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Universality of ac conduction in disordered solids
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The striking similarity of ac conduction in quite different disordered solids is discussed in terms of
experimental results, modeling, and computer simulations. After giving an overview of experiment, a
macroscopic and a microscopic model are reviewed. For both models the normalized ac conductivity
as a function of a suitably scaled frequency becomes independent of details of the disorder in the
extreme disorder limit, i.e., when the local randomly varying mobilities cover many orders of
magnitude. The two universal ac conductivities are similar, but not identical; both are examples of
unusual non-power-law universalities. It is argued that ac universality reflects an underlying
percolation determining dc as well as ac conductivity in the extreme disorder limit. Three analytical
approximations to the universal ac conductivities are presented and compared to computer
simulations. Finally, model predictions are briefly compared to experiment.
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I. INTRODUCTION

Though not generally appreciated, everyday materials
like glass or plastic have electrical properties remarkably
in common. For example, with few exceptions the dc
conductivity is Arrhenius temperature dependent. Our
focus here, however, is on the strikingly universal ac
properties: It is almost always possible to scale measure-
ments of the frequency-dependent conductivity at differ-
ent temperatures into one single ‘‘master’’ curve. Differ-
ent solids have quite similar master curves. In particular,
ac electronic and ionic conduction cannot be distin-
guished. The only common feature of the numerous
different solids exhibiting this ac universality is their dis-
order.

What causes ac universality? This has been an open
question ever since the full scope of ac universality was
recognized in the 1970s (Isard, 1970; Namikawa, 1975;
Jonscher, 1977; Owen, 1977; Mansingh, 1980). Recent
experiments on ion conducting glasses by Roling et al.
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(1997), Ghosh and Sural (1999), and Sidebottom (1999)
have renewed interest in ac universality.

Below we review two models for ac conduction in dis-
ordered solids, a macroscopic model and a microscopic
model. These models embody Occam’s razor1 by having
essentially just one ingredient: disorder. For both mod-
els the ac conductivity is independent of the details of
the disorder when the local mobilities cover many or-
ders of magnitude—approaching the extreme disorder
limit. The universal ac conductivities of the two models
are similar and are both close to experimental results.
We argue that for both models ac universality is caused
by an underlying percolation dominating conduction at
extreme disorder.

Why should nonspecialists care about the subject of
this Colloquium? One reason is the ubiquity of disor-
dered materials—most likely there are several solids
with universal ac conductivity in the very room in which
you sit. A second reason has to do with modeling. In
modern condensed-matter physics the extreme disorder
limit is not often considered. For ac conduction in disor-
dered solids this limit leads to unusual non-power-law
universalities. Similar universalities may very well occur
elsewhere in ‘‘disordered’’ physics.

II. PRELIMINARIES

If Jtot is the current density (with contributions from
both free and bound charges) and E is the electric field,
the conductivity s tot is defined by Jtot5stotE. In general
the conductivity is frequency dependent: If v is the an-
gular frequency s tot(v) is the complex quantity defined
by Jtot,05s tot(v)E0 , where Jtot(t)5Re(Jtot,0e

ivt) and
similarly for the electric field.

The complex frequency-dependent relative dielectric
constant e(v) is defined by (where e0 is the vacuum
permittivity)

1‘‘It is vain to do with more what can be done with fewer’’
(Russell, 1946).
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s tot~v!2s tot~0 !5iv@e~v!21#e0 . (1)

If there are no free charges s tot(0)50 and Jtot5Ṗ, where
P is the dipole density. In this case Eq. (1) reduces to the
standard definition of the frequency-dependent dielec-
tric constant: D05e(v)e0E0 , where D0 is the complex
amplitude of the displacement vector D5e0E1P.

The negative imaginary part of e(v) is referred to as
the ‘‘dielectric loss’’ because it determines the dissipa-
tion in excess of the dc dissipation.2 The dielectric loss in
disordered solids usually exhibits a peak, much like that
characterizing dielectric relaxation in dipolar liquids
(Böttcher and Bordewijk, 1978).

At the frequencies of interest here (much below pho-
non frequencies, v!1013 Hz) it is generally believed
that the bound charge polarization may be regarded as
instantaneous.3 This implies that the bound charge di-
electric constant e` is frequency independent. The
bound charge contribution to s tot(v) is iv(e`21)e0 .
The ac conductivity s(v) is by definition the free charge
carrier contribution to s tot(v). Since s tot(v)5s(v)
1iv(e`21)e0 Eq. (1) implies

s~v!2s~0 !5iv @e~v!2e`#e0 . (2)

The real part of s(v) is usually denoted by s8(v)
and the imaginary part by s9(v). Clearly, s9(v)Þ0 re-
flects a phase difference between field and free charge
current. Below phonon frequencies, whenever the con-
ductivity is frequency dependent the charge carrier dis-
placement always lags behind the electric field. This time
lag is at most one-quarter of a period, so the current
reaches its maximum earlier than the field, implying
s9(v).0. In the language of electronics this reflects a
capacitive response rather than an inductive one. Of
course, s8(v) is also positive because thermodynamics
requires positive dissipation.

III. AC CONDUCTION IN DISORDERED SOLIDS: FACTS

Solids are classified into metal and nonmetals. A
metal has a large weakly temperature-dependent dc con-
ductivity, a nonmetal has a much smaller dc conductivity
which, however, increases strongly with increasing tem-
perature (Kittel, 1996). Only for disordered nonmetals is
ac conduction different from dc observed far below pho-
non frequencies. As mentioned in the Introduction,
these solids have quite similar ac conductivities, ‘‘univer-
sality.’’ Examples of solids with universal ac properties
are ion conducting glasses (Owen, 1963; Tomozawa,
1977; Angell, 1990; Kahnt, 1991; Roling, 1998), amor-
phous semiconductors (Mott and Davis, 1979; Long,
1982; Elliott, 1990; Long, 1991), polycrystalline semicon-
ductors (Kuanr and Srivastava, 1994), electron conduct-

2Recall that the average power absorbed per unit volume is
the real part of s tot(v)uE0u2/2.

3This is true in disordered solids only when one ignores sec-
ondary relaxations like those due to two-level tunneling sys-
tems important at very low temperatures.
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ing polymers (Epstein, 1986; Jastrzebska, Jussila, and
Isotalo, 1998), ion conducting polymers (Rozanski et al.,
1995), transition metal oxides (Namikawa, 1975;
Mansingh, 1980; Suzuki, 1980), metal cluster compounds
(van Staveren, Brom, and de Jongh, 1991), organic-
inorganic composites (Bianchi et al., 1999), and doped
single-crystal semiconductors at helium temperatures
(where the disorder due to the random positions of the
doping atoms becomes important) (Pollak and Geballe,
1961).

Figure 1 shows ac data for six different disordered
solids, three ion conducting (a)–(c) and three electron
conducting (d)–(f) [Fig. 1(b) is actually for a highly vis-
cous ionic melt just above the glass transition]. Clearly,
the ac conductivities are quite similar. There are numer-
ous other examples. While ion conduction is a classical
barrier crossing process, electron conduction in disor-
dered solids usually proceeds via quantum-mechanical
tunneling between localized states (i.e., states with wave
functions decaying exponentially in space). What do
these conduction mechanisms have in common in disor-
dered solids? The most likely answer is: very broad dis-
tributions of jump rates/tunneling rates/local mobilities
(Dyre, 1988; Elliott, 1990). Below we study two models
with such broad distributions and find that they roughly
reproduce experiment.

Ac universality was first discovered for ion conducting
oxide glasses. Taylor (1956, 1957, 1959) showed that the
dielectric loss for different glasses fell on a single plot
against scaled frequency. He also noted that the activa-
tion energy of the dc conductivity was the same as that
of the frequency marking the onset of ac conduction.
Subsequently, Isard (1961) relabeled Taylor’s axis by
plotting dielectric loss against the log of the product of
frequency and dc resistivity, equivalent to the following
representation:

s̃[s~v!/s~0 !5FSC v

s~0 ! D . (3)

Since then Eq. (3), which we shall refer to as ‘‘Taylor-
Isard scaling,’’ has been used by several authors. For
instance, Taylor-Isard scaling was used by Scher and Lax
(1973) in their famous papers on the continuous time
random-walk approximation, by Balkan et al. (1985) for
amorphous semiconductors, by Summerfield (1985) for
hopping models solved in a certain approximation, and
by van Staveren, Brom, and de Jongh (1991) for metal
cluster compounds. Brom et al. (1998) discuss the gener-
ality of Taylor-Isard scaling for electron conducting dis-
ordered solids. For ion conducting glasses Taylor-Isard
scaling was used recently by Kulkarni, Lunkenheimer,
and Loidl (1998), and by Roling (1998).

