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A quantum dot is a sub-micron-scale conducting device containing up to several thousand electrons.
Transport through a quantum dot at low temperatures is a quantum-coherent process. This review
focuses on dots in which the electron’s dynamics are chaotic or diffusive, giving rise to statistical
properties that reflect the interplay between one-body chaos, quantum interference, and
electron-electron interactions. The conductance through such dots displays mesoscopic fluctuations as
a function of gate voltage, magnetic field, and shape deformation. The techniques used to describe
these fluctuations include semiclassical methods, random-matrix theory, and the supersymmetric
nonlinear s model. In open dots, the approximation of noninteracting quasiparticles is justified, and
electron-electron interactions contribute indirectly through their effect on the dephasing time at finite
temperature. In almost-closed dots, where conductance occurs by tunneling, the charge on the dot is
quantized, and electron-electron interactions play an important role. Transport is dominated by
Coulomb blockade, leading to peaks in the conductance that at low temperatures provide information
on the dot’s ground-state properties. Several statistical signatures of electron-electron interactions
have been identified, most notably in the dot’s addition spectrum. The dot’s spin, determined partly
by exchange interactions, can also influence the fluctuation properties of the conductance. Other
mesoscopic phenomena in quantum dots that are affected by the charging energy include the
fluctuations of the cotunneling conductance and mesoscopic Coulomb blockade.
CONTENTS

I. Introduction 896
A. Fabrication and physical parameters of quantum

dots 896
B. From ‘‘regular’’ to chaotic dots 898
C. From disordered to chaotic ballistic dots 900
D. From open to closed dots 901
E. From noninteracting to interacting electrons 903
F. Methods 903
G. Outline of the review 903

II. Electron Transport Through Quantum Dots 903
A. Quasiclassical description of conductivity 904
B. Conductance in mesoscopic systems and the

Landauer formula 904
C. R-matrix formalism 906
D. Resonant tunneling 907
E. Coulomb blockade 907
F. Cotunneling 910
G. Nonlinear transport 910

III. Statistical Theory: From Disordered Metals to
Ballistic Dots 911
A. Disordered metals and ballistic dots 911

1. Scales in the diffusive regime 911
2. Scales in the ballistic regime 912
3. Models of disordered structures and

ballistic dots 912
B. The semiclassical approach 913

1. Spectral correlations in chaotic and
disordered systems 913

2. Conductance fluctuations in disordered
metals 914

C. The universal regime: random-matrix theory 915
1. Gaussian ensembles 916

a. Spectral statistics 917
b. Eigenfunction statistics 918

2. Crossover ensembles 918
3. Gaussian processes 919
4. Circular ensembles 921

D. The supersymmetry method 922
Reviews of Modern Physics, Vol. 72, No. 4, October 2000 0034-6861/2000
IV. Mesoscopic Fluctuations in Open Dots 923
A. The random-matrix approach 924
B. The semiclassical approach 925
C. Mesoscopic fluctuations of the conductance 925

1. Conductance distributions 925
2. Weak localization 927
3. Ericson fluctuations 928
4. Parametric correlations 929

D. Conductance fluctuations at finite temperature 930
E. Dephasing 930

1. Models for dephasing 930
2. Temperature dependence of dephasing 931
3. Conductance distributions 932

V. Mesoscopic Fluctuations in Closed Dots 933
A. Statistical theory at low temperatures 933
B. Conductance peak statistics 934

1. Partial-width amplitude distribution 934
2. Width distribution 934
3. Peak-height distributions 935

C. Parametric correlations of the conductance
peaks 936

D. Crossover from conserved to broken time-
reversal symmetry 937
1. Conductance peak distributions 937
2. Weak localization 938

E. Peak-spacing statistics 939
F. Finite-temperature statistics 940

1. Conductance peaks 940
a. Distributions 941
b. Peak-to-peak correlations 941

2. Peak spacings 942
G. Spectral scrambling 943
H. Correlations between the addition and excitation

spectra 944
VI. Interaction Effects 944

A. Peak-spacing statistics and interactions 945
1. Hartree-Fock approximation and

Koopmans’ theorem 946
2. Random-phase approximation in disordered

dots 947
3. Parametric variation of the mean field 948
895/72(4)/895(74)/$29.80 ©2000 The American Physical Society



896 Y. Alhassid: Statistical theory of quantum dots
4. Anderson model with interactions 949
B. Spin effects and interactions 949
C. Peak-height statistics and interactions 952
D. Random interaction matrix model 952

VII. Charging Energy Effects in Quantum Dots 954
A. Mesoscopic fluctuations in elastic cotunneling 955
B. Mesoscopic Coulomb blockade 957
C. Mesoscopic fluctuations of the differential

capacitance 958
VIII. Conclusion and Future Directions 959
Acknowledgments 963
References 963

I. INTRODUCTION

Recent advances in materials science have made pos-
sible the fabrication of small conducting devices known
as quantum dots, where up to several thousand electrons
are confined to a region whose linear size is about 0.1–1
mm (Kastner, 1992). Quantum dots are typically made
by forming a two-dimensional electron gas in the inter-
face region of a semiconductor heterostructure and ap-
plying an electrostatic potential to metal gates to further
confine the electrons to a small region (‘‘dot’’) in the
interface plane. Because the electronic motion is re-
stricted in all three dimensions, a quantum dot is some-
times referred to as a zero-dimensional system. The
transport properties of a quantum dot can be measured
by coupling it to leads and passing current through the
dot. The electron’s phase is preserved over distances
that are large compared with the size of the system, giv-
ing rise to new phenomena not observed in macroscopic
conductors. As the name suggests, conductance through
a quantum dot is characterized by quantum coherence.

Quantum dots belong to a larger class of systems,
termed mesoscopic by van Kampen (1981), which are
intermediate between microscopic systems, such as nu-
clei and atoms, and macroscopic bulk matter (Akker-
mans et al., 1995). A system is called mesoscopic when
the electron’s phase coherence length Lf (the typical
distance the electron travels without losing phase coher-
ence) is larger than or comparable to the system’s size
L . Phase coherence is affected by the coupling of the
electron to its environment, and phase-breaking pro-
cesses involve a change in the state of the environment.
In most cases phase coherence is lost in inelastic scatter-
ings, e.g., with other electrons or phonons, but spin-flip
scattering from magnetic impurities can also contribute
to phase decoherence. Elastic scatterings of the electron,
e.g., from impurities, usually preserve phase coherence
and are characterized by the elastic mean free path l . Lf
increases rapidly with decreasing temperature, and for
L;1 mm, an open system typically becomes mesoscopic
below ;100 mK. In a mesoscopic sample, the descrip-
tion of transport in terms of local conductivity breaks
down, and the whole sample must be treated as a single,
coherent entity.

The field of mesoscopic physics originated in the study
of disordered systems in which the electron’s motion is
diffusive, i.e., l is small relative to L . In the late 1980s it
became possible to produce high-mobility semiconduc-
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tor microstructures that were sufficiently small and free
of impurities to ensure that the mean free path l exceeds
the system’s size L . Such devices are termed ballistic.
Transport in a ballistic quantum dot is dominated by
electronic scattering not from impurities, but from the
structure’s boundaries. Most experimental research on
quantum dots is focused on ballistic dots.

The coupling between a quantum dot and its leads can
be experimentally controlled. In an open dot, the cou-
pling is strong and the movement of electrons across the
dot-lead junctions is classically allowed. But when the
point contacts are pinched off, effective barriers are
formed and conductance occurs only by tunneling. In
these almost-isolated or closed quantum dots, the charge
on the dot is quantized, and the dot’s low-lying energy
levels are discrete, with widths smaller than their spac-
ing. Closed dots have been called ‘‘artificial atoms’’
(Kastner, 1993; Ashoori, 1996) because of their discrete
excitation spectra.

In the past, experimental studies of quantum phenom-
ena in small systems were limited to natural systems
such as atoms and nuclei. Quantum dots are man-made
structures small enough to be governed by the laws of
quantum mechanics. The advantage of these artificial
systems is that their transport properties are readily
measured, with the strength of the dot-lead couplings,
the number of electrons in the dot, and the dot’s size
and shape all under experimental control. Furthermore,
effects of time-reversal symmetry breaking are easily
measured by applying a magnetic field.

Quantum dots are not the only miniature structures
whose transport properties have been measured. Similar
experiments have been performed recently on even
smaller structures such as very clean metallic nanopar-
ticles (Ralph, Black, and Tinkham, 1997; Davidović and
Tinkham, 1999), C60 molecules deposited on gold sub-
strate (Porath and Millo, 1996), and carbon nanotubes
(Bockrath et al., 1997; Tans et al., 1997; Cobden et al.,
1998). Some of the phenomena observed in these sys-
tems are strikingly similar to those seen in quantum
dots, suggesting that quantum dots are generic systems
for exploring the physics of small, coherent quantum
structures.

A. Fabrication and physical parameters of quantum dots

There are two types of quantum dots, corresponding
to lateral and vertical geometries. In the more common
lateral dot, the current flows within the plane to which
the electrons are confined; in a vertical dot (Reed et al.,
1988), the current flows perpendicular to the plane.
Quantum dots are produced by several techniques. A
typical example of a lateral dot and its fabrication
method are illustrated in Fig. 1(a): on the right is an
electron micrograph of the dot and on the left is a sche-
matic drawing. A layer of AlGaAs is grown on top of a
layer of GaAs by molecular-beam epitaxy. Electrons ac-
cumulate at the GaAs/AlGaAs interface to form a two-
dimensional electron gas (their motion in the vertical
direction is confined to the lowest state of a quantum
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FIG. 1. Quantum dots: (a) A quantum dot used by Folk et al. (1996). On the right is a scanning electron micrograph of the dot
(top view), and on the left is a schematic drawing of the device. Electrons are trapped vertically in the interface of a GaAs/AlGaAs
heterostructure, and form a 2D electron gas (darker area). Their lateral confinement to the dot region is achieved by applying a
negative voltage to the top metal gate (lighter shade), depleting the electrons underneath. The dot is coupled to two leads (source
and drain) through point contacts. Two gate voltages Vg1 and Vg2 can be varied to change the shape and area of the dot. (b) A
diagram of a micrograph of another dot by Oosterkamp et al. (1997). The darker area includes the dot region (center) and the two
large 2D electron-gas areas on the left and right (source and drain regions). The lighter shade represents the metal gates. The dot’s
size is controlled by the middle pair of gates, and its tunnel barriers can be varied by the pairs of gates on the left and on the right.
well). Metal gates (lighter regions in the micrograph) are
created at the top of the structure by electron-beam li-
thography. A negative bias applied to the top metal gate
depletes the electrons under the gate and restricts them
to a small region (the dark central region in the micro-
graph). The dot is coupled to the bulk 2D electron-gas
regions by two individually adjustable point contacts. A
voltage Vsd applied between the source and the drain
drives a current I through the device. The linear conduc-
tance is determined from G5I/Vsd in the limit of small
Vsd . The shape and size of the dot can be controlled by
voltages Vg1 and Vg2 applied to two shape-distorting
gates. The ability to control the dot-lead couplings as
well as the dot’s shape and area allows us to study a
continuous range of physically interesting situations.

A schematic view of another lateral dot (Oosterkamp
et al., 1997) is shown in Fig. 1(b). The lighter areas rep-
resent the metal gates. The darker area contains the
electrons: the central region is the dot itself, connected
by point contacts to the large 2D electron-gas regions on
the left and right. The left and right pairs of gates con-
trol the dot’s barriers (i.e., its degree of openness), while
the central pair of gates is used to vary its shape and
size.

The confined electrons are typically ;50–100 nm be-
low the surface. The effective mass of an electron in
GaAs is rather low: m* 50.067 me . A typical sheet den-
sity of ns;431011 cm22 corresponds to a Fermi wave-
length of lF5(2p/ns)

1/2;40 nm (about two orders of
magnitude larger than in a metal) and Fermi energy of
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EF;14 meV. The mobility of GaAs/AlGaAs hetero-
structures is in the range me;104 –106 cm2/V s, leading
to a typical mean free path of l5vFm* me /e;0.1–10 mm
(vF is the Fermi velocity). Electron transport in submi-
cron dots with the higher mobility values is thus ballistic.
To observe quantum coherence effects in closed dots, it
is usually necessary to have a mean single-particle level
spacing D in the dot that is comparable to or larger than
the temperature. For a dot with an effective area of A
;0.3 mm2, the spacing D5p\2/m* A;11 meV can be
resolved at temperatures of ;100 mK (corresponding to
kT58.6 meV). The lowest effective electron tempera-
tures attained using dilution refrigerators are ;50 mK.

To observe charge quantization in the dot, two condi-
tions must be satisfied. First, the barriers must be large
enough that the transmission is small. This gives the con-
dition G!e2/h (i.e., the dot is almost isolated). Second,
the temperature must be low enough that the effects of
charge quantization are not washed out. The dot’s abil-
ity to hold charge is described classically by its average
capacitance C . Since the energy required to add a single
electron is 'e2/C per electron in the dot, we have the
condition kT!e2/C . A typical charging energy of a
GaAs disk of radius 0.2 mm is EC5e2/C;1000 meV,
and the condition kT!e2/C is always satisfied at the low
temperatures used in experiments. The tunneling of an
electron into the dot is usually blocked by the classical
Coulomb repulsion of the electrons already in the dot,
and the conductance is small. This phenomenon is
known as Coulomb blockade. But by changing the gate
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voltage Vg we can compensate for this repulsion, and at
the appropriate value of Vg the charge on the dot will
fluctuate between N and N11 electrons, leading to a
maximum in the conductance. This leads to so-called
Coulomb-blockade oscillations of the conductance as a
function of the gate voltage. At sufficiently low tempera-
tures these oscillations turn into sharp peaks [see, for
example, Fig. 7(c)] that are spaced almost uniformly in
Vg by an amount essentially proportional to the charg-
ing energy EC .

Coulomb blockade was first observed in tunnel junc-
tions containing a small metallic particle (see, for ex-
ample, Giaever and Zeller, 1968). This corresponds to
the classical regime1 D!kT!e2/C , where tunneling oc-
curs through a large number (;kT/D) of levels. Kulik
and Shekhter (1975) introduced a transport theory for
this classical regime. Early theoretical work on Coulomb
blockade effects in a single junction was done by Ben-
Jacob and Gefen (1985), Likharev and Zorin (1985), and
Averin and Likharev (1986). The first controlled experi-
ment on a single-electron tunneling device was that of
Fulton and Dolan (1987). The first observation of Cou-
lomb blockade in a semiconductor device was by Scott-
Thomas et al. (1989). Low-temperature experiments in
semiconductor quantum dots can probe the quantum
Coulomb-blockade regime kT!D!e2/C , where tunnel-

1A metallic particle in 3D has a much smaller mean level
spacing than a 2D dot of the same size because of the differ-
ences in dimensionality and effective mass.

FIG. 2. Conductance by resonant tunneling of a single electron
through a quantum dot: (a) Schematic view of an isolated
quantum dot that is weakly coupled to left and right leads. The
point contacts effectively create tunnel barriers between the
dot and the leads. (b) Side view. When the Fermi energy of the
electron in the source and drain reservoirs matches the first
unoccupied level in the dot, the electron can tunnel across the
barrier into the dot. A current will flow in response to a small
source-drain voltage Vsd . The potential in the dot is controlled
by the gate voltage Vg . The effect of Coulomb charging en-
ergy is not shown here and is illustrated in Fig. 8
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
ing occurs through a single resonance in the dot. Reso-
nant tunneling is illustrated in Fig. 2.

B. From ‘‘regular’’ to chaotic dots

Vertical dots are suitable for spectroscopic studies of
a dot with few electrons (N&20). Such dots can be pre-
pared in regular shapes, such as a disk, where the con-
fining potential is harmonic and the single-particle levels
are arranged in shells. This shell structure is observed by
measuring the Coulomb-blockade peaks as a function of
the number of electrons in the dot (Tarucha et al., 1996;
Kouwenhoven, Oosterkamp, et al., 1997); see, for ex-
ample, Fig. 3(a). The spacings between adjacent peaks
are not uniform and can be converted into an addition
spectrum, shown in Fig. 3(b). The addition spectrum ex-
hibits clear maxima at N52, 6, and 12, corresponding to
completely filled shells of a 2D spin-degenerate har-
monic oscillator. Additional maxima can be seen at
N54, 9, and 16, describing half-filled shells with parallel
spins, in agreement with Hund’s rules from atomic phys-
ics. The single-particle spectrum is sensitive to a mag-
netic field (as in atoms), and configuration rearrange-

FIG. 3. Shell structure observed in the addition energy of a
small vertical quantum dot. The dot has the shape of a 2D disk
with a harmonic-like confining potential. (a) Coulomb-
blockade peaks in the current vs gate voltage Vg ; (b) Addition
energy [extracted from the peak spacings shown in panel (a)]
as a function of electron number N in the dot. The maxima
correspond to filled (N52,6,12) or half-filled (N54,9,16) spin-
degenerate harmonic-oscillator shells. The half-filling follows
Hund’s rule favoring the filling of the valence shell with paral-
lel spins. From Tarucha et al. (1996).



899Y. Alhassid: Statistical theory of quantum dots
ments are seen at avoided crossings of single-particle
levels. Overall, a simple single-particle model plus con-
stant charging energy, supplemented by a perturbative

FIG. 4. The universality of RMT. The nearest-neighbor level-
spacing distribution P(s) (where s is the spacing in units of the
mean level spacing) in (a) a compound nucleus, (b) a 2D cha-
otic system, and (c) a disordered system, compared with the
Wigner-Dyson distribution (solid lines) predicted by RMT.
Dashed lines show the Poisson distribution describing P(s) for
a random sequence of levels. Panel (a) shows P(s) for the
nuclear data ensemble — 1726 neutron and proton resonances
measured in several heavy nuclei. From Bohigas, Haq and
Pandey (1983). Panel (b) is P(s) for 700 eigenvalues of the
Sinai billiard, a classically chaotic system. The eigenfunctions
vanish at the boundaries indicated by the inset. From Bohigas,
Giannoni, and Schmit (1984). Panel (c) illustrates P(s) for a
3D Anderson model (open squares) in its diffusive regime with
on-site disordered potential w/t52 (see Sec. III.A.3). From
Dupuis and Montambaux (1991).
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treatment of the exchange interaction, can explain quali-
tatively the observed pattern of addition energies versus
magnetic field. A good quantitative agreement is ob-
tained when compared with Hartree-Fock calculations
of a few-electron system.

Hartree-Fock calculations—feasible in small dots—
become impractical for dots with several hundred elec-
trons. Moreover, many of the lateral dots with N*50
electrons often have no particular symmetry. Scattering
of an electron from the irregular boundaries of such dots
leads to single-particle dynamics that are mostly chaotic.
Measured quantities such as the dot’s conductance and
addition spectrum display ‘‘random’’ fluctuations when
various parameters (e.g., shape and magnetic field) are
varied. We are entering the statistical regime, in which
new kinds of questions are of interest. For example,
rather than trying to calculate the precise, observed se-
quence of conductance peaks in a specific dot, we can
study the statistical properties of the dot’s conductance
sampled from different shapes and applied magnetic
fields.

Classical chaos, i.e., the exponential sensitivity of the
time evolution of a dynamical system to initial condi-
tions, is well understood not only in closed systems but
also in open scattering systems (e.g., quantum dots) as-
suming that the particle spends sufficient time in the fi-
nite scattering regime (e.g., the dot) before exiting into
the asymptotic regime (e.g., the leads). In describing
transport through coherent systems, we are interested in
the quantum manifestations of classical chaos. The link
between classical and quantum chaos was first estab-
lished in 1984 with the Bohigas-Giannoni-Schmit (BGS)
conjecture (Bohigas, Giannoni, and Schmit, 1984) that
the statistical quantal fluctuations of a classically chaotic
system are described by random-matrix theory (RMT).
These authors found that the statistical properties of
;700 eigenvalues of the Sinai billiard—a 2D classically
chaotic system—follow the predictions of RMT. Figure
4(b) compares the nearest-neighbor spacing distribution
of the Sinai billiard’s eigenvalues (histogram) with the
same distribution calculated from RMT (solid line).

Random-matrix theory differs in a fundamental way
from the conventional statistical approach. Rather than
declaring ignorance with respect to the microscopic dy-
namical state of the system, we declare ignorance with
respect to the Hamiltonian itself (Balian, 1968). The
only relevant information is the system’s fundamental
space-time symmetries, and otherwise the Hamiltonian
can be chosen ‘‘at random.’’ This revolutionary idea was
introduced by Wigner in the 1950s to explain the spec-
tral properties of a complex many-body system, the
compound nucleus, and was developed by Dyson,
Mehta, and others in the early 1960s. Since RMT has no
scale (its only physical parameter is determined by the
mean level spacing D which scales out if all energies are
measured in units of D), it leads to universal predictions.
For example, neutron and proton resonances measured
in heavy nuclei and collected in the so-called nuclear
data ensemble (Bohigas, Haq, and Pandey, 1983) were
found to obey the predictions of RMT. In particular, the
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resonances’ spacing distribution, represented by the his-
togram in Fig. 4(a), is well described by the Wigner-
Dyson distribution of RMT (solid line), just as the ei-
genvalues of the Sinai billiard are [Fig. 4(b)].

The usefulness of RMT for neutron resonances was
justified by the complexity of the compound nucleus
above the neutron threshold. In contrast, the Sinai bil-
liard is a relatively simple but chaotic 2D system. Ac-
cording to the BGS conjecture, classical chaos is a suffi-
cient condition for the applicability of RMT. We shall
see that RMT is indispensable for understanding the
universal statistical properties of chaotic quantum dots.
Random-matrix theory also links chaotic ballistic dots to
mesoscopic disordered metals, as we discuss next.

C. From disordered to chaotic ballistic dots

A disordered, impurity-rich quantum dot—similar to
the diffusive systems that were the original focus of me-
soscopic physics—is shown schematically in Fig. 5(a).
An electron enters the dot through a lead and scatters
elastically from the impurities. Here l!L , and the trans-
port is diffusive (l is the mean free path and L is the
linear size of the dot). The characteristic time scale is
tD , the time for the electron to diffuse across the dot.
The associated energy scale is known as the Thouless
energy Ec5\/tD . Figure 5(b) illustrates the more com-
mon ballistic dot. There is relatively little disorder, and
transport is dominated by scattering from the dot’s
boundaries. When the boundaries are irregular, the elec-

FIG. 5. Schematic drawing of a diffusive dot and a ballistic dot
attached to two leads: (a) an impurity-rich diffusive dot, show-
ing an electron’s trajectory with elastic scatterings from the
impurities; (b) a ballistic dot. There are few impurities and the
electron moves ballistically. Typically, an electron is scattered
several times from the dot’s boundaries before exiting the dot.
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tron’s dynamics is mostly chaotic. The relevant time
scale in ballistic dots is the ergodic time tc , which is
roughly the time of flight across the dot. The related
energy scale ET5\/tc is termed the ballistic Thouless
energy. The chaotic nature of the classical motion inside
the dot can be revealed in the conductance only if the
electron scatters off the boundaries at least several times
before escaping through a lead. We therefore limit our
discussion to dots in which tescape@tc , where tescape is
the mean escape time of the electron into the leads.
Equivalently, the average width G of a level in the dot
(to decay into the leads) must be small compared with
ET (G!ET). For a diffusive dot, a similar condition G
!Ec is required.

One of the important consequences of quantum co-
herence is the interference of waves describing an elec-
tron propagating along different paths between the in-
coming and outgoing leads. We can observe these
interference effects in the conductance by changing a
phase-sensitive parameter in the system, for example,
the electron’s Fermi momentum or the external mag-
netic field. The conductance through diffusive or ballis-
tic open dots thus exhibits aperiodic but reproducible
fluctuations as a function of a parameter [see, for ex-
ample, Fig. 6(c)].

Early theoretical studies of disordered conductors
were based mostly on weak-disorder perturbation
theory (i.e., the diagrammatic approach). Two important
phenomena were discovered: (i) The average conduc-
tance is smaller in the absence of a magnetic field than in
its presence, an effect known as weak localization (see
Bergmann, 1984, and references therein). This quantum
interference effect requires Lf@l and occurs already in
macroscopic conductors (L.Lf). (ii) The rms fluctua-
tions of the conductance in a mesoscopic conductor are
of the order e2/h , independent of the size of the average
conductance, a phenomenon known as universal conduc-
tance fluctuations (Altshuler, 1985; Lee and Stone, 1985).
A natural question that arises is whether similar meso-
scopic phenomena can be observed in ballistic dots.
Given the BGS conjecture, the application of RMT to
describe the universal features of the conductance
through chaotic ballistic dots was a logical step. As long
as the electron dynamics in the dot are chaotic, the con-
ductance fluctuations are independent of the dot’s ge-
ometry, although they do depend on the properties of
the leads (such as the number of modes and the average
transparency of each mode). Only in the limit of a large
number of fully transmitting modes does the size of the
fluctuations become truly universal in the sense of uni-
versal conductance fluctuations.

The link between universal conductance fluctuations
in disordered systems and RMT was first postulated by
Altshuler and Shklovskii (1986) and by Imry (1986a).
Earlier work by Thouless had pointed to the close con-
nection between the conductance and spectral proper-
ties: the conductance expresses the sensitivity of the en-
ergy levels to a change in the boundary conditions
(Edwards and Thouless, 1972; Thouless, 1974, 1977).
This relation was used by Altshuler and Shklovskii
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(1986) to argue that RMT spectral correlations are at
the origin of universal conductance fluctuations. Their
diagrammatic calculations also showed that spectral cor-
relations in disordered systems are nonuniversal for en-
ergy scales that exceed the Thouless energy. At such
energy scales the electron diffuses for times that are
short compared with tD and therefore does not have
enough time to reach the system’s boundaries. An
analogous breaking of RMT universality in chaotic sys-
tems was demonstrated by Berry (1985) for time scales
that are shorter than the ergodic time. These observa-
tions suggested that the universal regime of RMT is ap-
plicable to energy scales that are smaller than the
Thouless energy in disordered systems, and smaller than
the ballistic Thouless energy in ballistic chaotic systems.

A proof of RMT universality in the disordered case
was achieved using the supersymmetry method, a field-
theoretical approach to disordered systems (Efetov,
1983). The supersymmetry method is a technique to
carry out the ensemble average of a product of Green’s
functions, where the original disordered problem is
mapped onto a supersymmetric nonlinear s model. Be-
low the Thouless energy this field-theoretical model re-
duces to 0D, where it is equivalent to RMT. The RMT
universality in weakly disordered systems is demon-
strated in Fig. 4(c), where the nearest-neighbor level-
spacing distribution, calculated numerically for a disor-
dered metal, is seen to follow the Wigner-Dyson
distribution of RMT (solid line).

D. From open to closed dots

The strength of the dot-lead coupling affects the width
of a typical resonance in the dot to decay into the leads.
A simple expression for the width can be obtained from
an argument due to Weisskopf (1937). Imagine a wave
packet near the entrance to a channel c in one of the
leads. The wave packet evolves in time and returns after
the recurrence time or Heisenberg time tH5h/D , where
D is the mean level spacing.2 The probability to decay if
close to a channel c is given by the transmission coeffi-
cient Tc . The decay rate Gc /\ of a level into channel c is
then given by the frequency of attempted decays times
the transmission coefficient (i.e., tH

21Tc), and the total
width G5(cGc of a level to decay into any of the chan-
nels is

G5
D

2p (
c

Tc . (1)

In an open dot, the width W of the dot-lead interface
is much larger than the Fermi wavelength, so that the
lead supports a large number of open modes (L
5Int@kFW/p#@1) with transmission coefficients of or-

2In the original Weisskopf argument, D is the many-body
mean level spacing. However, we are mostly interested in the
immediate vicinity of the ground state of the dot where (for
not-too-strong interactions) the many-particle mean level spac-
ing is of the order of the single-particle level spacing.
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der ;1 (no tunnel barriers). From Eq. (1) we immedi-
ately see that G@D . Thus in open dots the resonances
are strongly overlapping. This is analogous to the
compound-nucleus regime of many overlapping reso-
nances, which occurs at several MeV above the neutron
threshold. Ericson (1960, 1963) predicted that in this re-
gime the coherent superposition of a large number
(;G/D) of resonance amplitudes would cause ‘‘ran-
dom’’ but reproducible fluctuations of the nuclear-
reaction cross section as a function of the reaction en-
ergy. Ericson fluctuations were observed a few years
after his prediction in light-ion reactions (Ericson and
Mayer–Kuckuk, 1966). An example is shown in Fig.
6(a), where the measured differential cross section for
the reaction p1 35Cl→a1 32S is plotted as a function of
the proton energy. Ericson argued that the energy auto-
correlation function of the cross section should be a
Lorentzian with a width G that is just the width of a
typical resonance in the nucleus. This is shown in Fig.
6(b), where the autocorrelation function of the cross sec-
tion (solid line) is fitted to a Lorentzian (dashed line).
Similar fluctuations were observed in the conductance G
of a ballistic open dot as a function of the Fermi momen-
tum \kF , as shown in Fig. 6(c). A convenient way of

FIG. 6. Ericson fluctuations in the compound nucleus [panels
(a) and (b)] and in an open quantum dot [panels (c) and (d)]:
(a) the measured differential cross section ds/dV at u5170°
for the reaction p135Cl→a132S vs the incoming proton en-
ergy Ep . This reaction proceeds through the compound
nucleus 36Ar at an excitation energy of ;18.5 MeV; (b) the
energy autocorrelation function C(DE) (solid line) of the
cross section in panel (a) (von Brentano et al., 1964), where
the dashed line is a Lorentzian fit whose width G corresponds
to the lifetime \/G of the excited compound nucleus 36Ar
(from Ericson and Mayer-Kuckuk, 1966); (c) the conductance
G measured in an open chaotic dot as a function of the elec-
tron’s Fermi momentum kF (Keller et al., 1996); the average
conductance increases as a function of kF , but the magnitude
of the fluctuations is constant, of the order e2/h ; (d) the power
spectrum S(fV) (Chan et al., 1995), i.e., the Fourier transform
of the conductance autocorrelation function vs gate voltage
(changing the gate voltage is equivalent to changing the Fermi
energy). The dashed line is a fit to an exponential (which cor-
responds to a Lorentzian form of the conductance autocorre-
lation function). A log-linear scale is used.
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analyzing the fluctuations is to consider the Fourier
transform of the autocorrelation function of the conduc-
tance, i.e., the power spectrum S(fk) of G5G(kF). If
the autocorrelation of the conductance vs energy is a
Lorentzian of width G, then S(fk)}e22pGufku/\vF (where
vF is the Fermi velocity). This exponential behavior is
demonstrated in Fig. 6(d) for S(fV), the power spectrum
of the conductance vs gate voltage (changing the gate
voltage is equivalent to changing the Fermi energy). For
ballistic dots we can give a semiclassical interpretation
of G: in an open chaotic system the classical escape time
is distributed exponentially, with a characteristic mean
escape time of tescape5\/G .

The cross section of a nuclear reaction is proportional
to the squared S-matrix element between the entrance
and exit channels. An analogous situation exists in co-
herent transport through open quantum dots. The for-
mulation of conductance in coherent systems was pio-
neered by Landauer (1957, 1970) and refined by Imry
(1986b) and Büttiker (1986a). They described the con-
ductance as a scattering process and expressed it directly
in terms of the total transmission through the sample.3

The total transmission is the sum over squared S-matrix
elements between all entrance and exit channels. The
average conductance is then expected to increase lin-
early with the number of open channels, as can be seen
in Fig. 6(c). However, the magnitude of the fluctuations
is ;e2/h , independent of the average conductance. The
nuclear cross-section fluctuations are also universal, al-
though since the measured cross section corresponds to
a specific selection of exit and entrance channels, the
size of the fluctuations is comparable to the average.

In recent years the experimental focus has shifted
from open to closed dots, where the statistical behavior
of individual wave functions can be probed. In closed
dots the transmission coefficients are small, Tc!1, and
according to Eq. (1), G!D (assuming a small number of
channels). This is the regime of isolated resonances,
analogous to the compound-nucleus regime of isolated
neutron resonances just above the neutron threshold.
Such narrow resonances were observed in the total cross
section to scatter thermal neutrons from heavy nuclei.
Figure 7(a) shows such resonances for the reaction n
1232Th. The distribution of the widths of these reso-
nances is shown on a log-linear scale in Fig. 7(b) and is
well described by the so-called Porter-Thomas distribu-
tion (solid line) predicted by RMT. It is given by P(Ĝ)
}Ĝ21/2e2Ĝ/2, where Ĝ is the width measured in units of
the average width.

In closed dots the conductance is not a smooth func-
tion of the gate voltage as in open dots, but instead ex-
hibits Coulomb-blockade peaks [see, for example, Fig.
7(c)]. The spacings between these peaks are almost uni-

3It is interesting to note that Landauer’s formula can be de-
rived from Weisskopf’s formula (1) by applying the latter to
the leads instead of the dot (where the leads are considered as
decaying quantum systems emitting electrons); see Bertsch
(1991).
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
form because they are dominated by the large charging
energy, in contrast to the nuclear case, where the spac-
ings between the observed resonances fluctuate widely.
Moreover, the observed conductance peak widths in
closed dots are all ;kT because of thermal broadening.
However, the peak heights exhibit order-of-magnitude
fluctuations, as can be seen in Fig. 7(c). These peak fluc-
tuations are determined by the spatial fluctuations of the
individual resonance wave functions in the vicinity of
the leads. The statistical approach to Coulomb-blockade
peak heights was developed by Jalabert, Stone, and Al-
hassid (1992). They used R-matrix theory—originally in-
troduced by Wigner and Eisenbud (1947) for nuclear
reactions—to relate the Hamiltonian of the closed sys-
tem to the scattering resonances of the weakly open sys-
tem, and then applied an RMT approach to quantify the
wave-function fluctuations. The conductance peak-
height distributions were found to be universal and sen-
sitive only to the space-time symmetries of the dot.
These distributions were measured a few years later
(Chang et al., 1996; Folk et al., 1996) and were in agree-
ment with the theoretical predictions. The distribution
of the conductance peak heights in the absence of mag-
netic field is shown in Fig. 7(d). This is the case of con-

FIG. 7. Neutron-resonance-width statistics in the compound
nucleus [panels (a) and (b)] and Coulomb-blockade peak sta-
tistics in closed quantum dots [panels (c) and (d)]: (a) a series
of neutron resonances in the total cross section sT (in barns)
of n1232Th as a function of the incoming neutron energy En

(in eV) (from Brookhaven National Laboratory, 1964); (b) dis-
tribution of the normalized neutron resonance widths Ĝ

5G/Ḡ using a log-linear scale [223 neutron resonances in 233Th
are included from the measurements of Garg et al. (1964)]; the

solid line is the Porter-Thomas distribution P(Ĝ)}Ĝ21/2e2Ĝ/2

predicted by RMT; (c) a series of Coulomb-blockade peaks
observed in the conductance G of closed GaAs/AlGaAs dots
(with N;1000 electrons) as a function of gate voltage Vg at
zero magnetic field (Folk et al., 1996); (d) distribution of the
normalized conductance peak heights Ĝ5G/Ḡ (histogram) on
a log-linear scale; 600 peaks are included, of which only ;90
are statistically independent. The solid line is the theoretical
prediction based on RMT (Jalabert, Stone and Alhassid, 1992)
and contains no free parameters. Notice the agreement with
the experiment over almost three orders of magnitude.
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served time-reversal symmetry, analogous to the
neutron-resonance statistics in Fig. 7(b).

E. From noninteracting to interacting electrons

Studies of statistical fluctuations in open dots have
generally ignored electron-electron interactions.
Electron-electron inelastic scattering reduces the coher-
ence time of the electrons at finite temperature, but oth-
erwise the excitations around the Fermi energy are as-
sumed to be noninteracting quasiparticles. Landau’s
Fermi-liquid theory treats the electrons in good metals
as weakly interacting quasiparticles whose lifetime near
the Fermi surface is large compared to \/kT . In open
dots with many open channels the average conductance
is large, and a noninteracting picture, similar to that of
metals, is justified. But as the strength of the dot-lead
couplings is reduced, interaction effects become impor-
tant in transport. The simplest way to take interactions
into account is to include only the long-range compo-
nent of the Coulomb interaction, namely, the average
interaction among N electrons in the dot. This is known
as the constant-interaction model. This model has the
advantage of simplicity, and it does explain some of the
observed phenomena. However, discrepancies with
other recent experiments—notably the measured peak-
spacing distribution—indicate that electron-electron in-
teractions can have significant effects beyond the
constant-interaction model. An important parameter is
the dimensionless gas parameter rs measuring the ratio
between a typical Coulomb interaction and the average
kinetic energy. When rs is small, it is possible to use a
combination of a mean-field approximation and the
known statistics of the noninteracting limit. However, in
semiconductor quantum dots, rs;1 –2, and deviations
are expected. The interplay between one-body chaos
and many-body interactions in quantum dots is a fasci-
nating open problem and is currently the main focus of
the field.

F. Methods

The statistical theory of quantum dots is based on four
main approaches: diagrammatic methods, semiclassical
methods, random-matrix theory, and supersymmetry.
The first approach (i.e., the diagrammatic method) was
developed in early work on disordered conductors.
More recent progress—based primarily on the last three
methods and driven in part by a deeper understanding
of their interrelations—has brought the statistical ap-
proach to a new level of maturity. While several reviews
and books have been written on the semiclassical, RMT,
and supersymmetry approaches, they are usually dis-
cussed separately and often not in relation to quantum
dots. A section of this review describes these methods in
the context of the statistical theory of quantum dots,
emphasizing the relationships among the methods.
Many of the results of that section will be used in sub-
sequent sections.
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G. Outline of the review

We begin by reviewing transport theory in quantum
dots (Sec. II). An important result is the Landauer for-
mula expressing the conductance in terms of the S ma-
trix of the device. We discuss resonant tunneling and
Coulomb blockade in closed dots, and processes that
dominate the off-resonance conductance, such as cotun-
neling. The results of this section will be used in devel-
oping a statistical theory of quantum dots.

Section III covers the main principles and tools of the
statistical fluctuation theory: the semiclassical approach
(demonstrated for disordered metals), random-matrix
theory, and the supersymmetry method.

Section IV examines mesoscopic conductance fluctua-
tions in open dots using random-matrix and semiclassi-
cal approaches. We discuss the main mesoscopic phe-
nomena in fully coherent open quantum dots—weak
localization and conductance fluctuations, and how they
are affected by a finite coherence time.

Section V reviews the statistical theory of closed dots.
The statistics and parametric correlations of the peak
heights are derived both for temperatures that are small
and that are comparable to the mean level spacing. The
constant-interaction model can explain some, but not all,
of the observed statistics. Adding electrons to the dot
changes or ‘‘scrambles’’ the single-particle spectrum and
wave functions because of charge rearrangement. This
statistical scrambling is discussed in the framework of
RMT.

Section VI summarizes recent progress in understand-
ing the effects of electron-electron interactions on the
statistical fluctuations. The focus is on peak-spacing sta-
tistics, where discrepancies with the results of the
constant-interaction model have been seen experimen-
tally. The Hartree-Fock approximation offers an inter-
mediate framework that describes interaction effects
within a single-particle theory. Spin effects are also dis-
cussed.

Finally, in Sec. VII we consider various charging en-
ergy effects on the mesoscopic fluctuations, such as fluc-
tuations of the off-resonance conductance where the
dominating conductance mechanism is cotunneling, and
the phenomenon of mesoscopic Coulomb blockade due
to the backscattering of electrons into an open lead.

Throughout the review we have made an effort to ad-
here to a uniform notation, which sometimes required
changing the notation of the original papers. We have
also tried to keep to standard notation except in cases
where the same symbol is used for different quantities.
The topics covered in this review are too broad to per-
mit discussion of all related work, and we apologize to
those whose work could not be included.

II. ELECTRON TRANSPORT THROUGH QUANTUM DOTS

Conductance through quantum dots is a phase-
coherent process. In this section we review the formal-
ism of coherent transport.
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In Sec. II.A we remind the reader of the quasiclassical
theory of transport in a metal where phase coherence is
ignored. At low temperatures and in small conductors,
however, the coherence length of the electron can be
larger than the system’s size, and conductivity is no
longer a local quantity. Section II.B describes conduc-
tance as a coherent scattering process; its main result is
the Landauer formula expressing the conductance in
terms of the S matrix. It is often useful to relate the S
matrix of the open system to the eigenfunctions and ei-
genvalues of the closed system. This relation is derived
in R-matrix theory, discussed in Sec. II.C. Section II.D
describes an important limit of the theory, the weak-
coupling limit, where conductance occurs by resonant
tunneling.

