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Matter in strong magnetic fields
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The properties of matter are drastically modified by strong magnetic fields, B@me
2e3c/\352.35

3109 G (1 G51024 T), as are typically found on the surfaces of neutron stars. In such strong
magnetic fields, the Coulomb force on an electron acts as a small perturbation compared to the
magnetic force. The strong-field condition can also be mimicked in laboratory semiconductors.
Because of the strong magnetic confinement of electrons perpendicular to the field, atoms attain a
much greater binding energy compared to the zero-field case, and various other bound states become
possible, including molecular chains and three-dimensional condensed matter. This article reviews the
electronic structure of atoms, molecules, and bulk matter, as well as the thermodynamic properties of
dense plasma, in strong magnetic fields, 109 G!B&1016 G. The focus is on the basic physical pictures
and approximate scaling relations, although various theoretical approaches and numerical results are
also discussed. For a neutron star surface composed of light elements such as hydrogen or helium, the
outermost layer constitutes a nondegenerate, partially ionized Coulomb plasma if B&1015 G (at
temperature T * 106 K), and may be in the form of a condensed liquid if the magnetic field is
stronger (and T *106 K). For an iron surface, the outermost layer of the neutron star can be in a
gaseous or a condensed phase, depending on the cohesive property of the iron condensate.
CONTENTS

I. Introduction 629
A. Astrophysics motivation 630
B. Laboratory physics motivation 631
C. Plan of this paper 631
D. Bibliographic notes 631

II. Basics on Landau Levels 631
III. Atoms 633

A. Hydrogen atom 633
B. High-Z hydrogenic ions 634
C. Heavy atoms 635

1. Approximate scaling relations 635
2. Numerical calculations and results 635

D. Intermediate-magnetic-field regime 637
E. Effect of center-of-mass motion 637

IV. Molecules 639
A. H2: Basic mechanism of bonding 639
B. Numerical calculations and results 639
C. Molecular excitations 640
D. HN molecules: Saturation 641
E. Intermediate-magnetic-field regime 642
F. Molecules of heavy elements 642

V. Linear Chains and Condensed Matter 642
A. Basic scaling relations for linear chains 642
B. Calculations of linear chains 643
C. Cohesive energy of linear chains 644
D. 3D condensed matter: Uniform-electron-gas

model and its extension 644
E. Cohesive energy of 3D condensed matter 645
F. Shape and surface energy of condensed droplets 646

VI. Free-Electron Gas in Strong Magnetic Fields 647
VII. Surface Layer of a Magnetized Neutron Star 649

A. Warm hydrogen atmosphere 649
B. Surface hydrogen at ultrahigh fields: The

condensed phase 651
C. Iron surface layer 652

*Electronic address: dong@astro.cornell.edu
0034-6861/2001/73(3)/629(33)/$26.60 629
D. Radiative transfer and opacities 654
E. Magnetized neutron star crust 655

VIII. Concluding Remarks 656
Acknowledgments 656
Appendix A: Jellium Model of Electron Gas in Strong
Magnetic Fields 656
Appendix B: Thomas-Fermi Models in Strong Magnetic Fields 657
References 658

I. INTRODUCTION

An electron in a uniform magnetic field B gyrates in a
circular orbit with radius r5mecv/(eB) at the cyclotron
frequency vce5eB/(mec), where v is the velocity per-
pendicular to the magnetic field. In quantum mechanics,
this transverse motion is quantized into Landau levels.
The cyclotron energy (the Landau-level spacing) of the
electron is

\vce5\
eB

mec
511.577 B12 keV, (1.1)

and the cyclotron radius (the characteristic size of the
wave packet) becomes

r05S \c

eB D 1/2

52.5656310210B12
21/2 cm, (1.2)

where B125B/(1012 G) is the magnetic-field strength in
units of 1012 G, a typical field found on the surfaces of
neutron stars (see Sec. I.A). When studying matter in
magnetic fields, the natural (atomic) unit for the field
strength, B0 , is set by \vce5e2/a0 , or equivalently by
r05a0 , where a0 is the Bohr radius. Thus it is conve-
nient to define a dimensionless magnetic-field strength b
via

b[
B

B0
; B05

me
2e3c

\3 52.35053109 G. (1.3)

For b@1, the electron cyclotron energy \vce is much
larger than the typical Coulomb energy, so that the
©2001 The American Physical Society
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properties of atoms, molecules, and condensed matter
are qualitatively changed by the magnetic field.1 In such
a strong-field regime, the usual perturbative treatment
of the magnetic effects (e.g., Zeeman splitting of atomic
energy levels) does not apply (see Garstang, 1977, for a
review of atomic physics at b&1). Instead, the Coulomb
forces act as a perturbation to the magnetic forces, and
the electrons in an atom settle into the ground Landau
level. Because of the extreme confinement (r0!a0) of
the electrons in the transverse direction (perpendicular
to the field), the Coulomb force becomes much more
effective in binding the electrons along the magnetic-
field direction. The atom attains a cylindrical structure.
Moreover, it is possible for these elongated atoms to
form molecular chains by covalent bonding along the
field direction. Interactions between the linear chains
can then lead to the formation of three-dimensional con-
densates. The properties of atoms, molecules, and bulk
matter in strong magnetic fields of b@1 are the subject
of this review.

A. Astrophysics motivation

Strong magnetic fields with b@1 exist on the surfaces
of neutron stars. Most radio pulsars and accreting neu-
tron stars in x-ray binaries have surface fields in the
range of 1012–1013 G; even recycled millisecond pulsars
and old neutron stars in low-mass x-ray binaries have
fields B5108 –109 G (see, for example, Lewin et al.,
1995; Lyne and Graham-Smith, 1998). The physical up-
per limit to the neutron star magnetic-field strength fol-
lows from the virial theorem of magnetohydrostatic
equilibrium (Chandrasekhar and Fermi, 1953; see Sha-
piro and Teukolsky, 1983). The magnetic energy
of the neutron star (mass MNS , radius RNS),
(4pRNS

3 /3)(B2/8p), can never exceed its gravitational
binding energy, ;GMNS

2 /RNS ; this gives

B&1018S MNS

1.4M(
D S RNS

10 kmD 22

G. (1.4)

It has been suggested that magnetic fields of order
1015 G or stronger can be generated by dynamo pro-
cesses in proto-neutron stars (Thompson and Duncan,
1993), and recent observations (e.g., Vasisht and Got-
thelf, 1997; Kouveliotou et al., 1998, 1999; Hurley et al.,
1999; Kaspi et al., 1999; Mereghetti, 2000) have lent sup-
port to the idea that soft-gamma-ray repeaters and
slowly spinning (with periods of a few seconds) ‘‘anoma-
lous’’ x-ray pulsars in supernova remnants are neutron
stars endowed with superstrong magnetic fields B
*1014 G, the so-called ‘‘magnetars’’ (Duncan and Th-
ompson, 1992; Paczyński, 1992; Thompson and Duncan,

1Note that this statement applies to individual atoms, mol-
ecules, and zero-pressure condensed matter. In a medium,
when the density or temperature is sufficiently high, the mag-
netic effects can be smeared out even for b@1; see Sec. VI.
The strong-field condition is also modified by the ion charge;
see Sec. III.C.
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1995, 1996). Finally, magnetism has been detected in a
few dozen white dwarfs (out of a total of about 2000) in
the range from 105 to 109 G (see, for example, Koester
and Chanmugan, 1990; Jordan, 1998; Wickramasinghe
and Ferrario, 2000).

The main astrophysical motivation for studying mat-
ter in strong magnetic fields arises from the importance
of understanding neutron star surface layers, which play
a key role in many neutron star processes and observed
phenomena. Theoretical models of pulsar and magnetar
magnetospheres depend on the cohesive properties of
the surface matter in strong magnetic fields (see, for ex-
ample, Ruderman and Sutherland, 1975; Michel, 1991;
Usov and Melrose, 1996; Zhang and Harding, 2000).
More importantly, the surface layer directly mediates
the thermal radiation from the neutron star. It has long
been recognized that neutron stars are sources of soft x
rays during the ;105 –106 years of the cooling phase
after their birth in supernova explosions (Chiu and Sal-
peter, 1964; Tsuruta, 1964; Bahcall and Wolf, 1965). The
cooling history of the neutron star depends on poorly
constrained interior physics, such as nuclear equation of
state, superfluidity, and internal magnetic fields (see, for
example, Pethick, 1992; Page, 1998; Tsuruta, 1998;
Prakash et al., 2000; Yakovlev et al., 2001 for review).
The advent of imaging x-ray telescopes in recent years
has now made it possible to observe isolated neutron
stars directly by their surface radiation. In particular, re-
cent x-ray observatories such as ROSAT have detected
pulsed x-ray thermal emission from a number of radio
pulsars (see Becker and Trümper, 1997; Becker, 2000;
Becker and Pavlov, 2001 for review). Some of the ob-
served x rays are likely to be produced by nonthermal
magnetospheric emission, but at least three pulsars
(PSR B1055-52, B0656114, Geminga) show emission
dominated by a thermal component emitted from the
whole neutron star surface, with temperatures in the
range of (2 –10)3105 K. A few of the x-ray-emitting ra-
dio pulsars show thermal-like radiation of higher tem-
peratures, in the range (1 –5)3106 K, from an area
much smaller than that of the stellar surface, indicating a
hot polar cap on the neutron star surface. Several
nearby pulsars have also been detected in the extreme
ultraviolet (Edelstein, Foster, and Bowyer, 1995; Kor-
pela and Bowyer, 1998) and in the optical band (Pavlov
et al., 1997; Caraveo et al., 2000) with spectra consistent
with thermal radiation from neutron star surfaces. On
the other hand, old isolated neutron stars (108 –109 of
which are thought to exist in the Galaxy), heated
through accretion from interstellar material, are also ex-
pected to be common sources of soft-x-ray/extreme-
ultraviolet emission (see, for example, Treves and Colpi,
1991; Blaes and Madau, 1993; Treves et al. 2000). Several
radio-quiet isolated accreting neutron stars have been
detected in the x-ray and optical bands (for example,
Caraveo, Bignami, and Trümper, 1996; Walter, Wolk,
and Neuhäuser, 1996; Walter and Matthews, 1997). Fi-
nally, the quiescent x-ray emissions from soft-gamma-ray
repeaters and anomalous x-ray pulsars may be powered
by the internal heating associated with decaying mag-
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netic fields (Thompson and Duncan, 1996). The x rays
originate near the stellar surface and therefore allow
one to probe radiative transport in the superstrong-field
regime. Observations indicate that some of the magne-
tars (particularly anomalous x-ray pulsars) have a ther-
mal component in their x-ray spectra (see Mereghetti,
2000). Overall, the detections of surface emission from
neutron stars can provide invaluable information on the
structure and evolution of neutron stars and enable one
to put constraints on the nuclear equation of state, vari-
ous heating/accretion processes, magnetic-field struc-
ture, and surface chemical composition. The recently
launched x-ray telescopes, including Chandra X-ray Ob-
servatory and XMM-Newton Observatory, have much
improved sensitivity and spectral resolution in the soft-
x-ray band, making it promising for spectroscopic stud-
ies of isolated or slowly accreting neutron stars. Since
the surface layer/atmosphere directly determines the
characteristics of the thermal emission, proper interpre-
tations of the observations require a detailed under-
standing of the physical properties of the neutron star
envelope in the presence of intense magnetic fields (B
*1012 G).

B. Laboratory physics motivation

The highest static magnetic field currently produced in
a terrestrial laboratory is 45 T (4.53105 G), far below
B0 ; a stronger transient field of order 103 T can be pro-
duced using explosive flux compression techniques, but
this is still below B0 (see, for example, Crow et al.,
1998). However, high-magnetic-field conditions can be
mimicked in some semiconductors where a small effec-
tive electron mass m* and a large dielectric constant «
reduce the Coulomb force relative to the magnetic force.
For hydrogenlike excitons in semiconductors, the atomic
unit of length is a0* 5«\2/(m* e2), and the correspond-
ing natural unit for a magnetic field is B0*
5m

*
2 e3c/(«2\3). For example, in GaAs, the dielectric

constant is «512.56 and the electron bound to a posi-
tively charged donor has an effective mass m*
50.006 65me , thus B0* 56.57 T. The critical field B0*can be as small as 0.2 T for InSb. Such a low value of
B0* implies that the structure of excitons, biexcitonic
molecules, and quantum dots (which resemble multi-
electron atoms; see Kastner, 1992) in semiconductors
must experience significant changes already in labora-
tory magnetic fields (see, for example, Lieb et al., 1995;
Timofeev and Chernenko, 1995; Klaassen et al., 1998).
Some of the earliest studies of atoms in superstrong
magnetic fields (Elliot and Loudon, 1960; Hasegawa and
Howard, 1961) were motivated by applications in semi-
conductor physics.

C. Plan of this paper

In this paper we review the properties of different
forms of matter (atoms, molecules, and bulk condensed
matter) in strong magnetic fields. We also discuss astro-
physical situations in which magnetized matter plays an
Rev. Mod. Phys., Vol. 73, No. 3, July 2001
important role. We shall focus on magnetic-field
strengths in the range of B@109 G so that b@1 is well
satisfied, although in several places (Secs. III.D and
IV.E) we shall also touch upon issues for b only some-
what larger than 1. Throughout the paper, our emphasis
is on physical understanding and analytic approximate
relations (whenever they exist), rather than on compu-
tational techniques for the electronic structure calcula-
tions, although we shall discuss the latter aspects and
provide references to the literature.

This paper is organized as follows. After a brief sum-
mary of the basics of electron Landau levels in Sec. II,
we discuss the physics of various bound states in strong
magnetic fields in Sec. III (atoms), Sec. IV (molecules),
and Sec. V (condensed matter). Section VI summarizes
the thermodynamic properties of free-electron gas (at
finite density and temperature). In Sec. VII we review
the physical properties of the envelope of a strongly
magnetized neutron star.

Throughout the paper we shall use real physical units
and atomic units (a.u.) interchangeably, whichever is
more convenient. Recall that in atomic units, mass and
length are expressed in units of the electron mass me
and the Bohr radius a050.52931028 cm, energy in units
of 2 Ry5e2/a052313.6 eV, field strength in units of
B0 [Eq. (1.3)], temperature in units of 3.163105 K, and
pressure in units of e2/a0

452.9431011 newtons/m2.

D. Bibliographic notes

Theoretical research on matter in superstrong mag-
netic fields started in the early 1960s. A large number of
papers have been written on the subject over the years
and they are scattered through the literatures of astro-
physics, atomic/molecular physics, and condensed-
matter physics. Although we have tried to identify origi-
nal key papers whenever possible, our references put
more emphasis on recent works from which earlier pa-
pers can be found. We apologize to the authors of the
relevant papers that are not mentioned here.

In recent years there has been no general review ar-
ticle that covers the broad subject of matter in strong
magnetic fields, although good review articles exist on
aspects of the problem. An extensive review of atoms
(especially for H and He) in strong magnetic fields, in-
cluding tabulations of numerical results, can be found in
the monograph Atoms in Strong Magnetic Fields by
Ruder et al. (1994). A recent reference is the conference
proceedings on Atoms and Molecules in Strong External
Fields edited by Schmelcher and Schweizer (1998). An
insightful, short review of earlier works is that of Rud-
erman (1974). Other reviews on general physics in
strong magnetic fields include the article by Canuto and
Ventura (1977) and the monograph by Mészáros (1992).

II. BASICS ON LANDAU LEVELS

The quantum mechanics of a charged particle in a
magnetic field is presented in many texts (e.g., Sokolov
and Ternov, 1968; Canuto and Ventura, 1977; Landau
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and Lifshitz, 1977; Mészáros, 1992). Here we summarize
the basics needed for our later discussion.

For a free particle of charge ei and mass mi in a con-
stant magnetic field (assumed to be along the z axis), the
kinetic energy of transverse motion is quantized into
Landau levels

E'5
1
2

miv'
2 5

1
2mi

P'
2 →S nL1

1
2 D\vc ,

nL50,1,2, . . . , (2.1)

where vc5ueiuB/(mic) is the cyclotron (angular) fre-
quency, P5P2(ei /c)A5miv is the mechanical momen-
tum, P52i\¹ is the canonical momentum, and A is the
vector potential of the magnetic field.

A Landau level is degenerate, reflecting the fact that
the energy is independent of the location of the guiding
center of gyration. To count the degeneracy, it is useful
to define the pseudomentum (or the generalized momen-
tum)

K5P1~ei /c !B3r. (2.2)

That K is a constant of motion (i.e., commuting with the
Hamiltonian) can be easily seen from the classical equa-
tion of motion for the particle, dP/dt5(ei /c)(dr/dt)
3B. Mathematically, the conservation of K is the result
of the invariance of the Hamiltonian under a spatial
translation plus a gauge transformation (Avron et al.,
1978). The parallel component Kz is simply the linear
momentum, while the constancy of the perpendicular
component K' is the result of the fact that the guiding
center of the gyromotion does not change with time.
The position vector Rc of this guiding center is related to
K' by

Rc5
cK'3B

eiB
2 5

c

eiB
P'3B̂1r' , (2.3)

where B̂ is the unit vector along B. Clearly, the radius of
gyration, r5micv' /(ueiuB), is quantized according to

ur'2Rcu5
c

ueiuB
uP'u→~2nL11 !1/2r0, (2.4)

where

r05S \c

ueiuB
D 1/2

5b21/2a0 (2.5)

is the cyclotron radius (or the magnetic length). We can
use K to classify the eigenstates. However, since the two
components of K' do not commute, @Kx ,Ky#
52i\(ei /c)B , only one of the components can be di-
agonalized for stationary states. This means that the
guiding center of the particle cannot be specified. If we
use Kx to classify the states, then the wave function has
the well-known form eiKxx/\f(y) (Landau and Lifshitz,
1977), where the function f(y) is centered at yc
52cKx /(eiB) [see Eq. (2.3)]. The Landau degeneracy
in an area Ag5Lg

2 is thus given by

Lg

h E dKx5
Lg

h
uKx ,gu5Ag

ueiuB
hc

5
A g

2pr0
2 , (2.6)
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where we have used Kx ,g52eiBLg /c . On the other
hand, if we choose to diagonalize K'

2 5Kx
21Ky

2 , we ob-
tain the Landau wave function Wnm(r') in cylindrical
coordinates (Landau and Lifshitz, 1977), where m is the
‘‘orbital’’ quantum number (denoted by s or 2s
in some references). For the ground Landau level, this is
(for ei52e)

W0m~r'![Wm~r ,f!

