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This article describes the variational and fixed-node diffusion quantum Monte Carlo methods and how
they may be used to calculate the properties of many-electron systems. These stochastic
wave-function-based approaches provide a very direct treatment of quantum many-body effects and
serve as benchmarks against which other techniques may be compared. They complement the less
demanding density-functional approach by providing more accurate results and a deeper
understanding of the physics of electronic correlation in real materials. The algorithms are intrinsically
parallel, and currently available high-performance computers allow applications to systems containing
a thousand or more electrons. With these tools one can study complicated problems such as the
properties of surfaces and defects, while including electron correlation effects with high precision. The
authors provide a pedagogical overview of the techniques and describe a selection of applications to
ground and excited states of solids and clusters.
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I. INTRODUCTION

The past few decades have seen dramatic improve-
ments in our ability to simulate complicated physical
systems using computers. This has led to the concept of
computer simulation as a ‘‘third way’’ of doing science,
closer to experiment than theory but complementary to
both. Like experiments, simulations produce data rather
than theories and should be judged on the quality of
those data. We aim to show that the quantum Monte
Carlo (QMC) methods described in this review are ac-
curate and reliable and that the data and insights they
provide are often difficult or impossible to obtain in any
other way.

In studying the quantum-mechanical properties of sol-
ids, we are fortunate that the underlying physical laws
have been known for over 70 years. The difficulty arises
from the complexity of the equations that, as Dirac
(1929) famously wrote, are ‘‘much too complicated to be
soluble.’’ It hardly seems possible that one could solve
the 3N-dimensional Schrödinger equation that describes
the N interacting electrons in a solid, but this is exactly
what QMC methods allow us to do. With current paral-
lel computers we can simulate periodic systems contain-
ing up to a thousand or so electrons, which is enough to
model many properties of solids with impressive accu-
racy. The quantum Monte Carlo method is now recog-
nized as a valuable tool for calculating the physical prop-
erties of real materials.

The term ‘‘quantum Monte Carlo’’ covers several dif-
ferent techniques based on random sampling. The sim-
plest of these, variational Monte Carlo (VMC), uses a
stochastic integration method to evaluate expectation
values for a chosen trial wave function. In a system of
1000 electrons the required integrals are 3000 dimen-
sional, and for such problems Monte Carlo integration is
much more efficient than conventional quadrature
methods such as Simpson’s rule. The main drawback of
VMC is that the accuracy of the result depends entirely
on the accuracy of the trial wave function. The other
method we consider, diffusion Monte Carlo (DMC),
overcomes this limitation by using a projection tech-
nique to enhance the ground-state component of a start-
ing trial wave function. During the last ten years it has
become clear that VMC and DMC can produce very
accurate ground-state expectation values for weakly cor-
related solids. They can also provide some information
about specific excited states, although not yet full exci-
tation spectra.

Although VMC and DMC are the only methods cur-
rently used to study realistic continuum models of elec-
trons in solids, other methods are useful in other sys-
tems. Auxiliary-field Monte Carlo (for a recent review
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see Senatore and March, 1994) is often applied to model
Hamiltonians such as the Hubbard model, and path-
integral Monte Carlo (reviewed by Ceperley, 1995a,
1995b) is the main QMC method used to study bosonic
systems such as liquid helium. Both auxiliary-field and
path-integral QMC are in principle capable of simulat-
ing interacting electrons at finite temperature and may
one day be used to study real solids. In this review, how-
ever, we focus on the two techniques that have already
proved their worth in solids: the zero-temperature VMC
and DMC methods.

Because VMC and DMC simulations are very expen-
sive, most calculations of the ground-state properties of
solids use less accurate methods based on Hohenberg-
Kohn-Sham density-functional theory or Hartree-Fock
(HF) theory (see, for example, Parr and Yang, 1989).
The efficiency of these techniques arises from the re-
placement of the electron-electron Coulomb interac-
tions by an effective one-electron potential; this makes
the many-electron Schrödinger equation separable and
hence much easier to solve. Density-functional theory,
in particular, has been remarkably successful and is now
used in fields ranging from solid-state physics and quan-
tum chemistry to geophysics and molecular biology.

Although density-functional theory is exact in prin-
ciple, it relies in practice on approximations to the un-
known exchange-correlation energy functional, which
accounts for the complicated correlated motion of the
electrons. Most density-functional calculations use ei-
ther the local-density approximation or the generalized
gradient approximation, both of which work surprisingly
well under most circumstances. Obvious failures are un-
common, but include the underestimation of s-to-d
transfer energies in transition-metal atoms and difficul-
ties in describing van der Waals bonding, both of which
have been dealt with successfully using QMC tech-
niques. Problems also occur in covalent sp-bonded ma-
terials, as demonstrated by the QMC studies of carbon
clusters described in Sec. V. The unreliability of the
density-functional results for these clusters provides a
good demonstration of the limited predictive power of
existing approximate exchange-correlation energy func-
tionals.

The strong electronic correlations in solids containing
d and f electrons produce a wide range of subtle effects,
including the anomalous normal-state transport proper-
ties of high-temperature superconductors and the very
large low-temperature specific-heat coefficients of
heavy-fermion materials. Correlation effects such as
these are not well described by density-functional or HF
theory and are normally studied using simplified Hamil-
tonians such as the Hubbard model. Given a set of
atomic positions, it is often possible to devise a model
Hamiltonian that gives an excellent account of the low-
lying electronic excitations on an energy scale that may
be as low as a few degrees Kelvin. The simplicity is not
achieved without cost, however, since most model
Hamiltonians drastically approximate the ‘‘independent-
electron’’ energy given so accurately by HF and density-
functional calculations. The independent-electron con-
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tribution is normally more than 99% of the total energy,
and so model Hamiltonians rarely give accurate ground-
state energies as functions of the atomic positions. This
review is concerned with studies of interatomic forces
and chemical bonding, for which the relevant energy
scales range from a few meV to several eV, and for
which continuum approaches based on the full many-
electron Schrödinger equation are more appropriate.

Continuum QMC simulations require much more
computer time than density-functional or HF calcula-
tions, but can already achieve chemical accuracy (usu-
ally defined as 1 kcal per mole, which is about 0.04 eV
per molecule) in small systems and may soon achieve it
in solids. Chemical accuracy is sufficient to address most
issues involving interatomic forces and chemical reac-
tions, but is still an order of magnitude worse than the
accuracy required to study phenomena such as super-
conductivity. The computational cost of a QMC calcula-
tion increases as the cube of the number of electrons,
which makes applications to large systems feasible, and
there is no fundamental reason why the accuracy should
fall off for large systems. Quantum Monte Carlo algo-
rithms are also quite simple to program and very well
suited to massively parallel computation.

Quantum Monte Carlo methods have already proved
themselves important in a very broad sense—they can
provide much more than just accurate numbers. A good
example is provided by Ceperley and Alder’s (1980)
simulations of the homogeneous electron gas, which un-
derlie the accurate parametrized local-density approxi-
mations used in most density-functional calculations.
The rapid acceptance of these QMC-based approxima-
tions helped spark the 20 years of growth and develop-
ment that made density-functional methods so popular
and powerful.

Our intention is that most of what follows should be
accessible to a wide audience, but no doubt some read-
ers will find it helpful to consult other sources. Kalos and
Whitlock (1986) give a straightforward introduction to
Monte Carlo methods in general, and Hammond,
Lester, and Reynolds (1994) cover the use of QMC in
quantum chemistry. Other useful recent sources are the
review by Anderson (1999) and the books edited by
Lester (1997) and Nightingale and Umrigar (1999).

In Sec. II we give an overview of techniques used to
study the quantum mechanics of many-electron systems.
Section III discusses the statistical foundations of the
Monte Carlo approach and describes the theory behind
the VMC and DMC methods. The successes of VMC
and DMC rest on the surprising accuracy of relatively
simple trial wave functions, which are considered in Sec.
IV. In Sec. V we describe a selection of QMC simula-
tions of the ground-state properties of solids and clus-
ters, while in Sec. VI we highlight studies of excited
states. In Sec. VII we describe the methods used to op-
timize trial wave functions, and in Sec. VIII we discuss
pseudopotentials and why they are needed in QMC
simulations. Section IX looks at the issue of periodic
boundary conditions and the proper treatment of finite-
Rev. Mod. Phys., Vol. 73, No. 1, January 2001
size errors. In Sec. X we consider issues of computa-
tional efficiency. Section XI concludes this review.

II. INTERACTING ELECTRONS IN SOLIDS

A. The many-electron Schrödinger equation

One of the great challenges of condensed-matter
physics is to obtain accurate approximate solutions of
the many-electron Schrödinger equation. Because the
mass of an electron is so small compared to that of a
nucleus (me /M'1023 –1025), the dynamics of electrons
and nuclei in solids can, to a good approximation, be
decoupled. Within the Born-Oppenheimer approxima-
tion, the many-electron wave function and energy may
then be obtained by solving a time-independent Schrö-
dinger equation in which the nuclear positions are con-
sidered fixed. The nonrelativistic Born-Oppenheimer
Hamiltonian takes the form
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where ri are the electron positions, da are the nuclear
positions, and Za are the nuclear charges.1

The first quantum-mechanical studies of chemically
bonded systems appeared soon after the birth of quan-
tum mechanics. Heitler and London (1927) calculated
the binding energy and internuclear separation of H2 by
approximating the wave function as an antisymmetrized
product of atomic 1s functions centered on the two nu-
clei. A different approach was taken by Hartree (1928),
Fock (1930), and Slater (1930), who argued that it is
reasonable to replace the intractable system of interact-
ing electrons with one involving independent electrons
moving in a self-consistent field. Coulson and Fischer
(1949) showed that the Heitler-London and Hartree-
Fock (HF) wave functions were exact in the limiting
cases of strong electron correlation and weak electron
correlation, respectively, and that the truth lay some-
where in between. It turns out that many chemically
bonded systems are weakly correlated, so that the HF
approach is normally a good starting point. This point of
view underlies the molecular orbital theory developed
by Hund (1928), Mulliken (1928), Hückel (1931a, 1931b,
1932), and others.

Calculating the electronic structure of solids poses a
formidable challenge because of the large number of
particles involved. The first steps were taken by Som-
merfeld and others, who made the bold proposal that in
metals the forces on the electrons due to the ions ap-
proximately cancel the forces due to the other electrons
(Sommerfeld and Bethe, 1933), leading to the free-
electron model. The work of Bloch (1928) added the

1We use Hartree atomic units, e5me5\54pe051, for all
equations.
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important concepts of Bloch waves and energy bands. It
was soon realized, however, that HF theory fails to give
a proper description of metals, and hence that correla-
tion effects have to be included from the outset.

The most important and widely used electronic struc-
ture method currently applied to solids is based on the
many-electron density-functional theory developed by
Hohenberg and Kohn (1964) and Kohn and Sham
(1965). This approach reduces the complicated many-
electron problem to an independent-electron problem
with an effective one-electron potential that depends on
the electron density. Although at first glance it appears
that density-functional theory must be an approximate
method, it is in principle capable of describing electron
correlation effects exactly. Density-functional theory has
been the main tool used to study the electronic structure
of solids for more than two decades (Jones and Gun-
narsson, 1989; Parr and Yang, 1989; Dreizler and Gross,
1990), and over the last decade has also become popular
in quantum chemistry.

The Hartree-Fock and density-functional methods are
very relevant to our discussion of QMC. The QMC tech-
niques we focus on here rely on the availability of rea-
sonable approximations to the many-electron wave
function, which are often constructed using one-electron
orbitals obtained from HF or density-functional calcula-
tions. A brief introduction to these methods and to cor-
related wave-function methods is given in the following
subsections. Many of the concepts and equations will be
referred to later in the article.

B. Hartree-Fock theory

The HF approximation (Fock, 1930; Slater, 1930) is
the simplest theory that correctly incorporates the per-
mutation symmetry of the wave function. The many-
electron wave function must be antisymmetric under
particle exchange, so that

C~ . . . ,xi , . . . ,xj , . . . , !52C~ . . . ,xj , . . . ,xi , . . . , !, (2.2)

where xi5$ri ,s i% represents the space and spin coordi-
nates of an electron. The antisymmetry ensures that no
two electrons can have the same set of quantum num-
bers and that the Pauli exclusion principle is satisfied.
The simplest wave function with the required antisym-
metry is a Slater determinant,

D~X!5U c1~x1! c1~x2! . . . c1~xN!

c2~x1! c2~x2! . . . c2~xN!

] ] ] ]

cN~x1! cN~x2! . . . cN~xN!

U , (2.3)

where X5(x1 ,x2 ,. . . ,xN) is shorthand for the list of all
the electron coordinates. In most cases the single-
particle orbitals are assumed to be products of spatial
and spin factors,

c i~xj!5c i~rj!ds i ,s j
, (2.4)
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where ds i ,s j
51 if s j5s i and zero otherwise. If the de-

terminant contains N↑ orbitals with s i5↑ and N↓5N
2N↑ with s i5↓ , it is an eigenfunction of Ŝz with eigen-
value (N↑2N↓)/2.

The exact ground-state wave function of an interact-
ing system cannot be represented as a single Slater de-
terminant, but a Slater determinant can nevertheless be
used as a variational trial function. If this trial function is
optimized by minimizing the expectation value of Ĥ
with respect to the orbitals c i(r), one obtains the self-
consistent HF equations,

e ic i~r!5S 2
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where the Lagrange multipliers e i arise from the ortho-
normality constraints on the single-particle orbitals. The
ionic potential is

V ion~r!52(
a

Za

ur2dau
, (2.6)

as in Eq. (2.1), while the other two terms, known as the
Hartree and exchange terms, describe the electron-
electron interactions. The effect of the exchange term is
to keep electrons of like spin apart and, as a result, each
electron has around it a Fermi or exchange hole contain-
ing unit positive charge.

C. Post-Hartree-Fock methods

The single-determinant HF theory includes the ex-
change effects arising from the antisymmetry of the
many-electron wave function, but neglects the electronic
correlations caused by the electron-electron Coulomb
repulsion. Correlation energies are a small fraction of
the total energy, but they can be very important. For
example, the correlation energy of a nitrogen molecule
amounts to only 0.5% of the total electronic energy, but
accounts for nearly 50% of the molecular binding en-
ergy.

Correlation can be included by using a linear combi-
nation of determinants in a post-Hartree-Fock method.
However, the central problem with such expansions is
that very large numbers of determinants are needed to
describe many-electron wave functions accurately.
There are two reasons for this poor convergence. The
first, which applies equally in small and large systems, is
that many determinants are needed to describe the cusp-
like gradient discontinuities that occur whenever two
electrons have the same position (see Sec. IV). The sec-
ond is that the required number of determinants in-
creases very rapidly with system size.

In a full configuration-interaction calculation one in-
cludes all the determinants that can be formed from the
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molecular orbitals calculated with a particular basis set.
Consider, for example, a system of N electrons occupy-
ing states chosen from a set of 2N molecular orbitals.
The total number of N-electron Slater determinants is

~2N !!
N!N!

'
e2N ln 2N

e2N ln N 5e2N ln 2, (2.7)

for large N . The number of determinants therefore rises
exponentially with N . The full configuration-interaction
approach in conjunction with a good basis set can be
applied only to small systems, and the current practical
limit for highly accurate calculations is reached for small
molecules such as H2O.

One way of reducing the computational cost is to in-
clude only the most important determinants. This may
be done by considering low-energy excitations from a
reference determinant, which is normally the HF ground
state. For example, if single and double excitations are
included we have the configuration-interaction singles
and doubles method, for which the computational
cost scales as N6. Unfortunately, such truncated
configuration-interaction methods are not size consis-
tent; that is, the energy does not scale linearly with the
number of electrons. For example, in a configuration-
interaction singles and doubles calculation for N widely
separated hydrogen molecules, the correlation energy
increases only as AN . Such a method is clearly unsuit-
able for applications to solids. The size consistency prob-
lem can be overcome via coupled-cluster expansions
(Čı́žek, 1969). These implicitly include all excitations
from the reference determinant, although the coeffi-
cients in the expansion are approximated and the
method is nonvariational. Coupled-cluster methods are
capable of yielding highly accurate results and are direct
competitors of QMC methods for molecular calcula-
tions, but they are very expensive in large systems. For
example, the computational cost of a CCSD calculation
(coupled cluster with single and double excitations)
scales as N6. Hartree-Fock and post-Hartree-Fock
methods are described in a straightforward manner in
the book by Szabo and Ostlund (1989).

D. Density-functional theory

Computational methods based on density-functional
theory are now the most popular approach for calculat-
ing the electronic properties of solids and large mol-
ecules. Density-functional theory is a formally exact
theory based on a theorem of Hohenberg and Kohn
(1964), which states that the ground-state properties of a
many-electron system may be obtained by minimizing a
functional E@n(r)# of the electron number density n(r).
The minimum value of the functional is the exact
ground-state energy, and the minimum is attained when
n(r) is the exact ground-state density.

Kohn and Sham (1965) introduced the idea of an aux-
iliary noninteracting system with the same electron den-
sity as the real system. This enabled them to express the
Rev. Mod. Phys., Vol. 73, No. 1, January 2001
electron density of the interacting system in terms of the
one-electron wave functions of the noninteracting sys-
tem,

n~r!5(
i51

N

uc i~r!u2, (2.8)

and to write the Hohenberg-Kohn energy functional in
the form

E@n~r!#52
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dr dr81Exc@n~r!# , (2.9)

where the terms on the right-hand side are the kinetic
energy of the noninteracting system with electron den-
sity n(r), the energy of interaction with the ionic poten-
tial, the Hartree energy, and the exchange-correlation
energy. Equation (2.9) may be taken as the definition of
the exchange-correlation energy functional Exc@n(r)# ,
which is not known exactly and has to be approximated.

By minimizing the total energy functional of Eq. (2.9),
Kohn and Sham showed that one could calculate the
ground-state c i , and hence the ground-state number
density and energy, by solving the self-consistent set of
equations,

S 2
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¹21V ion~r!1VH~r!1Vxc~r! Dc i~r!5e ic i~r!,

(2.10)

where the Hartree potential is

VH~r!5E dr8
n~r8!

ur2r8u
(2.11)

and the exchange-correlation potential is

Vxc~r!5
dExc@n~r!#

dn~r!
. (2.12)

The best-known approximation for Exc@n(r)# is the
local-density approximation (LDA),

Exc
LDA@n~r!#5E exc

hom
„n~r!…n~r!dr, (2.13)

where exc
hom(n) is the exchange-correlation energy per

electron in a uniform electron gas of density n . The non-
uniform electron gas at r is therefore treated as if it were
part of a uniform electron gas of constant density n
5n(r). This approximation is obviously accurate when
the electron density is almost uniform, but also works
surprisingly well when the distribution of electrons is
strongly inhomogeneous, such as at surfaces and in mol-
ecules. The analogous approximation for spin-polarized
systems, which is known as the local spin-density ap-
proximation (LSDA), has also proved very successful.
The LDA and LSDA were used throughout the devel-
opment of density-functional theory and are still widely
used in studies of solids.

In cases when the LDA is not accurate enough, it
seems sensible to try approximating Exc@n(r)# in terms
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of the local density and its gradient. It turns out that
simple gradient expansions are rather badly behaved,
but that better approximations can be devised by ex-
pressing exc as a carefully chosen nonlinear function of
n(r) and u¹n(r)u. This is the idea behind the general-
ized gradient approximation (Langreth and Mehl, 1983;
Becke, 1988; Perdew et al., 1992), which is now used in
most quantum-chemical applications of density-
functional theory. Several nonlocal functionals have also
been proposed, of which the best known are the
average-density approximation and weighted-density
approximation of Gunnarsson, Jonson, and Lundqvist
(1979).

Density-functional results obtained using the best
available approximate exchange-correlation energy
functionals are typically an order of magnitude less ac-
curate than good QMC results, but since density-
functional theory is much less computationally demand-
ing than QMC it has a much wider variety of interesting
applications. Computational experiments based on
density-functional theory are already used in physics,
chemistry, biochemistry, materials science, and geophys-
ics, and are beginning to be used in industrially impor-
tant fields such as drug design.

E. Quantum Monte Carlo methods

There are many different QMC methods, but this re-
view concentrates on only two: variational quantum
Monte Carlo (VMC) and fixed-node diffusion quantum
Monte Carlo (DMC). Like all QMC methods, these are
closely related to Monte Carlo methods used in classical
statistical mechanics (Nightingale, 1999). In the VMC
method expectation values are calculated via Monte
Carlo integration over the 3N-dimensional space of
electron coordinates. The more sophisticated DMC
method is a projector approach in which a stochastic
imaginary-time evolution is used to improve a starting
trial wave function.

Other Monte Carlo methods, such as auxiliary-field
QMC (reviewed by Senatore and March, 1994) and
path-integral QMC (reviewed by Ceperley, 1995a,
1995b), may also be used to study interacting many-
electron systems. Recent progress along these lines in-
cludes the development of the shifted-contour auxiliary-
field method (Baer, Head-Gordon, and Neuhauser,
1998; Baer and Neuhauser, 2000), which has already
been applied to small molecules, and the introduction of
the reptation QMC method (Baroni and Moroni, 1999),
which is an interesting hybrid of path-integral and diffu-
sion QMC. The more established restricted path-integral
fermion Monte Carlo method (Ceperley, 1995b) has
been used to investigate the formation of a gas of mo-
lecular hydrogen from a neutral system of electrons and
protons at high temperature (Magro et al., 1996) and to
calculate the forces between protons in an electron gas
(Zong and Ceperley, 1998). Unlike VMC and DMC,
which are zero-temperature methods in which one con-
siders a single wave function, path-integral and
auxiliary-field QMC may both be used to compute ex-
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pectation values at finite temperature. These methods
have not yet been applied to real solids, however, and
we shall not discuss them further in this review. We also
restrict ourselves to continuum models and choose not
to consider lattice models such as the Hubbard model.
Although the methods described in this article may be
applied to lattice problems, other QMC methods such as
the auxiliary-field approach are also useful in such sys-
tems (Blankenbecler, Scalapino, and Sugar, 1981).

McMillan (1965) was the first to use the VMC method
in his study of liquid 4He. One of the first applications to
a many-fermion system was by Ceperley, Chester, and
Kalos (1977). A very early calculation by Donsker and
Kac (1950) employed a type of projector Monte Carlo
method, but their algorithm was inefficient and fails for
unbounded potentials such as the Coulomb interaction.
Kalos (1962, 1967) developed the projector Green’s-
function Monte Carlo method and enormously im-
proved its efficiency by introducing the concept of im-
portance sampling, in which a trial or guiding wave
function is used to steer the Monte Carlo moves (Kalos,
Levesque, and Verlet, 1974). The DMC algorithm
(Grimm and Storer, 1971; Anderson, 1975, 1976) dis-
cussed here may be viewed as an accurate and conve-
nient approximation to the full Green’s-function Monte
Carlo algorithm and was developed later. Importance
sampling was introduced into the DMC algorithm by
Grimm and Storer (1971).

Because of the fermionic nature of the many-electron
wave function, it must have positive and negative re-
gions. This simple fact underlies the infamous fermion
sign problem, which plagues all projector QMC meth-
ods. The search for exact solutions to the sign problem is
still active, but to date no entirely satisfactory exact so-
lution exists. Diffusion Monte Carlo simulations of large
systems therefore use the fixed-node approximation of
Anderson (1975). A many-electron trial wave function is
chosen and used to define a trial nodal surface. [The
nodal surface of a wave function C(r1 ,r2 ,. . . ,rN) is the
(3N21)-dimensional surface on which C50 and across
which it changes sign.] The fixed-node DMC algorithm
then projects out the many-electron wave function with
the lowest possible energy expectation value consistent
with that fixed nodal surface. The results are not exact
unless the trial nodal surface is exact, but the fixed-node
method is computationally stable and the calculated en-
ergy is variational and often very accurate.

The importance-sampled fixed-node fermion DMC al-
gorithm was first applied to the electron gas by Ceperley
and Alder (1980). The first application to solid hydrogen
was in 1987 (Ceperley and Alder, 1987), and the first
VMC and DMC calculations of solids containing heavier
atoms followed soon after (Fahy, Wang, and Louie,
1988, 1990a; Li, Ceperley, and Martin, 1991). Important
recent technical developments have included the intro-
duction of variance minimization techniques to optimize
trial wave functions (Umrigar, Wilson, and Wilkins,
1988) and the use of nonlocal pseudopotentials in VMC
and DMC calculations (Hammond, Reynolds, and
Lester, Jr., 1987; Hurley and Christiansen, 1987; Fahy,
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Wang, and Louie, 1988; Mitas, Shirley, and Ceperley,
1991). These improvements have stimulated applications
to a much wider range of systems.

The computer time required to calculate the energy of
a system to some given accuracy using the fermion VMC
and DMC methods effectively scales as N3 (see Sec.
X.E). Of course QMC does not offer a free lunch—the
price to be paid for this advantageous scaling with N is
that the answer is obtained with a statistical error bar
that decays only as the inverse of the square root of the
computer time. The total amount of time required for
accurate QMC calculations is therefore quite large.
However, QMC algorithms are intrinsically parallel,
which is becoming a significant computational advantage
as the availability of powerful and relatively inexpensive
parallel machines improves.

For small systems the DMC method is capable of
reaching chemical accuracy, which is usually defined as
;1 kcal per mole ('0.04 eV per molecule). The advan-
tageous scaling with system size means that the attain-
able accuracy does not fall off rapidly as the number of
electrons N increases. Accurate trial wave functions are
necessary to achieve high accuracy at a reasonable com-
putational cost, but since the DMC wave function is gen-
erated stochastically the results are largely free of the
errors caused by the limited basis set used in most other
techniques. By contrast, the quality of results obtained
using the less accurate VMC method is entirely deter-
mined by the quality of the trial wave function.

