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Pairing symmetry in the cuprate superconductors is an important and controversial topic. The recent
development of phase-sensitive tests, combined with the refinement of several other
symmetry-sensitive techniques, has for the most part settled this controversy in favor of
predominantly d-wave symmetry for a number of optimally hole- and electron-doped cuprates. This
paper begins by reviewing the concepts of the order parameter, symmetry breaking, and symmetry
classification in the context of the cuprates. After a brief survey of some of the key
non-phase-sensitive tests of pairing symmetry, the authors extensively review the phase-sensitive
methods, which use the half-integer flux-quantum effect as an unambiguous signature for d-wave
pairing symmetry. A number of related symmetry-sensitive experiments are described. The paper
concludes with a brief discussion of the implications, both fundamental and applied, of the
predominantly d-wave pairing symmetry in the cuprates.
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I. INTRODUCTION

The normal-to-superconducting phase-transition tem-
perature (Tc) of a superconductor marks the inception
of a macroscopic quantum phase-coherent pair state. It
is well established that in the conventional low-Tc super-
conductors (e.g., Pb, Al, Nb, and Nb3Sn), the phonon-
mediated many-body electron-electron interaction leads
to spin-singlet pairing with s-wave symmetry (Bardeen,
Cooper, and Schrieffer, 1957). On the other hand, the
internal structure of the Cooper pairs in the high-Tc cu-
prate superconductors was a topic of intense debate for
almost ten years after the discovery of high-temperature
superconductivity (Bednorz and Müller, 1986). Recently
a new class of pairing symmetry experiments have al-
tered this situation significantly. These phase-sensitive
tests, as well as a number of other techniques for mea-
suring the magnitude of the energy gap, have firmly es-
tablished predominantly d-wave pairing symmetry in a
number of high-Tc cuprate superconductors. In this re-
view, we shall survey the current status of the field and
assess the implications of d-wave pairing for our under-
standing of high-temperature superconductivity and for
its applications.

A. Evidence for Cooper pairing in cuprates

Given the unprecedented superconducting critical
temperatures discovered in various cuprate systems (Wu
et al., 1987; Chu et al., 1993), early researchers had cause
969/72(4)/969(48)/$24.60 ©2000 The American Physical Society
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to question whether Cooper pairing operates as in con-
ventional superconductors. The most direct evidence for
electronic pairing in cuprate superconductors was pro-
vided by a study of the magnetic-flux states of a poly-
crystalline YBa2Cu3O72d (YBCO) ring, monitored with
a SQUID1 magnetometer (Gough et al., 1987; Fig. 1).
The data showed that the magnetic flux F threading
through the ring was quantized in multiples of the basic
flux quantum Fo5h/2e52.07310215 Wb. This is the in-
teger flux-quantum effect:

F5nFo ~n50,1,2, . . . !. (1)

In addition to proving that the electronic charges are
paired in the superconducting state, this experiment also
established the existence of long-range quantum phase
coherence of the pair wave function through thousands
of individual grains around the YBCO ring. Since then,
integer flux quantization has been demonstrated many
times, in SQUID-related and other experiments, involv-
ing single-phase YBCO and other cuprate systems, and
at liquid nitrogen temperatures and above (Koelle et al.,
1999).

Persistent current and integer flux quantization were
also demonstrated in a YBCO ring interrupted by a seg-
ment of Nb, a conventional s-wave superconductor
(Keene et al., 1989). This experiment implicitly indicated
that there is no difference in parity between the pair
wave functions in a high-Tc cuprate superconductor
(e.g., YBCO) and a low-Tc conventional superconductor
(e.g., Nb). The effect of parity in Josephson junctions is
reviewed by Fulde et al., 1988. Other evidence for sin-
glet pairing includes the results of Andreev-reflection
(Hoevers et al., 1988) and spin susceptibility measure-
ments (Takigawa et al., 1989; Barrett et al., 1990).

In view of this experimental evidence, we shall focus
on spin-singlet Cooper pairing in the following discus-
sion.

1SQUID stands for superconducting quantum interference
device. For a recent review on SQUID’s and their applications,
see Koelle et al. (1999).

FIG. 1. The magnetic flux threading through a polycrystalline
YBCO ring, monitored with a SQUID magnetometer as a
function of time. The flux jumps occur in integral multiples of
the flux quantum F05h/2e . Adapted from Gough et al.
(1987).
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B. Order parameter in superconductors

The order parameter is a very useful concept in de-
scribing the ordered state of various phase transitions
(see White and Geballe, 1979; Anderson, 1984). The su-
perconducting pair state is characterized by an order pa-
rameter that represents the extent of macroscopic phase
coherence. The concept of the superconducting order
parameter was first introduced by Ginzburg and Landau
(1950) in their phenomenological description of the su-
perconducting state, based on the Landau theory of
second-order phase transitions.

In the Ginzburg-Landau formalism, a complex
position-dependent order parameter C(r)5uC(r)ueiw(r)

describes the macroscopic properties of a superfluid con-
densate. The temperature-dependent order parameter
C(r) is characterized by a phase w(r) and a modulus
uC(r)u. The quantity uC(r)u2 is a measure of the local
superfluid density ns(r), suggesting that C(r) is a wave
function. To study the thermodynamic and magnetic
properties of superconductors, the total free energy Fs
with respect to its value in the normal state Fn is ex-
panded in even powers of the order parameter C(r) and
its spatial gradients:

Fs5Fn1E d3 rFauC~r!u21
1
2

buC~r!u4

1(
i ,j

KijS ]C~r!

]ri
D S ]C~r!

]rj
D1fm1 . . .G , (2)

where the second-rank tensor Kij is reduced to the sca-
lar \2/2m for superconductors with a cubic crystal struc-
ture. The magnetic-field term fm is a function of C(r),
the vector potential A(r), the magnetic induction B(r),
and the applied magnetic field H(r). A minimization of
the free-energy functional (2) with respect to variations
in C(r) and A(r) leads to the two well-known
Ginzburg-Landau differential equations, from which the
order parameter can be defined. With appropriate
boundary conditions, various properties of the most
probable superconducting state can be calculated. There
is a vast literature on the application of Ginzburg-
Landau theory and its extensions to a variety of super-
conducting systems (Cyrot, 1973; Tinkham, 1996).

The link between the Ginzburg-Landau theory and
the microscopic theory of superconductivity was estab-
lished by Gor’kov (1959). In the vicinity of Tc , the
Ginzburg-Landau equations can be derived from the
BCS theory. The Ginzburg-Landau order parameter
C(r) is identified with the pair wave function and is
proportional to the energy gap D(r). In principle, the
validity of the Ginzburg-Landau theory should be lim-
ited to a temperature range near Tc , due to the inherent
assumption that the order parameter is small and slowly
varying close to the phase transition. In practice, the
Ginzburg-Landau theory is often applied well beyond its
range of validity with good results. There is justification
for this unexpected success in terms of the rigidity of the
superconducting wave function, and other theoretical ar-
guments. As far as pairing symmetry is concerned, the
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energy gap D(r) as the microscopic identity of the
Ginzburg-Landau order parameter is expected to be
valid throughout the whole temperature range below
Tc , as the superconducting order parameter, defined at
either a phenomenological or a microscopic level, repre-
sents the degree of long-range phase coherence in the
pair state.

An essential condition of macroscopic quantum phe-
nomena such as superfluidity and superconductivity is
the occurrence of off-diagonal long-range order, a con-
cept that has no classical analog (Yang, 1962; Anderson,
1966a). The off-diagonal long-range order of a many-
particle system stems from the existence of certain par-
ticle correlations, which can be expressed as a nonzero
expectation value of the two-particle reduced density
matrix:

r2~r,r8!5^Ca
† ~r!Cb

† ~r!Ca~r8!Cb~r8!& , (3)

where Ca
† (r) and Ca(r) are the particle field operators2

for creating and annihilating a particle at a relative co-
ordinate r with (pseudo-) spin state k↑ . For the case of
spin-singlet pairing (a52b), the pair-correlation func-
tion can be expressed by

r2~r,r8!5^C↓
†~r!C↑

†~r!&^C↓~r8!C↑~r8!& (4)

in the limit the pair separation ur2r8u becomes infinite.
It is clear from Eq. (4) that a finite value of the two-

particle density matrix is a sure signature for the exis-
tence of pair correlation. The off-diagonal long-range
order in superconductors then corresponds to a nonva-
nishing anomalous expectation value of the local pair
amplitude ^C↓

†(r)C↑
†(r)&, which is indeed consistent

with the order parameter defined in the Ginzburg-
Landau formalism. In momentum-space representation,
off-diagonal long-range order corresponds to a nonzero
expectation value of ^ck↑cÀk↓&}C(k), where the pair
wave function C(k) is a complex scalar function of wave
vector k, and is related to the gap function Dk through
C(k)5Dk/2Ek , where Ek is the quasiparticle excitation
energy.

Macroscopic phase coherence is one of the most re-
markable characteristics of the BCS superfluid conden-
sate and is inherently related to the fact that particle
number in the BCS pair state is not well defined. It is a
manifestation of the off-diagonal long-range order aris-
ing from BCS-type pairing. With the condition of off-
diagonal long-range order fulfilled, one can derive mac-
roscopic quantum phenomena such as flux quantization
and the Meissner effect without needing to know the
details of the pairing mechanism (Yang, 1962). Further-
more, it is recognized that off-diagonal long-range order
is a property not only of BCS superconductors but also
of other alternative types of superconductivity (Allen,
1990).

2The field operator C↑(r) can be expressed by C↑(r)
5(kCk(r)ck↑ , where ck↑ is the second-quantized annihilation
operator for state k↑ .
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In short, off-diagonal long-range order exists in all su-
perconductors. The use of the pair amplitude
^ck↑c2k↓& ;Dk as the order parameter captures the es-
sence of the macroscopic phase-coherent superconduct-
ing state. The gap parameter is well defined, and its sym-
metry can be experimentally determined, even in the
absence of detailed knowledge about the microscopic
origin of superconductivity.

C. Broken symmetry and symmetry classification of the
superconducting state

The concept of broken symmetry permeates nearly
every branch of modern physics (Michel, 1980; Ander-
son, 1984). For example, the onset of any long-range
order in condensed matter is always accompanied by a
lowering in symmetry (Landau, 1957). As in any second-
order phase transition, the symmetries above and below
the transition from normal to superconducting state are
related,3 due to the fact that the symmetry breaking
across the transition is continuous. In this context, the
order parameter is just a measure of the amount of sym-
metry breaking in the ordered state. The symmetry
group H describing the superconducting state must be a
subgroup of the full symmetry group G describing the
normal state:

G5X3R3U(1)3T for T.Tc (5)

and

H,G for T<Tc , (6)

where X is the symmetry group of the crystal lattice, R
the symmetry group of spin rotation,4 U(1) the one-
dimensional global gauge symmetry, and T the time-
reversal symmetry operation. The existence of off-
diagonal long-range order in BCS superconductors
below Tc leads to a phase-coherent pair condensate in
which the global gauge symmetry is spontaneously bro-
ken. Macroscopic phase-coherent quantum phenomena
such as the Meissner effect, flux quantization, and the
Josephson effects are all manifestations of the global
gauge symmetry violation in the superconducting state.
In an unconventional superconductor, one or more sym-
metries in addition to U(1) are broken at Tc . The de-
gree of symmetry breaking involved in the pair state is
reflected in the symmetry properties of the order param-
eter.

One can gain insight into the nature of the pair-
condensate state based on symmetry considerations
alone. For example, the parity of a superconductor with
inversion symmetry can be specified using the Pauli

3There are possibly exceptions in certain one-dimensional
systems (Anderson, 1984).

4In crystals with strong spin-orbit coupling such as the heavy-
fermion systems, the spins can be considered as frozen into the
crystal lattice. Rotation in spin space is coupled to that in co-
ordinate space. Therefore spin rotation is no longer a separate
symmetry.
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principle. The crystal structures of existing bulk super-
conductors, including the heavy-fermion and cuprate
systems, are all characterized by a center of inversion.
Therefore superconductors can be classified via the par-
ity of the pair state: The spin-triplet state (total spin S
51) has a superconducting order parameter (gap func-
tion) with odd parity; the spin-singlet pair state (S50)
corresponds to an orbital pair wave function C(k)
}D(k) with even parity [i.e., D(k)5D(2k)]. Due to the
absence of inversion symmetry close to a surface, the
mixing of singlet and triplet pair states induced by spin-
orbit interaction, which may be important in heavy-
fermion superconductors, can result in an observable
nonlinear magneto-optical effect (Schmalian and Hüb-
ner, 1996). In cuprate superconductors, the spin-orbit
coupling is expected to be relatively small. Thus the
spin-singlet and -triplet pair states are well defined.

Further classification of superconductors requires a
knowledge of possible lattice symmetries, X in Eq. (5),
that might be broken in the superconducting state. This
assumes5 that the symmetry of the superconducting pair
wave function reflects that of the underlying crystal lat-
tice.

It is a general result of the Landau theory of second-
order phase transitions that the order parameter de-
scribing the transition must transform according to one
of the irreducible representations of the symmetry group
of the high-temperature phase (Landau and Lifshitz,
1979). This must be true for superconducting phase tran-
sitions, which are second order in the absence of a mag-
netic field. The forms of the order parameter can be
categorized for various pair-condensate systems by de-
composing the representation of the normal-state sym-
metry group into irreducible representations (Annett,
1991).

Point-group symmetry classification6 of pair states has
been extensively studied in superfluid He (Blount,
1985), heavy-fermion superconductors (Ozaki et al.,
1985, 1986; Ueda and Rice, 1985; Volovik and Gor’kov,
1985; Gor’kov, 1987; Fulde et al., 1988; Sigrist and Ueda,
1991; Yip and Garg, 1993; Sauls, 1994), and also in cu-
prate superconductors (Sigrist and Rice, 1987; Annett
et al., 1990, 1996; Annett, 1991; Li et al., 1993; Wenger
and Östlund, 1993; Jha and Rajagopal, 1997).

The underlying microscopic pairing mechanism must
be known to determine which of the candidate pair
states prevails in a given crystal structure. Even without
such knowledge, the gap function can be expressed as a

5Strictly speaking, there is no a priori reason to rule out an
order parameter with a symmetry lower than that of the crystal
translation and point-group operations. Indeed, such a possi-
bility has been mentioned (Volovik and Gor’kov, 1985) but
has not been actively investigated.

6Nearly all group-theoretic classifications of superconducting
states are based on point-group symmetry. There are excep-
tions when translational invariance is broken. For example, the
presence of spin-density waves in certain heavy-fermion super-
conductors reduces the number of possible pair states (Ozaki
and Machida, 1989; Annett, 1991).
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linear combination of the basis functions (xm
j ) of the

irreducible representation (G j) that corresponds to the
highest Tc of all possible forms of the order parameter:

D~k!5 (
m51

l j

hmxm
j ~k!, (7)

where l j is the dimensionality of G j, and the complex
number hm is invariant under all symmetry operations of
the normal-state group G in Eq. (5). The expansion co-
efficients hm can be used to construct the Ginzburg-
Landau free energy in Eq. (2), for example.

Yip and Garg (1993) have shown that the basis func-
tions xm

j can always be selected to be real, so that hm* hm

will contain information about the time-reversal symme-
try. They further proved that time-reversal symmetry
can be broken only when the representation is multidi-
mensional.

The basis functions of the irreducible representations
for various symmetry groups are well tabulated in the
literature (Volovik and Gor’kov, 1985; Annett, 1991; Si-
grist and Ueda, 1991) for various crystal structures.7 In
the following, we shall list the basis functions and other
symmetry properties of spin-singlet even-parity pair
states in two crystal structures that are especially rel-
evant to cuprate superconductors.

1. Tetragonal crystal lattice

Cuprate superconductors such as La22xSrxCuO4
(LSCO), Tl2Ba2CaCu2O8 (Tl-2212), HgBa2CaCu2O6
(Hg-1212), and some YBa2Cu3O7 (YBCO)-type com-
pounds with significant cation substitution have a tetrag-
onal crystal structure with point-group symmetry D4h .
Allowed pair states for a tetragonal superconductor are
listed in Table I for spin-singlet even-parity pairing un-
der the standard group-theoretic constraints (Annett
et al., 1990). The notation in Tables I and II is adopted
from Tinkham (1964). The superconducting order pa-
rameter should transform like the basis function of an
irreducible representation of the relevant point group.
However, the basis function is not necessarily unique
(Yip and Garg, 1993). An example is the case of the A1g
(s-wave) pair state in Table I. Each of the four one-
dimensional irreducible representations corresponds to
a single, scalar gap function of complex numbers. There-
fore these pair states should exhibit only one supercon-
ducting transition. For the two-dimensional representa-
tion (Eg), there are three possible states characterized
by different residual symmetries (see Table I). Of the

7The crystal structures of cuprates have been intensively in-
vestigated (Shaked et al., 1994). The atomic arrangement in
this class of perovskite oxides is layered, with alternating CuO2
plane and charge reservoir blocks. The presence of Cu-O
chains (as in YBa2Cu3O7) or incommensurate superlattice
modulation in Bi2O2 layers (as in Bi2Sr2CaCu2O8) results in
the orthorhombic variant of the basic tetragonal structure.
Thus the crystal structure of the cuprates can be broadly di-
vided into two categories: a tetragonal lattice with point-group
symmetry D4h , and an orthorhombic lattice with D2h .
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three states of Eg , only Eg(1,i) has broken time-
reversal symmetry. The gap function D(k) for each pair
state can be expanded as a function of kx , ky , and kz ,
the wave-vector components along the principal axes in
the Brillouin zone (Wenger and Östlund, 1993), using
the basis functions listed in Table I. For example

Ds~k!5Ds
o1Ds

1~cos kx1cos ky!1Ds
2 cos kz1¯ , (8)

Dg~k!5Dg
o~sin 2kx sin ky2sin 2ky sin kx!1¯ , (9)

Ddx22y2~k!5Ddx22y2
0 ~cos kx2cos ky!1¯ , (10)

Ddxy
~k!5Ddxy

0 ~sin kx sin ky!1¯ , (11)

De~k!5De
o sin kz~sin kx6i sin ky!1¯ . (12)

With the exception of the s-wave pair state, the order
parameters have basis functions with node lines. How-
ever, the number and the location of the nodes at the
Fermi-surface depends on the Fermi-surface topology,
as well as the band filling of a given band structure
(Chen et al., 1993).

In addition to the pure states listed in Table I, the
order parameter of various mixed pair states can be
formed by combining a real subcomponent from one 1D
representation with an imaginary subcomponent from
another 1D representation. Following Wenger and Ös-
tlund (1993), the nodeless mixed pair states are

Ds~k!1iDg~k!, (13)

Dg~k!1iDdx22y2~k!, (14)

TABLE I. Spin-singlet even-parity pair states in a tetragonal
crystal with point group D4h .

Wave-
function
name

Group-
theoretic
notation,

Tj

Residual
symmetry

Basis
function

Nodes

s wave A1g D4h3T 1,(x21y2),z2 none
g A2g D4@C4#3Ci3T xy(x22y2) line

dx22y2 B1g D4@D2#3Ci3T x22y2 line
dxy B2g D4@D28#3Ci3T xy line

e(1,0) Eg(1,0) D4@C28#3Ci3T xz line
e(1,1) Eg(1,1) D2@C29#3Ci3T (x1y)z line
e(1,i) Eg(1,i) D4@E#3Ci (x1iy)z line

TABLE II. Spin-singlet even-parity pair states in an ortho-
rhombic crystal (point group D2h).

Group-
theoretic
notations

Residual
symmetry

Basis
function

Nodes

A1g D2h3T 1
B1g D2@C2

z#3Ci3T xy line
B2g D2@C2

y#3Ci3T xz line
B3g D2@C2

x#3Ci3T yz line
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Ds~k!1iDdxy
~k!, (15)

Ddx22y2~k!1iDdxy
~k!. (16)

The mixed pair states with nodes are

Dg~k!1iDdx22y2~k!, (17)

Dg~k!1iDdxy
~k!. (18)

Time-reversal symmetry is broken in all these mixed
states. It might be useful to reiterate that such states can
only occur if the superconductivity is first order, or as a
result of two successive phase transitions. This follows
from the ideas of the Landau theory of second-order
phase transitions stated earlier.

2. Orthorhombic crystal lattice

Cuprate superconductors such as YBa2Cu3O72d
(YBCO) and Bi2Sr2CaCu2O8 (Bi-2212) have an ortho-
rhombic crystal structure with point-group symmetry
D2h . In the case of YBCO, the lattice distortion induced
by the Cu-O chains results in inequivalent directions a
and b . The orthorhombicity @(b2a)/(a1b)# of the
YBCO structure has been experimentally established as
about 2%. In the case of Bi-2212, an incommensurate
superlattice modulation in the BiO layers, along the b
direction, gives rise to unequal lattice constants a and b
in the CuO2 planes. An important difference between
the two crystal structures is that the in-plane Cu-O
bonds coincide with the inequivalent a and b axes in
YBCO, but not in Bi-2212. This has significant conse-
quences on the symmetry of the order parameter in both
superconductors (Sec. IV.C.5). The symmetry properties
of the allowed spin-singlet even-parity pair states for a
standard orthorhombic superconductor are tabulated in
Table II (Annett et al., 1990). Note that both the s- and
dx22y2-wave pair states in the orthorhombic case belong
to the same irreducible representation (A1g). Hence an
admixture of these two states is allowed and only a
single superconducting transition should be observed.
This is apparently the case for YBCO.

3. Cu-O square/rectangular lattice

The cuprate superconductors, either tetragonal or
orthorhombic, share one common structural ingredient,
i.e., the CuO2 planes. In the tetragonal case, for ex-
ample, in Hg-1201 or Tl2Ba2CuO61d (Tl-2201), the Cu
and O atoms arrange themselves in a square lattice with
point-group symmetry C4y [Fig. 2(a)]. In the high-Tc su-
perconductors such as YBCO, the CuO2 plane takes the
form of a Cu-O rectangular lattice8 with the point-group
symmetry C2y [Fig. 2(b)]. The point group C4y consists

8Structural subtleties such as the CuO2 plane buckling and
CuO5 tilt are known to have an effect on Tc (Chmaissem et al.,
1999). However, we shall not consider the effect of these fac-
tors on pairing symmetry because they do not alter the basic
crystal symmetry of the CuO2 planes.



974 C. C. Tsuei and J. R. Kirtley: Pairing symmetry in cuprate superconductors
of the following symmetry elements: mirror reflections
(m) with respect to the lines x50, y50, and x56y ; a
fourfold (C4) and a twofold (C2) rotation about the
c-axis. The C2y point group can be obtained by subtract-
ing C4 and reflecting in the diagonals of the unit cell.

All cuprate superconductors are characterized by a
relatively high ratio of c-axis to a-axis lattice constants,
c/a , (3.0 for YBCO, 5.7 for Bi-2212, and 7.6 for Tl-
2212). In the k-space presentation, these ratios of c/a
translate into a flattened Brillouin zone possessing the
basic symmetry properties of the unit cell of a square/
rectangular lattice. Indeed, the results of band-structure
calculations for various cuprates such as YBa2Cu3O72d
(Krakauer et al., 1988), Bi-2212 (Krakauer and Pickett,
1988), Tl-2201 (Hamann and Mattheiss, 1988), Hg-1201
(Singh, 1993a), and Hg-1223 (Singh, 1993b; Singh and
Pickett, 1994) all show energy bands predominantly de-
rived from the CuO2 planes, with no significant disper-
sion in the c-axis direction.