5
1

~2pm! !1/2r0
S r

&r0
D m

expS r2

4r0
2D exp~2imf!,

(2.7)

where the normalization *d2r' uWmu251 is adopted.
The (transverse) distance of the particle’s guiding center
from the origin of the coordinates is given by

uRcu→rm5~2m11 !1/2r0 , m50,1,2, . . . . (2.8)

The corresponding value of K' is K'
2 5(\ueiuB/c)(2m

11). Note that K'
2 assumes discrete values, since m is

required to be an integer in order for the wave function
to be single valued. The degeneracy mg of the Landau
level in an area Ag5pRg

2 is then determined by rmg

.(2mg)1/2r05Rg , which again yields mg
5AgueiuB/(hc) as in Eq. (2.6). We shall refer to differ-
ent m states as different Landau orbitals. Note that de-
spite the similarity between Eqs. (2.8) and (2.4), their
physical meanings are quite different: the circle r5rm
does not correspond to any gyromotion of the particle,
and the energy is independent of m .

We also note that K'
2 is related to the z projection of

angular momentum Jz , as is evident from the e2imf fac-
tor in the cylindrical wave function [Eq. (2.7)]. In gen-
eral, we have

Jz5xPy2yPx5
1

2eiB
~K'

2 2P'
2 !

5~m2nL!
ueiu
ei

, (2.9)

where we have used P'
2 5(\ueiu/c)B(2nL11).

Including the spin energy of the electron (ei
→2e , vc→vce), Esz

5e\/(2mec)s•B5\vcesz/2, the
total electron energy can be written as

E5nL\vce1
pz

2

2me
, (2.10)

where the index nL now includes the spin. For the
ground Landau level (nL50), the spin degeneracy is 1
(sz521); for excited levels, the spin degeneracy is 2.

For extremely strong magnetic fields such that \vce
*mec2, or

B*Brel5
me

2c3

e\
5

B0

a2 54.41431013 G (2.11)

(here a5e2/\c is the fine-structure constant), the trans-
verse motion of the electron becomes relativistic. Equa-
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tion (2.10) for the energy of a free electron should be
replaced by (Johnson and Lippmann, 1949)

E5@c2pz
21me

2c4~112nLb!#1/2, (2.12)

where

b[
B

Brel
5a2 b . (2.13)

Higher-order corrections in e2 to Eq. (2.12) have the
form (a/4p)mec2F(b), with F(b)52b for b!1 and
F(b)5@ ln(2b)2(g13/2)#21¯ for b@1, where g
50.5772 is Euler’s constant (Schwinger, 1988); these cor-
rections will be neglected.

When studying bound states (atoms, molecules, and
condensed matter near zero pressure) in strong mag-
netic fields (Secs. III–V), we shall use nonrelativistic
quantum mechanics, even for B*Brel . The nonrelativ-
istic treatment of bound states is valid for two reasons:
(i) For electrons in the ground Landau level, the free-
electron energy reduces to E.mec21pz

2/(2me); the
electron remains nonrelativistic in the z direction (along
the field axis) as long as the binding energy EB is much
less than mec2; (ii) the shape of the Landau wave func-
tion in the relativistic theory is the same as in the non-
relativistic theory, as seen from the fact that r0 is inde-
pendent of the particle mass. Therefore, as long as
EB /(mec2)!1, the relativistic effect on bound states is a
small correction (Angelie and Deutch, 1978). For bulk
matter under pressure, the relativistic correction be-
comes increasingly important as density increases (Sec.
VI).

III. ATOMS

A. Hydrogen atom

In a strong magnetic field with b@1, the electron is
confined to the ground Landau level (the adiabatic ap-
proximation), and the Coulomb potential can be treated
as a perturbation. Assuming infinite proton mass (see
Sec. III.E), the energy spectrum of the H atom is speci-
fied by two quantum numbers (m ,n), where m mea-
sures the mean transverse separation [Eq. (2.8)] be-
tween the electron and the proton, while n specifies the
number of nodes in the z wave function. We may write
the electron wave function as Fmn(r)5Wm(r')fmn(z).
Substituting this function into the Schrödinger equation
and averaging over the transverse direction, we obtain a
one-dimensional Schrödinger equation for fmn(z):

2
\2

2mer0
2 fmn9 2

e2

r0
Vm~z !fmn5Emnfmn

~m ,n50,1,2,.. . !. (3.1)

The averaged potential is given by

Vm~z !5E d2rW'uWm~rW'!u2
1
r

. (3.2)
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Here and henceforth we shall employ r0 as our length
unit in all the wave functions and averaged potentials,
making them dimensionless functions [thus f mn9
5d2fmn(z)/dz2, with z in units of r0].

There are two distinct types of states in the energy
spectrum Emn . The tightly bound states have no node in
their z wave functions (n50). The transverse size of the
atom in the (m ,0) state is L';rm5@(2m11)/b#1/2. For
rm!1, the atom is elongated with Lz@L' . We can es-
timate the longitudinal size Lz by minimizing the energy
given by E;Lz

222Lz
21 ln(Lz /L'), in atomic units

(e2/a0). This gives

Lz;
1

2 ln~1/rm!
5lm

21 a.u., (3.3)

where

lm[ln
b

2m11
. (3.4)

The energy of the tightly bound state is then

Em.20.16A lm
2 a.u. ~for 2m11!b !. (3.5)

For rm*a0 , or 2m11*b [but still b@(2m11)21 so
that the adiabatic approximation (uEmu!b) is valid], we
have Lz;rm

1/2 a0 and the energy levels are approximated
by

Em.20.6 S b

2m11D
1/2

a.u.

@for 2m11*b@~2m11 !21# . (3.6)

In Eqs. (3.5) and (3.6), the numerical coefficients are
obtained from numerical solutions of the Schrödinger
Eq. (3.1); the coefficient A in Eq. (3.5) is close to unity
for the range of b of interest (1!b&106) and varies
slowly with b and m (e.g., A.1.01–1.3 for m50 –5
when B1251, and A.1.02–1.04 for m50 –5 when B12
510. Note that Em asymptotically approaches 20.5 lm

2

when b→` ; see Hasagawa and Howard, 1961 and
Haines and Roberts, 1969). For the ground state,
(m ,n)5(0,0), the sizes of the atomic wave function per-
pendicular and parallel to the field are of order L';r0
5b21/2 and Lz;l0

21, where l0[lnb. The binding energy
uE(H)u (or the ionization energy Q1) of the atom is
given by

Q15uE~H!u.0.16A l0
2 a.u., (3.7)

where A can be approximated by A5111.36
31022 @ ln(1000/b)#2.5 for b,103 and A5111.07
31022 @ ln(b/1000)#1.6 for b>103 (this is accurate to
within 1% for 100&b&106). Figure 1 depicts Q1 as a
function of B . Numerical values of Q1 for selected B’s
are given in Table I. Numerical values of Em for differ-
ent B’s can be found, for example, in Ruder et al. (1994).
A fitting formula for Em (accurate to within 0.1–1% at
0.1&b&104) is given by Potekhin (1998):

Em52 1
2 ln$exp@~11m !22#1p1@ ln~11p2 b0.5!#2%

2 1
2 p3@ ln~11p4 bp5!#2 a.u., (3.8)
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where p1 –p5 are independent of b (for the m50 state,
the parameters p1 –p5 are 15.55, 0.378, 2.727, 0.3034, and
0.438, respectively). Note that, unlike the field-free case,
the excitation energy DEm5uE(H)u2uEmu is small com-
pared to uE(H)u.

Another type of state of the H atom has nodes in the
z wave functions (n.0). These states are weakly
bound. For example, the n51 state has about the same
binding energy as the ground state of a zero-field H
atom, E.213.6 eV, since the equation governing this
odd-parity state is almost the same as the radial equa-

FIG. 1. Energy releases from several atomic and molecular
processes as a function of the magnetic-field strength; solid
line, ionization energy Q1 of the H atom; dotted line, dissocia-
tion energy Q2 of H2; dashed line, cohesive energy Q` of lin-
ear chain H` . The zero-point energy corrections have been
included in Q2 and Q` .
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tion satisfied by the s state of the zero-field H atom. The
energy levels of the weakly bound states are approxi-
mately given by (Haines and Roberts, 1969)

Emn52
1

2~n11d!2 a.u. ~n151,2,3, . . . !, (3.9)

where

d5H 2rm /a0 , for n52n121

@ ln~a0 /rm!#21, for n52n1 .
(3.10)

(A more accurate fitting formula for d is given by
Potekhin, 1998). The sizes of the wave functions are rm
perpendicular to the field and Lz;n2a0 along the field.

The above results assume a fixed Coulomb potential
produced by the proton (i.e., infinite proton mass). The
use of a reduced electron mass memp /(me1mp) intro-
duces a very small correction to the energy [of order
(me /mp)uEmnu]. However, in strong magnetic fields, the
effect of the center-of-mass motion on the energy spec-
trum is complicated. An analysis of the two-body prob-
lem in magnetic fields shows that, even for the H atom
‘‘at rest,’’ there is a proton cyclotron correction,
m\vcp5m (me /mp) b a.u., to the energy [see Eq.
(3.40)]. We shall return to this issue in Sec. III.E.

B. High-Z hydrogenic ions

The result in Sec. III.A can be easily generalized to
hydrogenic ions (with one electron and nuclear charge
Z). The adiabatic approximation (where the electron
lies in the ground Landau level) holds when r0!a0 /Z ,
or

b@Z2. (3.11)
TABLE I. Energy releases (in eV) in various atomic and molecular processes in a strong magnetic
field; the values of Q’s give the relative binding energies of different forms of hydrogen in the ground
state. Here B125B/(1012 G). The zero-point energies of the protons have been ignored in calculat-
ing the Q’s for molecules. For H2, the two columns give Q2

(`) (with infinite proton mass) and Q2

[including zero-point energy correction; see Eq. (4.10)]; for H` , the two columns give Q`
(`) (with

infinite proton mass) and Q` [including zero-point energy correction; see Eq. (5.21)]. Note that for
B12&0.25, the lowest energy state of H2 corresponds to the weakly bound state, while for B12
*0.25, the tightly bound state is the ground state (see Sec. IV.C). The results are obtained using the
numerical methods described by Lai et al. (1992) and Lai and Salpeter (1996). The numbers are
generally accurate to within 10%.

B12

e1p5H
Q1

H1e5H2

Q(H2)
H1p5H2

1

Q(H2
1)

H1H5H2 H`1H5H`11

Q2
(`) Q2 Q`

(`) Q`

0.1 76.4 6.9 23.6 14 (13) 3.8 (1.2)
0.5 130 11 51.8 31 (21) 16.3 (10)
1 161 13 70.5 46 (32) 29 (20)
5 257 20 136 109 (80) 91 (71)

10 310 24 176 150 (110) 141 (113)
50 460 37 308 294 (236) 366 (306)

100 541 42 380 378 (311) 520 (435)
500 763 57 599 615 (523) 1157 (964)

1000 871 64 722 740 (634) 1630 (1350)



635Dong Lai: Matter in strong magnetic fields
For a tightly bound state, (m ,n)5(m ,0), the transverse
size is L';rm , while the longitudinal size is

Lz;S Z ln
1

Zrm
D 21

a.u. (3.12)

The energy is given by

Em.20.16 AZ2 F ln
1

Z2 S b

2m11 D G2

a.u. (3.13)

for b@(2m11)Z2. Results for the weakly bound
states (n.0) can be similarly generalized from Eqs.
(3.9) and (3.10).

C. Heavy atoms

We can imagine constructing a multielectron atom by
placing electrons at the lowest available energy levels of
a hydrogenic ion. This picture also forms the basis for
more detailed calculations of heavy atoms that include
electron-electron interactions in a self-consistent man-
ner.

1. Approximate scaling relations

The lowest levels to be filled are the tightly bound
states with n50. When a0 /Z@A2Z21r0 , i.e.,

b@2Z3, (3.14)

all electrons settle into the tightly bound levels with m
50,1,2, . . . ,Z21. The energy of the atom is approxi-
mately given by the sum of all the eigenvalues of Eq.
(3.13). Accordingly, we obtain an asymptotic expression
for Z@1 (Kadomtsev and Kudryavtsev, 1971),

E;2Z3lZ
2 a.u., (3.15)

where

lZ5lnS a0

ZA2Z21r0
D .lnA b

2Z3. (3.16)

The size of the atom is given by

L';~2Z21 !1/2r0 , Lz;
a0

ZlZ
. (3.17)

For intermediate-strong fields (but still strong enough
to ignore the Landau excitation),

Z4/3!b!2Z3, (3.18)

many n.0 states of the inner Landau orbitals (states
with relatively small m) are populated by the electrons.
In this regime a Thomas-Fermi-type model for the atom
is appropriate (at least for the ‘‘core’’ electrons in small
Landau orbitals), i.e., the electrons can be treated as a
one-dimensional Fermi gas in a more or less spherical
atomic cavity (Kadomtsev, 1970; Mueller et al., 1971).
The electrons occupy the ground Landau level, with the
z momentum up to the Fermi momentum pF;ne /b ,
where ne is the number density of electrons inside the
atom (recall that the degeneracy of a Landau level is
eB/hc;b). The kinetic energy of electrons per unit vol-
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ume is «k;b pF
3 ;ne

3/b2, and the total kinetic energy is
Ek;R3ne

3/b2;Z3/b2R6, where R is the radius of the
atom. The potential energy is Ep;2Z2/R . Therefore
the total energy of the atom can be written as

E;
Z3

b2R6 2
Z2

R
a.u. (3.19)

Minimizing E with respect to R yields

R;Z1/5b22/5, E;2Z9/5b2/5. (3.20)

For these relations to be valid, the electrons must stay in
the ground Landau level; this requires Z/R!\vce5b ,
which corresponds to b@Z4/3. More elaborate Thomas-
Fermi-type models have been developed for this regime,
giving approximately the same scaling relations (see Ap-
pendix B).

We now consider multielectron negative ions. First
imagine forming a H2 ion by attaching an extra electron
to a H atom in the ground state (with m50). The extra
electron can only settle into the m51 state, which, if we
ignore the screening of the proton potential due the first
(m50) electron, has a binding energy of uE1u as in Eq.
(3.5). The Coulomb repulsion between the two electrons
reduces the binding of the m51 electron. The repulsive
energy is of order (lnAb)/Lz , which is of the same or-
der as uE1u. But the repulsive energy is smaller than uE1u
because of the cylindrical charge distribution of both
electrons. Therefore H2 is bound relative to H1e and
its ionization potential is proportional to (lnAb)2.

Similar consideration can be applied to a Z ion
(nuclear charge Z) with N electrons in the superstrong-
field regime (b@Z3) (Kadomtsev and Kudryavtsev,
1971). The sizes of the ion perpendicular and parallel to
the field are, respectively,

R;A2N21
b

a0 , Lz;
1

Zl
a0 , with l5lnS Lz

R D .

(3.21)

The ground-state energy of the ion is

E.2
N

8
l2~4Z2N11 !2 a.u. (3.22)

Applying this result for hydrogen ions (Z51), we see
that the ionization potential of H2 to H1e is about 1/10
of the binding energy of the H atom. We also see that,
for n.2, the negative ion H2(n21) is unbound. This es-
timate is confirmed by numerical calculations (Lai, Sal-
peter, and Shapiro, 1992).

2. Numerical calculations and results

Reliable values for the energy of a multielectron atom
for b@1 can be calculated using the Hartree-Fock
method (Virtamo, 1976; Pröschel et al., 1982; Neuhauser
et al., 1987). For an electron in the ground Landau level
with spin aligned antiparallel to the magnetic field (the
adiabatic approximation), the kinetic energy and spin
energy add up to (1/2me)pz

2 . Thus the Hamiltonian for
a neutral atom with Z electrons is
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H5(
i

1
2me

pzi
2 2Ze2(

i

1
ri

1e2(
i,j

1
rij

, (3.23)

where i labels electrons. The basis one-electron wave
functions are

Fmn~r!5Wm~r ,f!fmn~z !, m ,n50,1,2, . . . . (3.24)

In the Hartree-Fock approximation, the Z-electron
wave function is formed by the antisymmetrized product
of Z one-electron basis functions. Averaging the Hamil-
tonian over the transverse Landau functions, we obtain

^H&5
\2

2mer0
2 (

mn
E dz ufm ,n8 ~z !u2

2
Ze2

r0
(
mn

E dz ufm ,n~z !u2Vm~z !1Edir1Eexch ,

(3.25)

where Vm(z) is given by Eq. (3.2). The direct and ex-
change energies for electron-electron interaction are
given by

Edir5
e2

2r0
(

mn ,m8n8
E dzdz8 Dmm8~z2z8!

3ufmn~z !u2ufm8n8~z8!u2, (3.26)

Eexch52
e2

2r0
(

mn ,m8n8
E dzdz8 Emm8~z2z8!

3fmn~z !fm8n8~z8!fmn* ~z8!fm8n8
* ~z !, (3.27)

where

Dmm8~z12z2!5E d2r1'd2r2'uWm~r1'!u2

3uWm8~r2'!u2
1

r12
, (3.28)

Emm8~z12z2!5E d2r1'd2r2'Wm~r1'!

3Wm8~r2'!Wm* ~r2'!Wm8
* ~r1'!

1
r12

.

(3.29)

(Useful mathematical relations for evaluating
Vm ,Dmm8 ,Emm8 are given, for example, by Sokolov and
Ternov, 1968; Virtamo and Jauho, 1975; Pröschel et al.,
1982; Lai et al., 1992.) Varying ^H& with respect to fmn’s,
we obtain the Hartree-Fock equations

F2
\2

2mer0
2

d2

dz2 2
Ze2

r0
Vm~z !1

e2

r0
Km~z !2«mnG fmn~z !

5
e2

r0
Jmn~z !, (3.30)

where the direct and exchange potentials are

Km~z !5 (
m8n8

E dz8ufm8n8~z8!u2Dmm8~z2z8!,

(3.31)
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Jmn~z !5 (
m8n8

fm8n8~z !E dz8 fm8n8
* ~z8!fmn~z8!

3Emm8~z2z8!. (3.32)

After iteratively solving Eqs. (3.30)–(3.32) for the eigen-
values «mn and eigenfunction fmn , the total energy of
the atom can be obtained from

E5(
mn

«mn2Edir2Eexch . (3.33)

Accurate energies of the He atom as a function of B
in the adiabatic approximation (valid for b@Z2) were
obtained by Virtamo (1976) and Pröschel et al. (1982).
This work was extended to Z up to 26 (Fe atom) by
Neuhauser et al. (1987; see also Miller and Neuhauser,
1991). Numerical results can be found in these papers.
Neuhauser et al. (1987) gave an approximate fitting for-
mula

E.2160 Z9/5B12
2/5 eV (3.34)

for 0.5&B12&5. (Comparing with the numerical results,
the accuracy of the formula is about 1% for Z.18–26
and becomes 5% for Z;10.) For the He atom, more
accurate results (which relax the adiabatic approxima-
tion) are given by Ruder et al. (1994) and by Jones et al.
(1999a; this paper also considers the effect of electron
correlation).

