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Quantum-state engineering, i.e., active control over the coherent dynamics of suitable
quantum-mechanical systems, has become a fascinating prospect of modern physics. With concepts
developed in atomic and molecular physics and in the context of NMR, the field has been stimulated
further by the perspectives of quantum computation and communication. Low-capacitance Josephson
tunneling junctions offer a promising way to realize quantum bits (qubits) for quantum information
processing. The article reviews the properties of these devices and the practical and fundamental
obstacles to their use. Two kinds of device have been proposed, based on either charge or phase (flux)
degrees of freedom. Single- and two-qubit quantum manipulations can be controlled by gate voltages
in one case and by magnetic fields in the other case. Both kinds of device can be fabricated with
present technology. In flux qubit devices, an important milestone, the observation of superpositions of
different flux states in the system eigenstates, has been achieved. The Josephson charge qubit has even
demonstrated coherent superpositions of states readable in the time domain. There are two major
problems that must be solved before these devices can be used for quantum information processing.
One must have a long phase coherence time, which requires that external sources of dephasing be
minimized. The review discusses relevant parameters and provides estimates of the decoherence time.
Another problem is in the readout of the final state of the system. This issue is illustrated with a
possible realization by a single-electron transistor capacitively coupled to the Josephson device, but
general properties of measuring devices are also discussed. Finally, the review describes how the basic
physical manipulations on an ideal device can be combined to perform useful operations.
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I. INTRODUCTION

The interest in ‘‘macroscopic’’ quantum effects in low-
capacitance Josephson-junction circuits has persisted for
©2001 The American Physical Society
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many years. One of the motivations was to test whether
the laws of quantum mechanics applied in macroscopic
systems, in a Hilbert space spanned by macroscopically
distinct states (Leggett, 1987). The degrees of freedom
studied were the phase difference of the superconduct-
ing order parameter across a junction or the flux in a
superconducting quantum interference device (SQUID)
ring geometry. Various quantum phenomena, such as
macroscopic quantum tunneling and resonance tunnel-
ing, were demonstrated (see, for example, Voss and
Webb, 1981; Martinis et al., 1987; Rouse et al., 1995). On
the other hand, despite experimental efforts (e.g.,
Tesche, 1990), coherent oscillations of the flux between
two macroscopically distinct states (macroscopic quan-
tum coherence) had not been observed.

The field received new attention recently, after it was
recognized that suitable Josephson devices might serve
as quantum bits (qubits) in quantum information devices
and that quantum logic operations1 could be performed
by controlling gate voltages or magnetic fields (see, for
example, Bouchiat, 1997; Shnirman et al., 1997; Averin,
1998; Ioffe et al., 1999; Makhlin et al., 1999; Mooij et al.,
1999; Nakamura et al., 1999). In this context, as well as
for other conceivable applications of quantum-state en-
gineering, the experimental milestones are the observa-
tion of quantum superpositions of macroscopically dis-
tinct states, of coherent oscillations, and of entangled
quantum states of several qubits. For Josephson devices
the first successful experiments have been performed.
These systems can be fabricated by established litho-
graphic methods, and the control and measurement
techniques are quite advanced. They further exploit the
coherence of the superconducting state, which helps to
achieve sufficiently long phase coherence times.

Two alternative realizations of quantum bits have
been proposed, based on either charge or phase (flux)
degrees of freedom. In the former, the charge in low-
capacitance Josephson junctions is used as a quantum
degree of freedom, with basis states differing by the
number of Cooper-pair charges on an island. These de-
vices combine the coherence of Cooper-pair tunneling
with the control mechanisms developed for single-
charge systems and Coulomb-blockade phenomena. The
manipulations can be accomplished by switching gate
voltages (Shnirman et al., 1997); designs with controlled
interqubit couplings were proposed (Averin, 1998;
Makhlin et al., 1999). Experimentally, the coherent tun-
neling of Cooper pairs and the related properties of
quantum-mechanical superpositions of charge states
have been demonstrated (Bouchaiat, 1997; Nakamura
et al., 1997). Most spectacular are recent experiments of
Nakamura et al. (1999) in which the quantum-coherent
oscillations of a Josephson charge qubit prepared in a

1Since computational applications are widely discussed, we
frequently employ here and below the terminology of quantum
information theory, referring to a two-state quantum system as
a qubit and denoting unitary manipulations of its quantum
state as quantum logic operations or gates.
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superposition of eigenstates were observed in the time
domain. We describe these systems, concepts, and re-
sults in Sec. II.

The alternative realization is based on the phase of a
Josephson junction or the flux in a ring geometry near a
degeneracy point as a quantum degree of freedom (see,
for example, Ioffe et al., 1999; Mooij et al., 1999). In ad-
dition to the earlier experiments, in which macroscopic
quantum tunneling had been observed (Voss and Webb,
1981; Martinis et al., 1987; Rouse et al., 1995), the groups
in Delft and Stony Brook (Friedman et al., 2000; van der
Wal et al., 2000) recently demonstrated by spectroscopic
measurements the flux qubit’s eigenenergies; they ob-
served eigenstates that are superpositions of different
flux states, and new efforts are being made to observe
the coherent oscillation of the flux between degenerate
states (Cosmelli et al., 1998; Mooij et al., 1999; Friedman
et al., 2000). We shall discuss the quantum properties of
flux qubits in Sec. III.

To make use of the quantum coherent time evolution
it is crucial to find systems with intrinsically long phase
coherence times and to minimize external sources of
dephasing. The latter can never be avoided completely
since, in order to perform the necessary manipulations,
one has to couple to the qubits, for instance, by attach-
ing external leads. Along the same channels as the signal
(e.g., gate voltages) noise also enters the system. How-
ever, by operating at low temperatures and choosing
suitable coupling parameters, one can keep these
dephasing effects at an acceptable level. We provide es-
timates of the phase coherence time in Sec. IV.

In addition to controlled manipulations of qubits,
quantum measurement processes are needed, for ex-
ample, to read out the final state of the system. In our
quantum mechanics courses we learned to express the
measurement process as a ‘‘wave-function collapse,’’ i.e.,
as a nonunitary projection, which reduces the quantum
state of the qubit to one of the possible eigenstates of
the observed quantity with state-dependent probabili-
ties. However, in reality any measurement is performed
by a device that itself is realized by a physical system,
suitably coupled to the measured quantum system and
with a macroscopic readout variable. Its presence, in
general, disturbs the quantum manipulations. Therefore
the dissipative processes that accompany the measure-
ment should be switched on only when needed.

An example is provided by a normal-state single-
electron transistor (SET) coupled capacitively to a
single-Cooper-pair box. This system is widely used as an
electrometer in classical single-charge systems. We de-
scribe in Sec. V how a SET can also be used to read out
the quantum state of a charge qubit. For this purpose we
study the time evolution of the coupled system’s density
matrix (Shnirman and Schön, 1998). During quantum
manipulations of the qubit the transport voltage of the
SET is turned off, in which case it acts only as an extra
capacitor. To perform the measurement the transport
voltage is turned on. In this stage the dissipative current
through the transistor rapidly dephases the state of the
qubit. This current also provides the macroscopic read-
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out signal for the quantum state of the qubit. However,
it requires a longer ‘‘measurement time’’ until the noisy
signal resolves different qubit states. Finally, on the still
longer ‘‘mixing time’’ scale, the measurement process
itself destroys the information about the initial quantum
state.

Many results and observations made in the context of
the normal-state single-electron transistor also apply to
other physical systems, e.g., a superconducting SET
(SSET) coupled to a charge qubit (Averin, 2000b; Cottet
et al., 2000) or a dc SQUID monitoring as a quantum
magnetometer the state of a flux qubit (see, for example,
Mooij et al., 1999; Averin, 2000b; Friedman et al., 2000).
The results can also be compared to the nonequilibrium
dephasing processes discussed theoretically (Aleiner
et al., 1997; Gurvitz, 1997; Levinson, 1997) and demon-
strated experimentally by Buks et al. (1998).

One of the motivations for quantum-state engineering
with Josephson devices is their potential application as
logic devices and quantum computing. By exploiting the
massive parallelism of the coherent evolution of super-
positions of states, quantum computers could perform
certain tasks that no classical computer could do in ac-
ceptable times (Bennett, 1995; DiVincenzo, 1995;
Barenco, 1996; Aharonov, 1998). In contrast to the de-
velopment of physical realizations of qubits and gates,
i.e., the ‘‘hardware,’’ the theoretical concepts of quan-
tum computing, the ‘‘software,’’ are already rather ad-
vanced. As an introduction, and in order to clearly de-
fine the goals, we present in Appendix A an ideal model
Hamiltonian with sufficient control to perform all the
needed manipulations. (We note that the Josephson-
junction devices come rather close to this ideal model.)
In Appendix B we show by a few representative ex-
amples how these manipulations can be combined for
useful computations.

Various other physical systems have been suggested
as possible realizations of qubits and gates. They are
discussed in much detail in a recent Fortschritte der
Physik special issue entitled Experimental Proposals for
Quantum Computation (Braunstein and Lo, 2000). In
some systems quantum manipulations of a few qubits
have already been demonstrated experimentally. These
include ions in electromagnetic traps manipulated by la-
ser irradiation (Cirac and Zoller, 1995; Monroe et al.,
1995), nuclear magnetic resonance (NMR) on ensembles
of molecules in liquids (Cory et al., 1997; Gershenfeld
and Chuang, 1997) and cavity QED systems (Turchette
et al., 1995). In comparison, solid-state devices, including
the mentioned Josephson systems, are more easily em-
bedded in electronic circuits and scaled up to large reg-
isters. Ultrasmall quantum dots with discrete levels and,
in particular, spin degrees of freedom embedded in
nanostructured materials are candidates as well. They
can be manipulated by tuning potentials and barriers
(Kane, 1998; Loss and DiVincenzo, 1998). Because of
the difficulties of controlled fabrication, their experi-
mental realization is still at a very early stage.
Rev. Mod. Phys., Vol. 73, No. 2, April 2001
II. JOSEPHSON CHARGE QUBIT

A. Superconducting charge box as a quantum bit

In this section we describe the properties of low-
capacitance Josephson junctions, in which the charging
energy dominates over the Josephson coupling energy,
and discuss how they can be manipulated in a quantum-
coherent fashion. Under suitable conditions they pro-
vide physical realizations of qubits with two states dif-
fering by one Cooper pair charge on a small island. The
necessary one-bit and two-bit gates can be performed by
controlling applied gate voltages and magnetic fields.
Different designs will be presented that differ not only
in complexity, but also in the accuracy and flexibility of
the manipulations.

The simplest Josephson-junction qubit is shown in
Fig. 1. It consists of a small superconducting island
(‘‘box’’) with n excess Cooper-pair charges (relative to
some neutral reference state), connected by a tunnel
junction with capacitance CJ and Josephson coupling en-
ergy EJ to a superconducting electrode. A control gate
voltage Vg is coupled to the system via a gate capacitor
Cg . Suitable values of the junction capacitance, which
can be fabricated routinely by present-day technologies,
are in the range of femtofarad and below, CJ<10215 F,
while the gate capacitances can be chosen still smaller.
The relevant energy scale, the single-electron charging
energy EC[e2/2(Cg1CJ), which depends on the total
capacitance of the island, is then in the range of a
Kelvin2 or above, EC>1 K. The Josephson coupling en-
ergy EJ is proportional to the critical current of the Jo-
sephson junction (see, for example, Tinkham, 1996).
Typical values considered here are in the range of 100
mK.

We choose a material such that the superconducting
energy gap D is the largest energy in the problem, larger
even than the single-electron charging energy. In this

2Throughout this review we frequently use temperature units
for energies.

FIG. 1. A Josephson charge qubit in its simplest design formed
by a superconducting single-charge box.
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case quasiparticle tunneling is suppressed at low tem-
peratures, and a situation can be reached in which no
quasiparticle excitation is found on the island.3 Under
these conditions only Cooper pairs tunnel—
coherently—in the superconducting junction, and the
system is described by the Hamiltonian

H54EC~n2ng!
22EJ cos Q . (2.1)

Here n is the number operator of (excess) Cooper-pair
charges on the island, and Q, the phase of the supercon-
ducting order parameter of the island, is its quantum-
mechanical conjugate, n52i\ ]/](\Q). The dimen-
sionless gate charge, ng[CgVg/2e , accounts for the
effect of the gate voltage and acts as a control param-
eter. Here we consider systems in which the charging
energy is much larger than the Josephson coupling en-
ergy, EC@EJ . In this regime a convenient basis is
formed by the charge states, parametrized by the num-
ber of Cooper pairs n on the island. In this basis the
Hamiltonian (2.1) reads

H5(
n

H 4EC~n2ng!
2un&^nu

2
1
2

EJ~ un&^n11u1un11&^nu!J . (2.2)

For most values of ng the energy levels are dominated
by the charging part of the Hamiltonian. However, when
ng is approximately half-integer and the charging ener-
gies of two adjacent states are close to each other (e.g.,
at Vg5Vdeg[e/Cg), the Josephson tunneling mixes them
strongly (see Fig. 2). We concentrate on such a voltage
range near a degeneracy point where only two charge
states, say n50 and n51, play a role, while all other
charge states, having a much higher energy, can be ig-
nored. In this case the superconducting charge box (2.1)
reduces to a two-state quantum system (qubit) with a
Hamiltonian that can be written in spin-1

2 notation as

Hctrl52
1
2

Bzŝz2
1
2

Bxŝx . (2.3)

The charge states n50 and n51 correspond to the spin
basis states u↑&[(0

1) and u↓&[(1
0), respectively. The

charging energy splitting, which is controlled by the gate
voltage, corresponds in spin notation to the z compo-
nent of the magnetic field,

Bz[dEch[4EC~122ng!, (2.4)

3In the ground state the superconducting state is totally
paired, which requires an even number of electrons on the
island. A state with an odd number of electrons necessarily
costs an extra quasiparticle energy D and is exponentially sup-
pressed at low T . This ‘‘parity effect’’ has been established in
experiments below a crossover temperature T*
'D/(kB ln Neff), where Neff is the number of electrons in the
system near the Fermi energy (Tuominen et al., 1992; Lafarge
et al., 1993; Schön and Zaikin, 1994; Tinkham, 1996). For a
small island, T* is typically one order of magnitude lower than
the superconducting transition temperature.
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while the Josephson energy provides the x component
of the effective magnetic field,

Bx[EJ . (2.5)

For later convenience we rewrite the Hamiltonian as

Hctrl52
1
2

DE~h!~cos h sz1sin h sx!, (2.6)

where the mixing angle h[tan21(Bx /Bz) determines the
direction of the effective magnetic field in the x-z plane,
and the energy splitting between the eigenstates is
DE(h)5ABx

21Bz
25EJ /sin h. At the degeneracy point,

h5p/2, it reduces to EJ . The eigenstates are denoted in
the following as u0& and u1&. They depend on the gate
charge ng as

u0&5cos
h

2
u↑&1sin

h

2
u↓&,

u1&52sin
h

2
u↑&1cos

h

2
u↓&. (2.7)

We can further express the Hamiltonian in the basis
of eigenstates. To avoid confusion we introduce a sec-
ond set of Pauli matrices r that operate in the basis u0&
and u1&, while reserving the operators s for the basis of
charge states u↑& and u↓&. By definition the Hamiltonian
then becomes

H52
1
2

DE~h!rz . (2.8)

The Hamiltonian (2.3) is similar to the ideal single-
qubit model (A1) presented in Appendix A. Ideally the
bias energy (the effective magnetic field in the z direc-
tion) and the tunneling amplitude (the field in the x di-
rection) are controllable. However, at this stage we can
control—by the gate voltage—only the bias energy,
while the tunneling amplitude has a constant value set
by the Josephson energy. Nevertheless, by switching the
gate voltage we can perform the required one-bit opera-
tions (Shnirman et al., 1997). If, for example, one
chooses the idle state far to the left from the degeneracy
point, the eigenstates u0& and u1& are close to u↑& and

FIG. 2. The charging energy of a superconducting electron box
is shown as a function of the gate charge ng for different num-
bers of extra Cooper pairs n on the island (dashed parabolas).
Near degeneracy points the weaker Josephson coupling mixes
the charge states and modifies the energy of the eigenstates
(solid lines). In the vicinity of these points the system effec-
tively reduces to a two-state quantum system.
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u↓&, respectively. Then switching the system suddenly to
the degeneracy point for a time Dt and back produces a
rotation in spin space,

U1-bit~a!5expS i
a

2
sxD5S cos

a

2
i sin

a

2

i sin
a

2
cos

a

2

D , (2.9)

where a5EJDt/\ . Depending on the value of Dt , a spin
flip can be produced or, starting from u0&, a superposi-
tion of states with any chosen weights can be reached.
[This is exactly the operation performed in the experi-
ments of Nakamura et al., (1999); see Sec. II.D.] Simi-
larly, a phase shift between the two logical states can be
achieved by changing the gate voltage ng for some time
by a small amount, which modifies the energy difference
between the ground and excited states.

Several remarks are in order:

(1) Unitary rotations by Bx and Bz are sufficient for all
manipulations of a single qubit. By using a sequence
of no more than three such elementary rotations we
can achieve any unitary transformation of a qubit’s
state.

(2) The example presented above, with control of Bz
only, provides an approximate spin flip for the situ-
ation in which the idle point is far from degeneracy
and EC@EJ . But a spin flip in the logical basis can
also be performed exactly. We must switch from the
idle point h idle to the point where the effective mag-
netic field is orthogonal to the idle one, h5h idle
1p/2. This changes the Hamiltonian from H
52 1

2 DE(h idle)rz to H52 1
2 DE(h idle1p/2)rx . To

achieve this, the dimensionless gate charge ng
should be increased by EJ /(4EC sin 2hidle). For the
limit discussed above, h idle!1, this operating point is
close to the degeneracy point, h5p/2.

(3) An alternative way to manipulate the qubit is to use
resonant pulses, i.e., ac pulses with frequency close
to the qubit’s level spacing. We do not describe this
technique here as it is well known from NMR meth-
ods.

(4) So far we have been concerned with the time depen-
dence during elementary rotations. However, fre-
quently the quantum state should be kept un-
changed for some time, for instance, while other
qubits are manipulated. Even in the idle state, h
5h idle , because the energies of the two eigenstates
differ, their phases evolve relative to each other.
This leads to coherent oscillations, typical for a
quantum system in a superposition of eigenstates.
We have to keep track of this time dependence with
high precision and, hence, of the time t0 from the
very beginning of the manipulations. The time-
dependent phase factors can be removed from the
eigenstates if all the calculations are performed in
the interaction representation, with the zero-order
Hamiltonian being the one at the idle point. How-
ever, the price for this simplification is an additional
Rev. Mod. Phys., Vol. 73, No. 2, April 2001
time dependence in the Hamiltonian during opera-
tions, introduced by the transformation to the inter-
action representation. This point has been discussed
in more detail by Makhlin et al. (2000b).

(5) The choice of the qubit’s logical basis is by no means
unique. As follows from the preceding discussion,
we can perform x and z rotations in the charge ba-
sis, u↑& , u↓&, which provides sufficient tools for any
unitary operation. On the other hand, since we can
perform any unitary transformation, we can choose
any other basis as a logical basis as well. The Hamil-
tonian at the idle point is diagonal in the eigenbasis
(2.7), while the controllable part of the Hamiltonian,
the charging energy, favors the charge basis. The
preparation procedure (thermal relaxation at the
idle point) is more easily described in the eigenbasis,
while coupling to the meter (see Sec. V) is diagonal
in the charge basis. So the choice of the logical states
remains a matter of convention.

(6) A final comment concerns normal-metal single-
electron systems. While they may serve as classical
bits and logic devices, they are ruled out as potential
quantum logic devices. The reason is that, due to the
large number of electron states involved, their phase
coherence is destroyed in the typical sequential tun-
neling processes.

B. Charge qubit with tunable coupling

A further step towards the ideal model (A1), in which
the tunneling amplitude (x component of the field) is
controlled as well, is the ability to tune the Josephson
coupling. This is achieved by the design shown in Fig. 3,
where the single Josephson junction is replaced by two
junctions in a loop configuration (Makhlin et al., 1999).
This dc SQUID is biased by an external flux Fx , which
is coupled into the system through an inductor loop. If
the self-inductance of the SQUID loop is low (Tinkham,

FIG. 3. A charge qubit with tunable effective Josephson cou-
pling. The single Josephson junction is replaced by a flux-
threaded SQUID. The flux in turn can be controlled by a
current-carrying loop placed on top of the structure.
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1996), the SQUID-controlled qubit is described by a
Hamiltonian of the form (2.1) with modified potential
energy:

2EJ
0 cosS Q1p

Fx

F0
D2EJ

0 cosS Q2p
Fx

F0
D

522EJ
0 cosS p

Fx

F0
D cos Q . (2.10)

Here F05hc/2e denotes the flux quantum. We assume
that the two junctions are identical4 with the same EJ

0 .
The effective junction capacitance is the sum of indi-
vidual capacitances of two junctions, in symmetric cases
CJ52CJ

0 .
When parameters are chosen such that only two

charge states play a role, we arrive again at the Hamil-
tonian (2.3), but the effective Josephson coupling,

Bx5EJ~Fx!52EJ
0 cosS p

Fx

F0
D , (2.11)

is tunable. Varying the external flux Fx by amounts of
order F0 changes the coupling between 2EJ

0 and zero.5

The SQUID-controlled qubit is thus described by the
ideal single-bit Hamiltonian (A1), with field components
Bz(t)5dEch@Vg(t)# and Bx(t)5EJ@Fx(t)# controlled
independently by the gate voltage and the flux. If we fix
in the idle state Vg5Vdeg and Fx5F0/2, the Hamil-
tonian is zero, Hqb

0 50, and the state does not evolve in
time. Hence there is no need to control the total time
from the beginning of the manipulations, t0 . If we
change the voltage or the current, the modified Hamil-
tonian generates rotations around the z or x axis, which
are elementary one-bit operations. Typical time spans of
single-qubit logic gates are determined by the corre-
sponding energy scales and are of order \/EJ , \/dEch
for x and z rotations, respectively. If at all times at most
one of the fields, Bz(t) or Bx(t), is turned on, only the
time integrals of their profiles determine the results of
the individual operations. Hence these profiles can be
chosen freely to optimize the speed and simplicity of the
manipulations.

The introduction of the SQUID not only permits sim-
pler and more accurate single-bit manipulations, but
also allows us to control the two-bit couplings, as we
shall discuss next. Furthermore, it simplifies the mea-
surement procedure, which is more accurate at EJ50
(see Sec. V).

C. Controlled interqubit coupling

In order to perform two-qubit logic gates we need to
couple pairs of qubits together and to control the inter-

4While this cannot be guaranteed with high precision in an
experiment, we note that the effective Josephson coupling can
be tuned to zero exactly by a design with three junctions.

5If the SQUID inductance is not small, the fluctuations of the
flux within the SQUID renormalize the energy (2.10). But still,
by symmetry arguments, at Fx5F0/2 the effective Josephson
coupling vanishes.
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actions between them. One possibility is to connect the
superconducting boxes (i and j) directly, e.g., via a ca-
pacitor. The resulting charge-charge interaction is de-
scribed by a Hamiltonian of the form (A2) with an Ising-
type coupling term }sz

i sz
j . Such a coupling allows easy

realization of a controlled-NOT operation. On the other
hand, it has severe drawbacks. In order to control the
two-bit interaction, while preserving the single-bit prop-
erties discussed above, one needs a switch to turn the
two-bit interaction on and off. Any externally operated
switch, however, connects the system to the dissipative
external circuit, thus introducing dephasing effects (see
Sec. IV). They are particularly strong if the switch is
attached directly to the qubit and unscreened, which
would be required in order to control the direct capaci-
tive interaction. Therefore alternatives were explored in
which the control fields were coupled only weakly to the
qubits. A solution (Makhlin et al., 1999) is shown in Fig.
4. All N qubits are connected in parallel to a common
LC-oscillator mode that provides the necessary two-bit
interactions. It turns out that the ability to control the
Josephson couplings by an applied flux simultaneously
allows us to switch the two-bit interaction for each pair
of qubits. This brings us close to the ideal model (A2)
with a coupling term }sy

i sy
j .

