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The real part of «8/« measures direct CP violation in the decays of neutral kaons into two pions. This
is a fundamental quantity that has justly attracted a great deal of theoretical as well as experimental
work. Determination of its value may answer the question of whether CP violation is present only in
the mass matrix of neutral kaons (the superweak scenario) or whether it is also at work directly in the
decay amplitudes. After a brief historical summary, the present and expected experimental
sensitivities are discussed. In light of these, the authors address the problem of estimating «8/« in the
standard model and review the status of the theoretical predictions of «8/« as of the beginning of 1999.
The short-distance part of the computation is now known to the next-to-leading order in QCD and
QED and is therefore well under control. On the other hand, the evaluation of the hadronic matrix
elements of the relevant operators is where most of the theoretical uncertainty still resides. The
authors analyze the results of the most extensive calculations to date. The values of the
matrix-element parameters in the various approaches are discussed, together with the allowed range
of quark mixing angles in the Cabibbo-Kobayashi-Maskawa matrix. All recent predictions of «8/« are
summarized and compared. Because of the intrinsic uncertainties of the long-distance computations,
values ranging from 1024 to a few times 1023 can be accounted for in the standard model. Since this
range covers most of the present experimental uncertainty, it is unlikely that new-physics effects can
be disentangled from the standard-model prediction.
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I. WHAT «8/« IS AND WHY IT IS IMPORTANT TO KNOW
ITS VALUE

A CP transformation consists of a parity (P) flip fol-
lowed by charge conjugation (C). It was promoted
(Landau, 1957) to a symmetry of nature after parity was
shown to be maximally violated in weak interactions
(Wu et al., 1957).

Until 1963 CP symmetry was thought to be exactly
conserved in all physical processes. That year, J. M.
Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay
(1964) announced the surprising result that CP symme-
try was indeed violated in hadronic decays of neutral
kaons.

In order to interpret the experimental evidence we
must consider the strong Hamiltonian eigenstate K0 and
its CP conjugate K̄0 as an admixture of the physical
short-lived KS component—which decays predomi-
nantly into two pions—and the physical long-lived KL
component—which decays predominantly semileptoni-
cally into three pions.

The two- and three-pion final states are, respectively,
even and odd under a CP transformation. Therefore, in
the absence of CP-violating interactions, we would ex-
pect the KS ,L mass eigenstates to coincide with the
states

K15~K01K̄0!/& ,

K25~K02K̄0!/& , (1.1)

which exhibit a definite CP parity, even and odd, re-
spectively (we choose CPuK0& 5u K̄0&).
650/72(1)/65(29)/$20.80 ©2000 The American Physical Society
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What was observed in 1963 was that KL also decays a
few times in a thousand into a two-pion final state, and
accordingly the CP symmetry is not exact.

The violation of CP in KS ,L decays can proceed di-
rectly in the decays of the CP eigenstates and/or indi-
rectly, via a mismatch between the CP eigenstates K1,2

0

and the weak mass eigenstates KS ,L introduced by a
CP-violating impurity in K̄0-K0 mixing. Both effects are
usually parametrized in terms of the ratios

h00[
^p0p0uLWuKL&

^p0p0uLWuKS&
(1.2)

and

h12[
^p1p2uLWuKL&

^p1p2uLWuKS&
, (1.3)

where LW represents the DS51 weak Lagrangian.
Equations (1.2) and (1.3) can be written as

h005«2
2«8

12v&
.«22«8,

h125«1
«8

11v/&
.«1«8, (1.4)

where the complex parameters « and «8 parametrize in-
direct (via K1-K2 mixing) and direct (in the K1 and K2
decays) CP violation, respectively. The KS ,L eigenstates
are given by

KS5
K11 «̄K2

A11u«̄u2
,

KL5
K21 «̄K1

A11u«̄u2
, (1.5)

where «̄ is a (complex) parameter of order 1023 that
depends on the chosen CP phase convention. The
K1-K2 mixing parameter «̄ is simply related to the ob-
servable parameter « in Eq. (1.4) [see Eq. (1.15) below].
The parameter v measures the ratio

uvu[U ^~pp!(I52)uLWuKS&

^~pp!(I50)uLWuKS&
U.1/22.2, (1.6)

where I51 and 2 stand for the isospin states of the final
pions. For notational convenience, in the following we
identify v with its absolute value. The smallness of the
experimental value of v given by Eq. (1.6) is known as
the DI51/2 selection rule of K→pp decays (Gell-Mann
and Pais, 1955).

In terms of the KS ,L decay amplitudes, the
CP-violating parameters « and «8 are given by

«5
^~pp!(I50)uLWuKL&

^~pp!(I50)uLWuKS&
(1.7)

and
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«85
«

&
H ^~pp!I52uLWuKL&

^~pp!I50uLWuKL&
2

^~pp!I52uLWuKS&

^~pp!I50uLWuKS& J . (1.8)

From Eqs. (1.5)–(1.8) one sees that direct CP violation
arises due to the relative misalignment of the KS and KL
I50,2 amplitudes, and it is suppressed by the DI51/2
selection rule.

According to the Watson theorem (Watson, 1952), we
can write the generic amplitudes for K0 and K̄0 to decay
into two pions as

^~pp!(I)uL WuK0&52iAI exp~ idI!,

^~pp!(I)uL WuK̄0&52iAI* exp~ idI!, (1.9)

where the phases dI arise from the pion final-state inter-
actions. Using Eq. (1.9) and the approximations

u«̄uIm A0!Re A0 , u«̄u2!1, (1.10)

we can write the «8 parameter in Eq. (1.8) as

«85ei(p/21d22d0)
v

&
S Im A2

Re A2
2

Im A0

Re A0
D , (1.11)

where the parameter v can be written as

v5
Re A2

Re A0
. (1.12)

By decomposing the DS52 weak Lagrangian for the
K̄0-K0 system into a dispersive and an absorptive com-
ponent as M2iG/2, where M and G are 232 Hermitian
matrices (CPT symmetry is assumed), one obtains for «
the expression

«5sin ueeiueS Im M12

DMLS
1

Im A0

Re A0
D , (1.13)

where DMLS is the mass difference of the KL-KS mass
eigenstates, M12 is the K1-K2 entry in the mass matrix,
and

ue5tan21~2DMLS /DGSL!.p/4. (1.14)

In obtaining Eq. (1.13), in addition to the approxima-
tions of Eq. (1.10), we have used the experimental ob-
servations that DMLS.GS/2 and GL!GS . With the
above approximations one also obtains a simple relation
between the observable parameter « and the phase-
convention-dependent parameter «̄ ,

«5 «̄1i
Im A0

Re A0
. (1.15)

For detailed discussions on the role and implications of
the phase conventions we refer the reader to the reviews
of Chau (1983), Nir (1992), and de Rafael (1994).

It is useful to bear in mind that the real and imaginary
parts of A0,2 are always taken with respect to the
CP-violating phase and not the final-state strong-
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interaction phases that have already been extracted in
Eq. (1.9). A simpler form of Eq. (1.11), in which Im A0
50, is found in those papers that follow the Wu-Yang
phase convention. In this case «5 «̄ .

In the standard model, «8 can be in principle different
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
from zero because the 333 Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements Vij , which appear in
the weak charged currents of the quark mass eigenstate,
can in general be complex (Kobayashi and Maskawa,
1973):
S Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

D 'S 12l2/2 l Al3~r2ih!

2l2iA2l5h 12l2/2 Al2

Al3~12r2ih! 2Al2~11il2h! 1
D . (1.16)
In Eq. (1.16) we have used the Wolfenstein parametri-
zation in terms of l, A , h, and r and retained all imagi-
nary terms for which unitarity is achieved up to O(l5),
with l5uVusu.0.22. On the other hand, in other models
like the superweak theory (Wolfenstein, 1964), the only
source of CP violation resides in the K0-K̄0 oscillation,
and «8 vanishes. It is therefore of great importance to
establish the experimental value of «8 and discuss theo-
retical predictions of its value within the standard model
and beyond.

A. A brief history

The presence in nature of indirect CP violation is an
experimentally well-established result (Barnett et al.,
1996),

u«u5~2.26660.017!31023, (1.17)

which can be understood both qualitatively and quanti-
tatively in the framework of the standard model of elec-
troweak interactions with three generations of quarks.
On the other hand, 35 years after the discovery of Chris-
tenson et al. (1964) there is still no conclusive experi-
mental evidence for a nonvanishing «8.

The ratio «8/« is measured from

U h12

h00
U2

.116 Re
«8

«
. (1.18)

As discussed above, a nonvanishing «8/« gives the ex-
perimental evidence for direct CP violation. Due to the
accuracy in the counting of KL ,S decays required by the
expected smallness of u«8/«u in the standard model its
detection represents a hard experimental challenge.

As shown in Fig. 1, the experimental error in the de-
termination of this quantity has been dramatically re-
duced over the years from 1022 in the 1970s (Banner
et al., 1972; Holder et al., 1972; Christenson et al., 1979a,
1979b) to 3.531023 in 1985 (Bernstein et al., 1985; Black
et al., 1985) and to roughly 731024 in the last run of
experiments in 1992 at CERN and FNAL, which ob-
tained, respectively (Barr et al., 1993; Gibbons et al.,
1997),

Re «8/«5~2363.665.4!31024 (NA31), (1.19)

Re «8/«5~7.465.262.9!31024 (E731), (1.20)
where the first error is statistical and the second one
systematic. As the reader can see, the agreement be-
tween the two experiments is within two standard devia-
tions. Moreover, only the CERN result is definitely dif-
ferent from zero.

Before the end of 1999 the new FNAL (E832-KTeV;
O’Dell, 1997) and CERN (NA48; Holder, 1997) experi-
ments should provide data with a precision of (1 –2)
31024 and hopefully settle the issue of whether «8/« is
or is not zero. Results of the same precision should also
be achieved at DAFNE (KLOE; Patera, 1997), the
Frascati F factory. For a detailed account of the experi-
mental setups and a critical discussion of the issues in-
volved see the review article by Winstein and Wolfen-
stein (1993).

From the theoretical point of view, predictions of the
value of «8/« have gone through almost twenty years of
increasingly accurate analyses. By the end of the 1970s,
it had been recognized that, within the standard model
with three generations of quarks, direct CP violation is
natural and therefore the model itself is distinguishable
from the superweak model. This understanding was the
result of intensive work leading to the identification of
the dominant operators responsible for the transition,
the so-called penguin operators, and the role played by
QCD in their generation (Vainshtein et al., 1975, 1977).
Typical estimates during this period gave «8/«

FIG. 1. Twenty-five years of experiments on «8/« (in units of
1023). The last mark on the right, at the average central value
of the 1992-1993 experiments, shows the experimental preci-
sion expected in the forthcoming years.
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;1023 –1022 (Ellis et al., 1976, 1977; Gilman and Wise,
1979a, 1979b).

The next step came in the 1980s as the gluon penguin
operators above were joined by the electromagnetic op-
erators together with other isospin-breaking corrections
(Bijnens and Wise, 1984; Donoghue et al., 1986; Buras
and Gerard, 1987; Lusignoli, 1989). It was then recog-
nized that these contributions tended to make «8 smaller
because they had the opposite sign to the gluonic pen-
guin contributions. This part of the computation became
particularly critical when by the end of the decade it was
realized that the increasingly large mass of the t quark
would lead to an increasingly large contribution of the
electroweak penguins (Flynn and Randall, 1989;
Buchalla et al., 1990; Paschos and Wu, 1991; Lusignoli
et al., 1992). This meant a potentially vanishing value for
«8/« because of the destructive interference between the
two contributions.

By the 1990s the entire subject was mature enough for
a systematic exploration as the short-distance part was
brought under control by the next-to-leading-order
(NLO) determination of the Wilson coefficients of all
relevant operators (Buras et al., 1992; Buras, Jamin, and
Lautenbacher, 1993a, 1993b; Buras, Jamin, Lauten-
bacher, and Weisz, 1993; Ciuchini et al., 1993, 1994).
This theoretical achievement, together with the discov-
ery of the t quark [and the determination of its mass
(Barnett et al., 1996)], removed two of the largest
sources of uncertainty in the prediction. At the same
time, independent efforts were brought to bear on the
matrix-elements estimate. All combined improvements
made possible the current predictions of the value of
«8/« within the standard model (Heinrich et al., 1992;
Paschos, 1996; Buras, Jamin and Lautenbacher, 1993b;
Buras et al., 1996; Ciuchini et al., 1993, 1995; Bertolini
et al., 1996, 1998b; Ciuchini, 1997) that we are to going
to review.

B. Outline

The analysis of «8/« can be divided into a short-
distance (perturbative) part and a long-distance (mainly
nonperturbative) part. As already mentioned, the short-
distance part is by now known at the NLO level and is
therefore under control. This part of the computation is
briefly reviewed in the next section. The long-distance
component has been studied by a variety of
approaches—lattice QCD, phenomenological estimates,
and QCD-like models—all of which are eventually com-
bined with chiral perturbation theory. As the long-
distance part is the most uncertain, we shall spend most
of the review on that issue. Sections II and III set the
common ground on which all approaches are based. Sec-
tion IV reviews the various determinations of the had-
ronic matrix elements. After a brief detour, in Sec. V, to
determine the relevant CKM matrix elements, in Secs.
VI and VII we bring all elements together to discuss
some simple models. We then summarize the current
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
theoretical predictions in the standard model and com-
ment on the issue of new physics.

For a broader view on CP violation that complements
the present review, especially in the attention to the ex-
perimental issues, the reader is encouraged to consult
the article of Winstein and Wolfenstein (1993) previ-
ously published in this journal.

II. THE QUARK EFFECTIVE LAGRANGIAN AND THE
NEXT-TO-LEADING ORDER WILSON COEFFICIENTS

The study of kaon decays within the standard model is
made complicated by the huge scale differences in-
volved. Energies as far apart as the mass of the t quark
and the mass of the pion must be included. The most
satisfactory framework for dealing with physical systems
defined across different energy scales is that of effective
theories (Weinberg, 1980; Georgi, 1984). The transition
amplitudes of an effective theory are assumed to be fac-
torizable into high- and low-energy parts. The degrees of
freedom at the higher scales are step-by-step integrated
out, retaining only the effective operators made of the
lighter degrees of freedom. The short-distance physics,
obtained from integrating out the heavy scales, is en-
coded in the Wilson coefficients that multiply the effec-
tive operators. Their evolution with the energy scale is
described by the renormalization-group equations (Wil-
son, 1971).