The Hartree-Fock method is approximate because
electron correlations are neglected. Due to their mutual
repulsion, any pair of electrons tends to be more distant
from each other than the Hartree-Fock wave function
would indicate. In zero field, this correlation effect is
especially pronounced for the spin-singlet states of elec-
trons for which the spatial wave function is symmetrical.
In strong magnetic fields, the electron spins are all
aligned antiparallel to the magnetic field and the spatial
wave function is antisymmetric with respect to the inter-
change of two electrons. Thus the error in the Hartree-
Fock approach is expected to be significantly smaller
than the 1% accuracy characteristic of zero-field
Hartree-Fock calculations (Weissbluth, 1978; Neuhauser
et al., 1987; Schmelcher, Ivanov, and Becken, 1999).

Other calculations of heavy atoms in strong magnetic
fields include Thomas-Fermi-type statistical models (see
Fushiki et al., 1992 for a review and Appendix B for a
brief summary) and density-functional theory (Jones,
1985, 1986; Kössl et al., 1988; Relovsky and Ruder,
1996). The Thomas-Fermi-type models are useful in es-
tablishing asymptotic scaling relations, but are not ad-
equate for obtaining accurate binding energy and exci-
tation energies. The density-functional theory can
potentially give results as accurate as the Hartree-Fock
method but, without calibration with other methods, it is
difficult to establish its accuracy a priori (see Neuhauser
et al., 1987; Vignale and Rasolt, 1987, 1988). Lieb et al.
(1992, 1994a, 1994b) have presented detailed discussions
of the asymptotic behaviors of heavy atoms (as Z→`)
for five different magnetic-field regimes: b!Z4/3, b
;Z4/3, Z4/3!b!Z3, b;Z3, and b@Z3 [see also Eqs.
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(3.14)–(3.18)]. They showed that various density-
functional-type theories become exact in these
asymptotic limits: the Thomas-Fermi theory corresponds
to the first three regimes and a ‘‘density-matrix-
functional’’ theory can be applied to the fifth regime (see
Johnsen and Yngvason, 1996 for numerical calculations
of heavy atoms based on this theory).

D. Intermediate-magnetic-field regime

For B;B0;109 G, the adiabatic approximation is no
longer valid, and electrons can occupy excited Landau
levels. In this intermediate-field regime, neither Cou-
lomb nor magnetic effects can be treated as a perturba-
tion. Accurate energy levels of the H atom for arbitrary
field strengths were first calculated by Rösner et al.
(1984); the method involves expansion of the wave func-
tion in terms of either spherical harmonics or cylindrical
Landau orbitals, and subsequent approximate solution
of the system of coupled integral-differential equations
(see Ruder et al., 1994 for tabulated numerical results).
Recent calculations of the H atom in magnetic fields
include Goldman and Chen (1991), Chen and Goldman
(1992—relativistic effects), Melezhik (1993), Fassbinder
and Schweizer (1996a, 1996b—with magnetic and elec-
tric fields), Kravchenko et al. (1996—exact solution for
nonrelativistic electron), and references therein. Ruder
et al. (1994) presented (less accurate) results for He at-
oms calculated using a Hartree-Fock method similar to
that of Rösner et al. (1984). Recent studies of multielec-
tron atoms (including radiative transitions) for the
intermediate-field regime have used more elaborate
implementations of the Hartree-Fock method with dif-
ferent basis functions (see Jones et al., 1996, 1999a;
Ivanov and Schmelcher, 1998, 1999, 2000; Becken et al.,
1999; Becken and Schmelcher, 2000). Accurate calcula-
tion of the hydrogen negative ion (H2) was presented
by Al-Hujaj and Schmelcher (2000, and references
therein). A quantum Monte Carlo method has also been
developed to calculate the He atom (Jones et al., 1997).
Accurate energy levels for the He atom at B;109 G
are needed to interpret the spectrum of the magnetic
white dwarf GD229 (see Jordan et al., 1998; Jones et al.,
1999b).

E. Effect of center-of-mass motion

Our discussion so far has implicitly assumed infinite
nuclear mass, i.e., we have been concerned with the en-
ergy levels of electrons in the static Coulomb potential
of a fixed ion. It has long been recognized that in strong
magnetic fields the effects of finite nuclear mass and
center-of-mass motion on the atomic structure are non-
trivial (see, for example, Gor’kov and Dzyaloshinskii,
1968; Avron et al., 1978; Herold et al., 1981; Baye and
Vincke, 1990; Vincke et al., 1992; Pavlov and Mészáros,
1993; Potekhin, 1994). Here we illustrate the key issues
by considering the hydrogen atom in strong magnetic
fields: general quantum-mechanical solutions for this
two-body problem have been obtained only recently
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(Vincke et al., 1992; Potekhin, 1994). Some aspects of
the problem are also important for applications to mol-
ecules. A recent discussion on this subject can be found
in Baye and Vincke (1998; see also Johnson et al., 1983
for an earlier review on the general problem of center-
of-mass motion of atoms and molecules in external
fields).

A free electron confined to the ground Landau level,
the usual case for b@1, does not move perpendicular to
the magnetic field. Such motion is necessarily accompa-
nied by Landau excitations. When the electron com-
bines with a proton, the mobility of the neutral atom
across the field depends on the ratio of the atomic exci-
tation energy (;ln b) and the Landau excitation energy
for the proton, \vcp5\eB/(mpc). It is convenient to
define a critical field strength Bcm via (Lai and Salpeter,
1995)

bcm[
mp

me
lnbcm51.803104;

Bcm5bcmB054.2331013 G. (3.35)
Thus for B*Bcm , the deviation from the free center-of-
mass motion of the atom is significant even for small
transverse momentum [see Eq. (3.42) below].

Consider now the electron-proton system. It is easy to
show that even including the Coulomb interaction, the
total pseudomomentum,

K5Ke1Kp , (3.36)
is a constant of motion. Moreover, all components of K
commute with each other. Thus it is natural to separate
the center-of-mass motion from the internal degrees of
freedom using K as an explicit constant of motion. From
Eq. (2.3), we find that the separation between the guid-
ing centers of the electron and the proton is directly
related to K' :

RK5Rce2Rcp5
cB3K

eB2 . (3.37)

The two-body eigenfunction with a definite value of K
can be written as

C~R,r!5expF i

\ S K1
e

2c
B3rD •RGf~r!, (3.38)

where R5(mere1mprp)/M and r5re2rp are the center-
of-mass and relative coordinates, and M5me1mp is the
total mass. The Schrödinger equation reduces to
Hf(r)5E f(r), with2

H5
K2

2M
1

1
2m S p1

e

2c
B3rD 2

2
e

mpc
B•~r3p!

2
e2

r
1

e

Mc
~K3B!•r, (3.39)

2The spin terms of the electron and the proton are not ex-
plictly included. For the electron in the ground Landau level,
the zero-point Landau energy \vce/2 is exactly canceled by the
spin energy. For sake of brevity, we drop the zero-point energy
of the proton, \vcp/2, as well as the spin energy 6gp\vcp/2
(where gp52.79).
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where p52i\]/]r and m5memp /M (see, for example,
Lamb, 1952; Avron et al., 1978; Herold et al., 1981).
Clearly, the center-of-mass motion is coupled to the in-
ternal motion through the last term in H , which has the
form of an electrostatic potential produced by an elec-
tric field (K/M)3B. This term represents the so-called
‘‘motional Stark effect’’ (although such a description is
not exactly accurate, since K' /M does not correspond
to the center-of-mass velocity; see Johnson et al., 1983).
In the adiabatic approximation (b@1, with the electron
in the ground Landau level), we write the total energy of
the atom as

Emn~Kz ,K'!5
Kz

2

2M
1m\vcp1Emn~K'!, (3.40)

where the azimuthal quantum number m measures the
relative electron-proton z angular momentum Jz5B̂•(r
3p)52m (clearly m is a good quantum number only
when K'50, but we shall use it as a label of the state
even when K'Þ0), and n enumerates the longitudinal
excitations. The m\vcp term in Eq. (3.40) represents the
Landau energy excitations for the proton; this ‘‘cou-
pling’’ between the electron quantum number m and the
proton Landau excitation results from the conservation
of K. Clearly, for sufficiently high b , states with m.0
become unbound [i.e., Emn(K50)5m\vcp1Emn(0)
.0].

For small K' , the motional Stark term in H can be
treated as a perturbation (see, for example, Vincke and
Baye, 1988; Pavlov and Mészŕos, 1993). For the tightly
bound states (n50), we have

Em0~K'!.Em1
K'

2

2M'm
~for K'!K'p!, (3.41)

where Em is the energy of a bound electron in the fixed
Coulomb potential (the correction due to the reduced
mass m can be easily incorporated into Em ; this amounts
to a small correction). The effective mass M'm for the
transverse motion increases with increasing b . For the
m50 state,

M'[M'05MS 11
jb

Mlnb D.MS 11
jb

bcm
D , (3.42)

where j is a slowly varying function of b (e.g., j.2 –3
for b5102 –105). Similar results can be obtained for the
m.0 states: M'm.M1jm(2m11)b/lm , where jm is of
the same order of magnitude as j, and lm5ln@b/(2m
11)#. A simple fitting formula for M'm is proposed by
Potekhin (1998):

M'm5M@11~b/b0!c0# , (3.43)

with b056150 (110.0389 m3/2)/(117.87 m3/2) and c0
50.93710.038 m1.58. Equation (3.41) is valid only when
K' is much less than the ‘‘perturbation limit’’ K'p ,
given by (for m50) K'p5b1/2(11M ln b/jb), which cor-
responds to K'p

2 /(2M').1.7(11bcm /jb). Numerical
calculations by Potekhin (1994) indicate that Eq. (3.41)
is a good approximation for K'&K'c (see Fig. 2), where
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K'c.A2MuEmu, (3.44)

that is, uEm0(K'c)u!uEmu. The states with K'&K'c are
sometimes called centered states.

For K'*K'c , the motional electric field [see Eq.
(3.39)] induces a significant transverse separation (per-
pendicular to K) between the electron and the proton. It
is more convenient to use a new coordinate system to
account for this effect. Since K' measures the separation
of the guiding centers of the electron and the proton, we
can remove the ‘‘Stark term’’ in Eq. (3.39) by introduc-
ing a displaced coordinate r85r2RK . After a gauge
transformation with

f~r!→expS i

\

mp2me

2M
K'•rDf~r8!, (3.45)

we obtain H8f(r8)5Ef(r8), with the Hamiltonian

H85
Kz

2

2M
1

1
2m S p81

e

2c
B3r8D 2

2
e

mpc
B•~r83p8!2

e2

ur81RKu
, (3.46)

where p852i\]/]r8 (see Avron et al., 1978; Herold
et al., 1981). We can estimate the size Lz of the atom
along the z axis and the energy Emn(K') for two differ-
ent regimes of RK (see Lai and Salpeter, 1995): (i) For
RK&Lz&1 (but not necessarily RK,rm or K'

,Amb), we have (for the n50 states)

FIG. 2. Energy spectrum of a hydrogen atom moving across a
magnetic field with B51012 G: solid lines, the tightly bound
states (n50) with m50,1,2, . . . ,7; dashed line, weakly bound
state with n51, m50; dotted line E00(K')5E00(0)
1K'

2 /(2M'). The total energy of the atom is Emn5Kz
2/(2M)

1m\vcp1Emn(K').
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Lz;S ln
1

rm
2 1RK

2 D 21

a0,

Em0~K'!;20.16 S ln
1

rm
2 1RK

2 D 2

a.u. (3.47)

Mixing between different m states is unimportant when
b@bcm . (ii) For RK*1, the electron-proton interaction
does not contain the Coulomb logarithm, and the energy
can be written as Em0(K');Lz

222(Lz
21RK

2 )21/2. In the
limit of RK@1, minimization of Em with respect to Lz
yields

Lz;RK
3/4!RK , Em0~K'!;2

1
RK

52
b

K'

a.u.

(3.48)

independent of m (see, for example, Burkova et al.,
1976; Potekhin, 1994). The states with K'*K'c (which
correspond to RK*r0 for b*bcm) are sometimes re-
ferred to as decentered states (Vincke et al., 1992;
Potekhin, 1994), but note that for a given (mn) (defined
at K'50), there is a continuous energy Emn(K') that
connects the centered state at small K' to the decen-
tered state at large K' .

To calculate the energy Emn(K') for general K' , we
must include mixing between different m orbitals. We
may use f(r)5(m8Wm8(r')fm8(z) in Eq. (3.39) and ob-
tain a coupled set of equations for fm8(z); alternatively,
for K'*K'c , it is more convenient to use f(r8)
5(m8Wm8(r'8 )fm8(z) in Eq. (3.46). Numerical results
are presented by Potekhin (1994; see also Vincke et al.,
1992); analytical fitting formulas for the energies, atomic
sizes, and oscillator strengths are given by Potekhin
(1998). Figure 2 shows the energy Emn(K') (based on
Potekhin’s calculation) as a function of K' for several
different states at B1251. Note that the total energies of
different states, Emn(Kz ,K'), do not cross each other as
K' increases.

While for neutral atoms the center-of-mass motion
can be separated from the internal relative motion, this
cannot be done for ions (Avron et al., 1978). Ions un-
dergo collective cyclotron motion which depends on the
internal state. However, the existence of an approximate
constant of motion allows an approximate pseudosepa-
ration up to very high fields (see Bayes and Vincke, 1998
and references therein). Numerical results for He1 mov-
ing in strong magnetic fields are obtained by Bezchast-
nov et al. (1998).

The effects of center-of-mass motion on multielectron
systems (heavy atoms and molecules) in strong magnetic
fields have not been studied numerically, although many
theoretical issues are discussed by Johnson et al. (1983)
and Schmelcher et al. (1988, 1994).

IV. MOLECULES

Most studies of molecules in strong magnetic fields
have been restricted to hydrogen. We shall therefore fo-
cus on H to illustrate the basic magnetic effects and only
briefly discuss molecules of heavier elements.
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A. H2: Basic mechanism of bonding

In a strong magnetic field, the mechanism of molecule
formation is quite different from the zero-field case (see
Ruderman, 1974; Lai et al., 1992). The spins of the elec-
trons in the atoms are aligned antiparallel to the mag-
netic field, and therefore two atoms in their ground
states (m50) do not bind together according to the ex-
clusion principle. Instead, one H atom has to be excited
to the m51 state. The two H atoms, one in the ground
state (m50), another in the m51 state, then form the
ground state of the H2 molecule by covalent bonding.
Since the ‘‘activation energy’’ for exciting an electron in
the H atom from the Landau orbital m to (m11) is
small [see Eq. (3.5)], the resulting H2 molecule is stable.
The size of the H2 molecule is comparable to that of the
H atom. The interatomic separation aeq and the disso-
ciation energy D of the H2 molecule scale approximately
as

aeq;
1

ln b
a0 , D;~ ln b !2 a.u., (4.1)

although D is numerically smaller than the ionization
energy of the H atom (see Table I).

Another mechanism for forming a H2 molecule in a
strong magnetic field is to let both electrons occupy the
same m50 Landau orbital, while one of them occupies
the tightly bound n50 state and the other the n51
weakly bound state. This costs no activation energy.
However, the resulting molecule tends to have a small
dissociation energy, of the order of a Rydberg. We shall
refer to this electronic state of the molecule as the
weakly bound state and to the states formed by two
electrons in the n50 orbitals as the tightly bound states.
As long as ln b@1, the weakly bound states constitute
excited energy levels of the molecule.

B. Numerical calculations and results

In the Born-Oppenheimer approximation (see
Schmelcher et al., 1988, 1994 for a discussion on the va-
lidity of this approximation in strong magnetic fields),
the interatomic potential U(a ,R') is given by the total
electronic energy E(a ,R') of the system, where a is the
proton separation along the magnetic field and R' is the
separation perpendicular to the field. Once E(a ,R') is
obtained, the electronic equilibrium state is determined
by locating the minimum of the E(a ,R') surface. [For a
given a , E(a ,R') is minimal at R'50.]

The simplest system is the molecular ion H2
1 . For b

@1, the energy of H2
1 can be easily calculated as in the

case of the H atom (see, for instance, Wunner et al.,
1982; Khersonskii, 1984, 1985; Le Guillou and Zinn-
Justin, 1984). When the molecular axis is aligned with
the magnetic axis (R'50), we need only solve a Schrö-
dinger equation similar to Eq. (3.1), except replacing
Vm(z) by

Ṽm~z !5VmS z2
a

2 D1VmS z1
a

2 D . (4.2)
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The total electronic energy is simply E(a ,0)5«mn

1e2/a . The ground state corresponds to (m ,n)5(0,0).
The Hartree-Fock calculation of H2 is similar to the

case of multielectron atoms. For the tightly bound
states, the two electrons occupy the (m ,n)
5(m1,0),(m2,0) orbitals (the ground state corresponds
to m150,m251), with the wave function

C~r1 ,r2!5
1

&
@Fm10~r1!Fm20~r2!

2Fm10~r2!Fm20~r1!# . (4.3)

We obtain the same Hartree-Fock equation as (3.30) ex-
cept that Vm is replaced by Ṽm (for aligned configura-
tions, R'50). The energy is given by

E~a ,0!5
e2

a
1«m101«m202

e2

r0
E dz1dz2

3ufm10~z1!u2ufm20~z2!u2Dm1m2
~z12z2!

1
e2

r0
E dz1dz2fm10~z1!fm20~z2!

3fm10* ~z2!fm20* ~z1!Em1m2
~z12z2!. (4.4)

Although the Hartree-Fock method is adequate for
small interatomic separations (a less than the equilib-
rium value, aeq), the resulting E(a ,0) becomes less reli-
able for large a : as a→` , E(a ,0) does not approach the
sum of the energies of two isolated atoms, one in the m1
state, another in the m2 state. The reason is that as a
increases, another configuration of electron orbitals,

C2~r1 ,r2!5
1

&
@Fm11~r1!Fm21~r2!2Fm11~r2!Fm21~r1!# ,

(4.5)

becomes more and more degenerate with the first con-
figuration C15C in Eq. (4.3), and there must be mixing
of these two different configurations. Both C1 and C2
have the same symmetry with respect to the Hamil-
tonian: the total angular momentum along the z axis is
MLz51, the total electron spin is MSz521, and both
C1 and C2 are even with respect to the operation ri
→2ri . To obtain a reliable E(a ,0) curve, the configura-
tion interaction between C1 and C2 must be taken into
account in the Hartree-Fock scheme (Lai et al., 1992; see
Slater, 1963 for a discussion of the zero-field case).