In order to demonstrate the mentioned properties of
the coupling we consider the Hamiltonian of the chain
(register of qubits) shown in Fig. 4:

H5(
i51

N H ~2eni2CgVgi!
2

2~CJ1Cg!
2EJ~Fxi!cos Q iJ

1
1

2NCqb
S q2

Cqb

CJ
(

i
2eniD 2

1
F2

2L
. (2.12)

Here q denotes the total charge accumulated on the
gate capacitors of the array of qubits. Its conjugate vari-
able is the phase drop f across the inductor, related to
the flux by f/2p5F/F0 . Furthermore,

Cqb5
CJCg

CJ1Cg
(2.13)

FIG. 4. A register of many charge qubits coupled by oscillator
modes in the LC circuit formed by the inductor and the qubit
capacitors.
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is the capacitance of the qubit in the external circuit.
Depending on the relations among the parameters,

the Hamiltonian (2.12) can be reduced. We first consider
the situation in which the frequency of the (q ,F) oscil-
lator, vLC

(N)51/ANCqbL , is higher than typical frequen-
cies of the qubit’s dynamics:

\vLC
(N)@EJ ,dEch . (2.14)

In this case the oscillator modes are not excited, but still
their virtual excitation produces an effective coupling
between the qubits. To demonstrate this we eliminate
the variables q and F and derive an effective description
in terms of the qubits’ variables only. As a first step we
perform a canonical transformation, q̃5q2(Cqb /

CJ) (2eni and Q̃ i5Q i12p(Cqb /CJ) (F/F0), while F
and ni are unchanged. This step leads to the new Hamil-
tonian (we omit the tildes)

H5
q2

2NCqb
1

F2

2L
1(

i
F ~2eni2CgVgi!

2

2~CJ1Cg!

2EJ~Fxi!cosS Q i2
2p

F0

Cqb

CJ
F D G . (2.15)

We assume that the fluctuations of F are weak,

Cqb

CJ
A^F2& ! F0 , (2.16)

since otherwise the Josephson tunneling terms in the
Hamiltonian (2.15) are washed out (Shnirman et al.,
1997). Assuming Eq. (2.16) to be satisfied, we expand
the Josephson terms in Eq. (2.15) up to linear terms in
F. Then we can trace over the variables q and F. As a
result we obtain an effective Hamiltonian, consisting of
a sum of N one-bit Hamiltonians (2.1) and the coupling
terms

Hcoup52
2p2L

F0
2 S Cqb

CJ
D 2F(

i
EJ~Fxi!sin Q iG 2

. (2.17)

In spin-1
2 notation this becomes6

Hcoup52(
i,j

EJ~Fxi!EJ~Fxj!

EL
ŝy

i ŝy
j1const, (2.18)

where we introduced the scale

EL5S CJ

Cqb
D 2 F0

2

p2L
. (2.19)

The coupling Hamiltonian (2.18) can be understood
as the magnetic free energy of the current-biased induc-
tor 2LI2/2. This current is the sum of the contributions
from the qubits with nonzero Josephson coupling, I
}( iEJ

i (Fxi)sin Qi}(iEJ
i (Fxi)ŝy

i .
Note that the strength of the interaction does not de-

pend directly on the number of qubits N in the system.

6While expression (2.18) is valid only in leading order in an
expansion in EJ

i /\vLC
N , higher terms also vanish when the Jo-

sephson couplings are put to zero. Hence the decoupling in the
idle periods persists.
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However, the frequency of the (q ,F) oscillator vLC
(N)

scales as 1/AN . The requirement that this frequency not
drop below typical eigenenergies of the qubit ultimately
limits the number of qubits that can be coupled by a
single inductor.

A system with flux-controlled Josephson couplings
EJ(Fxi) and an interaction of the form (2.18) allows us
to perform all necessary gate operations in a straightfor-
ward way. In the idle state all Josephson couplings are
turned off and the interaction (2.18) is zero. Depending
on the choice of idle state we may also tune the qubits
by their gate voltages to the degeneracy points, which
makes the Hamiltonian vanish, H50. The interaction
Hamiltonian remains zero during one-bit operations, as
long as we perform only one such operation at a time,
i.e., for one qubit we have EJ

i 5EJ(Fxi)Þ0. To perform
a two-bit operation for any pair of qubits, say, i and j , EJ

i

and EJ
j are switched on simultaneously, yielding the

Hamiltonian

H52
EJ

i

2
ŝx

i 2
EJ

j

2
ŝx

j 2
EJ

i EJ
j

EL
ŝy

i ŝy
j . (2.20)

While Eq. (2.20) is not identical to Eq. (A2) it equally
well allows the relevant nontrivial two-bit operations,
which, combined with the one-bit operations discussed
above, provide a universal set of gates.

A few comments should be added:

(1) We note that typical time spans of two-bit opera-
tions are of the order \EL /EJ

2 . It follows from con-
ditions (2.14) and (2.16) that the interaction energy
is never much larger than EJ . Hence at best the
two-bit gate can be as fast as a single-bit operation.

(2) It may be difficult to fabricate a nanometer-scale
inductor with the required inductance L , in particu-
lar, since it is not supposed to introduce stray ca-
pacitances. However, it is possible to realize such an
element by a Josephson junction in the classical re-
gime (with negligible charging energy) or an array
of junctions.

(3) The design presented above does not permit per-
forming single- or two-bit operations simultaneously
on different qubits. However, this becomes possible
in more complicated designs in which parts of the
many-qubit register are separated, for example, by
switchable SQUID’s.

(4) In the derivation of the qubit interaction presented
here we have assumed a dissipation-less high-
frequency oscillator mode. To minimize dissipation
effects, the circuit, including the inductor, should be
made of superconducting material. Even so, at finite
frequencies some dissipation will arise. To estimate
its influence, the effect of Ohmic resistance R in the
circuit has been analyzed by Shnirman et al. (1997),
with the result that the interqubit coupling persists if
the oscillator is underdamped, R!AL/NCqb. In ad-
dition the dissipation causes dephasing. An estimate
of the resulting dephasing time can be obtained
along the lines of the discussion in Sec. IV. For a
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reasonably low-loss circuit the dephasing due to the
coupling circuit is weaker than the influence of the
external control circuit.

(5) The interaction energy (2.18) involves via EL the
ratio of CJ and Cqb . The latter effectively screens
the qubit from electromagnetic fluctuations in the
voltage source’s circuit, and hence should be taken
as low as possible (see Sec. IV). Consequently, to
achieve a reasonably high interaction strength and
hence speed for two-bit operations, a large induc-
tance is needed. For typical values of EJ;100 mK
and Cg /CJ;0.1 one needs an inductance of L
>1 mH in order not to have the two-bit operation
more than ten times slower than the single-bit op-
eration. However, large values of the inductance are
difficult to reach without introducing large stray ca-
pacitances. To overcome this problem Makhlin et al.
(2000a) suggested using separate gate capacitors to
couple the qubits to the inductor, as shown in Fig. 5.
As long as the superconducting circuit of the induc-
tor is at most weakly dissipative, there is no need to
screen the qubit from the electromagnetic fluctua-
tions in this circuit, and one can choose CL as large
as CJ (still larger CL would decrease the charging
energy EC of the superconducting box), which
makes the relevant capacitance ratio in Eq. (2.17) of
order one. Hence a fairly low inductance induces an
interaction of sufficient strength. For instance, for
the circuit parameters mentioned above, L;10 nH
would suffice. At the same time, potentially dephas-
ing voltage fluctuations are screened by Cg!CJ .

(6) So far we have discussed manipulations on time
scales much slower than the eigenfrequency of the
LC circuit, which leave the LC oscillator perma-
nently in the ground state. Another possibility is to
use the oscillator as a bus mode, in analogy to the
techniques used for ion traps. In this case an ac volt-
age with properly chosen frequency is applied to a
qubit to entangle its quantum state with that of the
LC circuit (for instance, by exciting the oscillator
conditionally on the qubit’s state). Then by address-
ing another qubit one can absorb the oscillator
quantum, simultaneously exciting the second qubit.
As a result, a two-qubit unitary operation is per-

FIG. 5. A register of charge qubits coupled to an inductor via
separate capacitors CL;CJ , independent from the gate ca-
pacitors Cg .
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formed. This coupling via real excitations is a first-
order process, as opposed to the second-order inter-
action (2.18). Hence this method allows for faster
two-qubit operations. Apart from this technical ad-
vantage, the creation of entanglement between a qu-
bit and an oscillator would by itself be a very inter-
esting experimental achievement (Buisson and
Hekking, 2000).

D. Experiments with Josephson charge qubits

Several of the concepts and properties described
above have been verified in experiments. This includes
the demonstration of superpositions of charge states, the
spectroscopic verification of the spectrum, and even the
demonstration of coherent oscillations.

In a superconducting charge box the coherent tunnel-
ing of Cooper pairs produces eigenstates that are gate-
voltage-dependent superpositions of charge states. This
property was first observed, in a somewhat indirect way,
in the dissipative current through superconducting
single-electron transistors. In this system single-electron
tunneling processes (typically treated in perturbation
theory) lead to transitions between the eigenstates.
Since the eigenstates are not pure charge states, the
Cooper-pair charge may also change in a transition. In
the resulting combination of coherent Cooper-pair tun-
neling and stochastic single-electron tunneling the
charge transferred is not simply e and the work done by
the voltage source not simply eV . [In an expansion in
the Josephson coupling to nth order the charge (2n
11)e is transferred.] As a result a dissipative current
can be transferred at subgap voltages. The theoretical
analysis predicted a richly structured I-V characteristic
at subgap voltages (Averin and Aleshkin, 1989; Maassen
van den Brink et al., 1991; Siewert and Schön, 1996),
which has been qualitatively confirmed by experiments
(Maassen van den Brink et al., 1991; Tuominen et al.,
1992; Hadley et al., 1998).

A more direct demonstration of eigenstates that arise
as superpositions of charge states was found in the
Saclay experiments (Bouchiat, 1997; Bouchiat et al.,
1998). In their setup (see Fig. 6) a single-electron tran-
sistor was coupled to a superconducting charge box (as
in the measurement setup to be discussed in Sec. V) and
the expectation value of the charge of the box was mea-
sured. When the gate voltage was increased adiabati-
cally this expectation value increased in a series of
rounded steps near half-integer values of ng . At low
temperatures the width of this transition agreed quanti-
tatively with the predicted ground-state properties of
Eqs. (2.3) and (2.7). At higher temperatures, the excited
state contributed, again as expected from theory.

Next we mention the experiments of Nakamura et al.
(1997), who studied the superconducting charge box by
spectroscopic means. When exposing the system to ra-
diation they found resonances (in the tunneling current
in a suitable setup) at frequencies corresponding to the
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difference in the energy between excited and ground
states, again in quantitative agreement with the predic-
tions of Eq. (2.3).

The most spectacular demonstration so far of the con-
cepts of Josephson qubits has been provided by Naka-
mura et al. (1999). Their setup is shown in Fig. 7. In
these experiments the Josephson charge qubit was pre-
pared far from the degeneracy point for a sufficiently
long time to relax to the ground state. In this regime the
ground state was close to a charge state, say, u↑& . Then
the gate voltage was suddenly switched to a different
value. Let us first discuss the case in which it was
switched precisely to the degeneracy point. Then the ini-
tial state, a pure charge state, was an equal-amplitude
superposition of the ground state u0& and the excited
state u1&. These two eigenstates have different energies,
hence in time they acquire different phase factors:

uc~ t !&5e2iE0 t/\u0&1e2iE1 t/\u1&. (2.21)

After a delay time Dt the gate voltage was switched
back to the original gate voltage. Depending on the de-
lay, the system then ended up either in the ground state

FIG. 6. Scanning electron micrograph of a Cooper-pair box
coupled to a single-electron transistor used in the experiments
of the Saclay group (Bouchiat, 1997; Bouchiat et al., 1998).

FIG. 7. Micrograph of a Cooper-pair box with a flux-
controlled Josephson junction and a probe junction (Naka-
mura et al., 1999).
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u↑& [for (E12E0)Dt/h52np with n integer], in the ex-
cited state u↓& [for (E12E0)Dt/h5(2n11)p], or in
general in a Dt-dependent superposition. The probabil-
ity that, as a result of this manipulation, the qubit is in
the excited state is measured by monitoring the current
through a probe junction. In the experiments this cur-
rent was averaged over many repeated cycles, involving
relaxation and switching processes, and the oscillatory
dependence on Dt described above was observed.

In fact even more details of the theory have been
quantitatively confirmed. For instance, one also expects
and finds an oscillatory behavior when the gate voltage
is switched to a point different from the degeneracy
point, with the frequency of oscillations being a function
of this gate voltage. Second, the frequency of the coher-
ent oscillations depends on the Josephson coupling en-
ergy. The latter can be varied, since the Josephson cou-
pling is controlled by a flux-threaded SQUID (see Fig.
3). This aspect has also been verified quantitatively.

Coherent oscillations with a period of roughly 100 ps
could be observed in the experiments of Nakamura et al.
(1999) for at least 2 ns.7 This puts a lower limit on the
phase coherence time tf and, in fact, represents its first
direct measurement in the time domain. Estimates show
that a major contribution to the dephasing is the mea-
surement process by the probe junction itself. In the ex-
periments so far the detector was permanently coupled
to the qubit and observed it continuously. Still, informa-
tion about the quantum dynamics could be obtained
since the coupling strength was optimized: it was weak
enough not to destroy the quantum time evolution too
quickly and strong enough to produce a sufficient signal.
A detector that does not induce dephasing during ma-
nipulations should significantly improve the operation of
the device. In Sec. V we suggest using a single-electron
transistor, which performs a quantum measurement only
when switched to a dissipative state.

So far only experiments with single qubits have been
sucessfully carried out. Obviously the next step is to
couple two qubits and to create and detect entangled
states. Experiments in this direction have not yet been
successful, partially because of difficulties such as, for
instance, dephasing due to fluctuating background
charges. However, the experiments using single qubits
imply that extensions to coupled qubits should be pos-
sible as well.

E. Adiabatic charge manipulations

Another qubit design, based on charge degrees of
freedom in Josephson-junction systems, was proposed
by Averin (1998). It also allows control of two-bit cou-
pling at the price of representing each qubit by a chain
of Josephson-coupled islands. The basic setup is shown
in Fig. 8. Each superconducting island (with index i) is

7In later experiments the same group reported phase coher-
ence times as long as 5 ns (Nakamura et al., 2000).
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biased via its own gate capacitor by a gate voltage Vi .
The control of these voltages allows one to move the
charges along the chain analogously to the adiabatic
pumping of charges in junction arrays (see, for example,
Pekola et al., 1999). The capacitances of the Josephson
junctions as well as the gate capacitances are small
enough so that the typical charging energy prevails over
the Josephson coupling. In this regime the appropriate
basis is that of charge states un1 ,n2 , . . . &, where ni is the
number of extra Cooper pairs on island i . There exist
gate voltage configurations such that the two charge
states with the lowest energy are almost degenerate,
while all other charge states have much higher energy.
For instance, if all voltages are equal except for the volt-
ages Vm and Vl at two sites, m and l , one can achieve
a situation in which the states u0,0,0, . . . & and
u0, . . . ,21m,0, . . . ,1l , . . . & are degenerate. The subspace
of these two charge states is used as the logical Hilbert
space of the qubit. They are coupled via Josephson tun-
neling across the um2lu21 intermediate junctions.

The parameters of the qubits’ Hamiltonian can be
tuned via the bias voltages. Obviously the bias energy
Bz(V1 ,V2 , . . . ) between these two states can be
changed via the local voltages Vl and Vm . Furthermore,
the effective tunneling amplitude Bx(V1 ,V2 , . . . ) can
be tuned by adiabatic pumping of charges along the
chain, changing their distance um2lu and hence the ef-
fective Josephson coupling, which depends exponen-
tially on this distance. (The Cooper pair must tunnel via
um2lu21 virtual charge states with much higher en-
ergy.)

An interqubit interaction can be produced by placing
a capacitor between the edges (outer islands) of two qu-
bits. If at least one of the charges in each qubit is shifted
closer to this capacitor, the Coulomb interaction leads to
an interaction of the type Jzzsz

1sz
2 . The resulting two-bit

Hamiltonian is of the form

H52
1
2 (

j51,2
@Bz

j ~ t !sz
j 1Bx

j ~ t !sx
j #1Jzz~ t !sz

1sz
2 .

(2.22)

For controlled manipulations of the qubit the coeffi-
cients of the Hamiltonian are modified by adiabatic mo-
tion of the charges along the junction array. The adiaba-
ticity is required to suppress transitions between
different eigenstates of the qubit system.

While conceptually satisfying, this proposal appears
difficult to implement: It requires many gate voltages for
each qubit. Due to the complexity a high degree of ac-
curacy is required for the operation. Its larger size as
compared to simpler designs makes the system more
vulnerable to dephasing effects, for example, due to

FIG. 8. Two coupled qubits as proposed by Averin (1998).
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fluctuations of the offset charges.
Adiabatic manipulations of the Josephson charge qu-

bit can lead to Berry phases. Falci et al. (2000) suggested
that a Berry phase could accumulate during suitable ma-
nipulations of a flux-controlled charge qubit with an
asymmetric dc SQUID, and that it could be detected in
an experiment similar to that of Nakamura et al. (1999).
If the bare Josephson couplings of the SQUID loop are
EJ

1 and EJ
2 the effective Josephson energy is given by [cf.

Eq. (2.10)]

2EJ
1 cosS Q1p

Fx

F0
D2EJ

2 cosS Q2p
Fx

F0
D . (2.23)

Hence the corresponding Hamiltonian of the qubit has
all three components of the effective magnetic field: Bx
5(EJ

11EJ
2)cos(pFx /F0) and By5(EJ

22EJ
1)sin(pFx /

F0), while Bz is given by Eq. (2.4). With three nonzero
field components, adiabatic changes of the control pa-
rameters Vg and Fx may result in B’s enclosing a non-
zero solid angle. This results in a Berry phase shift gB
between the ground and excited states. In general, a dy-
namic phase *DE(t)dt is also accumulated in the pro-
cess. To single out the Berry phase, Falci et al. (2000)
suggested encircling the loop in parameter space back
and forth, with a NOT operation performed in between.
The latter exchanges the ground and excited states, and
as a result the dynamic phases accumulated during both
paths cancel. At the same time the Berry phases add up
to 2gB . This phase shift can be measured by a proce-
dure similar to that used by Nakamura et al. (1999): the
system is prepared in a charge state away from degen-
eracy, abruptly switched to the degeneracy point where
adiabatic manipulations and the NOT gate are per-
formed, and then switched back. Finally, the average
charge is measured. The probability of finding the qubit
in the excited charge state sin2 2gB reflects the Berry
phase.

The experimental demonstration of topological
phases in Josephson-junction devices would constitute a
new class of macroscopic quantum effects in these sys-
tems. They could be performed with a single Josephson
qubit in a design similar to that used by Nakamura et al.
(1999) and thus appear feasible in the near future.

III. QUBITS BASED ON THE FLUX DEGREE OF FREEDOM

In the previous section we described the quantum dy-
namics of low-capacitance Josephson devices where the
charging energy dominates over the Josephson energy,
EC@EJ , and the relevant quantum degree of freedom is
the charge on superconducting islands. We shall now re-
view the quantum properties of superconducting devices
in the opposite regime, EJ@EC , where the flux is the
appropriate quantum degree of freedom. These systems
were proposed by Caldeira and Leggett (1983) in the
mid 1980s as test objects to study various quantum-
mechanical effects, including macroscopic quantum tun-
neling of the phase (or flux) as well as resonance tunnel-
ing. Both had been observed in several experiments
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(Voss and Webb, 1981; Martinis et al., 1987; Clarke
et al., 1988; Rouse et al., 1985). Another important quan-
tum effect has been reported recently: The groups at
Stony Brook (Friedman et al., 2000) and Delft (van der
Wal et al., 2000) have observed in experiments the
avoided level crossing due to coherent tunneling of the
flux in a double-well potential. In principle, all other
manipulations discussed in the previous section should
be possible with Josephson flux devices as well. They
have the added advantage of not being sensitive to fluc-
tuations in the background charges. However, attempts
to observe macroscopic quantum coherent oscillations in
Josephson flux devices have not been yet successful
(Leggett, 1987; Tesche, 1990).

A. Josephson flux (persistent current) qubits

We consider superconducting ring geometries inter-
rupted by one or several Josephson junctions. In these
systems persistent currents flow and magnetic fluxes are
enclosed. The simplest design of these devices is an rf
SQUID, which is formed by a loop with one junction, as
shown in Fig. 9(a). The phase difference across the junc-
tion is related to the flux F in the loop (in units of the
flux quantum F05h/2e) by w/2p5F/F01integer. An
externally applied flux Fx biases the system. Its Hamil-
tonian, with Josephson coupling, charging energy, and
magnetic contributions taken into account, thus reads

H52EJ cosS 2p
F

F0
D1

~F2Fx!
2

2L
1

Q2

2CJ
. (3.1)

Here L is the self-inductance of the loop and CJ the
capacitance of the junction. The charge Q52i\]/]F
on the leads is canonically conjugate to the flux F.

If the self-inductance is large, such that bL
[EJ /(F0

2/4p2L) is larger than 1 and the externally ap-
plied flux Fx is close to F0/2, the first two terms in the
Hamiltonian form a double-well potential near F
5F0/2. At low temperatures only the lowest states in
the two wells contribute. Hence the reduced Hamil-
tonian of this effective two-state system again has the
form (2.3), Hctrl52 1

2 Bzŝz2 1
2 Bxŝx . The diagonal term

Bz is the bias, i.e., the asymmetry of the double-well
potential, given for bL21!1 by

FIG. 9. The simplest flux qubits: (a) The rf SQUID, a simple
loop with a Josephson junction, forms the simplest Josephson

flux qubit; (b) improved design for a flux qubit. The flux F̃x in
the smaller loop controls the effective Josephson coupling of
the rf SQUID.
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Bz~Fx!54pA6~bL21 ! EJ ~Fx /F021/2!. (3.2)

Bz can be tuned by the applied flux Fx . The off-
diagonal term Bx describes the tunneling amplitude be-
tween the wells, which depends on the height of the bar-
rier and thus on EJ . This Josephson energy, in turn, can
be controlled if the junction is replaced by a dc SQUID,

as shown in Fig. 9(b), introducing the flux F̃x as another
control variable.8 With these two external control pa-
rameters the elementary single-bit operations, i.e., z and
x rotations, can be performed, equivalent to the manipu-
lations described for charge qubits in the previous sec-
tion. In addition, for flux qubits we can either perform
the operations by sudden switching of the external fluxes

Fx and F̃x for a finite time, or we can use ac fields and
resonant pulses. To permit coherent manipulations the
parameter bL should be chosen larger than unity (so
that two wells with well-defined levels appear) but not
much larger, since the resulting large separation of the
wells would suppress the tunneling.

The rf SQUID described above had been discussed in
the mid 1980s as a realization of a two-state quantum
system. Some features of macroscopic quantum behav-
ior were demonstrated, such as macroscopic quantum
tunneling of the flux, resonant tunneling, and level quan-
tization (Voss and Webb, 1981; Martinis et al., 1987;
Clarke et al., 1988; Rouse et al., 1995; Silvestrini et al.,
1997). However, only very recently has the level repul-
sion near a degeneracy point been demonstrated (Fried-
man et al., 2000; van der Wal et al., 2000).

The group at Stony Brook (Friedman et al., 2000)
probed spectroscopically the superposition of excited
states in different wells. The rf SQUID used had self-
inductance L5240 pH and bL52.33. A substantial
separation of the minima of the double-well potential
(of order F0) and a high interwell barrier made the tun-
nel coupling between the lowest states in the wells neg-
ligible. However, both wells contain a set of higher lo-
calized levels—under suitable conditions one state in
each well—with relative energies also controlled by Fx

and F̃x . Because they were closer to the top of the bar-
rier, these states mixed more strongly and formed eigen-
states, which were superpositions of localized flux states
from different wells. External microwave radiation was
used to pump the system from a well-localized lowest
state in one well to one of these eigenstates. The energy
spectrum of these levels was studied for different biases

Fx , F̃x , and the properties of the model (3.1) were con-
firmed. In particular, the level splitting at the degen-
eracy point indicated a superposition of distinct quan-
tum states. They differed in a macroscopic way: the
authors estimated that the two superimposed flux states
differed in flux by F0/4, in current by 2–3 mA, and in
magnetic moment by 1010mB .

8See Mooij et al. (1999) for suggestions on how to control F̃x
independent of Fx .
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The Delft group (van der Wal et al., 2000) performed
microwave spectroscopy experiments on a similar but
much smaller three-junction system, to be described in
more detail below. In their system the superpositions of
the lowest states in two wells of the Josephson potential
landscape were probed. In the spectrum they observed a
level repulsion at the degeneracy point, confirming the
predictions of the two-state model Hamiltonian (2.3)
with the parameters Bx , Bz calculated from the poten-
tial (3.3).