Figure 2 shows the typical diagrams that in the stan-
dard model generate the operators of the effective DS
51 Lagrangian.

The DS51 quark effective Lagrangian at a scale m
,mc can be written (Shifman et al., 1977; Gilman and
Wise, 1979a, 1979b; Bijnens and Wise, 1984; Lusignoli,
1989) as

LW52(
i

Ci~m!Qi~m!, (2.1)

FIG. 2. Standard-model contributions to the matching of the
quark operators in the effective flavor-changing Lagrangian.
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where

Ci~m!5
GF

&
VudVus* @zi~m!1tyi~m!# . (2.2)

Here GF is the Fermi coupling, the functions zi(m) and
yi(m) are the Wilson coefficients, and Vij the CKM ma-
trix elements; t52VtdVts* /VudVus* . According to the
standard parametrization of the CKM matrix, in order
to determine «8/« , we need only consider the yi(m)
components, which control the CP-violating part of the
Lagrangian. The coefficients yi(m), and zi(m) contains
all the dependence of short-distance physics, and de-
pend on the t ,W ,b ,c masses, the intrinsic QCD scale
LQCD , and the renormalization scale m.

The Qi are the effective four-quark operators ob-
tained in the standard model by integrating out the vec-
tor bosons and the heavy quarks t , b , and c . A conve-
nient and by now standard basis includes the following
ten operators:

Q15~ s̄aub!V2A~ ūbda!V2A ,

Q25~ s̄u !V2A~ ūd !V2A ,

Q3,55~ s̄d !V2A(
q

~ q̄q !V7A ,

Q4,65~ s̄adb!V2A(
q

~ q̄bqa!V7A ,

Q7,95
3
2

~ s̄d !V2A(
q

êq~ q̄q !V6A ,

Q8,105
3
2

~ s̄adb!V2A(
q

êq~ q̄bqa!V6A , (2.3)

where a, b denote color indices (a ,b51,.. . ,Nc) and êq
are the quark charges ( êu52/3, êd5 ê s521/3). Color
indices for the color-singlet operators are omitted. The
labels (V6A) refer to the Dirac structure gm(16g5).

The various operators originate from different dia-
grams of the fundamental theory. First, at the tree level,
we have only the current-current operator Q2 induced
by W exchange. Switching on QCD, a one-loop correc-
tion to the W exchange [like that in Figs. 2(b) and 2(c)]
will induce Q1 . Furthermore, QCD through the penguin
loop [Fig. 2(d)] induces the gluon penguin operators
Q326 . The gluon penguin contribution is split into four
components because of the splitting of the gluonic cou-
pling into a right- and a left-handed part and the use of
the SU(Nc) relation

2Tad
a Tgb

a 5dabdgd2
1

Nc
daddgb , (2.4)

where Nc is the number of colors, a51, . . . , Nc
221 and

Ta are the properly normalized SU(Nc) generators, and
TrTaTb51/2dab in the fundamental representation.
Electroweak loop diagrams—where the penguin gluon is
replaced by a photon or a Z boson—and box-like dia-
grams induce Q7,9 as well as a part of Q3 . The operators
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
Q8,10 are induced by the QCD renormalization of the
electroweak loop operators Q7,9 .

Even though the operators in Eq. (2.3) are not all
independent, this basis is of particular interest for any
numerical analysis because it is employed for the calcu-
lation of the Wilson coefficients to the next-to-leading
order in as and ae (Buras et al., 1992; Buras, Jamin, and
Lautenbacher, 1993a, 1993b; Buras, Jamin, Lauten-
bacher, and Weisz, 1993; Ciuchini et al., 1993, 1994) and
we shall use it throughout.

The pie chart in Fig. 3 shows pictorially the relative
importance of the operators in Eq. (2.3) in determining
the final value of «8/« , as obtained in the vacuum satu-
ration approximation to the hadronic matrix elements.
In particular, Fig. 3 shows the crucial competition be-
tween gluonic and electroweak penguins in the determi-
nation of the value of «8/« . Such destructive interfer-
ence might accidentally lead to a vanishing «8/« even in
the presence of a source of direct CP violation. This
feature adds to the theoretical challenge of predicting
«8/« with the required accuracy.

While there exist other possible operators in addition
to those listed in Eq. (2.3), they are numerically irrel-
evant within the standard model, for instance, the two
operators

Q115
gs

8p2 s̄@mdR1msL#s•Gd

and

Q125
e

8p2 s̄@mdR1msL#s•Fd , (2.5)

where R5(11g5)/2 and L5(12g5)/2. These operators
are induced by gluon and photon penguins with a free
gluon (photon) leg. The matrix elements of these opera-
tors give a vanishingly small contribution to K→pp de-
cays (Bertolini et al., 1995, 1998a).

In Table I we summarize the contributions to the vari-
ous Wilson coefficients when the one-loop matching of

FIG. 3. Relative contributions to «8/« of the operators in Eq.
(2.3). Operators giving a negative contribution are depicted in
dark gray and those with a positive contribution in light gray.
All matrix elements are taken in the vacuum saturation
approximation.
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the quark effective Lagrangian is considered with the
full electroweak theory.

Once the operator basis is established, a full two-loop
calculation (up to as

2 and asaem) of the quark-operator
anomalous dimensions is performed. This calculation al-
lows us via renormalization-group methods to evaluate
the Wilson coefficients at the typical scale of the process,
thus resumming (perturbatively) potentially large loga-
rithmic effects to a few tens of percent uncertainty. As
already mentioned, the size of the Wilson coefficients at
the hadronic scale (of the order of 1 GeV) depends on
as and the threshold masses mt , mW , mb , and mc . The
top-quark mass dependence enters in the penguin coef-
ficients yi(m) via the initial matching conditions for the
renormalization-group equations.

Small differences in the short-distance input param-
eters are present in the various treatments in the litera-
ture. In order to give the reader an idea of the ranges
used, we list below some of the values.

The most recent determination of the running strong
coupling in the MS scheme is (Barnett et al., 1996)

as~mZ!50.11960.002, (2.6)

which at the NLO corresponds to

LQCD
(4) 5340640 MeV. (2.7)

For mt we take the value (Tipton, 1997)

mt
pole517566 GeV. (2.8)

Knowledge of the top-quark mass is one important in-
gredient in the reduced uncertainty of the recent esti-
mates of «8/« .

The relation between the pole mass M and the MS
running mass m(m) is given at one loop in QCD by

m~M !5M~q25M2!F12
4
3

as~M !

p G . (2.9)

For the running top-quark mass, in the range of as con-
sidered, we then obtain

mt~mt!.16766 GeV, (2.10)

TABLE I. Contributions to the one-loop matching of the DS
51 Wilson coefficients at m5mW . The notation refers to that
of Eq. (2.1) and Fig. 2. Nonvanishing contributions to C8 and
C10 arise via the QCD renormalization of the operators Q7
and Q9 , respectively.

m5mW C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Tree A

Tree 1 g A A

Tree 1 g A

Pg A A A A

Pg A A

PZ A A A

B A A
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which, using the one-loop running, corresponds to

mt~mW!.17767 GeV, (2.11)

which is the value to be used as input at the mW scale for
the NLO evolution of the Wilson coefficients. In Eq.
(2.11) we have averaged over the range of LQCD

(4) given in
Eq. (2.7).

The use of the running top mass in the initial match-
ing of the Wilson coefficients softens the matching-scale
dependence present in the leading-order analysis. When
one takes m5mt

pole as the starting matching scale in
place of mW , and uses, correspondingly, mt(mt), the
NLO Wilson coefficients of the electroweak and gluon
penguins at m.1 GeV, remain stable up to the 10%
level.

For mb we have the mass range (Barnett et al., 1996)

mb
pole54.5–4.9 GeV, (2.12)

which corresponds to

mb~mb!54.1–4.5 GeV. (2.13)

Analogously, for mc one has

mc
pole51.2–1.9 GeV, (2.14)

which corresponds to

mc~mc!51.0–1.6 GeV, (2.15)

Values within the MS ranges have to be used as the
quark thresholds in evolving the Wilson coefficients
down to the low-energy scale where matching with the
hadronic matrix elements is to be performed.

In choosing the quark mass thresholds one should
bear in mind that varying mb

pole within the given range
affects the final values of the Wilson coefficients only at
the percent level, while varying the charm pole mass
over the whole range given may affect the real part of
the gluon penguin coefficients up to the 20% level. We
shall take mb(mb)54.4 GeV and mc(mc)51.4 GeV.

In Table II we report the numerical values of the
NLO Wilson coefficients relevant for CP violation in
DS51 processes. The coefficients yi(m) are given at the
scale m51 GeV and are dependent on the choice of g5
scheme in dimensional regularization. The values in the
table refer to two commonly used schemes, namely, na-
ive dimensional regularization, in which g5 anticom-
mutes with the Dirac matrices in d dimensions, and the
’t Hooft-Veltman scheme (’t Hooft and Veltman, 1972),
in which they anticommute only in four dimensions. The
latter prescription has been shown to be a consistent
formulation of dimensional regularization in the pres-
ence of chiral couplings (Breitenlohner and Maison,
1977). A consistent calculation of the hadronic matrix
elements should match the unphysical scale and scheme
dependence of the Wilson coefficients so as to produce a
stable amplitude at the given order in perturbation
theory. We shall return to this issue in Sec. IV when
discussing the various approaches to the long-distance
part of the calculation.
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TABLE II. The DS51 NLO Wilson coefficients relevant for CP violation are given at m51.0 GeV for mt(mW)5177 GeV,
which corresponds to mt

pole5175 GeV (a51/128). In addition one has y1,2(m)50.

LQCD
(4) 300 MeV 340 MeV 380 MeV

’t Hooft-Veltman

Naive
dimensional

regularization ’t Hooft-Veltman

Naive
dimensional

regularization ’t Hooft-Veltman

Naive
dimensional

regularization

y3 0.0341 0.0298 0.0378 0.0326 0.0420 0.0356

y4 20.0558 20.0530 20.0597 20.0564 20.0639 20.0597
y5 0.0149 0.000 687 0.0160 20.002 04 0.0173 20.005 81
y6 20.0883 20.100 20.0994 20.115 20.113 20.133

y7 /a 20.0202 20.0210 20.0195 20.0209 20.0188 20.0209
y8 /a 0.184 0.169 0.209 0.192 0.240 0.220

y9 /a 21.70 21.70 21.75 21.74 21.80 21.80
y10 /a 0.735 0.722 0.806 0.790 0.885 0.867
The DS52 theory is treated along similar lines. The
effective DS52 quark Lagrangian at scales m,mc is
given by

LDS5252C2S~m! QS2~m!, (2.16)

where

C2S~m!5
GF

2 mW
2

4p2 @lc
2h1S~xc!1l t

2h2S~xt!

12lcl th3S~xc ,xt!#b~m!, (2.17)

where l j5VjdVjs* , xi5mi
2/mW

2 . We denote by QS2 the
DS52 local four-quark operator

QS25~ s̄LgmdL!~ s̄LgmdL!, (2.18)

which is the only local operator of dimension six in the
standard model.

The integration of the electroweak loops leads to the
Inami-Lim functions (Inami and Lim, 1981) S(x) and
S(xc ,xt), the exact expressions for which can be found
in the reference quoted. These functions depend on the
masses of the charm and top quarks and describe the
DS52 transition amplitude in the absence of strong in-
teractions.

The short-distance QCD corrections are encoded in
the coefficients h1 , h2 , and h3 with a common scale-
dependent factor b(m) factorized out. They are func-
tions of the heavy quarks’ masses and of the scale pa-
rameter LQCD . These QCD corrections are available at
next-to-leading order (Buras et al., 1990; Herrlich and
Nierste, 1994, 1995, 1996) in the strong and electromag-
netic couplings.

The scale-dependent common factor of the short-
distance corrections is given by

b~m!5@as~m!#22/9S 12J3

as~m!

4p D , (2.19)

where J3 depends on the g5 scheme used in the regular-
ization. Naive dimensional regularization and the
’t Hooft-Veltman scheme yield, respectively,
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J3
NDR52

307
162

and J3
HV52

91
162

. (2.20)

All other numerical inputs can be taken as in the DS
51 case.

III. CHIRAL PERTURBATION THEORY; THE WEAK
CHIRAL LAGRANGIAN

Quarks are the fundamental hadronic matter. How-
ever, the particles we observe are those built out of
them: baryons and mesons. In the sector of the lowest-
mass pseudoscalar mesons (the would-be Goldstone
bosons: p , K , and h), the interactions can be described
in terms of an effective theory, the chiral Lagrangian,
that includes only these states. The chiral Lagrangian
and chiral perturbation theory (Weinberg, 1979; Gasser
and Leutwyler, 1984, 1985) provide a faithful represen-
tation of this sector of the standard model after the
quark and gluon degrees of freedom have been inte-
grated out. The form of this effective field theory and all
its possible terms are determined by SUL(3)3SUR(3)
chiral invariance and Lorentz invariance. The parts of
the Lagrangian that explicitly break chiral invariance are
introduced in terms of the quark mass matrix M.

The strong chiral Lagrangian is completely fixed to
the leading order in momenta by symmetry require-
ments and the Goldstone boson’s decay constant f :

Lstrong
(2) 5

f2

4
Tr~DmSDmS†!1

f2

2
B0 Tr~MS†1SM †!,

(3.1)

where M5diag@mu ,md ,ms# and B0 is given by ^q̄ iqj&
52f2B0d ij , with

^q̄q&52
f2mK

2

ms1md
52

f2mp
2

mu1md
, (3.2)

according to partial conservation of the axial-vector cur-
rent in the limit of vacuum SU(3) flavor symmetry. The
SUL(3)3SUR(3) field
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S[expS 2i

f
P~x ! D (3.3)

contains the pseudoscalar octet

P~x !5
1
2 (

a51

8

lapa~x !5
1

& F p̃0 p1 K1

p2 2p̄0 K0

K2 K̄0 p̃8
G , (3.4)

where

p̃05
1

&
p01

1

A6
h8 , p̄05

1

&
p02

1

A6
h8 ,

p̃852
2

A6
h8 . (3.5)

The coupling f is, to lowest order, identified with the
pion-decay constant fp and is equal to fK before chiral
loops are introduced; it defines a characteristic scale

Lx[2pA6/Nc f .0.8 GeV, (3.6)

typical of the vector-meson masses induced by sponta-
neous breaking of chiral symmetry. When the matrix S
is expanded in powers of f21, the zeroth-order term is
the free Klein-Gordon Lagrangian for pseudoscalar par-
ticles.

