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As a result of advances in experimental and theoretical physics, many interesting problems have arisen
in condensed-matter physics, typically as a result of the quantum-mechanical nature of a system.
Areas of interest include Anderson localization, universal conductance fluctuations, normal electron
persistent currents, and the properties of quasicrystals. Understanding such systems is challenging
because of complications arising from the large number of particles involved, intractable symmetries,
the presence of time-dependent or nonlinear terms in the Schrödinger equation, etc. Some progress
has been made by studying large scale classical analog experiments which may accurately model the
salient quantum-mechanical features of a condensed-matter system. This paper describes research
with a number of acoustical systems which have addressed contemporary problems in
condensed-matter physics.
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I. INTRODUCTION

A wish that many have is that the central processing
unit (CPU) in their computers could go even faster. One
way of accomplishing this would be to reduce the size
(and the capacitive time constant) of the CPU’s compo-
nents, e.g., the transistors and the wires connecting
them. A question which arises in condensed-matter
physics is whether or not the laws of physics which hold
for the larger components still hold for the smaller ones.
For example, for very small connecting wires, is Ohm’s
Law still valid? Experimental measurements show that,
at least at low temperatures, the voltage drop along a
small wire is not simply proportional to the current; thus
Ohm’s Law no longer holds. To understand this at a
fundamental level, it would be necessary to solve the
Schrödinger wave equation for an electron moving in
the potential field of a large number (107 –1023) of posi-
tive ions, a formidable problem. However, if the mate-
rial were a crystal and the ions were periodic, then it
would be sufficient to solve the Schrödinger equation for
one unit cell, which can be done to sufficient accuracy
for most applications; calculating the band structure for
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semiconductors, etc., has become routine. Yet there are
many important materials, such as amorphous solids, al-
loys, and small metallic wires, which are highly disor-
dered, so that the problem of solving the wave equation
with a large number of nonperiodic scatterers returns.
For sufficiently large samples, thermal motion of the
ions, i.e., a time-dependent potential field, destroys the
wave nature of the electron, permitting a statistical
treatment. The Schrödinger wave equation becomes a
transport equation, characterized by a mean free path
for inelastic scattering, which can be solved, providing a
means for dealing with disordered materials. However,
several developments in condensed-matter physics have
occurred which have again required the solution of the
wave equation with nonperiodic scatterers. In one case,
small solid grains having quasicrystalline structure were
formed. In another case, experimentalists made wires so
small that at low temperatures the length of the wire was
smaller than the mean free path for inelastic scattering,
so that an electron could maintain its phase coherence
throughout the wire. A typical experiment might involve
wires only 10 nm wide and one micron in length. The
study of such small systems, where an electron retains its
wave nature, was termed mesoscopic physics. The fun-
damental problem of waves encountering nonperiodic
scatterers dates back at least to Lord Rayleigh, and has
been addressed by many outstanding scientists and
mathematicians since that time. The resurgence of inter-
est in mesoscopic systems, and long-range phase coher-
ence, has been a current frontier of condensed-matter
physics. Interesting problems discussed in this paper in-
volve Anderson localization, the time-dependent and
nonlinear Schrödinger equation, normal electron persis-
tent currents, and quasicrystalline symmetry.

In addition to research on mesoscopic systems, an-
other approach to studying long-range phase coherence
has been jokingly referred to as ‘‘megascopic’’ physics,
where phase coherence is maintained for not just one
micron, but for ‘‘millions of microns,’’ or meters! Such
studies employ systems involving classical waves, me-
chanical or electromagnetic, and might be thought of as
©2001 The American Physical Society
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‘‘analog computers’’ for solving the Schrödinger wave
equation with complicated potential fields. These classi-
cal analog systems may quite accurately model the sa-
lient physics of quantum-mechanical systems. For ex-
ample, in a mesoscopic system, where the sample size is
smaller than the mean free path for inelastic scattering,
it is satisfactory, for a one-electron model, to solve the
time-independent Schrödinger equation:

2
\2

2m
¹2c1V8~rW !c5Ec . (1)

The solution c describes the behavior of an electron of
energy E acted upon by forces with the potential V8(r).
The time dependence is e2i(E/\)t. Solutions (eigenfunc-
tions) exist only for discrete values of E (eigenvalues);
thus the basis for quantum mechanics. By dividing
through by 2\2/2m , the Schrödinger equation may be
rewritten as

¹2c1@q22V~rW !#c50, (2)

where q is an ‘‘eigenvalue parameter,’’ which for the
quantum-mechanical system is A2mE/\2, and so related
to the energy eigenvalue.

The equation for classical (scalar) waves is

¹2c2
1
c2

]2c

]t2 50, (3)

where c is the wave propagation speed. Applying a Fou-
rier transform in time (i.e., assuming a time dependence
e2ivt), and contriving a system where the wave speed
varies with position rW , the classical wave equation may
be rewritten as

¹2c1@q22V~rW !#c50. (4)

For the classical system the eigenvalue parameter q is
v/c0 , where v is an eigenfrequency, or natural fre-
quency, and c0 is some mean wave propagation speed
for the system. Comparing the time dependencies, one
sees the quantum and classical relation E5\v . There
are some details omitted in this discussion, such as pos-
sible frequency dependence in the classical V(rW) and
dispersion (Lifshits, 1964), but in a cleverly designed
analog experiment, these may be rendered unimportant.
Indeed, often the salient physics in the quantum prob-
lem lies in the symmetry of the potential field V(rW), e.g.,
whether it is periodic, disordered, or quasicrystalline,
and other features are unimportant; in this case the clas-
sical system may be a very accurate model for the quan-
tum system.

Studies of classical wave mechanical systems have
some important advantages over studies of quantum
wave mechanical systems. In ‘‘megascopic’’ classical sys-
tems all conditions may be precisely controlled or mea-
sured. In an experiment one may readily determine ei-
genvalues and directly measure eigenfunctions, both
their amplitude and phase fields. Such measurements
have never been made in a quantum system, although
attempts with atomic probe microscopes are in progress.
The control and observability of the classical analogs
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may be matched by numerical simulations. However, as
will be illustrated in this paper, the classical experiments
can reveal aspects of a problem which can be over-
looked when a model is being developed for numerical
simulation. Furthermore, classical systems may be used
to study time-dependent potential fields and nonlinear
effects, which are very difficult and time consuming to
treat numerically or analytically.

For classical analog studies using electromagnetic ra-
diation (in the visible range) in disordered dielectric
fields, there has been considerable research motivated
not only by interest in the fundamental physics, but also
by possible applications in fiber-optic devices. However,
the classical systems which are the easiest to understand
and which provide the most detailed information em-
ploy acoustical scalar waves, and this paper will concen-
trate on these systems.

Interest in acoustical waves in disordered scattering
fields was originally motivated by a practical application
in noise abatement. Consider a plate, possibly a floor-
board in a small aircraft, as illustrated in Fig. 1(a). A
source of vibration, such as a motor, generates trans-
verse waves at one end of the plate. The waves travel
down the plate, and as the plate vibrates it radiates noise
into the air and creates an annoyance. Usually, for struc-
tural reasons, a plate will have a rib on it, and that rib
reflects the vibration, as shown in Fig. 1(b), so there is
less vibration transmitted, and less noise at the other
end of the plate. One might reason that if one rib re-
duces the noise, why not a series of ribs? For ease of
manufacture, a periodic array of identical ribs might be
used, as in Fig. 1(c). The result would be that instead of
a large reduction in noise, the plate would still transmit
the waves, at least in certain bands of frequencies. This
is analogous to an effect in solid-state physics, for elec-

FIG. 1. A problem in noise abatement which motivated re-
search in classical analogs of quantum-mechanical systems.
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trical conductivity in a metallic crystal.
In a crystalline wire consisting of electrons and fixed

positive ions, as illustrated in Fig. 1(d), a classical elec-
tron would be very strongly scattered by the ions as it
tried to move down the wire, and one would have to
conclude that a metal should be a very poor conductor
of electricity. That metals are good conductors of elec-
tricity is due to two features: (i) the quantum-
mechanical electron behaves as a wave, and (ii) in a
crystal the ions are arranged periodically. The results for
both the waves in the ribbed plate and the electrons in
the crystal are consequences of the periodic symmetry of
the scattering field and a theorem known in mathematics
as Floquet’s theorem (Floquet, 1883), and known in
physics as Bloch’s theorem (Bloch, 1928).