In spite of this progress, attempts to observe macro-
scopic quantum coherence, i.e., the coherent oscillations
of a quantum system prepared in a superposition of
eigenstates, have not been successful so far (Leggett,
1987; Tesche, 1990). A possible reason for this failure
was suggested recently by Mooij et al. (1999). They ar-
gue that for the designs considered so far the existence
of the double-well potential requires that bL.1, which
translates into a rather high product of the critical cur-
rent of the junction and its self-inductance. In practice,
only a narrow range of circuit parameters is useful, since
high critical currents require a relatively large junction
area resulting in a high capacitance, which suppresses
tunneling. A high self-inductance of the rf SQUID can
be achieved only in large loops. This makes the system
very susceptible to external noise.

To overcome this difficulty Mooij et al. (1999) and
Feigelman et al. (2000) proposed using a smaller super-
conducting loop with three or four junctions, respec-
tively. Here we discuss the three-junction circuit shown
in Figs. 10(a) and (c). In this low-inductance circuit the
flux through the loop remains close to the externally
applied value, F5Fx . Hence the phase differences
across the junctions are constrained by w11w21w3
52pFx /F0 , leaving w1 and w2 as independent dynami-
cal variables. In the plane spanned by these two vari-
ables the Josephson couplings produce a potential land-
scape given by

U~w1 ,w2!52EJ cos w12EJ cos w2

2ẼJ cos~2pFx /F02w12w2!. (3.3)

If ẼJ /EJ.0.5, a double-well potential is formed within
each 2p32p cell in the phase plane. For an optimal

value of ẼJ /EJ'0.7–0.8 the cells are separated by high
barriers, while tunneling between two minima within
one cell is still possible. The lowest states in the wells
form a two-state quantum system, with two different
current configurations. Mooij et al. (1999) and Orlando
et al. (1999) discuss junctions with EJ;2 K and EJ /EC
;80 and loops of micrometer size with very small self-
inductance L;5 pH (which can be neglected when cal-
culating the energy levels). Typical qubit operation pa-
rameters are the level splitting Bz;0.5 K and the
tunneling amplitude Bx;50 mK. For the optimal choice

of ẼJ /EJ the two minima differ in phases by an amount
of order p/2. Due to the very low inductance and the
relatively low critical current Ic;200 nA, this translates
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into a flux difference of dF;LIc;1023F0 . While this
corresponds to a still ‘‘macroscopic’’ magnetic moment
of 104 –105mB , the two basis states are similar enough to
make the coupling to external fluctuating fields and
hence the dephasing effects weak (for a further discus-
sion, see Sec. IV). In this respect the new design is quali-
tatively superior to the simple rf SQUID.

In order to obtain more direct evidence for superpo-
sitions of localized flux states the Delft group (van der
Wal et al., 2000) measured the average flux of the qubit
as a function of the external bias Bz . This experiment is
similar to that of Bouchiat et al. (1997, 1998) for the
single-Cooper-pair box, which was discussed in Sec.
II.D. As the bias is swept across the degeneracy point,
one expects the average flux to change from the value in
one well to that in the other well. At high temperatures
the step is rounded, with width set by temperature. As
kBT is lowered below the tunnel splitting Bx this width
should saturate at the value of Bx . However, experi-
mentally it saturated much earlier than expected from
the spectroscopically measured tunnel splitting. This dis-
crepancy indicates an enhanced population of the ex-
cited state, which could be caused by noise, either from
external sources or due to the dc-SQUID detector.

FIG. 10. The Delft design of a flux qubit: (a) and (c) A three-
junction loop as a flux qubit (Mooij et al., 1999). The reduced
size and lower inductance of this system as compared with
earlier designs [e.g., Fig. 9(a)] reduce the coupling to the ex-
ternal world and hence dephasing effects. (b) Multijunction
flux qubit with a controlled Josephson coupling (Mooij et al.,

1999). Control over two magnetic fluxes, F and F̃ , allows one
to perform all single-qubit logic operations.
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B. Coupling of flux qubits

In order to couple different flux qubits one can use a
direct inductive coupling (Mooij et al., 1999; Orlando
et al., 1999), as shown by the dashed line in Fig. 11. A
mutual inductance between the qubits can be estab-
lished in different ways. The dashed loop shown in the
figure couples the currents and fluxes in the lower parts
of the qubits. Since fluxes through these loops control
the barrier heights of the double-well potentials, this
gives rise to the interaction term }ŝx

1ŝx
2 . Placing the

loop differently produces in addition contributions to
the interaction Hamiltonian of the form ŝz

1ŝz
2 . The typi-

cal interaction energy is of order MIc
2 where M is the

mutual inductance and Ic5(2p/F0)EJ is the critical cur-
rent in the junctions. For their design, Mooij et al. (1999)
estimate the typical interaction energy to be of order
0.01EJ;50 mK in frequency units, i.e., of the order of
single-qubit energies. For a typical rf SQUID (Friedman
et al., 2000) this coupling can be even stronger than the
tunneling rate between the flux states of the SQUID.

In the simplest form this interaction is always turned
on. To turn it off completely, one needs a switch con-
trolled by high-frequency pulses. The related coupling to
the external circuit leads to decoherence (see the discus-
sion at the end of this section). An alternative is to keep
the interaction turned on constantly and use ac driving
pulses to induce coherent transitions between the levels
of the two-qubit system (see Shnirman et al., 1997; Mooij
et al., 1999). A disadvantage of this approach is that per-
manent couplings result in an unwanted accumulation of
relative phases between the two-qubit states even in the
idle periods. Keeping track of these phases, or their sup-
pression by repeated refocusing pulses (see Sec. IV), re-
quires a high precision and complicates the operation.

A controllable interqubit coupling without additional
switches is achieved in the design shown by the solid line
in Fig. 11 (Makhlin et al., 2000c). The coupling is medi-
ated by an LC circuit, with self-inductance Losc and ca-
pacitance Cosc , which is coupled inductively to each qu-
bit. Like the design of the charge qubit register in Sec.
II.C, the coupling depends on parameters of individual
qubits and can be controlled in this way. The effective
coupling can be found again by integrating out the fast
oscillations in the LC circuit. It can be understood in a
simple way by noting that in the limit Cosc→0 the qubits
establish a voltage drop across the inductor, V

FIG. 11. Flux qubits coupled in two ways. The dashed line
induces a direct inductive coupling. Alternatively, an interqu-
bit coupling is provided by the LC circuit indicated by a solid
line.
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5(iMḞi /L, and the Hamiltonian for the oscillator mode
is Hosc5F2/2Losc1Q2/2Cosc2VQ , with the charge Q
being conjugate to the flux F through the LC circuit.
Here F i is the flux in the loop of qubit i , L is the self-
inductance of the loop, and M is its mutual inductance
with the LC circuit. Continuing as described in Sec.
II.C, we obtain the interqubit interaction term
2CoscV

2/2. In the limit of weak coupling to the LC

circuit, we have Ḟ i5(i/\)@Hi ,F i#5dF iBx
i ŝy

i /\ , where
dF i is the separation between two minima of the poten-
tial and Bx

i is the tunneling amplitude. Hence the inter-
action is given by

Hint52p2S M

L D 2

(
i,j

dF idF j

F0
2

Bx
i Bx

j

e2/Cosc
ŝy

i ŝy
j . (3.4)

To turn off the interaction one should suppress the
tunneling amplitudes Bx

i . This can be done with expo-
nential precision by increasing the height of the poten-

tial barrier via F̃x . Note that in this case unwanted fluc-
tuations of Bx

i and resulting dephasing effects are also
exponentially suppressed. All needed single and two-
qubit manipulations can be performed by turning on the
fields Bx

i and Bz
i , in complete analogy to what we dis-

cussed in Sec. II.C. We also encounter the equivalent
drawbacks: the design shown in Fig. 11 does not allow
simultaneous manipulations on different qubit pairs, and
the conditions of high oscillator frequencies and weak
renormalization of qubit parameters by the coupling,
similar to Eqs. (2.14) and (2.16), limit the two-qubit cou-
pling energy. The optimization of this coupling requires
ALosc /Cosc'RK(dF/F0)2(M/L)2 and vLC not far
above the qubit frequencies. For rf SQUID’s (Friedman
et al., 2000) the resulting coupling can reach the same
order as the single-bit terms. On the other hand, for the
design of Mooij et al. (1999), in which two basis phase
states differ only slightly in their magnetic properties,
the coupling term is much weaker than the single-bit
energies.

C. ‘‘Quiet’’ superconducting phase qubits

The circuits considered so far in this section are vul-
nerable to external noise. First, they need for their op-
eration an external bias in the vicinity of F0/2, which
should be kept stable for the time of manipulations. In
addition, the two basis flux states of the qubit have dif-
ferent current configurations, which may lead to mag-
netic interactions with the environment and possible
cross talk between qubits. To a large extent the latter
effect is suppressed already in the design of Mooij et al.
(1999). To further reduce these problems several designs
of so-called ‘‘quiet’’ qubits have been suggested
(Ioffe et al., 1999; Zagoskin, 1999; Blais and Zagoskin,
2000; Blatter, 2001) They are based on intrinsically dou-
bly degenerate systems, e.g., Josephson junctions with
d-wave leads and energy-phase relations (e.g., cos 2f)
with two minima, or the use of p junctions, which re-
moves the need for a constant magnetic bias near F0/2.
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The relevant two states differ only in their distribution
of internal currents in the Josephson junctions while ex-
ternal loops carry no current. As a result the coupling of
the qubit to the electromagnetic environment is substan-
tially reduced and coherence is preserved longer.

Designs have been proposed using tunnel junctions
between s- and d-wave superconductors (SD), between
two d-wave superconductors (DD), and between two
d-wave superconductors with a normal-metal bridge
(DND). The mentioned designs are similar and we dis-
cuss them in parallel. Ioffe et al. (1999) suggested using
an SD tunnel junction with the s-wave lead matched to
the (110) boundary of the d-wave superconductor. In
this geometry the first harmonic, }cos w, in the Joseph-
son coupling vanishes due to symmetry reasons, and one
obtains a bistable system with the potential energy
EJ cos 2w and minima at 6w0 with w05p/2. [A similar
current-phase relation was observed recently by II’ichev
et al. (1998) in a DD junction with a mismatch angle of
45°.] The DND design, with different orientations for
the two d-wave superconductors, was proposed by
Zagoskin (1999). The energy-phase relation for such
junctions also has two degenerate minima, at the phase
differences 6w0 . The separation 2w0 of these minima,
and hence the tunneling amplitude, are controlled by the
mismatch angle of the d-wave leads.

In a later development a ‘‘macroscopic analog’’ of
d-wave qubits was discussed (Blatter et al., 2001). In-
stead of an SD junction, it is based on a five-junction
loop, shown in Fig. 12, which contains one strong p junc-
tion and four ordinary junctions. The presence of the p
junction is equivalent to magnetically biasing the loop
with a half superconducting flux quantum. Four other
junctions, frustrated by the p phase shift, have two
lowest-energy states with the phase difference of 6p/2
between the external legs in the figure. In this respect
the five-junction loop is similar to the SD junction dis-
cussed above and can be called a p/2 junction.

In all these designs the bistability is a consequence of
time-reversal symmetry (which changes the signs of all
the phases) of the Hamiltonian. Thus the degeneracy
also persists in systems containing different Josephson
junctions, although the phase differences in the two
lowest-energy states and their separation can change. If
charging effects with EC!EJ are included, one arrives at
a double-well system with tunneling between the wells.
Such a qubit can be operated by connecting or discon-

FIG. 12. A five-junction loop, a basic bistable element of
‘‘quiet’’ superconducting qubits (Blatter et al., 2001), is made
of four ordinary junctions and one stronger p junction. In two
stable configurations the phase difference across this element
is 6p/2.
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necting it from external elements, as described below.
The first issue to be addressed is how to store the

qubit’s state, i.e., how to freeze the evolution. This can
be achieved by connecting the qubit in parallel to a large
capacitor (Ioffe et al., 1999). This makes the phase de-
gree of freedom very massive, thus suppressing the tun-
neling and restoring the needed degeneracy. In order to
perform a ŝx rotation, one turns on interwell tunneling
by disconnecting the capacitor. This means a switch is
needed in the circuit.

The ŝz rotation or phase shift can be accomplished by
lifting the degeneracy between the wells. This can be
done by connecting another, much stronger p/2 junction
(an SD-junction or five-junction loop) and a weak ordi-
nary s-wave junction (with Josephson energy }cos w) in
series to the qubit, to form a closed loop. This again
requires a switch. The auxiliary p/2 junction shifts the
phase differences of the potential minima of the qubit to
0 and p. Hence the s junction is in the ground state or
frustrated depending on the qubit’s phase drop. The cor-
responding energy difference produces the needed
phase shift between two qubit’s states.

To perform two-qubit manipulations and control the
entanglement, Ioffe et al. (1999) proposed forming a
loop, connecting in series two qubits and one s junction
with weak Josephson coupling EJ

s!EJ . The phase state
of each qubit is characterized by the phase difference of
6w0 , i.e., the total phase drop on the qubits is equal to
62w0 or 0 depending on whether the qubits are in the
same state or in different ones. When the connection
between the qubits and the s junction is turned on, this
phase drops across the s junction, and its energy differs
by EJ

s(12cos 2w0) for the states u00& , u11& as compared
to the states u01&, u10&. The net effect is an Ising-type
interaction between the pair of qubits, which allows uni-
tary two-qubit transformations.

Another mode of operation was discussed by Blais
and Zagoskin (2000). They suggested using a magnetic
force microscope tip for single-bit manipulations (local
magnetic field lifts the degeneracy of two phase states)
and for the readout of the phase state. The tip should be
moved towards or away from the qubit during manipu-
lations. The short time scales of qubit operation make
this proposal difficult to realize.

Even in ‘‘quiet’’ designs, in both SD and DD systems,
there are microscopic persistent currents flowing inside
the junctions which differ for the two logical states (Za-
goskin, 1999; Blatter et al., 2001). These weak currents
still couple to the outside world and to other qubits, thus
spoiling the ideal behavior. Furthermore, all the designs
mentioned require externally operated switches to con-
nect and disconnect qubits. We discuss the associated
problems in the following subsection.

To summarize, the quiet designs require rather com-
plicated manipulations as well as circuits with many
junctions, including p junctions or d-wave junctions,
which are difficult to fabricate in a controlled and reli-
able way. In addition, many constraints imposed on the
circuit parameters (in particular, on the hierarchy of Jo-
sephson couplings) appear difficult to satisfy. In our
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opinion the quiet phase qubit designs belong to a higher-
complexity class than the previously discussed charge
and flux qubits, and their experimental realization may
remain a challenge for some time.

D. Switches

Switches may be used in a variety of contexts in quan-
tum nanocircuits. They are needed, for example, for a
direct capacitive coupling between charge qubits or
magnetic coupling of flux qubits. They are also a major
tool for controlling the dynamics of quiet qubits. Ideal
switches should decouple qubits from the environment
and at the same time let through control signals. They
should operate on the very fast time scale of the qubit
dynamics and have a high switching ratio, that is, the
ratio of the interaction with the switch in the on or off
state. Such switches are hard to realize. In this section
we compare the characteristics of several Josephson-
junction-based switches and their associated problems.

Possible switches are dc SQUID’s as well as SSET’s
(superconducting single-electron transistors, or single-
Cooper-pair transistors) in a mode in which they act as
Josephson junctions with an externally controlled cou-
pling. Then the switching ratio is the ratio of the mini-
mal and maximal values of the coupling. In a dc SQUID
with Josephson energies of its junctions equal to EJ

1 and
EJ

2 , this ratio is (EJ
12EJ

2)/(EJ
11EJ

2). It reached a value
below 1% in the experiment of Rouse et al. (1995).
However, fast switching of the bias flux may be difficult
to perform. In a SSET the effective coupling is con-
trolled by a gate voltage, which can be switched quickly.
However, the switching ratio of order EJ /EC (EJ and
EC are characteristics of the SSET) is hardly below sev-
eral percent. These limitations lead to unwanted inter-
actions when the switch is supposed to be disconnected.

Since a dc SQUID requires an external bias to be
operated as a switch, Blatter et al. (2001) suggested a
similar construction with the bias provided by p/2 junc-
tions instead of an external magnetic field. That is, one
could insert two p/2 junctions into one arm of the
SQUID loop. Depending on whether the phase drops
across these junctions were equal or opposite, they
would simulate an external bias of a half flux quantum
or no bias. Accordingly, the Josephson couplings of two
s junctions in the SQUID would add up or cancel each
other. The switching could be realized via a voltage
pulse that drives one p/2 junction between 1p/2 and
2p/2 states. Blatter et al. (2001) also suggested using an
array of n such switches, reducing the overall Josephson
coupling in the off state by a factor @(EJ

12EJ
2)/EC#n.

Unfortunately, in the on state the overall coupling
through the array would also be reduced with growing
n , although this reduction might be weaker than in the
off state, i.e., the switching ratio increases with n . Nev-
ertheless the quality of the switch in the on state would
be reduced. Moreover, to operate the switch one would
need to send voltage pulses simultaneously to n interme-
diate elements, which complicates the operation. Note
that this design is reminiscent of the qubit design pro-
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posed by Averin (1998), which is presented in Sec. II.E.
However, while Blatter et al. (2001) suggest controling
the coupling, }(EJ /EC)n by controlling EJ , Averin pro-
poses to changing the distance n of the tunneling pro-
cess.

While switches of the type described above may be
useful in first experiments with simple quantum nanocir-
cuits, further work is needed before they can be used in
more advanced designs that require high precision of
manipulations and phase coherence over a long period
of time.

IV. ENVIRONMENT AND DISSIPATION

A. Identifying the problem

For an ideal quantum system the time evolution is
described by deterministic, reversible unitary opera-
tions. The concepts of quantum-state engineering and
computation heavily rely on this quantum coherence,
with many potential applications requiring a large num-
ber of coherent manipulations of a large number of qu-
bits. On the other hand, for any real physical quantum
system the time evolution may be disturbed in various
ways, and the number of coherent manipulations is lim-
ited. Possible sources of error are inaccuracies in the
preparation of the initial state, inaccuracies in the ma-
nipulations (logic gates), uncontrolled couplings be-
tween qubits, undesired excitations out of the two-state
Hilbert space (Fazio et al., 1999), and—unavoidable in
devices that are to be controlled externally—
interactions with the environment. Due to the coupling
to the environment, the quantum state of the qubits gets
entangled with the environmental degrees of freedom.
As a consequence the phase coherence is destroyed af-
ter a time scale called the dephasing time. In this section
we shall describe the influence of the environment on
the qubit. We determine how the dephasing time de-
pends on system parameters and how it can be opti-
mized.

Some of the errors can be corrected by software tools.
One known from NMR and, in particular, NMR-based
quantum logic operations (see, for example, Chang,
1998) is refocusing. Refocusing techniques serve to sup-
press the effects of undesired terms in the Hamiltonian,
e.g., deviations of the single-bit field terms from their
nominal values or uncontrolled interactions like stray
direct capacitive couplings of charge qubits or inductive
couplings of flux qubits. As an example we consider the
error due to a single-bit term dBxsx , which after some
time has produced an unwanted rotation by a. Refocus-
ing is based on the fact that a p pulse about the z axis
reverses the influence of this term, i.e.,
Uz(p)Ux(a)Uz(p)5Ux(2a). Hence fast repeated in-
versions of the bias Bz(t) (with uBzu@dBx) eliminate
the effects associated with dBx . The technique can also
be applied to enhance the precision of nonideal control
switches: one first turns off the coupling term to a low
value and then further suppresses it by refocusing. The
examples demonstrate that refocusing requires very fast
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repeated switchings with a period much shorter than the
elementary operation time. This can make it hard to
implement.

It was therefore a major breakthrough when the con-
cepts of quantum error correction were discovered (see,
for example, Preskill, 1998; Steane, 1998). When applied
they should make it possible, even in the presence of
dephasing processes—provided that the dephasing time
is not too short—to perform coherent sequences of
quantum manipulations of arbitrary length. The price to
be paid is an increase in system size (by roughly an order
of magnitude), and a large number of steps are needed
for error correction before another computational step
can be performed (increasing the number of steps by
roughly three orders of magnitude). This imposes con-
straints on the dephasing time. Detailed analysis shows
that error correction can be successful if the dephasing
time is of the order of 104 times longer than the time
needed for an elementary logic gate.

In the Josephson-junction systems discussed here, the
environment is usually composed of resistive elements in
the circuits needed for the manipulations and the mea-
surements. They produce voltage and current noise. In
many cases such fluctuations are Gaussian distributed
with a Johnson-Nyquist power spectrum, coupling lin-
early to the quantum system of interest. They can thus
be described by a harmonic oscillator bath with suitable
frequency spectrum and coupling strength (Leggett
et al., 1987; Weiss, 1999). For charge qubits, for instance,
fluctuations in the gate voltage circuit, coupling to sz ,
and fluctuations in the current, which control the Jo-
sephson energy and couple to sx , can be described in
this way (Shnirman et al., 1997). In this section we shall
first describe these noise sources and the dephasing then
introduce. We later comment on other noise sources
such as telegraph noise, typically with a 1/f power spec-
trum due to switching two-level systems (e.g., back-
ground charge fluctuations), or the shot noise resulting
from tunneling in a single-electron transistor coupled to
a qubit for the purpose of a measurement.

Depending on the relation between typical frequen-
cies of the coherent (Hamiltonian) dynamics and the
dephasing rates, we distinguish two regimes. In the first,
the Hamiltonian-dominated regime, where the con-
trolled part of the qubit Hamiltonian Hctrl52(1/2)Bs,
governing the deterministic time evolution and logic
gates, is large, it is convenient to describe the dynamics
in the eigenbasis of Hctrl . The coupling to the environ-
ment is weak, hence the environment-induced transi-
tions are slow. One can then distinguish two stages: (a)
dephasing processes, in which the relative phase between
the eigenstates becomes random; and (b) energy relax-
ation processes, in which the occupation probabilities of
the eigenstates change.

In the second, environment-dominated, regime Hctrl is
too weak to support its eigenstates as the preferred ba-
sis. The qubit’s dynamics in this situation is governed by
dissipative terms and depends on details of the structure
of the coupling to the environment. In general the evo-
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lution is complicated, and the distinction between relax-
ation and dephasing may be impossible.

Both regimes may be encountered during manipula-
tions. Obviously the Hamiltonian should dominate when
a coherent manipulation is performed. On the other
hand, if in the idle state the Hamiltonian vanishes (a
very useful property as outlined in Secs. II.A and II.B),
the environment-dominated regime is realized. One has
to ensure that the phase coherence rate in this regime is
still low enough.

B. Spin-boson model

Before we proceed to discuss specific physical sys-
tems, let us review what is known about the spin-boson
model, which has been studied extensively (see reviews
by Leggett et al., 1987 and Weiss, 1999). It models the
environment as an oscillator bath coupled to one com-
ponent of the spin. The Hamiltonian reads

H5Hctrl1sz(
a

laxa1HB , (4.1)

where

Hctrl52
1
2

Bz sz2
1
2

Bx sx (4.2)

52
DE

2
~cos h sz1sin h sx! (4.3)

is the controlled part of the Hamiltonian [cf. Eqs. (2.3)
and (2.6)], while

HB5(
a

S pa
2

2ma
1

mava
2xa

2

2 D (4.4)

is the Hamiltonian of the bath. The bath operator X
5(alaxa couples to sz . In thermal equilibrium one
finds for the Fourier transform of the symmetrized cor-
relation function of this operator

^Xv
2 &[

1
2 ^$X~ t !,X~ t8!%&v5\J~v!coth

v

2kBT
, (4.5)

where the bath spectral density is defined by

J~v![
p

2 (
a

la
2

mava
d~v2va!. (4.6)

This spectral density typically has a power-law behavior
at low frequencies (Leggett et al., 1987). Of particular
interest is Ohmic dissipation, corresponding to a spec-
trum

J~v!5
p

2
a\v , (4.7)

which is linear at low frequencies up to some high-
frequency cutoff vc . The dimensionless parameter a re-
flects the strength of dissipation. Here we concentrate
on weak damping, a!1, since only this regime is rel-
evant for quantum-state engineering. But still the
Hamiltonian-dominated and the environment-
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dominated regimes are both possible depending on the
ratio between the energy scale DE5ABz

21Bx
2, charac-

terizing the coherent evolution, and the dephasing rate
(to be determined below).

