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This article reviews the current status of lattice-dynamical calculations in crystals, using
density-functional perturbation theory, with emphasis on the plane-wave pseudopotential method.
Several specialized topics are treated, including the implementation for metals, the calculation of the
response to macroscopic electric fields and their relevance to long-wavelength vibrations in polar
materials, the response to strain deformations, and higher-order responses. The success of this
methodology is demonstrated with a number of applications existing in the literature.
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I. INTRODUCTION

The theory of lattice vibrations is one of the best es-
tablished chapters in modern solid-state physics, and
very few of the astonishing successes met by the latter
could have been achieved without a strong foundation
of the former. A wide variety of physical properties of
solids depend on their lattice-dynamical behavior: infra-
red, Raman, and neutron-diffraction spectra; specific
heats, thermal expansion, and heat conduction; phenom-
ena related to the electron-phonon interaction such as
the resistivity of metals, superconductivity, and the tem-
perature dependence of optical spectra are just a few of
them. As a matter of fact, their understanding in terms
of phonons is considered to be one of the most convinc-
ing pieces of evidence that our current quantum picture
of solids is correct.

The basic theory of lattice vibrations dates back to the
thirties, and the treatise of Born and Huang (1954) is
still considered today to be the reference textbook in
this field. These early formulations were mainly con-
cerned with establishing the general properties of the
dynamical matrices—such as, e.g., their symmetry
and/or analytical properties—without even considering
their connections with the electronic properties that ac-
tually determine them. A systematic study of these con-
nections was not performed until the 1970s (De Cicco
and Johnson, 1969; Pick, Cohen, and Martin, 1970). The
relationship between the electronic and the lattice-
dynamical properties of a system is important not only
as a matter of principle, but also because (and perhaps
mainly because) it is only by exploiting these relations
that it is possible to calculate the lattice-dynamical prop-
erties of specific systems.

The state of the art of theoretical condensed-matter
physics and of computational materials science is such
that it is nowadays possible to calculate specific proper-
ties of specific (simple) materials using ab initio
quantum-mechanical techniques whose only input infor-
mation is the chemical composition of the materials. In
the specific case of lattice-dynamical properties, a large
number of ab initio calculations based on the linear-
response theory of lattice vibrations (De Cicco and
Johnson, 1969; Pick, Cohen, and Martin, 1970) have
been made possible over the past ten years by the
achievements of density-functional theory (Hohenberg
and Kohn, 1964; Kohn and Sham, 1965) and by the de-
velopment of density-functional perturbation theory
(Zein, 1984; Baroni et al., 1987a), which is a method for
applying the former within the general theoretical
framework provided by the latter. Thanks to these the-
oretical and algorithmic advances, it is now possible to
obtain accurate phonon dispersions on a fine grid of
wave vectors covering the entire Brillouin zone, which
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compare directly with neutron-diffraction data, and
from which several physical properties of the system
(such as heat capacities, thermal expansion coefficients,
temperature dependence of the band gap, and so on)
can be calculated.

The purpose of the present paper is to illustrate in
some detail the theoretical framework of density-
functional perturbation theory, including several techni-
cal details that are useful for its implementation within
the plane-wave pseudopotential scheme. We shall also
provide a representative, though necessarily incomplete,
choice of significant applications to the physics of insu-
lators and metals, including their surfaces, alloys, and
microstructures.

II. DENSITY-FUNCTIONAL PERTURBATION THEORY

A. Lattice dynamics from electronic-structure theory

The basic approximation which allows one to de-
couple the vibrational from the electronic degrees of
freedom in a solid is the adiabatic approximation of
Born and Oppenheimer (1927). Within this approxima-
tion, the lattice-dynamical properties of a system are de-
termined by the eigenvalues E and eigenfunctions F of
the Schrödinger equation:

S 2(
I

\2

2MI

]2

]RI
2 1E~R! DF~R!5EF~R!, (1)

where RI is the coordinate of the Ith nucleus, MI its
mass, R[$RI% the set of all the nuclear coordinates, and
E(R) the clamped-ion energy of the system, which is
often referred to as the Born-Oppenheimer energy sur-
face. In practice, E(R) is the ground-state energy of a
system of interacting electrons moving in the field of
fixed nuclei, whose Hamiltonian—which acts onto the
electronic variables and depends parametrically upon
R—reads
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where ZI is the charge of the Ith nucleus, 2e is the
electron charge, and EN(R) is the electrostatic interac-
tion between different nuclei:
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. (3)

The equilibrium geometry of the system is given by the
condition that the forces acting on individual nuclei
vanish:

FI[2
]E~R!

]RI
50, (4)

whereas the vibrational frequencies v are determined by
the eigenvalues of the Hessian of the Born-
Oppenheimer energy, scaled by the nuclear masses:
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The calculation of the equilibrium geometry and of
the vibrational properties of a system thus amounts to
computing the first and second derivatives of its Born-
Oppenheimer energy surface. The basic tool for accom-
plishing this goal is the Hellmann-Feynman theorem
(Hellmann, 1937; Feynman, 1939), which states that the
first derivative of the eigenvalues of a Hamiltonian, Hl ,
that depends on a parameter l is given by the expecta-
tion value of the derivative of the Hamiltonian:

]El

]l
5 K ClU ]Hl

]l UClL , (6)

where Cl is the eigenfunction of Hl corresponding to
the El eigenvalue: HlCl5ElCl . In the Born-
Oppenheimer approximation, nuclear coordinates act as
parameters in the electronic Hamiltonian, Eq. (2). The
force acting on the Ith nucleus in the electronic ground
state is thus
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where C(r,R) is the electronic ground-state wave func-
tion of the Born-Oppenheimer Hamiltonian. This
Hamiltonian depends on R via the electron-ion interac-
tion that couples to the electronic degrees of freedom
only through the electron charge density. The
Hellmann-Feynman theorem states in this case that
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where VR(r) is the electron-nucleus interaction,
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and nR(r) is the ground-state electron charge density
corresponding to the nuclear configuration R. The Hes-
sian of the Born-Oppenheimer energy surface appearing
in Eq. (5) is obtained by differentiating the Hellmann-
Feynman forces with respect to nuclear coordinates,
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Equation (10) states that the calculation of the Hessian
of the Born-Oppenheimer energy surfaces requires the
calculation of the ground-state electron charge density
nR(r) as well as of its linear response to a distortion of
the nuclear geometry, ]nR(r)/]RI . This fundamental re-
sult was first stated in the late 1960s by De Cicco and
Johnson (1969) and by Pick, Cohen, and Martin (1970).
The Hessian matrix is usually called the matrix of the
interatomic force constants.
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B. Density-functional theory

According to the preceding discussion, the calculation
of the derivatives of the Born-Oppenheimer energy sur-
face with respect to the nuclear coordinates requires
only a knowledge of the electronic charge-density distri-
bution. This fact is a special case of a much more general
property of the systems of interacting electrons, known
as the Hohenberg and Kohn (1964) theorem. According
to this theorem, no two different potentials acting on the
electrons of a given system can give rise to a same
ground-state electronic charge density. This property
can be used in conjunction with the standard Rayleigh-
Ritz variational principle of quantum mechanics to show
that a universal functional,1 F@n(r)# , of the electron
charge density exists such that the functional

E@n#5F@n#1E n~r!V~r!dr (11)

is minimized by the electron charge density of the
ground state corresponding to the external potential
V(r), under the constraint that the integral of n(r)
equals the total number of electrons. Furthermore, the
value of the minimum coincides with the ground-state
energy. This theorem provides the foundation of what is
currently known as density-functional theory (DFT; Parr
and Yang, 1989; Dreizler and Gross, 1990). It allows an
enormous conceptual simplification of the quantum-
mechanical problem of searching for the ground-state
properties of a system of interacting electrons, for it re-
places the traditional description based on wave func-
tions (which depend on 3N independent variables, N
being the number of electrons) with a much more trac-
table description in terms of the charge density, which
depends on only three variables. Two major problems
hamper a straightforward application of this remarkably
simple result: (1) the form of the F functional is un-
known, and (2) the conditions to be fulfilled for a func-
tion n(r) to be considered an acceptable ground-state
charge distribution (and hence the domain of the func-
tional F) are poorly characterized. The second problem
is hardly addressed at all, and one must usually be con-
tent to impose the proper normalization of the charge
density by the use of a Lagrange multiplier. The first
problem can be handled by mapping the system onto an
auxiliary system of noninteracting electrons (Kohn and
Sham, 1965) and by making appropriate approximations
along the lines described in the next subsection.

1. The Kohn-Sham equations

The Hohenberg and Kohn theorem states that all the
physical properties of a system of interacting electrons
are uniquely determined by its ground-state charge-
density distribution. This property holds independently

1By universal it is meant here that the functional is indepen-
dent of the external potential acting on the electrons, though it
obviously depends on the form of the electron-electron inter-
action.
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of the precise form of the electron-electron interaction.
In particular, when the strength of the electron-electron
interaction vanishes, F@n# defines the ground-state ki-
netic energy of a system of noninteracting electrons as a
functional of its ground-state charge-density distribution
T0@n# . This fact was used by Kohn and Sham (1965) to
map the problem of a system of interacting electrons
onto an equivalent noninteracting problem. To this end,
the unknown functional F@n# is cast in the form

F@n#5T0@n#1
e2

2 E n~r!n~r8!

ur2r8u
drdr81Exc@n# , (12)

where the second term is the classical electrostatic self-
interaction of the electron charge-density distribution,
and the so-called exchange-correlation energy Exc is de-
fined by Eq. (12).2 Variation of the energy functional
with respect to n(r) with the constraint that the number
of electrons be kept fixed leads formally to the same
equation as would hold for a system of noninteracting
electrons subject to an effective potential, also called the
self-consistent field, (SCF), potential, whose form is

VSCF~r!5V~r!1e2E n~r8!

ur2r8u
dr81vxc~r!, (13)

where

vxc~r![
dExc

dn~r!
(14)

is the functional derivative of the exchange-correlation
energy, also called the exchange-correlation potential.

The power of this trick is that, if one knew the effec-
tive potential VSCF(r), the problem for noninteracting
electrons could be trivially solved without knowing the
form of the noninteracting kinetic-energy functional T0 .
To this end, one should simply solve the one-electron
Schrödinger equation:
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The ground-state charge-density distribution and nonin-
teracting kinetic-energy functional would then be given
in terms of the auxiliary Kohn-Sham orbitals, cn(r):
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2The exchange-correlation energy is the name we give to the
part of the energy functional that we do not know how to
calculate otherwise. For this reason, it has been named the
stupidity energy by Feynmann (1972). Whether or not this is a
useful concept depends on the magnitude of the energy with
respect to the total functional and on the quality of the ap-
proximations one can find for it.
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where N is the number of electrons, and the system is
supposed to be nonmagnetic, so that each of the N/2
lowest-lying orbital states accommodates two electrons
of opposite spin. In periodic systems the index n running
over occupied states can be thought of as a double label,
n[$v ,k%, where v indicates the set of valence bands,
and k is a wave vector belonging to the first Brillouin
zone.

The ground-state energy given by Eqs. (11) and (12)
can be equivalently expressed in terms of the Kohn-
Sham eigenvalues:

E@n#52 (
n51

N/2

en2
e2

2 E n~r!n~r8!

ur2r8u
drdr81Exc@n#

2E n~r!vxc~r!dr. (18)

Equation (15) has the form of a nonlinear Schrö-
dinger equation whose potential depends on its own
eigenfunctions through the electron charge-density dis-
tribution. Once an explicit form for the exchange-
correlation energy is available, this equation can be
solved in a self-consistent way using a variety of
methods.

2. Local-density approximation and beyond

The Kohn-Sham scheme constitutes a practical way to
implement density-functional theory, provided an accu-
rate and reasonably easy-to-use approximation is avail-
able for the exchange-correlation energy Exc@n# . In
their original paper, Kohn and Sham (1965) proposed
the assumption that each small volume of the system (so
small that the charge density can be thought to be con-
stant therein) contributes the same exchange-correlation
energy as an equal volume of a homogeneous electron
gas at the same density. With this assumption, the
exchange-correlation energy functional and potential
read

Exc@n#5E exc~n !un5n~r!n~r!dr, (19)

vxc@n#~r!5S exc~n !1n
dexc~n !

dn D
n5n(r)

, (20)

where exc(n) is the exchange-correlation energy per
particle in a homogeneous electron gas at density n .
This approximation is known as the local-density ap-
proximation (LDA). Approximate forms for exc(n)
have been known for a long time. Numerical results
from nearly exact Monte Carlo calculations for the ho-
mogeneous electron gas by Ceperley and Alder (1980)
have been parametrized by Perdew and Zunger (1981)
with a simple analytical form. More accurate parametri-
zations have been recently proposed by Ortiz and Bal-
lone (1994). All these different forms are very similar in
the range of electron densities relevant to condensed-
matter applications and yield very similar results.

The LDA is exact in the limit of high density or of a
slowly varying charge-density distribution (Kohn and
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Sham, 1965). This approximation has turned out to be
much more successful than originally expected (see, for
instance, Jones and Gunnarsson, 1989), in spite of its
extreme simplicity. For weakly correlated materials,
such as semiconductors and simple metals, the LDA ac-
curately describes structural and vibrational properties:
the correct structure is usually found to have the lowest
energy, while bond lengths, bulk moduli, and phonon
frequencies are accurate to within a few percent.

The LDA also has some well-known drawbacks. A
large overestimate (;20%) of the crystal cohesive and
molecular binding energies is possibly the worst failure
of this approximation, together with its inability to prop-
erly describe strongly correlated systems, such as
transition-metal oxides. Much effort has been put into
the search for better functionals than the LDA (see, for
instance, Perdew et al., 1999). The use of gradient cor-
rections (Becke, 1988; Perdew et al., 1996) to the LDA
has become widespread in recent years. Gradient cor-
rections are generally found to improve the account of
electron correlations in finite or semi-infinite systems,
such as molecules or surfaces; they are less helpful in
infinite solids.

In general, DFT is a ground-state theory and Kohn-
Sham eigenvalues and eigenvectors do not have a well-
defined physical meaning. Nevertheless, for lack of bet-
ter and equally general methods, Kohn-Sham
eigenvalues are often used to estimate excitation ener-
gies. The features of the low-lying energy bands in solids
obtained in this way are generally considered to be at
least qualitatively correct, in spite of the fact that the
LDA is known to substantially underestimate the optical
gaps in insulators.

C. Linear response

In Sec. II.A, Eq. (10), we have seen that the electron-
density linear response of a system determines the ma-
trix of its interatomic force constants. Let us see now
how this response can be obtained within density-
functional theory. The procedure described in the fol-
lowing is usually referred to as density-functional pertur-
bation theory (DFPT; Zein, 1984; Baroni et al., 1987a;
Gonze, 1995b).

In order to simplify the notation and make the argu-
ment more general, we assume that the external poten-
tial acting on the electrons is a differentiable function of
a set of parameters, l[$l i% (l i[RI in the case of lattice
dynamics). According to the Hellmann-Feynman theo-
rem, the first and second derivatives of the ground-state
energy read

]E

]l i
5E ]Vl~r!

]l i
nl~r!dr, (21)

]2E

]l i]l j
5E ]2Vl~r!

]l i]l j
nl~r!dr1E ]nl~r!
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]Vl~r!

]l j
dr.

(22)

The electron-density response, ]nl(r)/]l i , appearing in
Eq. (22) can be evaluated by linearizing Eqs. (16), (15),
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and (13) with respect to wave function, density, and po-
tential variations. Linearization of Eq. (16) leads to

Dn~r!54 Re (
n51

N/2

cn* ~r!Dcn~r!, (23)

where the finite-difference operator Dl is defined as

DlF5(
i

]Fl

]l i
Dl i . (24)

The superscript l has been omitted in Eq. (23), as well
as in any subsequent formulas where such an omission
does not give rise to ambiguities. Since the external po-
tential (both unperturbed and perturbed) is real, each
Kohn-Sham eigenfunction and its complex conjugate are
degenerate. As a consequence, the imaginary part of the
sum appearing in Eq. (23) vanishes, so that the prescrip-
tion to keep only the real part can be dropped.

The variation of the Kohn-Sham orbitals, Dcn(r), is
obtained by standard first-order perturbation theory
(Messiah, 1962):

~HSCF2en!uDcn&52~DVSCF2Den!ucn&, (25)

where

HSCF52
\2

2m

]2

]r2 1VSCF~r! (26)

is the unperturbed Kohn-Sham Hamiltonian,

DVSCF~r!5DV~r!1e2E Dn~r8!

ur2r8u
dr8

1
dvxc~n !

dn U
n5n(r)

Dn~r! (27)

is the first-order correction to the self-consistent poten-
tial, and Den5^cnuDVSCFucn& is the first-order variation
of the Kohn-Sham eigenvalue en .

In the atomic physics literature, an equation analo-
gous to Eq. (25) is known as the Sternheimer equation,
after the work in which it was first used to calculate
atomic polarizabilities (Sternheimer, 1954). A self-
consistent version of the Sternheimer equation was in-
troduced by Mahan (1980) to calculate atomic polariz-
abilities within density-functional theory in the LDA.
Similar methods are known in the quantum chemistry
literature under the generic name of analytic evaluation
of second-order energy derivatives (Gerratt and Mills,
1968; Amos, 1987). In the specific context of the
Hartree-Fock approximation, the resulting algorithm is
called the coupled Hartree-Fock method (Gerratt and
Mills, 1968).

Equations (23)–(27) form a set of self-consistent
equations for the perturbed system completely analo-
gous to the Kohn-Sham equations in the unperturbed
case—Eqs. (13), (15), and (16)—with the Kohn-Sham
eigenvalue equation, Eq. (15), being replaced by the so-
lution of a linear system, Eq. (25). In the present case,
the self-consistency requirement manifests itself in the
dependence of the right-hand side upon the solution of
the linear system. As DVSCF(r) is a linear functional of
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Dn(r), which in turn depends linearly on the Dc’s, the
whole self-consistent calculation can be cast in terms of
a generalized linear problem. Note, however, that the
right-hand side of Eq. (25) for Dcn depends through Dn
on the solution of all the similar equations holding for
the Dcm (mÞn). Hence all the N equations, Eq. (25),
are linearly coupled to each other, and the set of all the
Dc’s is the solution of a linear problem whose dimen-
sion is (NM/23NM/2), M being the size of the basis set
used to describe the c’s. The explicit form of this big
linear equation can be worked out directly from Eqs.
(23)–(27), or it can equivalently be derived from a varia-
tional principle, as explained in Sec. II.C.3. Whether this
large linear system is better solved directly by iterative
methods or by the self-consistent solution of the smaller
linear systems given by Eq. (25) is a matter of computa-
tional strategy.

The first-order correction to a given eigenfunction of
the Schrödinger equation, given by Eq. (25), is often
expressed in terms of a sum over the spectrum of the
unperturbed Hamiltonian,

Dcn~r!5 (
mÞn

cm~r!
^cmuDVSCFucn&

en2em
(28)

running over all the states of the system, occupied and
empty, with the exception of the state being considered,
for which the energy denominator would vanish. Using
Eq. (28), the electron charge-density response, Eq. (23),
can be cast into the form

Dn~r!54 (
n51

N/2

(
mÞn

cn* ~r!cm~r!
^cmuDVSCFucn&

en2em
.

(29)

Equation (29) shows that the contributions to the
electron-density response coming from products of oc-
cupied states cancel each other, so that the m index can
be thought of as attaching to conduction states only.
This is equivalent to saying that the electron-density dis-
tribution does not respond to a perturbation, which acts
only on the occupied-state manifold (or, more generally,
to the component of any perturbation which couples oc-
cupied states among each other).

The explicit evaluation of Dcn(r) from Eq. (28)
would require a knowledge of the full spectrum of the
Kohn-Sham Hamiltonian and extensive summations
over conduction bands. In Eq. (25), instead, only knowl-
edge of the occupied states of the system is needed to
construct the right-hand side of the equation, and effi-
cient iterative algorithms—such as the conjugate gradi-
ent (Press et al., 1989; Štich et al., 1989; Payne et al.,
1992) or minimal residual (Press et al. 1989; Saad and
Schultz, 1986) methods—can be used for solution of the
linear system. In this way the computational cost of de-
termining of the density response to a single perturba-
tion is of the same order as that needed to calculate the
unperturbed ground-state density.

The left-hand side of Eq. (25) is singular because the
linear operator appearing therein has a null eigenvalue.
However, we saw above that the response of the system
Rev. Mod. Phys., Vol. 73, No. 2, April 2001
to an external perturbation depends only on the compo-
nent of the perturbation that couples the occupied-state
manifold with the empty-state one. The projection onto
the empty-state manifold of the first-order correction to
occupied orbitals can be obtained from Eq. (25) by re-
placing its right-hand side with 2PcDVSCFucn&, where
Pc is the projector onto the empty-state manifold, and
by adding to the linear operator on its left-hand side
HSCF2en , a multiple of the projector onto the
occupied-state manifold, Pv , so as to make it nonsingu-
lar:

~HSCF1aPv2en!uDcn&52PcDVSCFucn&. (30)

In practice, if the linear system is solved by the
conjugate-gradient or any other iterative method and
the trial solution is chosen orthogonal to the occupied-
state manifold, orthogonality is maintained during itera-
tion without regard for the extra Pv term on the left-
hand side of Eq. (30).

The above discussion applies to insulators in which
the gap is finite. In metals a finite density of states
(DOS) occurs at the Fermi energy, and a change in the
orbital occupation number may occur upon the applica-
tion of an infinitesimal perturbation. The modifications
of DFPT needed to treat the linear response of metals
have been discussed by de Gironcoli (1995) and will be
presented in some detail in Sec. II.C.4.

1. Monochromatic perturbations

One of the greatest advantages of DFPT—as com-
pared to other nonperturbative methods for calculating
the vibrational properties of crystalline solids (such as
the frozen-phonon or molecular-dynamics spectral
analysis methods)—is that within DFPT the responses to
perturbations of different wavelengths are decoupled.
This feature allows one to calculate phonon frequencies
at arbitrary wave vectors q avoiding the use of supercells
and with a workload that is essentially independent of
the phonon wavelength. To see this in some detail, we
first rewrite Eq. (30) by explicitly indicating the wave
vector k and band index v of the unperturbed wave
function cv

k , and by projecting both sides of the equa-
tion over the manifold of states of wave vector k1q.
Translational invariance requires that the projector onto
the k1q manifold, Pk1q, commute with HSCF and with
the projectors onto the occupied- and empty-state mani-
folds, Pv and Pc . By indicating with Pk1qPv5Pv

k1q and
Pk1qPc5Pc

k1q the projectors onto the occupied and
empty states of wave vector k1q, one can rewrite Eq.
(30) as

~HSCF1aPv
k1q2ev

k!uDcv
k1q&52Pc

k1qDVSCFucv
k&,

(31)

where uDcv
k1q&5Pk1quDcv

k& . When one decomposes the
perturbing potential DVSCF into Fourier components,

DVSCF~r!5(
q

DvSCF
q ~r!eiq•r, (32)
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where DvSCF
q (r) is a lattice-periodic function, Eq. (31)

can be cast into the form

S HSCF
k1q1a(

v8
uuv8

k1q&^uv8
k1qu2ev

kD uDuv
k1q&

52F12(
v8

uuv8
k1q&^uv8

k1quGDvSCF
q uuv

k&, (33)

where v8 runs over the occupied states at k1q, uv
k and

Duv
k1q are the periodic parts of the unperturbed wave

function and of the k1q Fourier component of its first-
order correction, respectively, and the coordinate-
representation kernel of the operator HSCF

k1q ,
hSCF

k1q(r,r8)5^ruHSCF
k1qur8&, is defined in terms of the ker-

nel of the self-consistent field Hamiltonian, hSCF
(0) (r,r8)

5^ruHSCFur8&, by the relation

hSCF
k1q~r,r8!5e2i(k1q)•rhSCF

0 ~r,r8!ei(k1q)•r8. (34)

Equation (33) shows that the time-consuming step of the
self-consistent process, Eq. (30), can be carried out
working on lattice-periodic functions only, and the cor-
responding numerical workload is therefore indepen-
dent of the wavelength of the perturbation.