The VMC and DMC methods are best suited to cal-
culating energies because these have the very advanta-
geous zero-variance property; as the trial wave function
approaches the exact ground state (or any other exact
energy eigenstate) the statistical fluctuations in the en-
ergy reduce to zero. Other ground-state expectation val-
ues, such as static correlation functions, can also be cal-
culated, but the absence of a zero-variance property
makes this more problematic. The VMC and DMC
methods are less well adapted to studying excited states,
but have nevertheless been used successfully to calculate
a wide range of excited-state properties of atoms, mol-
ecules, and solids.

III. MONTE CARLO METHODS

A. Statistical foundations

The archetypal example of a Monte Carlo simulation
is the evaluation of a multidimensional integral by sam-
pling the integrand statistically and averaging the
sampled values. In conventional quadrature methods the
accuracy depends on the fineness of the integration
mesh. If one uses a d-dimensional cubic mesh to evalu-
ate a d-dimensional integral using Simpson’s rule, for
example, the error scales as M24/d, where M is the total
number of mesh points. Therefore, as the dimension d
increases (we have d as large as a few thousand in some
of our applications), the error falls off increasingly
slowly with M . Using Monte Carlo methods, on the
other hand, the statistical error in the value of the inte-
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gral decreases as the square root of the number of sam-
pling points used, regardless of dimensionality. This is a
consequence of the central limit theorem, one of the cor-
nerstones of the mathematical theory of statistics.

Suppose we define a 3N-dimensional vector R by

R5~r1 ,r2 ,. . . ,rN!, (3.1)

where ri is the position of the ith electron. A particular
value of R is sometimes called a walker, a configuration,
or a psip in the QMC literature. (Note that here and
throughout the rest of Sec. III we consider a system of
spinless fermions for simplicity; Sec. IV discusses the mi-
nor extensions required to treat the spin properly.) The
probability density of finding the electrons in the con-
figuration R will be denoted by P(R), where

P~R!>0, (3.2)

E dR P~R!51. (3.3)

Let $Rm :m51,M% be a set of mutually independent (un-
correlated) configurations distributed according to the
probability distribution P(R). We define a new random
variable Zf by

Zf5
@f~R1!1f~R2!1•••1f~RM!#

M
, (3.4)

where f(R) is any reasonable function with mean m f and
variance s f

2 given by

m f5E dR f~R!P~R!, (3.5)

s f
25E dR@f~R!2m f#

2P~R!. (3.6)

Then, under rather general conditions (Feller, 1968), the
central limit theorem tells us that, for large enough M ,
Zf is normally distributed with mean m f and standard
deviation s f /AM . This implies that, regardless of P(R),
the mean value of a large number of measurements of
some function of R will be a good estimator of the mean
of that function with respect to P(R). Moreover, the
standard deviation of the mean of the measurements
will decrease as 1/AM , irrespective of the dimension of
the integral.

These ideas can be applied to the evaluation of inte-
grals such as

I5E dR g~R!. (3.7)

First we introduce an ‘‘importance function’’ P(R) and
rewrite the integral in the form

I5E dR f~R!P~R!, (3.8)

where f(R)[g(R)/P(R). The importance function is
chosen such that it obeys Eqs. (3.2) and (3.3) and hence
may be interpreted as a probability density. In principle,
the value of I may now be obtained by drawing an infi-
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nite set of random vectors from the distribution P(R)
and computing the sample average:

I5 lim
M→`

H 1
M (

m51

M

f~Rm!J . (3.9)

A Monte Carlo estimate of I may be obtained by aver-
aging over a large but finite sample of vectors drawn
from P(R):

I'
1
M (

m51

M

f~Rm!. (3.10)

The variance of the estimate of the integral is then
s f

2/M , which itself can be estimated as

s f
2

M
'

1
M~M21 ! (

m51

M F f~Rm!2
1
M (

n51

M

f~Rn!G 2

, (3.11)

and an estimate of the size of the error bar on the com-
puted value of I is 6s f /AM .

A judicious choice of the importance function P(R)
significantly reduces the variance for a fixed sample size.
It can be readily shown that the importance function
that gives the smallest variance is P(R)5ug(R)/Iu.
However, since I is not known, the integrand f(R)
5g(R)/P(R) corresponding to this importance function
is also unknown. In general, the best that one can do is
make P(R) as similar to ug(R)/Iu as possible.

B. The Metropolis algorithm

When using the Monte Carlo method described in
Sec. III.A to evaluate multidimensional integrals, it is
necessary to sample complicated probability distribu-
tions in high-dimensional spaces. In general, the normal-
izations of these distributions are unknown and they are
so complicated that they cannot be sampled directly.
The Metropolis rejection algorithm (Metropolis et al.,
1953) has the great advantage that it allows an arbi-
trarily complex distribution to be sampled in a straight-
forward way without knowledge of its normalization.

The Metropolis algorithm generates the sequence of
sampling points Rm by moving a single walker according
to the following rules:

(1) Start the walker at a random position R.
(2) Make a trial move to a new position R8 chosen

from some probability density function T(R8←R). Af-
ter the trial move the probability that the walker initially
at R is now in the volume element dR8 is dR83T(R8
←R).

(3) Accept the trial move to R8 with probability

A~R8←R!5MinS 1,
T~R←R8!P~R8!

T~R8←R!P~R! D . (3.12)

If the trial move is accepted, the point R8 becomes the
next point on the walk; if the trial move is rejected, the
point R becomes the next point on the walk. If P(R) is
high, most trial moves away from R will be rejected and
the point R may occur many times in the set of points
making up the random walk.
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(4) Return to step 2 and repeat.
The initial points generated by this algorithm depend

on the starting point and should be discarded. Eventu-
ally, however, the simulation settles down and sets of
points snipped out of the random walk are distributed
according to P(R).

To understand how this algorithm works, imagine an
enormous number of walkers all executing random
walks according to the above rules. After an equilibra-
tion period, we assume that the distribution of walkers
settles down to a unique steady equilibrium state in
which the average number of walkers in the volume el-
ement dR is denoted by n(R)dR. Once the equilibrium
has been established, we also assume that the average
number of walkers moving from dR to dR8 in one time
step is the same as the number moving from dR8 to dR.
Our everyday experience of diffusion and other random-
walk processes suggests that these assumptions are prob-
ably correct, but readers who wish to see a clear deriva-
tion of the conditions under which they hold are
referred to Feller (1968).

Since the probability that the next move of a walker at
R takes it to dR8 is dR8 A(R8←R)T(R8←R), the av-
erage number moving from dR to dR8 during a single
move will be

dR8A~R8←R!T~R8←R!3n~R!dR. (3.13)

This must be balanced by the number moving from dR8
to dR,

A~R8←R!T~R8←R!n~R!dR dR8

5A~R←R8!T~R←R8!n~R8!dR8 dR, (3.14)

and hence the equilibrium distribution n(R) satisfies

n~R!

n~R8!
5

A~R←R8!T~R←R8!

A~R8←R!T~R8←R!
. (3.15)

Since the ratio of Metropolis algorithm acceptance prob-
abilities is

A~R←R8!

A~R8←R!
5

T~R8←R!P~R!

T~R←R8!P~R8!
, (3.16)

it follows that

n~R!

n~R8!
5

P~R!

P~R8!
. (3.17)

The equilibrium walker density n(R) is therefore pro-
portional to P(R), and the probability of finding any
given walker in dR is P(R)dR as required. A rigorous
derivation of this result is given by Feller (1968).

C. Variational Monte Carlo

The variational Monte Carlo (VMC) method is the
simpler of the two quantum Monte Carlo methods dis-
cussed in this review. It is based on a combination of the
variational principle and the Monte Carlo evaluation of
integrals discussed in Sec. III.A. The VMC method re-
lies on the availability of a trial wave function CT that is
a reasonably good approximation of the true ground-



41Foulkes et al.: Quantum Monte Carlo simulations of solids
state wave function. The subject of how to produce good
trial wave functions is dealt with in Sec. IV. The trial
wave function must satisfy some basic conditions. Both
CT and ¹CT must be continuous wherever the potential
is finite, and the integrals *CT* CT and *CT* ĤCT must
exist. To keep the variance of the energy finite we also
require *CT* Ĥ2CT to exist.

The expectation value of Ĥ evaluated with a trial
wave function CT provides a rigorous upper bound on
the exact ground-state energy E0 :

EV5

E CT* ~R!ĤCT~R!dR

E CT* ~R!CT~R!dR
>E0 . (3.18)

In a VMC simulation this bound is calculated using the
Metropolis Monte Carlo method. Equation (3.18) is re-
written in the form

EV5

E uCT~R!u2@CT~R!21ĤCT~R!#dR

E uCT~R!u2 dR
, (3.19)

and the Metropolis algorithm is used to sample a set of
points $Rm :m51,M% from the configuration-space
probability density P(R)5uCT(R)u2/* uCT(R)u2 dR. At
each of these points the ‘‘local energy’’ EL(R)
5CT(R)21ĤCT(R) is evaluated and the average en-
ergy accumulated:

EV'
1
M (

m51

M

EL~Rm!. (3.20)

The trial moves are usually sampled from a Gaussian
centered on the current position of the walker, the vari-
ance of the Gaussian being chosen such that average
acceptance probability is roughly 50% or such that the
diffusion constant of the random walk is maximized. The
flow chart shown in Fig. 1 illustrates how a typical VMC
simulation works.

Expectation values of operators other than the Hamil-
tonian may also be expressed as 3N-dimensional inte-
grals and evaluated in an analogous way. The variance
of the QMC result for any given observable depends on
the details of the integrand, suggesting that it may be
possible to reduce the variance by modifying the estima-
tor in such a way that its expectation value is unaffected.
Very recently, Assaraf and Caffarel (1999) have demon-
strated that a significant variance reduction may be ob-
tained in both VMC and DMC using this technique, al-
though their approach has been tested only in small
systems so far.

D. Diffusion Monte Carlo

1. The imaginary-time Schrödinger equation

Diffusion Monte Carlo (DMC) is a stochastic projec-
tor method for solving the imaginary-time many-body
Schrödinger equation,
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2] tF~R,t !5~Ĥ2ET!F~R,t !, (3.21)

where t is a real variable measuring the progress in
imaginary time, R5(r1 ,r2 , . . . ,rN) is a 3N-dimensional
vector specifying the coordinates of all N electrons, and
ET is an energy offset. Equation (3.21) may be rewritten
in the integral form

F~R,t1t!5E G~R←R8,t!F~R8,t !dR8, (3.22)

where

G~R←R8,t!5^Ruexp@2t~Ĥ2ET!#uR8& (3.23)

is a Green’s function that obeys the same equation as
the wave function,

2] tG~R←R8,t !5„Ĥ~R!2ET…G~R←R8,t !, (3.24)

with the initial condition G(R←R8,0)5d(R2R8). Us-
ing the spectral expansion

exp~2tĤ !5(
i

uC i&exp~2tEi! ^C iu, (3.25)

one can express the Green’s function as

G~R←R8,t!5(
i

C i~R! e2t(Ei2ET) C i* ~R8!, (3.26)

where $C i% and $Ei% denote the complete sets of eigen-
functions and eigenvalues of Ĥ , respectively. Equations
(3.21) and (3.22) are equivalent, as can be readily dem-
onstrated by differentiating Eq. (3.22) with respect to t
and setting t50.

It is straightforward to show that as t→` the operator
exp@2t(Ĥ2ET)# projects out the lowest eigenstate uC0&
that has nonzero overlap with the chosen uF(t50)&
5uF init&:

FIG. 1. Flow chart illustrating the variational Monte Carlo
(VMC) algorithm.



42 Foulkes et al.: Quantum Monte Carlo simulations of solids
lim
t→`

^Ruexp@2t~Ĥ2ET!#uF init&

5 lim
t→`

E G~R←R8,t!F init~R8!dR8

5 lim
t→`

(
i

C i~R! exp@2t~Ei2ET!# ^C iuF init&

5 lim
t→`

C0~R! exp@2t~E02ET!# ^C0uF init&.

(3.27)

By adjusting ET to equal E0 , one can make the expo-
nential factor in the last line of Eq. (3.27) constant, while
the higher states in the previous line are all exponen-
tially damped because their energies are higher than E0 .
This fundamental property of the projector exp@2t(Ĥ
2ET)# is the basis of the diffusion Monte Carlo method
and similar projector-based approaches.

Let us for a moment neglect the potential terms in the
Hamiltonian so that Eq. (3.21) simplifies to

] tF~R,t !5
1
2 (

i51

N

¹ i
2F~R,t !. (3.28)

This is a diffusion equation in a 3N-dimensional space,
the Green’s function for which is a 3N-dimensional
Gaussian with variance t in each dimension,

G~R←R8,t!5~2pt!23N/2 expF2uR2R8u2

2t G . (3.29)

It is easy to verify that this Gaussian form tends to
d(R2R8) as t→0 and that it satisfies Eq. (3.28).

In the theory of stochastic processes Eq. (3.28) is
called the master equation of a diffusion stochastic pro-
cess (Karlin and Taylor, 1981) and its solution F(R,t)
describes the distribution of the diffusing Brownian par-
ticles in space and time. The correspondence Brownian
particles ↔ distribution function works both ways, and
we can represent the distribution F(R,t) by a set of
discrete Brownian sampling points or random walkers:

F~R,t ! °
discrete

(
k

d~R2Rk!. (3.30)

The Green’s function of Eq. (3.29) can be interpreted as
a transition probability density for the evolution of the
walkers. By substituting Eq. (3.30) into Eq. (3.22) we
obtain

F~R,t1t! °
discrete

(
k

G~R←Rk ,t!. (3.31)

The result is a set of Gaussians each with a variance of
3Nt . In order to restore the original discrete represen-
tation, one samples each Gaussian by a new delta func-
tion that defines the evolved position of the walker. The
procedure of propagation/resampling is then repeated
until convergence is reached. The result of this process is
a set of samples distributed according to the solution of
Eq. (3.28).
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Now consider the full Hamiltonian, which includes
both kinetic and potential-energy terms. Except in a few
special cases, once the particles are interacting we do
not know explicit expressions for the exact Green’s
function and have to use approximations. An approxi-
mation to the Green’s function can be obtained using
the Trotter-Suzuki formula for the exponential of a sum
of operators Â and B̂ :

e2t(Â1B̂)5e2tB̂/2e2tÂe2tB̂/21O@t3# . (3.32)

If we write Ĥ5T̂1V̂ , where T̂ is the full N-electron
kinetic-energy operator and V̂ is the total potential-
energy operator (including both electron-ion and
electron-electron terms), application of the Trotter-
Suzuki formula with Â5T̂ and B̂5V̂2ET gives

G~R←R8,t!5^Rue2t(T̂1V̂2ET)uR8&

'e2t[V(R)2ET]/2^Rue2tT̂uR8&

3e2t[V(R8)2ET]/2. (3.33)

The approximate Green’s function for small t is there-
fore given by (Reynolds et al., 1982)

G~R←R8,t!'~2pt!23N/2 expF2
~R2R8!2

2t G
3exp@2t@V~R!1V~R8!22ET#/2# ,

(3.34)
where the error is proportional to t3.

The factor

P5exp@2t„V~R!1V~R8!22ET…/2# (3.35)

acts as a time-dependent renormalization (reweighting)
of the diffusion Green’s function. This change of nor-
malization can be incorporated into the process of
walker evolution in various ways. One possibility is to
assign each walker a weight and accumulate the product
of weights during the propagation. However, this option
does not give the most efficient sampling since the
weights of the walkers rapidly become very different
and, in the long time limit, one dominates exponentially
over the rest. A better alternative is to use the branching
or birth/death algorithm, in which P determines the
number of walkers that survive to the next step (Rey-
nolds et al., 1982). In its simplest form the procedure is
as follows:

(1) If P,1 the walker continues its evolution with
probability P .

(2) If P>1 the walker continues; in addition, at the
same position, a new walker is created with probability
P21.

Both possibilities can be conveniently coded as a
single command,

Mnew5INT~P1h!, (3.36)

where Mnew is the number of walkers evolving to the
next step at a given position, INT denotes the integer
part of a real number, and h is a random number drawn
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from a uniform distribution on the interval @0,1# . From
the expression for P it is clear that in regions of high
potential energy the walkers disappear, while in regions
of low potential energy they proliferate. The branching
algorithm therefore transforms the weight accumulation
in the low-energy regions into an increase in the density
of walkers there.

The energy offset ET , which determines the overall
asymptotic renormalization [see Eq. (3.27)], is used to
control the total population of walkers. During the
propagation ET is occasionally adjusted so that the over-
all number of walkers fluctuates around a desired mean
value. Typical mean values of the number of walkers
used in simulations are between 102 and 103. Figure 2
illustrates this DMC algorithm for the case of a single
particle moving in a one-dimensional potential well.

So far we have assumed that the wave function is posi-
tive everywhere. However, the fermion antisymmetry
implies that many-fermion wave functions cannot be
positive everywhere and must take both positive and
negative values. Unfortunately, probabilistic methods
such as DMC can handle only positive distributions. A
straightforward generalization of the DMC algorithm,
such as an assignment of sign variables to walkers, while
formally correct, leads to the fermion sign problem and
an exponentially decaying signal-to-noise ratio. More
elaborate algorithms with walker signs have been suc-

FIG. 2. Illustration of the walker evolution in the diffusion
Monte Carlo (DMC) method. The example shows a one-
dimensional problem in which a single particle is confined by a
potential well V(x). The initial walker distribution samples a
uniform C init . As the imaginary-time propagation proceeds,
the distribution converges towards the ground state C0 . Note
the occasional disappearance of walkers in the region of high
potential energy and the proliferation around the potential
minimum.
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cessfully applied to small molecules, but practical appli-
cations are restricted to few-electron systems (Diedrich
and Anderson, 1992). Nevertheless, for small enough
systems, very impressive results have been obtained. For
example, the energy surface for the reaction H21H has
been evaluated at a few thousand points with an aston-
ishing accuracy of 0.01 kcal/mol (Wu, Kuppermann, and
Anderson, 1999), improving existing results by an order
of magnitude. The investigation of approximation-free
algorithms for fermions is a very active area of current
research, but deeper analysis is outside the scope of this
review; we refer the reader to the literature (Hammond,
Lester, and Reynolds, 1994; Kalos and Pederiva, 1999).

2. The fixed-node approximation

Fixed-node DMC (Anderson, 1975, 1976; Moskowitz
et al., 1982; Reynolds et al., 1982) is an alternative
method for dealing with the fermion antisymmetry. Al-
though not exact, it gives ground-state energies that sat-
isfy a variational principle and are usually very accurate.
Furthermore, unlike the exact methods described above,
the fixed-node algorithm is stable in large systems. The
fixed-node approximation is therefore used in almost all
current large-scale applications of DMC. The version
described here assumes that the ground-state wave func-
tion is real and hence works only in systems with time-
reversal symmetry (i.e., a real Hamiltonian). There is,
however, a successful generalization known as the fixed-
phase approximation (Ortiz, Ceperley, and Martin,
1993) for use in systems without time-reversal symme-
try. This is particularly useful for studying interacting
electrons in an applied magnetic field or states with non-
zero angular momentum.

The basic idea behind fixed-node DMC is very simple.
A trial many-electron wave function is chosen and used
to define a trial many-electron nodal surface. In a three-
dimensional system containing N electrons, the many-
electron trial state is a function of 3N variables (the x ,
y , and z coordinates of each electron) and the trial
nodal surface is the (3N21)-dimensional surface on
which that function is zero and across which it changes
sign. The fixed-node DMC algorithm then produces the
lowest-energy many-electron state with the given nodal
surface. Fixed-node DMC may therefore be regarded as
a variational method that gives exact results if the trial
nodal surface is exact. It differs from VMC, however, in
that no assumptions are made about the functional form
of the state between the nodes.

a. One-electron example

The fixed-node approximation is best introduced by
means of a simple example. Figure 3 illustrates the stan-
dard DMC algorithm for the case of a particle in a box.
Walkers initially distributed according to the starting
state (the broken line) diffuse randomly until they cross
one of the box walls, at which point they are removed
from the simulation. This boundary condition follows
from Eq. (3.35), which shows that the reweighting factor
P is zero where the potential is infinite.
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The absorption of walkers at the walls guarantees that
the average walker density tends to zero at the edges of
the box and hence that the eigenstate obtained satisfies
the correct boundary conditions. The energy offset ET is
chosen such that P is slightly greater than unity within
the box; this ensures that the diffusing walkers multiply
steadily and counteracts the steady loss of walkers at the
walls. Regardless of the shape of the initial distribution,
the walker density settles down to the final state shown,
which is proportional to the ground-state wave function.

How might this algorithm be adapted to give the first
excited state, which has odd parity and a node at the box
center? One approach is to start with a trial function of
odd parity, such as that shown in Fig. 4(a), and write it
as the difference between the two non-negative distribu-
tions shown in Fig. 4(b):

F~x ,t50 !5F1~x ,t50 !2F2~x ,t50 !, (3.37)

where

F1~x ,t50 !5
1
2

@ uF~x ,t50 !u1F~x ,t50 !# , (3.38)

F2~x ,t50 !5
1
2

@ uF~x ,t50 !u2F~x ,t50 !# . (3.39)

The Hamiltonian commutes with the parity operator
and so preserves the parity of the starting state
F(x ,t50). Furthermore, since the imaginary-time

FIG. 3. A possible initial walker density distribution (dashed
line) and the final walker distribution (solid line) for a DMC
simulation of a particle in a box.

FIG. 4. Decomposition of an antisymmetric starting state into
non-negative components. Panel (a) shows a possible starting
state F(x ,t50) for a DMC simulation of the lowest state with
odd parity of a particle in a box; (b) shows the two non-
negative distributions F1(x ,t50) and F2(x ,t50) into which
F(x ,t50) is decomposed in Eq. (3.37).
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Schrödinger equation is linear, the two positive distribu-
tions F1(x ,t) and F2(x ,t) may be obtained using two
separate DMC simulations. The odd function F(x ,t)
may then be calculated by subtracting F2(x ,t) from
F1(x ,t). This is the simplest of the exact solutions to
the sign problem mentioned above, but it is clear that
both F1 and F2 tend to the even-parity ground state as
t→` . The odd-parity components of interest decay like
exp(2DEt) relative to the even components, where DE
is the difference between the odd- and even-parity
ground-state energies. In practice, therefore, the statisti-
cal noise in F1 and F2 soon swamps the exponentially
decaying odd-parity signal and the subtraction gives
nonsense.

The fixed-node solution to this problem works as fol-
lows. Imagine introducing an extra absorbing barrier at
the center of the box, dividing the interior into two sepa-
rate simulation regions. The DMC walkers are initially
scattered throughout both regions, but the simulations
on the left and right then progress independently. In the
large-t limit, the walker densities in the two regions are
proportional to the lowest-energy eigenfunctions satisfy-
ing zero boundary conditions at both the box walls and
the absorbing barrier. The odd-parity eigenfunction of
interest satisfies these same Dirichlet boundary condi-
tions, which determine the eigenfunctions within each
region. The t→` walker densities within each region
must therefore be proportional to the odd-parity eigen-
function in that region.

b. Many-electron version

Although the nodes of the many-electron ground state
of a solid are very complicated, the fixed-node approxi-
mation works in the same way. If the nodes are known
exactly, absorbing barriers may be placed everywhere
on the nodal surface, dividing up the configuration space
into a set of disjoint nodal pockets. Parallel DMC simu-
lations are then carried out in all the nodal pockets, and
the solution within each pocket tends to 6 the exact
ground-state wave function in that pocket.

The wave function C(x1 ,x2 ,. . . ,xN) of N spinless
electrons in one dimension must be zero whenever any
two electrons coincide. These coincidence conditions de-
fine (N21)-dimensional coincidence planes passing
through the N-dimensional configuration space. Given
that the nodal surface is also (N21) dimensional, it is
possible that the coincidence planes exhaust the nodal
surface and hence determine it exactly. Ceperley (1991)
has shown that this is indeed the case for the ground
state of a one-dimensional system. In d-dimensional sys-
tems, however, the coincidence planes are (dN2d) di-
mensional, whereas the nodal surface is (dN21) dimen-
sional. For d.1 the coincidence planes are therefore no
more than a framework through which the nodal surface
must pass and cannot determine it completely.

The fixed-node approximation (Anderson, 1975, 1976)
circumvents this difficulty by using an approximate
nodal surface, which is normally obtained from a varia-
tional trial wave function. We show below that fixed-
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node DMC energies are variational, i.e., the fixed-node
DMC energy is always greater than or equal to the exact
ground-state energy, with the equality holding only
when the trial nodal surface is exact. Since the DMC
energy is normally a smooth function of the trial nodal
surface, the errors in the energy are normally second
order in the errors in the trial nodal surface. In practice,
the errors in fixed-node DMC energies are typically
about 5% of the correlation energy. Lest you imagine
that this high accuracy arises because nodal surfaces are
in some sense simple or easy to guess, look at Fig. 5
(which is taken from Ceperley, 1991). The little that is
understood about real nodal surfaces is discussed by
Caffarel and Claverie (1988), Ceperley (1991), Glauser
et al. (1992), and Foulkes, Hood, and Needs (1999).

The implementation of the fixed-node DMC algo-
rithm is straightforward. One scatters DMC walkers
throughout the configuration space and moves them in
the usual way. The only new ingredient is that after ev-
ery DMC move the sign of the trial wave function is
checked and the walker deleted if it has crossed the trial
nodal surface. (N.B. In the importance-sampled algo-
rithm discussed in Sec. III.D.3, this deletion step is re-
placed by a rejection step.) Within each pocket, the
fixed-node DMC algorithm projects out the lowest-
energy nodeless wave function satisfying zero boundary
conditions on the enclosing nodal surface.