The Hamiltonian-dominated regime is realized when
DE@akBT . In this regime it is natural to describe the
evolution of the system in the eigenbasis (2.7) which di-
agonalizes Hctrl :

H52
1
2

DErz1~sin h rx1cos h rz! X1HB . (4.8)

Two different time scales characterize the evolution
(Görlich et al., 1989; Weiss and Wollensak, 1989; Weiss,
1999). On a first, dephasing time scale tw the off-
diagonal (in the preferred eigenbasis) elements of the
qubit’s reduced density matrix decay to zero. They are
represented by the expectation values of the operators
r6[(1/2)(rx6iry). Dephasing leads to the following
time dependence (at long times):

^r6~ t !&5^r6~0 !&e7iDEte2t/tw. (4.9)

On the second, relaxation time scale trelax the diagonal
entries tend to their thermal equilibrium values:

^rz~ t !&5rz~`!1@rz~0 !2rz~`!#e2t/trelax, (4.10)

where rz(`)5tanh(DE/2kBT).
The dephasing and relaxation times were originally

evaluated for the spin-boson model in a path-integral
technique (Leggett et al., 1987; Weiss, 1999). The rates
are9

trelax
21 5pa sin2 h

DE

\
coth

DE

2kBT
, (4.11)

tw
215

1
2

trelax
21 1pa cos2 h

2kBT

\
. (4.12)

In some cases these results can be derived in a simple
way, which we present here to illustrate the origin of
different terms. As is apparent from the Hamiltonian
(4.8) the problem can be mapped on the dynamics of a
spin-1/2 particle in the external magnetic field DE point-
ing in the z direction and a fluctuating field in the x-z
plane. The x component of this fluctuating field, with
magnitude proportional to sin h, induces transitions be-
tween the eigenstates (2.7) of the unperturbed system.
Applying the golden rule for this term, one obtains
readily the relaxation rate (4.11).

The longitudinal component of the fluctuating field,
proportional to cos h, does not induce relaxation pro-
cesses. It does, however, contribute to dephasing since it
leads to random fluctuations of the eigenenergies and
thus to a random relative phase between the two eigen-

9Note that in the literature usually the evolution of ^sz(t)&
has been studied. To establish the connection to the results
(4.11) and (4.12) one has to substitute Eqs. (4.9) and (4.10)
into the identity sz5cos h rz1sin h rx . Furthermore, we ne-
glect renormalization effects, since they are weak for a!1.
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states. As an example we analyze its effect on the
dephasing rate in an exactly solvable limit.

The unitary operator

U[expS 2isz

F

2 D with F[(
a

2lapa

\mava
2 (4.13)

transforms the Hamiltonian (4.1)–(4.4) to a rotating spin
frame (Leggett et al., 1987):

H̃5UHU2152~1/2!DE cos h sz

2~1/2!DE sin h~s1e2iF1H.c.!1HB . (4.14)

Here we recognize that in the limit h50 the spin and
the bath are decoupled, which allows an exact treat-
ment. The trivial time evolution in this frame, s6(t)
5exp(7iDEt)s6(0), translates in the laboratory frame
to

s6~ t !5e7iF(t)e6iF(0)e7iDEts6~0 !. (4.15)

To average over the bath we need the correlator

P~ t ![^eiF(t)e2iF(0)&5^e2iF(t)eiF(0)&, (4.16)

which has been studied extensively by many authors
(Leggett et al., 1987; Odintsov, 1988; Panyukov and
Zaikin, 1988; Nazarov, 1989; Devoret et al., 1990). It can
be expressed as P(t)5exp@K(t)#, where

K~ t !5
4

p\ E
0

`

dv
J~v!

v2

3FcothS \v

2kBT D ~cos vt21 !2i sin vtG . (4.17)

For the Ohmic bath (4.7) for t.\/2kBT one has
Re K(t)'2(2kBT/\)p a t . Thus we reproduce Eq. (4.9)
with tw given by Eq. (4.12) in the limit h50. While it is
not so simple to derive the general result for arbitrary h,
it is clear from Eqs. (4.11) and (4.12) that the effects of
the perpendicular (}sin h) and longitudinal (}cos h)
terms in Eq. (4.8) add up independently.

In the environment-dominated regime, DE!akBT ,
the qubit’s Hamiltonian is too weak to fix the basis,
while the coupling to the bath becomes the dominant
part of the total Hamiltonian. Therefore one should dis-
cuss the problem in the eigenbasis of the observable sz
to which the bath is coupled. The spin can tunnel inco-
herently between the two eigenstates of sz . To find the
tunneling rate one can again use the canonical transfor-
mation (4.13) leading to the Hamiltonian (4.14). In the
golden rule approximation one obtains (Leggett et al.,
1987) the following relaxation rate (for DE!akBT):

trelax
21 5

2p

\

DE2 sin2 h

4

3@P̃~DE cos h!1P̃~2DE cos h!#

'
DE2 sin2 h

2p\akBT
, (4.18)

where P̃(¯) is the Fourier transform of P(t). To find
the dephasing rate we again use Eq. (4.15) and obtain
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tw
21'2pakBT/\ . (4.19)

In this regime the dephasing is much faster than the
relaxation. Moreover, we observe that trelax

21 }(akBT)21

while tw
21}akBT . This implies that the faster is the

dephasing, the slower is the relaxation. Such a behavior
is an indication of the Zeno (watchdog) effect (Harris
and Stodolsky, 1982): the environment frequently ‘‘ob-
serves’’ the state of the spin, thus preventing it from
tunneling.

C. Several fluctuating fields and many qubits

Next we consider the general case of a qubit coupled
to several fluctuation sources (baths) via different spin
components and we discuss below a many-qubit system.
It is described by the following generalization of the
spin-boson model:

H5Hctrl1(
i

sniS (
a

la
i xa

i D 1(
i

HB
i , (4.20)

where the index i labels the different (Ohmic) baths and
the unit vectors ni determine the spin components to
which the baths are coupled. The Hamiltonian-
dominated regime is realized when DE@( ia ikBT ,
where a i correspond to the bath i . In this case one
should divide the fluctuations of all baths into transverse
and longitudinal ones, as in Eq. (4.8), with each bath
being characterized by the angle h i between ni and the
field direction (cos hi5Bni /uBu). The transverse fluctua-
tions will add up to the relaxation rate as

trelax
21 5(

i
pa i sin2 h i

DE

\
coth

DE

2kBT
, (4.21)

while the longitudinal fluctuations lead to the dephasing
rate

tw
215

1
2

trelax
21 1(

i
pa i cos2 h i

2kBT

\
. (4.22)

In the simplest environment-dominated situation one
of the baths (i5i0) is much stronger than all others,
a i0

@( iÞi0
a i , and satisfies a i0

kBT@DE . Then the
dephasing is described in the eigenbasis of sni0

corre-
sponding to this bath. The rate is

tw
21'2pa i0

kBT/\ . (4.23)

The relaxation rate in this basis may be estimated using
the golden rule:

trelax
21 '

DE2 sin2 h i0

2p\a i0
kBT

1 (
iÞi0

2pa i sin2 x i

kBT

\
, (4.24)

where cos xi5(nini0
). This rate is smaller than the

dephasing rate (4.23). Note that the relaxation rates due
to baths other than the strongest one do not show the
Zeno effect.

In the most complicated case of the environment-
dominated regime, with several baths coupled to differ-
ent spin components and characterized by constants a i
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of the same order, it is difficult to make quantitative
predictions. However, we expect that the time scale for a
quantum-state destruction (either dephasing or relax-
ation) will be longer than (( i2pa ikBT/\)21.

So far we have been concerned with dissipative effects
in a single qubit. However, all but the simplest applica-
tions of quantum-state engineering make use of many
coupled qubits and entangled states, i.e., states whose
properties cannot be reduced to the single-bit ones.
Therefore the question arises: how does dissipation af-
fect multiqubit systems and entangled states?

As a first step we analyze the effect of dissipation on
an N-qubit system during an idle period when the
single-bit terms and two-bit interactions are switched
off, Hctrl50. We assume that each qubit is coupled to an
independent oscillator bath, with no correlations be-
tween the baths, and we choose a basis in which this
coupling is diagonal, i.e., the bath is coupled to the sz
component. In this case the time evolution operator gov-
erning the density matrix, r̂n1¯nN ;m1¯mN

(t), factorizes.
We perform for each qubit i the unitary rotation (4.13)
with the result

rn1¯nN ;m1¯mN
~ t !

})
i51

N

^eiF i(t)(n i2m i)e2iF i(0)(n i2m i)&. (4.25)

Averaging over the baths yields in the long-time limit
the following time dependence of the density matrix:

rn1¯nN ;m1¯mN
~ t !} )

$i :n iÞm i%
exp~2t/tw

i !. (4.26)

Here the product is over all qubits i that have off-
diagonal entries in the density matrix. This form shows
that the dissipation has the strongest effect on those en-
tries of r̂ that are off-diagonal with respect to each qu-
bit. For instance, the dephasing rate of r0¯0;1¯1(t) is
1/tw5( i1/tw

i . It scales linearly with the number of qu-
bits.

The result (4.26) applies independent of the initial
state, i.e., equally for product states or entangled states
of the multiqubit system. However, it is valid only if the
controlled parts of the Hamiltonian are switched off.
The question of how dissipation influences the dynamics
of entangled states in general situations, e.g., during
logic operations when the many-qubit Hamiltonian is
nonzero, remains open. Further work is needed to ana-
lyze this interesting and important problem.

D. Dephasing in charge qubits

We now turn to the specific case of a Josephson
charge qubit coupled to the environment and determine
how the dephasing and relaxation rates depend on sys-
tem parameters. The system is sensitive to various elec-
tromagnetic fluctuations in the external circuit and the
substrate, as well as to background charge fluctuations.
We first estimate the effect of fluctuations originating
from the circuit of the voltage sources. In Fig. 13 the
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equivalent circuit of a qubit coupled to an impedance
Z(v) is shown. The latter has intrinsic voltage fluctua-
tions with a Johnson-Nyquist power spectrum. When
embedded in the circuit shown in Fig. 13 but with EJ
50, the voltage fluctuations between the terminals of
Z(v) are characterized by the spectrum

^dVdV&v5Re$Z t~v!%\v cothS \v

2kBT D . (4.27)

Here Z t(v)[@ ivCqb1Z21(v)#21 is the total imped-
ance between the terminals of Z(v), and Cqb is the ca-
pacitance (2.13) of the qubit in the circuit.

Following Caldeira and Leggett (1983), we model the
dissipative element Z(v) by a bath of harmonic oscilla-
tors described by the Hamiltonian HB as in Eq. (4.4)
(Shnirman et al., 1997). The voltage fluctuations be-
tween the terminals of Z(v) are represented by dV
5(alaxa , while the spectral function (4.6) has to be
chosen as J(v)5v Re$Zt(v)% in order to reproduce the
fluctuation spectrum (4.27).

To derive the Hamiltonian we introduce an auxiliary
variable, the charge q on the gate capacitor, and add a
term that couples q to the bath (a natural choice since
the current through the impedance is q̇). For simplicity
of derivation it is convenient also to add a small induc-
tance in series with the impedance Z to provide a
‘‘mass’’ for the q mode. Allowing for a time-dependent
external voltage Vg(t) and integrating out q , we find the
Hamiltonian

H5
@2en2CgVg~ t !#2

2~CJ1Cg!
2EJ cos Q1(

a

pa
2

2ma

1(
a

mava
2

2 Fxa2
la

mava
2 H 2en

Cqb

CJ

1CqbVg~ t !J G 2

. (4.28)

The voltage Vg(t) in the last term (coupling to the bath)
is relevant only if it depends on time and is usually
dropped in the literature. Its role is to provide the RC
time delay. This means that when Vg is changed the qu-

FIG. 13. A qubit in an electromagnetic environment charac-
terized by the impedance Z(v).
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bit feels the change only after the RC time. In the sys-
tems described here this delay is much shorter than the
other relevant time scales and thus need not be dis-
cussed further.

To be specific we shall concentrate in the following on
the fluctuations due to an Ohmic resistor Z(v)5RV in
the bias voltage circuit. In the two-state approximation,
using the relations n5(1/2)(11sz) and cos Q
5(1/2)sx , we thus arrive at the Hamiltonian of the spin-
boson model (4.1) with Bz and Bx given by Eqs. (2.4)
and (2.5), respectively. The dimensionless parameter
az

ch , characterizing the effect of fluctuations coupling to
sz of the charge qubit, is given by

az
ch5

4RV

RK
S Cqb

CJ
D 2

. (4.29)

The circuit resistance is compared to the quantum resis-
tance RK5h/e2'25.8 kV . Since the parameter az

ch di-
rectly relates the dephasing rate to typical energy scales,
its inverse determines the number of coherent single-
qubit manipulations that can be performed within the
dephasing time. From Eq. (4.29) we see that in order to
keep the dissipative effects of external voltage fluctua-
tions weak one has to use a voltage source with low
resistance and choose the gate capacitance Cg'Cqb
!CJ as low as possible. The latter screens out the volt-
age fluctuations, at the expense of having to apply larger
gate voltages for the manipulations. At the high fre-
quencies discussed here the typical impedance of the
voltage circuit is RV'50 V , and one obtains az

ch

'1022(Cg /CJ)
2. Taking the ratio10 Cg /CJ51022 one

can reach a dissipation as weak as az
ch'1026, allowing in

principle for 106 coherent single-bit manipulations.
Fluctuations of the externally controlled flux through

the SQUID loop of a charge qubit with tunable Joseph-
son coupling (see Fig. 3) also destroy phase coherence.
As can be seen from Eq. (2.10), these fluctuations
couple to cos Q}sx . Analogously to the voltage fluctua-
tions considered above, their strength can be expressed
by the effective impedance of the current circuit that
supplies the flux. For an estimate we take this imped-
ance RI to be purely real. At typical high frequencies of
the qubit’s operation it is of the order of the vacuum
impedance, RI;100 V . In terms of this resistance the
effect of fluctuations in the flux is characterized by the
parameter

ax
ch5

RK

4RI
S M

F0

]EJ~Fx!

]Fx
D 2

, (4.30)

where the flux-controlled Josephson coupling EJ(Fx) is
given by Eq. (2.11). The effect is weak for low values of
the mutual inductance. For M'0.01–0.1 nH and EJ

0

'0.1 K we obtain ax
ch'1026 –1028. The dephasing and

relaxation times, if only flux fluctuations need to be con-

10Nakamura et al. (1999) reached an even smaller ratio for
the qubit, but the probe circuit introduced a high stray capaci-
tance.
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sidered, are thus given by Eqs. (4.11), (4.12), and (4.30),
but with a substitution tan h5Bz /Bx since the noise
terms couple to sx . When both the gate voltage and the
flux fluctuate, a multibath situation described by Eq.
(4.20) is realized.

For typical parameters, e.g., for those of the experi-
ments of Nakamura et al. (1999), one can estimate the
dephasing time associated with the noise in the external
circuit to be of the order of 100 ns. These experiments
allow a direct probing of the phase coherence. Coherent
oscillations have been observed for 5 ns. Hence the the-
oretical estimate appears to be of the right order.11

Another important source of decoherence in charge
qubits is fluctuations of the background charge. It has
been found experimentally that they lead to 1/f noise at
low frequencies. Typically their contribution to fluctua-
tions of the effective gate voltage, Qg5CgVg , is of order
SQ(v)51028e2/v . These fluctuations limit the time of
coherent evolution and can hardly be improved by
present-day experimental techniques.12 Fortunately for
the ideas of quantum-state engineering, the configura-
tions of background charges change slowly, over a relax-
ation time scale that can reach minutes or even hours.
Thus during each cycle of manipulations these charges
provide random static gate voltages, which do not de-
stroy, for example, coherent oscillations. Their effect
can be suppressed using refocusing techniques. When
averaging over many experimental runs [as done by Na-
kamura et al. (1999)], one forms an ensemble average
from which the dephasing rate can be extracted.

When the qubit is coupled to a measurement device,
which necessarily implies a coupling to a macroscopic
variable with dissipative dynamics, the feedback intro-
duces fluctuations and causes dephasing. We shall dis-
cuss this explicitly in the next section for the case in
which a Josephson charge qubit is coupled to a dissipa-
tive single-electron transistor. We find that the shot
noise of the tunneling current in the SET introduces
dephasing and relaxation processes.

E. Dephasing in flux qubits

Flux qubits have the advantage that they are practi-
cally insensitive to background charge fluctuations and

11In the experiments of Nakamura et al. (1999) much of the
dephasing can actually be attributed to the measurement de-
vice, a dissipative tunnel junction that was coupled perma-
nently to the qubit. Its tunneling resistance was optimized to
be large enough not to destroy the qubit’s quantum coherence
completely, but low enough to allow for a measurable current.
Single-electron tunneling processes, occurring on a time scale
of the order of 10 ns, destroy the state of the qubit (escape out
of the two-state Hilbert space), thus putting an upper limit on
the time when coherent time evolution can be observed. For a
more detailed discussion of the experiment and the measure-
ment process we refer to the article by Choi et al. (2001).

12See, however, recent work of Krupenin et al. (2000) where
the 1/f noise was suppressed by fabricating a metallic island on
top of an electrode instead of placing it on the substrate.
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are advertised for this reason (Mooij et al., 1999). How-
ever, their phase coherence can still be destroyed by a
number of effects. Some sources of dissipation for flux
qubits have been discussed by Tian et al. (2000), and
estimates have been provided for the parameters of the
circuits of Mooij et al. (1999) and Orlando et al. (1999).
This includes the effect of background charge fluctua-
tions (tw'0.1 s) as well as quasiparticle tunneling in the
superconductor with a nonvanishing subgap conduc-
tance (tw'1 ms). The effect of nuclear spins in the sub-
strate producing fluctuating magnetic fields is similar to
the effect of background charges on charge qubits.
While the static random magnetic field may induce sub-
stantial changes in qubit frequencies of order dVnucl
'30 MHz (which can be suppressed, in principle, by us-
ing refocusing pulses), they cause no dephasing until a
typical nuclear spin relaxation time T1 , which can reach
minutes. Other sources of dephasing studied by Tian
et al. (2000) include electromagnetic radiation (tw

'103 s), much weaker than in typical rf-SQUID designs,
and unwanted dipole-dipole magnetic couplings be-
tween qubits, which for an interqubit distance of 10 mm
produces substantial effects after a relatively short time
t'0.2 ms. Design variations have been suggested to re-
duce the latter effect.

An important source of flux qubit dissipation is fluc-
tuation in the external circuit that supplies fluxes
through the loops. This can be analyzed along the same
lines as presented above. Since such fluctuations couple
to sz , the relevant parameter is az

fl . It is fixed by the
impedance ZI of the current source in the input loop
providing the flux bias and by the mutual inductance of
the input and the qubit’s loop M :

az
fl5

a

4
RK Re ZI

21S 4p2EJM

F0
2 D 2

. (4.31)

The numerical prefactor in Eq. (4.31) is a56(bL

21)/p2 for an rf SQUID and a5b2A4b221/p2 for the

design of Mooij et al. (1999), with b[ẼJ /EJ being the
ratio of critical currents for the junctions in the loop (see
Sec. III.A). The dephasing is slow for small loops and
junctions with low critical currents. Indeed, the argu-
ment in brackets in Eq. (4.31) can be represented as the
product of the screening ratio M/L and the quantity
bL54p2LEJ /F0

2. While the latter should be larger than
one for an rf SQUID, it can be much smaller for the
design of Mooij et al. (1999), resulting in a slower
dephasing.

The impedance ZI(v) and the bath spectrum J(v)
5\v Re ZI

21(v) are frequency dependent. They can
lead to resonances, for instance, if the current source is
attached to the qubit via low-loss lines. Care has to be
taken in experiments to avoid these resonances. In ad-
dition, the dephasing and relaxation times have to be
estimated for this situation. The analysis of the Hamil-
tonian (4.8) with a general bath spectrum shows that the
dephasing time can be defined as the time for the
quantity cos2 h ^(*0

t X(t)dt)2& to reach a value of order
one, while the relaxation time is the time for
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sin2 h ^u*0
t X(t)e6iDEtdtu2& to reach this value. The first

quantity can be expressed as t*dv^Xv
2 &d̃(v) involving

the function d̃(v)[2 sin2 (vt/2)/(ptv2), which is
peaked at v50 and has width t21. Recalling that ^Xv

2 &
is related to the bath spectrum (4.5), one finds that only
the low-frequency part of the impedance ZI(v), with
v,tw

21 , determines the dephasing rate. The relaxation
rate depends on the values of ZI(v) at frequencies in
the vicinity of v5DE/\ over a range of width trelax

21 .
The choice of a high dc resistance for the remote cur-

rent source strongly suppresses fluctuations at low fre-
quencies. Using Eqs. (4.31) and (4.12) we can estimate
the dephasing rate for the parameters of Mooij et al.
(1999). Assuming ZI(v'0);1 MV and M'L we find
az

fl;1029, which implies a negligible dephasing. At
higher frequencies of order DE , even if resonances are
suppressed, ZI(v'DE) is of order 100 V, leading to
az

fl;1025. This determines the relaxation rate via Eq.
(4.11). For Mooij et al.’s (1999) parameters we estimate
a relaxation time of ;5 ms at the degeneracy point.

The effect of fluctuations of the sx term in the Hamil-
tonian (in the flux circuit of the dc-SQUID loop that
controls the Josephson coupling) can be described in a
similar way (Makhlin et al., 1999). The effect of these
fluctuations is relatively weak for the operation regimes
discussed by Mooij et al. (1999).

While a further analysis of the dephasing effects in
flux qubits may be needed, the above-mentioned esti-
mates of tw suggest that the observation of coherent flux
oscillations is feasible in the near future. However, the
problem remains that observation requires an efficient
quantum detector, e.g., a quantum magnetometer. We
discuss this issue in the next section.

V. THE QUANTUM MEASUREMENT PROCESS

A. General concept of quantum measurements

Quantum-state engineering requires not only con-
trolled quantum manipulations but also quantum mea-
surement processes. They are needed, for example, at
the end of a computation to read out the final results, or
even in the course of the computation for the purpose of
error correction. The problem of quantum measurement
has always attracted considerable attention, and it still
stirs up controversy. In most of the literature on quan-
tum information theory the measurement process is ex-
pressed simply as a ‘‘wave-function collapse,’’ i.e., as a
nonunitary projection, which reduces the quantum state
of a qubit to one of the possible eigenstates of the ob-
served quantity with state-dependent probabilities.

On the other hand, in reality any measurement is per-
formed by a device that itself is a physical system, suit-
ably coupled to the measured quantum system and with
a macroscopic readout variable. This is accounted for in
the approaches described below, which are based on the
concepts of dissipative quantum mechanics (Leggett
et al., 1987; Zurek, 1991; Weiss, 1999). The qubit and the
measuring device are described as coupled quantum sys-
Rev. Mod. Phys., Vol. 73, No. 2, April 2001
tems. Initially there exist no correlations between the
qubit and the meter but, due to the coupling, such cor-
relations (entanglement) emerge in time. This is pre-
cisely the concept of measurement of von Neumann
(1995). Furthermore, the meter is actually a dissipative
system, coupled to the environment. The dissipation
eventually reduces the entanglement between the qubit
and the meter to classical correlations between them.
This is exactly what is needed for the measurement.

Several groups have studied problems related to
quantum measurement processes in mesoscopic systems.
Aleiner et al. (1997), Gurvitz (1997), and Levinson
(1997), investigated the effect of a dissipative conductor,
whose conductance depends on the state of the quantum
system, on this system itself. Such a configuration was
realized in recent experiments (Buks et al., 1998; Sprin-
zak et al., 2000), in which a quantum dot was embedded
in one of the paths of a ‘‘which-path interferometer.’’
The flow of a dissipative current through a nearby quan-
tum point contact, with conductance that depends on the
charge on the dot, amounts to a ‘‘measurement’’ of the
path chosen by the electrons in the interferometer. And
indeed the flow of a current through the point contact
leads to an observable reduction in the flux dependence
of the current through the interferometer. On the other
hand, no real measurement was performed. The experi-
ments merely demonstrated that the amount of dephas-
ing could be controlled by a dissipative current through
the quantum point contact, but they did not provide in-
formation about the path chosen by each individual
electron.

