBTm (Zhurav-
lev and Maniv, 2000) they destroy any remnant of posi-
tional order in the entire vortex system.

Finally the Bragg-chain model sheds new light on the
mechanism of vortex line pinning: a correlated cluster of
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chains nucleates only around a pinned chain. According
to this model the pinning force of a whole chain can be
strengthened dramatically by distributing pinning cen-
ters uniaxially along the chain. This feature suggests a
very efficient way of generating pinning defects in
quasi-2D superconductors. Such a pinning mechanism
may be tested experimentally by producing columnar
defects (Klein et al., 1993) along the conducting planes
in quasi-2D superconductors.

B. The damping of dHvA oscillations in the vortex liquid

The results presented in Sec. IV.A show very clearly
that the effect of thermal fluctuations in the supercon-
ducting order parameter on the damping of dHvA oscil-
lations around the mean field Hc2 can be quite impor-
tant, particularly in materials in which the electron
dispersion near the Fermi surface is quasi-two-
dimensional. In what follows the sliding Bragg-chain
model, presented in Sec. IV.A.1, will be further devel-
oped to study this fluctuation effect.

1. The generalized Stephen approach

Our starting point here is the partition function, Eq.
(28), for the Gorkov-Ginzburg-Landau superconducting
free-energy functional FG , given by Eq. (29). The fluc-
tuating superconducting order parameter is represented
by the sliding Bragg-chain model, Eqs. (87) and (89). In
the vortex liquid state studied here this selection re-
quires justification, since it was shown to be strictly valid
only near or below the melting point where intrachain
fluctuations are frozen. It turns out, however, that by
allowing for amplitude fluctuations in the sliding Bragg-
chain model, one preserves many important physical
features of the full Gorkov-Ginzburg-Landau free-
energy functional.

For example, the Abrikosov parameter ba(T), Eq.
(88), calculated within the framework of this model
around the mean-field transition temperature Tc2(H)
(see Fig. 23), is in good quantitative agreement with the
results of the Borel-Padé analysis of the high-
temperature large-order perturbation expansion

FIG. 23. The Abrikosov ratio ba(t): solid curve, calculated
within the sliding Bragg-chain model; dotted curve, obtained
by the Monte Carlo simulation of Kato and Nagaosa (1993).
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(Hikami et al., 1991), as well as with numerical simula-
tions (Kato and Nagaosa, 1993). The small systematic
deviations in the intermediate region may be attributed
to intrachain fluctuations neglected in the model. This
contribution is small (in comparison with the strong am-
plitude fluctuations) in the high-temperature region
around Tc2(H), as well as in the low-temperature re-
gion near the melting point, where sliding Bragg chains
dominate the superconducting fluctuations.

Thus, writing the Gorkov-Ginzburg-Landau free-
energy functional [see Eq. (29)] in the Bragg-chain rep-
resentation, its most general (nonlocal) form is

FG

kBTAN
52ā(

k
ucku2

1
1
2 (

k ,s ,p
B~k ,s ,p !uckuuck1s1puuck1suuck1pu

3ei(wk1s1wk1p2wk2wk1s1p). (108)

Note that in the local (Ginzburg-Landau) approxima-
tion B(k ,s ,p)→Bloc(s ,p)}Ls21p2

[compare to Eq.
(91)]. Considering the high-magnetic-field region well
above the mean field Hc2(T) (a,0), where the quartic
terms are much smaller than the quadratic ones, the
integral over phase fluctuations wk in the partition
function

Z5)
k

E uckuducku E dwke2FG /kBT

can be approximated by the first cumulant, so that
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B~k ,0,p !^ucku2&^uck1pu2&
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1
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k ,s
B~k ,s ,0!^ucku2&^uck1su2&. (109)

The factorized form of the quartic term in this expres-
sion is equivalent to the form obtained in Sec. III.A [Eq.
(67)] in the random vortex lattice model.