The only communication between the simulations in
different pockets is via the energy offset ET , which is
gradually adjusted to keep the total walker population
roughly constant. If some pockets are more favorable
than others (that is, if they have a greater average value
of the reweighting factor P), the walker population be-
comes more and more concentrated in these pockets.
The calculated energy therefore tends to the eigenvalue

FIG. 5. A two-dimensional slice through the 321-dimensional
nodal surface of a two-dimensional electron gas containing 161
spin-up electrons subject to periodic boundary conditions
(Ceperley, 1991). The slice was defined by freezing 160 of the
electrons at the random positions shown by the open circles
and leaving the one remaining electron, represented by the
filled circle, free to move around.
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of the lowest-energy nodeless wave function within the
most favorable pockets. This selection of favorable
pockets does indeed happen in some excited-state DMC
simulations, but Ceperley (1991) proved that the nodal
pockets of the ground state of any Hamiltonian with a
reasonable local potential are all equivalent by symme-
try. As long as the trial nodal surface is that of the
ground state of some local Hamiltonian (perhaps the
LDA one), this tiling theorem ensures that all nodal
pockets are equally favorable. A derivation of the tiling
theorem is given below.

c. The fixed-node variational principle

Consider the nodal pockets of an antisymmetric trial
function CT(R). We can group these pockets into
classes equivalent by permutation symmetry as follows.
Pick a nodal pocket at random and color it blue. Now
pick a point R within the blue pocket and apply a per-
mutation P to it. This maps R to PR, which may or may
not be in the same nodal pocket as R. If the new point
PR is in a new nodal pocket, color that pocket blue as
well. Repeat this process for every permutation P until
all nodal pockets equivalent to the first one by permuta-
tion symmetry have been found and colored blue.

There are now two possibilities: either the blue pock-
ets fill up the configuration space, in which case all nodal
pockets are equivalent by permutation symmetry, or
they do not. If they do not, pick one of the remaining
pockets at random, color it red, and repeat the same
procedure, applying permutation operators until all
equivalent pockets have been found and colored red. If
there are still pockets left, pick new colors and repeat
the process until the configuration space is filled by
pockets of different colors. The nodal pockets are thus
divided into equivalence classes, with all the members of
a class related by permutation symmetry.

If CT(R) is used to define the nodal surface for a
fixed-node DMC simulation, the DMC walkers will
eventually concentrate in the nodal pockets of the
lowest-energy class. Within any such pocket va, the
walker distribution will tend to the pocket ground state
C0

a(R), which is the lowest-energy real normalized
wave function that is zero outside va and satisfies the
fixed-node boundary conditions on the surface of va.
This function satisfies the equation

ĤC0
a~R!5E0

aC0
a~R!1da. (3.40)

Within va the pocket ground state is a nodeless eigen-
function of the Schrödinger equation with eigenvalue
E0

a ; outside va it is zero. Since C0
a(R) normally ap-

proaches the surface of va with nonzero slope, its gradi-
ent changes discontinuously as the surface is crossed; the
action of the kinetic-energy operator on these gradient
discontinuities produces the delta functions denoted da.
The DMC energy for pocket va (or any symmetry-
equivalent pocket) is equal to the pocket eigenvalue E0

a .
Moskowitz et al. (1982) and Reynolds et al. (1982)

proved that E0
a is greater than or equal to the exact

ground-state energy E0 . Here we follow Reynolds’s
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proof, which starts from a single-pocket ground state
C0

a(R) and uses the permutations P to construct a real
antisymmetric wave function,

C̃0
a~R!5

1
NP

(P ~21 !zPC0
a~PR![ÂC0

a~R!, (3.41)

where NP is the total number of permutations and zP is
the parity of permutation P. The pocket ground state
C0

a(R) has a nonzero overlap with the antisymmetric
trial function CT(R) and must therefore have a nonzero
antisymmetric component. The projection operator Â
picks out this component and so C̃0

a(R) cannot be zero.
Since C0

a(R) is zero everywhere on the nodal surface of
CT(R), and since that nodal surface is invariant under
all permutations P, the function C̃0

a(R) is also zero ev-
erywhere on the nodal surface of CT(R).

The real antisymmetric function C̃0
a(R) is now substi-

tuted into the standard quantum-mechanical variational
principle to give

E0<
*C̃0

aĤC̃0
a dR

*C̃0
aC̃0

a dR

5
*C̃0

aĤÂC0
adR

*C̃0
aÂC0

adR

5
*C̃0

aĤC0
a dR

*C̃0
aC0

a dR

5E0
a , (3.42)

where we have used the fact that Â commutes with Ĥ ,
that it is self-adjoint, and that it is idempotent [so
ÂC̃0

a(R)5C̃0
a(R)]. The delta-function terms appearing

in ĤC0
a do not contribute to the energy expectation

value because they occur on the fixed nodal surface
where C̃0

a(R)50. If the nodal surface of CT(R) is the
same as the nodal surface of the exact ground state, the
equality holds and the fixed-node DMC energy E0

a is
equal to E0 ; but if CT(R) does not have the correct
nodal surface then E0

a.E0 . This is the fixed-node varia-
tional principle. Since the calculated ground-state en-
ergy E0

a is minimized and equal to the exact ground-
state energy when the trial nodal surface is exact, the
error in the calculated energy is in general second order
in the error in the nodal surface.

d. The tiling theorem

Given any many-electron Hamiltonian with a reason-
able local potential, the tiling theorem (Ceperley, 1991)
states that all the ground-state nodal pockets belong to
the same class. (The definition of a class was discussed in
Sec. III.D.2.C above.) This is a many-fermion generali-
zation of the statement that the ground state of a one-
particle Hamiltonian with a local potential has no nodes.
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The tiling theorem and the fixed-node variational prin-
ciple are very closely related, as the following derivation
demonstrates.

Assume, for the sake of argument, that C0(R) is the
ground state of a Hamiltonian Ĥ with a reasonable local
potential, but that the nodal pockets of C0(R) fall into
two or more different classes. Color the nodal pockets
belonging to one of these classes blue and consider the
function C̃0(R), defined to equal C0(R) in the blue
pockets and zero elsewhere. This function is properly
antisymmetric but has gradient discontinuities on the
nodal surface separating the blue pockets from the rest
of configuration space. The action of the kinetic-energy
operator turns these gradient discontinuities into delta
functions, but since they occur where C̃0(R)50 they do
not affect the energy expectation value,

E05
^C̃0uĤuC̃0&

^C̃0uC̃0&
. (3.43)

We have therefore reached a contradiction: only the ex-
act ground state (or a linear combination of degenerate
ground states) could give an energy expectation value
equal to E0 ; but C̃0(R) cannot be an exact eigenstate
unless the potential diverges almost everywhere on the
nodal surface separating the blue pockets from the rest
of configuration space. If there is a region of this surface
on which the potential is finite, any exact eigenstate
within the blue region is bound to leak out into the sur-
rounding regions. This implies that the exact ground
state cannot have more than one class of nodal pocket.

3. Importance sampling

The simple version of the DMC algorithm outlined in
the previous section is usually spectacularly inefficient,
mainly because the renormalization factor P from Eq.
(3.35) may fluctuate wildly from step to step. In some
circumstances, such as when two charged particles coin-
cide, P can even diverge, making the renormalization
process ill defined.

One can overcome these difficulties by carrying out an
importance-sampling transformation using a ‘‘trial’’ or
‘‘guiding’’ wave function CT(R) (Grimm and Storer,
1971; Ceperley and Kalos, 1979; Reynolds et al., 1982).
Let us multiply Eq. (3.21) by CT(R) and introduce a
new function f(R,t)5F(R,t)CT(R). After rearranging
terms we obtain

2] tf~R,t !52
1
2

¹2f~R,t !1¹•@vD~R!f~R,t !#

1@EL~R!2ET#f~R,t !, (3.44)

where ¹5(¹1 ,¹2 ,. . . ,¹N) is the 3N-dimensional gradi-
ent operator, vD(R) is the 3N-dimensional drift velocity
defined by

vD~R!5¹ ln uCT~R!u5CT~R!21¹CT~R!, (3.45)

and
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EL~R!5CT~R!21ĤCT~R! (3.46)

is the local energy as used in VMC simulations.
The corresponding integral equation is modified ac-

cordingly,

f~R,t1t!5E G̃~R←R8,t!f~R8,t !dR8, (3.47)

where the modified Green’s function G̃(R←R8,t) is by
definition equal to CT(R)G(R←R8,t)CT(R8)21. The
short-time approximation to G̃(R←R8,t) may be de-
rived using techniques analogous to those employed in
the derivation of Eq. (3.34). The result is

G̃~R←R8,t!'Gd~R←R8,t!Gb~R←R8,t!, (3.48)

where

Gd~R←R8,t!

5~2pt!23N/2expF2
@R2R82tvD~R8!#2

2t G (3.49)

and

Gb~R←R8,t!

5exp$2t@EL~R!1EL~R8!22ET#/2%. (3.50)

Importance sampling has several consequences. First,
the density of walkers is enhanced in the regions where
CT is large and vice versa. This is because the drift ve-
locity vD(R) carries the walkers along in the direction of
increasing uCTu. Second, the exponent in the reweight-
ing term [see Eq. (3.35)] now contains the local energy
EL5CT

21ĤCT instead of the potential energy. This is
crucial because for a good trial function the local energy
is close to the ground-state energy eigenvalue and
roughly constant, so the population fluctuations are
much diminished. The overall improvement in efficiency
due to importance sampling can be several orders of
magnitude. Without this improvement, DMC simula-
tions involving hundreds or, in recent attempts, thou-
sands of electrons would not be possible.

The importance-sampling transformation is also ex-
tremely helpful in satisfying the fixed-node constraint.
Whenever a walker approaches the nodal surface of
CT , the drift velocity grows and carries it away. In fact,
the drift near the nodal surface is proportional to 1/x ,
where x is the distance in the direction normal to that
surface. Furthermore, unless the trial function happens
to be an exact eigenfunction, the local energy also di-
verges like 1/x . It is possible to show that the divergence
of the drift reduces the probability of crossing the node
to zero, and hence, since we also neglect the effects of
the infinite local energy on the nodal surface itself, that
the importance-sampling transformation automatically
enforces the fixed-node constraint.

In real simulations, however, the Green’s function of
Eq. (3.48) is used. This is not exact, and so walkers on
rare occasions attempt to cross the nodal surface. The
problem can be understood by realizing that the drift
term in Eq. (3.49) is proportional to t, while the stan-
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dard deviation of the Gaussian, which arises from the
diffusion of the walker, is proportional to At . In order to
ensure that the short-time approximation is accurate,
most simulations use values of t much smaller than 1
a.u., and so the diffusion can occasionally overcome the
drift and the walker can cross the node. This node cross-
ing reflects a failure of the approximate Green’s func-
tion to describe the region close to the node, and of
course becomes less likely as the time step t tends to
zero. In order to fulfill the fixed-node constraint one can
either eliminate any walker that crosses a node (in other
words, apply absorbing boundary conditions as dis-
cussed in Sec. III.D.2), or else reject the move and keep
the walker at its original position. The choice of proce-
dure has no effect in the limit of small enough time step
(when the probability of crossing the nodal surface tends
to zero), but it turns out that the rejection algorithm
gives smaller time-step errors.

The Green’s function of Eq. (3.48) is usually a reason-
able approximation in regions where the trial wave func-
tion is smooth and nonzero. Close to the fixed nodal
surface or to a singularity in the potential, however, this
is not the case, and quantities such as the drift velocity
and local energy may even diverge. The approximate
Green’s function of Eq. (3.48) is then poor and the re-
sulting bias can be significant (Umrigar, Nightingale, and
Runge, 1993).

The simplest remedy is to take smaller time steps, al-
though this makes the calculation rather inefficient. A
better remedy is to improve the Green’s function. A
clever idea due to Ceperley, Kalos, and Lebowitz (1981)
and Reynolds et al. (1982) is to incorporate a rejection
step into the propagation governed by Gd(R←R8,t).
The rejection step is designed to impose a detailed bal-
ance condition, which is motivated by two arguments.
First, the exact importance-sampled Green’s function
fulfills the detailed balance condition

G̃~R←R8,t!CT~R8!25G̃~R8←R,t!CT~R!2, (3.51)

as can be verified from the definition G̃(R←R8,t)
5CT(R)G(R←R8,t)CT(R8)21 and the observation
that the exact G(R←R8,t) is symmetric on interchange
of R and R8. Second, if the trial function is equal to the
exact ground state, an attempt to impose this detailed
balance condition by accepting trial moves from R8 to R
with probability

paccept~R←R8!

5minF1,
Gd~R8←R,t!Gb~R8←R,t!CT~R!2

Gd~R←R8,t!Gb~R←R8,t!CT~R8!2G
5minF1,

Gd~R8←R,t!CT~R!2

Gd~R←R8,t!CT~R8!2G (3.52)

guarantees the correct sampling regardless of the size of
the time step, since the DMC algorithm reduces to the
VMC algorithm with trial moves sampled from Gd . It
has been repeatedly demonstrated that the inclusion of
the acceptance/rejection step from Eq. (3.52) signifi-
cantly decreases the time-step bias resulting from the
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approximate Green’s function. Obviously the accep-
tance ratio depends on the size of the time step and
tends to unity as the time step tends to zero, and the
approximate Green’s function more nearly satisfies the
detailed balance conditions of Eq. (3.51). If the time
step is large, however, and too many moves are rejected,
the introduction of the rejection step will bias the sam-
pling of the unknown distribution f(R,t). The rule of
thumb is to choose the time step such that the accep-
tance ratio is >99%. The better the approximate
Green’s function, the larger the time step that can be
used without a detectable bias (Umrigar, Nightingale,
and Runge, 1993).

Several other improvements to the Green’s function
are also normally employed. The use of an effective time
step in Gb , as suggested by Reynolds et al. (1982) and
by Umrigar, Nightingale, and Runge (1993), further re-
duces the bias caused by preventing node crossing. As
mentioned above, the drift velocity diverges on the
nodal surface and so a walker close to a node can make
an excessively large move in the configuration space.
One can eliminate this problem, and thus improve the
approximate Green’s function, by imposing a cutoff on
the magnitude of the drift velocity. Similar cutoffs may
also be imposed on the values of the local energy used to
compute Gb . Several different cutoff schemes have
been proposed (e.g., DePasquale, Rothstein, and Vrbik,
1988; Garmer and Anderson, 1988), but the smooth
forms suggested by Umrigar, Nightingale, and Runge
(1993) have been found to work well.

The result of the stochastic process described above is
a set of walker positions representing the distribution
f(R,t)5F(R,t)CT(R). Given these positions, the ex-
pectation value of the energy can be evaluated in two
ways. One possibility is to measure the energy through
the offset ET that keeps the population constant on av-
erage. This is the so-called generational or population-
growth estimator. In practice another possibility, known
as the mixed estimator, is normally used. This is given by

ED5 lim
t→`

^e2tĤ/2CTuĤue2tĤ/2CT&

^e2tĤ/2CTue2tĤ/2CT&

5 lim
t→`

^e2tĤCTuĤuCT&

^e2tĤCTuCT&

5
^C0uĤuCT&

^C0uCT&

5 lim
t→`

*f~R,t!EL~R!dR

*f~R,t!dR

'
1

M
(
m

EL~Rm!, (3.53)

where $Rm% is the set of M samples of f(R,`) resulting
from the DMC run. The accuracies and efficiencies of
these two energy estimators were compared by Umrigar,
Nightingale, and Runge (1993).
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Expectations of quantities that do not commute with
the Hamiltonian can be calculated using a combination
of the mixed and variational estimators

^FuŜuF&'2^FuŜuCT&2^CTuŜuCT&1O@~F2CT!2# ,
(3.54)

where Ŝ is the operator corresponding to the physical
quantity of interest. Such combinations of VMC and
DMC estimators are often called extrapolated estima-
tors. For nonnegative quantities (e.g., the density) one
can also use

^FuŜuF&'^FuŜuCT&2^CTuŜuCT&211O@~F2CT!2# .
(3.55)

The accuracy of an extrapolated estimator depends on
the trial function as well as the fixed-node DMC wave
function. This is a significant drawback, but alternative
approaches such as forward walking, which is clearly ex-
plained by Hammond, Lester, and Reynolds (1994), can
be used instead. Another possibility may be to use the
reptation QMC method of Baroni and Moroni (1999),
although this has not yet been tested in large systems. A
systematic discussion of the calculation of matrix ele-
ments of local, semilocal, and nonlocal operators that
either do or do not commute with the evolution opera-
tor is given by Nightingale (1999).

The most basic version of the DMC algorithm with
importance sampling (Reynolds et al., 1992; Hammond,
Lester, and Reynolds, 1994) can be outlined as follows:

(1) Generate a set of walkers drawn from some initial
distribution. (In most cases the initial walkers are
sampled from uCTu2 using variational Monte Carlo.)
Calculate the local energies of the walkers.

(2) Evaluate the drift velocity vD of each walker.
(3) Propagate each walker for a time step t, moving it

from its old position R8 to the new position

R5R81x1tvD~R8!, (3.56)

where x is a 3N-dimensional vector of normally distrib-
uted numbers with variance t and zero mean.

(4) Check whether the walker crossed the nodal sur-
face (by checking the sign of the trial wave function) and
move it back to the original position if this is the case.

(5) Accept the step with the probability given by Eq.
(3.52).

(6) For each walker, calculate the number of copies
that will continue in the evolution using

Mnew5INT„h1exp$2t@EL~R!1EL~R8!22ET#/2%…,
(3.57)

where h is a random number drawn from a uniform dis-
tribution on the interval [0,1].

(7) Accumulate the quantities of interest. For ex-
ample, the energy may be accumulated by averaging the
values of EL over the set of walkers.

(8) After an initial equilibration stage, steps 2–7 are
repeated until the error bars for averages of interest are
sufficiently small. The value of ET is occasionally ad-
justed to keep the average walker population roughly
constant. A simple formula for adjusting ET is
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ET←ET2CE ln~Mact /Mave!, (3.58)

where CE is a positive constant that controls how
quickly the actual number of walkers, Mact , approaches
the desired number Mave . CE should not be too large
because this can bias the expectation values. However, it
cannot be too small because the number of walkers then
fluctuates too far from the desired value. Usually, it is
reasonable to choose a CE that rebalances the number
of walkers in 10 to 50 time steps. More sophisticated
techniques for dealing with ET are discussed by Umri-
gar, Nightingale, and Runge (1993).

IV. TRIAL WAVE FUNCTIONS

A. Introduction

The quality of the trial wave function controls the sta-
tistical efficiency and limits the final accuracy of any
VMC or DMC simulation. The repeated evaluation of
the trial wave function (and its gradient and Laplacian)
is also the most demanding part of the computation. We
therefore seek trial wave functions that are both accu-
rate and easy to evaluate.

In quantum-chemical methods it is common to ex-
press many-body wave functions as linear combinations
of determinants. However, such expansions converge
very slowly because of the difficulty in describing the
cusps that occur whenever two electrons come into con-
tact. QMC simulations of solids require a much more
compact representation and normally use trial wave
functions of the Slater-Jastrow type (Jastrow, 1955),
consisting of a single Slater determinant multiplied by a
totally symmetric non-negative Jastrow correlation fac-
tor that includes the cusps. The orbitals in the Slater
determinant are usually obtained from accurate LDA or
HF calculations, while the Jastrow factor is chosen to
have some specific functional form and optimized as ex-
plained in Sec. VII. Linear combinations of Slater-
Jastrow functions are sometimes required, but the
single-determinant form is satisfactory for many pur-
poses. When used in VMC simulations of tetrahedral
semiconductors (Fahy, Wang, and Louie, 1988, 1990a;
Li, Ceperley, and Martin, 1991; Rajagopal, Needs,
Kenny et al., 1994; Rajagopal et al., 1995; Eckstein et al.,
1996; Malatesta, Fahy, and Bachelet, 1997), single-
determinant Slater-Jastrow trial functions generally re-
produce the experimental cohesive energies to within
about 0.1 eV per atom.

B. Slater-Jastrow wave functions

A single-determinant Slater-Jastrow wave function
can be written as

C~X!5eJ(X)D~X!, (4.1)

where D(X) is a Slater determinant as shown in Eq.
(2.3), X5(x1 ,x2 ,. . . ,xN), and xi5$ri ,s i% denotes the
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space and spin coordinates of electron i . Most simula-
tions retain only one- and two-body terms in the Jastrow
factor,

J~X!5(
i51

N

x~xi!2
1
2 (

i51

N

(
(jÞi)

j51

N

u~xi ,xj!. (4.2)

The u terms describe the electron-electron correlations,
while the x function depends on the positions of the
nuclei and describes the electron-nuclear correlation.

In QMC calculations one normally removes the spin
variables from the Slater-Jastrow wave function and re-
places the single Slater determinant of Eq. (4.1) by a
product of determinants of up-spin and down-spin orbit-
als,

C~R!5eJ(R)D↑~r1 ,. . . ,rN↑!D↓~rN↑11 ,. . . ,rN!, (4.3)

where R5(r1 ,r2 ,. . . ,rN) denotes the spatial coordinates
of all the electrons. This function is not antisymmetric
on exchange of electrons with opposite spins and so dif-
fers from the Slater-Jastrow wave function of Eq. (4.1),
but in Sec. IV.E we show that it gives the same expec-
tation value for any spin-independent operator. The use
of spin-independent wave functions such as C(R) is
computationally advantageous because a large determi-
nant is replaced by two smaller ones and no sums over
spin variables are required; it also facilitates the imposi-
tion of the cusp conditions discussed in Sec. IV.F. By
convention, we shall always choose r1 ,. . . ,rN↑ to be the
coordinates of the spin-up electrons and rN↑11 ,. . . ,rN to
be the coordinates of the spin-down electrons.

The physics underlying Slater-Jastrow wave functions
is quite straightforward. Figure 6 shows the spin-parallel
and spin-antiparallel pair-correlation functions of a
three-dimensional uniform electron gas calculated
within the HF approximation. The antisymmetry of the
wave function creates an exchange hole that keeps
parallel-spin electrons apart, but there are no correla-

FIG. 6. Spin-parallel and spin-antiparallel pair-correlation
functions calculated within the Hartree-Fock (HF) approxima-
tion for a uniform three-dimensional electron gas. The HF
pair-correlation functions depend only on the product of the
Fermi wave vector kf and the interparticle separation r .
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tions between the positions of electrons with antiparallel
spins. There is a significant probability of finding two
antiparallel-spin electrons very close to each other and
so the electron-electron Coulomb repulsion energy is
high. The purpose of the two-body u term in the Jastrow
factor is to reduce the magnitude of the many-electron
wave function whenever two electrons approach one an-
other; this reduces the probability of finding two elec-
trons very close together and decreases the electron-
electron interaction energy.

In uniform systems this is all that is required. In non-
uniform systems, however, the introduction of the repul-
sive u term changes the electron density significantly,
pushing electrons away from regions of high charge den-
sity and into low-density regions. This is an unavoidable
consequence of introducing a repulsive two-body term,
even though the intention was to change the pair-
correlation function, not the density. In fact, the charge
densities of Slater determinants of HF or LDA orbitals
are usually quite accurate, and the change caused by the
u term is unwelcome. The one-body term in Eq. (4.2)
alters the charge density without greatly disturbing the
pair-correlation function and hence allows this problem
to be overcome.

The effect of the x term is illustrated in Figs. 7 and 8,
which show the spherically averaged charge densities of
a full core carbon atom. Figure 7 shows that the LDA
charge density (solid line) is significantly altered by the
introduction of a two-body u function (dotted line). The
u function lowers the energy only slightly because the
change in the charge density is unfavorable. Figure 8
shows that the charge density (dotted line) returns al-
most to the LDA form (solid line again) if a one-body x
function is added to the wave function and optimized
variationally. It is the combination of optimized x and u
terms which lowers the calculated atomic energy greatly.
Similar behavior is observed in simulations of solids, al-
though with some quantitative differences when the at-

FIG. 7. Charge densities of a full core carbon atom from an
LDA calculation (solid line) and a Slater-Jastrow wave func-
tion with a two-body correlation term but no one-body corre-
lation term (dotted line). We thank Mark Stedman for provid-
ing this figure.
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oms are represented using pseudopotentials. The intro-
duction of the u term alone typically lowers the energy
per atom by an eV but suppresses the charge density in
the bonding regions and enhances it in the interstitial
regions. The introduction of the x term restores the
charge density to something close to the LDA form and
lowers the energy by an additional fraction of an eV.

The importance of the one-body x term was recog-
nized long ago in the context of Fermi-hypernetted-
chain calculations (Feenberg, 1969) and in the correla-
tion factor introduced by Boys and Handy (1969). The
introduction of x functions into QMC simulations of sol-
ids was due to Fahy et al. (1988, 1990a). Although the ex

factors can be absorbed into the single-particle orbitals
of the Slater determinant, they are so closely linked to
the u function that it is normally convenient to keep
them in the Jastrow factor. The relationship between the
u and x functions is discussed in more detail in Sec.
IV.D.

The great success of single-determinant Slater-Jastrow
wave functions is founded on the success of the HF ap-
proximation. For example, in the carbon atom HF
theory retrieves 99.6% of the total energy. The other
0.4% (4.3 eV) is the correlation energy, which is impor-
tant for an accurate description of chemical bonding but
is small compared with the total energy. Quantum
Monte Carlo calculations for solids almost always use
pseudopotentials in which the large energy contribution
from the core electrons is removed. In this case the cor-
relation energy can amount to several percent of the
total energy, but the HF approximation still accounts for
the vast majority of the energy. For example, in the car-
bon pseudo-atom HF theory retrieves about 98.2% of
the total energy. The error of 1.8% (2.7 eV) is a small
fraction of the total but is large on the scale of bonding
energies. Even a relatively simple Jastrow factor can
lower the total energy of a carbon pseudo-atom by
about 2.4 eV, thereby retrieving 89% of the correlation
energy and reducing the error in the total energy to

FIG. 8. Charge densities of a full core carbon atom from an
LDA calculation (solid line) and a Slater-Jastrow wave func-
tion with both one- and two-body correlation terms (dotted
line). We thank Mark Stedman for providing this figure.
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0.2%. The Jastrow factor therefore provides a small but
very important correction to the wave function.