In what follows we shall discuss systems in which one
is able not only to study the dephasing but also, for in-
stance, by measuring a dissipative current, to extract in-
formation about the quantum state of the qubit. As an
explicit example we investigate a single-electron transis-
tor (SET) in the sequential tunneling regime coupled
capacitively to a charge qubit (Schoelkopf et al., 1998;
Shnirman and Schön, 1998). Our purpose is not philo-
sophical but rather practical. We do not search for an
ideal measurement device; instead we describe the prop-
erties of a realistic system, known to work in the classi-
cal regime, and investigate whether it can serve as a
quantum measurement device. At the same time we
keep in mind that we should come as close as possible to
the projective measurement picture assumed in quan-
tum algorithms. Various other mesoscopic devices have
been studied recently with the same goal, namely, to
establish their potential use as quantum detectors. These
include a quantum point contact coupled to a quantum
dot (Gurvitz 1997; Korotkov, 1999), a single-electron
transistor in the cotunneling regime (Averin, 2000a;
Maassen van den Brink, 2000), or a superconducting
SET (SSET; Averin, 2000b; Cottet et al., 2000). For a
flux qubit a dc SQUID, or suitable modifications of it,
can serve as a quantum detector.

Technically the measurement process is described by
the time evolution of the reduced density matrix of the
coupled system of qubit and meter. To analyze it we first
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FIG. 14. The circuit consisting of a qubit plus
a single-electron transistor used as a measur-
ing device.
derive a Bloch master equation for the time evolution of
the system of a Josephson charge qubit coupled to a
dissipative SET. This derivation demonstrates how the
unitary time evolution of system plus detector can lead
to a quantum measurement. It also allows us to follow
the dynamics of the system and detector and to analyze
the mutual influence of their variables. During the mea-
surement the qubit loses its phase coherence over a
short dephasing time tw .13 This means that the off-
diagonal elements of the qubit’s density matrix (in a pre-
ferred basis, which depends on relative strengths of the
coupling constants) vanish, while the diagonal elements
remain unchanged. At the same time the information
about the initial state of the qubit is transferred to the
macroscopic state of the detector (the current in the
SET). Under suitable conditions, after another time
tmeas , this information can be read out. Finally, over a
longer, mixing (or relaxation) time scale tmix , the detec-
tor acts back onto the qubit and destroys the informa-
tion about the initial state. The diagonal entries of the
density matrix tend to their stationary values. (These are
either determined by the detector or thermally distrib-
uted, depending on the relative strength of the measure-
ment device and residual interactions with the bath.)
One has to choose parameters such that this back action
does not change the occupation probabilities of the qu-
bit’s state before the information is actually read out, t
@tmeas>tw .

13In this section tw denotes the dephasing time during a mea-
surement. It is usually much shorter than the dephasing time
during the controlled manipulations discussed in the previous
sections. From the context it should be clear which situation
we refer to.
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The different times scales characterizing the measure-
ment process by a SET also show up in stationary state
properties, e.g., in the noise spectrum of the fluctuations
in the SET. This can be extracted from the time evolu-
tion of the coupled density matrix as well.

Ideally, the meter is coupled to the qubit only during
the measurement. In practice, however, this option is
hard to realize for mesoscopic devices. Instead, the
meter and the qubit are coupled permanently but the
former is kept in a nondissipative state. To perform a
measurement, the meter is switched to the dissipative
regime, which, as we mentioned above, is an important
requirement for effective quantum measurement. For
instance, in a SET, due to the Coulomb blockade phe-
nomena, no dissipative currents are flowing in the meter
as long as the transport voltage is switched off. Applying
a voltage bias above the Coulomb threshold induces a
dissipative current through the SET, which leads to
dephasing and, at the same time, provides the macro-
scopic readout variable.

Various modes of operation can be used, depending
on details of a particular setting. For instance, one can
switch the meter abruptly into the dissipative regime
and monitor the response of dissipative currents to the
qubit. Another possibility is to change the bias gradually
until the system switches into the dissipative regime. The
value of the bias at which switching occurs provides in-
formation about the qubit’s state. Conceptually these
techniques are similar. For definiteness, below we dis-
cuss the former operation strategy.

B. Single-electron transistor as a quantum electrometer

Since the relevant quantum degree of freedom of a
Josephson charge qubit is the charge of its island, the
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natural choice of measurement device is a single-
electron transistor. This system is shown in Fig. 14. The
left-hand part is the qubit, with state characterized by
the number of extra Cooper pairs n on the island and
controlled by its gate voltage Vg

qb . The right-hand part
shows a normal island between two normal leads, which
form the SET. Its charging state is characterized by the
number of extra single-electron charges N on the middle
island, controlled by gate and transport voltages, Vg

SET

and V tr , and, due to capacitive coupling to the qubit,
further controlled by the state of the latter. A similar
setup has been studied in the experiments of Bouchiat
(1997) and Bouchiat et al. (1998), in which it was used to
demonstrate that the ground state of a single-Cooper-
pair box is a coherent superposition of different charge
states.

During the quantum manipulations of the qubit the
transport voltage V tr across the SET transistor is kept at
zero and the gate voltage of the SET, Vg

SET , is chosen to
tune the island away from degeneracy points. Therefore
at low temperatures Coulomb blockade effects suppress
exponentially a dissipative current flow in the system,
and the transistor merely modifies the capacitances of
the system.14 To perform a measurement one tunes the
SET by Vg

SET to the vicinity of its degeneracy point and
applies a small transport voltage V tr . The resulting nor-
mal current through the transistor depends on the
charge configuration of the qubit, since different charge
states induce different voltages on the island of the SET.
While these properties are well established as the opera-
tion principle of a SET as electrometer in the classical
limit, it remains to be demonstrated that they also allow
the resolution of different quantum states of the qubit.
For this purpose we have to discuss various noise fac-
tors, including the shot noise associated with the tunnel-
ing current and the measurement-induced transitions
between the states of the qubit. These can be accounted
for by analyzing the time evolution of the combined sys-
tem’s density matrix.

The Hamiltonian of the combined system consists of
the parts describing the qubit, the SET, and the interac-
tion between them:

H5Hctrl1HSET1Hint . (5.1)

Except for a redefinition and renormalization of param-
eters, the qubit’s part is identical to that of the bare
qubit (2.3),

Hctrl52
1
2

Bzŝz2
1
2

Bxŝx

with Bz54EC,qb(122ng,qb) and Bx5EJ(Fx). For a de-
tailed derivation and precise definition of the param-
eters see Appendix C. Here it is sufficient to know that
the qubit’s Hamiltonian can be controlled by gate volt-
ages and the flux through the SQUID. After diagonal-

14More precisely, the leading contributions are cotunneling
processes, which are weak in high-resistance junctions.
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ization of Eq. (2.8), Hctrl52(1/2)DE(h) rz , the charac-
teristic energy scale of the qubit, DE(h)5ABz

21Bx
2,

becomes apparent.
The Hamiltonian of the SET reads

HSET5EC,SET~N2Ng,SET!21HL1HR1HI1HT ,
(5.2)

where the transistor’s charging energy is given by Eq.
(C2) and the gate charge Ng,SET[2eVN /2EC,SET , de-
fined in Eq. (C4), can be controlled by Vg

SET . The three
terms HL , HR , and HI describe microscopic degrees of
freedom of noninteracting electrons in the two leads and
the middle island of the SET:

Hr5(
ks

eks
r cks

r† cks
r ~r5L,R,I!. (5.3)

The index r5L,R,I labels the electrodes ‘‘left,’’ ‘‘right’’
(viewed from a suitable angle), and island, s labels
transverse channels including the spin, while k refers to
the wave vector within one channel. Note that similar
terms should have been written for the electrode and
island of the qubit; however, for this superconducting
nondissipative element the microscopic degrees of free-
dom can be integrated out (Ambegaokar et al., 1982;
Schön and Zaikin, 1990), resulting in the macroscopic
quantum description presented in Secs. II and III. In this
limit the tunneling terms reduce to the Josephson cou-
pling HJ52EJ cos Q, expressed in a collective variable
describing the coherent transfer of Cooper pairs,
eiQun&5un11&.

The normal-electron tunneling in the SET is described
by the standard tunneling Hamiltonian, which couples
the microscopic degrees of freedom:

HT5 (
kk8s

Tkk8s
L cks

L† ck8s
I e2if

1 (
k8k9s

Tk8k9s
R ck9s

R† ck8s
I e2ifeic1H.c. (5.4)

To make the charge transfer explicit, Eq. (5.4) displays
two macroscopic operators, e6if and e6ic. The first de-
scribes changes in the charge on the transistor island due
to tunneling: eifuN&5uN11& . If the total number of
electrons on the island is large it may be treated as an
independent degree of freedom. We further include the
operator e6ic, which acts on m , the number of electrons
that have tunneled through the SET, eicum&5um11&.
Since the chemical potential of the right lead is con-
trolled, m does not appear in any charging part of the
Hamiltonian. However, we have to keep track of it,
since it is the measured quantity, related to the current
through the SET.

Finally, Hint5E intN(2n21) describes the capacitive
interaction between the charge on the qubit’s island and
that on the SET island. In detail it originates from the
mixed term in Eq. (C1), where E int is given by Eq. (C2).
In the two-state approximation for the qubits, n5(1
1sz)/2, we obtain

Hint5NdHint[NE int sz . (5.5)



380 Makhlin, Schön, and Shnirman: Quantum-state engineering
FIG. 15. P(m ,t), the probability that m elec-
trons have tunneled during time t (measured
in nanoseconds). The initial amplitudes of the
qubit’s states are uau250.25, ubu250.75. EJ
50.1 K; the remaining parameters are given
later in the text.
The operator dHint , introduced here for later conve-
nience, is the part of the interaction Hamiltonian that
acts in the qubit’s Hilbert space.

C. Density matrix and description of measurement

The total system composed of qubit and SET is de-
scribed by a total density matrix %̂(t). We can reduce it,
by tracing out the microscopic electron states of the left
and right leads and of the island, to

r̂~ t !5TrL,R,I$%̂~ t !% . (5.6)

This reduced density matrix r̂(i ,i8;N ,N8;m ,m8) is still a
matrix in the indices i , which label the quantum states of
the qubit u0& or u1& , in N , and in m . In the following we
shall assume that initially, as a result of previous quan-
tum manipulations, the qubit is prepared in some quan-
tum state and is disentangled from the SET, i.e., the
initial density matrix of the whole system may be written
as a product r̂05 r̂0

qb
^ r̂0

SET . At time t50 we switch on a
transport voltage of the SET and follow the resulting
time evolution of the density matrix of the whole sys-
tem. For specific questions we may further reduce the
total density matrix in two ways, either of which can
provide complementary information about the measure-
ment process.

The first, common procedure (e.g., Gurvitz, 1997) is to
trace over N and m . This yields a reduced density ma-
trix of the qubit r̂ ij[(N ,mr̂(i ,j ;N ,N ;m ,m). At t50 one
has r̂ ij5( r̂0

qb) ij . Depending on the relation among the
energy scales and coupling strengths (see Sec. IV), a pre-
ferred basis may exist in which the dynamics of the di-
agonal and the off-diagonal elements of r̂ ij decouple.
We study how fast the off-diagonal elements (in that
special basis) vanish after the SET is switched to the
dissipative state, i.e., we determine the rate of dephasing
induced by the SET. And we determine how fast the
diagonal elements change their values. This process we
call mixing.

The rates of dephasing and mixing refer to the quan-
tum properties of the measured system in the presence
of the measurement device. These quantities have also
been analyzed by Aleiner et al. (1997), Gurvitz (1997),
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Levinson (1997), and Buks et al. (1998). They do not tell
us anything, however, about the quantity measured in an
experiment, namely, the current flowing through the
SET. Therefore the second way to reduce the density
matrix is important as well. By tracing the density matrix
over the qubit’s variables and the state N of the island,

P~m ,t ![(
i ,N

r̂~ i ,i ;N ,N ;m ,m !~ t ! , (5.7)

we obtain a probability distribution for the experimen-
tally accessible number of electrons m that have tun-
neled through the SET during time t . A detailed analy-
sis will be presented below. In order to provide a feeling
for this procedure we first present and describe some
representative results: At t50 no electrons have tun-
neled, so P(m ,0)5dm ,0 . Then, as illustrated in Fig. 15,
the peak of the distribution moves to nonzero values of
m and, simultaneously, widens due to shot noise. If the
two states of the preferred basis correspond to different
tunneling currents, and hence different m shifts, and if
the mixing in this basis is sufficiently slow, then after
some time the peak splits into two with weights corre-
sponding to the initial values of the diagonal elements of
r̂0

qb in the preferred basis (we shall denote these values
uau2 and ubu2512uau2). Provided that after sufficient
separation of the two peaks their weights are still close
to the original values, a good quantum measurement can
be performed by measuring m . After a longer time, due
to transitions between the states of the preferred basis
(mixing), the two peaks transform into a broad plateau.
Therefore there is an optimum time for the measure-
ment such that, on the one hand, the two peaks are sepa-
rate and, on the other hand, the mixing has not yet in-
fluenced the process.

Having introduced the relevant time scales, we can
mention that which-path interferometry (Buks et al.,
1998) can be thought of as a very short measurement
process. Each particular electron—the observed quan-
tum system—spends only a short time within the dot.
This time of interaction with the meter may be shorter
than the dephasing time. Therefore the coupling leads
only to a slight suppression of the interference pattern.
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D. Master equation

The time evolution of the density matrix leads to
Bloch-type master equations with coherent terms. Ex-
amples of this type have recently been analyzed in vari-
ous contexts (Nazarov, 1993; Schoeller and Schön, 1994;
Gurvitz and Prager, 1996; Stoof and Nazarov, 1996; Gur-
vitz, 1997). Schoeller and Schön (1994) developed a dia-
grammatic technique that provides a formally exact mas-
ter equation for a SET as an expansion in the tunneling
term HT , while all other terms, including the charging
energy, constitute the zeroth-order Hamiltonian H0 .
The time evolution of the reduced density matrix, r̂(t)
5 r̂(0)P(0,t), is expressed by a propagator P(t8,t),
which is expanded and displayed diagrammatically and
finally summed in a way reminiscent of a Dyson equa-
tion. Examples are shown in Fig. 16 and Appendix D. In
contrast to equilibrium many-body expansions, since the
time dependence of the density matrix is described by a
forward and a backward time-evolution operator, there
are two propagators, which are represented by two hori-
zontal lines (Keldysh contour). The two bare lines de-
scribe the coherent time evolution of the system. They
are coupled due to the tunneling in the SET. The sum of
all distinct transitions defines a ‘‘self-energy’’ diagram S.
Below we shall present the rules for calculating S and
present a suitable approximate form. The Dyson equa-
tion is equivalent to a Bloch master equation for the
density matrix, which reads

d r̂~ t !

dt
2

i

\
@r̂~ t !,H0#5E

0

t
dt8r̂~ t8!S~ t2t8!. (5.8)

In principle, the density matrix r̂(i ,i8;N ,N8;m ,m8)
[r̂ i , N , m

i8,N8,m8 is a matrix in all three indices i , N , and m ,
and the (generalized) transition rates due to single-
electron tunneling processes (in general of arbitrary or-

der), S
i ,N ,m→ ī , N̄ , m̄

i8,N8,m8→ ī 8,N̄8,m̄8(t2t8), connect these diagonal
and off-diagonal states. But a closed set of equations for
the time evolution of the system can be derived (Schoe-
ller and Schön, 1994) which involves only the elements
of r̂ diagonal in N . The same is true for the matrix struc-
ture in m . That is, we need only consider the elements
of the density matrix r̂N

ij (m)[r̂ j ,N ,m
i ,N ,m . Accordingly, of all

the transition rates we need only calculate the corre-

sponding matrix elements S j8,N8,m8→j ,N ,m
i8,N8,m8→i ,N ,m(Dt).

If the temperature is low and the applied transport
voltage not too high, the leading tunneling processes in
the SET are sequential transitions between two adjacent
charge states, say, N50 and N51. We concentrate here

FIG. 16. The Dyson-type equation governing the time evolu-
tion of the density matrix. It is equivalent to the generalized
master eqation (5.8). The ‘‘self-energy’’ diagrams S describe
transitions due to tunneling in the SET transistor.
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on this case (to avoid confusion with the states of the
qubit we continue using the notation N and N11). The
transition rates can be calculated diagrammatically in
the framework of the real-time Keldysh contour tech-
nique. The derivation is presented in Appendix D. A
simplification emerges, since the coherent part of the
time evolution of the density matrix, which evolves over
the time scale set by the qubit energies, is slow com-
pared to the tunneling time, given by the inverse of the
energy transfer in the tunneling process [see arguments
in square brackets in Eqs. (5.11) and (5.12) below]. As a
result the self-energy effectively reduces to a delta func-
tion, S(Dt)}d(Dt), and the Bloch type master equation
(5.8) reduces to a Markovian dynamics.

The resulting master equation is translationally invari-
ant in m space. Hence a Fourier transformation is ap-
propriate, r̂N

ij (k)[(me2ikmr̂N
ij (m). As a result Eq. (D8)

factorizes in k space and we get a finite rank (838)
system of equations for each value of k . This system
may be presented in compact form if we combine the
eight components of the density matrix into a pair
( r̂N , r̂N11) of 232 matrices r̂N

ij (k), corresponding to N
and N11:

\
d

dt S r̂N

r̂N11
D1S i@Hctrl , r̂N#

i@Hctrl1dHint , r̂N11# D
5S 2ǦL e2ikǦR

ǦL 2ǦR
D S r̂N

r̂N11
D . (5.9)

The operator dHint[E intsz5E int
i rz1E int

' rx was intro-
duced in Eq. (5.5). The tunneling rates in the left and

right junctions are represented by operators ǦL and ǦR ,
acting on the qubit’s density matrix:

ǦLr̂N[GLr̂N1paL @dHint , r̂N#1 ,

ǦRr̂N11[GRr̂N112paR @dHint , r̂N11#1 . (5.10)

Here aL/R[RK /(4p2RL/R
T ) is the tunneling conductance

of the left/right junction, measured in units of the resis-
tance quantum RK5h/e2. The tunneling rates in the
junctions are determined by the potentials mL/R of the
leads and the induced charge Ng,SET on the SET’s island:

GL52paL@mL2~122Ng,SET!EC,SET# , (5.11)

GR52paR@~122Ng,SET!EC,SET2mR# , (5.12)

G[GLGR /~GL1GR!. (5.13)

These combine into the parameter G, which gives the
conductance of the SET in the classical (e.g., high-
voltage) regime. As a result of the last terms in Eqs.
(5.10) the effective rates and thus the current in the SET
are sensitive to the state of the qubit, which makes the
measurement possible.

To provide a feeling for the types of solutions, we
present here numerical solutions of Eq. (5.9) for the fol-
lowing system parameters: Bz52 K, E int50.25 K, aL
5aR50.03, GL51.8 K, and GR57.8 K. We plot the re-
sults for EJ50.1 K (Fig. 15) and for EJ50.25 K (Fig. 17).
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FIG. 17. P(m ,t), the probability that m elec-
trons have tunneled during time t . The pa-
rameters are the same as in Fig. 15 except that
EJ50.25 K.
We see that for the smaller value of EJ (the eigenbasis
of Hctrl is closer to the charge basis) the probability dis-
tribution P(m ,t) develops a two-peak structure. The
weights of the peaks are equal to the initial values of the
diagonal elements of the qubit’s density matrix. For the
larger value of EJ the two-peak structure can also be
seen but the valley between the peaks is filled. This in-
dicates that mixing transitions take place on the same
time scale as that of peak separation, and no good mea-
surement can be performed. In Fig. 18 the probability
distribution P(m ,t) is plotted for longer times. (In order
to cover many decades of the time it is necessary to
rescale the m axis as well.) The parameters are the same
as in Fig. 15 (EJ50.1 K). The figure displays clearly the
measurement stage and the third stage on the mixing
time scale. The valley between the two peaks fills up and
a single, broad (note the rescaled m axis) peak develops.

As one can see from Eq. (5.9) the Hamiltonian of the
qubit switches between Hctrl and Hctrl1dHint after each
tunneling event in the SET. This leads, in general, to a
complicated dynamics. Above we showed representative
numerical results. Next we shall analyze Eq. (5.9) per-
turbatively, which provides insight into the physics of
the measurement process.

In general, the two Hamiltonians Hctrl and Hctrl
1dHint are not close and their respective eigenbases
may be quite different. In this situation a better choice
for the qubit’s Hamiltonian would be the ‘‘average’’
Hamiltonian

FIG. 18. P(m ,t) obtained in the two-mode approximation
(5.33), plotted vs t (on a logarithmic scale) and m/t . The initial
probabilities of the qubit’s states are uau250.75, ubu250.25.
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Hav[Hctrl1^N&dHint , (5.14)

where ^N&[GL /(GL1GR) is the steady-state average of
N . (The left-right asymmetry follows from the specific
choice of sequential tunneling regime: N50→N51 in
the left junction and N51→N50 in the right junction.)
Relevant energy scales are, then, the level splitting of
the average Hamiltonian,

Hav52
1
2

DEavrz , (5.15)

the capacitive coupling energy E int , and the bare tunnel-
ing rates GL/R . For definiteness we consider the case

E int!GL1GR . (5.16)

That is, we exclude the regimes of too strong coupling or
too weak tunneling in the SET, which could be treated
similarly to what is presented below. The main simplifi-
cation of the regime (5.16) is that the fluctuation spec-
trum of the electron number N on the SET island is
white over a rather wide range of frequencies, character-
ized by the zero-frequency noise power SN(v→0)
[2^dNv→0

2 &. When the SET is detached from the qubit
and switched to the dissipative regime, this spectrum is
given by SN(v→0)54G/(GL1GR)2. The related back-
action noise randomizes the relative phase between the
charge states of the qubit. In the absence of other
sources for dynamics the rate of this process is

tw0
215E int

2 SN~v→0 !5
4E int

2 G

~GL1GR!2 . (5.17)

This is an important measure for distinguishing between
different subregimes of Eq. (5.16), which will be de-
scribed in the following.

E. Hamiltonian-dominated regime

Let us first consider the case in which the qubit’s av-
erage Hamiltonian dominates over the dephasing due to
the back action of the SET, DEav@tw0

21. Then a pertur-
bative analysis in the eigenbasis of Hav is appropriate,
where the operator dHint can be rewritten as dHint
5E int

i rz1E int
' rx , where E int

i [E int cos hav , E int
'

[E int sin hav , and sin hav[EJ /DEav . In the following
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we treat perturbatively the off-diagonal part of dHint ,
i.e., E int

' rx (which leads to mixing; see below). In zeroth
order, i.e., for E int

' 50, the time evolutions of
@ r̂N

ij (k), r̂N11
ij (k)# with different (i ,j) are decoupled

from each other. For diagonal elements, i5j50 or 1, we
obtain

d

dt S r̂N
00/11

r̂N11
00/11D 5S 2GL

0/1 e2ikGR
0/1

GL
0/1 2GR

0/1 D S r̂N
00/11

r̂N11
00/11D , (5.18)

where GL
0/15GL62paLE int

i and GR
0/15GR72paRE int

i .
We obtain four eigenmodes (}elt), two for each ele-
ment (00 or 11). Most interesting are small values k
!1. In this case, two modes with eigenvalue l2

ii (k)
'2iG ik2 1

2 f iG ik2 and eigenvectors V2
ii (k) given by

r̂N
ii (k)/ r̂N11

ii (k)'GR
i /GL

i describe waves in m space
propagating with group velocity

G i[
GL

i GR
i

GL
i 1GR

i . (5.19)

The wave packets widen with time as A2 f i G it due to
shot-noise effects. The so-called Fano factors,

f i[~GL
i 21GR

i 2!/~GL
i 1GR

i !2, (5.20)

determine the suppression of shot noise in the sequen-
tial tunneling regime. The second pair of eigenmodes
decays quickly, l1

ii (k)'2(GL
i 1GR

i ). For their eigenvec-
tors we obtain r̂N

ii (k)/ r̂N11
ii (k)'21. This fast decay

means that after a few tunneling events, over a time
(GL

i 1GR
i )21, detailed balance r̂N

ii (k)/ r̂N11
ii (k)'GR

i /GL
i

is established. For larger values of k (k;1) one can
check that both r̂N

ii (k) and r̂N11
ii (k) decay quickly.