As measured from these band-structure calculations,
the degree of two-dimensional characteristics increases
with larger c/a ratio. For more details on band-structure
calculations and comparison with experiments in
cuprate superconductors, see Pickett (1989), Andersen
et al. (1995), and Shen et al. (1995). The two-
dimensional nature of the energy bands manifests itself
in various normal-state and superconducting properties.
For example, the room-temperature ratio of out-of-
plane to in-plane resistivities (rc /rab) is about 30–100
for YBCO, and 105 for Bi-2212 (Poole et al., 1995; Ong
et al., 1996). In the superconducting state, large anisot-
ropy in the magnetic penetration depths (lab /lc) and
the superconducting coherence length (jab /jc) is also
observed (Jannossy et al., 1990; Chien et al., 1994). The
observation of strong anisotropy in resistivity, penetra-
tion depth, and other physical properties does not nec-
essarily determine whether the high-Tc superconductors
are truly two-dimensional or merely anisotropic three-
dimensional electronic systems (Hussey et al., 1996).
However, investigations of c-axis charge dynamics and
transport (Gray and Kim, 1993; Uchida et al., 1994;
Clarke et al., 1995; Tajima et al., 1997; Yurgens et al.,
1997, 1999; Kitano et al., 1998) have provided strong evi-
dence for charge confinement in the CuO2 layers. In-
plane charge confinement blocks coherent interplane

FIG. 2. A schematic of the CuO2 lattices: (a) square; (b) rect-
angular: d, oxygen; s copper. The unit cells are underscored
by heavy lines. Also shown are the symmetry operations of the
point group for each lattice.
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charge transport, with important implications on the ori-
gin of high-temperature superconductivity (Anderson,
1997).

Furthermore, recent studies of interplane dc and ac
intrinsic Josephson effects have convincingly shown that
highly anisotropic high-Tc superconductors such as Bi-
2212 act as stacks of two-dimensional superconducting
CuO2-based layers coupled by Josephson interactions
(Kleiner and Müller, 1994; Mros et al., 1998). Similarly,
it has been shown that the vortex state can be under-
stood in terms of stacks of two-dimensional pancake
vortices. The cores of these 2D vortices, localized in the
CuO2 layers, are connected by Josephson vortices with
cores confined in the nonsuperconducting charge-
reservoir layers (Clem, 1998 and references therein;
Drost et al., 1999).

We conclude that superconductivity in cuprates basi-
cally originates from the CuO2 layers. Therefore pairing
symmetry should reflect the symmetry of the underlying
Cu-O square/rectangular lattices. We therefore concen-
trate our study of pairing symmetry on possible pair
states in a square lattice. A schematic presentation in k
space for these candidate states for point-group symme-
try C4y is shown in Fig. 3 where black and white repre-
sent opposite signs of the order parameter. Based on
these pair states, the effects of orthorhombicity (point
group C2y) and mixed pairing symmetries, including
states with time-reversal symmetry breaking, will then
be considered.

II. NON-PHASE-SENSITIVE TECHNIQUES

There is now a preponderance of evidence from a
number of non-phase-sensitive experimental techniques
that pairing in the cuprates is highly anisotropic, with a
line of nodes in the superconducting gap (Scalapino,
1995; Annett et al., 1996):

A. Penetration depth

In a superconductor in the local limit (j!l , where j is
the coherence length and l is the penetration depth),
the superfluid fraction can be expressed as xs(T)
5l2(0)/l2(T). For conventional BCS superconductors,
xs saturates exponentially to 1 as T approaches zero. In

FIG. 3. k-space representation of allowed symmetry basis
functions for the C4v symmetry appropriate for the CuO2
planes in the high-Tc superconductors.
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contrast, xs(T) should approach unity linearly as T ap-
proaches zero for a superconductor with a line of nodes.
The simple dx22y2 pairing state (assuming tetragonal
symmetry and ignoring dispersion in the c-axis direc-
tion) gives Dlab(T)/lab(0).(ln 2)3(kBT/D0), where D0
is the zero-temperature value of the d-wave gap ampli-
tude. However, this depends sensitively on scattering. In
the presence of scattering, Dlab(T);T2 as T→0 (An-
nett et al., 1991). Although sample quality was initially a
problem, it is now generally agreed that in YBCO, the
best-characterized high-Tc material, the low-
temperature penetration depth Dlab is proportional to
T for clean samples. Further, if impurities are added, the
linear T dependence rolls over to a T2 dependence at
low temperatures, as expected for a dirty d-wave super-
conductor (Hardy et al., 1993; Bonn and Hardy, 1996;
Kamal et al., 1998). It has been predicted that the sur-
face impedance of a d-wave superconductor should
saturate at a fundamental minimum value at low tem-
peratures, since there are always low-energy excitations
available to it (Lee, 1993; Hirschfeld, Puttika, and
Scalapino, 1993, 1994). Surface impedance measure-
ments on YBCO, which can be fit well to a d-wave
model (Hensen et al., 1997), indicate that the quasipar-
ticle lifetimes become very long in the superconducting
state (Bonn et al., 1992; Hosseini et al., 1999), and the
predicted fundamental limit has been below experimen-
tal sensitivity in all materials measured so far (Bonn and
Hardy, 1996). Although these results are consistent with
a pairing state with a line of nodes, they cannot distin-
guish between, for example, d-wave and extended
s-wave symmetries. Further, it has been proposed that
the linear dependence of Dlab could also arise from
proximity effects between alternating s-wave supercon-
ducting and normal layers in the cuprates (Atkinson and
Carbotte, 1995; Klemm and Liu, 1995).

B. Specific heat

The temperature dependence of the specific heat in
the cuprates has a number of terms. An unconventional
superconductor with a line of nodes is expected to have
a zero-field density of states N(E);uE2EFu. This leads
to a specific-heat term ce5aT2'gnT2/Tc , where gn is
the coefficient of the linear-T term in the normal state.
Thermodynamic calculations indicate that this T2 de-
pendence extends over a very large temperature range
in a spin-fluctuation model (Kruchinin and Patapis,
1997). Further, Volovik (1993) calculated that the domi-
nant contribution to the magnetic-field dependence of
the specific heat for a superconductor with a line of
nodes comes from a Doppler shift of the quasiparticle
excitations outside the vortex core. In the low-
temperature limit, T/Tc!AH/Hc2, this term replaces
the aT2 term with a linear-T term, cVolovik

5kgnTAH/Hc2, where k is a constant of order one.
Moler et al. (1994) and Moler, Sisson, et al. (1997) mea-
sured the specific heat of twinned and untwinned single
crystals of YBCO. They found that a global fit to
C(T ,H) gave a value for the coefficient a of the T2 term
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
in reasonable agreement with expectation, and that the
coefficient of the linear-T term could be fit well with a
H1/2 dependence, with a prefactor that was also in rea-
sonable agreement with theory. These qualitative con-
clusions were confirmed on ceramic samples by Wright
et al. (1999), who further found the expected crossover
to a stronger temperature dependence at higher T . Re-
vaz et al. (1998) showed that the anisotropic component
of the field-dependent specific heat C(T ,Bic)
2C(T ,B'c) of single crystals of YBCO obeyed a scal-
ing relation predicted for a superconductor with a line of
nodes (Simon and Lee, 1997a, 1997b; Volovik, 1997).
These results are all consistent with a line of nodes in
the superconducting gap in optimally doped YBCO.

C. Thermal conductivity

An interesting property of a d-wave gap in two di-
mensions is that quasiparticle transport should be inde-
pendent of scattering rate as T→0 (Lee, 1993; Graf
et al., 1996; Durst and Lee, 1999). The thermal conduc-
tivity of a d-wave superconductor should therefore not
only be linear in temperature at low temperatures, but
should also extrapolate to a universal value at zero tem-
perature that is proportional to the ratio of the quasipar-
ticle velocities normal and tangential to the Fermi sur-
face at the nodes. The universal nature of this zero-
temperature thermal conductivity has been
demonstrated in YBCO (Taillefer et al., 1997) and
BSCCO (Bi-Sr-Ca-Cu-O; Chiao et al., 2000). The abso-
lute value for the zero-temperature extrapolated value
has been shown to agree well with the prediction using
Fermi-liquid theory and values for the quasiparticle ve-
locities from angle-resolved photoemission measure-
ments in BSCCO (Chiao et al., 2000). Thermal conduc-
tivity of YBCO as a function of angle of an in-plane
magnetic field relative to the crystal axes is consistent
with predominantly d-wave symmetry, with less than
10% s-wave component (Aubin et al., 1997).

D. Angle-resolved photoemission

Angle-resolved photoemission spectroscopy
(ARPES) has the advantage of directly investigating the
momentum dependence of the gap. The development of
this technique for studying pairing symmetry in the cu-
prates has been hampered by its sensitivity to surface
conditions, and by its relatively poor energy resolution
comparable to the size of the energy gap. Nevertheless,
agreement has been reached that the gap in
Bi2Sr2CaCu2O81x (Bi-2212) is largest along the G-M di-
rections (parallel to a or b) and smallest along G-Y (the
diagonal line between them) (Shen et al., 1993; Ma et al.,
1995; Shen and Dessau, 1995; Ding, Norman, Campu-
zano, et al., 1996), as expected for a dx22y2 supercon-
ductor. Figure 4 shows a plot of the inferred absolute
value of the energy gap as a function of angle on the
Fermi surface (solid circles), in comparison with the pre-
diction of a simple d-wave model (solid line). The agree-
ment is remarkable. However, since ARPES is not
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phase sensitive, it cannot distinguish between d-wave
and highly anisotropic s-wave pairing. Ma et al. (1995)
have reported that the anisotropy in the gap between
the G-M and G-Y directions is strongly temperature de-
pendent, with a maximum anisotropy close to Tc , in
disagreement with a simple d-wave picture. Liu and
Klemm (1994) have cautioned that effects due to surface
states in an s-wave superconductor could mimic a
d-wave gap.

E. Raman scattering

Raman scattering has the advantage that different
symmetry channels of the electronic scattering spectra
can be selected by choosing the polarization light vec-
tors appropriately. Devereaux et al. (1994, 1995) ob-
served that (1) in contrast to conventional superconduct-
ors, there is no well defined gap in the cuprates; (2) the
B1g channel, which transforms like x22y2, has a peak at
higher energies than the other channels; and (3) the low-
frequency (v) spectrum is proportional to v3 for the B1g
channel, but v for the other channels. They calculated
the electronic Raman response in a model with dx22y2

pairing symmetry on a cylindrical Fermi surface, for
A1g , B1g , and B2g polarizations (see Table I) and found
good agreement with experiment for BSCCO, YBCO,

FIG. 4. Energy gap in Bi-2212: d, measured with ARPES as a
function of angle on the Fermi surface; solid curve, with fits to
the data using a d-wave order parameter. Inset indicates the
locations of the data points in the Brillouin zone. From Ding,
Norman, et al. (1996).
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and Tl-2201. This view is apparently widely accepted,
although Wenger and Käll (1997) found a discrepancy in
the absolute intensities of the different symmetry chan-
nels using a tight-binding band-structure model, and
Jiang and Carbotte (1996) emphasized the role of inelas-
tic scattering. Since Raman scattering is not phase sen-
sitive, it is difficult to distinguish d-wave symmetry from
an anisotropic s-wave case (Jha, 1996). Strohm and Car-
dona (1997) proposed a Raman-scattering method to de-
termine the s component in a d1s superconductor such
as YBCO. Stadlober et al. (1995), using Raman scatter-
ing, found that the electron-doped cuprate NdCeCuO
has an isotropic (s-wave) gap.

F. Nuclear magnetic resonance

The advantage of nuclear-magnetic-resonance (NMR)
measurements is that they can probe the electronic
properties of individual atomic sites on the CuO2 sheets
of the high-temperature superconductors. Of particular
interest is the absence of a Hebel-Slichter peak, an in-
crease in the nuclear relaxation rate T1

21 near Tc , for
both the Cu and O in-plane sites (see reviews by Pen-
nington and Slichter, 1990; and Walstedt and Warren,
1990). Bulut and Scalapino (1992a, 1992b), using a
dx22y2 model with Coulomb correlations, explained this
as arising from (a) the weaker quasiparticle density-of-
states singularity at the gap edge (compared with an
s-wave BCS gap), (b) the vanishing of the coherence
factor for quasiparticle scattering for q;(p ,p) for a
dx22y2 gap, and (c) inelastic-scattering suppression of
the peak, which is similar in effect for both d-wave and
s-wave cases. They found that the temperature depen-
dence of both the Knight shifts and T1

21 was fit better by
a d-wave than an s-wave model. Further, they found
remarkable agreement between the anisotropy ratio
(T1

21)ab /(T1
21)c and the transverse nuclear relaxation

rate TG
21 for 63Cu(2) (Bulut and Scalapino, 1991; Scala-

pino, 1995) and a d-wave model. An s-wave model did
not agree with experiment for the last two properties.

G. Nonlinear Meissner effect

The quasiparticles near the nodes of a d-wave super-
conductor give rise to an intrinsic nonlinear dynamic re-
sponse. Yip and Sauls (1992) suggested that at suffi-
ciently low temperatures this nonlinearity would lead to
an increase in the penetration depth proportional to the
magnitude of the applied field, with a coefficient that
depended on the orientation of the field relative to the
nodes. Bidinosti et al. (1999) found a linear variation of
the penetration depth with field that agreed in magni-
tude with the prediction of Yip and Sauls (1992), but did
not have the correct systematics with temperature and
field orientation. Bhattacharya et al. (1999a) found no
angular dependence to the transverse magnetic moment
and concluded that this implied a minimum nonzero gap
of at least 2–3 % of the maximum gap amplitude. How-
ever, Li et al. (1998) and Dahm and Scalapino (1999)



977C. C. Tsuei and J. R. Kirtley: Pairing symmetry in cuprate superconductors
have argued that the linear field dependence can be
washed out by impurities and that nonlocal effects will
lead to a quadratic dependence on field below a cross-
over field that is of the same magnitude as Hc1 , making
the effect unobservable except for situations where the
shielding currents flow along the nodes. There is dis-
agreement on whether this crossover field is below
(M.-R. Li et al., 1999) or above (Bhattacharya, 1999b)
the fields used for the transverse moment measure-
ments. Dahm and Scalapino (1999), following a discus-
sion of Xu, Yip, and Sauls (1995), have proposed that
higher-order nonlinear effects may be less sensitive to
impurity and nonlocal effects and suggested that they
could be studied by harmonic generation or intermodu-
lation effects.

III. HALF-INTEGER FLUX-QUANTUM EFFECT

Although the symmetry tests outlined above provide
evidence that the gap in YBCO and BSCCO is highly
anisotropic with a line of nodes, they are both insensi-
tive to the phase of the order parameter and model de-
pendent, making for much controversy (Annett, et al.,
1990, 1996; Annett, 1991; Dynes, 1994; Schrieffer, 1994;
Müller, 1995). However, recently a new class of phase-
sensitive pairing symmetry tests have emerged. These
tests are based on two macroscopic quantum coherence
phenomena: Josephson tunneling and flux quantization.

A. Josephson tunneling

Josephson (1962) first pointed out that it is possible
for Cooper pairs to flow through a thin insulating barrier
between two superconductors. A schematic drawing of a
Josephson tunnel junction is depicted in Fig. 5, showing
the tunnel barrier sandwiched between two junction
electrodes, with order parameters D i(ki)5uD iueiw i,
where the subscript i5L ,R . The supercurrent Is , pro-
portional to the tunneling rate of Cooper pairs through
the barrier, was given by Josephson as

Is5Ic sin g , (19)

where Ic is the Josephson critical current, and g is the
gauge-invariant phase difference9 at the junction:

g5wL2wR1
2p

Fo
E

L

R
A•dl , (20)

where A is the vector potential, and dl is the element of
line integration from the left electrode (L) to the right
electrode (R) across the barrier. The prediction of pair
tunneling was almost immediately verified by experi-
ment (Anderson and Rowell, 1963). There is a vast lit-
erature on Josephson tunneling and its phenomenology
(Barone and Paterno, 1982). For the purpose of our dis-
cussion we use the tunneling Hamiltonian approach first

9See Tinkham (1996), p. 193, for a discussion of the gauge-
invariant phase difference in a Josephson junction.
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introduced by Cohen et al. (1962). The supercurrent Is
at zero temperature is given by

Is}(
k,l

uTk,lu2
DL~k!DR~ l!
EL~k!ER~ l!

1

@EL~k!1ER~ l!#

3sin~gL2gR!, (21)

where Tk,l is the time-reversal-symmetry-invariant tun-
neling matrix element, Ei(k)5Ae i

2(k)1D i
2(k), and

e(k) is the one-electron energy. First, Eq. (21) can be
used to determine the parity of the superconducting
state in cuprates. Pals et al. (1977) showed quite gener-
ally that the Josephson current vanishes, up to second
order in Tk,l , in tunnel junctions between spin-singlet
(even parity) and -triplet (odd parity) superconductors.
This remains true even with paramagnetic impurities in
the tunnel barrier. The Josephson effect between triplet
and singlet superconductors is nevertheless allowed if
there is strong spin-orbit coupling. This is apparently not
important in high-Tc cuprate superconductors. Experi-
mentally, pair tunneling exists for Josephson junctions
made of a cuprate superconductor and a low-Tc conven-
tional superconductor such as Pb or Nb. Therefore the
superconducting state in cuprates, just as in low-Tc con-
ventional superconductors, is that of even-parity spin-
singlet pairing.

The Josephson effect also contains information about
the magnitude and phase of the order parameters of the
superconductors on both sides of the tunnel barrier [Eq.
(21)]. In the simplest treatment (Ambegaokar and
Baratoff, 1963), Tk,l is assumed to be independent of the
wave vectors k and l, which implies an isotropic and
uniform tunneling probability, and DL ,R are assumed to
be isotropic s-wave superconductors. The Josephson
current as a function of temperature is then

Ic~T !5
pD~T !

2eRn
tanhF D~T !

2kBTG , (22)

where Rn is the normal-state tunneling resistance, and
DL(T)5DR(T)5D(T) is assumed. Near Tc , Eq. (22)
becomes Ic(T)5pD2(T)/4ekBTcRn and is proportional
to 12T/Tc in BCS theory. The Ambegaokar-Baratoff
formula [Eq. (22)] for the temperature dependence of Ic
has been confirmed by numerous experiments with low-

FIG. 5. Schematic diagram of a Josephson junction between a
pure dx22y2 superconductor on the left and a superconductor
with some admixture of s in a predominantly dx22y2 state on
the right. The gap states are assumed to align with the crystal-
line axes, which are rotated by angles uL and uR with respect
to the junction normals nL and nR on the left- and right-hand
sides, respectively.



978 C. C. Tsuei and J. R. Kirtley: Pairing symmetry in cuprate superconductors
Tc s-wave superconductors (e.g., Fiske, 1964).10 The
magnitude of Ic obtained in experiments is almost al-
ways smaller than that predicted by Eq. (22). Neverthe-
less, the IcRn product based on Eq. (22) represents an
upper bound of junction quality, hence the term
Ambegaokar-Baratoff limit.

The concept of Josephson tunneling is not just limited
to superconductor-insulator-superconductor (SIS) junc-
tions, but has been generalized to all weak-link struc-
tures consisting of two superconductors (not necessarily
identical) coupled by a small region of depressed order
parameter (Likharev, 1979; Tinkham, 1996). Josephson
weak links include SIS , SNS , and SCS , where N and C
stand for normal metal and constriction, respectively.
The weak-link of the junction can be made of two parts
as, for example, in SINS junctions.

In the case of unconventional superconductors with
d-wave pairing symmetry, a wave-vector-independent
tunneling matrix would lead to Is[0. There have been
several theoretical studies of Josephson tunneling in
junctions of d-wave superconductors (Barash et al.,
1995; Bruder et al., 1995; Millis et al., 1988) taking into
account the direction dependence of the tunneling ma-
trix element. These studies reveal junction characteris-
tics, in both the supercurrent and quasiparticle tunneling
branches, that are different from s-wave. To use these
results to discriminate d-wave from s-wave symmetry
requires specific knowledge of the sample conditions.
For example, the supercurrent Is varies near Tc as 1
2T/Tc or (12T/Tc)2, depending on the spatial distri-
bution of the order parameter near the tunnel barrier
(Barash et al., 1995). However, the 12T/Tc dependence
is the same as for an s-wave tunnel junction (Ambe-
gaokar and Baratoff, 1963). Furthermore, all the theo-
retical studies discussed here implicitly assume that the
junction interface is smooth and uniform—a condition
that is far from reality. All these make quantitative com-
parison between theory and experiment for testing pair-
ing symmetry practically impossible.

The phase-sensitive tests described below probe sign
changes in the pair critical currents Ic , not their magni-
tudes, avoiding this difficulty. Making use of the direc-
tional dependence of the pair wave function, sign
changes in Ic can be systematically examined, providing
a powerful tool for studying the internal symmetry of
Cooper pairs. Sign changes in Ic due to pairing symme-
try are arbitrary for a particular junction, since an arbi-
trary phase can always be added to either side of the
junction. However, the signs of the critical currents in a
closed ring of superconductors interrupted by Josephson
weak links can always be assigned self-consistently.
Counting these sign changes provides a convenient way
to determine if a particular geometry is frustrated. For
the purposes of this review, a frustrated geometry is one
that, in the absence of an externally applied field, has a
local maximum in its free energy with zero circulating
supercurrent [see, for example, Eq. (36)]. A negative

10See, however, Overhauser (1999).
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pair-tunneling critical current Ic can be thought of (for
counting purposes) as a phase shift of p at the junction
interface @Is52uIcusin g5uIcusin(g1p)#.11 Such p phase
shifts were theoretically predicted between Josephson
junctions involving unconventional superconductors
such as heavy-fermion superconducting systems (Gesh-
kenbein and Larkin, 1986; Geshkenbein et al., 1987) and
cuprate superconductors (Sigrist and Rice, 1992). In ad-
dition, it has been suggested that a p phase shift can be
realized within a junction by mechanisms unrelated to
pairing symmetry such as spin-flip scattering by mag-
netic impurities (Bulaevskii et al., 1977) or indirect elec-
tron tunneling (Spivak and Kivelson, 1991). This second
type of phase shift has never been observed experimen-
tally. Historically, the term p junction has been used to
describe both the situation in which phase shifts within
the superconductor are caused by pairing symmetry, and
the situation in which phase shifts within a single Jo-
sephson junction are caused by the tunneling mecha-
nism. We shall restrict our use of the term p junction to
the latter. However, a superconducting ring with an odd
number of p shifts is frustrated, and will show the spe-
cial effects described below, independent of whether the
p shifts result from symmetry or tunneling mechanism
effects. Such frustrated rings will be referred to as p
rings, independent of the mechanism for the p phase
shifts.

For the present purpose, we use the Ginzburg-Landau
formalism (Geshkenbein and Larkin, 1986; Yip et al.,
1990; Walker and Luettmer-Strathmann, 1996a). For
more details and early work, see reviews by Annett
(1991) and Sigrist and Ueda (1991). This approach as-
sumes that the order parameter is small enough (as hap-
pens close to Tc) to expand the free energy of the Jo-
sephson junction as a power series in the order
parameter. This is not expected to be a problem, as dis-
cussed in the Introduction. Since we are merely inter-
ested in the sign of the critical current in the phase-
sensitive experiments, the experimental outcome will
not be compromised unless there is a second phase tran-
sition below Tc .