The pair-correlation function is not identical to the
Gaussian of Eq. (66) obtained in the random vortex
lattice model. It is Gaussian in all directions except for
the direction of the chains, along which it is a periodic
function,

^D~rW1!D* ~rW2!&5^uDu2&expF2
1
2

~rW12rW2!2G
3exp@ i~x11x2!~y12y2!#

3(
n

expF2
1
2 S np

ax
2§ D 2G , (110)

where §5(y11y2)2i(x12x2), and ^uDu2& is the spatial
average of the mean-square fluctuation of the supercon-
ducting order parameter.

In the common experimental situation, when the ef-
fective smearing parameter is not small (see Sec. II.C.4),
the problem is similar to the limiting case discussed in
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Sec. III.A in the context of the random vortex lattice
model. A detailed calculation shows that the narrow
channel of long-range (periodic) pair correlation has
little influence on the self-energy, which can be approxi-
mated by an expression similar to the Maki-Stephen for-
mula, Eq. (73), with D0

2 replaced by ^uDu2&. It should be
noted that with intrachain fluctuations taken into ac-
count, the similarity to the random vortex lattice model
will be even stronger.

2. The dHvA amplitude near the vortex liquid freezing point

Near the vortex liquid freezing point, where the shear
modulus rises abruptly to nearly its mean-field value, the
integral over phase fluctuations, which lead to the fac-
torized form, Eq. (67), in the high-field region, is not
trivial as in the latter limit, since the quartic terms are
not small. On the crystal side of the melting point, how-
ever, the four-chain correlation function has the limiting
(Tm@T) crystal form (where p>s>s0)

^ei(wk1s1wk1p2wk2wk1s1p)&

→eippsexpH 2
s

2t Fps2
1
3

~s221 !G J→eipps (111)

expressing the strong phase correlation in the vortex lat-
tice state.

On the liquid side just above the melting point, calcu-
lation of the damping of the dHvA amplitude is a subtle
problem. In particular, as indicated at the end of Sec.
III.B, the oscillatory part of the free-energy functional,
Eq. (108), is strongly affected by phase fluctuations.
However, since at T,Tc2(H) the leading non-
oscillatory (zero harmonic) part of the free energy is not
influenced significantly by fluctuations, one may use the
local Ginzburg-Landau-like form of the free energy in
the Boltzmann weighting factor to calculate the phase-
correlation function. Under these circumstances [i.e., in
the limit Tm!T,Tc2(H)] it is easy to show that

^ei(wk1s1wk1p2wk2wk1s1p)&→S Tm

T D sp

→~ds ,01dp ,0!,

(112)

which is equivalent to the factorized form of the quartic
term of Eq. (109), found well above Hc2 . Similarly the
pair propagator is given by Eq. (110), and the self-
energy by the corresponding Maki-Stephen-like expres-
sion with

^uDu2&5kBT
] ln Z

]a
. (113)

The amplitude of a fundamental dHvA oscillation in
the liquid state well above the melting point can there-
fore be approximated by the Maki-Stephen-like formula

M [1]'MN
[1]expS 2

p3/2^uD̃u2&
nF

1/2 D .

A simple analytic expression for the damping param-
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eter can be derived in this region by integrating over
amplitude fluctuations (after neglecting a small linear
correction in L),

^uDu2&.
a [0]

b [0] F 11
exp~2x2!

2xE
2`

x
exp~2y2!dyG , (114)

where a [0]5(1/2\vc) ln AHc2 /H , b [0]51.38/nF(\vc)3,
and x5a [0]/A2b [0]kBT .

This expression has no singularity at the mean-field
transition, where both a [0] and x vanish, and smoothly
interpolates between the high-field (x→2`) value
kBT/ua [0]u and the mean-field value a [0]/b [0] in the case
of low field (x→`).