Bloch’s theorem states that for a wave equation with a
periodic potential (or periodic electric or mechanical im-
pedance), the eigenfunctions are extended; i.e., the wave
functions (referred to as Bloch waves) have the form

ck ,n~x !5eikxUn~x !, (5)

where k and n are quantum numbers or mode labels,
and Un(x) is a periodic function with the period of the
potential field. Taking the modulus of the wave function
uck ,n(x)u gives just the periodic function uUn(x)u. Figure
2(a) illustrates a periodic potential, and Fig. 2(b) shows
an example of the periodic modulus of a Bloch wave. If
the phase eikx is added, the Bloch wave example has the
form illustrated in Fig. 2(c).

If examined in detail, Bloch waves are found to be
more complicated than their simple form might suggest.
Most introductions to Bloch waves treat periodic sys-
tems with periodic boundary conditions, having travel-
ing Bloch wave solutions as illustrated above. However,
the eikx factor does not result in an ordinary traveling
wave, because there is a phase contribution from the
complex function Un(x). Also, Bloch ‘‘standing waves’’
are not obtained by replacing the eikx with sin(kx) or
cos(kx); they require a bit more manipulation. It is an
interesting exercise to write a computer program which
gives animated illustrations of Bloch wave packets trav-
eling through a periodic potential.

FIG. 2. An example of a periodic potential field and a Bloch
wave function. (a) The periodic potential. (b) The modulus of
the Bloch wave function, which is also periodic. (c) The Bloch
wave function, with phase included.
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A key feature of the extended Bloch waves is that
they have the same nominal amplitude in each unit cell
in the periodic potential field. For a quantum-
mechanical electron, this would mean that the electron
would have the same probability of being found in any
unit cell, which may be expressed by saying that the
electron is able to move freely through the array of ions.
The analogous situation occurs for the transverse waves
in the ribbed plate.

What would happen if the potential field were not
periodic, but had some disorder, as illustrated in Fig.
3(a)? One might expect that the previously extended
wave function would now have disordered variations in
its amplitude as a function of position. Instead, however,
the wave function becomes exponentially localized, as
illustrated in Fig. 3(b), which shows that at some site the
wave function has a maximum amplitude and decreases
exponentially away from that site. This phenomenon is
called Anderson localization (Anderson, 1958), and was
used by P. W. Anderson (1978) and Sir Nevil Mott
(1967) to explain the metal-to-insulator transition in dis-
ordered metals; this was cited in their Nobel prize in
1977.

The behavior of waves propagating in disordered ar-
rays of scatterers is a fundamental problem which dates
back to Lord Rayleigh. Despite the number of distin-
guished people who have addressed this problem since
then, the first rigorous theorem did not appear until
1963, with Furstenberg’s theorem (Furstenberg, 1963).
This theorem is for one dimension only; a scaling argu-
ment suggests the behavior in higher dimensions. An
excellent discussion of how disorder leads to exponential
localization in one dimension may be found in a paper
by Luban and Luscombe (1987). It would be beyond the
scope of this paper to delve into the theory of Anderson
localization in detail; there are a number of reviews in
the literature (Lee and Ramakrishnan, 1985; Altshuler,
Lee, and Webb, 1991; Sheng, 1995).

Motivated by the analogy between electrons in peri-
odic or disordered metals and waves in classical acousti-
cal systems such as ribbed plates, an experiment for ob-
serving classical Anderson localization was developed. It
is described in the next section.

FIG. 3. An example of a disordered potential field and an
Anderson localized wave function.
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II. CLASSICAL ANDERSON LOCALIZATION

A. Classical Anderson localization in one dimension

The one-dimensional acoustical system used in the
Anderson localization experiment (He and Maynard,
1986) is illustrated in Fig. 4. The wave medium is a long
(15-m) 0.178-mm-diameter steel wire suspended verti-
cally; a tension T in the wire is maintained with a weight
attached at the lower end. The wave field c consists of
transverse waves in the wire generated with an electro-
mechanical actuator at one end of the wire. The periodic
or nearly periodic potential field V for the wire is pro-
vided by small lead masses (with mass m5249633 mg)
spaced along the wire with an average lattice constant
a515 cm; a total of 50 masses is used. The masses are
sufficiently small in extent so that the potential V may
be approximated as a series of delta functions with
strength mv2/T ; the experiment is an accurate realiza-
tion of a one-dimensional wave equation with a Kronig-
Penny potential field. Experimental measurements and
computer simulations have shown that the small varia-
tions in the sizes of the masses have negligible effect on
the main Anderson localization, as will be discussed
later.

Beyond the series of masses the wire continues for a
few meters and is then covered with a long taper of
cotton which provides an anechoic termination. Running
parallel to the wire is a 9-m aluminum beam which acts
as a guide for a trolley carrying a ‘‘C’’-shaped perma-
nent magnet. The magnet is aligned so that the wire
passes between its poles, with the lines of force perpen-
dicular to the wire. When the transverse wave field is
present along the wire, the magnetic field induces an
electromotive force (emf) in the wire which is propor-
tional to the velocity of the wire at the position of the
magnet. The emf is measured by grounding one end of

FIG. 4. One-dimensional acoustic Anderson localization ex-
periment, consisting of a steel wire with small masses acting as
scatterers.
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the wire and connecting the opposite end (through a fine
copper wire) to a preamp and a phase sensitive amplifier
referenced to the transverse actuator signal. A motor,
gear, and chain system is used to translate the trolley
and magnet assembly along the aluminum beam. By
monitoring the position of the magnet and the current
induced in the wire, the entire wave field along the wire
c(x), including amplitude and phase, may be recorded.

In the wire-mass system disorder may be introduced
by varying the sizes of the masses (alloy-type disorder)
or by varying the positions of the masses (liquid-type
disorder) (Lifshits, 1938; Ishii, 1973). It was found that
the liquid-type disorder, even for very small deviations
from periodicity, produced more dramatic localization
effects. For example, varying the positions of the masses
by less than 1% produced significant localization, while
the inherent ;13% variation in the sizes of the commer-
cial lead masses resulted in localization lengths which
were much larger than the size of our system. The
former variation corresponds to ‘‘diagonal disorder,’’
while the latter corresponds to ‘‘off-diagonal disorder,’’
which is known to result in much weaker localization
than diagonal disorder. To understand this, it would be
worthwhile to consider the expected behavior of the sys-
tem, first assuming a periodic spacing of the masses.

Figure 5 shows the wire, drawn horizontally, in the
case where periodically spaced scatterers have infinite
mass, so that the wire is clamped at the positions of the
masses. The eigenfunctions and eigenvalues are straight-
forward; the eigenfunctions correspond to fitting an in-
teger number of half wavelengths between the clamps,
as indicated in Fig. 5. The eigenvalues (eigenfrequen-
cies) form a harmonic sequence; each section of the wire
between the masses may be considered as an isolated
local oscillator with sharp eigenvalues, v1 , v2 , v3 , etc.,
as shown in Fig. 6(a).

In the real system the masses are not infinite, so that
as a section of wire moves, the masses and neighboring
sections of wire move also; thus each local oscillator is
coupled to its nearest neighbors. To understand the ef-
fect of the coupling, a system of only two local oscilla-
tors may be considered first. Individual states for the
two oscillators may be combined to form symmetric and
antisymmetric normal modes; with a coupling interac-
tion, these normal modes will have different frequencies
(Kittel, 1966). If N local oscillators are coupled, there
will be N normal modes and N eigenfrequencies. Thus
each of the original sharp eigenfrequencies (v1 , v2 ,
etc.) common to the N oscillators becomes a band of N
distinct eigenfrequencies for normal modes of the
coupled system. If the strength of the coupling is in-
creased, the spread of the band increases, as illustrated

FIG. 5. Illustration of the wire in the case in which the scat-
terers have infinite mass; i.e., the wire is clamped at the posi-
tion of the mass. The eigenfunctions correspond to fitting an
integral number of half wavelengths between the clamps.
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in Fig. 6(b). For a periodic system, each of the normal
modes comprising each band may be labeled with the
Bloch wave number k [defined in Eq. (5)], providing the
picture of band structure in Fig. 6(c), common in solid-
state physics. The different bands may be labeled ac-
cording to the original sharp local oscillator eigenfre-
quencies (v1 ,v2 ,. . .vn , etc.), and these labels
correspond to the Bloch quantum number n in Eq. (5).
If N is large, the bands will be densely populated with
allowed states (allowed frequencies), while between the
bands only evanescent wave states (having imaginary
wave numbers) may be excited. Since the evanescent
waves do not propagate through the system, they are
considered as ‘‘unallowed’’ states. In solid-state physics,
the allowed and unallowed regions are ‘‘energy bands’’
and ‘‘gaps;’’ for classical waves (acoustic, microwaves,
etc.) they are referred to as ‘‘pass bands’’ and ‘‘stop
bands.’’

