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The time-dependent variational principle for many-body trial states is used to discuss the relation
between the approaches of different molecular-dynamics models that describe indistinguishable
fermions. Early attempts to include effects of the Pauli principle by means of nonlocal potentials, as
well as more recent models that work with antisymmetrized many-body states, are reviewed under
these premises.
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B. Thermodynamics 681
1. Ergodic ensemble of fermions in a

harmonic oscillator 682
2. Trial states with fixed-width 682
3. Canonical and ergodic ensemble for

distinguishable particles 683
4. Resumé 683
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I. INTRODUCTION

When correlations and fluctuations become important
in the dynamical evolution of a many-body system and
mean-field approximations are not sufficient, molecular-
dynamics methods are frequently invoked. Molecular
dynamics means that the constituents (molecules) of the
many-body system are represented by a few classical de-
grees of freedom (center-of-mass position and momen-
tum, angle of rotation, etc.) and interact through poten-
tials. The equations of motion (Newtonian or
Hamiltonian) are solved numerically. The interactions
that are used range from purely phenomenological to
sophisticated ab initio quantal potentials. The major ad-
vantage of molecular-dynamics simulations is that they
do not rely on quasiparticle approximations but include
both mean-field effects and many-body correlations.
Therefore they can provide insight into complex systems
with correlations on different scales.

During the past decade, an increasing interest has de-
veloped in the dynamics of many-fermion systems in
which correlations are important. In nuclear as well as in
atomic physics, collisions of composite fermion systems
like nuclei or atomic clusters demand many-body mod-
els that can account for a large variety of phenomena.
Depending on the energy, one may observe fusion,
6552(3)/655(34)/$21.80 ©2000 The American Physical Society
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dissipative reactions, fragmentation and even multifrag-
mentation, vaporization or evaporation, and ionization.
Moreover, phase transitions in small systems are of cur-
rent interest.

Classical molecular dynamics is applicable if the de
Broglie wavelength of the molecules is small compared
to the length scale of typical variations of the interac-
tion; otherwise, the quantal uncertainty relation be-
comes important. If the molecules are identical fermions
or bosons, the de Broglie wavelength should also be
small compared to the mean interparticle distance in
phase space; otherwise, the Pauli or Bose principle is
violated and the model will have the wrong statistical
properties.

For nucleons in a nucleus, for example, both condi-
tions necessary for classical mechanics are not fulfilled.
The same holds for electrons in bound states or at high
densities and low temperatures. Nevertheless, one
would like to utilize the merits of a molecular-dynamics
model for indistinguishable particles in the quantum re-
gime.

This article reviews attempts to combine Fermi-Dirac
statistics with a semiquantal trajectory picture from the
viewpoint of the quantal time-dependent variational
principle. The closest quantum analog to a point in
single-particle phase space representing a classical par-
ticle is a wave packet well localized in phase space. The
analog to a point in many-body phase space represent-
ing several classical particles is a many-body state which
is a product of localized single-particle packets. If the
particles are identical fermions, this product state has to
be antisymmetrized; in the case of bosons, it has to be
symmetrized.

For models that are formulated in terms of trial states
and a Hamilton operator, both static and dynamical
properties can be obtained from appropriate quantum
variational principles. Ground states can be determined
with the help of the Ritz variational principle, and the
equations of motion can be accessed through the time-
dependent variational principle, which allows one to de-
rive approximations of the time-dependent Schrödinger
equation to different levels of accuracy.

In Sec. II we first discuss the time-dependent varia-
tional principle in general and then show how it works
for various trial states and how classical mechanics can
be obtained from quantum mechanics by an appropriate
choice of dynamical variables.

Using wave packets automatically guarantees that the
Heisenberg uncertainty principle is not violated by the
model. That is actually a great problem in classical simu-
lations of Coulomb systems, where, for instance, a hy-
drogen atom composed of a pointlike proton and elec-
tron remains infinitely bound.

Using antisymmetrized many-body trial states auto-
matically guarantees that the Pauli exclusion principle is
respected by the model. Phenomena like shell structure
or Fermi-Dirac statistics emerge in a natural way, as dis-
cussed in Secs. III and V.

Although antisymmetrized product states of single-
particle Gaussian wave packets already possess major
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relevant degrees of freedom, some processes like disin-
tegration of wave packets, which can occur in coordinate
space (by evaporation, capture, or tunneling) and in mo-
mentum space (by large momentum transfer due to col-
lisions), are poorly described by the equations of mo-
tion. One therefore often represents the system with a
mixture of trial states between which random transitions
may occur. This branching procedure, which is em-
ployed in atomic as well as in nuclear physics, will be
explained in Sec. II.C.2.

In Sec. IV, models used in nuclear and atomic physics
are reviewed from the general point of view of Secs. II
and III. When energetic collisions between heavy atomic
nuclei became available, classical molecular-dynamics
models were developed to describe the various phenom-
ena observed. To simulate the effect of antisymmetriza-
tion on the classical trajectories many authors added to
the Hamiltonian a two-body ‘‘Pauli potential,’’ which is
supposed to keep fermions apart from each other in
phase space.

Quantum molecular dynamics (QMD) attributes to
each fermion a Gaussian wave packet with fixed width
instead of a point, but still uses a simple product state
for the many-body wave function and therefore obtains
classical equations of motion with two-body forces act-
ing on the centroids of the wave packets. These Newton-
ian forces are supplemented by random forces that
simulate hard collisions. Pauli blocking is included in
these collision terms. The statistical properties, however,
are mainly those of distinguishable particles.

Antisymmetrized molecular dynamics (AMD) also
uses Gaussian wave packets with fixed width, but anti-
symmetrizes the many-body state. As in QMD, a colli-
sion term is added to account in a phenomenological
way for branching into other Slater determinants. In fer-
mionic molecular dynamics (FMD), the width degree of
freedom is also considered. This nonclassical degree of
freedom is important for phenomena like evaporation,
and it plays an important role in statistical properties of
the model.

Section IV.C explains the different uses of the term
‘‘quantum molecular dynamics’’ in atomic and nuclear
physics. It then refers to applications of trajectory calcu-
lations for individual electrons and ions where the den-
sity of the electrons is too large to neglect their fermi-
onic character. Quantum branching in the atomic
context is also briefly discussed.

Although designed for nonequilibrium simulations
like collisions, molecular-dynamics models are also used
to simulate systems in thermal equilibrium. In Sec. V
their statistical properties are investigated by means of
time averaging. As applications, the nuclear liquid-gas
phase transition and the hydrogen plasma under ex-
treme conditions are discussed.

In conclusion, this review shows that it is possible to
extend the classical trajectory picture to identical fermi-
ons by means of localized wave packets. When the
phase-space density increases, the classical notion of po-
sitions rWk and momenta pW k as mean values of narrow
wave packets has to be reinterpreted as parameters that
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identify an antisymmetrized many-body state uQ&
5urW1 ,pW 1 ,rW2 ,pW 2 ,. . .&. When the individual packets over-
lap in phase space, rWk and pW k can no longer be identified
with the classical variables. Calculating all observables
with the many-body state uQ& as quantum expectation
values, e.g., H(rW1 ,pW 1 ,rW2 ,pW 2 ,. . .)5^QuĤuQ&/^QuQ&, and
not misinterpreting them as classical expressions, natu-
rally and correctly includes the Pauli exclusion principle
and Heisenberg’s uncertainty principle. In the equations
of motion, the exclusion principle causes a complicated
metric in the N-particle parameter space in the sense
that canonical pairs of variables can only be defined lo-
cally.

The antisymmetrization of localized wave packets,
which brings together the Pauli exclusion principle,
Heisenberg’s uncertainty relation, and the classical tra-
jectory picture, leads to many, sometimes unexpected,
quantal features. Nevertheless one has to be aware that
one is still dealing with a very simplified trial state, and
other degrees of freedom may be important. Especially
when the interaction is not smooth across a wave packet,
it may want to change its shape to one that is not in the
allowed set; for example, it may split with certain prob-
ability amplitudes into different parts, which after some
time evolve independently. Or more generally, branch-
ing into other trial states away from the one that follows
the approximate time evolution of a pure state leads to a
mixture of antisymmetrized wave packets. The consis-
tent treatment of this aspect of quantum branching
needs further attention in the literature.

Common to all models discussed is the anticorrelation
between the degree of consistent derivation and the
computational effort required.

II. TIME-DEPENDENT VARIATIONAL PRINCIPLE

A. General remarks

The time evolution of a state in quantum mechanics is
given by the time-dependent Schrödinger equation1

i
d

dt
uC~ t !&5ĤuC~ t !&, (1)

where Ĥ is the Hamiltonian and uC(t)& the many-body
state that describes the physical system. This equation of
motion can be obtained from the variation of the action
(Kerman and Koonin, 1976; Kramer and Saraceno, 1981;
Drożdż et al., 1986; Broeckhove et al., 1988),

A 85E
t1

t2
dt L 8„C~ t !* ,C~ t !,Ċ~ t !…, (2)

1Throughout the article all operators are marked with a hat
symbol, e.g., Ĥ , and expectation values are denoted by calli-
graphic letters, e.g., H. If not needed explicitly, \ is taken to be
one.
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keeping the variations fixed at the end points: dC(t1)
5dC(t2)5dC* (t1)5dC* (t2)50. The Lagrange func-
tion

L 8„C~ t !* ,C~ t !,Ċ~ t !…5^C~ t !ui
d

dt
uC~ t !&

2^C~ t !uĤuC~ t !& (3)

is a function of the dynamical variables, denoted by the
set C(t). Usually they are chosen to be complex so that
C(t) and C* (t) may be regarded as independent vari-
ables. If the mapping of C(t) on the many-body state
uC(t)& is analytic, uC(t)& depends only on C(t), and the
Hermitian adjoint state ^C(t)u depends only on the
complex-conjugate set C* (t). The Lagrange function
depends on the first time derivatives Ċ(t) through
d/dt uC(t)& .

In general, the set C(t) contains infinitely many dy-
namical degrees of freedom, for example, the complex
coefficients of an orthonormal basis or the values of an
N-body wave function on a 3N-dimensional grid in co-
ordinate space.

The Lagrange function (3) is appropriate if the set of
variables C(t),C* (t) contains a complex overall factor
to uC(t)& that takes care of norm and phase. If uC(t)&
cannot be normalized by means of the set C(t), the
Lagrange function defined in Eq. (14) should be used.
We shall employ both forms.

For linearly independent variables C(t) and C* (t)
the variation of C* (t) yields for the extremal action

05dA 85E
t1

t2
dt^dC~ t !ui

d

dt
2ĤuC~ t !&. (4)

If uC(t)& represents the most general state in Hilbert
space, the variation ^dC(t)u is unrestricted and Eq. (4)
can only be fulfilled if

S i
d

dt
2Ĥ D uC~ t !&50, (5)

which is just the Schrödinger equation (1).
The variation of C(t) yields

05dA 85E
t1

t2
dt^C~ t !ui

d

dt
2ĤudC~ t !&, (6)

which after partial integration over t with fixed end
points udC(t1)&5udC(t2)&50 results in the Hermitian
adjoint of the Schrödinger equation:

^C~ t !uS 2i
dQ

dt
2HQ̂ D 50. (7)

As C(t) is linearly independent of C* (t), both have
to be varied. Therefore the time integral that was miss-
ing in early attempts, used by Frenkel (1934) and others,
is necessary.

The reason for the reformulation of a differential
equation as a variational principle is of course the antici-
pation that a suitably chosen restriction in the dynamical
variables will lead to a useful approximation of the full
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problem. For more general considerations on the con-
struction of variational principles see Gerjuoy, Rau, and
Spruch (1983), Balian and Veneroni (1988), and refer-
ences therein.

1. Restricted set of variables

Let a restricted choice of variables be denoted by the
complex set Q8(t)5$q0(t),q1(t),q2(t),.. .% which speci-
fies the many-body state uQ8(t)&. It is presumed that
q0(t) is always a complex overall factor in the sense

uQ8~ t !&5q0~ t !uQ~ t !&5q0~ t !uq1~ t !,q2~ t !, . . .& . (8)

Furthermore, the time dependence of uQ8(t)& is sup-
posed to be implicit only through the variables Q8(t).

It should be noted that the manifold uQ8(t)& is in gen-
eral only a subset of Hilbert space and need not form a
subspace.

Variation of the action (2) with the Lagrange function
(3) with respect to Q8* (t) leads to

05dA 85E
t1

t2
dt(

n
dqn* ~ t !

3S ]

]qn*
^Q8~ t !u D S i

d

dt
2Ĥ D uQ8~ t !&. (9)

As dqn* (t) are arbitrary functions, the action is extremal
if the following equations of motion are fulfilled:

S ]

]qn*
^Q8~ t !u D S i

d

dt
2Ĥ D uQ8~ t !&50 (10)

or

i (
m

C nm8 q̇m5
]

]qn*
^Q8~ t !uĤuQ8~ t !&, (11)

where

C nm8 5
]2

] qn* ]qm
^Q8~ t !uQ8~ t !&. (12)

In contrast to the case of the unrestricted variation, one
obtains equations of motion for the complex param-
eters, which in turn define the time evolution of the trial
state uQ8(t)& in Hilbert space.

Variation with respect to Q8(t), with fixed end points
dqn(t1)5dqn(t2)50, results in equations of motion that
are the complex conjugate of Eqs. (10)–(12).

In the following, for the sake of simplicity, the explicit
indication of the time dependence is sometimes omitted.

The time evolution of q0 can be expressed in terms of
the other variables. For that the Lagrangian L 8 may be
written as

L 85^Q8ui
d

dt
2ĤuQ8&

5i q0* q̇0 ^QuQ&1q0* q0 ^QuQ& L~Q ,Q* ,Q̇ ,Q̇* !

2
i

2
d

dt
~q0* q0 ^QuQ&!, (13)
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where the set Q no longer contains q0 [see Eq. (8)] and
a new Lagrangian L(Q* ,Q ,Q̇* ,Q̇) is defined by

L~Q* ,Q ,Q̇* ,Q̇ !5
i

2 S ^QuQ̇&2^Q̇uQ&

^QuQ&
D 2

^QuĤuQ&

^QuQ&

[L0~Q* ,Q ,Q̇* ,Q̇ !2H~Q* ,Q ! (14)

with

uQ̇&[
d

dt
uQ&5(

n
q̇n

]

]qn
uQ& and

^Q̇u[
d

dt
^Qu5(

n
q̇n*

]

]qn*
^Qu. (15)

The new Lagrange function L contains the norm explic-
itly and is made real by subtracting the total time deriva-
tive. Here H(Q* ,Q) is the expectation value of the
Hamiltonian Ĥ and will be called the Hamilton func-
tion.

It is easy to verify that the solution of the equation of
motion (10) for q0 is

q0~ t !5
1

^Q~ t !uQ~ t !&1/2 expH iE t
dt8L~ t8!J (16)

and the analog for the complex conjugate q0* (t). Thus
the variational freedom of an overall factor q0(t) is used
by the time-dependent variational principle to provide a
state uQ8(t)& with a time-independent norm and an ad-
ditional phase * tdt8L(t8) (where L is real by construc-
tion). Furthermore, insertion of the solution (16) into L 8
shows that along the trajectory

L 8„Q8* ~ t !,Q8~ t !,Q̇8~ t !…50, (17)

irrespective of the choice of the remaining degrees of
freedom in uQ& .

The equations of motion (10) and their complex con-
jugates can of course also be expressed as Euler-
Lagrange equations:

d

dt

]L 8

]q̇n*
2

]L 8

]qn*
50 and

d

dt

]L 8

]q̇n
2

]L 8

]qn
50. (18)

For the remaining variables $qn* ,qn ;nÞ0% they can be
written in terms of the new Lagrange function L as

d

dt

]L 8

]q̇n*
2

]L 8

]qn*
5S d

dt

]L
]q̇n*

2
]L
]qn*

D q0* q0^QuQ&

1
d

dt
~q0* q0^QuQ&!

]L
]q̇n*

2~ iq0* q̇q01q0* q0L!
]^QuQ&

]qn*

50 (19)

and the analogous complex conjugates. The last two
terms vanish when the general solution (16) for q0 is
inserted. Hence for nÞ0 the Euler-Lagrange equations
with L as given in Eq. (14) are equivalent to the equa-
tions with L 8.
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Therefore the action

A5E
t1

t2
dt L~Q* ,Q ,Q̇* ,Q̇ !, (20)

which one also often finds as a starting point (Kerman
and Koonin, 1976; Kramer and Saraceno, 1981; Drożdż
et al., 1986; Broeckhove et al., 1988), is appropriate if the
trial state uQ& is not normalized and the phase is
disregarded.2 This form will turn out to be more conve-
nient when dealing with antisymmetrized states in Sec.
III.

One should, however, keep in mind that the simple
inclusion of q0 automatically provides norm and phase.

The Euler-Lagrange equations, which result from
variation of the action (20),

d

dt

]L
]q̇n*

5
]L
]qn*

and
d

dt

]L
]q̇n

5
]L
]qn

, (21)

can be written in terms of the Hamilton function H
5^QuĤuQ&/^QuQ& as generalized Hamilton’s equations:

i(
n

Cmnq̇n5
]H
]qm*

and 2i(
n

Cmn* q̇n* 5
]H
]qm

. (22)

The non-negative Hermitian matrix C depends in gen-
eral on Q and is given by

Cmn5

]

]qm*
]

]qn
^QuQ&

^QuQ&
2

]

]qm*
^QuQ&

^QuQ&

]

]qn
^QuQ&

^QuQ&

5
]

]qm*
]

]qn
ln^QuQ&. (23)

It plays the role of a metric on the manifold of dynami-
cal variables Q .