It should be stressed here that the limiting expression
(112) of the four-chain correlation function is a general-
ized form of the condition for the vanishing of the shear
modulus m in the liquid state, whereas the limiting ex-
pression (111) is a generalized form of the Bragg-chain
crystallization. The apparent correlation between the
vanishing shear modulus of the Abrikosov lattice and
the decoupling of the average quartic term into a prod-
uct of two pair-correlation functions, which reflects the
onset of incoherent damping of the dHvA oscillations,
may indicate that the transition from incoherent vortex
liquid damping to coherent Abrikosov lattice damping is
a sharp transition.

V. DISCUSSION AND COMPARISON WITH
EXPERIMENTAL DATA

The theory reviewed in this article provides a reason-
able framework for a qualitative description of all im-
portant aspects of the dHvA effect in the mixed states of
type-II superconductors. It is still insufficiently devel-
oped, however, to provide a complete quantitative ac-
count of the available experimental data. Furthermore,
some fundamental questions concerning the pure limit
of a superconductor under high magnetic fields and ul-
tralow temperatures still remain unanswered.

A key conclusion reached here concerns the connec-
tions between all the different mean-field approaches to
the problem: they are found to be consistent in the re-
gion just below the upper critical field Hc2 , splitting
markedly, however, in the lower-magnetic-field region
well below Hc2 .

In this discussion an attempt will be made to find a
common framework for all the different approaches in
which one could draw a consistent conclusion regarding
the behavior of the dHvA oscillations, both away from
Hc2 and in its immediate vicinity. The available experi-
mental data will be systematically examined with respect
to this scheme.

In all dHvA experiments performed so far in the
mixed superconducting states, the fundamental oscilla-
tory component was typically found to be much larger
than the higher harmonics. Consequently, in discussing
the existing experiments, the limit of a relatively large
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smearing effect (2pGef*\vc ; see Secs. II.C.4, II.C.5,
and III.A) applies.

The current experimental situation could change,
however, in the future, enabling dHvA measurements
on very pure single crystals at ultralow temperatures,
when the exotic features discussed in Sec. II.C.2 could
be observed. At present the theoretical understanding of
such superconducting states is quite limited. Two funda-
mental difficulties are encountered in attempting to con-
struct such a theory.

(1) The infinite degeneracy of the bare (normal-state)
Landau levels, which leads to the breakdown of Gork-
ov’s perturbation expansion in the superconducting or-
der parameter D and to the emergence of nonanalytic
dependence on D. At present it is not at all clear
whether a standard nonperturbative approach, like the
Borel summation method employed by Maniv et al.
(1998), is sufficient for this problem; the similarity to the
situation encountered in the quantum Hall effect may
indicate that a completely new nonperturbative ap-
proach is needed.

(2) The lack of particle-hole symmetry in the Landau-
level basis sets, on the one hand, and the presence of this
symmetry in the quasiparticle spectrum, on the other
hand, which turns the crossing of the Fermi energy by
the quasiparticle ‘‘Landau bands’’ into an extremely
complex process. In interpreting current experimental
data, however, one finds that the significant smearing of
the Landau-level spectrum by various extrinsic factors
dramatically simplifies the picture of this crossing pro-
cess and allows the use of an expansion in the supercon-
ducting order parameter for the oscillatory part of the
thermodynamic potential.

Under these circumstances two important parameters
can be identified:

x15p3/2
D̃0

2

nF
1/2 , x25&bA

D̃0
2

nF
. (115)

For an ideal Abrikosov lattice the reduction factor of
the fundamental dHvA oscillation in the vortex state
can be written as

Rs
[1]512x1Q~x2!, (116)

where Q(x2) has an analytic expansion around x250,
Q(x2)512x21 ¯ [see Eq. (55)]. In the semiclassical
limit nF

1/2@1 the superconducting-induced suppression
of oscillations in the region

1*x1;nF
1/2x2@x2 (117)

is dominated by the factor x1 in Eq. (116), which in-
creases linearly with D̃0

2. This behavior reflects the op-
posing effect of the paramagnetic vortex currents with
respect to the cyclotron diamagnetic currents, as dis-
cussed in Sec. I.B.3. In this range of parameters the qua-
siparticle density of states consists of well-separated
Landau bands, as shown in Fig. 10. The Landau-level
broadening due to coherent magnetic breakdown, dis-
cussed in Secs. I.B.3 and II.B, is controlled by the as-
Rev. Mod. Phys., Vol. 73, No. 4, October 2001
ymptotically small parameter x2 through the function
Q(x2), and so does not play an important role in this
region (as long as x2!1).