If the masses are large so that the coupling is weak,
then the scatterers have high (nearly unity) reflection
coefficients. In the actual experiment, the reflection co-
efficient was measured as 99.97%. However, since the
local oscillators are identical in the periodic system, at
particular frequencies all the local oscillators are near
resonance; thus any small amount of energy which can
get past a scatterer will drive the local oscillator to finite
amplitude. This is one way of understanding Bloch
waves. In the actual experiment on the periodic system,
great effort was taken to ensure that the lengths of wire
between the masses were as identical as possible. Having
small variations in length would result in local oscillators
being off resonance, and this would destroy the Bloch

FIG. 6. Illustration of how band structure arises for a periodic
system of scatterers along a wire under tension. (a) Frequency
spectrum for the case where the scatterers have infinite mass;
the sections of the wire between the masses act as isolated
local oscillators with sharp eigenfrequencies, v1 , v2 , etc. (b)
Effect of increasing the coupling between the local oscillators;
each sharp eigenfrequency common to N isolated oscillators
becomes a band of N distinct frequencies for the normal
modes of the coupled system. If the strength of the coupling is
increased, the spread of the band increases. (c) For a periodic
system, the normal modes comprising each band may be la-
beled with the Bloch wave number k , providing the classic
picture of band structure, as found in solid-state physics.
Rev. Mod. Phys., Vol. 73, No. 2, April 2001
extended wave function; this is a manifestation of the
sensitivity to diagonal disorder. By contrast, the masses
are strong scatterers, and with variations of 13% in mass
they are still strong scatterers. Variations in coupling, as
long as it is weak, has little effect on the resonating local
oscillators, and thus there is relatively less sensitivity to
off-diagonal disorder.

The discussion above also provides a means of under-
standing how Anderson localization may be readily
achieved. If one has a periodic system with local oscilla-
tors which are only weakly coupled, then the bands are
narrow and the gaps are large. There are states inside
the gaps, but they are exponentially decaying evanescent
waves which are usually ignored. If one introduces dis-
order into the periodic system, new states evolve from
the original ones, but since the original ones were mostly
evanescent waves, the new states have exponentially de-
caying character. Thus Anderson localization is readily
achieved if one begins with local oscillators, with slightly
different spectra (diagonal disorder), and couples them
weakly. However, this argument is clear for states of the
periodic system which were near the band edges; it is
still quite remarkable that states in the interior of the
band become localized. There will be further discussion
of qualitative matters in the section on Anderson local-
ization in higher dimensions.

A very important experimental requirement is that
each local oscillator must have low damping, i.e., a high
quality factor (Q), so that any energy which is trans-
ferred by the weak coupling will, at the right frequency,
drive the oscillator to finite amplitude. Similarly, the
coupling mechanism should have little damping, so that
waves may be transmitted over long distances, permit-
ting the long-range phase coherence required to produce
Anderson localization (or other phenomenon related to
symmetry).

In an actual Anderson localization experiment, it is
essential first to verify Bloch wave behavior by making
measurements with a periodic potential field. This is to
verify that one can adequately understand and control
the parameters in the experiment. The frequency re-
sponse (band structure) of the system in Fig. 4, with a
periodic spacing of the masses, was measured by moni-
toring the transverse wave amplitude near one end of
the series of masses while sweeping the frequency
(analogous to electron Fermi energy) of the transverse
actuator at the opposite end. Results for the second pass
band (which corresponds to fitting approximately one-
half wavelength between the masses) are shown in Fig.
7(a). The response shows distinct edges separating the
pass band from transmission gaps on either side and ap-
proximately 50 eigenfrequencies corresponding to the
eigenstates of the 50-site system. The decrease in ampli-
tude at some interior frequencies is due to the fact that
the eigenstates are standing Bloch waves, and at some
frequencies the detector is near a node in the standing
wave. The band is fairly narrow, extending from about
760 to 840 Hz.

By driving the static periodic system at one of the
eigenfrequencies and translating the magnet, a Bloch
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wave eigenstate is recorded; two examples are presented
in Figs. 8(a) and (b), which show the eigenstate ampli-
tude as a function of position along the wire. These
eigenstates are clearly extended, and are in qualitative
agreement with theoretical Bloch eigenstates.

Several sets of measurements were made with the po-
sitions randomly varied within maximum displacements
from lattice sites of 0.007a , 0.01a , 0.02a , and 0.05a . Re-
sults with static disorder configurations were in good
agreement with computer simulations. Figure 7(b)
shows the frequency response of the system with 2%
disorder, i.e., with the masses displaced from the peri-
odic lattice sites with a flat random distribution between
60.02a . These results show dramatic departure from the

FIG. 7. Response of the wire at one end as a function of the
frequency of the transverse actuator at the opposite end
(analogous to electron Fermi energy in a conductivity experi-
ment). (a) Periodic potential. (b) 2% random potential.

FIG. 8. Eigenstate amplitude as a function of position along
the wire. (a) and (b) Bloch wave states. (c)–(f) Eigenstates of
the 2% disordered system. (g) Mixing of states (c) and (d) due
to the time-dependent potential. The sharp minima in the am-
plitude [; 45 shown in (b)] indicate the positions of the masses,
spaced at the lattice constant of 15 cm.
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Bloch response in Fig. 7(a). At least one eigenstate ap-
pears in the low-frequency gap. Eigenstates correspond-
ing to various peaks in Fig. 7(b) are shown in Figs. 8(c)–
(f). The most localized state, Fig. 8(c), was the low-
frequency gap state in Fig. 7(b). The eigenstate in Fig.
8(d) was located approximately at the original Bloch
band edge, and the eigenstates in Figs. 8(e) and (f) were
inside the band. The eigenstates in Figs. 8(c) and (d)
were remeasured with a log amplifier, and linear fits to
this data indicated localization lengths of (2.260.3)a
and (3.860.3)a , respectively; these agreed well with
computer simulations. It should be noted that different
eigenstates are localized at different sites in the system,
and have different localization lengths. These factors
would determine the transmission of the wave through
the system (related to quantum electrical conductivity),
and the wide variation in these factors is analogous to
‘‘universal conductance fluctuations’’ and transport ‘‘fin-
gerprints’’ (Lee and Stone, 1985; Altshuler, Lee, and
Webb, 1991).

B. Classical Anderson localization in higher dimensions

Guided by discussions in the preceding section, a
scheme for observing classical Anderson localization in
two or three dimensions would be to begin with an array
of high-Q local oscillators with slightly different eigen-
values, and then weakly couple them together in a two-
or three-dimensional pattern. With weak coupling, a pe-
riodic system would have narrow bands and mostly gaps;
the introduction of sufficient disorder would lead to
Anderson localized states.

A method for accomplishing this with acoustical
waves is illustrated in Fig. 9. A number of aluminum
plates (one of which is shown in Fig. 9) are machined on
one side with hemispherical depressions, together with
interconnecting semicylindrical channels. Each plate is
machined the same way on the opposite side, and holes
are drilled through connecting the bottoms of the hemi-

FIG. 9. Illustration of a method for observing classical Ander-
son localization in two or three dimensions. Stacking plates
machined in this pattern result in an array of coupled Helm-
holtz resonators.
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spheres. The plates are then stacked and sealed to-
gether, resulting in a three-dimensional array of spheri-
cal cavities connected with cylindrical necks.
Acoustically this would be an array of coupled Helm-
holtz resonators; narrow necks would correspond to
weak coupling. The system as described would be peri-
odic, having identical Helmholtz resonators, and could
be tested for Bloch wave behavior. For a disordered sys-
tem, ‘‘stuffing blocks’’ of various sizes could be placed
inside the spherical cavities, shifting the local Helmholtz
resonance frequencies and introducing diagonal
disorder.

A similar scheme could be imagined for microwaves,
perhaps constructed with superconducting material to
maintain high Q . One could also design a two-
dimensional system on a printed circuit board with local
capacitors and inductors, coupled with stripline
waveguides. There are large numbers of possible sys-
tems of two-dimensional arrays of coupled mechanical
or electromagnetic oscillators which one could construct.
However, there is little point in actually using these clas-
sical systems for serious experimental research. The
problem is that following the guidelines to readily ob-
serve Anderson localization leads to systems consisting
of lumped elements connected by waveguides, which
can be treated exactly in (linear) theory, and numerical
computer calculations of eigenvalues and eigenfunctions
could be carried out to high accuracy, far better than
one could obtain experimentally. The fundamental phys-
ics governing the wave nature of the classical experi-
ments is well established, so that if any significant devia-
tions from the calculated results were observed in an
experiment, the only valid conclusion would be that the
experiment must be cleaned up. Properly designed ex-
periments could be used for pedagogical purposes, stu-
dent lab experiments, or lecture demonstrations. Classi-
cal experiments could also be used to study systems
where the theoretical calculations are not so tractable, as
for media not consisting of local oscillators (Weaver,
1990), for time-dependent potential fields or for the non-
linear Schrödinger equation. These last two possibilities
are discussed in later sections.