Molecular configurations with R'Þ0 correspond to
excited states of the molecules (see Sec. IV.C). To obtain
E(a ,R'), one needs to take into account the mixing of
different m states in a single-electron orbital. Approxi-
mate energy surfaces E(a ,R') for both small R' and
large R' have been computed by Lai and Salpeter
(1996).

Numerical results of E(a ,0) (based on the Hartree-
Fock method) for both tightly bound states and weakly
bound states are given by Lai et al. (1992) and Lai and
Salpeter (1996). Quantum Monte Carlo calculations
have also been performed, confirming the validity of the
Rev. Mod. Phys., Vol. 73, No. 3, July 2001
method (Ortiz et al., 1995). Figure 3 depicts some of the
energy curves. The dissociation energy of H2 in the
ground state can be fitted by

Q2
(`)[2uE~H !u2uE~H2!u

50.106 @110.1 l0.2ln~b/bcm!# l2 (4.6)

(where l5ln b), with an accuracy of &5% for 1&B12
&1000, where bcm51.803104 is defined in Eq. (3.35).
[The superscript (`) implies that the zero-point energy
of the molecule is not included in Q2

(`) ; see Sec. IV.C
below.] Thus Q2

(`).46 eV for B1251 and Q2
(`)

.150 eV for B12510 (see Table I). By contrast, the
zero-field dissociation energy of H2 is 4.75 eV.

C. Molecular excitations

For the ground state of H2, the molecular axis and the
magnetic-field axis coincide, and the two electrons oc-
cupy the m50 and m51 orbitals, i.e., (m1 ,m2)
5(0,1). The molecule can have different types of exci-
tation levels (Lai and Salpeter, 1996).

(i) Electronic excitations. The electrons occupy orbit-
als other than (m1 ,m2)5(0,1), giving rise to electronic
excitations. The energy difference between the excited
state (m1 ,m2) (with n15n250) and the ground state
(0,1) is of order ln b, as in the case for atoms. Typically,
only the single-excitation levels (those with m150 and
m2.1) are bound relative to two atoms in the ground
states. Another type of electronic excitation is formed
by two electrons in the (m ,n)5(0,0) and (0,1) orbitals.
The dissociation energy of this weakly bound state is of
the order of a Rydberg and does not depend sensitively
on the magnetic-field strength (see Fig. 3). Note that,

FIG. 3. The electronic-energy curves E(a ,0) of H2 molecule at
B51012 G when the molecular axis is aligned with the
magnetic-field axis (a is the proton separation): solid curve, the
electrons occupy the m150 and m251 orbitals (both with n
50); short-dashed curve, (m1 ,m2)5(0,2); long-dashed curve,
weakly bound state with (m ,n)5(0,0),(0,1). The solid hori-
zontal lines correspond to E52323 eV (the total energy of
two isolated atoms in the ground state) and E52278 eV [the
total energy of two isolated atoms, one in the ground state
(2161 eV), another in the first excited state (2117 eV)].
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since it does not cost any activation energy to form a H2
in the weakly bound state, for relatively small magnetic
field (B12&0.25), the weakly bound state actually has
lower energy than the tightly bound state.

(ii) Aligned vibrational excitations. These result from
the vibration of the protons about the equilibrium sepa-
ration aeq along the magnetic-field axis. To estimate the
excitation energy, we need to consider the excess poten-
tial dU(da)5U(aeq1da ,0)2U(aeq,0). Since aeq is the
equilibrium position, the sum of the first-order terms
(proportional to da) in dU , coming from proton-proton,
electron-electron, proton-electron Coulomb energies
and quantum-mechanical electron kinetic energy, must
cancel, and dU}(da)2 for small da . The dominant con-
tribution to the energy of the molecule comes from the
proton-electron Coulomb energy ;l/a , in which the
logarithmic factor l[lnb@1 results from the Coulomb
integral over the elongated electron distribution. The
excess potential is of order dU;l (da)2/aeq

3

;(j23l4) (da)2, where we have used aeq5j/l (the di-
mensionless factor j decreases slowly with increasing b ;
e.g., j.2 for B1250.1 and j50.75 for B125100). Thus
for small-amplitude oscillations around aeq , we obtain a
harmonic oscillation spectrum with excitation energy
quanta \v i;j23/2 l2 m21/2, where m5mp/2me5918 is
the reduced mass of the two protons in units of the elec-
tron mass. Numerical calculations yield a similar scaling
relation. For the electronic ground state, the energy
quanta can be approximated by

\v i.0.13 ~ ln b !5/2m21/2 a.u..0.12 ~ ln b !5/2 eV.
(4.7)

(This is accurate to within 10% for 40&b&104.) Thus
\v i.10 eV at B1251 and \v i.23 eV at B12510, in
contrast to the vibrational energy quanta \vvib
.0.52 eV for the H2 molecule at zero magnetic field.

(iii) Transverse vibrational excitations. The molecular
axis can deviate from the magnetic-field direction, pre-
cessing and vibrating around the magnetic axis. Such an
oscillation is the high-field analogy of the usual molecu-
lar rotation; the difference is that in strong magnetic
fields, this ‘‘rotation’’ is constrained around the magnetic
field line. To obtain the excitation energy, we need to
estimate the excess potential dU(R')[U(aeq ,R')
2U(aeq,0). When the protons are displaced by ;R'

from the electron distribution axis, the proton-electron
interaction is approximately given by aeq

21 ln@Lz /(r0
2

1R'
2 )1/2# . Thus an order-of-magnitude expression for

dU is dU(R');(1/2aeq)ln(11r0
22R'

2 );j21l ln(11b R'
2 ).

This holds for any R'!aeq5j l21. For small-amplitude
transverse oscillations, with R'&r05b21/2!aeq , we
have dU;j21l b R'

2 . The energy quantum is then
\v'0;(j21 l b)1/2m21/2, where the subscript 0 indicates
that we are at the moment neglecting the magnetic
forces on the protons that, in the absence of Coulomb
forces, lead to proton cyclotron motions (see below).
Numerical calculations give a similar scaling relation.
For the electronic ground state, the excitation energy
quanta \v'0 can be approximated by
Rev. Mod. Phys., Vol. 73, No. 3, July 2001
\v'0.0.125 b1/2~ ln b !m21/2 a.u.

.0.11 b1/2~ ln b ! eV. (4.8)

(This is accurate to within 10% for 40&b&104.) Thus
\v'0.14 eV at B1251 and \v'0565 eV at B12510.
(See Lai and Salpeter, 1996 for a discussion of large-
amplitude oscillations.)

Note that in a strong magnetic field, the electronic and
(aligned and transverse) vibrational excitations are all
comparable, with \v'0*\v i . This is in contrast to the
zero-field case, where we have D«elec@\vvib@\vrot .

Equation (4.8) for the zero-point energy of the trans-
verse oscillation includes only the contribution of the
electronic restoring potential mv'0

2 R'
2 /2. Since the mag-

netic forces on the protons also induce a magnetic restor-
ing potential mvcp

2 R'
2 /2, where \vcp5\eB/(mpc)

.6.3 B12 eV is the cyclotron energy of the proton, the
zero-point energy of the transverse oscillation is

\v'5\~v'0
2 1vcp

2 !1/22\vcp . (4.9)

The dissociation energy of H2, taking into account the
zero-point energies of aligned and transverse vibrations,
is then

Q25Q2
(`)2~ 1

2 \v i1\v'!. (4.10)

Some numerical values are given in Table I. Variation of
Q2 as a function of B is depicted in Fig. 1.

D. HN molecules: Saturation

At zero magnetic field, two H atoms in their ground
states with spins opposite to each other form a H2 mol-
ecule by covalent bonding; adding more H atoms is not
possible by the exclusion principle (unless one excites
the third atom to an excited state; but the resulting H3 is
short-lived). In a strong magnetic field, the spins of the
electrons in the atoms are all aligned antiparallel to the
magnetic field, and because of the low excitation energy
associated with m→m11, more atoms can be added to
H2 to form larger HN molecules.

For a given magnetic-field strength, as the number of
H atoms, N , increases, the electrons occupy more and
more Landau orbitals (with m50,1,2, . . . ,N21), and
the transverse size of the molecule increases as R
;(N/b)1/2a0 . Let a be the atomic spacing and Lz;Na
the size of the molecule in the z direction. The energy
per atom in the molecule can be written as E;Lz

22

2l a21, where l5ln(2a/R). Variation of E with respect
to Lz gives

E;2N2l2, Lz;Na;~Nl !21. (4.11)

This scaling behavior is valid for 1!N!Ns . The critical
saturation number Ns is reached when a;R , or

Ns;@b/~ ln b !2#1/5 (4.12)

(Lai et al., 1992). Beyond Ns , it becomes energetically
more favorable for the electrons to settle into the inner
Landau orbitals (with smaller m) with nodes in their
longitudinal wave functions (i.e., nÞ0). For N*Ns , the
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energy per atom of the HN molecule, E5uE(HN)u/N ,
asymptotically approaches a value ;b2/5, and the size of
the atom scales as R;a;b22/5, independent of N (see
Sec. V.A). For the typical magnetic-field strength (B12
50.1–103) of interest here, the energy saturation occurs
at Ns;2 –6 (see Fig. 4).

E. Intermediate-magnetic-field regime

For intermediate magnetic-field strengths (B;B0
;109 G), the only molecule that has been investigated
in detail is the hydrogen molecular ion H2

1 ; both paral-
lel configurations (Le Guillou and Zinn-Justin, 1984;
Vincke and Baye, 1985; Brigham and Wadehra, 1987;
Kappes and Schmelcher, 1995; Kravchenko and Liber-
man, 1997; Lopez et al., 1997) and nonparallel configu-
rations (Larsen, 1982; Wille, 1987, 1988; Kappes and
Schmelcher, 1996) have been studied using different
variational methods. Other one-electron molecular ions
such as H3

21 and H4
31 in strong magnetic fields have

been studied by Lopez and Turbiner (2000, and refer-
ences therein). For the H2 molecule at intermediate
fields, earlier studies (e.g., Turbiner, 1983; Basile et al.,
1987) are of qualitative character; quantitative calcula-
tions, for aligned configurations, have been attempted
only recently (Detmer et al., 1997, 1998; Kravchenko
and Liberman, 1998; Schmelcher et al., 2000).

An important issue concerns the nature of the ground
electronic state of H2 as a function of B . Starting from
the strong-field regime (see Secs. IV.B and IV.C), we
know that for B12*0.2 (b*100), the ground state is the
tightly bound state in which the electrons occupy the
(m ,n)5(0,0) and (1,0) orbitals; this state corresponds to
3Pu in the standard spectroscopic notation. For b&100
the lowest energy state becomes the weakly bound state
in which the electron orbitals are (0,0) and (0,1); this
corresponds to the 3Su state. Detmer et al. (1998) and

FIG. 4. Binding energy per atom, uENu/N , for HN molecules in
strong magnetic fields as a function of N . To facilitate plotting,
the values of uE1u at different B12 are normalized to its value
(161.5 eV) at B1251. This means a51 for B1251, a
5161.5/309.6 for B12510, and a5161.5/541 for B125100.
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Kravchenko and Liberman (1998) found that for b
&0.18, the ground state is the usual 1Sg ; for 0.2&b
&12–14, the ground state is 3Su ; for b*12, the ground
state is 3Pu . However, their 3Su state is predominantly
repulsive except for a very shallow van der Waals
(quadrupole-quadrupole interaction) minimum at large
proton separation. The binding of the 3Su was not dem-
onstrated in the calculations of Detmer et al. (1998) and
Kravchenko and Liberman (1998). This is in contradic-
tion to the b@1 behavior of the weakly bound state
found by Lai and Salpeter (1996). Obviously more work
is needed to attain a clear picture of how the ener-
gies of different H2 states behave as B increases from 0
to b@1.

F. Molecules of heavy elements

Molecules of heavy elements (other than hydrogen) in
strong magnetic fields have not been systematically in-
vestigated. There is motivation to study molecules of
light elements such as He, since if the hydrogen on a
neutron star surface is completely burnt out by nuclear
reaction, helium will be the dominant species left in the
atmosphere. There are also white dwarfs with pure He
atmospheres. (Because of rapid gravitational separation
of light and heavy elements in the gravitational field of a
neutron star or white dwarf, the atmosphere is expected
to contain pure elements.) For b@1, the Hartree-Fock
method discussed in Sec. IV.B can be generalized to the
case of ion charge Z.1 (Lai et al., 1992). Figure 5 shows
the dissociation energy of the He2 molecule as a function
of B . In general, we expect that, as long as a0 /Z@(2Z
21)1/2r , or b@2Z3, the electronic properties of the
heavy molecule will be similar to those of H2. When the
condition b@2Z3 is not satisfied, the molecule should be
quite different and may be unbound relative to indi-
vidual atoms (e.g., Fe at B51012 G is unlikely to form a
bound molecule). Some Hartree-Fock results on di-
atomic molecules (from H2 up to C2) at b51000 are
given by Demeur et al. (1994).

V. LINEAR CHAINS AND CONDENSED MATTER

As discussed in Sec. IV.D, in a strong magnetic field
we can add more atoms to a diatomic molecule to form
molecular chains. When the number of atoms exceeds
the saturation number, the structure of the molecule is
the same as that of an infinite chain. By placing a pile of
parallel chains together, we can form three-dimensional
condensed matter.

A. Basic scaling relations for linear chains

The simplest model for a linear chain is to treat it as a
uniform cylinder of electrons, with ions aligned along
the magnetic-field axis. After saturation, many electrons
settle into the nÞ0 states, and the electrons can be
treated as a Fermi sea in the z direction. In order of
magnitude, the electrons occupy states with m
50,1,2, . . . ,Ns21 and n50,1,2, . . . ,N/Ns . For N@Ns
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@1, the uniform-cylinder approximation becomes in-
creasingly valid because in the transverse direction the
area covered by the m Landau orbitals scales as
(A2m11)2}m ; hence the volume increases with the
number of interior electrons, giving a constant electron
density. Let R be the radius of the cylinder and a be the
atomic spacing a along the z axis. The energy per atom
(unit cell) in the chain can be written as (Ruderman
1971, 1974; Chen, 1973)

E`5
2p2Z3

3b2R4a2 2
Z2

a F ln
2a

R
2S g2

5
8 D G , (5.1)

where g50.5772 . . . is Euler’s constant, and we have
restored the dependence on the ion charge Z . In Eq.
(5.1), the first term is the electron kinetic energy [see
Eq. (A4)] and the second term is the (direct) Coulomb
energy (the Madelung energy for the one-dimensional
uniform lattice). Minimizing E` with respect to R and a
gives

R51.65 Z1/5b22/5 a.u., a/R52.14,
(5.2)E`520.354 Z9/5b2/5 a.u.

Not surprisingly, these scaling relations are the same as
those for heavy atoms [see Eq. (3.20)].

B. Calculations of linear chains

While the uniform-cylinder model discussed above
gives useful scaling relations for the structure and en-
ergy of a linear chain, it is not sufficiently accurate to
determine the relative binding energy between the chain
and the atom at B12;0.1–100. (The uniform-cylinder
model becomes accurate only when Ns;b1/5@1.) More
refined calculations are needed to obtain accurate ener-
gies for field strengths characteristic of neutron star sur-

FIG. 5. Energy releases from several atomic and molecular
processes as a function of the magnetic-field strength: solid
line, ionization energy Q1 of the He atom; dotted line, disso-
ciation energy Q2 of He2; dashed line, cohesive energy Q` of
linear chain He` . The zero-point energy corrections are not
included.
Rev. Mod. Phys., Vol. 73, No. 3, July 2001
faces. Glasser and Kaplan (1975) generalized the
uniform-cylinder model by considering quantized elec-
tron charge distribution in the transverse direction.
However, they assumed a uniform electron population
in different Landau orbitals. The effect they treated
amounts to only a small change in the value of the con-
stant in the Madelung energy expression, and therefore
it is still insufficient to account for the binding of linear
chains. The next step in a more relaxed variational cal-
culation is to treat the effect of the Coulomb potential
on the population of electrons in different m orbitals
(Flowers et al., 1977; note that the calculation reported
in this paper contained numerical errors and was cor-
rected by Müller, 1984). This is clearly an important in-
gredient for calculating the binding energy of the chain,
since it allows for more electrons in the inner orbitals
(small m’s), which increases the binding. A further im-
provement includes the nonuniform electron-density
distribution in the z direction along the magnetic field
(Neuhauser, Koonin, and Langanke, 1987). This effect is
important for treating the bound electrons (i.e., the
‘‘electron core’’ in Flowers et al., 1977) correctly for
chains of heavy atoms like Fe.

The self-consistent Hartree-Fock method for linear
chains is similar to that used for calculating multielec-
tron atoms (see Sec. III.C.2; Neuhauser et al., 1987).
Consider a chain of length Na (where a is the ion spac-
ing). The electron basis functions can be written as

Fmnk~r!5Wm~r'!
1

AN
fmn~z !exp~ ikz !, (5.3)

where k is the Bloch wave number and fmn(z)5fmn(z
1a), normalized via *2a/2

a/2 ufmn(z)u2dz51. In each (mn)
band, the electrons occupy the k space up to kmn

F

5smn(p/a). Here smn is the number of electrons in the
(mn) orbital per unit cell in the chain, and satisfies the
constraint

(
mn

smn5Z . (5.4)

For each set of smn , a coupled set of Hartree-Fock
equations for fmn(z) can be derived and the energy of
the system determined. One then varies smn and repeats
the calculation until the energy minimum is attained.

For linear chains consisting of light atoms such as H
and He (or in general, for sufficiently strong magnetic
fields satisfying b@2Z3), the electron-density variation
along the z axis is not significant, since all the electrons
in the chain are ‘‘ionized’’ and are well approximated by
plane waves. Thus a variational calculation that assumes
uniform density in the z direction is adequate. This cal-
culation is simpler than the full Hartree-Fock calcula-
tion, since the energy functional can be expressed in
semianalytic form (Lai et al., 1992). The basis electron
wave functions are given by Eq. (5.3) with fmn5a21/2.
Electrons fill the mth orbital (band) up to a Fermi wave
number given by km

F 5sm(p/a), where sm is the num-
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ber of electrons in the mth orbital per cell, with m
50,1,2, . . . ,m021. The energy per cell in a chain can be
written as

E5
\2

2me
(
m

sm

1
3 S sm

p

a D 2

1
Z2e2

a F2lnS 2a

r0
D1g

1
1
Z (

m
smc~m11 !2

1
2Z2 (

mm8
smsm8Ymm8G

2
e2

2a (
mm8

smsm8E
2`

`

dz
sin~smpzr0 /a !

smpzr0 /a

3
sin~sm8pzr0 /a !

sm8pzr0 /a
Emm8~z !, (5.5)

where the three terms represent the kinetic energy, the
direct Colulomb energy, and the exchange energy. The
digamma function c satisfies c(m11)5c(m)1(1/m),
with c(1)52g520.5772 . . . ; the coefficient Ymm8 de-
pends on m ,m8; the function Emm8(z) is the same as
defined in Eq. (3.29). For a given lattice spacing a , the
occupation numbers sm (m50,1,2, . . . ,m021) are var-
ied to minimize the total energy E under the constraint
of Eq. (5.4) (with n suppressed). One can increase m0
until further increase in m0 results in no change in the
distribution, i.e., sm02150. The constrained variation

dE2«Fd(m50
m021

sm50 yields

«F5
\2

2me
S psm

a D 2

1
Z2e2

a

3F 1
Z

c~m11 !2
1

Z2 (
m8

sm8Ymm8G
2

e2

a (
m8

E
2`

`

dz cos~smpzr0 /a !