In their extensive numerical study of magnetic oscilla-
tions in the mixed state, Norman, MacDonald, and Ak-
era (1995) have shown that the kinetic energy and the
pairing contributions to the magnetization oscillations
oppose each other. They added that this should be ex-
pected, since the superconducting state is always formed
at a cost in kinetic energy in order to take advantage of
the attractive electron-electron interactions. Since the
orbital kinetic energy of the quasiparticles corresponds
to cyclotron motion, which is diamagnetic in nature, the
pairing contribution in their calculation is evidently of
paramagnetic nature, in agreement with the picture de-
scribed above.

The breakdown of the simple Landau band picture
occurs when D̃0 becomes sufficiently large that the qua-
siparticle band edges start to overlap and their mean
positions significantly shift relative to the normal-
electron Landau levels, as shown in Fig. 24. This situa-
tion corresponds to strong coherent magnetic break-
down, as well as to the opening of a significant
superconducting energy gap in the quasiparticle spec-
trum. It is conceivable that these phenomena will be re-
flected in Eq. (116) by the breakdown of the Taylor ex-
pansion of Q(x2). Since the form of the full expansion is
not known, one may estimate the breakdown value of
D̃0

2 from the criterion x2;1, which leads to

D̃0,Br
2 ;0.61nF . (118)

It is interesting to compare this criterion with the
available numerical calculations of the quasiparticle
spectrum. Norman and MacDonald (1996) examined the
mean eigenvalue of the lowest quasiparticle band in
their numerical solution of the Bogoliubov–de Gennes
equations for a 2D superconductor, as a function of D̃0
for three fixed values of the filling factor nF (see Fig. 25),
and determined the point at which the corresponding
three curves crossed. They interpreted this point as a
crossover from a well-separated quasiparticle Landau

FIG. 24. The quasiparticle density of states calculated numeri-
cally by Tesanovic and Sacramento, as in Fig. 9, but for D̃0
54. Note the shift of the mean positions of the bands relative
to the normal-electron Landau levels, which indicates the
opening of the superconducting energy gap.
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band structure, as shown, for example, in Fig. 10, into a
region where the emergence of well-separated vortex
cores leads to a strong mixture of Landau levels.

Using their numerical value of nF in Eq. (118), it is
found that D̃0,Br'3.5, which should be compared with
the crossing point shown in Fig. 25 (i.e., D̃0,cross'3). The
agreement is reasonably good, given the relatively small
values of nF (;20) used in the numerical calculations
and the large values assumed in the analytical expres-
sion, Eq. (118).

It should be noted that the quasiparticle density of
states shown in Fig. 10 consists of well-separated Landau
bands in the parameter region far away from the cross-
over region. For this calculation, though, D̃051 (which
corresponds to x1'0.9), and this is very close to the
point at which, according to Eq. (116) the superconduct-
ing contribution to the oscillatory free energy becomes
comparable to the normal-electron contribution. Na-
ively, one could think that at x1'1 the superconducting
contribution to the free energy could not be considered
as a small perturbation. The general structure of Eq.
(116) in the semiclassical limit indicates, however, that
near this point Gorkov’s expansion is well within its
range of validity.

In real dHvA experiment various inhomogeneities,
such as dislocations, vacancies, and grain boundaries,
lead to irregular flux-line pinning and consequently to
the destruction of the translational long-range order of
the Abrikosov lattice (Blatter et al., 1994). This pinning
effect is usually reflected in the sample magnetization as
a hysteresis loop at magnetic fields near Hc2 (Janssen
et al., 1998) and often also in a large peak in the
nonoscillatory component of the magnetization just be-
low Hc2 (the peak effect; Terashima et al., 1997).