Let us now see how the other two steps of the self-
consistent process, Eqs. (23) and (27), can be carried out
in a similar way by treating each Fourier component of
the perturbing potential and of the charge-density re-
sponse independently. The Fourier components of any
real function (such as Dn and Dv) with wave vectors q
and 2q are complex conjugates of each other:
Dn2q(r)5@Dnq(r)#* , and similarly for the potential.
Because of time-reversal symmetry, a similar result ap-
plies to wave functions: Duv

k1q(r)5@Duv
2k2q(r)#* . Tak-

ing into account these relations, the Fourier component
of the charge-density response at wave vector q is ob-
tained from Eq. (23):

Dnv
q~r!54(

kv
uv

k* ~r!Duv
k1q~r!. (35)

Equation (27) is a linear relation between the self-
consistent variation of the potential and the variation of
the electron charge-density distribution. The Fourier
component of the self-consistent potential response
reads

DvSCF
q ~r!5Dvq~r!1e2E Dnq~r8!

ur2r8u
e2iq•(r2r8)dr8

1
dvxc~n !

dn U
n5n(r)

Dnq~r!. (36)

The sampling of the Brillouin zone needed for the
evaluation of Eq. (35) is analogous to that needed for
the calculation of the unperturbed electron charge den-
sity, Eq. (16), and it requires in most cases an equal
number of discrete k points. An exception to this rule
occurs when calculating the response of insulators to
macroscopic electric fields—as discussed in Sec. II.C.2—
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and for the calculation of phonons in metals in the pres-
ence of Kohn anomalies—as discussed in Sec. II.C.4.

In conclusion, Eqs. (33), (35), and (36) form a set of
self-consistent relations for the charge-density and
wave-function linear response to a perturbation of a
wave vector q, which can be solved in terms of lattice-
periodic functions only, and which is decoupled from all
other sets of similar equations holding for other Fourier
components of the same perturbation. Thus perturba-
tions of different periodicity can be treated indepen-
dently of each other with a numerical workload that is,
for each perturbation, of the same order as that needed
for the unperturbed system.

2. Homogeneous electric fields

The electron-density response to a homogeneous
(macroscopic) electric field requires a special treatment.
In fact, several electrostatic properties of an infinite
solid are, strictly speaking, ill defined in the long-
wavelength limit because the electrostatic potential de-
scribing a homogeneous electric field E, @VE(r)
5eE•r# , is both unbounded from below and incompat-
ible with Born-von-Kármán periodic boundary condi-
tions. In the linear regime, however, these pathologies
can be efficiently treated in an elementary way. As in
the harmonic approximation, the lattice-dynamical
properties of polar insulators depend for long wave-
lengths on the linear response to a homogeneous electric
field (see Sec. II.D.2), so we shall limit our analysis here
to the linear regime and postpone the discussion of non-
linear electrostatic effects until Sec. II.F.

From a mathematical point of view, the main difficulty
in treating macroscopic electric fields stems from the
fact that the position operator r is ill defined in a peri-
odic system as are its matrix elements between wave
functions satisfying Born-von-Kármán boundary condi-
tions. The wave-function response to a given perturba-
tion, Eq. (28), however, depends only on the off-
diagonal matrix elements of the perturbing potential
between eigen-functions of the unperturbed Hamil-
tonian. Such matrix elements are indeed well defined
even for a macroscopic electric field, as can be seen by
rewriting them in terms of the commutator between r
and the unperturbed Hamiltonian, which is a lattice-
periodic operator:

^cmurucn&5
^cmu@HSCF ,r#ucn&

em2en
, ;mÞn . (37)

If the self-consistent potential acting on the electrons is
local, the above commutator is simply proportional to
the momentum operator:

@HSCF ,r#52
\2

m

]

]r
. (38)

Otherwise, the commutator will contain an explicit con-
tribution from the nonlocal part of the potential (Baroni
and Resta, 1986b; Baroni et al., 1987a; Hybertsen and
Louie, 1987).
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When calculating the response of a crystal to an ap-
plied electric field E0 , one must consider that the
screened field acting on the electrons is

E5E024pP, (39)

where P is the electronic polarization linearly induced
by the screened (i.e., self-consistent) field E:

P52
e

V E
V

rDEn~r!dr. (40)

In addition to the macroscopic screening expressed by
Eq. (39), the density response to an external macro-
scopic electric field E0 also involves microscopic Fourier
components,

DEn~r!54 (
n51

N/2

cn* ~r!DEcn~r!, (41)

responsible for the so-called local fields, which must be
taken into account in the self-consistent procedure.

Equation (40) is, of course, well defined for any finite
system. The electric polarization of a macroscopic piece
of matter, however, is ill defined in that it depends on
the details of the charge distribution at the surface of the
sample. Nevertheless, the polarization linearly induced
by a given perturbation is well defined, and Eq. (40) can
in fact be recast into a boundary-insensitive form (Little-
wood, 1980). To see this, we use Eq. (23) and we obtain
from Eq. (40)

Pa52
4e

V (
n51

N/2

^cnurauDEcn&

52
4e

V (
n51

N/2

(
m5N/211

`
^cnu@HSCF ,ra#uucm&

~en2em!

3^cmuDEcn&, (42)

where the subscript a indicates Cartesian components.
Let us introduce the wave function c̄n

a(r) defined as

c̄n
a~r!5 (

mÞn
cm~r!

^cmu@HSCF ,ra#ucn&
~em2en!

. (43)

Here c̄ satisfies an equation of the same kind as Eq. (30)
with the perturbing potential on its right-hand side re-
placed by @HSCF ,ra# :

~HSCF2en!uc̄n
a&5Pc@HSCF ,ra#ucn& . (44)

The induced polarization, Eq. (42), can be recast in the
form

Pa52
4e

V (
n51

N/2

^c̄n
auDEcn&, (45)

where the anti-Hermitian character of the commutator
has been used.

The first-order correction to a crystal wave function
due to a perturbing homogeneous electric field E is
given by the response to the full, i.e., macroscopic and
microscopic, perturbation
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~HSCF2en!uDEcn&52e(
a

Eauc̄n
a&2PcDVlfucn&,

(46)

where

DVlf~r!5e2E DEn~r8!

ur2r8u
dr81

dvxc~n !

dn U
n5n(r)

DEn~r!.

(47)

The terms of the sum appearing in Eq. (45) implicitly
behave as the inverse of the difference between a con-
duction and a valence energy eigenvalue to the third
power, ;(ec2ev)23. One of the energy denominators
results from the standard first-order perturbation calcu-
lation of the perturbed wave function DEcn , Eq. (28). A
second energy denominator comes from the term c̄ on
the right-hand side of Eq. (46), which requires by itself
the solution of a linear equation analogous to that of
first-order perturbation theory, Eq. (44). The third en-
ergy denominator comes from c̄ , which appears explic-
itly in brackets in Eq. (45). This dependence of the
terms of the sum upon the direct gaps at different k
points of the Brillouin zone may require a rather fine
sampling of the Brillouin zone when the fundamental
gap is small. In these cases, the number of k points
needed to compute the dielectric constant is substan-
tially larger than that needed by a standard unperturbed
calculation (Baroni and Resta, 1986a, 1986b; de Giron-
coli et al., 1989).

The self-consistent cycle defined by Eqs. (39)–(47)
can be performed starting from a given external macro-
scopic electric field E0 and updating at each iteration, via
Eqs. (45), (39), (41), and (47), the macroscopic and mi-
croscopic parts of the electronic density response and
the perturbing potential, one then solve Eq. (46) for
DEc and repeats. However, for computational purposes,
it is simpler and more convenient to keep the value of
the screened electric field E fixed and let only the micro-
scopic components of the potential vary while iterating
Eqs. (46), (41), and (47). The macroscopic polarization
is then calculated only at the end, when self-consistency
is achieved, using Eq. (45). Physically, this is equivalent
to calculating the polarization response to a given
screened electric field E instead of to the bare electric
field E0 .

The electronic contribution to the dielectric tensor,
e`

ab , for the general (low-symmetry) case, can be de-
rived from simple electrostatics. Using Eq. (39) and the
definition of e`

ab , one has

E0a5~Ea14pPa!5(
b

e`
abEb . (48)

Using Eq. (45) to calculate the polarization induced in
the a direction when a field is applied in the b direction,
one finally obtains

e`
ab5dab2

16pe

VEb
(
n51

N/2

^c̄n
auDEbcn&. (49)
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3. Relation to the variational principle

The Kohn-Sham equations are the Euler equations
which solve the Hohenberg-Kohn variational principle.
The equations of DFPT introduced in Sec. II.C can be
seen as a set of equations that solve approximately the
variational principle when the external potential is per-
turbed. Alternatively, these equations can be thought of
as exactly minimizing an approximate energy functional
(Gonze et al., 1992; Gonze, 1995a, 1997). To see this
point in some detail, let us consider the energy func-
tional as depending explicitly on the set of Kohn-Sham
orbitals c[$cn% (assumed to be real) and parametrically
on the external potential V(r):

E@c ;V#522
\2

2m (
n51

N/2 E cn~r!
]2cn~r!

]r2 dr

1E V~r!n~r!dr1
e2

2 E n~r!n~r8!

ur2r8u
drdr8

1Exc@n# . (50)

The functional derivative of the above functional with
respect to cn is

dE

dcn~r!
52HSCFcn~r!. (51)

The Euler equation thus reads

HSCFucn&5 (
m51

N/2

Lnmucm&, (52)

where the L’s are a set of Lagrange multipliers intro-
duced so as to enforce the orthonormality of the c’s.
Equation (52) is invariant with respect to a unitary
transformation within the manifold of the c’s, so that
the usual Kohn-Sham equation, Eq. (15), is recovered in
a representation that diagonalizes the L matrix.

Let us now indicate by c(0) the solutions of the Kohn-
Sham equations corresponding to a particular choice of
the external potential V(0)(r) (the unperturbed poten-
tial), and let us indicate by DV and Dc the differences
between the actual potential and orbitals and their un-
perturbed values. The energy functional, Eq. (50), can
be equally seen as depending on Dc and DV : E
[E@$c(0)1Dc%;V(0)1DV# . We now consider the ap-
proximate functional E(2), which is obtained from E by
truncating its Taylor expansion in terms of Dc and DV
to second order:

E(2)@$Dc%;DV#5E@$c(0)%;V(0)#1E dE

dV~r!
DV~r!dr

1 (
n51

N/2 E dE

dcn~r!
Dcn~r!dr

1 (
n51

N/2 E d2E

dcn~r!dV~r8!

3Dcn~r!DV~r8!drdr8
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1
1
2 (

n ,m51

N/2 E d2E

dcn~r!dcm~r8!

3Dcn~r!Dcm~r8!drdr8, (53)

where we have omitted the second derivative with re-
spect to V because E is linear in V . Besides Eq. (51), the
required functional derivatives are

dE

dV~r!
U

c5c(0)
5n(0)~r! (54)

d2E

dcn~r!dV~r8!
U

c5c(0)
52cn

(0)~r!d~r2r8! (55)

d2E

dcn~r!dcm~r8!
U

c5c(0)
52hSCF

(0) ~r,r8!dmn

14K~r,r8!cn
(0)~r!cm

(0)~r8!,

(56)

where

K~r,r8!5
e2

ur2r8u
1

d2Exc

dn~r!dn~r8!
, (57)

and hSCF
(0) (r,r8) is the kernel of the unperturbed Kohn-

Sham Hamiltonian. The energy functional, Eq. (53),
must be minimized under the constraint that the result-
ing solutions lead to an orthonormal set of occupied
states:

^cn
(0)1Dcnucm

(0)1Dcm&5dnm . (58)

This leads to the Euler equations

HSCF
(0) uDcn&2 (

m51

N/2

LnmuDcm&

52DVSCFucn
(0)&1 (

m51

N/2

~Lnm2endnm!ucm
(0)&,

(59)

where the L’s are a set of Lagrange multipliers intro-
duced so as to enforce the constraint in Eq. (58), and

DVSCF~r!5DV~r!

12 (
n51

N/2 E K~r,r8!cn
(0)~r8!Dcn~r8!dr8

(60)

is the first-order variation of the self-consistent poten-
tial. We now project both sides of Eq. (59) onto ck

(0) .
Taking into account that by Eq. (58) ^Dcnuck

(0)&
5O(D2), to linear order in D one obtains

Lmn2endnm5^cm
(0)uDVSCFucn

(0)& . (61)

To linear order in D, Eq. (59) can thus be cast in the
form
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~HSCF
(0) 2en!uDcn&52DVSCFucn

(0)&

1 (
m51

N/2

ucm
(0)&^cm

(0)uDVSCFucn
(0)&

52PcDVSCFucn
(0)&, (62)

which is essentially the same as Eq. (30). The set of
perturbed orbitals $Dc% is the solution of N coupled
linear systems whose dimension is the size of the basis
set M [Eq. (62) or Eq. (30), where the coupling comes
from the dependence of the self-consistent potential on
all the orbitals]. Alternatively, it can be seen as a huge
linear system of dimension M3N/2, which is obtained
by inserting the expression for DVSCF , Eq. (60), into
Eqs. (62) or (30). The latter is naturally derived from the
minimization of the functional E(2), Eq. (53), which is
quadratic.

This variational approach shows that the error on the
functional to be minimized, Eq. (53), is proportional to
the square of the error on the minimization variables
Dc . This fact can be exploited in a calculation of the
second-order mixed derivatives, Eq. (22). It can be
shown that a variational expression can be constructed
for mixed derivatives as well (Gonze et al., 1992; Gonze,
1997).

4. Metals

Density-functional perturbation theory, as presented
above, is directly applicable to metals, provided the
(electronic) temperature vanishes, so that a clear-cut
separation between occupied and empty states is pos-
sible. In this case, however, the number of k points
needed to correctly represent the effect of the Fermi
surface would be very large. Practical implementations
of DFPT to metallic systems have been discussed by
Quong and Klein (1992) and by de Gironcoli (1995), in
the pseudopotential formalism, and by Savrasov (1992),
in the linearized muffin-tin orbital framework. In the fol-
lowing, we shall closely follow the formulation of de Gi-
roncoli (1995), which is based on the smearing technique
for dealing with Fermi-surface effects.

In the smearing approach, each Kohn-Sham energy
level is broadened by a smearing function,

ds~e!5
1
s

d̃~e/s!, (63)

where d̃(x) is any function that integrates to 1—so that
ds(e) tends to the Dirac d function in the limit of van-
ishing smearing width s. Many kinds of smearing func-
tions d̃(x) can be used: Fermi-Dirac broadening,3

Lorentzian, Gaussian (Fu and Ho, 1983), Gaussian com-
bined with polynomials (Methfessel and Paxton, 1989),
or cold smearing (Marzari et al., 1999) functions, to re-
call just a few of those used in the literature. While the

3In this case the broadening function is the derivative of the
Fermi-Dirac distribution function: d̃(x)51/2 @11cosh(x)#21.
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choice of a given smearing function is to some extent a
matter of personal taste and computational convenience,
the specific choice of Fermi-Dirac broadening allows
one to account explicitly for the effects of a finite tem-
perature (T5s/kB) when needed. The (local) density
of states resulting from the broadened energy levels will
be the original density of states, convoluted with the
smearing function:

n~r,e!5(
n

1
s

d̃S e2en

s D ucn~r!u2, (64)

where the sum refers both to the discrete k-vector index
and to band and spin indices for all bands. From this
basic quantity the electron density follows:

n~r!5E
2`

eF
n~r,e!de5(

n
ũS eF2en

s D ucn~r!u2, (65)

where ũ(x)5*2`
x d̃(y)dy is a smooth approximation to

the step function, and the Fermi energy is determined by
the normalization to the total number of electrons,

N5E
2`

eF
n~e!de5(

n
ũS eF2en

s D . (66)

The advantage of this procedure is that after convolu-
tion the (modified) local density of states can be com-
puted accurately on a discrete grid of points in the Bril-
louin zone, provided that the average separation
between neighboring eigenvalues is small with respect to
the broadening width s.

Given the definition of the local density of states, Eq.
(64), the consistent way to define the auxiliary Kohn-
Sham kinetic-energy functional—or its analog in the
finite-temperature theory (Mermin, 1965)—is through
the Legendre transform of the single-particle energy in-
tegral:

Ts@n#5E
2`

eF
en~e!de2E VSCF~r!n~r!dr

5(
n

F2
\2

2m
ũS eF2en

s D E cn* ~r!
]2cn~r!

]r2 dr

1sũ1S eF2en

s D G , (67)

where ũ1(x)5*2`
x y d̃(y)dy . Note that when a finite

electronic temperature is considered the Kohn-Sham
auxiliary functional Ts@n# contains both the kinetic en-
ergy and the entropy contribution to the electronic free
energy of the independent-particle system. These two
contributions appear separately in the last expression for
Ts@n# in Eq. (67), where it can be verified that for
Fermi-Dirac broadening ũ1(x)5f log(f )1(12f )log(1
2f ), with f5 ũ(x) as required. With the definitions
above, for any kind of smearing function, the usual
Kohn-Sham equations follow from the minimization of
the total energy. The price to be paid for the computa-
tional simplicity of the smearing approach is that the
computed total energy depends on the chosen broaden-
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ing width, and results for finite broadening widths must
be corrected for, unless the shape of the smearing func-
tion is such that this dependence is reduced to within
acceptable values. Various discussions of this issue can
be found in the literature (Methfessel and Paxton, 1989;
De Vita, 1992; de Gironcoli, 1995; Marzari et al., 1999).

Forces and other first-order energy derivatives can be
computed in the usual way from Eqs. (8) and (21) which
require only a knowledge of the unperturbed electronic
density. Similarly second-order derivatives are com-
puted from Eq. (22) where the first order variation of
the density is also needed. Direct variation of Eq. (65)
provides the required expression for Dn(r):

Dn~r!5(
n

ũF ,n@cn* ~r!Dcn~r!1c.c.#

1(
n

ucn~r!u2d̃F ,n~DeF2Den!, (68)

where we have defined ũn ,m5 ũ@(en2em)/s# and d̃n ,m

5(1/s) d̃@(en2em)/s# . The last term in Eq. (68) ac-
counts for possible changes in occupation numbers in-
duced by shifts in the single-particle energies (Den
5^cnuDVSCFucn&) as well as in the Fermi energy of the
system. Whether or not this term is present depends on
the thermodynamic ensemble used: it is absent if the
chemical potential is kept fixed, whereas it might be
present if the number of electrons is fixed. Even in this
last case the Fermi energy is unaffected by the perturba-
tion to linear order, unless the perturbation is lattice
periodic (monochromatic with q50). Let us neglect this
term for the time being and come back to it at the end of
the section.

Substituting in Eq. (68) the definition for Dcn(r) from
standard perturbation theory, Eq. (28), and exploiting
the symmetry between the two contributions in square
brackets, one obtains the following well-known expres-
sion for the first-order variation of the electronic density
in a metal:

Dn~r!5(
n ,m

ũF ,n2 ũF ,m

en2em
cn* ~r!cm~r!^cmuDVSCFucn&,

(69)

where the term in Den in Eq. (68) has become the n
5m term in the above sum and the incremental ratio
( ũF ,n2 ũF ,m)/(en2em) must be substituted for its limit,
2 d̃F ,n , whenever em→en . This limit is always finite for
any finite broadening linewidth or temperature, and this
expression is therefore numerically stable even in the
presence of vanishingly small virtual excitation energies.

In order to avoid a double sum over occupied and
unoccupied states, we use the relation ũ(x)1 ũ(2x)
51 and the symmetry between i and j to get

Dn~r!52(
n ,m

ũF ,n2 ũF ,m

en2em
ũm ,ncn* ~r!cm~r!

3^cmuDVSCFucn&, (70)
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where the sum over the first index can be limited to
states that have non-negligible occupation. This expres-
sion can be further simplified, avoiding the explicit sum
over the second index, by rewriting it as

Dn~r!52(
n

cn* ~r!Dcn~r!, (71)

where the Dcn’s satisfy the equation

@HSCF1Q2en#Dcn52@ ũF ,n2Pn#DVSCFucn&,
(72)

with

Q5(
k

akuck&^cku, Pn5(
m

bn ,mucm&^cmu,

and

bn ,m5 ũF ,nũn ,m1 ũF ,mũm ,n1am

ũF ,n2 ũF ,m

en2em
ũm ,n .

(73)

In the above equations, the ak’s are chosen in such a
way that the Q operator makes the linear system, Eq.
(72), nonsingular for all nonvanishing Dcn . A possible
simple choice is

ak5max~eF1D2ek,0!, (74)

with D'3 –4s . Another, even simpler, choice is to set
ak equal to the occupied bandwidth plus, say, 3s for all
partially occupied states, and equal to zero when the
state is totally unoccupied. It can be easily verified that,
since ak vanishes when ck is unoccupied, bn ,m also van-
ishes when any of its indices refers to an unoccupied
state. Therefore the Q and P operators involve only the
small number of partially filled bands, and the first-order
variation of the wave functions and of the charge density
can be computed avoiding any explicit reference to un-
occupied states, much in the same way as for insulating
materials. In fact, if the above scheme is applied to an
insulator using a smearing width much smaller than its
fundamental band gap, all the metallic equations, Eqs.
(71)–(73), reduce numerically to their insulating ana-
logs, Eqs. (23) and (30).

The expression for the charge density linearly induced
by a given perturbation, Eqs. (69) and (70), involves an
energy denominator that vanishes for metals. In one di-
mension, this vanishing denominator gives rise to a di-
vergence in the screening of perturbations whose wave
vector is twice the Fermi momentum, or 2kF . This di-
vergence is smeared in two dimensions and suppressed
in three dimensions by volume effects. However, if the
topology of the Fermi surface is such that two finite por-
tions of it are parallel and connected by a wave vector,
which for convenience we shall name 2kF (nesting), the
screening to perturbations of wave vector 2kF will di-
verge even in three dimension. This is the physical
mechanism giving rise to Kohn anomalies in the vibra-
tional spectra of certain metals. The sampling of the
Brillouin zone necessary to evaluate the sum over (par-
tially) occupied states in Eqs. (69) and (70) is in ordinary
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cases similar to that needed to calculate the unperturbed
charge-density distribution. Near a Kohn anomaly, how-
ever, a fine sampling of the Fermi surface is necessary,
and the number of needed points in the Brillouin zone is
correspondingly larger.