Three examples of Taylor-Isard scaling are shown in
Fig. 2. Figures 2(a) and (b) give the master curves for
the data shown in Figs. 1(a) and (d). Figure 2(c) shows
the master curves for eight different ion conducting
glasses. The master curves in Fig. 2 are similar, but not
identical. In all three examples the authors chose to fix
the Taylor-Isard scaling constant C to be proportional to
1/T . As shown below [Eq. (7)], in general C}De where
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FIG. 1. Ac conductivity of typical ion (a)–(c) and electron (d)–(f) conducting disordered solids. Each figure shows a log-log plot
of the real part of the conductivity as a function of frequency at various temperatures. At low frequencies the conductivity is
constant, at high frequencies it follows an approximate power law with exponent below one. Data are shown for the following
systems: (a) 50LiF–30KF–20Al(PO3)3 glass (inset: real part of the dielectric constant as a function of frequency) (Kulkarni,
Lunkenheimer, and Loidl, 1998). (b) 0.4Ca(NO3)2–0.6KNO3 highly viscous melt (Howell et al., 1974). (c) Thermoplastic polyure-
thane doped with NH4CF3SO3 (van Heumen et al., 1995). (d) Poly(methylthiophene) (Rehwald, Kiess, and Binggeli, 1987). (e)
Amorphous germanium film (inset: approximate power-law exponent —here labeled s—as a function of temperature) (Long and
Balkan, 1980). (f) Polycrystalline diamond film (Fiegl et al., 1994).
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
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De5e(0)2e` ; thus choosing C}1/T corresponds to as-
suming a ‘‘Curie law’’ for De . This law, however, is not
always obeyed (Namikawa, 1975) so possibly even bet-
ter master curves would have been achieved if no Curie
law was assumed.

FIG. 2. Ac conductivity master curves. Each figure shows a
log-log plot of the real part of the normalized ac conductivity
[in the text denoted by s̃ 8] as a function of scaled frequency.
(a) gives the master curve for the ion conducting glass data of
Fig. 1(a) (Kulkarni, Lunkenheimer, and Loidl, 1998); (b) gives
the master curve for the electron conducting polymer data of
Fig. 1(d) (Rehwald, Kiess, and Binggeli, 1987); (c) gives master
curves for data on eight different ion conducting oxide glasses
(Roling, 1998).
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
We now list the ac characteristics of the vast majority
of disordered solids. When reading the points below it
may be helpful to compare to Figs. 1 and 2.

(1) The real part of the ac conductivity increases with
frequency, the imaginary part is non-negative.

(2) At high frequencies s8(v) follows an apparent
power law,

s8~v!}vn. (4)

(3) Deviations from this power law correspond to n
increasing weakly with frequency.

(4) n is between 0.6 and 1.0.
(5) In a fixed frequency range n increases as tempera-

ture decreases and n→1.0 for T→0.
(6) When there is no measurable dc conductivity n is

close to 1.0.
(7) At low frequencies there is a gradual transition to

frequency-independent conductivity.
(8) In a log-log plot the power-law regime of the ac

conductivity is much less temperature dependent than
the dc conductivity.

(9) When n is close to 1.0 s8(v) is almost tempera-
ture independent.

(10) The ac conductivity obeys time-temperature su-
perposition, i.e., the shape of s8(v) in a log-log plot is
temperature independent. This makes it possible to con-
struct a master curve. Time-temperature superposition
applies also to s9(v).

(11) The shape of the master curve is roughly the
same for all disordered solids (universality).

(12) Whenever s(0) is measurable there is a dielectric
loss peak.

(13) The onset of ac conduction takes place around
the dielectric loss peak frequency vm .

(14) vm satisfies the Barton-Nakajima-Namikawa re-
lation (Barton, 1966; Nakajima, 1972; Namikawa, 1975)

s~0 !5pDee0vm , (5)

where p is a numerical constant of order 1. Experimen-
tal evidence for Eq. (5) is reproduced in Fig. 3.

(15) The dielectric loss strength De is much less tem-
perature dependent than vm or s(0), so Eq. (5) implies
the rough proportionality

s~0 !;vm . (6)

(16) s(0) and vm are Arrhenius temperature depen-
dent with the same activation energy.

Is not time-temperature superposition inconsistent
with the finding that n depends on temperature? The
answer is no because the power-law description is only
approximate. Thus if temperature is lowered the master
curve is displaced to lower frequencies (compare Fig. 1);
at the same time n→1.0 for measurements performed
in a fixed frequency range. We conclude that the
slope of the master-curve in a log-log plot—instead
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of being constant as for an exact power-law—goes to
one as scaled frequency goes to infinity.4

Time-temperature superposition makes it possible to
determine the Taylor-Isard scaling constant C of Eq. (3)
and derive the Barton-Nakajima-Namikawa relation.
We first find C by proving the scaling recently proposed
by Sidebottom (1999):

s̃5FS Dee0

v

s~0 ! D . (7)

If ṽ is the scaled frequency, the master curve s̃(ṽ) is
expanded to first order: s̃511iṽA . Since s5s̃s(0)
we have s(v)5s(0)1iṽAs(0). On the other hand,
Eq. (2) implies to first order in frequency s(v)5s(0)
1ivDee0 . Comparing these two expressions leads to
ṽ5A21@Dee0 /s(0)#v , and consequently C5Dee0 in
Eq. (3) [the numerical value of A is of no significance in
this proof] (Schrøder and Dyre, 2000).

Once Eq. (7) has been derived, the Barton-Nakajima-
Namikawa relation Eq. (5) follows: Equation (2) implies
e(v)2e`}(s̃21)/ṽ which is a function of ṽ . Thus the
dielectric loss has its maximum at some particular
temperature-independent value of ṽ . Denoting this by
ṽm , we have from the above derivation of Eq. (7)
Aṽm5@Dee0 /s(0)#vm . This is precisely the required
Eq. (5) if p is defined by 1/p5Aṽm . We cannot prove
from general arguments, of course, the experimental
finding that p is never far from one (Namikawa, 1975).

4This all applies far below phonon frequencies. Around pho-
non frequencies there are various resonance phenomena and
at even higher frequencies s8(v) goes to zero fast enough that
*0

`s8(v)dv is finite (Kubo, 1957).

FIG. 3. Test of the Barton-Nakajima-Namikawa relation [Eq.
(5), note that 2pfm5vm] for 40 different alkali ion conducting
oxide glasses. The dashed line corresponds to p51 in Eq. (5),
the solid line gives the best fit to data. These data from four
different laboratories were compiled by Nakajima (1972) who
presented a similar figure for 14 electron conducting transition-
metal oxide glasses.
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
We finally note that there are exceptions to the above
16 points. There are solids where n is slightly larger than
1.0 (Lakatos and Abkowitz, 1971; Durand et al., 1994;
Cramer and Buscher, 1998). There are solids where the
dc conductivity is not Arrhenius, for instance group-IV
amorphous semiconductors (Mott and Davis, 1979) or
fast ion conducting glasses (Angell, 1990). Finally, in
some cases the conductivity is weakly frequency depen-
dent much below vm (Jonscher, 1996). In our opinion
these are insignificant exceptions to the overall experi-
mental picture, but this viewpoint is not universally ac-
cepted. Thus Elliott (1994), Macdonald (1997), and Ngai
and Moynihan (1998) all emphasize the differences be-
tween various disordered solids. On the other hand, an
experienced experimentalist in this field recently discon-
tinued routine ac measurements because ‘‘we always see
more or less the same’’ (Kremer, 1999). Why is that? Is
there a simple way of understanding ac universality?
These questions motivate the study of the two simple
models in the following.

IV. MACROSCOPIC MODEL

The first model we consider assumes the disorder is
present only on a macroscopic scale.

A. Definition

Any solid consisting of phases with different conduc-
tivity has an overall conductivity which increases with
frequency (Maxwell, 1891; Wagner, 1913). This is be-
cause at high frequencies localized charge carrier motion
makes it possible to take maximum advantage of well
conducting regions, while at lower frequencies charge
transport must extend over longer distances and is lim-
ited by bottlenecks of poorly conducting regions.