Section II.E reviews Coulomb blockade, a central
phenomenon in closed quantum dots with large tunnel
barriers. Coulomb blockade is essentially a classical phe-
nomenon, observed at temperatures that are small com-
pared with the charging energy. The discreteness of the
dot’s levels becomes important in the quantum
Coulomb-blockade regime when the temperature drops
below the mean level spacing D.

Section II.F considers the off-resonance conductance
in Coulomb-blockade dots, which is dominated by co-
tunneling, i.e., the virtual tunneling of an electron (hole)
through a large number of intermediate levels in the dot.
Finally, Sec. II.G explains how conductance measure-
ments in the nonlinear regime provide information on
excited states in the dot.

A. Quasiclassical description of conductivity

In a perfect periodic potential in a crystal, the motion
of the electrons is described by extended Bloch states. In
real samples, however, there is some disordered poten-
tial due to impurities, defects, dislocations, etc. The elec-
trons scatter from the impurities elastically (i.e., the
electron’s energy is conserved and only its momentum is
reoriented), and repeated scatterings lead to diffusive
motion. In the quasiclassical description of diffusion, the
electron is assumed to lose phase coherence after each
collision with an impurity, i.e., Lf;l , and the conduc-
tivity can be introduced as a local intensive quantity (see
below).

The diffusion current of electrons is given by Jd5
2D¹ns , where ns5ns(r,t) is the electron density and
D is the diffusion constant. Using the continuity equa-
tion ¹•Jd52]ns /]t , we obtain the diffusion equation

]ns

]t
5D¹2ns . (2)

Describing the diffusion (in d dimensions) as a random
walk, we can relate the diffusion constant D to the elas-
tic mean free path l through D5vFl/d .

Special solutions to the diffusion equation, nq

}eiq•re2Dq2t, are known as the classical diffusion modes.
The classical diffusion propagator, describing the
time evolution of the single-electron density, can
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be expanded in these modes: D(r8,r;t)
5@(qeiq•(r82r)e2Dq2t#u(t). Its Fourier transform is
D(q,v)51/(2iv1Dq2).

The electrical conductivity s is defined by Ohm’s law,
Je5sE, describing the linear relation between the elec-
tric current density Je and the applied electric field E. To
relate the conductivity to the mean free time t (t
5l/vF , where vF is the Fermi velocity), we assume that
after each collision the electron’s velocity is ‘‘random-
ized.’’ Between collisions the electrons are accelerated
in response to the electric field, and their average veloc-
ity is v̄5(e/m)Et . Since the current is given by Je
5nse v̄, we recover Ohm’s relation with

s5
e2

m
nst , (3)

also known as Drude’s formula. When combined with
D5vF

2 t/d and dns/2EF5n (n is the density of single-
particle states per unit volume at the Fermi energy),
Drude’s formula (3) leads to Einstein’s relation

s5e2nD . (4)

In a 2D electron gas, n5m/p\2 is constant, and s
5 (e2/h) kF l . In a good metal, kF l@1, and the conduc-
tivity is much larger than the quantum unit e2/h .

The quantity that is measured directly is the conduc-
tance, defined as the ratio between the current and the
applied voltage. In a macroscopic conductor the conduc-
tivity is an intensive quantity, and the conductance G is
related to the conductivity by G;s(S/L), where L and
S are the length and transverse cross section of the con-
ductor, respectively.

B. Conductance in mesoscopic systems and the
Landauer formula

In a mesoscopic system Lf*L , and the local descrip-
tion of conductivity breaks down. It is then meaningful
to discuss only the measurable quantity—the
conductance—or alternatively, to introduce conductivity
as a nonlocal tensor. For recent books discussing trans-
port in mesoscopic systems, see, for example, Datta
(1995), Imry (1996), and Ferry and Goodnick (1997).

The transport properties of a mesoscopic structure are
characterized by conductance coefficients that are
sample specific. Several probes (leads) attached to elec-
tron reservoirs are connected to the system. A current is
passed through the structure and the voltage is mea-
sured at the different probes. Denoting by Vn the volt-
age of probe n and by In the current through probe n ,
we expect in the limit of small voltages a set of linear
relations

In85(
n

Gn8nVn . (5)

The coefficient Gn8n is the conductance between leads n
and n8. It follows from Kirchhoff’s law (nIn50 that
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(nGn8n5(n8Gn8n50. For the special case of a two-lead
dot, G125G2152G1152G22[G , and G5I1 /
(V22V1).

A formulation that takes into account phase coher-
ence as well as the geometry of the structure was devel-
oped by Landauer (1957, 1970) and Imry (1986b). The
basic idea was to relate the conductance to an underly-
ing scattering matrix (i.e., transmission coefficients). The
first derivations of such transmission formulas from
linear-response theory were by Economou and Soukou-
lis (1981) and Fisher and Lee (1981). The work of Land-
auer and Imry was generalized by Büttiker (1986a,
1988a) to a general configuration of probes. We first dis-
cuss the macroscopic approach of Büttiker and then de-
scribe a simplified derivation of the Landauer formula
from statistical reaction theory by Bertsch (1991). For
illuminating discussions of the Landauer approach and
its applications, see Stone and Szafer (1988), Baranger
and Stone (1989), Datta (1995), Stone (1995), and Imry
(1996). For a recent review, see Imry and Landauer
(1999).

We assume a mesoscopic structure connected to sev-
eral leads n , each supporting Ln propagation modes of

the electrons. We denote by Sc8c
n8n the scattering ampli-

tude of the structure to scatter an electron from channel
c in lead n to channel c8 in lead n8. A scattering ampli-
tude between different leads (n8Þn) is called a trans-
mission amplitude t , while a scattering amplitude be-
tween channels that belong to the same lead (n85n) is
called a reflection amplitude r . The total transmission

from lead n to lead n8 is Tn8n5(c8cutc8c
n8nu2 (where the

sum is over all channels c in lead n and c8 in lead n8),
and the total reflection in lead n is Rnn5(c8curc8c

nn u2 (c
and c8 are channels in lead n). A voltage Vn in probe n
causes a current Icn

inject5evc(dnc
1/de)eVn to be injected

in each mode c , where vc and dnc
1/de are the longitu-

dinal velocity and density of ingoing states (per unit
length of the lead) in mode c . Assuming noninteracting
electrons in the lead, vcdnc

1/de51/h and the injected
current is Icn

inject5(e2/h)Vn . The electrons injected in
lead n are scattered into lead n8Þn and produce there a

current In8n5(c8cutc8c
n8nu2Icn

inject5(e2/h)Tn8nVn . Electrons
are also backscattered into the same lead n giving a net
current of Inn5(e2/h)(Rnn2Ln)Vn , where the injected
current has been subtracted. The total current in lead n8
is In85(nIn8n . We obtain Eq. (5) with

Gn8n5H 2
e2

h
Tn8n ~for n8Þn !

2
e2

h
~Rnn2Ln! ~for n85n !,

(6)

where a factor of 2 was included to take into account the
spin degeneracy of the electrons.

A simple derivation of Landauer’s formula at finite
temperature is provided by Bertsch (1991). The starting
point is Weisskopf’s formula (1), first applied in nuclear
physics to neutron evaporation (Weisskopf, 1937), and
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often used in the transition state theory of chemical re-
actions. We assume for simplicity that the mesoscopic
structure is connected to two leads only. Rather than
applying Eq. (1) to the structure itself, we apply it to the
leads, considering each lead as an equilibrated, decaying
system emitting electrons. At zero temperature, the de-
cay rate G/\ from each lead is given by

G

\
5

1
2p\r~E ! ( T , (7)

where r(E) is the density of states in that lead and (T
represents a sum over transmission coefficients in all
open-channel states. At finite temperature, the current
due to electrons emitted by the lead is I
5e(l@G(El)/\#f(El2m), where f(El2m) are Fermi-
Dirac occupation probabilities (m is the chemical poten-
tial in the lead). Converting the sum into an integral
(l→*dEr(E) and using Eq. (7), we find that the level
density cancels out and we obtain

I5
e

2p\ E dES ( T D f~E2m!. (8)

To find the conductance we apply a small source-drain
voltage Vsd and calculate the current. Each lead emits a
current given by Eq. (8). However, the two leads have
different chemical potentials m1 and m2 , with m12m2
5eVsd . The net current I5I12I2 is thus nonzero:

I5
e

2p\ E dES ( T D @f~E2m1!2f~E2m2!# , (9)

where we have assumed that the total transmission (T
is independent of the direction of flow of the current.
Indeed, for Vsd50 the whole system is equilibrated
(m15m2) and the net current must be zero, leading to
the equality of (T for both leads. In the linear regime,
f(E2m1)2f(E2m2)'2eVsdf8(E2EF), where EF is
the finite-temperature Fermi energy (i.e., chemical po-
tential) of the equilibrated system, and we find

G52
e2

h E dE@2f8~E2EF!#S ( T D . (10)

The factor of 2 accounts for spin degeneracy. Equation
(10) is the finite-temperature Landauer formula. Ac-
cording to transition state theory, (T represents a sum
over all available channels. Since the electron can decay
from any mode c in the first lead to any mode c8 in the
second lead, (T5T2,1, where T2,1 it the total transmis-
sion between the two leads. In the limit of zero tempera-
ture, 2f8(E2EF)→d(E2EF), and Eq. (10) reduces to
the first case of Eq. (6).

A more microscopic derivation of Landauer’s formula
using linear-response theory is based on a Kubo formula
(Kubo, 1957; Greenwood, 1958); see, for example,
Baranger and Stone (1989). The generalization of Land-
auer’s formula (10) to the multileads case is

Gn8n52
e2

h E
0

`

dE@2f8~E2EF!#(
c8c

uSc8c
n8n

~E !u2,

(11)
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where the sum is over all entrance channels in lead n
and all exit channels in lead n8.

The Landauer formula works well in open structures
where the picture of noninteracting quasiparticles is
valid and interactions contribute only through finite
dephasing times. In closed dots, where charging energy
is important, it usually does not hold except in special
cases (see Sec. II.E). There were attempts to generalize
Landauer’s formula to the interacting case. Meir and
Wingreen (1992) used the nonequilibrium Keldish for-
malism to derive a formula for the current in an
interacting-electron region. At the limit of zero tem-
perature, where only elastic processes are allowed, their
formula for the linear-response conductance reduces to
a Landauer-type formula. However, at finite tempera-
ture or in the nonlinear regime, such Landauer-type for-
mula does not hold because of inelastic processes.

The symmetry properties of the conductance coeffi-
cients were discussed by Büttiker (1988a). The time-
reversal properties of the S matrix in an external mag-
netic field B , ST(2B)5S(B), lead to Gn8n(B)
5Gnn8(2B). These relations do not imply that G is a
symmetric matrix except when B50. Note, however,
that for a two-lead dot G is always symmetric [see the
discussion following Eq. (5)].

C. R-matrix formalism

R-matrix theory relates the S matrix of the dot to the
discrete eigenvalues and eigenstates of the closed sys-
tem, and was introduced by Wigner and Eisenbud
(1947) in nuclear-reaction theory. The methods were
generalized and reviewed by Lane and Thomas (1958),
and a pedagogical treatment is available in Blatt and
Weisskopf (1952). An equivalent formulation that ex-
presses the S matrix in terms of an effective non-
Hermitian Hamiltonian of the open system was pre-
sented by Mahaux and Weidenmüller (1969) and is also
derived in a recent review on scattering in chaotic sys-
tems by Fyodorov and Sommers (1997). The R-matrix
formalism was adapted to quantum dots by Jalabert,
Stone, and Alhassid (1992).

We consider a 2D cavity in the region A of the x-y
plane and assume left and right leads (along the x axis)
that are attached to the dot at the lines of contact x
5xl ,xr (denoted by Cl and Cr). We denote by H the
dot’s Hamiltonian and consider the eigenvalue problem

HCl5ElCl , (12)

where Cl(r) vanishes at the walls and satisfies a general
homogeneous boundary condition at the dot-lead inter-
faces: ]Cl /]n2hl ,rCl50 (n̂56 x̂ is the normal to each
interface and hl ,r are constants). A scattering solution
F(r) at energy E can be expanded F(r)5(lalCl(r).
Since F and Cl are solutions of the Schrödinger equa-
tion inside the dot at energies E and El , respectively,
we find
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al5E
A

dA Cl* F

5
\2

2m

1
El2E E

C
dlS Cl*

]F

]n
2F

]Cl*

]n D . (13)

We denote by fc
i a complete set of transverse wave

functions, where c is a channel index and i5l ,r . For an
open channel, fc

i (y)5A2/Wi sin(kc
i y), where Wi is the

width of the lead i and kc
i 5cp/Wi (c51,2,.. . ,L i) are the

quantized transverse momenta. Inside each lead we can
expand F(r)5(c51

L i uc
i (x)fc

i (y). Using Eq. (13) and the
boundary conditions satisfied by the dot’s eigenfunc-
tions, the longitudinal components uc

i (x) of the scatter-
ing solution at the contact points x5xl ,r are given by

uc
i (xi)5( i8c8Ric ;i8c8@]uc8

i8 /]n2hi8uc8
i8 #x5xi8

, where

Ri8c8;ic~E !5(
l

yc8l
i8 ycl

i *

El2E
(14)

is the R matrix defined in terms of ycl
i

5A\2/2m*C dl fc
i * Cl , the reduced partial-level width

amplitude for the decay from level l into channel c in
lead i . In the following, we shall omit the lead label i
and assume it is included in the channel label c .

The S matrix can be expressed in terms of the R ma-
trix. To this end, it is convenient to define the K matrix
by K5(kP)1/2R(kP)1/2. Here kP is a diagonal matrix
where kc is the longitudinal channel momentum
(\2kc

2/2m1\2kc
2/2m5E), and Pc is the penetration fac-

tor to tunnel through the barrier in channel c @Pc
5kc

21 Im(] ln uc
1/]n)ux5xi

, where uc
1 is the outgoing wave

component of uc ; Pc51 in the absence of a barrier and
Pc!1 in the presence of a barrier]. In terms of the K
matrix (see, e.g., Blatt and Weisskopf, 1952)

S5
11iK

12iK
. (15)

Equation (14) can be rewritten for the K matrix as

Kc8c~E !5
1
2 (

l

gc8lgcl*

El2E
, (16)

where

gcl5A\2kcPc

m E
C

dl fc* Cl (17)

are known as the partial-width amplitudes.
The relation (16) for the K matrix can also be written

in an arbitrary fixed basis of wave functions (not eigen-
functions) r j in the dot:

K5pW†
1

H2E
W . (18)

Here W is a N3L matrix of coupling constants between
the leads and the dot:

Wjc[S \2kcPc

2pm D 1/2E
C

dl r j* fc . (19)



907Y. Alhassid: Statistical theory of quantum dots
Equations (15) and (16) for the S matrix can be re-
written in terms of the Green’s function of an effective
Hamiltonian:

S5122piW†
1

E2Heff
W , (20)

where Heff5H2ipWW†. Heff is non-Hermitian; its real
part is the dot’s Hamiltonian H and its imaginary part is
the ‘‘width’’ matrix G[pWW†. It generally describes
the Hamiltonian of an open system that is coupled to an
external region. The eigenvalues of Heff are complex
(El2iGl/2) and describe resonances of energies El and
widths Gl .

D. Resonant tunneling

In the weak-coupling limit a typical resonance width
in the dot is much smaller than the average spacing D
between resonances. In this limit only the resonance l
that is closest to the scattering energy E contributes to
the K matrix (16). This leads (for cÞc8) to a Breit-
Wigner resonance formula

uSc8cu25
Gc8lGcl

~E2El!21S Gl

2 D 2 , (21)

where Gcl[ugclu2 is the partial width of the resonance
level l to decay into channel c , and Gl[(cGcl is the
total width of the level. Equation (21) can also be ob-
tained directly from Eq. (20). In the weak-coupling limit
the width matrix WW† is small (compared with D), and
we can diagonalize Heff in perturbation theory. To lead-
ing order, the eigenfunctions are the same as those of H ,
and their widths (defined in terms of the eigenvalues of
Heff) are Gl52p^luWW†ul&5(cugclu2 (where we have
used gcl5A2p( jWjc* ^jul&).

The zero-temperature conductance in the tunneling
regime is obtained by substituting the Breit-Wigner
form [Eq. (21)] in Landauer’s formula:

G~E !5
e2

h

Gl
l Gl

r

~E2El!21S Gl

2 D 2 , (22)

where Gl
l(r)5(cPl(r)Gcl is the width of the level l to

decay into the left (right) lead and we have ignored spin
degeneracy.

At finite temperature the conductance is calculated by
convoluting Eq. (22) with the derivative f8 of the Fermi-
Dirac distribution according to Eq. (11). In typical ex-

periments with closed dots, Ḡ!T!D , and the thermal
smearing factor f8 does not change much over the reso-
nance width. G is then proportional to the integral of
the Breit-Wigner form [Eq. (22)],

G~EF ,T !'Gl
peak 1

cosh2S El2EF

2kT D . (23)

Here, EF is the Fermi energy in the leads and
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Gl
peak5

e2

h

pḠ

4kT
gl , (24a)

where

gl5
2

Ḡ

Gl
l Gl

r

Gl
l 1Gl

r
. (24b)

Equation (23) describes a conductance peak of width
;kT that is centered at EF5El and has a peak-height
amplitude of Gl

peak .

E. Coulomb blockade

Coulomb blockade occurs when an ‘‘island’’ of elec-
trons is weakly coupled to two leads via tunnel junc-
tions. When the coupling is weak, the conductance drops
below e2/h and the charge on the ‘‘island’’ becomes
quantized. The linear conductance of the device oscil-
lates as a function of the gate voltage with a period that
corresponds to the addition of a single electron to the
‘‘island.’’ For reviews on Coulomb blockade, see Averin
and Likharev (1991) and van Houten, Beenakker, and
Staring (1992). For recent experimentally oriented re-
views on transport in Coulomb-blockade quantum dots,
see Meirav and Foxman (1995), Kouwenhoven, Marcus,
et al. (1997), and Kouwenhoven and McEuen (1998).

Coulomb-blockade oscillations were first observed in
a metallic grain (Giaever and Zeller, 1968), where D
!kT and the spectrum could be treated as a quasicon-
tinuum. A transport theory for this classical regime was
developed by Shekhter (1972) and Kulik and Shekhter
(1975). The total classical electrostatic energy of a Cou-
lomb island with N electrons is

U~N !52QVext1Q2/2C52NeVext1N 2e2/2C ,
(25)

where Vext is the potential difference between the elec-
tron gas and the reservoir (due to a gate voltage), and C
is the total capacitance between the island and its sur-
roundings. By defining an externally induced charge
variable Qext[CVext , we can write Eq. (25) as U(N )
5(Q2Qext)

2/2C up to an additive constant. Qext can be
varied continuously by changing Vext . The number of
electrons in the dot for a given Vext is determined by
minimizing U(N). When Qext5Ne , the minimum is ob-
tained for the state with charge Q5Ne , and the energy
of the states with Q5(N61)e is higher by e2/2C . As a
result, the tunneling density of states has a gap of EC
5e2/C around the Fermi energy, blocking the flow of
electrons into the island. This situation is demonstrated
in panels (a) and (c) of Fig. 8. However, when Qext
5(N11/2)e , both states Q5Ne and Q5(N11)e are
degenerate (Glazman and Shekhter, 1989), allowing the
tunneling of one more charge into the metallic particle
[see panels (b) and (d) of Fig. 8]. The conductance is
maximal at this degeneracy point.

In semiconductor quantum dots the mean level spac-
ing is much larger than in metal grains of a similar size,
and experiments can easily probe the quantum
Coulomb-blockade regime T,D!e2/C . A simple
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Hamiltonian for the dot can be written by assuming
electrons in a one-body confining potential plus an elec-
trostatic energy [Eq. (25)]:

Hdot5(
l

~El2eaVg!al
†al1e2N̂ 2/2C , (26)

where al
† u0& is a complete set of single-particle eigen-

states in the dot with energies El , and N̂5(lal
†al is the

electron number operator in the dot. The external po-
tential of Eq. (25) Vext5aVg is written in terms of a gate
voltage Vg and a5Cg /(Cg1Cdot), where Cg is the
gate-dot capacitance and Cdot is the dot-leads capaci-
tance. The Hamiltonian (26) is known as the constant-
interaction model, since only the average constant part
of the electron-electron interaction (N 2e2/2C) is taken
into account.

When T!D , conductance is possible only by resonant
tunneling through a corresponding quantized level in the
dot. Resonant tunneling of the Nth electron occurs
when the total energy before and after the tunneling
event is conserved: EF1U(N21)5EN 1U(N ). Using
Eq. (25) we find that the effective Fermi energy ẼF

FIG. 8. Schematic illustration of Coulomb blockade in an
almost-closed dot. When the gate voltage is tuned to a value
eaVg5Ne2/C [panel (a)] there is a charging energy gap in the
single-particle spectrum on both sides of the Fermi energy,
blocking the tunneling of electrons into the dot. On the other
hand, when the gate voltage changes to eaVg5(N11/2)e2/C
[panel (b)], it compensates for the Coulomb repulsion, and the
charging energy for adding an electron to the dot vanishes.
When the Fermi energy in the leads matches the first unoccu-
pied single-particle state in the dot, resonant tunneling of an
electron into the dot occurs. Panels (c) and (d) show the total
electrostatic energy U(N) of the dot vs the number of elec-
trons [see Eq. (25)]: (c) for eaVg5Ne2/C , the energy of the
dot is minimal for N electrons in the dot, leading to charge
quantization; (d) when eaVg5(N11/2)e2/C , the energies of a
dot with N and N11 electrons are equal and the dot’s charge
can fluctuate between Ne and (N11)e . This is known as the
degeneracy point.
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[EF1eaVg satisfies ẼF5EN 1(N2 1
2 )(e2/C). The

spacing between Coulomb-blockade peaks is now given
by

D2[DẼF5~EN112EN!1e2/C . (27)

The charging energy is usually much larger than the
mean level spacing in the dot so that the Coulomb-
blockade peaks are almost equidistant. Figure 8 illus-
trates the phenomenon of Coulomb blockade in the
quantum regime.

At T;D , several resonances contribute to the con-
ductance peak. A finite-temperature theory for the on-
resonance conductance was derived by Beenakker
(1991) and Meir, Wingreen, and Lee (1991) using linear-
response theory, and by Averin, Korotkov, and
Likharev (1991) in the nonlinear I-V regime.

For kT@G (where G is a typical level width), the co-
herence between the electrons in the leads and in the
dot can be ignored, and a master-equations approach is
valid. Beenakker (1991) used the constant-interaction
model (26), where an eigenstate of the dot is described
by a set of occupation numbers n[$nl% of the single-
particle levels, and its energy is E(n)5(lElnl
1U(N ). The dot is connected to left and right reser-
voirs that are in thermal equilibrium at temperature T
and Fermi energy EF . At equilibrium Peq(n)
5Z 21 exp$2@E(n)2NEF#/kT%, where Z is the grand-
canonical partition function. A small source-drain volt-
age Vsd is applied between the left and right reservoirs,
causing a current I through the dot (see Fig. 2), and the
linear conductance is calculated from G5I/Vsd . The
voltage drop is hVsd across the left barrier and (1
2h)Vsd across the right barrier. The current through
the left lead is described by the net flux of electrons that
tunnel in or out of the dot across the left barrier,

I52e(
l

(
n

P~n!
Gl

l

\
$dnl ,0 f„Ẽl~N11 !1heVsd…

2dnl ,1@12f„Ẽl~N !1heVsd…#%, (28)

where f(x)5@11exp(x/kT)#21 is the Fermi-Dirac distri-
bution in the reservoirs, Ẽl(N )[El2@ẼF2(N
21/2)e2/C# and Gl

l /\ is the tunnel rate from level l to
the left lead. The first term on the right-hand side of Eq.
(28) describes the tunneling of electrons from a level in
the left lead with filling f into an empty level l in the
dot, while the second term represents the tunneling of
an electron from an occupied state l in the dot to a level
in the left lead with emptiness of 12f . Only energy-
conserving transitions are taken into account, and the
summation over l accounts for the possibility of tunnel-
ing through different levels l.

The nonequilibrium distribution P(n) of electrons in
the dot satisfies a set of master equations

]P~n!

]t
5(

m
@P~m!Wm→n2P~n!Wn→m# , (29)

where Wm→n is the transition rate from state m to state
n. Only states m that differ by one electron from the
state n appear in the sum in Eq. (29), and the respective
transition rates are
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W1l→0l
5

Gl
l

\
@12f„Ẽl~N11 !1heVsd…#

1
Gl

r

\
@12f„Ẽl~N11 !2~12h!eVsd…# ,

W0l→1l
5

Gl
l

\
f„Ẽl~N !1heVsd…

1
Gl

r

\
f„Ẽl~N !2~12h!eVsd…, (30)

where N5(mnm is the number of electrons in the final
state n. In the notation used in Eq. (30), 1l→0l , for
example, denotes the transition m→n with ml51, nl

5 0, and mm5nm for all mÞl . The term W1l→0l
de-

scribes the tunneling of an electron from a filled l level
in a dot with N11 electrons into a level in the left and
right leads with emptiness of 12f , while W0l→1l

corre-
sponds to the tunneling of an electron from a level in the
left or right lead with filling f into a dot with N21 elec-
trons.

We are interested only in the stationary state
]P(n)/]t50, leading to detailed balance equations
P(1l)W1l→0l

5P(0l)W0l→1l
. A solution to the de-

tailed balance equations in the linear-response regime
(Beenakker, 1991) is of the form P(n)'Peq(n)@1
1(eVsd /kT)L(n)# , where L(n)5(l@Gl

r /(Gl
l 1Gl

r )
2h#nl1const. Calculating the current (28) to first order
in Vsd using the solution for P(n), one obtains the con-
ductance G(T ,ẼF) as a function of the temperature and
the effective Fermi energy

G~T ,ẼF!5
e2

h

pḠ

4kT
g , (31)

where

g5(
l

wl~T ,ẼF!gl

is the dimensionless conductance expressed as a thermal
average over the level conductances gl

52Ḡ21Gl
l Gl

r /(Gl
l 1Gl

r ). The thermal weights are given
by

wl5(N 4PN ^nl&N F12fS El1~N21/2!
e2

C
2ẼFD G ,

(32)
where PN is the probability that the dot has N electrons,
and ^nl&N is the canonical occupation of a level l. The
contribution to wl in Eq. (32) from a fixed number of
electrons N corresponds to the product of the proba-
bility that level l is occupied in a dot with N electrons
and the probability that a state in the lead is empty
at the same total energy. The probability PN is given
by PN5exp@2V(N)/kT#/(N8 exp@2V(N8)/kT# , where
V(N )[F(N )1U(N )2NEF and F(N ) is the canoni-
cal noninteracting free energy.
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In typical experiments, T ,D!e2/C , and only one term
in the sum of Eq. (32) contributes to a given conduc-
tance peak. For gate voltages that are tuned to a con-
ductance peak between N21 and N electrons in the dot,
we have

wl54f~DFN 2ẼF!^nl&N @12f~El2ẼF!# , (33)

where DFN [F(N )2F(N21), and we have used PN
'f„V(N )2V(N21)…. In Eq. (33) and in the following,
ẼF (or equivalently eaVg) is measured relative to N
21/2)e2/C .

In the limit kT!D and spin-nondegenerate levels,
only one level l5N contributes to Eq. (31). Further-
more DFN 'EN , and using f(x)@12f(x)#
52kTf8(x), Eq. (33) becomes wN (kT!D)
5cosh22@(EN2ẼF)/2kT# , so that Eq. (31)
reduces to Eqs. (23) and (24). However, if the
electron tunnels into an empty level l that is spin degen-
erate (with spin 1/2), we find a conductance peak

of G(ẼF ,T)5(e2/h)(2pḠ/kT)(2/Ḡ)@Gl
l Gl

r /(Gl
l 1Gl

r )#

3@12f(El2ẼF)#@21e(El 2ẼF)/kT#21 (Glazman and
Matveev, 1988). The conductance maximum is shifted to
ẼF5El2(kT ln 2)/2, and the peak height in Eq. (24) is
rescaled by a factor of 8(&21)2'1.37. In this case, the
scattering approach of Sec. II.D leads to a conductance
peak as in Eq. (23), with a peak height (24) scaled by a
factor of 2. This result is wrong since it ignores charging
energy.

Similarly, if the method of Sec. II.D (valid in the ab-
sence of charging energy) is applied at temperatures T
;D , we obtain Eq. (31), but with weights

wl
(0)524kTf8~El2ẼF!. (34)

Indeed in the limit e2/C→0, all terms in Eq. (32) con-
tribute. The factor 12f becomes independent of N,
(NPN ^nl&N [f(El2ẼF), and the weights wl reduce to
Eq. (34). However, for e2/C@D , only PN and PN21 are
non-negligible, as states with number of electrons differ-
ent from N and N21 are pushed away by the charging
energy. We conclude that, in the presence of charging
energy, the approach based on the Breit-Wigner and
Landauer formulas breaks down at finite temperature
and Eq. (34) must be replaced by Eq. (33).

The discreteness of the spectrum is unimportant at
high temperatures kT@D where the canonical occupa-
tions can be approximated by the Fermi-Dirac distribu-
tion. Assuming that the tunneling rates G l(r)/\ depend
only weakly on energy, one finds (for D!kT!e2/C)

G~ẼF ,T !'Gl
peak 1

cosh2S m2ẼF

2.5kT
D ;

Gl
peak5

e2

h

p

D

G lGr

G l1Gr , (35)

where G l(r) are the energy-averaged partial widths.
Comparing these with the corresponding formulas in the
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quantum limit kT!D [Eqs. (23) and (24)], we see that
for the same temperature, the line shape is similar but
with a somewhat larger width in the classical limit. The
peak height in the classical regime is temperature inde-
pendent since ;kT/D levels contribute, canceling the
1/T dependence of the peak height in the quantum re-
gime. Furthermore, the widths G l(r) in the classical for-
mula (35) are energy averaged, and thus lead to smooth
variation of the peak heights as a function of Vg . In
contrast, the peak heights exhibit strong fluctuations in
the quantum regime [see, for example, the peak series in
Fig. 7(c)].

If kT@e2/C , the charging energy is not important and
Landauer’s formula reproduces the correct conductance
G52(e2/h)(p/D)@G lGr/(G l1Gr)# . Coulomb-blockade
oscillations disappear and the conductance is twice as
large as its peak height in the classical Coulomb-
blockade regime.

F. Cotunneling

The off-resonance conductance can be calculated us-
ing perturbation theory (in the dot-leads coupling).
First-order processes are forbidden by energy conserva-
tion because of the charging energy gap, so the leading-
order contribution is second order. The main second-
order tunneling mechanism is known as cotunneling
(Averin and Nazarov, 1990; Glazman and Matveev,
1990a). In inelastic cotunneling, an electron that tunnels
from the left lead into a state in the dot is followed by an
electron that tunnels from a different state of the dot
into the right lead. In elastic cotunneling, an electron
tunnels into the dot (from the left lead) and out of the
dot (into the right lead) through the same intermediate
state of the dot. Also contributing to cotunneling are
holes that move from the right to the left lead, describ-
ing first an electron that tunnels out of the dot into the
right lead, followed by an electron that tunnels from the
left lead into the dot. The transitions involved in cotun-
neling are non-energy-conserving and therefore virtual.
The intermediate single-particle states in the dot are
separated from the Fermi energy in the leads by a gap
Ee for the virtual tunneling of an electron to a state
above the Fermi energy, and by a gap Eh for the virtual
tunneling of a hole to a state below the Fermi energy
(Ee1Eh5EC5e2/C).

We restrict the discussion to low temperatures kT
,AECD , where elastic cotunneling dominates (Averin
and Nazarov, 1990). The dot-leads Hamiltonian is de-
scribed by

H5Hdot1 (
k ,cPl ,r

Ekcckc
† ckc

1 (
k ,cPl ,r

l

~Vkc ,lckc
† al1H.c.!, (36)

where Hdot is the dot’s Hamiltonian (26), ckc
† creates an

electron with wave number k in channel c in either the
left (l) or right (r) lead with energy Ekc , and V is a
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tunneling matrix element between the left or right lead
and the dot. The elastic cotunneling conductance is

G5
e2

h (
cPl ,c8Pr

uT c8cu2, (37)

where

T c8c52 (
El.EF

gc8l
r* gcl

l

uEl2EFu1Ee
1 (

El<EF

gc8l
r* gcl

l

uEF2Elu1Eh

(38)
is the elastic cotunneling amplitude from channel c in
the left lead to channel c8 in the right lead. We have
defined gcl

l(r)5A2prcVcl
l(r) [rc(E)5(kd(E2ekc) is the

lead density of states in channel c] to be the partial-
width amplitude of an electron in a state l to decay into
channel c in the left (right) lead. The cotunneling ampli-
tude contains contributions from both particle (El

.EF) and hole (El<EF) states. Each term in the sum
over particle (hole) states is the amplitude for an elec-
tron (hole) to tunnel from the left (right) lead to the
right (left) lead through an intermediate state l. Expres-
sion (38) assumes that both Ee and Eh are of the order
of EC , and thus @D . In contrast to the conductance at
the peak, a large number of excited states in the dot
contribute to the off-resonance conductance.

G. Nonlinear transport

Thus far we have considered only the linear conduc-
tance. This corresponds to a source-drain voltage eVsd
that is smaller than a typical level spacing D in the dot.
The electron can then tunnel only through the lowest
unoccupied level, and the observed Coulomb-blockade
oscillations provide information on the ground states of
the dot with increasing number of electrons. More gen-
erally, the current depends on the number of available
states in the dot between the chemical potentials in the
left and right leads. Since the difference between the
chemical potentials is eVsd , we expect that as Vsd in-
creases additional states in the dot become available for
tunneling. A nonlinear transport theory in quantum dots
was developed by Averin and Korotkov (1990) and
Averin, Korotkov, and Likharev (1991). In the classical
regime, the current increases in steps as a function of
Vsd (Coulomb staircase), corresponding to the increase
in the number of available charge states in the dot. In
the quantum regime, the current depends on the number
of available excited levels in the dot through which a
fixed number of electrons can tunnel (Johnson et al.,
1992). Thus nonlinear-transport measurements in the
quantum regime provide information on the excitation
spectrum of a dot with a fixed number of electrons.

In practice, the current through the dot can be mea-
sured as a function of both Vsd and a gate voltage Vg .
For a fixed eVsd below the first excited state in the dot,
the current versus Vg displays the usual Coulomb-
blockade peaks of the linear regime. However, when
eVsd is above the first excited state in the dot, the elec-
tron can tunnel through two states in the dot, and each
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single peak develops into a double peak. Similarly, as
eVsd increases above the second excited state, each
Coulomb-blockade oscillation is composed of three
peaks. The differential conductance dI/dVsd displays a
peak when a level in the dot matches the chemical po-
tential in one of the leads. From the spacings among the
peaks in each oscillation, it is possible to infer the exci-
tation spectrum of the dot. The differential conductance
forms a diamond-shaped diagram in the Vsd-Vg plane
(McEuen et al., 1993). Each diamond corresponds to a
Coulomb-blockaded region with a certain number of
electrons on the dot.

III. STATISTICAL THEORY: FROM DISORDERED METALS
TO BALLISTIC DOTS

The phase coherence of transport in mesoscopic struc-
tures leads to quantum interference effects. Conse-
quently, the conductance in these structures exhibits
fluctuations as a function of experimentally controllable
parameters, such as magnetic field, gate voltage, or
sample. Such fluctuations were first observed in disor-
dered metals. To describe the statistical properties of
these fluctuations, we assume that the impurity configu-
rations in the sample constitute an ensemble. Similar
samples fabricated by similar methods differ from each
other in the details of their impurity configurations, and
each can be thought of as a different member of the
ensemble. For early reviews on quantum interference
effects in mesoscopic structures, see Altshuler, Lee, and
Webb (1991), Beenakker and van Houten (1991), and
Washburn and Webb (1993). See also the books by
Datta (1995) and Imry (1996).

In the last decade it has become possible to produce
relatively clean high-mobility GaAs quantum dots.
These ballistic devices also exhibit conductance fluctua-
tions. In irregularly shaped dots, where the classical dy-
namics of the electron is chaotic, the fluctuations are
universal and depend only on the symmetry class and
the transmission properties of the leads. The physical
origin of the fluctuations in ballistic dots is similar to
that in diffusive structures, namely quantum interfer-
ence effects. The statistical properties of these fluctua-
tions are also assumed to be described by an appropriate
ensemble. In practice, the concept of an ensemble (for
both diffusive and ballistic systems) is justified by the
ergodic hypothesis. These systems’ statistical properties
result from averaging over energy, shape, magnetic field,
etc.

The diagrammatic and semiclassical methods played a
key role in our theoretical understanding of disordered
structures and ballistic dots, respectively. Two additional
powerful approaches contributed to recent progress in
the field: random-matrix theory (RMT) and the super-
symmetry method. Random-matrix theory originated in
nuclear physics (Wigner, 1958; see also Wigner, 1951,
1955, 1957), and was later conjectured to describe the
universal quantal fluctuations in systems whose associ-
ated classical dynamics is chaotic (Bohigas, Giannoni,
and Schmit, 1984). The supersymmetry method was
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
originally conceived as a method for carrying out exact
ensemble averages in disordered systems (Efetov, 1983).
In a certain regime it is equivalent to RMT, but more
generally it can be used to derive nonuniversal correc-
tions.

Section III.A introduces the relevant scales and com-
monly used models for disordered and ballistic quantum
dots. The following sections review the principal meth-
ods of the statistical approach. Section III.B outlines the
semiclassical approach. The semiclassical treatment of
disordered systems has mostly reproduced results origi-
nally derived in impurity perturbation theory, but it of-
fers a more intuitive approach. The diagrammatic ap-
proach is not discussed here; its main lines can be found
in Abrikosov, Gor’kov, and Dzhyaloshinskii (1963) and
Altshuler and Simons (1995). Section III.C reviews the
RMT approach, and Sec. III.D gives a brief introduction
to the supersymmetry method.

A. Disordered metals and ballistic dots

1. Scales in the diffusive regime

In a mesoscopic structure, the coherence length ex-
ceeds the system’s size: Lf.L (see Sec. I). Other rel-
evant length scales in disordered systems are the mean
free path l and the Fermi wavelength lF . The diffusive
regime corresponds to l!L . In the metallic or weakly
disordered regime, the Fermi wavelength is much
smaller than the elastic mean free path: lF!l (i.e., kFl
@1).

Another important length scale in disordered systems
is the localization length j over which the electron’s
wave function is localized (for a review of localization
theory see Lee and Ramakrishnan, 1985). In the metallic
regime, the localization length is large, and we shall re-
strict our discussions to the nonlocalized regime where
j@L .

The time the electron takes to diffuse across the
length L of a disordered sample is tD5L2/D , where D
is the diffusion coefficient. The associated energy scale

Ec[
\

tD
5

\D

L2 (39)

is known as the Thouless energy (see Sec. I.C). The
Thouless energy can be directly related to the conduc-
tance. The conductance G of a homogeneous conductor
in d dimensions is G;sLd22, where s is the conductiv-
ity. Using Einstein’s relation (4) for s, we can write

G;
e2

\
~nLd!S \D

L2 D5
e2

\

Ec

D
. (40)

The dimensionless Thouless conductance4 gT is defined
by G[(e2/\)gT , and according to Eq. (40)

4The dimensionless Thouless conductance is usually denoted
by g. In this review we denote it by gT since g is used to denote
the dimensionless conductance peak height in a closed dot
[see, e.g., Eq. (31)] and the dimensionless conductance in an
open dot (see, e.g., Sec. IV.C.1).
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gT5
Ec

D
[N~Ec!, (41)

i.e., g measures the number of levels in an energy inter-
val Ec . In 2D systems, gT5l/lF , and the dimensionless
conductance is therefore large in the metallic regime.

The relations among relevant length scales can be
translated into relations among the corresponding en-
ergy and time scales. The following relations are useful:

\/t
Ec

5dS L

l D 2

;
EF

\/t
5

1
2

kF, (42)

where t is the mean free time. It follows that the diffu-
sive regime is characterized by Ec!\/t , i.e., the time to
diffuse across the sample is large compared with the
mean free time: tD@t . In a good metal \/t!EF and
Ec@D .

In summary, the following inequalities hold in a dis-
ordered metal in its diffusive regime:

D!Ec!\/t!EF , (43a)

tH@tD@t@\/EF , (43b)

where tH5h/D is the Heisenberg time. The energy re-
gion above \/t corresponds to ballistic motion of the
electron since the corresponding time scale is shorter
than the average time between scatterings from the im-
purities. In the energy range between Ec and \/t , the
dynamics are diffusive, but there is not sufficient time
for the electron to reach the boundaries. Energy scales
below Ec correspond to time scales in which the electron
has reached the system’s boundaries and the diffusive
motion has explored the full length of the structure. We
shall see (e.g.., in Sec.. III.B.1) that this is the regime
where the fluctuations are universal (known as the er-
godic regime).