For the off-diagonal elements we obtain

d

dt S r̂N
01/10

r̂N11
01/10D 5F S 2GL e2ikGR

GL 2GR
D

6S iDEN 0

0 iDEN11
D G S r̂N

01/10

r̂N11
01/10D , (5.21)

where DEN5DEav12^N&E int
i , and DEN115DEav

22(12^N&)E int
i . Again, there are two pairs of eigen-

modes with eigenvalues such that l6
10(k)5@l6

01(2k)#* .
One pair of eigenmodes with Re l1

01/10(k!1)'2(GL

1GR) decays quickly. For the second pair, l2
10/01(k!1)

'6iDEav2tw
21 where

tw
21'

4GE int
i 2

~GL1GR!2 5E int
i 2SN~v→0 !5tw0

21 cos2 hav .

(5.22)

Thus, after detailed balance is established, the l2
10 and

l2
01 modes describe coherent oscillations of the off-

diagonal matrix elements with frequency of order DEav
and decay rate tw

21 . For larger values of k the decay
times are of the same order or shorter than those for k
'0.

The fast-decaying diagonal modes l1
00/11 do not con-

tribute to P(m ,t), since for these modes r̂N
ii (k)

1 r̂N11
ii (k)'0. Thus there are only two modes contrib-
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uting, with eigenvalues l2
00(k) and l2

11(k). Starting from
the initial occupation probabilities uau2 and ubu2 we ob-
tain

P~k ,t !'uau2el2
00(k) t1ubu2el2

11(k) t, (5.23)

where P(m ,t)[*dk/(2p) P(k ,t) e ikm. This form de-
scribes the evolution of the distribution P(m ,t) from the
initial d(m) at t50 into two peaks. The peaks shift to
positive m values linear in t with velocities G0 and G1,
and they grow in widths as A2 f iG it . This time depen-
dence implies that only after a certain time, which we
denote as the measurement time tmeas , the two peaks
emerge from the broadened distribution. The associated
rate is

tmeas
21 5S G02G1

A2 f 0G01A2 f1G1D 2

. (5.24)

In the linear-response regime, when G0 and G1 are close,
we obtain

tmeas
21 5

~DI !2

4SI
, (5.25)

where SI is the zero-frequency power of the shot noise
in the SET and DI5e(G02G1). The weights of the
peaks are given by the initial weights of the eigenstates
of Hav , uau2 and ubu2. Measuring the charge m thus con-
stitutes a perfect quantum measurement (Shnirman and
Schön, 1998).

Next we analyze the effect of the perturbation E int
' rz

in the master equation (5.9). It appears in both the co-
herent left-hand side and incoherent right-hand side
parts of Eq. (5.9) and leads to mixing. As usual the per-
turbation has the strongest effect when it lifts a (near)
degeneracy, since in this case the eigenvectors within the
degenerate subspace may change substantially. There-
fore we first treat the two near-degenerate modes, i.e.,
we restrict ourselves to the two-dimensional subspace
spanned by V2

00(k50) and V2
11(k50), and check how

the degeneracy between these two modes is lifted in a
second-order perturbative expansion. To account for
this we approximate the diagonal part of the density ma-
trix as

r̂diag~k ,t !'A0~k ,t !V2
00~k50 !1A1~k ,t !V2

11~k50 !

(5.26)
(the left-hand side should be understood as an eight-
column vector consisting of all matrix elements of r̂diag),
for which we obtain an effective (reduced) master equa-
tion:

d

dt S A0~k !

A1~k ! D5MredS A0~k !

A1~k ! D , (5.27)

where

Mred5S l2
00~k ! 0

0 l2
11~k !

D 1
1

2tmix
S 21 1

1 21 D . (5.28)

The second term in Eq. (5.28) results from the perturba-
tive expansion and, indeed, lifts the degeneracy between
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the two modes. The mixing rate is obtained in a second-
order perturbation expansion as

tmix
21 5

4GE int
' 2

DEav
2 1~GR1GL!2 5E int

' 2SNS v5
DEav

\ D .

(5.29)

In approximation (5.26) we have Ai(k ,t)5(Nr̂N
ii (k). At

t50 these are occupation probabilities of the eigenstates
of Hav , A0(k ,t50)5uau2, A1(k ,t50)5ubu2, for all k . It
is straightforward to diagonalize Eq. (5.28) to find the
eigenvalues. While the sum of the occupation probabili-
ties is conserved, A0(k50,t)1A1(k50,t)51, the differ-
ence decays, A0(k50,t)2A1(k50,t)}exp(2t/tmix).
Thus both occupations tend to 1/2 in the long-time limit.
This implies that the evolution of P(m ,t) is given by Eq.
(5.23) only for times t!tmix , and in order to perform a
measurement one must have tmix@tmeas . As tmeas

21

}E int
i 2}cos2 hav and tmix

21 }E int
' 2}sin2 hav , a good mea-

surement may always be achieved by choosing tan2 hav
small enough.

Another effect of the mixing perturbation is that the
dephasing rate, i.e., the decay rate of the off-diagonal
elements of the density matrix, is changed as

tw
215tw0

21 cos2 hav11/2tmix . (5.30)

This is analogous to the relation between the dephasing
(4.12) and relaxation (4.11) rates in the spin-boson
model. It reflects the fact that the relaxation of the diag-
onal elements of the density matrix leads also to addi-
tional suppression of the off-diagonal elements. Thus
even when hav5p/2, the off-diagonal elements vanish
with the rate 1/2tmix .

The long-time behavior of the qubit and detector, ex-
cluding the period of the initial dephasing, is dominated
by the two slowly decaying modes. In this regime we
obtain from Eqs. (5.27) and (5.28) the reduced time evo-
lution operator

Ured~k ,t ![exp@Mred~k ! t# . (5.31)

Its Fourier transform Ured(m ,t) yields the expression for
the distribution

P~m ,t !5~1, 1 !•Ured~m ,t !•S uau2

ubu2 D . (5.32)

This Fourier transform can be performed analytically
(Makhlin et al., 2000d), and we arrive at

P~m ,t !5 (
m852`

`

P̃~m2m8,t !
e2m82/2fḠt

A2pf Ḡt

, (5.33)

where

P̃~m ,t !5PplS 2
m2Ḡt

dG t
,

t

2tmix
D

1e2t/2tmix@ uau2d~m2G0t !1ubu2d~m2G1t !#

(5.34)

and
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G0/1[Ḡ6dG/2. (5.35)

We observe that the solution is constructed from two
delta peaks, smeared by the convolution with the shot-
noise Gaussian, and a plateau between them, which for
uxu,1 is given by

Ppl~x ,t!5e2t
1

2 dG tmix
$I0~tA12x2!

1@11x~ uau22ubu2!#I1~tA12x2!/A12x2%,

(5.36)

while Ppl50 for uxu.1. Here I0 , I1 are modified Bessel
functions. We work in the limit of weak qubit-detector
coupling, where the Fano factors (5.20) are close, and
we denote them simply by f . For short times, t!tmix ,
the peaks dominate, while the plateau is low. At longer
times the initial peaks disappear while the plateau is
transformed into a single central peak (see Fig. 18).

We complement the results for the charge distribution
function P(m ,t) by a derivation of the distribution func-
tion for values of the current. The measured quantity is
actually the current averaged over a certain time inter-
val Dt , i.e., IDt[@m(t1Dt)2m(t)#/Dt[Dm/Dt . Ac-
cordingly the quantity of interest P(IDt ,t) can be ex-
pressed by the joint probability that m electrons have
tunneled at time t and m1Dm electrons at a later time
t1Dt :

P~IDt ,t !5(
m

P~m ,t ;m1Dm ,t1Dt !

5(
m

Tr8 @U~Dm ,Dt ! U~m ,t !r̂0# . (5.37)

Here we make use of the Markovian approximation (see
Sec. V.D). The trace is taken over all degrees of free-
dom except m , and r̂0 refers to their initial state. In the
two-mode approximation (5.27) and (5.28), sufficient at
long times, we again replace U by Ured and obtain

P~IDt ,t !5~1 1 !•Ured~Dm ,Dt !•H 1
2 S 1

1 D
1

uau22ubu2

2
e2t/tmixS 1

21 D J . (5.38)

The behavior of P(IDt ,t) is displayed in Fig. 19 for
various values of Dt : (a) If the current is averaged over
very short intervals, Dt!tmeas [Fig. 19(a)], the detector
does not have enough time to extract the signal from the
shot-noise-governed background. (b) An effective quan-
tum measurement is achieved if tmeas,Dt,tmix . In this
case the qubit-sensitive signal can be seen on top of the
shot noise. Hence, as seen in Fig. 19(b), the measured
value of IDt is close to either eG0 or eG1 [Eq. (5.19)].
The corresponding probabilities (the weights of the two
peaks) are initially uau2 and ubu2. They change at longer
times, t.tmix , to a 1/2-1/2 distribution due to mixing. A
typical current pattern is a telegraph signal jumping be-
tween eG0 and eG1 over a time tmix . (c) and (d) If the
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FIG. 19. Probability distribution P(IDt ,t) of
the current averaged over various time inter-
vals Dt (a)–(d). The time axis is plotted on a
logarithmic scale.
current is averaged over longer times Dt>tmix , the
meter-induced mixing erases the information about the
qubit’s state. Several telegraph jumps can occur over this
time scale, and for Dt@tmix one measures only the time-
averaged current between eG0 and eG1, completely in-
sensitive to the initial values. This is shown in Fig. 19(d),
while Fig. 19(c) displays the crossover between (b) and
(d).

Notice that, since P(IDt ,t50)5P(m5IDt ,t5Dt),
the zero-time limits of the surfaces in Figs. 19(a)–(d)
are given by the charge distribution function plotted in
Fig. 18.

We point out that in the Hamiltonian-dominated re-
gime the current in the SET is sensitive to the occupa-
tion probabilities of the eigenstates of Hav , rather than
those in the basis of charge states. This may appear sur-
prising, since the SET couples to the charge operator of
the qubit. More precisely, the current is only sensitive to
the expectation value of the charge in each eigenstate.
As a consequence, at the degeneracy point hav5p/2,
where the two eigenstates have the same average
charge, both eigenstates lead to the same current in the
SET and no measurement is possible. The measurement
is effective only when charges in the eigenstates differ,
tan hav!1.

F. Detector-dominated regime

When back-action dephasing dominates over the av-
erage Hamiltonian, tw0

21@DEav , a perturbative analysis
in the charge basis is appropriate. In this basis the per-
turbation is the Josephson term of the qubit’s Hamil-
tonian Hctrl , i.e., 2(1/2)Bxsx . Starting from zeroth or-
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der, Bx5EJ50, we obtain equations similar to Eqs.
(5.18) and (5.21) with the replacements DEav→Bz ,av and
E int

i →E int , where Bz ,av[Bz22^N&E int is the charging
energy of the ‘‘average’’ Hamiltonian. The analysis of
the diagonal and off-diagonal modes is performed simi-
larly. We get for the dephasing rate tw

215tw0
21 . For the

measurement time we reproduce Eq. (5.24). The dynam-
ics of the two long-lived diagonal modes can again be
reduced to Eqs. (5.23), (5.26), (5.27), and (5.28) with

tmix
21 'EJ

2tw0 . (5.39)

This result is standard for the Zeno regime, i.e., the re-
gime in which coherent oscillations are overdamped by
dephasing [cf. Eq. (4.18)].

The condition for the Zeno regime given above re-
quires a rather strong dephasing, such that tw0

21 exceeds
both components of the qubit’s Hamiltonian (2.3), tw0

21

@EJ ,Bz ,av . The second part of this condition can be
satisfied by tuning the qubit close to the degeneracy
point. In contrast, in the Hamiltonian-dominated regime
it is desirable for a good measurement to switch the qu-
bit away from the degeneracy point.

The long-time behavior of the charge and current dis-
tributions, P(m ,t) and P(IDt ,t), is again given by Eqs.
(5.33) and (5.38) but with proper redefinitions of G0, G1,
tmix

21 , etc., which now refer to the detector-dominated
regime. In particular, the measurement provides infor-
mation about the initial occupations of the qubit charge
states rather than the eigenstates.

To summarize we present the main results for the two
regimes in Table I.
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TABLE I. Summary of the main results for the Hamiltonian-dominated and detector-dominated
regimes.

Regime Hamiltonian Fluctuation
dominated dominated
(coherent) (Zeno)

Leading term Hav dN(t)dHint

Largest energy DEav@tw0
21 tw0

21@DEav

Preferred basis eigenbasis charge basis
Perturbation E int sin hav rx EJ sx

tw
21 tw0

21 cos2hav1
1
2 tmix

21 tw0
21

tmeas
21 }E int

2 cos2hav }E int
2

tmix
21 4G~Eint sin hav!

2

~GL1GR!21DEav
2 EJ

2 tw0
G. Flux measurements

To measure the quantum state of a flux qubit (for
simplicity we consider here a single-junction rf SQUID),
one needs a dissipative device sensitive to the magnetic
flux. Natural candidates are dc SQUID’s, i.e., supercon-
ducting loops interrupted by two Josephson junctions.
Coupling the qubit and the SQUID inductively, as
shown in Fig. 20, one transfers part of the qubit’s flux
into the loop of the SQUID and thus makes the SQUID
sensitive to the state of the qubit.

SQUID’s have been used as ultrasensitive magneto-
meters for many years, and an extensive literature cov-
ers the physics of SQUID’s in great detail (see, for ex-
ample, Likharev, 1996; Tinkham, 1996). Here we
mention only some of the recent activities and ideas that
arose in connection with flux qubits. Two main strategies
have been proposed. The first is to use underdamped dc
SQUID’s in the hysteretic regime (Mooij et al., 1999).
This regime is realized when the SQUID is unshunted or
the shunt resistance is large, Rs@(EJ /EC) RK , where EJ
and EC are the characteristic Josephson and charging
energies of the SQUID. The higher the shunt resistance
Rs , the lower the noise of the SQUID in the supercon-
ducting regime (when no measurement is performed).

FIG. 20. Measurement setup for a flux qubit. The qubit (the rf
SQUID on the left side) is inductively coupled to the meter
(the shunted dc SQUID on the right side).
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Therefore, in spite of the permanent presence of the
SQUID, the coherent dynamics of the qubit suffers only
weak dephasing. To read out the state of the qubit, one
ramps the current in the SQUID and records the value
of the current when the SQUID switches to the dissipa-
tive regime. As this switching depends on the flux
through the SQUID, information about the state of the
qubit is obtained. Unfortunately, current switching is a
random process, fluctuating even when the external flux
in the SQUID is fixed. For currently available system
parameters the spread is larger than the difference be-
tween the two current values corresponding to the two
states of the qubit. Therefore only statistical (weak re-
peated) measurements are possible in this regime.

The second strategy is to use overdamped SQUID’s,
with Rs,(EJ /EC)RK . When the bias current exceeds
the critical value, the voltage that develops across the
shunt resistor depends on the external flux in the
SQUID. Thus by measuring this voltage one learns
about the state of the qubit. In this regime the principle
of the measurement is identical to the one presented
above for the SET. Recently Averin (2000b) analyzed
continuous (stationary) measurements in this regime
and obtained the input and output noise characteristics
(see Sec. V.H) that determine the relevant time scales
tw , tmeas , tmix . The main disadvantage of this strategy is
that the SQUID induces dephasing during the periods of
coherent manipulations when no measurement is per-
formed. It remains to be seen whether a reasonable
compromise between the underdamped and the over-
damped limits can be found.

H. Efficiency of the measuring device

Recently several devices performing quantum mea-
surements have been analyzed. Apart from SET’s in the
sequential tunneling regime (Shnirman and Schön, 1998;
Devoret and Schoelkopf, 2000; Makhlin et al., 2000d;
Korotkov, 2001b) these include SET’s in the cotunneling
regime (Averin, 2000b; Maassen van den Brink, 2000),
superconducting SET’s (SSET’s) and dc SQUID’s



387Makhlin, Schön, and Shnirman: Quantum-state engineering
(Averin, 2000b), and quantum point contacts (Korotkov
and Averin, 2000). All these devices are based on the
same basic idea: they are dissipative systems whose re-
sponse (conductance, resistance) depends on the state of
a qubit coupled to them.

The efficiency of a quantum detector has several as-
pects. From a practical point of view the most important
is the ability to perform a strong, single-shot measure-
ment, which requires that the mixing be slower than the
readout, tmix@tmeas . Another desired property is low
back-action noise of the meter in the off state, which can
be characterized by a corresponding dephasing rate.

A further important figure of merit is the ratio of the
dephasing and measurement times. Quantum mechanics
demands that a quantum measurement completely
dephase a quantum state, i.e., tw<tmeas . For the ex-
ample of a SET coupled to a charge qubit, the dephasing
time (5.22) is smaller (or even much smaller) than the
measurement time (5.24). This means that the informa-
tion becomes available later than should be possible in
principle. In this sense the efficiency of the SET in the
sequential tunneling regime is less then 100% (Shnirman
and Schön, 1998; Korotkov, 1999). The reason for the
delay is an entanglement of the qubit with microscopic
degrees of freedom in the SET. To illustrate this point,
consider a situation in which the initial state of the sys-
tem (au0&1bu1&) ux& um50& evolves into au0& ux0& um0&
1bu1& ux1& um1& , where ux& stands for the quantum state
of the uncontrolled environment. One can imagine a
situation in which m05m1 , but ux0& and ux1& are or-
thogonal. Then dephasing has occurred but no measure-
ment has been performed. It is interesting to note that
the ratio tw /tmeas grows if the SET is biased in an asym-
metric way, creating a strong asymmetry in the tunneling
rates, e.g., GL!GR . In other measurement devices the
ratio tw /tmeas may be close to 1. This includes quantum
point contacts (Korotkov, 1999; Korotkov and Averin,
2000) as well as SET’s in the cotunneling regime
(Averin, 2000a; Maassen van den Brink, 2000). The
common feature of these three examples is that the de-
vice consists of one junction or effectively reduces to it.
It should be kept in mind, however, that a large ratio of
dephasing and measurement times is not the only figure
of merit. For instance, in a SET in the cotunneling re-
gime the current is low and more difficult to detect than
in a SET in the sequential tunneling regime.

The ratio of dephasing and measurement times
tw /tmeas has also been analyzed in the framework of the
theory of linear amplifiers (Averin, 2000b; Devoret and
Schoelkopf, 2000). It can be expressed in terms of the
noise characteristics of the amplifier, which in turn de-
termine the sensitivity of the device. In this framework,
one considers a detector with output signal I and input
signal f, which is coupled to an observable Q of the
detector via a term fQ . The input signal causes a varia-
tion of the output, which can be characterized by the
linear-response coefficient l[d^I&/df . Note that usu-
ally one operates in a dissipative, nonequilibrium re-
gime. When used as a quantum detector coupled to a
qubit the input variable is f}sz , and the coupling is
Rev. Mod. Phys., Vol. 73, No. 2, April 2001
cszQ (with c being a coupling constant). We first con-
sider a situation in which tunneling between the qubit’s
basis states is suppressed, i.e., Hctrl52Bzsz/2. In this
case the rate at which fluctuations of Q dephase the
qubit is

tw
215

c2

\2 SQ . (5.40)

The symbols SQ and SI (introduced below) stand for the
noise power of the corresponding observable if the am-
plifier is decoupled from the qubit: SQ52 ^Qv

2 & and SI

52 ^Iv
2 &. A white spectrum is assumed at the relevant

frequencies. The two basis states of the qubit produce
output signals I0/15 Ī6DI/2, differing by

DI52cl . (5.41)

These can be distinguished after a measurement time

tmeas
21 5

~DI !2

4SI
. (5.42)

Hence the two times are related by

tmeas

tw
5

SQSI

\2l2 5
SQSf

\2 . (5.43)

In the last form of Eq. (5.43) Sf[SI /l2 is the output
noise in terms of the input, i.e., the noise that should be
applied to the input to produce the noise SI at the out-
put.

If the tunneling is turned on, Hctrl52 1
2 DE(cos h sx

1sin h sz), both the measurement rate (5.42) and the
rate of pure dephasing (5.40) acquire an additional fac-
tor cos2 h, while their ratio (5.43) persists. Apart from
that, the finite tunneling introduces mixing, over a time

tmix
21 5

c2

\2 SQ sin2 h . (5.44)

For the particular case of a SET, which motivates the
notations, I is the transport current, Q5eN the charge
of its central island, and f the gate potential externally
applied to the middle island of the SET [f consists of
VN and a contribution of the qubit; see Eq. (C4)]. The
coupling constant is c5E int /e and the linear response is
given by l5DI/(2c)5e2dG/(2E int) with dG defined by
Eq. (5.35). In this case, Eqs. (5.40) and (5.42) are con-
sistent with what has been described before in Eqs.
(5.22) and (5.25).

The quantity ASQSf is proportional to the noise en-
ergy, discussed by Devoret and Schoelkopf (2000), mea-
sured in units of the energy quanta at the given fre-
quency. For the noise spectra SQ and Sf one can obtain
an inequality, similar to the Heisenberg uncertainty
principle (Braginsky and Khalili, 1992): SQSf>\2. In-
deed, by virtue of Eq. (5.43) this relation coincides with
the constraint

tw<tmeas . (5.45)



388 Makhlin, Schön, and Shnirman: Quantum-state engineering
Moreover, one can show (Braginsky and Khalili, 1992;
Averin, 2000b) that a stronger inequality holds. Namely,
the quantity15

e[
1
2

~SQSf2Re2SfQ!1/2 (5.46)

is limited by e>\/2. Here SfQ[SIQ /l , where SIQ
[2*dt8^I(t)Q(t8)& characterizes cross correlations be-
tween the input and the output. Thus one has

tmeas

tw
5S e

\/2D
2

1
~Re SfQ!2

\2 . (5.47)

The optimization of this ratio requires that the detector
reach the quantum limit of sensitivity, e5\/2, and the
cross correlations vanish, Re SfQ50. Averin (2000b)
made the observation that the quantum limit is (nearly)
reached in several measurement devices: For a quantum
point contact, an overdamped dc SQUID, a resistively
shunted superconducting SET, or a normal SET in the
cotunneling regime (Averin, 2000a), the following two
relations hold under certain conditions:

SISQ'uSIQu2 (5.48)

and

l'Im SIQ . (5.49)

Equations (5.48) and (5.49) immediately imply that e
5\/2. Note that those equations are requirements for a
quantum-limited measurement device. They are not
valid in general. For instance, the near equality in Eq.
(5.48) should in general be replaced by the > sign. Even
for the detectors where they were found, they break
down (making e.\/2), e.g., at finite temperatures or at
bias voltages close to the Coulomb blockade threshold
(Averin, 2000a).

As for Eq. (5.49), by definition the response coeffi-
cient is l52i*dt8u(t2t8)^@I(t),Q(t8)#&52 Im *dt8u(t
2t8)^I(t)Q(t8)&. Hence Eq. (5.49) implies a vanish-
ing reciprocal response coefficient l852 Im *dt8u(t
2t8)^Q(t)I(t8)&. While in equilibrium Onsager’s relations
imply l52l8, such an asymmetry can arise in a non-
equilibrium stationary state. It is a characteristic feature
of linear measuring devices (Braginsky and Khalili,
1992).

As for the cross correlations Re SfQ , they vanish, for
example, in a dc SQUID with two identical Josephson
junctions, a quantum point contact symmetrically
coupled to a quantum dot, or a SSET (Averin, 2000b).

I. Statistics of the current and the noise spectrum

In previous sections we have discussed the statistics of
the charge m , which passed through the detector, and
the corresponding current I after a measurement was
started. In this section we complement this discussion by

15This quantity is denoted as the ‘‘energy sensitivity’’ by
Averin (2000b), but Devoret and Schoelkopf (2000) use this
term for a different quantity.
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investigating the noise properties of the charge and the
current in the stationary regime, i.e., a long time after
the qubit-detector coupling was turned on. The noise
spectrum reflects the intrinsic properties of the system of
qubit and meter and their coupling and depends on the
corresponding time scales. We obtain additional evi-
dence for the telegraph behavior of the current.

Let us look first at the charge-charge correlator, which
is derived from the joint probability distribution of
charges at different times (5.37),

^m~ t1! m~ t2!&52Tr8r̂0]k

3FU~k ,Dt ! ]kUS k , t̄ 2
Dt

2 D G
k50

,

(5.50)

where Dt[ut12t2u and t̄ [(t11t2)/2. We again employ
the two-mode approximation and use Eqs. (5.28) and
(5.31) to arrive, after taking time derivatives, at

^I~ t1! I~ t2!&5e2Ḡ21e2 f Ḡd~Dt !

1e2
dG2

4
e2Dt/tmix1~ ¯ !e2 t̄ /tmix.