Consider a solid with spatially varying, frequency-
independent free charge conductivity g(r), but uniform
bound charge dielectric constant e` . If J is the free
charge current density and D the displacement vector,
we have J(r,t)5g(r)E(r,t) and D(r,t)5e`e0E(r,t).
Combining these equations with (i) the definition of the
electrostatic potential f [E52¹f], (ii) Gauss’ law [¹•D
5r, where r is the free charge density], and (iii) the
continuity equation @ ṙ1¹•J50# , leads to the following
equation for f in a periodic field (Fishchuk, 1986; Dyre,
1993)

¹•$@ iv e`e01g~r!#¹f%50. (8)

It is not difficult to show that when Eq. (8) is discretized
one arrives at the circuit shown in Fig. 4 (Fishchuk, 1986;
Dyre, 1993). All capacitors in the circuit are equal, pro-
portional to e`e0 , while the resistors are proportional to
the local resistivity 1/g(r).

It is tempting to interpret the resistor currents as the
free charge currents and the capacitor currents as the
bound charge currents. This is not correct, however, be-
cause in that case according to Kirchhoff’s current law
there could be no charge accumulation at any node of
the circuit, i.e., anywhere in the solid. So how is the
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circuit to be interpreted? Surely, the resistor currents
are the free charge currents—this follows simply from
the definition of the resistors as being proportional to
the local free charge resistivity. But the capacitor cur-
rents are less straightforward: The charge on any capaci-
tor is the capacity (}e`e0) times the potential drop
across the capacitor. In a periodic field the current
through the capacitor is therefore proportional to
ive`e0 times the potential drop. Since the displacement
vector is given by D5e`e0E and the electric field is pro-
portional to the potential drop, we see that the capacitor
current is proportional to Ḋ. This time derivative is by
definition Maxwell’s displacement current (Reitz, Mil-
ford, and Christy, 1993). When the proportionality con-
stants are properly included in the calculation one finds
that the capacitor current is precisely the displacement
current (Dyre, 1993). Note that the capacitors would be
there even in the absence of bound charges, i.e., when
e`51.

To extract the overall ac conductivity from the circuit
one imagines a periodic potential applied across two op-
posing faces acting as electrodes. The average resistor
current determines the free charge ac conductivity
s(v). The admittance (i.e., the reciprocal of the imped-
ance) between the electrodes is denoted by Y(v). If L
is the linear dimension of the circuit and d the spatial
dimension, s(v) is found by subtracting the capacitor

FIG. 4. Electrical equivalent circuit arising from the discreti-
zation of Eq. (8), the basic equation for an inhomogeneous
solid in an ac electric field. This circuit and its higher dimen-
sional analogs describe the macroscopic model (Fishchuk,
1986; Dyre, 1993). All capacitors are equal, proportional to the
bound charge dielectric constant, while each resistor is propor-
tional to the inverse free charge conductivity at the corre-
sponding position in the solid. When the circuit is subjected to
a potential difference applied to two opposing faces the elec-
trostatic potentials at the nodes are found by solving Kirch-
hoff’s equations. As shown in the text, the resistor currents are
the free charge currents and the capacitor currents are Max-
well’s displacement currents. The bound charge currents are
only parts of this, the remainder is not associated with charge
transport (Reitz, Milford, and Christy, 1993).
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contribution to Y(v) (Fishchuk, 1986; Dyre, 1993):

s~v!5
Y~v!

Ld22
2ive`e0 . (9)

The frequency dependence of s is not due to the (sub-
tracted) direct capacitor contribution to the overall ad-
mittance. Instead, s(v)Þs(0) because the capacitors
influence the node potentials which determine the resis-
tor currents.

To realistically model a disordered nonmetal, the lo-
cal free charge conductivity is taken to be Arrhenius
temperature dependent: g5g0 exp(2bE) where b
51/kBT and E is the so-called activation energy. Con-
duction may be classical or quantum mechanical, it
makes no difference in the present treatment. The solid
disorder is reflected in g5g(r) being somehow random.5

A random function typically has a correlation length be-
yond which values are essentially uncorrelated. If the
discretization length is chosen as this correlation length,
it makes good sense to assume the resistors are uncor-
related from link to link. This assumption allows the
model to be uniquely defined by the activation energy
probability distribution p(E). By making this assump-
tion we ignore the details of the ‘‘microgeometry’’
(Baskin et al., 1997).

In one dimension the circuit is a series of RC ele-
ments and the calculation of Y(v) is straightforward. In
particular, the circuit impedance at zero frequency is the
sum of the individual resistors, implying s(0)
5^g21&21 (Dyre, 1993). In more than one dimension the
calculation of s(v) involves solving Kirchhoff’s circuit
equations. This cannot be done analytically, even in the
dc limit. In the high-frequency limit, however, the ca-
pacitor admittances are so large that they completely
dominate, resulting in a spatially homogeneous electric
field. Consequently, the average resistor current is deter-
mined by the average free charge conductivity, i.e.,
s(`)5^g& (Dyre, 1993). Summarizing the exact results,

d51: s~0 !5^g21!21,

d>1: s~`!5^g&. (10)

B. Ac universality in the extreme disorder limit

If temperature is lowered, b increases and the local
conductivities cover more and more decades: The ex-
treme disorder limit is approached.6 Although not obvi-

5A disordered solid is rarely random in the mathematical
sense (Ziman, 1979). We here follow what has become a stan-
dard approach, namely to replace complexity by randomness.
The rationale for doing so has been beautifully summarized by
Wolynes (1992).

6If W is a dimensionless measure of the degree of disorder,
W!1 corresponds to weak disorder while W@1 corresponds
to strong disorder. The term ‘‘extreme disorder’’ is used here
for the case ln(W)@1. We prefer to speak of the extreme
disorder limit, but mathematically, of course, this is the same
as the strong disorder limit (W→`).
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ous a priori, it turns out that in this limit the ac conduc-
tivity in scaled units becomes independent of both b and
p(E). This is ac universality as the term is used here for
models. No rigorous mathematical proof of ac universal-
ity exists, but there is convincing evidence from three
sources: (i) ac universality is predicted by analytical ap-
proximations; (ii) ac universality is found in computer
simulations; and (iii) it is possible to physically under-
stand the origin of ac universality. Points (i) and (ii) are
considered below for the macroscopic model and in Sec.
V for the symmetric hopping model. Point (iii) is dis-
cussed in Sec. VI for both models.

To find s(v) we need to calculate the overall admit-
tance of the circuit in Fig. 4. For this we shall use the
effective-medium approximation (EMA), a standard
technique for calculating average physical properties of
random mixtures. The idea is to focus on one small part
of the mixture and regard it as embedded in an effective
medium with the average property. Then self-
consistency is required such that, on the average, the
embedding in the effective medium has the same overall
property as the effective medium itself (Landauer, 1978;
Bergman and Stroud, 1992). This approximation was
first used by Bruggeman (1935) for calculating the di-
electric constant of mixtures of dielectrics, and for cal-
culating the thermal and dc electrical conductivity of
mixtures. The effective-medium approximation may also
be used for calculating the bulk and shear moduli of a
mixture of solids with different elastic properties (Ber-
ryman, 1980) or, as in the next section, the ac conductiv-
ity of a hopping model. The idea has even been used for
calculating the quantum-mechanical average one-
particle Green’s function for a disordered system, in this
situation referred to as the ‘‘coherent potential approxi-
mation’’ (Economou, 1983).

According to the effective-medium approximation for
randomly varying admittances y on a cubic lattice in d
dimensions, the overall admittance is the same as that of
a circuit of identical admittances ym , where ym is the
solution (Kirkpatrick, 1973) of

K y2ym

y1~d21 !ym
L 50. (11)

The brackets indicate averaging over the admittance
probability distribution p(y). To apply Eq. (11) to the
macroscopic model, one substitutes the admittance of
each RC element of Fig. 4, y}g(r)1ive`e0 , into Eq.
(11). Note that ym becomes frequency dependent. Equa-
tion (9) implies ym}s(v)1ive`e0 . Thus the following
equation for s5s(v) is arrived at (Fishchuk, 1986;
Dyre, 1993):

K g2s

g1~d21 !s1dive`e0
L 50. (12)

The brackets indicate averaging over p(g).
A straightforward calculation shows that in one di-

mension the dc conductivity is correctly predicted by Eq.
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(12). Equation (12) also correctly implies s(`)5^g& in
any dimension: At very large frequencies the relative
variation of the denominator is small. Consequently, the
denominator may be regarded as a constant C, and Eq.
(12) reduces to ^@g2s(`)#/C&50 which implies s(`)
5^g&.

It is possible to simplify Eq. (12) in the extreme dis-
order limit (Dyre, 1993). In terms of a suitably defined
dimensionless frequency ṽ , for any continuous finite
width p(E) the normalized ac conductivity s̃ is the so-
lution of

s̃ ln s̃5iṽ . (13)

This equation was originally derived for the hopping
model describing a dilute system of electrons tunneling
between states randomly localized in space (Bryksin,
1980; Böttger and Bryksin, 1985; Long, 1991). Subse-
quently, Fishchuk (1986) derived Eq. (13) for the mac-
roscopic model with ‘‘box’’ activation energy distribu-
tion [p(E) flat with sharp cutoffs].