Periodic (q50) perturbations may induce a shift of
the Fermi energy. In this case Eq. (71) must be modified:

Dn~r!52(
n

cn* ~r!Dcn~r!1n~r,eF!DeF , (75)

all other technical details remaining unchanged. In order
to find out the appropriate value of the Fermi energy
shift, let us examine the perturbation in the q→0 limit.
Let us consider the Fourier transform of the self-
consistent perturbing potential DVSCF(q)
51/V*DVSCF(r)e2iq•rdr. Its macroscopic (q'0) com-
ponent reads

DVSCF~q!5DV~q!1
4pe2

q2 Dn~q!1
dvxc

dn
Dn~q!,

(76)

where the last term is the exchange-correlation contri-
bution, DV(q)52 (4pe2/q2) Dnext(q) is the macro-
scopic electrostatic component of the external perturb-
ing potential, and Dnext(q) is finite in the q→0 limit. On
the other hand, the macroscopic component of the den-
sity response is

Dn~q!52n~eF!DVSCF~q!1Dnlf~q!, (77)

where Dnlf is the density response to the nonmacro-
scopic (local fields) components of the self-consistent
potential. As Dnlf and the DOS at the Fermi energy,
n(eF), are both finite, DVSCF and Dn must not diverge
when q→0, otherwise Eqs. (76) and (77) could not be
satisfied at the same time. This implies, from Eq. (76),
macroscopic charge neutrality for the perturbed system,
that is, Dnext(q)5Dn(q)1O(q2) for q'0, a condition
that in turn implies in Eq. (77)

DVSCF~q!52
Dnext~q!2Dnlf~q!

n~eF!
1O~q2!. (78)

The lattice-periodic (q50) result can be obtained by
taking the q→0 limit of the above equations. In this
case, however, it is customary to set arbitrarily to zero
the macroscopic electrostatic component of the self-
consistent potential. The charge neutrality condition is
thus enforced by a compensating shift in the Fermi en-
ergy, equal and opposite to the above result:

DeF5

Dnext~q50 !1E n~r,eF!DVSCF~r!dr

n~eF!
. (79)

D. Phonons

1. Vibrational states in crystalline solids

In crystalline solids, the nuclear positions appearing in
the definition of the interatomic force constants Eq. (5),
are labeled by an index I , which indicates the unit cell l
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to which a given atom belongs and the positions of the
atom within that unit cell I[$l ,s%. The position of the
Ith atom is thus

RI[Rl1ts1us~ l !, (80)

where Rl is the position of the lth unit cell in the Bravais
lattice, ts is the equilibrium position of the atom in the
unit cell, and us(l) indicates the deviation from equilib-
rium of the nuclear position. Because of translational
invariance, the matrix of the interatomic force constants,
Eq. (10), depends on l and m only through the differ-
ence R[Rl2Rm :

Cst
ab~ l ,m ![

]2E

]us
a~ l !]ut

b~m !
5Cst

ab~Rl2Rm!, (81)

where the Greek superscripts indicate Cartesian compo-
nents. The Fourier transform of Cst

ab(R) with respect to
R, C̃st

ab(q), can be seen as the second derivative of the
Born-Oppenheimer energy surface with respect to the
amplitude of a lattice distortion of definite wave vector:

C̃st
ab~q![(

R
e2iq•RCst

ab~R!5
1

Nc

]2E

]us*
a~q!]ut

b~q!
,

(82)

where Nc is the number of unit cells in the crystal, and
the vector us(q) is defined by the distortion pattern

RI@us~q!#5Rl1ts1us~q!eiq•Rl. (83)

Phonon frequencies v(q) are solutions of the secular
equation

detU 1

AMsMt

C̃st
ab~q!2v2~q!U50. (84)

Translational invariance can be alternatively stated in
this context by saying that a lattice distortion of wave
vector q does not induce a force response in the crystal
at wave vector q8Þq, in agreement with the analysis
carried out in Sec. II.C.1. Because of this property, in-
teratomic force constants are most easily calculated in
reciprocal space and, when they are needed in direct
space, can be readily obtained by Fourier transform (see
Sec. II.D.3).

The reciprocal-space expression for the matrix of in-
teratomic force constants Eq. (10), is the sum of an elec-
tronic and an ionic contribution:

C̃st
ab~q!5elC̃st

ab~q!1 ionC̃st
ab~q!, (85)

where

elC̃st
ab~q!5

1
Nc

F E S ]n~r!

]us
a~q! D * ]Vion~r!

]ut
b~q!

dr

1E n~r!
]2Vion~r!

]us*
a~q!]ut

b~q!
drG , (86)

and

Vion~r!5(
ls

vs@r2Rl2ts2us~ l !# , (87)
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vs being the ionic (pseudo-) potential corresponding to
the sth atomic species. All the derivatives must be cal-
culated for us(q)50. The ionic contribution comes from
the ion-ion interaction energy [the last term of Eq. (10)]
and does not depend on the electronic structure. The
explicit expression of ionC̃st

ab(q) for periodic systems is
given in the appendix.

Using Eqs. (83) and (87), the derivatives of the poten-
tial appearing in Eq. (86) read

]Vion~r!

]us
a~q!

52(
l

]vs~r2Rl2ts!

]r
eiq•Rl, (88)

while the corresponding derivative of the electron
charge-density distribution is given by Eqs. (33) and
(35).

2. Long-wavelength vibrations in polar materials

In polar semiconductors and insulators, the long-
range character of the Coulomb forces gives rise to mac-
roscopic electric fields for longitudinal optic (LO)
phonons in the long-wavelength limit. At any finite
wavelength, polar semiconductors are dealt with in the
same way as nonpolar ones. In the long-wavelength
limit, however, phonons are coupled to macroscopic
electric fields, which must be treated with some care be-
cause the corresponding electronic potential, VE(r)
5eE•r, is not lattice periodic (see Sec. II.C.2). A physi-
cally transparent picture of the coupling between zone-
center phonons and macroscopic electric fields is pro-
vided by Huang’s phenomenological model, (Born and
Huang, 1954) which we discuss briefly in the case of a
cubic (or tetrahedral) lattice with two atoms per unit
cell. The most general quadratic expression of the en-
ergy as a function of the phonon optic coordinates u and
the electrical degrees of freedom (i.e., the field itself, E) is

E~u,E!5
1
2

Mv0
2u22

V

8p
e`E22eZ!u•E, (89)

where M is the nuclear reduced mass, V is the volume of
the unit cell, e` the electronic dielectric constant of the
crystal (i.e., the static dielectric constant with clamped
nuclei, u50), and the coupling Z!, between u and E, is
known as the Born effective charge of the ions [see, for
example, Böttger (1983), Sec. 1.5]. The variables that are
conjugate to u and E are the force F acting on the ions
and the electrical induction D:

F[2
]E

] u
52Mv0

2u1eZ!E, (90)

D[2
4p

V

]E

]E
5

4p

V
eZ!u1e`E. (91)

In the absence of free external charges, the Maxwell
equations give

rot E;iq3E50, (92)

div D;iq•D50. (93)
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For transverse modes (E' q), Eq. (92) gives ET50, and
Eq. (90) FT52Mv0

2u: the transverse frequency is
therefore vT5v0 . For longitudinal modes (E i q), Eq.
(93) gives DL50 and Eq. (91) gives EL

52 (4peZ!/Ve`) u; Eq. (90) gives FL52(Mv0
2

1 4pe2Z!2/Ve`)u. The longitudinal frequency is there-
fore vL5Av0

21 4pe2Z!2/Ve`M . These results, which
are exact in the case of cubic and tetrahedral systems,
can be easily generalized to crystals of arbitrary symme-
try (Böttger, 1983).

The first-principles calculation of e` and Z! proceeds
from Eqs. (90) and (91). Let us start, for instance, from
Eq. (91) which—expressed in terms of the macroscopic
electric polarization of the medium and generalized to
the case of many atoms per cell—reads

P5
1
V (

s
eZ!

sus1
e`21

4p
E. (94)

In the general, low-symmetry case, Eq. (94) must be
read as a tensor equation stating that the Born effective-
charge tensor of the sth ion is the partial derivative of
the macroscopic polarization with respect to a periodic
displacement of all the ions of the s species at zero mac-
roscopic electric field:

eZ!
s
ab5V

]Pa

]us
b~q50 !

U
E50

, (95)

while the electronic dielectric-constant tensor is the de-
rivative of the polarization with respect to the macro-
scopic electric field at clamped nuclei:

e`
ab5dab14p

]Pa

]Eb
U

us(q50)50

. (96)

In the long-wavelength limit, the matrix of the force
constants can be split into the sum of an analytic and a
nonanalytic contribution (Born and Huang, 1954; Co-
chran and Cowley, 1962):

C̃st
ab5anC̃st

ab1naC̃st
ab , (97)

where the analytic part, anC̃ , is the matrix obtained
from the response to a zone-center phonon, calculated
at zero macroscopic electric field. The nonanalytic part
has the general form (Cochran and Cowley, 1962)

naC̃st
ab5

4p

V
e2

(gZ!
s
gaqg(nZ!

t
nbqn

(g ,nqge`
gnqn

5
4p

V
e2 ~q•Z!

s!a~q•Z!
t!b

q•e`
•q

. (98)

Equation (98) shows that all the information necessary
to deal with the nonanalytic part of the dynamical ma-
trix is contained in the macroscopic dielectric constant
of the system and in the Born effective charges Z!,
whereas the analytic contribution can be calculated by
just ignoring any macroscopic polarization associated
with the phonon. All these quantities can be easily ob-
tained within DFPT (Giannozzi et al., 1991).
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It is worth mentioning that effective charges can be
calculated using an approach to the electrostatics of
quantum dielectrics based on topological concepts, the
Berry’s phase approach to macroscopic polarization
(King-Smith and Vanderbilt, 1993; Resta, 1994). When
used at the same level of accuracy, the linear-response
and Berry’s phase approaches yield the same results
within numerical uncertainties.

3. Interatomic force constants

The considerations developed so far in the present
section allow, in principle, calculation of the vibrational
frequencies at any (finite or infinite) phonon wave-
length. Phonon frequencies are usually rather smooth
functions of the wave vector, so that suitable interpola-
tion techniques can be used when complete dispersions
are needed. Simple concepts from (discrete) Fourier
analysis show that the smoother the phonon dispersions,
(i.e., the smoother the matrix elements of C̃ as functions
of q), the shorter is the range of real-space interatomic
force constants:

Cst
ab~R!5

1
Nc

(
q

eiq•RC̃st
ab~q!, (99)

i.e., the smaller the number of their nonvanishing values
(to any given accuracy). Real-space interatomic force
constants can thus be readily obtained by Fourier ana-
lyzing a set of force-constant matrices calculated and
tabulated over a uniform grid of points in reciprocal
space. The most efficient way of calculating all these
Fourier transforms numerically is the fast Fourier trans-
form (FFT) technique (see, for examples, Press et al.,
1989). Once real-space interatomic force constants have
been thus obtained, dynamical matrices in reciprocal-
space (and, hence, vibrational) frequencies can be ob-
tained at any wave vector (not necessarily contained in
the original grid) by FFT. The shorter the range of real-
space force constants, the coarser will be the reciprocal-
space grid needed for such Fourier interpolation. In
practice, the size of the reciprocal-space grid will be as-
sessed a posteriori by verifying that it yields vanishing
real-space constants (to within a given accuracy) beyond
some cutoff radius. A simple rule of thumb is to include
in the FFT grid enough points in the Brillouin zone so as
to reach neighbor interactions extending up to 2–3 bond
lengths, and to check the accuracy of the interpolation
against the full calculation on some points not included
in the grid.

The above considerations apply to metals, away from
Kohn anomalies, and to nonpolar insulators. The pres-
ence of Kohn anomalies in metals is associated with
long-range interatomic force constants propagating
along the direction of the wave vector of the anomaly.
Catching the details of the anomaly with a regular grid
of wave vectors in the Brillouin zone would be very im-
practical. In these cases, once the position of the
anomaly has been located, it is much simpler to refine
the grid locally just around the anomaly.
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In polar materials, by contrast, real-space interatomic
force constants are long ranged in all directions, as a
consequence of the long-range dipole-dipole interaction
between ionic effective charges. For this reason, Fourier
interpolation would be inefficient in this case. The
dipole-dipole interaction is precisely the physical origin
of the nonanalytic behavior of the reciprocal-space dy-
namical matrices in the long-wavelength limit, whose
form is, however, known exactly in terms of the ionic
effective charges [Eq. (98)]. Equation (98) expresses the
long-wavelength limit of the reciprocal-space force con-
stants of any system whose atoms carry a charge equal
to Z!

s . If the force constants of a system of point
charges Z!

s is subtracted from those calculated for the
physical system under consideration, the resulting differ-
ence will be analytic in the long-wavelength limit and its
Fourier transform short ranged. For polar materials,
Fourier interpolation is thus efficiently applicable to the
analytic contribution to the reciprocal-space force con-
stants, whereas the full nonanalytic behavior can be eas-
ily restored by adding the force constants of a suitable
point-charge model (Giannozzi et al. 1991). A descrip-
tion of the technical details necessary to implement Fou-
rier interpolation of reciprocal-space force constants in
the general case of materials with anisotropic effective
charges can be found in Gonze and Lee (1997).

E. Homogeneous deformations

1. Elastic properties

Elastic constants can be viewed as force constants as-
sociated with homogeneous strains, i.e., with macro-
scopic distortions of the crystal. In any finite system,
there is no conceptual difference between a strain and a
microscopic distortion, and linear-response techniques
are straightforwardly applicable in both cases. In an in-
finite system, on the contrary, one cannot directly apply
linear-response techniques, because a homogeneous
strain changes the boundary conditions of the Hamil-
tonian. The use of perturbation theory requires instead
the existence of a common basis set for the perturbed
and unperturbed systems. It has been suggested that, in
order to use perturbation theory for homogeneous de-
formations, one can introduce an intermediate fictitious
Hamiltonian that is related to the unperturbed one by a
unitary transformation and that obeys the same bound-
ary conditions as the strained Hamiltonian (Baroni
et al., 1987b).

Let us consider for simplicity a system under an iso-
tropic strain (dilatation) of amplitude a, $R%→$aR%,
whose corresponding elastic constant is the bulk modu-
lus. The Kohn-Sham Hamiltonian Ha for the strained
crystal is given by

HSCF
a 52

\2

2m

]2

]r2 1Vion
a ~r!1e2E na~r8!

ur2r8u
dr8

1vxc@na~r!# , (100)

where the electron-ion potential Vion
a is
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Vion
a ~r!5(

ls
vs~r2aRl2ats!. (101)

The intermediate (fictitious) strained Hamiltonian H̃a

is obtained from the unperturbed one, H , through a
scale transformation:

H̃a~r,]/]r!5HSCF~r/a ,a]/]r!. (102)

H̃a obeys the same boundary conditions as the physical
strained Hamiltonian Ha, and hence perturbation
theory can be used to calculate the relative energy dif-
ference. At the same time H̃a and H differ by a unitary
transformation and their spectra are trivially related:

ẽn
a5en ,

c̃n
a~r!5a2 3/2cn~r/a!, (103)

ña~r!5a23n~r/a!.

The energy change due to a strain can thus be com-
puted in two steps: first one calculates the energy differ-
ence between the unperturbed crystal and the fictitious
strained one described by H̃a; one then computes the
energy difference between the latter and the physical
strained system using perturbation theory. The first step
is trivial. The second step is less so, because H̃a is not a
proper Kohn-Sham Hamiltonian: the Hartree and
exchange-correlation terms in H̃a are not the Hartree
and exchange-correlation potentials generated by ña.
One can write H̃a as a genuine Kohn-Sham Hamil-
tonian, provided that the definition of the external po-
tential is changed:

H̃a52
\2a2

2m

]2

]r2 1Ṽext
a ~r!1e2E ña~r8!

ur2r8u
dr8

1vxc@ ña~r!# , (104)

where

Ṽext
a ~r!5(

ls
vs~r/a2Rl2ts!1e2S 12

1
a D

3E n~r8!

ur/a2r8u
dr81vxc@a23n~r/a!#

1vxc@n~r/a!# . (105)

The energy difference between the fictitious and the real
strained systems, Ea2Ẽa, can now be calculated by per-
turbation. The details are given in Baroni et al. (1987b).
This method can be straightforwardly extended to ge-
neric elastic constants. The algebra involved is, however,
quite heavy.

It must be remarked that only bare elastic constants
are calculated in this way. In Eq. (101) the coordinates
of different atoms within a same unit cell are assumed to
undergo the same homogeneous scale transformation as
the positions of different unit cells. This is not true in
general, as atoms rearrange themselves within each unit
cell so as to minimize the total energy as a function of
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the applied strain. To see how the elastic constants are
affected by the internal relaxation of the atomic posi-
tions, let us write the more general second-order expres-
sion of the crystal energy per unit cell as a second-order
polynomial of the macroscopic (strain) and microscopic
(phonon) modes:

E5
V

2 (
ab ,gd

lab ,gd
0 eabegd1

1
2 (

sa ,tb
Cst

abus
aut

b

1V (
sagd

zsagd us
aegd , (106)

where V is the unit-cell volume, l0 is the (bare) elastic
constant matrix, e is the strain tensor, C is the zone-
center reciprocal-space matrix of force constants, u are
atomic displacements in the unit cell, and z is the cou-
pling between macroscopic strain and atomic displace-
ments (the matrix of the so-called internal-strain param-
eters). Crystal symmetry determines the number of
independent nonvanishing terms in l0, C , and z. If we
allow the atoms to relax for a given strain state, minimi-
zation of the energy with respect to the u’s yields

E5
V

2 (
ab ,gd

lab ,gdeabegd , (107)

where

lab ,gd5lab ,gd
0 2V (

sm ,tn
zsmab~C21!st

mnz tngd . (108)

Both the force constants and the coupling between mac-
roscopic strain and atomic displacements can be readily
calculated within DFPT.

2. Piezoelectric properties

The piezoelectric constants form a third-order tensor
ga ,gd , defined as the derivative of the macroscopic elec-
tric polarization with respect to a homogeneous strain,
at vanishing macroscopic field. This quantity—which has
been demonstrated to be independent of surface effects
(Martin, 1972), i.e., independent of surface
termination—could in principle be evaluated as the
electric-polarization response to a given applied strain.
Alternatively, and somewhat more conveniently, it can
also be calculated as the stress linearly induced by an
electric field at zero strain. The latter definition was used
by de Gironcoli et al. (1989) to calculate the piezoelec-
tric tensor in III-V semiconductor compounds. The two
definitions are equivalent and can be deduced by ex-
panding the energy of the system to second order in the
macroscopic perturbations (strain eab and electric field
Ea):

E5
V

2 (
ab ,gd

lab ,gdeabegd2V (
a ,gd

ga ,gdEaegd

2
V

8p (
a ,b

e0
abEaEb . (109)
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The link with the microscopic description is provided by
expanding the crystal energy to second order in the ex-
ternal (strain and electric field) and internal (phonon)
degrees of freedom:

E5
V

2 (
ab ,gd

lab ,gd
0 eabegd2V (

a ,gd
ga ,gdEaegd

2
V

8p (
a ,b

e`
abEaEb1

1
2 (

sa ,tb
Cst

abus
aut

b

1 (
sagd

zsagdus
aegd2Ve (

sab
Z!

s
abus

aEb , (110)

where l0, g0, and e` are the purely electronic (i.e.,
clamped-ion) contributions to the elastic, piezoelectric,
and dielectric constants respectively, and the coupling
between atomic displacements and macroscopic vari-
ables (electric field and strain) are expressed by the ef-
fective charges Z! and internal strain parameters z.
Once the macroscopic variables, E and e are fixed, the
equilibrium values of the internal degrees of freedom
are given by the condition that the derivatives of Eq.
(110) with respect to the atomic displacements vanish.
When these equilibrium atomic positions as functions of
the macroscopic electric field and strain are inserted in
Eq. (110), the resulting expression defines the total pi-
ezoelectric constants as

ga ,gd5ga ,gd
0 1 (

sm ,tn
Z!

s
ma~C21!st

mnz tngd . (111)

The two resulting contributions to the piezoelectric con-
stants are often of opposite sign and close in absolute
value, so that a well-converged calculation is needed in
order to extract a reliable value for their sum (de Giron-
coli et al., 1989).

The problem of a proper definition of piezoelectric
properties in a crystal displaying a spontaneous macro-
scopic polarization has been raised recently by Sághi-
Szabó et al. (1998) and further discussed by Vanderbilt
(2000).

F. Higher-order responses

1. The 2n11 theorem

In Sec. II.C we saw that the knowledge of the first-
order derivatives of the wave functions is enough to cal-
culate the second-order derivatives of the total energy.
This is a special case of a very general theorem, known
as the 2n11 theorem, which states that knowledge of
the derivatives of the wave functions up to order n al-
lows one to calculate the derivatives of the energy up to
order 2n11. This theorem, well known in quantum me-
chanics for many years, is a consequence of the varia-
tional principle and it is also valid in density-functional
theory. In this context, its usefulness derives from the
fact that the third-order derivatives of the total energy
can be obtained from the first-order derivatives of the
wave functions. This opens the possibility of studying
phenomena that depend upon third-order anharmonic
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terms in the energy expansion—such as phonon line-
widths, Raman-scattering cross sections, or nonlinear
optical responses—with a computational effort of the
same order as for harmonic properties (because the
time-consuming step is the calculation of the first-order
derivatives of the wave functions).

Several proofs of the 2n11 theorem can be found in
the literature. In a DFT framework this theorem was
first proved by Gonze and Vigneron (1989). Explicit ex-
pressions of the energy derivatives up to fourth order
have been worked out by Gonze (1995b). The scope of
this theorem is much more general, as it concerns prop-
erties of the extrema of any functional depending upon
some parameters (Epstein, 1974). Let E@c,l# be a ge-
neric functional of c which, for l50, has an extremum
at c(0): dE@c(0),0#/dc 5 0. The position of the extre-
mum will depend on the value of the parameter l:
c(l)5c(0)1Dc(l). The value of the functional at the
extremum will be

Emin~l!5E@c(0)1Dc~l!,l# , (112)

where Dc(l) is determined, for any given value of l, by
the extremum condition

]E@c(0)1Dc,l#

]Dc
50. (113)

When l is small, both Dc(l) and Emin(l) will be well
approximated by their Taylor expansion in powers of l:

Dc~l!5(
l51

` 1
l!

dlc

dl l l l[(
l51

`

Dc(l)l l, (114)

Emin~l!5(
l50

` 1
l!

dlEmin

dl l l l[(
l50

`

E(l)l l. (115)

The 2n11 theorem states that a knowledge of Dc(l) up
to order n is enough to determine E(l) up to order 2n
11. To demonstrate this, it is convenient to first expand
E@c(0)1Dc,l# into a Taylor series treating Dc and l as
independent variables:

E@c(0)1Dc,l#5 (
p50

`

(
k50

` 1
k!p!

dk1pE@c(0),0#

dckdlp ~Dc!klp,

(116)

where we use the notation

dkE

dck ~Dc!k5S (
i

Dc i

]

]c i
D k

E . (117)

Variation of Eq. (116) with respect to Dc leads to the
extremum condition

f5
]E@c(0)1Dc,l#

]Dc

5 (
p50

`

(
k51

` 1

~k21 !!p!
dk1pE@c(0),0#

dckdlp ~Dc!k21lp

50. (118)

Introducing Eq. (114) into Eq. (118) allows one to for-
mally expand f as a power series of l only. The resulting
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expression for f must vanish identically order by order in
l. By equating the coefficients of ln in the Taylor ex-
pansion to zero, Eq. (118) yields an infinite number of
equations f(n)50, which determine Dc(n).

Introducing Eq. (114) into Eq. (116) allows one to
formally expand E as a power series of l only and there-
fore to calculate the explicit form of E(l). Since a term
quadratic in Dc(l)l l is of order l2l, E(2n11) could de-
pend only linearly upon Dc(l)l l, if l.n . Showing that
for l.n the coefficient of Dc(l)l l in E(2n11) is f(2n112l)

we prove the 2n11 theorem, since this force is zero by
the minimum condition. We start by extracting Dc(l)l l

from the product (Dc)k appearing in Eq. (116), using
the relationship

~Dc!k5~Dc2Dc(l)l l1Dc(l)l l!k

5kDc(l)l l~Dc!k211~Dc2Dc(l)l l!k

1O~l2n11!, (119)

valid for l.n . The only term that is linear in Dc(l)l l is
the first term on the right-hand side of Eq. (119). Insert-
ing this term in Eq. (116) and recalling the definition of
f, Eq. (118), we can write E(2n11) as

E(2n11)5Dc(2n11)l2n11f(0)1¯1Dc(l)l lf(2n112l)

1¯1Dc(n11)l(n11)f(n)

1P(2n11)~c(1), . . . ,c(n)!, (120)

where P(2n11) is a polynomial of degree 2n11. From
the condition f(i)50 for every i , we get

E(2n11)5P(2n11)~c(1), . . . ,c(n)!, (121)

which proves the 2n11 theorem.
In order to apply this theorem to density-functional

theory, we can take as c a vector whose elements are
the coefficients of all the occupied wave functions $c i%
on a given basis and l as a parameter measuring the
magnitude of the perturbation. The orthogonality con-
straint can be dealt with as shown for instance by Mauri
et al. (1993), writing the total energy functional of
density-functional theory for nonorthonormalized orbit-
als. The demonstration presented here, applied to this
functional, provides high-order derivatives of the DFT
energy. Note that the c are arbitrary linear combina-
tions of the occupied eigenstates of the Hamiltonian,
which are only required to minimize the total energy
functional. For instance, in a crystalline solid, c could
represent Wannier functions if they are used instead of
Bloch functions to describe the electronic states. As an
alternative to the path followed here, the 2n11 theo-
rem can also be demonstrated for constrained function-
als, with Lagrange multipliers used to impose the or-
thogonality of the orbitals (Gonze, 1995a).