There is no need to assume that the set Q contains
only complex variables, but as will be seen later in the
context of classical mechanics, the real and imaginary
parts of qn play the role of canonical pairs of variables.
On the other hand, for quantum mechanics it is only
natural to work with complex variables because the
quantum state uQ& is necessarily complex. The assump-
tion of an analytic mapping of Q onto the trial state uQ&
is also not compulsory, but usually makes the equations
more transparent.

2. Deviation from the exact solution

The static analog to the time-dependent variational
principle is the Rayleigh-Ritz variational principle for
the energy. Here one can show that the overlap between
the true ground state of the Hamiltonian and the trial
state uQ8& is increasing when the energy ^Q8uĤuQ8& is
decreasing. Since any additional degree of freedom low-

2L may also be written with normalized trial states
uQ&/A^QuQ&. The only difference is a total time derivative
emerging from L0 so that the Lagrange functions are equiva-
lent.
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ers the energy, more degrees of freedom always imply
an improved description. General statements like that
cannot be made for the time-dependent variational prin-
ciple, although one would think that more degrees of
freedom would result in a time evolution closer to that
of the Schrödinger equation.

In order to understand better the sense in which the
time-dependent variational principle optimizes the evo-
lution of the trial state, we consider the deviation of the
approximate solution from the exact one, which devel-
ops during a short time dt ,

uD~ t ,dt !&5uCexact~ t1dt !&2uQ8~ t1dt !&

5exp~2iĤdt !uQ8~ t !&2uQ8~ t1dt !&

52iS Ĥ2i(
n

q̇n

]

]qn
D uQ8~ t !&dt

1order~dt2!. (24)

The equations of motion (10) which result from the
time-dependent variational principle demand that

S ]

]qn*
^Q8~ t !u D uD~ t ,dt !&50, (25)

which means that the deviation is orthogonal to all tan-
gent states ]/]qn uQ8& (see Fig. 1). In other words, the
approximate equations of motion evolve Q8(t) to that
point Q8(t1dt) in the manifold where any small change
in all possible directions increases the distance
^D(t ,dt)uD(t ,dt)& between the true uCexact(t1dt)& and
approximate solutions uQ8(t1dt)&. The minimum con-
dition

05
]

]qn* ~ t1dt !
^D~ t ,dt !uD~ t ,dt !&

52S ]

]qn* ~ t1dt !
^Q8~ t1dt !u!uD~ t ,dt !&

52S ]

]qn* ~ t !
^Q8~ t !u D uD~ t ,dt !&1order~dt3! (26)

is fulfilled because of Eq. (25). For variations with re-
spect to qn , the complex conjugates of Eqs. (25) and

FIG. 1. Sketch of the manifold of trial states: solid line, the
approximate time evolution; dashed line, the solution of the
Schrödinger equation. The error uD(t ,dt)& is orthogonal to all
tangent states ]/]qn uQ8&.
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(26) have to be used. Of course, after many time steps
dt , the deviation may become large.

3. Poisson brackets and canonical variables

With the help of the Hermitian matrix C it is possible
to introduce Poisson brackets. Using the equations of
motion (22), one can write the time derivative of the
expectation value of a time-independent observable B̂
as

Ḃ5
d

dt
^QuB̂uQ&

^QuQ&
5(

n
S q̇n*

]B
]qn*

1q̇n

]B
]qn

D
5i(

m ,n
S ]H
]qm

C mn
21 ]B

]qn*
2

]B
]qm

C mn
21 ]H

]qn*
D

5..$H,B%. (27)

The real and imaginary parts of qn form pairs of canoni-
cal variables if C is the unit matrix. In Sec. II.B two
examples will be given for this case, the Schrödinger
equation and Hamilton’s equation of motion.

In the general case, in which Cmn is not diagonal and
depends on Q , pairs of canonical variables exist locally
according to Darboux’s theorem (Arnol’d, 1989). One
possible transformation is given by

drm5(
n

C mn
1/2~Q* ,Q !dqn and

drm* 5(
n

dqn* C mn
1/2~Q* ,Q !. (28)

Written with the new variables rm and rm* , the Poisson
bracket (27) takes the form

$H,B%5i(
m

S ]H̃
]rm

]B̃
]rm*

2
]B̃
]rm

]H̃
]rm*

D , (29)

so that (rm ,rm* ) form pairs of canonical variables. The
problem is, however, that in nontrivial cases the trans-
formation (28) cannot be written in a global way as
R(Q)5$r0(q0 ,q1 ,. . .),r1(q0 ,q1 ,. . .),. . .% and the Hamil-
ton function H or the observable B cannot be expressed
in the new variables

H̃~R* ,R !5H~Q* ,Q ! and B̃~R* ,R !5B~Q* ,Q !. (30)

A set of canonical pairs, which are real, is given by

rm5
1

&
~rm* 1rm! and pm5

i

&
~rm* 2rm!, (31)

which yields the standard Poisson brackets

$H,B%5(
m

S ]H5
]pm

]B5
]rm

2
]B5

]pm

]H5
]rm

D , (32)

where H5 and B5 are now functions of rm and pm . Besides
the trivial examples discussed in Sec. II.B, we give one
nontrivial example in Sec. III.A.3.
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
The mere fact that, according to Darboux’s theorem,
canonical pairs (rm ,pm) exist allows to guess or
make an ansatz for the Hamilton function
H5 (r1 ,r2 , . . . ,p1 ,p2 , . . . ) and use Hamilton’s equations
of motion. But with such a guess the connection to the
trial state uQ& is lost and the physical meaning of rm and
pm is obscured. This will become obvious when we dis-
cuss trial states for indistinguishable particles in Sec. III.

4. Conservation laws

An expectation value is conserved if (Broeckhove
et al., 1989)

Ḃ5$H,B%5i(
m ,n

S ]H
]qm

C mn
21 ]B

]qn*
2

]B
]qm

C mn
21 ]H

]qn*
D 50. (33)

Hence the energy H itself is always conserved by the
equations of motion, provided they are derived from the
variational principle. This is completely independent of
the choice of the trial state.

In the following we show how to identify other con-
stants of motion and how the trial state has to be chosen
in order to ensure desired conservation laws. For that,
we consider a unitary transformation with the Hermitian
generator Ĝ ,

Û5exp~ i«Ĝ !, (34)

where « is real. If Û maps the set of trial states onto
itself,

ÛuQ8&P$uQ8&%, (35)

then the special infinitesimal variation uQ8(t)
1dQ8(t)&5exp$id«(t)Ĝ%uQ8(t)& of the action (2) yields

05E
t1

t2
dt^Q8~ t !uexp$2id«~ t !Ĝ%S i

d

dt
2Ĥ D

3exp$id«~ t !Ĝ%uQ8~ t !&

5E
t1

t2
dtd«~ t !H d

dt
^Q8~ t !uĜuQ8~ t !&

2^Q8~ t !ui@Ĥ ,Ĝ#uQ8~ t !&J
1total time derivative1order~d«2!. (36)

As d«(t) is arbitrary and vanishes at the end points, one
obtains

d

dt
G5

d

dt
^Q8~ t !uĜuQ8~ t !&

5$H,G%5^Q8~ t !ui@Ĥ ,Ĝ#uQ8~ t !& . (37)

That means that for this class of generators the general-
ized Poisson bracket is just the expectation value of the
commutator with iĤ .

Equation (37) is very useful for two reasons. First, if
Ĝ commutes with the Hamiltonian Ĥ and
exp(i«Ĝ)uQ18&5uQ28&, then ^Q8(t)uĜuQ8(t)& is automati-
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cally a constant of motion. Second, this relation is an
important guide for the choice of the trial state uQ8&. If
one wants the model to obey certain conservation laws,
then the set of trial states should be invariant under uni-
tary transformations generated by the constants of mo-
tion. For example, total momentum conservation im-
plies that a translated trial state is again a valid trial

state. Conservation of total spin JŴ5LŴ 1SŴ is guaranteed
when a rotation of the trial state in coordinate and spin
space results again in a trial state.

Equation (37) also sheds some light on the quality of
the variational principle. It says that under the premises
that exp(i«Ĝ) does not map out of the set of trial states,
the expectation value G(t) of Ĝ develops for short times
like the exact solution. From Eq. (37), it follows that
along the trajectory uQ8(t)& the time derivative of G(t)
equals the exact one.

B. From quantum to classical mechanics

This section demonstrates that the time-dependent
variational principle, discussed in general in the previous
section, represents a method for going smoothly from
quantum physics to classical physics by appropriately
choosing the dynamical degrees of freedom in the trial
state. In contrast to Ehrenfest’s theorem, this method
also works for identical particles and in finite-
dimensional spin spaces.

1. Quantum mechanics

As a first illustration let us represent the trial state in
terms of an orthonormal basis un& in many-body space.
We may write a general state uQ8& as

uQ8&5ur1 ,r2 ,. . . ,p1 ,p2 ,. . .&

5(
n

1

&
~rn1ipn!un&[(

n
cnun&, (38)

where the complex amplitudes are written in terms of
their real and imaginary parts rn and pn . It is easy to
verify that the Lagrange function for normalizable states
defined in Eq. (3) is given by

L 85(
n

1
2

~pnṙn2rnṗn!1
d

dt (n

i

4
~rn

21pn
2 !

2H~r1 ,r2 ,. . . ,p1 ,p2 ,. . . !. (39)

The real Hamilton function, expressed with the real and
imaginary parts of the matrix elements Hnk[^nuĤuk&, is
bilinear in r and p:

H~r1 ,r2 ,. . . ,p1 ,p2 ,. . . !5
1
2 (

k ,n
@~rkrn1pkpn!Re Hkn

1~pkrn2rkpn!Im Hkn# . (40)

The Euler-Lagrange equations

d

dt

]L 8

]ṙn
5

]L 8

]rn
and

d

dt

]L 8

]ṗn
5

]L 8

]pn
(41)
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yield

d

dt
pn52

]H
]rn

and
d

dt
rn5

]H
]pn

. (42)

There is a very important message to be learned from
this little exercise: Eqs. (42) look exactly like Hamilton’s
equations of motion, in which (rn ,pn) are pairs of ca-
nonical variables and H(r1 ,r2 ,. . . ,p1 ,p2 ,. . .) is the
Hamilton function, bilinear in the coordinates and mo-
menta of the system. But these seemingly classical equa-
tions are just a representation of the Schrödinger equa-
tion, as can easily be seen by rewriting the two real Eqs.
(42) in terms of the complex coefficients cn5(1/&) (rn
1ipn) as one complex equation, namely,

i
d

dt
cn5

]H
]cn*

5(
k

Hnkck or i
d

dt
uQ8&5ĤuQ8&.

(43)

The mere fact that the equations of motion (42) appear
in a classical form does not necessarily imply that the
system is classical and, for example, violates the uncer-
tainty relation or, in the case of indistinguishable fermi-
ons, Fermi-Dirac statistics. This will be discussed in de-
tail in Sec. V.

The symplectic structure of Eqs. (42) is fundamental
to all energy-conserving dynamical theories, classical,
quantum, or quantum field theories (see Katz, 1965).
Only the physical meaning of the dynamical variables rn
and pn and of the Hamilton function H determines
which kind of physical system one is dealing with.

In the example Eq. (38), rn and pn are not the 6N
positions and momenta of N particles but infinitely
many variables which specify the many-body state uQ8&.
A truncation to a finite number results in an approxima-
tion of the exact time evolution. The quality depends on
how well the selected set of basis states, $un&%, can rep-
resent the portion of Hilbert space that is occupied by
the physical system under consideration.

2. Classical mechanics

A second example (Heller, 1975) shows that one can
obtain the classical Hamilton equations of motion for
the 6N positions and momenta from the time-dependent
variational principle by choosing the following dynami-
cal variables. The normalized trial state uQ& is set up to
describe N distinguishable particles that are localized in
phase space,

uQ&5urW1 ,pW 1& ^ urW2 ,pW 2& ^¯^ urWN ,pW N&. (44)

The single-particle states urWk ,pW k& in the direct product
are taken to be the closest quantum analog to classical
particles, namely Gaussian wave packets of minimum
uncertainty, i.e., coherent states (Klauder and Skager-
stam, 1985):

^xW urWk ,pW k&5S 1
pa0

D 3/4

expH 2
~xW 2rWk!2

2a0
1ipW kxW J , (45)
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^kW urWk ,pW k&5S a0

p D 3/4

expH 2
a0~kW 2pW k!2

2
2irWk~kW 2pW k!J .

(46)
The dynamical variables rWk and pW k are just the mean
values of the position and momentum operators, respec-
tively,

rWk5^rWk ,pW kuxŴ urWk ,pW k&, pW k5^rWk ,pW kukŴ urWk ,pW k& . (47)

The width parameter a0 is a real fixed number here. In
later applications it will also be taken as a complex dy-
namical variable.

The evaluation of the Lagrange function (14) is again
simple and yields

L52 (
k51

N

rWkpẆ k2H, (48)

where the Hamilton function H5^QuĤuQ&,

H5 (
k51

N S pW k
2

2mk
1

3
4mka D

1 (
k,l51

N

^rWk ,pW ku ^ ^rW l ,pW luV̂~1,2!urWk ,pW k& ^ urW l ,pW l&,

(49)

is the expectation value of the Hamiltonian

Ĥ5(
l51

N kŴ 2~ l !

2ml
1 (

k,l51

N

V̂~k ,l !. (50)

The Euler-Lagrange equations

d

dt

]L
]rẆk

5
]L
]rWk

→052pẆ k2
]H
]rWk

(51)

d

dt

]L
]pẆ k

5
]L
]pW k

→2rẆk52
]H
]pW k

, (52)

result in

d

dt
pW k52

]H
]rWk

and
d

dt
rW k5

]H
]pW k

. (53)

In a situation where classical mechanics holds, i.e., the
wave packets are narrow enough that one can approxi-
mate the expectation value

^QuĤuQ&5H~rW1 ,rW2 ,. . . ,pW 1 ,pW 2 ,. . . !

'H~rW1 ,rW2 ,. . . ,pW 1 ,pW 2 ,. . . ! (54)

by replacing the momentum and position operators in
the Hamiltonian by the respective mean values of their
wave packets, Eqs. (53) become the classical form of
Hamilton’s equations of motion.

Up to this point the time-dependent variational prin-
ciple has led to the same results as Ehrenfest’s theorem,
which usually establishes the connection between quan-
tum and classical systems. As will be demonstrated in
Sec. III, the prescription to replace the operators in the
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
Heisenberg equation by their mean values does not
work for indistinguishable particles. But the time-
dependent variational principle for an antisymmetrized
trial state uQ& provides the molecular-dynamics equa-
tions for identical fermions. For bosons, one would of
course use a symmetrized state.

The canonical pair (rWk ,pW k) of real position and mo-
mentum can be combined in a complex variable zk

5A1/2a0rWk1iAa0/2pW k . The Hamilton equations (53)
written in terms of zk and zk* take the form

i
d

dt
zk5

]

]zk*
H~z1* ,z2* , . . . ,z1 ,z2 ,. . . !, (55)

which formally looks like the Schrödinger equation (43).
This and the previous example show that one cannot

decide from the form of the equations of motion alone
whether the system they are describing is classical or
quantal. Furthermore, the time-dependent variational
principle can provide both classical and quantal many-
body equations of motion, depending on how the trial
state uQ& is chosen. In the following third example, an
intermediate situation is sketched, in which some quan-
tum effects are included.

3. Semiclassical, semiquantal

A third example that includes some quantum effects is
a trial state in which the width parameter a is both a
dynamical variable and complex: a5aR1iaI (Tsue and
Fujiwara, 1991). Take the N-body trial state to be a
product state,

uQ&5uq1& ^ uq2& ^¯^ uqN&, (56)

of single-particle states, which are Gaussians,

^xW uql&5^xW urW l ,pW l ,al&5S 2p
al* al

al* 1al
D 23/4

3expH 2
~xW 2rW l!

2

2al
1ipW lxW 1if lJ ,

(57)
characterized by their mean positions rW l , mean mo-
menta pW l , widths al , and phases f l .

For a single-particle Hamiltonian that contains, in ad-
dition to the kinetic energy, a harmonic oscillator poten-
tial

ĤHO5(
l51

N

ĥHO~ l !5(
l51

N S kŴ 2~ l !

2ml
1

1
2

mlv
2xŴ 2~ l !D ,

(58)

the equations of motion are

d

dt
rW l5

pW l

ml
,

d

dt
pW l52mlv

2rW l (59)

d

dt
al5

i

ml
2imlv

2al
2 ,

d

dt
f l52

pW l
2

2ml
2

3aRl

2mlualu2 2
ml

2
v2rW l

2 . (60)
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These equations, although looking classical for rW l and
pW l , represent the exact solution of the Schrödinger
equation, provided the wave function is a Gaussian wave
packet at time zero. The centers of the wave packets as
well as the mean momenta oscillate harmonically with
the frequency v. Due to the time dependence of the
widths, the packets also breathe, but with twice the fre-
quency. The solution is fully quantum mechanical, al-
though described by only a few (classical-looking) pa-
rameters. Free motion without a potential (v50) is of
course also exact. For general potentials the trial state of
Eq. (57) may serve as an approximation if locally, in the
region where ^xW uql& does not vanish, the potential is well
represented by a harmonic oscillator.