In a tetragonal cuprate superconductor with C4y
point-group symmetry, the candidate pair states corre-
spond to one-dimensional irreducible representations:
A1g (s wave), A2g (g wave), B1g (dx22y2 wave), and
B2g(dxy) [i.e., l j51 in Eq. (7); see Fig. 3]. The
Ginzburg-Landau free-energy functionals for the junc-
tion electrodes on both sides of the tunnel barrier are of
the same general form. Hence qualitatively similar ther-
modynamic properties, regardless of the electrodes’
pairing symmetry and its directional dependence, are to

11This assumes the supercurrent-phase relation is sinusoidal.
The possibility of a nonsinusoidal current-phase relationship in
the high-Tc superconductors has been studied theoretically
(Yip, 1995; Agassi and Cullen, 1996). Recently, there have
been a number of experimental studies on this topic in con-
junction with high-Tc Josephson junctions (Il’ichev et al., 1998,
1999a, 1999b).
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be expected. It is the coupling term in the total free
energy that contains information about the order-
parameter symmetry of the junction.

The free energy per unit area of Josephson coupling
between two superconducting electrodes with order pa-
rameters cL and cR (see Fig. 5) can be described as (see
Walker and Luettmer-Strathmann, 1996a, for example)

FJ5WE ds@cLcR* ei(2p/Fo)*L
RA•dl1c.c.# , (23)

where W is a measure of the Josephson coupling
strength, and the integral is over the junction interface.
The exponential multiplier ensures that the Josephson
interaction energy FJ is gauge invariant, as it should be
for any observable physical quantity. As required by glo-
bal gauge invariance, FJ must be expanded in integral
powers of cLcR* and its complex conjugates. Thus Eq.
(23) represents the lowest-order term in the expansion
(Yip et al., 1990). By minimizing the total free energy
with respect to cL and cR , the Josephson current den-
sity Js , flowing perpendicular to the junction interface
from superconductor L to R, is given by (Sigrist and
Rice, 1995)

Js5tL ,RxL~n!xR~n!uhLuuhRusin g5Jc sin g , (24)

where Jc is the critical current density, xL ,R , the basis
function, is related to the gap function D(k) through Eq.
(7), DL ,R(n)5hL ,R(n)xL ,R(n), n is the unit vector nor-
mal to the junction interface, hL ,R(n)5uhL ,RueiwL ,R, and
g is the gauge-invariant phase difference as defined in
Eq. (20). The quantity tL ,R is a constant characteristic of
a given junction configuration and is closely related to
the tunneling matrix element in Eq. (21). The basis func-
tions x(n) for a Josephson-junction electrode with te-
tragonal crystal symmetry (point group C4y), are listed
in Table III, where nx ,ny are the projections of the unit
vector n onto the crystallographic axes x and y, respec-
tively.

Both the sign and the magnitude of the critical current
Ic of a Josephson junction made with at least one non-
s-wave superconductor depend sensitively on the gap
function symmetry and the relative orientation of the
junction electrodes [Eq. (24) and Table III]. It is the
directional dependence of the sign changes in the Ic’s
that has been used for phase-sensitive tests of pairing
symmetry.

More specifically, for Josephson junctions between
two d-wave superconductors x(n)5nx

22ny
2 , Eq. (24) re-

duces to the well-known Sigrist and Rice (1992) formula

Js5As~nx
22ny

2!L~nx
22ny

2!R sin g (25)

TABLE III. Basis functions x(n) for a Josephson-junction
electrode with tetragonal crystal symmetry.

Irreducible
representation

A1g
s

A2g
g

B1g
dx22y2

B2g
dxy

Basis
function x(n)

1 nxny(nx
22ny

2) nx
22ny

2 nxny
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or, in terms of uL ,uR , the angles of the crystallographic
axes with respect to the interface

Js5As cos~2uL!cos~2uR!sin g , ~clean!, (26)

where As is a constant characteristic of the junction. It
should be emphasized that, in the derivation of the
Sigrist-Rice formula, it is implicitly assumed that the
junction interface is uniform and smooth. Furthermore,
if the tunnel barrier is relatively thick compared to the
BCS coherence length, j;15 Å, only the pair-tunneling
process perpendicular to the junction interface needs to
be considered. In real Josephson junctions, especially
those made with cuprates, the electron wave vector nor-
mal to the junction interface can be significantly dis-
torted by interface roughness, oxygen deficiency, strain,
etc. In particular, it is established experimentally that
cuprate grain-boundary junctions have inhomogeneous
and meandering junction interfaces that depend on the
fabrication conditions (Moeckly et al., 1993, 1994; An-
tognazza et al., 1995; D. J. Miller et al., 1995; Tafuri
et al., 1999). In the opposite limit, a maximum-disorder
formula for the Josephson current can be derived (Tsuei
et al., 1994) by allowing a broad distribution of angular
deviations at the tunnel barrier and taking into account
the fact that, due to the fourfold symmetry of CuO2
planes, the maximum angle of deviation is p/4:

Js5As cos 2~uL1uR!sin g , ~dirty!. (27)

The fact that Eq. (27) is significantly different from
Eq. (26) underscores the importance of considering the
effects of disorder at the junction interface in using Jo-
sephson tunneling for a determination of pairing sym-
metry. It is also clear that a series expansion of trigono-
metric functions of uL ,R is needed for a general
description of the angular dependence of the Josephson
current. Such an expression was obtained by Walker and
Luettmer-Strathmann (1996a) by writing the Ginzburg-
Landau free energy of Josephson coupling in the form

FJ5C~uL ,uR!cos g (28)

and by imposing the symmetry requirements for the te-
tragonal lattice: C(uL ,uR)5C(uR ,uL)5C(2uL ,2uR)
5C(uL1p ,uR); and C(uL1 p/2 ,uR)5C(uL ,uR) for
s-wave pairing symmetry, C(uL1 p/2 ,uR)5
2C(uL ,uR) for d-wave superconductivity. With these
symmetry constraints, a general expression for the su-
percurrent for a junction between two generalized
s-wave superconductors can be given as

Js
s5 (

n ,n8
@C4n ,4n8 cos~4nuL!cos~4n8uR!

1S4n ,4n8 sin~4nuL!sin~4n8uR!#sin g , (29)

where n ,n8 are positive integers including zero.
Alternately, Eq. (29) can be rewritten as

Js
s5$C0,01C4,0@cos~4uL!1cos~4uR!#1¯%sin g .

(30)
For a Josephson junction between d-wave supercon-

ductors,
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Js
d5$C4n12,4n812 cos@~4n12 !uL#cos@~4n812 !uR#

1S4n12,4n812 sin@~4n12 !uL#sin@~4n812 !uR#%

3sin g , (31)

which can be rewritten as

Js
d5$C2,2 cos~2uL!cos~2uR!1S2,2 sin~2uL!sin~2uR!

1¯%sin g . (32)

It is interesting to note that, in Eq. (32), the first term
is just the Sigrist-Rice clean-limit formula [Eq. (26)]. If
S2,252C2,2 , the sum of the first two terms leads to the
dirty-limit formula [Eq. (27)].

B. Flux quantization in a superconducting ring

The most striking effect associated with sign changes
in the critical current, suggested by Bulaevskii et al.
(1977), Geshkenbein and Larkin (1986), and Sigrist and
Rice (1992), is that a superconducting ring containing an
odd number of p shifts will (under certain conditions)
spontaneously generate a magnetic field with half of the
conventional flux quantization.12

The flux quantization of a superconducting ring with
self-inductance L can be expressed (based on the funda-
mental requirement of single-valuedness of the macro-
scopic pair wave function) by

Fa1IsL1
Fo

2p (
ij

g ij5nFo . (33)

The supercurrent circulating in the ring is given by

Is5Ic
ij~u i ,u j!sin g ij , (34)

where Ic
ij(u i ,u j) is the critical current of the junction

between superconducting electrodes i and j , and u i and
u j are the corresponding angles of the crystallographic
axes with respect to the junction interface. The gauge-
invariant phase difference across the junction g ij is de-
fined as before [Eq. (20)]. Flux quantization of a multi-
ply connected superconductor represents one of the
most fundamental demonstrations of macroscopic phase
coherence (i.e., off-diagonal long-range order) in the su-
perconducting state (Yang, 1962). The condition of flux
quantization as expressed by Eq. (33) is robust and valid
for a superconducting ring with any pairing symmetry.
For a ring with an odd number of sign changes in the
circulating supercurrent Is , it is sufficient to consider the
case in which only one critical current is negative (say,
Ic

1252uIc
12u). Then Is5uIc

12usin(g121p). In the absence
of an external field, Fa50, n50 for the ground state,
the combined conditions of Eqs. (33) and (34) lead to
(Tsuei et al., 1994)

12Volovik and Mineev (1976), in a discussion of vortices in
He3, pointed out that an unconventional order parameter can
lead to a vortex quantization with half of the conventional
magnitude.
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Is5
p

2pS L

F0
D1

1

uIc
12u

1
1

Ic
23 1¯

.
F0

2L
, (35)

provided that uIc
12uL@F0 , . . . ,uIc

ijuL@F0 . The ground
state of a superconducting ring containing an odd num-
ber of sign changes (p ring) has a spontaneous magneti-
zation of a half magnetic-flux quantum (i.e., IsL
'(1/2)F0) when the external field is zero. If the ring
contains an even number of p shifts, including no p
shifts at all (zero ring), Is50 in the ground state, and the
magnetic-flux state has the standard integral flux quan-
tization.

Alternately, the magnetic flux F through a ring with
one Josephson junction can be studied by considering
the free energy:

U~F ,Fa!5
F0

2

2L H S F2Fa

F0
D 2

2S LuIcu
pF0

D
3cosS 2p

F0
F1w D J , (36)

where w50,p for a zero ring and a p ring, respectively.
The ground state of the single-junction ring can be

obtained by minimizing U(F ,Fa) to obtain F as a func-
tion of Fa (Sigrist and Rice, 1992; Fig. 6). Plots of the
free energy vs F at Fa50 (Fig. 7) show that the zero
ring has a ladder of metastable states centered at the

FIG. 6. Minimum-energy solution of Eq. (36) for Is

5(F2Fa)/L as a function of the externally applied flux
Fa /F0 : (a) for a zero ring; (b) for a p ring. Dashed line, g
52pLIc /F050.5; solid line, g52.0. For small applied fields
and g,1, the shielding currents oppose the applied flux for the
zero ring (diamagnetic shielding) and are aligned with the ap-
plied flux for the p ring (paramagnetic shieding). For g.1, the
p ring has spontaneous magnetization with the same sign as
small externally applied fields.
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ground state F50, while the p ring has a ladder of states
shifted by F0/2 from those of the 0 state, centered on a
doubly degenerate ground state with (in the limit uIcuL
@F0) 6F0/2 spontaneous magnetization.

In short, in the limit uIcuL@F0 ,

F5nF0 for N even ~0 ring! (37)

and

F5S n1
1
2 DF0 for N odd ~p ring!, (38)

where N is an integer. The last, half-integer flux-
quantum effect,13 is in striking contrast to the integer
flux-quantum effect observed by Gough et al. (1987).

C. Paramagnetic Meissner effect

Conventional superconductors generally tend to expel
a small external magnetic field upon cooling into the
superconducting state. This ‘‘Meissner effect’’ leads to
complete or (due to remnant trapped flux, e.g., in ce-
ramic samples composed of grains and voids) partial dia-
magnetism. Therefore it came as a surprise when a para-
magnetic signal was observed in ceramic Bi2Sr2CaCu2O8
(Svedlindh et al., 1989; Braunisch et al., 1992, 1993; Hei-
nzel, 1993; Niskanen, 1994; Shrivastava, 1994). The ori-
gin of this effect has been controversial. Braunisch et al.
(1992, 1993) and Kusmartsev (1992) proposed that some
form of spontaneous orbital currents was responsible,
giving rise to magnetic moments that could be aligned
by the magnetic field. This proposal for spontaneous or-
bital currents (the Wohlleben effect) in turn led Sigrist
and Rice (1992, 1995) to propose that an intrinsic dx22y2

symmetry of the superconducting state would naturally
lead to frustrated Josephson-junction circuits (p rings)
in a ceramic sample where randomly oriented grains
contact each other. The origin of this explanation for
paramagnetic shielding can be understood from Fig. 6: if
2pLIc /F0,1, a zero ring has an induced flux with the

13Spontaneous magnetization upon entering the supercon-
ducting state was historically the first-discussed aspect (Bulae-
vski et al., 1977), and is arguably the most striking aspect of the
physics of superconducting samples in a frustrated geometry.
For the sake of simplicity, we have confined the above discus-
sion to a ring geometry. In this geometry the spontaneous
magnetization for a frustrated ring can be less than F0/2 if LIc
is comparable to F0 or if there is broken time-reversal symme-
try. However, to date, symmetry tests on the widest variety of
the cuprates (Table IV) have been performed in a blanket film
geometry (Sec. IV.C.4). In this geometry, the total magnetic
field spontaneously generated in the sample must be exactly
F0/2 for a frustrated sample, in the absence of broken time-
reversal symmetry, independent of the strength of the Joseph-
son coupling across the grain boundaries. Further, to date
there is no evidence for broken time-reversal symmetry from
tricrystal or thin-film SQUID magnetometry experiments in
any of the cuprates, at any temperature (Sec. IV.E.3). There-
fore we use the term ‘‘half-integer flux-quantum effect’’ ge-
nerically in this review.
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opposite sign to the applied flux for small applied fields
(diamagnetic shielding), but a p ring has an induced flux
with the same sign as the applied flux (paramagnetic
shielding). Further, if 2pLIc /F0.1, then the p ring ex-
hibits spontaneous magnetization that is larger than the
applied flux for small applied fields. The paramagnetic
shielding in these samples has been associated with
anomalies in other properties (Khomskii, 1994; Sigrist
and Rice, 1995), including microwave absorption (Brau-
nisch et al., 1992; Knauf, 1998), second harmonics in the
magnetic susceptibility (Heinzel et al., 1993), and noise
in the magnetization (Magnusson et al., 1997), which can
also be understood in terms of the magnetic properties
of superconducting p rings (Khomskii, 1994; Sigrist and
Rice, 1995).

However, paramagnetic shielding has also been ob-
served in bulk Nb (Thompson et al., 1995; Kostić et al.,
1996; Pŏst et al., 1998) and Al disks (Geim et al., 1998).
Both are presumably conventional s-wave supercon-
ductors. This has been taken as evidence against the in-
terpretation of the Wohlleben effect in terms of intrinsic
superconducting p rings (Kostić et al., 1996; Geim et al.,
1998). For large Nb disks it has been suggested that, due
to sample inhomogeneity, during the cooling process the
surface region nucleates superconductivity before the
bulk, so that magnetic flux in the sample is compressed
and creates an enhanced magnetization (Koshelev and
Larkin, 1995; Obhukov, 1998). For small disks, flux cap-
tured at the third (surface) critical field inside the super-
conducting sheath compresses into a smaller volume, al-
lowing extra flux to penetrate at the surface
(Moschalkov et al., 1997; Geim et al., 1998). A small

FIG. 7. Free energy of a superconducting ring with a single
junction in different configurations, with zero external applied
field [Eq. (36)]: (a) zero ring; (b) p ring. Here g52pLIc /F0
55.
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paramagnetic contribution to the total shielding has also
been observed in Nb Josephson-junction arrays, and
modeled using a conventional resistively shunted junc-
tion model (Barbara et al., 1999).

Sigrist and Rice (1997) argued that the paramagnetic
Meissner effects observed in conventional superconduct-
ors are qualitatively different from those in granular
BSCCO, both in terms of the size of the effect, which is
much larger in granular BSCCO, and in terms of its time
dependence, which is metastable in Al disks (Geim
et al., 1998) and Nb films (Terentiev et al., 1999), but not
in BSCCO granular samples. Scanning SQUID micro-
scope images of the magnetic-flux distribution in a
granular BSCCO sample exhibiting a large Wohlleben
effect showed a large polarization of the distribution of
the magnetic fluxes at zero externally applied field, indi-
cating that spontaneous magnetization, as opposed to
flux-focusing effects, are indeed responsible for the
paramagnetic signal (Kirtley, Mota, et al., 1998).

The origin of the paramagnetic Meissner effect in
granular BSCCO samples is now of reduced interest, at
least in terms of a test of the pairing symmetry of the
cuprate superconductors, since such tests are now rou-
tinely performed in controlled geometries. Nevertheless,
it appears that the debate over this very interesting ef-
fect will continue for some time.

IV. PHASE-SENSITIVE TESTS OF PAIRING SYMMETRY

A number of phase-sensitive experimental techniques
have been developed in recent years to determine the
symmetry of the pair state in cuprate superconductors
(for early reviews see Scalapino, 1995; Van Harlingen,

FIG. 8. Experimental geometry used for the experiments of
Wollman et al. (1993, 1995): (a) corner SQUID configuration;
(b) edge SQUID configuration; (c) corner junction; and (d)
edge junction.
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1995; Annett et al., 1996). A common feature of these
symmetry experiments is that instead of relying on the
quantitative magnitude of the Josephson current, they
seek a qualitative signature of unconventional super-
conductivity: sign changes in the Josephson critical
current Ic .

A. SQUID interferometry

Wollman et al. (1993) did the first phase-sensitive test
of pairing symmetry in a controlled geometry, based on
quantum interference effects in a YBCO-Pb dc SQUID.
In the ‘‘corner SQUID’’ geometry,14 Fig. 8(a), Joseph-
son weak links were made between Pb thin films and
two orthogonally oriented ac- (or bc-) plane faces of
single crystals of YBCO. If YBCO is a d-wave supercon-
ductor, there should be a p phase shift between weak
links15 on adjacent faces of the crystal. Wollman et al.
(1993) tested for this phase shift by measuring the
SQUID critical current as a function of Fa , the exter-
nally applied magnetic flux through the SQUID. The
critical current of the SQUID is the maximum of

Is5Ia sin ga1Ib sin gb , (39)

where Ia (Ib) and ga (gb) are the critical currents and
phases of the a (b) junctions, respectively. This maxi-
mum must be calculated subject to the constraint that
the phase be single valued [Eq. (33)]:

2pn5ga2gb1w12p S IaLa

F0
2

IbLb

F0
1

Fa

F0
D , (40)

where La and Lb are the effective self-inductances of
the two arms of the ring, and w50 or p for a zero ring or
a p ring, respectively. This results in a roughly sinusoidal
dependence of Ic on Fa . If the self-inductances are
small, or if the self-inductances and the junction critical
currents are symmetric, then Ic has a maximum at Fa
50 for a zero ring, but minimum at Fa50 for a p ring.
In the experiments of Wollman et al. (1993), the junction
Ic’s and L’s were not necessarily balanced, leading to
shifts in the Ic vs Fa characteristics. This effect was cor-
rected for by measurements at several values of the dc
applied current through the SQUID. This was possible
because of noise rounding of the current-voltage charac-
teristics of these SQUID’s. The phase shift was then
plotted as a function of dc current through the SQUID,

14This experimental geometry was suggested independently
by Sigrist and Rice (1992).

15The weak links of Wollman et al. (1993) were nominally of
the SNS type, since they had no intentional insulating
layer. However, their current densities were three orders
of magnitude smaller than, for example, typical
Pb-Cu-Pb superconducting-normal-superconducting junctions
(Clarke, 1966). They were therefore probably more like tunnel
contacts. Annett et al. (1996) have argued that it is plausible
that the pair transfer matrix Tk,l [Eq. (21)] is strongly peaked
in the forward direction for both SNS and tunneling weak
links, making the Sigrist-Rice clean relation [Eq. (26)]
applicable.
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and then extrapolated to zero current to infer the intrin-
sic phase shift. These experiments were then repeated
with ‘‘edge SQUID’s,’’ Fig. 8(b), with two junctions on
the same ac (or bc) face of the crystal. Wollman et al.
(1993) found that the intercepts for the ‘‘corner
SQUID’s’’ varied from 0.3 to 0.6F0 , while those for the
‘‘edge SQUID’s’’ centered around zero [Fig. 9(a)].

The SQUID experiments of Wollman et al. (1993) had
a number of complicating factors in their interpretation.
First, there was the question of twinning effects. Since
YBCO has an orthorhombic crystal structure, it might
be expected that the lobe of the presumed dx22y2 sym-
metry pairing function with one sign is associated with a
particular crystalline direction. Since YBCO crystals
normally grow heavily twinned, this would mean that
any face of the crystal not intersecting with the c axis
would have both a and b crystalline directions normal to
it, and therefore an admixture of positive and negative
phases. This would tend to randomize the phases that

FIG. 9. Summary of the experimental results of Wollman et al.
(1993, 1995): (a) Extrapolation of the measured SQUID resis-
tance minimum vs flux to zero-bias current for a corner
SQUID and an edge SQUID on the same crystal. Each curve
represents a different cooldown of the sample; (b) Measured
critical current vs applied magnetic field for an ‘‘edge’’ junc-
tion and (c) for a ‘‘corner’’ junction.
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these experiments depend on. The fact that these experi-
ments on highly twinned crystals, the IBM experiments
(Tsuei et al., 1994), and Maryland experiments (Mathai
et al., 1995) on highly twinned thin films, and experi-
ments on detwinned crystals (Brawner and Ott, 1994;
Van Harlingen, 1995), gave consistent results indicates
that the dx22y2 component of the order parameter has
the same phase across twin boundaries.

Another issue was the linear extrapolation in dc cur-
rent used by Wollman et al. (1993). The validity of this
extrapolation has been called into question (Mathai
et al., 1995). Careful analysis of this problem (Hinaus
et al., 1996) shows that the linear extrapolation used by
Wollman et al. (1993) can be problematic if the asymme-
try of the SQUID depends on its critical current, and
that this problem can be overcome by exploiting the
time-reversal invariance of the SQUID equations. How-
ever, some of the SQUID’s in the experiments of Woll-
man et al. (1993) were apparently relatively symmetric
and could be measured at very low critical currents [e.g.,
the open diamonds in Fig. 9(a)], so that little correction
for self-field effects was required. These symmetric
SQUID’s gave results consistent, with little correction
from extrapolations, with those from the asymmetric
SQUID’s. In retrospect, this justifies the extrapolation
procedure.

Another objection that has been raised to these
SQUID experiments was that they compared SQUID’s
with corners with SQUID’s without corners [as in Figs.
8(a) and (b)]. It is well known that flux-trapping, demag-
netization, and field-focusing effects can be strongly de-
pendent on the sample geometry. Klemm (1994) pre-
sented arguments that the p phase shifts seen between
the ‘‘corner’’ and ‘‘edge’’ SQUID’s could result simply
from the differences in their geometries, even for s-wave
cuprate pairing symmetry. Wollman et al. (1994) argued
against this point of view on a theoretical basis. How-
ever, the strongest argument against corners being a de-
cisive influence comes from the results of Tsuei et al.
(1994), which showed the presence of the half-flux quan-
tum effect in a geometry with no corners.