C. The Slater determinant

The orbitals for the Slater determinant are most com-
monly obtained from HF or LDA calculations. This pro-
cedure may be motivated by noting that a determinant
of HF orbitals gives the lowest energy of all single-
determinant wave functions (although it is far from ob-
vious that HF or LDA orbitals remain a good choice in
the presence of a Jastrow factor). Here we consider the
few attempts that have been made to devise something
better.

Direct numerical optimization of the single-particle
orbitals in the Slater determinant has a long history in
quantum chemistry but has not often been attempted
using QMC methods. To date, most of the work on sto-
chastic orbital optimization has been for fairly small sys-
tems (see, for example, Umrigar, Nightingale, and
Runge, 1993), although Eckstein and co-workers suc-
cessfully optimized the parameters of the very restricted
Slater orbital basis sets used in their studies of solid Li
(Eckstein and Schattke, 1995) and GaAs (Eckstein et al.,
1996). More recently, Fahy (1999) and Filippi and Fahy
(2000) have developed a new method that makes it pos-
sible to optimize the more accurate single-particle states
used in most current QMC simulations of solids. Al-
though LDA or HF orbitals are usually adequate for
real solids, direct numerical optimization will probably
become widespread within a few years.

A different tack was taken by Grossman and Mitas
(1995), who used a determinant of the natural orbitals
which diagonalize the one-electron density matrix. The
motivation is that the convergence of configuration-
interaction expansions is improved by using natural or-
bitals instead of HF orbitals. Grossman and Mitas (1995)
obtained the natural orbitals for Si2, Si3, and Si4 mol-
ecules via multiconfiguration HF calculations. They
found that the use of natural orbitals lowered the QMC
energy significantly, but a similar calculation for bulk
silicon (Kent et al., 1998) found little improvement. Fur-
ther work revealed that for wave functions with little
mixing of excited configurations the decrease in energy
was rather small. However, for more complicated wave
functions the improvements were significant, and natural
orbitals proved necessary to obtain systematically high
accuracy in calculations of molecular reactions (Gross-
man and Mitas, 1997).

Another approach is based on the idea of backflow
correlations, derived from a current-conservation argu-
ment by Feynman and Cohen (1956) to provide a pic-
ture of the excitations in liquid 4He. Work on liquid 3He
(Schmidt et al., 1981; Panoff and Carlson, 1989), various
atoms (Schmidt and Moskowitz, 1992), and the uniform
electron gas (Kwon, Ceperley, and Martin, 1993, 1994,
1998) shows that backflow correlations are also helpful
in fermionic systems. The essential ingredient of the
backflow trial function is the replacement of the electron
Rev. Mod. Phys., Vol. 73, No. 1, January 2001
coordinates ri appearing in the Slater determinants of
Eq. (4.3) by the corresponding quasiparticle coordinates

r̄i5ri1 (
j51

(jÞi)

N

h~rij!~ri2rj!, (4.4)

where rij5uri2rju. In uniform systems, this amounts to
replacing the single-particle orbitals exp(ikl•ri) by
exp(ikl• r̄i), which ensures that the correlation between
electrons i and j depends on the momentum kl of the
state occupied by electron i . The optimal function h(rij)
is usually determined variationally. Kwon, Ceperley, and
Martin (1998) found that the introduction of backflow
significantly lowered the VMC and DMC energies of the
three-dimensional uniform electron gas at high densities
(the VMC energy decreased by 0.07 eV per electron
when rs51 and by 0.02 eV per electron when rs55).
The same authors (Kwon, Ceperley, and Martin, 1993,
1998) also investigated the importance of three-electron
correlation terms in the Jastrow factor, obtaining a small
improvement in the energy at low densities. The use of
backflow wave functions for inhomogeneous systems is
much less explored, but since backflow increases the
computational cost of QMC calculations significantly its
use will probably be confined to cases in which ex-
tremely high accuracy is sought.

In some cases it is necessary to use multideterminant
wave functions to preserve important symmetries of the
true wave functions. In other cases a single determinant
may give the correct symmetry, but a significantly more
accurate wave function can be obtained by using a linear
combination of a few determinants. For example, in the
Be atom the 2s and 2p orbitals are nearly degenerate
and the many-electron wave function contains important
contributions from the electronic configurations 1s22s2

and 1s22p2 (Harrison and Handy, 1985). The accurate
variational trial function for Be proposed by Umrigar,
Nightingale, and Runge (1993) is a linear combination of
the corresponding Slater-Jastrow wave functions. Flad,
Caffarel, and Savin (1997) have carried out a thorough
investigation of the advantages and disadvantages of us-
ing multideterminant wave functions for various other
atoms. In solids, however, the number of important con-
figurations may grow very rapidly with system size and
the use of multireference wave functions can be very
demanding.

D. The Jastrow factor

What is an appropriate Jastrow factor for a uniform
electron gas? The spatial homogeneity of the system en-
sures that no x terms are needed and that u depends
only on rij5uri2rju. The cusp conditions (Kato, 1957;
Pack and Brown, 1966; and Sec. IV.F) determine the
behavior of the u function in the limit rij→0, while ar-
guments based on the random-phase approximation
(RPA) of Bohm and Pines (1953) imply that it has a 1/rij
tail when rij is large.

The following simple choice has the correct small- and
large-rij limits and was used (along with a better form
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based more closely on the RPA) in some of the earliest
work on the homogeneous electron gas (Ceperley, 1978;
Ceperley and Alder, 1980):

us i ,s j
~ri ,rj!5

As i ,s j

r ij
~12e2rij /Fs i ,s j!. (4.5)

The correlations between pairs of electrons depend on
whether they have parallel or antiparallel spins, so the
constants As i ,s j

and Fs i ,s j
are spin dependent. Assum-

ing that the solid is not spin polarized, there are four
parameters: A↑↑5A↓↓ , A↑↓5A↓↑ , F↑↑5F↓↓ , and F↑↓
5F↓↑ . Two of the four may be eliminated by imposing
the cusp conditions

dus i ,s j
~rij!

drij
U

rij50

5H 21/4 s i5s j ,

21/2 s iÞs j .
(4.6)

Section IV.F shows that as long as the cusp conditions
are obeyed the divergence in the Coulomb interaction
energy occurring whenever two electrons coincide is ex-
actly cancelled by a divergence in the kinetic energy
arising from the cusp in the wave function. For the Ja-
strow factor of Eq. (4.5) the cusp conditions translate
into

A↑↑
2F↑↑

2 5
1
4

and
A↑↓
2F↑↓

2 5
1
2

. (4.7)

The remaining two parameters, which we take to be A↑↑
and A↑↓ , can be chosen to reproduce the long-range
behavior implied by the RPA,

us i ,s j
~rij!'

1
vprij

as rij→` , (4.8)

where vp5A4pn is the plasma frequency and n is the
electron number density. This implies that

A↑↑5A↑↓5
1

vp
5

1

A4pn
. (4.9)

An alternative is to optimize the values of A↑↑ and A↑↓
variationally, but this does not give much improvement
in practice. Most solid-state QMC calculations these
days use Eq. (4.5) or something similar as a starting
point and add variational degrees of freedom to improve
the accuracy. The optimal values of the variational pa-
rameters are determined using the techniques discussed
in Sec. VII.

The cusp conditions imply that the Jastrow factor is
spin dependent and this produces a small amount of spin
contamination: a linear combination of Slater-Jastrow
trial functions may not be an eigenfunction of Ŝ2 even
though the corresponding sum of Slater determinants is.
It is difficult to clean up this contamination without
spoiling the accuracy of the trial function in other ways,
but its effects are so small that they can almost always be
ignored (Huang, Filippi, and Umrigar, 1998).

In QMC calculations we model extended systems us-
ing small simulation cells subject to periodic boundary
conditions. This periodicity must be reflected in
Rev. Mod. Phys., Vol. 73, No. 1, January 2001
us8,s(r8,r), which should remain unchanged if either r8
or r is translated by a simulation-cell lattice vector. One
way to enforce the correct translational symmetry on the
u function of Eq. (4.5) is to sum it over all the periodic
‘‘images’’ of the electrons in an infinite lattice of identi-
cal copies of the simulation cell. The resulting sum does
not converge because u has a slowly decaying 1/rij tail,
but can be made meaningful by adopting the Ewald defi-
nition (Ewald, 1921; see Tosi, 1964, for a clear review).

Ortiz and Ballone (1994) and Williamson et al. (1996)
have used u functions that tend to zero smoothly as rij
approaches the radius rWS of the largest sphere that fits
inside the Wigner-Seitz simulation cell. This is computa-
tionally efficient because the need for sums over images
is eliminated. However, since u is set to zero for rij
.rWS , it no longer has the 1/rij tail implied by the RPA.
In practice, the consequences of truncating u appear to
be small for reasonably large simulation cells.

A suitable form for the x function in a periodic solid is
a plane-wave expansion,

xs~r!5(
Gp

xs ,Gp
eiGp•r, (4.10)

where Gp is a reciprocal vector of the primitive crystal
lattice (not the lattice of simulation cells, each of which
may contain several primitive unit cells). This form has
been used by Fahy and co-workers in studies of sp
bonded materials (Fahy, Wang, and Louie, 1988, 1990a).
In Fahy’s original work (Fahy, Wang, and Louie, 1988,
1990a) the x function was designed to force the electron
density towards the LDA result, which was assumed to
be accurate. This ad hoc procedure is fairly successful,
but has been superseded by direct optimization of the
xs ,Gp

coefficients (Williamson et al., 1996; Malatesta,
Fahy, and Bachelet, 1997). The number of independent
variational parameters may be reduced by noting that
Gp vectors of the same length are often related by sym-
metry. When full use is made of such symmetry argu-
ments, only six independent parameters are required to
produce an accurate x function for crystalline Ge (Will-
iamson et al., 1996).

In calculations for finite systems or for solids with
many inequivalent atoms the plane-wave representation
of x is inefficient. To overcome this problem one can
represent x by a sum of local atom-centered functions,

xs~r!5(
a

gs ,a~ ur2dau!. (4.11)

This form proved useful in the study of the formation
energies of silicon self-interstitial defects discussed in
Sec. V.I. Since the atoms around the defect were not all
equivalent, it was found beneficial to allow the x func-
tions on inequivalent atoms to differ.

An important advance in understanding Jastrow fac-
tors was made by Malatesta, Fahy, and Bachelet (1997;
see also Fahy, 1999). The discussion in Sec. IV.B sug-
gests that the one- and two-body terms in the Jastrow
factor are closely related, and we might expect that a
linear relationship exists between the optimal forms of u
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and x. Assuming that the u function depends only on
the relative positions of the two electrons, us i ,s j

(ri ,rj)
5us i ,s j

(ri2rj), the relationship derived by Malatesta,
Fahy, and Bachelet (1997) takes the form

xs ,Gp
5(

s8
^n̂s8,Gp

* &us8,s ,Gp
, (4.12)

where xs ,Gp
is a Fourier component of xs(r) as defined

in Eq. (4.10), us8,s ,Gp
is the corresponding Fourier com-

ponent of us8,s(r), and the operators

n̂↑ ,Gp
5(

i51

N↑
e2iGp•ri and n̂↓ ,Gp

5 (
i5N↑11

N↑1N↓
e2iGp•ri

(4.13)

measure the Fourier components of the up- and down-
spin electron number densities [multiplied by the
simulation-cell volume if the Fourier components are
defined in analogy with Eq. (4.10)]. Note that unlike
xs(r), which has the full periodicity of the crystal unit
cell, the u function has only the periodicity of the simu-
lation cell. The Fourier series for us8,s(r) therefore con-
tains Fourier components for every vector Gs in the
simulation-cell reciprocal lattice. The operator n̂s ,Gs

is
also defined for all simulation-cell reciprocal-lattice vec-
tors Gs , but its expectation value ^n̂s ,Gs

& vanishes unless
GsP$Gp%. The set $Gp% is a subset of $Gs%.

Malatesta, Fahy, and Bachelet (1997) used Eq. (4.12)
with the LDA charge density and the u function of Eq.
(4.5) to construct a x function for a VMC calculation of
cubic boron nitride. The result was almost, but not quite,
as good as a x function obtained (at much greater cost)
using the variance minimization method explained in
Sec. VII. There is therefore little doubt that Eq. (4.12)
provides a valuable insight into the physics of Jastrow
functions as well as a practical way of obtaining useful
approximations to the x function.

The reasoning behind Eq. (4.12) was based on the
Bohm-Pines (1953) RPA theory of the uniform electron
gas, which leads to a spin-independent Jastrow factor. If,
for the sake of convenience, we choose to add constant
diagonal (i5j) terms to the Jastrow factor, we can ex-
press it in terms of Fourier components as follows:

2
1
2 (

i51

N

(
j51

N

u~ri2rj!52
1
2 (

Gs

n̂Gs
* uGs

n̂Gs
. (4.14)

The insight of Malatesta, Fahy, and Bachelet (1997) was
to see that in extending the RPA to inhomogeneous sys-
tems, one should replace the Fourier components of the
electron number densities by the deviations from their
mean values, Dn̂Gs

5n̂Gs
2^n̂Gs

&. The Jastrow factor
then becomes (Malatesta, Fahy, and Bachelet, 1997)

2
1
2 (

Gs

Dn̂Gs
* uGs

Dn̂Gs
52

1
2 (

Gs

n̂Gs
* uGs

n̂Gs

1(
Gp

^n̂Gp
* &uGp

n̂Gp
1const,

(4.15)
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where we have assumed that u(r) is real and used our
earlier observation that ^n̂Gs

& is zero unless GsP$Gp%.
The right-hand side contains a two-body term of the
form of Eq. (4.14) and a one-body term with Fourier
components,

xGp
5^n̂Gp

* &uGp
. (4.16)

Equation (4.12) is the natural generalization of Eq.
(4.16) to the case when the Jastrow factor is spin depen-
dent.

In real materials, us i ,s j
(ri ,rj) no longer depends only

on rij but on ri and rj separately. In atomic and molecu-
lar calculations it has become common to take account
of this inhomogeneity by including three-body electron-
electron-nucleus correlation terms. The Jastrow factor is
then of the form

J~R!5(
a

(
i ,j

us i ,s j
~ria ,rja ,rij!, (4.17)

where ria is the separation of the ith electron from the
ath nucleus. Schmidt and Moskowitz (1992) have used
the correlation factor of Boys and Handy (1969), while
Umrigar and co-workers (Umrigar, Wilson, and Wilkins,
1988; Filippi and Umrigar, 1996; Huang, Filippi, and
Umrigar, 1998) have used various Padé and polynomial
forms. According to Huang, Umrigar, and Nightingale
(1997), the inclusion of electron-electron-nucleus corre-
lation terms lowers the VMC energy of the Be atom by
0.16 eV. The same authors also considered four-body
electron-electron-electron-nucleus terms, which im-
proved the VMC energy but not the DMC energy, even
though the determinantal part of the trial function was
reoptimized along with the Jastrow factor. Schmidt and
Moskowitz (1992) have shown that the electron-
electron-nucleus terms can describe some of the effects
of backflow corrections. The inhomogeneity of the Ja-
strow factor may be less important in pseudopotential
calculations, but tests for 3d transition-metal atoms (Mi-
tas, 1993) indicate that it can still be significant.

E. Spin

At first sight it may appear that the spin dependence
of trial functions such as C(X) from Eq. (4.1) compli-
cates QMC algorithms considerably. This is not the case,
as we now explain. Suppose we wish to use C(X) to
calculate the expectation value of a spin-independent
operator Ô(R), where R5(r1 ,r2 ,. . . ,rN):

^Ô&5

(
s

E C* ~X!Ô~R!C~X!dR

(
s

E C* ~X!C~X!dR
. (4.18)

For each spin configuration s5(s1 ,s2 ,. . . ,sN), we can
replace the totally antisymmetric wave function
C(x1 ,x2 ,. . . ,xN) by a version with permuted arguments
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C(xi1
,xi2

, . . . ,xiN
), choosing the permutation such that

the first N↑ arguments are spin up and the remaining
N↓5N2N↑ are spin down:

C~x1 ,. . . ,xN!→C~xi1
, . . . ,xiN

!

5C~$ri1
,↑%, . . . ,$riN↑

,↑%, $riN↑11
,↓%, . . . ,$riN

,↓%!.

(4.19)

Since R is a dummy variable of integration, we can now
relabel (ri1

,ri2
, . . . ,riN

) as (r1 ,r2 ,. . . ,rN),

C~$ri1
,↑%, . . . ,$riN↑

,↑%,$riN↑11
,↓%, . . . ,$riN

,↓%!

→C~$r1 ,↑%, . . . ,$rN↑,↑%,$rN↑11 ,↓%, . . . ,$rN ,↓%!.

(4.20)

The operator Ô is not affected by the relabelling be-
cause it is symmetric with respect to exchange of elec-
trons and so each spin configuration gives an identical
contribution to the expectation value. We can therefore
remove the sums over spin configurations to get

^Ô&5
*C* ~R!Ô~R!C~R!dR

*C* ~R!C~R!dR
, (4.21)

where the spatial wave function C(R) is defined by

C~R!5C~r1 ,. . . ,rN!

5C~$r1 ,↑%, . . . ,$rN↑,↑%,$rN↑11
,↓%, . . . ,$rN ,↓%!.

(4.22)

The new wave function C(R) gives the same expecta-
tion values as C(X) but is much more convenient to use
in QMC calculations.

This analysis allows us to replace the spin-dependent
trial state C(X) by a spin-independent state C(R). The
new state is antisymmetric with respect to exchange of
the spatial coordinates of pairs of spin-up electrons or
pairs of spin-down electrons, but has no specific symme-
try on exchange of the spatial coordinates of electrons
with different spins. We are therefore treating spin-up
electrons as distinguishable from spin-down electrons.
We can reconstruct C(X) by multiplying C(R) by the
spin function

ds1 ,↑ . . .dsN↑
,↑dsN↑11 ,↓ . . .dsN ,↓ (4.23)

and antisymmetrizing.

F. The cusp conditions

We have made repeated reference to the cusp condi-
tions (Kato, 1957; Pack and Brown, 1966), which we now
discuss in more detail. Consider the Schrödinger equa-
tion for the ground state of the hydrogen atom,

Ĥc1s52
1
2

¹2c1s2
1
r

c1s5E1sc1s . (4.24)

The potential energy diverges as r→0 but Ĥc1s remains
finite because there is a cancelling divergence in the ki-
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netic energy. This is reflected in the shape of the 1s
eigenfunction, which has a sharp cusp at the origin.

The potential energy diverges whenever an electron
approaches a nucleus (as long as that nucleus is not rep-
resented by a pseudopotential) or another electron.
Many-electron wave functions therefore contain similar
cusps. Any necessary electron-nuclear cusps are built
into the single-particle orbitals obtained by solving the
mean-field HF or LDA equations, but these orbitals do
not contain the electron-electron cusps. The purpose of
applying the cusp conditions (Kato, 1957; Pack and
Brown, 1966) stated in Eq. (4.6) is to build these missing
cusps into the Jastrow factor. Experience shows that en-
forcing the cusp conditions reduces both the average en-
ergy and its variance.

The many-electron ground state C0(R) satisfies the
Schrödinger equation

ĤC0~r1 ,r2 ,. . . ,rN!5E0C0~r1 ,r2 ,. . . ,rN!, (4.25)

where

Ĥ52
1
2 (

i51

N

¹ri

2 1V~r1 ,r2 ,. . . ,rN!. (4.26)

If we pick a pair of electrons i and j and introduce the
difference and center-of-mass variables r5ri2rj and
rc.m.5(ri1rj)/2, Ĥ may be rewritten as

Ĥ52¹r
22

1
4

¹rc.m.

2 2
1
2 (

k51
(kÞi ,j)

N

¹rk

2 1V~r1 ,r2 ,r3 ,. . . ,rN!.

(4.27)

Since C0 is an exact eigenfunction, the corresponding
exact local energy EL05C0

21ĤC0 is everywhere equal
to the ground-state energy E0 and does not diverge as
r→0.

The Slater-Jastrow trial function C is not an exact
eigenfunction and so the local energy EL5C21ĤC is
not constant and may diverge as r→0. To study this pos-
sibility we write C in the form

C5e2u(r)f~r!, (4.28)

where f(r) includes the Slater determinants and every-
thing from the Jastrow factor except the term involving
us i ,s j

(r). Although f(r) depends on all the variables
needed to describe the system, only the dependence on r
has been shown explicitly; the spin labels of us i ,s j

(r)
have also been suppressed. For the sake of simplicity, we
shall assume that u is a function of r only and does not
depend on ri and rj separately, although the cusp condi-
tions apply more generally.

Consider the behavior of the local energy

1
C

ĤC5
1

e2u(r)f~r!
Ĥe2u(r)f~r! (4.29)

as r tends to zero while rc.m. and all the other electron
positions are held fixed. For almost every possible
choice of the fixed coordinates, the function f(r) and all
its derivatives are finite as r→0, so any divergent terms
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in the kinetic energy must arise from the action of the
¹r

2 operator on e2u(r). The local energy therefore re-
mains finite as long as

1
e2uf S 2¹21

1
r D ~e2uf !

5u91
2u8

r
2~u8!212u8r̂•

¹f

f
2

¹2f

f
1

1
r

(4.30)

remains finite, where r̂ is a unit vector in the r direction
and the primes denote differentiation with respect to r .

If electrons i and j have opposite spins, the value of
f(r50) is in general nonzero. We insist that u8 and u9
tend to finite values as r→0, and so only the second and
final terms in Eq. (4.30) diverge. These two divergences
cancel if we impose the opposite-spin cusp condition

du

dr U
r50

52
1
2

. (4.31)

If electrons i and j have parallel spins, the Pauli prin-
ciple ensures that f(r) is an odd function of r. It there-
fore has a Taylor expansion of the form

f~r!5a•r1O~r3!, (4.32)

where a5¹f(r)ur50 . It follows from the form of this se-
ries (which is assumed to have a finite radius of conver-
gence) that the Laplacian of f tends to zero as r→0, but
the second, fourth, and last terms in Eq. (4.30) all di-
verge. The sum of the divergent contributions is

2u8

r
1

2u8

a•r
r̂•a1

1
r

5
4u811

r
, (4.33)

and so the parallel-spin cusp condition is

du

dr U
r50

52
1
4

. (4.34)

V. SELECTED APPLICATIONS OF QUANTUM
MONTE CARLO TO GROUND STATES

A. Cohesive energies of solids

The cohesive energy of a solid is the difference be-
tween the energy of a dispersed gas of the constituent
atoms or molecules and the energy of the solid at zero
temperature. Cohesive energies can be obtained by
measuring the latent heat of sublimation and extrapolat-
ing to zero temperature. Calculating a cohesive energy is
a severe test of QMC techniques because it is the energy
difference between two very different systems. To ob-
tain an accurate cohesive energy within VMC one must
use trial wave functions of closely matching accuracy for
the atom and solid. DMC calculations are less sensitive
to the trial wave function but the quality of the fixed
nodal surfaces must still be comparable.

In the pioneering work of Fahy, Wang, and Louie
(1988, 1990a), VMC methods with nonlocal pseudopo-
tentials were used to calculate cohesive energies of
diamond-structure C and Si. The calculations were per-
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formed with simulation cells containing 16 and 54 atoms
and used trial wave functions of the Slater-Jastrow type.
The VMC results were surprisingly accurate, giving co-
hesive energies within about 0.2 eV of the experimental
values. This success was followed by a VMC and DMC
study of diamond-structure Si by Li, Ceperley, and Mar-
tin (1991). This calculation represented another signifi-
cant step forward because it was the first application of
the DMC method to a heavy-atom solid. The DMC co-
hesive energy of Si obtained by Li, Ceperley, and Martin
(1991) differs from experiment by only about 0.1 eV,
although a correction of about 0.2 eV was applied to
compensate for an error introduced by using a pseudo-
Hamiltonian of the type discussed in Sec. VIII.F to
eliminate the core electrons. Another important ad-
vance was the development of the locality approxima-
tion for evaluating the energy of a nonlocal pseudopo-
tential within DMC calculations (Mitas, Shirley, and
Ceperley, 1991). This scheme has significantly increased
the scope of DMC calculations and has made it possible
to perform accurate DMC calculations of the cohesive
energies of heavy-atom solids.

QMC calculations of the cohesive energies of a num-
ber of solids have been performed, and in Table I we
have compiled the available results on the tetrahedrally
bonded semiconductors, C, Si, Ge, and cubic BN. The
calculated results include corrections for the finite sizes
of the simulation cells and for the zero-point motion of
the nuclei. We refer the reader to the original references
for details of these corrections. The finite-size correc-
tions are particularly important and were very carefully
studied by Kent, Hood, et al. (1999). Diffusion Monte
Carlo results for cells containing up to 250 atoms were
used to obtain a cohesive energy for Si of 4.63(2) eV per
atom, which is very close to the experimental value of
4.62(8) eV per atom. This indicates that the DMC
method can give cohesive energies to better than 0.1 eV
per atom in sp-bonded systems. The data in Table I
show the well-known trend that the cohesive energies
calculated within the local spin-density approximation
(LSDA) are too large in sp-bonded systems. The largest
contribution to the error arises from the atom; for ex-
ample, in silicon the LSDA energy is about 1.1 eV per
atom too high in the pseudo-atom and about 0.4 eV too
high in the pseudosolid, resulting in an overestimation of
the cohesive energy by about 0.7 eV.