In general, one can say that a trial state provides an
exact solution of the Schrödinger equation if the action
of the Hamilton operator Ĥ on the trial state can be
expressed in terms of parameters and first derivatives
with respect to the parameters, as in the following ex-
ample:

kŴ uq&5S i
]

]rW
2ipW

]

]f D uq& (61)

and

kŴ 2uq&5S 2i
]

]aI
12ipW •

]

]rW
2iFpW 213

aR

aR
2 1aI

2G ]

]f D uq&.

(62)

For a harmonic oscillator, the Schrödinger equation
takes the form (index l omitted)

i
d

dt
uq&5i (

n
q̇n

]

]qn
uq&5ĥHOuq&

5H iS pW

m D ]

]rW
2i~mv2rW !

]

]pW
1i ~2mv2aRaI!

]

]aR

1iS 1
m

2mv2~aR
2 2aI

2! D ]

]aI

2iS pW 2

2m
1

3aR

2muau2 2
m

2
v2rW2D ]

]fJ uq&. (63)

From Eq. (63) the equations of motion (59) and (60)
follow at once. Because Gaussian wave packets are an
exact solution of the Schrödinger equation for these
one-body Hamiltonians, the respective product states
are also an exact solution for the corresponding many-
body problem. Moreover, since antisymmetrization and
symmetrization commute with the exact time evolution,
the equations of motion (59) remain the same for anti-
symmetric product states (identical fermions) and sym-
metric product states (identical bosons).

The time-dependent width parameter a , which de-
scribes the variances in coordinate and momentum
space, provides the first nonclassical degree of freedom
in the parameter manifold. It completes the classical
Eqs. (59) to the full quantum solution for spherical
harmonic-oscillator potentials as well as for free motion.
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In Sec. V it is shown that for thermodynamic consider-
ations the inclusion of finite widths leads to quantum
statistics.

C. Further remarks

In the previous section, several examples are pre-
sented to get us acquainted with the numerous aspects
of the time-dependent variational principle and its func-
tion as a bridge between quantum and classical physics.
We now add further remarks, which are again of general
type and will be useful for understanding the different
models referred to later.

1. Self-consistency and nonlinearity

The equations of motion (11) [or (22)] determine the
time evolution of the parameters qn(t) in parameter
space. But, even if these parameters have an intuitive
physical meaning, they first of all determine the trial
state uQ8(t)& from which all physical observables have
to be calculated in a quantum fashion. Therefore we de-
rive here the corresponding equation of motion for
uQ8(t)& in Hilbert space.

The Hamilton operator Ĥ0 , which evolves the trial
state uQ8(t)& in time according to the equations of mo-
tion (11), has to fulfill the condition

Ĥ0uQ8&5iuQ̇8&[i(
n

q̇n

]

]qn
uQ8&. (64)

It is given by

Ĥ05i~ uQ̇8&^Q8u2uQ8&^Q̇8u!

1
i

2
uQ8&~^Q̇8uQ8&2^Q8uQ̇8&!^Q8u, (65)

where uQ̇8& stands for

uQ̇8&5
d

dt
uQ8&52i(

m ,n

]

]qm
uQ8&C mn821 ]H

]qn*
, (66)

and analogously for ^Q̇8u. Thus Ĥ0 itself depends on
Q8* and Q8. Using the fact that uQ8& is always normal-
ized, we can easily show that Ĥ0 , defined in Eq. (65), is
the generator of the approximate time evolution

i
d

dt
uQ8&5Ĥ0~Q8* ,Q8!uQ8& . (67)

The equation of motion (67) for the trial state in Hilbert
space is the counterpart of the equation of motion (11)
in parameter space,

iq̇m5(
n

C mn821~Q8* ,Q8!
]

]qn*
H~Q8* ,Q8!. (68)

Equation (67) is self-consistent in the sense that the
Hamiltonian depends on the actual state uQ8(t)&. For
example, if uQ8(t)& is a single Slater determinant, but
otherwise unrestricted, Ĥ0(Q8* ,Q8) is the Hartree-
Fock Hamiltonian (Kerman and Koonin, 1976). Further-
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more, the approximate Eq. (67) is usually not a linear
equation like the exact Schrödinger equation and there-
fore violates the superposition principle of quantum me-
chanics.

Both self-consistency and nonlinearity are common in
classical molecular dynamics, in which the classical
Hamilton function H„r1(t),.. . ,p1(t),.. .… depends on
the actual physical state. The nonlinearity of
H„r1(t),.. . ,p1(t),.. .… plays an important role for statisti-
cal properties like equilibration and chaotic behavior
(see Sec. V). In quantum mechanics, these properties
can only be investigated by breaking the superposition
principle by coarse graining or phase averaging.

2. Quantum branching

The time-dependent variational principle creates an
approximate quantum dynamics in a manifold of trial
states. Due to their severely restricted degrees of free-
dom, it is very likely that areas of the Hilbert space are
not reachable by approximate equations of motion
which would be visited by the solution of the Schrö-
dinger equation. The idea for an improved model is to
allow branching from one trajectory uQi8(t)& to another
one uQj8(t)&, i.e., to jump in the parameter manifold
with a certain probability.

If the local deviation between the exact solution and
the solution of the time-dependent variational principle
(see Sec. II.A.2) is not so large, the operator

DĤ5S Ĥ2i(
n

q̇n

]

]qn
D

[Ĥ2Ĥ0 , (69)

which appears in Eq. (24) for the error, may be regarded
as a perturbation that causes transitions between the
trial states uQi8(t)&, while each uQi8(t)& follows the ap-
proximate time evolution given in Eqs. (65) and (66)
with its self-consistent Hamiltonian Ĥ0(Qi8* ,Qi8). As in
standard perturbation theory, the transition uQi8(t)&
→uQj8(t)& should be related to the amplitude
^Qj8(t)uDĤuQi8(t)& (Tully, 1990; Topaler et al., 1997; La-
croix, Chomaz, and Ayik, 1998, 1999). One would, how-
ever, like to work with probabilities instead of ampli-
tudes. This should be possible if the physical system is in
an energy regime with high level density where statisti-
cal arguments may be used.

In the literature, one often employs phenomenologi-
cal arguments (see Sec. IV) for random jumps in param-
eter space. The above-sketched procedure, which refers
to DĤ has several advantages here. The most important
is self-consistency; the transition depends on the actual
situation and the choice of trial states uQi8(t)&. If, for
example, uQi8(t)& is already a solution of the Schrö-
dinger equation, DĤuQi8(t)&50, and no branching oc-
curs.

Another important aspect of branching is the break-
ing of symmetries (Colonna and Chomaz, 1998).
Whereas the exact quantum state can retain dynamically
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conserved symmetries by linear superpositions of states,
the nonlinearity and self-consistency of the approximate
Hamiltonian (65) usually does not permit that. Take, for
example, the mirror symmetry of a molecule or a
nucleus that breaks into pieces. Each measured final
channel that corresponds to one uQi8& does not possess
mirror symmetry, but the ensemble of all measured
channels does. If the initial trial state uQ8(t50)& has this
symmetry and Ĥ does not break it explicitly, the sym-
metry will be kept in uQ8(t)&. Here, quantum branching
into a nonsymmetric trial state uQj8& and its mirrored
counterpart u2Qj8& with equal probabilities would re-
solve the problem of spurious cross-channel coupling
observed in self-consistent approximations (Griffin
et al., 1980). The transitions may also allow quantum
fluctuations to configurations that are close in Hilbert
space but cannot be reached by the approximate time
evolution, for example, tunneling.

Another noteworthy example of quantum branching
is displayed in Fig. 2, which shows four Gaussian wave
packets uql(t)& [see Eq. (57)] forming a bound cluster
and a wave packet (large circle) of an unbound particle
that is passing by. The time-dependent width of this
wave packet has spread in coordinate space because it
has been moving freely for some time. Such situations
occur frequently in simulations. In the exact case a piece
of this wave packet would stick to the four-particle clus-
ter, indicating that, with a certain probability, a five-
particle cluster has been created. The remaining part of
the wave packet would then move on. Because the
Gaussian single-particle state does not permit this free-
dom, the wave packet can only be bound to the cluster
in total or escape. However, in order for it to become
bound its width has to shrink to the size of the cluster;
otherwise, the matrix element of the interaction with the
other wave packets is too weak. It is obvious that be-
yond a certain size of the passing packet, the overlap
with the cluster will be too small to create a generalized

FIG. 2. Sketch of a four-particle cluster (small circles) and a
passing wave packet (large circle). Circles indicate half-density
contours. The molecular-dynamics equations of motion for the
centroids and the widths of the packets can only influence the
wave packet as a whole; either it passes by (b) or it is captured
(c). The exact solution splits the packet into a captured and a
proceeding part (a) (see text).
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force on its width parameter sufficiently large to let it
shrink. Therefore small capture probabilities cannot be
described.

A branching procedure in the above given example
would divide the time evolution into one branch of a
five-particle cluster and another of a four-particle cluster
and a freely moving wave packet with the respective
probabilities. In general one can say that whenever the
interaction varies strongly across the region of the wave
packet, additional shape degrees of freedom should be
considered. Otherwise, local actions are washed out and
only mean-field properties survive.

But quantum branching also faces problems. In going
from amplitudes to probabilities, one should not violate
conservation laws. For instance, one should not alter the
energy distribution of the system. The mean value and
the variance of the energy of the ensemble of trial states
that are populated during the branching should be the
same as in the initial state. The same is true for other
conserved quantities like total momentum or angular
momentum. It is quite conceivable that variational prin-
ciples with the appropriate constraints could be helpful
(Balian and Veneroni, 1988; Lacroix, Chomaz, and
Ayik, 1998, 1999).

3. Approximation or new dynamical model?

At this point a few remarks on the meaning of the
results from the time-dependent variational principle
seem to be in order. One could of course always claim
that any restriction of the degrees of freedom in the trial
state uQ8& leads to approximations of the Schrödinger
equation—the more restraint in the trial state, the worse
the approximation. But the simple examples in Sec. II.B
and those for antisymmetric states in Sec. III demand a
more subtle view.

Let us demonstrate this by restricting step by step the
degrees of freedom in the general quantum state for a
number of atoms. First we make a restricted ansatz for
the trial state that contains only the coordinates and
spins of nucleons and electrons, and we disregard com-
pletely the internal quark and gluon degrees of freedom
for the nucleons and the quanta of the electromagnetic
field. For low excitation energies this is certainly a good
approximation.

The next step is to neglect the internal degrees of
freedom of the nuclei, assuming that they are all in their
ground states, and to retain only their center-of-mass
coordinates and the electron variables. But this is still
too complex to let us solve the Schrödinger equation.
Therefore we describe the c.m. motion of the heavy nu-
clei with Gaussian packets, which leads to the classical
equations of motion (53) for the nuclei with a Hamilton
function H that couples to the quantal electrons. The
state for the electrons may then be constrained to a
single Slater determinant with no further restrictions on
the single-particle states. Now we have arrived at the
time-dependent Hartree-Fock model, which is a mean-
field theory. The self-consistent Hamiltonian Ĥ0 is a
one-body operator.
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But we can of course go further and disregard the
internal degrees of freedom of the atoms or the mol-
ecules altogether and treat only their center-of-mass mo-
tion by means of fixed-width Gaussians. At this point we
obtain classical molecular dynamics with a Hamilton
function H that contains two-body potentials between
the molecules.

If the molecules are big, maybe chunks of crystals,
maybe even stars held together by gravity, their center-
of-mass coordinates may be adequate parameters for
very narrow Gaussians. The time-dependent variational
principle will now provide Newton’s equations for mac-
roscopic objects.

We do not believe that Newton’s equations should be
viewed as a bad approximation (bad because of the
many constraints) of quantum chromodynamics where
we started.3 They should also not be regarded as an ap-
proximation of the time-dependent Hartree-Fock ap-
proach, which formally one could plead for because fur-
ther constraints on the Slater determinant led there.

The question is, rather, which are the relevant degrees
of freedom for a physical system? When these are iden-
tified, the time-dependent variational principle provides
a dynamical model that is self-consistent and has all the
properties of a Lagrange formalism, like the existence of
canonical variables, Noether’s theorem, etc.

Since the restriction of the trial state uQ8& can be
made in finer or coarser steps, it is a matter of debate at
which point one might want to speak of a new dynamical
model or of an approximation.

III. ANTISYMMETRIZATION

The previous section demonstrated how to derive
classical equations of motion from quantum mechanics
by means of the time-dependent variational principle
and localized single-particle states. It also showed that
there is no clear boundary between quantum and classi-
cal mechanics. This will be even more the case in this
Section, where we are dealing with indistinguishable fer-
mions.

The natural generalization of the product state (44)
(which led to classical molecular dynamics) to a trial
state for identical fermions is the antisymmetrized prod-
uct

uQ&5Âuq1& ^ uq2& ^¯^ uqN&

5
1

N! (
all P

sgn~P !uqP(1)& ^ uqP(2)& ^¯^ uqP(N)&.

(70)

The sum runs over all permutations P , and sgn(P) is the
sign of the permutation. The localized single-particle
states uql& for spin-1

2 particles also contain two-
component spinors ux l&,

3The time-dependent variational principle can also be formu-
lated in quantum field theory, and it reduces to the nonrelativ-
istic principle discussed here.
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^xW uql&5expH 2
~xW 2bW l!

2

2al
J ^ ux l&, bW l5rW l1ialpW l . (71)

The spinor may, for example, be represented by the two
complex parameters x l

↑5^↑ux l& and x l
↓5^↓ux l&, where

u↑& and u↓& are the eigenstates of the spin operator ŝz .
The general Lagrangian L, as given in Eq. (14), calcu-

lated with the antisymmetrized trial state (70), provides
through the Euler-Lagrange equations (21) or (22) the
desired molecular-dynamics equations for fermions,

i(
n

Cmn~Q* ,Q !q̇n5
]H~Q* ,Q !

]qm*
. (72)

The Hermitian matrix Cmn(Q* ,Q), Eq. (23), is not as
simple as in the classical case, where Cmn5dmn [compare
Eq. (55)], but depends on all parameters contained in Q .

Since the trial state is antisymmetric all consequences
of the Pauli principle are incorporated in the equations
of motion (72). Here, Cmn(Q* ,Q), which is the second
logarithmic derivative of the determinant ^QuQ&
5det$^qkuql&%, plays the role of a metric and will lead, for
example, to large velocities q̇n when the fermions get
close to Pauli forbidden regions in phase space. In the
energy H(Q* ,Q)5^QuĤuQ&/^QuQ&, the Pauli prin-
ciple causes exchange terms that induce, for example,
additional momentum dependences. It should also be
noted that the determinantal structure together with the
nonorthogonality of the single-particle states result in an
expression for the kinetic energy

^QuT̂uQ&

^QuQ&
5 (

k ,l51

N

^qku t̂ uql&Olk , (73)

which contains a twofold summation over all states (par-
ticles) compared to the single summation in classical
molecular dynamics, Eq. (49). Here Olk is the inverse of
the overlap matrix,

~O 21!klª^qkuql&; k ,l51,.. . ,N . (74)

The expectation value of a two-body operator, like the
interaction, is a fourfold sum,

^QuV̂uQ&

^QuQ&
5

1
2 (

k ,l ,m ,n51

N

^qkqluv̂uqmqn&

3~OmkOnl2OmlOnk!. (75)

The generalized forces 2 (]/]qm)H(Q* ,Q) are there-
fore rather involved expressions that reflect the fact that
the antisymmetrization Â is an N-body operation which
correlates all N particles simultaneously.

The large numerical effort required has led different
authors to propose approximations, which will be dis-
cussed in Sec. IV.

First we explain at some length the two-body case be-
cause many of the new features concerning antisymme-
trization and indistinguishability can be understood in
this simple study. Furthermore, attempts to approximate
the effects of the Pauli principle in molecular dynamics
by so-called Pauli potentials are based on considerations
in two-body space.
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The consequences of antisymmetrization in many-
body space, which are discussed in Sec. III.B, are even
more intricate. Depending on how much the single-
particle states overlap, the antisymmetrization can
change the properties of the trial state completely.
There is, for example, Fermi motion even if the Gauss-
ian single-particle states have no mean momentum.

A. Effects of antisymmetrization in two-body space

1. Static considerations

For two distinguishable particles the simplest trial
state that leads in the proper limit to classical mechanics
is the product of two Gaussians, uq1& ^ uq2&. The corre-
sponding state for indistinguishable fermions is the pro-
jection (70) onto the antisymmetric component

uQ&5Âuq1& ^ uq2&5
1
2!

$uq1& ^ uq2&2uq2& ^ uq1&%.