3
sin~sm8pzr0 /a !

sm8pzr0 /a
Emm8~z !. (5.6)

Here «F is a constant Lagrange multiplier (Fermi en-
ergy) that must be determined self-consistently. The sys-
tem (5.6) consists of m0 equations for the m0 unknown
parameters sm plus the constant «F . They are solved
together with Eq. (5.4) for these unknown quantities.

Density-functional theory has also been used to calcu-
late the structure of linear chains in strong magnetic
fields (Jones, 1985; Relovsky and Ruder, 1996). The
problem with this approach is that the density-functional
approximation has not been calibrated in strong mag-
netic fields, and therefore the accuracy of the approxi-
mation is not yet known. (For review of density-
functional theory as applied to nonmagnetic terrestrial
solids, see, for example, Callaway and March, 1984;
Dreizler and Gross, 1990.) More accurate implementa-
tion of the density-functional theory in strong magnetic
fields requires that the current–magnetic-field interac-
tion be taken into account (Vignale and Rasolt, 1987,
1988) and that a better exchange-correlation functional
be used.
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C. Cohesive energy of linear chains

Selected numerical results of the linear chains for a
number of elements (up to Z526) have been obtained
by Neuhauser et al. (1987) based on the Hartree-Fock
method and by Jones (1985) based on density-functional
theory, for a limited range of B’s around 1012 G. The
numerical results for the energy (per atom) of the hy-
drogen chain (Lai et al., 1992) can be approximated (to
within 2% accuracy for 1&B12&103) by

E`~H!520.76 b0.37 a.u.52194 B12
0.37 eV. (5.7)

This expression for E` is a factor of 1.8 times that given
in Eq. (5.2). The cohesive energy of the H chain (energy
release in H1H`5H`11) is given (to &10% accuracy)
by

Q`
(`)~H!5uE`~H!u2uE~H!u

.0.76 b0.3720.16 ~ ln b !2 a.u., (5.8)

where the superscript (`) indicates that the proton has
been treated as having infinite mass (see Sec. V.E). Fig-
ure 1 shows the cohesive energy of the H chain as a
function of B , and Table I gives some numerical values.
Figure 5 shows a similar result for a He chain. For these
light elements, electron-density variation along the z
axis can be safely ignored.

Numerical calculations carried out so far have indi-
cated that for B1251 –10, linear chains are unbound for
large atomic numbers Z*6 (Jones, 1986; Neuhauser
et al., 1987). In particular, the Fe chain is unbound rela-
tive to the Fe atom; this is contrary to what some early
calculations (e.g., Flowers et al., 1977) indicated. There-
fore the chain-chain interaction must play a crucial role
in determining whether three-dimensional zero-pressure
Fe condensed matter is bound or not (see Sec. V.E). The
main difference between Fe and H is that for the Fe
atom at B12;1, many electrons are populated in the n
Þ1 states, whereas for the H atom, as long as b@1, the
electron always settles down in the n50 tightly bound
state. Therefore the covalent bonding mechanism for
forming molecules (see Sec. IV.A) is not effective for Fe
at B12;1. However, for a sufficiently large B , when
a0 /Z@A2Z11r0 or B12@100(Z/26)3, we expect the Fe
chain to be bound in a manner similar to the H chain or
He chain.

D. 3D condensed matter: Uniform-electron-gas model and
its extension

A linear chain naturally attracts neighboring chains
through the quadrupole-quadrupole interaction. By
placing parallel chains close together (with spacing of
order b22/5), we obtain three-dimensional condensed
matter (e.g., a body-centered tetragonal lattice; Ruder-
man, 1971).

The binding energy of magnetized condensed matter
at zero pressure can be estimated using the uniform-
electron-gas model (Kadomtsev, 1970). Consider a
Wigner-Seitz cell with radius ri5Z1/3rs , where rs is the
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mean electron spacing; the mean number density of
electrons is ne5Z/(4pri

3/3). The electron Fermi mo-
mentum pF is obtained from ne5(eB/hc)(2pF /h).
When the Fermi energy pF

2 /(2me) is less than the cyclo-
tron energy \vce , or when the electron number density
satisfies

ne<nB5
1

&p2r0
3 50.0716 b3/2a0

23 (5.9)

(or ri>riB51.49 Z1/3b21/2a0), the electrons occupy only
the ground Landau level. The energy per cell can be
written as

Es~ri!5
3p2Z3

8b2ri
6 2

0.9Z2

ri
, (5.10)

where the first term is the kinetic energy and the second
term is the Coulomb energy. For zero-pressure con-
densed matter, we require dEs /dri50, and the equilib-
rium ri and energy are then given by

ri ,0.1.90 Z1/5b22/5a0 , (5.11)

Es ,0.20.395 Z9/5b2/5 a.u. (5.12)

The corresponding zero-pressure condensation density
is

rs ,0.561 A Z23/5B12
6/5 g cm23. (5.13)

Note that, for b@1, the zero-pressure density is much
smaller than the magnetic density defined in Eq. (5.9),
i.e., rs ,0 /rB5(rB /ri ,0)

350.48 Z2/5b23/10.
We now discuss several corrections to the uniform-

electron-gas model.
(i) Coulomb exchange interaction. The exclusion prin-

ciple for the electrons results in an exchange correction
to the Coulomb energy. The Hartree-Fock exchange en-
ergy per Wigner-Seitz cell is given by

Eex52
3Z

4 b rs
3 F a.u., (5.14)

where F is a function of the ratio y[ne /nB (see Appen-
dix A)

F532g22ln~2y !2 2
3 @2ln~2y !1g2 13

6 #y21¯

(5.15)

(g50.577 215 7. . . is Euler’s constant). The effect of
this (negative) exchange interaction is to increase ri ,0
and uEs ,0u.

(ii) Relativistic effect. As noted in Sec. II, the use of
nonrelativistic quantum mechanics for the bound states
is a good approximation even for B*Brel.1372B0 . We
can show that the density-induced relativistic effect is
also small. The magnetic density nB for onset of the
Landau excitation is still given by Eq. (5.9). The relativ-
istic parameter for the electron is xe[pF /(mec)
5(ne /nB)(2B/Brel)

1/2. At the zero-pressure density as
given by Eq. (5.13), we have xe.531023Z2/5b1/5. Thus,
near the zero-pressure density, the relativistic effect is
negligible for the range of magnetic-field strengths of
interest.
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(iii) Nonuniformity of the electron gas. The Thomas-
Fermi screening wave number kTF is given by (Ashcroft
and Mermin, 1976) kTF

2 54pe2D(«F), where
D(«F)5]ne /]«F is the density of states per unit
volume at the Fermi surface «5«F5pF

2 /(2me).
Since ne5(2eB/h2c)pF , we have D(«F)5ne/2«F
5(me /ne)(2eB/h2c)2, and

kTF5S 4
3p2D 1/2

b rs
3/2 a.u. (5.16)

(More details on electron screening in strong magnetic
fields, including anisotropic effects, can be found in Hor-
ing, 1969.) The gas is uniform when the screening length
kTF

21 is much longer than the particle spacing ri , i.e.,
kTFri!1. For a zero-pressure condensate with density
parameter given by Eq. (5.11), we have kTFri.1.83, in-
dependent of B . Thus, even for B→` , the nonunifor-
mity of electron distribution must be considered for
zero-pressure condensed matter. To leading order in ri
!1, the energy correction (per cell) due to nonunifor-
mity can be calculated using linear-response theory,
which gives

ETF52
18

175
~kTFri!

2 ~Ze !2

ri
(5.17)

(see, for example, Lattimer et al., 1985; Fushiki et al.,
1989). Using Eq. (5.16), we have

ETF520.0139 Z b2ri
4 a.u. (5.18)

Note that this expression is valid only for kTFri!1. At
lower densities, the nonuniformity effect can be studied
only through detailed electronic (band) structure calcu-
lations. An approximate treatment relies on Thomas-
Fermi-type statistical models, including the exchange-
correlation and the Weizsäcker gradient corrections (see
Appendix B).

E. Cohesive energy of 3D condensed matter

Although the simple uniform-electron-gas model and
its Thomas-Fermi-type extensions give a reasonable es-
timate of the binding energy for the condensed state,
they are not adequate for determining the cohesive en-
ergy of condensed matter. The cohesive energy Qs is the
difference between the atomic ground-state energy and
the energy per atom of the condensed-matter ground
state. One uncertainty concerns the lattice structure of
the condensed state, since the Madelung energy can be
very different from the Wigner-Seitz value [the second
term in Eq. (5.10)] for a noncubic lattice. In principle, a
three-dimensional electronic band-structure calculation
is needed to solve this problem, as Jones (1986) has at-
tempted for a few elements using density-functional
theory. Jones adopted a local approximation in one an-
gular variable in solving the electron eigenfunctions of
the lattice Kohn-Sham potential; the validity of this ap-
proximation is not easy to justify (see discussion at the
end of Sec. V.B).
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The energy difference DEs5uEs ,0u2uE`u between 3D
condensed matter and a 1D chain must be positive and
can be estimated by calculating the interaction (mainly
quadrupole-quadrupole) between the chains. Various
considerations indicate that the difference is between
0.4% and 1% of uE`u (Lai and Salpeter, 1997). There-
fore, for light elements such as hydrogen and helium, the
binding of 3D condensed matter results mainly from the
covalent bond along the magnetic-field axis, not from
the chain-chain interaction. For convenience we shall
write the cohesive energy Qs of a 3D hydrogen conden-
sate in terms of the cohesive energy (Q`) of the linear
chain as

Qs~H!5Q`~H!1DEs5~11z!Q`~H!, (5.19)

with z.0.01–0.02 for B1251 –500.
For hydrogen, the zero-point energy of the proton is

not entirely negligible and can introduce a correction to
the cohesive energy. The zero-point energy has not been
rigorously calculated, but a reasonable estimate is as fol-
lows. Neglecting the magnetic force, the zero-point en-
ergy Ezp of a proton in the lattice is of order \Vp ,
where Vp5(4pe2ne /mp)1/2 is the proton plasma fre-
quency. Using the mean electron density ne.0.035 b6/5

as estimated from Eqs. (5.2) or (5.11), we find

Ezp;\Vp.0.015 b3/5 a.u. (5.20)

This is much smaller than the total binding energy uE`u
unless B12*105. This means that, for the range of field
strengths of interest, the zero-point oscillation amplitude
is small compared to the lattice spacing. Thus quantum
melting is not effective (see, for example, Ceperley and
Alder, 1980; Jones and Ceperley, 1996), and the con-
densed matter is a solid at zero temperature. Accurate
determination of Ezp requires a detailed understanding
of the lattice phonon spectra. At zero field, Monte Carlo
simulations give Ezp.3\Vph/2, with h.0.5 (Hansen
and Pollock, 1973). For definiteness, we shall adopt the
same value for Ezp in a strong magnetic field. Taking
into account the magnetic effect on the proton, the cor-
rected cohesive energy of the H chain is expected to be

Q`5Q`
(`)2 1

2 @\Vph1\~vcp
2 14h2Vp

2 !1/22\vcp# ,
(5.21)

with h.0.5, where \vcp5\eB/(mpc) is the cyclotron
energy of the proton.

Figure 1 depicts the cohesive energy of H` as a func-
tion of B ; the energy releases Q1 and Q2 for e1p5H
and H1H5H2 are also shown. Some numerical values
are given in Table I. The zero-point energy corrections
for Q2 and Q` have been included in the figure (if they
are neglected, the curves are qualitatively similar, al-
though the exact values of the energies are somewhat
changed). Although b@1 satisfies the nominal require-
ment for the strong-field regime, a more realistic expan-
sion parameter for the stability of a condensed state
over atoms and molecules is the ratio b0.4/(ln b)2. This
ratio exceeds 0.3 and increases rapidly with increasing
field strength only for b*104. We see from Fig. 1 that
Q1.Q2.Q` for B12&10, and Q1.Q`.Q2 for 10
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&B12&100, while Q`.Q1.Q2 for B12*100. These in-
equalities have important consequences for the compo-
sition of the saturated vapor above the condensed phase
for different magnetic fields (see Sec. VII.B). Figure 5
shows similar numerical results for He.

The cohesive properties of the condensed state of
heavy elements such as Fe are different from those of
hydrogen or helium. As discussed in Sec. V.C, a linear
Fe chain is not bound relative to the Fe atom at B12
51 –10 (although we expect the Fe chain to be bound
for B12@100). Since chain-chain interactions only lower
Es relative to E` by about 1% (see above), it is likely
that the 3D condensed state is also unbound. Jones
(1996) found a very small cohesive energy for 3D con-
densed iron, corresponding to about 0.5% of the atomic
binding energy. In view of the uncertainties associated
with the calculations, Jones’s results should be consid-
ered as an upper limit, i.e.,

Qs&0.005 uEatomu;Z9/5B12
2/5 eV ~for Z*10!,

(5.22)

where we have used Eq. (3.34) for uEatomu.

F. Shape and surface energy of condensed droplets

As we shall discuss in Sec. VII, for sufficiently strong
magnetic fields and low temperatures, the condensed
phase of hydrogen can be in pressure equilibrium with
the vapor phase. The two phases have markedly differ-
ent densities and one might have an ‘‘ocean/atmosphere
interface.’’ The question of droplets might have to be
considered, and the shape and energy of a droplet is of
interest (Lai and Salpeter, 1997).

For the phase equilibrium between a condensed state
and the HN molecules in a vapor, the most relevant
quantity is the surface energy SN , defined as the energy
released in converting the 3D condensate Hs ,` and a HN
molecule into Hs ,`1N . Clearly S15Qs5(11z)Q` is the
cohesive energy defined in Sec. V.E. For a linear HN
molecule with energy (per atom) EN5E(HN), we have

SN5N~EN2Es!5NDEs1N~EN2E`!5NzQ`1jQ` ,
(5.23)

where the first term on the right-hand side comes from
cohesive binding between chains, and the second term is
the end energy of the one-dimensional chain. Based on
numerical results for H2, H3, H4, and H5 (see Fig. 4), we
infer that the dimensionless factor j in Eq. (5.23) is of
order unity. For N&j/z;100, the end energy domi-
nates, while for N*100 the cohesion between chains be-
comes important. In the latter case, the configuration
that minimizes the surface energy SN is not the linear
chain, but some highly elongated ‘‘cylindrical droplet’’
with N' parallel chains each containing N i5N/N' at-
oms. For such a droplet, the end energy is of order
N'jQ` . On the other hand, there are ;N'

1/2 unpaired
chains in such a droplet, each giving an energy N izQ` .
Thus the total surface energy is of order @N'j
1z(N/N')N'

1/2#Q` . The minimum surface energy SN
of the droplet, for a fixed N*2j/z[Nc , is then ob-
tained for N'.(N/Nc)2/3, N i.N1/3Nc

2/3 , and is of order
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SN.3 jS N

Nc
D 2/3

Q` for N*Nc[
2j

z
;200. (5.24)

Thus, although the optimal droplets are highly elon-
gated, the surface energy still grows as (N/200)2/3 for
N*200.

VI. FREE-ELECTRON GAS IN STRONG MAGNETIC
FIELDS

In Secs. III–V, we reviewed the electronic structure
and binding energies of atoms, molecules, and con-
densed matter in strong magnetic fields. As discussed in
Sec. I.A, one of the main motivations for studing matter
in strong magnetic fields is to understand the neutron
star surface layer, which directly mediates the thermal
radiation from the star and acts as a boundary for the
magnetosphere. Before discussing various properties of
the neutron star envelope in Sec. VII, it is useful to sum-
marize the basic thermodynamic properties of a free-
electron gas in strong magnetic fields at finite tempera-
ture T .

The number density ne of electrons is related to the
chemical potential me by

ne5
1

~2pr0!2\ (
nL50

`

gnL
E

2`

`

f dpz , (6.1)

where gnL
is the spin degeneracy of the Landau level

(g051 and gnL
52 for nL>1) and f is the Fermi-Dirac

distribution

f5F11expS E2me

kT D G21

, (6.2)

with E given by Eq. (2.12). The electron pressure is
given by

Pe5
1

~2pr0!2\ (
nL50

`

gnL
E

2`

`

f
pz

2c2

E
dpz . (6.3)

Note that the pressure is isotropic, contrary to what is
stated by Canuto and Ventura (1977) and some earlier
papers.3 The grand thermodynamic potential is V5
2PeV, from which all other thermodynamic quantities
can be obtained. Note that for nonrelativistic electrons

3The transverse kinetic pressure Pe' is given by an expression
similar to Eq. (6.3), except that pz

2c2 is replaced by ^p'
2 c2&

5nLb(mec2)2. Thus the kinetic pressure is anisotropic, with
Pei5Pe5Pe'1MB , where M is the magnetization. When we
compress the electron gas perpendicular to B we must also do
work against the Lorentz force density (¹3M)3B involving
the magnetization curent. Thus there is a magnetic contribu-
tion to the perpendicular pressure of magnitude MB . The
composite pressure tensor is therefore isotropic, in agreement
with the thermodynamic result Pe52V/V (Blandford and
Hernquist, 1982). For a nonuniform magnetic field, the net
force (per unit volume) on the stellar matter is 2¹Pe
2¹(B2/8p)1(B•¹)B/(4p).
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(valid for EF!mec2 and kT!mec2), we use Eq. (2.10)
for E , and the expressions for the density ne and pres-
sure Pe can be simplified to

ne5
1

2p3/2r0
2lTe

(
nL50

`

gnL
I21/2S me2nL\vce

kT D , (6.4)

Pe5
kT

p3/2r0
2lTe

(
nL50

`

gnL
I1/2S me2nL\vce

kT D , (6.5)

where lTe[(2p\2/mekT)1/2 is the thermal wavelength
of the electron and Ih is the Fermi integral:

Ih~y !5E
0

` xh

exp~x2y !11
dx . (6.6)

Let us first consider the degenerate electron gas at
zero temperature. The Fermi energy (excluding the elec-
tron rest mass) EF5me(T50)2mec25(mec2)eF is de-
termined from

ne5
b

2p2|e
3 (

nL50

nmax

gnL
xF~nL!, (6.7)

with

xF~nL!5
pF~nL!

mec
5@~11eF!22~112nLb!#1/2, (6.8)

where |e5\/(mec) is the electron Compton wave-
length, b5B/Brel5a2b , and nmax is set by the condition
(11eF)2>(112nmaxb). The electron pressure is given
by

Pe5
b mec2

2p2|e
3 (

nL50

nmax

gnL
~112nLb! QF xF~nL!