Under the action of the elements VR and VL of the
chiral group SUR(3)3SUL(3), S transforms linearly:

S85VRSVL
† , (3.7)

with the quark fields transforming as

qL8 5VL qL and qR8 5VR qR . (3.8)

Quark operators are represented in this language in
terms of the effective field S and its derivatives. For
instance, at the leading order, the quark currents are
given by

q̄L
j gmqL

i →2i
f2

2
~S†DmS! ij , (3.9)

q̄R
j gmqR

i →2i
f2

2
~SDmS†! ij , (3.10)
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while the quark densities can be written at O(p2) as

q̄L
j qR

i →22B0F f2

4
S1L5SDmS†DmS

14B0L8SM †SG
ij

,

q̄R
j qL

i →22B0F f2

4
S†1L5S†DmSDmS†

14B0L8S†MS†G
ij

, (3.11)

where L5,8 are coefficients that belong to the O(p4) chi-
ral Lagrangian. To the next-to-leading order in the mo-
menta, in addition to the leading-order chiral Lagrang-
ian (3.1), there are ten chiral terms and thereby ten
coefficients Li to be determined (Gasser and Leutwyler,
1984, 1985) either experimentally or by means of some
model. As we shall see, some of them play an important
role in the physics of «8/« . As an example, we display
the L5 and L8 terms in Lstrong

(4) , which appear in Eq.
(3.11) and govern much of the penguin physics:

L5 B0 Tr@DmSDmS†~MS†1SM †!#

and

L8 B0 Tr@M †SM †S1MS†MS†# . (3.12)

We can write the most general expression for the DS
51 chiral Lagrangian in accordance with SU(3)L
3SU(3)R symmetry, involving unknown constants of
order GF . This is done order by order in the chiral ex-
pansion. Typical terms to O(p2) are obtained by insert-
ing appropriate combinations of Gell-Mann matrices
into the strong Lagrangian. The corresponding chiral co-
efficients must then be determined by means of some
model or by comparison to the experimental data.

We find it convenient to write the DS51 chiral La-
grangian relevant to K→pp at O(p2) in terms of the
following nine terms, of which eight are linearly inde-
pendent:
L DS51
(2) 5GLR

(0) ~Q7,8!Tr~l2
3S†l1

1S!1GLR
(m)~Q7,8!@Tr~l2

3S†l1
1SM †S!1Tr~l1

1Sl2
3S†MS†!#

1G8~Q3210!Tr~l2
3DmS†DmS!1GLL

a ~Q1,2,9,10! Tr~l1
3S†DmS!Tr~l2

1S†DmS!

1GLL
b ~Q1,2,9,10! Tr~l2

3S†DmS!Tr~l1
1S†DmS!1GLR

a ~Q7,8! Tr~l2
3DmS†l1

1DmS!

1GLR
b ~Q7,8! Tr~l2

3S†DmS!Tr~l1
1SDmS†!1GLR

c ~Q7,8!@Tr~l1
3S!Tr~l2

1DmS†DmSS†!

1Tr~l1
3DmSDmS†S!Tr~l2

1S†!#1G8LR
~m !~Q7,8!Tr@l2

3S†l1
1S#Tr@MS†1SM †# , (3.13)
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where l j
i are combinations of Gell-Mann SU(3) matri-

ces defined by (l j
i) lk5d ild jk , and S is defined in Eq.

(3.3). The covariant derivatives in Eq. (3.13) are taken
with respect to the external gauge fields whenever they
are present. Other terms are possible, but they can be
reduced to these by means of equations of motion, trace
identities, and the unitarity of S.

The nonstandard form and notation of Eq. (3.13) is
chosen to remind us of the flavor and chiral structure of
the effective four-quark operators that are represented
by the various terms. In particular, in G8 we collect the
(8L31R) part of the interaction that is induced by the
gluonic penguins and by analogous components of the
electroweak operators Q7210 . The two terms propor-
tional to GLL

a and GLL
b are an admixture of the (27L

31R) and the (8L31R) parts of the interactions in-
duced by left-handed current-current operators Q1,2,9,10 .
The term proportional to GLR

(0) is the constant (non-
derivative) O(p0) part arising from the isospin-violating
(8L38R) electroweak operators. The O(p2) corrections
to GLR

(0) are the quark mass term proportional to GLR
(m)

(related to L8) and the momentum corrections propor-
tional to GLR

c (related to L5) and GLR
a ,b . One may verify

that GLR
(m) and GLR

c can be obtained by multiplying the
bosonized expression of a left- and a right-handed quark
density (in a manner similar to Q6), while GLR

b is ob-
tained as the product of a left- and a right-handed quark
current. It is therefore natural to call these terms factor-
izable. The term GLR

a is, however, genuinely nonfactor-
izable (Fabbrichesi and Lashin, 1996).

The terms proportional to G8 , GLL
a , and GLL

b have
been studied in the literature (Cronin, 1967; Pich and de
Rafael, 1991; Bijnens et al. 1993; Ecker et al., 1993) in
the framework of chiral perturbation theory. The three
terms are not independent. Those proportional to GLL

a

and GLL
b can be written in terms of the 8 and 27

SU(3)L components as follows:

L275G27~Qi!F2
3

Tr~l1
3S†DmS!Tr~l2

1S†DmS!

1Tr~l2
3S†DmS!Tr~l1

1S†DmS!G , (3.14)

which transforms as (27L31R), and

L85G8~Qi!@Tr~l1
3S†DmS!Tr~l2

1S†DmS!

2Tr~l2
3S†DmS!Tr~l1

1S†DmS!# , (3.15)

which transforms as (8L31R). We prefer to keep the
DS51 chiral Lagrangian in the form given in Eq. (3.13),
which makes the bosonization of each quark operator
more transparent, and perform the needed isospin pro-
jections at the level of the matrix elements. Equations
(3.14) and (3.15) provide a comparison to the standard
notation. The chiral coefficients in the two bases are re-
lated by

G8~Qi!5
1
5

@3 GLL
a ~Qi!22 GLL

b ~Qi!# ,
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G27~Qi!5
3
5

@GLL
a ~Qi!1GLL

b ~Qi!# , (3.16)

for i51,2. Notice that there is no overcounting of the
8L31R contributions to Eq. (3.13) from the operators
Q9,10 when a consistent prescription like that given by
Antonelli et al. (1996) is followed.

In the (8L38R) part of the DS51 chiral Lagrangian,
the constant term was first considered by Bijnens and
Wise (1984), while its mass and O(p2) momentum cor-
rections were first discussed by Antonelli et al. (1996;
Bertolini et al., 1998b).

As an example of the form of the chiral coefficients,
we give the two most important contributions to «8/« at
the leading order in 1/Nc :

G8~Q6!5224
^q̄q&2L5

f2 C6 (3.17)

and

G(0)~Q8!523^q̄q&2 C8 , (3.18)

where C6,8 are the Wilson coefficients of the operators
Q6,8 at the matching scale m.

The DS51 O(p4) Lagrangian is much more compli-
cated (Kambor et al., 1990; Esposito-Farese, 1991; Ecker
et al., 1993; Bijnens et al., 1998), but we shall not need its
explicit form. In fact, only certain combinations of coef-
ficients from the O(p4) are required in order to com-
pute the relevant amplitudes to this approximation.

The DS52 weak chiral Lagrangian is simpler. At the
leading order O(p2), the DS52 weak chiral Lagrangian
is given by only one term:

L DS52
(2) 5G~QS2!Tr~l2

3SDmS†!Tr~l2
3SDmS†!. (3.19)

The chiral coefficient is in this case given at the leading
order in 1/Nc by

G~QS2!52
f4

4
C2S . (3.20)

IV. HADRONIC MATRIX ELEMENTS

An estimate of the hadronic matrix elements must
rely on long-distance effects of QCD. It is useful to ex-
press the result of different estimates in terms of the Bi
parameters that are defined by the matrix elements

^Qi&0,2[^~pp!(I50,2)uQiuK0& (4.1)

as

Bi
(0,2)[

Re^Qi&0,2
model

^Qi&0,2
VSA , (4.2)

and give the ratios between hadronic matrix elements in
a model and those of the vacuum saturation approxima-
tion (VSA). The latter is defined by factorizing the four-
quark operators, inserting the vacuum state in all pos-
sible manners (Fierzing of the operators included), and
then keeping the first nonvanishing term in the momen-
tum expansion of each contribution.
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As a typical example, the matrix element of Q6 in the
factorized version can be written as the product of
density-matrix elements,

^p1p2uQ6uK0&

52 ^p1uūg5du0&^p2u s̄uuK0&22^p1p2ud̄du0&

3^0u s̄g5duK0&12@^0u s̄su0&2^0ud̄du0&#

3^p1p2u s̄g5duK0& . (4.3)

Other matrix elements involving ^0u s̄g5u uK1& and
^p1u s̄d uK1& are obtained from partial conservation of
the axial-vector current and the standard parametriza-
tion of the corresponding currents, ^0u s̄gm(1
2g5)u uK1& and ^p1u s̄gm(12g5)u uK1&. In the same
way, the left-left current operators can be written in a
factorizable approximation in terms of matrix elements
of the currents.

Notice that the definition in Eq. (4.2) neglects the
imaginary (absorptive) parts of the hadronic matrix ele-
ments. Imaginary and real components, when multiplied
by the corresponding short-distance coefficients and
summed over the contributing operators, should repro-
duce the global phase of the amplitude arising from
final-state interactions. However, some approaches to
hadronic matrix elements do not account for absorptive
contributions. Therefore, in order to make the discus-
sion of the Bi factors of different models as homoge-
neous as possible, we propose the definition in Eq. (4.2).
Consistent with the use of such a definition, extra overall
1/cos d0,2 factors appear in the I50,2 amplitudes, as dis-
cussed in Sec. VI.

A. Preliminary remarks

The Bi parameters depend in principle on the renor-
malization scale m and therefore they should be given
together with the scale at which they are evaluated.

In this respect, in a truly consistent calculation of the
hadronic matrix elements, the cancellation of the un-
physical renormalization scale and scheme dependence
of the Wilson coefficients should formally be proven or-
der by order in perturbation theory.

The only approach that fully satisfies these require-
ments is that based on lattice regularization (discussed
in Sec. IV.F), in which the same theory, namely, QCD, is
used in both short- and long-distance regimes and
matching involves only the different regularization
schemes.

The München phenomenological approach (discussed
in Sec. IV.E) represents a clever attempt to address the
problem of a consistent calculation of «8/« in a frame-
work originally based on the 1/Nc expansion. In this ap-
proach one extracts as much information as possible on
the hadronic matrix elements by fitting the DI51/2 se-
lection rule at a fixed scale and in a given
renormalization-scheme. The scale and renormalization
scheme stability of physical amplitudes can then be ob-
tained using perturbation theory, since the matching
scale between short- and long-distance calculations is
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large enough (m5mc) to lie inside the perturbative re-
gime. The phenomenological input allows for a direct
determination of the current-current matrix elements
and an indirect determination of some of the penguin
matrix elements, thus reducing the number of free pa-
rameters in the DS51 effective Lagrangian. On the
other hand, the same fit does not give any information
on the actual value (and scheme dependence) of the B6,8
parameters at the given scale, which are the most rel-
evant for determining «8/« .

In the Trieste group approach (discussed in Sec.
IV.G) there is no attempt to prove formally the consis-
tency of the matching along the lines stated above. The
matching is done between QCD on the short-distance
side and phenomenological models, the chiral quark
model and chiral perturbation theory, on the long-
distance side. In the long-distance calculation the scale
and renormalization scheme dependences appear natu-
rally. It is then assumed that these unphysical depen-
dences match those of the short-distance calculation.
The fact that this assumption is numerically verified
(even beyond expectation), thus giving at the given or-
der of the calculation a stable set of predictions, and that
it allows for a complete calculation of all matrix ele-
ments in terms of a few basic ‘‘nonperturbative’’ param-
eters, make this phenomenological analysis valuable.
The pattern of contributions that emerges and that leads
to a satisfactory reproduction of the DI51/2 rule may be
of help in other investigations. The major weakness of
the approach is the poor convergence of the chiral ex-
pansion at matching scales of the order of the r mass or
higher, which are needed for a reliable perturbative
strong-coupling expansion.

Very recently the Dortmund group (see Sec. IV.D)
has developed a systematic procedure for matching
short- and long-distance calculations, improving both
technically and conceptually on the original 1/Nc ap-
proach of Bardeen et al. (1987). On the other hand, at
the present status of the calculation, the scale stability of
the matching with short-distance coefficients is, for some
of the relevant observables (DI51/2,3/2 amplitudes,
B̂K), quite poor (Hambye, 1997; Kohler, 1998).

B. The vacuum saturation approximation

According to the discussion above, it is clear that
there is no theoretical underpinning for the consistency
of the vaccum saturation approximation; it is a conve-
nient reference frame equivalent to retaining terms of
O(1/Nc) in the 1/Nc expansion to leading (nonvanish-
ing) order in the momenta for all operators in Fierz
form. Its application should in general not be pushed
beyond leading order in the strong-coupling expansion.
On the other hand, we find it useful for illustrative pur-
poses to use the VSA hadronic matrix elements together
with NLO Wilson coefficients in order to exhibit some
features of the long-distance calculation and allow for a
homogeneous comparison with the other estimates. For
this purpose we shall use in all numerical estimates the
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Wilson coefficients obtained in the ’t Hooft-Veltman
scheme and set the matching scale at 1 GeV (see Table
II).