The effective-medium approximation universality
equation, Eq (13), is easy to solve numerically. An accu-
rate analytical approximation to the solution is available
(Dyre, 1993); it is even possible to give an explicit inte-
gral representation of s̃(ṽ) (Dyre and Jacobsen, 1995).
The solution is constant at low frequencies (ṽ!1). At
high frequencies (ṽ@1) the real part of the conductivity
follows an approximate power law with exponent n,1
which slowly goes to one as ṽ→` (Bryksin, 1980). Note
that, while the ac conductivity at any finite temperature
is constant at sufficiently high frequencies [Eq. (10)], the
limit function s̃(ṽ) diverges as ṽ→` .

How well do the effective-medium predictions hold?
Figure 5 reproduces examples of simulations in two di-
mensions. Only imaginary frequencies (denoted by s)
were used in these simulations.7 This is a technical trick
which simplifies calculations—at imaginary frequencies
all numbers are real because the capacitor admittances
are real. Figure 5(a) shows results for one activation en-
ergy distribution at different b’s, clearly converging as
b→` . The solid curves show the predictions of the
effective-medium approximation at finite temperatures
[Eq. (12) solved numerically]. Similar results are found
for other distributions (Dyre, 1993). Figure 5(b) shows
the ac conductivity for different distributions at b5160
(in dimensionless units). All distributions lead to the
same ac conductivity, which is well represented by Eq.
(13) (solid curve). A few simulations in three dimensions
were presented by Dyre (1993) but extensive simula-
tions are still lacking. The best results presently avail-
able seem to be those of Riedel and Dyre (1994) who,

7The ac conductivity is an analytic function of frequency.
Consequently, a knowledge of this function on just one line in
the complex plane by ‘‘analytic continuation’’ determines the
function uniquely (Churchill and Brown, 1984). In particular,
knowing the ac conductivity at imaginary frequencies deter-
mines it at real, physical frequencies.
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using a recursive technique, found good agreement with
Eq. (13) in the extreme disorder limit. In conclusion, the
effective-medium approximation universality equation,
Eq. (13), describes the universal ac conductivity of the
macroscopic model well in two and, most likely, also in
three dimensions.

V. SYMMETRIC HOPPING MODEL

The macroscopic model does not apply for solids that
are strongly disordered on the atomic scale. We now
consider a model with microscopic disorder. While the
macroscopic model via Gauss’ law includes all Coulomb
interactions, to keep things simple these interactions are
ignored in the below ‘‘hopping’’ model.

FIG. 5. Computer simulations of the macroscopic model’s ac
conductivity at imaginary frequencies in two dimensions [re-
produced from Dyre (1993)]. (a) shows a log-log plot of s̃ as a
function of scaled imaginary frequency s̃ [scaling defined in
Dyre (1993)] for the activation energy probability distribution
p(E)52E(0<E<1) at b equal to 5, 10, 20, 40, 80, 160 in
order of increasing conductivity. The solid curves are the pre-
dictions of the effective-medium approximation at finite tem-
peratures obtained by solving Eq. (12) numerically. (b) shows
results for s̃( s̃) at b5160 for the following six activation en-
ergy probability distributions: Asymmetric Gaussian (n), box
(1), Cauchy (s), symmetric exponential (L), power law with
exponent 24 (h), and triangle (,). At extreme disorder all
distributions have the same s̃( s̃). The universal ac conductiv-
ity is well represented by the effective-medium approximation
universality equation, Eq. (13), which is given by the solid
curve.
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A. Definition

The term hopping refers to sudden displacement of a
charge carrier from one position to another close by
(Böttger and Bryksin, 1985; Long, 1991). We shall only
consider the simplest hopping model. This model has
noninteracting charge carriers placed on a cubic lattice
with only nearest-neighbor jumps allowed. The jump
rates (jump probabilities per unit time) are assumed
symmetric, i.e., the same for jumps forwards or back-
wards between two sites. The more general asymmetric
hopping model has been studied as a model, e.g., for
protein dynamics or viscous liquid flow [see Stein and
Newman (1995) or Dyre (1995) and their references].

Figure 6 gives a one-dimensional example of the kind
of potential leading to the symmetric hopping model
(also referred to as the random barrier model). Each
nearest-neighbor jump rate is given (Lidiard, 1957) by
G5g0 exp(2bE) where g0 is the so-called attempt fre-
quency and b51/kBT .8 The barrier to be overcome, the
activation energy E, is assumed to vary randomly.

The symmetric hopping model may seem completely
unrealistic for the following three reasons: (i) It ignores
that charge carriers repel each other. (ii) It allows an
arbitrary number of charge carriers at each site, but—

8For simplicity only hopping over a barrier is considered, but
the model also describes quantum mechanical tunneling of lo-
calized electrons. In that case b is not inverse temperature but
inverse wave-function size. In, e.g., amorphous semiconductors
the electrons are localized at random positions, and the jump
rates vary primarily because the jump distances vary. This situ-
ation may be described by, for the present model having jumps
on a regular lattice, using the correct random position jump
rate probability distribution.

FIG. 6. Typical potential for a system described by the sym-
metric hopping model (random barrier model) in one dimen-
sion. The arrows indicate the two possible jumps for the charge
carrier shown. The term ‘‘symmetric’’ refers to the fact that the
jump rate is the same for jumps forwards and backwards across
a given barrier. The symmetric hopping model corresponds to
the discrete version of motion in this potential, where nonin-
teracting charge carriers reside on a lattice defined by the
minima. At low temperatures most time is spent close to en-
ergy minima. Occasionally, a charge carrier by chance acquires
enough energy from the surrounding heat bath to jump into a
neighboring minimum. If the barrier height is E, the probabil-
ity per unit time for a jump is the attempt frequency times
exp(2bE), where b51/kBT . At low temperatures the charge
carrier almost always chooses the lowest barrier. This implies
the ‘‘bounce-back mechanism’’: After one jump the next jump
most likely goes back again (Kimball and Adams, 1978; Funke,
1993).
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whether the charge carriers are ions or localized
electrons—there is room for just one at each site. (iii) It
does not allow site energies to vary. A more realistic
model has randomly varying site energies with room for
just one charge carrier at each site. Surprisingly, when
this ‘‘Fermi model’’ is linearized with respect to an ex-
ternal electric field, the resulting equations are the same
as those of the symmetric hopping model (Miller and
Abrahams, 1960; Butcher, 1974). This traditionally
serves as the justification of the symmetric hopping
model. The linearization, however, involves the non-
trivial assumption that the occupation number (0 or 1)
may be replaced by a continuous variable (Shklovskii
and Efros, 1984). Although the connection to the
‘‘Fermi’’ model is not rigorous, we believe that in the
extreme disorder limit it is likely that these two models
have identical universal ac conductivities.

Because the charge carriers by assumption are nonin-
teracting it is enough to consider the motion of just one
of them. All relevant information is contained in the
so-called master equation for the probability Ps to find
the charge carrier at lattice site s, Ps (van Kampen,
1981). If G(s,s8)5G(s8,s) is the rate of jumps between s
and s8—nonzero only for nearest neighbor sites—the
hopping master equation (Butcher, 1974; Böttger and
Bryksin, 1985; Haus and Kehr, 1987; Hughes, 1996) is

d

dt
Ps5(

s8
G~s,s8!~Ps82Ps!. (14)

From the values of the site probabilities at any given
time Eq. (14) determines these probabilities at later
times. Anyone who feels uncomfortable thinking about
a time-dependent probability for one single charge car-
rier may instead imagine numerous noninteracting
charge carriers hopping all over the lattice and define Ps
as the number of charge carriers at site s relative to the
total number. With this ensemble interpretation Eq. (14)
describes the rate of change of average site occupations.