(76)

In order to simplify the following discussion, we do not
use this Slater determinant but a trial state which sepa-
rates center-of-mass and relative motion,

uQ&5uqc.m.& ^ uq& . (77)

The center-of-mass wave function is parametrized by
qc.m.5$A ,BW % as

^XW uqc.m.~ t !&5expH 2
@XW 2BW ~ t !#2

2A~ t ! J ,

BW ~ t !5RW ~ t !1iA~ t !PW ~ t !, (78)

where XW 5 1
2 (xW 11xW 2) is the center-of-mass coordinate

and the parameter set qc.m.5$A ,BW % contains the mean
c.m. position RW and the mean c.m. momentum PW com-
bined in the complex parameter BW and the complex
width A .

The wave packet uq& for the relative motion also con-
tains the spins, thus q5$a ,bW ,x1 ,x2%. Its parametrized
form in coordinate space reads

^xW uq~ t !&5FexpH 2
@xW 2bW ~ t !#2

2a~ t ! J ux1~ t !& ^ ux2~ t !&

2expH 2
@xW 1bW ~ t !#2

2a~ t ! J ux2~ t !& ^ ux1~ t !&G ,

(79)

where small letters denote the relative coordinates and
parameters. In relative coordinate space the exchange of
the two particles, 1↔2, is equivalent to the parity opera-
tion xW 5xW 12xW 2↔2xW 5xW 22xW 1 .

The two-body wave packet (77) is in general not a
single Slater determinant because the center-of-mass
motion for a Slater determinant does not separate if the
single-particle packets have different width parameters.
In this section we choose the widths A(t) for the center-
of-mass motion and a(t) for the relative packet to be



667H. Feldmeier and J. Schnack: Molecular dynamics for fermions
FIG. 3. The relative wave func-
tion for distinguishable par-
ticles (left column) and fermi-
ons (middle and right column)
at different values of the
parameters rW5(r ,0,0), pW
5(p ,0,0), and a5aR : solid
line, real part; dashed line,
imaginary part. ^d& measures
the distance between particles;
see Eq. (88).
independent in order to decouple the center-of-mass de-
gree of freedom. It should also be noted that trial state
(79) is a linear combination of total spin S50 and S
51.

The relation between bW and the more intuitive quan-
tities ‘‘distance’’ rW and ‘‘relative momentum’’ pW (time
dependence is no longer indicated) is

bW R5rW2aIpW and bW I5aRpW , (80)

rW5
a* bW 1abW *

a1a*
and pW 5

1
i

bW 2bW *

a1a*
. (81)

Here and throughout this section the real and imaginary
parts of complex numbers are denoted by the indices R
and I , respectively.

It is important to realize that rW and pW retain their clas-
sical meaning only if the two particles are far apart in
phase space. We illustrate this effect of antisymmetriza-
tion in Fig. 3, where on the left-hand side the relative
wave function

^xW uqd&5S 2p
a* a

a* 1a D 23/4

expH 2
~xW 2rW !2

2a
1ipW xW J (82)

is plotted along the rW direction. This trial state describes
two distinguishable particles at relative distance rW

5^qduxŴ uqd&. For a single Gaussian the expectation value

of xŴ 5xŴ (1)2xŴ (2) is always equal to the parameter rW
independent of pW and aR .

This is a typical example where Ehrenfest’s theorem
can be used to derive the classical equations of motion
from quantum mechanics. The method is to replace the
expectation values of the Heisenberg equation,

^qdu
d

dt
xŴ uqd&5^qduiF 1

2m
kŴ 2,xŴ G uqd&5

1
m

^qdukŴ uqd&,

(83)

for narrow wave packets by the mean values

d

dt
rW 5

pW

m
. (84)

The analog for the relative momentum operator kŴ

5 1
2 @kŴ (1)2kŴ (2)# is
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^qdu
d

dt
kŴ uqd&5^qdui@V~xŴ !,kŴ #uqd&

52^qdu
]

]xW
V~xŴ !uqd& (85)

or

d

dt
pW '

]

]rW
V~rW !. (86)

While Eq. (84) is exact for uqd&, Eq. (86) is only an
approximate expression, which can be improved.

However, the antisymmetrized packet

^xW uq&5FexpH 2
~xW 2rW !2

2a
1ipW xW J

2expH 2
~xW 1rW !2

2a
2ipW xW J G , (87)

displayed for two values of rW and pW in the middle and
right columns of Fig. 3, leads to different results. First,

for indistinguishable particles the operator xŴ 5xŴ (1)

2xŴ (2) is no longer an observable, because it is not sym-
metric with respect to particle exchange. Due to its

negative parity, the expectation value ^quxŴ uq&/^quq& is
always zero even for particles that are far apart. The
same holds true for the relative momentum:

^qukŴ uq&/^quq&50. Therefore Ehrenfest’s theorem is
changed into a triviality because Eqs. (83) and (85) be-
come meaningless (050). The conclusion is that Ehren-
fest’s theorem cannot be used to derive classical equa-
tions of motion for indistinguishable particles.

An observable that coincides with urWu at large dis-
tances is the root of the square radius minus the intrinsic
width of the packet:

^d&5S ^quxŴ 2uq&

^quq&
2

3uau2

2aR
D 1/2

. (88)

In the middle column of Fig. 3, which is for pW 50, it
becomes evident that the observable distance ^d& be-
tween two fermions with equal spin is larger than urWu and
deviates most when rW2!aR . The right-hand side with
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upW u52/AaR demonstrates that the distance ^d& also de-
pends on the relative momentum. For large relative mo-
menta, pW 2aR@1, the Pauli principle is again less effec-
tive, and ^d&'urWu. The explicit expression for the mean-
square radius in terms of parameters is

^quxŴ 2uq&

^quq&
5rW21

3uau2

2aR
1

uau2

aR
fex~j ,S12!, (89)

where

fex~j ,S12!5
je2jS12

12e2jS12
and

j5
ubW u2

aR
5

~rW2aIpW !2

aR
1aRpW 2. (90)

The first two terms in Eq. (89) are the same as for dis-
tinguishable particles. The remaining part is the ex-
change term, which contains the quantity j and the spin
overlap S125u^x1ux2&u2. From Eq. (90) it is evident that
j may be regarded as a dimensionless measure for the
distance in phase space where AaR is the length scale.
For large j*4 the exchange vanishes and the Pauli prin-
ciple is not active. For small j the distance between the
fermions is always larger than urWu because the exchange
term is positive definite. This effect is sometimes called
‘‘Pauli repulsion,’’ but this is not a force between the
particles.

The analogous expression for the distance in momen-
tum space is

^k&5S ^qukŴ 2uq&

^quq&
2

3
2aR

D 1/2

, (91)

with the expectation value for the square momentum

^qukŴ 2uq&

^quq&
5pW 21

3
2aR

1
1

aR
fex~j ,S12!. (92)

Again a term proportional to fex(j ,S12) appears, so that
there is complete analogy between coordinate and mo-
mentum space. The exchange term is again positive and
causes a ‘‘Pauli repulsion’’ in relative momentum.

It is interesting to note that, for a mininum uncer-
tainty state uq& with aI50 and equal spins (S1251), the
sums of the observable distances in coordinate and mo-
mentum space fulfill

^d&2/aR1^k&2aR5j
11e2j

12e2j >2 for aI50. (93)

Unlike the measure j, the observable distance in phase
space can never get smaller than 2; for details see Sec.
III.A.4.

Equation (92) also states that the kinetic energy of
relative motion

T5
1

2m

^qukŴ 2uq&

^quq&
5

pW 2

2m
1

3
4maR

1
1

2maR
fex~j ,S12!

(94)
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consists of a classical part pW 2/(2m), a contribution from
the uncertainty 3/(4maR), and an additional potential
fex(j ,S12)/(2maR), which depends on rW , pW , a , and the
spin overlap S12 .

An analogous expression can be obtained for a
smooth spin-independent potential,

V5
^quV~xŴ !uq&

^quq&

'V~rW !1
1
6

DV~rW !
3uau2

2aR
1

1
6

uau2

aR
DV~rW50 !fex~j ,S12!.

(95)

This expression is exact if V(xŴ )5V01V2xŴ 2 and a good
approximation if the Taylor expansion up to second or-

der of V(xŴ ) around xW 5rW is adequate within the range of
the wave packet. Please note that, due to rotational sym-

metry, V(xŴ ) depends only on xŴ 2.
Combining Eqs. (94) and (95) yields a Hamilton func-

tion that splits into three parts,

H5T1V5Hclassical1Vuncertainty1VPauli

5F pW 2

2m
1V~rW !G1F 3

4maR
1

uau2

4aR
DV~rW !G

1F 1
2maR

1
uau2

6aR
DV~rW50 !G fex~j ,S12!. (96)

Equation (96) is a basis for the approach used by several
authors in nuclear physics4 and atomic physics (Klakow
et al., 1994a, 1994b, Ebeling and Militzer, 1997) of incor-
porating the uncertainty principle and the Pauli prin-
ciple into an extension of classical molecular dynamics.
A two-body potential ( i,jVuncertainty(rW ij ,pW ij ,a) is added
to simulate the effects of the Heisenberg uncertainty
principle, and ( i,jVPauli(rW ij ,pW ij ,a ,Sij) is added to imi-
tate the effects of the Pauli principle. The explicit form
need not be the one given in Eq. (96); it is usually
adapted to the specific use. The method is quite success-
ful in calculating energies (Dorso et al., 1987; Dorso and
Randrup, 1987), but we advise caution in using the
Hamilton function (96) naively in equations of motion
like

rẆ i5
]

]pW i
H and pẆ i52

]

]rW i
H. (97)

The reason is that rW i and pW i are no longer canonical vari-
ables. As discussed earlier, although they still define the
trial state uQ& uniquely, they lose their intuitive meaning
when the particles are indistinguishable. The operator

xŴ (i), ‘‘position of particle i , ’’ is meaningless and

4See, for example, Wilets et al., 1977, 1978; Dorso et al., 1987;
Dorso and Randrup, 1987; Boal and Glosli, 1988; Peilert et al.,
1991; Maruyama, Toshiki, Ono, et al., 1992; Niita et al., 1995.
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^quxŴ (i)uq&/^quq& is not rW i! The analog statement holds
for the momentum. Instead of postulating Eq. (97), we
have to go back to the Lagrangian (14) and derive the
equations of motion (72). It is evident that the matrix C
will also be changed by the antisymmetrization.

2. Center-of-mass motion

Before discussing the relative motion in the antisym-
metric case, we consider first the center-of-mass motion.
The Lagrange function (14) for the center-of-mass wave
packet, Eq. (78), is given by

Lc.m.5L0 c.m.2Tc.m. (98)

with

L0 c.m.5
i

2
^qc.m.uq̇c.m.&2^q̇c.m.uqc.m.&

^qc.m.uqc.m.&

5
i

2
~BW * 2BW !~BẆ * 1BẆ !

A* 1A
2

i

4 F S BW * 2BW

A* 1A D 2

2
3

A* 1AG ~Ȧ* 2Ȧ !1
3i

4 S Ȧ

A
2

Ȧ*

A* D
5PW •RẆ 1

3
4

ȦI

AR
1total time derivative (99)

and the kinetic energy

Tc.m.5

^qc.m.u
1

2M
KŴ 2uqc.m.&

^qc.m.uqc.m.&

5
1

2M
~BW * 2BW !2

A* 1A
1

3
2M~A* 1A !

5
PW 2

2M
1

3
4MAR

. (100)

The Euler-Lagrange equations yield

BẆ 50, Ȧ5
i

M
, (101)

or if one transforms BW and BW * into RW and PW ,

PẆ 50, RẆ 5
PW

M
, Ȧ5

i

M
. (102)

In the center-of-mass wave function RW (t) and PW (t) al-
ways have the classical meaning of the mean center-of-
mass position and momentum, respectively. Neverthe-
less, when the width parameter A is included as a
dynamical variable, the wave packet uqc.m.(t)&
5uA(t),BW (t)& is the exact solution of the Schrödinger
equation.
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
3. Relative motion

The Lagrange function for relative motion,

L~q ,q* ,q̇ ,q̇* !5
i

2 S ^quq̇&2^q̇uq&

^quq& D
2

^qukŴ 2/2muq&

^quq&
2

^quV~xŴ !uq&

^quq&

[L02T2V, (103)

features antisymmetrization not only in the kinetic and
potential energy as seen in Eqs. (94) and (95), but also in
the metric part L0 .

For the sake of simplicity we treat in this subsection
only equal, time-independent spins. In the general case

the potential V@xŴ ,sŴ(1),sŴ(2)# may of course depend on
the spin degrees of freedom. The parameters
^↑ ,↓ux1,2(t)& would then also appear in L0 , T, and V, and
one could get equations of motion for them. For time-
independent equal spins, L0 is given by

L05
i

2

~bW * 2bW !~bẆ * 1bẆ !

a* 1a
2

i

4
F S bW * 2bW

a* 1a
D 2

2
3

a* 1a
G

3~ ȧ* 2 ȧ !1
i

2
F bẆ •bW * 2bW •bẆ *

bW * •bW
1

ȧ* 2 ȧ

a* 1a
G fex~j ,S12!

1total time derivative

5pW •rẆ1
3

4

ȧ I

aR

1FpW •rẆ2rW•pẆ

j
1

pW 2~ ȧRaI2 ȧ IaR2rW•pW ȧR!

aR

1
ȧ I

aR
G fex~j ,S12!1total time derivative. (104)

As expected, L0 contains an exchange term, besides the
terms for distinguishable particles; compare with L0 c.m.
in Eq. (99). Although L0 looks very complicated, the
Euler-Lagrange equations (72),

iCS ȧ

bẆ
D 5S ]T

]a*

]T
]bW *

D 1S ]V
]a*

]V
]bW *

D , (105)

can be partially simplified because the free motion is, as
for the c.m. state or the case of distinguishable particles,
the exact solution of the Schrödinger equation,

C 21S ]T
]a*

]T
]bW *

D 5S 2
1

m

0
D (106)

hence



670 H. Feldmeier and J. Schnack: Molecular dynamics for fermions
S ȧ

bẆ
D 5S i

m

0
D 2iC 21S ]V

]a*

]V
]bW *

D . (107)

The complicated form of C 21 combines with the compli-
cated derivatives (]T/]a* , ]T/]bW * ) of the kinetic energy
such that the simple result of Eq. (106) is obtained. Al-
though lengthy to calculate, it is easy to understand. The
reason is that both states, ua ,bW & and ua ,2bW & , are exact
solutions of the Schrödinger equation; they differ only in
the initial conditions. The antisymmetric state uq&
5ua ,bW &2ua ,2bW &, defined in Eq. (79), is therefore also
an exact solution. The deeper reason is that both the
time derivative and the Hamiltonian commute with the
antisymmetrization operator Â in Eq. (70):

05i
d

dt
ÂuC~ t !&2ĤÂuC~ t !&

5ÂS i
d

dt
uC~ t !&2ĤuC~ t !& D . (108)

Therefore, if uC(t)& is the exact solution of the Schrö-
dinger equation, so is ÂuC(t)&. This general statement
is not true if uC(t)& is only an approximation.

In the special case of a harmonic interaction, V(xŴ )
5V01V2xŴ 2, the contribution from the potential as-
sumes a very simple form as well, because

C 21S ]^xŴ 2&

]a*

]^xŴ 2&

]bW *

D 5S 2a2

2abẆ
D (109)

The amazing result is that Eqs. (106) and (109) are the
same for distinguishable particles and for indistinguish-
able particles, where C 21 is a complicated matrix de-
pending on a* ,a and bW * ,bW . The exchange term in the

expression for ^kŴ 2&, Eq. (92), and for ^xŴ 2&, Eq. (89),
compensates for the different C. It is also interesting to
see that for a harmonic interaction the parameters rW and
pW obey the classical equations of motion

rẆ5
pW

m
, pẆ 522V2rW , (110)

although the trial state uq& is antisymmetric and de-
scribes two identical fermions. This result, however, is
only obtained if the width a is at the same time a dy-
namical variable with the equation of motion

ȧ5
i

m
2i2V2a2. (111)

The case in which a(t)5a0 is supposed to be a positive
time-independent number leads to completely different
results and is discussed in the following subsection.
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4. Relative motion with a time-independent width parameter

This section investigates how the equations of motion
change if the shape of the relative wave packet, Eq. (79),
is restricted further by removing the width degree of
freedom a(t)5aR(t)1iaI(t) as a dynamical variable.
For simplicity only parallel spins are considered, i.e.,
S1251. By setting aR(t)5a0 , aI(t)50 and ȧ(t)50 in
Eqs. (94) and (104) we obtain

L05pW •rẆ1~pW •rẆ2rW•pẆ !
e2j

12e2j (112)

T5
pW 2

2m
1

3
4ma0

1
1

2ma0

je2j

12e2j , (113)

where

j5rW2/a01pW 2a0 and L5L02T2V. (114)

The potential energy V is not given here explicitly and
the spin dynamics is also not considered for simplicity.
The equations of motion for rW and pW are

05
d

dt

]L
]pẆ

2
]L
]pW

or

2rẆ2
2e2j

12e2j S rẆ2
rW~rWrẆ !/a01pW ~pW rẆ !a0

12e2j D
1

2e2ja0

~12e2j!2 @rW~pW pẆ !2pW ~rWpẆ !#52
]

]pW
H~rW ,pW !