In the literature one sometimes encounters the state-
ment that it is difficult to observe classical Anderson
localization. In light of the discussion above it would
seem that this statement is quite untrue. However, this
statement is sometimes made in regard to localization
experiments which are motivated by the prospect of
practical applications, such as optical waveguide multi-
plexers, etc., where constraints prevent the use of
weakly coupled high-Q local oscillators. In this case, ob-
taining localization effects may be a formidable experi-
mental challenge.

III. EFFECTS OF INELASTIC SCATTERING ON
ANDERSON LOCALIZATION

The experiment described above was undertaken for
pedagogical reasons, since Anderson localization in one
dimension is guaranteed by Furstenberg’s rigorous theo-
Rev. Mod. Phys., Vol. 73, No. 2, April 2001
rem. However, in the course of this experiment it was
realized that it was possible to use the apparatus to ad-
dress some serious questions in Anderson localization.
The first question addressed involves the effects of in-
elastic scattering on Anderson localization.

If one considers an electron wave in a one-
dimensional potential as being represented by the trans-
verse wave in the wire-mass system, then an electron-
phonon interaction may be simulated by modulating the
longitudinal strain in the wire. That is, for low-frequency
(essentially zero wave-vector) phonons, the electron-
phonon interaction may be modeled by replacing the
potential V(r) in Eq. (2) by V(r1re cos Vt) where
e cos Vt is the strain field of a phonon of frequency V
(Ziman, 1960). In the experiment the longitudinal strain
is modulated directly with a second electromechanical
actuator at the end of the wire, as shown in Fig. 4. By
driving the longitudinal actuator with a synthesized
‘‘thermal phonon’’ spectrum, finite temperature effects
could be simulated. However, in order to study an iso-
lated inelastic scattering process in detail, only a single
frequency V, providing the well-defined time-dependent
potential V(r1re cos Vt), is used.

For the inelastic scattering measurements one of the
eigenstates in Figs. 8(c)–(f) was selected as an initial
state ui&, and another was chosen as a final state uf&. The
transverse actuator was driven at the initial state eigen-
frequency v i , and the longitudinal actuator was driven
at the frequency for resonant phonon-assisted hopping,
V5uv i2v fu. The response of the system, represented as
a mixture aui&1buf&, was then measured as a function
of the amplitude of the longitudinal strain modulation
amplitude e. The steady-state response consisted of en-
ergy being transferred back and forth between the two
states ui& and uf& at the frequency V. The time average of
the mixture for a particular longitudinal strain amplitude
is shown in Fig. 8(g). If the actuators were stopped, en-
ergy would be transferred to the final state with a hop-
ping probability of ub/au2. A plot of the measured hop-
ping probability as a function of the longitudinal drive
amplitude is presented in Fig. 10, where the initial and

FIG. 10. Hopping probability as a function of strain amplitude,
expressed as a normalized inelastic scattering rate (see He and
Maynard, 1986).
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final states were those of Figs. 8(d) and (e), respectively.
Other pairs of states, cd, ce, cf, df, and ef, where the
letters refer to Fig. 8, gave similar plots, but with widely
varying vertical scales.

A significant conclusion of the inelastic experiment
was that the large variations in the scale of hopping
probability could not be wholly accounted for with the
variations in the overlap of the amplitudes of the wave
functions. At least in the case where the phonon wave-
length is larger than the localization length, the phase as
well as the amplitude overlap strongly influences the
hopping rate. This is important for understanding the
finite temperature behavior of electrons in disordered
metal wires, and was a significant contribution from a
classical analog system (He and Maynard, 1986).

IV. THE DISORDERED NONLINEAR SCHRÖDINGER
EQUATION

As already discussed, there has been considerable re-
search involving Anderson localization, with interest in
mesoscopic electronic systems, in optical and acoustical
systems, and in systems of practical interest, such as
found in fiber optics, geophysical surveys, and noise con-
trol. Similarly, there has been a great deal of research
and new insights into nonlinear physics, including the
phenomena of solitons and chaos, and there are many
systems for which an understanding of nonlinear effects
is important. However, many systems of interest are
both disordered and nonlinear, and the study of such
systems is challenging. For systems which are both dis-
ordered and nonlinear, a fundamental question is: Does
nonlinearity weaken or destroy Anderson localization?
Despite the difficulties in treating this problem theoreti-
cally, there have been impressive achievements (Devil-
lard and Souillard, 1986; Fröhlich et al., 1986; Doucot
and Rammal, 1987; Albanese et al., 1988; Li et al., 1988;
Knapp et al., 1989; Bourbonnais and Maynard, 1990;
Kivshar et al., 1990; Scharf et al., 1992). Classical analogs
of the nonlinear Schrödinger equation with a disordered
potential field have been used to address unanswered
questions as well as verify theoretical predictions.

One of the interesting aspects of the question con-
cerning nonlinearity and Anderson localization is that
the answer depends on how the question is posed, or
how a system is studied. For example, one may study the
wave mechanics of a one-dimensional system by exciting
it at one end with a continuous wave cos(vt) and exam-
ining the transmission spectrum at an exit point T(v).
On the other hand, one may launch a pulse into the
system and study the temporal response at the exit point
c(t). In a linear system the two results would be equiva-
lent, simply related by a Fourier transform. However,
this is no longer true for a nonlinear system, and differ-
ent results may be obtained.

For continuous wave excitation of a one-dimensional
(1D) nonlinear disordered system, theory predicts that
eigenstates remain localized. Some of the theory papers
(Fröhlich et al., 1986; Albanese et al., 1988; Knapp et al.,
1989) develop rigorous theorems, as for example, the
Rev. Mod. Phys., Vol. 73, No. 2, April 2001
paper by Frölich, Spencer, and Wayne (FSW) (Fröhlich
et al., 1986). This paper considers the existence of expo-
nentially localized solutions of a Hamiltonian with a
nonlinear term, and the result is that under general con-
ditions Anderson localization is still present when there
is nonlinearity. An interesting problem is the possibility
of resonant tunneling resulting from the nonlinearity. In
a linear disordered system, resonant tunneling is ren-
dered unlikely by the low probability of having two reso-
nant subsystems sufficiently close together to overcome
the exponential decay of the wave function between the
subsystems; the result is large resonance free regions in
the spectrum, and the subsequent absence of diffusion.
A gap in the FSW theory is whether or not there exist
special conditions which result in resonant tunneling, en-
hanced by the nonlinearity, between localization sites. A
classical analog system involving continuous waves has
been used to address this question (McKenna et al.,
1992).

The theoretically predicted behavior for a pulse in a
nonlinear disordered system is quite interesting (Li
et al., 1988; Kivshar et al., 1990; Scharf et al., 1992), and
might be described with a simple picture as follows. One
first considers a linear, 1D system of scatterers of length
L , which may be analyzed by starting at one end and
proceeding to the other end by multiplying two-by-two
matrices (with elements for incident and reflected
waves) at the position of each scatterer. For a disor-
dered sequence of scatterers, one will have formed a
product of random matrices, and by Furstenberg’s theo-
rem (Furstenberg, 1963), a sufficiently long system will
have localized states and the transmission of a pulse will
decay exponentially with the length of the system. An
important point is that the behavior of a linear pulse,
equivalent to a superposition of eigenstates, depends on
satisfying conditions throughout the system. By contrast,
a nonlinear pulse has extra degrees of freedom which
may be adjusted so that conditions need be satisfied only
locally, within a characteristic distance (e.g., the width of
a soliton). In addition to the Anderson localization
length, there is now a second, ‘‘nonlinearity’’ length. The
consequences for a nonlinear pulse may be understood
as illustrated by the lines in Fig. 11, which shows the log
of the transmitted amplitude versus pulse propagation
distance L (Kivshar et al., 1990). If the nonlinearity of
the pulse is weak so that the nonlinearity length is
greater than the Anderson localization length, then the
pulse transmission exponentially decays with L , as for a
linear pulse (indicated by the dashed line in Fig. 11). If
the nonlinearity of the pulse is strong, so that the non-
linearity length is much less than the Anderson localiza-
tion length, then the effective extent of the disorder is
insufficient to yield localization, and the pulse may show
no exponential decay for large L (indicated by the dot-
dashed line in Fig. 11). An interesting situation is when
the nonlinearity length and the Anderson localization
length are comparable. In this case theory predicts that
the pulse will be transmitted for short L with moderate
decay, but for larger L it will exponentially decay. This
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case, illustrated by the solid line in Fig. 11, was verified
with a classical analog experiment involving pulses
(Hopkins et al., 1996).