~112nLb!1/2G ,

(6.9)

where

Q~y !5 1
2 yA11y22 1

2 ln~y1A11y2!→ 1
3 y3 for y!1.

(6.10)

The critical magnetic density below which only the
ground Landau level is populated (nmax50) is deter-
mined by (11eF)25112b , which gives [see Eq. (5.9)]

rB50.809 Ye
21b3/2 g cm23

57.093103 Ye
21B12

3/2 g cm23, (6.11)

where Ye5Z/A is the number of electrons per baryon.
Similarly, the critical density below which only the nL
50,1 levels are occupied (nmax51) is

rB15~21& !rB53.414 rB . (6.12)

For r,rB , Eq. (6.7) simplifies to

r53.323104 Ye
21B12@~11eF!221#1/2 g cm23. (6.13)

For nonrelativistic electrons (eF!1), the Fermi tem-
perature TF5EF /k5(mec2/k)eF is given by

TF5
EF

k
52.67 B12

22~Ye r!2 K ~for r,rB!, (6.14)

where r is in units of 1 g cm23. For r@rB , many Landau
levels are filled by the electrons, and Eqs. (6.1) and (6.3)
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reduce to the zero-field expressions. In this limit, the
Fermi momentum pF is given by

xF5
pF

mec
5

\

mec
~3p2ne!1/351.00631022~Ye r!1/3,

~B50 ! (6.15)

and the Fermi temperature is

TF5
mec2

k
~A11xF

2 21 !.3.03105~Ye r!2/3 K, ~B50 !

(6.16)

where the second equality applies to nonrelativistic elec-
trons (xF!1). Comparison of Eqs. (6.14) and (6.16)
clearly shows that the magnetic field lifts the degeneracy
of electrons even at relatively high density (see Fig. 6).

Finite temperature tends to smear out Landau levels.
Let the energy difference between the nL5nmax level
and the nL5nmax11 level be DEB . We can define a
magnetic temperature

TB5
DEB

k
5

mec2

k
~A112nmaxb12b2A112nmaxb!.

(6.17)

Clearly, TF5TB at r5rB (see Fig. 6). The effects due to
Landau quantization are diminished when T*TB . For
r<rB , we have TB5(A112b21)(mec2/k), which re-

FIG. 6. Temperature-density diagram illustrating the different
regimes of magnetic-field effects on the thermodynamic prop-
erties of a free-electron gas: solid lines, B51012 G: short-
dashed lines, B51013 G; long-dashed lines, for B51014 G.
For each value of B , the vertical lines correspond to r5rB

(the density below which only the ground Landau level is oc-
cupied by the degenerate electrons) and r5rB1 (the density
below which only the nL50,1 levels are occupied); the Fermi
temperature is shown for r<rB and for rB,r<rB1 ; the line
marked T5TB [see Eq. (6.17)] corresponds to the tempera-
ture above which Landau-level effects are smeared out. The
dotted line gives the Fermi temperature at B50. The magnetic
field is strongly quantizing when r&rB and T&TB , weakly
quantizing when r*rB and T&TB , and nonquantizing when
T@TB . See Sec. VI for details.
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duces to TB.\vce /k for b5a2b!1. For r@rB (or
nmax@1), Eq. (6.17) becomes

TB.
\vce

k S me

me*
D 51.343108 B12 ~11xF

2 !21/2 K,

(6.18)

where me* 5Ame
21(pF /c)25meA11xF

2 , with xF given
by Eq. (6.15).

There are three regimes characterizing the effects of
Landau quantization on the thermodynamic properties
of the electron gas (Fig. 6; see also Yakovlev and Ka-
minker, 1994).

(i) r&rB and T&TB : In this regime, the electrons
populate mostly the ground Landau level, and the mag-
netic field modifies essentially all the properties of the
gas. The field is sometimes termed ‘‘strongly quantiz-
ing.’’ For example, for degenerate, nonrelativistic elec-
trons (r,rB and T!TF!mec2/k), the internal energy
density and pressure are

ue5 1
3 neEF , (6.19)

Pe52ue5 2
3 neEF}B22r3. (6.20)

These should be compared with the B50 expression
Pe52ue/3}r5/3. Note that for nondegenerate electrons
(T@TF), the classical ideal gas equation of state,

Pe5nekT , (6.21)

still holds in this ‘‘strongly quantizing’’ regime, although
other thermodynamic quantities are significantly modi-
fied by the magnetic field.

(ii) r*rB and T&TB : In this regime, the electrons
are degenerate (note that TF.TB when r.rB ; see Fig.
6) and populate many Landau levels, but the level spac-
ing exceeds kT . The magnetic field is termed ‘‘weakly
quantizing.’’ The bulk properties of the gas (e.g., pres-
sure and chemical potential), which are determined by
all the electrons in the Fermi sea, are only slightly af-
fected by such magnetic fields. However, the quantities
determined by thermal electrons near the Fermi surface
show large oscillatory features as a function of density or
magnetic-field strength. These de Haas–van Alphen-
type oscillations arise as successive Landau levels are
occupied with increasing density (or decreasing mag-
netic field). The oscillatory quantities are usually ex-
pressed as derivatives of the bulk quantities with respect
to thermodynamic variables; examples include heat ca-
pacity, magnetization and magnetic susceptibility, adia-
batic index (] ln Pe /] ln r), sound speed, and electron
screening length of an electric charge in the plasma (see,
for example, Ashcroft and Mermin, 1976; Blandford and
Hernquist, 1982; Lai and Shapiro, 1991; Yakovlev and
Kaminker, 1994). With increasing T , the oscillations be-
come weaker because of the thermal broadening of the
Landau levels; when T*TB , the oscillations are entirely
smeared out, and the field-free results are recovered.

(iii) For T@TB (regardless of density): In this regime,
many Landau levels are populated and the thermal
widths of the Landau levels (;kT) are higher than the
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level spacing. The magnetic field is termed ‘‘nonquantiz-
ing’’ and does not affect the thermodynamic properties
of the gas.

VII. SURFACE LAYER OF A MAGNETIZED NEUTRON
STAR

In this section we review the properties of the surface
layer of a magnetized neutron star. We shall focus on the
thermodynamic properties and phase diagram. We ex-
pect various forms of the magnetic bound states dis-
cussed in Secs. III–V to exist on the stellar envelope,
depending on the field strength, temperature, and den-
sity.

The chemical composition of a neutron star surface is
unknown. A neutron star is formed as a collapsed, hot
(kT*10 MeV) core of a massive star in a supernova
explosion. The neutron star matter may be assumed to
be fully catalyzed and in the lowest energy state (see, for
example, Salpeter, 1961; Baym, Pethick, and Sutherland,
1971). We therefore expect the neutron star surface to
consist of iron (56Fe) formed at the star’s birth. This may
be the case for young radio pulsars that have not ac-
creted any gas. However, once the neutron star accretes
material or has gone through a phase of accretion, either
from the interstellar medium or from a binary compan-
ion, the surface (crust) composition can be quite differ-
ent due to surface nuclear reactions and weak interac-
tions during the accretion (see, for example, Blaes et al.,
1990; Haensel and Zdunik, 1990; Schatz et al., 1999).
Moreover, a hydrogen-helium envelope will form on the
top of the surface unless it has completely burnt out.
While a strong magnetic field and/or rapid stellar spin
may prevent large-scale accretion, it should be noted
that even with a low accretion rate of 1010 g s21 (typical
of accretion from the interstellar medium) for one year,
the accreted material will be more than enough to com-
pletely shield the original iron surface of the neutron
star. The lightest elements, H and He, are likely to be
the most important chemical species in the envelope due
to their predominance in the accreting gas and also due
to quick separation of light and heavy elements in the
gravitational field of the neutron star (see Alcock and
Illarionov, 1980 for a discussion of gravitational separa-
tion in white dwarfs; applied to neutron stars, we find
that the settling time of C in a 106-K hydrogen photo-
sphere is of the order of a second). If the present accre-
tion rate is low, gravitational settling produces a pure H
envelope. Alternatively, a pure He layer may result if
the hydrogen has completely burnt out.

In this section, we shall mostly focus on the hydrogen
envelope (Secs. VII.A and VII.B) both because of its
predominance in the outer layer of the neutron star and
because the properties of different phases of H are bet-
ter understood. A pure He envelope would presumably
have similiar properties to those of a H envelope. The
iron surface layer and deeper crust will be discussed in
Secs. VII.C and VII.E. We are interested only in the
temperature regime T*105 K, since neutron stars with
T&105 K are nearly impossible to observe.
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A. Warm hydrogen atmosphere

We now consider the physical conditions and chemical
equilibrium in a hydrogen atmosphere with photo-
spheric temperature in the range Tph;105 –106.5 K and
magnetic field strength in the range B12;0.1–20. These
conditions are likely to be satisfied by most observable
neutron stars. For such relatively low field strengths, the
atmosphere is largely nondegenerate and consists
mainly of ionized hydrogen, H atoms, and small HN
molecules, and we can neglect the condensed phase in
the photosphere. (In Sec. VII.B we shall consider the
more extreme situation in which the nondegenerate at-
mosphere has negligible optical depth and the con-
densed phase becomes important.) Although the density
scale height of the atmosphere is only h.kTph /mpg
.0.08 Tph,5 g14

21 cm, where Tph,55Tph /(105 K), and g
51014 g14 cm s22 is the gravitational acceleration, the at-
mosphere has significant optical depth and therefore the
atmospheric properties determine the thermal radiation
spectrum from the neutron star (see Pavlov et al., 1995
and references therein).

The photosphere of the neutron star is located at the
characteristic photon optical depth t5* rph

` r kR dr52/3,
where kR (in units of cm2/g) is the Rosseland mean
opacity; the photosphere pressure is Pph.2g/(3kR). An
accurate determination of the photosphere conditions
requires a self-consistent solution of the atmospheric
structure and radiative transport, but an order-of-
magnitude estimate is as follows. In a strong magnetic
field, the radiative opacity becomes anisotropic and de-
pends on polarization (Canuto et al., 1971; Lodenquai
et al., 1974; Pavlov and Panov, 1976; Ventura, 1979; Na-
gel and Ventura, 1980; see Mészáros, 1992 and refer-
ences therein). For photons with polarization vector per-
pendicular to the magnetic field (the extraordinary
mode), the free-free absorption and electron-scattering
opacities are reduced below their zero-field values by a
factor (v/vce)2, while for photons polarized along the
magnetic field (the ordinary mode), the opacities are not
affected. Pavlov and Yakovlev (1977) and Silant’ev and
Yakovlev (1980) have calculated the appropriate aver-
aged Rosseland mean free-free and scattering opacity; in
the magnetic-field and temperature regime of interest,
an approximate fitting formula is

kR~B !.400 hS kT

\vce
D 2

kR~0 !, (7.1)

where h.1 and kR(0) is the zero-field opacity. Using
the ideal-gas equation of state, Pph.rphkTph /mp , we
obtain the photosphere density

rph.0.5 h21/2 g14
1/2 Tph,5

1/4 B12 g cm23. (7.2)

Note that for h;1/400, this equation also approximately
characterizes the density of the deeper layer where the
extraordinary photons are emitted. Other sources of
opacity such as bound-free and bound-bound absorp-
tions will increase the opacity and reduce the photo-
sphere density, but the above estimate defines the gen-
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eral range of densities in the atmosphere if the Tph is
large enough for the neutral H abundance to be small.
Clearly, a typical atmosphere satisfies r!rB and T
!TB , but T@TF (see Sec. VI and Fig. 6), i.e., the mag-
netic field is strongly quantizing in the atmosphere, but
the electrons are nondegenerate.

An important issue for neutron star atmosphere mod-
eling concerns the ionization equilibrium (or Saha equi-
librium) of atoms in strong magnetic fields. Earlier treat-
ments of this problem (e.g., Gnedin et al., 1974;
Khersonskii, 1987) assumed that the atom could move
freely across the magnetic field; this is generally not
valid for the strong-field regime of interest here (see
Sec. III.E). Lai and Salpeter (1995) gave an approximate
analytic solution for a limited temperature-density re-
gime (see below). To date the most complete treatment
of the problem is that of Potekhin et al. (1999), who used
the numerical energy levels of a moving H atom as ob-
tained by Potekhin (1994, 1998) and an approximate de-
scription of the nonideal-gas effect to derive the thermo-
dynamic properties of a partially ionized hydrogen
plasma in strong magnetic fields. Here we discuss the
basic issues of ionization equilibrium in strong magnetic
fields and refer the reader to Potekhin et al. (1999) for a
more detailed treatment.

For nondegenerate electrons in a magnetic field, the
partition function (in volume V) is

Ze5
V

2pr0
2 (

nL50

`

gnL
expS 2nL\vce

kT D E
2`

` dpz

h

3expS 2pz
2

2mekT D
5

V

2pr0
2lTe

tanh21S \vce

2kT D.
V

2pr0
2lTe

, (7.3)

where lTe5(2p\2/mekT)1/2 is the electron thermal
wavelength and the last equality applies for T!TB . For
protons, we shall drop the zero-point energy and the
spin energy in both free states and bound states [i.e., E
5nL\vcp1pz

2/(2mp) for a free proton]. Treating the
proton as a spinless particle (gnL

51), we find that the
partition function of free protons is

Zp5
V

2pr0
2lTp

F12expS 2
\vcp

kT D G21

, (7.4)

where lTp5(2p\2/mpkT)1/2 is the proton thermal
wavelength.

Using Eq. (3.40) for the energy of the H atom, we
write the partition function for the bound states as

ZH5
V

h3 (
mn

E d3K wmn~K'!expS 2
Emn

kT D5
V

lTH
3 Zw ,

(7.5)

where lTH5(2p\2/MkT)1/2, and

Zmn5
lTH

2

2p\2 E dK' K'wmn~K'!

3expS 2
m\vcp1Emn~K'!

kT D , (7.6)
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Zw5(
mn

Zmn . (7.7)

The Saha equation for the ionization equilibrium in
strong magnetic fields then reads

nH

npne
5

VZH

ZeZp
5

lTelTp~2pr0
2!2

lTH
3 F12expS 2

\vcp

kT D GZw .

(7.8)

In Eqs. (7.5) and (7.6), wmn(K') is the occupation prob-
ability of the hydrogen bound state characterized by
m ,n ,K' , and it measures deviation from the Maxwell-
Boltzmann distribution due to the medium effect. Physi-
cally, it arises from the fact that an atom tends to be
‘‘destroyed’’ when another particle in the medium comes
close to it. The atom-proton interaction introduces a cor-
rection to the chemical potential of the atomic gas,

DmH.2npkTE d3r @12exp~2U12 /kT !# (7.9)

(see, for example, Landau and Lifshitz, 1980), where U12
is the interaction potential. Similar expressions can be
written for atom-electron and atom-atom interactions.
For r much larger than the size of the elongated atom,
the atom-proton potential U12 has the form U12
;eQ(3 cos2 u21)/r3, where u is the angle between the
vector r and the z axis, and Q;eLz

2 is the quadrupole
moment of the atom; the atom-atom interaction poten-
tial has the form U12;Q2(3230 cos2 u135 cos4 u)/r5.
Since the integration over the solid angle *dV U1250 at
large r , the contribution to Dm(H) from large r is neg-
ligible. (An atom with K'Þ0 also acquires a dipole mo-
ment in the direction of B3K' ; the resulting dipole in-
teraction also satisfies *d3r U1250.) Thus the main
effect of particle interactions is the excluded-volume ef-
fect: Let Lmn(K') be the characteristic size of the atom
such that we can set U12→` when r&Lmn . We then
have DmH;nbkT(4pLmn

3 /3), where nb5nH1np is the
baryon number density. Therefore the occupation prob-
ability is of order

wmn~K'!;expF2
4p

3
nbLmn

3 ~K'!G . (7.10)

The size of the atom can be estimated as follows (see
Secs. III.A and III.E): when K'50, the tightly bound
state (n50) has Lz;lm

21 ,L';rm , while the n.0 state
has Lz;n2,L';rm ; when K'Þ0, the electron and pro-
ton are displaced in the transverse direction by a
distance d&K' /b ; thus we have Lmn(K')
;max(Lz ,L' ,K/b). A more accurate fitting formula for
Lmn(K') is given in Potekhin (1998).

More precise calculation of the occupation probability
requires detailed treatment of interactions between vari-
ous particles in the plasma. Even at zero magnetic field,
the problem is challenging and uncertainties remain
(see, for example, Hummer and Mihalas, 1988; Mihalas
et al., 1988; Saumon and Chabrier, 1991, 1992; Potekhin,
1996). In strong magnetic fields, additional complica-
tions arise from the nonspherical shape of the atom.
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Nevertheless, using the hard-sphere approximation simi-
lar to the field-free situation, Potekhin et al. (1999) have
constructed a free-energy model for partially ionized hy-
drogen, from which wmn(K') can be calculated along
with other thermodynamic quantities. Figure 7 shows
some numerical results based on the calculations of
Potekhin et al. (1999). The general trend that the neutral
fraction nH /nb increases with increasing B is the result
of larger binding energy uEmn(K')u for larger B , al-
though this trend is offset partially by the fact that the
electron phase space also increases with B [see Eq.
(7.3)]. For a given T and B , the neutral fraction in-
creases with density until r reaches rc;10–100 g cm23

[for B51012–1013 G (see Potekhin et al., 1999), rc
scales with b roughly as (lnb)3], above which the neutral
fraction declines because of pressure ionization.

It is instructive to consider the relative importance of
the centered states and the decentered states to the neu-
tral hydrogen fraction. As discussed in Sec. III.E, the
H energy can be approximated by E0(K').E0
1K'

2 /(2M') for K'&K'c;A2MuE0u (we consider only
the m5n50 state for simplicity). Setting w00(K')51
for low densities, the contribution of the K'&K'c states
to Zw is given (in a.u.) by

Zw
(c).expS 2

E0

T D S M'

M D , (7.11)

FIG. 7. Atomic hydrogen fraction nH /nb as a function of
magnetic-field strength: solid lines, density r50.01 g cm23 (for
T5105.5 K and T5106.5 K) dashed lines, r510 g cm23. These
results are based on the calculations of Potekhin et al. (1999).
The two dotted lines (for T5105.5 K, r50.01 g cm23) corre-
spond to the hydrogen fraction nH8 /nb calculated ignoring the
decentered states. The lower line includes only the m50 state,
while the upper line includes all m states. The two horizontal
lines on the left correspond to zero-field results. For r
50.01 g cm23 and T5105.5 and 106.5 K; for r510 g cm23, all
atoms are pressure ionized at zero field.
Rev. Mod. Phys., Vol. 73, No. 3, July 2001
for K'c
2 /(2M');(M/M')uE0u@T . On the other hand,

the contribution from the decentered states to Zw can
be estimated as

Zw
(d).