Equation (14) applies when there is no external elec-
tric field. In a nonzero field, jumps in the field direction
are favored. The result is a net current. The fluctuation-
dissipation theorem expresses the frequency-dependent
conductivity in terms of the equilibrium (i.e., zero-field)
current autocorrelation function (Kubo, 1957; Becker,
1967). If q is charge and n is the charge carrier concen-
tration, the fluctuation-dissipation theorem for a system
of noninteracting charge carriers is

s~v!5
nq2

kBT
D~v!, (15)

where the frequency-dependent diffusion constant
D(v) is defined as the Laplace transform of the velocity
autocorrelation function (below v is the velocity pro-
jected onto a fixed direction in space):

D~v!5E
0

`

^v~0 !v~ t !&e2ivtdt . (16)

At zero frequency Eq. (16) reduces to a well-known
identity for the ordinary diffusion constant and Eq. (15)
reduces to the so-called Nernst-Einstein relation
(Becker, 1967).
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How is velocity defined for a charge carrier that vir-
tually still sits all the time and jumps in principle infi-
nitely fast when it finally moves? The answer is that the
velocity is a sum of delta functions. This causes no prob-
lems; the velocity autocorrelation function has a d(t)
term but is otherwise continuous. A simple example is
when all jump rates of Eq. (14) are equal. Jump direc-
tions are then uncorrelated and the velocity autocorre-
lation function is zero for t.0, thus proportional to
d(t). In this case D(v) is constant and Eq. (15) implies
that the conductivity is frequency independent.

Kimball and Adams (1978) derived an expression for
s(v) valid for any hopping model, implying that it is
always possible to write

s~v!5s~`!2(
n

An

gn1iv
, (17)

where An>0 and gn>0. Utilizing Eqs. (15) and (17),
Eq. (16) by inverse Laplace transformation implies that
for t.0

^v~0 !v~ t !&<0. (18)

In terms of the mean-square displacement ^Dx2(t)& , Eq.
(18) implies9 that

d2

dt2 ^Dx2~ t !&<0. (19)

Figure 7 illustrates the velocity autocorrelation function
and the mean-square displacement. Physically, why is
the velocity autocorrelation function negative for t.0?
As noted Fig. 6, from any site the most likely jump is
along the link with largest jump rate. The next jump is
more likely to go back again than to any other site, be-
cause the link just jumped along generally has a large
jump rate. This bounce-back mechanism (Kimball and
Adams, 1978; Funke, 1993) explains why the velocity
autocorrelation function is negative (and why the con-
ductivity is frequency dependent).

We shall adopt the unit system in which the conduc-
tivity and the diffusion constant are both normalized
such that on a homogeneous lattice with jump rate G one
has s5D5G . In analogy to Eq. (10) for the macro-
scopic model there are two exact results for the symmet-
ric hopping model (Alexander et al., 1981; Haus and
Kehr, 1987):

d51: s~0 ! 5^G21&21,

d>1: s~`!5^G& . (20)

9Squaring and averaging Dx(t)5*0
t v(t8)dt8 one arrives at

^Dx2(t)&5*0
t *0

t ^v(t8)v(t9)&dt8dt9. The time derivative of this
function has two identical contributions, each eliminating one
integral, and we find d/dt^Dx2(t)&52*0

t ^v(t)v(t9)&dt9
52*0

t ^v(0)v(t9)&dt9 [the last equality comes from substituting
t9[t2t9 and using the identity ^v(t)v(t2t9)&5^v(0)v(t9)&].
A second differentiation leads to d2/dt2^Dx2(t)&
52^v(0)v(t)&.
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B. Ac universality in the extreme disorder limit

It is not possible to calculate the ac conductivity ana-
lytically for the symmetric hopping model, but fortu-
nately there is an effective-medium approximation also
for this model. If x5x(v) is defined by the following
d-dimensional integral over k5(k1, . . . ,kd):

x5E
2p,kj,p

iv

iv12s@d2( j cos kj#
dk

~2p!d , (21)

the effective-medium approximation self-consistency
equation for s5s(v) (Haus and Kehr, 1987) is

K G2s

G1~d21 !s1x~s2G!L 50. (22)

The brackets indicate averaging over the jump rate
probability distribution p(G). It is not difficult to show
that Eq. (22) implies Eq. (20), just as Eq. (12) implies
Eq. (10).

Equation (22) may be simplified in the extreme disor-
der limit (b→`). The calculations are more involved
than for the macroscopic model, but the result is the
same (Dyre, 1994): In terms of a suitably defined dimen-
sionless frequency ṽ , s̃(ṽ) obeys the effective medium
approximation universality equation, Eq. (13), indepen-
dent of the activation energy probability distribution.
Below two dimensions the effective-medium approxima-
tion does not lead to Eq. (13), though. This fact becomes

FIG. 7. Signatures of charge carrier motion in the symmetric
hopping model. (a) shows the velocity autocorrelation function
as a function of time. After one jump the next usually goes
back again (Fig. 6). This ‘‘bounce-back mechanism’’ causes the
velocity autocorrelation function to be negative for t.0 (it is
always positive right at t50 where it is a delta function). (b)
shows the mean-square displacement as a function of time.
The bounce-back mechanism is reflected in the fact that the
mean-square displacement is faster at short times than it would
be if the long-time behavior extrapolated linearly to zero, as it
does for random walks in a homogeneous solid.
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FIG. 8. Computer simulations of the symmetric hopping
model in three dimensions at real frequencies (Schrøder and
Dyre, 2000). The simulations were carried out by solving the
hopping master equation using a new algorithm (Schrøder,
1999). (a) Real part of the ac conductivity in nonscaled units
for the box distribution of activation energies @p(E)51,
0<E<1] at four different b’s. (b) The same data scaled ac-
cording to Eq. (7), clearly converging to one single curve as
b→` . (c) Data for five different activation energy probability
distributions at large b’s, showing universality. The solid curve
is the prediction of the effective-medium approximation
(EMA) universality equation, Eq. (13). As a guide to the eye
dots are shown marking a line with slope one.
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important in the next section.
Figure 8 shows results from computer simulations of-

the symmetric hopping model. Figure 8(a) gives the ac
conductivity as a function of frequency in nonscaled
units for the box distribution of activation energies at
different temperatures. Figure 8(b) shows how these
data, when scaled according to Eq. (7), converge to uni-
versality as b→` . Finally, Fig. 8(c) shows the ac con-
ductivities for five different activation energy probability
distributions at large b, clearly showing universality. In
Fig. 8(c) the solid line gives the effective-medium ap-
proximation universality prediction, which is not quite
accurate. In two dimensions this approximation is even
less accurate (Dyre, 1994).

The first hints of ac universality for hopping are found
in an interesting paper by Summerfield (1985). He dis-
cussed several specific hopping models for electronic
conduction in amorphous semiconductors and made the
following discovery: When solved in the extended pair
approximation (Summerfield and Butcher, 1982) all
models have almost the same [scaled] ac conductivity.
Numerical results for an energy-dependent hopping
model implied similar behavior. He referred to this phe-
nomenon as ‘‘quasi-universality.’’ The quasi-universal ac
conductivity was approximated by a constant plus a
power law with exponent n50.725.

VI. CAUSE OF UNIVERSALITY

The macroscopic model and the symmetric hopping
model both predict ac universality in the extreme disor-
der limit. The obvious question now is: What causes ac
universality? Below, we present a physical picture of
conduction in the extreme disorder limit and show how
it implies ac universality. The scenario outlined builds
on well-known insights gained during the last 30 years,
but part of it is new and more speculative. The picture
presented leads to two alternative analytic approxima-
tions to the universal ac conductivity, each applicable to
either model.

A. Role of percolation

We shall argue that in both models ac universality
arises because percolation controls the conductivity in
the extreme disorder limit. Let us briefly recall what per-
colation is (Broadbent and Hammersley, 1957;
Isichenko, 1992; Stauffer and Aharony, 1992). Consider
a cubic lattice in any dimension and suppose each
nearest-neighbor link is randomly marked with prob-
ability p . When p is low few links are marked and con-
nected clusters of marked links are small. Increasing p
the average cluster size increases. At the so-called per-
colation threshold pc an infinite cluster appears, the
‘‘percolation cluster.’’ In two dimensions pc50.5 ex-
actly, in three dimensions pc>0.2488 (Isichenko, 1992).

The percolation phenomenon is illustrated in Fig. 9.
Figure 9(a) shows the situation below the threshold: It is
not possible to follow the lines from one end of the fig-
ure to the other, so there is no infinite connected cluster
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
of marked links (lines). Figure 9(b), on the other hand,
is above the percolation threshold. Here it is possible to
follow lines across the figure (check this yourself!).