Some of the relevant VSA hadronic matrix elements
depend on parameters that are not precisely known. As
a consequence, the knowledge of Bi is not the whole
story and, depending on the assumptions made, different
predictions of «8/« may well differ even starting from
the same set of Bi . It is therefore important to define
carefully the VSA matrix elements. According to the
standard bosonization of currents and densities at
O(p2) one obtains

^Q1&05
1
3

XF211
2

Nc
G , (4.4)

^Q1&25
&

3
XF11

1
Nc

G , (4.5)

^Q2&05
1
3

XF22
1

Nc
G , (4.6)

^Q2&25
&

3
XF11

1
Nc

G , (4.7)

^Q3&05
1

Nc
X , (4.8)

^Q4&05X , (4.9)

^Q5&052
16
Nc

^q̄q&2L5

f6 X , (4.10)

^Q6&05216
^q̄q&2L5

f6 X , (4.11)

^Q7&05
2)
Nc

^q̄q&2

f3 1
8

Nc

^q̄q&2L5

f6 X1
1
2

X , (4.12)

^Q7&25
A6
Nc

^q̄q&2

f3 2
&

2
X , (4.13)

^Q8&052)
^q̄q&2

f3 18
^q̄q&2L5

f6 X1
1

2Nc
X (4.14)

^Q8&25A6
^q̄q&2

f3 2
&

2Nc
X , (4.15)

^Q9&052
1
2

XF12
1

Nc
G , (4.16)

^Q9&25
&

2
XF11

1
Nc

G , (4.17)

^Q10&05
1
2

XF12
1

Nc
G , (4.18)

^Q10&25
&

2
XF11

1
Nc

G , (4.19)

where

X[)f~mK
2 2mp

2 !. (4.20)
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In addition, from the O(p4) chiral Lagrangian evalua-
tion of fK /fp one obtains, neglecting chiral loops,

L55
1
4 S fK2fp

fp
D f2

mK
2 2mp

2 , (4.21)

while the quark condensate may be written in terms of
the meson and quark masses using Eq. (3.2). The sub-
leading 1/Nc terms arise from giving the quark operators
in Fierz form via the SU(Nc) relation (2.4).

In a similar manner, in the case of the DS52 ampli-
tude, the scale-dependent BK parameter is defined by
the matrix element

^K̄0uQS2uK0&5
4
3

fK
2 mK

2 BK . (4.22)

The scale-independent parameter B̂K is defined by

B̂K5b~m!BK~m!. (4.23)

In the VSA, for which b(m)51, the value

B̂K5
3
4 F11

1
Nc

G (4.24)

is found.
As has been mentioned before, already at the level of

the VSA it is necessary to know the value of f , ^q̄q&, or,
via partial conservation of the axial-vector current, the
value of quark masses. Specifically, unless otherwise
stated, we shall assume as reference values for the input
parameters in the VSA f5fp and ^q̄q& (1 GeV)
52(238 MeV)3, which corresponds via Eq. (3.2) to
(mu1md)(1 GeV)512 MeV or, equivalently, to (ms
1md)(1 GeV)5157 MeV.

Notice that the evaluation of the matrix elements of
the operators Q6 –8 requires even at the VSA level the
strong O(p4) chiral coefficient L5 . For this reason, the
determination of B6 has been disputed in the past
(Donoghue, 1984; Dupont and Pham, 1984; Gavela
et al., 1984; Chivukula et al., 1986).

We shall discuss the numerical results of the Bi factors
in an improved VSA model that includes the complete
O(p2) corrections to the leading momentum-
independent terms in the Q7,8 matrix elements. In the
same model we shall show the effect of the inclusion of
final-state interactions. Then, we shall summarize the
published results of the three most developed estimates:
the München phenomenological approach, the Roma
numerical simulations on the lattice, and, among pos-
sible effective quark models, the chiral quark model (for
which the complete set of operator bases has been ana-
lyzed by the Trieste group).

The values quoted for the Bi are taken at different
scales so that they cannot be directly compared. Note,
however, that the two most important parameters,
namely, B6 and B8

(2) , have been shown to depend
weakly on the renormalization scale for m*1 GeV (Bu-
ras, Jamin, and Lautenbacher, 1993b).

C. A toy model: VSA1

A comparison between the VSA matrix elements and
the chiral Lagrangian of Eq. (3.13) shows that none of
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the O(p2) terms proportional to G(m), GLR
a , and GLR

c

is included in the standard VSA. These contributions
enter as additional corrections to the O(p0) leading
term in the matrix elements of the operators Q7 and Q8
(Antonelli et al., 1996; Bertolini et al., 1998b). With the
help of Eq. (3.11), keeping all p2 terms, one obtains

^Q7&05
2)
Nc

^q̄q&2

f3 1
8

Nc

^q̄q&2L5

f6 X1
1
2

X

1
16)
Nc

^q̄q&2

f5 ~2L82L5!mK
2 , (4.25)

^Q7&25
A6
Nc

^q̄q&2

f3 2
&

2
X1

8A6
Nc

^q̄q&2

f5

3~2L82L5!mK
2 , (4.26)

^Q8&052)
^q̄q&2

f3 18
^q̄q&2L5

f6 X1
1

2Nc
X

116)
^q̄q&2

f5 ~2L82L5!mK
2 , (4.27)

^Q8&25A6
^q̄q&2

f3 2
&

2Nc
X18A6

^q̄q&2

f5

3~2L82L5!mK
2 , (4.28)

where we have neglected mp
2 /mK

2 terms. The O(p2)
wave-function renormalization has been included by
multiplying the O(p0) term by

AZKZp5124L5

mK
2 12mp

2

f2 . (4.29)

In this toy model, which we call VSA1, we neglect all
chiral loop corrections, even though they are of O(p2)
in the constant term in the DS51 chiral Lagrangian [all
other chiral loop corrections are of O(p4)]. The param-
eter f in the O(p0) terms of Eqs. (4.25)–(4.28) may be
rewritten in terms of the renormalized fK and/or fp . At
O(p2) such a rewriting is not unique. For the purpose of
the present discussion we take, as in the standard VSA,
f5fp . The terms proportional to 2L82L5 represent ad-
ditional corrections to the VSA matrix elements.

In order to obtain an estimate of the combination
2L82L5 consistent with that of L5 in Eq. (4.21), used in
the VSA, we employ the mass relation (Gasser and
Leutwyler, 1985)

mK
2

mp
2 5

ms1m̂

2m̂
~11DM!, (4.30)

where m̂5(mu1md)/2 and, neglecting chiral loops,

DM5
8
f2 ~mK

2 2mp
2 !@2L82L5# . (4.31)

Assuming partial conservation of the axial-vector cur-
rent to hold with degenerate quark condensates, and
keeping fKÞfp , we then obtain

2L82L55
1
8 F fp

2

fK
2 21G f2

mK
2 2mp

2 . (4.32)
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The purpose of introducing the VSA1 model is to
show the relevance of the O(p2) corrections to the lead-
ing term for the ^Q8&2 matrix element, which is crucial
in determining «8/« . The coefficients B7 and B8 are
modified from their VSA values as shown in Table III.
Their values are essentially independent of the value of
^q̄q& , because of the smallness of the terms not propor-
tional to the quark condensate.

Much uncertainty in the present toy model is hidden
in the approximations made in giving L5 and L8 . As an
example, a determination of these coefficients in chiral
perturbation theory including dimensionally regularized
chiral loops gives, at the rcale mr , a B8

(2) greater than
one (Fabbrichesi and Lashin, 1996).

A discussion of the implications of the VSA1 model
for «8/« and a pedagogical comparison with the standard
VSA are presented in Sec. VI.

D. 1/Nc corrections

Chiral loop corrections are of order 1/Nc and of order
O(p4) in the momenta [except for those of the leading
electroweak term that are of O(p2)]. They have been
included in the 1/Nc approach of Bardeen et al. (1987)
by means of a cutoff regularization that is then matched
to the short-distance renormalization scale between 0.6
and 1 GeV. The values thus found (B1

(0)55.2, B2
(0)

52.2, B1
(2)50.55) may help explain the DI51/2 rule but

they are still unsatisfactory for obtaining a reliable pre-
diction of «8/« .

Along similar lines, the Dortmund group (Heinrich
et al., 1992) included chiral corrections to the relevant
operators Q6 and Q8 . They did not report explicit val-
ues for their Bi . However, from their analysis it is clear
that they found a rather large enhancement of B6 and a
suppression of B8 . More recently Hambye et al. (1998)
have estimated these coefficients in a new study, which
pays special attention to the matching between the
renormalization scale dependence of chiral loops, regu-
larized by a cutoff, and the dimensionally regularized
Wilson coefficients. They find almost no enhancement in
the B6 , but a larger suppression of B8 . No new calcula-
tion of «8/« has appeared so far. Some of the relevant
observables, such as BK and the I50,2 amplitudes, show
at the present status of the calculation quite a poor scale
stability (Hambye, 1997; Kohler, 1998), which may frus-
trate any attempt to produce a reliable estimate of «8/« .

The parameter B̂K has been independently estimated
in the 1/Nc expansion with an explicit cutoff by Bijnens
and Prades (1995), who found values between 0.6 and
0.8.

A systematic study of chiral loop corrections in di-
mensional regularization was performed first by Kambor

TABLE III. The Bi in the VSA1 model described in the text.
All other Bi parameters are equal to unity.

B7
(0)5B8

(0) 0.7

B7
(2)5B8

(2) 0.6
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et al. (1991) and was more recently redone using a dif-
ferent subtraction scheme by the Trieste group (Berto-
lini et al., 1996, 1998b). The chiral loop corrections also
generate an absorptive part in the amplitudes that
should account for the final-state interactions. The latter
appear to play an important role in determination of the
hadronic matrix elements.

E. Phenomenological approach

In the phenomenological approach of the München
group (Buras, Jamin, and Lautenbacher, 1993b; Buras
et al., 1996), all hadronic matrix elements are written in
terms of just a handful of Bi: B2

(0) for the (V2A) ^ (V
2A) operators and B6 and B8

(2) for (V2A) ^ (V1A)
operators. This approach exploits in a clever manner the
available experimental data on the amplitudes A0 and
A2 in order to extract the (scheme-dependent) values of
B1,2

(0,2) and, via operatorial relations, of some of the pen-
guin matrix elements, while leaving B6 and B8

(2) as free
input parameters to be varied within given limits.

In particular, B1,2
(2) are obtained directly from the ex-

perimental value

Re A251.5031028 GeV, (4.33)

via the matching condition at m5mc and the scale inde-
pendence of the physical amplitude as

^Q1&25^Q2&25
Re A2

cz1~mc!
. (4.34)

Here c5GFVudVus* /& and z1 is the real part of the
Wilson coefficient of the operator Q11Q2 ; the B9,10

(2) are
then obtained by using the operatorial relation

^Q9,10&25
3
2 ^Q1&2 . (4.35)

B1,4,9,10
(0) are similarly expressed as functions of B2

(0) by
means of other operatorial relations and matching con-
ditions at the charm-mass scale. In fact, in the ’t Hooft-
Veltman scheme at mc there are no penguin contribu-
tions to CP-conserving amplitudes, and in naive
dimensional regularization the penguin contamination is
numerically small. Therefore one can write

^Q1&05
Re A0

cz1~mc!
2

z2~mc!

z1~mc!
^Q2&0 . (4.36)

Finally, B2
(0) is also obtained under the plausible as-

sumption ^Q22Q1&>^Q21Q1&>0, valid in all known
nonperturbative approaches, from the experimental
value of

Re A0533.331028 GeV. (4.37)

The following operatorial relations, which hold exactly
in the ’t Hooft-Veltman scheme, may then be used:

^Q4&05^Q3&01^Q2&02^Q1&0 , (4.38)

^Q9&05
3
2 ^Q1&02

1
2 ^Q3&0 , (4.39)
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^Q10&05^Q2&01
1
2 ^Q1&02

1
2 ^Q3&0 . (4.40)

It is important to recall that B3 is taken equal to 1,
which may be a rather crucial assumption in the deter-
mination of B4 , as we shall see.

After imposing the conditions that B55B6 and B7
(2)

5B8
(2) , this leaves us with only two free input param-

eters, B6 and B8
(2) , which are varied within 20% from

unity.
The parameter BK is pragmatically taken to span

from the central value of the lattice (see the next sec-
tion) to that of QCD sum rules (Narison, 1995). A sum-
mary of the values of the Bi factors is given in Table IV.

F. Lattice approach

The regularization of QCD on a lattice and its nu-
merical simulation is the most satisfactory theoretical
approach to the computation of the hadronic matrix el-
ements [for a review see, for instance, Sharpe (1994)]. It
should, in principle, lead to the most reliable estimates.
However, technical difficulties still plague this approach,
and only some operators have been precisely deter-
mined on the lattice. In addition, the use of approxima-
tions like quenching makes it very difficult to assess the
effective uncertainty of the calculation. In particular,
final-state interactions are not accounted for.

Another problem with the approach is that it is still
not possible to compute directly the K→pp amplitude
in Euclidean space. It is therefore necessary to rely on
chiral perturbation theory in order to obtain the ampli-
tude with two final pions from that with just one. In this
sense even the lattice approach is not, at least for the
time being, a first-principles procedure. As a matter of
fact, when considering the O(p2) chiral Lagrangian of
Eq. (3.13), a problem arises insofar as the term propor-
tional to GLR

c has a vanishing contribution to K→p .
Table V summarizes the values obtained by direct lat-

tice computations and used by the Roma group (Ciu-

TABLE IV. The Bi in the München phenomenological ap-
proach. The results for B1,2,9,10 are obtained by fitting the DI
51/2 selection rule in K→pp decays at the matching scale m
5mc . We show the values obtained in the ’t Hooft-Veltman
scheme for the central value of LQCD

(4) 5325 MeV. The value for
B4 is obtained by assuming B351. All the remaining Bi are
taken equal to 1 except for B6 and B8

(2) , which are varied
within 620% from unity. The parameter B̂K is scale and
renormalization-scheme independent.

B1
(0) 13

B2
(0) 6.2

B1
(2)5B2

(2) 0.47
B4 5.2

B9
(0) 7.1

B10
(0) 7.7

B9
(2)5B10

(2) 0.47

B̂K
0.7560.15
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chini et al., 1993, 1995). For the other coefficients for
which no lattice estimate is available, the following
‘‘educated guesses’’ are used:

• B3,7,8,9
(0) 51,

• B4 is in the range 1 to 6, in order to account for the
large values of B1,2

(0) needed to reproduce the DI
51/2 rule.

The parameter BK is consistently taken from the lat-
tice estimates (Ciuchini et al., 1995). This determination
gives in turn the value quoted in Table V for B9

(2) by
means of the relation B9

(2)5BK , which holds if isospin-
breaking corrections are neglected.

Finally, because of the matching scale’s being at 2
GeV, open-charm operators similar to Q1,2 but with the
strange quark replaced by a charm quark (Q1,2

c ) should
also be included, and a value of B1,2

c 50 –0.15 is assumed.
Equations (4.38)–(4.40) are replaced by

^Q4&05^Q3&01^Q2&02^Q1&01^Q2
c&02^Q1

c&0 ,
(4.41)

^Q9&05
3
2 ^Q1&02

1
2 ^Q3&01

3
2 ^Q1

c&0 , (4.42)

^Q10&05^Q4&01^Q9&02^Q3&0 . (4.43)

The strength of the lattice approach is its direct evalu-
ation of the crucial matrix elements ^Q6& and ^Q8&2 . On
the other hand, while the lattice calculations of B8

(2) ap-
pear to have settled to reliable numbers, there is still no
solid prediction for B6 (Gupta, 1998; Martinelli, 1998),
and therefore the possibility of sizable deviations from
unity remains open.