2. Scales in the ballistic regime

For weaker disorder and/or a smaller sample, the
mean free time t increases and/or the time tD to diffuse
across the dot decreases, and eventually the Thouless
energy Ec exceeds \/t . In this limit the system can be
considered clean, and the dynamics across its length are
ballistic. In terms of length scales, the ballistic regime is
defined by L!l .

In ballistic structures tD is meaningless and another
time scale becomes relevant: the ergodic time tc , which
is of the order of the time of flight across the sample.
The ergodic time plays the same role in ballistic systems
that the diffusion time tD plays in disordered systems.
The quantity analogous to the Thouless energy is ET
[\/tc , sometimes called the ballistic Thouless energy.
The ballistic dimensionless conductance is gT5ET /D
5tH/2ptc . In 2D we can estimate gT from tc;L/vF
and tH5hnA to be gT;N 1/2/2p (where N is the num-
ber of electrons in the dot).

Within the ballistic regime (where \/t!\/tc), it is
possible to distinguish two cases depending on the rela-
tion between \/t and D (Altland and Gefen, 1993).
When D!\/t!\/tc , a typical impurity matrix element
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
can mix many levels, while for \/t!D ,\/tc the disorder
is very weak and can be treated in low-order perturba-
tion theory.

3. Models of disordered structures and ballistic dots

The dynamics of a single electron in d dimensions is
described by Schrödinger’s equation

1
2m* S p1

e

c
AD 2

C1VC5EC , (44)

where V(r) is a one-body potential and A(r) is a vector
potential describing a magnetic field. The disorder is
modeled by an ensemble of random potentials $V(r)%.
Often this ensemble is taken to be Gaussian with

V~r!50; V~r!V~r8!5
\

2pnt
d~r2r8!. (45)

The parametrization of the strength of the disorder in
terms of the impurity scattering rate 1/t is obtained in
the Born limit. A discretized version of this model is
known as the tight-binding Anderson model (Anderson,
1958). In second-quantized form

H52 (
^m ,n&

~ tmneiumnam
† an1H.c.!1(

m
Vmam

† am ,

(46)

where am
† creates an electron at site m , tmn5\2/

2m* a2 (a is the lattice spacing) is a hopping matrix
element between nearest neighbors ^m ,n&, and umn
5(e/\c) *m

n A•dl is an Aharonov-Bohm phase. Vm is
the disorder potential at site m , often assumed to be
uniformly distributed over the interval @2w/2,w/2# . The
disorder parameter w determines the elastic mean free
path, and in the Born approximation kFl}(w/t)22. The
Anderson model has become the standard model for de-
scribing single-particle dynamics of disordered meso-
scopic systems. In 3D, w/t has a critical value above
which all states become localized and the conductivity
falls to zero, corresponding to a metal-insulator transi-
tion (Lee and Ramakrishnan, 1985). One-parameter
renormalization-group analysis has shown that in 1D
and 2D all states are localized. However, in 2D the lo-
calization length j is exponentially large for weak disor-
der, and most states are extended over the dimension of
the system.

Ballistic dots are often modeled as cavities. Billiard
models are popular because their mathematical proper-
ties are best known and there are efficient methods to
solve them numerically. By changing shape parameters
in billiard models, it is possible to describe systems with
classical motion ranging from integrable to fully chaotic.
A good example is the conformal billiard
(Robnik, 1983), whose shape is determined by
the image of the unit circle in the complex z plane
under the conformal mapping w(z)5(z1bz2

1ceidz3)/A112b213c2.



913Y. Alhassid: Statistical theory of quantum dots
B. The semiclassical approach

As a coherent phenomenon, transport in mesoscopic
systems should be described by quantum mechanics. A
classical treatment, on the other hand, has the advantage
of physical intuition. The semiclassical approach is a
bridge that seeks to describe quantum-mechanical phe-
nomena in the language of classical physics. The semi-
classical approach played an important role in the devel-
opment of the mesoscopic theory of open ballistic dots
where the approximation of noninteracting quasiparti-
cles holds (Sec. IV). Applications to disordered systems
have, for the most part, confirmed results derived earlier
in the diagrammatic approach.

Most of the applications are based on an expansion of
the Green’s function in terms of classical trajectories.
The retarded Green’s function GR(r,r8;t)
[^r8ue2iHt/\ur& propagates the particle from r at t50 to
r8 at a later time t . In Feynman’s path-integral represen-
tation, GR(r,r8;t)5*x(0)5r

x(t)5r8D@x#eiS[x]/\ is described as a
functional integral over all trajectories x(t) that connect
x(0)5r to x(t)5r8, where S@x#5*0

t dt@m(dx/dt)2/2
2V(x)# is the action. In the limit \→0 one can use the
stationary phase approximation, leading to dS50, Ham-
ilton’s variational principle for the classical trajectories
xa between (r,0) and (r8,t). Small quantal fluctuations
around each of the classical solutions xa are included by
expanding the action to second order S@x#'S@xa#
1d2S@xa#/2 and doing the Gaussian integral. The result
is Van Vleck’s formula,

GR~r,r8;t !' (
aP $r,r8;t%

AaeiSa /\, (47)

where the sum is over all classical paths a between (r,0)
and (r8,t) with action Sa5S@xa# and amplitude Aa
given by

Aa5S 1
2pi\ D d/2UdetS 2

]2Sa

]r8]rD U
1/2

e2i ~p/2! na;

Sa5E
x(0)5r

x(t)5r8
~p•dx2H dt !. (48)

The classical action Sa(r,0;r8,t) is a function of the ini-
tial (r,0) and final (r8,t). In d degrees of freedom,
2]2Sa /]r8]r is a d3d matrix, and the integer phase
index na is the number of its negative eigenvalues (equal
to the number of conjugate points along the path). Since
2]Sa /]r5pa is the initial momentum, this matrix can
also be written as ]pa /]r8.

The energy representation of the retarded Green’s
function is the Fourier transform of Eq. (47). Doing the
time integral by stationary phase, we find

GR~r,r8;E !5E
0

`

dt eiEt/\GR~r,r8,t !

' (
aP$r,r8;E%

ÃaeiS̃a /\, (49)
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where now the sum is over all classical paths a with
energy E that begin at r and end at r8. The modified
action S̃a5S̃a(r,r8;E)5Sa1Et and amplitude Ãa are

Ãa5
1
i\ S 1

2pi\ D ~d21 !/2UdetS ]pa

]r8 D U1/2UdTa

dE U1/2

e2i ~p/2!ña;

S̃a5E
r

r8
p•dr, (50)

where Ta5]S̃a /]E is the duration of orbit a, the de-
rivative matrix ]pa/]r8 is evaluated at t5Ta , and ña is a
modified phase index (see, e.g., Reichel, 1992).

Equation (49) is the starting point of the semiclassical
approximation for quantities that can be expressed in
terms of Green’s functions. For example, the density of
states r(E)5( id(E2Ei) can be written as r(E)5
2p21* dr Im GR(r,r;E). Using Eq. (49) and integrating
over r in the saddle-point approximation leads to a sum
over periodic orbits (Gutzwiller, 1967, 1969, 1970, 1971;
Balian and Bloch, 1972). The level density is decom-
posed into a smooth average part (Weyl’s term) and a
fluctuating part: r5 r̄1rfluct . In a fully chaotic system,
the periodic orbits are isolated, and rfluct can be written
in terms of Gutzwiller’s trace formula (Gutzwiller,
1971),

rfluct~E !5
1

p\
(

p.o. a

Ta

udet~M̃a2I !u1/2
cosS S̃a

\
2sa

p

2
D ,

(51)

where the sum is over periodic orbits a. The phase sa is
the Maslov index (containing the phase index ña) and
M̃a is a (2d22)-dimensional stability matrix of the or-
bit. M̃a is a submatrix of the 2d-dimensional mono-
dromy matrix Ma that describes the linear relation be-
tween a small change in the initial and final (i.e., after
one period) dr and dp.

1. Spectral correlations in chaotic and disordered systems

Spectral properties of metallic grains have long been
of interest. Gor’kov and Eliashberg (1965) studied the
electrical polarizability of small metallic grains by as-
suming RMT spectral fluctuations (see Sec. III.C). More
recently, it became possible to do spectroscopy of low-
lying states in quantum dots (Sivan et al., 1994). Here we
discuss briefly the semiclassical calculation of spectral
correlation in both chaotic and disordered systems. For
reviews on chaos see, for example, Gutzwiller (1990)
and Giannoni, Voros, and Zinn-Justin (1991). For a re-
cent review of spectral correlations in disordered sys-
tems, see Dittrich (1996). In general, semiclassical meth-
ods are valid at energy scales that are large compared
with the mean level spacing D, namely, at time scales
below the Heisenberg time tH .

An important statistical measure of spectral correla-
tions is the two-point correlation function of the density
of states, measuring the correlations of r at two different
energies, E and E1V . Measuring energies in units of
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the mean level spacing (i.e., e[E/D and v[V/D), the
correlator becomes dimensionless:

K~v![r~e!r~e1v!2 r̄2. (52)

The Fourier transform K(t)5*dv K(v)eivt is known as
the spectral form factor.

We first derive a semiclassical expression for
K(t) (Berry, 1985) in a chaotic system using the periodic
orbit expansion (51). Measuring time in units of
\/D (so that the Heisenberg time is tH52p) and using
S̃a(E1V).S̃a(E)1\Tav , one finds K(t)

; ( 2p )2 1(a ,bAaA be( i / \ )(S̃a2S̃b)d@ t 2 (Ta 1 Tb) / 2# ,

where Aa[Ta /udet(M̃a2I)u1/2, and the average is over
the energy E . In the diagonal approximation, only pairs
of orbits with a5b are taken into account, and

Ksc~ t !;~2p!21(
a

A a
2 d~ t2Ta!'utu/2p . (53)

In the last step in deriving Eq. (53), we have used the
classical sum rule of Hannay and Ozorio de Almeida
(1984) for ergodic systems. This sum rule is valid for
times that are long compared with a typical period of the
short periodic orbits (;tc) but much shorter than the
Heisenberg time. We shall see that this result is also the
universal RMT result below the Heisenberg time. In de-
riving Eq. (53) we have assumed a system in which time-
reversal symmetry is broken. For conserved time-
reversal symmetry we must also consider pairs of orbits
that are time reversals of each other, and this will in-
crease K(t) by a factor of 2.

The semiclassical approach to disordered metals can
be found in Argaman, Imry, and Smilansky (1993) and
Montambaux (1997). For t!tH , the form factor K(t)
can be related semiclassically to the return probability
P(t)5u^rue2iHt/\ur&u2 (which measures the probability
that the electron will return to its original starting point
r after time t): K(t)5(2p)21tP(t). For diffusive mo-
tion the classical return probability is calculated from

Pcl~ t !5D~r,r;t !5(
q

e2Dq2t ~ t.0 !. (54)

In the case of conserved time-reversal symmetry there is
an additional contribution from the constructive inter-
ference of orbits that are time-reversed pairs. We thus
have P(t)5(2/b)Pcl(t), where b51 for conserved
time-reversal symmetry and b52 for broken time-
reversal symmetry. The Fourier transform of Eq. (54) is
P(v)5(q(2iv1Dq2)21, and the semiclassical two-
point correlation function is given by

Ksc~v!5
1

bp2 Im
]P

]v

5
1

bp2 Re (
q

1

~2iv1Dq21g!2 , (55)

where an additional broadening g;Gf5\/tf is intro-
duced to take into account the electron’s finite coher-
ence time (if tf@tH , one chooses g;D , since the semi-
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classical approximation breaks down at the Heisenberg
time). Equation (55) was first derived by Altshuler and
Shklovskii (1986) using diagrammatic techniques. The
diagonal ‘‘classical’’ contribution is known as the diffu-
son, while the interference contribution (for conserved
time-reversal symmetry) is described by the cooperon,
obtained by summation of maximally crossed diagrams
(Altshuler and Simons, 1995).

Inspecting Eq. (55), we can distinguish two regimes.
For V5vD,Ec , the q50 diffusion mode dominates,
and we obtain the ergodic limit where the electron
samples the whole dot. On the other hand, for V@Ec ,
the electron samples only a small fraction of the dot, and
we can consider the limit of diffusion in an infinite sys-
tem, where the summation in Eq. (54) over all modes q
can be performed exactly to give Pcl(t)
5Ld/(4pDt)d/2. In these two limits it is found that
(Braun and Montambaux, 1995; Montambaux, 1997)

K~v!'H 2 Re
1

bp2~v1ig!2 ~for 1!v,gT!

2
1

bv2 S v

gT
D d/2

cosS pd

4 D ~for v@gT!.

(56)

For 1!v,gT , K(v) in Eq. (56) is universal. It coin-
cides (for g50) with the semiclassical result of Berry
(1985) in chaotic systems for v below the ballistic gT . In
Sec. III.C we shall see that this universal semiclassical
result describes the smooth part of the RMT prediction
for 1!v,gT . Random-matrix theory is nonperturba-
tive and provides the exact universal results in a broader
regime v,gT (i.e., not requiring v@1). On the other
hand, according to Eq. (56), the regime v@gT is nonuni-
versal and the correlator depends on dimensionality and
size (through gT). Although this Altshuler-Shklovskii
nonuniversal power law was first predicted in 1986, it
was observed numerically in disordered metals only in
1995 (Braun and Montambaux, 1995).

2. Conductance fluctuations in disordered metals

A semiclassical approach to conductance fluctuations
in disordered systems was discussed by Argaman (1996).
The conductivity tensor of noninteracting electrons can
be expressed in terms of Green’s functions, and a semi-
classical expression can be obtained using Eq. (49). In
the diagonal approximation one recovers the energy-
averaged classical conductivity s̄ , i.e., Drude’s formula.
Quantum corrections result from interference of classi-
cal trajectories. Only pairs of trajectories that are related
by symmetry can survive the averaging process. In par-
ticular, in systems with time-reversal symmetry we can
consider the interference between a path that forms a
closed loop and a path that follows a similar trace except
in the loop segment, which it crosses in the opposite
direction. These paths are time-reversed partners within
the loop segment and their constructive interference
leads to a decrease Ds̄ in the average conductivity, an
effect known as weak localization or coherent back-
scattering. Quantum corrections to the conductance due
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to self-intersecting time-reversed paths were first no-
ticed by Langer and Neal (1966) using diagrammatic
methods. A semiclassical expression for the weak-
localization correction can be found semiquantitatively
by estimating the total number of closed loops. The
probability for one closed orbit of period t is the return
probability P(t). Since the initial point r can be any-
where along the path and the position of the electron is
uncertain within lF from its deterministic classical orbit,
we multiply this probability by the volume of a tube of
length vFt and thickness lF . We obtain the following
estimate (for a large conductor of volume V):

Ds̄/s̄.2vFlF
d21V21E

t

tf
dt Pcl~ t !, (57)

where V21Pcl(t)5(4pDt)2d/2 (see Sec. III.B.1). The
above picture is valid only for times when the motion is
diffusive (t.t) and coherent (t,tf), hence the range
of integration in Eq. (57). (Here we define the effective
dimension d of a conductor to be the number of dimen-
sions for which the sample’s extension is larger than
Lf .) Integrating Eq. (57), we find that the weak-
localization correction to the average conductance per
unit length is finite in 3D, DḠ.2(e2/h)@(3/p)1/2l21

2(Dtf)21/2# , but increases logarithmically with tf in
2D, DḠ.2(e2/h)ln(tf /t), and linearly with Lf in 1D:
DḠ52(e2/h)2p(Dtf)1/2. The weak-localization cor-
rection to the conductivity was originally derived in the
framework of disorder perturbation theory (Gorkov,
Larkin, and Khmelnitskii, 1979; see also Bergmann,
1984, and refrences therein; Khmelnitskii, 1984). For a
quasiclassical approach to weak localization in disor-
dered systems see Chakravarty and Schmid (1986). A
magnetic field breaks time-reversal symmetry and can
destroy the weak-localization correction (Altshuler
et al., 1980).

The conductance in a mesoscopic conductor fluctuates
as a function of Fermi energy and applied magnetic
field. The magnitude of these fluctuations was found to
be universal and of order e2/h (Altshuler, 1985; Lee and
Stone, 1985; Stone, 1985; Lee, Stone, and Fukuyuma,
1987). This is the phenomenon of universal conductance
fluctuations. Semiclassically, these fluctuations are re-
lated to the return probability through s2(G)/Ḡ2

}*0
`dt t P(t) (Argaman, 1996; Montambaux, 1997).

C. The universal regime: random-matrix theory

Random-matrix theory describes the statistical fluc-
tuations in the universal regime (i.e., at energy scales
below the Thouless energy). It was introduced by
Wigner (1951, 1955, 1957, 1958) to explain the statistical
fluctuations of neutron resonances in the compound
nucleus. Rather than trying to explain individual eigen-
functions, RMT addresses questions about their statisti-
cal behavior. Its original justification was our lack of
knowledge of the exact Hamiltonian; RMT assumes
maximal ignorance regarding the system’s Hamiltonian
except that it must be consistent with the underlying
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
symmetries. The theory proceeds to construct ensembles
of Hamiltonians classified by their symmetry. Wigner’s
ideas were followed by those of Porter and Rosenzweig
(1960) and Mehta and Gaudin (1960, 1961). Using
group-theoretical methods developed by Wigner (1959),
Dyson (1962a) showed that there are three classes of
random-matrix ensembles. In a seminal paper entitled
‘‘The Threefold Way,’’ Dyson (1962d) proved that the
most general kind of matrix ensemble is a direct product
of irreducible ensembles that belong to one of the three
classes. Most of the early developments in the late 1950s
and early 1960s are collected in Porter (1965). An early
extensive review of RMT and its applications in nuclear
physics was written by Brody et al. (1981). A detailed
account of RMT can be found in the book by Mehta
(1991).

Two major, independent developments in the early
1980s considerably broadened the range of validity of
RMT. One was the BGS conjecture (Bohigas, Giannoni,
and Schmit, 1984) linking the quantal fluctuations in
chaotic systems to RMT. Berry (1985) understood that
the universality of RMT in chaotic systems holds for
time scales that are longer than the shortest periodic
orbits (i.e., the ergodic time). For time scales that are
also much shorter than the Heisenberg time, the RMT
results coincide with the semiclassical approach. How-
ever, RMT also provides the universal results at longer
times where the diagonal semiclassical approximation
fails. The BGS conjecture was confirmed in a large num-
ber of numerical studies. Applications of RMT to cha-
otic systems were reviewed by Bohigas (1991).

The second major development was Efetov’s super-
symmetry method (Efetov, 1983), which made possible a
nonperturbative treatment of the single-particle disorder
problem by mapping it onto the supersymmetric nonlin-
ear s model. For weakly disordered systems and below
the Thouless energy, this supersymmetric theory is in 0D
and can be shown to be equivalent to RMT.

Random-matrix theory also seems to describe the sta-
tistical properties of interacting systems at high enough
excitation (e.g., the compound nucleus), but its applica-
bility to the ground-state properties of closed dots
(where interactions are important) is not yet fully under-
stood (see Sec. VI). Random-matrix theory has many
applications in quantum physics; a comprehensive re-
view emphasizing common concepts was written re-
cently by Guhr, Müller-Groeling, and Weidenmüller
(1998).

Section III.C.1 covers the most common ensembles of
random matrices, the Gaussian ensembles. Section
III.C.2 discusses the crossover ensembles, which are use-
ful for describing the transition between different sym-
metry classes, e.g., the effects of a time-reversal
symmetry-breaking magnetic field. In Sec. III.C.3, we
generalize the Wigner-Dyson ensembles to Gaussian
processes, an appropriate framework for describing the
universal statistical properties of a system that depends
on an external parameter. We end with another type of
ensemble—Dyson’s circular ensemble, suitable for de-
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scribing statistical S matrices and useful in the statistical
theory of open quantum dots (Sec. IV.A).

1. Gaussian ensembles

The basic premise of RMT is that the statistical fluc-
tuations of certain quantum systems can be described by
an ensemble of N3N ‘‘random’’ matrices H . Since the
matrix elements of the Hamiltonian of a physical system
vanish between states with different good quantum
numbers, it is only the Hamiltonian matrix in a subspace
with fixed values of good quantum numbers that is as-
sumed to be ‘‘random.’’ Dyson (1962a, 1962d) found
that there are only three types of ensembles, depending
on the underlying space-time symmetries of the system.
If the system is invariant under time reversal and under
rotations, there is a basis where the Hamiltonian opera-
tor is represented by a real symmetric matrix (systems
with time-reversal symmetry and broken rotational in-
variance but with integer total angular momentum also
belong to this ensemble). If time-reversal symmetry is
broken, irrespective of rotational invariance, then the
Hamiltonian matrix is complex Hermitian. A third en-
semble corresponds to systems that conserve time-
reversal symmetry but are not rotationally invariant and
have half-integer total angular momentum. The matrix
elements of such systems are real quaternion. A quater-
nion q is a 232 matrix expressed in terms of a linear
combination of the unit matrix I and the three Pauli
matrices s j , i.e., q5aoI1i( jajs j . The quaternion is
real when the coefficients ao and aj are real. Each of the
three classes has a different number of independent real
components b that characterizes a matrix element. We
have b51, 2, and 4 for the ensembles of real symmetric,
complex Hermitian, and real quaternion matrices, re-
spectively.

The matrices that represent the same physical Hamil-
tonian in two different bases are related by a similarity
transformation H85W21HW , where W is the matrix
connecting the two bases. We consider only transforma-
tions W that preserve the ‘‘type’’ of the matrix H that
belongs to the given ensemble. For example, for b51,
the different bases can be chosen as ‘‘real’’ and the ma-
trix W must be orthogonal. Similarly, W must be unitary
for b52 and symplectic (i.e., unitary matrices with real
quaternion elements) for b54. The three ensembles are
thus called orthogonal (b51), unitary (b52), and sym-
plectic (b54), respectively.

As a physical example, consider a single electron mov-
ing in a disorder or confining potential that is not rota-
tionally invariant. If time-reversal symmetry and the
electron spin are conserved, b51 (since the motion is
restricted to orbital space where the angular momentum
assumes integer values). If time reversal symmetry is
broken, e.g., by a magnetic field, b52. Finally, if time-
reversal symmetry is conserved but spin-rotation sym-
metry is broken, e.g., by strong spin-orbit scattering,
b54 (in this case the orbital and spin spaces are coupled
and the total angular momentum has half-integer val-
ues).
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We denote by P(H)dH the probability of finding a
matrix H whose elements are in an interval dHij around
Hij (for b51, dH[) i<jdHij). There are various meth-
ods of deriving the distribution P(H). Porter and
Rosenzweig (1960) require that the probability measure
satisfy the following two properties (for the orthogonal
case): (i) Invariance; P(H8)5P(H) under any similarity
transformation with an orthogonal matrix W . Indeed, in
complex or chaotic systems all bases chosen to represent
the Hamiltonian should be statistically equivalent to
each other. (ii) Statistical independence; all independent
matrix elements are statistically independent, P(H)
5) i<jPij(Hij). The most general ensemble to satisfy
both conditions is

P~H !}e2 ~b/2a2!Tr H2
. (58)

The distribution (58) is manifestly invariant under any
orthogonal transformation of H .

The measures for the other ensembles are similarly
derived. We find the same expression (58) for all three
ensembles. The quantity b is introduced in the measure
(58) for convenience only (the average level density be-
comes independent of b). The corresponding ensembles
are known as the Gaussian orthogonal ensemble
(GOE), the Gaussian unitary ensemble (GUE), and the
Gaussian symplectic ensemble (GSE) for b51, 2, and 4,
respectively.

The Gaussian ensembles can also be defined by their
first two moments. For the orthogonal (b51) and uni-
tary (b52) cases, we have

Hij̄50; HijHkl5
a2

2b
gij ,kl

(b) ; (59a)

gij ,kl
(b51)5d ikd jl1d ild jk ; gij ,kl

(b52)52d ild jk . (59b)

In the orthogonal case, where all matrix elements are
real, the variance of each diagonal element is a2, while
that of each off-diagonal element is a2/2. In the unitary
case, the diagonal elements are real with variance a2/2,
while the off-diagonal elements are complex and their
real and imaginary parts each have a variance of a2/4.

Another derivation of the random-matrix ensembles
was proposed by Balian (1968). His approach is based
on information theory (Shannon, 1948), where the
missing information (or entropy) associated with a
distribution P(H) is defined by S@P(H)#
52*dHP(H)ln P(H) and measures the amount of
missing information required to determine uniquely the
system’s Hamiltonian. Two constraints must be im-
posed on P(H): *dHP(H)51 (normalization) and
*dH Tr H2P(H)5const (to ensure that the Hamiltoni-
an’s eigenvalues are bounded). We then choose the dis-
tribution P(H) that is consistent with the constraints but
is otherwise least biased, i.e., that maximizes the missing
information. The solution is given by Eq. (58). This con-
struction exemplifies the essence of RMT: it is the most
‘‘random’’ ensemble that is consistent with the underly-
ing symmetries. The Gaussian ensembles lead to local
correlations that are universally valid. In particular, their
correlators coincide, after proper scaling, with the corr-
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elators of non-Gaussian ensembles (Brézin and Zee,
1993; Hackenbroich and Weidenmüller, 1995).

The distribution of eigenvalues and eigenvectors can
be calculated from Eq. (58). We diagonalize the matrix
H ,

W21HW5E , (60)
and transform the variables Hij to new variables that
consist of the N eigenvalues El and a set of bN(N
21)/2 variables parametrizing the diagonalizing matrix
W . This requires calculation of the Jacobian J of the
transformation. We present here a simple derivation of
J in the GOE case (Bohr and Mottelson, 1969). When
JÞ0, the transformation (60) is one to one and the eig-
envectors must be uniquely determined from H . How-
ever, when two eigenvalues are degenerate, El5Em ,
this is not the case since the degenerate eigenvectors are
determined only up to a linear combination, and there-
fore J50. Furthermore, since the transformation (60) is
linear in El , J is a polynomial of degree N(N21)/2 in
the El’s. These properties of J determine its depen-
dence on the eigenvalues: J})l,muEl2Emu. The gen-
eral result for any of the three ensembles is J
})l,muEl2Emub, where the proportionality constant
depends on the eigenvector parameters alone. We con-
clude that the eigenvalues are uncorrelated from the eig-
envectors and are distributed according to

PN~E1 ,E2 , . . . ,EN!

}S )
l,m

uEl2EmubD e2 ~b/2a2!(
n

En
2
. (61)

a. Spectral statistics

The average level density in RMT is given by
Wigner’s semicircle r̄5A2a2N2E2/pa2. Random-
matrix theory is not expected to reproduce global level
densities of realistic systems but only to describe the
local fluctuations of the spectrum. To compare the sta-
tistical properties of a given spectrum with RMT, one
first unfolds it, i.e., transforms it into one with constant
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
average level density (Bohigas and Giannoni, 1984). An
assumption implicit in most applications of RMT is that
of ergodicity: the ensemble average is equivalent to the
running average over a given spectrum. Given a physical
system, one can collect statistics from different parts of
the spectrum and then compare them with the RMT
ensemble average.

There are several useful statistical measures of spec-
tral fluctuations:

(i) Nearest-neighbor level-spacing distributions P(s).
Their asymptotic forms for large N cannot be writ-
ten in a simple form, but they are surprisingly well
approximated by the simple expressions obtained
for N52 (Wigner’s surmise)

PWD~s !55
p

2
se2 ~p/4! s2

~GOE!

32
p2 s2e2 ~4/p! s2

~GUE!

218

36p3 s4e2 ~64/9p! s2
~GSE!

, (62)

where the spacing s is measured in units of D. Equa-
tions (62) are often called the Wigner-Dyson distribu-
tions. The GOE and GUE distributions are shown in
Fig. 9(a). Level repulsion is stronger in the GUE than
in the GOE, as can be seen from the small spacing
behavior PWD(s)}sb.

(ii) The n-point cluster functions Yn(e1 ,. . . ,en) of n
levels el5El /D . Dyson (1962b) defines the
n-point correlation function Rn(E1 ,. . . ,En)
5@N!/(N2n)!#*() i.ndEi)PN(E1 ,. . . ,EN) as the
probability density of finding the n levels E1 ,. . . ,En
irrespective of the location of all other levels. Here
Yn is the nth-order cumulant constructed from the
Rm (m51,.. . ,n). For example, the two-level clus-
ter function is defined by Y2(e1 ,e2)
5D2@R1(E1)R1(E2)2R2(E1 ,E2)# , and depends
only on the energy difference v[e22e1 . For the
Gaussian ensembles (Dyson, 1970; Mehta, 1971)
Y2~v!55
S sin pv

pv D 2

2FSi~pv!2
1
2

psgn~v!GFcos pv

pv
2

sin pv

~pv!2 G ~GOE!

S sin pv

pv D 2

~GUE!

S sin 2pv

2pv D 2

2Si~2pv!Fcos 2pv

2pv
2

sin 2pv

~2pv!2 G ~GSE!

, (63)
where Si(x)5*0
x dt sin t/t. It is also useful to trans-

form to the time domain, where b2(t)
[*2`

` dv e2pivtY2(v) is known as the two-level form
factor (Brody et al., 1981).
The two-point level-density correlation function

K(v) defined by Eq. (52) is directly related to
Y2 by K(v)5d(v)2Y2(v), while the associated spec-
tral form factor is K(t)512b2(t/2p). The RMT result
for times t!tH52p is K(t)'2(2/b)(utu/2p), in agree-
ment with the diagonal semiclassical approximation
(53). Similarly, for v@1, Eqs. (63) give K(v)
'21/bp2v2, in agreement with the semiclassical results
[see, for example, Eq. (56) in a diffusive system be-
low the Thouless energy]. The GOE and GUE
results for K(v) and K(t) are shown in Figs. 9(c)
and 9(d).
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(iii) The number variance S2(e)5n2(e)2n(e)2. This
measures the variance of the number of levels
n(e) in an energy interval of length e. Since
n(e)5*0

ede8r(e8) we have the relation

S2~e!52E
0

e

dv~e2v!K~v!5e22E
0

e

dv~e2v!Y2~v!.

(64)
The GOE and GUE number variances are shown
in Fig. 9(b). For small e, S2(e)'e , but of particu-
lar interest is the large-e logarithmic behavior
S2(e)'(2/bp2)ln e1const1O(e21), where the
constant is b dependent. For 1!e,g the diagram-
matic (or semiclassical) result for the number vari-
ance in disordered metals coincides with the RMT
results. However, for e@g , the diagrammatic re-
sult S2(e)'2b21(e/g)d/2 is nonuniversal. The
electron diffuses for a time t that is much shorter
than tD and covers only an area of linear dimen-
sion ADt that is much smaller than L . The num-
ber variance is then proportional to the number of
such ‘‘areas’’ (L/ADt)d;(e /g)d/2 contained
within the total area of the system.

(iv) The Dyson-Mehta D3 statistics (Dyson and Mehta,
1963). A straight line is fitted by least squares to
the staircase function (defined as the number of
levels below a given energy) in an interval of

FIG. 9. Spectral measures of a metal in the diffusive regime,
compared with the predictions of RMT. The circles are from
numerical simulations of the Anderson model in its weakly
disordered regime: s, without magnetic flux; d with magnetic
flux. The solid lines are the predictions of RMT using GOE for
conserved time-reversal symmetry (no flux) and GUE for bro-
ken time-reversal symmetry (with flux). (a) Nearest-neighbor
level-spacing distribution P(s); (b) number-variance statistics
S2(e) defined by Eq. (64); (c) two-point level-density correla-
tion function K(v) defined by Eq. (52) (excluding a self-
correlation d-function term); (d) the form factor K(t), i.e., the
Fourier transform of K(v). The agreement with the RMT
predictions is nearly perfect. The dotted lines correspond to
the Poisson statistics where the energy levels are assumed to
be random. Adapted from Braun and Montambaux (1995) and
Montambaux (1997).
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length e. Here D3(e) is the least-squared deviation
from this best linear fit. The ensemble average of
D3 is related to the number variance by (Pandey,
1979; Mehta, 1991)

D̄3~e!5
2
e4 E

0

e

dv~e322e2v1v3!S2~v!. (65)

In RMT, D̄3 starts as e/15 and behaves asymptoti-
cally as D̄3(e)'(1/bp2)ln e1const.

Gaussian orthogonal ensemble spectral correlations
were found in the statistical analysis of the nuclear data
ensemble, which consists of 1726 measured resonances
in various compound nuclei (Haq, Pandey, and Bohigas,
1982; Bohigas, Haq, and Pandey, 1985). Random-matrix
theory also describes the universal regime of disordered
metals. This is confirmed in Fig. 9, which compares
Anderson model calculations with and without magnetic
flux (Dupuis and Montambaux, 1991; Braun and Mont-
ambaux, 1995) to RMT predictions.

b. Eigenfunction statistics

In RMT, the probability distribution of an eigenvec-
tor’s components c i (i51,.. . ,N) is determined from the
orthogonal (unitary) invariance of the ensemble (Brody
et al., 1981),

P~c1 ,c2 ,. . . ,cN!}dS (
i

uc iu221 D , (66)

where the metric is given by D@c#5) i51
N dc i for b51

and ) i51
N (dc i* dc i /2pi) for b52.

To find the distribution of a finite number of
components c1 ,. . . ,cL , we integrate Eq. (66) over all
other N2L components to find P(c1 ,. . . ,cL)
}(12( i51

L uc iu2)b(N2L)/221. In the asymptotic limit
N→` , this distribution is a Gaussian P(c)
}exp@2(bN/2)( i51

L uc iu2# . Of particular interest is the
distribution of the intensity of a single component y
[uc iu2,

P~y !5S b

2 ȳ D b/2 1

~b/221 !!
yb/221e2by/2ȳ, (67)

which is just the x2 distribution in b degrees of freedom.
For the GOE (b51) this is the Porter-Thomas distribu-
tion (Thomas and Porter, 1956) describing the neutron
resonance widths in the compound nucleus—see, for ex-
ample, Fig. 7(b).

More generally, for n eigenvectors (n!N), P(cl)
})l51

n exp@2(bN/2)( i51
L i uc ilu2# , and components that

belong to different eigenvectors are to leading order un-
correlated.

2. Crossover ensembles

In some applications we are interested in the fluctua-
tion properties of systems in the crossover regime be-
tween two different symmetries. The statistics in the
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crossover regime between GOE and GUE can be de-
scribed by the Mehta-Pandey ensemble (Mehta and
Pandey, 1983; Pandey and Mehta, 1983; Bohigas, 1991;
Mehta, 1991)

H5S1iaA , (68)

where S and A are, respectively, symmetric and anti-
symmetric real matrices and a is a real parameter. The
matrices S and A are uncorrelated and chosen from
Gaussian ensembles of the same variance. Similar en-
sembles can be constructed to describe the crossover be-
tween the GUE and GSE or between the GOE and
GSE (Mehta, 1991).

We are interested in the asymptotic limit N→` ,
where the proper transition parameter is given by a typi-
cal symmetry-breaking matrix element measured in
units of D (French and Kota, 1982; French et al., 1985,

1988): z5(H 2̄
break)1/2/D5aAN/p . For a fixed z, the sta-

tistics of the ensemble (68) become independent of N in
the limit N→` . The crossover parameter can also be
expressed as 2pz5AtH /tmix, where tmix is the mixing
time defined in terms of the spreading width \/tmix

52pH 2̄
break /D of the time-reversal-symmetry-breaking

interaction (Pluhar̆ et al., 1994). The spectral statistics of
the transition ensemble (around the middle of the spec-
trum) make the complete crossover for z;1.

In the transition ensembles, the eigenvalues and eig-
envectors are no longer uncorrelated. The spectral sta-
tistics were derived by Pandey and Mehta (1983; see also
Mehta and Pandey, 1983 and Mehta, 1991), but until
recently less was known about the statistics of the eigen-
vectors in the transition ensembles. Fal’ko and Efetov
(1994) used supersymmetry to derive the distribution of
the wave-function intensity, as well as the joint distribu-
tion of the wave-function intensity at two distant spatial
points (Fal’ko and Efetov, 1996). The recent work of
van Langen, Brouwer, and Beenakker (1997) and Alhas-
sid, Hormuzdiar, and Whelan (1998), based on earlier
work of French et al. (1988), leads to a closed expression
for the joint distribution of any finite number of the eig-
envector’s components.

The components of an eigenvector c are complex: c i
5c iR1ic iI . The eigenvector is determined only up to a
phase eiu, which can be fixed by rotating to a principal
frame where (French et al., 1985, 1988)

(
i51

N

c iRc iI50; (
i

c iI
2 Y (

i
c iR

2 [t2. (69)

The eigenvector’s components are distributed in the
complex plane to form an ellipsoid whose semiaxes de-
fine the principal frame. The parameter t in Eq. (69)
(0<t<1) determines the shape of this ellipsoid and is
found to fluctuate in the crossover regime. Earlier theo-
ries (Zyczkowski and Lenz, 1991; Kogan and Kaveh,
1995; Kanzieper and Freilikher, 1996) ignored these
fluctuations.

We now consider eigenvectors with a fixed shape pa-
rameter t . Under an orthogonal transformation O , the
real and imaginary parts of c transform like cR→OcR
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and cI→OcI and do not mix with each other. Conse-
quently, Eq. (69) and the probability distribution of the
transition ensemble (68) are invariant under an orthogo-
nal transformation O . Thus the conditional probability
distribution of the components of an eigenvector with a
fixed ‘‘shape’’ t is given by P(c1 ,. . . ,cNut) }d„( i51

N c iR
2

2 1/(1 1 t2)…d„( i51
N c iI

2 2 t2/(11t2)…d(( i51
N c iRc iI). In

the limit N→` , the joint conditional distribution of a
finite number of components L!N becomes a Gauss-
ian:

P~c1 ,. . . ,cLut !

5S N

2p

11t2

t D L

3expS 2N
11t2

2 (
i51

L

c iR
2 2N

11t2

2t2 (
i51

L

c iI
2 D . (70)

The full distribution is computed by averaging the
conditional distribution (70) over the distribution
Pz(t) of the shape parameter: Pz(c1 ,. . . ,cL)
5*0

1dt Pz(t)P(c1 ,. . . ,cLut).
It is still necessary to determine Pz(t). This can be

done (Alhassid, Hormuzdiar, and Whelan, 1998) by cal-
culating the distribution of the square of a single com-
ponent using Eq. (70) and comparing it with the super-
symmetry calculation by Fal’ko and Efetov (1994) of the
wave-function-intensity distribution. It is found that

Pz~ t !5p2
12t4

t3 z2e2 ~p2/2! z2(t21/t)2

3H f1~z!1F1
4 S t1

1
t D

2

2
1

2p2z2G@12f1~z!#J ,

(71)

where f1(z)5*0
1e22p2z2(12y2)dy .

van Langen, Brouwer, and Beenakker (1997) calcu-
lated Pz(t) directly in the framework of RMT using a
result of Sommers and Iida (1994) for the joint distribu-
tion of an eigenvalue and its associated eigenvector for a
Hamiltonian in the ensemble (68). Rather than t , an
equivalent ‘‘phase rigidity’’ parameter r[u( ic i

2u25@(1
2t2)/(11t2)#2 is used.

The crossover distribution of a single component of
the eigenfunction y[uc iu25c iR

2 1c iI
2 is found from Eq.

(70) to be (see also Fal’ko and Efetov, 1994)

Pz~y !5 K 1
2 ȳ S t1

1
t D e2(t11/t)2y/4ȳI0S 12t4

4t2

y

ȳ D L , (72)

where I0 is the modified Bessel function of order zero,
and ^•••& denotes an average over the distribution in
Eq. (71).

3. Gaussian processes

Consider a chaotic system that depends on an external
parameter and whose symmetry class is the same for all
values of the parameter. An interesting question is
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whether any universality can be found in the fluctuations
of the system properties versus this parameter.

A semiclassical theory for a statistic that measures the
correlation of energy levels at different values of an ex-
ternal parameter was proposed by Goldberg et al.
(1991). Szafer and Altshuler (1993) and Simons and Alt-
shuler (1993a, 1993b) discovered that certain parametric
spectral correlators of disordered systems are universal
after an appropriate scaling of the parameter. Beenak-
ker (1993) and Narayan and Shastry (1993) suggested
that the parametric correlators can be studied in the
framework of Dyson’s Brownian-motion model (Dyson,
1962c).