(115)

and

05
d

dt

]L
]rẆ

2
]L
]rW

or

pẆ 1
2e2j

12e2j S pẆ 2
rW~rWpẆ !/a01pW ~pW pẆ !a0

12e2j D
1

2e2j

~12e2j!2a0
@rW~pW rẆ !2pW ~rWrẆ !#

52
]

]rW
H~rW ,pW !. (116)

For the reduced set of variables we are able to solve

Eqs. (115) and (116) for rẆ and pẆ . The result is

rẆ5a1~j!
]H
]pW

1a2~j!H a0S pW
]H
]pW

1rW
]H
]rW DpW

1S rW

a0

]H
]pW

2a0pW
]H
]rW D rWJ (117)

and
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pẆ 52a1~j!
]H
]rW

1a2~j!H S rW

a0

]H
]pW

2a0pW
]H
]rW DpW

2S rW
]H
]rW

1pW
]H
]pW D rW

a0
J , (118)

where a1(j) and a2(j) are functions of j5rW2/a01pW 2a0
and are given by

a1~j!5
12e2j

11e2j (119)

and

a2~j!5
2e2j~12e2j!

~11e2j!2~12e2j!22je2j~11e2j!
. (120)

Since a1(j@1)51 and a2(j@1)50 one recognizes for
j@1 Hamilton’s equations of motion. The condition j
@1 means that the two fermions are far from each other
in phase space. In this limit the identical fermions be-
have like classical distinguishable particles, although
their wave function is of course still antisymmetrized.
When they get close in phase space (i.e., j,1) a1(j)
→j/2 and a2(j)→3/j2, which means that the Hamilton-
like parts in Eqs. (117) and (118) vanish like j/2, but the
remaining parts increase like 3/j2.

In this example one sees that for j&2 the equations of
motion, which result from the parametrization (79) with
a(t)[a0 , cannot be cast into Hamilton’s form when rW
and pW are regarded as canonical variables. To prove this
statement let us suppose that a Hamilton function
HPauli(rW ,pW ) exists such that Eqs. (117) and (118) can be
written as

ṙ i5
]HPauli

]pi
and ṗ i52

]HPauli

]ri
, i51,2,3, (121)

where i denotes the three spatial directions. Let us now
disprove the existence of a function HPauli by calculating
the mixed derivatives ] ṙ i /]rk and ]ṗk /]pi , which
should add to zero if Eq. (121) is true. From the equa-
tions of motion (117) and (118) it is easy to verify that

] ṙ i

]rk
1

]ṗk

]pi
Þ0. (122)

This disproves the existence of a Hamiltonian
HPauli(rW ,pW ) as a function of rW and pW that would describe
the fermionic dynamics derived from the ansatz (79)
with a(t)[a0 for the wave function.

It is, however, possible to find a pair of canonical vari-
ables (rW ,pW ),

rW 5A11e2j

12e2j rW and pW 5A11e2j

12e2j pW , (123)

that are nonlinear functions of the original variables
(rW ,pW ) (Saraceno et al., 1983) such that L0 in Eq. (112)
assumes the canonical form

L05
1
2

~pW •rẆ 2rW •pẆ !1
1
2

d

dt
~rWpW !. (124)
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With these new variables, the equations of motion
aquire the form of Eq. (121), where HPauli(rW ,pW )
5H(rW ,pW ) is the total energy expressed in the new ca-
nonical variables. However, HPauli(rW ,pW ) cannot be ex-
pressed in a closed form because Eqs. (123) cannot be
solved for rW(rW ,pW ) and pW (rW ,pW ).

Equations (121) represent an approach often used in
the literature to incorporate the effects of the Pauli prin-
ciple by means of a two-body interaction. Different
forms of momentum-dependent potentials have been
added to the classical Hamiltonian or to the Lagrangian
(Neumann and Fai, 1994). Here we see that this method
differs in several aspects from fermionic dynamics. First,
as discussed above, the dynamical behavior of rW and pW
need not be of Hamilton’s type. Second, one should not

replace ^V(xŴ )& simply by V(rW), because even for nar-
row wave packets there is an exchange term that is not
small for j,1; see Eq. (96).

The equations of motion simplify appreciably for a
time-independent width parameter a0 , but the price to
be paid is that free motion without interaction is no
longer exact. For j,1 the equations of motion differ

essentially from the expected result rẆ5pW /m and pẆ 50
[see Eqs. (117) and (118)]. The shape of the wave packet
is so restrained that the particles scatter even if there is
no interaction.

There is, however, an appealing feature of the canoni-
cal variables (rW ,pW ), namely, that they exhibit a geo-
metrically forbidden region in phase space. From Eq.
(123) it is evident that rW 2/a01pW 2a0>2. This is demon-
strated in Fig. 4, where in a one-dimensional example
several trajectories of the relative motion are shown for
two freely moving fermions. Figure 4(a) displays the tra-
jectories, which are actually contours of constant kinetic
energy, using r and p as dynamical variables, while the
Fig. 4(b) shows the same trajectories, but using r and p.
The empty area in the middle of Fig. 4(b) is the Pauli
forbidden region of phase space. It corresponds to the
single point at the origin (r50 and p50) in Fig. 4(a).
The trajectories that cross there go around the circle in
the canonical variables r and p.

Pauli potentials are usually chosen such that a pair of
particles acquires a high energy in the forbidden region.
One should, however, be aware that the kinetic energy
at the boundary is finite, namely, 5/(4ma0) in the three-

FIG. 4. Trajectories in phase space of one-dimensional free
motion with fixed width: (a) variables r and p ; (b) canonical
variables r and p.
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dimensional case; see Eq. (113). The deficiency that par-
ticles scatter even if there is no interaction is also
present in all Pauli potentials. Inclusion of the complex
width a(t) as a dynamical variable cures this problem, as
has been demonstrated.

At the end of this subsection, the reader should not be
left with the impression that the Pauli principle is a two-
body effect. In fact, antisymmetrization is a genuine
N-body correlation, as will be discussed in Sec. III.

5. Resumé

(1) The intuitive idea of including the Pauli principle
in a classical description by treating the exchange terms
of the relative kinetic and potential energies of two iden-
tical fermions as an additional ‘‘Pauli potential’’ that
supplements the classical equations of motion cannot be
supported. It is not correct to regard the parameters rW
and pW as canonical variables if

bW •bW * 5urW1iapW u2&2ua* 1au (125)

and hence it is questionable whether the expectation
value of the Hamiltonian can be used as the Hamilton
function in Hamilton’s equations of motion.

(2) Heisenberg’s quantum uncertainty refers to the

variances (^xŴ 2&2^xŴ &2) and (^kŴ 2&2^kŴ &2) of the wave
packet which are given by the width parameter a and
are not related to rW2 or pW 2. It is therefore open to doubt
whether inclusion of uncertainty in classical equations of
motion can be achieved by using a potential that de-
pends on (rW ij

2
•pW ij

2 ).

B. Effects of antisymmetrization in many-body space

1. Shell structure due to antisymmetrization

It is not immediately obvious that an antisymmetrized
product state like Eq. (70) includes shell-model features,
like the nodal structure of single-particle orbits, because
the states are localized in coordinate and momentum
space. But due to the invariance of a Slater determinant
under linearly independent transformations among the
occupied single-particle states, after antisymmetrization,
any set of single-particle states that is complete in the
occupied phase space is as good as any other. This ap-
plies also to nonorthogonal states. To illustrate this, we
take four one-dimensional real Gaussians with the same
real width parameter a0 and zero mean momentum and
displace them by d50.75Aa0 (see left-hand side of Fig.
5). The one-body density can be written in terms of or-
thonormal states ucm& as

r̂(1)5 (
k ,l51

N

uqk&Okl^qlu5 (
m51

N

ucm&^cmu, (126)

where the orthonormal eigenstates of r̂(1), called natu-
ral orbits, are given by the following superposition of
Gaussians:

ucm&5 (
k51

N

uqk&~O 1/2!km . (127)
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Here Okl is the inverse of the overlap matrix, (O 21)kl
5^qkuql&. The occupied natural orbits are displayed on
the right-hand side of Fig. 5 and compared to harmonic-
oscillator eigenstates (dashed lines). One observes that
the occupied single-particle states ucm& consist of an s ,
p , d , and f state, all very close to harmonic-oscillator
states. The difference between both sets can be made
arbitrarily small by letting d/Aa0 approach zero. The f
state, for example, is essentially the first Gaussian minus
the second plus the third minus the fourth. All others
are similar combinations. As already stressed for the
two-body case in the previous section, when the wave
packets overlap, rl and pl lose their classical meaning of
position and momentum of particle l . In the limiting
case d→0, all rl→0, and all pl→0, and the harmonic-
oscillator shells emerge. The distributions in coordinate
and momentum space are the quantum-mechanically
correct ones of four spin-polarized fermions in a har-
monic oscillator.

2. Fermi-Dirac distribution due to antisymmetrization

A second example is illustrated in Fig. 6, where we
consider 100 equally spaced Gaussians in one dimen-
sion. Again all mean momenta are zero and the width a0
is real. In Figs. 6(a) and (b), the width Aa0 is 0.2 of the
mean distance d so that the wave packets are well sepa-
rated. Therefore the spatial density rx5^xur̂(1)ux& and
the momentum density rk5^kur̂(1)uk& are not changed
by antisymmetrization. In Figs. 6(c) and (d), the width
has been increased to Aa05d . Without antisymmetriza-
tion (dot-dashed line), the spatial density is uniform and
the momentum distribution is that of a single packet.
After antisymmetrization (solid lines), one obtains typi-
cal shell-model oscillations in coordinate space and a
Fermi distribution in momentum space. It is amazing to
see how in Eq. (126) the superposition of Gaussians by
means of the inverse overlap matrices can create a fully
occupied momentum state; see, for example, in Fig. 6(d)
the momentum distribution at k50.8kF , where the in-
dividual Gaussians give practically zero probability to
measure this momentum. We also calculated the eigen-
states of the kinetic energy in the occupied space and
obtained perfect sinusoidal waves.

FIG. 5. Natural orbits. Antisymmetrization of four displaced
Gaussians (left-hand side) leads to four occupied natural orbits
(right-hand side), solid lines, which are almost harmonic-
oscillator states (dashed lines).
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These two examples illustrate nicely that Slater deter-
minants of localized single-particle states with zero
mean momentum can describe the harmonic-oscillator
shell model or even the Fermi motion of a gas of fermi-
ons in which plane waves are occupied up to the Fermi
momentum. If one tries to simulate this effect by a
‘‘Pauli potential,’’ disregarding the momentum distribu-
tion in each wave packet, the resulting ground-state mo-
mentum distribution is unsatisfactory (Dorso et al.,
1987). The densities in coordinate and momentum space
are just not given by the distributions of the rl and pl .

At this point we should like to remind the reader of
the different meanings of the three ‘‘momentum quanti-
ties’’ used in this article:

(1) the momentum operator of particle l (not observ-

able): kŴ (l)5 1̂^¯^ kŴ ^¯ 1̂,
(2) the momentum variable kW as used in the momen-

tum representation ^kW uq&, and
(3) the momentum parameter pW l which characterizes

the state uql&5urW l ,pW l ,al ,x l&.

3. Resumé

(1) The coordinate distribution rx(xW ) is given by the
observable

rx~xW !5
^Qu( l51

N d~xW 2xŴ ~ l !!uQ&

^QuQ&
(128)

and not by the (eventually time-averaged) distribution
of the rW l . Analogously the momentum distribution is
given by

rk~kW !5
^Qu( l51

N d„kW 2kŴ ~ l !…uQ&

^QuQ&
(129)

and not by the distribution of the pW l . All pW l may be zero
and there would still be Fermi motion.

FIG. 6. Densities in coordinate and momentum space: solid
line, with antisymmetrization; dot-dashed line, without. (a), (b)
section with spatial density of 100 Gaussians (not overlapping
in coordinate space) and the corresponding momentum distri-
bution. Distributions with and without antisymmetrization are
identical. (c), (d) same as above but for overlapping Gaussians.
For details see text.
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(2) Fermi motion is not random motion in rW l and pW l .
(3) The classical meaning of rW l and pW l is retained only

when the system is so dilute in phase space that the Pauli
principle has no consequences.

4. Dynamical considerations

The equations of motion for the simplest antisymmet-
ric trial state (70) are [see Eq. (72)]

i(
n

Cmn~Q* ,Q !q̇n5
]T

]qm*
1

]V
]qm*

. (130)

As in the two-body case, applying the inverse of
C(Q* ,Q) to the derivatives of the kinetic energy yields
the simple result
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Although in the case of free motion, rW l and pW l follow the
classical path, this is once more the exact solution of the
Schrödinger equation with ȧ l5i/m and bW l and the spin
parameters x l being constant. The reason is, of course,
that the many-body time-evolution operator, which
commutes with the antisymmetrization operator, is a
product of single-particle time-evolution operators, and
the free single-particle motion of Gaussians is exact.

The Pauli principle appears, as in the two-body case,
in the interaction part in two ways. The interaction en-
ergy V(Q* ,Q) has exchange terms and the metric
C 21(Q* ,Q) couples all generalized forces ]V/]qm* be-
cause it is in general not diagonal in the particle indices.
Therefore the second term on the right-hand side of Eq.
(131) acts like an N-body force.

Looking at the structure of Eq. (131), it seems more
natural to replace the second term on the right-hand
side with a two-body interaction than to consider the
structure of the kinetic energy as was done in Sec. III.A.
In nuclear physics, Wilets and co-workers (Wilets et al.,
1977, 1978) were the first to propose a space- and
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momentum-dependent two-body ‘‘Pauli core,’’ which
was later applied to atomic physics (Wilets and Cohen,
1998).

IV. MODELS IN NUCLEAR AND ATOMIC PHYSICS

In nuclear physics at nonrelativistic energies, nucleons
cannot be treated as classical particles on trajectories.
Their phase-space density is too large to ignore the Pauli
principle. Therefore various molecular-dynamics models
that incorporate the Pauli principle on different levels of
sophistication are proposed in the literature. They will
be discussed in more detail in the following subsections.

Molecular-dynamics calculations are also widespread
in atomic physics to describe interacting atoms and mol-
ecules. But here the degrees of freedom are usually the
classical c.m. positions and velocities of the nuclei. The
quantal electrons which move in the electric field of the
atoms and provide the attraction are often treated by
mean-field methods. There are also applications in
which each electron is treated as an individual entity
localized in phase space. As for nucleons, if the density
is high enough, electrons can become a degenerate
Fermi gas for which a classical molecular-dynamics pic-
ture cannot be applied.

A. Antisymmetrized wave packets in nuclear physics

The time-dependent Hartree-Fock (TDHF) method
(Davies et al., 1985) was initially expected to be well
suited to the description of colliding nuclei because sta-
tionary Hartree-Fock calculations successfully represent
ground-state properties for all nuclei. The TDHF equa-
tions are obtained from the variational principle [Eq.
(4)] when the single-particle states uq& that form the
single Slater determinant uQ& are varied in an unre-
stricted way. However, it turned out that, even at low
beam energies where the relative speed between the two
colliding nuclei is small compared to the Fermi velocity
and hence a mean field is always well established, the
degree of fluctuation in the collective variables, like en-
ergy loss, scattering angle, or mass distribution, was
much too small compared to the measured data (Davies
et al., 1985; Balian and Veneroni, 1992; Reinhard and
Suraud, 1992; Lacroix, Chomaz, and Ayik, 1998, 1999).
Moreover, the inclusion of collision terms in extended
TDHF (see Goeke and Reinhard, 1982) did not improve
the situation. The reason is that the TDHF equations
contain a common mean field that does not allow fluc-
tuations to grow. As discussed in Sec. II.C.2, quantum
branching into other Slater determinants with different
mean fields is missing. Even the collision integral, which
induces fractional occupation of states and hence a mix-
ing of Slater determinants, does not change that because
one common mean field is again calculated from this
mixture.

Calculations that treat the TDHF time evolution for
each member of a thermal ensemble with its own spe-
cific mean field (Knoll and Strack, 1984; Knoll and Wu,
1988) can describe large fluctuations that develop during
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the expansion. The initial ensemble of Slater determi-
nants, which could be envisaged as the result of quan-
tum branching, was only assumed but not dynamically
calculated.

The shortcomings of a common mean field apply also
to models that solve the Vlasov equation augmented
by a collision integral like VUU (Vlasov-Uehling-
Uhlenbeck) or BUU (Boltzmann-Uehling-Uhlenbeck).5

Although no explicit antisymmetrization like that in
TDHF is present, Liouville’s theorem and Pauli block-
ing in the collision term prevent an overoccupation of
the single-particle phase space. The inherent lack of
fluctations in these one-body descriptions led to
molecular-dynamics models for fermions that will be dis-
cussed in the following subsections.

1. Time-dependent a-cluster model

The first molecular-dynamics model that uses anti-
symmetrized many-body states of localized constituents
in nuclear physics is an extension of the a-cluster model,
which successfully characterizes a-particle nuclei, to the
time-dependent case. In the model, nuclei are repre-
sented as Slater determinants of wave packets for a par-
ticles. The width parameter of the Gaussian single-
particle wave packets is chosen to be fixed (Caurier
et al., 1982; Saraceno et al., 1983) as well as time depen-
dent (Drożdż et al., 1982). Even superpositions of two
Slater determinants of wave packets for a particles with
time-dependent width are investigated (Bauhoff et al.,
1985). Since these models are applicable only for nuclei
with pronounced a substructure, new models were de-
veloped in the late 1980s, which address one wave
packet for each single nucleon.