The values in Table V, which are those used for the
current lattice estimate of «8/« , agree with more recent
determinations (Gupta et al., 1997; Conti et al., 1998;
Kilcup et al., 1998) except for B̂K , for which the updated
central values of 0.92 (Conti et al., 1998) and 0.90
(Sharpe, 1997) are obtained.

G. Chiral quark model

Effective quark models of QCD can be derived in the
framework of the extended Nambu–Jona-Lasinio model

TABLE V. The Bi coefficients obtained in the Roma lattice
calculation at the matching scale m52 GeV in the naive di-
mensional regularization scheme. The values of B1,2

(0,2) are de-
rived from the phenomenological fit of the DI51/2 rule. Ac-
cordingly, B4 is varied in the range 1–6. All other Bi are taken
equal to 1.

B5,6 1.060.2

B7
(2) 0.660.1

B8
(2) 0.860.15

B9
(2) 0.6260.10

B̂K
0.7560.15
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of chiral symmetry breaking (for a review, see, for ex-
ample, Bijnens, 1996). Among them is the chiral quark
model (Manohar and Georgi, 1984; Espriu et al., 1990).
This model has a term

Lx QM52M~ q̄RSqL1q̄LS†qR!, (4.44)

added to an effective low-energy QCD Lagrangian
whose dynamical degrees of freedom are the u ,d ,s
quarks propagating in a soft-gluon background. The
quantity M is interpreted as the constituent-quark mass
in mesons (current quark masses are also included in the
effective Lagrangian). The complete operatorial basis in
Eq. (2.3) has been analyzed for K→pp decays, inclusive
of chiral loops and complete O(p4) corrections, by the
Trieste group (Bertolini et al., 1996, 1998b).

In the factorization approximation, the matrix ele-
ments of the four-quark operators are written in terms
of better-known quantities like quark currents and den-
sities, as already shown in Eq. (4.3). Such matrix ele-
ments (building blocks), like the current matrix ele-
ments ^0u s̄gm(12g5)uuK1(k)& and ^p1(p1)u s̄gm(1
2g5)duK1(k)& and the matrix elements of densities
^0u s̄g5uuK1(k)& and ^p1(p1)u s̄duK1(k)&, are evalu-
ated up to O(p4) within the model. The model depen-
dence in the color-singlet current and density-matrix el-
ements appears (via the M parameter) beyond the
leading order in the momenta expansion, while the lead-
ing contributions agree with the well-known expressions
in terms of the meson decay constants and masses.

Nonfactorizable contributions due to soft-gluon cor-
rections are included by using Fierz transformations and
by calculating building-block matrix elements involving
the color matrix Ta [see Eq. (2.4)]:

^0u s̄gmTa~12g5!uuK1~k !&,

^p1~p1!u s̄gmTa~12g5!duK1~k !&. (4.45)

Such matrix elements are nonzero for emission of glu-
ons. In contrast to the color-singlet matrix elements
above, they are model dependent starting with the lead-
ing order. Taking products of two such matrix elements
and using the relation

gs
2Gmn

a Gab
a 5

p2

3 K as

p
GG L ~dmadnb2dmbdna! (4.46)

makes it possible to express nonfactorizable gluonic cor-
rections in terms of the gluonic vacuum condensate
(Pich and de Rafael, 1991). The model thus param-
etrizes all amplitudes in terms of the quantities M , ^q̄q&,
and ^asGG/p&. Higher-order gluon condensates are
omitted.

The leading-order @O(p0,p2)# matrix elements
^Qi&I

LO and the next-to-leading-order @O(p2,p4)# cor-
rections ^Qi&I

NLO for isospin I50,2 for the pions in the
final state are obtained by properly combining the build-
ing blocks. The total hadronic matrix elements up to
O(p4) can then be written
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^Qi~m!&I5ZpAZK@^Qi&I
LO1^Qi&I

NLO~m!#1ai
I~m!,
(4.47)

where Qi are the operators in Eq. (2.3), and ai
I(m) are

the contributions from chiral loops (which include wave-
function renormalization). The scale dependence of the
NLO terms comes from the perturbative running of the
quark masses. The wave-function renormalizations ZK
and Zp arise in the chiral quark model from direct cal-
culation of the K→K and p→p propagators.

The quantities ai
I(m) represent the scale-dependent

meson-loop corrections, which depend on the chiral
quark model via the tree-level chiral coefficients. They
have been included by the Trieste group by consistently
applying the MS scheme of dimensional regularization
(which amounts to subtracting the pole 1/« in 422e di-
mensions together with the finite terms ln(4p)2gE ,
where gE is the Euler constant).

At O(p2) the Q5,6 and Q7,8 matrix elements contain
the NLO coefficients L5 and L8 , which within the chiral
quark model are given by

L552
f4

8^q̄q&

1
M S 126

M2

Lx
2 D (4.48)

and

L852
Nc

16p2

1
24

2
f4

16^q̄q&M S 11
Mf2

^q̄q& D . (4.49)

The hadronic matrix elements are matched with the
NLO Wilson coefficients at the scale Lx.0.8, and the
scale dependence of the amplitudes is gauged by varying
m between 0.8 and 1 GeV. In this range the scale depen-
dence of «8/« always remains below 15%, thus giving a
stable prediction. The g5-scheme dependence, which
arises from quark integration in the chiral quark model,
is also found to cancel numerically to a satisfactory de-
gree that of the NLO Wilson coefficients, and the pre-
dictions of «8/« in the ’t Hooft-Veltman and naive di-
mensional regularization schemes differ only by 10%.
The results reported in the following are those of the ’t
Hooft-Veltman scheme.

In order to restrict the possible values of the input
parameters M , ^q̄q&, and ^asGG/p&, the Trieste group
has studied the DI51/2 selection rule for nonleptonic
kaon decay within the chiral quark model. By fitting the
calculated amplitudes to the experimental values at the
scale m50.8 GeV, they find that within 20% error the
DI51/2 rule is reproduced for

M520023
15 MeV, (4.50)

^asGG/p&5~33464 MeV!4, (4.51)

and

^q̄q&5~2240210
130 MeV!3. (4.52)

The fit is obtained for values of the condensates that are
in agreement with those found in other approaches, i.e.,
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
QCD sum rules and lattice, although it is fair to say that
the relation between the gluon condensate of QCD sum
rules and lattice and that of the chiral quark model is far
from obvious. The value of the constituent-quark mass
M is in good agreement with that found by fitting radia-
tive kaon decays (Bijnens, 1993).

The obtained factors Bi are given in Table VI in the ’t
Hooft-Veltman scheme, at m50.8 GeV, for the central
value of LQCD

(4) (Bertolini et al., 1998b). The dependence
on LQCD enters, as for the München approach, indirectly
via the fit of the DI51/2 selection rule, and the determi-
nation of the parameters of the model. The uncertainty
in the matrix elements of the penguin operators Q5 –8
arises from the variation of ^q̄q&. This affects sensitively
the B5,6 parameters because of the linear dependence on
^q̄q& of the Q5,6 matrix elements in the chiral quark
model, contrasted to the quadratic dependence of the
corresponding VSA matrix elements. Accordingly, B5,6
scale as ^q̄q&21, or via partial conservation of the axial-
vector current as mq , and therefore are sensitive to the
value chosen for these parameters. It should be re-
marked that in the chiral quark model analysis of Ber-
tolini et al. (1998b) the central value of the quark con-
densate at the scale m50.8 GeV is given by ^q̄q&
3(0.8 GeV)5(2240 MeV)3. As a consequence, the
VSA normalization, at the central value of the quark
condensate differs numerically from that used in
Sec. III.B, which corresponds to ^q̄q&(0.8 GeV)
5(2222 MeV)3. Finally, it is interesting to note that
decreasing the value of the quark condensate in the chi-
ral quark model depletes the ^Q8& matrix element rela-
tive to ^Q6&, and vice versa.

The parameter B̂K is scale and renormalization-
scheme independent and the error given includes the
variation of all input parameters (Bertolini et al., 1998b).

Nonfactorizable gluonic corrections are important for

TABLE VI. The Bi factors in the chiral quark model. The
results for B1, . . . ,10 are shown in the ’t Hooft-Veltman scheme,
at the scale m50.8 GeV, for the central value of LQCD

(4)

5340 MeV. The range in the matrix elements of the penguin
operators Q528 arises from the variation of ^q̄q&. The value of
the (scale- and renormalization-scheme-independent) param-
eter B̂K includes the variation of all input parameters.

B1
(0) 9.5

B2
(0) 2.9

B1
(2)5B2

(2) 0.41

B3 22.3
B4 1.9

B5.B6 1.660.3

B7
(0).B8

(0) 2.560.1

B9
(0) 3.6

B10
(0) 4.4

B7
(2).B8

(2) 0.9260.02

B9
(2)5B10

(2) 0.41

B̂K
1.160.2
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the CP-conserving amplitudes (and account for the val-
ues of B1

(0) and B1,2
(2)) but are otherwise inessential in the

determination of «8/« .

H. Discussion

We should like to make a few comments on the de-
terminations of the matrix elements in the various ap-
proaches above.

All techniques attempt to take into account the DI
51/2 rule, which is the preeminent feature of the physics
of hadronic kaon decays. The direct fit of the rule in the
phenomenological and lattice approaches determines
some of the hadronic matrix elements. In the chiral
quark model approach, the same fit constrains the few
input parameters of the model, in terms of which all
matrix elements are expressed. The chiral quark model
approach is the only one for which the fit of the rule
determines all hadronic matrix elements. Since the op-
erators Q1 and Q2 , which dominate the DI51/2 ampli-
tude, do not enter directly in the determination of «8/« ,
the way such a fit affects «8/« is indirect and based on
the use of operatorial relations like those given in Eqs.
(4.38)–(4.43) in order to obtain information on the ma-
trix elements of some of the penguin operators.

According to Eq. (4.38) a large value of ^Q2&0
2^Q1&0 determines a proportionally large one for ^Q4&0
if one assumes that ^Q3&0 has a positive value. In the
phenomenological approach ^Q3&051 is assumed, thus
obtaining a rather large value for B4 . Similar values for
B4 are obtained, via a similar fit of the DI51/2 selection
rule, in the lattice [see Eq. (4.41)]. In the chiral quark
model, B3 turns out to be large and negative such that
B4 remains relatively small, albeit larger than unity. At
the same time the value of ^Q9&0 is increased. The net
effect, as shown by the sign of the contributions of the
various operators depicted for the VSA in Fig. 3, is an
increase in the predicted value of «8/« .

It would be very interesting to have a lattice estimate
of B3 as a test of the two scenarios.

The crucial parameters B6 and B8
(2) are calculated in

the lattice, in the chiral quark model at O(p4), and,
recently, by a new estimate of the Dortmund group in
1/Nc at O(p2) including chiral loops via a cutoff regu-
larization.

The phenomenological approach varies these param-
eters according to a 20% uncertainty around their VSA
values.

The chiral quark model finds a substantially larger
value for B6 than do the other approaches. This is due to
the meson-loop enhancement of the A0 amplitude (Ka-
mbor et al., 1990; Antonelli et al., 1996). It is an open
question how much of this effect is accounted for in the
quenched approximation on the lattice. In addition, the
lattice calculation of B6 suffers from large renormaliza-
tion uncertainties.

The Dortmund group originally found a large en-
hancement for B6 and suppression for B8

(2) . In the lat-
est, novel estimate by Hambye et al. (1998) they find
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almost no enhancement for B6 and a strong suppression
for B8

(2) . One should wait for a complete O(p4) calcu-
lation before drawing conclusions from the numerical
comparison with chiral quark model results.

Neither the phenomenological approach nor the lat-
tice includes O(p2) correction terms for the matrix ele-
ments of the operators Q7,8 . The effect of these terms
may be within the range of the B7,8

(2) values these two
approaches consider. However, when these corrections
are added, they may have the effect of reducing B8

(2) ,
thereby increasing the central value of «8/« . All the
present calculations of B8

(2) agree on a value smaller
than the VSA result.

Those lattice computations that compute the Bi from
the K→p amplitude, and then obtain the K→pp am-
plitude by means of the chiral Lagrangian, use an incom-
plete O(p2) Lagrangian. In particular, the term propor-
tional to GLR

c has a vanishing contribution to the K
→p amplitude and can only to be determined with
knowledge of the K→pp amplitude.

The parameter B̂K is numerically the same in the phe-
nomenological and lattice approaches and smaller than
the chiral quark model result. This parameter has always
been a source of disagreement among different esti-
mates. Recent lattice determinations tend to assign a
larger central value to B̂K , closer to the VSA result
(B̂K[1).

The different values of B̂K used in the various ap-
proaches lead, as we shall see, to different ranges for the
relevant combination of CKM matrix elements that en-
ters the determination of «8/« (see Sec. V).

The chiral quark model approach is the only one for
which all matrix elements are actually estimated—up to
the O(p4) in the chiral expansion. Of course this ap-
proach suffers from its model dependence and the fact
that the scale and renormalization-scheme stability of
the computed observables is a numerical feature that is
not formally proven (while the lattice and the München
phenomenological estimates are in principle safe in this
respect). On the other hand, it is the only approach in
which the DI51/2 rule is well reproduced in terms of
natural values of the few input parameters when nonfac-
torizable effects like soft-gluon corrections and meson
loops are included. These nonfactorizable contributions
are important in estimating «8/« , as shown by the rela-
tively large value of B6 , and in the interplay between
the operators Q1 , Q2 , Q3 and Q4 (related by Q45Q3
1Q22Q1).

Chiral loop corrections give, in general, important
contributions to the hadronic matrix elements. A com-
plete calculation of the hadronic matrix elements at
O(p4) has so far been performed only in the framework
of the chiral quark model.

Of course, it is not sufficient to know the Bi factors in
order to predict «8/« , since the impact of the Wilson
coefficients and other input parameters must also be
taken into account. As we shall see, the predictions de-
pend crucially on the determination of the relevant
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CKM entries and the value assigned to ms [or, via Eq.
(3.2), the value of the quark condensate ^q̄q&].