Furthermore, thermal fluctuations in the supercon-
ducting order parameter can significantly influence the
transition to the superconducting state in the high-field
region of the superconducting-normal phase boundary
due to an effective dimensionality reduction by the Lan-
dau quantization of the energy of Cooper pairs (Te-
sanovic and Andreev, 1994).

FIG. 25. Mean eigenvalue (in units of \vc) of the lowest qua-
siparticle band vs D̃0 , calculated by Norman and MacDonald
(1996) at three values of the filling factor: d, nF520; 1 , nF

520.25; s, nF520.5. Note the crossing at about D̃053.
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Thus it seems that in the high magnetic-field region
near Hc2 , where dHvA oscillations are observable, the
vortex state is usually disordered due to both static (flux
pinning) and dynamic effects (thermal and/or quantum
fluctuations). Consequently, one usually expects to find
in this region the behavior predicted by the Maki-
Stephen random vortex lattice model, which is con-
trolled by the single parameter x1 [Eq. (115)]. The cor-
responding effective order parameter D̃0 is not simply
related, however, to the amplitude of the Abrikosov so-
lution, nor is it directly connected to the superconduct-
ing energy gap, since it is determined by some average
of uD(rW)u2 over all possible vortex lattice configurations.
This may explain the general trend found in the inter-
pretation of experimental dHvA data (Haworth et al.,
1998; Janssen et al., 1998) when the Maki-Stephen
simple exponential behavior fits very well the data near
Hc2 , but requires values of D̃0 that usually do not cor-
relate well with the superconducting energy gap.

The reader should note that strong damping of dHvA
oscillations can take place in the close vicinity of Hc2
because of a completely different mechanism associated
with the redistribution of flux lines. This happens in
measurements using the field modulation technique,
when the nonequilibrium currents induced by the modu-
lation field lead to nonuniform flux distribution inside
the superconductor over a macroscopic length scale
(which is typically much larger than the Larmor radius
rF) and to a strong phase smearing of dHvA oscillations
(Terashima et al., 1997).

The situation changes significantly as the magnetic
field is reduced further below Hc2 . Here both flux-line
pinning and thermal fluctuations are suppressed. The
regular Abrikosov lattice is recovered, so that according
to the general argument presented in Sec. II, the estab-
lished phase coherence in the vortex lattice should lead

FIG. 26. Dingle plot reproduced from Corcoran, Harrison,
et al. (1994) for dHvA oscillations in the vortex state of V3Si .
The solid straight lines, drawn as close as possible to the data
points, show clearly two different characteristic slopes in the
vortex state. The value of Hinv indicated in the figure was
determined from the value of D0(0) (see text) yielding the best
fit to the data points just below Hc2 .
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to much smaller Landau-level broadening by the pair
potential and to weaker damping of the dHvA oscilla-
tions.

This consideration seems to explain a rather system-
atic phenomenon observed in dHvA measurements on
several type-II superconductors. Figures 26 and 27
clearly illustrate this phenomenon. The Dingle plots ex-
hibit an initial slope just below Hc2 that agrees very well
with the Maki-Stephen exponential damping factor, Eq.
(74), provided the field dependence of \vcD̃05D0(H) is
assumed to be the same as that of the mean-field self-
consistent order parameter near Hc2 , D0(H)
5D0(0)A12 H/Hc2 [see Eq. (56)]; D0(0) is, however,
an adjustable parameter. At some field below Hc2 the
straight lines with initially large (negative) slopes break
into new lines with significantly smaller slopes.