We first show how the dc conductivity activation en-
ergy Ec , defined by s(0)} exp(2bEc) at large b, for
both models is determined from percolation arguments.
In the dc limit the macroscopic model is described by a
simple resistor network (the capacitors in Fig. 4, of
course, play no role at zero frequency). When b is large
the random resistors cover many decades. Imagine now
the resistors marked in order of increasing resistance.
Clearly, a dc current through marked resistors is pos-
sible only when the fraction of marked resistors exceeds
pc . When this happens, due to the large spread of resis-
tors, marking more resistors does not significantly
change the admittance of the set of marked resistors.
This admittance is dominated by the largest resistors
among those marked just when percolation is reached
(the ‘‘bottlenecks’’). In particular, the temperature de-

FIG. 9. Percolation in two dimensions. On an underlying
square lattice (not shown) each nearest-neighbor link is
marked black with probability p . (a) shows the case when p
50.4, which is below the percolation threshold (pc50.5 in two
dimensions). It is not possible to follow marked links across
the entire figure. In (b) p50.6 which is above the percolation
threshold. This is reflected in the fact that it is now possible to
find paths of marked links connecting opposite sides of the
figure. The set of marked links stretching to infinity is termed
the ‘‘percolation cluster.’’ In the text it is argued that the
percolation phenomenon lies behind ac universality in both
models.
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pendence of the overall admittance is the same as that of
the bottleneck admittances. The dc conductivity activa-
tion energy Ec is consequently determined by

E
0

Ec
p~E !dE5pc . (23)

Equation (23) was first derived by the above physical
arguments (Ambegaokar, Halperin, and Langer, 1971;
Shklovskii and Efros, 1971), and later proved rigorously
(Tyč and Halperin, 1989).

Equation (23) is valid also for the symmetric hopping
model: The main contribution to the (zero-field) mean-
square displacement comes from charge carriers utiliz-
ing the links with the largest jump rates. Optimal charge
carriers jump preferably on the percolation cluster, de-
fined by marking links in order of decreasing jump rate
until percolation. The optimal charge carriers must ev-
ery now and then overcome the largest barriers on the
percolation cluster. These barriers act as bottlenecks, so
Ec of Eq. (23)—the energy of the largest barriers—
determines the rate of mean-square displacement. Via
Einstein’s equation ^Dx2(t)&52Dt and the fluctuation-
dissipation theorem [Eq. (15), here used at zero fre-
quency] we conclude that the activation energy of s(0)
is given by Eq. (23) also for hopping.

Before proceeding to discuss the origin of ac univer-
sality we must consider in somewhat more detail where
the dc current flows. The problem is that the percolation
cluster is a fractal and as such has zero bulk dc conduc-
tivity (Bouchaud and Georges, 1990). Thus besides the
percolation cluster a tiny extra fraction of resistors/jump
rates must also be involved in carrying the dc current.
We shall term this enlarged cluster the ‘‘fat percolation
cluster.’’ How large is it? Probably, it only involves add-
ing extra links with activation energies a few kBT above
Ec , because adding more links cannot change the con-
ductivity significantly (since these conduct poorly). Note
that in the extreme disorder limit (b→`) the fat perco-
lation cluster converges to the exact percolation cluster
and the proof that Ec is given by Eq. (23) still holds.

Our main assumption is now that not only dc, but also
ac conduction mainly takes place on the fat percolation
cluster. We thus assume that ac contributions from finite
isolated ‘‘islands’’ are unimportant in the extreme disor-
der limit. At this point we differ crucially from previous
physical pictures relating ac conductivity to the underly-
ing percolation (Zvyagin, 1980; Böttger and Bryksin,
1985; Hunt, 1995).

Starting by the macroscopic model, we ask: Why is
conductivity frequency independent at low frequencies
and what determines the onset of ac conduction? To
answer these questions, recall that all capacitors in Fig. 4
are equal. At very low frequencies each capacitor has
numerically smaller admittance than that of its partner
resistor. If frequency is increased, an increasing number
of capacitor admittances become numerically larger
than the admittance of their resistor partner. Whenever
this happens for a link (an RC element) we term it ‘‘af-
fected.’’ The average resistor current changes only insig-
nificantly as long as none of the affected links are on the
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fat percolation cluster (which carries almost all cur-
rents). When frequency is continuously increased, at
some point links on the fat percolation cluster do be-
come affected. The first of these are the bottlenecks, the
links with the largest resistors. From there on, as fre-
quency is further increased, more and more links on the
fat percolation cluster are affected—the node potentials
on the cluster change and so do the resistor currents:
The conductivity becomes frequency dependent. The
frequency marking onset of ac conduction is roughly
proportional to the dc conductivity, because both are
roughly proportional to the bottleneck admittance. This
explains Eq. (6), the Barton-Nakajima-Namikawa rela-
tion’s rough proportionality between dc conductivity
and dielectric loss peak frequency (recall that the latter
marks onset of ac conduction).

For a fixed range of frequencies around vm the resis-
tors of the affected links on the fat percolation cluster
cover a corresponding range on a logarithmic scale. As
b→` these resistors involve only a narrow range of ac-
tivation energies around Ec . s̃ is dimensionless and can
therefore depend only on dimensionless variables.
Quantities with energy in their dimension which s̃ might
involve are Ec , p(Ec), and b. A change of the zero of
the energy scale simply results in multiplication of con-
ductivity and scaled frequency by constants. This does
not change s̃(ṽ) so s̃ cannot depend on Ec . Therefore
s̃ can depend on p(Ec) only via the following dimen-
sionless quantity: p̃5p(Ec)/b . As b diverges p̃→0 and
we have universality: s̃ becomes independent of both
temperature and activation energy probability distribu-
tion. The only assumptions needed for this argument to
work properly are that p(E) is smooth at Ec and that
p(Ec).0. Thus our reasoning does not apply to discon-
tinuous situations like that of a binary inhomogeneous
solid (Clerc et al., 1990).

To understand ac universality for hopping we shall
consider the equilibrium mean-square displacement of a
charge carrier. First we note that in terms of this quan-
tity the frequency-dependent diffusion constant is given
(Scher and Lax, 1973) by10

D~v!52
v2

2 E
0

`

^Dx2~ t !&e2ivtdt . (24)

As is easy to show, a linear mean-square displacement
implies a frequency-independent diffusion constant. At
long times the mean-square displacement indeed is lin-
ear in time. Consequently, the diffusion constant is fre-
quency independent at sufficiently low frequencies.11

When b is large the dominant contribution to the
mean-square displacement comes from random walks
on the fat percolation cluster. As we have seen already,

10An implicit convergence factor e2et (lim e→0) is under-
stood in the integral.

11For given v the integral Eq. (24) is dominated by the con-
tributions of ^Dx2(t)& at times t given by vt;1 (Tauberian
theorem).
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the links with smallest jump rate Gc on this cluster (the
bottlenecks) determine the rate of mean-square dis-
placement at long times which in turn determines the dc
conductivity. The bottlenecks, however, also determine
the frequency marking onset of ac conduction, vm : For
a random walk on the fat percolation cluster many
bottlenecks are passed in time t whenever Gct@1. At
these long times the cluster ‘‘looks’’ homogeneous and
the mean-square displacement is linear in time. Conse-
quently, conductivity is frequency independent when-
ever v!Gc .11 The mean-square displacement becomes
nonlinear in time roughly when Gct;1, corresponding to
frequencies v;Gc , because on that time scale random
walks on the fat percolation cluster are limited to take
place between bottlenecks and the cluster looks inhomo-
geneous. Since s(0) and vm are thus both roughly pro-
portional to Gc , we now understand the origin of the
Barton-Nakajima-Namikawa rough proportionality, Eq.
(6), also for the hopping model.

From here on we argue much as for the macroscopic
model. In a fixed range of frequencies around vm ,
whenever b is large only links with activation energies
close to Ec are important. s̃ can depend only on p̃
5p(Ec)/b which goes to zero in the extreme disorder
limit. This establishes ac universality for the symmetric
hopping model. Again, the only necessary assumptions
are that p(E) is smooth at Ec and that p(Ec).0.

The term ‘‘universality’’ became part of the physics
vocabulary in the 1970s with the renormalization group
theory of critical phenomena, one of the major advances
in theoretical physics after World War II (Wilson, 1983;
Goldenfeld, 1992; Fisher, 1998). A second-order phase
transition is characterized by a number of critical expo-
nents. Universality refers to the fact that these expo-
nents depend only on dimension and order-parameter
symmetry, not on microscopic details. Ac universality is
not associated with exact power laws. Despite this there
is a connection to critical phenomena, because ac uni-
versality is caused by the underlying percolation, and
percolation is a critical phenomenon [see, e.g., Isichenko
(1992)].

Approaching any second-order phase transition there
is a diverging correlation length. Is ac universality also
associated with a diverging length? Consider first hop-
ping and define l such that l2 is the mean-square dis-
placement at t51/vm . In the effective-medium approxi-
mation l diverges as b→` . This is confirmed by
computer simulations (Schrøder, 1999). Presumably, l is
proportional to the correlation length of the fat percola-
tion cluster (Bouchaud and Georges, 1990; Baskin et al.,
1997). This identification makes it possible to define l
also for the macroscopic model, and even for this model
associate ac universality with a diverging correlation
length.