The universality of eigenfunction correlators was
shown by Alhassid and Attias (1995) through the gener-
alization of Wigner-Dyson random-matrix ensembles to
random-matrix processes describing the statistical prop-
erties of systems that depend on an external parameter.
The supersymmetry approach was used to obtain the
universal form of the oscillator strength-function cor-
relator (Taniguchi, Andreev, and Altshuler, 1995). A
Brownian-motion model for the parametric evolution of
matrix elements of an operator between eigenstates was
introduced by Wilkinson and Walker (1995).

We first discuss the generalization of the Gaussian en-
sembles to Gaussian processes. We assume a system
whose Hamiltonian H(x) depends on an external pa-
rameter x . The system is chaotic or weakly disordered
for all values of x , and its underlying symmetry class is
independent of x . To generalize the statistical descrip-
tion of RMT to include such a parametric dependence,
we assume a Gaussian process H(x) characterized by

Hij~x !50; Hij~x !Hkl~x8!5
a2

2b
f~x ,x8!gij ,kl

(b) , (73)

where the coefficients gij ,kl
(b) are defined in Eq. (59b). The

process correlation function is assumed to be stationary
and symmetric: f(x ,x8)5f(ux2x8u). It is normalized to
f(x ,x)51 so that the matrix elements of H(x) satisfy
the Gaussian ensemble relations (59) for each fixed
value of x .

A Gaussian process can also be defined in terms of its
probability distribution

P@H~x9!#}expH 2
b

2a2 E dx dx8

3Tr@H~x !K~x ,x8!H~x8!#J , (74)

where the metric is DH[)xdH(x), with dH being the
usual Gaussian ensemble metric. Equation (74) is a di-
rect generalization of the Gaussian ensemble measure
(58) to include a parametric dependence of the random-
matrix Hamiltonian. The kernel K is the functional in-
verse of f .

Equation (73) with f(x2x8)5d(x2x8) describes a
white-noise random-matrix process F(x). Wilkinson
(1989) introduced the process H(x)5*dx8 w(x
2x8)F(x8) in the study of the statistics of avoided
crossing in chaotic systems. It is a Gaussian process with
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a correlation function f(x)5*dx8 w(x2x8)w(2x8).
Depending on the symmetry class of the matrices

H(x), there are three types of processes: the Gaussian
orthogonal process (b51), the Gaussian unitary process
(b52), and the Gaussian symplectic process (b54). A
Gaussian process is characterized by a correlation func-
tion f , but in the asymptotic limit N→` , only the short-
distance behavior of f (in parameter space) is important.
We therefore expand f to leading order in x2x8 [f(x
2x8)'12kux2x8uh, where k and h.0 are constants]
and classify the Gaussian processes according to the
value of h.

Of particular interest are two-point parametric
correlators of observables O(x): cO(x2x8)
5dO(x)dO(x8)/$s@O(x)#s@O(x8)#%, where dO(x)
5O(x)2Ō(x) and s2@O(x)#5@dO(x)#2. To calculate
cO(x2x8) we only need to know the joint distribution of
H(x) and H(x8). The Gaussian process has the useful
property that the joint distribution of any finite number
of matrices H(x),H(x8),H(x9), . . . is Gaussian. In par-
ticular (Attias and Alhassid, 1995)

P@H~x !,H~x8!#}expH 2
b

2a2Tr@H~x !21H~x8!2

22 fH~x !H~x8!#/~12f 2!J , (75)

where f[f(x2x8).
The Gaussian process parametric correlators depend

on a , f , and N , but become universal upon an appropri-
ate scaling of x . The dependence on a is eliminated by
unfolding the energies Ei→e i5Ei /D . To eliminate the
dependence on f , we calculate the mean-squared para-
metric change (De i)

2 of a given level using first-order
perturbation theory,

De i
25DeuDxuh1O~ uDxu2h!, (76)

where De5limDx→0De i
2/Dxh54Nk/p2b . Equation (76)

suggests that the energy levels undergo short-range ‘‘dif-
fusion’’ as a function of the parameter x (characterized
by an exponent h), with De playing the role of the dif-
fusion constant. For a Gaussian process with h,2, the
levels show irregular behavior as a function of x, which
becomes smooth in the limit h52. This is demonstrated
in Fig. 10(a). Gaussian processes with h52 are the only
differentiable Gaussian processes (Attias and Alhassid,
1995); namely, they have the property that almost every
one of their members has a continuous derivative
dH/dx . Since in most physical applications the Hamil-
tonian is an analytic function of its parameter, we are
interested only in differentiable Gaussian processes, i.e.,
h52, and in the following we assume h52. Equation
(76) suggests the scaling (Simons and Altshuler, 1993a,
1993b)

x→ x̄[ADe x5@~]e i /]x !2#1/2x , (77)

under which the Gaussian-process correlation function
becomes independent of the nonuniversal constant k: f
'12(bp2/4N)ux̄2 x̄8u2. Analytic calculations of certain
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correlators as well as numerical simulations support the
conjecture that, for large N , all two-point correlators
depend on N and f only through the combination N(1
2f )5(bp2/4)ux̄2 x̄8u2. We conclude that all parametric
correlators are universal as a function of ux̄2 x̄8u. The
universality can also be demonstrated by relating the
Gaussian process to Dyson’s Brownian motion model
(Mitchell, Alhassid, and Kusnezov, 1996). The scaled x̄
measures x in units of the average parametric distance
between avoided level crossings.

Since the parametric correlators are universal, any
Gaussian process can be used to calculate them. A par-
ticularly simple Gaussian process is given by (Austin
and Wilkinson, 1992; Alhassid and Attias, 1995)

H~x !5H1 cos x1H2 sin x , (78)

where H1 and H2 are two independent Gaussian matri-
ces that belong to the appropriate symmetry. The pro-
cess (78) is characterized by f(x2x8)5cos(x2x8), and is
therefore an h52 process. It is stationary and particu-
larly useful for numerical simulations.

Several spectral parametric correlators were calcu-
lated and their universality demonstrated in models of
disordered dots as well as chaotic dots. The correlator
cv(x2x8) of the level velocity vl(x)[]El /]x was cal-
culated by Simons and Altshuler (1993a, 1993b) using
the Anderson model. Its universal form, calculated using
the Gaussian process (78), is shown in Fig. 10(b) for

FIG. 10. Gaussian processes and parametric correlators: (a)
typical parametric variation of the energy levels of Gaussian
processes (73) with correlation functions f(x)5exp(2uxuh) as a
function of the scaled parameter x̄ . Shown are processes with
h51, 1.5, and 2. h52 is the limit where the parametric varia-
tion of the energy levels becomes smooth. Panels (b)–(d) show
three parametric correlators vs D x̄ in the GOE (solid line) and
GUE (dashed line) symmetries: (b) the level-velocity cor-
relator cv(D x̄); (c) the level-diffusion correlator @(De i)

2#1/2;
and (d) the wave-function-overlap parametric correlator
o(D x̄) of Eq. (79). The correlators are calculated using the
Gaussian process (78). The level-velocity correlator coincides
with the one calculated by Simons and Altshuler (1993a,
1993b) in the Anderson model. Adapted from Attias and Al-
hassid (1995).
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both the orthogonal (solid line) and unitary (dashed
line) symmetries. The Gaussian unitary process cor-
relator decorrelates faster than the Gaussian orthogonal
process correlator. Also shown in Fig. 10(c) is the level-
diffusion correlator @(De i)

2#1/25@„e i(x)2e i(x8)…2#1/2,
describing the root mean square (rms) of the change of a
given energy level over a finite parametric distance D x̄
(Attias and Alhassid, 1995). The level-density correlator
k(v ,Dx)[dr(e ,x)dr(e1v ,x1Dx), where r(e ,x)
5(ld@e2el(x)# [el are the unfolded energy levels
measured in units of D], can be calculated in closed form
using the supersymmetry method (Simons and Alt-
shuler, 1993a, 1993b).

Parametric correlators that depend on the eigenfunc-
tions, such as the averaged parametric overlap cor-
relator (Alhassid and Attias, 1995; Attias and Alhassid,
1995) and the strength-function correlator (Taniguchi,
Andreev, and Altshuler, 1995), were also found to be
universal. The overlap correlator measures the squared
overlap of an eigenfunction at different values of the
external parameter:

o~x2x8!5u^cl~x !ucl~x8!&u2. (79)

This correlator was calculated numerically using the
Gaussian process (78) and is shown in Fig. 10(d). The
wave functions are observed to decorrelate faster in the
unitary case. This parametric overlap correlator is well
fit by a Lorentzian in the orthogonal case (b51) and by
a squared Lorentzian in the unitary case (b52):

o~ x̄2 x̄8!'F 1

11~ x̄2 x̄8!2/ab
2 Gb

, (80)

with a150.4860.03 in the orthogonal case and a2
50.6460.04 in the unitary case.

4. Circular ensembles

The Gaussian ensembles are well suited to the Hamil-
tonian approach, in which the Hamiltonian is assumed
to be ‘‘random’’ and the statistics of various physical
quantities of interest are then calculated from their re-
lation to the Hamiltonian. However, transport proper-
ties of electrons through quantum dots can be related
directly to the S matrix (see Sec. II.B), and it is some-
times possible to derive the fluctuations of the conduc-
tance by assuming the S matrix to be the fundamental
‘‘random’’ object (see Sec. IV.A). The S matrix associ-
ated with a Hermitian Hamiltonian is unitary. Random-
matrix ensembles of unitary matrices are the circular en-
sembles introduced by Dyson (1962a).

There are three types of circular ensembles: orthogo-
nal, unitary, and symplectic. For systems with time-
reversal invariance, the S matrix is symmetric unitary,
while for systems with broken time-reversal symmetry,
the S matrix is an arbitrary unitary matrix. Finally, the
symplectic ensemble is composed of self-dual unitary
quaternion S matrices (Mehta, 1991). The measure of
the circular ensembles is uniform over the unitary group
of S matrices, subject to the consistency condition that
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the symmetry properties of the S matrix are preserved.
More explicitly, the measure is required to satisfy

dm~S !5dm~USV ! (81)

for any unitary matrices U and V that preserve the sym-
metry properties as S under the transformation S
→USV . The measure satisfying Eq. (81) is known as the
Haar measure.

A unitary matrix S that belongs to any of the three
circular ensembles can be diagonalized U21SU5E ,
where the eigenvector matrix U is orthogonal, unitary,
or symplectic for b51, 2, or 4, respectively. The eigen-
values eiu i define the eigenphases of the S matrix. The
eigenvector and eigenvalue distributions are uncorre-
lated, and

P~u1 ,. . . ,uN!})
i<j

ueiu i2eiu jub, (82)

where the measure is ) jdu j . In the symplectic case the
eigenvalues are doubly degenerate and only the nonde-
generate values are taken in Eq. (82). The density of the
eigenphases is uniform on the circle, and there is no
need for unfolding. In the limit N→` , various spectral
correlations and cluster functions coincide with those of
the Gaussian ensembles.

D. The supersymmetry method

The supersymmetry method provides a technique for
calculating ensemble averages over products of Green’s
functions, where the Hamiltonian is either a random ma-
trix or describes a single particle in a random potential.
This is a nontrivial problem since the random quantities
appears in the denominator. The method maps the origi-
nal problem—after performing the ensemble average—
onto a field-theoretical model, the supersymmetric non-
linear s model. For random matrices, the s model is in
zero dimension, while for a weakly disordered system in
d dimensions, the s model is in d dimensions. However,
for energy scales below the Thouless energy, it reduces
to the 0D s model, explaining the RMT universality in
weakly disordered systems. The supersymmetry method
was introduced for disordered systems by Efetov (1983),
and its use for random matrices was discussed by Ver-
baarschot, Weidenmüller, and Zirnbauer (1985). A vari-
ety of physical applications are included in a review by
Altshuler and Simons (1995). A book by Efetov (1997)
discusses the method and its numerous applications. The
method was used extensively in the calculation of spec-
tral and eigenfunction statistics in disordered systems;
see a recent review by Mirlin (2000).

We first describe briefly the supersymmetry method
for averaging over random-matrix ensembles. The start-
ing point is to write the Green’s function as a multidi-
mensional Gaussian integral where the ensemble aver-
age is straightforward. In general, the inverse of a matrix
K can be written as (K21)lm5(det K)*ds slsm* e2s†Ks,
where sn are commuting complex variables and ds
[)n(dsn* dsn /2pi). The determinant of K can also be
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written as a Gaussian integral: det K5*dx e2x†Kx, but
over Grassmanian (anticommuting) variables xn with
dx[)n(dxn* dxn). Combining both representations, we
can write the inverse of a matrix as a pure Gaussian
integral over both commuting and anticommuting vari-
ables:

~K21!lm5E dsdx slsm* e2s†Ks2x†Kx. (83)

Equation (83) can be used to express the advanced and
retarded Green’s functions of an N3N Hamiltonian
matrix H as a Gaussian integral in the set (s,x) by
choosing K57i(E62H). In the GOE case the qua-
dratic form in the exponent of Eq. (83) is rewritten by
doubling the number of components (the doubling is not
needed for the GUE case):

G~E6!57iE dC ~ss†!

3expH 6
i

2
C†@~E62H !3I4#CJ . (84)

Here C[(s,s* ,x,x* )T is a 4N-dimensional vector and
the measure is dC[ds dx, while M ^ In denotes a
block-diagonal matrix M with n blocks.

Equation (84) can be generalized to products of
Green’s functions by introducing a separate vector Cj
for each Green’s function. We describe below the calcu-
lation of quantities that involve the product of two
Green’s functions at two energies E and E8 and for
Hamiltonians H(x) and H(x8) taken at two different
values of an external parameter. For example, the evalu-
ation of the parametric level-density correlator k@(E
2E8)/D ,x2x8# requires the calculation of terms like
Ck[Tr G(E2,x)Tr G(E1,x8). We have

Ck5E dC pk~C!

3expF i

2
C†~2EL1V/21id!CGexpS i

2
C†LHCD ,

(85)

where C[(
C1

C2) is an 8N-dimensional vector, and H and

L are 8N38N matrices. Here H has a 232 block-
diagonal form, where the two diagonal blocks are
H(x) ^ I4 and H(x8) ^ I4 . Moreover, L has a similar
structure with diagonal blocks of IN ^ I4 and 2IN ^ I4 .
We have also defined Ē5(E1E8)/2, V5E2E8, and
pk(C)[(s1

†s1)(s2
†s2). The calculation of Eq. (85) can be

mapped onto the 0D supersymmetric nonlinear s model
as follows:

(i) The average in Eq. (85) is taken using the second-
order cumulant in the exponent. We obtain an
integral representation of Ck with an action quar-
tic in C.

(ii) The action is converted to one that is quadratic in
C by introducing an auxiliary integration variable
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s that is an 838 graded matrix (the Hubbard-
Stratonovich transformation).

(iii) The Gaussian integral over C is done exactly,
leading to an effective action in s.

(iv) The s integral is evaluated by the saddle-
point method in the limit N→` and D}1/N→0
(the quantities v}V/D , d̃}d/D , and ux̄2 x̄8u
}N1/2ux2x8u are all kept constant in this limit).
This leads to a nonlinear equation for s that is a
supersymmetric generalization of the nonlinear s
model.

(v) The solutions Q of the saddle-point equation
form a manifold (satisfying Q25I). Here Ck can
be expressed as an integral over this saddle-point
manifold,

Ck5EdQ pk~Q!exp@2F~Q !# , (86)

where the ‘‘free energy’’ is given by

F~Q !5i~pv/41i d̃ !Trg~QL!

2~p2/64!ux̄2 x̄8u2 Trg~@Q ,L#2! (87)

and Trg is a supertrace. The integration over Q is
performed using a parametrization of the saddle-
point manifold by Efetov (1983). The integration
can be done over all but three commuting vari-
ables that appear in the final analytic result for
k(v ,x); see Simons and Altshuler, 1993a, 1993b.

The supersymmetry method for disordered systems
follows along similar lines except that the discrete label
n (n51,.. . ,N) of the supervector C becomes the con-
tinuous spatial label r. The auxiliary supermatrices in the
Hubbard-Stratonovich transformation acquire a spatial
dependence s(r). The saddle-point approximation re-
quires a large parameter—kFl , which plays a role analo-
gous to N in RMT. By minimizing the action one finds a
spatially uniform saddle point Q05L that has the same
form as in RMT. However, the saddle-point manifold
now consists of matrix fields Q(r) that describe long-
wavelength fluctuations. By expanding the action
around the saddle point to leading order in 1/kFl , we
find (for the case without an external parametric depen-
dence of the Hamiltonian) a free energy of the form

F @Q#5
pn

8 E dr@\D Trg@¹Q~r!#2

12iV Trg~QL!# , (88)

where D is the classical diffusion coefficient and n is the
density of states (per unit volume). The physical quanti-
ties are evaluated according to expressions of the form
of Eq. (86) but where now the integration is over dQ(r)
at each r.

The gradient term in Eq. (88) is of the order of the
Thouless energy Ec5\D/L2. In the limit V!Ec , one
can ignore the r dependence of Q and the gradient term
vanishes. In this case, the volume integration of the sec-
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ond term in Eq. (88) gives exactly the first term in the
RMT free energy [Eq. (87)]. Deviations from the uni-
versal behavior are important when V exceeds the
Thouless energy: the electron does not have enough
time to diffuse to the boundaries and ‘‘senses’’ the di-
mensionality of the system. Such nonuniversal correc-
tions were derived by Andreev and Altshuler (1995) for
the asymptotic spectral correlator K(v) in terms of the
nonzero eigenvalues of the diffusion operator.

A supersymmetric s model for ballistic chaotic sys-
tems was suggested by Muzykantskii and Khmelnitskii
(1995), using disorder averaging when l.L , and by An-
dreev et al. (1996) using energy averaging in a pure
Hamiltonian system. The eigenvalues of the diffusion
operator in the disordered case are replaced by those of
the Perron-Frobenius operator in the ballistic case
(Agam, Altshuler, and Andreev, 1995). The first non-
zero eigenvalue sets the scale for the ergodic time above
which we expect the RMT universality. However, the
mathematical difficulties involved in implementing this
approach seem so far to be insurmountable. Similar
methods were used to investigate spectral and wave
function fluctuations in billiards with diffusive surface
scattering (Blanter, Mirlin, and Muzykantskii, 1998).

IV. MESOSCOPIC FLUCTUATIONS IN OPEN DOTS

In this section we apply the methods of Sec. III to
open quantum dots, where there are usually several con-
ducting channels in each lead and the conductance is
typically much larger than e2/h . Open dots with a large
number of channels are characterized by many overlap-

ping resonances, i.e., Ḡ@D , where Ḡ is an average width
of a resonance level in the dot. When the single-electron
dynamics in the dot are chaotic and the electron spends
enough time in the dot before it escapes (i.e., tescape
@tc), the conductance exhibits universal mesoscopic
fluctuations as a function of gate voltage or magnetic
field, independent of the dot’s size and shape. However,
the fluctuations do depend on the number of modes in
the leads and their transmission coefficients. In the limit
of a large number of open channels, the fluctuations be-
come similar to the universal conductance fluctuations
known from disordered conductors. In the universal re-
gime, RMT can be used to characterize the conductance
fluctuations. For a comprehensive review of the random-
matrix theory of quantum transport, including applica-
tions to open dots, see Beenakker (1997).

The semiclassical approximation becomes useful in
the limit of a large number of modes in the leads. It can
predict the magnitude of certain dynamical quantities
that cannot be calculated in RMT, e.g., the correlation
length of the conductance fluctuations versus magnetic
field. But the semiclassical approach is not suitable for
dots with fewer than ;3 modes per lead, or for calcu-
lating quantities such as the conductance distribution.
For reviews of the semiclassical approach to transport in
open ballistic microstructures, see Baranger, Jalabert,
and Stone (1993b), Stone (1995), and Baranger (1998).
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Our presentation in this section integrates the random-
matrix and semiclassical approaches to open dots.

The experimental results, while confirming the ex-
pected phenomena, disagree quantitatively with theory.
The main reason is that the coherence length of the elec-
tron is finite at any nonzero temperature. When dephas-
ing as well as thermal smearing are included in the sta-
tistical approach, good agreement is found between
theory and experiment. This point was nicely demon-
strated in a recent experiment (Huibers, Switkes, Mar-
rus, Brower, et al., 1998) in dots with single-mode leads.

Although the quantum dots used in experiments are
high-mobility ballistic structures, many of the deriva-
tions in this section are also applicable to diffusive dots.
Indeed, as long as tescape@tD , the same RMT universal-
ity predicted in ballistic dots is expected for a diffusive
dot.

Section IV.A presents two random-matrix approaches
to conductance fluctuations in open dots, while Sec.
IV.B describes the semiclassical approach. In Sec. IV.C
we quantify the mesoscopic fluctuations of the conduc-
tance in open dots, including the conductance distribu-
tions, weak-localization effect, and fluctuations versus
energy (Ericson fluctuations) or versus an experimen-
tally controllable parameter. Finally, Sec. IV.E discusses
dephasing and its effects on the mesoscopic fluctuations.
Throughout the section we include comparison to ex-
perimental results, with an emphasis on more recent re-
sults. Additional experimental results can be found in
the review of Westervelt (1998).

A. The random-matrix approach

Historically, the random-matrix approach to scatter-
ing proceeded along two main directions: the Hamil-
tonian approach, in which the system’s Hamiltonian is
assumed to belong to a Gaussian ensemble (Sec.
III.C.1), and the S-matrix approach, in which the S ma-
trix itself is assumed to belong to a certain ensemble
(e.g., the circular ensemble of Sec. III.C.4).

The Hamiltonian approach in the regime of many
overlapping resonances can be traced back to the statis-
tical theory of nuclear reactions (see, for example,
Hauser and Feshbach, 1952, and Feshbach, 1992). Eric-
son fluctuations (Ericson, 1960, 1963; Ericson and
Mayer-Kuckuk, 1966) of the cross section of statistical
nuclear reactions as a function of energy are a manifes-
tation of the interference of a large number of overlap-
ping resonances. The Hamiltonian approach was fol-
lowed by Verbaarschot, Weidenmüller, and Zirnbauer
(1985) in calculating the autocorrelation function of
S-matrix elements, and by Fyodorov and Sommers
(1996a, 1996b, 1997) in calculating various statistical
properties of the S matrix in chaotic systems.

The random-S-matrix approach was introduced in the
theory of statistical nuclear reactions by Mello, Pereyra,
and Seligman (1985) and by Friedman and Mello (1985),
through the maximal entropy approach. A similar ap-
proach was applied to quantum transport in disordered
metals; see, for eample, the review by Stone et al. (1991).
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The connection between the statistics of the eigenphases
in chaotic scattering and the circular ensembles was sug-
gested by Blümel and Smilansky (1988, 1989, 1990); for
a review see Smilansky (1990). Direct applications of the
random-S-matrix approach to transport in open dots
were initiated by Baranger and Mello (1994) and Jal-
abert, Pichard, and Beenakker (1994); for reviews see
Mello (1995), Beenakker (1997), and Mello and
Baranger (1999). Both approaches turn out to be
equivalent when the external parameters of the system
are fixed, as proven by Brouwer (1995). Parametric cor-
relations can be successfully derived in the Hamiltonian
approach but not in the S-matrix approach.

In the Hamiltonian approach, we assume a Hamil-
tonian H that is taken from the appropriate Gaussian
ensemble of random matrices. The statistical properties
of the S matrix and of the conductance can then be in-
ferred from Eq. (20). Various moments and correlation
functions of the S matrix depend only on combinations
of the dot-leads coupling coefficients Wmc that are in-
variant under transformations that leave the ensemble
distribution invariant. Such invariant combinations are

Mcc8[
2p

N (
m

Wmc* Wmc8 , (89)

measuring the degree of correlation among the open
channels. For example, the average S matrix is given by

S̄5
I2pM/2D

I1pM/2D
, (90)

where M is the matrix defined in Eq. (89). It follows
from Eq. (90) that the matrix M52pW†W/N is com-
pletely determined by S̄ , and therefore all moments and
correlations of the statistical S matrix are functions of S̄
only.

The average S matrix is not unitary. The eigenvalues
Tc of 12S̄S̄† measure the unitary deficiency of the S
matrix (0<Tc<1) and are called the transmission coef-
ficients. In a set of ‘‘eigenchannels’’ which in M is diag-
onal (Mcc85wc

2dcc8), S̄ is diagonal too and Tc[1
2uS̄ccu25(2pwc

2/D)/(11pwc
2/2D)2.

As long as we work at a fixed energy and given values
of the external parameters, it is possible to convert the
original probability density (58) for the Hamiltonian H
to a probability density P(S) in the space of unitary S
matrices of the respective symmetry. It was shown by
Brouwer (1995) that for L tot5L11L2 open channels

P~S !}udet~12S̄†S !u2b(Ltot21)22, (91)

where S̄ is given by Eq. (90) and the measure dm(S) is
that of the corresponding circular ensemble. For S̄Þ0,
Eq. (91) is known as the Poisson kernel (Hua, 1963). It
was derived by Pereyra and Mello (1983) in nuclear
physics through maximizing the entropy S @P(S)#5
2*dm(S)P(S)ln P(S) of an arbitrary distribution P(S)
subjected to the constraints Sn5S̄n (for any positive in-
teger n). For S̄50, we recover Dyson’s circular en-
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semble for the scattering matrices (see Sec. III.C.4). In-
deed, owing to the invariance [Eq. (81)] of the circular
ensemble’s measure, the average S matrix must satisfy
S̄5USV5US̄V for arbitrary unitary matrices U and V ,
a condition that can only be met by S̄50. This corre-
sponds to the case of ideal leads where all Tc51.

Thus far we have not distinguished between channels
belonging to the left and right leads. This distinction be-
comes important in calculating the conductance through
the dot. In general, the S matrix is defined by the linear
relation between the incoming and outgoing amplitudes.

It can be written in the form S5( t
r

r8
t8 ), where r and r8

are the reflection matrices on the left and on the right,
respectively, while t and t8 are transmission matrices
from left to right and from right to left, respectively. For
L1 (L2) channels in the left (right) lead, r and r8 are
square matrices of dimension L13L1 and L23L2 ,
while t and t8 are rectangular matrices of order
L13L2 and L23L1 .

Here tt† and t8t8† share the same number min(L1 ,L2)
of nonzero transmission eigenvalues ta . The zero-
temperature conductance is proportional to the total
transmission T :

T5Tr ~ tt†!5Tr ~ t8t8†!5(
a

ta . (92)

For ideal leads (i.e., S̄50), the distribution of the trans-
mission eigenvalues is given by (Baranger and Mello,
1994; Jalabert, Pichard, and Beenakker, 1994)

Pb~t1 ,t2 ,. . . !}S )
a,b

uta2tbubD)
c

tc
~b22 !/2. (93)

In the more general case of nonideal leads, the Poisson
kernel (91) should be taken into account beyond Eq.
(93); see Brouwer, 1995.

B. The semiclassical approach

The semiclassical approach to open dots is useful in
the limit of a large number of modes L→` (equivalent
to \→0). The starting point is an expression for the
transmission amplitude tc8c from mode c in the left lead
to mode c8 in the right lead in terms of the retarded
Green’s function GR. Assuming the dot-lead interfaces
are at x5xl and x5xr, we have

tc8c52i\~vc8vc!1/2E dy8dyfc8
r * ~y8!

3GR~xl,y ;xr,y8;E !fc
l ~y !, (94)

where fc
l(r)(y)5A2/W sin(cpy/W) (c51, . . . ,L) are

the transverse channel wave functions in the left (right)
lead (W is the width of each lead). The retarded Green’s
function is then approximated by a sum over classical
paths [Eq. (49)]. The integrals over the lead-dot cross
sections are done by stationary phase, leading to (Jal-
abert, Baranger and Stone, 1990)
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tc8c52S pi

2kWD 1/2

(
a( c̄8 c̄)

sgn~ c̄8!sgn~ c̄ !

3Ãae ~ i/\!S̃a( c̄8, c̄ ,E)2i ~p/2!m̃a, (95)

where c̄56c and m̃ is a modified Maslov index (given
by Baranger, Jalabert, and Stone, 1993b). The sum is
taken over paths a that start on the left at angle u and
end on the right at angle u8, determined by equating the
initial and final transverse momenta of the electron to
the quantized values of the momenta in modes c and c8,
respectively (i.e., sin u5pc̄/kW and sin u85pc̄8/kW). The
modified amplitude and action are given by

Ãa~u ,u8!5F 1
Wucos u8u U S ]y

]u8D
u
UG 1/2

, (96a)

S̃a~ c̄8, c̄ ,E !5Sa~y08 ,y0 ,E !1p\ c̄y0 /W2p\ c̄8y08/W,
(96b)

where y0 and y08 are determined from the stationary
phase conditions for the angles u and u8. Note that the
energy dependence in the sum of Eq. (95) appears only
in the action S̃a5kL̃a (where L̃a is the effective length
of path a).

Expression (95) holds only for ‘‘chaotic’’ isolated tra-
jectories that scatter from the boundary of the dot be-
fore exiting. Direct trajectories give rise to nonuniversal
effects, and the geometry of the dot is usually chosen so
as to minimize these effects.

C. Mesoscopic fluctuations of the conductance

1. Conductance distributions

According to Landauer’s formula, the zero-
temperature dimensionless conductance g @g5G/(2e2/
h)# is the total transmission T5(ata , and its distribu-
tion for ideal leads can be determined from the joint
distribution (93) of the transmission eigenvalues. For
single-mode ideal leads (L15L251; Baranger and
Mello, 1994; Jalabert, Pichard, and Beenakker, 1994),

P~g !5
1
2

bg ~b22 !/2 ~0,g,1 !. (97)

The GOE and GUE distributions are shown by solid
lines in the upper panels of Fig. 11. In the absence of a
magnetic field (b51), it is more probable to find
smaller conductances; in the presence of a magnetic field
(b52), all allowed values are equally probable; and in
the presence of spin-orbit scattering (b54), larger con-
ductances are more probable.

The conductance distributions are also sensitive to the
number of channels in each lead and were calculated for
L15L25L<3 (Baranger and Mello, 1994) using the
circular ensembles. The results are shown by the solid
lines in Fig. 11. Already for L53 they are quite close to
a Gaussian, which is their exact asymptotic limit (L
→`). The average and variance are given by
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ḡ5
L

2
2

L

2~2L2112/b! S 2
b

21 D→ L

2
2

1
4 S 2

b
21 D , (98a)

s2~g !5
2
b

L2~L2112/b!2

~2L1212/b!~2L2114/b!~2L2112/b!2

→ 1
8b

, (98b)

where the limit is L→` . The asymptotic values were
derived earlier by Iida, Weidenmüller, and Zuk (1990a,
1990b) in the Hamiltonian approach.

The dominating term L/2 in the average conductance
[Eq. (98a)] is just its classical value, while the second
term is the quantum weak-localization correction (see
below). Its asymptotic value is 21/4 and 0 for conserved
and broken time-reversal symmetry, respectively.

One conclusion from Eq. (98b) is that the rms of the
conductance fluctuations is of order e2/h , irrespective of
the size of the average conductance Le2/h or the size of
the system (the number of modes L5int@kW/p# is size
dependent). This is a manifestation of the phenomenon
of universal conductance fluctuations, known from dis-
ordered metals. In the limit L→` , the conductance

FIG. 11. Conductance distributions in open dots with L51, 2,
and 3 channels in each lead for conserved (left) and fully bro-
ken (right) time-reversal symmetries. The distributions are cal-
culated using Dyson’s circular random-matrix ensembles: solid
lines, the distributions in the absence of phase breaking;
dashed lines (shown for L51, 2 only), the results of the
voltage-probe model with a single-mode phase-breaking lead
(Lf51); dash-dotted lines (shown for L51 only), Lf52.
Adapted from Baranger and Mello (1994, 1995).
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variance is twice as large in the absence of magnetic field
than in its presence.

The case of nonideal leads was treated in the Hamil-
tonian approach by Iida, Weidenmüller, and Zuk
(1990a, 1990b). The S-matrix approach (where the ap-
propriate ensemble is the Poisson kernel) was followed
by Brouwer and Beenakker (1994). For equivalent chan-
nels (Tc5T), and in the limit LT@1, one can integrate
over the ensemble by diagrammatic methods (Brouwer
and Beenakker, 1996).

Direct paths connecting the leads can also lead to S̄
Þ0. This situation is analogous to nuclear reactions in
which both direct and equilibrated components contrib-
ute to the reaction cross section (Feshbach, 1992).
Baranger and Mello (1996) extracted an average ‘‘opti-
cal’’ S matrix through an energy average of the numeri-
cal data (in cavities). The distributions predicted by the
corresponding Poisson kernel (91) were then found to
be in good agreement with the direct numerical calcula-
tions.

We can gain additional physical insight into the be-
havior of the average conductance and its weak-
localization correction in the semiclassical approxima-
tion (Baranger, Jalabert, and Stone, 1993a). Using Eq.
(95) in the diagonal approximation (see Sec. III.B.1) and
replacing (c→*21

1 d sin u, we obtain for the average
transmission T̄5LT, where T is the classical transmis-
sion probability per incoming mode (Beenakker and van
Houten, 1989). This result agrees with the leading-order
term of the RMT result [Eq. (98a)] if T51/2. Indeed, for
a fully chaotic system and ideal leads, the electron in-
jected into the dot ‘‘forgets’’ its origin and has equal
probability of exiting on the left or on the right.

The quantum correction to the average transmission is
of order unity and cannot be calculated directly in the
semiclassical approach. Instead we can evaluate such a
correction to the average of the total reflection R
5(c8curc8cu2. To leading order R̄'LR, where R is the
classical reflection probability. However, if time reversal
is a good symmetry, a correction to the diagonal part of
the reflection R̄D5(curccu2 comes from pairs of time-
reversed orbits—they have the same action and Maslov
index, and their contribution to the diagonal reflection
does not average to zero. We find that the correction to
R̄D is dR̄D5 1

2 *21
1 d sin u(a(u,6u)uÃa(u,u)u2, where

Aa(u ,u) is given by Eq. (96a) for u5u8, and the sum is
over all classical paths a that enter and exit at angle u.
For chaotic trajectories the function P(u ,u8)
[(a(u ,u8)uÃa(u ,u8)u2 satisfies approximately a unifor-
mity condition P(u ,u)'*21

1 d sin u8P(u,u8) (Baranger,
Jalabert, and Stone, 1993b), leading to the weak-
localization correction (for conserved time-reversal sym-
metry)

dR̄D5R. (99)

In the absence of time-reversal symmetry, the return
probability to the same channel is urccu25(c8urc8cu2/L
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'R/L . When time-reversal symmetry is conserved, this
probability increases by dR̄D /L'R/L , so its value
doubles to 2R/L.

How does the weak-localization correction to the re-
flection affect the conductance? We use the unitarity
condition of the S matrix uSccu21(c8ÞcuSc8cu251, and
assume that all off-diagonal probabilities uSc8cu2 (c8
Þc) are equal. An increase in the return probability
urccu25uSccu2 by R/L must then be compensated for by a
decrease 'R/2L2 in each individual off-diagonal prob-
ability. The change in the total average transmission T̄
5(c8Pr ,cPl uSc8cu2 is then dT̄'2R/2. For ideal leads,
R51/2, and dT̄521/4, in agreement with Eq. (98a).

The enhancement of the mean-square diagonal
S-matrix element relative to the mean-square off-
diagonal element due to time-reversal symmetry is well
known in the statistical theory of nuclear reactions,
where it is called the elastic enhancement factor. It was
also observed in quantum chaotic scattering (Doron,
Smilansky, and Frenkel, 1990; Blümel and Smilansky,
1992).

2. Weak localization

In Sec. IV.C.1 we saw that the average conductance
increases when time-reversal symmetry is fully broken.
In this section we discuss the dependence of ḡ on a
magnetic field B as time-reversal symmetry is broken
gradually.

The semiclassical expression for ḡ versus B was de-
rived by Baranger, Jalabert, and Stone (1993a). For a
weak magnetic field the classical trajectories are ap-
proximately the same as for B50, but the wave function
acquires an Aharonov-Bohm phase. The contribution to
the action in the presence of a field B derived from a
vector potential A is (e/c)*A•dl. Under time reversal,
this action changes sign, and the action difference be-
tween paths that are time-reversed pairs is nonzero:
(S̃a2S̃aT)/\5(2e/\c)*A•dl52QaB/F0 , where Qa is
the area (times 2p) swept by the classical trajectory a.
Following the method that led to Eq. (99), we now find

dR̄D~B !5RE dQP~Q!e2i~QB/F0!, (100)

where P(Q)[ 1
2 *d sin u d sin u8(a(u,u8)uÃau2d(Q2Qa) is

the distribution of the effective area Q enclosed by the
electron trajectory. This area distribution is exponential
in chaotic systems (Doron, Smilansky, and Frenkel,
1990; Jalabert, Baranger, and Stone, 1990) but satisfies
only a power law in nonchaotic systems. Using an expo-
nential form P(Q)}e2acluQu in Eq. (100), and the unitar-
ity argument discussed at the end of Sec. IV.C.1, we find

dg~B ![ ḡGUE2 ḡ~B !5
R
2

1
11~B/Bcr!

2 , (101a)

Bcr5aclF0/2. (101b)

Here Bcr is the crossover field measuring a typical field
required to suppress the weak-localization correction.
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dg(B) is largest at B50 (note that the average conduc-
tance itself has a dip at B50).

In a chaotic system acl}tescape
21/2 (Jensen, 1991). The ba-

sic argument is that area accumulation in a chaotic dot is
diffusive and Q2 is therefore linear in time. Since the
average time spent by the electron in the dot is tescape ,
we have (Q2)1/2/A}(tescape /tc)1/2 (A is the dot’s area
and tc is the ergodic time). From acl}(Q2)21/2 and us-
ing Eq. (101b), we obtain for the crossover flux Fcr
5BcrA

Fcr

F0
5

1
2

kS 2p
tc

tescape
D 1/2

5
1
2

kS 2p
Ḡ

ET
D 1/2

, (102)

where ET5\/tc is the ballistic Thouless energy and Ḡ
5\/tescape is the mean escape width of a level in the dot.
The term k is a geometrical factor that depends on the
device. In a dot with a total of 2L ideal open channels,

Ḡ5(D/2p)2L , and Fcr /F05(k/2)gT
21/2A2L , where gT

[ET /D is the ballistic Thouless conductance. In particu-
lar, Bcr}AL .

The exact weak-localization line shape dg(B) for a
small number of channels was calculated in the Hamil-
tonian approach using the crossover ensemble (68) for
H in Eq. (20) for the S matrix (Pluhar̆ et al., 1994). The
exact expression (evaluated by supersymmetry) is a
complicated triple integral [see, for example, Eq. (6) of
Pluhar̆ et al., 1994], but it is well approximated by a
Lorentzian

dg~B !'dg~0 !
1

11~z/zcr!
2 , (103)

where dg(0)5L/(4L12), in agreement with the circu-
lar ensemble result [Eq. (98a)], and zcr5(AL/2p)(1
21/2L)21/2. This crossover scale of the conductance is
different from the crossover scale of the spectral statis-
tics (;1), and can be understood in terms of a compe-
tition between the mixing time \/tmix52pDz2 and the
decay time of a typical resonance in the dot \/tescape
5(D/2p)L . The conductance statistics make the cross-
over when tescape /tmix54p2z2/L;1 or zcr;AL/2p .

Comparing the RMT result [Eq. (103)] with the semi-
classical result [Eqs. (101)], we conclude that if the time-
reversal symmetry is broken by a magnetic field, then
z}B . This result is confirmed in billiard-model calcula-
tions (Bohigas et al., 1995; Alhassid, Hormuzdiar, and
Whelan, 1998). A semiclassical expression can be de-
rived for the proportionality constant (Bohigas et al.,
1995; Pluhar̆ et al., 1995). Obviously zcr and Bcr satisfy
the same proportionality relation, confirming our earlier
conclusion that Bcr}AL .

We have seen in Sec. IV.C.1 that the conductance
variance in open dots is reduced by a factor of 2 when
time-reversal symmetry is broken. Using the transition
random-matrix ensemble (68), Frahm (1995) derived the
complete dependence of the conductance variance on
the transition parameter z. In the limit L@1,

sz
2~g !2sGUE

2 ~g !'F ds2~g !