It should be stressed here that the good agreement of
Eq. (74) with the initial straight lines occurs well beyond
the region where the linear approximation of this expo-
nential holds [in which it cannot be distinguished from
the ideal Abrikosov lattice result, Eq. (116)]. This can be
seen in both figures with the help of the location of an
auxiliary field Hinv , which is defined at the point where
Rs in Eq. (116) vanishes (i.e., where x1'1). Since at this
field x2 is still much smaller than one, the Dingle plots
would have shown a downward logarithmic divergence
at Hinv if the ideal behavior, Eq. (116), were valid there.
In contrast, it can be seen that for both materials (and
for other ones as well; see, for example, Maniv et al.,
1998) the Dingle plot is approximated very well by a
linear curve all the way down to Hinv and slightly below
where the data sharply turn upward.

Thus, according to the above interpretation, the
smaller slope of the Dingle plots in the low-field region
reflects the establishment of long-range translational or-
der in the vortex state, i.e., over a length scale much
larger than the magnetic length. The quantitative analy-
sis of the data in this region is, however, complicated by
the need to take into account the presence of incomplete
(correlated) disorder of an unknown nature in the vor-

FIG. 27. The same as Fig. 26 for a dHvA measurement in the
vortex state of YNi2B2C carried out by Goll et al. (1996).
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tex lattice, as well as by the small signal-to-noise ratio
characterizing the experimental data in this field range.

Direct experimental evidence for the important role
played by the pinning of vortices in the damping of
dHvA signals in superconducting mixed states was pro-
vided by Steep et al. (1995), who studied the damping of
dHvA oscillations along different magnetic-field sweeps
in the hysteretic region below Hc2 of 2H-NbSe2. Discon-
tinuous jumps in the dHvA amplitude, as well as signifi-
cant changes in the slopes of the Dingle plots, were ob-
served at points where the sweep directions were
changed, showing clearly the influence of the temporary
vortex line configurations on the damping (see Fig. 28).
It is, of course, not clear from this work on what length
scale the vortex distribution influencing the dHvA am-
plitude was most effective.

As mentioned above, the effect of thermal fluctua-
tions in the superconducting order parameter on the
damping of dHvA oscillations can be quite important,
particularly in materials where the electron dispersion
near the Fermi surface is very anisotropic (i.e., quasi-
two- or one dimensional). In what follows, we discuss
this effect in some detail since, unlike the effect of vor-

FIG. 28. Influence of temporary vortex line configuration on
damping: (a) dHvA oscillations in the mixed state of
2H-NbSe2 measured by Steep et al. (1995) for different field
sweeps. From left to right: sweep from 3.9 to 5.1 T, stop, sweep
back to 4.9 T, sweep from 4.9 to 6.1 T, stop, sweep back to 5.9
T, sweep from 5.9 to 7.1 T, stop of sweep. (b) Dingle plot for
the data presented in (a) (Steep et al., 1995, private communi-
cation). Note the jump at 6 T and the significant change of
slope at 5 T.
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tex line pinning, it can be treated readily within a self-
consistent approach, which in some simple limiting cases
can provide a scheme for a quantitative analysis of the
experiment.

Before turning to such a detailed discussion, however,
it will be instructive to further examine the available
experimental data. Some of the materials studied in
these experiments, i.e., V3Si (see Fig. 26) and Nb3Sn,
which was investigated by Harrison et al. (1994), belong
to a family of intermetallic compounds possessing the
A15 (or b-tungsten) crystal structure, known for their
relatively high superconducting transition temperatures
as well as other anomalous electronic and elastic prop-
erties (Weger and Goldberg, 1973). Of special interest
here is the linear-chain structure of the b-W lattice,
which was proposed as a possible origin of these pecu-
liarities (Weger, 1964). The presence of large thermal
fluctuations in the superconducting order parameter, as-
sociated with this quasi-1-D electronic structure, was
proposed (Maniv, 1978) as the origin of the large en-
hancement of the nuclear spin-lattice relaxation rate,
1/T1 , observed in Nb3Al and Nb3Sn (Ehrenfreund et al.,
1971; Fradin and Cinader, 1977) at temperatures just
above Tc(H50).