(5.51)

Here G0/1[Ḡ6dG/2 are the tunneling rates (5.35) for the
two qubit states. The Fano factor f is defined after Eq.
(5.34). In the stationary limit, t̄ @tmix , we thus obtain for
the noise spectrum

SI~v!52e2fḠ1
e2dG2tmix

11v2tmix
2 . (5.52)

The first, v-independent term corresponds to the shot
noise, while the second term originates from the tele-
graph noise. The ratio of the telegraph and shot-noise
amplitudes at v50 is

S telegraph

Sshot

5
dG2tmix

2 fḠ
'4

tmix

tmeas

. (5.53)

Note that the telegraph noise becomes noticeable on top
of the shot noise in the parameter regime of an effective
quantum measurement (tmix@tmeas).

While the shot-noise contribution reflects intrinsic
properties of the detector (SET), the telegraph noise
characterizes the qubit. This structure of the output sig-
nal’s noise is quite general (Averin, 2000b; Korotkov
and Averin, 2000; Korotkov, 2001a). For the qubit
coupled to the meter, the following relation for the noise
of the output signal I was derived (using the linear-
response and certain other approximations):

SI~v!5SI
0~v!1c2l2Ssz

~v!. (5.54)

Here the notations introduced in Sec. V.H are used, the
only difference being that SI now denotes the noise in
the presence of the qubit. The first term, SI

0 , on the
right-hand side of Eq. (5.54) represents the noise of the
meter decoupled from the qubit (Sshot for a SET). The
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second term arises from the qubit and is governed by the
dynamics of its density matrix. In the preferred basis
(see Secs. V.D–V.F) the diagonal elements decay to
their stationary values on the mixing time scale, while
the off-diagonal elements precess with frequency DE/\
and decay within the dephasing time. Depending on the
qubit’s Hamiltonian, both or one of these processes con-
tribute to the dynamics of sz(t). Hence the qubit’s con-
tribution, Ssz

(v)[2*dt^sz(0)sz(t)&exp(2ivt), has a
‘‘coherent’’ peak at the qubit’s eigenfrequency, DE/\ ,
of width tw

21 , and a ‘‘telegraph’’ peak at zero frequency
with width tmix

21 .
To derive the noise spectrum of the qubit under the

influence of the detector, one can use a Bloch-type mas-
ter equation for the joint density matrix [e.g., Eq. (5.9)
at k50 for a SET]. Under certain conditions, namely, if
the noise spectrum SQ(v) is white in an interval of fre-
quencies at least up to the qubit’s level spacing DE (in
the SET it is white only up to GR1GL), a simpler set of
equations is sufficient (Averin, 2000b):

ṙ005Bx Im r01 ,

ṙ015~ iBz2tw0
21!r012

i

2
Bx~r002r11!. (5.55)

Here r ij is the qubit’s density matrix in the eigenbasis of
sz , tw0

21[c2SQ /\2 describes the back action (5.40),
and Bx and Bz form the Hamiltonian of the qubit (2.3).
These equations were used, for instance, for the analysis
of a quantum point contact coupled to a double quan-
tum dot (Gurvitz, 1997; Korotkov and Averin, 2000).

At zero bias, Bz50, one can solve Eq. (5.55) exactly,
to obtain (Korotkov and Averin, 2000)

Ssz
5

4Bx
2tw0

~v22Bx
2!2tw0

2 1v2 . (5.56)

In the Hamiltonian-dominated limit, tw0
21!Bx , at this

bias point no telegraph peak appears. Still, the qubit
contributes to the noise via the last term in Eq. (5.54).
This coherent peak at Bx has the height

c2l2Ssz

max54c2l2tw05~DI !2tw0 . (5.57)

Here DI is the difference in the output current (5.41) for
the two eigenstates of sz (charge states). Recalling that
this difference is related to the measurement rate (5.42)
in the detector-dominated regime, one concludes that
the signal-to-noise ratio in Eq. (5.54) is limited, by virtue
of Eq. (5.45), as

c2l2Ssz

max

SI
0 54

tw0

tmeas
<4. (5.58)

Thus the requirements for observation of coherent oscil-
lations in the noise spectrum of a measuring device are
directly expressed by the ratio of the dephasing and
measurement times.

In the opposite, detector-dominated regime, Bx
!tw0

21, the noise spectrum (5.56) exhibits a telegraph-
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noise Lorentzian (5.52) at low frequencies,
4tmix /(v2tmix

2 11), where tmix
21 5Bx

2tw0 .
At a general bias point BzÞ0 in the Hamiltonian-

dominated regime the dynamics of sz exhibits features
at both frequencies, v50 and v5DE , and its noise
spectrum has two peaks. This was shown numerically by
Korotkov and Averin (2000) and is consistent with the
result (5.52). A higher-order analysis of the master Eq.
(5.9), which accounts for corrections to the oscillating
modes (5.21) due to mixing, allows us to obtain the co-
herent peak, which is, however, suppressed due to
strong dephasing [cf. Eq. (5.58)].

J. Conditional master equation

Finally, we should like to comment on recent studies
(Korotkov, 1999; Goan et al., 2001; Korotkov, 2001a) in
which the so-called selective or conditional approach,
popular in quantum optics, was employed. This will pro-
vide a framework for the analysis of statistical properties
of qubit-related quantities conditioned on the dynamics
of the output signal I(t) at earlier times. In other words,
the goal is to predict the outcome of a measurement of
the qubit’s state at time t given the results of the current
readout at t8,t . A related problem is to produce typi-
cal, fluctuating current-time patterns I(t) that one can
identify in a given experiment.

These problems can be addressed using the proper
master equation for the coupled system [e.g., Eq. (5.9)].
Monitoring the current amounts to measuring the
charge m repeatedly, at sufficiently short time intervals
Dt . Since a closed master equation can be formulated
that involves only the m-diagonal entries of the density
matrix r̂(m), the effect of a measurement with the re-
sult m0 amounts to choosing the corresponding
r̂(m0)dmm0

as the new density matrix (properly rescaled
to ensure normalization). Thus a simulation of the evo-
lution proceeds as follows: From the the master equa-
tion with initial matrix r̂dm0 at t50 one obtains
r(Dm ,Dt) at the time of the first readout. Then, to
simulate an experiment, one selects a ‘‘measured’’ value
of Dm with the corresponding probability P(Dm ,Dt)
5trr̂(Dm ,Dt) (see Sec. V.E) and uses the correspond-
ing density matrix as the initial value for a further evo-
lution during the next time interval. Repeating this step
many times produces a typical dependence of m(t) and
a density matrix r̂cond(t) that can be used to study the
conditional statistics of further measurements.

This procedure can be simplified if sufficiently fre-
quent readouts are performed. An expansion in Dt al-
lows one to present the step-by-step evolution of the
density matrix r̂cond as a continuous process (see Korot-
kov, 2001b):

d

dt
r̂52i@Hctrl , r̂ #2

1
4

gw
0
†sz ,@sz , r̂ #‡

1
DI

2SI
0 @I~ t !2 Ī#@$sz , r̂%22 tr~szr̂ !r̂ # , (5.59)



390 Makhlin, Schön, and Shnirman: Quantum-state engineering
where DI is defined in Eq. (5.41). The measured value of
the output signal, I(t)5Dm/Dt , as described above,
should be chosen randomly with the distribution
P(Dm ,Dt). Using the properties of P(m ,Dt) at short
Dt , one can further simplify this procedure and choose
I(t) as

I~ t !5 Ī1
DI

2
tr~szr̂ !1dI~ t !, (5.60)

where dI(t) is a random quantity with noise properties
identical to those of the current in the detector decou-
pled from the qubit.

We should note that, as in Eq. (5.55), in the derivation
of Eq. (5.59) we assumed the back-action noise of the
detector to be white. Furthermore, gw

0 is the dephasing
rate due to the environment and accounts for the non-
ideality of the detector (see Sec. V.H). After averaging
over the detector dynamics I(t), we recover Eq. (5.55).
Note that tw0

21.gw
0 since the random signal (5.60) pro-

duces additional dephasing.
Equations (5.59) and (5.60) form a Langevin-type

evolution equation, which can be used to produce typi-
cal outcomes of the measurement and to study statistics
of the qubit conditioned on these outcomes.

VI. CONCLUSIONS

Josephson-junction systems in a suitable parameter
range can be manipulated in a quantum-coherent fash-
ion. They are promising physical realizations (the hard-
ware) of future devices to be used for quantum-state
engineering. We have discussed their modes of opera-
tion in different designs (in the charge- and the flux-
dominated regimes), the constraints on the parameters,
various dephasing effects, and also the physical realiza-
tion of the quantum-mechanical measurement process.
We have pointed out the advantages of these nanoelec-
tronic devices as compared to other physical realiza-
tions.

Here we add a few remarks and comparisons. First, in
order to demonstrate that the constraints on the circuit
parameters, derived in previous sections, can be met by
available technologies, we summarize them here and
suggest a suitable set.

(i) Necessary conditions for a Josephson charge qu-
bit are D.EC@EJ ,kBT . The superconducting en-
ergy gap D has to be chosen large to suppress qua-
siparticle tunneling. The temperature has to be
low to assure initial thermalization, kBT
!EC , \vLC , and to reduce dephasing effects. A
sufficient choice is kBT;EJ/2, since further cool-
ing does not reduce the dephasing (relaxation)
rate in a qualitative way. (Of course, it does so far
from the degeneracy point, i.e., for h50, or if we
switch off the Hamiltonian, Hctrl50. However,
during manipulations EJ is the typical energy dif-
ference and sets the time scale for both the ma-
nipulation times and the dephasing.)
As an explicit example we suggest the following
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parameters [the circuit parameters of Nakamura
et al. (1999) are in this regime] and estimate the
corresponding time scales: We choose junctions
with capacitance CJ510215 F, corresponding to a
charging energy (in temperature units) EC;1 K,
and a smaller gate capacitance Cg50.5310217 F
to reduce the coupling to the environment. Thus
at a working temperature of T550 mK the initial
thermalization is assured. The superconducting
gap has to be slightly higher, D.EC . Thus alumi-
num is a suitable material. We further choose EJ
5100 mK, i.e., the time scale of one-qubit opera-
tions is top

(1)5\/EJ;10210 s.
(ii) A realistic value of the resistor in the gate

voltages circuit is R;50 V. Its voltage fluctuations
limit the dephasing time (4.12) to values of order
tw;1024 s, thus allowing for tw /top

(1);106 co-
herent manipulations of a single qubit.16

(iii) To assure sufficiently fast two-bit operations we
choose for the design of Fig. 5 L;10 nH and CL
'CJ . Then the two-bit operations are about 102

times slower than the one-bit operations and, ac-
cordingly, their maximum number is reduced.

(iv) The quantum measurement process introduces
additional constraints on the parameters, which
can be met in realistic devices as demonstrated by
the following concise example. The parameters of
the qubit are those mentioned earlier. For the
junction and gate capacitances of the normal tun-
nel junctions of the SET we choose CT51.5
310217 F and Cg

SET50.5310217 F, respectively,
and for the coupling capacitance between SET
and qubit, C int50.5310217 F. We thus obtain
EC,SET'25 K, EC,qb'1 K, E int'0.25 K (for pre-
cise definitions see Appendix C). We further take
ng,qb50.25, Ng,SET50.2, mL52mR5eV tr/2524 K,
and aL5aR50.03. This gives Bz'2 K, GL51.8 K,
and GR57.8 K (note that due to the gate voltage
the applied transport voltage is split asymmetri-
cally). Thus the measurement time in this regime
is tmeas'1.531028 s. Since for this choice of
parameters tw0

21'4.031023 K!Bz'DEav , the
Hamiltonian-dominated regime is realized. As-
suming EJ50.1 K we obtain tmix'0.731026 s.
Thus tmix /tmeas'45 and the separation of peaks
should be observable early enough before the
mixing dominates. Indeed, numerical simulation
of the system (5.9) for these parameters shows al-
most ideal separation of peaks (see Fig. 15). On
the other hand, for EJ50.25 K we obtain
tmix /tmeas'7. This is a marginal situation. The nu-
merical simulation in this case (see Fig. 17) shows

16This may be overly optimistic and indicate that other
sources of dephasing need to be considered as well. For in-
stance, at these slow time scales the background charge fluc-
tuations may dominate. We also note that in the experiment of
Nakamura et al. (1999) a stray capacitance in the probe circuit,
larger than Cg , renders the dephasing time shorter.
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that the peaks first start to separate, but soon the
valley between the peaks fills in due to the mixing
transitions.

The requirements on the parameters of a flux qubit
circuit can be summarized in a similar way. First, the
parameters should be chosen to allow the reduction of
the double-well potential to the two ground states form-
ing a two-state quantum system. It is also desirable that
these two basis states have macroscopically different flux
or phase configurations. The double well is formed by
joining either several Josephson junctions (Mooij et al.,
1999) or a Josephson junction and an inductive term
of similar strength (EJ;F0

2/4p2L) in an rf SQUID
(Friedman et al., 2000). Since the level spacing within
each well is of order E0;AEJEC and the barrier height
of order EJ , all these requirements can be satisfied by
‘‘classical’’ Josephson junctions with EJ@EC . Further-
more, the asymmetry of the double well Bz , which is
controlled by external fluxes, and the tunnel splitting Bx
should be smaller than E0 in order to suppress leakage
to higher states. Finally, the temperature should be low
enough to allow initialization of the qubit’s state and to
ensure slow dephasing. In summary, the following con-
ditions have to be satisfied: kBT<Bx!AEJEC!EJ . As
pointed out above, it is sufficient to choose kBT;Bx/2.
These requirements can be satisfied, For example, by
the parameters of the rf SQUID used by Friedman et al.
(2000) (EJ'70 K, EC'1 K, Bx'0.1 K, and T'40 mK)
or by similar values discussed by Mooij et al. (1999)
(EJ;10 K, EC;0.1 K, Bx;50 mK, and T;30 mK).

At present, the most advanced quantum manipula-
tions of a solid-state system, i.e., the coherent oscilla-
tions observed by Nakamura et al. (1999) have been
demonstrated for a Josephson charge qubit. But flux sys-
tems may soon catch up. In the long run, it is not clear
whether charge or flux systems will bring faster progress
and further-reaching demonstrations of complex quan-
tum physics. In fact, a combination of both appears fea-
sible as well. Therefore we compare briefly the proper-
ties of the simplest charge and flux qubits.

A very important quantity is the phase coherence
time tw , which has to be compared to the typical opera-
tion time scale of the qubit’s dynamics top . While effects
of various dissipative mechanisms have been estimated
theoretically, further experimental work is needed to
understand dephasing in charge and flux qubits. One po-
tentially dangerous source of dephasing, the coupling to
the external circuit, can be described by an Ohmic oscil-
lator bath. If this contribution to the dephasing domi-
nates, the above-mentioned ratio of times is determined
by the dimensionless parameter top /tw;a (see Sec. IV).
For ‘‘unscreened’’ charge qubits it is of order of a
'1022, but it can be substantially reduced by the
‘‘screening ratio’’ of capacitances (see Sec. IV). Putting
in numbers corresponding to those of Nakamura et al.’s
(2000) experiment (without probe junctions), we esti-
mate tw to reach several tens of microseconds. Coherent
oscillations for about 5 ns have already been observed in
this system, in spite of the presence of a nonideal detec-
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tor limiting the phase-coherent evolution by quasiparti-
cle tunneling in the probe junction and also providing a
strong coupling to the external circuit. The phase coher-
ence time should be compared to the qubit operation
time scale of top'10–100 ps.

For the flux qubits considered by Mooij et al. (1999)
the current circuit may produce a;1025 and relaxation
times of order 10 ms, while other dephasing mechanisms
studied would destroy coherence after times of order of
hundreds of microseconds or longer. At the same time,
the qubit level spacing sets the fastest operation time to
top'0.1–1 ns.

A major source of errors and dephasing for all charge
degrees of freedom is the fluctuations of the ‘‘offset
charges.’’ These arise due to charge transfers in the sub-
strate, e.g., between impurity sites, and are detrimental
for many of the potential applications of single-charge
systems. Fortunately they typically occur on long time
scales and may not take place during a computation, i.e.,
a series of coherent manipulations. Similarly for flux qu-
bits, nuclear spins provide random magnetic fields.
These fields also change only on a long spin-relaxation
time scale and cause no dephasing in shorter computa-
tions.

Another important point is the efficiency of quantum
detectors used to read out the charge or flux state. Esti-
mates show that the newly developed rf SET’s
(Schoelkopf et al., 1998) should make single-shot charge
measurements possible in principle (tmix@tmeas). On
the other hand, the flux readout with a SQUID is far
from this goal and averaging over a large number of
measurements is needed (van der Wal et al., 2000).

As for the experimental achievements, in both charge
and flux systems the validity of the two-state model has
been confirmed spectroscopically (Nakamura et al.,
1997; Friedman et al., 2000; van der Wal et al., 2000).
The direct observation of superpositions of basis (charge
or flux) states (Bouchiat, 1997; Bouchiat et al., 1998) and
of the coherent oscillations between the basis states (Na-
kamura et al., 1999) has so far been successful only in
the charge design.

To conclude, the fabrication and controlled coherent
manipulations of Josephson-junction qubits are possible
using present-day technologies. In these systems funda-
mental properties of macroscopic quantum-mechanical
systems can be explored. First experiments on elemen-
tary systems have been performed successfully. More
elaborate designs as well as further progress in nano-
technology will provide longer coherence times and al-
low sequences of coherent manipulations as well as scal-
ing to larger numbers of qubits. The application of
Josephson-junction systems as elements of a quantum
computer, i.e., with a very large number of manipula-
tions and large number of qubits, will remain a challeng-
ing issue. On the other hand, many aspects of quantum
information processing can initially be tested on simple
circuits as proposed here. We expect further spinoffs
once the techniques of quantum-state engineering are
further developed.
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We have also shown that a dissipative quantum sys-
tem coupled to a qubit may serve as a quantum measur-
ing device in an accessible range of parameters. Explic-
itly we studied a single-electron transistor coupled
capacitively to a charge qubit. We have described the
process of measurement by deriving the time evolution
of the reduced density matrix of the coupled system. We
found that the dephasing time is shorter than the mea-
surement time, and we have estimated the mixing time,
i.e., the time scale over which the transitions induced by
the measurement occur. Similar scenarios are discussed
for flux qubits measured by a SQUID coupled to it in-
ductively.
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APPENDIX A: AN IDEAL MODEL

1. The model Hamiltonian

Quantum-state engineering requires coherent ma-
nipulations of suitable quantum systems. The needed
quantum manipulations can be performed if we have
sufficient control over the fields and interaction terms in
the Hamiltonian. As an introduction and in order to
clarify the goal, we present here an ideal model Hamil-
tonian and show how the necessary unitary transforma-
tions can be performed. We note that the Josephson-
junction devices discussed in this review come rather
close to this ideal model.

As has been stressed by DiVincenzo (1997, 2000), any
physical system that is considered as a candidate for
quantum computation, and likewise for alternative ap-
plications of quantum-state engineering, should satisfy
the following criteria:

(i) First, one needs well-defined two-state quantum
systems (or quantum systems with a small number
of states). This implies that higher states, present
in most real systems, must not be excited during
manipulations.

(ii) One should be able to prepare the initial state of
the qubits with sufficient accuracy.

(iii) A long phase coherence time is needed, sufficient
to allow for a large number (e.g., >104) of coher-
ent manipulations.

(iv) Sufficient control over the qubit’s Hamiltonian is
required to perform the necessary unitary trans-
formations, i.e., single-qubit and two-qubit logic
operations (gates). For this purpose one should be
able to control the fields at the sites of each qubit
separately and to couple qubits together in a con-
trolled way, ideally with the possibility of
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switching the interqubit interactions on and off. In
physics terms the two types of operation allow the
creation of arbitrary superpositions and nontrivial
coupled states, such as entangled states, respec-
tively.

(v) Finally, a quantum measurement is needed to
read out the quantum information, either at the
final stage or during the computation, for in-
stance, for the purposes of error correction.

We consider two-state quantum systems (e.g., spins)
or systems that under certain conditions effectively re-
duce to two-state systems (charge in a box or flux in a
SQUID near degeneracy points). Any single two-state
quantum system can be represented as a spin-1/2 par-
ticle, and its Hamiltonian can be written as H(t)
52 1

2 B(t)ŝ. Here sx ,y ,z are Pauli matrices in the space
of states u↑&5(1

0) and u↓&5(0
1), which form the basis

states of a physical quantity (spin, charge, flux, . . . ) that
is to be manipulated. The spin is coupled to an effective
magnetic field B. In an alternative notation used for
two-state quantum systems the components Bz and Bx ,y
correspond to an external bias and a tunneling ampli-
tude, respectively. Full control of the quantum dynamics
of the spin is possible if the magnetic field B(t) can be
switched arbitrarily. In fact, arbitrary single-qubit opera-
tions can be performed if two of the field components
can be controlled, e.g.,

Hctrl~ t !52
1
2

Bz~ t !ŝz2
1
2

Bx~ t !ŝx . (A1)

If all three components of the magnetic field can be con-
trolled the topological (Berry) phase of the system can
be manipulated as well (Falci et al., 2000).

In order to manipulate a many-qubit system, e.g., to
perform quantum computing, one needs to control the
magnetic field at the site of each spin separately. In ad-
dition, one needs two-qubit (unitary) operations, which
require controlling the coupling energies between the
qubits. For instance, a system with the following model
Hamiltonian would be suitable:

Hctrl~ t !52
1
2 (

i51

N

Bi~ t !ŝ i1(
iÞj

Jab
ij ~ t !ŝa

i ŝb
j , (A2)

where a summation over spin indices a ,b5x ,y ,z is im-
plied. In Eq. (A2) a general form of coupling is pre-
sented, but simpler forms, such as pure Ising zz cou-
pling, XY coupling, or Heisenberg coupling, are
sufficient.

The measurement device, when turned on, and re-
sidual interactions with the environment are accounted
for by extra terms Hmeas(t) and Hres , respectively:

H5Hctrl~ t !1Hmeas~ t !1Hres . (A3)

During manipulations the meter should be kept in the
off state, Hmeas50. The residual interaction Hres leads to
dephasing and relaxation processes. It has to be weak in
order to allow for a series of coherent manipulations.
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A typical experiment involves preparation of an initial
quantum state, switching the fields B(t) and the cou-
pling energies Jab

ij (t) to effect a specified unitary evolu-
tion of the wave function, and measurement of the final
state.

2. Preparation of the initial state

The initial state can be prepared by keeping the sys-
tem at low temperatures so that it relaxes to the ground
state. This is achieved by turning on a large value of
Bz@kBT for a sufficiently long time while Bx(t)
5By(t)50. Then the residual interaction Hres relaxes
each qubit to its ground state, u↑&. Switching Bz(t) back
to zero leaves the system in a well-defined pure quantum
state. If H50, there is no further time evolution.

3. Single-qubit operations

A single-bit operation on a given qubit can be per-
formed, for instance, by turning on Bx(t) for a time span
t. As a result of this operation the quantum state evolves
according to the unitary transformation

Ux~a!5expS iBxtŝx

2\ D5S cos
a

2
i sin

a

2

i sin
a

2
cos

a

2

D , (A4)

where a5Bxt/\ . Depending on the time span t, an a
5p or an a5p/2 rotation is performed, producing a
spin flip (NOT operation) or an equal-weight superposi-
tion of spin states. Switching on Bz(t) for some time
produces another needed single-bit operation: a phase
shift between u↑& and u↓&:

Uz~b!5expS iBztŝz

2\ D5S eib/2 0

0 e2ib/2D , (A5)

where b5Bzt/\ . With a sequence of these x and z ro-
tations any unitary transformation of the qubit state
(single-qubit operation) can be performed. There is no
need to turn on By .

4. Two-qubit operations

A two-bit operation on qubits i and j is induced by
turning on the corresponding coupling Jij(t). For in-
stance, for the XY coupling, Jab

ij ŝaŝb5Jij(ŝxŝx
1ŝyŝy), in the basis u↑ i↑ j&, u↑ i↓ j&, u↓ i↑ j&, u↓ i↓ j& the re-
sult is described by the unitary operator

U2b
ij ~g!5S 1 0 0 0

0 cos g i sin g 0

0 i sin g cos g 0

0 0 0 1
D , (A6)

with g[2Jijt/\ . For g5p/2 the operation leads to a
swap of the states u↑ i↓ j& and u↓ i↑ j& (and multiplication
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by i), while for g5p/4 it transforms the state u↑ i↓ j& into
an entangled state (1/&) (u↑ i↓ j&1iu↓ i↑ j&).