Finally, the SQUID experiments of Wollman et al.
(1993) were influenced by the effects of flux trapping.
Note, for example, the results of Fig. 9(a). Here, the
‘‘edge’’ and ‘‘corner’’ SQUID’s on the same crystal were
cooled repeatedly, with significant differences in both
the slopes and the intercepts in the experimental results.
The simplest explanation for this is that there were vary-
ing amounts of trapped magnetic flux threading through
the SQUID area in different cooldowns. Wollman et al.
(1993) speculated that flux trapping could have occurred
in the Pb electrodes leading to the SQUID. Magnetic
imaging of the ac or bc plane faces of cuprate supercon-
ductors (Kirtley, Moler, et al., 1998; Moler et al., 1998)
shows that there can be vortices trapped between the
planes of the cuprate superconductors, often with oppo-
site senses, even when they are cooled in a very small
field. Such trapped vortices could affect the measured-
critical-current vs applied-field characteristics of the
SQUID’s. However, the fact that Wollman et al. (1993)
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consistently see a difference between the phase shifts in
their ‘‘corner’’ and ‘‘edge’’ SQUID’s indicates that these
flux-trapping effects are not sufficiently large to change
the qualitative interpretation of these measurements.

A second SQUID interference experiment on single
crystals of YBCO was performed by Brawner and Ott
(1994). They made a SQUID with two bulk point-
contact junctions of niobium, making Josephson weak
links on adjoining orthogonal faces of an untwinned
YBCO single crystal. Two all-niobium SQUID’s on ei-
ther side of the sample SQUID were used as controls to
measure the relative phase shifts. As with the Wollman
et al. (1993) experiments, the SQUID’s were asymmet-
ric, so that corrections for self-field effects had to be
made. For this Brawner and Ott (1994) measured the
dynamic resistance of their SQUID’s as a function of dc
applied current and extrapolated their results to zero
current. They found consistent phase shifts between
their control and sample SQUID’s of 160620°, consis-
tent with there being a p phase shift between the com-
ponents normal to the order parameter on the two faces
of the YBCO crystal.

The Brawner and Ott (1994) experiment had the com-
plication of a required correction for self-field effects.
Further, the microscopic structure of the weak links was
not clear in these experiments. This was an important
point, since the experiment depended on there being a
difference in the crystal momentum of the order param-
eter probed on the two faces. Nevertheless, this was an
important contribution.

High-Tc SQUID’s made from 45° asymmetric biepi-
taxial grain boundaries show anomalous dependence of
their critical currents on magnetic field. This can be in-
terpreted in terms of d-wave symmetry, combined with
local grain-boundary faceting (Coppeti et al., 1995;
Hilgenkamp et al., 1996; Mannhart, Mayer, and Hilgen-
kamp, 1996). In this type of grain boundary, the node of
the presumed dx22y2 order parameter is normal to the
average interface on one side of the boundary. Faceting
rotates the normal angle slightly, producing alternating
positive and negative critical currents along the grain
boundary. This is equivalent to having a series of p
rings, which spontaneously generate alternating super-
currents, which in turn produce anomalous SQUID in-
terference patterns. This interpretation was supported
by scanning SQUID microscope measurements, which
imaged the spontaneous magnetization in the grain
boundaries (Mannhart, Hilgenkamp, et al., 1996).

Based on the low-inductance SQUID design of
Chesca (1999), with spatially distributed junctions,
Schulz et al. (2000) produced all high-Tc zero- and
p-ring SQUID’s using YBCO thin films epitaxially
grown on bicrystal and tetracrystal (e.g., Fig. 20 below)
SrTiO3 substrates. These devices, which had the advan-
tages of very small sample volumes (so that flux trapping
was not an issue) and small IcL products (so that self-
field effects were negligible), showed nearly ideal depen-
dences of the critical current on applied field, with a
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
minimum at zero applied field for the p-ring SQUID, as
expected for a d-wave superconductor in the tetracrystal
geometry used.

B. Single-Josephson-junction modulation

Wollman et al. (1993, 1995) performed a set of mea-
surements in a second geometry [Figs. 8(c) and (d)] that
were less sensitive than their SQUID experiments to the
effects of flux trapping and sample asymmetry. In this
geometry, instead of two SNS junctions in a loop, there
is a single SNS junction, either at a corner or at an edge
of a single YBCO crystal. For junctions with uniform
Josephson current density, and in the ‘‘short’’ junction
limit where the junction size is much smaller than the
Josephson penetration depth, it is expected that the
critical current will follow the standard Fraunhofer pat-
tern Ic(F)5I0usin(pF/F0)/(pF/F0)u as a function of the
flux F threading the junction, for an ‘‘edge’’ junction
with either s-wave or d-wave symmetry, and for a ‘‘cor-
ner’’ junction with s-wave symmetry. This pattern has a
maximum in the critical current at zero applied field. In
contrast, a ‘‘corner’’ junction with d-wave supercon-
ductors of equal current densities on the two faces
should show the interference pattern Ic(F0)
5I0usin2(pF/2F0)/(pF/F0)u, with a minimum at zero
applied flux. Wollman et al. (1993, 1995) reported con-
sistent results of a maximum in the interference pattern
for ‘‘edge’’ junctions [Fig. 9(b)], and a minimum for
‘‘corner’’ junctions [Fig. 9(c)], consistent with dx22y2

symmetry. See also Iguchi and Wen (1994).
The interference patterns reported by Wollman et al.

(1993, 1995) did not agree closely with the ideal expres-
sions above. They attributed this to asymmetries in the
current densities in the junctions, and to flux trapping,
and they reported good agreement with modeling in-
cluding these effects (Van Harlingen, 1995). However,
interference patterns qualitatively similar to those re-
ported by the Illinois group have been reported for both
square (Hyun, Clem, and Finnemore, 1989) and annular
(Nappi and Cristiano, 1997; Vernik et al., 1997; Nappi,
Cristiano, and Lisitskii, 1998) Josephson junctions with a
single vortex trapped in them. The Illinois group re-
ported that symmetric interference patterns, with
minima at zero applied field, such as they observe, can-
not be reproduced in modeling with an s-wave super-
conductor in their geometry. Perhaps the most convinc-
ing argument, however, against this possibility is that it
seems unlikely that magnetic flux is consistently trapped
in the Illinois ‘‘corner’’ junctions in such a way as to
mimic d-wave superconductivity.

Miller, Ying, et al. (1995) used frustrated thin-film tri-
crystal samples to probe the pairing symmetry in YBCO,
in an experiment analogous to the ‘‘corner’’ tunnel-
junction samples of Wollman et al. (1993, 1995). The
concept and design of the tricrystal experiments will be
discussed in detail in the next section. Miller et al. mea-
sured the dependence on magnetic field of the critical
current of a 3-mm-wide microbridge spanning the tric-
rystal point. They found a minimum in the critical cur-
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rent at zero applied field, as expected for a d-wave su-
perconductor in this geometry, in the ‘‘short junction’’
limit [where the width W of the bridge is much shorter
than the Josephson penetration depth lJ (Owen and
Scalapino, 1967)]. They found that junctions in an un-
frustrated geometry, or wide junctions (L@lJ) in a frus-
trated geometry, showed maxima in their critical cur-
rents at zero magnetic field. This agrees with the analysis
of Xu, Miller, and Ting (1995), who studied the static
properties of one-dimensional 02p Josephson junctions
theoretically and found that d-wave-type interference
patterns (with a minimum in Ic at zero field) can only be
obtained for ‘‘short’’ junctions. This analysis was ex-
tended to the intermediate range L;lJ , and to asym-
metric junctions, with similar conclusions, by Kirtley,
Moler, and Scalapino (1997). These results and analyses
show that the single-junction interference measurements
of Wollman et al. (1993, 1995) and Miller, Ying, et al.
(1995) and the tricrystal magnetometry experiments on
half-flux quantum Josephson vortices of Kirtley, Tsuei,
Rupp, et al. (1996) are complementary, in the sense that
the junction interference measurements only show dis-
tinctive ‘‘d-wave’’ interference patterns in a frustrated
geometry when the junction width L!lJ , while the
magnetometry experiments can only observe spontane-
ous magnetization of F0/2 in a frustrated geometry
when L@lJ .

C. Tricrystal and tetracrystal magnetometry

Spontaneous generation of a half-flux quantum at the
meeting point of Josephson coupled superconducting
crystals with unconventional pairing symmetry (e.g., the
heavy-fermion superconductors) in a frustrated geom-
etry was first proposed by Geshkenbein and co-workers
(Geshkenbein and Larkin, 1986; Geshkenbein et al.,
1987). The first experimental realization of this effect in
a controlled geometry was by Tsuei et al. (1994).

1. Design and characterization of controlled-orientation
multicrystals

The strategy of the multicrystal experiments is to cre-
ate a multiple-junction ring consisting of deliberately
oriented cuprate crystals for defining the direction of the
pair wave function. The presence or absence of the half-
integer flux-quantum effect in such samples as a function
of the sample configuration differentiates between vari-
ous pairing symmetries. In the first such experiment, tri-
crystal (100) SrTiO3 substrates with controlled orienta-
tions were designed and fabricated16 for this purpose.
Here, c-axis-oriented epitaxial cuprate films were depos-
ited and patterned into a ring interrupted by three grain-
boundary Josephson junctions. As defined in Fig. 10(a),
the misorientation angles a12 , a31 , and the angle be-
tween the grain boundaries b are selected so that the
three-junction ring is either a zero ring or a p ring de-

16The tricrystal and tetracrystal SrTiO3 substrates were
manufactured at Shinkosha Co., Tokyo.
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pending on the symmetry of an assumed pair state. For
example, it can be shown using the Sigrist-Rice (clean)
formula, Eq. (26), that the three-junction ring is a p ring
if cos 2(a121b)cos 2(a122b) is negative (assuming for
simplicity that a125p/22a31). In Fig. 10(b), the design
parameters (a12 ,b) corresponding to a p-ring design
are plotted as open areas; those for the zero ring are
shaded. As discussed in Sec. III.A, it is important to take
disorder effects into consideration by also satisfying the
maximum-disorder formula [Eq. (27); Tsuei et al., 1994].
It can be shown that in this limit the three-junction ring
is a p ring if cos(2a12)cos(2a31)cos(a122a31) is negative
[Fig. 10(c)].

The tricrystal design parameters for the dx22y2 frus-
trated geometry were chosen as a12530°, a31560°, and
b560°, corresponding to the solid circle in Figs. 10(b)
and (c). With this tricrystal design, if the cuprate super-
conductor being tested is indeed a d-wave supercon-
ductor, the half-integer flux-quantum effect should be
observed in both the clean and dirty limits, and there-
fore presumably also in the conditions of the actual junc-
tion, which must be somewhere in between.

In the tricrystal experiment of Tsuei et al. (1994), an
epitaxial YBCO film (1200 Å thick) was deposited using
laser ablation on a tricrystal (100) SrTiO3 substrate with
the configuration shown in Fig. 11. The YBCO film had
a sharp zero-resistance transition temperature of 90.7 K.
X-ray-diffraction measurements on YBCO and other
cuprates indicated single-phase, high-quality c-axis epi-
taxial film growth. In-plane scanning x-ray-diffraction
and electron backscattering measurements on the sub-
strate and the YBCO film showed strong in-plane align-
ment in the tricrystal cuprate film, with misorientation
angles at each grain boundary within 4° of the intended
design angle. After blanket film deposition, rings (48 mm

FIG. 10. Design parameters for zero and p rings: (a) Tricrystal
geometry; (b),(c) regions of the design parameters that give
zero and p rings in the (b) clean and (c) dirty limits. Shaded
areas, zero rings; open areas, p rings. d, the design point for
the frustrated three-junction ring samples [Fig. 16(a)]; s, 3,
the design points for the unfrustrated three-junction ring
samples [see Figs. 16(b) and (c), respectively].
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in inner diameter, 10 mm in width) were patterned by a
standard ion-milling photolithographic technique. In ad-
dition to the three-junction ring located at the tricrystal
meeting point, two two-junction rings and one ring with
no junction were also made as controls (see Fig. 11). The
control rings are in the zero-ring configuration and
should exhibit the standard integer flux quantization.
Current-voltage measurements on test microbridges (25
mm long and 10 mm wide) perpendicular to each of the
three grain boundaries indicated that (1) electrical resis-
tance as a function of temperature, R(T), showed typi-
cal features of a grain-boundary weak-link junction; (2)
the I-V curve displayed typical resistively shunted
Josephson-junction characteristics; and (3) the values of
the critical current for all three junctions agreed within
20% (Ic'1.8 mA). Since the estimated self-inductance
of the ring L was 100 pH, the IcL product was about
100F0 , easily satisfying the condition IcL@F0 for ob-
serving the half-integer flux quantization.

2. Magnetic-flux imaging

A high-resolution scanning SQUID microscope (Kirt-
ley, Ketchen, et al., 1995) was used to directly measure
the magnetic flux threading through the superconduct-
ing cuprate rings in the tricrystal magnetometry experi-
ments. The SQUID’s used for these experiments were
low-Tc Nb-AlOx-Nb trilayer SQUID’s, fabricated using
the planarized, all-refractory technology for supercon-
ductivity (PARTS) process (Ketchen et al., 1991; Fig.
12), with SQUID noise about 231026F0 /Hz1/2.

Since the pickup loops in these SQUID’s were photo-
lithographically patterned with well-shielded leads (Fig.
12), it was possible to quantitatively model the magnetic

FIG. 11. Experimental configuration for the p-ring tricrystal
experiment of Tsuei et al. (1994). The central, three-junction
ring is a p ring, which should show half-integer flux quantiza-
tion for a dx22y2 superconductor, and the two-junction rings
and zero-junction ring are zero rings, which should show inte-
ger flux quantization, independent of the pairing symmetry.
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fields imaged by them. In this modeling, the finite width
of the lines making up the loop were accounted for by
taking the effective loop pickup area as the geometric
mean area prinrout (Ketchen et al., 1985). Two genera-
tions of SQUID pickup loops were used for these ex-
periments. The first [Fig. 12(b)] had octagonal pickup
loops 10 mm in diameter (center to center) with leads 1.2
mm wide, spaced by 2.4 mm. This loop was modeled as
an octagonal pickup area 9.9 mm in diameter, with an
additional slot area 19 mm long and 2.4 mm wide. The
second-generation loop [Fig. 12(c)] had better shielded
leads, with minimum linewidths and spacings of 0.8 mm.
These loops were modeled with effective pickup areas,
each of which was the sum of the loop area itself plus an
additional area from the shielding of the leads close to
the loop, to account for flux-focusing effects. As an ex-
ample, the smallest of these loops [Fig. 12(c)], with a
4-mm-diameter octagonal pickup loop, was modeled as
an octagonal area 3.9 mm in diameter, with an additional
area 4 mm by 4 mm, from which one-third of the flux was
added to the ring flux.

Figure 13 shows a scanning SQUID microscope image
of a three-junction YBCO ring in the original tricrystal
magnetometry experiments (Tsuei et al., 1994). The

FIG. 12. Schematic diagram (not to scale) of an IBM SQUID
magnetometer and effective pickup areas: (a) SQUID magne-
tometer with an integrated, shielded pickup loop; (b) effective
pickup area of the first-generation IBM integrated pickup loop
SQUID’s; (c) effective pickup area of the second-generation
IBM integrated pickup loop SQUID’s.
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FIG. 13. Three-dimensional rendering of a scanning SQUID microscope image of a thin-film YBCO tricrystal ring sample, cooled
and imaged in nominally zero magnetic field. The outer control rings have no flux in them; the central three-junction ring has half
of a superconducting quantum of flux spontaneously generated in it [Color].
sample was cooled to 4.2 K and imaged in a magnetic
field estimated to be less than 0.4 mT. The interpretation
of this image is that the three outer control rings have no
magnetic flux trapped in them, but that the central
three-junction ring has F0/2 total flux in it. The control
rings are visible due to a slight change in the inductance
of the SQUID when it passes over the superconducting
rings.

Four different techniques were used to determine the
amount of flux in the rings in these experiments (Fig.
14). The first was to calculate directly the SQUID signal
for a given flux magnitude in the rings. Since the width
of the rings is comparable to the 10-mm diameter of the
pickup loops used to image these samples, the currents
in these rings can be modeled as infinitely narrow lines
of current. The mutual inductance M(rW ) between a
pickup loop tilted at an angle u from the sample x-y
plane in the x-z plane and a circular wire of radius R at
the origin can be written as

M~rW !5
m0R

4p E dx dyE
0

2p

df

3
cos u~R2y sin f2x cos f!2sin u~z cos f!

~x21y21z222xR cos f22yR sin f!3/2 ,

(41)

where the integral dx dy is over the plane of the pickup
loop, and the vector rW specifies the displacement of the
pickup loop with respect to the ring in the x-y plane.

Numerical integration of Eq. (41), using the pickup
loop geometry of Fig. 12(b), a tilt angle of 20°, and a
distance between the pickup loop center and the point
of contact of the SQUID substrate with the sample sur-
face of 10 mm, gives a mutual inductance of 2.4 pH be-
tween the pickup loop and one of the rings when the
pickup loop is centered above the ring. The ring induc-
tance was calculated to be 9965 pH. This means that
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
the fields induced by the pickup loop in the ring are a
small perturbation of the self-fields induced by the cir-
culating currents in the rings. A given flux F threading a
superconducting ring with self-inductance L induces a

FIG. 14. Four techniques for demonstrating the half integer
flux-quantum effect in tricrystal ring samples: (a) Direct calcu-
lation, assuming the central ring has F0/25h/4e flux in it. (b)
Observation of the change in the SQUID signal as individual
vortices enter the three-junction ring, with the pickup loop
centered on the ring. (c) Measurements of the absolute values
of the pickup loop flux when it is directly above the zero-
junction ring minus that above h, the two-junction ring and d,
the three-junction ring, for a number of cooldowns. (d) Mea-
surements of the SQUID signal directly above the rings, as a
function of externally applied field.
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circulating current Ir5F/L around the ring, which in
turn induces a flux Fs(rW )5M(rW )F/L in the pickup
loop.

The solid circles in Fig. 14(a) represent cross sections
through the image of Fig. 13 as indicated by the con-
trasting lines in this image. The solid lines are numerical
integrations of Eq. (41), assuming there is F5h/4e
5F0/2 total flux in the central, three-junction ring, and
no flux in the other rings. The asymmetry in the ring
images results from the tilt of the pickup loop relative to
the substrate, as well as the asymmetric pickup area
from the unshielded section of the leads. Allowing the
total flux in the three-junction ring to be a fitting param-
eter gives F50.5760.1F0 , using a doubling of the best-
fit x2 as a criterion for assigning statistical errors.

A second method for calibrating the response of the
SQUID pickup loop to flux trapped in the rings was to
position the pickup loops directly above the center of a
particular ring and measure the SQUID output as a
function of externally applied field. An example is
shown in Fig. 14(b) for the case of a three-junction ring.
In this figure a linear background, measured by placing
the loop over the center of the zero-junction control
ring, was subtracted out. At low fields stepwise admis-
sion of flux into the ring leads to a staircase pattern, with
progressively smaller steps, until over a small
intermediate-field range, shown for increasing fields in
Fig. 14(b), single flux quanta are admitted. The heights
of the single flux-quantum steps in this field region, de-
rived by fitting the data with a linear staircase (dashed
line), are DFs50.0237F0 . This is in good agreement
with the calculated value of DFs5M(0)F0 /L5(0.025
60.003)F0 . Twelve repetitions of this measurement, in-
cluding measurements of both the two-junction and
three-junction rings, gave values of M(0)F0 /L5(0.028
60.005)F0 . The average for eight different cooldowns
of the absolute value of the SQUID pickup loop
signal above the three-junction ring was (1.33
60.13)31022F0 , different from that above the zero-
junction ring when the three-junction ring was in its low-
est allowed flux state. Using the calibration above, this
meant that the three-junction ring had 0.4660.09F0 in
its lowest allowed flux state.

A third method for calibrating the flux in the tricrystal
ring samples was to cool the sample a number of times
under slightly different field conditions. Figure 14(c)
shows the results from 12 cooldowns of a YBCO ring
sample, plotted as the absolute value of the difference
between the SQUID loop flux in the centers of the two-
junction or three-junction rings, and the zero-junction
control ring. The solid lines are the expected values for
the flux difference calculated from Eq. (41). DF always
fell close to (N11/2)F0 for the three-junction rings, and
NF0 for the two-junction rings (where N is an integer).
The upward drift to the data as a function of run number
was associated with tip wear. The dashed lines in Fig.
14(c) include a correction for this tip wear and agree
well with the data.

A fourth method (called magnetic-field titration) for
calibrating the amount of flux in the rings (Kirtley,
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
Tsuei, et al., 1995) is illustrated in Fig. 14(d). This figure
shows the SQUID sensor signal at the center of the ring,
relative to the signal outside the ring, for all of the rings
as a function of field applied by a coil surrounding the
microscope. The coil was calibrated by replacing the
sample with a large-area pickup loop SQUID magneto-
meter. For this experiment, the sample was cooled in
sufficiently low field that none of the rings had flux, ex-
cept for the three-junction ring, which contained F0/2
spontaneously generated flux. As an external field was
applied, the rings screened the field with a circulating
supercurrent until a critical field, typically ;5 mT, was
exceeded, at which point flux entered the rings through
the grain boundaries. In the absence of flux penetration,
the SQUID difference signal went to zero when there
was as much field inside the ring as outside the ring.
Therefore the difference in flux through the rings was
just the difference in applied field required to make the
signal go to zero, times the effective area of the ring.
The effective area of the rings was calibrated by cooling
the zero-junction ring in different flux states, assuming
that it had integer flux quantization. This gave an effec-
tive area of 2572653 mm2, in good agreement with the
geometric mean area of 2564 mm2. Using this effective
area, the three-junction ring had 0.49060.015F0 more
flux threading through it than the zero-junction or two-
junction rings. Further, the difference in flux between
any of the other rings was uFu,0.01F0 .

One can use the technique of magnetic-field titration
to gain a better understanding of the magnetic-flux
quantum states of the cuprate rings. For example, in the
tricrystal experiments with YBCO (Kirtley, Tsuei, et al.,
1995) and Tl-2201 (Tsuei et al., 1996), the applied flux
needed to nullify the SQUID difference signal in the
three-junction ring was always found to be within 3% of
1/2F0 . This implies that the gauge-invariant phase shift
as defined in Eq. (20) is very close to p, in turn suggest-
ing that there is no significant time-reversal symmetry
breaking. Such a mixed pair state (e.g., d1is) would
lead to a phase shift 0,w,p and also a fractional flux
quantum xF0 with 0,x,1/2 (Walker and Luettmer-
Strathmann, 1996a; Sigrist, 1998). In the tricrystal ex-
periment with Tl-2201 (Tsuei et al., 1996), in which the
IcL product is low, the amount of spontaneously gener-
ated flux through the ring was indeed noticeably smaller
than 1

2 F0 (x;0.3). This can be understood by consider-
ing the free energy [Eq. (36)] of a p ring (w5p). The
ground-state flux Fm of the ring can be calculated by
minimizing the free energy U(F ,Fa) as a function of
applied flux Fa . This calculation indicates that frac-
tional vortices arising from low-Ic p rings are possible
(Fig. 15) and do not necessarily imply an order param-
eter with broken time-reversal symmetry.