Very few groups have as yet applied QMC methods to
more strongly correlated real solids, but examples in-
clude the study of NiO by Tanaka (1993) and a study of
the Fe atom by Mitas (1994). The results so far suggest
that accuracies better than 1 eV per atom can be ob-
tained. This is still a far cry from the accuracy required
to study high-temperature superconductivity, for ex-
ample, which would need an improvement of at least
two orders of magnitude. The major difficulty is to con-
struct trial wave functions that capture the essence of
the physics of such complicated systems.

B. Phases of the electron gas

The homogeneous electron gas is the simplest realistic
model of interacting electrons, and studies of its proper-
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TABLE I. Cohesive energies of tetrahedrally bonded semiconductors calculated within the local
spin-density approximation (LSDA), variational Monte Carlo (VMC), and diffusion Monte Carlo
(DMC) methods and compared with experimental values. The energies for Si, Ge, and C are quoted
in eV per atom, while those for BN are in eV per two atoms.

Method Si Ge C BN

LSDA 5.28a 4.59a 8.61a 15.07e

VMC 4.38(4)c 3.80(2)b 7.27(7)d 12.85(9)e

4.82(7)d 7.36(1)f

4.48(1)g

DMC 4.51(3)c 3.85(2)b 7.46(1)f

4.63(2)g

Expt. 4.62(8)a 3.85a 7.37a 12.9h

a Farid and Needs (1992) and references therein.
b Rajagopal et al. (1995).
c Li, Ceperley, and Martin (1991).
d Fahy, Wang, and Louie (1990a). Zero-point energy corrections of 0.18 eV for C and 0.06 eV for Si

have been added to the published values for consistency with the other data in the table.
e Malatesta, Fahy, and Bachelet (1997).
f Kent et al. (2000).
g Leung et al. (1999).
h Estimated by Knittle et al. (1989) from experimental results on hexagonal BN.
ties are still yielding new insights into electronic many-
body phenomena. Consider a uniform electron gas with
number density n5(4prs

3/3)21. In terms of the scaled
variables ri85ri /rs the Hamiltonian is
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(In real calculations it is necessary to add a uniform
positive background and use a periodic Coulomb inter-
action as discussed in Sec. IX.C.) Note that the kinetic-
and potential-energy operators in Eq. (5.1) scale differ-
ently as functions of rs . This means that in the very-
high-density (small rs) limit the interactions become
negligible and the wave function may be approximated
as a HF determinant, while at very low density (large rs)
the Coulomb interactions dominate and the kinetic en-
ergy can be ignored. In the low-density limit the elec-
trons behave like classical charges at zero temperature
and should freeze into a so-called Wigner crystal
(Wigner, 1934). The electron gas must therefore un-
dergo a first-order phase transition as the density is low-
ered.

At intermediate densities another possibility is that
the electron gas may become partially or wholly ferro-
magnetic. This was first predicted within the HF ap-
proximation by Bloch (1929), who considered the be-
havior of the HF energy as a function of the spin
polarization z5(N↑2N↓)/N . He found that if the den-
sity was high the minimum energy was at z50 and the
gas was paramagnetic, but that if rs was greater than
approximately 5.45 the minimum jumped to z51 and
the gas became completely polarized. (For comparison,
Cs has an rs of 5.62.) The HF approximation is not ac-
curate for such large values of rs and the suggestion that
the electron gas polarizes at low density has remained
controversial.
., Vol. 73, No. 1, January 2001
The first attempt to study the phases of the electron
gas using DMC was made by Ceperley and Alder
(1980). Such calculations require fine comparisons of the
energies of phases with very different trial wave func-
tions, symmetries, and finite-size errors. The energy dif-
ferences of interest are so small that it is dangerous to
make precise quantitative statements, but Ceperley and
Alder did indeed observe the expected paramagnetic →
ferromagnetic → Wigner crystal sequence as the density
was lowered. They found that the z51 ferromagnetic
gas was stable for rs values from 75 to 100, at which
point the bcc Wigner crystal became more favorable.
The possibility of partial polarization was considered by
Alder, Ceperley, and Pollock (1982), who found that the
50% polarized gas was more stable than the 100% po-
larized gas for all densities above that at which Wigner
crystallization was observed. In the region in which the
z51 ferromagnetic gas was more stable than both the
unpolarized gas and the Wigner crystal, the 50% polar-
ized gas was therefore even more stable.

Very recently, Ortiz, Harris, and Ballone (1999) recal-
culated the energies of various phases for a range of low
to intermediate electron densities, using much larger
systems and a more careful data analysis than in earlier
work. Figure 9 shows the energy differences between the
paramagnetic and ferromagnetic gas (filled circles), and
between the ferromagnetic bcc crystal and the ferromag-
netic gas (filled squares) as functions of rs . Further cal-
culations showed that in fact the spin polarization grows
continuously from zero at rs52065 to 100% at rs540
65, and that the Wigner crystal is stable for rs.65
610. Ortiz, Harris, and Ballone (1999) also made the
controversial suggestion that the phase with partial spin
polarization may explain the recent experimental results
on Ca12xLaxB6 , which exhibits very weak ferromag-
netism in a narrow range of concentrations, but with
a surprisingly high Curie temperature of '600 K (Cep-
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erley, 1999; Young et al., 1999).
The results of Ortiz, Harris, and Ballone (1999) are

significantly different from the results of earlier authors,
presumably because the earlier work suffered from
larger finite-size errors, although there were also other
differences in the technical details of the calculations.
Evidently there is a need for even more accurate studies
of the residual finite-size and fixed-node errors. In addi-
tion, the relative accuracies of the trial functions used
for different phases remain to be thoroughly investi-
gated.

C. Static response of the electron gas

Many experimental techniques, including most types
of elastic and inelastic photon, neutron, and electron
scattering, measure how solids respond to small pertur-
bations. The results of such experiments are dynamical
response functions, the most familiar of which is the dy-
namical susceptibility x(r,r8,t2t8). Although time-
dependent response functions such as x(r,r8,t2t8) are
difficult to obtain using QMC techniques (see Sec.
VI.C), both the linear and nonlinear responses to static
perturbations are straightforward to calculate. If, for ex-
ample, one applies a time-independent external poten-
tial fext(r)52fq cos(q•r) to a uniform electron gas with
electronic charge density r0 , the charge-density re-
sponse at wave vector q takes the form 2rq cos(q•r),
where rq may be expanded in powers of fq as follows:

rq5x~q !fq1
1
2

x(3)~q,q,2q!fq
31¯ . (5.2)

The prefactors x and x(3) (not to be confused with the
one-body x term in the Jastrow factor) are known as the
linear and cubic response functions, respectively, and
may be obtained by applying potentials of several differ-
ent strengths and fitting the calculated values of rq to a
polynomial in fq . Alternatively, one can calculate the

FIG. 9. Total energy difference (eV) times rs of d, the para-
magnetic and the ferromagnetic gas, and j, the ferromagnetic
bcc crystal and the ferromagnetic gas. The statistical error bar
is comparable to the size of the symbols. The ferromagnetic
gas is stable when both symbols are above zero. From Ortiz,
Harris, and Ballone, 1999.
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change in total energy per electron, which may be ex-
pressed in terms of x and x(3) as (Senatore, Moroni, and
Ceperley, 1999)

dE

N
5

x~q !

r0
fq

21
x(3)~q,q,2q!

4r0
fq

41¯ , (5.3)

and fit this to a polynomial in fq . Because the DMC
method can calculate energies without the need for ex-
trapolated estimates (see Sec. III.D.3), the latter method
turns out to be the most accurate.

Calculations of this type have been carried out for
both the two-dimensional (Moroni, Ceperley, and Sena-
tore, 1992) and three-dimensional electron gases (Bo-
wen, Sugiyama, and Alder, 1994; Moroni, Ceperley, and
Senatore, 1995), but not yet for a real solid, where the
lack of translational symmetry complicates matters con-
siderably. Although the static susceptibility is less inter-
esting than the full dynamical susceptibility, it has still
been the focus of an enormous amount of theoretical
work using many different techniques (see, for example,
Singwi and Tosi, 1981). It was therefore surprising that
the QMC results exposed significant flaws in the best
known approximations. For further details see the re-
cent review by Senatore, Moroni, and Ceperley (1999).

D. The relativistic electron gas

Calculating quantum relativistic effects for interacting
systems is a formidable task, but one simple approach is
to perturb about the nonrelativistic limit. The relativistic
correction to the interaction energy can be obtained to
order 1/c2 by evaluating the Breit interaction within
first-order perturbation theory; see Bethe and Salpeter
(1957). Kenny et al. (1996) used this approach to calcu-
late the relativistic correction to the exchange-
correlation energy of the homogeneous electron gas in
the density range rs50.1–10. The expectation values of
the Breit interaction and the mass-velocity terms were
calculated with nonrelativistic wave functions using
VMC and DMC methods, and extrapolated estimation
(see Sec. III.D.3) was used to obtain more accurate ex-
pectation values.

The results enabled Kenny et al. (1996) to parametrize
the relativistic corrections to the LDA exchange and
correlation functional. Comparisons of relativistic LDA
and accurate relativistic calculations for atoms (Kenny,
Rajagopal, and Needs, 1995) revealed that the Darwin
part of the Breit interaction was well described by a
local-density approximation, but the term arising from
the retardation correction to the Coulomb interaction
was very poorly described. The results provided both
new insights and useful expressions for evaluating the
relativistic corrections that are important for heavier el-
ements and dense plasmas.

E. Exchange and correlation energies

Section II.D sketched the main features of density-
functional theory, which is by far the most popular
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FIG. 10. Contour plots in the (110) plane of Si in the diamond structure: (a) ex
VMC(r)2ex

LDA(r); (b) ec
VMC2ec

LDA(r). The chains
of atoms and bonds are represented schematically. The contours are in atomic units. From Hood et al., 1998 [Color].
method for calculating the electronic properties of sol-
ids. The explosion of interest in density-functional
theory during the eighties was built on the success of the
local-density approximation (LDA), which in turn was
based on the accurate parametrizations of exc

hom(n) pub-
lished by Vosko, Wilk, and Nusair (1980) and Perdew
and Zunger (1981). Both these parametrizations were
constructed using values of the exchange-correlation en-
ergy of the uniform electron gas obtained from the pio-
neering DMC simulations of Ceperley and Alder (1980).
It is fair to say that these early DMC results made the
success of density-functional theory possible, and that
without them density-functional theory might never
have grown into the leviathan we know today.

The main drawback of approximate exchange-
correlation energy functionals such as the LDA and the
generalized gradient approximation (Langreth and
Mehl, 1983; Becke, 1988; Perdew et al., 1992) is that it is
very difficult to judge their accuracy or to improve them
when necessary. Most attempts to devise better approxi-
mations have been based on the coupling-constant inte-
gration formula (see, for example, Parr and Yang, 1989):

Exc@n#5
1
2 E E n~r!n̄xc~r,r8!

ur2r8u
dr dr8, (5.4)

where

n̄xc~r,r8!5E
0

1
nxc

l ~r,r8!dl , (5.5)

and nxc
l (r,r8) is the exchange-correlation hole of a ficti-

tious system in which the strength of the electron-
electron interaction has been reduced by a factor l while
the external potential has been adjusted to keep the
electron density fixed at n(r). The exchange-correlation
hole describes the small ‘‘exclusion zone’’ that forms
around an electron at r due to the effects of the Pauli
principle and (for lÞ0) the Coulomb interaction. A
sum rule guarantees that the integral of nxc

l (r,r8) over r8
is always equal to 21, independent of the position r or
the value of l.
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Equation (5.4) suggests a natural (although by no
means unique) definition of the exchange-correlation
energy density:

exc~r!5
1
2 E n~r!n̄xc~r,r8!

ur2r8u
dr8. (5.6)

One possible way to obtain this quantity is to use VMC
to calculate nxc

l (r,r8) for several different values of l
and to evaluate the integrals in Eqs. (5.5) and (5.6) nu-
merically. This has recently been done for Si (Hood
et al., 1997, 1998) and for inhomogeneous electron gases
subject to cosine-wave external potentials (Nekovee
et al., 1999). Filippi and co-workers have calculated
exchange-correlation energy densities for a model
simple harmonic system (Filippi, Umrigar, and Taut,
1994) and for various atoms (Filippi, Gonze, and Umri-
gar, 1996) using a different definition of exc that is not
based on the coupling-constant integration formula. Be-
cause they were studying small systems, these authors
were also able to calculate the exact exchange-
correlation potential. The comparisons of the QMC re-
sults with the various approximate exchange-correlation
energy functionals are instructive and may aid the devel-
opment of better approximations in the future.

Figure 10 (Hood et al., 1998) shows how the exchange
and correlation components of the accurate exchange-
correlation energy density calculated using VMC differ
from those assumed in the LDA. The plot shows a cross
section in the (110) plane of crystalline silicon. It can be
seen that the LDA exchange energy density is not nega-
tive enough on average, while the LDA correlation en-
ergy density is too negative. When integrated over the
unit cell the two errors largely cancel, and thus the total
exchange-correlation energy is very accurate; this ex-
plains why LDA calculations of the properties of silicon
work so well. Nekovee et al. (1999) observed a similar
cancellation of errors in cosine-wave jellium, so this be-
havior seems to be fairly common.

Figure 11 (Nekovee, Foulkes, and Needs, 2000) shows
exc

VMC2exc
LDA and exc

VMC2exc
ADA for three different
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strongly inhomogeneous cosine-wave jellium systems.
The average-density approximation is a simple nonlocal
exchange-correlation energy functional devised by Gun-
narsson, Jonson, and Lundqvist (1979). All three sys-
tems have the same average electron density as a uni-
form electron gas with rs52. The Fermi wave vector,
Fermi wavelength, and Fermi energy of this uniform sys-
tem are denoted by kF

0 , lF
0 , and EF

0 , respectively. The
applied cosine-wave potentials are of the form
Vq cos(q•r) with Vq52.08EF

0 , but the wave vector q is
different for each system.

The most striking feature of Fig. 11 is the strong simi-
larity between the LDA errors and the Laplacian of the
electron density. This suggests that gradient-corrected
exchange-correlation energy functionals should include
a Laplacian dependence as well as the more familiar
gradient terms. Other authors, including Engel and
Vosko (1993), Umrigar and Gonze (1994), and Becke
(1998), have considered this possibility before, but for
different reasons. The definition of the exchange-
correlation energy density given in Eq. (5.6) is not the
one on which the generalized gradient approximation is
based (Burke, Cruz, and Lam, 1998), and so it is not
certain that the generalized gradient approximation can
be improved by the addition of Laplacian terms, but the
possibility is worth investigating. The nonlocal average-
density approximation functional is clearly more accu-
rate than the LDA at most points r. However, the can-
cellation of errors that explains the success of the LDA
in Si does not occur for the average-density approxima-
tion, and the total energy of Si is less accurate with the

FIG. 11. The upper graphs show exc
VMC2exc

LDA and exc
VMC

2exc
ADA for three different strongly inhomogeneous cosine-

wave jellium systems. The lower graphs show the correspond-
ing electron densities n(r) and (the negatives of the) Lapla-
cians ¹2n(r). All three systems have the same average
electron density as a uniform electron gas with rs52. The
Fermi wave vector, Fermi wavelength, and Fermi energy of
this uniform system are denoted by kF

0 , lF
0 , and EF

0 , respec-
tively. The applied cosine-wave potentials are of the form
Vq cos(q•r) with Vq52.08EF

0 . The systems have different
wave vectors q as shown. From Nekovee, Foulkes, and Needs,
2000.
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average-density than with the local-density approxima-
tion (Hood et al., 1997).

F. Compton scattering in Si and Li

Quantum Monte Carlo methods have recently been
used to study inelastic x-ray scattering at large momen-
tum transfers (Compton scattering) by Kralik, Delaney,
and Louie (1998) and Filippi and Ceperley (1999).
Compton scattering is a powerful technique for probing
electron correlation effects in solids and the Fermi sur-
faces of metals. Within the impulse approximation
(Eisenberger and Platzman, 1970) the recoiling electron
is treated as free, and the scattering cross section is pro-
portional to the Compton profile. The Compton profile
at momentum p for direction ê is given by

J~p !5E dk n~k!d~k• ê2p !, (5.7)

where the momentum distribution n(k) can be ex-
pressed in terms of the wave function C:

n~k!5
N

V E dr1 ,. . . ,drNE dr eik•r

3C* ~r1 ,. . . ,rN!C~r11r, . . . ,rN!, (5.8)

and there are N electrons in volume V . Kralik, Delaney,
and Louie (1998) performed VMC calculations of the
momentum density of Si, while Filippi and Ceperley
(1999) performed similar calculations for Li using both
the VMC and DMC methods.

The primary interest is in the valence electrons, al-
though all the electrons contribute to the scattering.
Pseudopotentials were used in the QMC calculations so
that only the valence electrons were included, and cor-
rections were added to account for the core-valence or-
thogonality. Experimental valence Compton profiles are
deduced by subtracting a contribution calculated for the
core electrons from the measured values. Figure 12
shows experimental valence Compton profiles for Li
(Sakurai et al., 1995) together with the valence Compton
profiles calculated by Filippi and Ceperley (1999) using
the LDA and VMC methods. The overall agreement be-
tween the shapes of the calculated and experimental va-
lence Compton profiles is good, but both the LDA and
VMC profiles are too large at low momenta and too
small above the Fermi momentum (pF50.5905 a.u.).
Further calculations using the more accurate DMC
method confirmed these results.

Independent-particle calculations of Compton profiles
may be corrected for electron correlation effects using
the theory of Lam and Platzman (1974). This correction
is in principle exact within the framework of density-
functional theory, although it is approximate within the
LDA. Both Kralik, Delaney, and Louie (1998) and Fil-
ippi and Ceperley (1999) found that the Lam-Platzman
correction gave a good account of the small differences
between the QMC and LDA valence Compton profiles.
This indicates that the approximate treatment of the va-
lence electron correlations is not the primary reason for
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the discrepancies between the calculated and measured
Compton profiles of Si and Li.

Before the advent of the QMC calculations it was
widely believed that the approximate treatment of elec-
tron correlation was responsible for the discrepancies
between LDA and measured Compton profiles. These
QMC studies will force a more serious consideration of
other possibilities such as thermal effects and the pos-
sible inadequacy of the impulse approximation for cal-
culating the contribution from the core electrons.

G. Solid hydrogen

Hydrogen, the most abundant of all elements, has
been the focus of a great deal of experimental and the-
oretical research. One interesting area of application is
to the interiors of giant planets. For example, Jupiter is
about 90% hydrogen at high pressures and tempera-
tures, most of which exists in a fluid metallic state. At
low temperatures and pressures hydrogen solidifies into
the only known example of a molecular quantum crystal,
in which the molecules rotate freely due to quantum
rather than thermal effects. With sufficient applied pres-
sure the molecules lock into preferred orientations, and
at very high pressures hydrogen is expected to form a
metallic solid, which could exhibit interesting properties
such as high-temperature superconductivity. Metalliza-
tion, defined as the existence of a finite dc electrical con-
ductivity at low temperatures, has not, however, been
observed in terrestrial static pressure experiments on hy-
drogen. Understanding the behavior of hydrogen at high
pressures is a challenge to experimentalists and theorists

FIG. 12. Valence Compton profiles for Li in the [100], [110],
and [111] directions. Variational Monte Carlo results for the
cells with 250 and 686 atoms are compared with the LDA va-
lence profiles from an all-electron LDA calculation and with
experiment. From Filippi and Ceperley, 1999.
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alike. High pressures are simple to achieve in calcula-
tions, but quantum effects due to the small mass of the
proton become increasingly important. In addition, the
energy differences between candidate structural phases
are very small and predictions from mean-field calcula-
tions may not be trustworthy.

Quantum Monte Carlo techniques are ideal for study-
ing the hydrogen problem because they allow an accu-
rate treatment of the quantum motion of both the elec-
trons and protons. Among the very first applications of
QMC methods to real solids was the DMC work on
solid hydrogen of Ceperley and Alder (1981, 1987),
while further DMC studies have been performed by Na-
toli, Martin, and Ceperley (1993, 1995). These studies
encompassed molecular and monatomic phases in which
the protons are localized around lattice sites, so that ex-
change effects between protons are negligible and the
wave function can be taken to be symmetric in the pro-
ton coordinates. The trial wave functions used are of the
form

C5Ce expF2 (
aÞb

upp~da2db!2(
a

cauda2d̄au2G ,

(5.9)

where da and d̄a denote, respectively, the proton posi-
tions and the lattice sites. The factor Ce is the electronic
part of the wave function for fixed proton positions and
is taken to be a standard Slater-Jastrow form, while the
symmetric proton part consists of a proton-proton cor-
relation term upp and a product of Gaussian functions
that localize the protons around the lattice sites. Ceper-
ley and Alder (1987) explored both molecular and
atomic phases, predicting a transition from the freely
rotating molecular quantum crystal to a rotationally or-
dered molecular phase at about 100 GPa, which was
subsequently identified in experiments (Lorenzana, Sil-
vera, and Goettel, 1990), and a further transition to
atomic phases at about 300 GPa. The DMC calculations
of Natoli, Martin, and Ceperley (1993) showed that the
zero-point motion of the protons is a very important
factor in determining the relative stabilities of the high-
pressure monatomic phases of hydrogen. The electronic
energy favors low coordination numbers at these densi-
ties, but this is counteracted by the effect of the zero-
point energy, which favors high coordination and sym-
metry. At still higher pressures the Madelung energy of
the proton lattice should result in a transition to close-
packed structures. Natoli, Martin, and Ceperley (1993)
found the diamond structure to be the most stable of the
monatomic phases up to pressures of about 400 GPa.
They concluded that the usual estimates of zero-point
energies from mean-field theories assuming the har-
monic approximation were inaccurate, in some cases by
a factor of two. Natoli, Martin, and Ceperley (1995)
found that insulating molecular phases with canted ori-
entations of molecules on an hcp lattice were favored at
pressures above about 123 GPa. Combining these data
with their earlier DMC results on monatomic phases of
hydrogen, they predicted that the transition to a mon-
atomic diamond-structure phase would occur at around
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300 GPa (see Fig. 13). Such a transition pressure would
be consistent with values estimated by extrapolating the
measured frequency of the molecular stretching mode to
zero.

Both experimental and theoretical results suggest that
the metallization of hydrogen occurs at a pressure not
too far above the largest static pressure currently attain-
able of about 300 GPa. The unique capabilities of the
DMC method have already made substantial contribu-
tions to the theoretical understanding of solid hydrogen
at zero temperature. The path-integral Monte Carlo
method has been applied to hydrogen at high tempera-
tures (Pierleoni et al., 1994; Magro et al., 1996; Militzer,
Magro, and Ceperley, 1999), and it is hoped that further
DMC and path-integral Monte Carlo studies will help in
obtaining a more complete picture of the phase diagram
of hydrogen.

H. Clusters

Clusters of atoms are intermediate between small
molecules and solids and exhibit a rich variety of physi-
cal and chemical properties. They also form an impor-
tant testing ground for QMC methods because of the
absence of the finite-size errors that plague periodic
boundary conditions calculations. This facilitates com-
parisons between QMC and other computational meth-
ods as well as comparisons with experimental data.

Encouraging progress in applying QMC methods was
demonstrated in studies of silicon and carbon clusters of
intermediate sizes up to 20 atoms (Grossman and Mitas,
1995; Grossman, Mitas, and Raghavachari, 1995; Mitas
and Grossman, 1997). These studies focused on the
binding (atomization) energies and the energetic order-
ing of competing isomers. Perhaps the most striking re-
sult was obtained by Grossman and co-workers in evalu-

FIG. 13. The equation of state of hydrogen determined by
DMC calculations and compared with extrapolations from ex-
periment due to Hemley et al. (1990). Diffusion Monte Carlo
data are shown for the low-pressure Pa3 molecular structure
(Ceperley and Alder, 1987), the diamond structure (Natoli,
Martin, and Ceperley, 1995), and two molecular phases con-
sisting of differing orientations of molecules on an hcp lattice
(mhcp-o and mhcp-c) (Natoli, Martin, and Ceperley, 1993).
From Natoli, Martin, and Ceperley, 1995.
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ating the energetic ordering of three isomers (ring,
graphitic bowl, dodecahedron cage; see Fig. 14) of C20 in
an attempt to search for the smallest carbon fullerene
(Grossman, Mitas, and Raghavachari, 1995). Raghava-
chari and co-workers (1993) had earlier discovered large
discrepancies in the energy differences between the
three isomers as calculated using the LDA and general-
ized gradient approximation methods. For example, the
LDA predicts the cage structure to be about 4 eV lower
in energy than the ring, while the Becke-Lee-Yang-Parr
(BLYP) generalized gradient approximation functional
predicts essentially the opposite (see Fig. 15). Such dif-

FIG. 14. Geometries and charge densities of C20 isomers cal-
culated using the HF method. From Grossman, Mitas, and
Raghavachari, 1995 [Color].

FIG. 15. Relative energies of C20 isomers from the HF, LDA,
BLYP, and DMC methods. The energies are given relative to
the lowest-energy isomer within the given theory. From Gross-
man, Mitas, and Raghavachari, 1995.
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ferences are unusually large for moderate-sized systems.
Diffusion Monte Carlo calculations with HF geometries
showed that the graphitic bowl was the lowest-energy
isomer. The results in Fig. 15 were met with surprise and
even disbelief in the electronic structure community,
and so it is reassuring that an independent method con-
firmed the DMC results. Calculations by Murphy and
Friesner (1998), using their newly developed high-level
perturbation approach based on generalized valence-
bond wave functions, agreed with the DMC results to
within the error bars. The QMC calculations on C20
therefore provided new and unexpected results that
would have been very difficult to obtain by any other
method, and highlighted the limited predictive power of
LDA/generalized gradient approximation approaches
for systems that were thought to be well understood.