V. THE RELEVANT CABIBBO-KOBAYASHI-MASKAWA
MATRIX ELEMENTS

The ratio «8/« , once the measured value of « is used,
turns out to be proportional to the combination of CKM
matrix elements

Im l t[ImVtdVts* , (5.1)

which, by using the Wolfenstein parametrization of Eq.
(1.16), can be written as

Im l t.hl5A25huVusuuVcbu2, (5.2)

where A5uVcbu/l2 and l5uVusu.
In order to restrict the allowed values of Im l t we

consider the following three equations.
The first equation is derived from Eq. (1.13) and gives

the constraint from the experimental value of «:

hS 12
l2

2 D H F12rS 12
l2

2 D G uVcbu2h2S~xt!

1h3S~xx ,xt!2h1S~xc!J uVcbu2

l8 B̂K5
u«u

C l10 50.226,

(5.3)

where

C5
GF

2 fK
2 mK

2 mW
2

3&p2DMLS

. (5.4)

In writing Eq. (5.3) we have neglected in Im lc*lt the
term proportional to Relt /Relc , which is of O(l4), and
used the unitarity relation Im lc*5Im lt .

Two more equations are those relating h and r to
measured entries of the CKM matrix:

h21r25
1
l2

uVubu2

uVcbu2 , (5.5)

h2S 12
l2

2 D 2

1F12rS 12
l2

2 D G2

5
1
l2

uVtdu2

uVcbu2 . (5.6)

The allowed values of h and r are thus obtained, given
«, mt , mc , and (Barnett et al., 1996)

uVusu50.220560.0018, (5.7)

uVcbu50.04060.003, (5.8)

uVubu/uVcbu50.0860.02. (5.9)

For uVtdu we can use the bounds provided by the mea-
sured B̄d

0-Bd
0 mixing according to the relation (Buras

and Fleischer, 1997)
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uVtdu58.831023F 200 MeV

ABBd
FBd

G
3F170 GeV

mt~mt!
G0.76F DMBd

0.50/psG
0.5

A0.55
hB

. (5.10)

The theoretical uncertainty on the hadronic DS52
matrix element controls a large part of the uncertainty in
the determination of Im lt . For the renormalization-
group-invariant parameter B̂K we take, as a reference
for the following discussion, the VSA value with a con-
servative error of 630%.

The DS52 parameters h1,2,3 obtained from QCD are
known to next-to-leading order (Buras et al., 1990; Her-
rlich and Nierste, 1994, 1995, 1996). We compute them
by taking LQCD

(4) 5340640 MeV, mb(mb)54.4 GeV,
mc(mc)51.4 GeV, and mt

(pole)517566 GeV, which (in
leading order) corresponds to mt(mW)517767 GeV,
where running masses are given in the MS scheme. As
an example, for central values of the parameters we find
at m5mc

h151.33, h250.51, h350.44. (5.11)

This procedure gives two possible ranges for Im lt that
correspond to having the CKM phase in the I or II quad-
rant (r positive or negative, respectively).1 Figure 4 gives
the results of such an analysis for the central value of
mt : the area enclosed by the two black circumferences
represents the constraint of Eq. (5.5), the area between
the two gray (dashed) circumferences is allowed by the
bounds from Eq. (5.6); the area enclosed by the two
solid parabolic curves represents the solution of Eq.
(5.3) with B̂K in the 0.7–1.3 range (notice that the upper
parabolic curve corresponds to the minimal value of Vcb
and vice versa for the lower curve).

The gray region within the intersection of the curves is
the range actually allowed after the correlation in Vcb

1Present bounds on B̄s
0-Bs

0 mixing disfavor the negative r
range.

FIG. 4. The allowed h and r ranges for B̂K51.060.3.
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between Eq. (5.3) and Eq. (5.6) is taken into account. A
further correlation is present in going from h to Im lt in
Eq. (5.2).

In the example of the VSA, where we have taken
B̂K51.060.3, from Fig. 1 we obtain

0.5131024<Im l t<1.631024. (5.12)

A further refinement of the analysis consists in assign-
ing to each pair of (r ,h) values a Gaussian weight ac-
cording to the deviations from the experimental central
values of the computed parameters Vub /Vcb , DMBd

, «.
In this way, a Gaussian distribution of the uncertainty
on Im lt (as opposed to a flat one) is found and the error
reduced. We shall use for the discussion of the VSA the
flat result of Eq. (5.12).

In general, the renormalization-group-invariant pa-
rameter B̂K depends on the modeling of the hadronic
matrix elements, so that different ranges of Im lt should
be expected according to the different approaches.

• In the München phenomenological approach,
where B̂K50.7560.15, a range

0.8631024<Im lt<1.7131024 (5.13)
is found for a flat distribution of the uncertainties in
the input parameters, while the reduced range

Im lt5~1.2960.22!31024 (5.14)
is obtained for a Gaussian treatment of the same
uncertainties.

• In the Roma lattice calculation, which takes B̂K
50.7560.15, the range

cos dCP50.3860.23, (5.15)
is obtained via the Gaussian treatment of the uncer-
tainties, where dCP is the CKM phase. A result
similar to Eq. (5.14) is found by means of the equa-
tion

Im lt5uVcbu2
uVubu
uVcbu

A12cos2 dCP. (5.16)

• In the Trieste chiral quark model approach, which
finds B̂K51.160.2, a flat scan of the input values
leads to

0.6231024<Im lt<1.431024. (5.17)

The larger value of B̂K is responsible for the smaller
values Im lt obtained in this approach.

For a recent, detailed review on the determination of
the CKM parameters see (Parodi et al., 1998).

VI. THEORETICAL PREDICTIONS

We have now all the ingredients necessary to under-
stand the various theoretical predictions for «8/« . Let us
first rewrite Eq. (1.11) in such a way that the relation-
ship with the effective operators is more transparent.

The ratio «8/« can be written as
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«8

«
5eif

GFv

2ueuRe A0
Im l tFP02

1
v

P2G , (6.1)

where, referring to the DS51 quark Lagrangian of Eq.
(2.1),

P05
1

cos d0
(

i
yi Re ^Qi&0~12Vh1h8!, (6.2)

P25
1

cos d2
(

i
yi Re ^Qi&2 . (6.3)

The phase of «8/« is (Maiani et al., 1992)

f5
p

2
1d02d22ue5~064 !°, (6.4)

and we can take it as vanishing. We assume everywhere
that CPT is conserved. An extra phase in addition to
Eq. (6.4) would be present in the case of CPT noncon-
servation: present experimental bounds constrain it to
be at most of the order of 1024 [for a review see Maiani
et al. (1992)].

Notice the explicit presence of the final-state-
interaction phases in Eqs. (6.2) and (6.3). Their presence
is a consequence of writing the absolute values of the
amplitudes in terms of their dispersive parts. Theoreti-
cally, given that in Eq. (2.2) t!1, we obtain

tan dI.
( izi Im^Qi&I

( izi Re^Qi&I
. (6.5)

A phenomenological estimate of the rescattering
phases can be extracted from the elastic p-p scattering.
In chiral perturbation theory to O(p4) one obtains
(Gasser and Meissner, 1991)

d02d2us5mK
2 545°66°. (6.6)

A more recent analysis of pion-nucleon collisions (Chell
and Olsson, 1993), based on QCD sum rules and the
extracted s-wave p-p isospin scattering lengths, finds at
the kaon mass scale

d0534.2°62.2°, d2526.9°60.2°, (6.7)

and, accordingly,

d02d2us5mK
2 541°64°. (6.8)

This result improves on older analyses (Basdevant et al.,
1974, 1975; Froggatt and Petersen, 1977) for which

d0537°63°, d2527°61°. (6.9)

All these results are consistent with each other and
imply a misalignment of the I50 over the I52 ampli-
tude by about 20% (cos d0 /cos d2.0.8). Final-state re-
scattering is not included in the VSA hadronic matrix
elements, nor in the lattice calculations, where the K
→p transition is computed. Absorptive components ap-
pear when chiral loops are included, as in the 1/Nc ap-
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proach of Bardeen et al. (1987) and in the chiral quark
approach of the Trieste group. In the latter framework
direct determination of the rescattering phases gives at
O(p4) d0.20° and d2.212°. Although these results
show features that are in qualitative agreement with the
phases extracted from pion-nucleon scattering, the de-
viation from the experimental data is sizable, especially
in the I50 component. On the other hand, at O(p4) the
absorptive parts of the amplitudes are determined only
at O(p2), and disagreement with the measured phases
should be expected. At any rate, the effect of such a
discrepancy on Eqs. (6.2) and (6.3) is numerically re-
duced by the cos d0,2 dependence. The authors have
therefore chosen to input the experimental values of the
rescattering phases in all parts of their analysis. This
amounts to overestimating systematically the I50 am-
plitude by about 15%. Since the analysis of the Trieste
group is based on the fit of the DI51/2 rule with a 20%
accuracy, such a bias is reabsorbed by the uncertainty
found in the determination of ^q̄q&.

Since Im lu50 according to the standard conventions,
the short-distance component of «8/« is determined by
the Wilson coefficients yi . Because y1(m)5y2(m)50,
the matrix elements of Q1,2 do not directly enter the
determination of «8/« .

We can take as fixed input values

GFv

2ueuRe A0
.349 GeV23, v51/22.2. (6.10)

The large value in Eq. (6.10) for 1/v comes from the
DI51/2 selection rule.

The quantity Vh1h8 , included in Eq. (6.2) for nota-
tional convenience, represents the effect of isospin-
breaking mixing between p0 and the etas, which gener-
ates a contribution to A2 proportional to A0 . Vh1h8 can
be written as (Donoghue et al., 1986; Buras and Gerard,
1987)

Vh1h85
1

3&

1
v F ~cos u2& sin u!2

1~sin u2& cos u!2
mh

2 2mp
2

mh82mp
2 G md2mu

ms
,

(6.11)

where (Gasser and Leutwyler, 1985)

md2mu

ms
50.02260.002. (6.12)

The mixing angle u has been recently estimated in a
model-independent way (Venugopal and Holstein,
1988) to be

u5222°63.3°, (6.13)

which is consistent with the values u5220°64° found
in chiral perturbation theory (Donoghue et al., 1986)
and u.222° in the 1/Nc expansion (Gasser and Leutw-
yler, 1985).
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The values above yield

Vh1h850.2820.04
10.03 . (6.14)

Smaller values are found once the uncertainty in the
contribution of the h8 is included (Cheng, 1988). For
this reason, the more conservative range of values used
in current estimates of «8/« is

Vh1h850.2560.10. (6.15)

A. Toy models: VSA and VSA1

Before summarizing the current estimates of «8/« , it is
useful to study some of the steps through which they are
obtained in a toy model like that given by the VSA. As
already pointed out, this model, because of its simplicity,
can be considered as a convenient reference framework
against which all other estimates are compared.

The VSA1 model that we introduced in Sec. IV is an
attempt to improve on the VSA. It shows how a more
refined treatment of the electroweak operators, which
includes the O(p2) corrections to the leading constant
term, can lead to a larger value of «8/« .

The main purpose of these toy models is to illustrate
in a simplified framework some general features of the
calculation and the impact of some assumptions on the
predicted value of «8/« . As we have discussed in Sec.
IV, the VSA (as well as the VSA1) cannot give a reli-
able estimate because of the absence of a consistent
scale and renormalization scheme matching with the
NLO short-distance QCD calculation.

In the present discussion we use the Wilson coeffi-
cients in the ’t Hooft-Veltman scheme and set the refer-
ence value of the matching scale at 1 GeV (see Table
II). We shall then gauge the renormalization-scheme de-
pendence of «8/« by varying the renormalization scheme
from ’t Hooft-Veltman to naive dimensional regulariza-
tion in the VSA amplitudes. Varying the matching scale
around 1 GeV will show the systematic uncertainty re-
lated to the choice of the renormalization scale.

As we shall see, different groups work at different
renormalization scales because of the peculiarities of
their approaches. On the other hand, in a consistent ap-
proach the choice of the renormalization scale should be
immaterial as far as observables are concerned. The
same holds for the scheme dependence.

In addition to giving the Bi parameters and the Wil-
son coefficients in a common scheme and at a common
scale, one needs to specify the numerical value for the
input parameter ^q̄q& , which appears in the penguin ma-
trix elements. We take the partial conservation of axial
vector current result, which at 1 GeV and for mu1md
51262.5 MeV gives

^q̄q&5~2238214
119 MeV!3. (6.16)

The mass ms is often used instead of md and mu . Such a
change does not reduce the error and may even add
further uncertainties due to violations of partial conser-
vation of axial vector current that are larger in the
SU(3) case.
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Each of the steps above, necessary in order to esti-
mate «8/« , may carry, in practice, some model depen-
dence, and the reader must always bear in mind the as-
sumptions that have entered in the final numerical
values.

Let us now study how the various operators come to-
gether to give the final value of «8/« . Figure 5 shows the
individual contribution of each operator in the VSA
(light gray histograms) and in the VSA1 (dark gray his-
tograms). The black histograms show how the various
contributions are affected by changing the renormaliza-
tion scheme from ’t Hooft-Veltman to naive dimen-
sional regularization in the VSA1 case.

The VSA and VSA1 estimates differ only in the Q7,8
matrix elements, as already discussed in Sec. IV.A, while
moving from ’t Hooft-Veltman to naive dimensional
regularization affects mostly the Q5,6 contributions (see
Table II), thus leading to a potentially large effect on the
VSA prediction for «8/« .

A central value of the order of 531024 is found in the
VSA, whereas in going from VSA to VSA1 the central
value is increased by 50%. A 25% effect is then related
to the renormalization-scheme dependence in the
VSA1, which corresponds to a 50% effect on the VSA.

Figure 5 shows clearly how systematic effects may sig-
nificantly shift the «8/« value, due to the change in the
destructive interference between gluonic and elec-
troweak penguins.

Figure 6 shows, for the case of the VSA, the distribu-
tion of the I50 and 2 components in the contributions
of each operator. This figure is useful in disentangling
the role and weight of the individual operators accord-
ing to the isospin projections.

Finally, in Fig. 7 the value of «8/« in the VSA is
shown as we continuously vary the two most relevant
parameters, Im lt and ^q̄q& . The two surfaces show in
addition the dependence of «8/« on the short-distance
input parameters LQCD and mt as we vary them between
their 1-s limits, and we include also the dependence on

FIG. 5. Anatomy of «8/« in the vacuum saturation approxima-
tion (VSA) in units of 1023 at m51 GeV with Im lt51.1
31024. All other inputs are taken at their central values. De-
picted in light gray is the VSA, in dark gray the VSA1 and in
black the effect of changing the renormalization scheme from
’t Hooft-Veltman to naive dimensional regularization.
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the matching scale, which is varied from 0.8 to 1.2 GeV.
Figure 7 is useful in showing the correlations between
the input parameters and «8/« , which qualitatively hold
beyond the specific model considered.