2. Fermionic molecular dynamics

The model of fermionic molecular dynamics (FMD)
was suggested in 1990 (Feldmeier, 1990; Feldmeier et al.,
1995; Feldmeier and Schnack, 1997) in order to describe
ground states of atomic nuclei and heavy-ion reactions
in the energy regime below particle production. The
many-body trial state of FMD is a Slater determinant
uQ(t)& of single-particle Gaussian wave packets uql(t)&,
where ql(t) denotes the set of single-particle parameters
ql(t)5$bW l(t),al(t),x l(t),j l%, bW l(t)5rW l(t)1ial(t)pW l(t),
which contains mean position, mean momentum, and
complex width. The spin degrees of freedom are repre-
sented by a spinor ux l(t)& [see Eq. (71)]. The isospin
part uj l& is taken to be time independent and identifies
either a proton or a neutron.

The equations of motion for all parameters are ob-
tained from the variational principle as described in Sec.
II [see Eq. (22)]. The Hamiltonian is an effective one,
because the strong short-range repulsion in the nucleon-
nucleon interaction causes correlations that cannot be

5See, for instance Aichelin and Bertsch (1985); Stöcker and
Greiner (1986); Bertsch and Das Gupta (1988); Wolf et al.
(1990); Gaitanos et al. (1999).
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described by the trial state uQ(t)& (Feldmeier et al.,
1998). Moreover, the spin correlations caused by the
strong tensor force are only poorly represented in a
single Slater determinant.

In FMD, the ground state is defined by the deepest
minimum of the energy H(Q* ,Q)5^QuĤuQ&. Since all
generalized forces ]H/]ql* 50 vanish in the minimum,
this state is stationary, and all q̇ l50. There is no ‘‘Fermi
motion’’ in the parameters rW l ,pW l , . . . . Ground-state prop-
erties like binding energies and rms radii can be repro-
duced equally well with a variety of effective nucleon-
nucleon interactions, which differ mainly in their
momentum dependence. But the intrinsic structure of
the nuclei depends on the interaction. Superpositions of
single-particle states as well as of Slater determinants
can be used in order to obtain a more refined descrip-
tion of nuclear structure, e.g., for halo nuclei (Neff et al.,
1999).

Fermionic molecular dynamics is able to model a va-
riety of heavy-ion reactions ranging from fusion to dis-
sipative reactions and multifragmentation (Feldmeier
and Schnack, 1997). Unlike the case of TDHF, fluctua-
tions occur in these reactions, but the results also show
that initial correlations given by the intrinsic structure of
the ground states play a major role in the simulation of
fragmentation reactions (Neff et al., 1999).

The time-dependent width parameters are important
nonclassical degrees of freedom (Feldmeier et al., 1995),
especially to allow for the evaporation of nucleons, a
process that otherwise is strongly hindered, because
each escaping wave packet takes away at least its zero-
point energy. Inside a nucleus this zero-point energy is
typically 10 MeV, but evaporated nucleons have a mean
kinetic energy of only 2 MeV. Therefore the packet
must spread during the evaporation process.

Thermodynamic equilibrium properties can be deter-
mined in FMD by means of time averaging; see Sec. V.C
and Schnack and Feldmeier (1997).

As already explained in Sec. II.C.2, the restricted pa-
rametrization leads to barriers which would not exist for
the exact solution. The splitting of wave packets is an
especially important source of quantum branching. The
lack of this dynamical freedom is a serious hindrance to
forming clusters (Kiderlen and Danielewicz, 1996),
which is also observed in antisymmetrized molecular dy-
namics and FMD investigations of the spinodal decom-
position of nuclear matter. Without quantum branching
possibly important reaction mechanisms in multifrag-
mentation reactions are quenched (Colonna and
Chomaz, 1998). Further study of this subject is needed.

3. Antisymmetrized molecular dynamics

Antisymmetrized molecular dynamics (AMD) is simi-
lar to FMD with respect to the choice of the trial state,
but includes random branching between trial states. For
details, the reader is referred to Ono et al., 1992a, 1992b,
1993; Ono and Horiuchi, 1996a, 1996b. Antisymmetrized
molecular dynamics describes the nuclear many-body
system with a Slater determinant uQ(t)& of Gaussian
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
wave packets characterized by the parameter set ql(t)
5$ZW l(t),x l ,j l%, In AMD notation the complex param-
eters ZW l5(1/A2a0)bW l5(1/A2a0)rW l1iAa0/2pW l denote the
time-dependent centroids of the wave packets and x l ,j l
the time-independent spin-isospin components, which
can be either proton or neutron, spin up or down. The
width parameter n5 1/2a0 is real and time independent
and the same for all wave packets.

The time evolution of the ZW l(t) is determined by the
time-dependent variational principle, Eq. (4), which
leads to the equations of motion given in Eq. (22). The
Hamilton function H used in AMD is the expectation
value of a Hamiltonian Ĥ plus an additional term that
removes the spurious zero-point energy of the center-of-
mass wave packets for the different clusters. This c.m.
energy, which is of the order of 10 MeV for all clusters,
is an artifact of all product states.

The smooth variation of the ZW l(t) due to the general-
ized forces ]H/]ZW l* is supplemented by different sto-
chastic forces. These can be regarded as a phenomeno-
logical ansatz for quantum branching between different
trial states uQj(t)& as discussed in Sec. II.C.2. One
branching procedure takes care of deviations caused by
the short-range repulsion between nucleons. For that, a
collision term is introduced which randomly changes the
relative canonical momenta of a pair of wave packets. In
order to avoid entering Pauli-forbidden regions in phase
space, approximate canonical variables are used which
for two particles reduce to those discussed in Sec.
III.A.4; compare to Fig. 4.

Another branching simulates the spreading and split-
ting of wave packets, which is an essential process for an
adequate description of evaporation and absorption, but
cannot be accomplished by the trial state (Ohnishi and
Randrup, 1995 1997a, 1997b, Ono and Horiuchi, 1996a).

Antisymmetrized molecular dynamics is able to repro-
duce the essential properties of nuclear ground states
[minima in H(Q* ,Q)] and, when extended to trial
states that use superpositions of single-particle states or
Slater determinants, even the structure of halo nuclei
(see, for example, Kanada-En’yo et al., 1995).

Multifragmentation reactions are investigated for
beam energies around the Fermi energy. Before com-
parison with experimental data from heavy-ion colli-
sions, the result of a simulated collision is fed into a
statistical decay program to account for long-time pro-
cesses (Pülhofer, 1977; Ono, 1998).

Since the numerical effort of antisymmetrized mo-
lecular dynamics as well as of FMD grows with N4, ap-
proximations are needed for the calculation of systems
with more than N580 nucleons. Recently the AMD
group developed a ‘‘triple-loop approximation,’’ which
converts the fourfold sum of the potential energy [see
Eq. (75)] into a threefold one, so that systems like
Au1Au are now feasible (Ono, 1998).

B. Product states of wave packets—quantum molecular
dynamics

Models that parametrize the many-fermion trial state
by a simple product of Gaussian wave packets are called
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quantum molecular dynamics (QMD) in nuclear physics.
The first versions of QMD were invented in the eighties
(Aichelin and Stöcker, 1986; Aichelin et al., 1987; Aich-
elin 1991; Khoa et al., 1992). They all employ a product
state,

uQ~ t !&5uq1~ t !& ^ uq2~ t !& ^¯^ uqN~ t !&, (132)

of single-particle states uql(t)&5urW l(t),pW l(t)& defined in
Eq. (45), where only the mean positions rW l(t) and the
mean momenta pW l(t) are time dependent. The width is
fixed and the same for all wave packets.

The resulting equations of motion are the classical
ones, given in Eq. (53). Moreover, the interpretation of
rW l(t) and pW l(t) is purely classical and the particles are
considered distinguishable. This simplifies the collision
term, which acts as a random force, and at higher ener-
gies also simplifies the description of transitions from
nucleons into resonances.

All QMD versions use a collision term with Pauli
blocking in addition to classical dynamics. Some ver-
sions consider spin and isospin, others use nucleons with
an average electric charge. Several QMD versions try to
incorporate the Pauli principle by means of a Pauli po-
tential that prevents nucleons of the same kind from
coming too close in phase space; see Sec. III.A. Due to
these simplifications, QMD has the advantage that nu-
merical effort grows only with N2, thus allowing the
simulation of large systems. In addition, all QMD ver-
sions use a statistical decay program for the long-time
dynamics.

1. Versions

Quantum molecular-dynamics models are widely used
in nuclear physics and exist in many versions. We shall
list some of them and apologize for not mentioning all
others. A more thorough overview of QMD models is
provided by Hartnack et al. (1998).

(1) From experience with VUU/BUU models (Aichelin
and Bertsch, 1985), one of the first versions of QMD
(Aichelin and Stöcker, 1986; Aichelin, 1991) was
suggested. It exploited the trial state (132) only in-
sofar as the interaction could get an effective range
due to folding with the wave packets. In all other
respects the model propagates point particles along
classical trajectories. The zero-point energy originat-
ing from localization is omitted. Random distribu-
tions of mean coordinates and momenta are taken
as initial states according to the experimental
ground-state density profile and binding energy.
This distribution, however, is not the ground state of
the model Hamiltonian but an unstable excited
state. The model ground state is highly overbound.
This QMD model does not distinguish between pro-
tons and neutrons; all nucleons carry an average
charge.

(2) The isospin QMD model treats the isospin explicitly
but is the same in all other respects. This version
was designed for the analysis of collective flow and
pions (Hartnack et al., 1989).
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(3) Another branch of QMD evolution uses a Pauli po-
tential and takes the trial state (132) more seriously
(Peilert et al., 1992; Konopka et al., 1995) Since
nucleons are kept apart in phase space by the Pauli
potential (Peilert et al., 1991), the minimum of the
Hamiltonian determines the nuclear ground state.
This is not only theoretically attractive, but is also
very important if one wants to investigate the sur-
vival of initial ground-state correlations in the final
products. An ensemble of random initial states is
not able to answer such questions.

(4) The Japanese extended QMD model (Maruyama
et al., 1992; 1996; Niita et al., 1995; Chiba et al., 1996)
is constructed in the same spirit. Moreover, the
width parameter, which is time independent in all
other versions, is chosen to be time dependent here.
As in AMD, the c.m. zero-point energies are sub-
tracted from the Hamiltonian, which is difficult be-
cause of the changing width. Some observations in
extended QMD are similar to those in FMD. In par-
ticular, evaporation processes are described much
better than with a fixed width. For fusion reactions
the time-dependent width plays a major role be-
cause the fusion cross sections are too small with a
fixed width.

(5) Another version of QMD was developed in Copen-
hagen and called nuclear molecular dynamics (Bon-
dorf et al., 1995).

(6) Many attempts have been undertaken to extend the
applicability of QMD towards higher (relativistic)
energies. These include a relativistic model (Sorge
et al., 1989; Lehmann et al., 1995; Sorge, 1995) and
an ultrarelativistic model (Bass et al., 1998).

2. Decoupling of center-of-mass and relative motion

A prominent problem of many-body trial states ex-
pressed in terms of single-particle quantities, irrespec-
tive of whether they are antisymmetrized or not, is the
center-of-mass motion that does not separate from the
relative motion. One attempt to solve the problem is the
construction of a trial state in which the single-particle
width parameters are replaced by a width matrix Akl(t)
(Kiderlen and Danielewicz, 1996),

^xW 1 , . . . ,xW NuQ~ t !&

5expH 2(
k ,l

~xW k2rWk~ t !!Akl~ t !~xW l2rW l~ t !!

1i(
k

pW k~ t !xW kJ ux&, (133)

where ux& is a normalized spin-isospin state. The dy-
namical freedom of the matrix elements Akl(t) allows
this state to factorize into c.m. and intrinsic degrees of
freedom for subgroups of particles. For two particles,
the advantage of ansatz (133) can be seen immediately:

^xW 1 ,xW 2uQ&5exp$2Ac.m.~XW 2RW !21iPW XW %

3exp$2Arel~xW 2rW !21ipW xW % ux&. (134)
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With the usual definitions of relative (xW ,rW ,pW ) and c.m.
(XW ,RW ,PW ) coordinates, the width matrix elements are re-
lated by Ac.m.52(A111A12), Arel5(A112A12)/2, and
A115A22 . Independent of the relative motion, which
can be in a bound state with width Arel , the c.m. wave-
packet width Ac.m.(t) can spread according to free mo-
tion. For product states, the variance in the c.m. coordi-
nate is always connected to that of the relative motion.
For the product of two identical Gaussian wave packets,
the relation is Ac.m.(t)54Arel(t) (Kiderlen and
Danielewicz, 1996).

The separation of internal and c.m. variables should
enhance fragment production, which is otherwise sup-
pressed due to the localization energy of the c.m. mo-
tion. Kiderlen and Danielewicz could demonstrate a sig-
nificant improvement in the description of light
fragments. Unfortunately, a way of extending the pro-
posed ansatz to antisymmetrized states has not been
found to date. The trial state (133) is also not flexible
enough to describe the splitting of wave packets neces-
sary to model particle capture, as discussed in connec-
tion with quantum branching in Sec. II.C.2.

3. Approximate canonical variables—Pauli potential

Historically the first models that tried to describe frag-
mentation reactions on the basis of single-particle mo-
tion were classical models; see, for instance, Bodmer and
Panos, 1977; Bodmer et al., 1980. Problems arising from
the fact that classical particles obey neither the Heisen-
berg uncertainty relation nor the Pauli principle of iden-
tical fermions were addressed by introducing two-body
interactions ( i,jVuncertainty(rW ij ,pW ij ,a) (Wilets et al.,
1977, 1978) and ( i,jVPauli(rW ij ,pW ij ,a ,Sij) (Wilets et al.,
1977, 1978; Dorso et al., 1987; Dorso and Randrup, 1987;
Boal and Glosli, 1988; Peilert et al., 1991; Maruyama
et al., 1992; Niita et al., 1995; Ebeling and Militzer, 1997),
which imitate the two quantum effects; see Eq. (96).

This method is quite successful in calculating energies
and reasonable single-particle occupations in momen-
tum space for the free Fermi gas at finite temperatures
(Dorso et al., 1987; Dorso and Randrup, 1987), but as
already mentioned in Sec. III.A, care should be taken in
using these variables in Hamilton’s equations of motion
as if they were canonical. In addition, classical models
cannot correctly describe quantum-statistical properties
in general, like occupation numbers, mean energy, spe-
cific heat, etc.

Nevertheless, the idea of simulating the Heisenberg
uncertainty and Pauli exclusion principles by means of
two-body interactions is still being used nowadays in ap-
plications of classical dynamics to many-fermion prob-
lems (e.g., Latora et al., 1994; Wilets and Cohen, 1998).

C. Atomic physics

In atomic physics, molecular-dynamics applications
are widespread because the de Broglie wavelength of
the atoms (molecules) is often much shorter than the
variations in the intermolecular potential. Therefore a
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
trial state for the center-of-mass coordinates, which is a
product of well-localized Gaussians as discussed in Sec.
II.B.2, is well suited to this task:

uQatom8 &5uBW 1& ^ ••• ^ uBW N& with BW l5RW l1iA0PW l .
(135)

Electrons are much lighter, so quantum effects like the
Pauli principle and uncertainty are important. Their trial
state may be thought of as an antisymmetrized many-
body state uQel8 ;Qatom8 & that depends on electronic de-
grees of freedom summarized in the set Qel8
5$q0 ,q1 ,q2 ,. . .%, e.g., characterizing different orbits. It
also depends on the variables of the atoms $RW l ,PW l% that
mark, for example, the phase-space centers of the orbits.
The dependence on PW l is usually neglected because the
velocities of electrons are much larger than those of at-
oms. The total trial state is the product

uQ8&5uQatom8 & ^ uQel8 ;Qatom8 &. (136)

In contrast to the case of nuclear physics, here the
Hamiltonian is known. It can be well approximated
(when spin and other relativistic effects are neglected)
by

Ĥ5(
l51

N F KŴ 2~ l !

2Ml
2(

i51

Nel Zle
2

uXŴ ~ l !2xŴ ~ i !u
G

1(
l,k

N ZlZke2

uXŴ ~ l !2XŴ ~k !u
1Ĥel (137)

Ĥel5(
i51

Nel kŴ 2~ i !

2mel
1(

i,j

Nel e2

uxŴ ~ i !2xŴ ~ j !u
, (138)

where capital and small letters denote atomic and elec-
tronic variables, respectively. From the Lagrange func-
tion L8, Eq. (3), one obtains, with the appropriate ap-
proximations, the well-known quantum molecular-
dynamics equations for atomic physics. The atomic
variables RW l , and PW l follow classical equations of motion
(width A0 small) under the influence of electron poten-
tials given by

Vatom-el5^Qel8 ;Qatom8 u(
l51

N F2iBẆ l

]

BW l

1(
i51

Nel Zle
2

uRW l2xŴ ~ i !u
G

3uQel8 ;Qatom8 &1^Qel8 ;Qatom8 uĤeluQel8 ;Qatom8 &.

(139)

The coupled equations of motion for the electron de-
grees of freedom Qel8 are approximated at various levels
of sophistication.