3. Nature of the observed half-integer flux quantization

A series of tricrystal experiments with various geo-
metrical configurations was performed to clarify the ori-
gin of the observed half-integer flux-quantum effect in
the three-junction ring. Only the dx22y2 frustrated con-
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figuration showed the half-integer flux-quantum effect
(Fig. 16). As expected, the tricrystal experiments dis-
played in Figs. 16(b) and (c) (Kirtley, Tsuei, et al., 1995;
Tsuei, Kirtley, et al., 1995) corresponded to zero ring
configurations [i.e., shaded areas in Figs. 10(b) and (c)].
The absence of the half-integer flux-quantum effect in
these two tricrystal experiments has ruled out any
symmetry-independent mechanisms (Bulaevskii et al.,
1977; Spivak and Kivelson, 1991) as the cause of the p
phase shift. In addition, the tricrystal shown in Fig. 16(c)
rules out even-parity g-wave pairing symmetry with or-
der parameter varying as (cos kx1cos ky).

If the half-integer flux-quantum effect is due to the
symmetry of the superconducting pairing, then it should
not depend on the macroscopic geometry of the sample.
Figure 17 shows the results of a set of experiments to
test for the effects of sample geometry. Panel (a) is a
scanning SQUID microscope image of a YBCO ring
sample as described above. Panel (b) is an image of a
sample with photolithographically patterned disks.
Panel (c) is an image of a YBCO tricrystal sample with
no photolithographic processing of the film. In cases (b)
and (c), the supercurrents flowing around the tricrystal
point take the form of a Josephson vortex, with total flux
F0/2. Therefore the observation of spontaneous magne-
tization of F0/2 is independent of macroscopic sample
configuration, as long as it is in a frustrated geometry.

4. Integer and half-integer Josephson vortices

Figure 18 shows images of several different types of
vortices trapped in an unpatterned YBCO film on a tri-
crystal with a dx22y2 p-ring geometry (Kirtley, Tsuei,
et al., 1996). Contour lines have been placed on the data
at 0.1, 0.3, 0.5, 0.7, and 0.9 of the full-scale amplitudes.
The dots in Fig. 19 are cross sections through the images

FIG. 15. Calculated ground-state flux Fm for a p ring as a
function of externally applied flux Fa , for different values of
LIc /F0 . Inset, Fm and dFm /dFa at Fa50.
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of Fig. 18 as indicated by the contrasting lines and letters
in this figure. The solid lines in Fig. 19 are modeling as
follows:

The magnetic induction in vacuum at a distance r
away from the center of a superconducting bulk vortex,
in the limit r@lL ,t , where lL is the London penetra-
tion depth and t is the film thickness, is given by (Pearl,
1966; Chang, 1992; Kogan, 1993)

BW ~rW !5~F0/2p!rW/urWu3. (42)

The effective pickup area of the 4-mm-diameter octago-
nal pickup loop used for these measurements was mod-
eled as outlined in Fig. 12(c). The extra pickup area
from the shielding of the leads produces slight ‘‘tails’’ in
the images directly below the vortices. The solid lines
AA8 and BB8 in Fig. 19 are fits to the data, using the
fields of Eq. (42), integrating over the pickup loop area,
with an angle of 10° between the plane of the loop and
the sample surface plane, using the height of the loop as
a fitting parameter. The effective height is 1.8 mm. The
height estimated from the sensor geometry is 0.7 mm.
This discrepancy is most likely due to our use of a bulk
model to describe the fields from a vortex trapped in a
thin film. The effective height determined from fitting
the bulk vortices fixes the height for the rest of the mod-
eling of the Josephson vortices.

The grain boundaries making up the tricrystal point
can be modeled as wedges of superconductors, meeting
at the tricrystal line (x50, y50, z). The phase shift
f(ri) across the ith grain boundary is described by the
sine-Gordon equation (Owen and Scalapino, 1967; Clem
and Coffey, 1990),

¹W 2f~ri!5sin@f~ri!1w~ri!#/lJi
2 , (43)

where ri is the position along the ith grain boundary,
and w is zero everywhere for a conventional supercon-
ductor, but can be either zero or p for an unconven-
tional superconductor. f(ri) is related to the current
flowing perpendicular to the grain boundaries by the Jo-
sephson relation Ji'5Jci sin@f(ri)1w(ri)#. The solution
to Eq. (43), which describes a h/2e Josephson vortex
@w(ri)50 everywhere], centered about ri50 along a
single grain boundary, is

f~ri!54 tan21~eri /lJi!. (44)

The solution to Eq. (43) for a h/4e half-vortex with
w(ri)50, ri,0 and w(ri)5p , ri.0 is (Xu, Yip, and
Sauls, 1995)

f~x !54 tan21@~&21 !eri /lJi# ri,0,

4 tan21@~&11 !eri /lJi#2p ri.0. (45)

The general expression for the phase f at the tricrystal
point is complicated, if the grain boundaries have differ-
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FIG. 16. Three different SrTiO3 tricrystal geometries and scanning SQUID images of YBCO ring samples fabricated on these
substrates. The central, three-junction ring in (a) should be a p ring for dx22y2 pairing. It shows spontaneous generation of a half
integer flux quantum when cooled in zero field, while the surrounding, control rings show no trapped flux. The three-junction ring
in (b) should be a zero-ring for any pairing symmetry. The fact that it does not show spontaneous magnetization rules out a
symmetry-independent mechanism for the half-integer flux-quantum effect in these rings. The three-junction ring in (c) is designed
to be a zero-ring for dx22y2 pairing symmetry, but a p ring for extended s-wave pairing. This result rules out simple extended
s-wave pairing in YBCO [Color].
ent supercurrent densities, but the magnetic flux per unit
length in the ith branch of the vortex can be written as

dF~ri!

dri
5

F0

2p

df

dri
5

F0

2p

24ai

lJi

e2ri /lJi

11ai
2e22ri /lJi

, (46)
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where in this case ri50 for all grain boundaries at the
tricrystal point, and ri is restricted to values greater than
zero. Inside the superconductors, the London theory
gives ¹W 2BW 5BW /lL

2 . Using London theory to describe the
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FIG. 17. Scanning SQUID microscope images of three thin-film samples of YBCO epitaxially grown on tricrystal substrates
designed to show the half-integer flux-quantum effect for dx22y2 superconductors: (a) a sample photolithographically patterned
into four rings with inner diameter 48 mm and width 10 mm; (b) a similar sample, but this time patterned into disks with the same
outside diameter; (c) a sample with no photolithographic patterning. The sample of panel (a) was imaged with a 10-mm-diameter
octagonal pickup loop; sample (b) was imaged with a 10-mm-diameter octagonal pickup loop; and sample (c) was imaged with a
4-mm-diameter octagonal pickup loop. In all cases there was a half flux quantum of total flux spontaneously generated at the
tricrystal point, but the spatial distributions of supercurrent are different [Color].
field inside a superconductor is strictly valid only if no
current flows through the sample boundary. This is a
reasonable approximation if lL! lJ . Neglecting the de-
rivative parallel to the grain boundaries in the Laplacian
leads to
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Bz~ri ,r'!5
F0ai

plLlJi

e2ri /lJi

11ai
2e22ri /lJi

e2uri'u/lL, (47)

where ri' is the perpendicular distance from the ith
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FIG. 18. Images of several types of vortex trapped in a YBCO film on a tricrystal SrTiO3 substrate designed to generate the
half-flux-quantum effect in a dx22y2 superconductor: (a) a bulk vortex; (b) a Josephson vortex trapped on the diagonal grain
boundary; (c) a Josephson vortex trapped on the horizontal grain boundary; (d) a half-quantum Josephson vortex trapped at the
tricrystal point [Color].
grain boundary. A Josephson vortex with h/2e total flux
in it, and with a single penetration depth, has

Bz~ri ,ri'!5~F0/2plLlJ!sech~ri /lJ!e2uri'u/lL. (48)

For the tricrystal, the ai’s are normalization constants
determined by two conditions: First, the condition that
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
the magnetic induction at the tricrystal point varies
smoothly implies that ai /@lJi(11ai

2)# is the same for
each grain boundary. Second, the total flux at the tri-
crystal point is given by F5( i(F0/2p)4 tan21(ai)
5F0/2.

Once the fields at the surface of the grain boundary
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are calculated, the magnetic inductions at a height z
above the surface are determined by noting that, for
magnetic inductions derived from a two-dimensional
current distribution,

bz~kx ,ky ,z !5exp~2Akx
21ky

2z !bz~kx ,ky,0!, (49)

where bz is the two-dimensional Fourier transform of
the field Bz(rW), and kx and ky are the wave vectors in
the x and y directions, respectively (Roth et al., 1988).
As for the bulk vortex, the fields at a height z above the
sample were integrated over the pickup loop geometry
to obtain the SQUID flux as a function of scanning po-
sition.

The solid lines CC82FF8 in Fig. 19 are fits of the
model above to the data, with lL5150 nm and using the
Josephson penetration depth lJ as the only fitting pa-
rameter. This gave lJ55.060.5 mm for the Josephson
vortices along the horizontal grain boundary, while lJ
52.260.5 mm along the diagonal grain boundary. The
lines GG8 and HH8 in Fig. 19 are fits to the half-vortex
at the tricrystal point, using the three Josephson pen-
etration depths as fitting parameters. The best fit, hold-
ing the total flux at h/4e , occurs for lJ54.2 mm for the
horizontal grain boundary to the left of the tricrystal
point, lJ58.2 mm to the right of the tricrystal point, and
lJ52.0 mm for the diagonal grain boundary. This mod-
eling is simplified in that it neglects the effects of over-
lapping of fields from different grain boundaries close to
the tricrystal point, and it does not take into account
modifications to the fields due to the finite thickness of
the cuprate films. However, it does allow the conclusion
that the spontaneous magnetization at the tricrystal
point has approximately F0/2 total flux in it. Further,

FIG. 19. Cross sections through the vortex images of Fig. 18 as
indicated by the contrasting lines and letters: experimental
cross sections; solid lines, fits to these data as described in the
text, assuming that the bulk vortex and Josephson vortices
along the grain boundaries have h/2e of total flux in them, and
the vortex at the tricrystal point has h/4e total flux.
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values for the Josephson penetration depth can be ob-
tained from such fits. Similar experiments imaging inter-
layer vortices have allowed direct, local measurements
of the c-axis penetration depths in a number of cuprate
superconductors (Kirtley, Moler, et al., 1998; Moler
et al., 1998; Tsvetkov et al., 1998).

The advantage of the tricrystal magnetometry experi-
ments is that they allow the half-integer flux-quantum
effect to be directly imaged, in its ground state, with a
tunable geometry to ensure that the pairing symmetry is
being probed. Since no currents are applied externally,
there are no complications associated with self-field ef-
fects. The tricrystal ring samples have very small sample
volumes, so that flux trapping is highly unlikely. Any
flux trapping that occurs is imaged with high sensitivity.
The disadvantage of these experiments is that they use
grain-boundary junctions, which have fairly rough inter-
faces. However, care was taken to account for this inter-
face roughness. Further, these experiments were ex-
tremely reproducible: dozens of samples were made and
measured in hundreds of cooldowns. All tricrystal or tet-
racrystal samples that had sufficiently high supercurrent
densities across the grain boundaries (lJ,50 mm) gave
results (producing either zero or p rings) that were as
expected for predominantly d-wave pairing symmetry.

5. Evidence for pure d-wave pairing symmetry

The phase-sensitive pairing symmetry tests described
above yielded convincing evidence for a predominantly
d-wave order parameter. However, none of these ex-
periments could rule out a d1s mixed pair state. In an
orthorhombic superconductor such as YBCO, s-wave
and d-wave spin-singlet pairings correspond to the same
irreducible representation (i.e., A1g) of the point group
C2y . A mixing of s- and d-wave order parameters is
therefore allowed. Based on such a group-theoretic sym-
metry argument and the results of Josephson-junction
measurements on untwinned YBCO single crystals, it is
concluded that s1d pairing mixing is an unavoidable
consequence of orthorhombicity (Walker and Luettmer-
Strathmann, 1996a; Béal-Monod, 1998). The observation
of a finite c-axis supercurrent in YBCO/Pb junctions
(Sun et al., 1994) also supports a d1s mixed pair state.

The order parameter D(k) of a d1s superconductor
should transform as d(kx

22ky
2)1s(kx

21ky
2) to reflect the

underlying crystal lattice symmetry, where s and d are
the amounts of s-wave and d-wave subcomponents.
Node lines (D50) in the gap function, given by ky5
6@(d1s)/(d2s)#(1/2)kx , exist, provided that d/s>1.
The slope of the node lines deviates from that of pure
d-wave kx56ky , the diagonals for the Brillouin zone,
depending on the degree of s admixture. The Pb-YBCO
corner SQUID (or single-Josephson-junction) interfer-
ence experiments rely only on a sign change of the order
parameter between the a and b faces of the YBCO
single crystal, and therefore can not discriminate pure
d-wave from d1s pair states as long as d/s>1. In prin-
ciple, the tricrystal experiments with YBCO and Tl-2201
are capable of locating the nodes on the Fermi surface
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FIG. 20. Tetragonal Tl2Ba2CuO61d : (a) Tetracrystal geometry; (b) scanning SQUID microscope image of a film of Tl-2201
epitaxially grown on a SrTiO3 substrate with the geometry of (a), cooled in nominally zero field, and imaged at 4.2 K with an
8.2-mm-square pickup loop; (c) three-dimensional rendering of the data of Fig. 20(b); (d) cross sections through a bulk Abrikosov
vortex and through the half-vortex of Figs. 20(b) and (c), along the directions indicated in Fig. 20(a); d, experimental data; solid
lines, modeling, assuming the Abrikosov vortex has h/2e flux trapped in it, and the vortex at the tetracrystal point has h/4e flux
[Color].
of a (d1s)-wave superconductor. However, this would
require a systematic series of tricrystal experiments
based on a detailed model describing the complex pro-
cess of pair tunneling across a realistic grain-boundary
junction. Failing that, basic symmetry arguments can
nevertheless be made for a pure d-wave pair state in
certain cuprates.
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
a. Tetragonal Tl2Ba2CuO61d

A tetracrystal flux-imaging experiment with tetrago-
nal Tl-2201 films (Tsuei, Kirtley, et al., 1997) was carried
out using a geometrical configuration shown in Fig.
20(a), based on a suggestion by Walker and Luettmer-
Strathmann (1996a). The original proposal consisted of
a ring containing two c-axis-oriented tetragonal cuprate
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grains rotated about the c axis by an angle of p/4 with
respect to each other. The symmetrical placement of the
two grain-boundary junctions in the ring assured that for
a pair state with dx22y2 or dxy symmetry the supercur-
rents across the two junctions were equal in magnitude
but opposite in sign, resulting in a p ring. For s-wave or
g-wave (A1g and A2g irreducible representation, respec-
tively), there is no sign reversal, and the ring should
show the standard integer flux quantization. It is ex-
tremely difficult to make a bicrystal SrTiO3 substrate
with the required p/4-rotated wedge as well as two iden-
tical grain boundaries that are smooth and free of micro-
scopic voids. To overcome these difficulties, two bicrys-
tals were fused along the dividing line MM8 in Fig. 20(a)
to achieve the desired bicrystal wedge configuration.
Also shown in Fig. 20(a) are the polar plots of the as-
sumed dx22y2 gap function aligned with the crystallo-
graphic axes of the SrTiO3 substrate. For a dx22y2 or dxy
pair state, the built-in reflection symmetry with respect
to the line MOM8 ensures that the Josephson currents
across the grain boundaries OA and OB are related by

~Is!OA52~Is!OB . (50)

This conclusion can also be reached by considering
the general formula for the supercurrent of a Josephson
junction between two d-wave superconductors [Eq. (32);
Walker and Luettmer-Strathmann, 1996a]:

Is}C2,2 cos~2u1!cos~2u2!1S2,2 sin~2u1!sin~2u2!

1¯ . (51)

As required by the reflection symmetry of the experi-
ment, the angles u1 and u2 are given by

u15S 1a
2a D , u25S p/42a

p/41a D (52)

for grain-boundary junctions (OB
OA), respectively.

When this reflection symmetry operation is applied to
Eq. (51), every term changes its sign, reducing to Eq.
(50). Shown in Fig. 20(b) is the scanning SQUID image
of an epitaxial Tl-2201 film (Tc583 K) on the tetracrys-
tal SrTiO3 substrate [Fig. 20(a)]. A three-dimensional
presentation of the data in Fig. 20(b) is shown in Fig.
20(c). The results of detailed modeling (Kirtley, Tsuei,
Rupp, et al., 1996) of the image data are presented in
Fig. 20(d). The total flux at the wedge point is F0/2. The
fact that the half-flux quantum is the only vortex in a
relatively large area suggests that it is spontaneously
generated, as expected. Due to its importance to the
symmetry argument, the tetragonal crystal structure of
the single-phase Tl-2201 epitaxial films used in the ex-
periment was confirmed by using micro-Raman spec-
troscopy, x-ray diffraction, bright-field imaging transmis-
sion electron microscopy, selected-area electron
diffraction, and convergent-beam electron diffraction
(Ren et al., 1996; C. A. Wang et al., 1996).
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
As emphasized earlier, the superconducting order pa-
rameter should transform like the symmetry of the un-
derlying crystal lattice. For a tetragonal superconductor
with point group C4y as in Tl-2201, s-wave and d-wave
pair states correspond to two distinctly different irreduc-
ible representations, A1g and B1g , respectively. From a
group-theoretic point of view, no admixture of s and d is
allowed. Furthermore, the conclusion about the sign
change in the Josephson current is based on a rigorous
symmetry argument and does not depend on any model
describing pair tunneling. Therefore the observation of
the half-integer flux-quantum effect in the tetracrystal
geometry represents model-independent evidence for
pure dx22y2 pairing symmetry.

b. Orthorhombic Bi2Sr2CaCu2O81d

The Bi-2212 superconducting system is probably one
of the most-investigated members of the cuprate family,
due to its importance in fundamental studies and practi-
cal applications. Early pairing symmetry studies on Bi-
2212 using techniques such as quasiparticle tunneling
spectroscopy and angle-resolved photoemission spec-
troscopy (ARPES) yielded controversial results. The
early tunneling experiments were plagued by problems
with junction quality and various spurious effects (for a
review, see Hasegawa and Kitazawa, 1991).

However, as discussed in Sec. II.D, ARPES studies on
gap anisotropy yielded important evidence suggesting
d-wave pairing symmetry in Bi-2212 (Shen et al., 1993;
Ding, Norman, Compuzano, et al., 1996; Ding, Norman,
Mochiku, et al., 1996), although ARPES lacks phase
sensitivity and therefore cannot distinguish between
d-wave and highly anisotropic s-wave pairing. A tricrys-
tal flux-imaging experiment with Bi-2212 (Kirtley, Tsuei,
Raffy, et al., 1996) proved that the order parameter has
sign changes that are indeed consistent with d-wave
pairing symmetry. Shown in Figs. 21(b) and (c) are scan-
ning SQUID microscope images of a c-axis-oriented Bi-
2212 film deposited on a tricrystal SrTiO3 substrate de-
signed for testing d-wave pairing symmetry. From these
figures, one can see that, at an ambient field of 0.4 mT,
vortices are found in the grains (Abrikosov vortices) and
along the grain boundaries (Josephson vortices). The
vortices at the grain boundaries can be used to locate
the tricrystal meeting point, where a relatively weak vor-
tex is observed. When the tricrystal sample is cooled in a
nominally zero magnetic field, only the vortex at the tri-
crystal point remains, suggesting that it is spontaneously
generated. Detailed modeling of flux-imaging data
shows that the vortex at the tricrystal point has a total
flux of F0/2, while all others correspond to single vorti-
ces with full flux quantum F0 [Fig. 21(d)]. The results of
ARPES and the tricrystal experiment combined lead to
the conclusion that, if Bi-2212 has a d1s mixed pair
state, the s-wave component must be very small.

Based on symmetry arguments, one can go one step
further by suggesting that the orthorhombic Bi-2212 is a
pure d-wave superconductor (Tsuei and Kirtley, 1998)
just like its tetragonal counterpart Tl-2201. The crystal
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FIG. 21. Scanning SQUID microscope data on Bi-2212: (a) tricrystal geometry, including polar plots of assumed dx22y2 order
parameters aligned along the crystalline axes; (b) scanning SQUID microscope image of 6403640 mm2 area of an epitaxial film of
Bi-2212 on a SrTiO3 tricrystal substrate with the geometry of Fig. 21(a), cooled in a field of 0.4 mT, and imaged at 4.2 K with an
8.2-mm-square pickup loop; (c) 4003400 mm2 image of the same sample, cooled in nominal zero field; (d) comparison of horizontal
cross sections through the images (b) and (c) with modeling assuming that all vortices have F0 of flux, except at the tricrystal
point, which has F0/2 flux spontaneously generated.
structure of Bi-2212 is orthorhombic as a result of an
incommensurate lattice modulation with a periodicity of
;4.7b (b55.41 Å, the lattice constant) along the b-axis
direction (for reviews, see Beyers and Shaw, 1988; Chen,
1992). This microstructural feature leads to a reduced
Brillouin zone that is rotated by exactly p/4 with respect
to that of the orthorhombic YBCO. The inequivalent
axes for orthorhombic anisotropy coincide with the node
lines (Fig. 22) established by the ARPES measurements.
From group-theoretic considerations, s-wave and
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dx22y2-wave pair states correspond to two distinct irre-
ducible representations (i.e., A1g and B1g , respectively)
and therefore are not allowed to mix (Annett et al.,
1996). Based on this symmetry consideration, one is led
to the conclusion that the s-wave component of the or-
der parameter in Bi-2212 should be vanishingly small.
This assertion is apparently supported by zero (Durosy
et al., 1996; Sinha and Ng, 1998a) or nearly zero (Mössle
and Kleiner, 1999) c-axis pair tunneling in this nomi-
nally orthorhombic superconducting system.
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D. Thin-film SQUID magnetometry

Mathai et al. (1995) performed tests of pairing symme-
try in YBCO with thin-film YBCO-Pb (sample)
SQUID’s. They imaged the magnetic flux in these
SQUID’s as a function of externally applied magnetic
field, using a scanning SQUID microscope with a low-Tc
Nb-Pb (sensor) SQUID. The YBCO films were epitaxi-
ally grown on (100) LaAlO3 substrates by pulsed laser
deposition. They were then patterned, a thin layer of Ag
was deposited, annealed, cleaned by ion milling, and a
thin Pb (In 5% at. wt) film was deposited to form
SQUID’s. In the experiments of Mathai et al. (1995) the
sample SQUID’s had either a ‘‘corner’’ or ‘‘edge’’ con-
figuration, in analogy with the experiments of Wollman
et al. (1993) [see, for example, Figs. 8(a) and (b)]. Also
in analogy with the experiments of Wollman et al.
(1993), the ‘‘corner’’ SQUID’s should be p rings if
YBCO is a d-wave superconductor, while the ‘‘edge’’
SQUID’s should be zero rings, independent of the su-
perconducting pairing symmetry. The YBCO-Pb sample
SQUID’s were washers, with 50-mm inner-side length,
and 250-mm outer-side length. They had a self-
inductance of about 75 pH, and a b52pLIc /F0;1.
This relatively small b value meant that the spontaneous

FIG. 22. Brillouin zone for Bi-2212. The reduced zone as a
result of incommensurate superlattice modulation (along the b
direction) is outlined schematically. The orientation of the
dx22y2-wave polar plots is established by the ARPES data.
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flux and circulating supercurrents at zero external field
(see Fig. 15) generated by the p-ring SQUID’s were
quite small. Further, there was a large mutual induc-
tance between the sample and sensor SQUID’s. There-
fore the influence of the Nb-Pb sensor SQUID on the
YBCO-Pb sample SQUID screening currents had to be
corrected for in these measurements.