The study of carbon clusters within DMC was further
extended to C24 , C26 , C28 , and C32 by Kent et al. (2000).
These authors found that the cage structure of C24 is
higher in energy than other isomers, but that for C26 and
C28 cage structures are slightly favored over other iso-
mers. For C32 the cage geometry is very clearly the most
stable.

I. Formation energies of silicon self-interstitials

Silicon is the most important material in the micro-
electronics industry, and the diffusion of dopant impu-
rity atoms during thermal processing is one of the fac-
tors that limits how small semiconductor devices can be
made. The diffusion of impurity atoms in silicon is criti-
cally influenced by intrinsic defects such as self-
interstitials and vacancies, and it is therefore of great
importance to improve our understanding of these de-
fects. Unfortunately it has not been possible to detect
self-interstitials directly, although their presence has
been inferred using various techniques (Fahey, Griffin,
and Plummer, 1989). Measurements of the self-
diffusivity DSD of silicon at high temperatures, using ra-
dioactive isotopes of silicon as tracers, have established
an Arrhenius behavior with an activation energy in the
range of 4.1–5.1 eV (Frank et al., 1985). DSD is usually
written as the sum of contributions from independent
diffusive mechanisms, and these contributions can each
be written as the product of the diffusivity Di and the
concentration Ci of the relevant defect, i.e.,

DSD5(
i

DiCi . (5.10)

It is widely believed that self-interstitial diffusion is im-
portant at higher temperatures, while vacancy diffusion
is important at lower temperatures (see the review by
Gösele, Plössl, and Tan, 1996). The experimental situa-
tion regarding self-diffusion in silicon is, however, still
highly controversial, especially when it comes to the in-
dividual values of Di and Ci . Indeed, experimental data
have been used to support values of the diffusivity of the
silicon self-interstitial that differ by ten orders of magni-
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tude at the temperatures of around 800 °C at which sili-
con is processed (Eaglesham, 1995).

Many theoretical studies of self-interstitials in silicon
have been carried out. The most advanced of these have
used LDA-density-functional methods to calculate the
defect formation energies and energy barriers to diffu-
sion (Bar-Yam and Joannopoulos, 1984; Blöchl et al.,
1993). The consensus view emerging from these calcula-
tions is that the split-^110& , hexagonal, and tetrahedral
self-interstitial defects are the lowest in energy. Another
interesting suggestion is that self-diffusion could occur
without point defects via exchange of neighboring atoms
in the perfect lattice, and Pandey (1986) has proposed
such a concerted exchange mechanism for self-diffusion
in silicon. The structures of the split-^110&, hexagonal,
and tetrahedral interstitial defects and of the saddle
point of Pandey’s concerted-exchange mechanism are il-
lustrated in Fig. 16.

Leung et al. (1999) performed fixed-node DMC calcu-
lations and density-functional calculations using the
LDA and the PW91 generalized gradient approximation
to determine the formation energies of self-interstitials
in silicon. Within each method they found the split-^110&
and hexagonal interstitials to be the most stable, al-
though the formation energies were significantly differ-
ent in the three methods (see Table II). The DMC for-
mation energies are about 1 eV larger than the PW91
generalized gradient approximation values and 1.5 eV
larger than the LDA values. Leung et al. (1999) used
these DMC data to estimate a value for the activation
energy for self-interstitial diffusion of about 5 eV, which
is consistent with the value deduced from experiment of
4.84 eV (Gösele, Plössl, and Tan, 1996). The activation
energies predicted by the LDA and PW91 generalized
gradient approximation density functionals are, how-
ever, considerably lower than the experimental value
and do not provide a satisfactory explanation of self-
diffusion in silicon. This study has highlighted the impor-
tance of a proper treatment of electron correlation when
treating such systems.

J. Jellium surfaces

The jellium model with the positive background ter-
minated at a plane provides the simplest model of a
metal surface. Many theoretical techniques have been
used to investigate jellium surfaces, which have become
a testing ground for developing new methods of study-
ing correlation effects in inhomogeneous systems. Li
et al. (1992) used DMC to study the surface of jellium at
a density of rs52.07, which is the average valence
charge density of aluminum. Acioli and Ceperley (1996)
considered five densities in the range rs51.87–3.93, cal-
culating the surface energies, work functions, charge
densities, and pair-correlation functions. The trial wave
functions were of the Slater-Jastrow type with a deter-
minant of LDA orbitals. The final QMC charge densities
agreed with the LDA densities to within 2%, supporting
the use of LDA orbitals for the trial wave function. The
DMC surface energies were higher than the LDA and
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FIG. 16. Self-interstitial defects in silicon: (a) the split ^110&, (b) hexagonal, and (c) tetrahedral interstitial defects, and (d) the
saddle point of the concerted–exchange mechanism. The atom(s) forming the defect are shown in red, while the nearest neighbors
to the defect atoms are shown in yellow. The bonds between the defect and nearest-neighbor atoms are shown in orange. From
Leung et al., 1999 [Color].

TABLE II. Local-density approximation (LDA), PW91 generalized gradient approximation (GGA),
and diffusion Monte Carlo (DMC) formation energies in eV of the self-interstitial defects and the
saddle point of the concerted-exchange mechanism. Note that the DMC results for the 16- and
54-atom simulation cells are consistent, indicating that the residual finite-size effects are small.

Defect LDA GGA DMCa DMCb

Split-^110& 3.31 3.84 4.96(24) 4.96(28)
Hexagonal 3.31 3.80 4.70(24) 4.82(28)
Tetrahedral 3.43 4.07 5.50(24) 5.40(28)
Concerted exchange 4.45 4.80 5.85(23) 5.78(27)

a16-atom supercell.
b54-atom supercell.
Rev. Mod. Phys., Vol. 73, No. 1, January 2001
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generalized gradient approximation energies, although
quite close to the Fermi-hypernetted-chain (FHNC) re-
sults of Krotscheck, Kohn, and Qian (1985) at low den-
sities. The work functions were in reasonable agreement
with the FHNC results and were lower than the LDA
values. Inside the jellium the pair-correlation functions
were nearly spherical, but as the electron moved to-
wards the surface they showed significant anisotropy.

The large discrepancy between the DMC and density-
functional surface energies is surprising and has recently
been questioned by Yan et al. (2000). They observe that
the density-functional and DMC energies (Ballone, Um-
rigar, and Delaly, 1992) of finite jellium spheres are in
rather close agreement and suggest that the discrepancy
in the case of the surface may arise from finite-size er-
rors in the DMC simulations.

VI. EXCITED STATES

A. Introduction

Although the VMC and DMC methods were designed
to study ground states, they can also provide some infor-
mation about excited states. The lowest band gap of a
solid, which may be measured from a combination of
photoemission and inverse photoemission experiments,
is the difference between the energies to add and sub-
tract an electron from the N-electron system: Eg
5(EN112EN)2(EN2EN21). This expression involves
only ground-state energies and hence is immediately ac-
cessible to QMC methods. The first application of DMC
to an energy gap in a solid was by Ceperley and Alder
(1987), who calculated the minimum energy zone center
gap of the Pa3 molecular hydrogen crystal as a function
of pressure. To evaluate the energies of the N11 and
N21 electron systems they added uniform neutralizing
background charge densities to preserve the charge neu-
trality of the simulation cell.

Another straightforward way of obtaining excitation
energies is to devise a many-electron trial wave function
that models an excited state and use it in a VMC calcu-
lation. If the chosen trial wave function has a specific
symmetry, the variational principle guarantees that the
energy obtained is greater than or equal to the eigen-
value of the lowest exact eigenstate of that symmetry.

At first sight it might appear that the DMC method is
inapplicable to excited states because the wave function
always evolves towards the ground state. In fixed-node
DMC, however, the nodal constraint ensures conver-
gence to the lowest energy state compatible with the
imposed nodal surface, not to the overall ground state. It
is straightforward to show that, if the nodal surface of
the trial wave function is the same as that of an exact
eigenstate, then the fixed-node DMC algorithm gives
the exact energy of that eigenstate.

Until recently, it was widely believed that a symmetry-
constrained variational theorem analogous to the one
for VMC also held for fixed-node DMC calculations.
It was assumed that the symmetry of the fixed-node
ground state produced by the imaginary-time evolution
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was always the same as that of the trial function used to
define the nodes, and hence that the DMC energy was
always greater than or equal to the eigenvalue of the
lowest exact eigenstate of that symmetry. It has now
been shown (Foulkes, Hood, and Needs, 1999) that this
is not necessarily the case unless the symmetry of inter-
est corresponds to a one-dimensional irreducible
representation of the symmetry group of the Hamil-
tonian. In other words, the eigenstate should be nonde-
generate or have only accidental degeneracies. For mul-
tidimensional irreducible representations the symmetry
of the fixed-node ground state may differ from that of
the trial state, and hence the DMC energy may lie below
the eigenvalue of the lowest exact eigenstate with the
same symmetry as the trial state. In such cases it is pos-
sible to obtain weaker variational principles by choosing
trial functions that transform according to one-
dimensional irreducible representations of subgroups of
the full symmetry group (Foulkes, Hood, and Needs,
1999). In practice, the surprise is that the fixed-node
DMC method often works well for excited states regard-
less of the dimension of the irreducible representation; it
even works quite well for excited states that are not the
lowest energy states of any particular symmetry.

B. VMC and DMC calculations of excitations in solids

Variational and diffusional Monte Carlo calculations
of excitations in solids are computationally demanding
because excitation energies are ‘‘1/N’’ effects; that is, the
fractional change in the total energy due to the presence
of the excitation is inversely proportional to the number
of electrons in the simulation cell. Excited-state VMC
and DMC simulations therefore require great statistical
accuracy and a careful treatment of finite-size effects.

Mitas and Martin (1994) used the DMC method to
estimate the band gap of atomic solid nitrogen in the
I213 structure. Simulations were carried out to obtain
the total energy of the ground state and of an excited
state in which a single electron had been promoted from
the highest occupied G state to the lowest unoccupied H
state. This can be interpreted as a calculation of the en-
ergy of an electron-hole pair (Mott-Wannier exciton).
The exciton binding energy is usually small (;0.01–0.1
eV) and so it is easy to obtain the excitation energy once
the formation energy of the exciton is known.

Mitas (1996) later used the DMC method to calculate
a selection of excitation energies in diamond, and a
more complete study has recently been completed by
Towler, Hood, and Needs (2000); see Table III. The
DMC approach gives a good estimate of the G258→X1c
band gap but somewhat overestimates the width of the
valence band.

Williamson et al. (1998) used the DMC method to cal-
culate a large number of excitation energies in Si. By
studying many different electron-hole pair excitations,
Williamson et al. obtained the quasiparticle energies
shown in Fig. 17. The solid lines show an empirical
pseudopotential band structure that may be taken as an
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TABLE III. Excitation energies (eV) of diamond calculated using the HF, LDA, GW, and DMC
methods, and compared with experimental data.

Method
Band gap
G258→X1c

Bandwidth
G1v→G258

HF 13.2a 29.4a

LDA 4.6,a 4.63b 22.1,a 21.35b

GW 6.3c 22.88,c 23.0d

DMC 6.0(4),a 5.71(20)b 23.9(7),a 24.98(20)b

Expt. 6.1f 23.0(2),e

a Mitas (1996).
b Towler, Hood, and Needs (2000).
c Rohlfing et al. (1993).
d Hybertsen and Louie (1986).
e Jiménez et al. (1997).
f Estimated by correcting the measured minimum band gap of 5.48 eV.
accurate representation of the experimental results. The
DMC energy of the state at the top of the valence band
is set equal to zero by definition, but the rest of the
results are meaningful. The low-lying quasiparticle ener-
gies are accurate, but the energies of holes lying deeper
in the valence bands are significantly overestimated due
to deficiencies of the trial wave functions. A new feature
of this work was the successful calculation of several
different excited states at the same k point. Moreover, it
was found that the DMC method produced equally good
results whether or not the electron and hole had the
same crystal momentum.

C. Other QMC methods for excited states

There are a number of alternative methods for calcu-
lating excitation energies within QMC. Ceperley and
Bernu (1988) combined the idea of the generalized
variational principle (i.e., the variational principle for
the energies of a set of orthogonal trial functions) with
the DMC algorithm to derive a method for calculating
the eigenvalues of several different excited states simul-
taneously. The first application of the Ceperley-Bernu
method was to vibrational excited states (Bernu, Ceper-
ley, and Lester, 1990), but it has also been used to inves-
tigate electronic excitations of the two-dimensional uni-
form electron gas (Kwon, Ceperley, and Martin, 1996)
and of He atoms in strong magnetic fields (Jones, Ortiz,
and Ceperley, 1997). Correlated sampling techniques
(Kwon, Ceperley, and Martin, 1996; Jones, Ortiz, and
Ceperley, 1997) can be used to reduce the variance, but
the Ceperley-Bernu method has stability problems in
large systems and has not been applied to a real solid.

Another method that uses the generalized variational
principle is based on the extended Koopmans’ theorem
derived independently by Day, Smith, and Garrod
(1974) and Morrell, Parr, and Levy (1975). The ex-
tended Koopmans’ theorem leads to an approximate ex-
pression for the ground- and excited-state energies of
the N11 and N21 electron systems relative to the
ground-state energy of the N electron system. Recently,
Kent et al. (1998) used this expression in conjunction
., Vol. 73, No. 1, January 2001
with the VMC algorithm to calculate the band structure
of Si and obtained results not much worse than those
found using the direct DMC method. The main advan-
tage of the extended Koopmans’ theorem approach is
that it allows many quasiparticle energies to be calcu-
lated simultaneously. Within the so-called diagonal ap-
proximation, which is accurate in Si (Kent et al., 1998),
the extended Koopmans’ theorem reduces to the
scheme used previously by Fahy, Wang, and Louie
(1990b) to calculate hole energies in Si, and by Tanaka
(1995) to calculate hole energies in NiO.

VII. WAVE-FUNCTION OPTIMIZATION

A. Introduction

The quality of the trial wave function controls the sta-
tistical efficiency of the VMC and DMC algorithms and
determines the final accuracy obtained. Clearly one
would like to use a high-quality trial wave function, but
there is also an issue of computational efficiency. The
most costly part of VMC and DMC calculations is nor-

FIG. 17. The DMC band structure of Si (Williamson et al.,
1998). The solid lines show the empirical pseudopotential band
structure of Chelikowsky and Cohen (1976).
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mally the repeated evaluation of the trial wave function
(and its gradient and Laplacian). It is therefore impor-
tant to use a trial wave function that is as accurate as
possible yet can be computed rapidly.

By far the most common type of trial wave function
used in VMC and DMC calculations for atoms, mol-
ecules, and solids is the Slater-Jastrow form discussed in
Sec. IV. Ideally one would like to perform a simulta-
neous optimization of the u and x functions in the Ja-
strow factor and the orbitals in the Slater determinants.
However, almost all work on large systems has so far
involved optimizing only the u and x functions. Typical
solid-state problems currently involve optimizing of or-
der 102 parameters for 102 –103 electrons.

B. The cost function

To optimize a wave function containing a set of pa-
rameters $a% requires some criterion for deciding on the
quality of a particular parameter set. To this end we
require a cost function, which is to be minimized with
respect to the values of the parameters. The choice of
cost function may depend on the application. For in-
stance, if one wants to calculate the best variational
bound on the energy in a VMC calculation one should
minimize the variational energy,

EV~a!5

E CT
2 ~a! EL~a! dR

E CT
2 ~a! dR

, (7.1)

where EL5CT
21(a)ĤCT(a) is the local energy. It has

also been suggested that minimizing the energy will
maximize the efficiency of a DMC calculation (Ceper-
ley, 1986). An alternative is to minimize the variance of
the energy,

sE
2 ~a!5

E CT
2 ~a!@EL~a!2EV~a!#2 dR

E CT
2 ~a! dR

, (7.2)

which minimizes the statistical error bar on the VMC
energy. Another option is to minimize some combina-
tion of the variance and energy, such as sE

2 /EV
2

(Meierovich, Mushinski and Nightingale, 1996). To
maximize the accuracy of an extrapolated estimator (see
III.D.3) one wants the trial and DMC wave functions to
be as close as possible, which can be achieved by maxi-
mizing their overlap,

E CT~a!F~ t→`! dR

E CT
2 ~a! dR

. (7.3)

Maximization of the overlap (Ceperley and Alder, 1987)
has rarely been used because it requires a computation-
ally intensive DMC calculation at each step of the opti-
mization.
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In practice almost all wave-function optimizations
have been performed by minimizing the variance of the
energy. A number of reasons have been advanced for
preferring variance minimization to energy minimiza-
tion, but the most important is that it is more stable in
large systems, as explained below. Optimizing wave
functions by minimizing the variance of the energy is
actually a very old idea, having been used in the 1930s.
The first application using Monte Carlo techniques to
evaluate the integrals appears to have been by Conroy
(1964), but the present popularity of the method derives
from the work of Umrigar and collaborators (Umrigar,
Wilson, and Wilkins, 1988).

Let us look at the variance of the energy and the mini-
mization procedure in more detail. The minimum pos-
sible value of sE

2 is zero, which is obtained if and only if
CT(a) is an exact eigenstate of Ĥ . The variance there-
fore has a minimum at every eigenstate of Ĥ , which
makes it a suitable cost function for optimizing both
ground and excited states, although it has not been ap-
plied widely to excited states. Minimization of sE

2 is nor-
mally carried out via a correlated-sampling approach in
which a set of configurations distributed according to
CT

2 (a0) is generated, where a0 is an initial set of param-
eter values. The variance sE

2 (a) is then evaluated as

sE
2 ~a!5

E CT
2 ~a0!w~a!@EL~a!2EV~a!#2 dR

E CT
2 ~a0!w~a! dR

,

(7.4)

where

EV~a!5

E CT
2 ~a0!w~a!EL~a! dR

E CT
2 ~a0!w~a! dR

, (7.5)

and the integrals contain a weighting factor w(a) given
by

w~a!5
CT

2 ~a!

CT
2 ~a0!

. (7.6)

The parameters $a% are adjusted until sE
2 (a) is mini-

mized.
The advantage of the correlated-sampling approach is

that one does not have to generate a new set of configu-
rations every time the parameter values are changed. In
practice the set of configurations is normally regener-
ated a few times (typically three or four) during the op-
timization procedure because the estimate of the vari-
ance is poor if u$a0%2$a%u is too large. A variant of this
scheme is to replace the energy EV(a) by a fixed value
Ē that is a little below the ground-state energy. Minimi-
zation of this modified cost function is equivalent to
minimizing a linear combination of EV and sE

2 .
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C. Numerical stability of variance minimization

The cost function is evaluated as an average over a set
of M configurations Rm drawn from the distribution
CT

2 (a0),

sE
2 ~a!.

(
m

M

w~Rm ;a!@EL~Rm ;a!2EV~$Rm%;a!#2

(
m

M

w~Rm ;a!

.

(7.7)

The eigenstates of Ĥ give the minimum value, sE
2 50,

for any set of configurations because EL(R) is indepen-
dent of R for an eigenstate (Nightingale and Umrigar,
1997; Kent, Needs, and Rajagopal, 1999). This highly
desirable feature is not shared by the energy EV . The
fact that the positions of the global minima of the vari-
ance are robust to finite sampling is an important advan-
tage of variance minimization over energy minimization.

Direct minimization of the variance of Eq. (7.7) has
often been successful. However, in large systems the
procedure often exhibits a numerical instability: as the
minimization proceeds, a few configurations (often only
one) acquire a very large weight. The estimate of the
variance is then reduced almost to zero by a set of pa-
rameters that usually give extremely poor results in sub-
sequent QMC calculations. This instability has been no-
ticed by many researchers and also occurs in energy
minimization. In principle one could overcome it by us-
ing more configurations, but the number required is nor-
mally impossibly large. Fortunately, in variance minimi-
zation (though not in energy minimization) there is a
simple remedy, which relies on the observation that the
positions of the minima of the variance are not affected
by the values of the weights as long as they are positive
(Kent, Needs, and Rajagopal, 1999). This is because the
exact variance of Eq. (7.2) reaches its minimum value of
zero if and only if the trial function is an exact eigen-
function, in which case the local energy is independent
of position. The numerical instability may therefore be
eliminated by restricting the values of the weights. In
some calculations the upper value of the weight is lim-
ited (Filippi and Umrigar, 1996), while in others the
weights are set to unity (Schmidt and Moskowitz, 1990;
Williamson et al., 1996). This freedom is not available in
energy minimization because altering the weights alters
the positions of the minima.

D. Minimization procedures

The minimization itself may be carried out using stan-
dard optimization techniques such as the Levenberg-
Marquardt method (Press et al., 1992), which finds the
unconstrained minimum of a sum of squares and re-
quires only the function values. If one is optimizing only
the Jastrow factor then the storage and CPU require-
ments may be greatly reduced by using u and x func-
tions that are linear in the parameters $a% (Williamson
et al., 1996). This allows the sums over the electron co-
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ordinates to be calculated once for each set of configu-
rations, instead of every time the parameter values are
changed. An alternative method for performing the op-
timization is to use the stochastic gradient approxima-
tion, which was introduced into QMC calculations by
Harju et al. (1997). The stochastic gradient approxima-
tion has the appealing feature that it was designed for
optimizations in the presence of noise. However, our
experience is that deterministic methods of minimiza-
tion over a fixed set of configurations perform much bet-
ter than the stochastic gradient approximation.

The single-particle orbitals in the Slater determinants
are normally obtained from mean-field calculations and
will not be optimal in the presence of the Jastrow factor.
Direct optimization of the single-particle orbitals using
variance minimization is possible in small systems (Um-
rigar, Nightingale, and Runge, 1993) but would be very
expensive in large systems because the number of pa-
rameters increases rapidly with system size. A more
promising technique (Fahy, 1999; Filippi and Fahy,
2000) is to optimize the potential that generates the or-
bitals rather than the orbitals themselves. The equation
determining the orbitals is obtained by minimizing the
fluctuations in the local energy. This method corre-
sponds to energy minimization and is limited in the
sense that the orbitals are constrained to be the lowest-
energy eigenstates of a one-electron Hamiltonian. How-
ever, it has the significant advantage that the number of
parameters in the potential does not increase as rapidly
with system size as the number of parameters in the
single-particle orbitals.

VIII. PSEUDOPOTENTIALS

A. The need for pseudopotentials

Quantum Monte Carlo methods have been applied
very successfully to first-row atoms, but the computa-
tional effort increases rapidly with the atomic number
Z . Various estimates of the scaling of the computational
cost with Z have been made, with results ranging from
Z5.5 (Ceperley, 1986) to Z6.5 (Hammond, Reynolds, and
Lester, 1987). This scaling effectively rules out applica-
tions to heavy atoms. The presence of core electrons
causes two related problems. Because of the shorter
length scales associated with variations in the wave func-
tion near a nucleus of large Z , the time step should be
decreased. This problem can be significantly reduced by
the use of acceleration schemes, such as those devised
by Umrigar (1993) and Stedman, Foulkes, and Nekovee
(1998). The other problem is that the fluctuations in the
local energy tend to be large near the nucleus because
both the kinetic and potential energies are large. Al-
though these fluctuations can be reduced by a judicious
choice of trial wave function, in practice they are large
for heavier atoms.

However, many properties of interest, including the
interatomic bonding and the low-energy excitations, are
determined by the behavior of the valence electrons,
and just as in other electronic structure techniques one
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can use pseudopotentials to remove the core electrons
from the problem. This approach serves to reduce the
effective value of Z . Errors are inevitably introduced,
but the gain in computational efficiency is very large and
is sufficient to make applications to heavy atoms fea-
sible.

B. Nonlocal pseudopotentials

The ideas behind pseudopotentials are perhaps best
explained in the context of independent-electron
schemes such as the Hartree-Fock method and
Hohenberg-Kohn-Sham density-functional theory. In
both these theories the wave function consists of a de-
terminant of orbitals, which can be partitioned into core
and valence orbitals on chemical grounds. For example,
the ground-state configuration of the silicon atom is
@1s22s22p63s23p2]. The 3s and 3p orbitals take part in
the chemical bonding and are designated as valence or-
bitals, while the 1s , 2s , and 2p orbitals largely retain
their atomic identities and are designated as core orbit-
als. The idea is to create an effective potential (the
pseudopotential) that reproduces the effects of both the
nucleus and the core electrons on the valence electrons.
This is done separately for each of the different angular
momentum states, so the pseudopotential contains angu-
lar momentum projectors and is therefore a nonlocal
operator. For silicon the lowest-energy states of the
pseudopotential with angular momenta l50,1,2 are the
pseudo-3s , 3p , and 3d orbitals, respectively.

It is conventional to divide the pseudopotential Vl
ps(r)

for any given atom into a local part V loc
ps (r) common to

all angular momenta and a correction, Vnl,l
ps (r), for an-

gular momentum l . The final result is an effective inter-
action potential between a valence electron at r and the
(pseudo) ion at the origin. The electron-ion potential-
energy term in the full many-electron Hamiltonian of
the atom then takes the form

V loc~R!1V̂nl5(
i

V loc
ps ~ri!1(

i
V̂nl,i

ps , (8.1)

where V̂nl,i
ps is a nonlocal operator that acts on an arbi-

trary function of ri as follows:

V̂nl,i
ps f~ri!5(

l ,m
Vnl,l

ps ~ri!Ylm~V i!E
4p

Ylm* ~V i8!f~ri8!dV i8 .