1
MT E

K'c

Kmax
K' expF2

E0~K'!

T GdK' , (7.12)

where Kmax is given by (4p/3)(Kmax /b)3nb.1. Since
uE0(K')u for K*K'c is much less than uE0u, we find

Zw
(c)

Zw
(d) ;

2M'T

Kmax
2 expS uE0u

T D;
5M'T

b2 nb
2/3 expS uE0u

T D .

(7.13)

Thus for the centered states to dominate the atomic
population, we require uE0u/T*ln(b2/5M'Tnb

2/3); for ex-
ample, at T5105.5 K, this corresponds to B*1013.5 G,
or uE0u/T*15 (see the dotted lines in Fig. 7).

For sufficiently high B or sufficiently low T , we expect
the atmosphere to have an appreciable abundance of H2
molecules. Since there has been no detailed study of the
effect of motion on H2, only an approximate estimate is
possible (Lai and Salpeter, 1997; Potekhin et al., 1999).
For example, at B51013 G there exists a large amount
of H2 in the photosphere (r;10–100 g cm23) when T
&105.5 K. As we go deeper into the atmosphere, we ex-
pect larger molecules to appear; when the density ap-
proaches the internal density of the atom/molecule, the
bound states lose their identities and we obtain a uni-
form, ionized plasma. With increasing density, the
plasma becomes degenerate and gradually transforms
into a condensed phase (Lai and Salpeter, 1997).

B. Surface hydrogen at ultrahigh fields: The condensed
phase

We have seen in Sec. VII.A that, for sufficiently low
field strengths and/or high temperatures, the outermost
layer of the neutron star is nondegenerate, and the sur-
face material gradually transforms into a degenerate
Coulomb plasma as density increases. As discussed in
Secs. III–V, the binding energy of the condensed hydro-
gen increases as a power-law function of B , while the
binding energies of atoms and small molecules increase
only logarithmically. We therefore expect that for suffi-
ciently strong magnetic fields there exists a critical tem-
peratire Tcrit , below which a first-order phase transition
occurs between the condensed hydrogen and the gas-
eous vapor; as the vapor density decreases with increas-
ing B or decreasing T , the outermost stellar surface
would be in the form of condensed hydrogen (Lai and
Salpeter, 1997).

While a precise calculation of Tcrit for the phase tran-
sition is not available at present, we can get an estimate
by considering the equilibrium between the condensed
hydrogen (labeled ‘‘s’’) and the gaseous phase (labeled
‘‘g’’) in the ultrahigh-field regime (where phase separa-
tion exists). The gaseous phase consists of a mixture of
free electrons, protons, bound atoms, and molecules.
Phase equilibrium requires the temperature, the pres-
sure, and the chemical potentials of different species to
satisfy the conditions
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Ps5Pg5@2np1n~H !1n~H2!1n~H3!1¯#kT5P ,
(7.14)

ms5me1mp5m~H !5 1
2 m~H2!5 1

3 m~H3!5¯ .
(7.15)

For the condensed phase near zero pressure, the density
is approximately

rs.561 B12
6/5 g cm23, (7.16)

and the electron Fermi temperature is TF.0.236 b2/5

58.43105B12
2/5 K; thus, at a given temperature, the con-

densed hydrogen becomes more degenerate as B in-
creases. Let the energy per Wigner-Seitz cell in the con-
densate be Es(rs) [see Eq. (5.10) for an approximate
expression; rs5ri for hydrogen]. The pressure and
chemical potential of the condensed phase are given by

Ps52
1

4prs
2

dEs

drs
, (7.17)

ms5Es~rs!1PsVs.Es ,01PsVs ,0 , (7.18)

where the subscript ‘‘0’’ indicates the zero-pressure val-
ues. We have assumed that the vapor pressure is suffi-
ciently small so that the deviation from the zero-
pressure state of the condensate is small, i.e., d[u(rs
2rs ,0)/rs ,0u!1; this is justified when the saturation vapor
pressure Psat is much less than the critical pressure Pcrit
for phase separation, or when T!Tcrit . The finite tem-
perature correction Dms to the chemical potential of the
condensed phase, as given by Dms(T).p2T2/(12TF), is
much smaller than the cohesive energy and can be ne-
glected. Using the partition functions of free electrons,
protons, and atoms as given in Sec. VII.A, we find that
in the saturated vapor,

np5ne.
bM1/4T1/2

~2p!3/2 F12expS 2
b

MT D G21/2

3expS 2
Q11Qs

2T D , (7.19)

n~H!.S MT

2p D 3/2S M'8

M D expS 2
Qs

T D , (7.20)

where Qs5uEs ,0u2uE(H)u is the cohesive energy of the
condensed hydrogen (we have neglected PsVs ,0 in com-
parison to Qs), and Q15uE(H)u is the ionization energy
of the hydrogen atom. In Eq. (7.20) we have included
only the ground state (m5n50) of the H atom and
have neglected the decentered states; this is valid for T
&Q1/20 (see Sec. VII.A). The equilibrium condition
Nms5mN for the process Hs ,`1HN5Hs ,`1N , where HN
represents a small molecular chain or a 3D droplet,
yields

n~HN!.N3/2S MT

2p D 3/2

expS 2
SN

T D , (7.21)

where SN5NEN2NEs is the surface energy discussed
in Sec. V.F. In Eq. (7.21), we have assumed that the HN
molecule (or 3D droplet) moves across the field freely;
this should be an increasingly good approximation as N
increases.
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The critical temperature Tcrit , below which phase
separation between the condensed hydrogen and
the gaseous vapor occurs, is determined by the condi-
tion ns5ng5np1n(H)12n(H2)13n(H3)1••• . Al-
though Eqs. (7.19)–(7.21) are derived for ng!ns , we
may still use them to obtain an estimate of Tcrit . Using
the approximate surface energy SN as discussed in Sec.
V.F, we find

Tcrit;0.1 Qs.0.1 Q` . (7.22)

Thus Tcrit.83104, 53105, and 106 K for B12510, 100,
and 500, respectively. Figure 8 shows some examples of
the saturation vapor density as a function of tempera-
ture for several values of B . It should be emphasized
that the calculation is very uncertain around T;Tcrit .
But when the temperature is below Tcrit/2 (for example),
the vapor density becomes much less than the conden-
sation density ns and phase transition is unavoidable.
When the temperature drops below a fraction of Tcrit ,
the vapor density becomes so low that the optical depth
of the vapor is negligible and the outermost layer of the
neutron star then consists of condensed hydrogen. The
condensate will be in the liquid state when G
5e2/(rikT)&175 (see Sec. VII.E), or when T*1.3
3103 (r/1 g cm23)1/3 K.73104 B14

2/5 K. The radiative
properties of such a condensed phase are of interest to
study (see Sec. VII.D).

The protons in the condensed hydrogen phase can un-
dergo significant pycnonuclear reactions. Unlike the
usual situation of pycnonuclear reactions (see Salpeter
and Van Horn, 1969; Ichimaru, 1993), in which the high
densities needed for the reactions at low temperatures
are achieved through very high pressures, here the large
densities (even at zero pressure) result from the strong
magnetic field—this is truly a ‘‘zero-pressure cold fu-
sion’’ (Lai and Salpeter, 1997). For slowly accreting neu-
tron stars (so that the surface temperature is low enough
for condensation to occur), the inflowing hydrogen can
burn almost as soon as it has condensed into the liquid
phase. It is not clear whether this burning proceeds
smoothly or whether there is some kind of oscillatory
relaxation (e.g., cooling leads to condensation, leading
to hydrogen burning and heat release, followed by
evaporation, which stops the burning and leads to fur-
ther cooling; see Salpeter, 1998).

C. Iron surface layer

For a neutron star that has not accreted much gas, one
might expect the surface to consist of iron formed at the
neutron star’s birth. As discussed in Sec. V.E, the cohe-
sive energy of Fe is uncertain. If the condensed Fe is
unbound with respect to the Fe atom (Qs5uEsu
2uEatomu,0), then the outermost Fe layer of the neu-
tron star is characterized by a gradual transformation
from a nondegenerate gas at low densities, which in-
cludes Fe atoms and ions, to a degenerate plasma as the
pressure (or column density) increases. The radiative
spectrum will be largely determined by the property of
the nondegenerate layer. However, even a weak cohe-
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sion of the Fe condensate (Qs.0) can give rise to a
phase transition at sufficiently low temperatures.4 The
number density of atomic Fe in the saturated vapor is of
order

nA.S AMT

2p D 3/2

expS 2
Qs

T D . (7.23)

The gas density in the vapor is rg*AMnA . The critical
temperature for phase transition can be estimated from
rg5rs . Using Eq. (5.13) as an estimate for the conden-
sation density rs , and using Eq. (5.22) as the upper limit
of Qs , we find

Tcrit&0.1 Qs&105.5 B12
2/5 K. (7.24)

As in the case of hydrogen (see Sec. VII.B), we expect
the vapor above the condensed iron surface to have neg-
ligible optical depth when T&Tcrit/3.

The iron surface layers of magnetic neutron stars have

4The condensation of Fe was first discussed by Ruderman and
collaborators (see Ruderman, 1974; Flowers et al., 1977), al-
though these earlier calculations greatly overestimated the co-
hesive energy Qs of Fe (see Secs. V.B and V.E).

FIG. 8. The saturation vapor densities of various species (in
the atomic units, a0

23) of condensed metallic hydrogen as a
function of temperature for different magnetic field strengths:
(a) B12510; (b) B125100; (c) B125500; dotted curves, np ;
short-dashed curves, n(H); long-dashed curves, n(H2); dot-
dashed curves, @3n(H3)14n(H4)1•••18n(H8)# ; solid
curves, the total baryon number density in the vapor ng5np

1n(H)12n(H2)1••• . The horizontal solid lines denote the
condensation density ns.50 B12

6/5 (a.u.), while the vertical solid
lines correspond to the critical condensation temperature at
which ng5ns . From Lai and Salpeter, 1997.
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also been studied using Thomas-Fermi-type models (see,
for example, Fushiki, Gudmundsson, and Pethick, 1989;
Abrahams and Shapiro, 1991; Rögnvaldsson et al., 1993;
Thorolfsson et al., 1998; see also Appendix B). While
these models are too crude to determine the cohesive
energy of the condensed matter, they provide a useful
approximation to the gross properties of the neutron
star surface layer. Figure 9 depicts the equation of state
of iron at B51012 G and B51013 G based on Thomas-
Fermi-type statistical models. At zero temperature, the
pressure is zero at a finite density, which increases with
increasing B . This feature is qualitatively the same as in
the uniform-electron-gas model (Sec. V.D). Neglecting
the exchange-correlation energy and the nonuniformity
correction, we can write the pressure of a zero-
temperature uniform electron gas as

P5Pe2
3
10 S 4p

3 D 1/3

~Ze !2S r

Amp
D 4/3

, (7.25)

where the first term is given by Eq. (6.9) [or by Eq.
(6.20) in the strong-field, degenerate limit] and the sec-
ond term results from the Coulomb interactions among
the electrons and ions. Setting P50 gives the condensa-
tion density rs ,0 as in Eq. (5.13). Note that near zero
pressure, all these models are approximate (e.g., the cal-
culated rs ,0 can differ from the true value by a factor of
a few), and more detailed electronic-structure calcula-
tions are needed to obtain a reliable pressure-density
relation. Figure 9 also shows the results of the finite-
temperature Thomas-Fermi model (Thorolfsson et al.,
1998). Obviously, at finite temperatures, the pressure
does not go to zero until r→0, i.e., an atmosphere is
present. Note that the finite-temperature Thomas-Fermi
model gives only a qualitative description of a dense
atmosphere; important features such as atomic states
and ionizations are not captured in this model.

FIG. 9. Equation of state of Fe in strong magnetic fields (B
51012 and 1013 G), based on Thomas-Fermi-type models: light
solid lines, results of a Thomas-Fermi model allowing for many
Landau levels (Rögnvaldsson et al., 1993); heavy solid lines,
results of a Thomas-Fermi-Dirac model allowing only for the
ground Landau level (Fushiki et al., 1989); dotted lines, results
of the uniform-gas model as descibed by Eq. (7.25), all for zero
temperature. The dashed lines are results of Thomas-Fermi
models with kT510 and 100 eV (Thorolfsson et al., 1998).
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D. Radiative transfer and opacities

As discussed in Sec. I.A, the surface thermal radiation
detected from isolated neutron stars provides valuable
information on the structure and evolution of neutron
stars. To calculate the radiation spectrum from the neu-
tron star surface, one needs to understand the radiative
opacities and study radiative transport in the atmo-
sphere. A thorough review of these subjects is beyond
the scope of this paper. Here we briefly discuss what has
been done and provide references to recent papers.

Nonmagnetic (B50) neutron star atmosphere models
were first constructed by Romani (1987). Further works
(Rajagopal and Romani, 1996; Zavlin et al., 1996) used
improved opacity and equation-of-state data from the
OPAL project (Iglesias and Rogers, 1996) for pure hy-
drogen, helium, and iron compositions. These works
showed that the radiation spectra from light-element
(hydrogen or helium) atmospheres deviate significantly
from the blackbody spectrum. The zero-field models
may be relevant for the low-field (B;108 –109 G) re-
cycled pulsars (e.g., PSR J0437-4715, from which ther-
mal x rays have apparently been detected; see Zavlin
and Pavlov, 1998), but it is possible that these interme-
diate magnetic fields can have non-negligible effects, at
least for atmospheres of light elements. For example,
even at B;109 G, the binding energies of light ele-
ments can differ significantly from the zero-field values,
and at low temperatures the OPAL equation of state
underestimates the abundance of the neutral species in
the atmosphere.

The basic properties of radiation emerging from a
completely ionized magnetic neutron star atmosphere
(under the assumption of constant temperature gradient
in the radiating layer) were considered by Pavlov and
Shibanov (1978). Modeling of a magnetic neutron star
atmosphere (which requires determining the tempera-
ture profile in the atmosphere as well as the radiation
field self-consistently) was first attempted by Miller
(1992), who adopted the polarization-averaged bound-
free (photoionization) opacities calculated by Miller and
Neuhauser (1991) while neglecting other radiative pro-
cesses. However, separate transport of polarization
modes, which have very different opacities, dramatically
affects the emergent spectral flux. So far most studies
of magnetic neutron star atmospheres have focused on
hydrogen and moderate field strenghts of B
; 1012 –1013 G (e.g., Shibanov et al., 1992; Pavlov et al.,
1994; Zavlin et al., 1995; see Pavlov et al., 1995 for a re-
view). These models correctly take account of the trans-
port of different photon modes through a mostly ionized
medium in strong magnetic fields. The opacities adopted
in the models include free-free transitions (bremsstrah-
lung absorption) and electron scattering, while bound-
free (photoionization) opacities are treated in a highly
approximate manner and bound-bound transitions are
completely ignored. The models of Pavlov et al. are ex-
pected to be valid for relatively high temperatures (T
*a few3106 K) where hydrogen is almost completely
ionized. As the magnetic field increases, we expect these
Rev. Mod. Phys., Vol. 73, No. 3, July 2001
models to break down at even higher temperatures as
bound atoms, molecules, and condensate become in-
creasingly important. The atmosphere models of Pavlov
et al. have been used to compare the observed spectra of
several radio pulsars and radio-quiet isolated neutron
stars (see, for example, Pavlov et al., 1996; Zavlin, Pav-
lov, and Trümper, 1998), and some useful constraints on
neutron star properties have been obtained. Magnetic
iron atmospheres (with B ; 1012 G) were studied by
Rajagopal et al. (1997). Because of the complexity in the
atomic physics and radiative transport, these Fe models
are necessarily crude. Most recently, neutron star atmo-
sphere models in the superstrong field regime (B
) 1014 G) have begun to be explored (Ho and Lai,
2001; Özel, 2001; Zane et al., 2001). In addition to band
species the effects of ion resonance and vacuum polar-
ization are expected to play an important role in deter-
mining the radiative spectra of magnetars (see Sec. I.A).

As discussed in Sec. VII.A, a strong magnetic field
increases the abundance of neutral atoms in a hydrogen
atmosphere as compared to the zero-field case (see Fig.
7). Therefore one could in principle expect some atomic
or molecular line features in the soft-x-ray or UV spec-
tra. For example, the Lyman ionization edge is shifted to
160 eV at 1012 G and 310 eV at 1013 G. The free-free
and bound-free (for a ground-state hydrogen atom at
rest) cross sections for a photon in the extraordinary
mode, with the photon electric field perpendicular to the
magnetic field, are approximately given by (Gnedin,
Pavlov, and Tsygan, 1974; Ventura et al., 1992)5

s ff'.1.73103rT5
21/2a2a0

2v21b22, (7.26)

sbf'.4paa0
2S Q1

v D 3/2

b21, (7.27)

where a51/137 is the fine-structure constant, a0 is the
Bohr radius, r is the density in g cm23, v is the photon
energy in the atomic units, Q1 is the ionization potential,
and b is the dimensionless field strength defined in Eq.
(1.3). Near the absorption edge, the ratio of the free-free
and bound-free opacities is

k ff'

kbf'
;1024

r

T5
1/2B12fH

. (7.28)

Thus, even for the relatively small neutral H fraction fH ,
the discontinuity of the total opacity at the Lyman edge
is pronounced and we expect the absorption feature to
be prominent. Note that since the extraordinary mode
has smaller opacity, most of the x-ray flux will come out
in this mode. For photons in the ordinary mode, we have

s ffi.1.653103rT5
21/2a2a0

2v23, (7.29)

sbfi.102paa0
2~Q1 /v!5/2~ lnb !22, (7.30)

5Note that Eqs. (7.27) and (7.30) are based on the Born ap-
proximation, which breaks down near the photoionization
threshold. A more accurate fitting to sbf , valid for any tightly
bound state and photon polarization, is given by Eqs. (39)–
(43) of Potekhin and Pavlov (1993).
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where s ffi is the same as in zero field, which gives
k ffi /kbfi;1022rT5

21/2fH
21 for B12;1. Thus the absorp-

tion edge for the ordinary mode is less pronounced.
Clearly, the position and the strength of the absorption
edge can provide a useful diagnostic of the magnetic
field at the neutron star surface.