2. Nonlinear susceptibilities

Within density-functional theory, the third-order de-
rivatives of the energy, Eq. (11), are, (Gonze and Vign-
eron, 1989)
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where K(3) is the third-order functional derivative of the
exchange and correlation energy with respect to the
density. In this section, we have dropped the indication
of the order in l from Dcn , which is always a first-order
term.

The solution of Eq. (30) yields a projection onto the
conduction manifold of the first-order change of the
wave functions. Therefore we need to recast Eq. (122) in
a form that does not depend on the projection of uDc i&
on the valence manifold. This expression for E(3) exists,
since the total energy functional is invariant with respect
to a unitary transformation within the manifold of the
occupied orbitals. The required transformation has been
carried out by Debernardi and Baroni (1994) and by Dal
Corso and Mauri (1994). After some algebra one obtains
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6 E K(3)~r1 ,r2 ,r3!

3Dn~r1!Dn~r2!Dn~r3!dr1dr2dr3 . (123)

When the perturbation l is an atomic displacement, as
in Sec. II.D, E(3) gives the first anharmonic corrections
to the energy. These corrections are responsible, for in-
stance, for the decay of the phonon modes into vibra-
tions of lower frequency. The linewidth of the phonon
lines in Raman scattering, after subtraction of isotopic
and inhomogeneous broadening, is proportional to E(3)

if higher-order processes are neglected. Theoretical and
experimental values are compared in Sec. V.F. Equation
(123) can be generalized to metals by the techniques
introduced in Sec. II.C.4. The first application has re-
cently been presented by Lazzeri (1999).

When the perturbation l is an electric field, as in Sec.
II.C.2, E(3) is proportional to the nonlinear optical sus-
ceptibilities of a material at low frequency. Unfortu-
nately, in this case, Eq. (123) cannot be directly used to
compute E(3). In fact, it contains a term
^cmuDEVSCFucn& that becomes ill defined when n5m
[Eq. (37) cannot be applied: the energy denominator
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vanishes]. The same problem also arises when Eq. (123)
is generalized to mixed third-order derivatives of the en-
ergy and one perturbation is an electric field. These de-
rivatives allow one to account, theoretically, for the in-
tensities of nonresonant Raman lines (Baroni and Resta,
1986a) or for nonlinear infrared absorption.

A solution to this problem was proposed by Dal
Corso and Mauri (1994) switching to a Wannier repre-
sentation for the electronic orbitals, and applying the
2n11 theorem to a total energy functional that was
originally proposed by Nunes and Vanderbilt (1994).
This functional, for a periodic insulating solid in a finite
electric field exploits the properties of localized orbitals.
It is written as

E@$w0,m%,E0#5(
l

(
m ,n51

N

^w0,muH1eE0xuwl ,n&

3~2d0m ,ln2^wl ,nuw0,m&!, (124)

where H is the unperturbed Hamiltonian of the solid, E0
is the electric field, x is the position operator, and $wl ,m%
are functions—in general nonorthonormal—localized
around the unit cell identified by the Bravais lattice vec-
tor Rl . The function wl ,m is obtained by translating the
function centered at the origin by a vector Rl : wl ,m(x)
5w0,m(x2Rl). In practical applications, w0,m is con-
strained to vanish outside a localization region of radius
Rc centered at the origin. For simplicity in Eq. (124), we
have limited ourselves to one-dimensional systems of
noninteracting electrons. The electron-electron
interaction—when dealt with within any self-consistent-
field scheme—does not yield any additional problems.
We stress here that the expectation value of x is well
defined for any finite cutoff radius Rc . Furthermore, we
note that even if no orthogonality constraints are im-
posed on the wl ,m’s, at the minimum they become ap-
proximately orthonormal, as shown by Mauri et al.
(1993).

In analogy with Eq. (123), one can show that the non-
linear optical susceptibility x(2) is given by

x(2)523E(3)/E0
3

52
3
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2 S (

m51

N

e^w0,m
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(1) &

2 (
m ,n51

N

(
l

e^w0,muxuwl ,n&^wl ,n
(1)uPcuw0,m

(1) & D ,

(125)

where the w(1)’s are solutions of a linear system similar
to Eq. (46), which can be obtained from the condition
dE(2)/dw(1)50:

2PceE0xuw0,m&5HPcuw0,m
(1) &

2 (
n51

N

(
l

Pcuwl ,n
(1)&^wl ,nuHuw0,m& ,

(126)
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where Pc512(n51
N ( luwl ,n&^wl ,nu is the projector on the

conduction bands in the Wannier representation.
Equation (125) is difficult to implement since it re-

quires an electronic structure code that calculates local-
ized Wannier functions. However, Eq. (125) can be re-
written in terms of Bloch functions. We recall that
Wannier functions are defined in terms of Bloch func-
tions cn

k(x) as

w0,n~x !5
V

2p E
BZ

dkcn
k~x !, (127)

where the integral is done over the first Brillouin zone,
V is the dimension of the unit cell, the Bloch functions
are normalized on the unit cell, and cn

k1G(x)5cn
k(x);

here G is a reciprocal-lattice vector. Inserting this defi-
nition in Eq. (125) and using the relationship

xcn
k~x !52 ~ i]/]k ! cn

k~x !1eikx ~ i]/]k ! un
k~x !,

where un
k(x)5e2ikxcn

k(x) are the periodic parts of the
Bloch wave functions, one finally obtains
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3 K um
k U ]

]k
~ uun

k&^ũn
k(1)u!Uũm

k(1)L , (128)

where ũn
k(1)5Pcun

k(1) .
The formalism, as introduced in this paper, allows one

to access nonlinear phenomena in a frequency range
where one can assume that the electrons are in the
ground state. The generalization to finite frequencies,
starting from time-dependent DFT, has been explored
by Dal Corso et al. (1996).

III. IMPLEMENTATIONS

A. Plane waves and pseudopotentials

The first—and still today by far the most numerous—
implementations of DFPT were based on the plane-
wave pseudopotential method (Pickett, 1989). Plane
waves have many attractive features: they are simple to
use, orthonormal by construction, and unbiased by
atomic positions. Unlike calculations based on localized
(atomiclike) basis sets, those made with plane waves can
be simply checked for convergence by increasing the
size of the basis set, as given by the kinetic-energy cut-
off. The FFT algorithm allows one to quickly go back
and forth from reciprocal to real space. An especially
important advantage of plane waves is the absence of
Pulay (1969) terms in the calculation of energy deriva-
tives. As a consequence the Hellmann-Feynman expres-
sions for forces and for force constants are valid without
any correction when a plane-waves basis set is used.

Plane waves are used in conjunction with pseudopo-
tentials. A pseudopotential is a fictitious electron-ion in-
teraction potential, acting on valence electrons only, that
mimics the interaction with the inner electrons—which
are supposed to be frozen in the core—as well as the
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effective repulsion exerted by the latter on the former
due to their mutual orthogonality. Modern norm-
conserving pseudopotentials (Hamann, Schlüter, and
Chiang, 1979) are determined uniquely from the proper-
ties of the isolated atom, while the requirement of norm
conservation ensures an optimal transferability. By the
latter expression one indicates the ability of the pseudo-
potentials to provide results whose quality is to a large
extent independent of the local chemical environment of
the individual atoms. Norm-conserving pseudopotentials
are angular momentum dependent, (i.e., they are nonlo-
cal operators) and special care must be taken to ensure
that the atomic valence (pseudo-) wave functions asso-
ciated with them are sufficiently smooth in the atomic
(pseudo)core that they can be efficiently dealt with using
a plane-wave basis set. Experience has shown that the
use of pseudopotentials is practically equivalent to the
frozen-core approximation within an all-electron ap-
proach. The pseudopotential approximation implicitly
assumes that the energy functional is linear with respect
to the partition of the total charge into core and valence
contributions. In some atoms (such as, alkali atoms) the
loss of accuracy due to neglect of nonlinearity in the
exchange-correlation energy functional can be intoler-
ably high. For such cases the nonlinear core correction of
Louie et al. (1982) turns out to be very useful.

From a computational point of view, it is very conve-
nient to recast the angular-momentum-dependent part
of a pseudopotential into a sum over a few projectors
(Kleinman and Bylander, 1982). This is called the sepa-
rable form of a pseudopotential. The use of plane waves
and of separable pseudopotentials, together with the
FFT and iterative diagonalization or minimization tech-
niques, allows a fast and efficient solution of the Kohn-
Sham equations for systems containing up to hundreds
of atoms in the unit cell. The technical aspects of the
implementation of the Kohn-Sham equations in a plane-
wave-pseudopotential (PW-PP) framework have been
extensively described in the literature (see, for example,
Pickett, 1989; Payne et al., 1992; Giannozzi, 1995).

The implementation of DFPT in a PW-PP framework
is a straightforward extension of the implementation of
the Kohn-Sham equations. The only modifications to the
theory expounded in Sec. II are related to the nonlocal
character of pseudopotentials. In DFT calculations this
is accounted for by modifying the electron-ion interac-
tion term in the energy functional, Eq. (11), as follows:

E@n#5F@n#12 (
n51

N/2 E cn* ~r!V~r,r8!cn~r8!drdr8,

(129)

where V(r,r8) is a sum of atomic nonlocal pseudopoten-
tials. The results of Sec. II.D must be generalized ac-
cordingly. Equations (21) and (22) become
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and
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Equation (86) for the electronic contribution to the
force constants is modified as
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The procedure outlined above can easily be extended
to the case of pseudopotentials with nonlinear core cor-
rections (Dal Corso, Baroni et al., 1993). In this case, the
exchange-correlation functional Exc@n# must be re-
placed in Eq. (12) by Exc@n1nc# , where n(r) is the
atomic valence charge density, and nc(r) is the core
charge, or a suitable smooth approximation to it (Louie
et al., 1982). The exchange-correlation potential vxc(r)
of Eq. (13) is replaced by vxc@n1nc#(r). Energy deriva-
tives will contain additional terms. The following contri-
bution must be added to first derivatives, Eq. (21):

]Ecc

]l i
5E vxc@n1nc#~r!

]nc~r!

]l i
dr. (133)

Let us specialize to the case of monochromatic atomic
perturbations. The following term must be added to the
screened potential used to calculate the linear response,
Eq. (36):
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where the core charge nc(r) is written as a sum of ionic
terms, as in Eq. (87). The force constants, Eq. (86), will
contain additional terms:
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The matrix elements of the relevant quantities be-
tween plane waves are in the Appendix.

B. Ultrasoft pseudopotentials

In typical bulk semiconductors (e.g., Si, Ge, GaAs,
AlAs) at equilibrium volume 100–150 plane waves per
atom are sufficient for most applications. However,
many atoms—transition metals, first-row elements like
F, O, and to a lesser extent N and C—require hard
pseudopotentials to ensure transferability, and their
treatment demands impractically large plane-wave basis
sets. One can try to exploit the many degrees of freedom
that are present in pseudopotential generation to obtain
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softer pseudopotentials. Several recipes have been pro-
posed to get optimally smooth pseudopotentials (for ex-
ample, by acting on the form of pseudo wave functions
in the core region). Simple and effective recipes have
been described by Vanderbilt (1985), Rappe et al.
(1990), and Troullier and Martins (1991).

A more radical approach to the challenge posed by
hard pseudopotentials was proposed by Vanderbilt
(1990), who introduced ultrasoft pseudopotentials. In this
scheme, the orbitals are allowed to be as soft as possible
in the core regions so that their plane wave expansion
converges rapidly; this comes at the price of giving up
both the norm conservation and the standard orthonor-
mality constraint of atomic orbitals. Orthonormality is
recovered by introducing a generalized overlap operator
which depends on the ionic positions. The full electron
density is obtained by adding to the square modulus of
the orbitals an augmentation charge localized in the core
regions. Despite its technical complexity, this approach
has proved to be extremely successful in treating large-
scale electronic structure problems.

In the ultrasoft scheme, the atomic pseudopotential is
separated into a local Vloc and a nonlocal VNL part. The
nonlocal potential is written in the separable form, as a
sum of projectors. The ionic potential is written as a sum
over all the atoms I of projectors:

VNL~r,r8!5(
I

(
ij

Dij
(0)Ib i

I~r2RI!b j*
I~r82RI!,

(136)

where the functions b i
I(r) and the coefficients Dij

(0)I are
computed in an atomic calculation, as described by
Vanderbilt (1990) and Laasonen et al. (1993).

The charge density is computed by augmenting the
square modulus of the orbitals with a term that recovers
the full valence charge density:
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Consistent with this definition, the orbitals are postu-
lated to obey generalized orthogonality constraints
^cnuSucm&5dnm , with an overlap operator S given by

S~r,r8!5d~r2r8!1(
I

(
ij

qij
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I~r2RI!b j*
I~r82RI!,

(138)

where qij
I 5* Qij

I (r)dr. The S operator depends on the
atomic positions, as do the constraints obeyed by the
orbitals.

The orbitals are determined by minimizing the total
energy within the above constraints. This yields a gener-
alized Kohn-Sham equation,

HSCFucn&5enSucn&, (139)

where HSCF is the Kohn-Sham Hamiltonian,
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Here VKS is the Kohn-Sham potential, VKS5ṼNL
1Vloc1VHxc , while VHxc is the Hartree and exchange-
correlation potential, and ṼNL is the nonlocal part, Eq.
(136), in which the atomic coefficients Dij

(0)I are replaced
by screened coefficients Dij

I (Laasonen et al., 1993).

Dij
I 5Dij

(0)I1E Qij
I ~r!Veff~r!dr, (141)

where Veff5Vloc1VHxc . The forces acting on the atoms
are obtained as in Sec. II.C, differentiating the total en-
ergy with respect to the atomic displacements and using
the Hellmann-Feynman theorem. In the ultrasoft
pseudopotential case, however, the orthogonality con-
straints change as the atoms move, thus giving rise to
additional terms in the forces. Differentiating the gener-
alized orthogonality constraints with respect to atomic
displacements us

a for the sth atom, we obtain the follow-
ing relationship:
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which, used in the expression of the forces, gives
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where the partial derivative of VKS is
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with no derivative of the Hartree and exchange-
correlation potential.

In order to compute the interatomic force constant
and hence the dynamical matrix, we need the mixed sec-
ond derivatives of the total energy with respect to the
displacements us

a and ut
b of the atoms at sites s and t .

These expressions have been derived by Dal Corso et al.
(1997). Here we report only the final results. [A full
derivation is given by Dal Corso (2001).] Taking the de-
rivative of the Hellmann-Feynman forces, one finds that
the electronic contribution to Cst

ab contains four terms.
The first, Cst

(1)ab , corresponds to the expectation value
of the second derivative of the electron-ion potential,
and the additional second derivative of the overlap ma-
trix:
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(145)
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where the second derivative of ṼNL is performed at
fixed charge density as before. The second term, Cst

(2)ab ,
is

Cst
(2)ab52 (
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N/2 F K ]cn
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where Pc
1512(m51

N Sucm&^cmu is the projector on the
conduction-band subspace, H.c. indicates the Hermitian
conjugate with respect to the sa ,tb indices, and f is
defined as

uf t ,n
b &5F ]~ṼNL1Vloc!

]ut
b 2en

]S

]ut
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and again the derivative of ṼNL is performed at fixed
density. In the norm-conserving pseudopotential
scheme, the electronic contribution to Cst

ab is simply
given by the sum of Cst

(1)ab and Cst
(2)ab calculated for S

51 and L(r)5ur&^ru. In the ultrasoft pseudopotential
scheme one must consider two additional contributions
to Cst

ab which have no counterparts in the norm-
conserving scheme. Cst

(3)ab is the interaction between the
change in the augmentation charge D tbn(r) due to the
atomic displacement ut

b [see Eq. (152) below] and the
change in VHxc due to the displacement us

a [see Eq.
(27)]:
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Finally, Cst
(4)ab is analogous to Cst

(2)ab but with the pro-
jector on the conduction-states subspace replaced by
that on the valence-state subspace. Since the perturba-
tion formalism provides explicitly only Pcu ]c i /]us

a & ,
the valence-state component must be derived from the
constraints imposed by the orthogonality condition, Eq.
(142). One finally obtains

Cst
(4)ab522 (

n ,m51

N/2 K cnU ]S

]us
a UcmL ^cmuf t ,n

b &1H.c.

(149)

We note that in the norm-conserving scheme, the left-
hand side of Eq. (142) vanishes since S51, and Eq.
(142) allows one to show that the contribution to Cst

ab

from the valence-states component of u ]c i /]us
a & is zero.

In the ultrasoft case, Eq. (142) is used to evaluate such a
component in terms of the unperturbed orbitals, as
given in Eq. (149).

The key ingredient for evaluating the dynamical ma-
trix is Pcu ]cn /]us

a &, which can be determined, within
first-order perturbation theory, by solving the linear sys-
tem
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(150)

where
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Equation (150) is the generalization to the ultrasoft case
of the self-consistent linear system given in Eq. (25). The
perturbing term depends on the variation of the charge
density ]n(r)/]us

a through ]VHxc(r)/]us
a , while
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The term Dsan(r), peculiar to the ultrasoft scheme, has
two contributions: Dsan(r)5dsan(r)1dsanortho(r). The
former term,
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accounts for the displacement of the augmentation
charge at fixed orbitals, whereas the latter,
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appears because of the orthogonality constraints, similar
to the Cst

(4)ab term in the interatomic force constants.
The above formalism can be generalized to metallic

systems along the same lines as described in Sec. II.C.4.
The presence of the fractional occupation numbers
modifies the definition of the valence-states subspace,
and the terms dsanortho(r) and Cst

(4)ab must be modified
accordingly. For instance, dsanortho(r) becomes
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C. Localized basis sets, all-electron implementations

All-electron implementations of DFPT based on lo-
calized basis sets exist for both the linearized muffin-tin
orbitals (LMTO) method (Savrasov, 1992; Savrasov,
1996) and the linearized augmented plane-waves
(LAPW) method (Yu and Krakauer, 1994). LMTO and
LAPW are among the most popular all-electron meth-
ods in DFT calculations. Their extension to DFPT cal-
culations is especially useful for systems containing tran-
sition metals (e.g., high-temperature superconductors
and most ferroelectrics) for which the PW-PP approach
is not very practical. An earlier implementation using a
mixed basis set (localized atomiclike states plus plane



536 Baroni et al.: Phonons and related crystal properties from DFPT
waves) in a pseudopotential formalism (Zein, 1992) and
a more recent one (Heid and Bohnen, 1999) are also
known.

Localized basis sets and mixed-basis implementations
are more complex than plane-wave implementations.
Part of the additional complexity arises from Pulay
terms in derivatives. The origin of such terms is easily
understood. The first derivative of the energy functional
[see Eq. (53)] contains the Hellmann-Feynman term, as
in Eq. (21), plus a term F̃ , coming from implicit depen-
dence through the wave function,
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where
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vanishes if the wave functions are exact Kohn-Sham or-
bitals. This is not always true if the wave functions are
approximate Kohn-Sham orbitals. Let us expand the
wave functions into a basis set fn , taken to be ortho-
normal for simplicity:
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The solution of the Kohn-Sham equations reduces to the
solution of a secular equation

(
k

~Hjk2en!ck
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where

Hjk5E f j* ~r!HSCFfk~r!dr. (160)

By inserting the expansion of the Kohn-Sham orbitals
into Eq. (157) one finds
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The second term vanishes exactly [see Eq. (159)]. The
first term does not vanish if the basis set is not complete
and if the basis set depends explicitly on l. In realistic
calculations using atomic-centered basis sets, the Pulay
contribution cannot be neglected. Accurate and reliable
calculations of forces and of the force constants require
a very careful account of the Pulay terms, which are
absent if a plane-wave basis set is used.

LMTO-based linear-response techniques have been
used to calculate phonon spectra and electron-phonon
couplings in several elemental metals (Savrasov et al.,
1994; Savrasov and Savrasov, 1996) and more recently in
doped BaBiO3 (Meregalli and Savrasov, 1998) and
CaCuO2 (Savrasov and Andersen, 1996). The method
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has recently been extended to the calculation of spin
fluctuations (Savrasov, 1998).

LAPW-based linear-response techniques were first
used in the study of the lattice dynamics of CuCl (Wang
et al., 1994) and later applied to several materials: SiC
(Wang et al., 1996a); ferroelectrics KNbO3 (Yu and
Krakauer, 1995; Waghmare et al., 1998; Wang et al.,
1996b) and SrTiO3 (LaSota et al., 1998); and the high-Tc
superconductor La2CuO4 (Wang et al., 1999).

The mixed-basis approach has been tested by calculat-
ing the phonon dispersions for simple metals containing
localized 4d electrons: Ag and Y (Heid and Bohnen,
1999) and Ru (Heid, Pintschovius, et al., 2000); it has
also been applied to sapphire (a2Al2O3; Heid, Strauch,
and Bohnen, 2000).

IV. OTHER APPROACHES

A. The dielectric approach

Historically, the microscopic theory of lattice dynam-
ics was first formulated in terms of dielectric matrices
(Pick, Cohen, and Martin, 1970). The basic ingredient is
the inverse dielectric matrix e21(r,r8), relating, in the
linear regime, the external perturbation DV to the total
electrostatic potential experienced by an external test
charge:

DVtest~r!5E e21~r,r8!DV~r8!dr8. (162)

As an alternative, the theory can be formulated in terms
of the electron polarizability x(r,r8), which gives the
charge-density linear response to the external perturba-
tion:

Dn~r!5E x~r,r8!DV~r8!dr8. (163)

These two response functions are simply related as

e21~r,r8!5d~r2r8!2E e2

ur2r1u
x~r1 ,r!dr1 . (164)

Within density-functional theory, one can also define
the independent-electron polarizability, x0(r,r8), as the
charge-density response to variation of the total Kohn-
Sham potential:

Dn~r!5E x0~r,r8!DVSCF~r8!dr8. (165)

The expression for x0(r,r8) in terms of Kohn-Sham or-
bitals has the well-known form

x0~r,r8!5(
n ,m

fn2fm

en2em
cn* ~r!cm~r!cm* ~r8!cn~r8!,

(166)

where fn is the occupancy of the state fn5 ũ@(«F
2«n)/s# in the notation of Sec. II.C.4, and the sums
over n and m extend to both occupied and empty states.
As shown in Sec. II.C.4, only terms involving virtual
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transitions from occupied or partially occupied states to
empty or partially empty states contribute.

Combining Eqs. (163) and (165) and recalling the re-
lationship between the bare and the Kohn-Sham self-
consistent perturbing potential, Eqs. (60) and (57),

DVSCF~r!5DV~r!1E K~r,r8!Dn~r8!dr8, (167)

one gets an integral equation for x:

x~r,r8!5x0~r,r8!

1E x0~r,r1!K~r1 ,r2!x~r2 ,r8!dr1dr2 , (168)

or equivalently

x21~r,r8!5x0
21~r,r8!2K~r,r8!. (169)

This equation, projected onto a plane-wave basis set,
becomes a matrix equation, one for each q point in the
Brillouin zone, that can be solved by matrix inversion.

The original dielectric matrix approach has the major
drawback that the perturbation must be described by a
local potential, and thus it cannot be applied to the lat-
tice dynamics problem if modern nonlocal pseudopoten-
tials are employed to describe the electron-ion interac-
tion. In fact, in this case, not only the unperturbed
external potential, but also the perturbation itself is de-
scribed by a nonlocal operator, and Eq. (163) is not ap-
propriate. For these reasons the calculation of dielectric
matrices has been of limited utility for the study of vi-
brational properties—see for some early examples the
empirical pseudopotential calculations of Bertoni et al.
(1972), Resta and Baldereschi (1981), and Resta (1983).
Dielectric matrices have been successfully employed in
the study of the macroscopic dielectric properties of
simple materials (Baroni and Resta, 1986b) and, more
generally, these are an essential ingredient in calcula-
tions based on the GW approximation, a theory of elec-
tronic structure based on many-body perturbation
theory (Hedin, 1999). In these latter cases, in fact, even
if the unperturbed external potential is described by
nonlocal pseudopotentials, the perturbation of interest is
only local, and Eqs. (163) and the following ones still
apply.