(8.2)

The angular integrals pick out the different angular mo-
mentum components (s ,p ,d , . . .) of the function f(ri)
and so guarantee that each symmetry channel
(s ,p ,d , . . .) ‘‘feels’’ its own potential Vnl,l

ps (r).
The first norm-conserving LDA pseudopotentials

were generated by Hamann, Schlüter, and Chiang
(1979). In a similar development, Christiansen, Lee, and
Pitzer (1979) generated HF pseudopotentials, which are
called effective core potentials. Both of these sets of
pseudopotentials have been used very successfully in nu-
merous applications, including QMC simulations.
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Within independent-electron theories such as the
density-functional and HF theories, the distinction be-
tween core and valence electrons (the ‘‘core-valence
partition’’) is exact and is achieved by simply designat-
ing some orbitals as core orbitals and others as valence
orbitals. In a many-electron framework, however, the
electrons are identical particles and the core-valence
partition cannot be exact. The use of pseudopotentials in
many-electron calculations therefore involves a further
approximation. The accurate results obtained in pseudo-
potential QMC simulations show that this extra approxi-
mation is usually of minor importance.

C. Core-polarization potentials

Correlation between electrons within a core has an
indirect effect upon the valence electrons, which is usu-
ally unimportant. The neglect of core-valence correla-
tion can, however, be significant whenever the number
of valence electrons is small and the core is large; the
core then exhibits core-polarization and relaxation ef-
fects as a response to changes in the valence environ-
ment. Examples of systems with large core-polarization
effects include alkali metals with one or two valence
electrons.

One can include some of the effects of core-valence
correlation within a pseudopotential framework by in-
troducing a core-polarization potential. This can be ob-
tained within a core-valence partition scheme using the
theory of Callaway (1957), although in practice empiri-
cal forms have been employed. Callaway (1957) showed
that, after a series of approximations, the core-
polarization potential could be approximated by a di-
pole term, which represents the polarization of the core
due to the electric field of the valence electrons (and
other ions, if present). It is consistent to use a core-
polarization potential in conjunction with a HF pseudo-
potential.

Rather than calculate the core-polarization potential
from first principles, it has normally been described by a
simple analytic form. Core-polarization potentials have
been generated for a wide range of elements using sev-
eral different methods (Müller, Flesch, and Meyer, 1984;
Müller and Meyer, 1984; Shirley and Martin, 1993), and
it has been shown (Shirley and Martin, 1993) that the
combination of HF pseudopotentials and core-
polarization potentials works very well for the first two
rows of the periodic table. The use of core-polarization
potentials within QMC methods was tested in the case
of the sodium dimer by Shirley, Mitas, and Martin
(1991), and the results were significantly better than
those obtained using pseudopotentials that neglected
core-polarization effects.

D. Pseudopotentials in variational Monte Carlo

In this subsection we describe the technical aspects of
using nonlocal pseudopotentials in VMC. The first
pseudopotential QMC calculations made the approxi-
mation that the nonlocal angular momentum projection
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operators acted only on the determinantal part of the
wave function (Hammond, Reynolds, and Lester, 1987;
Hurley and Christiansen, 1987; Christiansen, 1988).
Fahy, Wang, and Louie (1988, 1990a) formulated and
applied the VMC method with nonlocal pseudopoten-
tials acting on the full correlated wave function.

The action of the nonlocal pseudopotential on the
wave function can be written as a sum of contributions
from each electron and each angular momentum chan-
nel. The contribution to the local energy EL

5CT
21ĤCT made by the nonlocal pseudopotential

terms is

Vnl5CT
21V̂nlCT

5(
i

CT
21V̂nl,i

ps CT5(
i

Vnl,i , (8.3)

where for simplicity we consider the case of a single
atom placed at the origin. Using Eq. (8.2) we can write
the nonlocal contribution of electron i to the local en-
ergy as

Vnl,i5(
l

Vnl,l
ps ~ri! (

m52l

l

Ylm~Vri
!E Ylm* ~Vri8

!

3
CT~r1 ,. . . ,ri21 ,ri8 ,ri11 ,. . . ,rN!

CT~r1 ,. . . ,ri21 ,ri ,ri11 ,. . . ,rN!
dVri8

, (8.4)

where the angular integration is over the sphere passing
through the ith electron and centered on the origin.
Equation (8.4) can be simplified by choosing the z axis
along ri , noting that Ylm(0,0)50 for mÞ0, and using
the definition of the spherical harmonics to give

Vnl,i5(
l

Vnl,l
ps ~ri!

2l11
4p E Pl@cos~u i8!#

3
CT~r1 ,. . . ,ri21 ,ri8 ,ri11 ,. . . ,rN!

CT~r1 ,. . . ,ri21 ,ri ,ri11 ,. . . ,rN!
dVri8

, (8.5)

where Pl denotes a Legendre polynomial.
The integral over the surface of the sphere in Eq. (8.5)

must be evaluated numerically. The r8 dependence of
the many-body wave function is expected to have pre-
dominantly the angular momentum character of the or-
bitals in the determinantal part of the wave function. A
suitable integration scheme is therefore to use a quadra-
ture rule that integrates products of spherical harmonics
exactly up to some maximum value lmax . Appropriate
values of lmax may be deduced on chemical grounds, but
one must remember that even in an atom the Jastrow
factor introduces higher angular momentum compo-
nents than occur in the determinantal part of the wave
function. To avoid bias the orientation of the axes is
chosen randomly each time such an integral is evaluated.
Mitas, Shirley, and Ceperley (1991) have tested a num-
ber of quadrature grids for the Si atom and the Cu1 ion.
Taking Si as an example, a grid containing 6 points with
lmax53 is sufficient for reasonable accuracy, but consid-
erably higher accuracy can be obtained using a grid con-
taining 12 points with lmax55. In earlier work (Fahy,
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Wang, and Louie, 1988, 1990a) it was suggested that
each nonlocal integral should be evaluated by sampling
the quadrature grid several times using randomly ori-
ented axes, but it has since been established that it is
more efficient to sample a higher-order rule once (Mitas,
Shirley, and Ceperley, 1991). Within a VMC calculation
it is often possible to use a low-order quadrature rule
because the error cancels over the run, but higher accu-
racy is required for wave-function optimization and
DMC calculations, which are biased by errors in the
nonlocal integration.

In principle the nonlocal energy should be summed
over all the ionic cores and all electrons in the system.
However, since the nonlocal potential of each ion is
short ranged, one need only sum over the few atoms
nearest to each electron. The additional angular integra-
tions are computationally inexpensive within VMC be-
cause the local energy is not required during the one-
electron moves and need not be evaluated frequently.
Indeed, if the local energy is evaluated too frequently
the values obtained will be correlated and little or no
benefit will accrue.

E. Pseudopotentials in diffusion Monte Carlo

The use of nonlocal pseudopotentials in DMC is more
problematic. If the Hamiltonian contains the nonlocal
operator V̂nl5( iV̂nl,i

ps the approximate propagator in-
cludes matrix elements of the form ^Ruexp(2tV̂nl)uR8&,
which are not guaranteed to be non-negative for arbi-
trary R8,R, and t. Consequently, as the population of
walkers evolves according to the imaginary-time Schrö-
dinger equation,

] t f5
1
2

¹2f2¹•~vDf !2
~Ĥ2ET!CT

CT
f

1H V̂nlCT

CT
2

V̂nlF

F
J f , (8.6)

the sign of a walker can change as the time evolves.
After a few time steps the sign becomes random and we
encounter a sign problem analogous to the fermion sign
problem discussed in Sec. III.D.2 and just as serious.

To circumvent this difficulty the so-called pseudopo-
tential localization approximation has been introduced:
the term in curly brackets is neglected, thus making Eq.
(8.6) formally equivalent to an imaginary-time Schrö-
dinger equation with local potentials. If CT'C0 the er-
ror introduced by this approximation is small and is pro-
portional to (CT2C0)2 (Mitas, Shirley, and Ceperley,
1991). Because the localization approximation depends
on the accuracy of CT , it is necessary to use accurate
trial functions to ensure that the calculation is in the
low-variance/quadratic-convergence regime. Fortu-
nately, as was explained in Sec. IV, accurate trial func-
tions are available for simple solids. It is not easy to
establish the exact size of the error introduced by the
localization approximation since no better calculational
technique is available for solids, but comparisons with
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TABLE IV. Variational Monte Carlo of the Fe atom with decreasing number of valence electrons.

All-electron Ne core Ar core

EHF(a.u.) 21262.444 2123.114 221.387
EVMC(a.u.) 21263.20(2) 2123.708(2) 221.660(1)
sE

2 '50 1.54 0.16
k/kall 1 '0.3 '0.05
Efficiency51/(ksE

2 ) 0.02 2.1 125.
Valence errors (eV) 0. '0.1 '0.5
experiments and other calculations for small systems
show that in most cases it is smaller than the fixed-node
error.

The crucial speed-up resulting from the use of
pseudopotentials is clearly demonstrated by the example
of the iron atom (Mitas, 1994). Table IV give values of
the total energy; the variance of the local energy, sE

2

5^CTu@EL(R)2EV#2uCT&/^CTuCT&; the energy auto-
correlation time k divided by the all-electron value kall
(values of the local energy calculated at closely sepa-
rated times are statistically correlated; k is a measure of
how long the interval between two energy measure-
ments must be to ensure that these correlations are neg-
ligible); and, finally, the efficiency, which is proportional
to 1/(ksE

2 ). The results were obtained using VMC but a
comparison of DMC results would be qualitatively simi-
lar. It is evident that the efficiency improves dramati-
cally as the size of the core is increased, but that the
systematic errors introduced by the pseudopotentials
also increase. In the case of the Fe atom, if we seek an
accuracy of ;0.1 eV, the best compromise is the Ne
core. This comparison provides a quantitative example
but should not be taken as definitive: to some extent one
can change the quantities shown in Table IV through
improvement of the trial function, more efficient sam-
pling, and more efficient coding.

Very recently, a new algorithm was suggested that
produces an upper bound on the energy even when the
Hamiltonian contains nonlocal operators. This new ap-
proach combines the localization approximation with
nonlocal operator sampling (ten Haaf et al., 1995) and
has proved very useful in lattice models. Unfortunately
there is a price to be paid: the algorithm has no zero-
variance property (Ceperley and Mitas, 1996). This
might be an issue for calculations of realistic systems
using very accurate wave functions, when one is usually
working in the low-variance regime.

F. Alternatives to nonlocal pseudopotentials

The use of nonlocal pseudopotentials in DMC is both
problematic and computationally demanding. This has
motivated the development of alternative approaches,
the most important of which are the pseudo-
Hamiltonian method of Bachelet, Ceperley, and Chioc-
chetti (1989) and the damped-core method of Ham-
mond, Reynolds, and Lester (1988).
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In the pseudo-Hamiltonian approach the core is re-
moved and the local potential modified in the normal
way. However, instead of introducing nonlocal poten-
tials, the kinetic-energy operator (Laplacian) is replaced
by a general second-order differential operator with a
position-dependent electron effective mass tensor. The
fundamental advantage of this construction is that the
Hamiltonian remains local. The pseudo-Hamiltonian ap-
proach is easily incorporated in both VMC and DMC,
but unfortunately it has inherent limitations (Foulkes
and Schlüter, 1990) connected with the required positive
definiteness of the effective mass tensor. The conse-
quence is that pseudo-Hamiltonians can be constructed
only for a restricted set of elements in which nonlocal
effects are not very strong. Nevertheless, successful
simulations employing pseudo-Hamiltonians have been
carried out (Li, Ceperley, and Martin, 1991).

In the damped-core technique (Hammond, Reynolds,
and Lester, 1988), the space around an atom is divided
into core (inner) and valence (outer) regions. All the
core and valence electrons are included in the simula-
tion, but electrons in the core regions are moved accord-
ing to the VMC algorithm while electrons in the valence
regions are moved using DMC. When an electron moves
from one region to the other it experiences a smooth
transition between these two regimes. Although very
good results were obtained for atoms (Hammond, Rey-
nolds, and Lester, 1988), this technique is difficult to ap-
ply to large systems. The reason is that the key problem,
namely the impact of the large energy fluctuations from
the core states, is diminished but not eliminated.

There is clearly a need for further development of
many-body pseudopotentials for use in QMC calcula-
tions. A step in this direction was taken by Acioli and
Ceperley (1994), who showed that the quality of a many-
body pseudopotential depends on an accurate descrip-
tion of the one-electron, two-electron, etc., density ma-
trices outside the core region. The most important
quantity is the one-electron density matrix, the eigen-
functions of which are the natural orbitals. One there-
fore has to ensure that the natural orbitals of the
pseudo-atom are correct outside the core region. This
work represents an advance in understanding, but has
not so far been developed into a practical scheme for
generating accurate pseudopotentials for heavy atoms.
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IX. PERIODIC BOUNDARY CONDITIONS
AND FINITE-SIZE ERRORS

A. Introduction

Current algorithms and computational resources per-
mit QMC calculations on systems with up to about 1000
electrons. Although finite clusters of this size are very
unlike bulk material, periodic systems containing a few
hundred electrons are large enough to model many phe-
nomena in condensed matter with good accuracy. The
limited system size inevitably introduces finite-size er-
rors, which decrease as the number of electrons in the
periodically repeated region increases, so QMC simula-
tion cells for perfect crystals usually consist of several
primitive unit cells. One can also model nonperiodic sys-
tems within this framework by using the supercell ap-
proach, which has proved very successful within
independent-particle methods.

B. Bloch’s theorem for many-body systems

Bloch’s theorem is one of the cornerstones of the
independent-particle electronic structure theory of sol-
ids (see, for example, Ashcroft and Mermin, 1976). It
defines the crystal momentum used to label the eigen-
states in a periodic solid and allows the independent-
particle problem to be solved by considering only a
single primitive unit cell. The reduction of the problem
to one within the primitive cell is possible only in
independent-particle theories; in many-electron QMC
simulations Bloch’s theorem does not obviate the need
to solve the Schrödinger equation over the entire simu-
lation cell. However, Bloch wave functions have the
property that the local energy CT

21ĤCT has the full
translational symmetry of the Hamiltonian. Bloch func-
tions are normally complex and so cannot be used in
fixed-node DMC calculations. If the Hamiltonian has
time-reversal symmetry, however, the real part of a
complex Bloch eigenfunction is also an eigenfunction
(although not in general a Bloch function) and so this is
not a serious problem. The Bloch functions themselves
can always be chosen real if the Bloch wave vector is
equal to half a reciprocal lattice vector, and the use of
such trial functions is advantageous because the corre-
sponding fixed-node DMC energies are guaranteed to
be greater than or equal to the energy of the lowest
exact eigenstate with that wave vector (Foulkes, Hood,
and Needs, 1999). A real trial function also implies a
real local energy at every point in configuration space.

Bloch’s theorem arises from the translational symme-
try of the many-body Hamiltonian, which may be writ-
ten schematically as

Ĥ52
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21(
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where $Rs% is the set of translation vectors of the
simulation-cell lattice, the ionic potential V ion(r) has
(at least) the periodicity of $Rs%, N is the number of
electrons in the simulation cell, and the prime on the j
summation indicates that the j5i term is omitted when
Rs50. The electron-electron term includes interactions
with the electron ‘‘images,’’ which are copies of the elec-
trons displaced by simulation-cell lattice vectors Rs ;
these images model the potential due to the electrons
‘‘outside’’ the simulation cell. The ionic potential in-
cludes contributions from all the ions within the simula-
tion cell and their images. Strictly, the potentials in Eq.
(9.1) are divergent and additional conditions have to be
imposed to make them well defined as discussed in Sec.
IX.C. At the moment, however, we are interested only
in the translational symmetry, for which Eq. (9.1) will
suffice.

The invariance of Ĥ under the translation of any elec-
tron by a vector in $Rs% leads to the many-body Bloch
condition (Rajagopal, Needs, Kenny et al., 1994; Rajago-
pal et al., 1995):

Cks
~$ri%!5Uks

~$ri%!expS iks•(
i51

N

riD , (9.2)

where the simulation-cell periodic part, Uks
, is invariant

under the translation of any electron position by a vec-
tor in $Rs% and is antisymmetric under particle ex-
change. [We have omitted the band index in Eq. (9.2)
and elsewhere in this section.] The ‘‘simulation-cell
wave vector’’ ks may always be reduced into the first
Brillouin zone of the simulation-cell reciprocal lattice. If
the simulation cell has translation vectors N1a1 , N2a2 ,
and N3a3 , where the Ni are integers and the ai are the
primitive translation vectors of the underlying crystal
lattice, the first Brillouin zone of the primitive lattice
contains a grid of N1N2N3 points with the same (re-
duced) value of ks . This grid becomes finer as the simu-
lation cell is made larger and is analogous to the k-point
sampling grids used in independent-electron calcula-
tions. Note that the symmetries leading to the existence
of the good quantum number ks arise from the artificial
periodicity of the simulation-cell Hamiltonian; Eq. (9.2)
does not hold in a real solid.

As long as N1 , N2 , and N3 are not all equal to 1, the
simulation-cell Hamiltonian has more translational sym-
metry than assumed so far, since it is also unchanged
when all the electrons are simultaneously translated by
any primitive lattice vector Rp . This additional symme-
try is quite different from the translations of a single
electron considered in the discussion of ks and leads to a
second Bloch condition (Rajagopal, Needs, Kenny et al.,
1994; Rajagopal et al., 1995):

Ckp
~$ri%!5Wkp

~$ri%!expS ikp•
1
N (

i51

N

riD , (9.3)

where Wkp
is invariant under the simultaneous transla-

tion of all electrons by any primitive lattice vector Rp
and is antisymmetric under particle exchange. The
‘‘primitive wave vector’’ kp , which can be reduced into
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the first Brillouin zone of the primitive reciprocal lattice,
gives the physical crystal momentum measured in ex-
periments. The wave function can be chosen to satisfy
the simulation-cell and primitive-cell Bloch conditions
simultaneously, with ks and kp linked by the condition
that the wave functions of Eqs. (9.2) and (9.3) must be
identical if we translate all electrons by a simulation-cell
reciprocal-lattice vector (Rajagopal, Needs, Kenny et al.,
1994; Rajagopal et al., 1995). However, as long as the
simulation cell contains more than one primitive unit
cell, the two wave vectors are distinct labels of the
many-body Bloch wave function and both are required
to specify the full translational symmetry.

C. Periodic boundary conditions and Coulomb interactions

The potential energy of a macroscopic but finite sys-
tem containing charges (electrons and nuclei) qi at po-
sitions li may be written as
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where the sums extend over all charges in the system
and

Vi5 (
j(Þi)

qj

uli2lju
(9.5)

is the potential at li due to every charge except qi . The
potential energy of the QMC simulation cell is defined
by analogy with Eq. (9.4):

V~l1 ,l2 ,. . . ,lN!5
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i51
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where N is the number of charges in the simulation cell
and Vi is the potential felt by charge qi at position li in
an infinite periodic lattice of identical copies of the simu-
lation cell. Thus

Vi5(
Rs

( 8
j51

N qj

uli2~lj1Rs!u
, (9.7)

where the prime on the j summation indicates that the
j5i term is omitted when Rs50. The potential Vi de-
pends only on the positions of the few hundred charges
in the simulation cell and is at best a poor imitation of
the potential of a real solid, which depends on the posi-
tions of approximately 1023 electrons and ions.

Note that Eq. (9.7) includes the interactions of qi with
its own images; if it did not, the copies of the simulation
cell in the infinite periodic lattice would have a net
charge and the summation would be divergent. Unfortu-
nately, even when the self-interactions are included, the
sum in Eq. (9.7) is not absolutely convergent. Consider,
for example, the sum of contributions from simulation
cells lying entirely within a large but finite sphere. For
almost every configuration sampled in a QMC simula-
tion, the simulation cell will have a nonzero dipole mo-
ment, and hence, from the viewpoint of macroscopic
electrostatics, the surfaces of the sphere will be covered
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with polarization charges. The resulting depolarization
fields are well known to affect the total energy per unit
cell (see, for example, Kittel, 1966, Chap. 12), even in
the limit as the sphere size goes to infinity. If, instead of
spheres, we had considered larger and larger clusters of
a different shape (perhaps cubes or ellipsoids), the de-
polarization fields would have been different and we
would have obtained a different potential energy. Since
the depolarization potential contribution to Vi is not pe-
riodic, it is convenient to set the depolarization field to
zero. This can be thought of as surrounding the sphere
by a conducting medium and is sometimes known as
applying tin foil boundary conditions. The solution of
Poisson’s equation within the sphere with zero depolar-
ization field is unique to within a constant, which does
not affect the Coulomb energy of Eq. (9.6) because the
simulation cell has no net charge. This recipe therefore
produces an unambiguous result, called the Ewald en-
ergy. For a full mathematical discussion of the difficul-
ties associated with defining Coulomb potentials in peri-
odic systems see De Leeuw, Perram, and Smith (1980); a
simpler treatment is given by Fraser et al. (1996).

The Ewald energy may be calculated in a number of
different ways (see Sec. X.D), but QMC simulations of
solids generally use the original Ewald method (Ewald,
1921; Tosi, 1964; De Leeuw, Perram, and Smith, 1980)
or one of its variants (Rajagopal and Needs, 1994; Natoli
and Ceperley, 1995). The Ewald energy is written in the
form
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where VE(r2lj) is the potential at r due to a periodic
lattice of unit charges at positions lj1Rs plus a cancel-
ling uniform background, and

j5 lim
r→li

S VE~r2li!2
1

ur2liu
D (9.9)

is the potential at li due to its own images and back-
ground. The Ewald interaction VE is calculated using
the expression
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where Vs is the volume of the simulation cell, $Gs% is the
set of vectors reciprocal to $Rs%, and k is an adjustable
parameter that does not affect the value of VE and may
be chosen to optimize the convergence rates of the real
and reciprocal space sums.

Depolarization fields in real solids are almost always
negligibly small, either because the solid is unpolarized
or because the polarization charges are screened by
charged dust particles adhering to the surfaces. The
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Ewald method therefore gives the correct Hartree and
electron-ion energies in almost all cases. (These energies
are the same as those obtained using the k-space ap-
proach familiar from band-structure calculations.) The
electrons in real solids are in different places in every
unit cell, however, and so the correlations between elec-
trons are not the same as in a periodic array of charges.
The spurious correlations built into the Ewald interac-
tion produce large finite-size errors in the exchange-
correlation energy, the treatment of which is discussed
in the next section.

D. Coping with finite-size errors

1. Introduction

Using a finite simulation cell to model an extended
system introduces finite-size errors. These are one of the
major problems encountered in the application of accu-
rate many-body techniques to extended systems, and it
is vital that they be treated properly.

Finite-size errors also occur in independent-particle
calculations, but their nature is subtly different from the
many-body case. Within the supercell approach, a point
defect in an otherwise perfect crystal is modeled by tak-
ing a simulation cell containing a single point defect and
repeating the cell periodically throughout space. If the
simulation cell is too small the interactions between the
defects in neighboring simulation cells produce a signifi-
cant finite-size error. This type of finite-size error is
common to both independent-particle and many-body
calculations. A second source of error within
independent-particle calculations arises from inaccura-
cies in the integration over the Brillouin zone. This error
can also be thought of as a type of finite-size effect. Most
many-body simulations for periodic systems use only
one k point in the Brillouin zone of the simulation cell
(i.e., one value of ks), and therefore they suffer from
significant finite-size effects of this type.

There is, however, an additional important contribu-
tion to the finite-size errors in many-body calculations of
solids. The periodic Ewald interaction used to model the
electron-electron interactions depends on the size and
shape of the simulation cell, and this produces errors
that are not encountered in density-functional calcula-
tions. Hartree-Fock theory also requires an explicit
electron-electron interaction, and using the Ewald form
produces an analogous finite-size error in the exchange
term (but not the Hartree term). In density-functional
theory, however, the exchange-correlation energy is ob-
tained from a formula derived from DMC data that al-
ready contain an extrapolation to infinite simulation-cell
size (Ceperley and Alder, 1980). Density-functional cal-
culations for periodic systems therefore do not contain a
finite-size error arising from the Ewald interaction.

2. Finite-size correction and extrapolation formulas

What practical schemes are available for coping with
finite-size errors in QMC or other many-body calcula-
Rev. Mod. Phys., Vol. 73, No. 1, January 2001
tions? One idea is to use a finite-size correction formula
in which the energy for the infinite system is written as

E`5EN1~E`2EN!, (9.11)

where the subscript denotes the system size. A QMC
calculation for the N-particle system is then performed
to obtain an accurate value for EN , and the correction
term in brackets is approximated using a much less ex-
pensive scheme that can be applied to very large sys-
tems. An alternative is to carry out QMC calculations
for a range of different system sizes, fit the results to
some chosen function of N , and attempt to extrapolate
to infinite system size. Correction and extrapolation pro-
cedures can be combined to give

E`.EN1~E 8̀ 2EN8 !1F~N !, (9.12)

where the prime indicates that a less expensive scheme
is used and F(N) is an extrapolation function. The op-
timal form of F(N) depends on the method used to cal-
culate the correction term. Extrapolation is costly be-
cause it involves more calculations and is prone to
inaccuracy because one has to perform a fit with only a
few noisy data points. In designing a correction/
extrapolation procedure one therefore tries to make the
extrapolation term as small as possible.

Ceperley and co-workers (Ceperley, 1978; Ceperley
and Alder, 1987; Tanatar and Ceperley, 1989; Kwon,
Ceperley, and Martin, 1998) have successfully used an
extrapolation technique, fitting to the formula

EDMC,`.EDMC,N1a~T`2TN!1
b

N
, (9.13)

where a and b are parameters and T is the kinetic en-
ergy of the noninteracting electron gas. The b/N term
accounts for the finite-size effects arising from the inter-
action energy, and the difference of the parameter a
from unity accounts for the difference between the ki-
netic energies of the interacting and noninteracting sys-
tems. In general, the noninteracting gas correction can
be replaced by an independent-particle LDA or HF cor-
rection.