These quantum molecular-dynamics models are not
the subject of this review because they do not treat the
electrons (fermions) as being localized in phase space.

1. Product states of wave packets in atomic physics

For simple Coulomb systems (Suarez-Barnes et al.,
1993) and for hydrogen plasmas, models are proposed
that employ trial states of the type
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uQ8&5uQatom8 & ^ uQel8 &, (140)

where the electronic state uQel8 & consists of localized
Gaussian wave packets [Eq. (45)]. These models are
QMD models in the sense of Sec. IV.B, either with time-
independent width but without the Pauli potential
(Ebeling and Militzer, 1997), or with the Pauli potential
(Ebeling and Schautz, 1997), or with time-dependent
width and the Pauli potential (Klakow et al., 1994a,
1994b). Only the electronic part is represented by a
wave function; the protons of the hydrogen plasma
move on classical trajectories.

An interesting application, which is referred to in Sec.
V.C.2, is the study of a plasma under extreme
conditions—high temperature or pressure—and phase
transitions to the liquid and solid phases (Klakow et al.,
1994a, 1994b). Other investigations focus on the degree
of ionization of a partially ionized plasma Ebeling et al.,
1996; Ebeling and Militzer, 1997).

2. Quantum branching

When the Born-Oppenheimer approximation is valid,
adiabatic energy surfaces can be calculated as

Vad~Qatom8* ,Qatom8 ;nel!

5^nel ;Qatom8 u(
l51

N

(
i51

Nel Zle
2

uRW l2xŴ ~ i !u
1Ĥelunel ;Qatom8 & ,

(141)

where nel50 denotes the lowest energy state of the elec-
trons under the influence of the charges Zl of static ions
positioned at RW l . The excited eigenstates of the elec-
tronic system, for example vibrational modes or particle-
hole excitations are numerated by nel51,2,.. . . In prin-
ciple one can set up an improved trial state as a linear
combination,

uQ8&5(
nel

qnel
uQatom ,nel

8 & ^ unel ;Qatom ,nel
8 &, (142)

and then try to solve the coupled equations that result
from the variational principle (9) for the complex ampli-
tudes qnel

and the ion variables Qatom ,nel
8 5$RW l

nel ,PW l
nel ;l

51,.. . ,N ;nel51,2,.. .%. From energy, momentum, and an-
gular momentum conservation it is obvious that one has
to have as many different trajectories $RW l

nel ,PW l
nel% for

the ions as there are excited states that can be popu-
lated, because an inelastic excitation nel→nel8 will change
the ion trajectories accordingly.

But these equations of motion are usually too com-
plex to be solved numerically, and therefore one intro-
duces quantum branching (as discussed in Sec. II.C.2) by
what is called the quasiclassical trajectory surface-
hopping method; see, for example, references in Topaler
et al. (1997). Different approaches are tested against an
accurate quantum-dynamics calculation of a realistic sys-
tem by Topaler et al. (1997). They find fair agreement
between the quantum branching methods and the results
of quantum equations that result from a trial state of the
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
type found in Eq. (142). This is to be expected if elec-
tronic coherence is not important on time scales of the
ion motion so that hopping between the energy surfaces
[Eq. (141)] acts as a random Langevin force on the ion
trajectories.

V. STATISTICAL PROPERTIES

Molecular-dynamics models are used to simulate not
only nonequilibrium but also equilibrium situations, es-
pecially when correlations require descriptions that go
beyond mean-field approaches and quasiparticles. In the
context of classical mechanics, a vast literature exists
(Hoover, 1986), even for relativistic cases (Belkacem
et al., 1998), in which equilibrium properties are studied.
So-called thermostated time evolutions (Nosé, 1984,
1991; Hoover, 1985; Kusnezov et al., 1990), in which ap-
propriate coupling to external degrees of freedom ad-
justs the temperature, are on firm ground in classical
mechanics and have been used successfully for equilib-
rium situations, e.g., to investigate classical spin systems,
as well as for nonequilibrium situations, e.g., to study
glass transitions.

Classical procedures fail for quantum systems and es-
pecially for identical fermions when the phase-space
density is no longer small and the effects of the Pauli
principle become important. No analog to thermostated
time evolutions exists as yet for quantum systems. There
are a few attempts to infer thermodynamic properties
from dynamical simulations in quantum mechanics.6

Usually one performs time averages and relies on the
ergodic assumption. The validity of this method, of
course, crucially depends on the statistical and ergodic
properties of the dynamical model. From the articles just
cited, one realizes that the matter is still under debate.

Two issues are discussed in detail in the following sec-
tions. One is how to determine thermostatic properties
in a molecular-dynamics model where thermostatic re-
fers to the static thermal properties governed by the par-
tition function Z(T)5Tr(exp$2Ĥ/T%). Once the trace is
evaluated within a given model, its thermostatic proper-
ties can be deduced by standard methods like partial
derivatives of ln Z(T) with respect to temperature T or
other parameters contained in the Hamilton operator
Ĥ .

The other and even more important issue, which is
discussed in Sec. V.B, is the dynamical behavior of a
molecular-dynamics model. For example, a dissipative
system that is initially far from equilibrium is expected
to equilibrate towards the canonical ensemble. The
simulation of such a system within the model provides a
crucial test of its thermodynamic properties. Often one

6Some examples are given by Kusnezov, 1993; Ohnishi and
Randrup, 1993, 1997a, 1997b; Blaise et al., 1994; Klakow et al.,
1994a, 1994b; Ono and Horiuchi, 1996b; Schnack and Feld-
meier, 1996, 1997; Ebeling and Militzer, 1997; Schnack, 1998.
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uses an ergodicity assumption, i.e., that time averages
are equivalent to ensemble averages, which should be
verified.

A. Thermostatics

The question of thermostatic properties can be re-
duced to the question of whether the set of model states
uQ& is complete, i.e., able to span the many-particle Hil-
bert space. If that is the case, the unit operator in
N-particle space can be written as

1̂(N)5E dm~Q !
uQ&^Qu
^QuQ&

, (143)

where dm(Q) is a measure that depends on the param-
eter set Q because the trial states uQ& are in general
nonorthogonal. For fermions and Gaussian wave pack-
ets, the measure is derived in the following subsection.

Once completeness is shown, the thermostatic rela-
tions have to be correct, provided the trace of the parti-
tion function

Z~T !5Tr~exp$2Ĥ/T%!

5E dm~Q !
^Quexp$2Ĥ/T%uQ&

^QuQ&
(144)

is calculated with the trial states uQ& in quantum fashion.
In the case of fermionic molecular dynamics (FMD)

and antisymmetrized molecular dynamics (AMD; Ono
et al., 1992a, 1992b; Schnack and Feldmeier, 1996), the
antisymmetric many-body states form an overcomplete
set and provide a full representation for the unit opera-
tor. Because the calculation of the trace does not de-
pend on the representation, all thermostatic properties
like the Fermi-Dirac distribution, specific heat, mean en-
ergy as a function of temperature, etc. ought to be cor-
rect and fully quantal using FMD or AMD trial states.
The difficult task is to calculate ^Quexp$2Ĥ/T%uQ& or
^QuB̂ exp$2Ĥ/T%uQ&, where B̂ is an observable. The
trace integral can be evaluated by Monte Carlo meth-
ods.

1. Completeness relation with coherent states

In the following it is shown that Slater determinants of
coherent states span the whole Hilbert space for fermi-
ons.

Coherent states uzW & that are defined as the eigenstates

of the harmonic-oscillator destruction operator aŴ

5A1/(2a0)xŴ 1iAa0/2kŴ ,

aŴ uzW &5zW uzW & , ĥHO5
1

ma0
S aŴ 1aŴ 1

3
2 D , (145)

form an overcomplete set of states. They are the Gauss-
ian states defined in Eq. (45) with zW 5A1/(2a0)rW
1iAa0/2pW 5bW /A2a0 for a real width parameter a0 . Their
completeness relation reads in single-particle space
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1̂(1)5E d3 Re z d3 Im z

p3

uzW &^zW u
^zW uzW &

5E d3r d3p

~2p!3

urW , pW &^rW , pW u
^rW , pW urW , pW &

, (146)

where uzW & labels the coherent states by their eigenvalue

with respect to aŴ , and the phase-space notation urW , pW &
labels the states by the expectation values of their coor-
dinate and momentum operators. Coherent states are
extensively discussed by in Klauder and Skagerstam
(1985).

Since we are dealing with fermions, the spin degree of
freedom has to be considered and consequently the
resolution of unity changes to

1̂(1)5E d3r d3p

~2p!3 (
m

uq&^qu
^quq&

, (147)

where the sum runs over the two magnetic quantum
numbers m56 1

2 which are included in the set of param-
eters denoted by q [see Eq. (71)].

Proceeding one step further, the unit operator in the
antisymmetric part of the two-particle Hilbert space is
the antisymmetric product of two single-particle unit op-
erators,

1̂(2)5Â(2) ~ 1̂(1)
^ 1̂(1)! Â(2)

5 1
2 ~12P̂12! ~ 1̂(1)

^ 1̂(1)! 1
2 ~12P̂12!, (148)

which may be expressed with antisymmetric two-particle
states uq1 ,q2&a as

1̂(2)5E d3r1 d3p1

~2p!3 (
m1

E d3r2 d3p2

~2p!3

3(
m2

uq1 ,q2&a a^q1 ,q2u
^q1uq1&^q2uq2&

, (149)

where

uq1 ,q 2&aª
1
2 ~ uq1& ^ uq2&2uq2& ^ uq1&) .

Following this line of reasoning, we can write the unit
operator in the antisymmetric part of the N-particle Hil-
bert space as the projection of the N-particle unit opera-
tor onto the antisymmetric subspace. If uQ& is the unnor-
malized Slater determinant (70) of single-particle states
uq&,

uQ&5
1

N! (P
sgn~P !~ uqP(1)& ^¯^ uqP(N)&), (150)

then the unit operator is

1̂(A)5E dm~Q !
uQ&^Qu
^QuQ&

, (151)

with a measure

dm~Q !5^QuQ& )
k51

N 1

^qkuqk&

d3rk d3pk

~2p!3 (
mk

(152)

that accounts for antisymmetrization. In a sampling
where the values of rWk and pW k are chosen according to
Monte Carlo methods, this measure determines the
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probability of finding the state uQ& belonging to the con-
figuration Q5$rW1 ,pW 1 ,m1 ;rW2 ,pW 2 ,m2 ; . . . % in Hilbert
space. If, for example, two fermions with the same spin
are close in rW and pW then this measure is small because
the norm ^QuQ&5det$^qkuql&% will be small. Equation
(151) is very useful in calculating traces by means of
Monte Carlo sampling (Ohnishi and Randrup, 1993).

Coherent states are Gaussian wave packets with fixed
width, but the real and imaginary parts of the width, aR
and aI , may also be integrated over appropriate ranges
in order to get an improved coverage of the phase space
when sampling:

1̂(1)5E d3r d3p

~2p!3 (
m

E
VR

daR

VR
E

VI

daI

VI

uq&^qu
^quq&

, (153)

where VR and VI denote the intervals over which the
width a5aR1iaI is integrated,

E
VR

daR 5VR , E
VI

daI5VI .

Since the width a in the completeness relation, Eq.
(145), is arbitrary, the additional integrations in Eq.
(152) do not change the unit operator.

In the case of nuclear physics, one has two types of
fermions, so that the measure for a system with N neu-
trons and Z protons is

dm~Q !5^QuQ& )
k51

N 1

^qkuqk&

d3rk d3pk

~2p!3 (
mk

3 )
l5N11

A5N1Z 1

^qluql&

d3rl d3pl

~2p!3 (
ml

. (154)

Once the resolution of unity is given in terms of
model states, the partition function can be evaluated.
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It is interesting to note that the norm ^QuQ& in the
measure cancels with the norm denominator in Eq.
(144). Provided the single-particle states are normalized,
^qkuqk&51, and Ĥ does not depend on the spins, the
partition function looks almost classical,

Z~T !5
2N

~2p!3N E d3r1 d3p1 d3r2 d3p2¯d3rN d3pN

3^Quexp$2Ĥ/T%uQ& , (155)

except that there is an operator in the exponent. Equa-
tion (155) is still the exact quantum expression. There is
no contradiction between the fact that the Hamiltonian
may have a discrete energy spectrum with gaps between
the levels and the fact that the parameters rWk and pW k are
integrated in a continuous fashion (Schnack, 1999). Only
if the expectation value is moved up into the exponent
do things go wrong. The Pauli exclusion principle is fully
taken care of by the antisymmetric state uQ&. If two
particles with equal spin are at the same point in phase
space, uQ&50 and hence ^Quexp$2Ĥ/T%uQ&50, so that
forbidden states do not contribute to the partition
function.

2. Example for many fermions

The above considerations can be illustrated by the ex-
ample of N identical fermions in a common single-
particle potential. Starting from the Hamilton operator

Ĥ5(
l51

N

ĥ~ l !, ĥ~ l !5
kŴ 2~ l !

2m
1v„xŴ ~ l !…, (156)

one can derive the mean energy of the N-fermion sys-
tem from the partition function Z(T), Eq. (143), as the
derivative with respect to T
^^Ĥ&& uT5T2
]

]T
ln„Z~T !…5

*dm~Q !W~T !(m ,n
N Onm~T !FT2

]

]T
^qmuexp$2ĥ/T%uqn&G

*dm~Q !W~T !
, (157)
where the two abbreviations W(T) and O 21(T) are in-
troduced as

W~T ![
^Quexp$2Ĥ/T%uQ&

^QuQ&

5
det~^qkuexp$2ĥ/T%uql&!

det~^qkuql&!
(158)

and

~O 21~T !!kl5^qkuexp$2ĥ/T%uql&. (159)

For free motion, i.e., v(xŴ )50, the matrix elements (159)
are given by
^qkuexpH 2
kŴ 2

2mT
J uql&5S 2pak* al

ak* 1al1
1

mT
D 3/2

3expH 2
~bW k* 2bW l!

2

2S ak* 1al1
1

mT D J .

(160)

For the special case of the three-dimensional harmonic

oscillator, i.e., v(xŴ )5 1
2 mv2xŴ 2, the matrix elements can

easily be calculated if one sets all ak5a051/(mv)
(Schnack, 1996):
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^qkuexpH 2
ĥHO

T J uql&5S p

mv D 3/2

expH 2
mv

4
~bW k* 2bW l!

2

2
mv

2
bW k* bW l~12e2 v/T!2

3v

2TJ .

(161)

For other potentials, the matrix elements (159) assume a
more complicated form.

Figure 7 shows the result of a Metropolis integration
(Metropolis et al., 1953) over rWk and pW k of Eq. (157) for
a system of four identical fermions with equal spins in a
harmonic oscillator (open circles). The solid line dis-
plays the results when the traces are calculated by dis-
crete sums over eigenstates of the many-body Hamilton
operator ĤHO (Schmidt and Schnack, 1998). For com-
parison, the classical dependence is shown as a dotted
line. The dashed line represents the result for the quan-
tum Boltzmann case for distinguishable particles, where
the trial state in Eq. (155) is a direct product of single-
particle states. In both quantum cases the specific heat is
vanishing at T50 because of the finite energy gap be-
tween the ground state and the first excited state.

As expected from the general argument that traces
are independent of the representation, provided one
uses a complete set, the numerical Metropolis integra-
tion with a sampling of 106 points in the 24-dimensional
phase space of the continuous parameters rWk ,pW k , which
specify the Slater determinants uQ&, gives the same re-
sult as summing over eigenstates of the many-body
Hamiltonian. The continuous integration is not in con-
tradiction with Fermi statistics or the discrete spectrum
of the Hamiltonian, and the classical-looking Eq. (155)
is fully quantal.

3. Resumé

(1) The thermostatic properties of a model ought to be
correct if the set of model states uQ& is complete,
i.e., able to span the many-particle Hilbert space.

(2) In FMD and AMD, the antisymmetric many-body
states of single-particle Gaussian wave packets form

FIG. 7. Excitation energy as a function of temperature: s ,
calculated with antisymmetrized Gaussian states; solid line,
calculated with eigenfunctions of the harmonic oscillator; dot-
ted line, the classical result E* /N53T ; dashed line, the result
of quantum Boltzmann statistics.
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an overcomplete set and provide a full representa-
tion for the unit operator.

B. Thermodynamics

In molecular dynamics, the time evolution as given by
the time-dependent variational principle, without a col-
lision term or quantum branching, is deterministic.
Given a state uQ(t0)& at an initial time t0 , the system is
described by the pure state uQ(t)& at all earlier and later
times. Therefore, as in the exact solution of the Schrö-
dinger equation, thermal properties have to be obtained
by coarse graining or time averaging.

In this section time averaging is compared with the
canonical statistical ensemble for a fermion system. If
the system is ergodic, both are equivalent and equilib-
rium properties can be evaluated by molecular-dynamics
simulations. For this, the ergodic ensemble is defined by
the statistical operator R̂erg as

R̂ergª lim
t2→`

1

~ t22t1!
E

t1

t2
dt

uQ~ t !&^Q~ t !u
^Q~ t !uQ~ t !&

. (162)

Hence the ergodic mean of an operator B̂ is given by

^B̂& u^Ĥ&ªTr~R̂erg B̂ !