A modification of the dielectric matrix approach that
removes its limitation to local pseudopotentials has been
devised by Quong and Klein (1992). The response to the
bare potential is stored in a bare response Dnb(r),

Dnb~r!5E x0~r,r8!DV~r8!dr8

5(
n ,m

fn2fm

en2em
cn* ~r!cm~r!^cmuDVucn&, (170)

which need be calculated only once for all nonlocal po-
tentials as well. Then Eq. (165) is applied together with
Eq. (167) to yield Dn(r),

Dn~r!5Dnb~r!1E x0~r,r1!K~r1 ,r2!Dn~r2!dr1dr2 .

(171)
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This equation is solved for Dn(r) by inverting the kernel
of the above integral equation (a matrix in a plane-wave
basis):

S d~r2r8!2E x0~r,r1!K~r1 ,r8!dr1 D . (172)

The second-order change in the energy can then be cal-
culated as usual.

This approach has been used for the calculations of
force constants in Au (Quong, 1994); of electron-
phonon coupling (Liu and Quong, 1996) and of thermal
expansion in metals (Quong and Liu, 1997); and of the
structural stability and electron-phonon coupling in Li
(Liu et al., 1999).

This modified dielectric matrix approach is conceptu-
ally rather similar to the original DFPT. The main dif-
ference is the replacement of the self-consistency cycle
needed in DFPT with the construction and inversion of
kernel in Eq. (172). This operation is rather time con-
suming, since it requires the inversion of large matrices
and an expensive sum over unoccupied bands, but need
be done only once for any given point in the Brillouin
zone where the vibrations are computed (as opposed to
the self-consistency in DFPT, which must be performed
for each phonon mode).

For small systems the overall computational workload
of the two approaches is similar, but the size of the sys-
tems that can be treated by the dielectric approach is
limited by the growing dimension of the kernel operator,
Eq. (172).

B. Frozen phonons

The frequencies of selected phonon modes can be cal-
culated from energy differences—or from the forces act-
ing on atoms—produced by finite, periodic, displace-
ments of a few atoms in an otherwise perfect crystal at
equilibrium. The first such so-called frozen-phonon
LDA calculations were already being performed in the
early 1980s (see, for instance, Yin and Cohen, 1982). A
frozen-phonon calculation for lattice vibrations at a ge-
neric q vector requires a supercell having q as a
reciprocal-lattice vector and whose linear dimensions
must be therefore at least of the order of 2p/uqu. In
practice, the size of the supercell that one can afford to
deal with has traditionally limited the application of this
technique to zone-center or selected zone-boundary
phonon modes in relatively simple materials. However,
zone-center phonons are also the best characterized be-
cause they may be Raman or infrared active, so that
they do not require neutron spectroscopy to be detected.
Moreover, the frozen-phonon and linear-response tech-
niques may be combined to study anharmonic effects
that would otherwise be difficult to calculate directly
from perturbation theory (Baroni and Resta, 1986a; De-
bernardi, 1999).

Phonon dispersions along high-symmetry lines in
simple materials are determined by the so-called inter-
planar force constants (i.e., by the forces acting on
planes perpendicular to the phonon wave vector when
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another such plane is rigidly moved from equilibrium).
Lattice vibrations along some high-symmetry lines in cu-
bic semiconductors have been calculated in this way us-
ing reasonably sized supercells (Kunc and Martin, 1983).
More recently several authors (Wei, and Chou, 1992,
1994; Frank et al., 1995; Ackland et al., 1997; Parlinski
et al., 2000) have started to calculate phonon dispersions
from the interatomic force constants determined in real
space using the frozen-phonon approach.

The main advantage of the frozen-phonon approach is
that it does not require any specialized computer code,
as DFPT does. This technique can in fact be straightfor-
wardly implemented using any standard total energy and
force code, and only moderate care is needed in the
evaluation of numerical derivatives. The principal limi-
tation is the unfavorable scaling of the computational
workload with the range of the interatomic force con-
stants, RIFC . In fact, the calculation of interatomic force
constants within the frozen-phonon approach requires
the use of supercells whose linear dimensions must be
larger than RIFC , thus containing a number of atoms
Nat

SC;R IFC
3 . As the computer workload of standard

DFT calculations scales as the cube of the number of
atoms in the unit cell, the cost of a complete
interatomic-force-constant calculation will scale as 3Nat
3R IFC

9 , where Nat is the number of (inequivalent) at-
oms in the elementary unit cell (the factor of 3 accounts
for the three generally independent phonon polariza-
tions). The calculation of interatomic force constants us-
ing DFPT requires instead the evaluation of the dynami-
cal matrices on a regular grid of wave vectors in the
Brillouin zone, whose spacing must be chosen of the or-
der of the inverse of the range of the interatomic force
constants: Dq;2p/RIFC (see Sec. II.D.3). The number
of q points in such a grid is of the order of R IFC

3 . As the
computational cost for the calculation of each column of
the dynamical matrix is of the order of Nat

3 —and the
number of such columns is 3Nat—the total cost for the
calculation of the interatomic force constants (and,
hence, of complete phonon dispersions) using DFPT is
of the order of R IFC

3 33Nat
4 .

Another problem closely related to these consider-
ations is that of the calculation of phonon dispersions in
polar materials. In Secs. II.D.2 and II.D.3 we saw that
the long-range character of the dipole-dipole interac-
tions in polar insulators determines the nonanalytic be-
havior of the dynamical matrices as functions of the
wave vector in the long-wavelength limit. The real-space
counterpart of this property is that interatomic force
constants are long ranged as they decay with the inverse
cube of the distance. Interpolation of the dynamical ma-
trices in reciprocal space as well as calculation of the
long-range tails of the interatomic force constants in real
space is made difficult by this problem. Within DFPT,
the standard remedy is to treat separately the nonana-
lytic part of the dynamical matrix, using information on
the ionic effective charges and crystal dielectric con-
stant, as explained in Secs. II.D.2 and II.D.3. Frozen-
phonon supercell calculations, in contrast, do not di-
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rectly provide such information,4 which must instead be
extracted from the limiting behavior of interplanar force
constants (Kern et al., 1999), supplied by a separate cal-
culation using the Berry’s phase approach (King-Smith
and Vanderbilt, 1993; Resta, 1994),5 borrowed from
DFPT calculations (Parlinski et al., 1998), or fitted to the
experiment (Parlinski et al., 2000).

C. Vibrational properties from molecular dynamics

All the methods described so far are static, zero-
temperature, methods. In the last 15 years the combined
use of molecular dynamics and density-functional theory
(Car and Parrinello, 1985) has become a very powerful
tool for the ab initio study of condensed-matter systems
at finite temperature. In molecular-dynamics simula-
tions, atomic trajectories are generated from the classi-
cal equations. Equilibrium properties are then estimated
as time averages over the trajectories, which also contain
information on the dynamics of the system, i.e., on pho-
non modes. In fact, the vibrational density of states—
which exhibits peaks at the phonon frequencies—can in
principle be computed by Fourier transforming the
atomic velocity autocorrelation function (Rahman,
1964). Ab initio molecular-dynamics simulations are usu-
ally performed using supercells which contain a small
number of atoms (from a few tens to a few hundreds)
and periodic boundary conditions. Because of this, only
phonons that are zone-center phonons of the supercell
are accessible to the simulation.

Straightforward estimates of phonon frequencies from
molecular-dynamics simulations suffer from three types
of problems. First, at low temperature all the systems
are strongly harmonic and, hence, poorly ergodic. The
time necessary to reach equilibrium may thus be imprac-
tically long. In these cases, bringing the system to ther-
mal equilibrium may require technical tricks such as
coupling to Nosé-Hoover thermostats (Martyna et al.,
1992).

The second problem is that the simulation time nec-
essary to attain a frequency resolution, Dv , cannot be
shorter than t*2p/Dv . In practice, this time may be
too long for first-principles molecular-dynamics simula-
tions. This problem can be overcome by using more so-
phisticated spectral estimating methods, such as the mul-
tiple signal classification (MUSIC) algorithm (Lawrence
Marple, 1987), to extract information on phonon modes
from relatively short molecular-dynamics runs. MUSIC
exploits the harmonic character of phonon modes and
has proven to be very accurate and useful in simple situ-
ations. In more complicated cases, where the frequen-
cies are too many and too close with respect to the in-
verse length of the run, MUSIC suffers from instabilities

4This is a fact occasionally overlooked in the literature. See,
for example, Parlinski et al. (1997) and the comment by De-
traux et al. (1998).

5Note that the Berry’s phase approach cannot be used to cal-
culate the dielectric constant.
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that may prevent the full determination of the spectrum.
An improved self-consistent MUSIC algorithm has been
developed (Kohanoff et al., 1992; Kohanoff, 1994) to
cope with instabilities and to extract information on
eigenvectors as well. In this algorithm, a first estimate of
the frequencies is followed by a determination of the
eigenvectors through a least-squares fit of the trajectory,
including orthogonality constraints. Then the trajectory
is projected onto each of the normal modes. At this
point each projected trajectory contains one main fre-
quency component. This component is reestimated using
MUSIC, and the scheme is iterated until self-consistency
in the frequencies is achieved.

Finally, when molecular-dynamics simulations are
used to predict the temperature dependence of indi-
vidual vibrational modes and the thermal behavior of
properties that depend on them, the results may depend
on the size of the simulation (super)cell. In fact, even
though in the harmonic approximation a mode commen-
surate with the simulation cell is strictly decoupled from
those that are not, this is not the case at high tempera-
ture when anharmonic effects are important. As a con-
sequence, neglect of modes that are not commensurate
with the simulation cell may affect the evaluation of fre-
quencies of commensurate modes which, in the har-
monic approximation, would be directly accessible to
the simulation.

Molecular-dynamics simulations are complementary
to lattice-dynamical calculations in the sense that the
latter are better suited to low temperatures, whereas the
former are subject to ergodicity problems. Lattice dy-
namics are by definition limited to the (quasi)harmonic
regime, while molecular dynamics naturally account for
all the anharmonic effects occurring at high tempera-
ture, provided the size of the simulation cell is large
enough to allow a proper description of the relevant
phonon-phonon interactions.

V. APPLICATIONS

A. Phonons in bulk crystals

Phonon dispersions in crystals have long been calcu-
lated using model force constants in which some form of
interatomic potential is assumed and the parameters of
the model are adjusted so as to reproduce some known
experimental results. Although this approach works rea-
sonably well in some cases, in others it has serious draw-
backs that call for more predictive methods. The typical
experimental data used to fix the parameters in the
model are the phonon frequencies themselves. Model
force constants can be seen as a compact way to encode
the available experimental input, with very limited pre-
dictive power when applied to other properties. In many
cases only a few selected frequencies (usually of infrared
and Raman-active modes) are known, and the results of
model calculations in the rest of the Brillouin zone are
questionable. Even when the entire dispersion spectrum
is known (usually by neutron-diffraction measure-
ments), knowledge of phonon frequencies alone is not
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sufficient to determine the force constants completely:
knowledge of the phonon displacement patterns would
be needed as well. The latter experimental information
is seldom available and, in the few cases in which the
pattern has been measured, comparison with the results
of even the best models is sometimes very poor.

Using DFPT one can compute the interatomic force
constants from first principles and, as they are usually
accurate, both good frequencies and good displacement
patterns are obtained, without need of experimental in-
puts.

Most, if not all, calculations described in the following
sections are done at the level of the local-density ap-
proximation, which usually provides very good results.
The performance of the generalized gradient approxi-
mation (GGA) in the manner proposed by Perdew et al.
(1996) has been tested by Favot and Dal Corso (1999). It
was found that the GGA systematically lowered the fre-
quencies of phonon branches with positive Grüneisen
parameters. This effect was correlated with the GGA’s
expansion of the lattice constant, since GGA phonon
frequencies computed at the experimental lattice con-
stants are higher than the corresponding LDA phonon
frequencies. A similar trend was found for magnetic Fe
and Ni (Dal Corso and de Gironcoli, 2000). In this case
GGA equilibrium geometries are much superior to
those determined by the LDA, and phonon dispersions
are correspondingly closer to the experimental results
(Dal Corso and de Gironcoli, 2000). In diamond, Al, and
Cu, the LDA and GGA equilibrium geometries and
phonon dispersions have similar accuracy with respect to
the experimental data. Si is an exception, since the LDA
phonon dispersions are already in very good agreement
with experiment and the GGA slightly worsens the com-
parison (Favot and Dal Corso, 1999).

In most applications phonon dispersions are com-
puted at the theoretical equilibrium geometry (lattice
parameters and internal coordinates). This choice is
mandatory when the experimental geometry is poorly
known, but it is also, in our opinion, the most consistent
one when comparing with experimental data at low tem-
perature. Inclusion of thermal expansion may become
necessary in some cases when comparing with room-
temperature and higher-temperature data. See Sec. V.E
for the treatment of thermal effects.

1. Simple semiconductors

a. Elemental and III-V semiconductors

The phonon spectra and effective charges of the
group-IV semiconductors Si and Ge (diamond struc-
ture) and of the zinc-blende structure III-V semiconduc-
tors GaAs, GaSb, AlAs, and AlSb were calculated by
Giannozzi et al. (1991). The calculated phonon disper-
sions and densities of states for the latter four com-
pounds are shown in Fig. 1, together with experimental
data. Zone-center phonons, effective charges, and di-
electric constants of nine III-V zinc-blende semiconduc-
tors were computed, along with their piezoelectric con-
stants, by de Gironcoli et al. (1989). The phonon
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dispersions of Si were calculated as well by Savrasov
(1996) as a test of the LMTO implementation of DFPT.
Dispersions for InP appear in a paper devoted to the
(110) surface phonons of InP (Fritsch, Pavone, and
Schröder, 1995); dispersions for both GaP and InP were
published in a study of phonons in GaInP2 alloys (Ozo-
liņš and Zunger, 1998). For all these materials, phonon
spectra and effective charges are in very good agree-
ment with experiments, where available. For AlAs—for
which experimental data are very scarce—these calcula-
tions provide the only reliable prediction of the entire
phonon dispersion curve. For Si, the calculated phonon
displacement patterns compare favorably to those ex-
tracted from inelastic neutron-scattering experiments
(Kulda et al., 1994).

In all these materials the interatomic force constants
turn out to be quite long ranged along the (110) direc-
tion. This feature had already been observed in early
calculations (Herman, 1959; Kane, 1985; Fleszar and
Resta, 1986) and is related to the peculiar topology of
diamond and zinc-blende lattices, with bond chains
propagating along the (110) directions.

FIG. 1. Calculated phonon dispersions and densities of states
for binary semiconductors GaAs, AlAs, GaSb, and AlSb: l,
experimental data. From Giannozzi et al., 1991.
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The force constants of GaAs and of AlAs are espe-
cially interesting in view of their use in complex GaAlAs
systems such as superlattices, disordered superlattices,
and alloys. While the phonon dispersions in GaAs are
experimentally well characterized, bulk samples of AlAs
of good quality are not available, and little experimental
information on its vibrational modes has been collected.
For several years it has been assumed that the force
constants of GaAs and those of AlAs are very similar
and that one can obtain the dynamical properties of
AlAs using the force constants of GaAs and the masses
of AlAs (the mass approximation; Meskini and Kunc,
1978). The DFPT calculations provided convincing evi-
dence that the mass approximation holds to a very good
extent between GaAs and AlAs (Giannozzi et al., 1991).
This transferability of force constants makes it possible
to calculate rather easily and accurately the vibrational
spectra of complex GaAlAs systems (Baroni, Giannozzi,
and Molinari, 1990; Molinari et al., 1992; Baroni, de Gi-
roncoli, and Giannozzi, 1990; Rossi et al., 1993). Some-
what surprisingly, the mass approximation does not
seem to be valid when the interatomic force constants
for a well-known and widely used model, the bond-
charge model (BCM), are employed. A six-parameter
bond-charge model for GaAs that gives dispersions
comparing favorably with experiments and ab initio cal-
culations, yields, when used in the mass approximation,
AlAs dispersions quite different from first-principles re-
sults. This clearly shows that information on the vibra-
tional frequencies alone is not sufficient to fully deter-
mine the force constants, even when complete phonon
dispersions are experimentally available. In order to ob-
tain more realistic dispersions for AlAs in the mass ap-
proximation, one has to fit the bond-charge model for
GaAs to both frequencies and at least a few selected
eigenvectors (Colombo and Giannozzi, 1995).

b. II-VI semiconductors

The II-VI zinc-blende semiconductors ZnSe, ZnTe,
CdSe, and CdTe present some additional difficulties in a
plane-wave-pseudopotential (PP-PW) framework with
respect to their III-V or group-IV counterparts. The cat-
ion d states are close in energy to the s valence states so
that the d electrons should be included among the va-
lence electrons. Phonon calculations performed several
years ago, when the inclusion of localized d states in the
pseudopotential was difficult, showed that the effects of
cation d electrons could also be accounted for by includ-
ing the d states in the core and by using the nonlinear
core-correction approximation. The results showed an
accuracy comparable to that previously achieved for el-
emental and III-V semiconductors (Dal Corso, Baroni
et al., 1993). Similar calculations have been more re-
cently performed for hexagonal (wurtzite structure) CdS
(Debernardi et al., 1997; Zhang et al., 1996) and CdSe
(Widulle, Kramp et al., 1999) and compared with the re-
sults of inelastic neutron scattering experiments.
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c. Diamond and graphite

The phonon dispersions of diamond, together with the
internal-strain parameter, thermal-expansion coefficient
in the quasiharmonic approximation, and the mode
Grüneisen parameter dispersion curves, were calculated
by Pavone et al. (1993). A unique feature that they
found in diamond was the presence of an overbending of
the uppermost phonon branch, whose frequencies have
a minimum at the Brillouin zone center (instead of a
maximum as in the other elemental semiconductors Si
and Ge). This feature has important consequences for
second-order Raman spectra (see Sec. V.A.1.g).

High-pressure spectra, up to 1000 GPa, for diamond
are reported in Xie, Chen, et al. (1999). Under pressure,
the phonon frequencies of the X4 and L38 modes gradu-
ally go higher than those of X1 and L28 , respectively.
The overbending of the uppermost phonon branch de-
creases with the increase of pressure.

Phonon dispersion along the A-G-K-M line of graph-
ite was calculated by Pavone et al. (1996). The curve ex-
hibits an overbending similar to that of diamond for in-
plane dispersion. The dispersion between graphitic
planes is very flat. The peculiar behavior of low-
frequency branches along the G-K line can be related to
the long range of interatomic force constants along the
zigzag chains in the graphitic planes.

d. Silicon carbide

Silicon carbide (SiC) may crystallize in a large variety
of tetrahedrally coordinated polymorphs. Phonon dis-
persion curves were calculated for the 3C (cubic zinc
blende), 2H (wurtzite), and 4H hexagonal structures
(Karch et al., 1994). For the 3C structure, elastic and
Grüneisen constants were calculated as well (Karch
et al., 1994). The behavior under pressure of phonon dis-
persions, effective charges, and dielectric tensor was
studied by several authors (Wang et al., 1996a; Wellen-
hofer et al., 1996; Karch, Bechstedt et al., 1996). Interest
in the dynamical properties of SiC under pressure was
prompted by a report (Liu and Vohra, 1994) that the
splitting between longitudinal-optic (LO) and
transverse-optic (TO) modes of 6H SiC increases with
increasing pressure until P560 GPa, then decreases.
This was attributed to a decrease in the effective
charges. This interpretation was not confirmed by any of
the above theoretical studies, which pointed out instead
that an incorrect volume dependency for the dielectric
tensor was assumed in the analysis of experimental data.

e. Nitrides

The group-III nitrides are very interesting materials
for optoelectronic applications at short wavelengths, as
well as in high-frequency and high-temperature elec-
tronic devices. Several groups have performed calcula-
tions of lattice-dynamical properties for zinc-blende and
wurtzite GaN (Karch et al., 1998), BN and AlN (Karch
and Bechstedt, 1997), wurtzite AlN, GaN, and InN
(Bungaro et al., 2000), wurtzite GaN (Ruf et al., 2000),
and AlN (Schwoerer-Böhning et al., 1999). All calcula-
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tions yield good agreement with available experiments,
not only for mode frequencies but also for displacement
patterns. In particular, the calculated eigenvector for the
Raman-active E2 mode in wurtzite GaN compares well
with the eigenvector obtained from the study of the iso-
tope effect (Zhang et al., 1997). The comparison with
recent high-resolution inelastic x-ray scattering measure-
ment in wurtzite GaN (Ruf et al., 2000) and AlN
(Schwoerer-Böhning et al., 1999) shows good agreement
with scattering intensities, thus validating the correct-
ness of computed eigenvectors.

The phonon dispersions in BN and AlN are quite dif-
ferent from those of III-V semiconductors not contain-
ing first-row elements: phonon dispersions for BN are
similar to those of diamond, while AlN dispersions are
close to those of SiC. Furthermore, the difference be-
tween BN and AlN phonon dispersions cannot be ex-
plained by a simple mass approximation, but derives
from the quite different degree of ionicity and covalent
strength of the two materials. The marked ionicity of
AlN bonding yields a pronounced structural and dielec-
tric anisotropy in the wurtzite structure, larger than that
of wurtzite BN and SiC (Karch and Bechstedt, 1997).
The three-phonon decay of the LO phonon into two
acoustic phonons is not allowed in GaN and InN, since
the LO frequency is much larger than the acoustic fre-
quencies over the entire frequency spectrum (Bungaro
et al., 2000).

The pressure dependence of the dielectric and lattice-
dynamical properties of both zinc-blende and wurtzite
GaN and AlN has been recently calculated by Wagner
and Bechstedt (2000).

f. Other semiconductors

Phonon dispersions of the zinc blende semiconductor
CuCl were calculated using the LAPW method (Wang
et al., 1994). CuCl exhibits large anharmonic effects. In
particular, many peaks in neutron-scattering measure-
ments disappear at temperatures as low as room tem-
perature. The calculated phonon dispersions, however,
agree well with low-temperature experimental results.

Phonon dispersion in the bulk layered semiconductor
e-GaSe was calculated by Adler et al. (1998). The bulk
dispersion agrees well both with neutron-scattering re-
sults and with surface phonon measurements done using
inelastic helium-atom scattering. The calculation of
(0001) surface phonons at the K̄ point yields small dif-
ferences with respect to the corresponding bulk
phonons, as expected for a layered material. This rules
out previous assumptions of anomalous surface phonon
dispersions. In a subsequent study (Panella et al., 1999),
phonon dispersion in the similar material InSe was cal-
culated. The bulk dispersions for both GaSe and InSe
compare favorably with experiments on (001) thin films
epitaxially grown on hydrogen-terminated Si(111) (1
31) surfaces.

The face-centered orthorhombic intermetallic semi-
conductor Al2Ru exhibits strong far-IR absorption by
optical phonons. Zone-center phonon frequencies, effec-
tive charges, and the dielectric tensor were calculated by
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Öğüt and Rabe (1996), showing anomalously large Born
effective charges, in agreement with experiments. An
analysis of the valence charge density shows, however,
that the static ionic charges of Al and Ru are negligible.
Hybridization is proposed as the origin of both of the
semiconducting gap and the anomalous Born effective
charges.

g. Second-order Raman spectra in simple semiconductors

Neglecting matrix element effects, second-order Ra-
man spectra are approximately given by the overtone
density of states: I(v)5g(v/2), where g(v) is the vi-
brational DOS. A more accurate description is obtained
by combining the ab initio phonon spectra with phenom-
enological polarizability coefficients. This technique was
applied in an effort to settle the long-standing contro-
versy over the sharp peak in the spectrum of diamond
near the two-phonon cutoff (Windl et al., 1993). As al-
ready observed by Pavone et al. (1993), the sharp peak is
due to a maximum in the vibrational density of states,
originating from the overbending of the uppermost pho-
non branch. Such overbending, and the maximum in the
vibrational density of states, are absent in the other el-
emental semiconductors Si and Ge. Neither two-phonon
bound states nor polarizability matrix element effects
are needed to explain the peak.