Fahy, Wang, and Louie (1990a) have used a finite-size
correction procedure in which the correction term is
evaluated within the LDA using an accurate Brillouin-
zone integration; however, this method does not include
a correction for the interaction energy. A related idea is
to average QMC results over different values of the
simulation-cell wave vector ks , which amounts to aver-
aging over the boundary conditions on the simulation
cell. This method has been used for lattice Hamiltonians
(see, for example, Valentı́ et al., 1991; Gros, 1992) and
was used in the VMC calculations of Kralik, Delaney,
and Louie (1998) to evaluate the Compton profile of Si
(see Sec. V.F). Averaging over ks has the advantage that
results from more approximate methods, such as the
LDA, are not required, but it is expensive and does not
include a correction for the interaction energy.

In practice, the Brillouin-zone integration and interac-
tion errors appear to be almost independent and can be
corrected for separately (Kent, Hood, et al., 1999). The
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Brillouin-zone integration errors are usually well ac-
counted for by corrections derived from LDA results,
but these corrections do not remove the finite-size errors
in the interaction energy. Recently, Fraser et al. (1996),
Williamson et al. (1997), and Kent, Hood, et al. (1999)
have shown how the finite-size errors in the interaction
energy may be reduced by replacing the Ewald interac-
tion by a ‘‘model periodic Coulomb’’ interaction. This
technique is very effective, reducing or even eliminating
the need for extrapolation. The model periodic Cou-
lomb interaction is described in Sec. IX.D.4.

3. Choosing the simulation-cell wave vector

The computational cost of an LDA calculation is pro-
portional to the number of k points sampled within the
primitive Brillouin zone. In a QMC calculation, how-
ever, the volume of the simulation cell is proportional to
the number of k points sampled within the primitive
Brillouin zone, and the computational cost increases ap-
proximately as the cube of the volume of the simulation
cell. This makes it much more difficult to reduce the
Brillouin-zone integration errors by improving the
k-point sampling. The problem may be ameliorated by
applying corrections calculated using a simpler method
such as the LDA, but one nevertheless expects to obtain
more accurate answers if the required corrections are as
small as possible. Since the Brillouin-zone integration
errors for a given simulation cell depend quite sensi-
tively on the choice of the simulation-cell wave vector
ks , it is important to choose ks carefully.

The problem of choosing ks is entirely analogous to
that of choosing ‘‘special k points’’ (Baldereschi, 1973;
Monkhorst and Pack, 1976) in band-structure calcula-
tions, and ideas from that field can be taken over di-
rectly into many-body calculations (Rajagopal et al.,
1994; 1995; Kent, Hood, et al., 1999). The theory of spe-
cial k points was first developed by Baldereschi (1973),
who defined the ‘‘mean-value point,’’ which is a k point
at which smooth periodic functions of the wave vector
accurately approximate their averages over the Brillouin
zone. However, since the Baldereschi mean-value point
is not equal to half a reciprocal lattice vector, one cannot
construct real Bloch wave functions at that point. A
more convenient and very successful approach is to
choose ks from among those points that allow real Bloch
wave functions according to the symmetrized plane-
wave test of Brillouin-zone integration quality intro-
duced by Baldereschi (1973). The relationship of this
approach to the widely used Monkhorst-Pack scheme of
Brillouin-zone integration has been discussed by Kent,
Hood, et al. (1999).

4. Interaction-energy finite-size effects

Where does the large finite-size effect in the Ewald
interaction energy come from? Since the LDA correc-
tions to the QMC energies are effective in removing the
finite-size errors in the noninteracting kinetic energy,
the interaction of the electrons with the external poten-
tial, and the Hartree energy, the remaining finite-size
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errors must arise from the exchange-correlation energy.
This can be written as the energy of interaction of the
electrons with their own exchange-correlation holes,
which are normally short ranged and quite insensitive to
the system size. The large finite-size effect must there-
fore arise from the dependence of the interaction itself
on the system size.

This conclusion can be rationalized by the following
analysis. Expanding the Ewald interaction around zero
separation gives

VE~r!5
1
r

1c1
2p

3Vs
rT
•D•r1OS r4

Vs
5/3D , (9.14)

where c is a constant, Vs is the volume of the simulation
cell, and the tensor D depends on the shape of the simu-
lation cell (for a cell with cubic symmetry D5I). The
value of the constant c does not affect the total energy
because the simulation cell is neutral. The other devia-
tions from 1/r make the Ewald interaction periodic, but
are also responsible for the spurious contribution to the
exchange-correlation energy (Fraser et al., 1996; Will-
iamson et al., 1997). For cubic cells these terms are posi-
tive for small r and so the exchange-correlation energy
is more negative than it should be. Since the leading
correction is proportional to the inverse of the
simulation-cell volume, the error per electron is in-
versely proportional to the number of electrons in the
cell. Detailed calculations have confirmed this picture
(Fraser et al., 1996; Williamson et al., 1997; Kent, Hood,
et al., 1999).

Clearly it would be desirable to remove this spurious
contribution to the exchange-correlation energy, but we
must remember that the Hartree energy is given cor-
rectly by the Ewald interaction. The key requirements
for a model Coulomb interaction giving small
interaction-energy finite-size effects in simulations using
periodic boundary conditions are therefore: (i) it should
give the Ewald interaction for the Hartree terms, and
(ii) it should be exactly 1/r for the interaction with the
exchange-correlation hole. Unfortunately, the only peri-
odic solution of Poisson’s equation for a periodic array
of charges is the Ewald interaction, which obeys crite-
rion (ii) only in the limit of an infinitely large simulation
cell.

This problem was solved by Williamson et al. (1997)
by abandoning the Ewald interaction and instead using a
model periodic Coulomb interaction that satisfies both
criteria,

Ĥe2e5(
i.j

f~ri2rj!

1(
i
E

WS
@VE~ri2r!2f~ri2r!#n~r!dr, (9.15)

where n is the electronic number density and

f~r!5
1
rm

. (9.16)
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The definition of the cutoff Coulomb function f involves
a minimum image convention whereby the interelectron
vector r is reduced into the Wigner-Seitz cell of the
simulation-cell lattice by removal of simulation-cell lat-
tice vectors, leaving a vector rm . This ensures that Ĥe2e
has the correct translational and rotational symmetries.
The second term of Eq. (9.15) is a mean-field-like one-
electron potential that accounts for the difference be-
tween the Hartree energies calculated using the Ewald
and model periodic Coulomb interactions. As in the case
of the Hartree potential in HF and density-functional
calculations, a double-counting correction has to be
added to the expression for the total electron-electron
interaction energy to prevent this term’s being counted
twice. The electron-electron energy as calculated with
the model periodic Coulomb interaction then consists of
the sum of the Hartree energy calculated with the Ewald
interaction and the exchange-correlation energy calcu-
lated with the cutoff interaction f (Williamson et al.,
1997). The mean-field-like potential depends on the
electron density, which could in principle be calculated
self-consistently; in practice, however, the LDA (or HF)
density is normally accurate enough to serve as a good
approximation.

Tests using the model periodic Coulomb interaction
have shown that it dramatically reduces the finite-size
effects in the interaction energy (Fraser et al., 1996; Wil-
liamson et al., 1997; Kent, Hood, et al., 1999). Wave
functions generated by variance minimization using the
Ewald and model periodic Coulomb interactions are al-
most identical, and so properties other than the energy,
such as pair-correlation functions, are hardly affected by
the choice of interaction. As the model periodic Cou-
lomb interaction gives the correct interaction between
the electrons at short distances, it may give a better ac-
count of, for example, the short-distance behavior of the
pair-correlation function, but this point has not yet been
tested by calculations.

X. COMPUTATIONAL ISSUES

A. Representation of the single-particle orbitals

It is very important to use accurate single-particle or-
bitals to form the Slater determinants in the trial wave
function. To this end we use sophisticated codes to per-
form the required density-functional and HF calcula-
tions such as the molecular Gaussian orbital packages
GAUSSIAN (Frisch et al., 1995) and GAMESS (Schmidt
et al., 1993), the molecular and solid CRYSTAL package
(Dovesi et al., 1996), and various plane-wave pseudopo-
tential packages. Within a QMC calculation itself the
evaluation of the trial wave function and its derivatives
can take up to half the computing time. It is therefore
necessary to develop efficient methods to evaluate
single-particle orbitals, Slater determinants, and Jastrow
factors. A central issue is how to represent the single-
particle orbitals. This question is logically separate from
the basis used in the HF and density functional calcula-
tions, although reexpansion in a different basis set is un-
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desirable because of the loss of accuracy. Because we
require the single-particle orbitals at points in real space,
the most natural procedure is to use a basis that is local-
ized in real space, so that the cost of evaluating the
single-particle orbitals will not increase rapidly with sys-
tem size. Tabulating the orbitals on a grid is feasible for
small systems, but for bigger systems the storage re-
quirements are too large. Plane-wave expansions are in-
efficient in most cases, but if there is a short repeat
length in the problem they can still be the best solution.
The best all round compromise appears to be to use an
expansion in Gaussian orbitals, which are reasonably
well localized in space and may be obtained from stan-
dard electronic structure packages.

B. Evaluation of the trial wave function

One of the main tasks in a QMC program is to evalu-
ate the ratio C(Rnew)/C(Rold) needed to calculate the
acceptance probability of a trial move from Rold to Rnew.
In our QMC calculations electrons are moved one at a
time and therefore Rold and Rnew differ in the position of
one electron only.

Consider a Slater-Jastrow wave function of the form

C~R!5eJ(R)D↑~r1 ,. . . ,rN↑!D↓~rN↑11 ,. . . ,rN!, (10.1)

where D↑ and D↓ are Slater determinants for the
spin-up and spin-down electrons, respectively, and
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How does this wave function change when the ith
spin-up electron is moved from ri

old to ri
new? Since the

spin-down Slater determinant does not alter, the wave-
function ratio may be written as
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where
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. (10.4)

Assuming that the matrix of cofactors corresponding to
the determinant D↑ is available, there are efficient algo-
rithms for evaluating q↑ in a time proportional to N . If
the trial move is accepted, the matrix of cofactors may
then be updated in a time proportional to N2. These
algorithms, which are well explained by Fahy, Wang,
and Louie (1990a), make use of the Sherman-Morrison
formula (see, for example, Press et al., 1992) and were
first used in QMC simulations by Ceperley, Chester, and
Kalos (1977). The contributions from the Jastrow factor
may also be evaluated in a time proportional to N .
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C. Evaluation of the local energy

Another important part of any Monte Carlo program
is the evaluation of the local energy

EL~R!5
ĤC~R!

C~R!
5

T̂C~R!

C~R!
1

V̂nlC~R!

C~R!
1V loc~R!,

(10.5)

where T̂ is the kinetic-energy operator, V loc(R) is the
local part of the potential energy, and V̂nl is the nonlocal
part arising from the pseudopotential. In DMC simula-
tions, in particular, the local energy determines the
branching ratio and has to be evaluated after every one-
electron trial move. This is a very time-consuming pro-
cess and so efficient algorithms are needed.

The evaluation of V loc(R) is in principle straightfor-
ward (although some subtleties connected with the use
of periodic boundary conditions were discussed in Sec.
IX.C). Efficient algorithms for evaluating Coulomb po-
tentials in periodic systems are discussed in Sec. X.D.
The treatment of the nonlocal pseudopotential term was
discussed in Secs. VIII.D and VIII.E.

The kinetic contribution to the local energy may be
decomposed into contributions from each electron,

K5(
i51
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Because of the exponential form of the Jastrow factor, it
is convenient to reexpress Ki in terms of the logarithm
of C:

Ki52Ti2uFiu2, (10.7)
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The three-dimensional vector Fi is proportional to that
part of the 3N-dimensional drift velocity vector vD asso-
ciated with electron i . The drift velocity plays an impor-
tant role in the DMC algorithm, as explained in Sec.
III D. Integration by parts shows that

^Ki&5^uFiu2&5^Ti&, (10.10)

where the angular brackets denote averages over the
probability density uC(R)u2. The kinetic energy may be
evaluated using any of these three estimators, but ^K& is
the most useful because it has the lowest variance.
Moreover, when ^K& is added to the average of the po-
tential energy, the variance of the sum tends to zero as
the wave function approaches an eigenstate. Equation
(10.10) holds for any trial function C(R) and provides a
very useful consistency check of QMC programs. Ti and
Fi (and hence Ki and vD) may be evaluated efficiently
using the cofactor methods mentioned in Sec. X.B.
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D. Efficient treatment of the Coulomb interaction

As explained in Sec. IX.C, the Coulomb energy of the
simulation cell is defined in terms of the Ewald potential
VE(r), which is obtained by solving Poisson’s equation
subject to periodic boundary conditions. The Ewald po-
tential may be calculated using the original Ewald
method (Ewald, 1921; Tosi, 1964; De Leeuw, Perram,
and Smith, 1980), which was invented long before the
age of computers but is still in widespread use today.
The idea is to write VE(r) as the sum of two separate
series, one in real space and one in k space, both of
which can be made to converge fairly rapidly. In QMC
simulations the electrons are moved one at a time and so
it is necessary to calculate VE(r) at a point in space, not
just the total potential energy of the cell. This makes
other well-known methods such as the particle-particle
and particle-mesh schemes (Hockney and Eastwood,
1981) and Greengard’s multipole algorithm (Greengard
and Rokhlin, 1987) less effective. In addition, Green-
gard’s method is restricted to Coulomb potentials, and,
although O(N), is inefficient unless the simulation cell
contains at least several thousand particles. Conse-
quently, the original Ewald method or variants thereof
are normally used. We favor the efficient variants devel-
oped by Rajagopal and Needs (1994) and by Natoli and
Ceperley (1995) based on an optimized division between
the real- and k-space summations.

E. Scaling with the number of particles

The scaling laws discussed in Sec. X.B were for a
move of a single electron. We now address the scaling of
the total computational cost with N . Consider, for ex-
ample, a Monte Carlo calculation of the total energy.
The variance srun

2 of the calculated average energy is
equal to s2/M , where M is the number of statistically
independent samples of EL and s2 is the variance of the
sampled values. The total computer time Trun required
by the simulation is MTsample , where Tsample is the time
to obtain a single statistically independent sample of
EL . Hence

Trun5
s2Tsample

srun
2 . (10.11)

The local energy may always be written as a sum of
contributions from each electron, and in large enough
systems these contributions are approximately indepen-
dent. The value of s2 is therefore proportional to the
number of electrons N . For Tsample we can write

Tsample}N21«N3, (10.12)

where the N2 term comes from (i) evaluating all N
single-particle orbitals and their derivatives at the N
new electron positions (using localized basis functions
such as Gaussians), (ii) evaluating the Jastrow factor,
and (iii) evaluating the interaction energy. The N3 con-
tribution arises from the N updates of the matrix of co-
factors, each of which takes a time proportional to N2.
Because « is of the order of 1024 the quadratic term
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dominates in practice. Remembering the factor of N
from s2, the total computer time required to reach a
given target variance srun

2 is therefore

Trun}N3. (10.13)

F. QMC on parallel computers

Monte Carlo calculations are inherently parallel in na-
ture. At their most basic they involve the calculation of a
large set of independent random numbers and then the
averaging of a set of results produced by each of these
random numbers. Coupled with the fact that QMC cal-
culations, especially for solids, are relatively expensive
to perform on today’s workstations, they are ideal for
parallel architecture machines, which offer two to three
orders of magnitude more computational power. In fact,
the major proportion of the work highlighted in Secs. V
and VI was carried out on massively parallel computers,
which are crucial for studying these computationally de-
manding problems.

It is important that any practitioner of electronic
structure theory acquire the ability to use parallel com-
puters effectively. Simply speaking, a broad definition of
a parallel computer (encompassing machines with
hundreds/thousands of CPU’s, networked workstations,
multiprocessor workstations, etc.) is that it is a machine
with a set of processors able to work cooperatively to
solve a computational problem. Our QMC codes have
been ported to both symmetric multiprocessing and
massively parallel processing platforms. Interprocessor
communications involving sending packets of data be-
tween processors are carried out using the message-
passing interface (MPI) standard (Snir et al., 1998). Key
issues for optimal performance include tuning code on a
single node as well as optimizing the distribution of
work between nodes. Important factors such as the
proper arrangement of data to maximize memory access
to registers from primary and secondary cache and main
memory strongly influence the performance of pro-
grams, especially in large systems.

Central to any Monte Carlo computation is the effi-
cient generation of random numbers. Although it is dif-
ficult to generate truly random numbers using a com-
puter, many deterministic techniques exist for
generating sequences of so-called pseudorandom num-
bers (Press et al., 1992; Knuth, 1997) that pass most of
the obvious statistical tests for randomness. On parallel
computers, the process of generating random numbers
becomes more complicated because there are many con-
currently executing tasks. Recently, Ceperley, Srini-
vasan, and Mascagni have developed a scalable library
for pseudorandom number generation, called SPRNG
(for scalable parallel random-number generators), which
is freely available on the Web (URL:
www.ncsa.uiuc.edu/Apps/SPRNG). The library consists
of a collection of generators gathered together into a
single easy-to-use package that runs on almost any com-
puting architecture. In general, however, it is not pos-
sible to specify a set of tests sufficient to guarantee that
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the random numbers in a sequence are statistically inde-
pendent samples of a prescribed probability distribution.
As a result, there is always the possibility that results
obtained using a Monte Carlo simulation may be arti-
facts of the random-number generator used. In practice,
the best way to ensure that this is not the case is to rerun
the calculations with different generators.

The central idea in doing QMC on massively parallel
processors involves one processor orchestrating the
whole simulation, i.e., the ‘‘master-slave’’ paradigm. In
VMC, each processor independently runs a simulation
and accumulates its own set of observables; the observ-
ables from different processors are gathered, averaged,
and written out by the master processor at the end of the
run. The DMC algorithm described in Sec. III.D is also
intrinsically parallel. Since DMC simulations require an
order of magnitude more computer time than compa-
rable VMC simulations, the argument for using parallel
computers is even more compelling. The ensemble of
walkers is distributed across the nodes of the parallel
machine and each processor carries out the various
stages of the DMC algorithm (the diffusion, drift, and
creation/annihilation of walkers) on its own subset. Af-
ter all the walkers have been advanced for a block of
time steps, the accumulated mean walker energies from
all the nodes are gathered and used to update the trial
energy. It is important to load balance the algorithm by
keeping the numbers of walkers on different nodes ap-
proximately equal. Like VMC, the parallel DMC algo-
rithm achieves almost linear scaling on machines with a
few hundred nodes.

XI. CONCLUSIONS

As the previous sections have demonstrated, QMC
methods have been through a remarkably productive
period during the last 10 or 12 years. A number of the-
oretical and algorithmic improvements, such as the use
of pseudopotentials in both VMC and DMC, the inves-
tigation and accurate correction of finite-size effects, and
the adoption of better optimization methods and sam-
pling techniques, have raised the usefulness of QMC to
a new level. These advances have made possible ground-
breaking applications such as the evaluation of band
gaps in insulating solids, studies of exchange-correlation
holes, simulations of the jellium surface, calculations of
the properties of defects in Si, and investigations of the
geometries of Si and C clusters.

We hope that we have been able to show that QMC is
becoming a practical and powerful alternative to more
traditional electronic structure methods. The most im-
portant characteristics and advantages of the QMC
methodology can be summarized as follows:

(a) it gives a direct and accurate wave-function-based
treatment of quantum many-body effects;

(b) it is a very general approach, applicable to solids
and molecules and able to calculate almost any
ground-state expectation value, including energies
and static correlation functions;
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TABLE V. Comparison of methods.

Method Ecorr

Ecoh/bind
% errors

Scaling with #
of electrons

Total time
for C10

HF 0 '50% N3 14
LDA N/A 15–25% N3 a 1
VMC '85% 2–10% N31«N4 b 16
DMC '95% 1–4% N31«N4 b 300
CCSD(T)c '75%d 10–15%d N7 1500d

aLDA algorithms with scaling proportional to N have been proposed.
b«'1024.
cCoupled cluster with single and double substitutions, including triples noniteratively.
dWith a 6-311G* basis set; in the limit of infinite basis set and order of excitations the coupled-

cluster method is formally exact.
(c) the N3 scaling of the computational cost is very
favorable when compared with other correlated
wave-function methods;

(d) it has the significant computational advantages of
easily achieved scalability on parallel architectures
and low storage requirements;

(e) the DMC method does not suffer from the basis set
errors inherent in other correlated wave-function
methods;

(f) it has a track record of unique calculations: the ho-
mogeneous electron gas, superfluidity in He,
exchange-correlation holes and energies, etc.

To put the QMC methods into a broader perspective
we provide a comparison of methods in Table V. This
table compares the variational and diffusion Monte
Carlo (VMC and DMC), Hartree-Fock (HF), local-
density approximation (LDA), and coupled-cluster
(CC) approaches. The comparison, which is by no
means exhaustive, is based on results gathered from the
literature as well as on our own tests, which are mostly
for sp systems with a limited number of elements such
as C, N, H, and Si. The timings given are typical, but the
relative speeds of the different methods could easily
vary by a factor of 3 or more depending on the pro-
grams, computers, and implementations used. The fol-
lowing quantities are listed:

(a) the percentage of the valence correlation energy
(Ecorr5Eexact2EHF) recovered, estimated by com-
parison with high-accuracy calculations for small
systems and by combining HF, correlated atomic,
and experimental data for larger systems;

(b) the errors in binding or cohesive energies;
(c) the scaling of the computational cost to calculate

the total energy with the number of electrons;
(d) the actual computational time for calculations on a

C10 cluster: the GAMESS code (Schmidt et al., 1993)
was used for the HF calculations and GAUSSIAN
(Frisch et al., 1995) for CCSD(T); the target QMC
error bar was 0.01 eV/atom and the absolute unit
of cpu time was 90 seconds on a Cray C90 proces-
sor.

The coupled-cluster results are quoted for 6-311G* ba-
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sis sets and the SD(T) level of excitations, which was the
largest affordable run for C10 . The DMC method is con-
siderably more computationally demanding than the HF
and LDA methods, but can achieve much higher accu-
racy. For C10 clusters, DMC is both more accurate and
less computationally demanding than CCSD(T). Quan-
tum Monte Carlo calculations also scale much better
with system size than CCSD(T), and therefore we be-
lieve that QMC is the best available correlated wave-
function approach for calculating the energies of solids
and reasonably large molecules.

Quantum Monte Carlo methods also have limitations
and problems, the most important of which are as fol-
lows:

(a) it is demanding to calculate first and second deriva-
tives of the total energy with respect to the atomic
positions, and hence to estimate interatomic forces
and force constants;

(b) the results are obtained with a statistical error bar
that decays only as the inverse square root of the
computer time;

(c) for solids the results also suffer from systematic
finite-size errors;

(d) only limited information about excited states is
available;

(e) in some cases the impact of the fixed-node approxi-
mation can bias the results.

All of these problem areas are topics of current re-
search. For example, the calculation of derivatives using
QMC techniques is being investigated by several re-
search groups and significant advances can be expected.
The statistical nature is of course inherent in QMC
methods, and while the development of better trial wave
functions and computers will reduce the attainable error
bars, QMC methods will remain expensive compared
with more approximate methods such as HF and LDA.

What are the main tasks in a DMC calculation? In
Table VI we outline the various tasks together with their
human and computer time demands. The table shows
that the activities most demanding of human time are
the generation of the single-particle orbitals and the op-
timization of the many-body wave function. This high-
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TABLE VI. Human and computational costs of a typical DMC calculation.

Human time Task Computer time

Choice of basis set,
10% pseudopotential, etc. 0%

Calculation of HF and/or
40% post-HF orbitals 10%

Many-electron trial wave
40% function optimization 20%
10% DMC 70%
lights the importance of integrating quantum-chemistry
and condensed-matter electronic-structure software
packages with QMC methods, and of improving optimi-
zation methods and developing more efficient functional
forms for variational wave functions. The computer time
is dominated by the DMC calculations themselves,
which, however, require little human intervention.

As Table V illustrates, VMC calculations using Slater-
Jastrow wave functions with ;30 variational parameters
can recover between 75 and 85 % of the valence corre-
lation energy, and DMC calculations can recover
roughly 95%. The remaining 5% is the fixed-node error.
Although no exact solution to the sign problem is in
sight, it has been shown that it is possible to decrease
fixed-node errors significantly, and there is reason to
hope that in the future we may be able to do calculations
in which the fixed-node errors, although still present, are
negligible (say, less than 1% of the correlation energy).
In any case, for systems with more than a few atoms,
fixed-node DMC is already much more accurate than
any competing method.

It is now becoming apparent that the accuracy of the
VMC and DMC methods is systematic: the same accu-
racy pattern has been demonstrated for atoms, mol-
ecules, solids, and surfaces. This observation is perhaps
the most important outcome of recent work on QMC; a
decade ago there was no general expectation that QMC
would be systematically accurate and no clear computa-
tional evidence to justify such a conclusion.

If high accuracy is required, QMC is already the
method of choice for tackling large quantum many-body
problems. In very large systems such as solids, it is also
the only practical method based on many-body corre-
lated wave functions, the variational principle, and the
original many-electron Schrödinger equation. It is obvi-
ous, however, that much remains to be done to make
QMC as flexible and easy to use as traditional electronic
structure methods. This will require a sizable investment
in the further development of methods and algorithms,
but we are confident that the results will justify the ef-
fort.

The largely unanticipated success of QMC simulations
of solids is beginning to change the way the electronic
structure community thinks about electronic correlation.
With its emphasis on many-electron wave functions and
probabilities, QMC has shown that it is possible to study
interacting electrons in real solids using very direct com-
putational techniques; there is no need to resort to per-
., Vol. 73, No. 1, January 2001
turbation theory or mean-field approximations. This re-
alization is slowly overturning decades of accepted
wisdom.
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