The existence of a length diverging as b→` implies
that ac universality is probably robust to rather exten-
sive modifications of the two models, for instance by
allowing resistors/jump rates which are not uncorrelated
from link to link. As long as the resistors/jump rates
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have a finite correlation length we expect there is ac
universality in the extreme disorder limit.

B. Percolation based approximations

To calculate the universal ac conductivity in either
model the effective-medium approximation introduces a
homogeneous effective medium. Although this approxi-
mation works well for the macroscopic model it is less
successful for hopping. Is it possible to construct better
approximations by making use of the above physical pic-
ture of conduction in the extreme disorder limit? We
shall attempt to do this in two steps, each time develop-
ing an approximation applicable to both models. We ar-
gue simultaneously for both models. In the dc limit, in
fact, the two models are mathematically equivalent,12

because in steady state the master equation (14) may be
identified with Kirchhoff’s current law if probability is
identified with potential and jump rate with inverse re-
sistance (Miller and Abrahams, 1960).

Computer simulations have shown that at extreme
disorder the dc current follows almost one-dimensional
paths (Brown and Esser, 1995). A naive approach is to
regard these ‘‘conducting paths’’ as strictly one-
dimensional. For both models links with activation ener-
gies larger than Ec are outside the fat percolation cluster
and contribute little to the conductivity. Thus we arrive
at the percolation path approximation (PPA): ‘‘The uni-
versal ac conductivity is equal to that of the extreme
disorder limit of a one-dimensional model with a sharp
upper cutoff in the activation energy probability distri-
bution.’’

It is easy to apply this approximation to the macro-
scopic model, because the one-dimensional analog of
Fig. 4 is exactly solvable. The percolation path approxi-
mation for the universal ac conductivity thus found
(Dyre, 1993) is

s̃5
iṽ

ln~11iṽ !
. (25)

This mathematical expression (thin dashed line in Fig.
10) was first derived as the continuous time random
walk approximation to a simple hopping model (Dyre,
1988). Equation (25) gives a slightly more pronounced
frequency dependence of the conductivity than the solu-
tion of the effective-medium approximation universality
equation, Eq. (13).

To apply the percolation path approximation to hop-
ping, the ac conductivity in one dimension with a sharp
activation energy cutoff must be calculated in the ex-
treme disorder limit. This can only be done approxi-
mately. Dyre and Schrøder (1996) showed that the
effective-medium approximation in one dimension rep-
resents simulations there very well and leads to the fol-
lowing equation:

12Note that this fact explains why Eq. (23) for the dc conduc-
tivity activation energy Ec applies to both models.
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As̃ ln~11Aiṽs̃ !5Aiṽ . (26)

This is the percolation path approximation for hopping.
Compared to the effective-medium approximation uni-
versality equation [Eq. (13)—applicable in two and
more dimensions], Eq. (26) gives a somewhat less pro-
nounced frequency dependence of the conductivity (thin
solid line in Fig. 10).

The effective-medium approximation and the percola-
tion path approximation are opposite extremes. The
former views conduction as spatially homogeneous, the
latter views it as strictly one-dimensional. In reality, con-
duction takes place on some complex subset of the fat
percolation cluster which we term the diffusion cluster.

How to define the diffusion cluster? Consider the dc
limit. Not all links on the fat percolation cluster carry
current—there are dead ends. Removing these leaves us
with the so-called backbone (Stauffer and Aharony,
1992). The backbone, which in ordinary three-
dimensional space has dimension 1.7, includes loops,

FIG. 10. Real parts of the four approximate analytical expres-
sions for the universal ac conductivities of the two models
(Table I) derived in: the effective-medium approximation
(EMA), the percolation path approximation (PPA), and the
diffusion cluster approximation (DCA). The frequency scaling
is here defined such that all four curves coincide at log10(s̃8)
50.5. As a guide to the eye, dots are shown marking a line
with slope one. All four expressions follow an approximate
power law at high frequencies with an exponent which con-
verges to one from below as frequency goes to infinity.
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however. Thus many pairs of sites are connected by two
or more different paths on the backbone. In the extreme
disorder limit one of these paths is by far most favor-
able. The backbone should therefore be further diluted
by removing inefficient paths. A lower limit to this dilu-
tion is given by the set of ‘‘red bonds,’’ those with the
property that if one is removed the backbone is broken
into two parts. The set of red bonds has dimension 1.1.
This set is not connected, however, so the diffusion clus-
ter must be larger. We thus expect for the diffusion clus-
ter dimension d0 :

1.1 , d0 , 1.7. (27)

To calculate s̃ in the diffusion cluster approximation
(DCA), the effective-medium approximation is now ap-
plied to conduction on the diffusion cluster. For the
macroscopic model this leads to Eq. (13), which applies
in the extreme disorder limit whenever d0.1 (Dyre,
1993). For hopping the situation is different. When d0
,2 the hopping effective-medium approximation does
not lead to Eq. (13). Instead, the following expression is
arrived at (Schrøder and Dyre, 2000):

ln s̃5S iṽ

s̃ D d0/2

. (28)

A mathematically similar equation was derived by Zvya-
gin (1980) by arguments referring to percolation theo-
ry’s finite cluster size statistics. The thick dashed line in
Fig. 10 shows the solution of this equation for d0
51.35, the value which best fits hopping simulations
(Schrøder and Dyre, 2000). All four approximate ex-
pressions for the universal ac conductivities of the two
models are summarized in Table I.

Figure 11 compares the three approximations to
hopping simulations, giving (Dyre and Schrøder, 1996)
the apparent frequency exponent n as a function of
log10(s̃8). The diffusion cluster approximation gives the
best fit to the numerical data. Recalling that the diffu-
sion cluster approximation for the macroscopic model is
equal to the effective-medium approximation universal-
ity equation, Eq. (13), which works well, our conclusion
is simple: The diffusion cluster approximation works
well for both models.
TABLE I. Ac universality equations.

Macroscopic model Symmetric hopping model

Effective-medium approximationa (EMA) s̃ ln s̃ 5 iṽ s̃ ln s̃ 5 iṽ

Percolation path approximationb (PPA) s̃ 5
iṽ

ln~11iṽ!
As̃ ln(11Aiṽs̃)5Aiṽ

Diffusion cluster approximationc (DCA) s̃ ln s̃ 5 iṽ ln s̃ 5Siṽs̃ Dd0/2

aEquation (13).
bEquations (25) and (26).
cEquations (13) and (28).
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From a philosophical point of view one may wonder
why the diffusion cluster approximation, which makes
use of the effective-medium approximation, works bet-
ter for hopping than the latter approximation itself. The
reason is that the effective-medium approximation as-
sumes an effective spatial homogeneity. This is done in a
self-consistent manner to represent the actual inhomo-
geneity. But the fact remains that conduction in the ex-
treme disorder limit is highly inhomogeneous. The dif-
fusion cluster approximation takes this into account by
assuming conduction effectively takes place in a lower
dimension. This is the crucial idea. From there it is ob-
vious to use the effective-medium approximation to find
the ac conductivity in this lower dimension.

VII. DISCUSSION

We have treated the two models on equal footing in
order to focus on their common features. It should be
emphasized, however, that while the symmetric hopping
model and related models have been used extensively
for many years, the macroscopic model was, and still is,
less commonly used.

Before discussing model predictions and how they
compare to experiment, let us briefly put things into a
historical perspective. As mentioned in the Introduction,
ac universality was generally recognized in the 1970s.
Already in the 1950s, however, it was discovered that
ion conducting oxide glasses have all more or less the
same ac properties (Taylor 1956, 1957, 1959). At that
time two models were proposed: (i) Stevels (1957) and
Taylor (1956, 1959) assumed that ions jump between the
minima of a random potential deriving from the random

FIG. 11. The apparent power-law exponent n[d ln s̃8/d ln ṽ
plotted as a function of log10(s̃8) for the universal ac conduc-
tivity of the symmetric hopping model simulations [numerical
data of Fig. 8(c)] [reproduced from Schrøder and Dyre (2000)].
The curves show the predictions of the effective medium ap-
proximation (EMA), the percolation path approximation
(PPA), and the diffusion cluster approximation (DCA). The
numerical data are best fitted by the diffusion cluster approxi-
mation with d051.35 (dashed line, almost hidden by data
points).
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network structure of the glass (Zachariasen, 1932); (ii)
Isard (1961) regarded the glass as a mixture of two
phases with different conductivity. Little progress was
made with either model, however, towards explaining ac
universality. Note the close relationship between these
early models and the two models discussed in this
Colloquium.