Rather than measuring the amplitudes of the sponta-
neous flux at zero applied field, Mathai et al. measured
the superconducting phase shift in their rings with a
clever trick: the dependence of the screening currents in
the YBCO-Pb sample SQUID’s was measured as a func-
tion of externally applied field, tracing out a number of
branches, each branch corresponding to a different num-
ber of vortices in the YBCO-Pb sample SQUID. The
measurements were then repeated with the leads to the
Nb-Pb sensor SQUID and the external magnet reversed.
This was equivalent to a time-reversal operation. If
time-reversal-symmetry invariance is satisfied, and if the
YBCO-Pb sample SQUID shielding current branches
are labeled with the integers n , a zero ring will map
under time reversal onto a branch n8 with Dn5n2n8 an
even integer, while a p ring will have Dn odd. Mathai
et al. (1995) found that the ‘‘corner’’ SQUID’s had Dn
odd while the ‘‘edge’’ SQUID’s had Dn even, as ex-
pected for d-wave superconductivity. Further, Dn was
close to an integer for both types of sample SQUID’s,
implying that time-reversal invariance was closely satis-
fied. Mathai et al. (1995) estimated that the time-
reversal-symmetry-breaking component of the pairing
order parameter was less than 5%, in agreement with
the conclusions drawn by Kirtley, Tsuei, et al. (1995)
from ‘‘magnetic titration’’ of tricrystal rings, as de-
scribed in Sec. IV.C.2. These experiments had the ad-
vantages that they directly imaged trapped flux, so that
its influence could be avoided; and they allowed a phase
shift of p to be measured self-consistently using just the
‘‘corner’’ SQUID, without reference to the ‘‘edge’’
SQUID.

Later work by Gim et al. (1997) tested geometries in-
termediate between the ‘‘corner’’ SQUID and ‘‘edge’’
SQUID in an attempt to determine the momentum de-
pendence of the phase shift in the order parameter. In
these SQUID’s one of the junction normals was parallel
to the YBCO b axis, while the other was at an angle u
relative to the a axis. If YBCO were a pure d-wave
superconductor, these SQUID’s would be expected to
have a zero phase shift for 0,u,45° and a p phase shift
for 45°,u,90°. The results of these experiments were
complicated by interface roughness introduced by the
etching process used. However, the authors concluded
that the angular dependence of the phase of the order
parameter follows dx22y2 symmetry, although it was nec-
essary to understand the details of the junction fabrica-
tion process to reach this conclusion.

E. Universality of d-wave superconductivity

The phase-sensitive pairing symmetry experiments de-
scribed above have provided clear evidence for a pre-
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dominantly d-wave pair state in several cuprate super-
conductors; but is it universal? There exists considerable
theoretical work suggesting that the stability of the
d-wave pair state depends on the details of the elec-
tronic band structure as well as the pairing potential
(Wheatley and Xiang, 1993; Dagotto, 1994; O’Donovan
and Carbotte, 1995a, 1995b; Koltenbah and Joynt, 1997;
T. Sakai et al., 1997; Wysokinski, 1997; Varelogiannis,
1998a, 1998b). Given both s-wave and d-wave pairing
channels, the general conclusion of these studies is that
pairing symmetry is a function of band filling and certain
band parameters. Based on the t-t8-J model, with t8/t
>20.4, the d-wave pair state prevails in a doping range
centered around half-filling of the band, and s-wave-like
pairing is more stable in the under- and over-doped re-
gimes (Wheatley and Xiang, 1993; O’Donovan and Car-
botte, 1995a; Koltenbah and Joyut, 1997). There are
some Raman data on Bi-2212 and Tl-2201 as a function
of oxygen content suggesting that the gap is d wave near
optimal doping and isotropic in the overdoped range
(Kendziora et al., 1996). Like many other indirect sym-
metry experiments, such an interpretation of the results
is controversial. For an alternative point of view, see
Hewitt et al. (1997).

It has been suggested that as the temperature de-
creases below a certain characteristic value, a pure
d-wave pair state is not stable against the formation of
mixed pair states such as dx22y21is or dx22y21idxy
(Kotliar, 1988; Laughlin, 1994, 1998; Liu et al., 1997;
Ghosh and Adhikari, 1998a, 1998b; Zhu et al., 1998; Zhu
and Ting, 1998). Due to the coupling between the two
subcomponents of the order parameter, the mixed pair
state is fully gapped, much like that in an s-wave super-
conductor (Ghosh and Adhikari, 1998a, 1998b). The
power-law temperature dependence of observables such
as specific heat, thermal conductivity, and penetration
depth characteristic of d-wave superconductors reverts
to the exponential behavior typical of s-wave supercon-
ductors. Measurements of the penetration depth of Zn-
substituted LSCO (Karpińska et al., 2000) shows that it
retains a T2 dependence, indicative of d-wave pairing in
the presence of scattering, until Tc is suppressed to zero.
This argues against an admixture of s-wave pairing at
any Tc . There has been a report of a temperature-
dependent pair state with broken time-reversal symme-
try (i.e., dx22y21is state) in YBCO near Tc (Koren
et al., 1998). The gap anisotropy in Bi-2212 measured by
ARPES also suggests a temperature-dependent two-
component order parameter with only a dx22y2 symme-
try component near Tc and both s- and d-wave compo-
nents at lower temperatures (Ma et al., 1995).
Furthermore, there is thermal transport evidence sug-
gesting that a phase transition from a pure dx22y2-wave
state into states of broken time-reversal symmetry such
as d1is or dx22y21idxy can be induced in Bi-2212 at
low temperatures by magnetic field (Krishana et al.,
1997) or by magnetic impurities (Movshovich et al.,
1998). However, there are new experiments (Aubin
et al., 1998, 1999; Krishana et al., 1998) and calculations
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(Anderson, 1998) indicating that the interpretation of
the original experiments is much more involved.

In view of these interesting but controversial results, it
is worthwhile to examine the universality issue by per-
forming phase-sensitive symmetry experiments with dif-
ferent superconducting cuprate systems, and as a func-
tion of composition (doping) and temperature for a
given cuprate system.

1. Hole-doped cuprates

As shown in Table IV, evidence for predominantly
d-wave pairing has been found in all the hole-doped cu-
prate superconductors tested using phase-sensitive
methods. This is generally consistent with the numerical
studies of band structure which address the form of pair-
ing symmetry. As mentioned above, the d-wave channel
is favored near half-filling. More phase-sensitive symme-
try experiments are needed in the under- and overdoped
regimes to fully test the universality issue. The interpre-
tation of symmetry experiments with twinned YBCO
single crystals or films depends on the exact nature of
the twin boundaries (Annett et al., 1996; Walker, 1996).
However, phase-sensitive experiments with a tetragonal
cuprate superconductor such as Tl-2201 (Tsuei et al.,
1996, 1997) and untwinned YBCO samples (Wollman
et al., 1993; Brawner and Ott, 1994) make such compli-
cations irrelevant. The fact that a d-wave signature has
been consistently and reproducibly observed in both
orthorhombic and tetragonal cuprates argues strongly
that the twin boundaries in YBCO have odd reflection
symmetry (Walker, 1996). The d-wave component of
the order parameter continues across the twin boundary,
whereas the s-wave counterpart changes its sign. An
even-reflection twin boundary corresponds to a pre-
dominantly s-wave pair state, which is not observed in
any of the YBCO experiments listed in Table IV.

2. Electron-doped cuprates

Non-phase-sensitive symmetry tests have been contra-
dictory in the electron-doped cuprate superconductors
Nd1.85Ce0.15CuO42d (NCCO) and Pr1.85Ce0.15CuO42d
(PCCO). For example, the in-plane penetration depth
lab(T) in NCCO has been fit both with an exponential
temperature dependence (Wu et al., 1993; Andreone
et al., 1994; Anlage et al., 1994; Alff et al., 1999), indicat-
ing s-wave symmetry, and a power-law dependence
(Kokales et al., 2000; Prozorov et al., 2000), indicating a
symmetry with a line of nodes. The penetration depth
measurements in these materials are complicated by the
fact that they likely have large impurity scattering, which
tends to change lab(T) from a T to a T2 temperature
dependence in a superconductor with a line of nodes
(Annett et al., 1991; Hirschfeld and Goldenfeld, 1993),
and by the paramagnetism of Nd31 ions in NCCO (Coo-
per, 1996). Similarly, penetration depth measurements
of PCCO have been interpreted as indicating either an
s-wave (Alff et al., 1999) or non-s-wave (Kokales et al.,
2000; Prozorov et al., 2000) pairing symmetry. Quasipar-
ticle tunneling measurements in NCCO (Huang et al.,
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TABLE IV. Summary of phase-sensitive tests of cuprate pairing symmetry. All these experiments indicate dominant
d-wave pairing.

Cuprate systems Tc(K) Comments References

YBa2Cu3O72d 91 YBCO single crystals,
(YBCO) Orthorhombic crystal

structure with space
group Pmmm, two layers
of CuO2 per unit
cell, point group
C2v in the
CuO2 plane.

Pb-YBCO SQUID
interferometry

Wollman et al. (1993)

c-axis oriented
epitaxial films,
tricrystal magnetometry

Tsuei et al. (1994)

single crystals, Nb-
YBCO SQUID inter-
ferometry, Nb point
contacts

Brawner and Ott (1994)

single crystals, Pb-
YBCO corner junction,
magnetic field
modulation of the
critical current

Wollman et al. (1995)

thin-film YBCO-Pb SQUID
interferometry, applied
magnetic field and
bias current reversed

Mathai et al. (1995)

magnetic field modula-
tion in YBCO tricrystal
junctions

J. H. Miller, Jr. et al. (1995)

GdBa2Cu3O72d
(GBCO)

95 Isomorphic with YBCO, antiferromagnetic
ordering (TN'2.2 K), tricrystal
direct magnetic-flux imaging

Tsuei and Kirtley (1997)

Tl2Ba2CuO61d
(Tl-2201)

82 Tetragonal crystal structure with space
group I4/mmm , single layer of CuO2
per unit cell, point group C4v ,
optimally doped, tricrystal magnetometry

Tsuei et al. (1996)

Bi2Sr2CaCu2O81d
(Bi-2212)

80 Orthorhombic crystal structure, space
group Fmmm , bilayers of CuO2
per unit cell, optimally doped films
Tricrystal magnetometry

Kirtley, Tsuei, Raffy, et al. (1996)

Nd1.85Ce0.15CuO42d
(NCCO)

23 Electron-doped, c-axis oriented
thick epitaxial films, tricrystal magnetometry

Tsuei and Kirtley (2000)

Pr1.85Ce0.15CuO42d
(PCCO)

22 Electron-doped, c-axis-oriented
thick epitaxial films, tricrystal magnetometry

Tsuei and Kirtley (2000)
1990) indicate s-wave symmetry, as does the absence of
a zero-bias conductance peak in tunneling (Ekin et al.,
1997; Alff, Beck, et al., 1998; Kashiwaya et al., 1998).
However, zero-bias conductance peaks can be sup-
pressed by disorder effects, as demonstrated in ion-
irradiated YBCO/Pb junctions (Aprili et al., 1998). Al-
though the IcRn values of NCCO/Pb junctions are found
to be finite (0.5–6 mV; Woods et al., 1999), they are
much smaller than the Ambegaokar-Baratoff limit, an
indication of an appreciable non-s-wave component.

These contradictory results underscore the need for a
phase-sensitive experiment. Recently Tsuei and Kirtley
(2000) performed tricrystal pairing symmetry experi-
ments on NCCO and PCCO. These experiments are
made difficult by the very small supercurrent densities
across the grain boundaries in these materials (Hilgen-
kamp and Mannhart, 1999; Schoop et al., 1999). Never-
theless, Tsuei and Kirtley (2000) were able to show that
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samples in a geometry designed to be frustrated for a
d-wave superconductor spontaneously generated a half-
integer Josephson vortex at the tricrystal point upon
cooling in zero field. Control samples in two other ge-
ometries, designed to be unfrustrated for a d-wave su-
perconductor, did not show the half-integer flux-
quantum effect. These results indicate that both NCCO
and PCCO are d-wave superconductors.

The electron-doped superconductors are different
from their hole-doped counterparts in many ways. For
example, the hole doped cuprates such as YBCO and
LSCO have apical oxygens; the electron doped cuprates
do not. Superconductivity in the electron-doped cuprate
systems occurs in a very narrow doping range [0.14<x
<0.17 for NCCO (Tokura et al., 1989) and 0.13<x
<0.2 for PCCO (Takagi et al., 1989; Peng et al., 1997)];
in the hole-doped LSCO system the range is broader
(0.05<x<0.3). The highest Tc values in the hole-doped
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cuprates are over five times those in the highest-Tc
electron-doped cuprates. In optimally doped YBCO and
LSCO the in-plane resistivity increases linearly with
temperature over a wide range (Takagi et al., 1992), with
small or nearly zero extrapolated values at zero tem-
perature; in PCCO and NCCO (x50.15) the in-plane
resistivity is approximately quadratic in temperature,
with a relatively large residual resistivity (Tsuei et al.,
1989; Peng et al., 1997). Photoemission spectroscopy
studies show CuO2-plane-derived flat energy bands near
the Fermi surface of the high-Tc hole-doped cuprates
such as YBCO (Abrikosov et al., 1993) and BSCCO
(Dessau et al., 1993), but not within 300 meV of the
Fermi surface of NCCO (King et al., 1993). That both
appear to have d-wave pairing symmetry in spite of
these differences indicates that d-wave pairing is central
to the mechanism of superconductivity in the cuprate
superconductors.

3. Temperature dependence of the F0/2 effect

The universality of d-wave pairing symmetry can also
be considered by investigating the temperature depen-
dence of the half-integer flux-quantum effect. Kirtley,
Tsuei, and Moler (1999) used a variable-sample-
temperature scanning SQUID microscope (Kirtley,
Tsuei, Moler, et al., 1999) to measure the total sponta-
neous flux at the tricrystal point of a YBCO thin film in
a frustrated tricrystal geometry as a function of tempera-
ture. They found (Fig. 23) that the half-integer flux-
quantum effect at the tricrystal meeting point persists
from T50.5 K through Tc (;90 K) with no change in
total flux (F0/2). This implies that d-wave pairing sym-
metry dominates in this cuprate, with no observable
time-reversal symmetry breaking, over the entire tem-
perature range.

FIG. 23. Best-fit values for the total magnetic flux spontane-
ously generated at the tricrystal point of a YBCO thin-film
sample in a tricrystal geometry designed to be frustrated for a
dx22y2 superconductor, as a function of temperature. To within
the experimental uncertainties, the total flux is F0/2 from 0.5 K
to Tc;90 K. This indicates that d-wave pairing symmetry
dominates at all temperatures, with little (if any) imaginary
component, in YBCO.
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V. RELATED SYMMETRY-SENSITIVE EXPERIMENTS

A. Biepitaxial grain-boundary experiments

An experiment that played an important role in the
early debate on pairing symmetry was that of Chaudhari
and Lin (1994). It is well established that grain bound-
aries in thin cuprate films act as Josephson weak links
(Dimos et al., 1990). Chaudhari and Lin used samples
with seeding layers to grow hexagon-shaped grain
boundaries in YBCO with 45° rotations of the crystal-
line orientations inside the hexagons relative to outside
the hexagons [Char et al., 1991; Fig. 24(a)]. Using the
Sigrist and Rice (1992) formulas for the supercurrent
density across the grain boundaries as a function of crys-
talline orientations [Eq. (26)], they argued that a d-wave
superconductor would have cancellation of the Joseph-
son supercurrents across various edges between the in-
sides and the outsides of the hexagons, leading to an
average supercurrent over the entire hexagon of zero.
Instead they found that the supercurrent was finite.
Moreover, when they removed successive adjacent
edges of the hexagon by laser ablation, they found that
the total supercurrent was linear in the number of edges,
independent of their orientations. They interpreted this
as evidence for s-wave superconductivity.

However, Millis (1994) analyzed the Chaudhari-Lin
experiment and found that if the magnitude of the Jo-
sephson coupling is strong, but with spatially varying
sign, then local vortices will appear to relieve the frus-
tration. This will reduce the cancellation between edges

FIG. 24. Data from the samples of Chaudhari and Lin: (a)
schematic diagram of the biepitaxial grain-boundary hexagon
samples of Chaudhari and Lin; (b) scanning SQUID micro-
scope image of one of these samples; (c) cross section through
the data along the hexagonal grain boundary of the scanning
SQUID microscope image of (b).
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with critical currents of opposite signs. This argument is
similar to that of Xu, Miller, and Ting (1995; Sec. IV.B).
The Josephson penetration depth in the Chaudhari-Lin
samples was about 6 microns, much shorter than the
face length of 500 mm. Therefore there should be no
cancellation of the critical currents from the various
faces of the hexagons in these experiments, even if the
samples were perfectly ordered.

Further, magnetic imaging of these samples shows
that these samples are not well ordered magnetically.
Figure 24(b) shows a scanning SQUID microscope im-
age of a smaller hexagon, 36 mm in length along each
section, fabricated using the same technology as the
Chaudhari-Lin samples. The sample was cooled and im-
aged in nominally zero field, as indicated by the fact that
there are no bulk Abrikosov vortices evident in the im-
age, and the flux trapped in the hexagonal grain bound-
ary is on average zero. Figure 24(c) shows a cross section
around the perimeter of the hexagonal grain boundary
of the scanning SQUID microscope image [Fig. 24(b)].
Magnetic flux is spontaneously generated in the grain
boundaries with no apparent order. An analysis of
SQUID microscope images of a number of similar grain
boundaries by Kirtley, Chaudhari, et al. (1995) shows
that the total flux in the grain boundary is quantized in
units of the superconducting flux quantum F0 , but that
the spatial distribution of this flux is random. This ran-
dom magnetic ordering is most likely due to a combina-
tion of grain-boundary interface roughness and the rela-
tively small critical current densities in these 45°
misorientation grain boundaries (Copetti, 1995; Hilgen-
kamp, Mannhart, and Mayer, 1996; Mannhart, Mayer,
and Hilgenkamp, 1996).

B. c-axis pair tunneling

1. Tunneling into conventional superconductors

The phase-sensitive symmetry tests described so far
all rely on Josephson tunneling parallel to the CuO2
planes. In the following, we shall review a series of
c-axis (perpendicular to the CuO2 planes) pair-tunneling
experiments.

In the crystal structure of YBCO, the inequivalence in
the lattice constants along the a and b directions in the
CuO2 planes is about 2%. The effects of orthorhombic-
ity on the normal-state and superconducting properties
are well documented in the literature. Significant anisot-
ropy exists in the in-plane resistivity (ra /rb;2) and the
London penetration depth (la /lb;1.5; see, for ex-
ample, Basov et al., 1995; Sun et al., 1995). From the
la /lb ratio, a large anisotropy in the superfluid density
(ns)b /(ns)a5la

2/lb
2>2 can be inferred. Since the CuO2

plane of YBCO is characterized by a rectangular CuO2
lattice with point-group symmetry C2v , the s-wave and
d-wave pairing symmetries correspond to the same irre-
ducible representation (A1g). Therefore s1d pairing
mixing is allowed. Now that the predominance of
d-wave pairing in YBCO has been established, the issue
is the magnitude of the s-wave component in such a
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mixed pair state. A study of c-axis Josephson pair tun-
neling between a cuprate (such as YBCO) and an
s-wave superconductor (such as Pb) represents an ideal
way to determine the extent of the d1s admixture.
Since the d-wave order parameter has lobes equal in
area but opposite in sign, the net c-axis supercurrent Ic
should be zero [see Eq. (21)], if YBCO were a pure
d-wave superconductor. Therefore the observation of a
finite c-axis Josephson current signals the existence of
d1s mixed pairing. The normal-state junction resistance
Rn can also be readily measured. The T50 K IcRn
product for a Josephson junction between two s-wave
superconductors was given by Anderson (1964):

IcRn5
pD1D2

e~D11D2!
KS UD12D2

D11D2
U D , (53)

where D1 and D2 are the BCS energy gaps of the junc-
tion electrodes, and K is the complete elliptic integral.
Equation (53) reduces to the Ambegaokar-Baratoff for-
mula [Eq. (22)], for D15D25D , yielding IcRn5pD/2e .
In principle, the ratio of IcRn determined experimen-
tally in a c-axis tunneling experiment to that predicted
theoretically by Eq. (53) can be a measure of the extent
of the d1s admixture. In practice this is not so straight-
forward.

Sun et al. (1994) reported evidence for c-axis Joseph-
son coupling between a low-Tc s-wave superconductor
(Pb) and a high-Tc cuprate superconductor (YBCO).
The I-V characteristics of a Pb/YBCO c-axis planar
junction showed extremely low leakage current below
the Pb gap (;1.4 meV), linearity at high bias, and a
finite pair-tunneling current at zero-bias voltage (Fig. 25,
left inset). The temperature dependence of the Joseph-

FIG. 25. Experimental data on c-axis tunneling from single-
crystal YBCO into Pb: Left insert, current-voltage characteris-
tic, showing little leakage current and finite supercurrent.
Right insert, Josephson critical current vs temperature. Main
figure, Josephson critical current as a function of field applied
parallel to the plane of the junction, showing a high-quality
interference pattern. Adapted from Sun et al. (1994).
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son critical current demonstrated conventional
Josephson-junction behavior (Fig. 25, right inset). These
results indicate that single-step, elastic tunneling domi-
nates in these junctions. The variation of the critical cur-
rent with applied in-plane magnetic field at 1.3 K shows
a deeply modulated Fraunhofer pattern (Fig. 25), sug-
gesting highly uniform current distribution. Sun et al.
(1996) later provided additional evidence from ab-edge
junctions that the previously observed c-axis pair tun-
neling was indeed along the c direction as a result of
c-axis Josephson coupling, and not due to some in-plane
tunneling. The values of the IcRn product were found to
be between 0.1 meV and 1 meV in these experiments,
the latter being about 20% of the A-B limit for the all-
s-wave case. Kleiner et al. (1996) observed microwave-
induced steps on the I-V curves of the c-axis YBCO/Pb
tunnel junctions at voltages that were multiples of hf/2e
(f is the frequency of the applied microwaves), instead
of hf/4e , suggesting that the observed c-axis tunneling is
first order. According to a theory by Tanaka (1994),
second-order c-axis pair tunneling is possible for a junc-
tion between s-wave and pure d-wave superconductors.
In this case, the standard Josephson current-phase rela-
tion, Eq. (19), is replaced by Is5Is

0 sin(2g).
YBCO/Pb c-axis pair tunneling was also studied using

c-axis-oriented epitaxial YBCO films (Katz et al., 1995;
Lesueur et al., 1997). In these experiments, the high-
quality Josephson-tunnel-junction characteristics dis-
played in Fig. 25 were reproduced, except that the IcRn
product was one to two orders of magnitude smaller
than obtained on single-crystal YBCO/Pb junctions (Sun
et al., 1994). Moreover, c-axis pair tunneling was ob-
served in epitaxial film YBCO/Pb low-leakage tunnel
junctions by Kwo et al. in 1990. A typical IcRn product
of ;0.5 mV was observed. However, these results were
not considered in the context of pairing symmetry at
that time.