It is therefore reasonable to expect that under the
high-magnetic-field conditions of the dHvA experiment,
superconducting fluctuation effects in these materials
play a significant role. Unfortunately, the data taken
from both Nb3Sn and V3Si in the close vicinity of Hc2
are strongly disturbed by the large peak effect. In con-
trast, the borocarbide data shown in Fig. 27 do not suffer
from this disturbance, and so the close vicinity of Hc2
can be carefully examined. The significant rounding of
the Dingle plot seen in this region is clear evidence for
the effect of superconducting fluctuations. It is thus very
interesting to note here that recent studies of YNi2B2C
single crystals by means of electrical transport (Mun
et al., 1996) and nuclear magnetic resonance (Lee et al.,
2000) measurements indicate the existence of large ther-
mal fluctuations of vortices in this material, which could
lead to a vortex glass transition at high fields (Mun et al.,
1996) and to a vortex lattice melting transition at lower
fields.

As discussed in detail in Sec. IV, thermal fluctuations
in the order parameter of 2D superconductors smear the
sharp mean-field second-order phase transition into a
broad crossover around the mean field Hc2 , on which a
very weak first-order transition (i.e., a small discontinu-
ous entropy jump) is superimposed well below Hc2 . The
small entropy change is associated, however, with a large
drop in the vortex lattice shear modulus (see Fig. 21),
indicating the melting of the vortex lattice. Since the
damping of dHvA oscillations is sensitive to the local
phase of the superconducting order parameter (Sec.
II.C.3), the phase fluctuations that drive this melting
transition are expected to strongly influence the
damping.

Experimentally suitable materials for studying this
fluctuation effect can be found among the organic
charge-transfer salts (BEDT-TTF)2X (Saito and Ka-
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goshima, 1990), which are highly anisotropic compounds
with nearly two-dimensional electronic structure. Some
of these compounds, such as X5Cu(NCS)2, are extreme
type-II superconductors with very small in-plane coher-
ence length. Consequently, the Gorkov critical region is
relatively large and one expects drastic deviations from
the predictions of mean-field theory for these materials
due to strong thermal fluctuations in the superconduct-
ing order parameter (Friemel et al., 1996).

Sasaki et al. (1998) recently observed dHvA oscilla-
tions in the vortex liquid state of this material. Earlier
measurements on the same material were reported by
van der Wel et al. (1995). A comparison of the theory
presented in Sec. IV.B with both sets of data is shown in
Fig. 29. Assuming that the nucleation of superconduct-
ing droplets is associated mainly with the closed Fermi-
surface sheet (Wosnitza, 1993, 1996), and using the well-
documented normal and superconducting parameters, a
remarkably good quantitative agreement with the ex-
perimental data is achieved with the mean field Hc2 as
the only adjustable parameter. It is found that a single
value of about 4.7 T fits well the two different sets of
data, which were taken at quite different temperatures.
It should be stressed that in the fluctuation theory the
magnetic oscillations are smoothly damped well above
Hc2 and disappear below this value in remarkable agree-
ment with the experiment. This is a sharp contrast with
the results of the mean-field Maki-Stephen/Wasserman-
Springford theory, where the additional damping begins
abruptly at Hc2 with a significantly stronger damping
rate than what is observed experimentally. The theoreti-
cally expected sharp change of damping rate at the

FIG. 29. The magnetization oscillations damping factor Rs as a
function of magnetic field H in the quasi-2D superconductor
k-(ET)2Cu(SCN)2. Solid lines: theoretical curves for T
520 mK, F5HnF5690 T (1), and T5120 mK, F5600 T (2);
* , s, corresponding experimental data reproduced from van
der Wel et al. (1995) and from Sasaki et al. (1998), respectively.
The other parameters used in the calculations are Tc(H50)
510.4 (with the gap parameter calculated using the BCS weak-
coupling formula) and m* 53.5me , with me denoting the free-
electron mass.
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freezing point, discussed in Sec. IV.B.2, will be difficult
to observe in the quasi-2D organic compounds investi-
gated due to the very small value of the melting tem-
perature Tm and due to the strength of the 2D fluctua-
tions. In 3D superconductors, where the role of
fluctuations is less important and the melting transition
is shifted significantly closer to Hc2 , one could expect
such a transition to be observable. The borocarbide data
shown in Fig. 27 could indicate such a freezing transi-
tion, as was mentioned earlier.