A similar technique was applied to the calculation of
second-order Raman spectrum of AlSb in the G1 sym-
metry (Windl et al., 1996). The calculated spectrum,
shown in Fig. 2, agrees well with recent experimental
data. Both theory and experiment give clear evidence
for the existence of overbending in the highest-
frequency branch of the phonon dispersion, with a
saddle point at the G point as predicted by Giannozzi
et al. (1991). This evidence is derived from a general dis-
cussion of the critical-point behavior. Furthermore, the
overbending in AlSb is explained as an effect of the very
different masses of the Al and Sb atoms in contrast to
the overbending in diamond, whose origin lies in a pe-
culiarity of the force constants.

FIG. 2. Second-order Raman spectrum of AlSb in the G1 rep-
resentation at room temperature: solid line, the theoretical cal-
culation; dashed line, the experimental spectrum. From Windl
et al., 1996.
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In the above cases, a one-to-one correspondence be-
tween the overtone density of states and the second-
order Raman spectrum is quite visible. This is not the
case for SiC (Windl et al., 1994). The G1 spectrum of SiC
exhibits three distinct peaks at 1302, 1400, and
1619 cm21 which occur in the gaps of the overtone den-
sity of states. This shows the importance of taking into
account the coupling matrix elements.

h. Piezoelectricity in binary semiconductors

DFPT is used to evaluate the linear response of wave
functions to a macroscopic electric field, from which—
using the stress theorem of Nielsen and Martin (1985a,
1985b)—one finds the induced stress. Due to large can-
cellations between contributions of opposite sign, the re-
sults are very sensitive to the overall accuracy of the
calculation. Well-converged calculations yield results in
good agreement with available experimental data in
III-V (de Gironcoli et al., 1989) and in II-VI compounds,
with the exception of ZnTe (de Gironcoli et al., 1990).
Nonlinear piezoelectricity in CdTe was studied as well
(Dal Corso, Resta, and Baroni, 1993). It was found that
piezoelectricity is linear over a wide range of volume-
conserving strains, while it displays strong nonlinearity
whenever the strain is not volume conserving. This im-
plies that the observed nonlinear effects can be accu-
rately accounted for by the linear piezoelectric response
of the cubic system at the strained volume.

2. Simple metals and superconductors

An early calculation of phonon dispersion in Nb and
Mo metals was performed by Zein (1992), using a
mixed basis set. The aim of the calculation was to ex-
plain the presence of a dip in the (z00) branch of Nb
and its absence in Mo.

The accuracy of DFPT for metals (described in Sec.
II.C.4) was demonstrated by de Gironcoli (1995) for
three test cases: fcc Al, fcc Pb, and bcc Nb (see Fig. 3).
In all cases the calculated dispersion curves are in good
agreement with experiments if an appropriate smearing
technique is used. Phonons in fcc Cu, Ag, Au were cal-
culated as a test case for the use of ultrasoft pseudopo-
tentials (Dal Corso et al., 1997). The alternative linear
response technique of Quong and Klein (1992) was ap-
plied to the phonon dispersions and interatomic force
constants of fcc Al. Phonons of magnetic bcc Fe and fcc
Ni have been recently calculated by Dal Corso and de
Gironcoli (2000). For these metals, good agreement with
experiment is obtained using a spin-polarized
generalized-gradient-approximation functional for the
exchange and correlation energy (see Fig. 4). Phonons in
hcp Ru were calculated and measured with inelastic
neutron scattering (Heid, Pintschovius, et al., 2000).
Many phonon anomalies were found. Phonons in fcc Ag
and in hcp Y were calculated as a test of the mixed-
basis-set technique (Heid and Bohnen, 1999).

The main interest of phonon calculations in metals
stems from their transport properties, especially super-
conductivity. The availability of accurate phonon disper-
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sions over the entire Brillouin zone allows the calcula-
tion of the electron-phonon (Eliashberg) spectral
function a2F(v) and of the mass enhancement param-
eter l that enters the MacMillan equation for the tran-
sition temperature Tc to superconductivity. Other im-
portant quantities that can be calculated are the
transport spectral function a tr

2 F(v) and the l tr coeffi-
cients, which determine the electrical and thermal resis-
tivity in the normal state. In simple metals, calculations
of l and a2F(v) have been performed for Al, Pb, and
Li (Liu and Quong, 1996); for Al, Cu, Mo, Nb, Pb, Pd,
Ta, and V (Savrasov and Savrasov, 1996); and for Al,
Au, Na, and Nb (Bauer et al., 1998). Transport spectral
functions and coefficients (Savrasov and Savrasov, 1996;
Bauer et al., 1998) and phonon linewidths due to
electron-phonon coupling (Bauer et al., 1998) have also
been calculated. Figure 5 shows the results of Savrasov
and Savrasov, 1996 for a2F(v).

The calculation of electron-phonon coefficients found
a remarkable application, beyond simple metals, in the
study of the behavior of molecular solids S, Se, and Te
under pressure. With increasing pressure, these trans-
form first to a base-centered orthorhombic supercon-
ducting structure, followed by a rhombohedral b-Po
phase, and finally for Se and Te by a bcc phase.

At the phase transition between the b-Po and the bcc
phase, a jump is observed in Tc in Te. The origin of this

FIG. 3. Calculated phonon dispersions for fcc simple metal Al
and Pb and for the bcc transition metal Nb: solid lines, 0.3 eV
smearing width; dashed line 0.7 eV, smearing width; L, experi-
mental data. From de Gironcoli, 1995.
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jump was clarified (Mauri et al., 1996) through the study
of phonon dispersions and of the electron-phonon inter-
actions. The phonon contribution to the free energy was
shown to be responsible for the difference in the struc-
tural transition pressure observed in low- and room-
temperature experiments.

In S, the b-Po phase is predicted to be followed by a
simple cubic phase that is stable over a wide range of
pressures (280 to 540 GPa), in contrast to what is ob-
served in Se and Te. The calculated phonon spectrum
and electron-phonon coupling strength (Rudin and Liu,
1999) for the lower-pressure b-Po phase is consistent
with the measured superconducting transition tempera-
ture of 17 K at 160 GPa. The transition temperature is
calculated to drop below 10 K upon transformation to
the predicted simple cubic phase.

3. Oxides

Oxides present a special interest and a special chal-
lenge for anyone interested in phonon physics. On the
one hand, many very interesting materials, such as fer-
roelectrics and high-Tc superconductors, are oxides. On
the other hand, good-quality calculations on oxides are
usually nontrivial, both for technical and for more fun-
damental reasons. In a straightforward PW-PP frame-
work, the hard pseudopotential of oxygen makes calcu-
lations expensive: the use of ultrasoft pseudopotentials
is generally advantageous. The LDA is known to be in-
sufficiently accurate in many cases (and sometimes the

FIG. 4. Calculated phonon dispersions in magnetic transition
metals. Upper panel, bcc Fe. Solid lines, calculated GGA pho-
non dispersions; l, inelastic neutron scattering data; dotted
lines, dispersions calculated within local spin- density approxi-
mation (LSDA). Lower panel, Ni. Solid lines, calculated GGA
phonon dispersions; l, inelastic neutron scattering data; dot-
ted lines, calculated LSDA dispersions. From Dal Corso and
de Gironcoli, 2000.
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FIG. 5. Electron-phonon interaction for the
eight elemental metals considered in Savrasov
and Savrasov (1996). Solid lines, calculated
spectral functions a2F(v); dashed lines, be-
havior of the electron-phonon prefactor
a2(v) [defined simply as the ratio
a2F(v)/F(v)]; symbol plots, results of avail-
able tunneling experiments. From Savrasov
and Savrasov, 1996.
entire band-structure approach is questionable in ox-
ides). Many oxides have complex structural arrange-
ments. In spite of all these problems, there have been
several calculations of phonon-related properties in ox-
ides from first principles. These calculations are de-
scribed in the remainder of this section, with the excep-
tion of work on phase transitions, which is deferred to
Sec. V.D.

a. Insulators

In the alkaline-earth oxides MgO, CaO, and SrO in
the rocksalt structure, the LDA yields good agreement
with available experimental data for lattice vibrations
(Schütt et al., 1994). The investigation of phonon-
induced charge-density fluctuations in MgO and CaO at
the L point of the Brillouin zone partially supports the
breathing-shell model of lattice dynamics and rules out
the charge-transfer model for this class of materials.
Moreover, the calculations show that the breathinglike
charge-density response is more pronounced for oxygen
than for the cations in these compounds.

Silicon dioxide (SiO2) is a much-studied prototypical
tetrahedrally coordinated compound, existing in a large
Rev. Mod. Phys., Vol. 73, No. 2, April 2001
FIG. 6. Phonon band structure of a-quartz along selected di-
rections. Symbols, experimental data; lines, theoretical results.
From Gonze et al., 1994.
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variety of different structures. At ambient conditions the
ground-state structure of SiO2 is a-quartz, whose pho-
non dispersions, dielectric tensor, and effective charges
were studied by Gonze et al. (1992). Effective charges in
a-quartz are anisotropic (here calculated for the first
time in DFPT) and those for O exhibit some anomalous
character (see following section). Figure 6 shows the cal-
culated phonon dispersions for a-quartz. Interatomic
force constants in a-quartz were calculated in a subse-
quent paper (Gonze et al., 1994). The availability of
force constants is important because it permits exten-
sives testing of semiempirical interatomic potentials,
which are used in molecular-dynamics simulations of
silica. The phonons, dielectric tensor, and effective
charges of the high-pressure, sixfold-coordinated phase
stishovite were studied by Lee and Gonze (1994a).

The phonon dispersions of a-Al2O3 (sapphire) have
been recently calculated by Heid, Strauch, and Bohnen
(2000), using the LDA and a mixed basis set. Sapphire
has a rhombohedral unit cell containing two formula
units (ten atoms). A weak anisotropy in the dielectric
tensor and in the effective charges was found.

b. Ferroelectrics

The phonon frequencies at G, the dielectric tensor,
and the effective charges of titanium dioxide (TiO2) in
the rutile structure were calculated by Lee and Gonze
(1994b). Rutile TiO2 is an incipient ferroelectric: the fre-
quency of the TO mode A2u decreases with temperature
but never goes to zero. It was found that the Born effec-
tive charges of TiO2 rutile are much larger than the
nominal ionic charges of Ti (41) and O
(22) ions (and much larger than those of stishovite in
spite of the similar structure). This may sound rather
counterintuitive but it is typical of all ABO3 ferroelec-
trics in the perovskite structure (Ghosez et al., 1998b),
whose prototypical material is barium titanate
(BaTiO3). The effective charges of BaTiO3 and similar
compounds exhibit anomalous values that are definitely
larger than the ionic charge, as well as a strong anisot-
ropy. For the oxygen atoms in the cubic structure, the
effective charge is anomalous only for displacements
parallel to the Ti-O bond and is close to the normal ionic
value in the orthogonal direction. By performing an ap-
propriate band-by-band decomposition (Ghosez and
Gonze, 2000) of contributions, one can track this effect
to the dynamical change of hybridization, mainly be-
tween O 2p and Ti 3d orbitals (Ghosez et al., 1995).
Born effective charges for cubic WO3 in the defect-
perovskite structure (Detraux et al., 1997) and for
KNbO3 (Wang et al., 1996b) follow the same pattern.
The important role of covalence in determining the
anomalous polarization was also demonstrated by
Posternak et al. (1994), by computing the effective
charges of a fake material, similar to KNbO3, in which
covalence was artificially removed by an additional
potential.

Phonons at G for the cubic (ideal perovskite) and
rhombohedral phases of BaTiO3 were calculated by
Rev. Mod. Phys., Vol. 73, No. 2, April 2001
Ghosez et al. (1996). The complete phonon dispersions
for the cubic structure, together with an analysis of the
interatomic force constants, can be found in Ghosez
et al. (1998a).

c. High-Tc superconductors

Although the microscopic mechanism that gives rise
to superconductivity in high-Tc oxides is still under ac-
tive debate, accurate phonon dispersions and electron-
phonon coefficients constitute important pieces of infor-
mation for understanding the properties of these
materials. Calculations have been performed—at the
LDA level—for CaCuO2 (Savrasov and Andersen,
1996), Ba0.6K0.4BiO3 (Meregalli and Savrasov, 1998),
and La2CuO4 (Wang et al., 1999).

In hole-doped (n50.24) CaCuO2, the phonon disper-
sions and electron-phonon coupling, for both s- and d-
wave pairing, were calculated using LMTO linear-
response techniques. The resulting values of l.0.3 for
dx22y2 symmetry and l.0.4 for s symmetry suggest that
the electron-phonon mechanism alone is insufficient to
explain the high Tc but could enhance another d- wave
pairing mechanism (Savrasov and Andersen, 1996).

Similar calculations (Meregalli and Savrasov, 1998)
were performed for Ba0.6K0.4BiO3, using the virtual crys-
tal and mass approximations. The l parameter, includ-
ing anharmonic contributions, is found to be l50.34, a
value too small to explain high-Tc superconductivity in
this system within the standard mechanism.

In tetragonal La2CuO4, the phonon frequencies and
eigenvectors were calculated using LAPW linear re-
sponse techniques (Wang et al., 1999). The results (see
Fig. 7) are generally in good agreement with experi-
ments, with the exception of the lowest-lying branches

FIG. 7. Calculated phonon dispersion of tetragonal La2CuO4
along the (j,j,0) (S) and (j,0,0) (D) directions. The frequencies
are in cm21 and the imaginary frequencies are represented as
negative numbers. The vertical dashed line corresponds to the
boundary of the first Brillouin zone. From Wang et al., 1999.
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TABLE I. K6C60 : Theoretical and experimental frequencies v of the optically C60-like active modes and shifts Dv with respect to
C60 . We use the labeling of the Ih group. The Hg modes split into a triplet Tg (left) and a doublet Eg (right). The experimental
values are ascribed according to the calculated ordering. Their shifts refer to the centers of gravity. Units are in cm21 (Giannozzi
and Andreoni, 1996).

Mode

v Dv

Theory Expt.a Expt.b Theory Expt.a,b

Ag(1) 507 502 501 12 9, 6
Ag(2) 1469 1432 1431 235 236,236
Hg(1) 274, 266 281, 269 280, 268 11 6, 5
Hg(2) 412, 419 419, 427 419, 427 212 28,29
Hg(3) 660, 660 656, 676 656, 676 251 244,247
Hg(4) 770, 769 761 760, 728 213 211,225
Hg(5) 1107,1109 1094,1120 1093,1122 212 5, 6
Hg(6) 1264,1268 1237 1232,1237 215 211,214
Hg(7) 1423,1414 1383 1384 231 243,238
Hg(8) 1508,1498 1476 1481,1474 274 297,295

Expt.c Expt.d Expt.c,d

T1u(1) 466 467 467 261 261,260
T1u(2) 571 565 564 215 212,212
T1u(3) 1215 1182 1183 23 0, 0
T1u(4) 1395 1340 1341 267 286,288

aData from Eklund et al. (1992).
bData from Kuzmany et al. (1994).
cData from Martin et al. (1993).
dData from Pichler et al. (1994).
involving anharmonic motion of the apical oxygen atoms
parallel to the CuO2 planes. The octahedral tilt mode at
the X point is found to be the most unstable mode
throughout the Brillouin zone, consistent with the ob-
served phase transition to the orthorhombic structure at
low temperature. The calculated dispersion of the
highest-frequency S3 branch is in good agreement with
experiment, showing that a proposed large renormaliza-
tion of the phonon spectrum by a Jahn-Teller electron-
phonon interaction is unlikely.

4. Other materials

Fullerene C60 forms a molecular solid that can be
doped with up to six alkali atoms (K, Rb, Cs) per C60.
The alkalis lose their electrons, which fill the conduction
band of C60, originated by molecular t1g states. Sizable
frequency shifts and a large enhancement in the inten-
sity of the four IR-active modes of molecular C60 are
observed when K (or Rb, or Cs) is added to solid C60.
The ten Raman-active modes of molecular C60 also ex-
hibit large shifts. In insulating bcc K6C60, the phonons at
G and the effective charges were calculated (Giannozzi
and Andreoni, 1996). The frequencies of Raman- and
IR-active modes are reported in Table I. It is found that
the structural relaxation of the C60 molecule is primarily
responsible for the frequency changes, while the change
in IR relative intensities is a consequence of electron
transfer. The potassium vibrations are found to lie
within the range 68–125 cm21 and are well decoupled
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from the C60 intramolecular modes. The DFPT results
do not support the so-called charged-phonon model.

Elemental boron and boron-rich solids tend to form
complex structures formed by assembly of icosahedral
B12 units. The exact structure and vibrational properties
of such materials are not well known. A comparison of
accurate phonon calculations with IR and Raman mea-
surements is of great help in determining the atomic
structure.

Icosahedral boron presents a very sharp peak at
525 cm21 whose vibrational character has long been de-
nied. Recently, new Raman scattering experiments un-
der pressure were compared with ab initio lattice dy-
namics calculations (Vast et al., 1997). The very good
agreement of the mode frequencies and their pressure
coefficients yields unambiguous assignments of all ob-
served features, including the 525-cm21 line, which is a
highly harmonic librational mode of the icosahedron
and mainly involves bond bending. This mode is also
identified in the Raman spectrum of other icosahedral
boron-rich solids (Vast et al., 1997).

Boron carbide, B4C, is the third hardest material after
diamond and cubic BN. The building blocks of the crys-
tal are distorted icosahedral B11C units, but their precise
arrangement is still experimentally unknown. The struc-
ture of icosahedral B4C boron carbide was theoretically
determined by comparing existing IR and Raman spec-
tra with accurate ab initio lattice-dynamical calculations,
performed for different structural models (Lazzari et al.,
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1999). An examination of the inter- and intraicosahedral
contributions to the stiffness showed that intraicosahe-
dral bonds are harder than intericosahedral ones, con-
trary to previous conjectures (Lazzari et al., 1999).

Phonons in solid Cl—a typical molecular solid—were
calculated by Bauer et al. (1995). The calculated in-
tramolecular distance was too large by 8%, possibly due
to the pseudopotentials used, and as a consequence the
internal phonon frequencies were too low. Intermolecu-
lar distances were in good agreement with experiment,6

as were most of the calculated external phonons (calcu-
lated at G and Y ; Bauer et al., 1995).

The phonon dispersions of transition-metal carbide
NbC were studied as a sample application in a technical
paper (Savrasov, 1996). NbC presents several peculiar
phonon anomalies, which are well reproduced by the
LMTO calculations.

Zone-center phonons and dielectric properties (e` ,
Z* ) of cubic rocksalt alkali hydrides LiH and NaH were
calculated by Blat et al. (1991). More complete phonon
dispersions for LiH and LiD appeared in Roma et al.
(1996).

B. Phonons in semiconductor alloys and superlattices

The calculation of phonon dispersions in systems de-
scribed by large unit cells or lacking periodicity alto-
gether presents a special challenge. Disordered systems
(such as amorphous materials or substitutionally disor-
dered alloys) can be described in a PW-PP framework
by periodically repeated fictitious supercells. However,
the needed computational effort quickly grows with the
size of the unit cell or supercell (as }Na, where N is the
number of atoms, a;3 –4 in practical calculations), so
that even with the best algorithms and the best comput-
ers available one is limited to systems having at most
;100 atoms. Such size may or may not be adequate for
the physical system under investigation. If it is not, the
brute-force approach must be supplemented by a more
targeted approach. Typically, accurate first-principles
calculations in suitably chosen small systems are used to
set up a computationally manageable model for the
large system.

1. GaAs/AlAs superlattices

GaAs/AlAs superlattices and alloys are a very suc-
cessful example of how first-principles calculations
supplemented by an appropriate model can lead to an
accurate description of the dynamical properties of real
systems. As already mentioned in Sec. V.A.1.a, mass ap-
proximation is the key for obtaining accurate dynamical
matrices for large systems at a modest computational
cost, once the interatomic force constants in real space
for GaAs (or for the GaxAl12xAs virtual crystal) are
obtained.

6The agreement is possibly fortuitous, since LDA does not
correctly treat van der Waals interactions and materials held
together by them.
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The current interest in phonons in GaAs/AlAs super-
lattices is a consequence of progress in epitaxial tech-
niques allowing the growth of ultrathin superlattices
(with a period of ,10 atomic layers), in particular along
the (100) direction. Owing to the large difference be-
tween cationic masses, GaAs and AlAs optic modes oc-
cur in different frequency ranges. In a superlattice, opti-
cal vibrations are confined in one or the other of the
materials. In perfectly ordered superlattices, the relation
between confined modes and bulk dispersions of the
component materials is given by the unfolding model
(Jusserand and Cardona, 1989).

It was not at first clear how valid the unfolding model
was for ultrathin superlattices, how much disorder at the
interfaces (cation intermixing) was present, and what
the effect of disorder would be. Simulations of the dy-
namical properties of ordered and partially disordered
superlattices, using the mass approximation and large
supercells (Baroni, Giannozzi, and Molinari 1990; Moli-
nari et al., 1992) were able to clarify the problem. It was
found that the unfolding model is well verified in ultra-
thin superlattices, but that a sizable amount of cation
intermixing is needed in order to explain the details of
the Raman spectra. These findings later received inde-
pendent confirmation (Gammon et al., 1991; Kechrakos
et al., 1991).

It should be remarked that the ability to obtain such
results depends critically on the quality of the modeling
used. Empirical models, even good ones like the bond-
charge model, are too crude and do not adequately de-
scribe the dispersions of AlAs and, as a consequence,
the details of the spectrum.

Calculation of the phonon spectra in more exotic
GaAs/AlAs systems proceeds in the same way. For in-
stance, the vibrational properties of an array of GaAs
thin wires embedded in AlAs were calculated by Rossi
et al. (1993).

2. GaAs/AlAs alloys

The same approach used for GaAs/AlAs superlattices
was also used to clarify the results of Raman measure-
ments in GaAs/AlAs homogeneous alloys. The Raman
spectrum has two distinct peaks, corresponding to the
vibrations of each cationic species separately. This is
called two-mode behavior and is typical of all AxB12xC
III-V alloys, with the exception of GaxIn12xP. The
peaks are shifted and asymmetrically broadened with re-
spect to the pure materials. This asymmetry was inter-
preted assuming that Raman-active phonon modes are
localized on a scale of ;100 Å, but this assumption was
challenged by other experimental results indicating that
phonons have well-defined momentum and are coherent
over distances .700 Å. The results of simulations using
a 512-atom supercell (Fig. 8) clearly indicate that the
latter picture is the correct one (Baroni, de Gironcoli,
and Giannozzi et al., 1990).
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FIG. 8. Spectral densities of
states of Ga0.5Al0.5As along the
G-X direction: solid lines, posi-
tions of the peaks in the v-q
plane. From Baroni, Gironcoli
et al., 1990.
3. Si/Ge superlattices and alloys

Si/Ge superlattices and alloys are not only more diffi-
cult to grow, but also more problematic as a subject of
theoretical study than GaAs/AlAs systems. The mass
approximation in Si/Ge systems is quite poor, yielding
errors of as much as 20 cm21 for optic phonons. More-
over in Si/Ge systems the lattice parameters of the two
components differ by as much as 4%, thus giving rise to
sizable strain and atomic relaxations which must be
taken into account. GaAs/AlAs systems, in contrast, are
almost perfectly matched (their lattice mismatch is a
modest 0.2%).

In order to achieve the same level of accuracy for
Si/Ge systems as for GaAs/AlAs systems, one has to
supplement the mass approximation with a correction
that takes into account the effects of strain and atomic
relaxation. This goal is achieved by introducing higher-
order interatomic force constants that are fitted to first-
principles results for a few selected configurations (de
Gironcoli, 1992). More complex systems can then be
simulated by suitable supercells as for GaAs/AlAs. In
this way the vibrational properties of SixGe12x have
been studied (de Gironcoli, 1992). In particular this ap-
proach was to reproduce the Raman spectra for
Si0.5Ge0.5 , including details due to the local arrangement
of atoms, while the mean-field approach (coherent po-
tential approximation, or CPA) badly failed in repro-
ducing the three-mode character of the spectra (de Gi-
roncoli and Baroni, 1992). Higher-order interatomic
force constants were also used to study the vibrational
properties of ideal and realistically intermixed Si/Ge su-
perlattices (de Gironcoli et al., 1993; Schorer et al., 1994;
de Gironcoli and Molinari, 1994).