From Fig. 7 we can finally extract the range of values
taken by the parameter «8/« in the VRA, in the ’t
Hooft-Veltman scheme, as we vary all relevant inputs.
Taking into consideration the scale dependence of ^q̄q&
we find

«8/«5~0.520.3
10.6!31023. (6.17)

Analogously, in the naive dimensional regularization
scheme we obtain

«8/«5~0.820.5
11.3!31023. (6.18)

The large upper range of the dimensional regularization
result is a consequence of the increase in the scheme
dependence of the Wilson coefficients as LQCD increases
and the renormalization scale decreases.

While the toy models are useful in understanding how
various possible contributions enter in the final estimate
of «8/« , it is clear that some important factors are not
included. Among them are the actual range of Im lt ,

FIG. 6. The distribution of the isospin I50 (light gray) and I
52 (dark gray) contributions of each operator to «8/« (in units
of 1023) in the vacuum saturation approximation.

FIG. 7. Parameter dependence of «8/« in the vacuum satura-
tion approximation, in units of 1023. The upper (lighter) sur-
face corresponds to taking m50.8, LQCD5380 MeV, and mt

5161 GeV, while the lower (darker) surface corresponds to
m51.2 GeV, LQCD5300 MeV, and mt5173 GeV.
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TABLE VII. Comparison of input parameters in various approaches. PCAC5partial conservation of
axial vector current.

Input München Roma Trieste

LQCD
(4) 325680 MeV 3306100 MeV 340640 MeV

mt(mt) 16766 GeV 16768 GeV 16766 GeV
mb(mb) 4.4 GeV 4.5 GeV 4.4 GeV
mc(mc) 1.3 GeV 1.5 GeV 1.4 GeV

m 1.3 GeV 2 GeV 0.8 GeV
ms(m) 150620 MeV 128618 MeV 220620 MeV

^q̄q&(m) via PCAC from ms via PCAC from ms (2240210
130 MeV)3

B̂K
0.7560.15 0.7560.15 1.160.2

Im lt3104 1.2960.22 1.2960.22 1.060.4
cos d0 1 1 0.8
cos d2 1 1 1
Vh1h8 0.2560.05 0.2560.10 0.2560.10
strictly related to the determination of B̂K—which might
be quite different from the naive VSA—and the consis-
tency of the hadron matrix elements with the DI51/2
rule—which is important in assessing the confidence
level for «8/« predictions. For this reason, we now turn
to estimates that incorporate these important features.

B. Estimates of «8/«

There are three groups for which an up-to-date calcu-
lation is available. In addition we shall also briefly com-
ment on some recent partial results obtained within the
1/Nc approach. We shall identify the various groups by
the names of the cities (München, Roma, and Trieste)
where most of the group members reside.

In Table VII we collect some of the relevant inputs
used by the three most recent estimates. There is overall
agreement on the short-distance input parameters. The
Trieste group differs from the other two in the value of
B̂K , and therefore of Im lt , in that it is smaller; and for
the inclusion of final-state interaction effects. The
matching scales are different because of the peculiarities
of each approach which lead to the quoted energy
scales. The scale (and renormalization-scheme) depen-
dence of the final estimates is, however, rather small.
We recall that, while this stability is a formal property of
the lattice and München phenomenological approaches,
it is just a numerical feature of the Trieste estimate.

The experimental value of mt reported in Table VII—
which has become available in the last few years—
greatly helps in restricting the possible values of «8/«
and, as we shall see, rules out, at least for a class of
models, any mimicking of the superweak scenario by the
standard model.

Starting with Eq. (6.1), and given the input param-
eters in Table VII, the different estimates can be com-
puted by writing «8/« in terms of the vacuum saturation
approximation to the matrix elements and the param-
eters Bi :
., Vol. 72, No. 1, January 2000
(
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yi^Qi&05XS y4B41
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and

(
i

yi^Qi&25A6
^q̄q&2

f3 S y8B81
1

Nc
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2
&

2
XS y7B71

1
Nc

y8B8D
1
&

2
XF11

1
Nc

G~y9B91y10B10!. (6.20)

In Eqs. (6.19) and (6.20) the values of the parameters L5
and ^q̄q& are obtained according to Eqs. (4.21) and
(3.2), respectively, taking into account the scale depen-
dence of the quark masses.

By inserting the appropriate Bi , taking into account
their renormalization-scheme dependence, the corre-
sponding value of ^q̄q& (or ms), and the other short-
distance inputs, varied within the given uncertainties,
the reader can recover the estimates for the various
groups that are reported in the next few subsections.

1. Phenomenological approach

In the phenomenological approach of the München
group (Buras, Jamin, and Lauten-bacher, 1993b; Buras
et al., 1996) the matching scale is chosen at m5mc be-
cause it is the scale at which penguins are decoupled
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TABLE VIII. The penguin-box expansion coefficients for various LQCD
(4) as given by Buras and Fleischer (1997). Only the

coefficients r0 depend at next-to-leading order on the renormalization scheme; the first row gives their naive dimensional regu-
larization values while the last row shows the corresponding values in the ’t Hooft-Veltman scheme. The results are given for
ms(mc)5150 MeV.

LQCD
(4) 5245 MeV LQCD

(4) 5325 MeV LQCD
(4) 5405 MeV

i r i
(0) ri

(6) ri
(8) ri

(0) ri
(6) ri

(8) ri
(0) ri

(6) ri
(8)

0 22.674 6.537 1.111 22.747 8.043 0.933 22.814 9.929 0.710
X 0.541 0.011 0 0.517 0.015 0 0.498 0.019 0
Y 0.408 0.049 0 0.383 0.058 0 0.361 0.068 0
Z 0.178 20.009 26.468 0.244 20.011 27.402 0.320 20.013 28.525
E 0.197 20.790 0.278 0.176 20.917 0.335 0.154 21.063 0.402

0 22.658 5.818 0.839 22.729 6.998 0.639 22.795 8.415 0.398
from the CP-conserving amplitudes, and some of the Bi
parameters can be extracted from the knowledge of the
DI51/2 rule.

In this approach all Bi except B3,5,6 and B8
(2) are de-

termined from the experimental values of physical pro-
cesses. The operator Q4 receives an enhancement due to
the rather large value used for B4 that comes from the
fit of the DI51/2 rule with the assumption that B351, as
discussed in Sec. IV.E.

To get a range of predicted value for «/«8, the param-
eters B6 and B8

(2) are varied 20% around the VSA val-
ues. The uncertainty in the quark condensate is deter-
mined by varying ms in the range given below. This
procedure yields the two predictions (Buras et al., 1996)

21.231024<«8/«<16.031024, (6.21)

for ms(mc)5150620 MeV, and

0<«8/«<43.031024, (6.22)

for ms(mc)5100620 MeV. This second range is in-
cluded in order to study the implications of some recent
lattice estimates of ms that found such small values
(Gough et al., 1997; Gupta and Bhattacharya, 1997). No-
tice however that the lower range is somewhat extreme
in light of more recent lattice results now settling down
at ms(2 GeV)5110623 MeV [Bhattacharya and
Gupta, 1998; this corresponds to ms(mc)5129627
MeV]. This range of ms values is also consistent with
recent QCD sum rule estimates (Colangelo et al., 1997;
Jamin 1998). On the other hand, a substantially larger
value of ms is obtained from the study of t decays at
LEP. A preliminary result from the ALEPH collabora-
tion gives ms(mt)5172631 MeV (Chen, 1998). It is
therefore important to understand better the value of
this parameter, which via Eq. (3.2) affects the size of the
hadronic matrix elements of the most relevant opera-
tors.

For a Gaussian treatment of the uncertainties that af-
fect Im lt , Buras et al. (1996) find the values

«8/«5~3.663.4!31024, (6.23)

and

«8/«5~10.468.3!31024. (6.24)
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The same group also gives an approximated analytical
formula that is quite useful in discussing the impact, in
this estimate, of the various input values:

«8

«
5Im l tF~xt!, (6.25)

where

F~xt!5P01PXX0~xt!1PYY0~xt!

1PZZ0~xt!1PEE0~xt!. (6.26)

The xt-dependent functions in Eq. (6.27) are given,
with an accuracy of better than 1%, by

X0~xt!50.660xt
0.575 , Y0~xt!50.315xt

0.78 , (6.27)

Z0~xt!50.175xt
0.93 , E0~xt!50.564xt

20.51 .

The coefficients Pi are given in terms of B6
(1/2)

[B6
(1/2)(mc), B8

(3/2)[B8
(3/2)(mc), and ms(mc) as follows:

Pi5ri
(0)1F 158 MeV

ms~mc!1md~mc!G
2

~ri
(6)B6

(1/2)1ri
(8)B8

(3/2)!.

(6.28)

The Pi must be renormalization-scale and scheme inde-
pendent. They depend, however, on LQCD . Table VIII,
taken from Buras and Fleischer (1997), gives the nu-
merical values of ri

(0) , ri
(6) , and ri

(8) for different values
of LQCD

(4) at m5mc .
It is important to stress that the approximate formula

(6.26), with the numerical coefficient given in Table
VIII, relies on the values of all Bi used in the phenom-
enological approach. Great attention must be paid to the
possible effects of the different patterns of Bi and the
scale at which they are computed when applying the
same formula in other frameworks to compare predic-
tions of «8/« in the standard model.

2. Lattice approach

In the lattice approach of the Roma group (Ciuchini
et al., 1993, 1995; Ciuchini, 1997), the matching scale is
taken at m52 GeV.

As it was for the München group, the operator Q4
receives an enhancement due to the rather large value
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used for B4 in order to fit the DI51/2 rule with the
assumption B351. The quark condensate is treated
similarly to the München group approach in Sec. VI.B.1.

The parameters B6 and B8
(2) are explicitly computed

on the lattice, although the determination of ^Q6& suf-
fers from large uncertainties (see Sec. IV.D).

Only the result obtained via a Gaussian treatment of
the errors in the input parameters is reported. It yields
(Ciuchini, 1997)

«8/«5~4.663.060.4!31024, (6.29)

where the first error is the variance of the distribution
and the second one comes from the residual g5-scheme
dependence. Figure 8 from Ciuchini (1997) shows the
anatomy of «8/« in the lattice case. In this figure, the
various contributions are shown in a manner similar to
that of Fig. 5, with the additional separation of the elec-
troweak components in isospin 0 and 2 amplitudes (as in
Fig. 6 for the VSA).

More recent estimates of B̂K on the lattice (Gupta
et al., 1997; Conti et al., 1998; Kilcup et al., 1998), find a
value larger than that used in deriving Eq. (6.29), which
makes Im lt and, proportionally, «8/« even smaller.

3. Chiral quark model

In the chiral quark model approach of the Trieste
group (Bertolini et al., 1996, 1998b), a rather low scale,
m50.8 GeV is chosen because of the chiral loop contri-
bution, which becomes perturbatively too large at scales
higher than Lx'mr , the chiral-symmetry-breaking
scale. Such a low energy scale for the matching makes

FIG. 8. Anatomy of «8/« in the lattice approach in terms of
the I50 (DI51/2) and I52 (DI53/2) components. The white
and black histograms show the contributions of the various
operators to the central value of «8/« , depicted by the gray
histogram on the right.
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some of the Wilson coefficients larger than in the other
approaches and, correspondingly, more sensitive to
higher-order corrections.

Let us also recall that the scale and renormalization-
scheme stability of the computed observable is only a
(welcome) numerical feature and no attempt is made to
address formally the cancellation of unphysical depen-
dences. On the other hand, this estimate is the only one
in which all Bi are computed within the same model, in
terms of a few basic parameters. It is also the only one
for which the full O(p4) amplitudes have been evalu-
ated. It may therefore be quite useful, complementing
the other estimates by illustrating characteristic patterns
of the long-distance contributions.

The value of Im lt is smaller than in the previous two
estimates because of the rather large value for B̂K (see
Table III) that is found in this model.

The quark condensate is a primitive input parameter
that is given various values by fitting the DI51/2 rule.
The value in Eq. (4.52), determined at the scale m
50.8 GeV by the Trieste group, corresponds, via partial
conservation of the axial-vector current, to ms
.220 MeV. The quark masses appear explicitly in the
chiral quark model calculation at the next-to-leading or-
der in the momentum expansion and are treated as in-
dependent parameters. It is interesting to observe that in
the chiral quark model, decreasing the value of the
quark condensate weakens the destructive interference
between ^Q6& and ^Q8&. This is because these matrix
elements depend linearly and quadratically on the con-
densate, respectively.

Given a 1-s flat distribution of the input parameters,
the value (Bertolini et al., 1998b)

«8/«5~1.721.0
11.4!31023 (6.30)

is found.
Figure 9 shows explicitly the contributions of the vari-

FIG. 9. Anatomy of «8/« (in units of 1023) within the chiral
quark model. The black bars show the leading-order results
(which include the nonfactorizable gluonic corrections), the
dark gray bars show the effect of the inclusion of chiral loop
corrections, and the light gray bars show the complete O(p4)
estimate.
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ous operators, charted this time operator by operator as
in Fig 5.

A previous estimate of «8/« by the same group (Ber-
tolini et al., 1996) quoted the smaller value

«8/«5~465 !31024. (6.31)

The change from Eq. (6.31) to Eq. (6.30) is due to the
following improvements:

• Inclusion of the complete weak chiral Lagrangian to
O(p2) as discussed in Sec. III.A;

• Extension of the matrix-element calculation to the
O(p4);

• Update of the short-distance analysis;
• New ranges of input parameters as determined by

the updated fit of the DI51/2 rule (Bertolini et al.,
1998a).

4. 1/Nc approach

The approach based on a 1/Nc estimate of the hadron
matrix elements, including chiral loops, was first pursued
by the München group (Bardeen et al., 1987; Buchalla
et al., 1990). Eventually, it was dropped in favor of a
phenomenological approach that was judged to be bet-
ter.

This approach was then taken up by the Dortmund
group (Paschos and Wu, 1991; Heinrich et al., 1992; Pas-
chos, 1996). Unfortunately, many details of their work
are not available, and there is no complete, updated cal-
culation. For this reason we did not include it in Table
VII.