5 lim
t2→`

1

~ t22t1!
E

t1

t2
dt

^Q~ t !uB̂uQ~ t !&

^Q~ t !uQ~ t !&
. (163)

If the ergodic assumption is fulfilled, the statistical op-
erator R̂erg should depend only on ^Ĥ&, which is actually
a constant of motion. Therefore the notation with the
condition ‘‘^Ĥ&’’ in Eq. (163) is used.

Expectation values are well defined with Eq. (163) so
that one can easily calculate extensive quantities like the
excitation energy. But it is not obvious how an intensive
thermodynamic quantity such as temperature might be
extracted from deterministic molecular dynamics with
wave packets.

In classical mechanics with momentum-independent
interactions the partition function

Zclassical~T !5E )
k51

N d3rk d3pk

~2p!3

3expH 2
1
T

Hclassical~rW1 ,pW 1 , . . . !J
5 )

k51

N E d3pk expH 2
1
T

pW k
2

2mk
J

3E )
l51

N d3rl

~2p!3 expH 2
1
T

V~rW1 ,rW2 , . . . !J
(164)

is a product of a term with the kinetic energy and a term
containing the interactions. Therefore a fit of the mo-
mentum distribution with a Boltzmann distribution, or
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the equipartition theorem, can be used to determine the
temperature T . For example, in simple formulations of
the Nosé-Hoover thermostat (Hoover, 1985; Kusnezov
et al., 1990; Nosé, 1991) the equipartition theorem serves
as a basic ingredient.

In the quantum case, Eq. (144) has to be employed,
which does not show this factorization. For an interact-
ing finite system one cannot, in analogy to the Boltz-
mann case, fit a Fermi function to the momentum distri-
bution to determine the temperature. An example is the
ground state of a nucleus for which the momentum dis-
tribution has a smeared-out Fermi edge due to the finite
size and the two-body interaction and not because of
temperature.

1. Ergodic ensemble of fermions in a harmonic oscillator

In this section the ideal gas of fermions in a common
one-dimensional harmonic-oscillator potential is used
for demonstration. The Hamiltonian ĤHO is written in
second quantization with the fermion creation operator
ĉn

1 (which creates a fermion in the nth single-particle
eigenstate of ĥHO) as

ĤHO5(
l51

N

ĥHO~ l !5(
l51

N S kŴ 2~ l !

2m
1 1

2 mv2xŴ 2~ l !D
5v (

n50

`

~n1 1
2 !ĉn

1ĉn , (165)

and the trial state uQ(t)& describes four fermions with
equal spins. To test the fermionic nature of the dynami-
cal evolution, the ergodic ensemble averages of the oc-
cupation numbers, ^ ĉn

1ĉn& u^Ĥ& [see Eq. (163)] are evalu-
ated and compared with ^^ ĉn

1ĉn&& uT of the canonical
ensemble as discussed in the previous section.

The occupation numbers, which range from 0 to 1 for
fermions, are chosen on purpose to make clear from the
beginning that the equations of motion for the param-
eters Q(t)5$rW1(t),pW 1(t),.. .%, as given by Eq. (22),
might be generalized Hamilton equations, but the ob-
servables always have to be calculated with the quantum
state uQ(t)&. If rWk(t) and pW k(t) were taken as the par-
ticle coordinates in a classical picture, the question of
what was the mean occupation number of the nth eigen-
state of the harmonic oscillator could not even be posed.

As pointed out already, in fermionic molecular dy-
namics the time evolution of Gaussian wave packets in a
common oscillator is exact, and thus the occupation
probabilities of the eigenstates of the Hamilton operator
do not change over time. In order to equilibrate the sys-
tem, a repulsive short-range two-body interaction is in-
troduced. The strength of the interaction is chosen to be
weak enough that the ideal-gas picture is still approxi-
mately valid.

In the initial state uQ(t0)&, which is far from equilib-
rium, three wave packets with a width of a(t0)
51/(mv) are put close to the origin at x(t0)
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5(2d,0,d) with d50.5/Amv , while the fourth packet is
pulled away from the center.

Figure 8 gives an impression of the chaotic time de-
pendence of ^Q(t)u ĉn

1ĉnuQ(t)& for n50, 3, and 6.
The result of time averaging is seen in Fig. 9 for four

different initial displacements that correspond to four
different excitation energies of the fermion system. To
each case we assign a canonical ensemble that
has the same mean energy, i.e., E* 5^ĤHO2E0& u^Ĥ&

5^^ĤHO2E0&& uT . The solid lines in Fig. 9 show the cor-
responding distributions of occupation probabilities for
these canonical ensembles. Their temperatures T are
also given in the figure. The one-to-one correspondence
between the occupation probabilities of the ergodic en-
semble and those of the canonical ensemble, which has
the same mean energy ^Ĥ& as the pure state, demon-
strates that the system is ergodic and that the fermion
molecular-dynamics trajectory covers the many-body
phase space according to Fermi-Dirac statistics.

This result is not trivial because, first, the system is
very small, consisting of only four particles, and second,
the equations of motion are approximated by FMD.

2. Trial states with fixed-width

As already explained in Sec. V.A, both types of trial
states—those with dynamic and those with fixed

FIG. 8. Occupation probabilities vs time: d , n50; l , n53;
m , n56.

FIG. 9. Comparison of occupation probabilities: symbols, cal-
culated in the ergodic ensemble ^ c̃n

1c̃n& u^Ĥ& ; solid line, calcu-
lated with the canonical ensemble ^^ c̃n

1c̃n&& uT .
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widths—span the whole Hilbert space and thus their
thermostatic properties are the same. Reducing the de-
grees of freedom by keeping all width parameters at a
fixed value a0 , however, leads to a different dynamical
behavior, as discussed in Sec. III.A. The equations of
motion are no longer exact solutions for the case of free
motion. In a common oscillator, the exact solution is
obtained only if all al51/(mv) because dal /dt is zero in
that special case; see Sec. IV.A.3. If the width has a
different value, spurious scattering occurs as in the case
of free motion whenever two particles come too close in
phase space.

Figure 10(a) displays the result of the time evolution
for the very same system as in the previous section but
without the randomizing two-body interaction. If the
widths are chosen to be al51/(mv), the resulting exact
time evolution is just a unitary transformation in the
one-body space and the occupation probabilities are sta-
tionary (circles). But if the widths are taken as al
51.2/(mv), the occupation probabilities change in time
and the spurious scatterings equilibrate the system even
without an interaction. Figure 10(b) shows the mean oc-
cupation probabilities when the interaction is switched
on (triangles). Clearly, the nature of the randomizing
force is not relevant; it may even be a spurious force that
originates from too-restricted a trial state.

In antisymmetrized molecular dynamics (Ono et al.,
1992a, 1992b) trial states with time-independent widths
are used, and as expected from the above simple ex-
ample, the thermodynamic properties of the model com-
ply with Fermi-Dirac statistics. It would be interesting to
see how collision terms and branching influence the dy-
namical statistical properties of AMD. Since the Pauli
blocking prescription is consistent with the AMD state,
we expect a faster equilibration due to additional ran-
domization.

3. Canonical and ergodic ensemble for distinguishable
particles

To complete the discussion in this section, we replace
the fermions by distinguishable particles, i.e., the anti-
symmetrized many-body state is replaced by a product
state of Gaussian wave packets. In this case the relation
between temperature T and excitation energy E* /N is
known and given by E* /N5 1

2 v@coth„v/(2T)…21# .

FIG. 10. Comparison of occupation probabilities: s , n , cal-
culated in the ergodic ensemble using trial states with fixed
widths; solid line, calculated in the canonical ensemble. (a)
without interaction: s , al51/(mv); n , al51.2/(mv); (b)
with interaction and al51.2/(mv).
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The ergodic ensemble is again investigated at differ-
ent energies and compared with the corresponding ca-
nonical ensembles with the same mean energies
(Schnack and Feldmeier, 1996; Feldmeier and Schnack,
1997). For this case, also, the time evolution of the sys-
tem exhibits ergodic behavior at all excitation energies.
As an example, Fig. 11 shows the case of E* /N
52.05 MeV (which corresponds to T55 MeV) after a
time averaging of about 2000 periods. The ergodic en-
semble (triangles) and the Boltzmann canonical en-
semble (solid line) are the same within the size of the
symbols. This means that the ergodic ensemble is again
equivalent to the quantum canonical ensemble and not
to the classical one, because one is still in the quantal
regime for E* /N52.05 MeV and T55 MeV according
to the relation given above. The classical relation
E* /N5T for a one-dimensional oscillator holds only for
E* /N@v (here v58 MeV).

However, since distinguishable particles are not af-
fected by the Pauli exclusion principle, the occupation
numbers for the many-body ground state look quite dif-
ferent from those of the Fermi-Dirac distribution at the
same temperature (dotted line in Fig. 11).

4. Resumé

When discussing statistical properties of molecular dy-
namics with Gaussian wave packets (coherent states),
one should always keep in mind that any observable or
statistical weight has to be calculated with the trial state
according to quantum mechanics. One should not fall
into a completely classical approach, misled by the ‘‘clas-
sical’’ appearance of equations of motion or phase-space
integrals, which is due to the representation of the co-
herent states in terms of rWk and pW k .

Statistical properties of molecular dynamics for fermi-
ons can be deduced from simulations of equilibrium
situations, but because of quantum effects, a measure
for intensive quantities like temperature is not readily
available.

FIG. 11. Mean occupation numbers for a product state (Boltz-
mann statistics): n , ergodic ensemble; solid line, canonical en-
semble, both for an excitation energy of E* /N52.05 MeV,
which corresponds to a temperature T55 MeV in the canoni-
cal ensemble; dotted line, the result for Fermi-Dirac statistics
at the same temperature.
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C. Thermal properties of interacting systems by time
averaging

In the previous section only noninteracting or weakly
interacting systems were considered, for which partition
functions can often be calculated because the Hamilton
operator is a one-body operator. If the interaction be-
tween the particles is strong enough, for example, if it is
attractive enough to form self-bound many-body sys-
tems, the ideal-gas picture is no longer valid and solid
and liquid phases appear in addition to the vapor phase.
Here the partition function Z(T) can no longer be
evaluated analytically because this would amount to
solving the full interacting many-body problem ĤuCn&
5EnuCn& in the desired range of energies.

Take, for example, a fermion system in a large spheri-
cal container with repulsive walls. At zero temperature,
the lowest eigenstate uCn51& describes a self-bound sys-
tem, or liquid drop, in its internal ground state located at
the center of the container. With increasing energies,
not only do internal excitations and c.m. motion of this
drop occur, but there is also the possibility of having two
or more bound objects which are separated from each
other and surrounded by vapor. These drops can be in
different states of excitation with various c.m. energies
and vapor energies, all adding up to the total eigenen-
ergy En . This means that the quantum number n enu-
merates not only the excited eigenstates but also the
c.m. degrees of freedom, the partition into different
drops, and the fermion vapor state. The number of
eigenstates in an energy interval increases rapidly with
excitation energy.

In principle, one can deduce all thermodynamic prop-
erties from the level density, but it is obvious that for
those complex and highly correlated states uCn& it is im-
possible to solve the eigenvalue problem either analyti-
cally or numerically. Therefore one tries to simulate cor-
related many-body systems by means of molecular
dynamics (which describes the time evolution in an ap-
proximate way) and replace the ensemble average with
a time average.

1. Fermionic molecular dynamics—the nuclear caloric curve

As discussed in Sec. V.B, even a small system with
only a few particles in a harmonic-oscillator potential is
ergodic. So one can use one such a system, for which the
relation between excitation energy and temperature is
known, as a thermometer to determine the temperature
of another system. This idea has been used in FMD
simulations of phase transitions in nuclei where the ideal
Fermi-gas picture does not apply because the nucleons
are interacting through strong two-body forces. The cou-
pling to a thermometer is necessary because the tem-
perature cannot be determined from the momentum dis-
tribution (Schnack and Feldmeier, 1997). In an
interacting small fermion system, the Fermi edge is
broadened not only because of temperature but also be-
cause of the finite size of the system and two-body cor-
relations.
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A thermostat (large heat bath coupled to the system)
is not advisable because phase transitions in small sys-
tems are recognized best in a microcanonical situation
where the energy distribution is within a narrow energy
range and variations of the level density r(E), which
indicate a phase transition, are not blurred by the
Boltzmann factor e2E/T of the canonical ensemble.

The thermometer consists of a quantum system of dis-
tinguishable particles that move in a common harmonic-
oscillator potential and interact with the nucleons. The
nucleus itself is confined by a wide harmonic-oscillator
potential that serves as a containment. This is an impor-
tant part of the setup because it keeps the evaporated
nucleons (vapor) in the vicinity of the remaining liquid
drop so that equilibration with the surrounding vapor
can take place. The coupling between nucleons and ther-
mometer particles is chosen to be weak, repulsive, and
of short range. It has to be as weak as possible in order
to avoid influencing the nuclear system too much. On
the other hand, it has to be strong enough to allow for
reasonable equilibration times.

The determination of the relation between excitation
energy E* and temperature T (caloric curve) is done by
time-averaging the energy of both the nucleonic system
and the thermometer over a long period according to
Eq. (163). The time-averaged energy of the thermom-
eter Eth determines the temperature T through the
known relation Eth /Nth5 3

2 v th coth„v th/(2T)… for an
ideal gas of distinguishable particles in a common
harmonic-oscillator potential with frequency v th (quan-
tum Boltzmann statistics).

The resulting caloric curves for the nuclei 24Mg, 27Al,
and 40Ca are displayed in Fig. 12(a). All caloric curves
clearly exhibit three different parts. Beginning at small
excitation energies, the temperature rises steeply with
increasing energy, as expected for a Fermi gas in the
shell model. There the nucleons remain bound in the
excited nucleus, which behaves like a drop of liquid. At
an excitation energy of 3 MeV per nucleon, the curve
flattens and stays almost constant up to about 11 MeV.
This plateau at T'5 –6 MeV marks the coexistence
phase where, at low excitation energy, one big drop is

FIG. 12. Caloric curves: (a) of 24Mg, 27Al, and 40Ca at \v
51 MeV, from Schnack and Feldmeier, 1997; (b) as deter-
mined by the ALADIN group from the decay of spectator
nuclei, from Pochodzalla et al., 1995.
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surrounded with low-density vapor. With increasing en-
ergy, the drop dissolves more and more into vapor until
all nucleons are unbound and the system has reached
the vapor phase. The latent heat is hence about 8 MeV
at a pressure that is estimated to be close to zero.

The caloric curve shown in Fig. 12(a) is strikingly
similar to the caloric curve determined experimentally
from the fragmentation of colliding nuclei by the
ALADIN group (Pochodzalla et al., 1995; Pochodzalla,
1997). Their results are displayed in Fig. 12(b). The po-
sition and the extension of the plateau agree quite well
with the FMD calculation. Nevertheless, there are im-
portant differences between the experimental setup and
the one used in the simulations. For further details, see
Pochodzalla (1997) and Schnack and Feldmeier (1997).

2. Phase transitions of hydrogen plasma

Hydrogen plasma under extreme conditions—high
temperature or pressure—is of great current interest,
since it reveals new structural, dynamical and electronic
properties like orientational ordering, pressure-induced
metallization and changes in the vibronic spectra (Hem-
ley and Mao, 1992; Klakow et al., 1994a, 1994b; Knaup
et al., 1999).

One model employed in this context is called wave-
packet molecular dynamics. It uses Gaussian packets
with time-dependent widths and a Pauli potential de-
rived from the antisymmetrization of pairs of nucleons;
see Sec. IV.C and Klakow et al. (1994a, 1994b). Here
256 protons and 256 electrons are distributed in a cubic
box with periodic continuation in all directions. Since
the protons are classical, their temperature is simply
given by their kinetic energy via the equipartition theo-
rem.

The equations of motion are followed over 6
310214 s. One observable that is sampled over this time
period is the proton-pair distribution function gpp(r),
which is related to the probability of finding two par-
ticles at the distance r . The proton-pair distribution re-
veals details about the binding and short-range correla-
tions in the system. In Fig. 13, the pair distribution
function gpp(r) is plotted for two temperatures. The
peak at r51.3 a.u. signals that the protons are bound in
H2 molecules. The authors find that due to medium ef-
fects, this bond length is shifted to a smaller value com-
pared to the free one, which is r51.47 a.u. in their
model. At T5300 K, pronounced peaks can be seen
around r54 a.u. which indicate a solid structure of the
H2 molecules. The fact that these peaks are smoother at
the higher temperature is interpreted as a signal that the
system is now in the liquid phase.

The authors also find that wave-packet molecular dy-
namics is very efficient for the discussed problem and
faster than the Car-Parrinello method (Car and Par-
rinello, 1985) while providing comparable results (Kla-
kow et al., 1994a, 1994b).
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
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Knoll, W. Nörenburg, and J. Wambach (Gesellschaft für
Schwerionenforschung, Darmstadt), p. 283.

Neuman, J.J., and G. Fai, 1994, ‘‘Classical Lagrangian model of
the Pauli principle,’’ Phys. Lett. B 329, 419.

Niita, K., S. Chiba, T. Maruyama, T. Maruyama, H. Takada, T.
Fukahori, Y. Nakahara, and A. Iwamoto, 1995, ‘‘Analysis of
the (N3N8) reactions by quantum molecular dynamics plus
statistical model,’’ Phys. Rev. C 52, 2620.
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