A. Continuous-wave excitation

For the study of continuous-wave excitation of a 1D
nonlinear disordered system, the classical analog experi-
ment is the same as that used to study Anderson local-
ization and inelastic effects in the linear regime, i.e., the
mass loaded steel wire. It should be noted that the nomi-
nal transverse wave speed c0 in this system depends on
the tension in the wire, c05AT0 /m , and for the experi-
mental system, c0.400 m/s. The masses were spaced
with 2% disorder, which produced localization lengths
on the order of 3a (He and Maynard, 1986). The
method of making measurements was as follows: an am-
plitude for the drive actuator was selected, the receiver
transducer was left in one position, the frequency of the
drive was slowly swept, and the spectral response of the
system was recorded. Using the spectral response, par-
ticular frequencies, corresponding to Anderson localized
states at low amplitudes, could be selected, and the re-
ceiver transducer could be translated along the wire, re-
cording the wave field for the selected frequency. The
measurements were repeated for a sequence of increas-
ing drive amplitudes, revealing the effects of the nonlin-
earity of the system.

The nature of the nonlinearity in this system is one of
the important aspects of the experiment. To derive the
nonlinear equation governing the system, one first con-
siders how the experimental situation is established.
One begins with an unstretched wire of length L0 , then
applies the tension T0 so that the wire stretches to a
length L5L01DL , and then adds the masses. The

FIG. 11. Log of pulse transmission versus propagation dis-
tance. The dashed line is for weak nonlinearity, where the non-
linearity length is greater than the Anderson localization
length. The dot-dashed line is for strong nonlinearity, where
the nonlinearity length is less than the Anderson localization
length. The interesting case, illustrated by the solid line, is
when the two lengths are comparable (see Kivshar et al., 1990).
The symbols are data from the third-sound experiment.
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straight wire of length L is the equilibrium configuration
for the system. For infinitesimal transverse displace-
ments from equilibrium the equation of motion for the
wire is

m
]2C

]t2 2T0

]2C

]x2 50, (6)

where C(x ,t) is the transverse displacement field of the
wire. If the wire had a finite transverse displacement,
then the arc length of the wire would be greater than L ,
and the tension in the wire would increase. Any local
increase in tension in the wire would travel as a longitu-
dinal sound wave in the wire. Because the speed of lon-
gitudinal sound in the steel wire is much greater than the
speed of the transverse waves in the wire, any change in
the tension due to a local transverse displacement pro-
duces a virtually instantaneous change in the overall ten-
sion of the wire. A good approximation for the net ten-
sion T in the wire simply involves the change in arc
length for the entire wire:

T5T01
T0

~DL/L !

1
L F E

0

LA11S ]C

]x D 2

dx2LG , (7)

where T0 /(DL/L) is an experimentally accessible ex-
pression for the Young’s modulus of the wire. A more
rigorous derivation of Eq. (7) may be found in Morse
and Ingard (1968). Equation (7) may be expanded to
first order in (]C/]x)2 and used to replace T0 in Eq. (6)
to yield the nonlinear equation of motion
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Because the nonlinear term involves an integral of the
displacement field, the nonlinearity is nonlocal, and this
increases the possibility of having nonlinear enhanced
tunneling between two localization sites. That is, a large
amplitude transverse displacement at one localization
site will modulate the tension in the entire wire at twice
the eigenstate frequency. This modulated tension may
then parametrically excite a response at a distant local-
ization site. The eigenfrequency (at low amplitude) of
the distant site may even differ somewhat from that of
the original site. The reason is that the finite amplitude
displacement also increases the effective static tension of
the wire, so that lines in the spectral response are bent
toward higher frequencies, and may be bent over on top
of one another (Morse and Ingard, 1968). In this case
states with different frequencies at low amplitude may
be excited concurrently at the same frequency at finite
amplitude. The initial conditions of the experiment (as
relevant to the FSW theory) are arbitrary, depending on
the state of the system prior to adjusting the frequency
of the drive.

With the possible nonlinear effects having been dis-
cussed, the actual experimental results can be presented.
The simplest way to view the results is to examine the
spectral response (amplitude at a fixed site as a function
of frequency), measured at a distance of about four lo-
calization lengths from the drive actuator and normal-
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ized by dividing by the drive amplitude, for different
drive amplitudes. If the system were strictly linear, then
the normalized response would not change. If the
Anderson localization is weakened by the nonlinearity,
then as the drive amplitude is increased, the normalized
response at the distant site should increase.

The experimental results are presented in Fig. 12,
which shows a sequence of normalized spectral response
plots for a sequence of increasing drive amplitudes. The
drive amplitude, expressed as the amplitude of the elec-
trical signal applied to the drive actuator in volts, is
shown in the left column of numbers in Fig. 12. Below
the lowest amplitude in Fig. 12, the spectral response
shows little variation, but in the sequence of increasing
drive amplitudes shown, the spectral response shows
some change. For some of the peaks in the spectrum, for
example the one indicated by the arrow in Fig. 12, the
normalized response increases with increasing drive am-
plitude, suggesting that there might be some weakening

FIG. 12. Normalized spectral response for a sequence of drive
amplitudes. The left-hand column of numbers displays the
drive amplitude, expressed as the amplitude of the electrical
signal applied to the drive actuator in volts. The right-hand
column of numbers presents the ‘‘average response,’’ defined
as the integral of the normalized spectral response over the
entire frequency band and normalized to the value at the low-
est drive level (0.003 V). The arrow indicates a state whose
normalized amplitude increases with drive amplitude, but the
effect does not persist.
Rev. Mod. Phys., Vol. 73, No. 2, April 2001
of the Anderson localization. However, this effect does
not seem to persist to the highest drive levels. Further-
more, an examination of the wave fields for the peaks
which increase indicates that the effect is due to the
growth in amplitude of sections of wire between a few
masses only. Figure 13 shows an example of one such
wave field whose peak increased with increasing drive
amplitude. Figure 13(a) is the wave field (wave ampli-
tude, normalized with the drive amplitude, versus posi-
tion, with the drive to the left in the figure) for a drive of
0.01 V, and Fig. 13(b) is the wave field for a drive of 0.50
V. While the normalized amplitudes of a few sections
have increased, the Anderson localization has not
changed significantly. It should be noted that for the
wave field in Fig. 13, and in all of the measured wave
fields, there was no significant harmonic generation ob-
servable.

None of the wave fields at any frequency which was
measured showed any significant reduction of Anderson
localization, in accord with the FSW theory. Further-
more, an examination of wave fields most likely to show
nonlinear enhanced tunneling (i.e., states at nearly the
same frequency localized at different sites) gave no evi-
dence of enhanced tunneling. The highest drive ampli-
tude in the measurements corresponded to a nonlinear
shift in the eigenfrequencies by as much as 15% of the
bandwidth (quite large by acoustic standards). Proceed-
ing to higher drive amplitude was prevented by the on-
set of strong chaos in the system; because the Anderson
localization concentrates the wave energy in a limited
region, the state may act like a simple oscillator which
might easily go chaotic.

Returning to Fig. 12, it can be seen that most of the
normalized response seems to decrease slightly with in-
creasing drive level, indicating stronger localization. A
quantitative measure of this effect may be found with an
‘‘average response,’’ defined as the integral of the nor-
malized spectral response over the entire frequency
band. The results for each drive level, normalized to the
value at the lowest drive level in Fig. 12, are presented in

FIG. 13. The wave amplitude, normalized with the drive am-
plitude, versus position, with the drive actuator to the left of
the figure. (a) The wave field for a drive amplitude of 0.01 V.
(b) The wave field for a drive amplitude of 0.50 V.
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the right-hand column of numbers in Fig. 12. The de-
crease in the average response of about 30% with in-
creasing drive amplitude suggests that the Anderson lo-
calization is slightly enhanced by the nonlinearity. One
might imagine that the nonlinearity causes an Anderson
localized state not to parametrically excite a distant site,
but rather to ‘‘dig a deeper hole’’ for itself.