For a long time it was believed that time-temperature
superposition (the existence of a temperature-inde-
pendent master curve) implies that any distribution of
activation energies must be narrow compared to kBT
(Taylor, 1959; Owen, 1963; Isard, 1970; Tomozawa,
1977). This belief was apparently confirmed by two
further experimental facts: (i) The dc conductivity is not
non-Arrhenius as naively expected if a broad range of
activation energies is involved. (ii) The Barton-
Nakajima-Namikawa rough proportionality s(0);vm
[Eq. (6)] apparently implies that ac conduction is due to
processes with the same activation energy as dc con-
duction. This is all wrong. Ironically, we now know
that ac universality—and thereby time-temperature
superposition—applies only when the range of activa-
tion energies is wide compared to kBT . At the same
time, everything appears to be controlled by just one
activation energy, the Ec of Eq. (23) identified by per-
colation theory.

A. Model predictions

Let us compare the assumptions of the two models.
The symmetric hopping model assumes disorder on a
microscopic scale, while the macroscopic model only as-
sumes disorder on length scales large enough that a local
conductivity may be defined. The symmetric hopping
model ignores Coulomb interactions, while the macro-
scopic model takes these fully into account via Gauss’
law. Finally, the electric field is assumed spatially ho-
mogenous in the hopping model whereas it varies
throughout space in the macroscopic model [determined
by Eq. (8)]. Despite these important differences, both
models predict ac universality in the extreme disorder
limit and the two universal ac conductivities are similar.

Three approximations to the universal ac conductivity
of either model have been developed. Computer simu-
lations show that for both models the best fit is provided
by the diffusion cluster approximation [for the macro-
scopic model, of course, the effective-medium and the
diffusion cluster approximations give the same universal
s̃(ṽ)]. The four analytical expressions derived (Fig. 10
and Table I) have the following in common: At low fre-
quencies (ṽ!1) conductivity is frequency independent,
at high frequencies (ṽ@1) s̃8(ṽ) follows an approxi-
mate power law with exponent n,1. It can be shown
that for all four expressions the exponent is approxi-
mately given by

ṽ@1: n512
a

ln ṽ
. (29)

One finds a52 for the effective-medium approximation,
as well as for the macroscopic percolation path and the
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macroscopic diffusion cluster approximations. For the
hopping percolation path approximation a53, while the
hopping diffusion cluster approximation has a51
12/d0 . In all cases n(ṽ)→1 for ṽ→` , which is also
seen in computer simulations. This fact, in conjunction
with the Barton-Nakajima-Namikawa relation’s rough
proportionality s(0);vm (also predicted by either
model13) is the key to showing that both models predict
all 16 points summarizing the experimental findings in
Sec. III. The details of proving this (Dyre, 1988) are left
to the reader.

We have focused exclusively on the real part of the ac
conductivity, but the imaginary part also becomes
universal in the extreme disorder limit and also follows
an approximate power law above vm with an exponent
(Þn, though) converging to 1 from below. There is, how-
ever, more to be said. Effective-medium calculations
confirmed by computer simulations show that the imagi-
nary part converges to universality more slowly than the
real part as b→` . The imaginary part therefore con-
tains more system-specific information than the real
part.14

B. Models versus experiment

Figure 12 gives three examples comparing model pre-
dictions to experimental data. Figure 12(a) shows the
very first published data indicating ac universality (Tay-
lor, 1956, 1959) and simulations of hopping in the ex-
treme disorder limit. In this figure we follow Taylor by
presenting dielectric loss as a function of frequency. Fig-
ure 12(b) compares data for several sodium-germanate
glasses (Sidebottom, 1999) to the same hopping model
simulations. Given the fact that the symmetric hopping
model in the extreme disorder limit has no fitting param-
eters, the fits in Figs. 12(a) and 12(b) are the best one
can reasonably hope for. Figure 12(c) presents ac data
which are better fitted by the macroscopic model. These
data are for a metal cluster compound where conduction
proceeds by electrons tunneling between metal islands.
It is generally believed that these solids are well de-
scribed by the symmetric hopping model (van Staveren,
Brom, and de Jongh, 1991). We find, however, that the
macroscopic model works better for these systems.

13Two of the four expressions in Table I (hopping percolation
path approximation and hopping diffusion cluster approxima-
tion) have no dielectric loss peaks. These are artifacts of the
approximations—in simulations both models do exhibit loss
peaks. [In our hopping simulations we find that at extreme
disorder the Barton-Nakajima-Namikawa relation, Eq. (5), is
obeyed with p51.560.4, while p has not been determined for
the macroscopic model.]

14In principle the imaginary part is uniquely determined from
the real part via the Kramers-Kronig relation (Landau and
Lifshitz, 1969), but this requires that the real part is known at
all frequencies.
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C. Outlook

There are many unsolved problems. Although one
could argue—and we certainly do—that for both models
ac universality in the extreme disorder limit has been
demonstrated beyond any reasonable doubt, no rigorous
proofs of ac universality exist.

Assuming ac universality, a number of problems re-
main:

• In regard to the diffusion cluster approximation—
the one which works best for both models—it is impor-
tant to precisely characterize the diffusion cluster and
determine its dimension from analytical arguments and
independent simulations.

• In both models there are links (RC elements/jump
rates) with associated relaxation times much longer than
the inverse loss peak frequency. For neither dc nor ac
conductivity do these elements play a significant role.
They have, however, other physical consequences like
generating 1/f noise of the dc conductivity (Morozovskii
and Snarskii, 1993; Baskin et al., 1997). Is this confirmed
by experiment? In other words: Do disordered solids
have anomalously large 1/f resistance fluctuations?

• In any hopping model which ignores charge carrier
interactions the complete characterization of random
walks lies in the k-dependent, frequency-dependent dif-
fusion constant D(k ,v).15 Is D(k ,v) also universal in
the extreme disorder limit? If yes, for which k’s is this
the case?

• As mentioned, the symmetric hopping model may
be derived by (nonrigorously) linearizing the hopping
model with random site energies and Fermi statistics.
Does the latter more realistic model (Baranovskii and
Cordes, 1999; Porto et al., 2000) exhibit ac universality in
the extreme disorder limit and, if yes, does it have the
same universal s̃(ṽ) as the symmetric hopping model?

• What about hopping models that are not symmetric:
Do they exhibit ac universality always, sometimes, or
never?

• Large-scale computer simulations of the macro-
scopic model are available in two dimensions (Dyre,
1993), but are still lacking in three dimensions. These
simulations are needed, in particular, to confirm or re-
ject the preliminary finding that the effective-medium
approximation works well for this model also in three
dimensions (Riedel and Dyre, 1994).

These problems all relate specifically to the two mod-
els. The overall purpose of future work, however, should
be to advance our understanding to the point where re-
liable information about conduction mechanisms can be
obtained from ac data and their deviations from univer-
sality. It seems to us that we are only at the beginning of
such endeavors.

15If P(r,t) is the probability to find the charge carrier at
site r at time t given that it started at the origin at time 0,
D(k ,v) is defined as follows: 1/@ iv1k2D(k ,v)#
5*0

`dte2ivt*drP(r,t)eik"r. For small k’s, D(k ,v) reduces to
D(v).
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FIG. 12. Models versus experiment. (a) gives
the dielectric loss for the first published data
showing ac universality [solid symbols, data
for five different ion conducting oxide glasses
taken from Fig. 12 in Taylor (1959), an exten-
sion of Fig. 9 in Taylor (1956)]. The high-
frequency data were obtained by Taylor by
extrapolation, assuming time-temperature su-
perposition. Taylor’s data are compared to
simulations of the symmetric hopping model
in the extreme disorder limit [open symbols,
as in Fig. 8(c)]. (b) shows the data of Sidebot-
tom (1999) on sodium-germanate glasses
compared to symmetric hopping model simu-
lations in the extreme disorder limit, both
data sets scaled according to Eq. (7) (f
5v/2p). Also shown are the best analytic ap-
proximations to the two models, the hopping
diffusion cluster approximation (DCA) and
the macroscopic diffusion cluster approxima-
tion (DCA) [reproduced from Schrøder and
Dyre (2000)]. (c) shows data for the metal
cluster compound Pd-7/8 (Reedijk et al.,
1998) compared to symmetric hopping model
simulations. The curves give the diffusion
cluster approximations for hopping and for
the macroscopic model. In this figure the fre-
quency scaling was fixed by requiring same s̃8
at the highest frequencies for data as well as
for analytical approximations.
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
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