11~z/zcr!
2G2

, (104)
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FIG. 12. Weak-localization effect in open
quantum dots: experiment [panels (a) and
(b)] vs theory [panels (c) and (d)]. The ex-

perimental results for 2@Ḡ(B)2Ḡ(0)# (av-
eraged over 48 dots) are shown for (a) a sta-
dium and (b) a circle. The observed line
shape is a Lorentzian for the stadium (a cha-
otic structure) and triangular for the circle (a
regular system). The insets are electron mi-
crographs of the fabricated microcavities. Nu-
merical results of the weak-localization effect
are shown for (c) a stadium and (d) a circle.
The circle’s cavity includes a weak disorder
potential to account for possible impurities in
the experimental structures. Note the similar-
ity between experiment and theory for both
geometries. Adapted from Chang et al.
(1994).
where sGUE
2 51/16 and ds2(g)[sGOE

2 (g)2sGUE
2 (g)

51/16.
The weak-localization effect has been observed in

open quantum dots by several experimental groups
(Marcus et al., 1992; Berry et al., 1994a, 1994b; Chang
et al., 1994; Keller et al., 1994, 1996; Chan et al., 1995).
Methods employed to find the average conductance in-
clude averaging over energy (Berry et al., 1994a, 1994b;
Keller et al., 1996), over shapes (Chan et al., 1995), and
over an ensemble of dots (Chang et al., 1994).

Figure 12 shows 2@Ḡ(B)2Ḡ(0)#5dG(B)2dG(0)
as a function of magnetic field B for two different bal-
listic cavities—a stadium [panels (a) and (c)] and a circle
[panels (b) and (d)]. Panels (a) and (b) display the ex-
perimental result of Chang et al. (1994) using an array of
638 ‘‘identical’’ quantum dots. The ensemble average
shows a clear weak-localization effect. While the line
shape for the stadium is a Lorentzian [Eq. (101)], ex-
pected for a chaotic cavity, the line shape for the circle is
triangular, consistent with a power law area distribution
that is expected for an integrable system. Figures 12(c)
and 12(d) show the results of numerical calculations for
the same 2D geometries used in the experiment.

Chan et al. (1995) fabricated a dot whose shape could
be distorted and collected statistics at each value of the
magnetic field B from various shapes of the dot. The
measured weak-localization effect and the variances of
the conductance fluctuations (for L52 channels in each
lead) are well fitted to Eqs. (103) and (104), respectively
(z/zcr5B/Bcr52B/aF0 was used in these formulas).
However, the parameters found in the fit to the data
dg50.15 (where g is the conductance in units of 2e2/h)
and ds2(g)50.004 75 are significantly smaller than the
RMT values of dg50.2 and ds2(g)'0.0229 for L52
[see Eqs. (98)]. This can be explained by dephasing ef-
fects that will be discussed in Sec. IV.E. The character-
istic inverse area parameter a is found to be a50.14
60.01 mm22 and a50.1160.01 mm22 from fits to the
weak-localization line shape (103) and variance curve
(104), respectively. An independent measurement of
this parameter is from the power spectrum of the con-
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ductance fluctuations versus magnetic field (see Sec.
IV.C.4).

3. Ericson fluctuations

One of the prominent features of stochastic nuclear
reactions is the rapid fluctuation of the cross section s
versus the total reaction energy E [see, for example, Fig.
6(a)]. Ericson (1960, 1963) quantified these fluctuations
in terms of the energy autocorrelation function

cs~DE !5s~E1DE !s~E !2s~E !2

}
G2

~DE !21G2 , (105)

where the average is taken over E . According to Eric-
son, this autocorrelation function is a Lorentzian whose
width measures the average resonance width G in the
compound nucleus.

Do Ericson fluctuations also occur in quantum dots?
The experimental results in Fig. 6(c), showing the con-
ductance as a function of the Fermi momentum, exhibit
fluctuations that are indeed similar to those observed in
nuclear reactions. The quantity analogous to Eq. (105) is
the conductance autocorrelation function versus the
Fermi momentum k : cg(Dk)[g(k1Dk)g(k)2 ḡ2. This
correlator can be estimated semiclassically (Jalabert,
Baranger, and Stone, 1990). Similar work for the auto-
correlations of the S-matrix elements in chaotic systems
was done by Blümel and Smilansky (1988, 1989, 1990).
Using the Landauer formula and the semiclassical ex-
pression (95) for the transmission amplitudes, we find

cg~Dk !5U E
0

`

dLeiDkLP~L !U2

, (106)

where P(L)[ 1
2 *d sin ud sin u8(a(u,u8)uÃau2d(L2L̃a) is the

classical distribution of path lengths (the sum is over all
trajectories that originate and end at the same angles u
and u8). In a chaotic system the length distribution is
exponential: P(L)}e2gclL and cg(Dk) is a Lorentzian,
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cg~Dk !}
1

11~Dk/gcl!
2 . (107)

Thus the scale for the conductance variation as a func-
tion of the Fermi momentum is set by gcl , the inverse
average length of a chaotic trajectory traversing the dot.
To relate Eq. (107) to Ericson’s formula (105), it is nec-
essary to convert gcl to a correlation length in energy
Ecor5\vFgcl . Using gcl51/vFtescape , we find Ecor

'\/tescape5Ḡ , in agreement with Ericson’s formula.
Fluctuations of the conductance as a function of the

Fermi momentum were studied experimentally by
Keller et al. (1996). A typical measurement of G versus
kF is shown in Fig. 6(c). While the average conductance
increases linearly with the number of modes kW/p , the
fluctuations are of universal size s2(g);1. The power
spectrum Sg(fk) of g(k) @Sg(fk)5u*dke2pifkg(k)u2# is
the Fourier transform of the conductance autocorrelator
cg(Dk), and for a Lorentzian line shape [Eq. (107)] we
expect an exponential power spectrum Sg(fk)
5Sg(0)e22pgcufku [see, for example, Fig. 6(d)]. Numeri-
cal calculations give good agreement between the classi-
cal value of gcl and its value extracted from fitting an
exponential to the quantum calculations of the power
spectrum (Jalabert, Baranger, and Stone, 1990).

The autocorrelation function cg
z(DE) for a fixed value

of the transition parameter z in the crossover regime
between GOE and GUE was calculated in RMT for
ideal leads with L@1 (Frahm, 1995):

cg
z~DE !5

1

16H 1

F11S z

zcr
D 2G 2

1S DE

Ḡ
D 2 1

1

11S DE

Ḡ
D 2J .

(108)
Equation (108) reduces to a Lorentzian in both the
GOE (z50) and GUE (z@1) limits, in agreement with
the semiclassical result [Eq. (107)].

4. Parametric correlations

In this section we discuss the mesoscopic fluctuations
of the conductance as a function of an external param-
eter. Note that the energy should not be considered an
external parameter, since it enters in a special way in
Eq. (20) for the S matrix, while a dependence on a ge-
neric external parameter x is introduced through H
5H(x).

Of particular experimental interest is the parametric
correlator when the parameter varied is a magnetic field:
cg(DB)[g(B1DB)g(B)2 ḡ2. Following the semiclas-
sical approach of Sec. IV.C.3, we now obtain

cg~DB !5U E
2`

`

dQeiQDB/F0P~Q!U2

, (109)

where P(Q) is the classical area distribution swept by
the electron in the dot. In a chaotic dot, P(Q)}e2acluQu

(see Sec. IV.C.2), and cg(DB) is a squared Lorentzian:

cg~DB !}@11~DB/2Bcr!
2#22. (110)
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The correlation field Bc is thus twice the crossover field
Bcr [Eq. (101b)], because the phase involved in the cor-
relator is proportional to the difference of areas as op-
posed to their sum in the weak-localization case.

Typical conductance fluctuations versus magnetic field
and the conductance correlator cg(DB) in an open sta-
dium dot are shown in Figs. 13(a) and 13(b), respectively
(Jalabert, Baranger, and Stone, 1990). The calculated
correlator [solid line in panel (b)] compares well with
the semiclassical prediction (110) [dashed line in panel
(b)]. The power spectrum of g(B) @Sg(fB)
[u*dBe2pifBBg(B)u2# is just the Fourier transform of
cg(DB) and is given by (Marcus et al., 1993b)

Sg~fB!5Sg~0 !~112paF0ufBu!e22paF0ufBu, (111)

where we have used Bcr5aF0/2 [see Eq. (101b)]. The
inset of Fig. 13(b) shows the calculated power spectrum
Sg(fB) [solid line] in comparison with a best fit to Eq.
(111) [dashed line]. Good agreement between the clas-
sical value of a (determined from the area distribution
in the stadium) and the quantum value of a [determined
from a fit of Eq. (111) to the power spectrum] is found
over a variety of the stadium dot’s parameters.

The power spectrum Sg(fB) was determined in the
experiment of Chan et al. (1995) by averaging over indi-
vidual spectra from the measurement of g(B) at differ-
ent shapes. A two-parameter [Sg(0) and a] fit to Eq.

FIG. 13. Conductance fluctuations vs magnetic field in an open
chaotic dot: (a) dimensionless conductance g vs B/B0 (where
B05mcvF /eW) for an open stadium with R/W52 (see inset)
and kFW/p54.5; solid line, the quantum calculation; dashed
line, the smoothed quantum result; dotted line, the classical
result. (b) The calculated conductance correlator cg(DB) vs
DB/B0 for an open stadium (solid line) and its semiclassical
prediction (110) (dashed line). The inset shows the smoothed
power spectrum Sg(fB) of g(B) [i.e., the Fourier transform of
cg(DB)]. The dashed line is the best fit to Eq. (111). From
Jalabert, Baranger and Stone (1990).



930 Y. Alhassid: Statistical theory of quantum dots
(111) reproduces the data well with a50.146 mm22, in
agreement with the value derived from the weak-
localization effect (see Sec. IV.C.2). In the same experi-
ment the conductance g was also measured versus a
shape-distortion voltage V . Figure 6(d) shows the power
spectrum Sg(fV), averaged at ten different measure-
ments of g(V) collected at various fixed values of the
magnetic field. The dotted line is a fit to Sg(V)
5Sg(0)e22pjfV, suggesting a Lorentzian line shape for
the conductance correlator versus shape: cg(DV)}1/@1
1(DV/j)2# .

Using RMT, it is possible to calculate the correlation
function in both energy and a time-reversal-symmetry-
breaking parameter z. For ideal leads with L@1 and for
completely broken time-reversal symmetry (Frahm,
1995),

cg~Dz ,DE !5
1
16

1

@11~Dz/2zcr!
2#21~DE/G!2 . (112)

For DE50, Eq. (112) reduces to the squared Lorentzian
of Eq. (110). Efetov (1995) calculated this correlator for
nonideal leads. Asymptotic expressions for the conduc-
tance correlator cg(Dz) in RMT were derived for any
number of channels L by Gossiaux, Pluhar̆, and Weiden-
müller (1998) and by Pluhar̆ and Weidenmüller (1999).
The limits considered were small and large Dz at fixed
L, as well as large L at fixed Dz/L .

D. Conductance fluctuations at finite temperature

Temperature affects the conductance fluctuations in
two ways, through thermal smearing and through the
increase of the dephasing rate with temperature. Both
effects reduce the fluctuations. In this section we discuss
the first effect, i.e., the role of temperature in meso-
scopic fluctuations in the limit of complete phase coher-
ence.

Efetov (1995) derived the conductance correlator ver-
sus magnetic field cg(DB ;T) at finite temperature
T. Using Eq. (11) for the finite-temperature conduc-
tance, this correlator can be related to the
zero-temperature correlator cg(DB ,DE) in both mag-
netic field and energy (see Sec. IV.C.4): cg(DB ;T)
5 T2*2`

` (d /dT) @2T sinh(DE/2T)#22cg(DB ,DE)dDE .
At low temperatures T!G/2p , this correlator reduces to
the squared Lorentzian of Eq. (110), while at high tem-
peratures T@G/2p , this correlator is a Lorentzian,

cg~DB ;T !5
pG

96T

1
11~DB/2Bcr!

2 . (113)

The high-temperature limit of the conductance variance
s2(g)5pG/96T is seen to be much smaller than the
zero-temperature variance of 1/16. Thus the conduc-
tance fluctuations are reduced significantly when the
temperature exceeds a typical level width G.

E. Dephasing

The magnitudes of the observed weak-localization
correction and conductance fluctuations in open dots are
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often reduced compared to the theoretical expectations.
This discrepancy is explained by dephasing times that
are comparable with typical escape times in the dot.
Dephasing can be caused by a voltage probe (since an
electron absorbed by the probe is reinjected into the dot
with an uncorrelated phase) or by inelastic processes in
the dot such as electron-electron collisions.

There are two important issues concerning dephasing.
The first is to describe quantitatively how mesoscopic
fluctuations are affected by finite dephasing rates (Sec.
IV.E.1). The second is the dependence of the dephasing
rate on temperature (Sec. IV.E.2). Recent experimental
results in dots with single-mode leads are described in
Sec. IV.E.3.

1. Models for dephasing

The dephasing voltage-probe model was introduced
by Büttiker (1986a, 1986b) and applied to the conduc-
tance fluctuations in open dots by Baranger and Mello
(1995) and by Brouwer and Beenakker (1995). A third
dephasing lead is added and its voltage Vf is adjusted to
keep If50, thus conserving the average number of elec-
trons in the dot. The effective two-lead conductance
2(e2/h)g5I1 /(V22V1) can be expressed in terms of
the three probe conductance coefficients:

g5g211
g2fgf1

gf21gf1
. (114)

Each of the first two leads has L equivalent modes, and
the third lead is assumed to have Lf modes. The
dephasing rate Gf is related to the total number Lf of
dephasing modes by

Lf
eff[LfTf52pGf /D , (115)

where Tf is the transmission probability per mode in the
third lead. The parameter Lf

eff[LfTf measures the ef-
fective number of ideal dephasing modes.

The entire (2L1Lf)3(2L1Lf) S matrix is as-
sumed to be described by the respective circular en-
semble. The fluctuations of the measured conductance g
are then calculated from Eq. (114). Using the relations
g211g221g2f50, g111g211gf150, and g121g221gf2
50 (see Sec. II B), it is possible to eliminate from Eq.
(114) all conductance coefficients that are related to the
third lead. The distribution of g can then be inferred
from the known distribution of the sub-S matrix
(Pereyra and Mello, 1983; Friedman and Mello, 1985)
that corresponds to the two physical leads (Brouwer and
Beenakker, 1995).

Figure 11 shows conductance distributions calculated
by Baranger and Mello (1995) for Lf51 dephasing
mode in open dots with single- or double-mode leads
(dashed lines) and for Lf52 in dots with single-mode
leads (dashed-dotted lines). They also calculated analyti-
cally (to leading order in 1/Lf) the average and variance
of the conductance for an ideal, multimode voltage
probe,
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ḡ5
L

2
1S L

Lf
D b22

2b
1O~Lf

22! (116a)

s2~g !5S L

Lf
D 2 2L122b

4bL
1O~Lf

23!, (116b)

and found an interpolation formula for the weak-
localization correction (at B50):

dg[2S ḡ~B50 !2
L

2 D' 2
1
4

1
11Lf/2L

. (117)

We see from Eq. (117) that the universal asymptotic re-
sult for the weak-localization correction (21/4) is valid
only if Lf!2L .

The voltage-probe model describes localized dephas-
ing (at the point contact between the dot and the third
lead) and is less suitable to describe dephasing due to
inelastic processes that occur through the whole dot. A
way to introduce dephasing uniformly over the dot is to
add an imaginary part 2iGf/2 to the dot’s Hamiltonian.
This model does not conserve the number of electrons
and was modified by Brouwer and Beenakker (1997) to
conserve electron number by mapping it on the voltage-
probe model. Compared with the standard voltage-
probe model, they found conductance distributions that
were narrower and with strongly suppressed tails. This is
because the number-conserving imaginary-potential
model is more effective in dephasing than the localized
ideal voltage-probe model. Nevertheless, the asymptotic
results for the average and variance coincide exactly
with Eqs. (116). The inset in Fig. 14(b) shows the
dephasing rate Gf [calculated from Lf

eff via Eq. (115)]
versus the weak-localization correction dg for both
dephasing models.

The complete form of the weak-localization line shape
was calculated in the (non-number-conserving)
imaginary-potential model (Efetov, 1995): dg(B)
[ ḡGUE2 ḡ(B)5(1/4) @11(B/Bcr)

21Lf
eff/2L#21 and

found to have no explicit dependence on temperature.
This temperature independence is used to determine the
dephasing rate from the measured weak-localization
effect at finite temperature, as is discussed in the next
section.

2. Temperature dependence of dephasing

Dephasing rates were determined experimentally in
disordered 2D (Choi, Tsui, and Alavi, 1987) and 1D
(Kurdak et al., 1992) semiconductors, in disordered 1D
metals (Lin and Giordano, 1986; Echternach, Gershe-
son, and Bozler, 1993), and more recently in open quan-
tum dots (Marcus et al., 1993a, 1994; Clarke et al., 1995;
Huibers, Switkes, Marcus, Campman, and Gossard,
1998). To determine tf experimentally, it is best to mea-
sure a quantity that is sensitive to dephasing, yet is not
affected explicitly by thermal smearing, e.g., the weak-
localization effect in the magnetoconductance. This was
recently implemented by Huibers, Switkes, Marcus,
Campman, and Gossard (1998) in open quantum dots
using three independent methods:
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(i) Measuring the weak-localization correction dg (at
B50). From dg one can determine the number
of effective dephasing channels Lf

eff using one of
the phenomenological dephasing models [e.g., Eq.
(117)] and therefore determine Gf from Eq.
(115). The inset in Fig. 14(b) shows Gf versus dg
in the two dephasing models discussed in Sec.
IV.E.1.

Figure 14 shows the recent measurements of
Huibers, Switkes, Marcus, Campman, and Gos-
sard (1998). Panel (a) is the measured dg for four
different dots as a function of temperature. The
smaller values of dg for larger dots are consistent
with Eq. (115) since D}A 21 and Lf

eff}A for a
fixed value of the dephasing rate (i.e., at fixed

FIG. 14. The measured temperature dependence of the
dephasing time in open quantum dots: (a) measured weak-
localization correction dg in four dots as a function of tem-
perature T ; note the decrease in dg for the larger dots [in
agreement with Eq. (115), see text]; inset, ḡ vs magnetic field
at several temperatures for the first device; (b) symbols, the
extracted dephasing time vs temperature; dashed line, tee from
Eq. (117); solid line, a fit to the theoretical tf5(tee

211t21)21

of a 2D disordered system (see text) with l50.25 mm; inset,
the effective number of dephasing channels Lf

eff vs dg in the
voltage-probe model (dashed line) and in the number-
conserving imaginary-potential model (solid line). Adapted
from Huibers, Switkes, Marcus, Campman, and Gossard
(1998).
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temperature). The extracted values of tf , shown
in Fig. 14(b) (symbols), are approximately inde-
pendent of the dot’s area.

(ii) Measuring the width of the weak-localization line
shape dg(B). According to Eqs. (101) or (103),
dg(B) is a Lorentzian characterized by a cross-
over field Bcr that is proportional to the square
root of the total number of open channels. In the
presence of phase breaking, this total number of
channels should include the number of dephasing
channels

BcrA/F05~k/2!gT
21/2A2L1Lf

eff, (118)
where k is a geometrical constant of the dot and
gT is the Thouless conductance. Equation (118)
can be used to determine Lf

eff from the measured
Bcr . This equation contains an additional un-
known parameter k, but it is temperature inde-
pendent and can be determined, for example, by a
best fit to the dg data.

(iii) Measuring the power spectrum Sg(fB) of the con-
ductance fluctuations versus magnetic field (Mar-
cus et al., 1993a, 1994; Clarke et al., 1995). At
higher temperatures, the conductance correlator
in open dots is given by a Lorentzian (113) and its
Fourier transform is exponential: Sg(fB)
5Sg(0)e22pBcufBu (where Bc52Bcr). Using a
two-parameter fit to the measured power spec-
trum it is possible to extract the correlation field
Bc and then use Eq. (118) to determine the
dephasing time, as in the second method above.

The dependence of the dephasing time on tempera-
ture in disordered conductors is theoretically under-
stood (Altshuler and Aronov, 1985; for a recent review
see Aleiner, Altshuler, and Gershenson, 1999). At low
temperatures, the electron-electron scattering rate
dominates the electron-phonon rate. There are two con-
tributions to the electron-electron dephasing rate in 2D:
a large-energy-transfer contribution quadratic in T
that is characteristic of clean metals, tee

21

5@(pkT)2/2hEF#ln(EF /kT) (see, for example, Pines
and Nozières, 1966), and a small-energy-transfer
(&kT) contribution (Nyquist rate) linear in T, t21

5(kTlF /hl)ln(pl/lF) (Altshuler and Aronov, 1985;
Imry, 1996). The total rate is approximately tf

21't21

1tee
21 . At low temperatures the Nyquist rate dominates,

and it vanishes as T→0. Some experiments (e.g., Mo-
hanty, Jariwala, and Webb, 1997) find an apparent satu-
ration of the dephasing rate as T→0 for a reason that is
not yet understood.

In ballistic quantum dots (0D systems) the situation is
less clear. Microscopic estimates in closed ballistic dots
by Sivan et al. (1994) and Altshuler et al. (1997) give
tf

21}T2 for kT@D . However, no theoretical estimates
are available for open quantum dots. The results of
Huibers, Switkes, Marcus, Campman, and Gossard
(1998) offer a puzzle: they suggest a temperature depen-
dence of the rate that is characteristic of 2D disordered
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
systems and not just a T2 dependence [see Fig. 14(b)].
More experiments and theoretical work may be neces-
sary to resolve this issue.

3. Conductance distributions

Using the experimentally determined dephasing rates,
one can apply phase-breaking models described in Sec.
IV.E.1 to predict the conductance distributions and
compare them with the experimental distributions. Re-
alistic calculations should include effects due both to
dephasing and to thermal smearing.

A detailed comparison between experiment and
theory for single-mode leads was reported by Huibers,
Switkes, Marcus, Brouwer, et al. (1998). The measured
weak-localization correction was used to determine
tf(T) as in Sec. IV.E.2 and found to be consistent with
the results shown in Fig. 14(b). The number-conserving
imaginary-potential model (Sec. IV.E.1) was then used
together with a thermal smearing procedure to calculate
the conductance distributions. Figure 15 compares some
of these theoretical distributions with the measured ones
for both conserved (left) and fully broken (right) time-
reversal symmetry. The distributions measured at the
lower temperature [panels (a) and (c)] are clearly asym-
metric. The dotted lines in panels (a) and (c) of Fig. 15
are the predicted RMT distributions [Eq. (97)] without
any phase breaking and at T50. The dashed lines in-

FIG. 15. Finite-temperature conductance distributions in
single-mode open dots without a magnetic field [panels (a) and
(b)] and with a magnetic field [panels (c) and (d)]. Panels (a)
and (c) are for kT50.61 D and panels (b) and (d) are for kT
52.8 D . The solid circles are the experimental results. The dot-
ted lines in panels (a) and (c) are the fully phase-coherent T
50 distributions (97). The dashed lines in all panels are the
theoretical calculations without thermal smearing but with the
experimentally determined effective number of dephasing
modes at the relevant temperatures — Lf

eff50.3 in panels (a)
and (c), and Lf

eff51.5 in panels (b) and (d). The solid lines in
all panels are the theoretical predictions when both the finite
dephasing rate and thermal smearing effects are accounted for.
Adapted from Huibers, Switkes, Marcus, Brouwer, et al.
(1998).
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clude the correct dephasing rate at the corresponding
temperature but ignore thermal smearing effects. Fi-
nally, the solid lines include both dephasing and explicit
thermal effects and are in good agreement with the data.
The results show that both direct thermal effects and
finite dephasing rates play an important role.

V. MESOSCOPIC FLUCTUATIONS IN CLOSED DOTS

Recent studies of statistical fluctuations in quantum
dots have focused on almost-isolated or ‘‘closed’’ dots
that are separated by barriers from the leads. Our main
interest is in the quantum Coulomb-blockade regime,
where the temperature is comparable to or smaller than
the mean level spacing in the dot. Experimentally, a se-
ries of peaks is observed in the conductance versus gate
voltage; see, for example, Fig. 7(c). The width of these
peaks is thermally broadened, but their heights fluctuate
strongly. Whereas in open dots the conductance fluctua-
tions originate from the interference of many overlap-
ping resonances, in closed dots the peak-height fluctua-
tions result from the spatial fluctuations of individual
resonance wave functions at the dot-lead interfaces.

A statistical theory of the conductance peaks in
Coulomb-blockade dots was introduced by Jalabert,
Stone, and Alhassid (1992). The peak-height distribu-
tions were derived from RMT, and found to be universal
and sensitive only to the symmetry class. The sensitivity
of a Coulomb-blockade peak to an experimentally con-
trolled parameter can be studied by changing a magnetic
field or the shape of the dot. Alhassid and Attias (1996a)
derived the peak-height parametric correlation function
and showed that it is universal once the parameter is
scaled. The predicted statistics of the peak heights for
both conserved and broken time-reversal symmetry
were observed by two experimental groups (Chang
et al., 1996; Folk et al., 1996) using dots of different de-
sign and size. The latter group also confirmed the pre-
dicted functional form of the peak-height autocorrela-
tion function in a magnetic field.

In a closed dot, the charge on the dot is quantized and
the Coulomb interactions cannot be ignored. The sim-
plest model is the constant-interaction model [Eq. (26)],
which takes into account only the average Coulomb en-
ergy of the dot’s electrons. Interaction effects beyond
the constant-interaction model are probably less rel-
evant for the fluctuations of sufficiently highly excited
states. However, interactions may cause deviations from
RMT for the low-lying part of the spectrum, which is the
region of interest in this section. We shall see that the
constant-interaction model can explain some, but not all,
of the observed statistical fluctuations. The main evi-
dence for the breaking of the constant-interaction model
comes from the peak-spacing fluctuations. In the
constant-interaction model, these fluctuations reflect the
spacings between the single-particle levels in the dot and
are expected to follow a Wigner-Dyson distribution.
However, the observed distribution is more symmetric
and closer to a Gaussian (Sivan et al., 1996; Simmel,
Heinzel, and Wharam, 1997; Patel, Cronenwett, et al.,
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1998). A discussion of interaction effects beyond the
constant-interaction model is deferred to Sec. VI.

Charging energy affects the statistics of the Coulomb-
blockade peaks at finite temperature. An outstanding
issue has been the observed peak-to-peak correlations:
temperature enhances these correlations, but the experi-
mental correlations at low temperatures are stronger
than expected. An interesting phenomenon is the satu-
ration of peak-to-peak correlations as a function of tem-
perature (Patel, Stewart, et al., 1998). This effect can be
explained by the statistical scrambling of the dot’s spec-
trum as electrons are added to the dot.

Section V.A describes the main elements of the statis-
tical theory of closed dots. Sections V.B and V.C review
the statistics and parametric correlations respectively, of
the conductance peaks. The crossover statistics in the
presence of a time-reversal-symmetry-breaking field are
discussed in Sec. V.D. The peak-spacing statistics in the
framework of a single-particle model plus constant
charging energy are reviewed in Sec. V.E. Finally, a sta-
tistical theory at finite temperature, and the use of tem-
perature to probe the statistical scrambling of the dot’s
spectrum versus electron number, are presented in Secs.
V.F and V.G, respectively.

A. Statistical theory at low temperatures

We first discuss Coulomb-blockade dots at T!D .
Typically these low temperatures are still much larger
than a typical resonance width and the observed conduc-
tance peaks are thermally broadened (see Sec. II.D).
The interesting information is carried by the conduc-
tance peak height Gl

peak}G lGr/(G l1Gr) [see Eq. (24)],
where G l(r) is the width of a resonance level to decay
into the left (right) lead. Here G l(r)5(cugc

l(r)u2, where
gc

l(r) is the partial amplitude to decay into channel c in
the left (right) lead. The quantity gcl is given by Eq.
(17) and can be expressed as a scalar product of the
resonance wave function cl5(cl1 ,cl2 , . . . ) and the
channel wave function fc5(fc1 ,fc2 , . . . ):

gcl5^fcucl&[(
j

fcj* clj . (119)

Here we expanded the wave function Cl5( jcljr j in a
fixed basis r j in the dot and defined the channel vector
fcj[(\2kcPc /m)1/2*Cdl r j* (r)fc(r)5A2pWjc [W is the
dot-lead coupling matrix introduced in Eq. (19)]. The
scalar product in Eq. (119) is defined over the dot-lead
interface and differs from the usual scalar product in the
Hilbert space of the dot.

Another modeling of a quantum dot assumes point-
like contacts, and each lead is composed of several such
point contacts rc (Prigodin, Efetov, and Iida, 1993; Muc-
ciolo, Prigodin, and Altshuler, 1995). Each point contact
constitutes one channel, and the partial width of a level
l to decay into it is gcl5(acAD/p)1/2Cl(rc), where ac
is a dot-lead coupling parameter and A is the area of the
dot. The partial width can still be expressed as a scalar
product [Eq. (119)] but now the channel vector is de-
fined by fcj[(acAD/p)1/2r j* (rc).
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Fluctuations in Gl
peak arise from fluctuations of the

widths G l and Gr. These widths are determined by the
partial-width amplitudes gcl , which in turn are ex-
pressed by Eq. (17). The penetration factor Pc in Eq.
(17) is a smooth function of the Fermi energy (or gate
voltage), and fluctuations can only arise from the over-
lap integral *Cdl fc* Cl , i.e., from the spatial fluctua-
tions of Cl(r) across the dot-lead interface C. For a cha-
otic ballistic dot, these fluctuations are described by
RMT. A key relation for connecting the physical quan-
tity (i.e., width) to RMT is Eq. (119), expressing the
partial-width amplitude as a projection of the random-
matrix eigenfunction cl on a fixed channel vector fc .

B. Conductance peak statistics

The main goal of this section is to derive the statistical
distributions of the conductance peak heights. These dis-
tributions were derived by Jalabert, Stone, and Alhassid
(1992) using RMT and by Prigodin, Efetov, and Iida
(1993) using supersymmetry. The case of correlated
channels in two-channel leads was treated by Mucciolo,
Prigodin, and Altshuler (1995) for broken time-reversal
symmetry, and the general case of multimode leads with
possibly inequivalent and correlated channels was dis-
cussed by Alhassid and Lewenkopf (1995).

1. Partial-width amplitude distribution

The joint distribution of the partial-width amplitudes
g5(g1 ,g2 ,. . . ,gL) of a resonance l can be computed
from the RMT wave-function statistics. Using Eqs. (66)
and (119),

P~g!5
G~bN/2!

pbN/2 E D@c#F )
c51

L

d~gc2^fcuc&!G
3dS (

m51

N

ucmu221 D , (120)

where D@c#[)m51
N dcm for the GOE and D@c#

[)m51
N dcm* dcm/2pi for the GUE. The integral (120)

can be evaluated following the methods of Ullah (1967)
and transforming to a new set of orthonormal channels.
For L!N and N→` , we recover a Gaussian distribu-
tion (Alhassid and Lewenkopf, 1995),

P~g!5~det M !2b/2e2 ~b/2!g†M21g. (121)

The distributions (121) are normalized with the measure
D@g#[) c51

L (dgc /A2p) for the GOE and D@g#
[) c51

L (dgc* dgc/2pi) for the GUE. They can also be
derived (Krieger and Porter, 1963; Ullah, 1963) from the
requirement that their form be invariant under orthogo-
nal (unitary) transformations for the GOE (GUE). The
term M in Eq. (121) is the channel correlation matrix

Mcc85gc* gc85
1
N

^fcufc8& (122)

and is identical with the matrix M52pW†W/N defined
in Sec. IV.A [see Eq. (89)]. The eigenvalues wc

2 of M are
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just the average partial widths Ḡc [see Eq. (122)], and for

the present case of isolated resonances Ḡc'(D/2p)Tc .
For a general set of channels, the matrix M can be non-
diagonal (describing correlated channels) and have dif-
ferent diagonal elements (corresponding to inequivalent
channels).

We note that in chaotic systems the joint distribution
of an eigenfunction’s amplitudes at L spatial points
r1 ,. . . ,rL is a special case of Eq. (121). Indeed, the
partial-width amplitudes of the point-contact model are
proportional to the wave-function amplitudes at a set of
fixed spatial points (see also Srednicki, 1996).

In the point-contact model, Mc8c is a measure of the
spatial wave-function correlations at two different spa-
tial points C* (r)C(r8). Expanding the eigenfunction in
the fixed basis C(r)5( jc jr j(r), and using the RMT re-
lation c j* c j85d jj8 /N , we find C* (r)C(r8)
5( jr j* (r)r j(r8)/N . The fixed basis r j(r) is chosen such
that the eigenfunction’s components are distributed ran-
domly on the unit sphere in N dimensions. Random-
matrix theory is expected to describe fluctuations in a
chaotic system on a local energy scale. Therefore, for the
problem of a free particle in a cavity, we choose this
basis to be the free-particle states at the given energy
E5\2k2/2m . In polar coordinates r ,u such a basis is
r j(r)}Jj(kr)eiju (j50,61,62 . . . ), where Jj are Bessel
functions of the first kind. Using the addition theorem
for the Bessel functions, we obtain

C* ~r!C~r8!5A 21J0~kur2r8u!. (123)

Similar results are obtained if r j are chosen to be plane
waves with fixed energy but random orientation of mo-
mentum k. Equation (123) was first derived by Berry
(1977), assuming that the Wigner function of an ergodic
system is microcanonical on the energy surface and av-
eraging over a spatial region whose linear extension is
large compared with the particle’s wavelength. It follows
that in the point-contact model, the channel correlation
matrix of a chaotic dot is given by Mcc8
5(Aacac8D/p) J0(kurc2rc8u).

In d dimensions the spatial correlations of eigenfunc-
tions are

C* ~r!C~r8!/uC~r!u252d/221G~d/2!
Jd/221~kur2r8u!
~kur2r8u!d/221

[fd~ uDru!. (124)

The envelope of fd(uDru) decays as a power law
(kuDru)2(d21)/2. For weakly disordered systems, fd con-
tains an additional factor of e2uDru/2l, resulting in an ex-
ponential cutoff of the spatial correlations beyond l
(Mucciolo, Prigodin, and Altshuler, 1995; Prigodin,
1995).

2. Width distribution

We next determine the level-width distribution (note
that for a symmetric dot G l5Gr, and the conductance
peak height is proportional to the width). Using G
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5(cugcu25g†g and the Gaussian nature [Eq. (121)] of the
partial-width amplitudes, we can easily calculate the
characteristic function of the width distribution P(u)
[*0

`dG exp(iuG)P(G)5@det(I22iMu/b)#2b/2. This width
distribution P(G) is then (Alhassid and Lewenkopf,
1995)

P~G!5
1

2p E
2`

`

du
e2iuG

@det~I22iuM/b!#b/2 (125)

and depends only on the eigenvalues wc
2 of the positive-

definite correlation matrix M .
Equation (125) can be evaluated by contour integra-

tion. All the singularities of the integrand are along the
negative imaginary axis u52it at t51/wc

2 . For the
GOE case the singularities are of the type (t
21/2wc

2)21/2, leading to

PGOE~G!5
1

p2L/2 S )
c

1

wc
D (

m51

L

E
1/2w2m21

2

1/2w2m
2

dt

3
e2Gt

A) r51
2m21S t2

1

2wr
2D )

s52m

L S 1

2ws
2 2t D

,

(126)

where the eigenvalues of M are arranged in ascending
order and we have defined 1/2wL11

2 →` for an odd num-
ber of channels. For the GUE statistics, all the singulari-
ties are poles. If the eigenvalues of M are nondegener-
ate, then the poles are simple and

PGUE~G!5S )
c

1

wc
2D (

c51

L F )
c8Þc

S 1

wc8
2 2

1

wc
2D G21

e2G/wc
2
.

(127)

In the special case of uncorrelated and equivalent
channels, all the eigenvalues of M are degenerate, wc

2

5w2, and the width distribution can be found directly
from Eq. (125) to be the x2 distribution in bL degrees of
freedom.

3. Peak-height distributions

In a closed dot we define g to be the (dimensionless)
conductance peak height Gpeak measured in units of
(e2/h) (pG/4kT) [see Eq. (24a)]. Assuming that the
widths G l and Gr are uncorrelated, P(g) can be com-
puted using Eq. (24b) and the known width distributions
of Sec. V.B.2. In the simple case of one-channel symmet-

ric leads (L51; Ḡ l5Ḡr), we find (Jalabert, Stone, and
Alhassid, 1992; Prigodin, Efetov, and Iida, 1993)

PGOE~g !5A2/pge22g, (128a)

PGUE~g !54ge22g@K0~2g !1K1~2g !# , (128b)

where K0 and K1 are the modified Bessel functions.
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The peak-height distributions were measured inde-
pendently by Chang et al. (1996) and by Folk et al.
(1996) for dots with single-channel tunneling leads. The
results of Chang et al. [1996; Figs. 16(a) and 16(b)] are
from dots with ;100 electrons [a four-dot device used is
shown in the inset of Fig. 16(b)]. The histograms are the
experimental results at T575 mK; 72 peaks were col-
lected for B50 and 216 peaks for BÞ0. The solid lines
are the predicted theoretical distributions (128a) and
(128b) for B50 and BÞ0, respectively. The conversion
from the measured conductance peak Gpeak to the di-
mensionless conductance g requires an unknown
parameter—the average width Ḡ of a resonance in the

dot. Since Ḡ is independent of the magnetic field, the
theoretical distributions in Figs. 16(a) and 16(b) repre-

sent a one-parameter fit Ḡ'0.086 kT to both curves.
The measured distributions are non-Gaussian and char-
acterized by a large number of small peaks with more
small peaks for the B50 case, in agreement with the
theoretical predictions. The inset of Fig. 16(a) shows a
B50 peak sequence versus gate voltage at T575 mK
(lower trace); three of the peaks are too small to be
observed, but can be seen at a higher-temperature trace
(T5600 mK) of the same peaks (upper trace).

Figures 16(c) and 16(d) show the experimental results
of Folk et al. (1996) at T570620 mK. Their dots are
larger (;1000 electrons) than in the previous experi-
ment, so that kT/D;0.3–0.5 is higher. Using shape-
distorting gates, larger statistics could be collected. Each
distribution includes ;600 peaks, although only ;90 are
statistically independent. The solid lines are fits to the
RMT predictions, Eqs. (128a) and (128b). The insets
show the same distributions on a linear-log scale, where
good agreement between theory and experiment is seen
over two to three orders of magnitude. We remark, how-
ever, that the strong correlations observed between
heights of neighboring peaks [see, for example, Fig. 7(c)]
is at variance with RMT, and we shall return to this
point in Sec. V.F.1.b.

It is also possible to calculate the peak-height distri-
butions for a general leads configuration for both the
orthogonal (Alhassid and Lewenkopf, 1995, 1997) and
unitary (Alhassid and Lewenkopf, 1995, 1997; Mucciolo,
Prigodin and Altshuler, 1995) symmetries. The RMT
predictions for the peak-height distributions were tested
in a model of a ballistic dot—the conformal billiard (see
Sec. III.A.3)—in its chaotic regime. Good agreement
was found for dots with single-channel (Stone and
Bruus, 1993, 1994; Bruus and Stone, 1994) and multi-
mode leads (Alhassid and Lewenkopf, 1995, 1997).

The Coulomb-blockade peaks exhibit a weak-
localization effect. The average conductance peak height
for symmetric leads with L channels in each lead is

ḡL5H L2

2~L11 !
~GOE!

L2

2L11
~GUE!.

(129)
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Thus ḡL for GOE is smaller by an amount L2/@2(L
11)(2L11)# than its GUE value—a weak-localization
effect. The relative reduction of the average conduc-
tance dgL/ ḡL

GUE51/(2L12) (where dgL5 ḡL
GUE

2 ḡL
GOE) is smaller by a factor of (2L11)/(2L12) than

its corresponding value for open dots [see Eq. (98a)].
For example, in single-channel leads the weak-
localization correction in closed dots is dg/ ḡGUE51/4
compared with 1/3 in open dots.

In the limit of large L, the GUE variance of the con-
ductance peak heights is smaller by a factor of two than
the GOE variance (Alhassid, 1998). A similar behavior
was found in open dots [see Eq. (98b)]. For single-
channel symmetric leads, the variance of the conduc-
tance peak reduces from 1/8 in the GOE to 4/45 in the
GUE.

C. Parametric correlations of the conductance peaks

In closed dots one can follow a specific conductance
peak as a function of an external parameter such as
magnetic field or shape [see, for example, Fig. 17(a)] and
calculate the correlation between peak heights at differ-
ent values of the external parameter. Alhassid and At-
tias (1996a) calculated this conductance peak correlator
using the framework of Gaussian processes discussed in
Sec. III.C.3 and found it to be universal upon an appro-
priate scaling of the external parameter.

The parametric width correlator cG(x2x8)
5dG(x)dG(x8)/$@dG(x)#2 @dG(x8)#2%1/2, where dG(x)

[G(x)2Ḡ(x), can be calculated in the framework of
the Gaussian process and is universal upon the scaling
[Eq. (77)] of the external parameter. It can also be
shown to be independent of the channel correlation ma-
trix M (Alhassid and Attias, 1996b) and is therefore de-
termined by the symmetry class alone. The width cor-
relator coincides with the overlap correlator [Eq. (79)]
of Sec. III.C.3 in the limit N→` and is thus well ap-
proximated by Eq. (80), a Lorentzian in the Gaussian
orthogonal process and a squared Lorentzian in the
Gaussian unitary process.