B. Pulse propagation

The case of nonlinear pulse propagation was studied
with another classical analog experiment. In this case,
surface waves on a fluid were used because such waves
are intrinsically nonlinear. That is, the speed of the sur-
face wave depends on depth, but the depth is modified
by the presence of a finite amplitude surface wave; hav-
ing the wave speed depend on the wave field leads natu-
rally to a nonlinear wave equation. An important con-
sideration is that the system have minimum damping,
since long-range phase coherence is required to have
Anderson localization. Because of this, surface waves on
thin films of superfluid helium adsorbed on a substrate
were used; such waves are referred to as third sound
(Atkins and Rudnick, 1970). In this system the normal
fluid component of the helium is locked to the substrate
by its viscosity, and only the zero-viscosity superfluid
component moves, resulting in relatively little damping
of the surface waves. The nonlinear nature of third
sound may be summarized as follows: When third-sound
pulses are generated with sufficient amplitude, the initial
part of the pulse saturates (probably because the motion
of the superfluid comprising the pulse exceeds a critical
velocity). Subsequent increases in the energy delivered
by the drive transducer causes a second pulse to appear
and move away from the saturated pulse. This pulse is
observed to be nonlinear in nature not only because it
exists due to finite amplitudes and is unexplained by the
linear theory, but also because its velocity of propaga-
tion depends on amplitude (McKenna et al., 1990).

An illustration of the experimental configuration is
shown in Fig. 14, which is a top view of the superfluid
film substrate, consisting of a 2537531-mm glass plate.
The substrate is held in a container at a temperature of

FIG. 14. Top view of the superfluid helium film substrate,
showing the configuration of third-sound transducers and the
disordered sequence of scatterers. The distances between ad-
jacent transducers, in millimeters, are indicated by the num-
bers.
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1 K, and helium vapor is admitted into the container
until a superfluid film forms on the substrate. The third-
sound transducers are strips of superconducting alumi-
num film deposited across the width of the substrate,
with pads for electrical connection at each end. When
used as third-sound generators, a strip is activated with a
pulse of current which drives the aluminum film normal,
and the resulting Joule heating launches the third-sound
pulse; the strips act as line sources, so that a plane wave-
front pulse propagates in each direction down the length
of the glass substrate. By monitoring the current, volt-
age, and time duration of the electrical pulse sent to the
transducer, the energy used to generate the third-sound
pulse is calculated. As receivers, the aluminum film
strips act as conventional superconducting bolometers.

The 1D sequence of scatterers is formed by cutting
grooves across the width of the glass substrate (parallel
to the transducers, as shown in Fig. 14) with a diamond
wire saw. The scatterers have an average spacing of 1
mm, and are given a random displacement within
60.5 mm of the average spacing. Using the actual disor-
der and the magnitude of the reflection coefficient, a
computer simulation indicated that the Anderson local-
ization length was on the order of 1862 mm.

An important aspect of Anderson localization is that
different realizations of disorder, although the same sta-
tistically, give widely fluctuating results. Thus in order to
obtain meaningful conclusions, it is helpful to ensemble
average. For this purpose different pairs of transducers
were used as generators and receivers, and results from
pairs which had the same nominal separation were aver-
aged. The relative separations of the transducers, in mil-
limeters, are indicated by the numbers in Fig. 14; the
nominal separations for the various pairs used in the
experiment range from 6 to 36 mm, in steps of 6 mm, as
indicated by the abscissa values of the data points in
Fig. 11.

For a measurement sequence in the experiment, one
transducer was selected as a third-sound generator, and
a second selected as receiver. Pulses were launched with
generator energies ranging from 25 nJ, well into the lin-
ear regime, to 1200 nJ, well into the nonlinear regime.
For each energy level, received wave forms (transducer
signal as a function of time) were sample averaged and
recorded. The ensemble averaged results for pulse am-
plitude as a function of distance, for different generator
amplitudes, are presented as the symbols in Fig. 11. The
circles are for a nominal generator energy of 275 nJ; at
this energy a nonlinear signal is readily observed, but its
transmission exponentially decays, so that the theory
would indicate that at this energy the nonlinearity length
is greater than the Anderson localization length. The
squares in Fig. 11 are for a nominal generator energy of
975 nJ. In this case the decay in the transmission is sig-
nificantly smaller for the shorter propagation distances,
with exponential decay not occurring until after about
one Anderson localization length. This is in excellent
qualitative agreement with the theoretical prediction, in-
dicated by the solid line in Fig. 11. It should be noted
that the third sound in the linear regime behaved as
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expected, with a measured Anderson localization length
of 2262 mm, in reasonable agreement with the com-
puter simulation.

Measurements for nonlinear pulse propagation in a
periodic array of scatterers (McKenna et al., 1994) have
also been made. In this case it was found that for lower
generator energies, the nonlinear signal showed struc-
ture resulting from coherent interference in the periodic
array, and a Fourier transform of the signal showed
band structure. For high generator energies, the interfer-
ence structure disappeared (along with the band struc-
ture). The interpretation is that at the high amplitudes,
the nonlinearity length is sufficiently short so that the
wave does not sample enough of the periodic array to
produce observable structure. The conclusion is that the
concept of a nonlinearity length, which decreases with
the amplitude of a pulse, is valid for pulses in disordered
as well as periodic media, and the classical experiment
verified theoretical predictions.

V. MESOSCOPIC NORMAL ELECTRON PERSISTENT
CURRENTS

One of the most interesting puzzles in mesoscopic
physics has been the discrepancy between the theoreti-
cally predicted and experimentally measured amplitudes
of persistent currents in mesoscopic normal metal rings
(Levy et al., 1990; Chandrasekhar et al., 1991). An
acoustical analog system was used to address this puzzle,
and the experiment indicated that one must consider the
effects of wave attenuation, which is the analog of re-
sidual inelastic scattering in the normal electron system,
and the nature of the excitation field. While the acous-
tical system is not a complete analog of the normal elec-
tron persistent current experiment (e.g., there is no pre-
cise analog of many electron effects), the results do
suggest a wave mechanical approach to the nature of the
mesoscopic experiment which can account for the ob-
served discrepancy. An interesting feature of the experi-
ment is the acoustical analog of a magnetic field.

The normal electron persistent current experiment,
such as that of R. Webb et al. (Chandrasekhar et al.,
1991), involves a normal-metal ring surrounded by a
drive loop and squid pickup loop. The pickup loop
monitors the current in the ring, through its mutual in-
ductance, as the magnetic flux F in the system is
changed with the drive loop. The current in the ring is
found to oscillate with a period of F05h/e , the normal
electron flux quantum, as predicted by theory. However,
the magnitude of the current oscillations exceed the
theoretically predicted value by more than an order of
magnitude.

For an initial model of the ring, consider an ideal cir-
cular waveguide, with circumference L and eigenstates
c}exp(6i2px/l), where l is the wavelength and x is a
coordinate which follows the waveguide. A current as-
sociated with the eigenstate is given by

I5ne
i\

2m
~c* ¹c2c¹c* !5neh/ml , (9)
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where m and e are the electron mass and charge, and n
is the number of electrons per unit length in the ring
(spin is ignored). The quantization condition is that an
integral number of wavelengths must fit in the circum-
ference L , so that L5Nl , and I5N(neh/mL). Since
N is an integer, I is quantized in units of

DI5
neh

mL
5

evF

L
, (10)

where vF5nh/m is the Fermi velocity. As will be shown
next, current oscillations of magnitude DI in the ideal
ring correspond to changes in magnetic flux through the
ring of magnitude F0.

An actual normal-metal ring would not be a perfect
waveguide, because it will contain defects which elasti-
cally scatter the wave. We consider a large section of the
waveguide as containing all of the defects. At one end of
the scattering section we write the eigenfunction as a
combination of two linearly independent solutions:

c5Aei2pF/F0ei2px/l1Bei2pF/F0e2i2px/l. (11)

The factor exp(i2pF/F0) arises from the vector poten-
tial term in the Schrödinger equation. For the other end
of the scattering section we assume a similar form for
the eigenfunction, but use coefficients A8 and B8. From
general scattering theory we have

A5~1/T !A81~R/T !* B8, (12)

B5~R/T !A81~1/T !* B8, (13)

where R and T are the complex reflection and transmis-
sion coefficients for the scattering section. From conser-
vation of flux, uRu21uTu251. We require periodic
boundary conditions, so that c and its derivative must
match at x50 and x5L . With Eqs. (12) and (13), we
now have four equations for A, B, A8, and B8. For non-
zero solutions, the determinant of the coefficients must
vanish, yielding the eigenvalue condition

2pL/l5N2p5tan21@Im~T !/Re~T !#

6cos21@ uTucos~2pF/F0!# . (14)

Note that if there were no scatterers, then T51, and
changes of one quantum in the eigenvalue (or changes
of DI5evF /L) correspond to changes of F0 in F. More
significantly, if there are scatterers, then uTu,1, and
while the period of the oscillations in F remains F0 , the
magnitude of the oscillations in DI is reduced. If one
assumes that uTu2.Le /L<1, where Le is the mean free
path for the elastic scattering, then one has

DI.
evF

L

Le

L
. (15)

A simple way of formulating Eq. (15) is to note that as a
consequence of the elastic scattering, the electron must
follow a tortuous path around the ring, so that the effec-
tive length of the waveguide is L8.L(L/Le). Equation
(15) becomes

DI5
evF

L8
5

evF~L/L8!