As a consequence of its orthorhombic crystal symme-
try, a YBCO sample is usually twinned unless it is spe-
cially treated. The twin boundaries in YBCO run at 45°
with respect to the major crystallographic axes a and b .
The two crystal lattice domains on each side of a twin
boundary are related via a mirror reflection symmetry
(see Fig. 26). Most of the YBCO samples studied in the
c-axis tunneling experiments were twinned. In polycrys-
talline YBCO, the spacing between parallel twins can be
as small as 10 nm (Beyers and Shaw, 1988; Shaw et al.,
1989). To understand the effect of twinning on c-axis
pair tunneling in such heavily twinned samples, it is ex-
tremely important to know how the order parameter
varies across a single twin boundary in a YBCO single
crystal. As discussed above, there are two alternatives in
YBCO (Annett et al., 1996; Walker, 1996; Walker and
Luettmer-Strathmann, 1996b): (1) the d-wave compo-
nent of the order parameter changes sign across the twin
boundary, whereas the sign of the s-wave component
remains unchanged; or (2) the converse.

As discussed earlier, option (1) implies an
s-wave-dominant order parameter (Walker and
Luettmer-Strathmann, 1996b) and has been ruled out by
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
the phase-sensitive symmetry experiments listed in
Table IV. Kouznetsov et al. (1997) demonstrated the
sign reversal of the s-wave component across the twin
boundary in a study of a c-axis Josephson tunnel junc-
tion that straddled a single YBCO twin boundary. In
Fig. 26, the polar plots of the gap function in the twins
(top view) represent the mirror reflection symmetry
across the twin boundary (dotted line). Only the s-wave
component changes its sign across the twin boundary.
As a result, the signs of the c-axis supercurrent switch
across the twin boundary. This is analogous to the Pb/
YBCO corner junction (Wollman et al., 1993, 1995).
When a magnetic field B is applied parallel to the twin
boundary, the field variation of the critical current Ic(B)
should show a Fraunhofer pattern with the maximum
critical current peak shifted to the field value corre-
sponding to a half flux quantum. Furthermore, as the
angle f between the direction of B and the twin bound-
ary varies from 0 to 90°, the Fraunhofer pattern Ic(B)
should gradually recover its standard form. This is as
observed (Fig. 27). These results provide strong evi-
dence for a d-wave-dominant (d1s) mixed pairing state
in YBCO and for a sign reversal of the s-wave compo-
nent across the twin boundary.

The determination of the magnitude of the s-wave
component is, however, much more difficult and incon-
clusive. The results of various IcRn product measure-
ments reported so far vary by three orders of magnitude,
from ;1 mV to a few mV. However, rough systematics
are discernible. The values of IcRn are 1–1.3 mV for
untwinned YBCO crystals (Kleiner et al., 1996), and
0.3–0.9 mV for twinned crystals (Sun et al., 1994).
Kleiner et al. (1996) also report IcRn values of 0.2, 0.3,
and 0.09 mV for twinned crystals. Compared with the
all-s-wave Ambegaokar-Baratoff limit (;5 mV), these

FIG. 26. Experimental geometry for c-axis tunneling into a
conventional superconductor (Pb) from single-crystal YBCO,
with the junction spanning a single twin boundary. YBCO is an
orthorhombic superconductor with an admixture of d-wave
and s-wave pairing symmetries. The diagram shows the dx22y2

components with the same phase across the twin boundary, but
the s-wave component with opposite signs across the twin
boundary. There is therefore a change in sign of the net c-axis
coupling across the twin boundary. Adapted from Kouznetsov
et al. (1997).
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results suggest as much as a 20% s-wave component in
the d1s admixture.17

The c-axis tunneling experiment of Kouznetsov et al.
(1997) demonstrated that the tunneling current changes
sign across a twin boundary. Depending on the relative
abundance of the two kinds of domains separated by the
twin boundary, the IcRn products of twinned (tw) and
untwinned (untw) junctions should be related by the fol-
lowing expression (O’Donovan et al., 1997):

IcRn
tw5Un2m

n1mUIcRn
untw , (54)

where n/m is the ratio of the two twin domains.
The fact that the IcRn values for twinned junctions

are not much smaller than those for untwinned ones sug-
gests that volume fractions of the two domains are quite
different (n@m) for the twinned samples measured. It
is important to determine experimentally the n/m ratio
for each junction and correlate this with its IcRn value.

In junctions made of heavily twinned films, the IcRn
product should be nearly zero as a result of equal abun-
dance of the two twin domains (i.e., n5m). Indeed, the
values of IcRn for the thin-film junctions are small but
not zero. Katz et al. (1995) report IcRn values of 1–40
mV. An IcRn of ;5 mV was obtained by Lesueur et al.
(1997) for all in situ thin-film junctions with or without

17A systematic study of the angular magnetic dependence of
the thermal conductivity in a detwinned YBCO single crystal
has put an upper limit of 10% on the amount of s-wave com-
ponent in the d1s order parameter (Aubin et al., 1997). A
quantitative analysis of directional tunneling and Andreev-
reflection measurements on YBCO single crystals indicates a
predominantly dx22y2 pairing symmetry, with less than 5%
s-wave component in either the d1s or d1is scenario (Wei,
Tsuei, et al., 1998; Wei, Yeh, et al., 1998).

FIG. 27. Josephson interference patterns from the sample of
Fig. 26, with the magnetic field in the plane of the junction, as
a function of field angle relative to the twin boundary. These
characteristics are consistent with the pairing phases as dia-
grammed in Fig. 26. Inset, results from modeling. Adapted
from Kouznetsov et al. (1997).
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an Ag buffer layer in the junction. Judging from the I-V
characteristics and Fraunhofer patterns, the quality of
some thin-film junctions is comparable to that of junc-
tions made on single crystals. Low IcRn values are also
observed in c-axis Bi-2212/Pb and Nd1.85Ce0.15CuO4 /Pb
junctions. Mössle and Kleiner (1999) report IcRn values
of 0.5–8 mV for single-crystal Bi-2212/Pb junctions, in-
dependent of Ic , and Tc of the Bi-2212 crystals used in
the tunnel junction. In the case of Bi-2212, the presence
of an s-wave component in the order parameter sug-
gested by the c-axis tunneling experiment is not compat-
ible with the conclusion of pure d-wave pairing symme-
try based on a group-theoretic argument and the results
of a tricrystal experiment and the ARPES measure-
ments described above.

Recently the results of IcRn measurements on various
cuprate/Pb tunnel junctions, with the exception of
single-crystal junctions made with YBCO (Sun et al.,
1994; Kleiner et al., 1996), have given small but finite
values. For example, IcRn is about 5 mV for junctions
made on YBCO films (Lesueur et al., 1997); 0.5–8 mV
for Bi-2212 crystals (Mössle and Kleiner, 1999); and
0.5–6 mV for NCCO films (Woods et al., 1999). The
IcRn values in the Bi-2212/Pb junctions are found to be
roughly constant, while Ic and Rn vary up to three or-
ders of magnitude (Mössle and Kleiner, 1999). In con-
trast, on average, the IcRn product in the in-plane grain-
boundary Josephson weak-link junctions scales with
Rn

21 or Ic
21 , as demonstrated by Russek et al. (1990) and

others (see a review by Prester et al., 1998).
These results can be explained as follows: The rela-

tively large single-crystal YBCO IcRn products may be
due to a finite subdominant s component (allowed in
this orthorhombic crystal structure). The IcRn products
in thin-film junctions are greatly reduced because of
twinning. Small but nonzero IcRn products in tetragonal
cuprate superconductors may result from an s-wave
component in a d-wave superconductor induced, under
certain conditions, by spatial inhomogeneities such as
surfaces, interfaces, or steps on a surface. The induction
of s-wave pairing in a d-wave superconductor can be
studied by using the Ginzburg-Landau formalism (Joynt,
1990; Volovik, 1993; Alvarez et al., 1996; Bahcall, 1996;
Sigrist et al., 1996; Zapotocky et al., 1997) or the
Bogoliubov–de Gennes equations (Feder et al., 1997;
Martin and Annett, 1998; Zhu and Ting, 1998).

As pointed out by Kouznetsov et al. (1997), the obser-
vation of nonzero supercurrent in heavily twinned
YBCO junctions can be attributed to an additional
s-wave component to the order parameter induced by
the presence of the surface, and to a localized time-
reversal symmetry-breaking d1is state (Sigrist et al.,
1996; Walker and Luettmer-Strathmann, 1996b). The d
1is pair state would manifest itself as spontaneously
generated fractional flux quanta along the twin bound-
aries. A search for these effects with a scanning SQUID
microscope in a lightly twinned YBCO single crystal was
not successful (Moler, Kirtley, et al., 1997), although
they could have been below the instrumental sensitivity.
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2. c-axis twist junctions

In principle, a test of pairing symmetry in the cuprate
superconductors can be made using junctions with vary-
ing misorientation (twist) angle f about the c-axis direc-
tion between two identical cuprate single crystals. If the
pair tunneling in the c-axis direction conserves in-plane
momentum, Eq. (21) leads, for a pure d-wave supercon-
ductor, to

Ic~f!;E
0

2p

cos~2u!cos~2u1f!du5p cos f . (55)

Although some authors have considered the possibil-
ity that c-axis pair transport in the cuprates conserves
parallel momentum (Artemenko et al., 1999), both
theory (Graf et al., 1993, 1995; Rojo et al., 1993; Hir-
schfeld et al., 1994, 1997; Abrikosov, 1996; Radtke et al.,
1996; Das Sarma, 1998; Klemm, Arnold, et al., 1998),
and experiment (Cooper and Gray, 1994; Hosseini et al.,
1998) support the view that momentum-non-conserving
processes should be included. These latter processes
would reduce any sensitivity of the junction critical cur-
rent to f.

The critical currents of c-axis twist junctions have
been measured in the Bi-Sr-Ca-Cu-O (BSCCO) system.
Although early measurements showed a strong depen-
dence of Ic on f (Tomita et al., 1992; Wang et al., 1994),
one group reports no angular dependence (Q. Li et al.,
1997, 1999b; Zhu et al., 1998). In fact, this work reports
that the twist-boundary critical current density Jc is the
same as that of the bulk in the c-axis direction. This has
been taken as evidence against d-wave superconductiv-
ity in BSCCO (Klemm, Rieck, and Scharnberg, et al.,
1998; Q. Li et al., 1999b). However, these experiments
were done with macroscopic samples and large currents,
such that heating and self-field effects were not negli-
gible. It was not possible to measure Josephson interfer-
ence patterns, a test of junction uniformity (see, e.g., Fig.
25) in these experiments. Further, it is well known that
there is a low intragrain Jc along the [100] direction due
to flux creep in BSCCO. Recently, Q. Li et al. (1999a)
reported experiments in which they irradiated their twist
bicrystals with 2.2-GeV Au ions. This created pinning
sites in the bulk of the grains, raising the grain Jc , but
having little influence on the twist boundary Jc . This
brings the behavior of these samples more in line with
that of other grain boundaries. In short, experimental
difficulties must be resolved, and a full understanding of
c-axis transport in the bulk is required, before critical
current measurements on c-axis twist junctions can pro-
vide a test of pairing symmetry in the cuprates.

VI. IMPLICATIONS OF dx22y2 PAIRING SYMMETRY

In many areas of research, dx22y2 pairing symmetry in
the cuprates has important implications. We shall briefly
discuss a few of them here.
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A. Pairing interaction

It has become clear that the established paradigm
(Fermi-liquid theory) has to be significantly if not fun-
damentally altered (Anderson, 1997) in view of the un-
conventional pairing symmetry, the unprecedentedly
high Tc’s, and the many anomalous normal-state and
superconducting properties of the cuprates. In the fol-
lowing discussion, we shall tread on more established
ground, keeping in mind the need for and challenge of
such a fundamental change. We start with a generalized
BCS pairing Hamiltonian:

H5(
k,s

e~k!ck↑
† ck↑1Hpairing , (56)

where the one-electron energy dispersion e(k) of the
quasiparticles in the CuO2 band is described by the
tight-binding approximation

e~k!522t~cos kx1cos ky!14t8 cos kx cos ky , (57)

where t and t8 are nearest-neighbor and next-nearest-
neighbor hopping integrals, respectively.

The pairing interaction Hpairing must be compatible
with the underlying point-group symmetry of the Cu-O
square/rectangular lattice (C4v or C2v), and can be ex-
pressed in terms of the momentum transfer k2k85q
[see Fig. 28(a)]:

Hpairing5 (
k,k8,q

V~q!ck1q,↑
† c2k2q,↓

† c2k,↓ck,↑ . (58)

The standard BCS gap equation can be written as

D~k!52(
k8

V~k2k8!
D~k8!

2E~k8!
tanhFE~k8!

2kBT G , (59)

where the quasiparticle energy E(k)5Ae2(k)1D2(k),
as defined before. For the case of d-wave pairing, the
k-dependent gap potential takes the form

D~k!5D0~cos kx2cos ky!. (60)

The establishment of d-wave pairing symmetry in high-
Tc cuprates does not necessarily specify a high-Tc

FIG. 28. Examples of the pairing interaction: (a) Graphic rep-
resentation of the standard BCS pairing; q5k2k8 is the mo-
mentum transfer. (b) Schematic representation of the pairing
interaction V(q) constrained by a dx22y2 order parameter. The
V(q)50 line is determined by the details of the microscopic
pairing mechanism.
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mechanism. It does impose well-defined constraints on
possible models for this mechanism. To be compatible
with a d-wave order parameter [Eq. (60)], the BCS
equation, Eq. (59), requires a pairing interaction V(k
2k8)5V(q) that is relatively attractive for small mo-
mentum transfer q, and repulsive for large q (Bulut and
Scalapino, 1996), as shown schematically in Fig. 28(b).

It is both experimentally and theoretically well estab-
lished that a strong on-site Coulomb repulsion is present
in all cuprates. Such a strong electron correlation causes
the universally seen Mott transition at near-zero doping
(Imada et al., 1998). It is generally believed that the
strong on-site Coulomb repulsion rules out simple
s-wave pairing. For pairing interactions of range up to
next-nearest neighbor, a strong Coulomb repulsion
also rules out all but dx22y2 pairing in models based
on a Van Hove singularity18 in the two-dimensional
band structure of the CuO2 planes (Tsuei, Newns, et al.,
1995). The possibility of stabilizing d-wave pairing by a
Van Hove singularity in the band structure is also dis-
cussed by Levin et al. (1996). Wheatley and Xiang
(1993) studied numerically the relative stability of the
generalized s @D(k)5D0(cos kx1cos ky)# and dx22y2

pairing channels in a BCS model with only an attractive
nearest-neighbor interaction. In the range of parameters
where the Van Hove singularity Tc enhancement is pro-
nounced, 0,t/t8,0.5 in Eq. (57), the dx22y2 channel is
always more stable that the generalized-s one. Similar
conclusions have been reached in several Monte Carlo
studies (Husslein et al., 1996; Bromly and Newman,
1998).

The possibility of dx22y2 pairing symmetry was first
proposed for the cuprates in connection with pairing
through the exchange of antiferromagnetic spin fluctua-
tions (Miyake et al., 1986; Scalapino et al., 1986, 1987;
Bickers et al., 1987, 1989; Millis et al., 1990; Moriya et al.,
1990; Pao and Bickers, 1994). For reviews, see Scalapino

18A Van Hove singularity is a peak in the electronic density
of states (DOS) due to a saddlelike region in the energy sur-
face upon which an electron (hole) moves. The Van Hove
model, which depends on the close proximity of the Van Hove
singularity to the Fermi level in the optimally doped cuprates
(Markiewicz, 1990, 1992; Tsuei et al., 1990, 1992; Newns et al.,
1991, 1994), is built on initial work by Labbe and Bok, 1987;
Friedel, 1987, 1989; and Labbe, 1989. The Van Hove model
has two parts: (1) The large DOS near a Van Hove singularity
can enhance the Tc , reduce the isotope effect, etc., within the
BCS formalism, as observed in cuprate superconductors near
optimal doping. (2) The large phase space available for
electron-electron scattering at a Van Hove singularity leads to
marginal Fermi-liquid behavior (Varma et al., 1989). Several
ARPES measurements (Abrikosov et al., 1993; Dessau et al.,
1993; Gofron et al., 1994) have firmly established the existence
of the Von Hove singularity in YBCO and other high-Tc cu-
prate superconductors. The unusual flatness of the quasiparti-
cle energy dispersion e(k) suggests an extended (one-
dimensional) Van Hove singularity, which may be due to
strong correlation effects (Levin et al., 1991; Dagotto et al.,
1994). For reviews, see Newns et al. (1992) and Markiewicz
(1997).
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(1995) and Pines (1995). In the spin-fluctuation model
for superconductivity, the pairing interaction between
charge carriers and spin fluctuations can be described by
the q-dependent spin susceptibility x(q):

V~k2k8!5V~q!5g2x~q!, (61)

where g is the coupling strength of a given supercon-
ductor. For a nearly antiferromagnetic Fermi-liquid sys-
tem such as the cuprate superconductors, the function
x(q) is sharply peaked at or near (p ,p) in the Brillouin
zone. The pairing interaction represented by Eq. (61) is
always repulsive [i.e., the additive constant in V(q) in
Fig. 28(b) corresponds to V(0).0]. When such a pair
interaction V(q)5g2x(q) is entered in the BCS gap
equation [Eq. (59)], it naturally leads to a gap with
d-wave symmetry. This is demonstrated by several nu-
merical calculations (Lenck and Carbotte, 1994;
O’Donovan and Carbotte, 1995a, 1995b). In the case of
ferromagnetic spin fluctuations, x(q) has its maximum
at q50 (Miyake et al., 1986) and will lead to a p-wave
triplet pairing as in superfluid 3He (Anderson and
Brinkman, 1973; Levin and Valls, 1983) and possibly in
the superconductor Sr2RuO4 (Rice and Sigrist, 1995).
The crucial issue is whether the pairing interaction V(q)
is large enough to support a Tc of the order of 100 K in
the cuprates. These Tc’s depend sensitively on the phe-
nomenological model used for calculating x(q,v)
(Schüttler and Norman, 1996). A x(q,v) based on NMR
data on YBCO predicts a Tc of about 100 K (Millis
et al., 1990; Monthoux et al., 1991). However, x(q,v)
determined from neutron-scattering data yields a Tc
<20 K (Radtke et al., 1992). For a more detailed discus-
sion of this issue, see Schüttler and Norman (1996) and
Pines (1995).

All high-Tc cuprate superconductors have a relatively
low charge carrier density. As a result the ratio of kBTc
to EF is about 1021 –1022, which is 103 –104 times larger
than conventional superconductors. Therefore Migdal’s
theorem holds for neither spin-fluctuation nor phonon-
mediated superconductivity (Schrieffer, 1994, 1995;
Capelluti and Pietronero, 1996; Schüttler and Norman,
1996; Ummarino and Gonnelli, 1997). Specifically for
the case of d-wave antiferromagnetic spin-fluctuation
pairing, the breakdown of the Migdal approximation
suggests that the strength of the pairing interaction
could be significantly reduced when vertex corrections
are taken into account (Schrieffer, 1995). However, it
has also been argued that vertex corrections could act to
enhance Tc (Monthoux, 1997).

While the spin-fluctuation pairing mechanism leads
naturally to an order parameter with dx22y2 symmetry,
the conventional BCS electron-phonon pairing interac-
tion gives rise to s-wave superconductivity. Therefore
the relevance of phonons to high-Tc superconductivity is
not obvious and is still a topic of great controversy.
However, there is much experimental evidence for sig-
nificant involvement of phonons in the superconducting
state of the cuprates (MacFarlane et al., 1987; Thomsen
and Cardona, 1989; Thomsen, 1991; Hadjiev et al., 1998).
The near-zero oxygen isotope effect at optimal doping
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(Franck, 1994) suggests a nonphononic pairing mecha-
nism. However, as a function of decreasing doping and
Tc , the isotope exponent increases to values around 0.5,
the standard BCS value. Such a doping-dependent iso-
tope effect can be understood in terms of the Van Hove
scenario (Tsuei et al., 1990; Newns, et al. 1995), and of-
fers strong support for a phonon contribution to high-
temperature superconductivity. For details of the pho-
non isotope effect in strongly correlated systems, see
Kim and Tes̆anović (1993).

In recent years there have been a number of theoret-
ical studies on the importance of electron-phonon cou-
pling in achieving d-wave superconductivity in the cu-
prates. For example, phonon-mediated d-wave
superconductivity is found possible in the presence of
short-range antiferromagnetic correlations by Lee et al.
(1995), Kamimura et al. (1996), Nazarenko and Dagotto
(1996), and others. The breakdown of the Migdal theo-
rem is dealt with by Cappalluti and Pietronero (1996),
Zeyher and Kulić (1996), Cappalluti et al. (1997), and
Ummarino and Gonnelli (1997). There is a general con-
sensus among these authors that electron-phonon cou-
pling to the out-of-plane modes (buckling, and apical
oxygen modes) makes the essential contribution to
d-wave superconductivity (Kamimura et al., 1996; Naza-
renko and Dagotto, 1996; Sakai, Yoyoka, and Naka-
mura, 1997; Jepsen et al., 1998). The in-plane (breath-
ing) modes are not effective in making high-Tc
superconductivity. This theoretical conclusion finds
strong support in a recent observation of the scaling be-
havior of Tc and the CuO2 plane buckling in a YBCO-
type cuprate system (Chmaissem et al., 1999). The im-
portance of small-q forward-electron-phonon scattering
to pairing is emphasized (Santi et al., 1996; Weger et al.,
1996; Danylenko et al., 1999). The anomalous isotope
effect can also be understood (Nazarenko and Dagotto,
1996; Ummarino and Gonnelli, 1997; Nunner et al.,
1999). The Van Hove singularity enhancement of Tc is
also important in these studies (Capelluti and Pietron-
ero, 1996; Nazarenko and Dagotto, 1996; Mierzejewski
et al., 1998; Varelogiannis, 1998a).

B. Quasiparticles in d-wave superconductors

The quasiparticle state in d-wave superconductors is
different from that in s-wave superconductors (Coffey
and Coffey, 1993; Hatsugai and Lee, 1993; Lee, 1993).
This difference appears in the vortex contribution to
specific heat in the clean limit (Volovik, 1993) and the
dirty limit (Kübert and Hirschfeld, 1998a; Senthil et al.,
1998; Vishveshwara and Fisher, 2000; see Secs. II.B and
II.C); universal heat conduction (Lee, 1993; Taillefer
et al., 1997); and around impurities (Hirschfeld and
Goldenfeld, 1993; Lee, 1993; Sun and Maki, 1995). Re-
cent scanning tunneling microscopy studies indicate that
nonmagnetic impurities on the surface of Bi-2212 induce
low-energy excitations in this d-wave superconductor
(Hudson et al., 1999; Yazdani et al., 1999; Pan et al.,
2000). These zero-bias quasiparticle states are localized
within the coherence length j, consistent with the theo-
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
retical predictions of Lee (1993) and Salkola et al.
(1996). The angular distribution of these states relative
to the impurity atom observed (Pan et al., 2000) is in
good agreement with theoretical predictions (Byers
et al., 1993; Salkola et al., 1996) for a d-wave supercon-
ductor. In addition, the nature of the quasiparticle exci-
tations in d-wave superconductors has been investigated
through recent studies using ARPES (Mesot et al., 1999;
Valla et al., 1999; Kaminski et al., 2000), magnetic-field
dependence of low-temperature thermal conductivity
(Ong et al., 1999), and complex conductivity (Corson
et al., 2000). Feenstra et al. (1997) report a strong en-
hancement of the recombination time for photoinduced
quasiparticles, which they attribute to kinematical con-
straints near the gap nodes.