The conductance peak-height correlator

cg~x2x8!5dG~x !dG~x8!/$@dG~x !#2@dG~x8!#2%1/2

(130)

depends on the number of channels in each lead L l and
Lr and on the eigenvalues (wc

l ,r)2 of the correlation
matrices Ml and Mr in the left and right leads, respec-
tively. The case most relevant to experiments is that
of single-channel leads. When the leads are symmetric

(Ḡ l5Ḡr), the deviation of the corresponding cg(Dx)
from the width correlator is the largest. This correlator
is well fitted by the form of Eq. (80), i.e., a Lorentzian
for the Gaussian orthogonal process and a squared-
Lorentzian for the Gaussian unitary process [see inset
in Fig. 17(b)], but with a150.3760.04 and a2
50.5460.04, respectively. The universality of the con-
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FIG. 16. Conductance peak-height distributions in small and
large Coulomb-blockade quantum dots. Panels (a) and (b):
measured distributions of Chang et al. (1996) [panel (a)] at B
50 and [panel (b)] at BÞ0 in small dots of effective size
0.2530.25 mm at T575 K (N;100 electrons and kT/D;0.15);
solid lines, the theoretical predictions (128a) and (128b) of
Jalabert, Stone, and Alhassid (1992) for conserved and broken
time-reversal symmetry, respectively. Inset in panel (a): lower
trace, a sequence of B50 Coulomb-blockade peaks as a func-
tion of gate voltage at T575 mK; upper trace, the same peak
series but at T5660 mK. Notice the large fluctuations in the
peak heights and the presence of very small peaks (three of
them are unobserved) at low temperature. The inset in panel
(b) is an electron micrograph of one of the samples containing
four dots. From Chang et al. (1996). Panels (c) and (d): mea-
sured peak-height distributions of Folk et al. (1996) in
Coulomb-blockade dots at T570620 mK, compared with the
theoretical predictions (solid lines) for [panel (c)] B50 and
[panel (d)] BÞ0. The two dots used in the experiment, with
areas 0.32 and 0.47 mm2, are relatively large (N;1000). This
allows for a larger number of peaks (;40) to be observed in
each sweep of the gate voltage, but kT/D is only ;0.3–0.5.
The insets show the same distributions on a log-linear scale
(histograms are from the experiment). Adapted from Folk
et al. (1996).
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ductance correlator was verified in Anderson-model
simulations (Alhassid and Attias, 1996a) as well as in
billiard-model calculations (Bruus, Lewenkopf, and
Mucciolo, 1996). For multichannel symmetric leads it
was found that the conductance correlator approaches
the width correlator as the number of channels increases
(Alhassid and Attias, 1996b).

The correlator cg(Dx) can be calculated perturba-
tively to leading order in D x̄ (Alhassid and Attias,
1996a, 1996b),

cg~Dx !'H 12b1uD x̄u2S 2
p2

6
lnuD x̄u1constD ~b51 !

12b2

p2

3
uD x̄u2 ~b52 !

(131)

and for the Gaussian orthogonal process it is nonana-
lytic at D x̄50. The constants bb in Eq. (131) depend on
the leads. For single-channel symmetric leads b157/4
and b253.

The peak-height autocorrelation versus a magnetic
field was measured by Folk et al. (1996). The results are
shown in Fig. 17(b) (diamonds) and compared with the
theoretical prediction [Eq. (80)] of Alhassid and Attias
(1996a; solid line). Random-matrix theory predicts a
universal correlator after the parameter is scaled. How-
ever, the scaling factor itself—for a particular choice of
the parameter—cannot be computed in RMT. When x is
a magnetic field, we can rewrite Eq. (80) as

cg~DB !'@11~DB/Bc!2#22, (132)

where Bc is the correlation field. The curve in Fig. 17(b)
represents a one-parameter fit (i.e., Bc) to the data. It is
found that Bc58.160.5 mT or Fc'0.8F0 .

The correlation field in closed dots can be estimated
semiclassically, similarly to the open-dot case (see Sec.
IV.C.2). Since the decay time of a resonance in a closed
dot is much longer than the Heisenberg time, the latter
becomes the relevant time scale for the diffusive area
accumulation. The estimate for Bc in a closed dot is then
obtained by replacing tescape in Eq. (102) with tH :

BcA/F05k~2ptc /tH!1/25kgT
21/25k4p2N21/4,

(133)

where gT is the ballistic Thouless conductance. A semi-
classical derivation can be found in Bohigas et al. (1995).
In the conformal billiard with a flux line (Berry and
Robnik, 1986), Fc'0.1F0 , but for a stadium in a uni-
form magnetic field (Bohigas et al., 1995), flux is accu-
mulated less efficiently and Fc'0.3F0 (Alhassid, Hor-
muzdiar, and Whelan, 1998). This is still below the
experimental value Fc'0.8F0, indicating that the
single-particle picture is inadequate for estimating the
correlation field. We shall return to this problem in Sec.
VI.C.

D. Crossover from conserved to broken time-reversal
symmetry

Following Alhassid, Hormuzdiar, and Whelan (1998),
we derive in this section the peak-height statistics in the
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crossover between GOE and GUE. We use the cross-
over random-matrix ensemble (68), which is character-
ized by the transition parameter z. When time-reversal
symmetry is broken by a magnetic field, z5F/Fcr ,
where Fcr is a characteristic crossover flux of the same
order as the correlation field in Eq. (133).

1. Conductance peak distributions

Using the method of Sec. III.C.2, we decompose the
partial amplitudes of an eigenfunction c in the principal
frame: gc5gcR1igcI5^fcucR&1i^fcucI&. The joint
partial-width amplitude distribution is then given by

Pz~g!5^P~gut !&

FIG. 17. Conductance peak-height fluctuations vs magnetic
field in closed dots: (a) upper traces, the measured peak height
of a single Coulomb-blockade peak as a function of magnetic
field B (solid line) and 2B (dashed line) showing the symme-
try and reproducibility of the data; lower trace (white line), the
gate voltage at the center of the peak as the magnetic field is
varied; (b) the peak-height autocorrelation function in a mag-
netic field cg(DB); l, the experimentally determined autocor-
relation function at T570620 mK, averaged over many traces
of the type shown in panel (a) (Folk et al., 1996); solid line, the
fitted squared-Lorentzian line shape (132) predicted by Alhas-
sid and Attias (1996a); inset, the universal Gaussian unitary
process correlator calculated by random-matrix process simu-
lations (circles) compared with its squared-Lorentzian fit (80)
with a250.54 (solid line). Adapted from Folk et al. (1996) and
Alhassid and Attias (1996a).
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P~gut !5S 11t2

2pt D L

~det M !21

3expS 2
11t2

2
gR

TM21gR2
11t2

2t2 gI
TM21gID ,

(134)

where the brackets ^ . . . & denote an average over the
distribution Pz(t) in Eq. (71). Here M is the correlation
matrix (122) and is assumed to be independent of z. This
is correct as long as the dot-leads geometry is held fixed
as the magnetic field is changed.

The width for decay into a one-channel lead is given
by G5ugu25gR

2 1gI
2 . Using Eq. (134) we find Pz(Ĝ)

5^a1e2a1
2 ĜI0(a1a2Ĝ)&, where a6[(t216t)/2, and I0

is the modified Bessel function of order zero.
For the general case of L inequivalent and/or corre-

lated channels, we note that the joint conditional distri-
bution P(gut) in Eq. (134) is identical to the joint
partial-width amplitude distribution for a GOE problem
of 2L channels with partial amplitudes gcR , gcI and
an extended correlation matrix M composed of four
L3L blocks:

M5S 1
11t2 M 0

0
t2

11t2 M
D .

We can therefore use the known GOE width and con-
ductance peak distributions from Secs. V.B.2 and V.B.3.
The 2L eigenvalues of M are given by $v j

2%5$ @1/(1
1t2)# wc

2 , @ t2/(11t2)# wc
2%, where wc

2 are the L eigen-
values of M . Sorting the inverse eigenvalues of M in
ascending order, v1

22,v2
22, . . . , we find for the cross-

over width distribution

Pz~G!5K 1

p2L S )
c

1

vc
D (

m51

L

~2 !m11E
1/2v2m21

2

1/2v2m
2

dt

3
e2Gt

A) r51
2m21S t2

1

2vr
2D ) s52m

2L S 1

2vs
2 2t D L .

(135)

In the crossover regime G l and Gr are no longer sta-
tistically independent, i.e., P(G l,Gr)5^P(G lut)P(Grut)&
Þ^P(G lut)&^P(Grut)&5P(G l)P(Gr). This is just the
manifestation of the long-distance correlations in the
transition statistics discovered by Fal’ko and Efetov
(1996). On the other hand, at fixed t , G l and Gr are
independent, and P(gut) is calculated in closed form by
following the same steps as for the GOE case (Alhassid,
Hormuzdiar, and Whelan, 1998). The peak-height distri-
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
butions Pz(ln g) in the crossover from GOE to GUE are
shown in Fig. 18. Here ln g is chosen as the variable in
order to show the behavior at small intensities over sev-
eral orders of magnitude (Alhassid and Levine, 1986).
The left inset confirms the RMT predictions for the con-
formal billiard.

2. Weak localization

We already know from Sec. V.B.3 that a weak-
localization correction is predicted for the average con-
ductance peak height. The complete dependence of ḡ on
z (for symmetric leads with L channels in each lead) was
calculated in closed form by Alhassid (1998). The calcu-
lation is simpler than the corresponding one in open
dots (see Sec. IV.C.2) and can be done within the frame-
work of RMT. For a dot with single-channel symmetric
leads (L51),

ḡ~z!5
1
4

1 K S t

12t2D 2S 2t2

12t4 ln t1
1
2 D L . (136)

As in the case of open dots, we define dgL(z)
[ ḡL

GUE2 ḡL(z). The quantity dgL(z) is largest at z50
(GOE limit) where dgL(0)/ ḡL

GUE512 ḡL
GOE/ ḡL

GUE

51/@2(L11)# , and approaches zero for z→6` . The
right inset of Fig. 18 shows that the predicted weak-

FIG. 18. Coulomb-blockade conductance peak-height distribu-
tions in the crossover from conserved to broken time-reversal
symmetry. The distributions for single-mode leads are shown
vs ln g for z50 (GOE, dashed line), z50.1,0.25,0.5 (solid
lines), and z@1 (GUE, dot-dashed line). Left inset, distribu-
tions obtained from simulations of the conformal billiard
threaded by different amounts of magnetic flux (histograms)
are compared with theoretical distributions calculated for z
'4F/F0 (solid lines). Right inset, the analytic weak-
localization line shape dg(z)/ ḡGUE for a dot with single-
channel symmetric leads (solid line), compared with a recent
experiment (solid circles) by Folk et al. (2000). The quantity
ḡGUE is measured away from B50 and z5B/Bcr with Bcr'6
mT. Adapted from Alhassid, Hormuzdiar and Whelan (1998)
and Alhassid (1998).
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localization line shape dgL(z)/ ḡL
GUE for a dot with one-

channel symmetric leads (solid line) agrees well with a
recent experiment (Folk et al., 2000) after scaling of B .

In closed dots, the full width at half maximum
(FWHM) of the weak-localization line shape is almost
independent of the number of channels L, in contrast
with open dots, where the FWHM behaves as ;AL for
large L. This difference can be understood in terms of
the different time scales involved. In open dots, the
crossover in the average conductance occurs when
tescape /tmix54p2z2/L2;1, leading to zcr

open;AL/2p [see
the discussion following Eq. (103)]. In closed dots, on
the other hand, the ‘‘escape’’ time (by tunneling) is
much longer than the Heisenberg time tH , and it is the
latter that competes with the mixing time. Since tH is
longer by a factor of L than the escape time in an open
dot with L ideal channels, we conclude that the cross-
over in the average conductance in closed dots occurs
when zcr

closed;1, independent of the number of channels.
The variance of the conductance peak height in the

crossover from GOE to GUE can also be calculated in
closed form (Alhassid, 1998). For single-channel sym-
metric leads,

g2~z!5
3
16

1
27
2 K S t

11t2D 2S t

12t2D 4F11t2

12t2 ln t11

1
1
12 S 12t2

t D 2

2
2
27 S 12t2

t D 4G L . (137)

E. Peak-spacing statistics

The spacings D2 between successive Coulomb-
blockade peaks are observed to fluctuate around an av-
erage charging energy that changes smoothly as more
electrons are added to the dot (Sivan et al., 1996). In the
constant-interaction model, D25ea(Vg

N112Vg
N)

5EN112EN1e2/C [see Eq. (27)]. Thus if the single-
particle states are not spin degenerate (but without
treating the spin-up and spin-down manifolds as statisti-
cally independent), we expect a (shifted) Wigner-Dyson
distribution of the peak spacings. A detailed discussion
of the experimental results is postponed to Sec. VI.A.
Here we remark only that the observed distribution
does not have a Wigner-Dyson shape but is closer to a
Gaussian (Sivan et al., 1996; Simmel, Heinzel, and
Wharam, 1997; Patel, Cronenwatt, et al., 1998).

Can Gaussian-like spacing distributions be explained
in the constant-interaction-plus-RMT approach? It was
pointed out by Vallejos, Lewenkopf, and Mucciolo
(1998) that deviations from a Wigner-Dyson distribution
may be due to shape deformation of the dot as the gate
voltage changes. At gate voltage Vg

N , corresponding to
the Nth conductance peak, the shape of the dot is xN .
However, at the degeneracy point Vg

N11 of the next
peak, the shape of the dot has changed to xN11 . The
spacing D2 is now given by D22e2/C5EN11(xN11)
2EN(xN), where El(x) are the single-particle energies
of the dot with shape x . The generic variation of the
energy levels with x can be studied in the framework of
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
the Gaussian process (see Sec. III.C.3). Measuring all
energies in units of the average level spacing D, we have
for D̃2[(D22e2/C)/D

D̃25@eN11~xN11!2eN~xN11!#1@eN~xN11!2eN~xN!#

[De(N11)1DeN , (138)

where De(N11) denotes the spacing between successive
levels in a dot with a fixed shape xN11 , while DeN de-
notes the parametric variation of the Nth level as the
shape of the dot changes between peaks. The parametric
fluctuations of the levels are universal once x is scaled
according to Eq. (77). Defining dxN[xN112xN , we as-
sume that the scaled d x̄N'd x̄ is independent of N (d x̄ is
the parametric distance dx measured in units of the av-
erage distance between avoided level crossings). The
distributions P(D̃2) are then universal and depend only
on d x̄ and the symmetry class. Figure 19(c) shows the
standard deviation of the spacings s(D̃2) versus d x̄ . It
increases with d x̄ , i.e., the peak-spacing fluctuations are
larger when the single-particle spectrum changes faster
with the addition of electrons into the dot. The inset in

FIG. 19. Peak-spacing statistics and the parametric motion of
energy levels: panels (a) and (b), the peak-spacing distribution
P(D̃2) (histograms) at d x̄50.75 for the (a) orthogonal and (b)
unitary symmetries are compared with the Wigner-Dyson
nearest-neighbor spacing distributions for the respective sym-
metry (solid lines); (c) the standard deviation of the peak spac-
ing s(D̃2) as a function of d x̄ for both the GOE and GUE
statistics. Inset in panel (c), s(D̃2) (solid line) compared with

A(DeN)2, the rms of the change of a given energy level
(dashed line). The latter is just the level-diffusion correlator
shown in Fig. 10(c).
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Fig. 19(c) shows the GOE s(D̃2) (solid line) in compari-
son with @(DeN)2#1/2 (the level-diffusion correlator cal-
culated in Sec. III.C.3). The s(D̃2) curve interpolates
between the Wigner-Dyson value at d x̄50 and
A(DeN)2 at large d x̄ .

For small d x̄ , the distributions can be calculated in
closed form. Using the Gaussian process (78) near x
50, we find that DeN'^cNuH2ucN&dx , where cN is an
eigenfunction of H1 . At fixed H1 , DeN is thus a Gauss-
ian variable with zero mean and variance of d x̄ , i.e.,
P(DeN) 5 (2p)21/2(d x̄)21 exp@ 2 (DeN)2 / 2(d x̄)2# . Fol-
lowing Eq. (138), we convolute this Gaussian with the
Wigner-Dyson distribution PWD(s) [see Eq. (62)] to find

P~D̃2!'~2p!21/2E
0

`

ds PWD~s !

3~d x̄ !21e2 @(D̃22s)2/2(d x̄)2#. (139)

The distributions for finite d x̄ are easily calculated by
simulations. Figures 19(a) and 19(b) show the peak-
spacing distributions (histograms) for d x̄50.75. Each of
the distributions is compared with the Wigner-Dyson
distribution of the same symmetry class (solid lines).
The distributions are more Gaussian-like and have tails
extending to negative spacings.

We shall return to the subject of peak-spacing statis-
tics in the context of finite temperature (Sec. V.F.2) and
interaction effects (Sec. VI).

F. Finite-temperature statistics

At finite temperatures that are not much smaller than
D, several resonances in the dot may contribute to the
same conductance peak owing to the thermal smearing
of the electron energy in the leads. The charging energy
EC plays an important role. When EC@D , only two
manifolds of the many-electron energy levels with N and
N21 electrons in the dot contribute significantly since
all other manifolds are pushed away by the charging en-
ergy. The rate-equations theory of Beenakker (1991)
discussed in Sec. II.E takes into account this charging
energy effect and was used by Alhassid, Gökçedağ, and
Stone (1998) to extend the statistical theory of closed
dots to finite temperature.

1. Conductance peaks

In Sec. II.E we saw that the finite-temperature con-
ductance is a weighted average of the single-level con-
ductances: g5(lwl(T ,ẼF)gl , with thermal weights wl

given by Eq. (33) for T!e2/C . These thermal weights
depend on the canonical free energy FN and canonical
occupation numbers ^nl&

N
. The latter are calculated ex-

actly using particle-number projection (Ormand et al.,
1994):
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ZN 5e2FN /T5
e2bE0

Nsp
(

m51

Nsp

)
i51

Nsp

~11e2buEi2mueis ifm!,

(140a)

^nl&N 5
e2bE0

NspZN
(

m51

Nsp F)
i51

Nsp

~11e2buEi2mueis ifm!G
3

1
11eb(El2m)eifm

, (140b)

where the quadrature points are fm52pm/Nsp (Nsp is
the number of single-particle states), and E05( iEi . The
quantity m is a chemical potential chosen anywhere in

FIG. 20. Thermal weights of level conductances and finite-
temperature statistics of the conductance peaks: (a) thermal
weights wl(T ,ẼF) of several level conductances vs Fermi en-
ergy ẼF at kT50.5 D ; (b) ratio of thermal weights to their
noninteracting values wl /wl

(0) at ẼF5E0 vs kT/D . Solid lines,
l50; dashed lines, l561; dotted lines, l562. The results
are for a picket-fence spectrum. The inset in (b) shows the
canonical occupations (solid squares) compared with the
Fermi-Dirac distribution at kT50.5D (dashed line). Adapted
from Alhassid, Gökçedağ, and Stone (1998); (c) the measured
ratio s(g)/ ḡ between the standard deviation of the peak-
height fluctuations and the average peak height for three dots
(symbols), compared with the RMT results (solid curve). The
insets compare several of the measured distributions (histo-
grams) with the finite-temperature RMT distributions (solid
lines). From Patel, Stewart et al. (1998).
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the interval EN<m,EN11 ; s i51 for a hole (Ei<m)
and 21 for a particle (Ei.m).

The effect of energy-level fluctuations on the conduc-
tance statistics is small, and one can use a picket-fence
spectrum to demonstrate the results. An example is
shown in panels (a) and (b) of Fig. 20 for T50.5D . The
canonical occupation numbers as a function of El follow
a curve that is similar to a Fermi-Dirac distribution with
a chemical potential of (EN 1EN11)/2 but with an effec-
tive temperature smaller by almost a factor of 2 in the
vicinity of the chemical potential [see inset of Fig.
20(b)]. These results are in agreement with estimates by
Kamenev and Gefen (1997). The thermal weights [Eq.
(33)] are shown in Fig. 20(a) as a function of the effec-
tive Fermi energy for several levels in the vicinity of the
central level through which the tunneling occurs at low
temperatures (denoted in the following by l50). The
ratio of the thermal weights wl(T ,E0) to the noninter-
acting weights [Eq. (34)] is shown in Fig. 20(b). For all
lÞ0, we have wl /wl

(0)'1/2 to within 20% or better. On
the other hand, the ratio for the central level w0 /w0

(0)

5^n0&.1/2 is enhanced with respect to that for other
levels. This enhancement causes the distribution of the
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
conductance peaks (see below) to be less sensitive to
temperature than what we would expect from a nonin-
teracting theory. For temperatures above ;2 –3D ,
^n0&'1/2 and the conductance approaches G(0)/2
(Beenakker, 1991). where G(0) is the classical conduc-
tance in the absence of Coulomb blockade (see the dis-
cussion at the end of Sec. II.E).

a. Distributions

Complete RMT simulations show that spectral fluc-
tuations have a small effect on the finite-temperature
peak-height distribution P(g) (Alhassid, Gökçedağ, and
Stone, 1998). Closed expressions for P(g) can be ob-
tained if these fluctuations are ignored. In RMT, eigen-
functions that belong to different levels are uncorrelated
and P(g1 ,g2 ,. . .)5)lP(gl), where P(gl) is the distri-
bution of a single-level conductance, derived in Sec.
V.B.3. It follows that for a fixed sequence of energy lev-
els, the characteristic function of the conductance peak
distribution P(u)[*0

`dg eiugP(g) factorizes. Using the
known single-level conductance distributions Eqs.
(128a) and (128b), we find
P~u !55
)
l

S 12
iuwl

2
D 21/2

(GOE)

)
l

1

2S 12
iuwl

4
D F 11

arcsinS iuwl

4
D 1/2

S iuwl

4
D 1/2S 12

iuwl

4
D 1/2G (GUE).

(141)
Figure 20(c) compares recent experimental results by
Patel, Stewart, et al. (1998) for the temperature depen-
dence of s(g)/ ḡ with the RMT predictions (solid line).
The observed fluctuations exhibit a similar temperature
dependence, but are smaller than the RMT predictions.
Also shown are some of the experimental distributions
(histograms) in comparison with the RMT distributions
(solid lines). The deviations are larger at higher tem-
perature, suggesting that they might be due to decoher-
ence effects. Finite-temperature phase-breaking effects
on the conductance of closed dots have not yet been
studied.

b. Peak-to-peak correlations

The measured distributions of the Coulomb-blockade
peak heights at low temperatures have confirmed the
predictions of the statistical theory (see Sec. V.B.3).
However, one of these experiments (Folk et al., 1996)
also produced a puzzle: neighboring peaks are observed
to be correlated [see Fig. 7(c)] although in RMT differ-
ent eigenfunctions are uncorrelated. Since the tempera-
ture in this experiment is only ;0.3–0.5D , some of these
correlations might be due to the finite temperature,
where several resonances contribute to the same peak.
We define the peak-to-peak correlator

c~n !5dGNdGN1n/~dGN!2, (142)

where dGN5GN2ḠN is the fluctuation of the Nth con-
ductance peak around its average. An approximate ex-
pression for c(n) is obtained by assuming that the loca-
tion of the Nth peak is fixed at its low-temperature value
ẼF5EN [note that ẼF is measured relative to (N
21/2)e2/C]. Since eigenvectors and eigenvalues are un-
correlated in RMT, and using glgm5gl

2dlm1 ḡl
2(1

2dlm), we find

c~n !'
(lwl~N1n !wl~N !

(lwl
2~N!

, (143)

where wl(N )[wl(T ,EN), and the remaining average
is over the spectrum. Equation (143) can be simplified
for a picket-fence spectrum: c(n)'(lwl2nwl /(wl

2 ,
where wl are the weights for a fixed number of electrons
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in the dot. The number nc of correlated peaks, defined
as the FWHM of the correlator c(n), is shown in Fig.
21(c) versus T/D and compared with the experimental
results of Patel, Stewart, et al. (1998) for three dots of
different size. [The measured correlators c(n) are
shown in Figs. 21(a) and 21(b) for two of the dots.]
While the qualitative increase of correlations with tem-
perature is confirmed, we see enhanced correlations in
the low-temperature data. This is not fully understood,
although several possible explanations were suggested:

(i) The correlations are enhanced because of spin-
paired levels. Such levels can be identified by
their similar magnetoconductance traces; see, for
example, the inset of Fig. 21(c).

(ii) A mechanism was suggested (Hackenbroich, He-
iss, and Weidenmüller, 1997; Baltin et al., 1999)
whereby the change in deformation of the confin-
ing potential upon the addition of an electron into
the dot results in a level crossing between succes-
sive Coulomb-blockade peaks such that the next
added electron is essentially filling the same state.
This can lead to a series of strongly correlated

FIG. 21. Finite-temperature peak-to-peak correlations and
spectral scrambling (experiment). The peak-to-peak correlator
c(n) is shown at different temperatures for (a) a larger dot
with D520 meV and (b) a smaller dot with D538 meV. Notice
that the correlator saturates sooner in the smaller dot. Com-
pare with panels (a) and (b) of Fig. 23. (c) The number of
correlated peaks nc as a function of T/D in three dots of dif-
ferent sizes. Also shown (solid line) are the RMT results for an
unchanging spectrum. The inset displays the magnetoconduc-
tance traces of three successive Coulomb-blockade peaks. The
upper two peaks follow similar traces, suggesting a spin pair.
From Patel, Stewart, et al. (1998).
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peaks. The mechanism assumes certain geom-
etries (e.g., harmonic potentials) that are more
suitable to nearly integrable dots. It remains to be
seen whether this model can also explain en-
hanced correlations in ‘‘generic’’ chaotic dots.

(iii) A semiclassical theory of the Coulomb-blockade
peak heights was discussed by Narimanov et al.
(1999). The level width to decay into one of the
leads is expanded as a sum over periodic orbits
that are well coupled to the lead. A periodic
modulation of the peak-height envelope is ex-
pected with a period of ;\/tD , where t5L/vF is
the period of the shortest orbit. For the dot used
in the experiment of Patel, Stewart, et al. (1998),
the estimated period corresponds to ;12 peaks,
close to the experimental value of ;15. The peak
heights have Porter-Thomas fluctuations only
locally around the semiclassical envelope (Kaplan
and Heller, 1998), but the resulting peak-height
distribution is still found to be very close to the
RMT distribution. The modulation also leads to
enhanced correlations of adjacent peaks. How-
ever, this explanation requires certain geometries
with periodic orbits that are strongly coupled to at
least one of the leads.

An intriguing effect in the experimental results of Fig.
21 is the saturation of nc vs temperature at a value that
depends on the dot’s size. This effect will be explained in
Sec. V.G.

2. Peak spacings

The finite-temperature statistical theory can also be
used to calculate the temperature dependence of the
peak-spacing distribution. Unlike the conductance
peaks, the peak spacings are sensitive to the fluctuations
of both the spectrum and the wave functions. While for
T!D the peak height is located at EN , at temperatures
of order D several levels contribute to a given peak, and
fluctuations of the individual level conductances gl may
shift the peak location away from EN .

While we do not expect to reproduce the observed
functional form of the distribution using a single-particle
spectrum that is unchanged with the addition of elec-
trons into the dot (see Sec. V.E), it is still of interest to
understand the dependence of its width s(D̃2) on T/D .
Figure 22(a) shows a typical sequence of peak spacings
at two different temperatures, demonstrating the de-
crease in peak-spacing fluctuations with temperature.
Figure 22(b) compares the RMT result (solid line) for
sGUE(D̃2) (Alhassid and Malhotra, 1999) with the ex-
perimental results of Patel, Cronenwett, et al. (1998) for
BÞ0. Above T/D;0.5, we observe a sharp decrease of
s(D̃2), in agreement with the experimental results. The
inset is the calculated ratio sGOE(D̃2)/sGUE(D̃2) as a
function of T/D . The experimental ratio (;1.2–1.3)
measured at T;100 mK is consistent with the calcula-
tions.
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G. Spectral scrambling

In Sec. V.F, the finite-temperature statistics were dis-
cussed assuming that the single-particle spectrum is un-
changed as electrons are added to the dot. However, in
Sec. V.E we saw that a changing electronic spectrum has
important effects on the T!D peak-spacing distribution.
The single-particle spectrum is expected to change with
the addition of electrons not only because of changes in
the dot’s shape, but, more importantly, because of
electron-electron interactions that lead to charge rear-
rangement on the dot. A detailed discussion of this point
is postponed to Secs. VI.A.1 and VI.A.3, and here we
simply assume that the changing spectrum can be mod-
eled by a parametric dependence of an effective single-
particle potential: the dot’s Hamiltonian H(x) depends
on a parameter x that assumes a discrete set of values xN
as electrons are added to the dot. From the theory of
Gaussian processes (Sec. III.C.3), we expect the peak-
to-peak correlator to be determined universally (for a
fixed T/D) by the value of the scaled parametric change
d x̄ between two successive peaks.

Peak-to-peak correlations should be sensitive to a
changing spectrum. For a fixed spectrum, the number of

FIG. 22. Temperature dependence of the peak-spacing statis-
tics in closed dots: (a) a sequence of peak spacings vs peak
index at T/D50.5 (lower trace) and T/D52 (upper trace) ob-
tained from one random-matrix realization; (b) the standard
deviation s(D̃2) in the GUE statistics vs T/D on a log-log
scale. The theoretical RMT results (solid line) are compared
with recent experimental data by Patel, Cronenwett, et al.
(1998) taken at BÞ0 for two dot configurations: d, D
521 meV; s, D514 meV. The charging energy is EC

5590 meV. The results are expressed in units of the mean
level spacing D. Inset, the ratio sGOE(D̃2)/sGUE(D̃2) as a func-
tion of T/D . From Alhassid and Malhotra (1999).
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correlated peaks nc increases approximately linearly
with T , as the number of levels that contribute to each
peak is ;T/D . However, if the addition of each electron
changes the spectrum, then nc is expected to saturate at
a certain value ;m that measures the number of added
electrons required to scramble the spectrum completely.
These expectations are confirmed both experimentally
and theoretically. Panels (a) and (b) of Fig. 23 show the
calculated peak-to-peak correlator c(n) at several tem-
peratures for d x̄50 and d x̄50.5. We see that the cor-
relator’s width saturates in the d x̄Þ0 case. In Fig. 23(c)
we show the number of correlated peaks nc as a function
of temperature for several values of the scrambling pa-
rameter d x̄ . We observe that nc saturates at a value m
that decreases rapidly with increasing d x̄ .

Similar qualitative results are found in experiment
(Patel, Stewart, et al., 1998). Figure 21(c) shows the ex-
perimental nc vs temperature for dots of different sizes.
Also shown in Figs. 21(a) and 21(b) is the temperature
dependence of the correlator c(n) for two of the dots.
Notice the similarity to the theoretical correlators of
Figs. 23(a) and 23(b). We see that in the smallest device,
saturation occurs at m;3 –4 already for T*0.5D , while
for the larger dots, nc continues to increase with tem-

FIG. 23. Finite-temperature peak-to-peak correlations and
spectral scrambling (theory). The peak-to-peak correlator
c(n) at T/D50.5, 1, 2, and 3 is shown for (a) a closed dot with
a fixed spectrum (d x̄50) and (b) a dot whose spectrum
changes with the addition of electrons (d x̄50.5). Here d x̄ is a
parameter characterizing the degree of statistical scrambling
upon the addition of one electron to the dot. Notice the satu-
ration of the correlator with temperature for the d x̄Þ0 case.
(c) The number of correlated peaks nc [FWHM of c(n)] as a
function of T/D for d x̄50, 0.1, 0.2, 0.5, and 1. The quantity nc

saturates sooner in a dot whose spectrum scrambles faster (i.e.,
in a dot with larger d x̄). From Alhassid and Malhotra (1999).
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perature. This suggests that spectral scrambling is slower
in the larger dots. Indeed, it is argued in Sec. VI.A.3 that
d x̄ is smaller for a dot with a larger ballistic Thouless
conductance g [see Eqs. (158) below]. Since gT}AN, we
expect the spectrum of the larger dots to have a smaller
d x̄ and thus to be less sensitive to the addition of elec-
trons.

H. Correlations between the addition and excitation
spectra

In the constant-interaction model, the ground state of
a dot with N1n electrons is obtained by adding n elec-
tron to the first n excited single-particle states of the
N-electron dot. On the other hand, we have seen in Sec.
V.G that interactions scramble the single-particle spec-
trum when electrons are added to the dot, leading to the
loss of correlations between the addition and excitation
spectra. The measured finite-temperature peak-to-peak
correlations shown in Fig. 21 suggest that a complete
scrambling of the single-particle spectrum occurs only
after several electrons (;m) are added to the dot. We
thus expect that for a small n (&m), the ground state of
a dot with N1n electrons is still correlated with the nth
excited state of a dot with N electrons. The low-lying
excited states in the dot can be observed through non-
linear transport experiments in the single-charge tunnel-
ing regime (see Sec. II.G).

Stewart et al. (1997) observed large correlations be-
tween the addition and excitation spectra up to m;4.
The strongest evidence for such correlations was ob-
served in the magnetoconductance traces of the ground
and excited levels in the dot. The height and position (in
gate voltage Vg) of the differential conductance peak at
finite source-drain voltage Vsd could be followed as a
function of magnetic field and compared with similar
traces of the ground state in the linear Coloumb-
blockade measurements. Stewart et al. found that the
magnetoconductance trace of the nth excited state of an
N-electron dot was similar to the trace of the ground
state of an (N1n)-electron dot for n,4.

Another important result of the above experiment is
the absence of spin degeneracy, contrary to the results
observed in a few-electron dot (Tarucha et al., 1996;
Kouwenhoven, Oosterkamp, et al., 1997). An excited
level appears in the excitation spectrum for every elec-
tron that is removed from the dot.

VI. INTERACTION EFFECTS

Electron-electron interactions—beyond the average
interaction energy N 2e2/2C of the constant-interaction
model—are expected to play an important role in closed
dots. Theoretical studies of interaction effects on the
mesoscopic fluctuations in closed dots have been largely
motivated by experiments showing deviations from the
constant-interaction-plus-RMT model:

(i) The peak-spacing distributions (Sivan et al., 1996;
Simmel, Heinzel, and Wharam, 1997; Patel,
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
Cronenwett, et al., 1998; Simmel et al., 1999) do
not have the Wigner-Dyson form and their width
is larger than expected from the constant-
interaction model (see Sec. V.E).

(ii) The measured correlation flux of a conductance
peak height is larger than its single-particle esti-
mate (see Sec. V.C).

(iii) Correlations between the addition and excitation
spectra diminish after the addition of a small
number of electrons (see Sec. V.H).

(iv) The saturation of the peak-to-peak correlator
with increasing temperature indicates spectral
scrambling due to interactions (see Sec. V.G).

One way to include interaction effects while retaining
a single-particle picture is in the Hartree-Fock approxi-
mation. Assuming that the Hartree-Fock single-particle
wave functions do not change upon the addition of an
electron to the dot, Koopmans’ theorem (Koopmans,
1934) states that the addition energy is given by the
Hartree-Fock single-particle energy of the added elec-
tron. It is then possible to relate the peak spacing to the
change in a single-particle Hartree-Fock level. This
change is dominated by a certain diagonal interaction
matrix element, which fluctuates due to the fluctuations
of the single-particle wave functions. Blanter, Mirlin,
and Muzykantskii (1997) used the random-phase ap-
proximation (RPA) to construct an effective screened
potential from the bare Coulomb interaction in systems
with finite geometries. They estimated the variance of a
diagonal interaction matrix element, and find peak-
spacing fluctuations that are larger but still of the order
of the mean level spacing.

The RPA breaks down at strong interactions. Sivan
et al. (1996) used an Anderson model of a disordered
dot with electron-electron interactions to calculate nu-
merically the the peak-spacing distribution. These calcu-
lations can be done only for a very small number of
electrons (much fewer than in the experiments), but
they explain the Gaussian shape of the distributions and
yield larger widths for these distributions at stronger in-
teractions. Berkovits and Sivan (1998) used the same
model to study interaction effects on the peak-height
statistics. Their results indicate that the peak-height dis-
tributions are only weakly sensitive to interactions but
that the correlation field increases with interaction
strength.

How does the electron’s spin manifest itself in quan-
tum dots? In the absence of interactions, the single-
particle states come in spin-degenerate pairs and the
peak-spacing distribution is expected to be bimodal. No
bimodality was seen in the experiments, an effect ex-
plained by strong electron-electron interactions (Berko-
vits, 1998). However, a recent experiment in dots with
higher electron densities (where the Coulomb interac-
tions are effectively weaker) showed spin-pairing effects
in both the peak spacings and the parametric depen-
dence of the peaks (Lüscher et al., 2000). The spin of the
ground state and how it is affected by disorder or one-
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body chaos was the subject of recent theoretical investi-
gations, and experimental results are expected in the
near future.

The gas parameter rs measures the strength of the
Coulomb interaction at an average distance between the
electrons relative to their kinetic energy. It is universally
determined by the density ns of the electron gas. In 2D,
p(rsaB)251/ns , where aB5\2/m* e2 is the Bohr radius.
The gas parameter rs is thus the radius, in atomic units,
of the circle that encloses one unit of electron charge.
The Fermi momentum is given by kFaB5&/rs , while
the Fermi energy is EF5(\2/2m* aB

2 )(2/rs
2). The ratio

between a typical Coulomb interaction energy e2/2rsaB
and the average kinetic energy EF/2 is thus given by rs .
rs can also be expressed in terms of the Fermi velocity
and the electron charge: rs5e2/\vF . The RPA is valid
for rs,1, but in typical semiconductor quantum dots rs
;122.

In Sec. VI.A we discuss interaction effects on the
peak-spacing statistics using mean-field approximations
and exact simulations. Spin effects are reviewed in Sec.
VI.B and interaction effects on the peak-height statistics
are discussed in Sec. VI.C. A random interaction matrix
model is discussed in Sec. VI.D.

A. Peak-spacing statistics and interactions

The first experiment to measure the peak-spacing dis-
tribution in Coulomb-blockade quantum dots was car-
ried out by Sivan et al. (1996). The spacing between suc-
cessive Coulomb-blockade peaks is related to a second
difference of the ground-state energy as a function of
the number of electrons N. To see that, we denote by
E j

(N) the ground-state energy of a dot with N electrons at
a gate voltage Vg(j) that corresponds to the degeneracy
point of the j21→j transition. Since the average one-
body potential induced by the gate is linear in the gate
voltage Vg , the total energy of N electrons at the
jth peak is E j

(N )2eNaVg(j), where a is the ratio be-
tween the capacitance of the dot with respect to its gate
and the total capacitance (see Sec. II.E). The degen-
eracy condition for the N11 peak is then EF
1eaVg(N11)5E N11

(N11)2E N11
(N) . The spacing between

two consecutive peaks DVg5Vg(N11)2Vg(N) is
(Sivan et al., 1996)

D2~N11 ![eaDVg5E N11
(N11)1E N

(N21)2E N11
(N) 2E N

(N) .
(144)

If the ground-state energy of the dot is independent of
the gate voltage, then D25E (N11)1E (N21)22E (N).
However, generally the change in the gate voltage is ac-
companied by a deformation of the dot so that E N11

(N)

ÞE N
(N) .

In the constant-interaction model, the ground-state
energy is E j

(N )5N 2e2/2C1(k51
N Ek (where Ek are the

single-particle energies), and D2(N11)5EN112EN
1e2/C . Thus if we ignore the spin degrees of freedom,
we expect D̃2[(D22e2/C)/D to have a Wigner-Dyson
distribution PWD(D̃2). The variance of D2 would then
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be 0.52 D in the GOE and 0.42 D in the GUE. This is the
standard constant-interaction-plus-RMT model that we
have used in earlier sections.

In the case of spin-degenerate single-particle states,
we expect in the constant-interaction model D2(N11)
2e2/C50 for odd N (since two electrons with spin up
and down can occupy the same level E(N11)/2), but
D2(N11)2e2/C5EN/2112EN/2 for even N. The result-
ing distribution of D̃2 is bimodal:

P~D̃2!5~1/2!Fd~D̃2!1
1
2

PWDS D̃2

2 D G , (145)

where the d function and the Wigner-Dyson distribu-
tion originate in odd and even N ’s, respectively. This
is the constant-interaction–plus–spin-degenerate-RMT
(CI1SDRMT) model, where the spacing for even N is
on average larger by 2D than the spacing for odd N,
leading to a larger variance than in the constant-
interaction–plus–RMT model: s(D̃2)51.24 D for GOE
and 1.16 D for GUE.