4. AlGaN alloys

The zone-center vibrational properties of wurtzite
AlxGa12xN alloys, over the entire range of composition
from pure GaN to pure AlN, were studied by Bungaro
and de Gironcoli (2000) using mass approximation and
the arithmetic average of the interatomic force constants
of the two pure materials, as previously calculated by
Bungaro et al. (2000). While some of the alloy modes
displayed two-mode-like behavior, they did not preserve
well-defined symmetry and had large broadening. The
LO modes, in contrast, displayed one-mode behavior
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and had well-defined symmetry, small broadening, and a
pronounced dependence of the frequency upon alloy
composition. Therefore these modes were proposed as
the best candidates for the compositional characteriza-
tion of the alloy (Bungaro and de Gironcoli, 2000).

5. GaP/InP alloys

A different approach to the study of phonons in semi-
conductor alloys uses suitably chosen small supercells,
or special quasi random structures (Zunger et al., 1990)
to simulate a disordered system. The evolution of the
vibrational properties in GaP/InP systems with long-
range order was studied using this approach (with a 16-
atom cell) to calculate the phonon spectra of random
Ga0.5In0.5P (Ozoliņš and Zunger, 1998). The phonon
spectra of pure GaP, InP, and of CuPt-type ordered
GaInP2 were calculated for comparison. It was found
that ordered GaInP2 and Ga0.5In0.5P had qualitatively
different phonon spectra: ordered GaInP2 exhibited
two-mode behavior, with two GaP-like and two InP-like
phonon modes, while disordered Ga0.5In0.5P exhibited
pseudo-one-mode behavior: two LO modes, one of GaP
and another of mixed GaP/InP character, appeared,
while the TO modes of GaP and InP merged into a
single alloy mode. This is in remarkable agreement with
experiments (Ozoliņš and Zunger, 1998).

6. Localized vibrations at defects

Localized vibrational modes of impurities contain a
wealth of information on the local structure of the de-
fect. Their analysis requires an accurate knowledge of
the phonon spectra of the host crystal. The isotopic fine
structure of substitutional impurities in III-V semicon-
ductors was studied using DFPT for the bulk crystal and
a Green’s-function technique, with results far superior
to those obtained using model calculations (Robbie
et al., 1995). With these techniques, the host isotope fine
structure of 12C:As and 11B:As local modes in GaAs
(Robbie et al., 1995), of the As:P gap mode (Grosche
et al., 1995), and of B:Ga gap and local modes in GaP
(Robbie et al., 1996) were successfully analyzed.



549Baroni et al.: Phonons and related crystal properties from DFPT
C. Lattice vibrations at surfaces

Most DFPT calculations on surface phonons have fo-
cused on semiconductor surfaces (Fritsch and Schröder,
1999; Eckl, Honke, et al., 1997; Stigler et al., 1998).7 The
work on semiconductor surface phonons has been de-
scribed in a recent extensive review article (Fritsch and
Schröder, 1999). In Fig. 9 we show an example of the
accuracy that can be reached by these calculations in
III-V surfaces.

Other DFPT calculations have been performed for
H-covered and clean W(110) surfaces (Bungaro et al.,
1996), for Be(0001) (Lazzeri and de Gironcoli, 1998),
and for Ag(111) (Xie et al., 1999b) surfaces. Description
of the two latter studies is deferred to Sec. V.E.3.

7Calculations have been performed for GaAs(110) (Fritsch
et al., 1993), InP(110) (Fritsch, Pavone, and Schröder 1995),
GaP(110) and InAs(110) (Eckl, Fritsch et al., 1997), InSb(110)
(Buongiorno Nardelli, Cvetko et al., 1995); for Si(111) (Ancil-
otto et al. 1991) for Si(001) (Fritsch and Pavone, 1995) and Ge
(001) (Stigler et al., 1997); for H-covered (110) surfaces of
GaAs, InP (Fritsch, Eckert et al., 1995), and of GaP, InAs
(Eckl, Honke et al., 1997), for H- and As-covered Si(111) (1
31) surfaces (Eckl, Honke et al., 1997; Honke, Pavone, and
Schröder, 1996), for Ga- and B-covered Si(111) ()3)) R30
(Eckl, Honke et al., 1997); for Ge on GaAs(110) (Honke,
Fritsch et al., 1996); and for As-covered (110) surfaces of
GaAs, GaP, InAs, InP (Fritsch et al., 2000).

FIG. 9. Phonon dispersion of InP, GaP, InAs, and GaAs(110).
The large shaded areas represent the surface projected bulk
states. Surface-localized and resonant modes are indicated by
solid and dashed lines. The squares and triangles represent
data from HREELS and HAS, respectively. Earlier local den-
sity approximation results are indicated by circles. From Eckl,
Honke et al., 1997.
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The hydrogen-covered (110) surface of W exhibits
phonon anomalies, clearly caused by H adsorption,
whose nature is still unclear. An anomaly in the upper
Rayleigh phonon branch along the (001) direction has
been observed both in helium-atom scattering and in
electron energy-loss spectra (EELS). In the lower
branch, a similar anomaly is observed by EELS, whereas
a much deeper one is only detected by helium-atom
scattering. DFPT calculations (Bungaro et al., 1996)
yield excellent agreement with both helium-atom scat-
tering and EELS for the upper anomalous branch, and
with EELS for the lower branch, provided that a careful
sampling of the surface Brillouin zone is performed.
Such anomalies are interpreted as due to Fermi-surface
nesting (Kohn anomaly). However, the calculations do
not predict the deep anomaly observed by helium-atom
scattering in the lower branch, whose nature is still not
clear. As a byproduct of these calculations, the phonon
dispersions for bulk bcc W and for a clean (110) surface
have been calculated, and both were found to be in ex-
cellent agreement with experiment (Bungaro et al.,
1996).

D. Soft phonons and pressure-induced lattice
transformations

Many phase transitions, both those induced by pres-
sure and those induced by temperature, are driven by a
lattice instability. This may be an elastic instability (lead-
ing to a change of shape of the unit cell) or a phonon
instability (a soft phonon, whose energy goes to zero).
When soft phonons have a nonzero k vector (usually at
the border of the Brillouin zone) the distortion that sets
up causes an increase in the dimensions of the unit cell.
The identification of the soft phonon responsible for the
phase transition is only the first step in understanding
the phase transition. The next step is usually the con-
struction of a realistic model that takes into account all
the relevant anharmonic interactions responsible for sta-
bilization of the low-symmetry structure (these may in-
clude coupling with the strain, multiple soft modes, and
so on).

The earliest calculation using DFPT of a phonon in-
stability was performed on the narrow-gap semiconduc-
tors GeTe, SnTe, and PbTe (Zein et al., 1992). The first
two exhibit a transition from a high-temperature cubic
rocksalt phase to a low-temperature rhombohedral
phase, at T;700 K and T;140 K, respectively. A calcu-
lation of the dielectric and zone-center phonons in the
cubic phase yields negative values for vTO in GeTe and
SnTe and an anomalously low value in PbTe, consistent
with experimental observations.

1. Ferroelectrics

The ferroelectric transition in perovskite materials, of
which the most famous example is BaTiO3, is closely
related to a lattice instability. In ferroelectrics (and in
general in temperature-induced phase transitions) an-
harmonicity plays a fundamental role: harmonic calcula-
tions generally yield a negative frequency for the soft
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mode at zero temperature. At higher temperature, an-
harmonicity stabilizes the soft mode. Accurate phonon
calculations are in any case the starting point for con-
structing an effective Hamiltonian for the ferroelectric
transition through the use of a localized, symmetrized
basis set of lattice Wannier functions (Rabe and Wagh-
mare, 1995). These are the phonon analogs of electronic
Wannier functions for electrons. Furthermore, the map-
ping of the phonon instabilities in the full Brillouin zone
gives a real-space picture of ferroelectric instability,
even when it involves coordinated atomic displacements
in several unit cells.

Ferroelectric phase transitions have been studied us-
ing DFPT in barium titanate, BaTiO3 (Ghosez et al.,
1997), potassium niobate, KNbO3 (Yu and Krakauer,
1995; Wang et al., 1996b), strontium titanate, SrTiO3
(LaSota et al., 1997), lead titanate, PbTiO3 (Waghmare
and Rabe, 1997), and lead zirconate, PbZrO3 (Ghosez
et al., 1999).

In KNbO3 phonons at the G point, effective charges,
and the dielectric tensor were calculated for the cubic,
tetragonal, and rhombohedral perovskite structure. In
the hypothetical cubic structure, soft modes are present:
one of these modes is stabilized in the experimentally
observed tetragonal structure, and all of them are stable
in the rhombohedral structure, which turns out to be the
most stable one. An effective Hamiltonian has been con-
structed using lattice Wannier functions by Waghmare
et al. (1998). For the cubic structure a complete mapping
of the phonon dispersion in the Brillouin zone has been
computed. The results show a soft-mode dispersion that
exhibits an instability of a pronounced two-dimensional
nature in reciprocal space and suggests a one-
dimensional chain-type instability oriented along the
(100) direction of displaced Nb atoms (Yu and
Krakauer, 1995). Similar phonon dispersions and chain-
type instability were also found in BaTiO3 (Ghosez
et al., 1998a).

SrTiO3 exhibits both ferroelectric and antiferrodistor-
tive instabilities. In the cubic structure, phase space of
the ferroelectric instability is greatly reduced compared
to KNbO3 . Antiferrodistortive instabilities exist in one-
dimensional cylindrical tubes extending along the entire
R-M-R line in the Brillouin zone. The one-dimensional
character of these tubes corresponds to real-space pla-
nar instabilities characterized by rotations of oxygen oc-
tahedra (LaSota et al., 1997).

In PbTiO3, phonons at G, R , X , M for the cubic struc-
ture were used to construct lattice Wannier functions for
an effective Hamiltonian. In contrast with the results for
BaTiO3 and KNbO3, a significant involvement of the Pb
atom in the lattice instability was found. Monte Carlo
simulations for this Hamiltonian showed a first-order
cubic-tetragonal transition at 660 K. The resulting tem-
perature dependence of spontaneous polarization, c/a
ratio, and unit-cell volume near the transition were in
good agreement with experiment. Both coupling with
strain and fluctuations are necessary to produce the first-
order character of this transition (Waghmare and Rabe,
1997).
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The full phonon dispersion relations of PbTiO3 and of
PbZrO3 in the cubic perovskite structure were com-
puted and compared with previous results for barium
titanate by Ghosez et al. (1999). The comparison (see
Fig. 10) shows that the change of a single constituent has
a deep effect on the character and dispersion of unstable
modes, with significant implications for the nature of the
phase transitions and the dielectric and piezoelectric re-
sponses of the compounds. The unstable localized ferro-
electric mode of PbTiO3 has a much weaker dispersion
with respect to BaTiO3. As a consequence ferroelectric
distortion is almost isotropic in real space. Furthermore,
there is an antiferrodistortive instability at the R point,
not present in BaTiO3 or KNbO3. In PbZrO3 the ground
state is antiferroelectric and is obtained by freezing
mainly modes at R and S. The phonon dispersions
therefore show even more pronounced instabilities. The
unstable branches are dominated by Pb and O displace-
ments. Examination of the interatomic force constants
in real space for the three structures PbTiO3, PbZrO3,
and BaTiO3 shows that while most are very similar, it is
the difference in a few key interactions which produces
the observed changes in the phonon dispersions. This
suggests the possibility of using the transferability of
force constants to predict the lattice dynamics of perov-
skite solid solutions.

2. Pressure-induced phase transitions

The subject of pressure-induced phase transitions has
become increasingly important since the invention of the
diamond anvil cell. Beyond a fundamental interest, the
behavior of matter at very high pressures (such as those
found in the interior of the earth and of other planets) is
relevant in geology and astronomy.

Contrary to what happens in temperature-induced
phase transitions, anharmonicity does not necessarily
play an important role in pressure-induced phase transi-
tions. One or more harmonic frequencies may become
soft as a consequence of the changes in volume and
atomic positions caused by applied pressure. It is there-
fore important to determine whether phonon instabili-
ties occur and whether they occur at lower or higher
pressure with respect to other possible instabilities.

a. Cesium halides

Cesium halides—CsI, CsBr, CsCl—crystallize in the
cubic B2 structure at low pressure. Under high pressure,
CsI makes a continuous transition to a lower-symmetry
phase, whose onset is as low as P.15 GPa. The lower-
symmetry phase was originally thought to be tetragonal,
but it was later identified as an orthorhombic phase, ap-
proaching a hexagonal close-packed structure with in-
creasing pressure (Mao et al., 1989, 1990). CsBr also has
a phase transition around P553 GPa, while it is not
clear if such a transition is present in CsCl.

A detailed study of the phonon spectra and of the
elastic stability of CsI (see Fig. 11) reveals that an elastic
instability leading to a cubic-to-tetragonal transition is in
competition with a phonon instability of zone-boundary



551Baroni et al.: Phonons and related crystal properties from DFPT
FIG. 10. Calculated phonon
dispersion relations of BaTiO3,
PbTiO3, and PbZrO3 along
various high-symmetry lines in
the simple cubic Brillouin zone.
From Ghosez et al., 1999.
M5
2 modes (Buongiorno Nardelli, Baroni, and Glan-

nozzi, 1995). In the framework of Landau theory, a phe-
nomenological model for the free energy around the
transition can be set up using the results from first-
principles calculations. Group theory allows one to re-
strict the search for minimum-energy structures to those
whose symmetry group is a subgroup of the group of the
undistorted structure. The resulting model is still quite
complex: the order parameter (the amplitude of the soft
phonons) is six dimensional. In CsI, the coupling be-
tween phonons and strain plays a crucial role in favoring
the transition, driven by a soft phonon, to an orthorhom-
bic structure from the tetragonal one. In CsBr, by con-
trast, the elastic instability leading to the cubic-to-
tetragonal transition may instead occur before the
phonon instability. Finally, in CsCl, no softness of the
zone-boundary phonons and a very weak tendency to-
wards elastic instability are observed (Buongiorno
Nardelli, Baroni, and Giannozzi, 1995).
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b. Cesium hydride

Like most alkali hydrides, CsH crystallizes in the
rocksalt (cubic B1) structure and undergoes a transition
to the CsCl (cubic B2) structure under moderate pres-
sure. A second transition from the B2 structure to a new
orthorhombic phase (assigned to a CrB structure, space
group D2h

17 ) has been observed in CsH at P;17 GPa
(Ghandehari et al., 1995). Saitta et al. (1997) have shown
that this first-order transition is intimately related to a
displacive second-order transition (driven by a soft pho-
non at the M point of the BZ, M2

2) which would occur
upon application of a shear strain to the (110) planes.

c. Silicon dioxide

Silicon dioxide exists in a large number of different
phases, both crystalline and amorphous. A surprising
and still not fully understood phenomenon (observed in
many other materials as well) is pressure-induced amor-
phization, taking place for SiO2 at room temperature
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with an onset around 15–25 GPa (Kingma, Meade et al.,
1993; Kingma, Hemley et al., 1993). DFPT calculations
(Fig. 12) show that a zone-boundary phonon, at the K
point of the Brillouin zone, becomes soft at P
;30 GPa. Baroni and Giannozzi (1998) suggested that
the extreme flatness of an acoustic phonon band whose
edge goes soft may be related to the strange behavior of
amorphization. As a matter of fact, a transition to a dis-
ordered state is observed in a simple model for
(strongly) anharmonic vibrations in one dimension when
the strength of the harmonic coupling is smaller than
some critical value. The isostructural compound AlPO4
berlinite, which undergoes a similar pressure-induced
amorphization, also has a soft phonon at the K point of
the Brillouin zone (Baroni and Giannozzi, 1999), and
displays a similar—although less pronounced—
flattening of the acoustic band just before amorphiza-
tion.

The stability of stishovite (tetragonal rutile structure)
under high pressure was studied by Lee and Gonze

FIG. 11. Phonon dispersion relation along the S (110) for CsI
at equilibrium volume and just above and below the softening
pressure of the M5

2 acoustic mode. Negative frequencies actu-
ally mean imaginary (i.e., negative squared frequencies). From
Buongiorno, Nardelli, Baroni et al., 1999.

FIG. 12. Soft mode in a-quartz. Left panel, a-quartz phonon
spectra along the G-L line for the soft mode: solid line, at P
530 GPa; dotted line, P534 GPa; dashed line, P543 GPa.
Right panel: dependence of the soft-mode frequency at the
K-point upon pressure. From Baroni and Giannozzi, 1998.
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(1997). Both a ferroelastic instability to the orthorhom-
bic CaCl2 phase and a softening of the B1g phonon
mode at G were found. The former preceded the latter,
at P564 GPa, thus leading to a second-order transition
to the CaCl2 structure.

d. Semiconductors

In ANB82N octet semiconductors, one would expect a
sequence of transitions with increasing pressure into the
structures of more ionic binary compounds: zinc
blende→NaCl→b-tin. Earlier experimental and theo-
retical data supported this picture. However, newer and
more accurate angle-dispersive x-ray measurements
have revealed that the high-pressure structures of most
III-V semiconductors are more complex than expected
on the basis of this simple picture. The reason is that the
NaCl and b-tin structures may become unstable with re-
spect to lattice instabilities (soft phonons). Ozoliņš and
Zunger (1999) explain the systematic absence of the
NaCl phase for all covalent compounds below a critical
ionicity value in terms of the instability of a zone-
boundary transverse-acoustic (TA) phonon at the X
point, leading to a Cmcm phase. The b-tin structure
turns out to be unstable for all but the most covalent
compound, due to the presence of a phonon anomaly
along the c-axis direction in the LO branch (Ozoliņš and
Zunger, 1999). A similar approach (Kim et al. 1999)
shows that in most III-V semiconductors the CsCl struc-
ture, which was believed to follow the b-tin structure at
very high pressure, is actually unstable for GaP, GaAs,
InP, and InAs, due to the softening of TA phonons at
the M point. A Landau analysis of the phase transition
leads to two candidate high-pressure structures, the InBi
and the AuCd structures, respectively.

The softening of zone-boundary TA modes in germa-
nium was studied both experimentally with inelastic
neutron scattering and theoretically with DFPT calcula-
tions by Klotz et al. (1997). Softening is prevented by an
unrelated first-order transition to the b-tin structure oc-
curring at P59.7 GPa.

e. Solid hydrogen

The nature of the high-pressure phases of solid hydro-
gen is a fascinating subject. In the gas and diluted solid
phases, quantum effects are very important and the ho-
mopolar H2 molecules, interacting via electric
quadrupole-quadrupole interactions, rotate freely even
at low temperature. Upon compression, solid hydrogen
undergoes a first transition to a broken-symmetry phase
(phase II) where the molecule rotation is frozen. At P
;150 GPa hydrogen undergoes a second transition from
phase II to a phase III, not clearly identified, and char-
acterized experimentally by a strong increase in IR ac-
tivity in the vibronic range. A theoretical study combin-
ing constant-pressure ab initio molecular dynamics and
density-functional perturbation calculations (Kohanoff
et al., 1999) addressed this transition and found that
phase II (identified as a quadrupolar Pca21 hcp phase)
becomes unstable due to a zone-boundary soft phonon.
The resulting candidate structures for phase III have
larger unit cells, accounting for the many libronic peaks
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experimentally observed, and much larger effective
charges, leading to strongly increased IR activity, as ob-
served experimentally.

f. Metals

The lattice dynamics of the bcc and fcc phases of W
under pressure were studied by Einarsdotter et al.
(1997). The bcc phase is stable at zero pressure. Under
applied pressure, the bcc phase develops phonon soften-
ing anomalies for P;1200 GPa. At this pressure, how-
ever, the fcc and hcp phases have a lower enthalpy than
the bcc phase. The fcc phase of W has elastic instabilities
at zero pressure that stabilize with increasing pressure
before its enthalpy becomes lower than that of the bcc
phase.

Phonon instabilities in bcc Sc, Ti, La, and Hf were
studied by Persson et al. (2000). These metals exhibit
hexagonal (Sc, Ti, Hf) or double hexagonal (La) close-
packed structure at low temperature, while at high tem-
perature they become bcc.

3. Other phase transitions

In the substitutionally disordered narrow-gap semi-
conductor Pb12xGexTe, a finite-temperature cubic-to-
rhombohedral transition appears above a critical con-
centration x;0.005. A hypothetical ordered cubic
Pb3GeTe4 supercell has been studied as a model for such
alloys (Cockayne and Rabe, 1997). Unstable lattice
modes were found, dominated by off-centering of the
Ge ions coupled with displacements of their neighboring
Te ions. A model Hamiltonian for this system (using the
lattice Wannier function formalism) was constructed
and studied via Monte Carlo simulations. A transition
temperature of ;620 K was found for the cubic model,
compared to the experimental value of ;350 K for the
alloy.

E. Thermal properties of crystals and surfaces

The knowledge of the entire phonon spectrum
granted by DFPT makes possible the calculation of sev-
eral important thermodynamic quantities and of the
relative stability of different phases as functions of tem-
perature. The first calculation of a thermal property (ex-
pansion coefficients in Si) using DFPT dates back to
1989 (Fleszar and Gonze, 1989).

The thermodynamic properties of a system are deter-
mined by the appropriate thermodynamic potential rel-
evant to the given ensemble. In an ensemble where the
sample volume and temperature are independent vari-
ables, the relevant potential is the Helmholtz free en-
ergy, F5E2TS . For a solid in the adiabatic approxima-
tion, the free energy can be written as the sum of an
electronic and a vibrational term. The electronic entropy
contribution is easily evaluated in metals, although usu-
ally neglected, whereas it is totally negligible for insula-
tors: Fel.Eel . The key quantity to calculate in order to
have access to the thermal properties and to the phase
stability is the vibrational free energy Fph .
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Far from the melting point, the vibrational free energy
Fph can be conveniently calculated within the quasihar-
monic approximation. This consists in calculating Fph in
the harmonic approximation, retaining only the implicit
volume dependence through the frequencies:

Fph~T ,V !52kBT log~Tre2Hph(V)/kBT!, (173)

where Hph(V) is the phonon Hamiltonian at a given
volume. In terms of the phonon spectra, Fph can be writ-
ten as

Fph~T ,V !52kBT(
i ,k

logS (
n

e2(n11/2)\v ik(V)/kBTD .

(174)

Once the sum over occupation numbers n is performed,
one gets the final formula:

Fph~T ,V !5kBT(
i ,k

log$2 sinh@\v ik~V !/2kBT#%.

(175)

In practical calculations, the force constants are calcu-
lated at a few volumes and interpolated in between to
get the volume dependence. Once the phonon spectrum
over the entire Brillouin zone is available, the calcula-
tion of Fph reduces to a straightforward integration over
the Brillouin zone.

The quasiharmonic approximation accounts only par-
tially for the effects of anharmonicity, through the vol-
ume dependence of the phonon spectra (this is clearly
an anharmonic effect: the perfect harmonic crystal
would have no volume expansion with temperature) but
it turns out to be a very good approximation at tempera-
tures not too close to the melting point.

The quantities that can be calculated in the quasihar-
monic approximation include equilibrium lattice param-
eters and elastic constants, specific heat, and thermal ex-
pansion coefficients, as a function of the temperature.
Corrections due to quantum fluctuations (zero-point
motion) at zero temperature can be estimated as well. A
comparison of the free energies of different phases (not
related by symmetry relations, unlike those considered
in Sec. V.D) yields the relative stability as a function of
pressure and temperature. Most calculations in this field
have been performed on simple systems, but there are a
few examples of applications to surfaces, notably to
anomalous thermal expansion.

1. Metals

The equilibrium lattice parameter and thermal expan-
sion coefficients for bcc Li and fcc Al and Na were com-
puted by Quong and Liu (1997). The relative stability of
the various polymorphs of Li (bcc, fcc, hcp, 9R) was
examined by Liu et al. (1999). It was found that the
transformation from the 9R structure at low tempera-
tures to the bcc phase upon heating is driven by the
large vibrational entropy associated with low-energy
phonon modes in bcc Li. The strength of the electron-
phonon interaction in Li was calculated and found to be
significantly reduced in the low-temperature 9R phases
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as compared to the bcc phase, consistent with the ob-
served lack of a superconducting transition in Li (Liu
et al., 1999).

The thermal properties of fcc Ag, plus the Grüneisen
parameters, were calculated by Xie et al. (1999a).