We note that apart from the sudden switching of
Bz ,x

i (t),Jij(t), discussed above for illustration, one can
also use other techniques to implement single-bit or
two-bit operations. For instance, one can induce Rabi
oscillations between different states of a qubit or a qubit
pair by ac resonance signals, or perform adiabatic ma-
nipulations of the qubits’ Hamiltonian to exchange dif-
ferent eigenstates (with occupations remaining un-
changed). We have discussed some of these methods for
particular physical systems in Secs. II and III.

APPENDIX B: QUANTUM LOGIC GATES AND QUANTUM
ALGORITHMS

In Appendix A and Secs. II and III we showed how
elementary quantum logic gates can be realized by
simple manipulations of concrete physical systems. De-
tails such as the application of a magnetic field pulse or
the type of two-qubit coupling depend on the specific
model. On the other hand, quantum information theory
discusses quantum computation in realization-
independent terms. For instance, it is customary to build
quantum algorithms out of specific, standard single- and
two-qubit gates, some of which will be discussed below.
Hence one needs to know how to express these standard
gates in terms of the elementary operations specific to a
given physical model. Furthermore, one may be inter-
ested in optimized implementation, in terms of time,
complexity of manipulations, or amount of additional
dissipation. Here we give several examples of standard
gates and quantum algorithms and cover optimization
issues later.

1. Single- and two-qubit gates

The quantum generalization of the NOT gate,

NOT5S 0 1

1 0 D , (B1)

permutes the basis vectors u0&→u1& and u1&→u0&. It can
be performed as the x rotation (A4) with a time span
corresponding to a5p (up to an unimportant overall
phase factor): Ux(a5p)5i•NOT. In contrast to classi-
cal computation, in quantum logic there exists a logic
gate, called ANOT, that when applied twice produces
the NOT gate:

ANOT5
1
2 S 11i 211i

211i 11i D . (B2)

This gate17 is obtained by an x rotation (A4) with a
5p/2, more precisely Ux(a5p/2)5i1/2

•ANOT.

17ANOT is not uniquely defined: the matrices i2n/2Ux(a
5np/2) with n51,3,5,7 produce NOT when squared.
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Another important, essentially quantum-mechanical
single-bit operation is the Hadamard gate:

(B3)

This transforms basis vectors into superpositions: u0&
→(u0&1u1&)/& , u1&→(u0&2u1&)/& . This gate is used
to prepare a specific initial state: when applied to every
qubit of the system in the ground state u0¯ 0&, it pro-
vides an equally weighted superposition of all basis
states:

H^ ¯ ^ Hu0¯ 0&5
1

2N/2 (
d1 , . . . ,dN50,1

ud1 ¯ dN&.

(B4)

The terms in the sum can be viewed as binary represen-
tations of all integers from 0 up to 2N21. Thus the state
(B4) is a superposition of all these integers. When used
as input for a quantum algorithm, it represents 2N clas-
sical inputs. Due to the linearity of quantum time evo-
lution they are processed simultaneously, and the output
is a superposition of 2N classical results. This quantum
parallelism is a fundamental property of quantum com-
putation and is responsible for the exponential speedup
of certain quantum algorithms.

Among the two-qubit gates an important one is the
exclusive-OR (XOR) or controlled-NOT (CNOT) gate:

CNOT5S 1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
D . (B5)

When applied to classical (basis) states it flips the second
bit only if the first bit is 1. Barenco et al. (1995) showed
that the CNOT gate together with single-bit operations
forms a universal set, sufficient for any quantum compu-
tation. In other words, any unitary transformation of a
many-qubit system can be decomposed into single-bit
gates and CNOT gates. This explains the importance of
CNOT in the quantum information-theoretical litera-
ture. However, it should be pointed out that almost any
two-qubit gate (an exception is the classical SWAP
gate), when combined with single-bit operations, forms a
universal set.

Let us also mention another useful two-bit gate, the
controlled phase shift:

(B6)

It shifts the phase of state u1& of the second qubit when
the first qubit is in state u1&. (We use an unconventional
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symbol for this operation, in order to stress its symmetry
with respect to the transposition of qubits.)

2. Quantum Fourier transformation

As an example we discuss the quantum algorithm for
a discrete Fourier transformation. N qubits allow us to
represent the integers j50, . . . ,2N21 as basis states
u0&, . . . ,u2N21&. Starting from a superposition of these
states with amplitudes cj and applying the combination
of controlled phase shifts and Hadamard gates shown in
Fig. 21, we obtain an output

(
j50

2N21

ciuj&→ (
k50

2N21

c̃kuk&, (B7)

where the output amplitudes c̃k and input amplitudes cj
are related by the discrete Fourier transform

c̃k5
1

2N (
j50

2N21

expS 2pikj

2L D cj . (B8)

While in classical computation the time needed for the
Fourier transform grows exponentially with the number
of bits N , the quantum algorithm in Fig. 21 takes }N2

steps. The quantum Fourier transformation was devel-
oped by Shor (1994) and later improved by Coppersmith
(1994) and Deutsch (see Ekert and Josza, 1996). Its ex-
ponential speedup compared to classical algorithms is
crucial for the performance of Shor’s (1994) algorithm
for the factorization of large integers.

3. Quantum computation and optimization

The unitary transformations needed for quantum
computation or any simple quantum manipulation
should be realized in a particular physical system. For
this purpose they should be decomposed into elemen-
tary unitary gates. This decomposition is not unique and
should be optimized with respect to various parameters,
for instance, the time, the number of steps, or the com-
plexity of the manipulations involved. In some physical
systems the manipulations involve additional dissipation
(as compared to the idle state), which should be opti-
mized as well. In this section we discuss how certain
unitary logic gates can be realized in a spin system with
model Hamiltonian (A2). The results are also useful for
many other physical realizations of qubits (see Secs. II

FIG. 21. A realization of the Fourier transformation for four
qubits, i.e., 24 coefficients. The phase shifts are f jk5p/2j2k.



395Makhlin, Schön, and Shnirman: Quantum-state engineering
and III) since many of them have similar Hamiltonians
with similar control parameters.

First we consider the Hadamard gate (B3). This op-
eration can be performed, up to an overall phase factor,
as a sequence of elementary operations (A4) and (A5):
H}Ux(a5p/4)Uz(b5p/4)Ux(a5p/4). However, it
can also be performed faster by simultaneous switching
of Bx and Bz :

H}expS 2i
p

2
sx1sz

&
D . (B9)

The CNOT gate in the model system (A2) can be
implemented by a combination of two two-qubit gates
U2b [Eq. (A6)] and several single-qubit gates (see also
Imamoglu et al., 1999):

CNOT}Ux
2S p

2 DUz
2S 2

p

2 DUx
2~2p!U2bS 2

p

2 D
3Ux

1S 2
p

2 DU2bS p

2 DUz
1S 2

p

2 DUz
2S 2

p

2 D .

(B10)

Similarly, the controlled phase-shift gate (B6) is pro-
duced by the sequence

R~f!}Ux
2S 2

p

2 DU2bS 2
p

2 DUx
1S 2

f

2 DU2bS p

2 D
3Ux

2S p

2 DUz
1S 2

f

2 DUz
2S 2

f

2 D . (B11)

One can see from these examples that it takes quite a
number of elementary gates to perform the CNOT or
R(f) and further optimization is desired. In many real-
izations two-qubit elementary gates are more costly
(complicated or longer) than single-qubit gates. With
this taken into account one might ask whether Eqs.
(B10) and (B11) could be reduced to just one two-bit
gate. An analysis of this problem (Makhlin, 2000) shows
that it is not possible if the two-bit elementary gate
(A6), produced by the XY-coupling Hamiltonian, is
used. The result is the same for the Heisenberg spin
coupling, but the Ising-type coupling, }ŝzŝz , allows us
to achieve R(f) [and hence CNOT5H2R(p)H2]
with only one two-bit operation: R(f)}Uz

1(2f/
2)Uz

2(2f/2)exp(ifsz
1sz

2/4). The optimization of certain
quantum logic circuits has also been discussed in con-
nection with qubits based on spins in quantum dots
(Burkard et al., 1999).

APPENDIX C: CHARGING ENERGY OF A QUBIT
COUPLED TO A SET

The charging energy of the system shown in Fig. 14 is
a quadratic function of the charges n and N :
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HC~n ,N ,Vn ,VN!

54EC,qbn21EC,SETN21E intN~2n21 !

12enVn1eNVN . (C1)

The form of the mixed term }N(2n21) is chosen for
later convenience. The charging energy scales EC,qb ,
EC,SET, and E int are set by the capacitances between all
the islands. Elementary electrostatics shows that they
can be written as

EC,qb5e2~Cg
SET1C int12CT!/2A'e2/2CJ ,

EC,SET5e2~Cg
qb1C int1CJ!/2A'e2/~4CT!,

E int5e2C int /A'e2C int /~2CJCT!. (C2)

Here we have introduced

A[~Cg
qb1CJ!~Cg

SET1C int12CT!1C int~Cg
SET12CT!

'2CJCT . (C3)

For simplicity we assume that the two tunnel junctions
of the SET have equal capacitances CT , and the ap-
proximate results refer to the limit Cg

qb ,C int ,Cg
SET!CT

!CJ , which we consider useful. The effective voltages
Vn and VN depend in general on the gate voltages Vg

qb ,
Vg

SET and the transport voltages applied to the SET’s
electrodes. However, for a symmetric setup (equal junc-
tion capacitances) and symmetrically distributed trans-
port bias (as shown in Fig. 14), Vn and VN are controlled
only by the two gate voltages:

VN5Vg
SET

Cg
SET~Cg

qb1C int1CJ!

A

1Vg
qb

C intCg
qb

A
1

E int

e
,

Vn5Vg
SET

Cg
SETC int

A
1Vg

qb ~Cg
SET1C int12CT!Cg

qb

A
.

(C4)

The total charging energy can thus, up to a nonessen-
tial constant, be presented as a sum of the contributions
of the qubit (2.1), the SET (5.2), and the interaction
term E intN(2n21) [cf. Eq. (5.5)]. The effect of the SET
is to renormalize the parameters of the qubit Hamil-
tonian (2.1): EC and ng should be replaced by EC,qb and
ng,qb[2eVn/4EC,qb .

APPENDIX D: DERIVATION OF THE MASTER EQUATION

We briefly review the rules for the evaluation of dia-
grams; for more details, including a discussion of higher-
order diagrams, we refer the reader to Schoeller and
Schön’s (1994) paper. Typical diagrams, which are ana-
lyzed below, are displayed in Figs. 22 and 23. The hori-
zontal lines, discussed in detail below, describe the time
evolution of the system governed by the zeroth-order
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Hamiltonian H0 . The directed dashed lines stand for
tunneling processes; in the example considered the tun-
neling takes place in the left junction. According to the
rules, the dashed lines contribute the following factor to
the self-energy S:

aL S pkBT

\ D 2 expF6
i

\
mL~ t2t8!G

sinh2FpkBT

\
~ t2t86id!G , (D1)

where aL[h/(4p2e2RT,L) is the dimensionless tunnel-
ing conductance, mL is the electrochemical potential of
the left lead, and d21 is the high-frequency cutoff, which
is at most of order of the Fermi energy. The sign of the
infinitesimal term id depends on the direction of the
dashed line in time. It is negative if the direction of the
line with respect to the Keldysh contour coincides with
its direction with respect to absolute time (from left to
right), and positive otherwise. For example, the right
part of Fig. 22 should carry a minus sign, while the left
part carries a plus sign. Furthermore, the sign in front of
imL(t2t8) is negative if the line goes forward with re-
spect to absolute time, and positive if the line goes back-
ward. Finally, the first-order diagrams are multiplied by
(21) if the dashed line connects two points on different
branches of the Keldysh contour.

The horizontal lines describe the time evolution of the
system between tunneling processes. For an isolated
central island they turn into exponential factors
e6(i/\)E(t2t8), depending on the charging energy of the
system. However, in the present case the island is
coupled to the qubit, and we need to account for the
nontrivial time evolution of the latter. For instance, the
upper line in the left part of Fig. 22 corresponds to
^N ,jue2 (i/\)H0(t2t8)uN ,j8& , while the lower line corre-
sponds to ^N11,i8ue(i/\)H0(t2t8)uN11,i&.

In the present problem we assume that the tunneling
conductance of the SET is low compared to the quan-
tum conductance. In this case lowest-order perturbation
theory in the single-electron tunneling, describing se-
quential tunneling processes, is sufficient. The diagrams

FIG. 22. Example of a self-energy diagram for an ‘‘in’’ rate.

FIG. 23. Example of a self-energy diagram for an ‘‘out’’ rate.
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for S can be split into two classes, depending on whether
they provide expressions for off-diagonal (N8ÞN) or
diagonal (N85N) elements of S in N . In analogy to the
scattering integrals in the Boltzmann equation these can
be labeled ‘‘in’’ and ‘‘out’’ terms, in the sense that they
describe the increase or decrease of a given element
r̂ j ,N ,m

i ,N ,m of the density matrix due to transitions from or to
other N states. Examples of in and out terms are shown
in Figs. 22 and 23, respectively.

We now are ready to evaluate the rates in Figs. 22 and
23. For example, the ‘‘in’’ tunneling process in the left
junction is expressed as

S i8,N ,m→i ,N11,m
j8,N ,m→j ,N11,m

~Dt !

52aLS pkBT

\ D 2 H expF2
i

\
~ẼN11

N 1WN11
N !DtG

sinh2FpkBT

\
~Dt1id!G

1

expF2
i

\
~ẼN

N111WN
N11!DtG

sinh2FpkBT

\
~Dt2id!G J

i8i

j8j

, (D2)

where

ẼN2

N1[@EC,SET~N12Ng,SET!22mL N1#

2@EC,SET~N22Ng,SET!22mL N2#

is the Coulomb energy gain for tunneling in the left
junction in the absence of the qubit, and the operators

WN2

N15H 0
T~N1! ^ 121 ^ H0~N2! (D3)

provide corrections to the energy gain sensitive to the
qubit’s state. Here H0(N) is the Nth block of the Hamil-
tonian Hctrl1Hint (note that Hctrl and Hint are block di-
agonal with respect to N). The indices j8,j and i8,i relate
to the left and right sides of the tensor product in Eq.
(D3) correspondingly.

The form of the master equation (5.8) suggests the use
of the Laplace transform, after which the last term in
Eq. (5.8) becomes S(s) r̂(s). We Laplace-transform Eq.

(D2) in the regime \s ,uWN11
N u,uWN

N11u!ẼN11
N , i.e., we

assume that the density matrix r̂ changes slowly over the

time scale given by \/ẼN11
N . This assumption should be

verified later for self-consistency. The inequalities also
mean that we choose the operation regime of the SET
far enough from the Coulomb threshold. Therefore the
tunneling is either energetically allowed for both states
of the qubit or blocked for both of them. At low tem-

peratures (kBT!ẼN11
N ) and for ẼN11

N d!\ we obtain
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SN ,m ,i8→N11,m ,i
N ,m ,j8→N11,m ,j

~s !

'H p

\
aLQ~ẼN11

N !@2ẼN11
N 1~WN11

N 2WN
N11!#

2aLD~ẼN11
N !F2s1

i

\
~WN11

N 1WN
N11!G J

i8i

j8j

,

(D4)

where D(ẼN11
N )'11g1ln(ẼN11

N d/\) and g'0.58 is Eu-
ler’s constant. The first term of Eq. (D4) is the standard
golden rule tunneling rate corresponding to the so-called
orthodox theory of single-electron tunneling (Averin
and Likharev, 1991). The rate depends strongly on the
difference between the charging energies ẼN11

N before
and after the process, which in the present problem is
modified according to the quantum state of the qubit
(the W terms). At finite temperatures the step function
is replaced by Q(E)→@12exp(2E/kBT)#21. We de-
note the full matrix of such rates by Ǧ . As has already
been mentioned, we concentrate on the regime in which
the leading tunneling process in the SET is sequential
tunneling, involving only two adjacent charge states, say,
N50 and N51 (to avoid confusion with the states of
the qubit we continue to use the notation N and N11).
Let us, for example, calculate a submatrix of Ǧ that
originates from the first term on the right-hand side of
Eq. (D4) and corresponds to the tunneling process N
→N11, m→m in the left junction. This submatrix ǦL is
a superoperator, which acts on a 232 matrix r̂ as

\ǦLr̂52paLẼN11
N r̂1paL @dHint , r̂ #1 , (D5)

where dHint[H0(N11)2H0(N)5E intsz .
The last, logarithmically diverging term of Eq. (D4)

produces the commutator term in the right-hand side of
the master equation (5.8). These terms turn out to be
unimportant in the first order of the perturbation theory.
Indeed, for the left junction we obtain the following con-
tribution to the right-hand side of Eq. (5.8):

aLD̂LS d r̂

dt
2

i

\
@r̂ ,H̄0# D , (D6)

where H̄0[ 1
2 @H0(N)1H0(N11)# and D̂L is a matrix in

N and m spaces. The eigenvalues of the matrix D̂L are
at most of order D(ẼN11

N ). Neglecting terms of order
aLD(ẼN11

N )E int in Eq. (D6), we can replace H̄0 by H0 .
Our analysis shows that these neglected ‘‘coherentlike’’
terms do not change the results as long as

aL uln(ẼN11
N d/\)u!1. A similar analysis can be carried out

for the right tunnel junction of the SET.
Now we can transfer all the coherentlike terms into

the left-hand side of the master equation,

~12aLD̂L2aRD̂R!H d r̂~ t !

dt
2

i

\
@r̂~ t !,H0#J 5

1
\

Ĝr̂~ t !,

(D7)
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and multiply Eq. (D7) from the left by (12aLD̂L

2aRD̂R)21'(11aLD̂L1aRD̂R) so that the corrections

move back to the right-hand side. Since Ǧ is itself linear
in aL and aR , the corrections are of second order in a

[more accurately, they are small if a uln(ẼN11
N d/\)u!1 for

both junctions]. Thus we drop the coherent corrections
and arrive at the final form of the master equation:

d r̂~ t !

dt
2

i

\
@r̂~ t !,H0#5

1
\

Ǧr̂~ t !. (D8)

We have shown that under the assumption of suffi-
ciently slow dynamics of the qubit and SET,

EJ ,Bz(Vg),E int ,GL/R!ẼN11
N ,ẼN

N11 , the evolution of
the system reduces to Markovian dynamics as described
by the master equation (D8).
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398 Makhlin, Schön, and Shnirman: Quantum-state engineering
Bouchiat, V., D. Vion, P. Joyez, D. Esteve, and M. H. Devoret,
1998, ‘‘Quantum coherence with a single Cooper pair,’’ Phys.
Scr. T76, 165.

Braginsky, V. B., and F. Y. Khalili, 1992, Quantum Measure-
ment (Cambridge University Press, Cambridge).

Braunstein, S., and H.-K. Lo, 2000, Eds., ‘‘Experimental pro-
posals for quantum computation,’’ Fortschr. Phys. 48, 765.

Buisson, O., and F. W. J. Hekking, 2000, ‘‘Entangled states in
a Josephson charge qubit coupled to a superconducting reso-
nator,’’ to appear in Macroscopic Quantum Coherence and
Quantum Computing (Kluwer Academic, Dordrecht), pre-
print cond-mat/0008275.

Buks, E., R. Schuster, M. Heiblum, D. Mahalu, and V. Uman-
sky, 1998, ‘‘Dephasing due to which path detector,’’ Nature
(London) 391, 871.

Burkard, G., D. Loss, D. DiVincenzo, and J. Smolin, 1999,
‘‘Physical optimization of quantum error correction circuits,’’
Phys. Rev. B 60, 11 404.

Caldeira, A. O., and A. J. Leggett, 1983, ‘‘Quantum tunnelling
in a dissipative system,’’ Ann. Phys. (N.Y.) 149, 374.

Chang, I. L., 1998, in Introduction to quantum computation and
information, edited by H.-K. Lo, S. Popescu, and T. Spiller
(World Scientific, Singapore), p. 311.

Choi, M. S., R. Fazio, J. Siewert, and C. Bruder, 2001, ‘‘Coher-
ent oscillations in a Cooper-pair box,’’ Europhys. Lett. 53,
251.

Cirac, J. I., and P. Zoller, 1995, ‘‘Quantum computations with
cold trapped ions,’’ Phys. Rev. Lett. 74, 4091.

Clarke, J., A. N. Cleland, M. H. Devoret, D. Esteve, and J. M.
Martinis, 1988, ‘‘Quantum mechanics of a macroscopic vari-
able: the phase difference of a Josephson junction,’’ Science
239, 992.

Coppersmith, D., 1994, IBM Research Report 19642.
Cory, D., A. Fahmy, and T. Havel, 1997, ‘‘Ensemble quantum

computing by NMR spectroscopy,’’ Proc. Natl. Acad. Sci.
USA 94, 1634.

Cosmelli, C., P. Carelli, M. G. Castellano, F. Chiarello, R.
Leoni, and G. Torrioli, 1998, in Quantum Coherence and
Decoherence–ISQM ’98, edited by Y. A. Ono and K.
Fujikawa (Elsevier, Amsterdam), p. 245.

Cottet, A., A. Steinbach, P. Joyez, D. Vion, H. Pothier, D.
Esteve, and M. E. Huber, 2000, ‘‘Superconducting electrom-
eter for measuring the single Cooper pair box,’’ preprint.

Devoret, M. H., D. Esteve, H. Grabert, G. L. Ingold, and H.
Pothier, 1990, ‘‘Effect of the electromagnetic environment on
the Coulomb blockade in ultrasmall tunnel junctions,’’ Phys.
Rev. Lett. 64, 1824.

Devoret, M. H., and R. J. Schoelkopf, 2000, ‘‘Amplifying
quantum signals with the single-electron transistor,’’ Nature
(London) 406, 1039.

DiVincenzo, D., 1995, ‘‘Quantum computation,’’ Science 270,
255.

DiVincenzo, D., 1997, in Mesoscopic Electron Transport, ed-
ited by L. Kouwenhoven, G. Schön, and L. Sohn, NATO ASI
Series E: Applied Sciences No. 345 (Kluwer Academic, Dor-
drecht), p. 657.

DiVincenzo, D., 2000, ‘‘The physical implementation of quan-
tum computation,’’ Fortschr. Phys. 48, 771.

Ekert, A., and R. Josza, 1996, ‘‘Shor’s quantum algorithm for
factorizing numbers,’’ Rev. Mod. Phys. 68, 733.

Falci, G., R. Fazio, G. H. Palma, J. Siewert, and V. Vedral,
2000, ‘‘Detection of geometric phases in superconducting
nanocircuits,’’ Nature (London) 407, 355.
Rev. Mod. Phys., Vol. 73, No. 2, April 2001
Fazio, R., G. M. Palma, and J. Siewert, 1999, ‘‘Fidelity and
leakage of Josephson qubits,’’ Phys. Rev. Lett. 83, 5385.

Feigelman, M. V., V. B. Geshkenbein, L. B. Ioffe, and G. Blat-
ter, 2000, ‘‘Andreev spectroscopy for superconducting phase
qubits,’’ J. Low Temp. Phys. 118, 805.

Friedman, J. R., V. Patel, W. Chen, S. K. Tolpygo, and J. E.
Lukens, 2000, ‘‘Detection of a Schroedinger’s cat state in an
rf-SQUID,’’ Nature (London) 406, 43.

Gershenfeld, N., and I. Chuang, 1997, ‘‘Bulk spin resonance
quantum computation,’’ Science 275, 350.

Goan, H. S., G. J. Milburn, H. M. Wiseman, and H. B. Sun,
2001, ‘‘Continuous quantum measurement of two coupled
quantum dots using a quantum point contact: a quantum tra-
jectory approach,’’ Phys. Rev. B 63, 125326.

Görlich, R., M. Sassetti, and U. Weiss, 1989, ‘‘Low-
temperature properties of biased two-level systems: effects of
frequency-dependent damping,’’ Europhys. Lett. 10, 507.

Gurvitz, S. A., 1997, ‘‘Measurements with a noninvasive detec-
tor and dephasing mechanism,’’ Phys. Rev. B 56, 15 215.

Gurvitz, S. A., and Y. S. Prager, 1996, ‘‘Microscopic derivation
of rate equations for quantum transport,’’ Phys. Rev. B 53,
15 932.

Hadley, P., E. Delvigne, E. H. Visscher, S. Lähteenmäki, and
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