L
. (16)
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In the normal electron persistent current experiments,
L/L8 is determined with a transport (quantum conduc-
tivity) measurement. When this value (typically 0.01–
0.1) is used in Eq. (16), one obtains values of DI which
are more than an order of magnitude smaller than the
values of DI found in the actual experimental persistent
current measurement.

The current quantization as discussed above arises
from a difference between eigenvalues, and one must
consider whether or not a particular experimental probe
is sensitive to all of the eigenstates and eigenvalues. If a
system having no inelastic scattering (or no wave attenu-
ation) is subjected to an excitation field, then all states
appear as ‘‘delta function’’ contributions to the response
of the system, unless the excitation field is exactly or-
thogonal to a particular eigenfunction. If one had an
ideal lossless system with a realistic excitation field, then
it would be very difficult to have the excitation not
couple to all of the eigenstates. However, if there is sig-
nificant wave attenuation in the system, then the ‘‘delta
function’’ response no longer occurs, and the nature of
the excitation field becomes a more serious concern. The
application of this notion to the system of general elastic
scatterers described above and the theory of quantum
measurement is beyond the scope of this paper. How-
ever, one could test the consequences of this notion with
an acoustical analog system.

The difference between Eq. (10) and Eq. (16), i.e.,
replacing vF by vF(L/L8), is analogous to the ‘‘acoustic
scattering correction’’ used for long-wavelength sound
undergoing multiple scattering in a disordered array of
scatterers. A model used to study the acoustic scattering
correction can now be used to gain insight into the ef-
fects of the excitation field.

In the acoustic scattering model, one first imagines a
‘‘black box’’ of length L , containing a straight wave-
guide, also of length L . One sends in a wave, exp(ivx/v0)
exp(2ivt), and measures the total phase shift u0 across
the box. Since u05vL/v0 , one could determine the
speed of the wave as v05vL/u0. One next considers a
box of length L containing a meandering waveguide
(with a ‘‘square wave’’ shape) with a total length L8
.L . The phase shift across this box would be u
5vL8/v05u0(L8/L), but not knowing what was inside
the box, one would calculate a wave speed v5vL/u
5v0(L/L8). This is analogous to the effective velocity
vF(L/L8) in Eq. (16).

For the normal electron persistent current experi-
ment, one imagines the ‘‘square wave’’ waveguide (of
length L8) bent into a ring of circumference L , as shown
in Fig. 15. If a drive transducer (a point source) were
placed at one point on the waveguide, and a receiver
transducer were placed diametrically opposite, then a
wave could be sent around the ring, as shown in Fig.
15(a). The phase advance at the receiver transducer
could be used to determine the wave velocity, and one
would calculate a velocity v5v0(L/L8), as before.
However, such a measurement, with a ‘‘point source’’
excitation field, would correspond to a transport mea-
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surement; an important point is that a persistent current
measurement is fundamentally different from a trans-
port measurement.

In the persistent current measurement, the state of the
system is probed with an ac axial magnetic field. The ac
axial magnetic field produces an excitation field at the
ring which is uniform and purely azimuthal; there is no
radial component. In the acoustical system, the analog
of the axial magnetic field would be a rotation of the
acoustic fluid; the Doppler shift of the sound introduces
a shift in the phase of the waves in analogy with the
phase shift in the electron Schrödinger wave produced
by the magnetic field (flux) as indicated in Eq. (11). The
analog of the ac axial magnetic field would be an oscil-
lation of the ‘‘square wave’’ waveguide about its axis,
producing a purely azimuthal excitation field. The re-
sults of this type of excitation of the waveguide are quite
different from those of the point source, as can be seen
in Fig. 15(b). The axial oscillation would sustain an ad-
vance of the phase along the azimuthal parts of the
waveguide, but not along the radial parts. The fluid in
the radial parts of the waveguide would be driven back
and forth between the sides of the waveguide, corre-
sponding to a waveguide mode which has infinite phase

FIG. 15. Different methods of exciting a circular, meandering
waveguide. (a) A simple source and detector at diametrically
opposite points are analogous to a transport measurement and
involve the length L8. (b) An ac azimuthal excitation field is
analogous to a persistent current measurement and involves
the length (circumference) L .
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velocity along its length; i.e., there is no coupling to a
phase advance along this part of the waveguide. The
result is that the excitation field matches modes where
the phase advance around the waveguide involves L
rather than L8, and the velocity determined from the
phase would be v0 rather than v0(L/L8). If only these
modes were involved in the persistent current experi-
ment, the correct expression for DI would be evF /L ,
and this would give good agreement with the experi-
mental results, removing the discrepancy.

A further example of the importance of the excitation
field, with reference to the analogy between an acousti-
cal system and the normal electron persistent current
experiment, may be elaborated as follows. The response
of a linear system may be written as a sum over normal
modes, with each term having a numerator and a de-
nominator. The denominator involves the difference be-
tween the driving frequency and the eigenfrequency of
the normal mode, with an attenuation term which pre-
vents the denominator from vanishing. The numerator
involves an inner product between the driving excitation
field and the normal-mode eigenfunction. In a transport
measurement, the excitation field is a point (or slightly
extended) source, so that the numerator has the same
nominal value for all the (normalized) normal modes,
and the response of the system has resonances when the
denominator is minimized at the eigenfrequencies. For
the analog of a persistent current measurement, imagine
a one-dimensional acoustic waveguide with point scat-
terers; a flow of the fluid giving a Doppler shift of the
sound wave provides the analog of the vector potential
field. Between the point scatterers, the wave field may
be written as a traveling wave in one direction, Doppler
shifted up, and a traveling wave in the opposite direc-
tion, Doppler shifted down. Now imagine that the walls
of the waveguide are lined with drive transducers whose
phase may be independently controlled. These transduc-
ers may be phased so as to follow a traveling wave pro-
gressing, and Doppler shifted, in one direction only. The
response of the system in this case will be dominated not
by minima in the denominator, but instead by maxima in
the numerator. If the fluid flow is increased so that the
Doppler shift is increased, then the change in frequency
of the drive required to follow the maximum in the re-
sponse will be determined by the full Doppler shift, and
will be unaffected by the effect of the scatterers. The
effects of the change in the natural frequencies resulting
from the change in the Doppler shift [rendered small by
the scatterers as in Eq. (14)] in the denominator will be
of less importance. In effect, the phased driving excita-
tion projects out the unreflected part of the wave field.

Returning to the meandering waveguide model, it
should be noted that in the absence of attenuation, the
presence of phase-advancing waves in the azimuthal
parts will excite some phase-advancing waves in the ra-
dial parts. However, if there is wave attenuation, the
azimuthal excitation will favor modes with a purely azi-
muthal phase advance. The degree to which these modes
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are favored is a difficult problem in waveguide theory.
An acoustical analog experiment is used to gain insight
into this problem.

The experiment involves a waveguide with the shape
of an ‘‘L,’’ which is the simplest element of a ‘‘square
wave’’ waveguide. One end of the ‘‘L’’ has a receiver
transducer, and the modes of the waveguide are excited
in two different ways. One method of excitation uses a
point source at the end of the waveguide opposite the
receiver, which should excite modes which correspond
to fitting an integral number of half wavelengths within
the total length of the ‘‘L’’ waveguide (with a length
L8). The second method of excitation is to drive the
entire waveguide back and forth with a motion parallel
to one arm of the ‘‘L’’ (with a length L). The second
method should favor those modes which correspond to
fitting an integral number of half wavelengths along the
parallel arm of the ‘‘L,’’ and which have no phase shift
along the perpendicular arm of the ‘‘L.’’ The results of
the experiment are shown in Fig. 16; Fig. 16(a) shows
the response as a function of drive frequency for the
point source excitation, and Fig. 16(b) shows the results
for the uniform one-dimensional excitation. The peaks
in the spectra are labeled with an L or L8 with a sub-
script indicating the number of half wavelengths which
fit into the length L or L8 respectively; the label W in-
dicates waveguide modes of the perpendicular arm of
the ‘‘L,’’ with the first subscript indicating the number of
half wavelengths across the waveguide, and the second
subscript indicating the number of half wavelengths
along the waveguide. The presence of the enhanced
peaks in Fig. 16(b) confirm the predictions; the uniform
one-dimensional drive does favor the modes with no

FIG. 16. Response spectra of an ‘‘L’’ shaped waveguide (the
simplest element of a ‘‘square wave’’ meandering waveguide)
for two different types of excitation. (a) Simple source excita-
tion, showing nominal excitation of all modes. (b) Uniform
one-dimensional excitation of the entire waveguide, showing
preferential excitation of modes involving only the length L .
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phase advance along the perpendicular arm of the wave-
guide. The effect may be greatly enhanced with a wave-
guide consisting of many of the ‘‘L’’-shaped elements.
This classical analog experiment explains why electrons
‘‘take the shortest path’’ in going around a mesoscopic
disordered metal ring.