C. Surfaces and interfaces

The physics of surfaces and interfaces of d-wave su-
perconductors is distinctly different from the s-wave
case. It is predicted that the dx22y2 order parameter in
the bulk can be drastically altered at a surface or inter-
face, inducing s-wave symmetry, time-reversal symmetry
breaking, and other effects (Buchholtz et al., 1995a,
1995b; Nagato and Nagai, 1995; Alber et al., 1996; Mar-
tin and Annett, 1998). Interface roughness has an impor-
tant effect on the surface critical field Hc3

(Alber et al.,
1996; Setty, 1998) and grain-boundary Josephson junc-
tions (Hilgenkamp et al., 1996). In addition, zero-energy
(at EF) quasiparticle surface bound states can form due
to the dx22y2 symmetry of the gap potential (Hu, 1994).

1. Zero-bias conductance peaks

At a [110]-oriented surface of a dx22y2 supercon-
ductor, the node line (D50) is perpendicular to the sur-
face. The incident and specularly reflected quasiparticles
experience gap potentials of opposite sign. This leads to
a new type of Andreev reflection that results from the
sign change of the k-dependent order parameter. It was
pointed out by Hu (1994) and others (Yang and Hu,
1994; Buchholtz et al., 1995b; Matsumoto and Shiba,
1995a, 1995b; Tanaka and Kashiwaya, 1995; Xu et al.,
1996) that zero-energy bound states can form at the re-
flecting surface as a consequence of repeated Andreev
reflections. These Andreev bound states give rise to a
peak in the quasiparticle density of states at the Fermi
energy, and should result in a zero-bias conductance
peak in the quasiparticle tunneling spectra of cuprate–
normal-metal tunnel junctions. Recent observations of
zero-bias conductance peaks in different types of tunnel
junctions with several cuprate superconductors have
been attributed to Andreev surface-bound states. For
example a zero-bias conductance peak is found in scan-
ning tunneling microscopy of YBCO (Kashiwaya et al.,
1995), in planar tunnel junctions (Covington et al., 1997;
Ekin et al., 1997), and in grain-boundary junctions (Alff,
Beck, et al., 1998; Alff, Kleefisch, et al., 1998). Zero-bias
conductance peaks have also been found in junctions
with Tl-2212 (Ekin et al., 1997), Bi-2212 (Alff, Beck,
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et al., 1998; Sinha and Ng, 1998b), and La1.85Sr0.15CuO4
(Alff, Beck, et al., 1998). There are numerous alternate
explanations for the observed zero-bias conductance
peaks, ranging from superconducting shorts to magnetic
interface scattering (Appelbaum, 1966; Anderson,
1966b). For a summary of the various possible origins of
zero-bias conductance peaks, see Hu (1998). Before
d-wave pairing symmetry was established, the zero-bias
conductance peak in cuprate junctions was explained in
terms of the Appelbaum-Anderson model (see Alff,
Kleefisch, et al., 1998; and Hu, 1998).

The areal density of the Andreev bound states is pre-
dicted (Yang and Hu, 1994; Buchholtz et al., 1995b;
Tanaka and Kashiwaya, 1995) to be maximal on the
[110]-oriented surface of a dx22y2 superconductor. This
is in agreement with a study of the spatial variation of
the zero-bias conductance peak on a (110) YBCO sur-
face (Alff et al., 1997). However, theoretical studies
(Yang and Hu, 1994) predict the existence of Andreev
bound states on non-(110) surfaces, and various inter-
faces between cuprate grains. An investigation of the
directional tunneling and Andreev reflection on the
(100), (110), and (001) surfaces of YBCO single crystals
provides further supporting evidence for d-wave pairing
and mid-gap states (Wei, Yeh, et al., 1998).

In short, the correlation between the observation of
zero-bias conductance peaks and the occurrence of
d-wave pairing in various cuprate superconductors
strongly suggests that these zero-bias peaks have their
origin in the d-wave order parameter.

2. Time-reversal symmetry breaking

As discussed earlier, the phase-sensitive symmetry
tests have ruled out time-reversal symmetry breaking in
the bulk of cuprate superconductors. The situation may
be quite different at the surfaces and interfaces of a
dx22y2 superconductor. There are many theoretical stud-
ies suggesting the existence of pair states with time-
reversal symmetry breaking when a d-wave supercon-
ductor is perturbed by surfaces, interfaces (including
grain boundaries and vortex cores), impurities, etc.19 It
has been suggested that a d-wave superconductor is in-
trinsically unstable against the formation of two-
component fully gapped order parameters such as
dx22y21is and dx22y21idxy due to the presence of
nodes. Note that the nodes in the gap are not removed
by forming a d1s mixed pair state unless s>d .

The predicted time-reversal symmetry breaking
should manifest itself in many experiments. For ex-
ample, it can cause a deviation from the well-established
Josephson’s sinusoidal current-phase relationship [Eq.
(19)]. If Eq. (19) is rewritten as Is5Ic sin(g2a), the con-
dition of time-reversal symmetry invariance, Is(g)5
2Is(2g), requires a50 or p. Any intermediate values

19These include Matsumoto and Shiba, 1995a, 1995b; Kuboki
and Sigrist, 1996; Balatsky, 1998; Fogelström and Yip, 1998;
Franz and Tes̆anović, 1998; Laughlin, 1998; Salkola and Schri-
effer, 1998; and Sigrist, 1998.
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are possible only if the time-reversal symmetry is broken
(Yip, 1995; Belzig et al., 1998; see also Sigrist, 1998). Re-
cent current-phase measurements on 45°-misoriented
inhomogeneous YBCO grain-boundary junctions found
a nearly perfect sinusoidal current-phase relation in the
temperature range (60–80 K) studied (Il’ichev et al.,
1999a). At low temperatures a possible exception to the
above is also reported (Il’ichev et al., 1999b).

Time-reversal symmetry violation should lead to a
zero-magnetic-field splitting of the zero-bias conduc-
tance peak induced by the Andreev surface bound states
(Fogelström et al., 1997; Belzig et al., 1998). Indeed,
zero-field splitting of the zero-bias conductance peak in
YBCO/I/Cu tunnel junctions was observed below ;8 K
by Covington et al. (1997). Both the zero-field splitting
and the field evolution agree with the predictions of Fo-
gelström et al. (1997). However, such splitting has not
been found in other similar experiments (Ekin et al.,
1997). Krupke and Deutscher (1999) conclude the pres-
ence of a subdominant s or dxy component out of phase
with the dx22y2 component from the field dependence of
the zero-bias conductance peak in in-plane (100)
YBCO/In junctions. Evidence for broken time-reversal
symmetry has been found in spontaneous magnetization
in c-axis-oriented YBCO films, measured in bulk with a
SQUID magnetometer (Carmi et al., 2000), and imaged
using a scanning SQUID microscope. In the latter, this
magnetization is apparently associated with defects in
the films (Tafuri and Kirtley, 2000).

3. Josephson junctions in d-wave superconductors

A tremendous effort has been devoted to the study of
Josephson junctions made of high-Tc cuprate supercon-
ductors. Here, d-wave pairing manifests itself in several
junction characteristics that are different from those of
all s-wave junctions. The Josephson and quasiparticle
tunneling are highly directional (see Sec. III.A; also
Wei, Yeh, et al., 1998; Nie and Coffey, 1999). The de-
pression of the order parameter at the junction interface
plays an important role in determining the IcRn product
and other junction properties (Mannhart and Martinoli,
1991; Hilgenkamp and Mannhart, 1997). In grain-
boundary junctions, combined effects of faceting and
dx22y2 pairing symmetry can partially explain the ob-
served decrease in Jc with increasing grain-boundary
misorientation angle (Hilgenkamp et al., 1996). For
other contributing factors, see Gurevich and Pashitskii
(1998). For reviews on d-wave Josephson junctions, see
Kupriyanov and Likharev (1990), Gross (1994), and
Prester (1998).

D. Vortex state

The superconducting cuprates have a large Ginzburg-
Landau parameter (i.e., lab /j;100) and are therefore
extreme type-II superconductors (Saint-James et al.,
1969; de Gennes, 1989; Poole et al., 1995; Tinkham,
1996). As in the conventional low-Tc type-II supercon-
ductors, magnetic field above the lower critical field Hc1
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penetrates the bulk as integrally quantized vortices
(Abrikosov, 1957). However, it has been proposed that
the vortex state in a d-wave superconductor is signifi-
cantly different from that in an s-wave superconductor
in three aspects: the structure of the vortex itself, the
way in which vortices interact with each other (e.g., the
vortex lattice), and the electronic bound states within
the vortex (Xu et al., 1996; Maki et al., 1999; Franz and
Tes̆anović, 2000).

Various theoretical studies (Soininen et al., 1994; Ber-
linsky et al., 1995; Ren et al., 1995; Schopohl and Maki,
1995; Wang and MacDonald, 1995; Ogata, 1999; Han
and Lee, 2000) suggest an instability of the d-wave order
parameter, resulting in s-wave pairing or time-reversal
symmetry breaking near the vortex core. Furthermore,
the vortex in a d-wave superconductor can be metallic
or insulating and/or ferromagnetic, depending on the
doping concentration (see also Zhang, 1997).

Calculations of the structure of the vortex show a
slight fourfold distortion from cylindrical symmetry in
the vortex core and in the magnetic fields extending
away from the core (Morita et al., 1998; Maki et al.,
1999). Although decoration experiments at low fields
(;5 mT) indicated that the superconducting vortices in
YBCO arrange themselves in a conventional hexagonal
lattice (Dolan et al., 1989), neutron scattering (Keimer
et al., 1994) and scanning tunneling microscope
(Maggio-Aprile et al., 1995) experiments at higher fields
(;1 T) instead show an oblique lattice with nearly
equal lattice vectors spaced by about 75°. Both the
structure and the orientation of the vortex lattice are
consistent with dx22y2 gap pairing symmetry, although
there is disagreement whether the dominant factor is a
modification of the vortex core structure (Shiraishi et al.,
1999), or longer-range vortex-vortex interactions (Af-
fleck et al., 1997; Kogan et al., 1997). Scanning tunneling
microscope measurements indicate that, as opposed to
conventional superconductors, which have thousands of
bound states in the vortex core (Caroli et al., 1964; Hess
et al., 1989), there is only one bound state in YBCO
(Karraı̈ et al., 1992) and possibly none in BSCCO
(Maggio-Aprile et al., 1995; Renner et al., 1998). This is
consistent with calculations of the quasiparticle spectra
around a single vortex for a d-wave superconductor
(Morita et al., 1997, 1998). These calculations further
predict low-lying excitations in four diagonal directions,
which have no counterpart in s-wave superconductors.

VII. CONCLUSIONS

Phase-sensitive symmetry tests, along with evidence
from a number of non-phase-sensitive techniques, have
combined to provide overwhelming evidence in favor of
predominantly d-wave pairing symmetry in a number of
optimally doped cuprates. The consequences of this un-
conventional pairing have been felt throughout the area
of high-temperature superconductivity research. Due to
space limitations, only a small fraction of the research
work in this area has been discussed in this review.
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
The identification of d-wave pairing symmetry is
based on very general principles of group theory and the
macroscopic quantum coherence phenomena of pair
tunneling and flux quantization. Therefore it does not
necessarily specify a mechanism for high-temperature
superconductivity. It does, however, provide general
constraints on possible models. During the last 14 years
it has become clear that the solution to this problem
should include pairing symmetry, pairing interactions
(mediated by spin fluctuations, phonons, or . . . ) in the
presence of strong correlations, the anomalous normal
state (see a recent review by Timusk and Statt, 1999),
and charge segregation and the stripe phase (Tran-
quada, 1997). Especially intriguing is the observation of
the pseudogap, also with d-wave-like k dependence, in
the normal state of many (mostly underdoped) cuprate
superconductors (Ding, Norman et al., 1996; Loeser
et al., 1996; Shen et al., 1998). The nature of these and
other anomalous normal-metal properties and their re-
lationship to d-wave high-Tc superconductivity is cur-
rently of great interest (see Anderson, 1997; Emery
et al., 1997). The SO(5) theory attempts to unify
d-wave superconductivity in the doped cuprates with the
antiferromagnetism of the undoped Mott insulators
(Zhang, 1997). Given the unconventional superconduct-
ing symmetry and the anomalous normal state, the basic
issue is whether we should modify or abandon the stan-
dard paradigm established during the last 50 years. Ob-
viously, there is no easy solution to the debate of evolu-
tion versus revolution.

In the area of pairing symmetry, there are a few re-
maining issues. The elucidation of pairing symmetry as a
function of doping, impurity, temperature, etc. is very
important, since it may provide clues to the origin of
high-temperature superconductivity. Pairing symmetry
tests using the half-flux quantum effect were first pro-
posed for the heavy-fermion superconductors (Geshken-
bein et al., 1986, 1987). Such tests have still not been
done. In addition, it has been proposed that the organic
superconductors such as k-(BEDT-TTF)2(NCS)2 ,
which may have unconventional pairing symmetry, are
suitable candidates for phase-sensitive tests (Van Har-
lingen, 1999). Further, phase-sensitive tests should be
carried out on possible odd-parity spin-triplet p-wave
superconductors such as Sr2RuO4.

It is generally believed that the low-lying excitations
in a d-wave gap give rise to damping effects in the elec-
trodynamic response of the cuprates. This could com-
promise the advantage of a large gap in microwave or
terahertz applications, but may not be a severe problem,
given the observation of very long quasiparticle lifetimes
in the superconducting state by Bonn et al. (1992) and
Hosseini et al. (1999). The depression of the d-wave or-
der parameter at interfaces such as grain boundaries
(Mannhart and Martinoli, 1991) definitely reduces the
critical current of some cuprates, but this is not the cru-
cial limiting factor.

Concerning potential applications of d-wave super-
conductivity, a novel superconductor-antiferromagnet-
superconductor (SAS) Josephson junction has been pro-
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posed (Demler et al., 1998; den Hertog et al., 1999), in
conjunction with the SO(5) theory (Zhang, 1997). The
recent successful development of all-high-Tc d-wave p
SQUID’s (Schulz et al., 2000) represents an important
step towards the realization of the complementary
Josephson-junction devices and circuits proposed by
Terzioglu and Beasley (1998). It has been suggested that
the bistable magnetic-flux state in a p ring [see Fig. 7(b)]
be exploited for quantum computation (Ioffe et al.,
1999). Quantum computation (Bennett, 1995; DiVin-
cenzo, 1995; Barenco, 1996; Ekert and Jozsa, 1996) is
based on the superposition principle of quantum me-
chanics and has been proposed as a means for perform-
ing certain types of computation much faster than con-
ventional computers. The realization of quantum
computation depends on maintaining quantum coher-
ence in the presence of dissipation. Ioffe et al. (1999)
proposed a device that is a combination of s-wave and
d-wave Josephson elements, and discussed the decoher-
ence of such devices. The realization of a d-wave quan-
tum computer would be an exciting outcome of the ideas
discussed in this review.

In short, the identification of d-wave pairing symme-
try represents an important step towards a better under-
standing of high-temperature superconductivity and may
lead to novel applications in the future.
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P. Hübener, M. B. Ketchen, R. H. Koch, Z. Z. Li, J.
Mannhart, K. A. Moler, D. M. Newns, H. Raffy, J. Z.
Sun, M. B. Walker, S. I. Woods, and S. K. Yip for dis-
cussion and comments in the process of writing this re-
view.

REFERENCES

Abrikosov, A. A., 1957, Sov. Phys. JETP 5, 1174.
Abrikosov, A. A., 1996, Physica C 258, 53.
Abrikosov, A. A., J. C. Campuzano, and K. Gofron, 1993,

Physica C 214, 73.
Affleck, I., M. Franz, and M. H. Sharifzadeh Amin, 1997, Phys.

Rev. B 55, R704.
Agassi, D., and J. R. Cullen, 1996, Phys. Rev. B 54, 10112.
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Franz, M., and Z. Tes̆anović, 2000, Phys. Rev. Lett. 84, 554.
Friedel, J., 1987, J. Phys. (Paris) 48, 1787.
Friedel, J., 1989, J. Phys.: Condens. Matter 1, 7757.
Fulde, P., J. Keller, and G. Zwicknagl, 1988, Solid State Phys.

41, 1.
Geim, A. K., S. V. Dubonos, J. G. S. Lok, M. Henini, and J. C.

Maan, 1998, Nature (London) 396, 144.
Geshkenbein, V. B., and A. I. Larkin, 1986, JETP Lett. 43, 395.
Geshkenbein, V. B., A. I. Larkin, and A. Barone, 1987, Phys.

Rev. B 36, 235.
Ghosh, A., and K. Adhikari, 1998a, J. Phys.: Condens. Matter

10, L319.
Ghosh, A., and K. Adhikari, 1998b, Physica C 309, 251.
Gim, Y., A. Mathai, R. Black, A. Amar, and F. C. Wellstood,

1997, IEEE Trans. Appl. Supercond. 7, 2331.
Ginzburg, V. L., and L. G. Landau, 1950, Zh. Eksp. Teor. Fiz.

20, 1064.
Gofron, K., J. C. Campuzano, A. A. Abrikosov, M. Lindroos,

A. Bansil, H. Ding, D. Koelling, and B. Dabrowski, 1994,
Phys. Rev. Lett. 73, 3302.

Gor’kov, L. P., 1959, Zh. Eksp. Teor. Fiz. 36, 1918.
Gor’kov, L. P., 1987, Sov. Sci. Rev., Sect. A 9, 1.
Gough, C. E., M. S. Colclough, E. M. Forgan, R. G. Jordan, M.

Keene, C. M. Muirhead, A. I. M. Rae, N. Thomas, J. S. Abell,
and S. Sutton, 1987, Nature (London) 326, 855.

Graf, M. J., M. Palumbo, D. Rainer, and J. A. Sauls, 1995,
Phys. Rev. B 52, 10588.

Graf, M. J., D. Rainer, and J. A. Sauls, 1993, Phys. Rev. B 47,
12089.

Graf, M. J., S.-K Yip, J. A. Sauls, and D. Rainer, 1996, Phys.
Rev. B 53, 15147.
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
Gray, K. E., and D. H. Kim, 1993, Phys. Rev. Lett. 70, 1693.
Gross, R., 1994, in Interfaces in Superconducting Systems, ed-

ited by S. L. Shinde and D. Rudman (Springer, New York), p.
176.

Gurevich, A., and E. A. Pashitskii, 1998, Phys. Rev. B 57,
13878.

Hadjiev, V. G., X. Zhou, T. Strohm, M. Cardona, Q. M. Lin,
and C. W. Chu, 1998, Phys. Rev. B 58, 1043.

Hamann, D. R., and L. F. Mattheiss, 1988, Phys. Rev. B 38,
5138.

Han, J. H., and D.-H. Lee, 2000, Phys. Rev. Lett. 85, 1100.
Hardy, W. N., D. A. Bonn, D. C. Morgan, Ruixing Liang, and

Kuan Zhang, 1993, Phys. Rev. Lett. 70, 3999.
Hasegawa, T., and K. Kitazawa, 1991, Physica C 185, 1743.
Hatsugai, Y., and P. A. Lee, 1993, Phys. Rev. B 48, 4204.
Heinzel, Ch., Th. Theilig, and P. Ziemann, 1993, Phys. Rev. B

48, 3445.
Hensen, S., G. Müller, C. T. Rieck, and K. Scharnberg, 1997,

Phys. Rev. B 56, 6237.
Hess, H. F., R. B. Robinson, R. C. Dynes, J. M. Valles, Jr., and

J. V. Waczczak, 1989, Phys. Rev. Lett. 62, 214.
Hewitt, K. C., T. P. Devereaux, X. K. Chen, X.-Z. Wang, J. G.

Naeini, A. E. Curzon, J. C. Irwin, A. Martin, C. Kendziora,
and M. Onellion, 1997, Phys. Rev. Lett. 78, 4891.

Hilgenkamp, H., and J. Mannhart, 1997, Appl. Phys. A: Mater.
Sci. Process. 64, 553.

Hilgenkamp, H., and J. Mannhart, 1999, IEEE Trans. Appl.
Supercond. 9, 3405.

Hilgenkamp, H., J. Mannhart, and B. Mayer, 1996, Phys. Rev.
B 53, 14586.

Hinaus, B. M., M. S. Rzchowski, N. Heinig, X. Y. Cai, and D.
L. Kaiser, 1996, Phys. Rev. B 54, 6770.

Hirschfeld, P. J., and N. Goldenfeld, 1993, Phys. Rev. B 48,
4219.

Hirschfeld, P. J., W. O. Puttika, and D. J. Scalapino, 1993,
Phys. Rev. Lett. 71, 3705.

Hirschfeld, P. J., W. O. Puttika, and D. J. Scalapino, 1994,
Phys. Rev. B 50, 10250.

Hirschfeld, P. J., S. M. Quinlan, and D. J. Scalapino, 1997,
Phys. Rev. B 55, 12742.

Hoevers, H. F. C., P. J. M. van Bentum, L. E. C. van de Le-
emput, H. van Kempen, A. J. G. Schellingerhout, and D. van
der Marel, 1988, Physica C 152, 105.

Hosseini, A., R. Harris, Saeid Kamal, P. Dosanjh, J. Preston,
Ruixing Liang, W. N. Hardy, and D. A. Bonn, 1999, Phys.
Rev. B 60, 1349.

Hosseini, A., S. Kamal, D. A. Bonn, Ruixing Liang, and W. N.
Hardy, 1998, Phys. Rev. Lett. 81, 1298.

Hu, C.-R., 1994, Phys. Rev. Lett. 72, 1526.
Hu, C.-R., 1998, Phys. Rev. B 57, 1266.
Huang, Q., J. F. Zasadzinski, N. Tralshawala, K. E. Gray, D.

G. Hinks, J. L. Peng, and R. L. Greene, 1990, Nature (Lon-
don) 347, 369.

Hudson, E. W., S. H. Pan, A. K. Gupta, K.-W. Ng, and J. C.
Davis, 1999, Science 285, 88.

Hussey, N. E., J. R. Cooper, R. A. Doyle, C. T. Lin, W. Y.
Liang, D. C. Sinclair, G. Balakrishnan, and D. M. Paul, 1996,
Phys. Rev. B 53, 6752.

Husslein, T., I. Morgenstern, D. M. Newns, P. C. Pattnaik, J.
M. Singer, and H. G. Matuttis, 1996, Phys. Rev. B 54, 16179.

Hyun, O. B., J. R. Clem, and D. K. Finnemore, 1989, Phys.
Rev. B 40, 175.

Iguchi, I., and Z. Wen, 1994, Phys. Rev. B 49, 12388.



1012 C. C. Tsuei and J. R. Kirtley: Pairing symmetry in cuprate superconductors
Il’ichev, E., V. Zakosarenko, R. P. J. Ijsselsteijn, H. E. Hoenig,
H.-G. Meyer, M. V. Fistul, and P. Müller, 1999a, Phys. Rev. B
59, 11502.

Il’ichev, E., V. Zakosarenko, R. P. J. Ijsselsteijn, V. Schultze,
H.-G. Meyer, H. E. Hoenig, H. Hilgenkamp, and J. Man-
nhart, 1998, Phys. Rev. Lett. 81, 894.

Il’ichev, E., V. Zakosarenko, R. P. J. Isselsteijn, V. Schultze,
H.-G. Meyer, H. E. Hoenig, and H. Töpfer, 1999b, IEEE
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