Finally, another simple model considered in the litera-
ture is the constant-interaction–plus–spin-resolved-
RMT model (CI1SRRMT). Here the assumption is
that, because of exchange interactions, the different spin
states are nondegenerate. However, the spin is a good
quantum number, and therefore the subspaces of spin
up and spin down are described by two independent
random-matrix ensembles. The statistics of a superposi-
tion of two uncorrelated spectra were discussed by
Dyson (1962b). The corresponding level-spacing distri-
bution (see Mehta, 1991, Appendix A.2, p. 402) is char-
acterized by a nonzero value at zero spacing. The corre-
sponding widths s(D̃2)50.70 D for GOE and 0.65 D for
GUE are in between the values predicted by the
CI1RMT and CI1SDRMT models.

Sequences of peak spacings measured in gate voltage
DVg are shown in Figs. 24(a) and 24(b). The sequence in
panel (a) is from Sivan et al. (1996), and the sequence in
panel (b) is from Patel, Cronenwett, et al. (1998), where
the quantity drawn is ng[(DVg2DVg)/DVg. The
dashed lines describe the standard deviation of the
Wigner-Dyson distribution. The fluctuations in Fig.
24(a) are significantly larger than in RMT, while those in
Fig. 24(b) are somewhat larger than in RMT. The differ-
ence between the experiments in the magnitude of the
fluctuations is not currently understood. The peak-
spacing distribution is found to be more symmetric than
in any of the above simple models and closer to a Gauss-
ian. In particular, no bimodal structure is observed, sug-
gesting the absence of spin degeneracy. An example of
the observed distributions (histograms) is shown in pan-
els (c) and (d) of Fig. 24 (Patel, Cronenwett, et al., 1998),
where the solid lines are Gaussian fits. The scale of the
mean level spacing is shown in units of the charging en-
ergy EC . The ratio between the B50 and BÞ0 widths
is sB50(D2)/sBÞ0(D2)'1.23.

The discussion here is limited to almost-closed dots.
The statistics of the peak spacings for a partially open
dot were recently discussed by Kaminski and Glazman
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(2000), but only within the constant-interaction model.
For a partially open dot, the peak position is affected by

FIG. 24. Measured peak-spacing statistics in Coulomb-
blockade dots: (a) peak-spacing series from Sivan et al. (1996)
at B 5 0 showing DVg between neighboring peaks vs the
number of electrons N in the dot; solid line, linear fit describ-
ing the increase in capacitance with N; (b) sequence of peak-
spacing fluctuations ng[(DVg2DVg)/DVg vs Vg from Patel,
Stewart, et al. (1998); solid symbols, B530 mT; open symbols,
B5230 mT. The dashed lines in panels (a) and (b) show the
standard RMT deviation. Panels (c) and (d), spacing distribu-
tions P(ng) for B50 and BÞ0. The shaded histograms are the
measured distributions at T;100 mK. The data contain 4300
peaks for B50 of which 720 are statistically independent, and
10800 peaks for BÞ0, of which 1600 are statistically indepen-
dent. The data were collected at T;100 mK from three dots
with D59 –11 meV, so that T/D;0.8. The solid lines are
Gaussian fits. The right insets in (c) and (d) present the data
and the fit on a log-linear scale to show deviations from Gaus-
sians at the tails. The left insets in (c) and (d) are the bimodal
constant-interaction–plus-spin-degenerate-RMT distributions
before (dotted line) and after (solid line) convolution with a
Gaussian noise. From Patel, Stewart, et al. (1998).
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the dot-lead couplings, and the randomness of the elec-
tronic wave functions at the point contacts contribute to
the peak-spacing fluctuations. This contribution in-
creases with the strength of the dot-lead couplings and
becomes comparable to the fluctuations of the single-
particle spacing while Coulomb-blockade peaks can still
be observed.

In the following discussions of peak spacings and in-
teractions, we ignore spin. Spin effects will be discussed
in Sec. VI.B.

1. Hartree-Fock approximation and Koopmans’ theorem

A consideration of interaction effects while retaining
a single-particle picture is best done in the Hartree-Fock
approximation. We start from a Hamiltonian of interact-
ing electrons: H5( ijhijai

†aj1 1/4 ( ijklv ijkl
A ai

†aj
†alak ,

where h5t1V is the one-body part (V describes one-
body disorder or a confining potential) and v ij ;kl

A

[^ijuvukl&2^ijuvulk& are the antisymmetrized matrix el-
ements of the two-body interaction. The single-particle
Hartree-Fock energies and wave functions are deter-
mined self-consistently by solving the Hartree-Fock
equations (see, e.g., Kittel, 1987). Denoting by Ek

(N) the
energy of the kth single-particle state in a dot with N
electrons, we have in the self-consistent basis

Ek
(N)5hkk1(

i51

N
vki ;ki

A , (146)

where the sum is over the N lowest occupied single-
particle states. The Hartree-Fock ground-state energy
for N electrons is then given by E HF

(N)5(k51
N hkk

1(1/2)( i ,j51
N v ij ;ij

A .
Numerical solutions of the Hartree-Fock equations

will be discussed in Sec.VI.A.4. Here we use the frame-
work of Koopmans’ theorem (Koopmans, 1934), en-
abling us to relate the peak spacing to the single-particle
Hartree-Fock energies. Koopmans’ theorem states that

E HF
(N11)2E HF

(N)'EN11
(N) . (147)

Its basic assumption is that the single-particle wave func-
tions do not change when an electron is added. This
assumption should hold only for large systems (Kittel,
1987), but it might be a good starting point for a dot with
several hundred electrons. Using this assumption we
find E HF

(N11)2E HF
(N)'hN11, N111( i51

N vN11,i ;N11,i
A 5EN11

(N) ,
which is just Eq. (147). Under the conditions of Koop-
mans’ theorem we also have EN11

(N) 5EN11
(N11) , and the

peak spacing can be written as

D2~N11 !'EN11
(N11)2EN

(N)5DE(N11)1DEN . (148)

Here DE(N11)[EN11
(N11)2EN

(N11) measures the spacing
between the Nth and N11st levels for a fixed number of
electrons (N11) and is of the order of the mean level
spacing D (both levels are occupied and their spacing is
expected to follow Wigner-Dyson statistics), while
DEN[EN

(N11)2EN
(N) is the change in energy of the same

Nth level when the number of electrons in the dot is
increased from N to N11:



947Y. Alhassid: Statistical theory of quantum dots
DEN 'vN11, N;N11, N
A

5E dr dr8@ ucN~r!u2v~r,r8!ucN11~r8!u2

2cN* ~r!cN~r8!v~r,r8!cN11~r!cN11* ~r8!# .

(149)

The quantity DEN is of the order of the charging energy,
and is a constant e2/C in the constant-interaction model.
However, the fluctuations of the single-particle wave
functions in Eq. (149) lead to fluctuations of DEN and
can modify the peak-spacing statistics.

2. Random-phase approximation in disordered dots

Blanter, Mirlin, and Muzykantskii (1997) calculated
the fluctuations of DEN in Eq. (149) using the RPA and
assuming a disordered dot in its metallic regime. The
derivation consists of (i) calculating an effective interac-
tion in the RPA to replace the bare Coulomb interaction
in Eq. (149), and (ii) calculating the variance of the ma-
trix element in Eq. (149) from the fluctuations of the
single-particle eigenfunctions.

The Coulomb interaction v0(r12r2)5e2/eur2r8u
(where e is the dielectric constant) is screened. An effec-
tive screened potential v(r,r8) in the finite geometry of
the dot can be found in the RPA (Fetter and Walecka,
1971):

v~r,r8!5v0~r2r8!2E dr1 dr2 v0~r2r1!

3P0~r1 ,r2!v~r2 ,r8!, (150)

where P0 is the static polarization function re-
lating the electric potential fluctuation dV to the
charge-density fluctuations dr through dr(r)
522e*dr8P0(r,r8)dV(r8). In the limit where the
screening length is large compared to the Fermi wave-
length, the polarization function can be approximated
by a localized function P0(r,r8)'n@d(r2r8)2A 21# ,
where n is the density of states per unit area and A is the
area of the dot. In an infinite system, Eq. (150) is easily
solved by a Fourier expansion. In a finite geometry, the
equations are solved by expanding in a complete set of
eigenfunctions xl(r) of the Laplacian in the dot with
eigenvalues qa

2 that include the zero mode x051/A.
Three contributions to the effective potential are found:

v~r,r8!5e2/C1@Vk~r!1Vk~r8!#1vk~r,r8!. (151)

The first term is the usual charging energy, and the
third term is the 2D screening potential
vk(r,r8)5(2pe2/e)(aÞ0(qa1k)21xa(r)xa* (r8), where
k52pe2n/e is the inverse screening length. The new
contribution in a finite geometry is a one-body potential,
which for a disk of radius R is Vk(r)52(e2/2kR)(R2

2r2)21/2. This potential is the result of excess charge
that is pushed to the boundaries of the dot: the added
electron attracts a positive cloud around it, generating
excess negative charge at the boundaries.
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Using the effective interaction [Eq. (151)] in Eq.
(149), the variation DEN of the Nth Hartree-Fock level
when an electron is added to the dot is composed of
three contributions,

DEN 5e2/C1DEN
(1)1DEN

(2) , (152)

corresponding to the three parts of the effective poten-
tial [Eq. (151)]. Fluctuations of DEN originate from fluc-
tuations of the single-particle wave functions, and the
variances s(DEN

(i)) (where i51,2) can then be ex-
pressed in terms of wave-function correlations. For ex-
ample,

s2~DEN
(1)!52E dr dr8 Vk~r!Vk~r8!ucN~r!u2ucN~r8!u2,

(153)

where we have ignored the exchange term in Eq. (149).
The universal RMT result for the correlation of the

intensities of two eigenfunctions in chaotic systems is
A 2ucl(r)u2ucm(r8)u2215dlm(2/b)fd

2(ur2r8u), where fd
is defined in Eq. (124). In diffusive systems (l!L) this
correlation is short range (with a range of ;l) because
of an additional exponential factor e2uDru/2l in fd . Long-
range (diffuson) correlations are weaker by 1/g but be-
come important when integrated over in Eq. (153).
Wave-function correlations in disordered systems were
studied to order 1/gT by Blanter and Mirlin (1997) and
reviewed by Mirlin (1997, 2000). For b51,2 and eigen-
functions cl , cm (lÞm) whose energy separation is
smaller than Ec , they find

A 2ucl~r!u2ucl~r8!u221

5
2
b F fd

2~ ur2r8u!S 11
2
b

PD~r,r8! D1PD~r,r8!G ,

(154a)

A 2ucl~r!u2ucm~r8!u221

5
2
b

fd
2~ ur2r8u!PD~r,r8!, (154b)

A 2cl* ~r!cm~r!cl~r8!cm* ~r8!

5fd
2~ ur2r8u!@11~22b!PD~r,r8!#1PD~r,r8!,

(154c)

where PD(r,r8)5(pn)21(aÞ0xa(r)xa(r8)/Dqa
2 is the

diffusion propagator expressed in terms of the eigen-
functions xa(r) and eigenvalues Dqa

2 of the diffusion
operator. Here PD;1/gT is negligible at short distances
compared with fd

2 , but dominates at long distances.
Using the correlator (154a) in Eq. (153), we find for

the variance of DEN
(1)

s2~DEN
(1)!5

4
bA 2 E dr dr8 Vk~r!@fd

2~r2r8!

1PD~r,r8!Vk~r8!. (155)

We now estimate the contribution to Eq. (155) of the
short-range and long-range parts of the wave-function
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correlator. In 2D, Vk;e2/kA over the whole dot while
*dr dr8 f2

2(r2r8);Al/kF and PD;1/gT . The contribu-
tion of f2

2 to Eq. (155) is then ;b21(e2/ekA)2Al/kF

;b21(l/L)2D2/kFl , while the contribution of PD is
;b21D2/gT . Since gT;kFl , we conclude that the short-
range contribution is suppressed by a factor of (l/L)2

relative to the long-range contribution, and

s2~DEN
(1)!5

4
bA 2 E dr dr8 Vk~r!PD~r,r8!Vk~r8!

;
1
b

D2

gT
. (156)

A similar calculation of DEN
(2) using the two-body

screened potential vk(r,r8) in Eq. (149) and the cor-
relator (154b) gives

s2~DEN
(2)!'

4D2

b2A 2 E dr dr8 PD
2 ~r,r8!;

1
b2 S D

gT
D 2

.

(157)

The charging energy e2/C also fluctuates because of
small deviations (;1/kR) of the capacitance from its
purely geometrical value (Berkovits and Altshuler, 1997;
Blanter and Mirlin, 1998), leading to s(e2/C)
;(ln gT/b)21/2D/gT .

The largest contribution to s(DEN) comes from the
surface charge: s(DEN);D/AbgT [see Eq. (156)]. In its
absence (e.g., using periodic boundary conditions), the
dominating contribution is from the usual 2D screened
interaction s(DEN);D/bgT [see Eq. (157)]. It was as-
sumed that the added-electron charge is spread over the
complete dot. In practice, this will depend on the geom-
etry of the dot and the gates. An opposite extreme is
when the added-electron charge is confined to an area
whose linear dimension is ;lF , leading to s(DEN)
;D/Ab .

The standard deviation s(D2) is obtained by combin-
ing the usual RMT fluctuations of DE(N11) (;D) with
the fluctuations of DEN [see Eq. (148)]. This results in
peak-spacing fluctuations that are enhanced with respect
to RMT, but still of the order of D.

The dots used in the experiments are ballistic rather
than diffusive, requiring a new estimate of the fluctua-
tions using wave-function correlations in chaotic sys-
tems. The leading universal contribution to the correla-
tions in 2D is f2

2 , whose envelope decays slowly like
1/kFur2r8u over the whole area of the dot, and leads to
s(DEN

(1);D/AbkFL . A similar estimate for s(DEN
(1))

is obtained if we replace g in the diffusive result [Eq.
(156)] by its ballistic analog kFL;N1/2 (since l . L).
How important are nonuniversal contributions to the
wave-function correlator in the chaotic case? Blanter,
Mirlin, and Muzykantskii (1998) derived the wave-
function statistics in a billiard with diffusive surface scat-
tering. They found A 2ucl(r)u2ucl(r8)u221
5(2/b)PB(r,r8), where PB is the ballistic analog of the
diffusion propagator. The contribution to PB(r,r8) from
straight-line trajectories connecting r to r8 gives PB
51/kFur2r8u, which is just the smoothed version of the
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universal correlations f2
2(r2r8). Evaluation of PB be-

yond the universal part requires knowledge of the clas-
sical dynamics. Scars along periodic orbits can enhance
PB and lead to larger peak-spacing fluctuations (Stopa,
1998) in self-consistent density-functional calculations
(Stopa, 1996). Analogous results for the wave-function
correlations were derived for a purely ballistic chaotic
dot using semiclassical methods (Hortikar and Sred-
nicki, 1998).

3. Parametric variation of the mean field

As electrons are added to the dot, the Hartree-Fock
potential changes owing to charge rearrangement
caused by the two-body interaction. We denote the
Hartree-Fock Hamiltonian for N electrons by H(xN).
Rather than solving the microscopic Hartree-Fock equa-
tions, we can adopt a ‘‘macroscopic’’ approach assuming
that, for a chaotic dot, H(xN) describes a discrete
Gaussian process (Attias and Alhassid, 1995). In Koop-
mans’ limit we can relate the peak spacing to the single-
particle levels through Eq. (148). In particular, the quan-
tity DEN describes a discrete parametric variation of the
Nth eigenvalue when the Hamiltonian changes from
H(xN) to H(xN11). Since a discrete Gaussian process
can be embedded in a continuous Gaussian process
H(x) (Sec. III.C.3), we obtain the formulation already
discussed in Sec. V.E. However, the conceptual differ-
ence is that here the parametric variation of the single-
particle spectrum is due to interaction effects, while in
Sec. V.E it originated from a deformation of the dot’s
shape. Experimental results (Patel, Stewart, et al., 1998)
suggest that the primary cause of a changing single-
particle spectrum is interactions.

The variation of the spectrum with the addition of one
electron to the dot is described by the scrambling pa-
rameter d x̄ (see Sec. V.G). This parameter can be deter-
mined from the dot’s properties in the limit of Koop-
mans’ theorem where the single-particle wave functions
are unchanged. In the parametric approach, this limit
corresponds to first-order perturbation theory, where
s2(DEN)5D2(d x̄)2. Since DEN in the parametric ap-
proach corresponds to DEN

(1)1DEN
(2) in the microscopic

approach of Sec. VI.A.2 (e2/C has been subtracted in
both cases), we can compare s2(DEN) with Eq. (156)
[or Eq. (157)] to find that (Alhassid and Malhotra, 1999;
Alhassid and Gefen, 2000)

d x̄;~bgT!21/2;b21/2N 21/4 (158a)

or d x̄;~bgT!21;b21N 21/2, (158b)

where Eq. (158b) holds in the absence of surface charge.
Equations (158) are valid in the regime where s2(DEN)
is linear in (d x̄)2, i.e., for d x̄&0.3. Complete scrambling
(upon the addition of m electrons) is expected when the
overall parametric change is one avoided crossing, i.e.,
md x̄;1. We conclude that m;(bgT)1/2 or m;bgT for
Eqs. (158a) or (158b), respectively.
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4. Anderson model with interactions

The RPA estimate in interacting disordered systems
gives a peak-spacing standard deviation of the order of
D. However, the RPA is valid in the limit of high densi-
ties (rs!1) and breaks down at the lower electron den-
sities in semiconductor quantum dots (where rs;122).
Yet rs is still substantially below the limit of Wigner
crystallization, and additional insight into this regime of
intermediate interactions can be gained by numerical
calculations. Exact numerical diagonalizations are pos-
sible only for dots with a very small number of electrons
(;10) on a lattice with m;20 sites (compared with sev-
eral hundred electrons in the experiment). Berkovits
and Sivan (see Sivan et al., 1996) used a 2D Anderson
model with on-site disorder and Coulomb interactions.
The Hamiltonian is H5H11H2 , where H1 is a one-
body Anderson Hamiltonian [Eq. (46)], and H2

51/2 Uc( iÞj(uri2rju/a)21ai
†aiaj

†aj describes the two-
body Coulomb interaction between electrons on the lat-
tice, where Uc5e2/a is the interaction strength over one
lattice spacing. They used small lattices (;435) with
N<13 to study the distribution and variance of D2 as a
function of the interaction strength Uc . As rs
;(pm/N)1/2(Uc/4t) increases from zero, the spacing
distribution deviates from the Wigner-Dyson distribu-
tion and becomes approximately a Gaussian for rs*1.
The variance continues to increase with rs , and for rs
@1 they find s(D2)}^D2&'e2/C with a proportionality
constant of about 0.1–0.2.

Larger dots can be solved under certain approxima-
tions. The self-consistent Hartree-Fock approximation
was used to calculate the ground state of dots with up to
;100 spinless electrons (Cohen, Richter and Berkovits,
1999; Levit and Orgad, 1999; Walker, Montambaux, and
Gefen, 1999). The single-particle orbits are computed
self-consistently, allowing for configuration rearrange-
ment as an electron is added to the dot. The dominant
contribution to the peak spacing comes from the direct
matrix element vN11, N;N11, N (which in Koopmans’ limit
gives DEN). The self-consistent Hartree-Fock calcula-
tions confirm that, for increasing rs , the occupied (and
unoccupied) levels exhibit Wigner-Dyson statistics,
while the peak-spacing distribution evolves rapidly into
a Gaussian-like distribution (at rs;1) with a width that
is enhanced compared with the noninteracting picture.
The gap in the Hartree-Fock spectrum between the
highest filled level and lowest empty level is dominated
by an interaction matrix element vN,N11;N,N11 and is
found to have a Gaussian-like distribution for large val-
ues of rs .

Screening may not be very effective in the small dots
used in the exact numerical simulations. Furthermore,
screening can also be generated by external charges on
nearby metallic plates. Consequently, Hartree-Fock
simulations were also carried out for short-range (e.g.,
nearest-neighbor) interactions (Walker, Montambaux,
and Gefen, 1999).

The dependence of the width s(D2) on the size of the
dot is not fully understood. The RPA estimates predict
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s(D2)}D for rs!1, while classical calculations by Kou-
lakov, Pikus, and Shklovskii (1997) give s(D2)}e2/C
'^D2& for rs@1. The RPA scaling D}1/L2 has a differ-
ent size dependence than the classical scaling ^D2&
;1/L , a difference due to the delocalized character of
the wave functions. It is not clear which is the correct
scaling in the intermediate regime relevant to the ex-
periments (rs;122), although the self-consistent
Hartree-Fock calculations (for Coulomb interactions)
suggest typical fluctuations of s(D2);0.52 D
1a^D2&/AgT1O(rs

2), where a is a constant (Bonci and
Berkovits, 1999; Walker, Montambaux and Gefen,
1999). For short-range interactions, a scaling of ;rsD is
observed for rs&1.

The measured width of the spacing fluctuations shows
substantial variation between different experiments. The
experiments of Sivan et al. (1996) and Simmel, Heinzel,
and Wharam (1997) gave s(D2)'(0.10–0.15)e2/C
;(2 –3)D , while Patel, Cronenwett, et al. (1998) found
smaller fluctuations s(D2)'0.05e2/C;D for similar
GaAs dots (rs;1; Simmel et al., 1999).

For short-range interactions Koopmans’ theorem
breaks down at rs*1, and the self-consistent Hartree-
Fock ground state develops charge-density modulations
and increased short-range density correlations (Walker,
Gefen, Montambaux, 1999). The addition spectrum
shows nonuniversal features, and ^D2& exhibits sharp
maxima at certain magic numbers of N, in agreement
with a classical model of interacting charges. This result
is quite surprising since rs is still much smaller than the
Wigner crystal limit. A model of classical charges in a
parabolic confining potential (Koulakov and Shklovskii,
1998) has explained the capacitance experiments of
Zhitenev et al. (1997), where bunching was observed in
the addition spectrum.

Nonuniversal effects were found in the addition spec-
tra of clean chaotic dots for strong Coulomb interactions
(Ahn, Richter, and Lee, 1999). They were explained by
charge rearrangement that forms geometry-dependent
ordered states localized at the edge of the dot.

B. Spin effects and interactions

In the presence of spin degrees of freedom, the single-
particle levels come in degenerate pairs of spin up and
spin down with identical spatial wave functions. Though
the Coulomb interaction does not depend explicitly on
spin, the Pauli principle leads to an exchange interaction
that favors larger spin values. Indeed, in a spin-polarized
state, the orbital part of the wave function (having per-
mutation symmetry conjugate to that of the spin part) is
less symmetric, thus lowering the Coulomb repulsion. In
the limit gT@1, it is possible to write a simple Hamil-
tonian for the dot (Kurland, Aleiner, and Altshuler,
2000). The fluctuations of the matrix elements in the
disorder basis are O(1/gT) [see, for example, Eq. (157)],
and in the limit gT→` only the average diagonal inter-
action survives. We obtain
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Hdot5(
ls

Elals
† als1

e2

2C
N̂ 22

1
2

jS2, (159)

where j/2[ v̄ab ;ba is the average exchange matrix ele-
ment and S is the total spin operator of the dot. als

† and
als are creation and annihilation operators of an elec-
tron at orbital state l and spin s561/2. Both interaction
terms in Eq. (159) are invariant under a change of the
single-particle basis (an additional Cooper-channel in-
teraction is possible for the orthogonal symmetry, and is
not included here). The single-particle part of (159) sat-
isfies RMT statistics. Compared with the constant-
interaction model, the Hamiltonian (159) contains a new
parameter j. Its statistical properties are expected to be
universal for a given value of j. An RPA estimate gives
j/2;0.3 D for GaAs dots with rs;1 –2.

A quantity that might be sensitive to spin is the peak
spacing. In the absence of interactions, Eq. (148) for the
peak spacing still holds, but the explicit expressions for
DE(N11) and DEN depend on the parity of N:
DE(N11)5EN/2112EN/2 for N even and DE(N11)50 for
N odd as in the CI1SDRMT model. DEN can still be
approximated by an interaction matrix element
[see Eq. (149)]. However, for even N, DEN
5vN/211, N/2;N/211, N/2 , while for odd N, DEN
5*dr dr8uc(N11)/2(r)u2v(r,r8)uc(N11)/2(r8)u2, since the
N11 electron (with spin down) is now added to the
same spatial orbital occupied by a spin-up electron. Us-
ing the effective RPA interaction (151), we obtain a de-
composition of DEN into three parts, as in Eq. (152).
While the charging energy term and DEN

(1) are similar in
magnitude for both odd and even N, the term DEN

(2) ,
which originates from the two-body screened interac-
tion, is on average larger for odd N than it is for even N,
since in the former case the spin-up and spin-down elec-
trons occupy the same spatial wave function. We find
(Mirlin, 1997)

2 j̃[DEN
(2)uodd N 2DEN

(2)ueven N

'
2

bA 2 E dr dr8fd
2~ ur2r8u!vk~r2r8!. (160)

This shift moves the average peak spacing for odd N
towards the average spacing for even N and is expected
to reduce the degree of bimodality. In the RPA regime,
the estimate for this shift, ;D(k/kF)ln(kF /k), is small
compared with D, since the screening length is much
larger than lF (k/kF;rs!1). Thus, in the weak-
interaction limit, the odd-even structure is expected to
persist. However, as rs increases, the shift increases to-
wards D and the bimodality is expected to be lost. We
remark that the considerations leading to Eq. (160) are
based on S50 and S51/2 ground states of the dot with
even and odd N, respectively. For stronger exchange in-
teractions, we expect a spin distribution in the dot (see
end of this section) that will further affect the spacings
distribution.

Can signatures of spin pairing be observed in the
peak-spacing distribution? In a recent experiment, Lüs-
cher et al. (2000) used a GaAs quantum dot with a rela-
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tively high density, ns55.931015 m22, corresponding to
rs50.72, a value smaller than in previous experiments.
While the measured peak-spacing distribution does not
have a bimodal structure, it is found to be asymmetric. It
is interpreted as a superposition of two components that
evolve from the noninteracting formula (145): (i) The d

function in Eq. (145) is shifted by an amount j̃/D [see
Eq. (160)] and broadened to a Gaussian of width s (due
to fluctuations of the interaction matrix elements); (ii)
The Wigner-Dyson distribution in Eq. (145) is shifted to
have an average of 22 j̃/D (since the spacing from the
upper level of a spin pair to the lower level of the next
spin pair is reduced from 2D to 2D2 j̃), and is convo-
luted with the Gaussian of width s. Good fits are ob-
tained with two fit parameters j̃ and s. Of the two, j̃ is
found to be smaller in the presence of magnetic field, in
qualitative agreement with theory [see, for example, Eq.
(160)].

To study spin effects at intermediate and strong val-
ues of rs , Berkovits (1998) extended his exact diagonal-
ization calculations of the Anderson model with interac-
tions to include the spin degrees of freedom. Denoting
by ais

† and ais the creation and annihilation operators of
an electron with spin s561/2 at lattice site i , he was
able to include in the interaction part H2 of the Hamil-
tonian, in addition to the long-range Coulomb interac-
tion among electrons at different sites, an on-site inter-
action between electrons with opposite spins:

H25
1
2

Uc(
iÞj
s ,s8

1
uri2rju/a

ais
† aisajs8

† ajs8

1
1
2

U8(
i ,s

ais
† aisai2s

† ai2s . (161)

The on-site interaction U8510Uc/3 was chosen to agree
with Hubbard’s estimate based on hydrogenlike orbitals
(Hubbard, 1963). Calculations were done for up to N
59 electrons on a 334 lattice. The standard deviation
of D2 is shown in Fig. 25(a) as a function of Uc and for
both an odd and an even number of electrons. The odd-
even asymmetry of s(D2), expected in the noninteract-
ing limit, disappears above Uc50.6 (rs;0.3). The peak-
spacing distributions are shown in Fig. 25(b) for several
values of the interaction parameter Uc . For Uc50 (not
shown) the distribution is bimodal [see Eq. (145)], as
expected. However, already for Uc50.6 (rs;0.3) this
bimodal structure is lost. The calculated distributions for
weak interactions (Uc;0.5–2) are closer to the usual
spinless constant-interaction–plus-RMT model (dashed
line) rather than to the CI1SRRMT model (not shown).
For rs*1, the distribution is approximately a Gaussian
with a width that continues to increase with rs .

Another signature of spin and interactions is expected
when a conductance peak position is followed as a func-
tion of an external parameter. Baranger, Ullmo, and
Glazman (2000) suggested the appearance of kinks, i.e.,
abrupt changes in the parametric dependence of a
Coulomb-blockade peak position. This is illustrated in
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Fig. 26. Consider for simplicity an even number of elec-
trons. In the absence of interactions, the single-particle
levels are doubly degenerate and follow a Gaussian pro-
cess as a function of the parameter x . Because of inter-
actions, the top two electrons can either occupy the
same spatial orbital, forming a singlet S50 at the cost of
an average interaction energy j, or fill two successive
orbitals, forming a triplet S51 at the cost of a kinetic
energy EN/2112EN/2 [see Eq. (159)]. Suppose that S
50; we can imagine the top two electrons filling paired
levels EN/2 and EN/21j . As we change the parameter x ,
the next single-particle level EN/211 can intersect EN/2
1j , in which case the triplet S51 becomes the lowest
state and the top two electrons will occupy the levels
EN/2 and EN/211 [see, for example, the shaded region in
Fig. 26(a)]. This configuration change causes a kink in
the peak position [see Fig. 26(b)]. Kinks are more likely
to occur near an avoided crossing of the levels and
therefore appear in pairs versus the parameter x . We
note that a kink occurs in the limit when only the
ground-state level participates in the conductance. How-
ever, around a kink both the singlet and the triplet levels
contribute to the conductance, so that the kinks in Fig.
26(b) are expected to become smoother. Recently Lüs-

FIG. 25. Peak-spacing statistics in the Anderson model with
w/t53 and Coulomb interactions [Eq. (161)]: (a) the standard
deviation s(D2) (in units of D) as a function of the Coulomb
interaction strength Uc for N57 and 8 electrons in the dot; (b)
distributions of (D22e2/C)/^D22e2/C& for several values of
Uc (note that ^D22e2/C&'0.81D). The dashed line is the
Wigner-Dyson distribution and the solid line is a Gaussian fit
to the Uc56 distribution. Notice the absence of a bimodal
distribution already at weak interactions and the crossover to
Gaussian shapes at stronger interactions. From Berkovits
(1998).
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cher et al. (2000) observed apparent signatures of kinks
versus a magnetic field B . Spin-paired levels are identi-
fied by the correlation of their magnetoconductance
traces. These correlations are interrupted at certain val-
ues of B and an apparent kink in the peak position is
observed, presumably due to a rearrangement of the
ground-state spin. Baranger, Ullmo, and Glazman
(2000) showed that the average density of the kinks and
the distribution of their separation are sensitive to the
breaking of time-reversal symmetry by a magnetic field.

Another important question is the ground-state spin
distribution in a disordered or chaotic dot. The exchange
interaction favors a spin-polarized state, while the ki-
netic energy is minimized when the single-particle orbits
are occupied pairwise, leading to an unpolarized S50
state (for an even number of electrons). In a clean
metal, the (unscreened) short-range part of the Cou-
lomb interaction leads to a ferromagnetic (spin-
polarized) instability when j/2*D . This is known as the
Stoner instability. Andreev and Kamenev (1998) studied
the Stoner instability in a dot or metallic nanoparticle in

FIG. 26. Spin pairing leading to kinks in the Coulomb-
blockade peak positions: (a) the solid lines are two orbital lev-
els EN/2 and EN/211 from a Gaussian process vs a scaled pa-
rameter x̄ (assuming even number of electrons N). When a
second electron with opposite spin occupies such a level, its
energy is displaced by an interaction energy j. The displaced
levels are shown by dashed lines. In the vicinity of an avoided
crossing shown by the shaded area, the triplet state (top two
electrons occupy levels EN/2 and EN/211) has a lower energy
than the singlet state (the electrons occupy levels EN/2 and
EN/21j). (b) Coulomb-blockade peak positions corresponding
to the level diagram in panel (a) (traces are offset by the charg-
ing energy). Crossings of the singlet and triplet states lead to
kinks in the peak position. A pair of such kinks in the vicinity
of an avoided crossing is indicated by arrows. From Baranger,
Ullmo, and Glazman (2000).



952 Y. Alhassid: Statistical theory of quantum dots
the presence of disorder. They took into account only
the disorder-averaged diagonal matrix elements of the
interaction v̄ab ;ab and v̄ab ;ba and found that the Stoner
instability can develop even though the clean system is
still paramagnetic. This can be traced to the effective
enhancement of the interaction by the diffusive dynam-
ics where the electrons spend more time together
(Altshuler and Aronov, 1985). Brouwer, Oreg, and
Halperin (1999) considered a one-body RMT Hamil-
tonian with on-site Hubbard interaction and computed
the spin distribution of the ground state in the mean-
field approximation. They concluded that the probability
of a nonzero spin state can be appreciable even for in-
teraction strengths below the Stoner instability. Jacquod
and Stone (2000) pointed out that fluctuations of the
off-diagonal interaction matrix elements (in the disorder
basis) favor minimal spin for the ground state and there-
fore compete with exchange effects that favor large spin
at strong interactions. The fluctuations of the interaction
matrix elements determine the bandwidth of the many-
body density of states and are largest for minimal spin.
This effect is demonstrated using a random interaction
matrix model [see Sec. VI.D]. A similar model for nuclei
also showed high probability of a zero-spin ground state
in even-even nuclei (Johnson, Bertsch, and Dean, 1998).

Berkovits (1998) studied the ground-state spin in ex-
act simulations of the small Anderson model plus inter-
actions [Eq. (161)]. For rs,1 there is a finite probability
for S51 states for an even number of electrons but al-
most no S53/2 states for an odd number of electrons.
Indeed, a spin flip costs a kinetic energy of EN/211
2EN/2 for even N but E(N13)/22E(N21)/2 for odd N, and
it is much less likely to find two consecutive small single-
particle level spacings than one small spacing. For rs
.1, higher spin values can occur.

Experimentally, the spin of a quantum dot is difficult
to measure. A promising technique is conductance mea-
surements in the presence of an in-plane magnetic field
that leads to a Zeeman splitting of the ground state. For
a theoretical study of the (in-plane) magnetic field de-
pendence of the conductance peak position and height,
see Kurland, Berkovits, and Altshuler (2000). Nonzero
spin has been observed in metallic nanoparticles (Ralph,
Black, and Tinkham, 1997; Davidović and Tinkham,
1999) and in some carbon nanotube ropes (Cobden
et al., 1998).

C. Peak-height statistics and interactions

How do interactions affect the distributions of the
conductance peak heights and their parametric correla-
tions? Experimentally, the predictions of RMT were
confirmed (Chang et al., 1996; Folk et al., 1996) for the
distributions and for the parametric correlations. How-
ever, a semiclassical estimate of the correlation flux
gives Fc;0.3F0 (assuming a geometric factor of order
unity)—significantly lower than the experimental value
of F;0.8F0 (see Sec. V.C). Since the geometrical factor
is unknown, we cannot completely rule out a single-
particle theory, but the discrepancy suggests that the in-
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teractions affect the correlation flux. Here Fc is a non-
universal parameter that depends on the details of the
system’s dynamics and cannot be calculated in a pure
RMT.

Berkovits and Sivan (1998) used the spinless Ander-
son model with Coulomb interactions to study numeri-
cally the peak-height statistics and sensitivity to a mag-
netic flux. A 436 lattice with disorder w53t was used
for N53 and N54 electrons.

At low temperatures, the conductance peak height is
still given by Eq. (24), but G l(r) are partial widths of the
many-particle ground state of the dot. R-matrix theory
(Sec. II.C) is also valid for a many-body system (Lane
and Thomas, 1958). The partial-width amplitude is ex-
pressed as in Eq. (17) but with cl replaced by the inter-
acting many-body eigenfunction CN of N electrons in
the dot, and the channel wave function F describing the
transverse wave function of one electron in the lead and
the interacting wave function CN21 of N21 electrons in
the dot. In second-quantized notation (Berkovits and
Sivan, 1998)

G l(r)}u (
mP l(r)

^CN11uam
† uCN&u2, (162)

where am
† is the creation operator of the electron in-

jected into the dot at the site m belonging to the respec-
tive lead.

The width average and variance are found to decrease
with rs . This suppression is explained by an interaction-
induced short-range order. The distributions of the di-
mensionless peak heights are shown in Figs. 27(a) and
27(b) for several values of the interaction strength Uc .
They are rather insensitive to the two-body interaction,
confirming the predictions of RMT for both conserved
(F50) and broken (F50.4 F0) time-reversal symme-
try. At large values of rs , some enhancement of the
small conductance probability is observed in the case of
FÞ0, in agreement with the experimental results of
Chang et al. (1996). Similar conclusions are reached
when spin is included in the model as in Sec. VI.B
(Berkovits, 1999).

The parametric correlator of the peak height G
as a function of magnetic flux, cg(DF)
[dG(F)dG(F1DF)/$@dG(F)#2 @dG(F1DF)#2%1/2,
where dG5G2Ḡ , is shown in Fig. 27(c) for different
values of Uc . At rs50 and rs*1.4, the RMT functional
form, Eq. (80), of the correlator is reproduced. How-
ever, the value of the correlation flux is increased from
its noninteracting value Fc50.5 F0 to Fc51.75 F0 at
rs;3.5. Thus, in the regime relevant to semiconductor
quantum dots, the correlation field is a factor of 2–3
larger than its noninteracting value, in general agree-
ment with the experiment.

D. Random interaction matrix model

An important issue is whether RMT can be used to
describe interacting systems. RMT was originally devel-
oped to describe the statistics of a strongly interacting
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system—the compound nucleus—at high excitations.
Calculations in interacting systems in nuclear, atomic,
and condensed-matter physics suggest that the Wigner-
Dyson statistics are generic to complex many-body sys-
tems at sufficiently large excitations (Montambaux et al.,
1993; Flambaum et al., 1994; Zelevinsky et al., 1996). In
quantum dots, however, our interest is in the statistical
behavior at or near the system’s ground state as the
number of electrons varies. Standard RMT makes no
explicit reference to interactions or number of particles.
Generic interaction effects on the statistics can be stud-
ied in a random-matrix model that contains interactions
explicitly. A two-body random-interaction matrix
model, introduced in nuclear physics by French and
Wong (1970) and Bohigas and Flores (1971), was used
together with a random single-particle spectrum to study
thermalization (Flambaum, Gribakin, and Izrailev,
1996) and the transition from Poisson to Wigner-Dyson
statistics (Jacquod and Shepelyansky, 1997) in many-
body systems. However, the Poissonian single-particle
statistics of this model are not suitable for studying dots
whose single-particle dynamics is chaotic. Alhassid, Jac-
quod, and Wobst (2000) introduced a random interac-
tion matrix model (RIMM) to study generic fluctuations
in chaotic dots with interactions. The RIMM is an en-
semble of interacting Hamiltonians,

H5(
ij

hijai
†aj1

1
4 (

ijkl
uijkl

A ai
†aj

†alak , (163)

where the one-body matrix elements hij are chosen from
the appropriate Gaussian random-matrix ensemble, and
the antisymmetrized two-body matrix elements uij ;kl

A

[uij ;kl2uij ;lk form a GOE in the two-particle space

P~h !}e2 ~b/2a2!Tr h2
; P~uA!}e2Tr (uA)2/2U2

. (164)

The variance of the diagonal (off-diagonal) interaction
matrix elements is U2 (U2/2). The states ui&5ai

†u0& de-
scribe a fixed basis of m single-particle states. Here h is
an m3m GOE (GUE) matrix when the single-particle
dynamics conserve (break) time-reversal symmetry,
while the two-body interaction preserves time-reversal
symmetry and forms a GOE, irrespective of the symme-
try of the one-body Hamiltonian. In general, the two-
body interaction can include a nonvanishing average
part ū that is invariant under orthogonal transforma-
tions of the single-particle basis. For spinless electrons,
the only such invariant is the charging energy e2N 2/2C ,
which is a constant and does not affect the statistical
fluctuations of Eq. (163). In the presence of spin, an
additional contribution to ū is an exchange interaction
2jS2/2. We remark that in a physical model of a dot,
the Coulomb interaction matrix elements are given in a
fixed basis. Fluctuations of the interaction matrix ele-
ments were introduced in the RIMM to obtain a generic
model that is independent of a particular interaction, in
the original spirit of RMT (French and Wong, 1970; Bo-
higas and Flores, 1971).