VI. TUNING-UP A QUASICRYSTAL

Since the discovery of aluminum alloys with long-
range fivefold rotational (quasicrystalline) symmetry by
Shechtman et al. (1984), there has been great interest in
this fascinating symmetry (Mermin, 1980; Levine and
Steinhardt, 1986; Socolar and Steinhardt, 1986). A fun-
damental question is: given a Schrödinger wave equa-
tion with a quasicrystalline potential field, how is the
quasicrystalline symmetry manifest in the eigenvalue
spectrum and the eigenfunctions? For one-dimensional
(1D) quasicrystalline systems, rigorous theorems (Si-
mon, 1982; Kohmoto et al., 1983; Ostlund et al., 1984;
Kohmoto et al., 1986; Lu et al., 1986; Luck and Petritis,
1986; Niu and Nori, 1986; Kohmoto et al., 1987; Gumbs
and Ali, 1988; Luban et al., 1988; Onoda et al., 1988)
have been derived which answer such questions; how-
ever, in two and three dimensions there are as yet no
accepted theorems. A two-dimensional acoustical ana-
log experiment provided clear results (He and Maynard,
1989).

Determining the effects of quasicrystalline symmetry
theoretically poses a challenging problem; for periodic
potentials one may use Bloch’s theorem and perform
precise calculations, and for random systems one may
use statistical techniques to determine useful quantities.
However, quasicrystalline systems are neither periodic
nor random, and with the exception of 1D systems there
is currently no accepted ‘‘quasi-Bloch’s’’ theorem for
predicting the consequences of quasicrystalline symme-
try. For 1D quasicrystalline systems, general theories
have been reviewed by Simon (1982), and
renormalization-group, dynamic mapping, and numeri-
cal techniques have been applied (Kohmoto et al., 1983;
Ostlund et al., 1983, 1984; Kohmoto et al., 1986; Lu et al.,
1986; Luck and Petritis, 1986; Niu and Nori, 1986; Ko-
hmoto et al., 1987; Gumbs and Ali, 1988; Luban et al.,
1988). Some special properties of 1D quasicrystalline
systems are (i) the eigenvalue spectrum is a Cantor set
(Lauwerier, 1991), (ii) there may exist a mobility edge
and a metal-insulator transition, (iii) the eigenfunctions
may be extended, localized, or critical. One-dimensional
quasicrystalline systems have received some experimen-
tal attention (Merlin et al., 1985).

By contrast the consequences of quasicrystalline sym-
metry in two and three dimensions have been less well
verified; the transfer matrix method and the
renormalization-group approach seem to be inappli-
cable. There are some known theorems dealing with
structure (Penrose, 1974; Gardner, 1977), such as those
involving inflation (deflation) rules and Conway’s theo-
rem, which states that a given local pattern of some di-
ameter will be repeated within a distance of two diam-
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eters, and most probably within one diameter. In the
absence of a quasi-Bloch theorem, progress in under-
standing the consequences of 2D quasicrystalline (Pen-
rose tile) symmetry (Penrose, 1974; Gardner, 1977) has
relied mostly on numerical calculations, but the models
employed neglected aspects of the wave nature of the
problem. There have been a few exact eigenfunctions
discovered for 2D quasicrystalline systems (Sutherland,
1986; Arai et al., 1988), but these only apply to certain
eigenvalues or special Hamiltonians.

As discussed earlier, the success of a classical analog
experiment is enhanced by using high-Q local oscilla-
tors, coupled so as to model the appropriate symmetry.
For the quasicrystal experiment, ordinary commercial
tuning forks (440 Hz) were used. These have the advan-
tage that they can be mounted by the stem and still
maintain a high-Q oscillation. The tuning forks are ep-
oxied in a 2D quasicrystalline pattern into a heavy alu-
minum plate; the pattern is a standard Penrose tile
formed with two rhombuses (fat and skinny) having ar-
eas in the ratio of the Golden mean, (A511)/2. An il-
lustration of the tuning fork quasicrystal is shown in Fig.
17. The tuning forks are mounted at the centers of the
rhombuses, with the two tines oriented in line with the
shorter diagonal (it should be noted that for the sake of
simplicity in drafting Fig. 17, the tuning forks are not
drawn with the correct orientation). For the nearest-
neighbor coupling, arcs of 1-mm-diameter steel wire are
spot welded from one tine of a tuning fork to that of a
nearest neighbor. Other coupling schemes were tested
and found to be either too weak, too lossy, or had too
low a coupling wave velocity. Using the four sides of
each rhombus, four nearest-neighbors are identified, and
each tine of a tuning fork is coupled to the two nearest
tines of the adjacent tuning forks. With this coupling
pattern each local oscillator has four nearest neighbors,
but the nearest-neighbor length varies in a quasicrystal-
line pattern. From a separate measurement of the fun-
damental resonance in an isolated arc of the coupling

FIG. 17. A schematic drawing of a tuning fork quasicrystal.
The tuning forks are mounted at the center of the rhombuses
in the Penrose tile, with the two tines oriented in line with the
shorter diagonal (for the sake of drafting simplicity, the tuning
forks are not drawn with the correct orientation). For the
nearest-neighbor coupling, arcs of steel wire (not shown) are
spot welded from one tine of a tuning fork to that of a nearest
neighbor.
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FIG. 18. The eigenvalue spec-
trum and density of states for
the tuning fork quasicrystal. (a)
The eigenvalue spectrum, de-
termined as a composite of the
resonant spectra from 20 differ-
ent positions in the Penrose
pattern, showing gaps and
bands whose widths are in the
ratio of the Golden Mean. (b)
The density of states, as the in-
verse of the difference in fre-
quency for neighboring eigen-
values.
wire, the nominal wavelength in the coupling wire sys-
tem at 440 Hz was determined to be ;20 cm, or ap-
proximately 3–5 nearest-neighbor lengths. With a wave-
length of this size, it is possible for the coupling wire
system to interact with the quasicrystalline pattern in
interesting ways and produce structure in the eigenvalue
spectrum.

In order to drive the oscillations of the coupled tuning
fork system, an electromagnet is positioned near one
tine of the array, and an ac current is passed through the
electromagnet. The response of the system is monitored
with four electrodynamic transducers (electric guitar
pickups) positioned next to random tines in the array.
By sweeping the frequency of the drive electromagnet,
the resonant response of the system is detected with the
pickup transducers; the resonant frequencies, in bands
near 440 Hz, correspond to the eigenvalues of the qua-
sicrystalline system. The eigenvalue spectrum, deter-
mined as a composite of the resonant spectra from 20
different positions in the Penrose pattern, is presented in
Fig. 18(a). This spectrum shows gaps and bands whose
widths are in the ratio of the Golden Mean, t5(A5
11)/2. Referring to Fig. 18(a), b/a5t , g/b5t , C/B
5t , A/B5t2, B/D5t3, and other ratios of combina-
tions of these are powers of t, with an average deviation
of 65%. The density of states, determined as the in-
verse of the difference in frequency for neighboring ei-
genvalues, is shown in Fig. 18(b). This was not observed
in numerical simulations, because the wave nature of the
problem was not included in the models, and for two
(and three) dimensions there are no theoretical predic-
tions; thus the classical analog experiment provided a
significant advance in the understanding of quasicrystal-
line symmetry.

VII. SUMMARY

Many interesting and important problems in
condensed-matter physics involve quantum mechanics
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and the Schrödinger equation, which is a wave equation.
It is possible to design macroscopic experiments with
systems governed by a classical wave equation which ac-
curately model salient features of quantum-mechanical
systems. Having a ‘‘megascopic’’ scale, such experiments
permit measurements of features and tests of phenom-
ena which are virtually inaccessible on the microscopic,
quantum scale. Furthermore, classical analog experi-
ments may include time-dependent and nonlinear inter-
actions, which are difficult to treat with analytical theory
or numerical simulation. Using simple acoustic systems,
significant research results have been obtained for
Anderson localization, the effect of a time-dependent
potential on localized states and phonon assisted hop-
ping, the behavior of nonlinear pulses and continuous
waves in a disordered system, an explanation of a dis-
crepancy in a normal electron persistent current experi-
ment, and the consequences of quasicrystalline symme-
try in two dimensions. Insights provided by such analog
experiments go a long way in helping to understand
condensed-matter problems.
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