One should note that the quasi-2D organic supercon-
ductors (BEDT-TTF)2X have been treated here as con-
ventional superconductors. Numerous experiments have
indicated, however, that the pairing mechanism in these
materials could be unconventional (see, for example,
Wosnitza, 1999 or Behnia et al., 1999). The reader may
therefore ask what happens to such an anisotropic su-
perconductor when a strong magnetic field is applied
perpendicular to its easy conduction planes. Generally
speaking, the nature of the low-lying quasiparticles in a
superconductor with anisotropic gap, or in a ‘‘d-wave’’
superconductor, at nonzero magnetic fields, is quite dif-
ferent from that found in a conventional supercon-
ductor. In this last, nodes in the superconducting gap
arise only as a result of center-of-mass motion of pairs in
strong magnetic fields near Hc2 , whereas in d-wave su-
perconductors there are nodes in the gap as a function
of the relative momentum of the pairs along symmetry
lines, or at some symmetry points of the Fermi surface
even at zero magnetic field. If the extremal electron or-
bit coincides with a zero-gap line, one may expect an
enhanced dHvA signal for the corresponding magnetic-
field direction (Miyake, 1993). In a d-wave supercon-
ductor, the vanishing of the gap at symmetry points is
known to yield a finite density of states at the chemical
potential (Volovik, 1993). Gorkov and Schrieffer
(1998a) have shown that for a dx22y2 superconductor at
intermediate magnetic fields Hc1!B!Hc2 the quasipar-
ticle exhibits a Dirac-like energy spectrum En5
6\vHAn , n50,1, . . . where vH52AvcD0 /\ . The na-
ture of this spectrum is quite different from the equis-
paced Landau levels characterizing the conventional
case. These pioneering studies have recently stimulated
intense theoretical activity. Mel’nikov (1999) showed
that individual levels are strongly mixed by the effect of
spatially varying supercurrent in the vortex lattice, while
Franz and Tesanovic (2000) introduced a singular gauge
transformation to study the corresponding quasiparticle
band structure. Their calculations exhibited strongly dis-
persed bands rather than the discrete levels discussed
above. This conclusion was basically confirmed by the
very recent study of Marinelli, Halperin, and Simon
(2000). The strong broadening of these ‘‘Dirac levels’’ in
the vortex lattice of a d-wave superconductor implies
that despite the gapless nature of its quasiparticle spec-
trum, quantum magnetic oscillations could not be ob-
servable deep in the vortex state of such a supercon-
ductor.

Finally it should be stressed that in some dHvA ex-
periments on conventional superconductors (see, for ex-
Rev. Mod. Phys., Vol. 73, No. 4, October 2001
ample, Terashima et al., 1997) the observed oscillations
persist at magnetic fields B surprisingly smaller than
Hc2 , a result that seems difficult to reconcile with the
Fermi-surface crossing mechanism discussed in this ar-
ticle. Recently, Gorkov and Schrieffer (1998b) and
Gorkov (1998) proposed a new mechanism for quantum
magnetic oscillations in isotropic superconductors,
which enhances oscillations at Hc1!B!Hc2 where the
superconducting energy gap is almost fully restored.
They demonstrated that oscillations in this state are
caused by a level crossing at an energy threshold sepa-
rating ‘‘localized’’ and ‘‘extended’’ states. This energy
boundary is introduced to the ‘‘gapped’’ quasiparticle
spectrum «(p)5Ajp

21D2 by the Doppler shift pW •vW s(rW),
where vW s(rW) is the superfluid velocity distribution. The
smaller Dingle temperature arising from this threshold
mechanism may account for the dHvA oscillations ob-
served deep in the mixed state.
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