The model was used to study both the peak-spacing
(Alhassid, Jacquod, and Wobst, 2000) and peak-height
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statistics (Alhassid and Wobst, 2000). The peak-spacing
distribution describes a crossover from a Wigner-Dyson
distribution to a Gaussian-like distribution as U/D in-
creases [see Fig. 28(a)]. The partial level width is calcu-
lated from an expression analogous to Eq. (162), and for
a GOE one-body Hamiltonian, its distribution P(Ĝ) is
found to be a GOE Porter-Thomas distribution inde-

FIG. 27. Interaction effects on the conductance peak height
statistics and parametric correlations: panels (a) and (b), con-
ductance peak-height distributions in the presence of Coulomb
interactions. The distributions P(g) [where g is defined in Eq.
(24b)] are calculated from simulations of a 2D Anderson
model with Coulomb interactions. Results are shown for sev-
eral values of the interaction parameter Uc50,2,4,6 (a) with-
out and (b) with a magnetic field B ; solid lines, GOE predic-
tion [Eq. (128a)]; dashed lines, GUE prediction [Eq. (128b)].
The distributions show only weak sensitivity to the strength of
the interaction and are in agreement with the RMT predic-
tions. (c) The autocorrelation function cg(DF) of the conduc-
tance peak height vs magnetic flux DF for several values of
Uc . The correlators at Uc50 and Uc510 can be fitted to the
RMT form [Eq. (133)], but with Fc50.5 F0 (solid line) and
Fc51.75 F0 (dashed line), respectively. Note the strong sensi-
tivity of the correlation flux to the interaction strength. From
Berkovits and Sivan (1998).
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pendent of U/D . However, for a GUE one-body Hamil-
tonian, the width distribution makes a crossover from
GUE to a GOE Porter-Thomas distribution as a func-
tion of U/D [see Fig. 28(b)]. The crossover distributions
are well described by Pz(G) of Eq. (72), where z is a
monotonically decreasing function of U/D . This is due
to the competition between the asymptotic GUE sym-
metry of the one-body Hamiltonian h and the GOE
symmetry of the two-body interaction u . In the range
U/D;0.7–1.5, the peak-spacing distribution is already
Gaussian-like, while the width statistics are still close to
the GUE limit. In the RIMM, U/D is a free parameter,
and reasonable values can be determined by comparing
its results against physical models. Such a comparison

FIG. 28. Peak-spacing and peak-height statistics in the random
interaction matrix model [RIMM; Eq. (163)]. (a) Peak-spacing
distributions P(D̃2) in the RIMM with GOE one-body statis-
tics for m512, n54: d, U/D50; h, U/D50.35; l, U/D
50.7; n, U/D51.1; ., U/D51.8. Notice the crossover from a
Wigner-Dyson distribution at U50 (dashed line) to Gaussian-
like distributions (solid lines) for U/D*1. Inset to panel (a),
standard deviation s(D̃2) of the peak spacings vs U/D for
GOE (solid) and GUE (dashed) one-body statistic. (b) Width
distributions in the RIMM with GUE one-body statistics. Dis-
tributions P(ln Ĝ) vs ln Ĝ are shown for m512, n54: s,
U/D50; h, U/D52.4; L, U/D54; solid line, GOE Porter-
Thomas distribution; dashed line, GUE Porter-Thomas distri-
butions; short-dashed lines, analytic width distributions
Pz(ln Ĝ) in the crossover between the GUE and GOE (see
Sec. V.D.1). Inset to panel (b), crossover parameter z vs U/D .
Adapted from Alhassid, Jacquod, and Wobst (2000) and Al-
hassid and Wobst (2000).
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was made to a small (435) Anderson model with Cou-
lomb interactions and periodic boundary conditions.
Apart from finite-size effects, similar behavior was ob-
served where the range U/D;0.7–1.5 in the RIMM cor-
responded to Uc /t;2 –5 in the Coulomb model.

VII. CHARGING ENERGY EFFECTS IN QUANTUM DOTS

In this section we discuss other mesoscopic phenom-
ena in quantum dots where the charging energy plays an
important role: fluctuations of the off-resonance conduc-
tance in closed (or semiopen) dots and mesoscopic Cou-
lomb blockade in dots that are strongly coupled to a
single-channel lead.

The dominant mechanism for the off-resonance con-
ductance is cotunneling (see Sec. II.F). In particular, for
kT,AECD , the dominant process is elastic cotunneling,
describing the virtual tunneling of an electron or hole
through a large number ;EC /D of excited levels in the
dot. The coherent superposition of a large number of
weak amplitudes exhibits fluctuation properties that are
qualitatively different from those of the conductance
peaks. Since a virtual transition occurs across a gap of
;EC/2, we expect the charging energy to play an impor-
tant role in determining the statistics of the minima. The
mesoscopic fluctuations in elastic cotunneling were de-
rived by Aleiner and Glazman (1996) and observed by
Cronenwett et al. (1997). They are discussed in Sec.
VII.A.

In the crossover from closed to open dots, the classical
Coulomb-blockade oscillations (observed in the limit D
→0) gradually weaken. Matveev (1995) showed that
these oscillations completely disappear for a fully trans-
mitting one-channel lead (Tc51). However, Aleiner
and Glazman (1998) showed that for a dot with finite D,
quantum Coulomb blockade is not fully destroyed and
the conductance exhibits mesoscopic fluctuations that
are periodic in the gate voltage but have a random
phase. The signatures of this mesoscopic Coulomb
blockade can be seen in the correlation functions of vari-
ous fluctuating observables. The main mechanism for
these fluctuations is the backscattering of electrons from
the boundaries of the dot into the strongly coupled
channel. An experiment by Cronenwett et al. (1998)
confirms signatures of mesoscopic Coulomb blockade in
dots with one fully open lead Tl;1 and one weakly
coupled lead Tr!1. Among the striking effects seen is
the strong suppression of Coulomb-blockade oscillations
at finite magnetic fields, contrary to the behavior in
closed dots. Mesoscopic Coulomb blockade is discussed
in Sec. VII.B.

In a partially open dot, the charge is not quantized
and exhibits mesoscopic fluctuations, as does the differ-
ential capacitance dQ/dVg . The capacitance fluctua-
tions in an open dot were derived by Gopar, Mello, and
Büttiker (1996) in the limit of noninteracting electrons
using the distribution of the scattering-time delays in the
dot. However, the charging energy should be taken into
account in dots with a partially open single channel. The
statistical properties of the capacitance fluctuations in
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the presence of charging energy were calculated by Ka-
minski, Aleiner, and Glazman (1998), and are discussed
in Sec. VII.C.

A. Mesoscopic fluctuations in elastic cotunneling

The mesoscopic fluctuations of the conductance
minima were derived by Aleiner and Glazman (1996) in
the diagrammatic approach. According to Eq. (38), the
off-resonance conductance amplitude is determined by a
large number of fluctuating terms, of which ;Ee /D and
;Eh /D contribute significantly to the sum over particles
and over holes, respectively. When Ee and Eh are below
the Thouless energy, the contributing levels are in the
universal regime, where the partial widths gcl and ener-
gies El have RMT statistics. In this regime, we can ap-
ply an RMT approach for both the on- and off-
resonance conductance. In both cases the mesoscopic
fluctuations are determined by the same underlying sta-
tistics of the partial widths of the resonance levels. The
difference between the statistics of the conductance
maxima and minima originates from their different
transport mechanisms.

We first discuss the distribution of the conductance
minima in the crossover between conserved and broken
time-reversal symmetry. The cotunneling amplitude T in
Eq. (38) is the sum of a large number of terms, and we
expect the central limit theorem to apply, leading to
Gaussian distributions for both the real and the imagi-
nary parts of T. The distribution of G}(Re T )2

1(Im T)2 (measured in units of Ḡ) is then given by

P~Ĝ !5~12x!21e2 Ĝ/~12x!I0S Ax

12x
Ĝ D , (165)

where I0 is a Bessel function and x[$(Re T )2/uT u2

2(Im T )2/uT u2%2. An expression of the form of Eq.
(165) was obtained by Aleiner and Glazman (1996)
when the time-reversal symmetry was broken by a mag-
netic field B . They found x5L(B/Bc

valley), where Bc
valley

is a correlation (or crossover) field for the conductance
‘‘valleys’’ [see Eq. (168) below] and

L~x ![
1

p2x4 F ln x2 ln~11x4!1p arctan x2

1
1
2

Li2~2x4!G2

. (166)

The function Li2 in Eq. (166) is the second polyloga-
rithm function.

The average cotunneling conductance is found to be

Ḡ5
e2

h S G l

D

Gr

D
DDS 1

Eh
1

1
Ee

D , (167)

where Ee(Eh) is the distance between the Fermi energy
and the closest state available for electron (hole) tunnel-
ing (see Sec. II.F). Thus, in striking contrast to the aver-
age conductance peak, the average off-resonance con-
ductance is independent of magnetic field and does not
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exhibit a weak-localization effect. This has been con-
firmed experimentally (Cronenwett et al., 1997).

The correlation field Bc
valley for the conductance val-

leys (which is of the same order as the crossover field)
can be estimated semiclassically as for the conductance
peaks, except that the Heisenberg time tH5h/D is now
replaced by the virtual tunneling time h/E , where E
5min(Ee ,Eh). In analogy with Eq. (133) we find

Bc
valleyA/F05kAE/ET, (168)

where ET;\vF /AA is the ballistic Thouless energy, and
k is a geometric factor of the dot. The valley correlation
field is seen to be larger than the peak correlation field

Bc
valley/Bc

peak5AE/D . (169)

We next turn to the parametric correlations of the
cotunneling conductance versus magnetic field (Aleiner
and Glazman, 1996). Assuming a point-contact model,
the cotunneling amplitude [Eq. (38)] can be rewritten as

T5
AḠ lḠr

D

1
n E dv

2pi
@GA~rl ,rr ,v!

2GR~rl ,rr ,v!#Gret~v!. (170)

The quantity n is the average density of states in the dot
per unit area, GR and GA are retarded and advanced
Green’s functions of the noninteracting dot and
Gret(v)52(uvu1Ee)211(uvu1Eh)21 is the retarded
cotunneling Green’s function of a dot with interactions
(Baltin and Gefen, 2000). The calculation of the para-
metric correlator requires the ensemble averages of the
corresponding products of Green’s functions. In the me-
tallic regime and for E@D , the latter can be calculated
in the diagrammatic approach and expressed in terms of
the diffuson D and the cooperon C:
GB

R(r,r8,v)GB8
A (r8,r,v8)52pnDB ,B8(r,r8,v2v8) and

GB
R(r,r8,v)GB8

A (r,r8,v8)52pnCB ,B8(r,r8,v2v8). If E
,ET , a typical Dv5v2v8 that contributes to the cor-
relator is below ET and one can use the zero-mode ap-
proximation:

DB ,B85
1
A F2iDv1S A B2B8

F0
D 2

ETG21

;

CB ,B85
1
A F2iDv1S A B1B8

F0
D 2

ETG21

. (171)

Equations (171) lead to a universal parametric cor-
relator for the off-resonance conductance,

cG~DB !5dG~B !dG~B8!/Ḡ2

5LS DB

Bc
valleyD 1LS 2B1DB

Bc
valley D , (172)
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where L(x) is the scaling function (166) and the corre-
lation field Bc

valley is given by Eq. (168), with k51. The
GUE correlator is obtained from Eq. (172) in the limit
B@Bc

valley , where cG(DB)5L(DB/Bc
valley).

The correlation field Bc
valley for the conductance val-

leys is enhanced by AE/D compared with the correlation
field of the peaks [see Eq. (169)]. This enhancement was
observed in the experimental results of Cronenwett et al.
(1997) shown in Fig. 29. In order to measure the weak
conductance in the valleys, the dots used were semiopen

with Ḡ;0.7D . Typical fluctuations versus magnetic field
of a conductance peak in comparison with a conduc-
tance valley are shown in Fig. 29(a). The valley fluctu-
ates on a scale that is larger than the scale over which a
peak fluctuates. The conductance autocorrelation func-
tions for the peaks and the valleys are shown in Fig.
29(b). The observed ratio Bc

valley/Bc
peak;1.6 is smaller

than the expected value of ;4. The discrepancy is not
fully understood, but we remark that (i) the peak corre-
lation field is larger than the single-particle estimate ow-
ing to interaction effects (see Sec. VI.C), and (ii) the
theoretical estimate for the peak correlation field is for
T!D , while in the experiment T;D . Both effects lead

FIG. 29. Elastic cotunneling in Coulomb-blockade dots: Panels
(a) and (b), conductance fluctuations of a peak vs a valley.
Panel (a), a conductance peak and an adjacent conductance
minimum (valley) as a function of a magnetic field B (different
scales are used for G at a peak or a valley). The valley fluctu-
ates on a longer scale than the peak. Panel (b), the measured
conductance correlator vs DB for a peak (dashed line) and for
a valley (solid line). Panels (c) and (d) describe an experimen-
tal test of the scaling relation (173). Panel (c), the measured
average correlation field B̄c (solid line) and the average con-
ductance Ḡ (dashed line) as the gate voltage varies between
two neighboring peaks. The ensemble-averaged B̄c is obtained
from ;30 statistically independent traces of the conductance.
Panel (d), B̄c

22 as a function of Ḡ (solid lines) using the same
data as in (c). The diagonal dashed line is Eq. (173). From
Cronenwett et al. (1997) and Marcus et al. (1997).
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to enhancement of the peak correlation field and might
explain the observed reduction in the valley-to-peak ra-
tio of the correlation fields.

The enhancement of the correlation field for the off-
resonance conductance is a charging energy effect. Ac-
cording to Eq. (168), the largest correlation field is ob-
tained at midvalley, where E obtains its maximal value
EC/2. At this gate voltage the average conductance is
minimal according to Eq. (167). Using the approxima-
tion Ḡ}E21 [see Eq. (167)], we obtain

Bc
2Ḡ'const. (173)

Thus the correlation field is maximal when the average
conductance is smallest, and vice versa. Figure 29(c)
shows the measured correlation field Bc (solid line), av-
eraged over independent peak-valley-peak data sets,
and the average conductance Ḡ (dashed line) plotted as
a function of gate voltage in the region between two
Coulomb-blockade peaks. To test the approximate scal-
ing relation (173), the same data are used to plot B̄c

22

versus Ḡ in Fig. 29(d) (solid lines). The diagonal dashed
line is the scaling relation (173).

Baltin and Gefen (2000) have used Eq. (170) to calcu-
late the normalized cotunneling conductance correlator
between valleys N and N1n . Parametrizing the frac-
tional distance between two neighboring peaks by y [so
that Eh5yEC and Ee5(12y)EC], they find

cG~n ,y !5F y~12y !

S 11n
D

EC
Dn

D

EC

G 2F lnS 11
n

y

D

EC
D

1lnS 11
n

12y

D

EC
D G2

. (174)

The cotunneling amplitudes in two neighboring valleys
contain a sum over similar contributions from interme-
diate states, except that one particle state becomes a
hole state. The correlator (174) is then expected to de-
cay slowly with n on a scale set by ;EC/D . The mea-
sured correlator (Cronenwett et al., 1997) is found to de-
cay faster, presumably due to scrambling of the single-
particle spectrum when an electron is added to the dot.

Another interesting issue is the phase change Da of
the transmission amplitude between two consecutive
valleys. Two experiments (Yacoby et al., 1995; Schuster
et al., 1997) have measured the phase of the transmission
amplitude through a dot, employing an interferometer
with two arms, one of which contains a quantum dot. A
surprising result of these experiments was that Da50
(mod 2p) across all measured peaks. Since the phase
changes by p across a resonance, an additional ‘‘phase
lapse’’ of p must occur. This is contrary to what one
expects in a dot with noninteracting electrons where the
value of Da across a series of peaks is some sequence of
0 and p. Various possible explanations have assumed
specific geometries that lead to preferred levels in the
dot (see, for example, Baltin et al., 1999). A more ge-
neric mechanism for a disordered or chaotic dot, sug-
gested by Baltin and Gefen (1999), employs a formula
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that interpolates between the valley transmission ampli-
tude [Eq. (38)] and the Breit-Wigner peak amplitude
(see also Oreg and Gefen, 1997). An approximate sign
sum rule states that the number of p changes of the
phase between two neighboring valleys (each due to a
resonance, a near-resonance phase lapse, or a valley
phase lapse) is even. The probability to deviate from this
sign sum rule is small (;D/EC). The sign sum rule relies
on the strong correlations of the transmission phase in
neighboring valleys, and spectral scrambling would lead
to its breakdown. However, in the experiments only
Da50 was observed.

At very low temperatures and in the strong-tunneling
regime, the valley conductance that corresponds to an
odd number of electrons can be enhanced due to the
Kondo effect. Higher-order virtual tunneling processes
that effectively flip the unpaired spin on the dot can lead
to a coherent many-body resonance at the Fermi energy,
known as the Kondo resonance (Glazman and Raikh,
1988; Ng and Lee, 1988; Meir, Wingreen, and Lee,
1993). It is formed between the spin of the dot and the
delocalized electrons in the leads—in analogy to the
Kondo effect (Kondo, 1964), which occurs when a mag-
netic impurity is placed in a metal and the unpaired elec-
tron in the impurity forms a singlet state with the metal’s
electrons. The Kondo effect in a quantum dot was only
recently observed by Goldhaber-Gordon et al. (1998)
and by Cronenwett, Oosterkamp, and Kouwenhoven
(1998). The energy scale for observing the Kondo reso-
nance is the Kondo temperature TK , which is essentially
the binding energy of the resonance. At midvalley TK

;AECGe2pEC/8G, and to bring TK within the range of
experimentally accessible temperatures it was necessary
to fabricate much smaller dots (L;100 nm). In a
smaller dot, D is larger and G can be increased substan-
tially while the dot remains semiopen (i.e., G,D). The
appearance of a Kondo resonance in the density of
states enhances the conductance in the valley that cor-
responds to an odd number of electrons as the tempera-
ture decreases below TK .

B. Mesoscopic Coulomb blockade

In Secs. IV and V we discussed mesoscopic fluctua-
tions of the conductance in two opposite limits—open
dots and almost-closed dots. In the crossover from
closed to open dots, the charge quantization and the
Coulomb-blockade oscillations gradually disappear. An
interesting case is a lead with one fully transmitting
channel. Rather than discussing a dot with symmetric
leads, it is easier to study the asymmetric limit where,
e.g., the left lead has a transmission coefficient of Tl

'1, while the right lead has a large barrier (Tr!1). The
Hamiltonian of this system is different from the Hamil-
tonian (36) used to describe cotunneling in that the sub-
system of the dot plus the left lead is now described by a
single Hamiltonian (because of the strong coupling):
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1 (
k ,sPr

@Vkscks
† c~rc!1H.c.# . (175)

The first term on the right describes the dot-channel
Hamiltonian with a confining potential U(r) and chemi-
cal potential m [c†(r) is the creation operator of an
electron at r]. The term Q̂2/2C , with Q̂5eN̂
[e*dot dr c†(r)c(r) being the charge operator of the
dot, describes the Coulomb interaction in the constant-
interaction model. The last two terms describe the
Hamiltonian of the right lead and the tunneling Hamil-
tonian between the dot and the right lead (where cks

† is
the creation operator of an electron in the leads with
wave number k and spin s, and rc is the right point con-
tact).

Furusaki and Matveev (1995a, 1995b) calculated the
conductance for the Hamiltonian (175) in the classical
Coulomb-blockade limit kT@D . The calculation is non-
perturbative in the charging energy. In the limit of per-
fect transmission (Tl51), the dot-channel Hamiltonian
can be effectively described by a one-dimensional fermi-
onic Hamiltonian that is solved using bosonization
methods. At perfect transmission, Coulomb blockade
disappears, but even a small reflection (due to a weak
backscatterer at the dot-channel interface) causes
Coulomb-blockade oscillations with an amplitude that
depends quadratically on temperature away from the
charge degeneracy points, in analogy with inelastic co-
tunneling.

Aleiner and Glazman (1998) generalized the model to
the quantum regime where the temperature is compa-
rable to D and found mesoscopic Coulomb-blockade ef-
fects that resemble elastic cotunneling. The coherent
backscattering of an electron into the lead mimics the
backscatterer effects in the classical case and leads to
mesoscopic Coulomb-blockade oscillations even at per-
fect transmission (Tl51). However, their phase is ran-
dom, and the signature of mesoscopic Coulomb block-
ade is thus best quantified in terms of conductance
correlations at different values of the gate voltage.

Since the dot is in 2D, it is not possible to describe the
backscattering from the dot’s boundaries by a one-
dimensional Hamiltonian. Instead, an effective action
that is nonlocal in time but expressed in terms of the
one-dimensional channel variables is derived. The
charging energy is then treated exactly using bosoniza-
tion methods. For spinless electrons and in the limit Tl

51, the correlation function of the conductance fluctua-
tions versus gate voltage is given by

dG~Vg1!dG~Vg2!/Gr2

50.78b21S D

EC
D 2

cosS 2p
aC

e
DVgD , (176)
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where Gr is the conductance of the right point contact.
The average conductance and its standard deviation are
proportional to D/EC , similarly to elastic cotunneling.
The periodicity of the correlation function versus gate
voltage corresponds to a period of one electron charge
and is just the manifestation of mesoscopic Coulomb
blockade. The fluctuations are larger in the absence of
magnetic field (b51), since the constructive interfer-
ence of time-reversed trajectories enhances coherent
backscattering.

When the spin of the electrons is taken into account,
the results are quite different:

dG~Vg1!dG~Vg2!/Gr2

50.83b22
D

T S D

EC
D 2

ln3S EC

T D cosS 2p
aC

e
DVgD .

(177)

In particular, the mesoscopic fluctuations become sensi-
tive to temperature, and the suppression of the fluctua-
tions with magnetic field is stronger.

Some of the predicted characteristics of mesoscopic
Coulomb blockade were confirmed qualitatively in an
experiment by Cronenwett et al. (1998). Experimentally,
it is more convenient to study the power spectrum
PG(f ) of G(Vg), i.e., the Fourier transform of the cor-
relation function (177). It is found to be centered in a
narrow band around the Coulomb-blockade frequency,
and the integrated power is given by

P~T !50.207Gr2b22
D

T S D

EC
D 2

ln3S EC

kT D . (178)

The crossover field from conserved to broken time-
reversal symmetry is similar to the one found for the
conductance minima. For magnetic fields that are large
compared with this correlation field (b52), the power
of the mesoscopic fluctuations is expected to be four
times smaller than without a magnetic field (b51). Fig-
ure 30 compares typical Coulomb-blockade fluctuations
as a function of gate voltage for the one-channel regime
(left) and the weak-tunneling regime (right), both with
[panels (c) and (d)] and without [panels (a) and (b)] a
magnetic field. A striking effect is the strong suppression
of the fluctuations in the one-channel dot when a mag-
netic field is applied. This strong sensitivity to magnetic
field is also seen in the integrated power spectrum versus
magnetic field [Figs. 30(e) and 30(f)]. The power spec-
trum for the one-channel regime is strongly peaked at
B50, while it does not show any particular field depen-
dence in the weak-tunneling regime. The enhancement
of the B50 power relative to its large-B value is found
to be ;5.360.5, somewhat larger than the predicted
value of 4. The experiment also confirms the sensitivity
of the mesoscopic fluctuations to temperature.

Brouwer and Aleiner (1999) showed that mesoscopic
charge quantization also affects the conductance in open
dots with ideal leads. A charging energy term in the
Hamiltonian of an open dot plus leads does not affect
the average conductance in the unitary case, but does
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
enhance the weak-localization correction in the orthogo-
nal case L/(4L12) [see Eq. (98a) for b51] by
(cL/L)LD/(8p2T), where L is the number of open
channels in each lead (c1'3.18 and c`5p2/6). Fur-
thermore, the variance of G in the unitary case,
LD/(96T) [see Eq. (113)] acquires an additional term
(cL/L)L2D2/(32p2T2) in the limit T@LD and with cL

'6.49 for L@1.

C. Mesoscopic fluctuations of the differential capacitance

In the weak-coupling regime (where the transmission
coefficient Tc!1), the charge on the dot is quantized
and increases in a steplike manner as the gate voltage
changes. As the conductance of the point contact in-
creases (but is still small compared with e2/h), the de-
viation of the average charge from its quantized value is
linear in Tc (Glazman and Matveev, 1990b; Matveev,
1991), except near the degeneracy points where the av-
erage charge increases sharply by about one unit e . A

FIG. 30. Conductance fluctuations in a one-channel dot (left)
and in a closed dot (right). Traces of conductance vs gate volt-
age are shown for [(a) and (b)] B50 and [(c) and (d)] B
5100 mT. Notice that the mesoscopic Coulomb-blockade os-
cillations in the one-channel dot are suppressed by a magnetic
field, in contrast to the closed dot. Panels (e) and (f) show the
integrated power of the Coulomb-blockade oscillations as a
function of magnetic field. For a one-channel dot [panel (e)]
the power decreases with magnetic field, while for a closed dot
[panel (f)] there is only weak dependence of the power on
magnetic field. From Cronenwett et al. (1998).
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related quantity is the differential capacitance of the dot
Cdiff(Vg)[]Q/]Vext5a21]Q/]Vg , which, in the weak-
coupling limit, exhibits sharp peaks at the degeneracy
points of Vg . Matveev (1995) and Flensberg (1993)
showed that when a single-channel lead is connected to
a dot and in the classical limit D→0, Coulomb blockade
vanishes at perfect transmission (i.e., Tc51). In this
limit, the average charge increases linearly as a function
of gate voltage and the differential capacitance is a con-
stant. However, for nearly perfect transmission (i.e., Tc
slightly smaller than 1), the average charge and differen-
tial capacitance exhibit weak Coulomb-blockade oscilla-
tions versus gate voltage.

Aleiner and Glazman (1998) studied the mesoscopic
fluctuations of the differential capacitance (of a dot with
single-channel lead) for finite D assuming the dynamics
in the dot is chaotic. In the case of perfect transmission,
dCdiff(Vg)50, and the Coulomb-blockade periodicity is
seen in the correlation function of the differential ca-
pacitance versus gate voltage. The capacitance correla-
tions are found to be

dCdiff~Vg1!dCdiff~Vg2!/C2

55.59b21S D

EC
D cosS 2p
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e
DVgD , (179a)
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e
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for the cases without and with spin, respectively.
Capacitance fluctuations in the weak-coupling regime

were studied by Kaminski, Aleiner, and Glazman
(1998). Away from the peaks, the capacitance could be
calculated by treating the tunneling Hamiltonian as a
perturbation. The capacitance fluctuations could then be
related to the fluctuations of the single-electron Green’s
function of the dot at the point contact. The latter are
universal when E5min(Ee,Eh) (see Sec. II.F) is below
the Thouless energy and could be expressed in terms of
the diffuson and cooperon [Eq. (171)]. For example, the
standard deviation of the capacitance fluctuations in
the absence of magnetic field was found to be
s(dCdiff)5(Cg0/A6p2)(D/E)1/2(EC /E), where g0
5G0/(2e2/h) (!1) is the dimensionless point-contact
conductance. The correlation field of the capacitance
fluctuations in a magnetic field had the same scale as the
correlation field [Eq. (168)] for the cotunneling conduc-
tance fluctuations. The capacitance fluctuations were
also studied in the strong-tunneling regime, and it was
concluded that the maximal fluctuations are reached for
a partially open channel (G0,2e2/h).

Recently, high-sensitivity single-electron transistors
were used to measure a dot’s charge and capacitance,
and fluctuations of the differential capacitance were ob-
served (Berman et al., 1999). However, the accuracy of
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these experiments is insufficient to quantify these fluc-
tuations. Kaminski and Glazman (1999) pointed out that
certain mesoscopic fluctuations in a partially open dot
can be more easily measured in a double-dot geometry,
where each dot is weakly coupled to a lead. The interdot
coupling can be adjusted, resulting in peak doublets as a
function of the gate voltages on each of the dots. The
spacing between the doublets fluctuates because of the
fluctuations of the interdot tunneling amplitude. The
rms-to-average ratio of the doublet spacing was found to
be ;(2D/bEC)1/2. This provides information on the me-
soscopic fluctuations of the ground-state energy of a par-
tially open dot, which are otherwise difficult to measure
directly.

VIII. CONCLUSION AND FUTURE DIRECTIONS

Since they were first produced about a decade ago,
quantum dots have become a powerful tool for investi-
gating the physics of small, coherent quantum systems.
The ability to control their shape, size, number of elec-
trons, and coupling strength has made them particularly
attractive for experimental studies. This review has fo-
cused on the statistical regime of quantum dots, a re-
gime characterized by quantum interference effects, cha-
otic dynamics of the quasiparticles, and electron-
electron interaction effects.

Table I summarizes the main mesoscopic effects in
quantum dots versus the main theoretical techniques
used to calculate them. For each case, a reference is
made to the equation (in parentheses) and/or the figure
(in square brackets) that is relevant to the effect. The
table is restricted to effects that have been experimen-
tally observed.

Quantum dots have several energy scales. Among
them are the mean level spacing D, arising from the con-
finement of the electrons and inversely proportional to
the dot’s area, and the average level width Ḡ , represent-
ing the strength of the dot-lead couplings. In an open
dot, where Ḡ@D , the electrons can be treated as nonin-
teracting quasiparticles, and electron-electron interac-
tions are considered indirectly through their effect on
the decoherence rate Gf . The limit Gf!Ḡ (i.e., tescape
!tf) is the limit of full phase coherence, where quan-
tum interference effects dominate the mesoscopic fluc-
tuations of the conductance. The universality of these
fluctuations is determined by another energy scale
ET—the ballistic Thouless energy (or the Thouless en-
ergy in a disordered dot). For Ḡ!ET (i.e. tescape@tc ,
where tc is the ergodic time) the fluctuations are univer-
sal. Finite temperature can reduce the fluctuations
through thermal smearing and shorter dephasing times.
In the absence of dephasing, the fluctuations are largest
and temperature independent when T!Ḡ .

Phase breaking becomes important at temperatures
where Gf is comparable to Ḡ and leads to deviations
from universality. Indeed, even at the lowest tempera-
tures attained in the experiments, dephasing must be in-
cluded to obtain good agreement between theory and
experiment.
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With the introduction of tunnel barriers between the
dot and the leads, the charge on the dot is quantized and
an additional energy scale becomes relevant—the charg-
ing energy e2/C . In the almost-isolated dots typically
used in experiments, all three scales, G , D, and e2/C ,
separate: Ḡ!D!e2/C , and the temperature determines
which energy scales are resolved. The regime of interest
in this review is the quantum regime, where the tem-
perature is around or smaller than D and mesoscopic
fluctuations are observed. In typical experiments in
closed dots, Ḡ!T , and the level width is not directly
resolved.

The statistical theory of disordered or ballistic chaotic
dots is well understood in the limit of noninteracting
quasiparticles. In closed dots this ‘‘single-particle’’ ap-
proach includes a constant-interaction term N 2e2/2C
(the constant-interaction model). While the constant-
interaction model is the simplest way to include charging
energy effects in closed dots, several experiments indi-
cate that electron-electron interactions play an impor-
tant role in the statistical properties of such dots. This is
not surprising considering that the Coulomb interaction
is rather strong in semiconductor dots where the gas pa-
rameter rs is ;1 –2. Understanding the effects of inter-
actions on the statistical fluctuations is one of the major
current directions in mesoscopic physics in general, and
in the statistical theory of quantum dots in particular.
Recent progress includes Hartee-Fock and RPA esti-
mates, but the experimental values of rs are in the range
where it is necessary to go beyond the RPA. Currently,
most of the results for rs*1 are based on numerical
simulations of small disordered systems that include in-
teractions. The number of electrons used in the simula-
tions is smaller than in the experiments. The effects seen
are believed to be independent of the number of elec-
trons, but this is not proven. Except for rs!1, it is not
known what is the parametric dependence of the fluc-
tuations on the gas parameter rs and on properties of
the dot such as its Thouless conductance gT .

Another problem of current interest is the role played
by electron spin in closed dots. Indirect evidence of spin
pairing was recently found in the statistical properties of
the conductance peaks (Lüscher et al., 2000). In a cha-
otic or disordered dot we expect a spin distribution in
the ground state, but its dependence on interactions and
on the Thouless conductance gT is not yet understood
(the limit gT→` was recently studied by Kurland,
Berkovits and Altshuler, 2000). Hund’s rules are not ex-
pected to hold in chaotic dots that do not possess any
particular symmetries, and we would like to understand
how the total spin of these dots changes with the addi-
tion of electrons. Several experimental groups are now
working on measuring spin in dots. A promising tech-
nique is an in-plane magnetic field that couples to the
spin but does not directly affect the orbital motion.

While the limits of almost-closed dots (Ḡ!D) and
open dots (Ḡ@D) have been studied extensively, less is
known about the intermediate regime where the cou-
pling to the leads is strong but some charge quantization
remains. In this regime, transport becomes more compli-
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
cated even within the constant-interaction model, lead-
ing to cotunneling and mesoscopic Coulomb blockade.
A recent experiment (Maurer et al., 1999) investigated
Coulomb-blockade fluctuations in dots with symmetric
leads as a function of the dot-lead couplings. Few theo-
retical results are available for this intermediate regime.
Some of the experimental results were not expected
within the theory of cotunneling, e.g., a Kondo-like
anomalous temperature dependence of the conductance
valleys. In general, the coupling to the leads makes in-
teraction effects within the dot more difficult to handle
than in completely closed systems. For example, at low
temperatures Kondo-type resonance can be formed be-
tween an unpaired electron in the dot and the delocal-
ized electrons in the leads, and a perturbative approach
is not possible. A consistent formulation of transport in
the presence of interactions can be done in the Keldysh
formalism (Meir and Wingreen, 1992) but is difficult to
implement.

Another important topic for future research is the sta-
tistical properties of excited states in quantum dots.
Thus far, statistical studies have focused on the linear
regime of a small source-drain voltage Vsd , where the
observed Coulomb-blockade peaks probe the ground
state of a dot with different numbers of electrons. Infor-
mation about excited states in a dot with a fixed number
of electrons can be obtained through nonlinear measure-
ments (see Sec. V.H). The experiment of Stewart et al.
(1997) suggests certain similarities between the low-
excitation spectrum and the addition spectrum of a
quantum dot. However, the statistical properties of
these low-lying states and their manifestation in the fluc-
tuations of the nonlinear differential conductance have
not been investigated.

A theory of the quasiparticle lifetime (due to
electron-electron interactions) in a quantum dot has sug-
gested that, above a critical value of the excitation en-
ergy, the quasiparticle width becomes finite (Altshuler
et al., 1997). This behavior is deduced by relating the
problem to Anderson localization in real space and is
the result of a delocalization phase transition in Fock
space where the interacting wave function becomes frag-
mented over a large number of noninteracting states.
The crossover from Poisson to Wigner statistics at high
excitations as a function of the interaction strength has
been linked to this Fock-space delocalization (Berkovits
and Avishai, 1998). Numerical investigations in a more
realistic random-matrix model with one-body disorder
and interactions (Mejia-Monasterio et al., 1998) found
that at the low excitations relevant to the experiments
there was a smooth crossover from almost-localized to
delocalized states but no Anderson-like localization.
This model could explain the main features of an experi-
ment by Sivan et al. (1994) that found only a few (;7)
resolved excited levels (of the order of gT) before their
width grew beyond the mean level spacing. Recent nu-
merical studies suggest a possible localization transition
for very large values of gT , where the transition occurs
at very high excitations (Leyronas, Tworzydlo, and
Beenakker, 1999).
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Several models have been proposed to explain the ef-
fect of dephasing on the conductance statistics in open
dots. Dephasing in almost-closed dots and how it might
affect the conductance is not well understood. Theoret-
ical estimates for the temperature dependence of the
dephasing time in closed dots due to e-e interactions
were derived by Sivan, Imry, and Aronov (1994) and by
Blanter (1996). Full phase coherence is expected in a
closed dot below a temperature that is parametrically
larger than D (Altshuler et al., 1997). However, reduced
values of the weak-localization correction are found ex-
perimentally at lower temperatures (Folk et al., 2000).
Also, deviations of the experimental peak-height distri-
butions from the theoretical phase-coherent predictions
are found to increase with temperature (Sec. V.F.1).
These results suggest apparent phase breaking and are
not understood. It is possible that e-e interaction is not
the main dephasing mechanism in the experimentally
studied devices. Other suggested mechanisms are exter-
nal radiation (Gershenson, 1999) and nuclear spins
(Dyugaev, Vagner, and Wyder, 2000).

Most investigations of transport in quantum dots have
concentrated on chaotic dots. Much less is known about
fluctuations in nonchaotic dots, especially in the
Coulomb-blockade regime. In such systems the fluctua-
tions are not expected to be universal and the semiclas-
sical approach is the most suitable one. However, this
approach encounters difficulties at long time scales of
the order of the Heisenberg time. In a recent study of
conductance fluctuations in an integrable cavity, the
conductance fluctuations were found to increase with in-
coming energy (Pichaureau and Jalabert, 1999), unlike
the universal fluctuations in chaotic cavities. Ketzmerick
(1996) argued that the conductance through a cavity
with mixed phase space displays a fractal behavior as a
function of an external parameter, e.g., a magnetic field.
This behavior originates from trajectories that are
trapped near the boundary between regular and chaotic
regions, leading to an algebraic decay of the enclosed-
area distribution. The change of the conductance DG
with a magnetic field is expected to have a variance of
(DG)2}(DB)g where 1,g,2 [in contrast with a cha-
otic dot where (DG)2}(DB)2 for small DB]. An experi-
ment by Sachrajda et al. (1998) claims to have observed
this fractal behavior in dots coupled to unusually wide
(;0.7 mm) leads.

In the work discussed in this review, transport through
the dot is driven by an applied bias. Another way to
produce a dc current through an open dot (at zero bias)
is by a cyclic change of its deformation or any other
parameter that affects the interference pattern of the
electron’s wave function. For low-frequency changes,
the electrons maintain equilibrium and the device is
known as an adiabatic quantum pump. In an open dot,
the electronic wave function extends into the leads and
an adiabatic cyclic change of at least two parameters can
cause a net charge transport Q per cycle. The theory of
parametric pumping was worked out by Zhou, Spivak,
and Altshuler (2000) and by Brouwer (1998), and an
experiment was carried out by Switkes et al. (1999).
Rev. Mod. Phys., Vol. 72, No. 4, October 2000
While confirming some of the theoretical predictions at
weak pumping (e.g., ^Q2&}SA

2 where SA is the area en-
closed by the contour in the two-parameter space), there
were unexplained quantitative differences at strong
pumping (e.g., the dependence of ^Q2& on SA was slower
than linear). Recently the theory was generalized to the
strong-pumping regime (Shutenko, Aleiner, and Alt-
shuler, 2000), and it was found that ^Q2&}lA (lA being
the length of the contour)—slower than the naive expec-
tation of ^Q2&}SA . Issues of dissipation and dephasing,
important for the temperature dependence of pumping,
still need to be understood. Aleiner and Andreev (1998)
showed that for an almost-open dot the charge transmit-
ted in one cycle is quantized in the limit T→0.

Recent years have seen the fabrication of new con-
ducting nanostructures smaller than quantum dots.
These devices have similarities to quantum dots, and
Coulomb-blockade peaks are observed in both linear
and nonlinear I-V measurements versus gate voltage. A
particularly interesting example is the nanometer-scale
Al particle, part of a tunneling device that includes a
gate electrode (Ralph, Black, and Tinkham, 1997). The
spectrum of the Al particle as a function of the number
of electrons it contains can be determined from nonlin-
ear measurements similar to those made on semiconduc-
tor quantum dots. Odd-even effects in the number of
electrons can be understood in terms of the pairing in-
teraction. Davidović and M. Tinkham (1999) measured
the spectra of Au nanoparticles. At higher excitations
the resonances of the particles overlapped to form broad
resonances that eventually merged into the continuum
around the Thouless energy, in overall agreement with
the theory of Altshuler et al. (1997). Another type of
conducting nanostructure is the carbon nanotube, which
also exhibits charging energy effects (Bockrath et al.,
1997; McEuen, 1998). Figure 31 shows Coulomb-
blockade peaks in the measured conductance of a nano-
tube, where large fluctuations of the peak heights can be
seen (Cobden et al., 1998). The statistical theory of

FIG. 31. The conductance vs gate voltage in a carbon nano-
tube rope (;200-nm segment). Sharp Coulomb-blockade
peaks are observed, each describing the tunneling through a
single resonance level. Note the strong fluctuations in the peak
heights. The inset is an image of the device with schematic
wires drawn. From Cobden et al. (1998).



963Y. Alhassid: Statistical theory of quantum dots
quantum dots should find interesting applications in
some of these novel nanoscale devices.
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