A detailed review of electron scattering and free-free
absorption opacities in a magnetized plasma is that of
Mészáros (1992). Bound-bound transitions in strong
magnetic fields have been thoroughly investigated for
hydrogen and helium atoms at rest (see Ruder et al.,
1994 for review and tabulations of numerical results).
Bound-free absorptions for hydrogen atoms at rest have
also been extensively studied (see, for example, Gnedin
et al., 1974; Ventura et al., 1992; Potekhin and Pavlov,
1993). Since the motion of an atom in a strong magnetic
field modifies the atomic structure significantly (see Sec.
III.E), the motional effects on opacities need to be in-
cluded; see Pavlov and Potekhin, 1995 for bound-bound
opacities and Potekhin and Pavlov, 1997 for bound-free
opacities; see also Potekhin et al., 1998 for total opaci-
ties. Some approximate results for radiative transitions
in heavy atoms were presented by Miller and Neuhauser
(1991).

In the regime in which the outermost layer of the neu-
tron star is in the form of condensed matter, radiation
directly emerges from the hot (but degenerate) con-
densed phase. The usual radiative transfer does not ap-
ply to this situation. Because of the high condensation
density, the electron plasma frequency is larger than the
frequency of a typical thermal photon. Thus the photons
cannot be easily excited thermally inside the condensate.
This implies that the neutron star surface has a high
reflectivity. The spectral emissivity is determined by the
bulk dielectric properties of the condensed phase (see
Itoh, 1975; Brinkmann, 1980).

E. Magnetized neutron star crust

As discussed in Sec. VI, the effect of Landau quanti-
zation is important only for r&rB [see Eq. (6.11)].
Deeper in the neutron star envelope (and the interior),
we expect the magnetic-field effect on the bulk equation
of state to become negligible as more and more Landau
levels are filled. In general, we can use the condition
rB*r , or B12*27 (Yer6)2/3, to estimate the critical
value of B above which Landau quantization will affect
physics at density r. For example, at B*1014 G, the
neutronization transition from 56Fe to 62Ni (at r58.1
3106 g cm23 for B50; Baym, Pethick, and Pines, 1971)
in the crust can be significantly affected by the magnetic
field (Lai and Shapiro, 1991).

The ions in the neutron star envelope form a one-
component plasma and are characterized by the Cou-
lomb coupling parameter

G5
~Ze !2

rikT
522.75

Z2

T6
S r6

A D 1/3

, (7.31)
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where ri5(3/4pni)
1/3 is the Wigner-Seitz cell radius, ni

5r/mi5r/(Amp) is the ion number density, r6
5r/(106 g cm23), and T65T/(106 K). For G!1, the ions
form a classical Boltzmann gas whose thermodynamic
property is unaffected by the magnetic field. For G*1,
the ions constitute a strongly coupled Coulomb liquid.
The liquid freezes into a Coulomb crystal at G5Gm
.175, corresponding to the classical melting tempera-
ture Tm (see, for example, Slattery et al., 1980; Nagara
et al., 1987; Potekhin and Chabrier, 2000). The quantum
effects of ion motions (zero-point vibrations) tend to in-
crease Gm (Chabrier, Ashcroft, and DeWitt, 1992;
Chabrier, 1993) or even suppress freezing (Ceperley and
Alder, 1980; Jones and Ceperley, 1996). At zero field,
the ion zero-point vibrations have a characteristic fre-
quency of the order of the ion plasma frequency Vp ,
with

\Vp5\S 4pZ2e2ni

mi
D 1/2

5675 S Z

A D r6
1/2 eV. (7.32)

For T!TDebye;\Vp /k , the ion vibrations are quan-
tized. The effects of magnetic fields on strongly coupled
Coulomb liquids and crystals have not been systemati-
cally studied (but see Usov et al., 1980). The cyclotron
frequency of the ion is given by

\vci5\
ZeB

Ampc
56.3 S Z

A D B12 eV. (7.33)

The ion vibration frequency in a magnetic field may be
estimated as (Vp

21vci
2 )1/2. Using Lindeman’s rule, we

obtain a modified melting criterion:

G S 11
vci

2

Vp
2 D .175. (7.34)

For vci!Vp , or B12!100 r6
1/2 , the magnetic field does

not affect the melting criterion and other properties of
ion vibrations.

Even in the regime in which magnetic quantization
effects are small (r@rB), the magnetic field can still
strongly affect the transport properties (e.g., electric
conductivity and heat conductivity) of a neutron star
crust. This occurs when the effective gyrofrequency
of the electron, vce* 5eB/(me* c), where me*
5Ame

21(pF /c)2, is much larger than the electron colli-
sion frequency, i.e.,

vce* t0.1.763103
me

me*
B12 S t0

10216 sD , (7.35)

where t0 is the effective electron relaxation time
(10216 s is a typical value in the outer crust). For ex-
ample, when vce* t0@1, the electron heat conductivity
perpendicular to the magnetic field is suppressed by a
factor (vce* t0)22. A detailed review of the transport
properties of a magnetized neutron star crust is given by
Hernquist (1984) and Yakovlev and Kaminker (1994),
where many earlier references can be found (see
Potekhin, 1999 for a recent calculation). The thermal
structure of a magnetized neutron star crust has been
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studied by, for example, Van Riper (1988), Schaaf
(1990), Hernquist (1985), Heyl and Hernquist (1998).

VIII. CONCLUDING REMARKS

The properties of matter in strong magnetic fields
have always been an interesting subject for physicists.
While early studies (e.g., Elliot and Loudon, 1960; Ha-
segawa and Howard, 1961) were mainly motivated by
the fact that strong magnetic-field conditions can be
mimicked in some semiconductors where a small effec-
tive electron mass and a large dielectric constant reduce
the electric force relative to the magnetic force, recent
work on this subject has been motivated by the huge
magnetic field ;1012 G known to exist in many neutron
stars and the tentative evidence for fields as strong as
1015 G (see Sec. I.A). The study of matter in strong
magnetic fields is obviously an important component of
neutron star astrophysics research. In particular, inter-
pretation of the ever-improving spectral data on neutron
stars requires a detailed theoretical understanding of the
physical properties of highly magnetized atoms, mol-
ecules, and condensed matter.

In this review, we have focused on the electronic
structure and the bulk properties of matter in strong
magnetic fields. We have only briefly discussed the issues
of radiative opacities and conductivities in a magnetized
medium (see Secs. VII.D and VII.E). There are other
related problems that are not covered in this paper. For
example, neutrino emissions in the neutron star crust
and interior, which determine the cooling rate of the
star, can be affected by strong magnetic fields (see, for
example, Yakovlev and Kaminker, 1994; Baiko and Ya-
kovlev, 1999; van Dalen et al., 2000 and references
therein). In proto-neutron stars, sufficiently strong mag-
netic fields (B*1015 G) can induce asymmetric neu-
trino emission and impart a kick velocity to the star (see,
for example, Dorofeev et al., 1985; Vilenkin, 1995;
Horowitz and Li, 1998; Lai and Qian, 1998a, 1998b; Ar-
ras and Lai 1999a, 1999b and references therein). We
have not discussed magnetic-field effects on the nuclear
matter equation of state (see, for instance, Chakrabarty
et al., 1997; Yuan and Zhang, 1999; Broderick et al.,
2000; Suh and Mathews, 2001), which are relevant for
B*1017–1018 G. Many other aspects of physics in
strong magnetic fields are reviewed by Mészáros (1992).

The study of matter in strong magnetic fields spans a
number of different subareas of physics, including astro-
physics, atomic and molecular physics, condensed-
matter physics, and plasma physics. As should be appar-
ent from the preceding sections, although there has been
steady progress over the years, many open problems re-
main to be studied in the future. Some of the problems
should be easily solvable by specialists in their respec-
tive subareas. Since there is no recent review that covers
this broad subject area, our emphasis has been on pro-
ducing a self-contained account of the basic physical pic-
tures, while referring the reader to the original literature
for details (although we have also discussed aspects of
calculational techniques). We hope that this review will
Rev. Mod. Phys., Vol. 73, No. 3, July 2001
make the original literature on matter in strong mag-
netic fields more easily accessible and stimulate more
physicists to work on this problem.
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APPENDIX A: JELLIUM MODEL OF ELECTRON GAS
IN STRONG MAGNETIC FIELDS

Consider an electron gas in a uniform background of
positive charges (the ‘‘jellium model’’). The interelec-
tronic spacing rs is related to the electron number den-
sity ne by ne

2154prs
3/3. At zero magnetic field, the en-

ergy per electron can be written as (Ashcroft and
Mermin, 1976)

E5
3
5

\2kF
2

2me
2

3
4

e2kF

p
1Ecorr

5
2.21

rs
2 2

0.916
rs

10.0622ln~rs!20.094 ~Ry!. (A1)

The first term on the right-hand side is the kinetic en-
ergy, the second term is the (Hartree-Fock) exchange
energy, and the remaining terms are the correlation en-
ergy. The expression for the correlation energy given
here applies to the rs!1 limit; see Ceperley and Alder,
1980 for the full result.

Now consider the magnetic case. When the density is
low (or the magnetic field high), so that only the ground
Landau level is occupied, the Fermi wave number kF
can be calculated from

ne5
eB

hc

1
2p E

2kF

kF
dkz5

2kF

~2pr0!2 ⇒kF52p2r0
2ne .

(A2)

It is convenient to introduce two new parameters, the
inverse Fermi wave number rF and the filling factor for
the lowest Landau level t ,

rF5
1

pkF
5

2
3p2

rs
3

r0
2 , t5

«F

\vce
5S ne

nB
D 2

5
9p2

8 S r0

rs
D 6

,

(A3)
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where «F5(\kF)2/(2me) is the Fermi energy. For the
electrons to occupy only the ground Landau level we
require t<1, or ne<nB [see Eq. (5.9)]. The kinetic en-
ergy per electron is

«k5
1
ne

1

~2pr0!2 E
2kF

kF \2kz
2

2me
dkz5

\2

6p2merF
2 . (A4)

The (Hartree-Fock) exchange energy can be written as
(Danz and Glasser, 1971)

«ex52
F~ t !e2

2p2rF
, (A5)

where the dimensionless function F(t) is

F~ t !54E
0

`

dxF tan21S 1
x D2

x

2
lnS 11

1
x2D Ge24tx2

.

(A6)

The function F(t) can be expressed in terms of general-
ized hypergeometric functions; for small t , it can be ex-
panded as (Fushiki et al., 1989)

F~ t !532g2ln~4t !1
2t

3 S 13
6

2g2ln 4t D
1

8t2

15 S 67
30

2g2ln 4t D1O~ t3 ln t !, (A7)

where g50.5772... is Euler’s constant. The expressions
of exchange energy for higher Landau levels are given
by Fushiki et al. (1992).

Correlation energy in strong magnetic fields has been
calculated by Steinberg and Ortner (1998) in the limit of
rF!1 and t!1 in the random-phase approximation (see
also Skudlarski and Vignale, 1993). The leading-order
terms have the form

«corr5D~ t !ln rF1C~ t !, (A8)

with D(t)5(16p2t)21 (Horing et al., 1972); the
asymptotic (t!1) expression for C(t) is given by Stein-
berg and Ortner (1998). There are also some studies
(e.g., Kleppmann and Elliot, 1975; Usov et al., 1980;
MacDonald and Bryant, 1987) for the very-low-density
regime (rF@1, but t,1), where the electron gas is ex-
pected to form a Wigner crystal; a strong magnetic field
tends to increase the density at which crystallization oc-
curs. The low-density and high-density limits may be
used to establish an interpolation formula for the corre-
lation energy.

APPENDIX B: THOMAS-FERMI MODELS IN STRONG
MAGNETIC FIELDS

Thomas-Fermi and related theories (e.g., Thomas-
Fermi-Dirac theory, which includes the exchange energy
of electrons) have been thoroughly studied as models of
atoms and bulk matter in the case of zero magnetic field
(see, for example, Lieb, 1981; Spruch, 1991). Since the
early studies of Kadomtsev (1970) and Mueller, Rau,
and Spruch (1971), there has been a long succession of
papers on Thomas-Fermi-type models in strong mag-
Rev. Mod. Phys., Vol. 73, No. 3, July 2001
netic fields. An excellent review on the subject is given
by Fushiki et al. (1992); rigorous theorems concerning
the validity of Thomas-Fermi theory in magnetic fields
as an approximation of quantum mechanics are dis-
cussed by Yngvason (1991), Lieb et al. (1992, 1994a,
1994b), and references therein. Here we briefly summa-
rize the basics of the theory.

The Thomas-Fermi-type theory is the simplest case of
a density-functional theory. For a spherical atom (or a
Wigner-Seitz cell of bulk matter), we write the energy as
a functional of the local electron density n(r):

E@n~r !#5E we@n~r !# d3r2Ze2E n~r !

r
d3r

1
e2

2 E n~r !n~r8!

ur2r8u
d3rd3r8, (B1)

where we@n(r)# is the energy density of electrons at
density n(r), which includes kinetic, exchange, and cor-
relation energy (see Appendix A). Minimizing E with
respect to n(r) yields the Thomas-Fermi equation:

dwe

dn
2eF~r !5mTF , (B2)

where F(r) is the total electrostatic potential and mTF is
a constant to be determined by the constraint
*n(r) d3r5Z (for a neutral system). Equation (B2) can
be solved together with the Poisson equation,

¹2F524pZed~r!14pen~r !, (B3)

to obtain n(r) and F(r), and the energy E can then be
evaluated. The pressure of bulk matter is then given by
P52dE/(4pri

2dri) and is equal to the pressure of a uni-
form electron gas at density n(ri), where ri is the
Wigner-Seitz radius.

Consider the Thomas-Fermi model, in which we in-
clude in we@n(r)# only the kinetic energy of the elec-
trons. We then have dwe /dn5me(r)5eF(r)1mTF . Us-
ing Eq. (6.4) (for nonrelativistic electrons) we can
express the local electron density n(r) in terms of F(r).
At zero temperature, we have

n~r !5
1

&p2r0
3 (

nL

nmax

gnLFmTF1eF~r !

\vce
2nLG1/2

. (B4)

This can be substituted into Eq. (B3) to solve for F(r).
Many Thomas-Fermi-type studies (e.g., Kadomtsev,

1970; Mueller, Rau, and Spruch, 1971; Banerjee et al.,
1974; Constantinescu and Rehák, 1976; Skjervold and
Östgaard, 1984; Fushiki et al., 1989; Abrahams and Sha-
piro, 1991) adopted the adiabatic approximation (only
the ground Landau level is occupied, i.e., nmax50).
Abrahams and Shapiro (1991) also considered the Weiz-
säcker gradient correction, in which a term of the form
(\2/me)(¹n)2/n is included in we@n# , although the ac-
tual form of the Weizsäcker term in magnetic fields is
uncertain (see Fushiki et al., 1992 for a critical review).
Tomishima and Yonei (1978), Gadiyak et al. (1981),
Tomishima et al. (1982), and Rögnvaldsson et al. (1993)
studied Thomas-Fermi models allowing for nmax.0.
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Constantinescu and Moruzzi (1978), Abrahams and Sha-
piro (1991, who restricted to nmax50), and Thorolfsson
et al. (1998, allowing for nmax.0) studied finite-
temperature Thomas-Fermi models for condensed mat-
ter. Examples of Thomas-Fermi-type equations of state
for iron are shown in Fig. 9.

As mentioned, the Thomas-Fermi model is too crude
to determine the relative binding between atoms, mol-
ecules, and condensed matter. But the model becomes
increasingly accurate in certain asymptotic limits (see
Fushiki et al. 1992; Lieb et al., 1992, 1994a, 1994b). In
general, the validity of the Thomas-Fermi theory re-
quires the local Fermi wavelength lF to be much less
than the size of the atom (or Wigner-Seitz cell) ri . For
zero or weak magnetic fields (nmax@1), lF;ne

21/3

;ri /Z1/3, the validity of Thomas-Fermi theory requires
Z1/3@1. The size of the atom in weak fields is estimated
from \2/(melF

2 );Ze2/ri , which gives ri;Z21/3a0 .
For atoms in strong magnetic fields (nmax50), we have

lF;ri
2/(Zr0

2), and the size is ri;Z1/5b22/5a0 . The con-
dition l!ri becomes b!Z3. The Thomas-Fermi theory
of the atom is exact when Z ,b→` , as long as Z3/b
→` . To be in the strong-field regime requires the mean
electron spacing in a nonmagnetic atom, a0 /Z2/3, to be
greater than r0, i.e., b.Z4/3. For bulk matter in strong
magnetic fields (nmax50), the Thomas-Fermi model is
valid when lF;ri

3/(Zr0
2)!ri , i.e., b!Zri

22 (at zero
pressure, ri;Z1/5b22/5, this condition reduces to b!Z3).
The strong-field condition is Z21/3ri.r0 , i.e., b
.Z2/3ri

22 (this reduces to b.Z4/3 state at zero pressure
density).
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Thorolfsson, A., Ö. E. Rögnvaldsson, J. Yngvason, and E. H.

Gudmundsson, 1998, Astrophys. J. 502, 847.
Timofeev, V. B., and A. V. Chernenko, 1995, Pis’ma Zh. Éksp.
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(London) 379, 233.
Weissbluth, M., 1978, Atoms and Molecules (Academic, New

York), p. 400.
Wickramasinghe, D. T., and L. Ferrario, 2000, Publ. Astron.

Soc. Pac. 112, 873.
Wille, U., 1987, J. Phys. B 20, L417.
Wille, U., 1988, Phys. Rev. A 38, 3210.
Wunner, G., H. Herold, and H. Ruder, 1982, Phys. Lett. 88A,

344.
Yakovlev, D. G., and A. D. Kaminker, 1994, in The Equation

of State in Astrophysics, edited by G. Chabrier and E. Schatz-
man (Cambridge University, Cambridge), p. 214.

Yakovlev, D. G., A. D. Kaminker, O. Y. Gnedin, and P.
Haensel, 2001, Phys. Rep. (in press); e-print
astro-ph/0012122.

Yngvason, J., 1991, Lett. Math. Phys. 22, 107.
Yuan, Y. F., and J. L. Zhang, 1999, Astrophys. J. 525, 950.
Zane, S., R. Turolla, L. Stella, and A. Treves, 2001, Astrophys

J. (in press); e-print astro-ph/0103316.
Zavlin, V. E., G. G. Pavlov, and Y. A. Shibanov, 1996, Astron.

Astrophys. 315, 141.
Zavlin, V. E., and G. G. Pavlov, 1998, Astron. Astrophys. 329,

583.
Zavlin, V. E., G. G. Pavlov, Y. A. Shibanov, and J. Ventura,

1995, Astron. Astrophys. 297, 441.
Zhang, B., and A. K. Harding, 2000, Astrophys. J. 535, L51.