The a-b phase transition in tin was studied by Pavone
et al. (1998). At T50 K, the free energy of the b phase
lies ;359 cal/mole above that of the a structure. The
narrower frequency range spanned by the vibrational
band in the b phase makes its entropy larger at high
temperature. As a consequence, the free energies of the
two phases, shown in Fig. 13, equal each other at a tem-
perature of ;38 C, in close agreement with the observed
transition temperature Tc513 C (Pavone et al., 1998).

2. Semiconductors and insulators

Calculations have been reported of the thermal prop-
erties and Grüneisen parameters of Si (Rignanese et al.,
1996), of the thermal-expansion coefficients of diamond
(Pavone et al., 1993) and of the thermal-expansion coef-
ficient and specific heat of cubic SiC in the 3C structure
(Karch et al., 1994).

In diamond, thermal properties were calculated at
high pressures, up to 1000 GPa (Xie, Chen et al., 1999).
The P-V-T equation of states was calculated from the
Helmholtz free energy. The thermal-expansion coeffi-

FIG. 13. Zero-pressure energy curves for the a and b phases
of tin as functions of temperature: solid lines, free energy;
dashed lines, internal energy. The thin vertical dotted line in-
dicates the theoretical transition temperature, while the ex-
perimental value for Tc is shown by the arrow. l0
5359 cal/mole is the T50 K free-energy difference—including
the zero-point contribution—while l5482 cal/mole indicates
and the latent heat adsorbed in the a↔b transition. Finally,
the inset displays the temperature dependence of the vibra-
tional entropies of the two phases. From Pavone et al., 1998.
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cient was found to decrease with the increase of pres-
sure, and at ultrahigh pressure (700 GPa), diamond ex-
hibited a negative thermal-expansion coefficient at low
temperatures.

The temperature dependence of the diamond-b-tin
phase transition in Si and Ge, which occurs under pres-
sure at ;10 GPa, was calculated by Gaál-Nagy et al.
(1999) using the quasiharmonic approximation.

Thermal properties (specific heat, entropy, phonon
contribution to the free energy, and atomic temperature
factors) for SiO2 in the a-quartz phase and in the high-
pressure stishovite phase were calculated by Lee and
Gonze (1995).

The ability of the quasiharmonic approximation to
yield thermodynamic properties of materials over a con-
siderable pressure-temperature regime has been as-
serted in recent papers by Karki et al. (1999, 2000). In
these works the thermoelastic properties of MgO were
calculated over a wide range of pressures and tempera-
tures. Thermodynamic potentials and several derived
quantities (such as the temperature dependence of elas-
tic constants at high pressures) were computed and suc-
cessfully compared with experimental data (Karki et al.,
1999, 2000).

3. Surfaces

The thermal expansion of surfaces has been calculated
for Ag(111) (Xie et al., 199b) and for Be(0001) (Lazzeri
and de Gironcoli, 1998).

In Ag(111), the top-layer relaxation changes from an
inward contraction (20.8%) to an outward expansion
(16.3%) as the temperature increases from T
50 –1150 K, in agreement with experimental findings.
The calculated surface phonon dispersion curves at
room temperature are in good agreement with helium-
scattering measurements (Xie et al., 1999b).

At the Be(0001) surface, an anomalously large ther-
mal expansion was recently observed in low-energy elec-
tron diffraction experiments. The calculations were
tested in bulk Be, where they described the thermal ex-
pansion very well, and checked against first-principles
molecular-dynamics simulations for the surface. A large
thermal expansion was not found. This discrepancy
could be explained assuming that the actual surface
were less ideal than assumed (Lazzeri and de Gironcoli,
1998).

4. Alloys

The vibrational contribution to the free energy is
known to affect the phase stability of alloys. The impor-
tance of this effect has been examined in two metallic
alloys, the Cu-Au (Ozoliņš et al., 1998) and Re-W sys-
tems (Persson et al., 1999).

Cu-Au systems were studied using a combination of
DFPT and cluster expansion methods. The vibrational
free energy of the alloy was calculated by a cluster ex-
pansion over a small set of representative ordered struc-
tures having small supercells, in much the same way as
the configurational free energy is calculated. Anhar-
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monic effects were taken into account through the
quasiharmonic approximation. The results indicated that
the vibrational free energy contributes significantly to
the phase stabilities and thermodynamic functions of the
CuAu system. In particular it tends to stabilize the com-
pounds and alloys with respect to the phase-separated
state and lowers the order-disorder transition tempera-
tures. It was found that the vibrational free energy, not
the vibrational entropy, is the relevant quantity, due to
the larger thermal-expansion coefficients of the alloy
with respect to the ordered ground states (Ozoliņš et al.,
1998).

A somewhat similar approach was applied to the
study of the dynamical and thermodynamical stability of
the bcc and fcc disordered RexW12x system. As a
byproduct, the phonon dispersion curves for fcc and bcc
Re were calculated. Fcc Re is dynamically stable but has
pronounced phonon anomalies; bcc Re exhibits phonon
instabilities in large parts of the Brillouin zone, similar
to those found in fcc W. Due to the instabilities in bcc
Re and fcc W, the vibrational entropy, and therefore the
free energy, is undefined. This problem was circum-
vented by using the virtual-crystal approximation to cal-
culate the phonon dispersions of disordered RexW12x
and by applying a concentration-dependent nonlinear
interpolation to the force constants. A region was found
where the bcc phase would become thermodynamically
unstable towards a phase decomposition into disordered
bcc and fcc phases (Persson et al., 1999).

F. Anharmonic effects

Third-order energy derivatives can be calculated di-
rectly from the linear response using the 2n11 theorem
(See Sec. II.F). The first calculation of anharmonic force
constants using DFPT and the 2n11 theorem was per-
formed for the lifetimes of zone-center optical phonons
in diamond, Si, and Ge (Debernardi et al., 1995) due to
their anharmonic decay into two phonons of lower fre-
quency. Anharmonic decay is the main contribution to
the linewidth of such Raman-active modes, once isoto-
pic and other inhomogeneous broadening contributions
are subtracted. The temperature and pressure depen-
dences of anharmonic lifetimes were calculated as well
(see Fig. 14 for the former). The results are in good
agreement with experimental data. The microscopic
mechanisms responsible for the decay are found to be

FIG. 14. Temperature dependence of the full width at half
maximum, 2G , of the zone-center optical phonon in diamond,
Si, and Ge: solid lines, the result of DFPT calculation; j, ex-
perimental data. From Debernardi et al., 1995.
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different for different materials and to depend sensi-
tively on the applied pressure (Debernardi et al., 1995).

Subsequent work was performed in the zinc-blende
semiconductors GaAs, AlAs, GaP, InP (Debernardi,
1998) and in SiC (Debernardi et al., 1999). In III-V semi-
conductors, the linewidth of Raman-active modes, both
transverse and longitudinal, and their temperature de-
pendence were computed. For longitudinal phonons a
simple approximation consisting of neglecting the effect
of the macroscopic electric field in the anharmonic terms
yielded good results (Debernardi, 1998). In 3C (cubic
zinc blende) SiC the pressure dependence, up to 35 GPa,
of the linewidths of the LO and TO modes at the Bril-
louin zone center was calculated. An anomalous behav-
ior was found: the linewidth of the transverse mode
changed very little with pressure, while the longitudinal
mode showed a monotonic increase up to 26 GPa, de-
creasing abruptly above this pressure. The results are in
good agreement with new experimental data, up to 15
GPa (Debernardi et al., 1999).

A different approach to anharmonicity combines
DFPT to calculate harmonic force constants and frozen
phonons to calculate higher-order force constants
through numerical differentiation. This approach is less
elegant and more sensitive to numerical accuracy than
the use of the 2n11 theorem. However it allows one to
calculate quartic anharmonic terms and those third-
order energy derivatives whose calculation with the 2n
11 theorem is hindered by technical difficulties, such as
Raman cross sections in the nonresonant limit (Gian-
nozzi and Baroni, 1994). This approach was first used to
calculate the contribution of quantum fluctuations (zero-
point motion) to the bulk modulus of diamond and to
the dielectric constant of diamond, Si, and Ge. It was
also used to calculate the temperature dependence of
these quantities (Karch, Dietrich et al., 1996). More re-
cently, the anharmonic shift of the Raman frequency of
diamond and Si, in which both cubic and quartic anhar-
monic terms are equally important, has been calculated
(Debernardi, 1999). The temperature dependence of the
Raman frequency and the contribution of zero-point
motion were calculated as well as the Raman linewidth.
The same quantities were calculated in Ge using the
2n11 theorem for the cubic terms and assuming that
the quartic anharmonic force constants could be ap-
proximated by those of silicon (Lang et al., 1999).

G. Isotopic broadening of Raman lines

In the harmonic approximation, the effect of isotopic
disorder or of isotopic substitution is only reflected in
the change of masses in the dynamical matrix. The fre-
quency shift caused by isotopic substitution depends on
phonon displacement patterns and may be used as a
probe of the latter. DFPT results have been applied to
the interpretation of Raman experiments in isotopically
substituted C60 (Guha et al., 1994), in GaN (Zhang et al.,
1997), and in SiC (Widulle, Ruf et al., 1999).

Isotopic disorder is also responsible for a broadening
and further shift of the Raman lines beyond the virtual-
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crystal approximation which replaces the masses of each
individual atom with their composition-averaged value.
Disorder effects are usually treated within some kind of
mean-field approximation (such as the coherent poten-
tial approximation). Steininger et al. (1999) used both
the coherent potential approximation and a supercell
approach to calculate the broadening of Raman peaks in
Si, Ge, and a-tin, employing interatomic force constants
calculated from first principles.

Recently Vast and Baroni (2000) presented a new
method for studing the effects of isotopic composition
on the Raman spectra of crystals beyond the mean-field
approximation. The Raman cross section is expressed as
a diagonal element of the vibrational Green’s function,
which is accurately and efficiently calculated using the
recursion technique. This method was applied to
diamond—where isotopic effects dominate over the an-
harmonic ones—as well as to Ge, where anharmonic ef-
fects are larger. In both cases the results were in very
good agreement with experiment (Vast and Baroni,
2000).

Other effects of isotopic substitution appear beyond
the harmonic approximation. The molecular volume of
crystals depends on isotopic masses through the zero-
point motion. This is a tiny but measurable effect, which
can be calculated using the quasiharmonic approxima-
tion (Sec. V.E). The dependence of the crystal lattice
constant on isotopic composition has been calculated for
the elemental semiconductors diamond, Si, and Ge
(Pavone and Baroni, 1994) and for the compound zinc-
blende semiconductors GaAs and ZnSe (Debernardi
and Cardona, 1996). In the latter case, the temperature
dependence of the derivatives of the lattice constant
with respect to both the anion and the cation mass was
computed, together with the linear thermal-expansion
coefficients and mode Grüneisen parameters.

The dependence of the Raman linewidth in 3C-SiC on
both isotopic composition and temperature for longitu-
dinal and transverse modes was calculated by Deber-
nardi and Cardona (1998). The linewidths exhibited a
marked and nontrivial dependence on isotopic composi-
tion.

H. Vibrational broadening of electronic core levels

Phonons cause a temperature-dependent broadening
of core-level spectra. The calculation of such broadening
requires an accurate description of both phonon spectra
and of core-excited electronic states. A theoretical
framework within which to deal with this problem has
been provided by Mäder and Baroni (1997), together
with an application to the 1s core exciton of diamond,
for which a strong vibronic coupling is present. The sud-
den approximation (optical absorption and emission tak-
ing place in much shorter times than typical phonon re-
sponse times) is assumed, leading to a Franck-Condon
picture. The electronic and vibrational degrees of free-
dom are consistently treated using density functional
theory. A suitable pseudopotential, generated on the ex-
cited atomic configuration, allows one to simulate the
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excited electronic states. Due to the large lattice distor-
sion, anharmonicity cannot be neglected. In the limit of
infinite core-hole lifetime, anharmonic effects are in-
cluded within a self-consistent phonon approach. Mäder
and Baroni (1997) found the Stokes shift for the 1s ex-
citon level to be about 3 eV (the harmonic approxima-
tion would overestimate it by about 1.4 eV) and the pho-
non broadening to be about 2 eV.

VI. CONCLUSIONS AND PERSPECTIVES

The results reviewed in this paper witness the blos-
soming of ab initio lattice-dynamical calculations in sol-
ids, based on density-functional (perturbation) theory.
Our ability to predict from first principles the phonon-
related properties of materials depends both on the ac-
curacy of the ab initio calculation of lattice vibrations
and on the quality of the approximations needed to re-
late these calculations to the specific property one is in-
terested in (e.g., the electric conductivity or the tem-
perature dependence of the crystal volume). The
accuracy of the calculations can be appraised by com-
paring the calculated frequencies with infrared, Raman,
or neutron-diffraction experiments. It is fair to state that
lattice dynamics is the one field of solid-state physics in
which the accuracy of ab initio calculations can compete
with that of absorption or diffraction spectroscopies. Of
course, it would be vain to put much effort into the cal-
culation of quantities that can be measured with compa-
rable or better accuracy. The real value of first-
principles calculations is their ability to provide
unbiased predictions for those materials and in those
cases which are not easily accessible to experiment.

Even though necessarily oversimplified, the physical
conditions of the sample being studied numerically are
under our total control and can therefore be varied at
will. This allows us to assess the quality and validity of
models that relate the atomic and electronic structure of
materials, which is usually unknown, to their macro-
scopic and experimentally accessible properties. Once
the accuracy of the calculated phonon frequencies has
been assessed, the agreement of the predictions for de-
rived quantities gives an indication of the validity of the
approximations used to derive them. When inter-atomic
distances depend upon temperature, for instance, com-
paring calculated values with experiment gives an indi-
cation of the validity of the quasiharmonic approxima-
tion used to calculate them. Rather surprisingly, it turns
out that in a variety of cases, this approximation gives
precise results almost up to the melting temperature.

In conclusion, the field of lattice-dynamical calcula-
tions based on density-functional perturbation theory is
developed enough to allow systematic application of
DFPT to systems and materials of increasing complex-
ity. The availability to a larger scientific community of
the software necessary to perform such calculations will
make them a routine ingredient of current research, in
much the same way as has occurred for standard density
functional theory calculations over the past five years or
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so.8 Among the most promising fields of application, we
mention the characterization of materials through the
prediction of the relationship between their atomic
structure and experimentally detectable spectroscopic
properties; the study of the structural (in)stability of ma-
terials at extreme pressure conditions; and the predic-
tion of the thermal dependence of different materials’
properties using the quasiharmonic approximation.
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APPENDIX A: PLANE-WAVE PSEUDOPOTENTIAL
IMPLEMENTATION

1. Pseudopotentials

Norm-conserving pseudopotentials are relatively
smooth functions, whose long-range tail looks like
2Zve2/r where Zv is the number of valence electrons.
There is a different pseudopotential for each atomic an-
gular momentum l :

V̂5Vloc~r !1(
l

Vl~r !P̂ l , (A1)

where P̂ l5(m52l
l ulm&^lmu is the projection operator on

states of angular momentum l , and where ulm& is the
angular state with (l ,m) angular quantum numbers.
Usually Vloc(r).2Zve2/r for large r , so that the Vl(r)
are short-ranged. Pseudopotentials in this form are
called semilocal:

V~r,r8!5Vloc~r !d~r2r8!1(
lm

Ylm~r!Vl~r !

3d~r2r8!Ylm* ~r8!, (A2)

where the Ylm(r)5^rulm& are the usual spherical har-
monics.

8An open source computer code for performing DFT-DFPT
pseudopotential calculation has been made available by the
present authors on the net, at URL http://www.pwscf.org
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Pseudopotentials are usually recast into the Kleinman
and Bylander (1982) separable form. Each pseudopoten-
tial is projected onto the atomic reference pseudo wave
functions f l

ps :

V̂5Vloc1VL1(
l

uVl8f l
ps&^Vl8f l

psu

^f l
psuVl8uf l

ps&
, (A3)

where VL(r) is an arbitrary function, Vl8(r)5Vl(r)
2VL(r). By construction, the original pseudopotential
and the projected pseudopotentials V̂ have the same ei-
genvalues and eigenvectors on the reference states f l

ps .
The separable form may fail badly in some cases due to
the appearance of spurious ghost states. Solutions have
been devised to avoid such a problem (Gonze et al.,
1990, 1991).

2. Matrix elements

A plane-wave basis set is defined as

^ruk1G&5
1
V

ei(k1G)•r,
\2

2m
uk1Gu2<Ecut , (A4)

where the G’s are reciprocal-lattice vectors, k is the
wave vector in the Brillouin zone, V is the crystal vol-
ume, and Ecut is the cutoff on the kinetic energy of the
plane wave.

In the PW-PP implementation, Sec. III.A, we assume
that the electron-ion potential Vion(r,r8) is written as

Vion~r,r8!5(
ls

vs~r2Rl2ts ,r82Rl2ts! (A5)

where vs is the pseudopotential for the sth atomic spe-
cies, whose general form is

vs~r,r8!5vs ,loc~r !d~r2r8!1(
l

vs ,l~r,r8!. (A6)

The plane-wave matrix elements of the above opera-
tor are given by

^k1Guvsuk1G8&5 ṽs ,loc~G2G8!

1(
l

ṽs ,l~k1G,k1G8!, (A7)

where

ṽs ,loc~G!5
1
V E vs ,loc~r !e2iG•rdr (A8)

and

ṽs ,l~k1 ,k2!5
1
V E e2ik1•rvs ,l~r,r8!eik2•r8drdr8. (A9)

For pseudopotentials in the semilocal form, Eq. (A2),

vs ,l~r,r8!5P̂ lfs ,l~r !, (A10)

and
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ṽs ,l~k1 ,k2!5
4p

V
~2l11 !Pl~ k̂1•k̂2!

3E
0

`

r2j l~k1r !j l~k2r !fs ,l~r !dr , (A11)

where the j l’s are spherical Bessel functions, and the Pl’s
are Legendre polynomials of degree l .

For pseudopotentials in the separable form, Eq. (A3),

vs ,l~r,r8!5cs ,lbs ,l* ~r!bs ,l~r8!, (A12)

and

ṽs ,l~k1 ,k2!5cs ,lb̃s ,l* ~k1!b̃s ,l~k2!, (A13)

where the b̃(k)’s are the Fourier transform of b(r), as
in Eq. (A8).

The matrix elements between plane waves of the de-
rivatives of the ionic potential, Eq. (88), are

K k1q1GU ]Vion

]us
a~q!

Uk1G8L
52i~qa1Ga2Ga8 !e2i(q1G2G8)•ts

3S ṽs ,loc~q1G2G8!

1(
l

ṽs ,l~k1q1G,k1G8! D . (A14)

The screening contribution to ]VSCF /]us
a(q), which is a

local potential in density functional theory, can be ad-
vantageously evaluated in real space and transformed
back to reciprocal space by the FFT technique.

The matrix elements of the commutator @HSCF ,r# be-
tween plane waves are

^k1u@HSCF ,r#uk2&5
\2

m
k1dk1k2

2i(
s ,l

e2i(k12k2)•ts

3S ]

]k1
1

]

]k2
D ṽs ,l~k1 ,k2!, (A15)

where dk1k2
51 if k15k2 , and dk1k2

50 otherwise.
The matrix elements of the second derivative of the

electron-ion interaction potential appearing in the sec-
ond term of Eq. (86) are given by

K k1GU ]2Vion

]us
a~q50 !]us

b~q50 !
Uk1G8L

52~Ga2Ga8 !~Gb2Gb8 !e2i(G2G8)•ts

3S ṽs~G2G8!1(
l

ṽs ,l~k1G,k1G8! D .

(A16)

APPENDIX B: FORCE CONSTANTS, IONIC TERM

The total energy of a crystal contains a divergent ion-
ion energy term, Eq. (3), that combines with the diver-
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gent G50 terms in the electron-ion energy [the second
term in Eq. (18)] to yield the Ewald term EEw :

EEw5
4pNc

V

e2

2 (
GÞ0

e2G2/4h

G2 U(
s

Zse
iG•tsU2

1
Nce2

2 (
s ,t

(
R

ZsZt erfc~Ahuts2tt2Ru!
uts2tt2Ru

2
pNce2

Vh S (
s

ZsD 2

2Nce2Ah

p (
s

Zs
2 , (B1)

where erfc(x)512erf(x) (erf is the error function); the
sum over R space excludes ts2tt2R50; Nc is the num-
ber of unit cells in the crystal; Zs indicates the bare ionic
charges for the sth atom (pseudocharges in a PP-PW
framework); and h is an arbitrary parameter, whose
value ensures good convergence of both sums over G
and R space.

The second derivative of the Ewald term yields the
ionic contribution to the force constants:

ionC̃st
ab~q!5

4pe2

V (
G

e2(q1G)2/4h

~q1G!2 ZsZt

3ei(q1G)•(ts2tt)~qa1Ga!~qb1Gb!

2
2pe2

V (
GÞ0

e2G2/4h

G2

3FZs(
l

Zle
iG•(ts2tl)GaGb1c.c.Gdst

1e2(
R

ZsZte
iq•R

3@dabf2~x !1f1~x !xaxb#x5ts2tt2R

2e2dst(
R

(
l

ZsZl

3@dabf2~x !1f1~x !xaxb#x5ts2tl2R (B2)

where the sum over G space excludes q1G50, the sums
over R space exclude ts2tt2R50, and the functions f1
and f2 are defined as

f1~r !5

3 erfc~Ahr !12Ah

p
r~312hr2!e2hr2

r5 , (B3)

f2~r !5

2erfc~Ahr !22Ah

p
re2hr2

r3 . (B4)
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16682.
Fritsch, J., A. Eckert, P. Pavone, and U. Schröder, 1995, J.
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Hamann, D. R., M. Schlüter, and C. Chiang, 1979, Phys. Rev.
Lett. 43, 1494.

Hedin, L., 1999, J. Phys.: Condens. Matter 11, R489.
Heid, R., and K.-P. Bohnen, 1999, Phys. Rev. B 60, R3709.
Heid, R., L. Pintschovius, W. Reichardt, and K.-P. Bohnen,

2000, Phys. Rev. B 61, 12059.
Heid, R., D. Strauch, and K.-P. Bohnen, 2000, Phys. Rev. B 61,

8625.
Rev. Mod. Phys., Vol. 73, No. 2, April 2001
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15772.

Parlinski, K., Z. Q. Li, and Y. Kawazoe, 1997, Phys. Rev. Lett.
78, 4063.

Parlinski, K., Z. Q. Li, and Y. Kawazoe, 1998, Phys. Rev. Lett.
81, 3298.

Parlinski, K., Z. Q. Li, and Y. Kawazoe, 2000, Phys. Rev. B 61,
272.

Parr, R. G., and W. Yang, 1989, Density Functional Theory of
Atoms and Molecules (Oxford University Press, New York).

Pavone, P., and S. Baroni, 1994, Solid State Commun. 90, 295.
Pavone, P., S. Baroni, and S. de Gironcoli, 1998, Phys. Rev. B

57, 10421.
Pavone, P., R. Bauer, K. Karch, O. Schütt, S. Vent, W. Windl,
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Schwoerer-Böhning, M., A. T. Macrander, M. Pabst, and P.

Pavone, 1999, Phys. Status Solidi B 215, 177.
Steininger, B., P. Pavone, and D. Strauch, 1999, Phys. Status

Solidi B 215, 127.
Sternheimer, R. M., 1954, Phys. Rev. 96, 951.
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Strauch, W. H. Weber, K. C. Hass, and L. Rimai, 1994, Phys.
Rev. B 49, 8764.

Windl, W., P. Pavone, K. Karch, O. Schütt, D. Strauch, P. Gi-
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Zhang, J. M., T. Ruf, A. Göbel, A. Debernardi, R. Lauck, and
M. Cardona, 1996, in Proceedings of the 23rd International
Conference on the Physics of Semiconductors, Berlin, 1996,
edited by M. Scheffler and R. Zimmermann (World Scien-
tific, Singapore), p. 201.

Zunger, A., S.-H. Wei, L. G. Ferreira, and J. E. Bernard, 1990,
Phys. Rev. Lett. 65, 353.