The latest available estimate quotes the value (Pas-
chos, 1996)

«8/«5~9.964.1!31024 (6.32)

for ms(1 GeV)5175 MeV. This value is the result of a
B6 larger than 1 and a B8

(2) smaller than 1 as obtained by
including chiral loop corrections in the matrix elements.

A very recent, new calculation of B6 and B8 , which
addresses systematically the problem of a consistent
renormalization-scale matching between chiral loops
and Wilson coefficients, yields a smaller value for B6
and a much suppressed value for B8

(2) (Hambye et al.,
1998). No new estimate of «8/« has as yet appeared.
However, some of the relevant observables, such as BK
and the I50,2 amplitudes, show at the present status of
the calculation quite poor scale stability (Hambye, 1997;
Kohler, 1998), which may frustrate any attempt to pro-
duce a reliable estimate of «8/« .

C. «8/« in the standard model: Summary and outlook

If we consider that energy scales as different as mt
and mp enter in an essential manner in the determina-
tion of the ratio «8/« , it is remarkable that this param-
eter can be predicted at all. Even more remarkable is
the fact that all theoretical estimates are more or less
consistent and a well-defined window of possible values
emerges.
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Figure 10 collects the estimates we have discussed and
compares them with the two present (1998) experimen-
tal ranges from CERN (NA31) and FNAL (E731). We
have also shown, as a reference, the results obtained in
the simple vacuum saturation approximation in both ’t
Hooft-Veltman and naive dimensional regularization
schemes, as discussed at the beginning of this section.
We recall that the VSA error bars include a variation of
the matching scale from 0.8 to 1.2 GeV.

The two error bars depicted for the München esti-
mates correspond, from left to right, to flat and Gaussian
scanning of the input data, respectively. The reduced
size of the error bar for the lattice result is due to the
Gaussian treatment of the data.

The entire range between zero and roughly 331023 is
spanned by the available standard-model predictions,
thus dispelling the belief (that has been around for the
past few years) that values of the order of 1023 are dif-
ficult to account for within the standard model.

Given the present theoretical and experimental re-
sults, it is difficult to draw definite conclusions from
comparing them, beyond the fact that there are no in-
consistencies. On the other hand the forthcoming ex-
perimental data may be crucial to a better understand-
ing of the role of nonperturbative QCD in the present
estimates.

Some idea of the dramatic improvement expected
from the currently running experiments can be obtained
by shrinking the experimental ranges to within a 62
31024 error band corresponding to two ticks on the ver-
tical scale of Fig. 10. This is shown in Fig. 11 by the
horizontal gray band drawn on the central value of the
2-s average of the NA31 and E731 results,

«8/«5~1.461.6!31023, (6.33)

which is obtained by following the Particle Data Group
procedure for error inflation when central values are in
disagreement (Winstein and Wolfenstein, 1993).

Such an improvement in the experimental results will

FIG. 10. Current theoretical predictions for «8/« in units of
1023 in the standard model. The horizontal short bars mark
the central values of each prediction. The two gray areas cor-
respond to the current NA31 and E731 1-s experimental
bounds. In dark gray the naive vacuum saturation approxima-
tion results are shown for comparison (the error bar includes a
variation of the matching scale from 0.8 to 1.2 GeV).
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certainly spur a new wave of theoretical analyses. We
foresee at least three directions that such reanalyses
might take:

• Should the experimental results converge to a com-
mon error range of the order of a few 1024, it will
be useful to focus attention on the central values
obtained by the various theoretical approaches in
order to better understand the most relevant effects
at work. As an example, consider the case in which
the new experimental central value turns out to be
close to or larger than the present average result.
The comparison between the VSA and the
VSA1toy estimates discussed in the present review,
together with the results of the Trieste group, sug-
gest that the cancellation between gluon and elec-
troweak penguin operators may be substantially re-
duced once (i) the complete set of electroweak
O(p2) terms and (ii) higher-order chiral corrections
are taken into account. These effects can in part be
included both in the München estimate, for those
matrix elements that are not determined phenom-
enologically, and in the lattice prediction. Such ef-
fects may in fact account for larger central values
than those currently obtained in those estimates.

• In all estimates uncertainty in the relevant CKM
entries crucially affects the level of theoretical er-
ror. A large fraction (30–40 %) of the theoretical
error on «8/« is related to the uncertainty on Im lt ,
as can be seen by inspection of Eqs. (5.13)–(5.16).
This uncertainty is at present dominated by the de-
termination of B̂K . A precise determination of
Im lt from B physics alone—as expected from the
upcoming B factories and hadronic facilities—will
free this part of the analysis from large hadronic
uncertainties and thus reduce the impact of nonper-
turbative QCD in the theoretical determination of
«8/« .

• Progress in the lattice estimate of hadronic ele-
ments is to be expected in the next few years

FIG. 11. The combined NA31 and E731 experimental bounds
(area within the dashed lines), are compared with the most
recent theoretical estimates for «8/« (in units of 1023). The
gray horizontal band represents the future experimental sensi-
tivity shown around the present experimental average value in
Eq. (6.33).
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(Gupta, 1998; Sharpe, 1998) A reliable estimate of
the parameter B6 is particularly needed. In addi-
tion, achieving the needed precision, of the order of
10% or below in all relevant matrix elements, im-
plies going beyond the quenching approximation.
The inclusion of higher-order chiral corrections can
be also important. Much work is being done at
present that indicates the possibility of addressing
this issue quantitatively in the near future. It is from
lattice QCD that we should expect a conclusive
word on the matter.

VII. NEW PHYSICS AND «8/«; MODEL-INDEPENDENT
ANALYSIS

Physics beyond the standard model may enter the de-
termination of «8/« in many ways. In particular, since
the origin of CP violation is still unclear,

• it remains an open issue whether the CP violation
observed in the K̄0-K0 system stems from complex
Yukawa couplings or from a superweak interaction
that goes beyond the standard model;

• even maintaining that the observed CP violation is
not superweak in nature, other sources of CP vio-
lations may be present in addition to, or in place of,
the standard CKM phase in extensions of the stan-
dard model;

• even if we insist that the CKM phase is the only
source of CP violation, new particle contributions
to the Wilson coefficients of the effective quark
Lagrangians may still be relevant for a detailed pre-
diction of CP-violating observables.

Given the discussion of the previous sections and con-
sidering in particular the comparison between the
present theoretical and experimental results shown in
Fig. 10, it appears to be a difficult task to disentangle
new-physics effects in «8/« . However, one question that
may be asked is whether the present experimental win-
dow allows for visible signals of nonstandard physics. In
order to answer this question we may take the average
2-s result of the NA31 and E731 experiments shown in
Fig. 11 and compare it with the overall range of the most
recent theoretical estimates (which is a reasonable, al-
beit biased, procedure).

It is clear that the case for observable signals of new
physics is marginal, to say the least. In order for new
effects to become visible in «8/« , the next run of experi-
mental data should show a signal in the most unlikely
areas of the present range by pointing to values of «8/«
larger than a few times 1023, to confirm the 2-s upper
range of the NA31 result, or to negative values, to con-
firm the lower side of the 2-s E731 range.

For this reason, we think that it is not necessary to
present an exhaustive (and exhausting) review of all at-
tempts to discover nonstandard physics effects in «8/« .
The interested reader may consult Grimus (1988), Win-
stein and Wolfenstein (1993), Nir (1997), and Fleischer
(1997) for reviews of possible new-physics effects in CP
violation.
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It is nonetheless interesting to analyze whether spe-
cific models affect the standard-model prediction via
definite patterns. In order to do so, let us try to infer,
in sofar as possible in a model-independent way, how
new physics may affect the standard-model prediction.

The key ingredients for a theoretical prediction of
«8/« are the determination of Im lt , from the experi-
mental value of « and B-physics, and the calculation of
all direct contributions to «8. These depend, on the
short-distance side, on the values of the various compo-
nents of the Wilson coefficients and, on the long-
distance side, on the value of B̂K and the DS51 matrix
elements for K→pp .

If we consider that the new effects modify only the
short-distance aspects of the analysis, then the study of «
exhibits a general feature: the new range of values ob-
tained for Im lt is always bounded from above by the
maximum value given in Fig. 4 at r50 by the Vub /Vcb
measurement, which is a tree-level bound and therefore
robust to new effects. As a consequence, no sizable en-
hancement of «8/« with respect to the standard-model
estimate can be expected from a modification of the
short-distance part of «.

On the other hand, the range of allowed values for
Im lt may be substantially reduced by new-physics con-
tributions, thus improving the precision of the «8/« pre-
diction.

Acting on the matchings of the DS51 Wilson coeffi-
cients Ci in Eq. (2.1) at m5mW affects the final outcome
of «8/« . There are patterns that govern the effect of
changing the Ci(mW) on the yi at the low-energy scale
(m.1 GeV) via strong and electromagnetic renormal-
izations.

In Table I, we have schematically reported the distri-
bution of the different types of diagrams that determine
the initial matching of the Wilson coefficients. Since new
heavy particles may show their presence through their
virtual exchange in the diagrams depicted in Fig. 1, and
different types of diagrams show different short-distance
properties, it is important to keep an eye on how the
relevant Wilson coefficients are generated.

In Fig. 12 we show examples of how the various coef-
ficients may mix via QCD renormalization and transmit
the properties of the initial matchings to the other Wil-
son coefficients at the scale of the low-energy process.

A direct look at the structure of the leading-order
anomalous-dimension matrix of the standard DS51 ef-
fective quark operators is sufficient to see qualitatively
how the initial matching conditions may feed down to
the final values of the various coefficients.

Here, as a quantitative and model-independent test,
we have varied the NLO (one-loop) standard-model ini-
tial matchings Yi[Ci(mW) by factors of (21,0,2) and
observed the effects on the corresponding Wilson coef-
ficients yi at the scale of 1 GeV. Our conclusions are the
following:

• Only the varying of Y2 , Y6 , Y7 , and Y9 leads to
effects on the low-energy yi larger than a few per-
cent. (Y8 and Y10 matchings remain zero at the
one-loop level.)
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• Changing the tree-level Wilson coefficient Y2 has a
proportional effect on all the gluonic penguin coef-
ficients (y3,4,5,6) and similarly on y11,12 , because of
the large additive renormalization induced via the
insertion of Q2 in the penguinlike diagrams (d1)
and (d2) in Fig. 12. The influence on y6 of changing
Y2 by a few tens of percent is therefore dramatic for
the prediction of «8/« . On the other hand, one
needs a new particle to replace tree-level W ex-
changes. Tree-level physics dramatically constrains
these contributions. It is therefore unlikely to ex-
pect sizable deviations of Y2 from its standard-
model value.

• Changing Y6 itself in the range given does not have
much effect on y6 or y8 which are affected by less
than 10%. Multiplicative renormalization is not the
leading renormalization effect for gluonic penguins.

• Changing Y7 modifies y7 and y8 proportionally and
may therefore have a dramatic impact on «8/« .

• Changing Y9 modifies y9 and y10 proportionally and
may affect «8/« at the few 10% level via the contri-
bution of Q9 .

It seems therefore that the most relevant potential for
new-physics effects on «8/« resides in the electroweak
penguin sector (see Table I). Indeed Buras and Silves-
trini (1998) have recently shown that bounding the con-
tribution of the effective s̄dZ vertex via «8/« leads to
the strongest constraints on some rare kaon decays that
are governed by Z-penguin diagrams.

On the other hand, new-physics modifications of the
standard-model penguin and box diagrams for DS51,2
transitions also affect the corresponding DB51,2 ampli-
tudes. It is therefore likely that in a specific model the
experimental bounds from B physics may indirectly con-
strain deviations on the electroweak initial matchings
within a few 10% (Fleischer, 1997; Nir, 1997) These
bounds would make it hard for new physics to show up
as deviations from the standard «8/« prediction.

The past literature on the subject confirms the general

FIG. 12. Effective diagrams showing one-loop operator mixing
via strong renormalization.
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conclusion of the above discussion. The effect on «8/« of
charged Higgs particles in the two-Higgs model has been
studied (Buchalla et al., 1991). The same problem has
also been discussed in the more general framework of
softly broken supersymmetry (Gabrielli and Giudice,
1995). In both cases no significant departures from the
standard model are expected once all bounds are prop-
erly implemented.

VIII. CONCLUSIONS (MARCH 1999)

On 24 February 1999 the KTeV collaboration
announced2 a preliminary result based on the analysis of
20 of the data collected, which gives (Alavi-Harati et al.,
1999)

Re «8/«5@2863.0 ~stat!62.6 ~syst!61.0 ~MC stat!#

31024. (8.1)

This result deviates significantly from the previous E731
value of Eq. (1.20) and is in the ballpark of the NA31
result (1.19). This value of «8/« , if confirmed, signals
with high confidence the presence of direct CP violation
in kaon decays, concluding successfully a longstanding
and challenging experimental quest. Theoretically, the
superweak scenario (Wolfenstein, 1964) is then excluded
as the sole source of CP violation.

Averaging Eq. (8.1) with Eqs. (1.19) and (1.20), and
the older E731 result, Re «8/«5(32630)31024, leads to
the value

Re «8/«5~21.863.0!31024. (8.2)

In Fig. 13 we update the comparison between theory
and experiment including the new KTeV result. The
light gray area shows the 2-s range of the average in Eq.
(8.2).

Comparison of the present experimental average with
the theoretical predictions shows a substantial deviation
from the Roma and München estimates. Such a dis-
agreement may be reduced by considering a light ms
[see the discussion after Eq. (6.22)]. The two München
predictions shown in Fig. 13 correspond to ms(mc)
5150620 and ms(mc)5100620 (light gray), respec-
tively.

The Trieste estimate is rather insensitive to ms since
this parameter enters explicitly only at the NLO in the
chiral expansion, while the value of the quark conden-
sate is determined by the fit of the DI51/2 selection
rule.

Let us recall that the most recent (quenched) lattice
estimates of ms find ms(2 GeV)5110623 MeV (Bhat-
tacharya and Gupta, 1998), corresponding to ms(mc)
5129627 MeV. This range of ms is also consistent with
recent QCD sum rule estimates (Colangelo et al., 1997;
Jamin, 1998), while a substantially larger value of ms is
obtained from t decays at LEP. A preliminary result
from the ALEPH collaboration gives ms(mt)5172

2See http://fmphyx-www.fnal.gov/experiments/ktev/ktev.html
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631 MeV (Chen, 1998). In order to assess the theoreti-
cal implications of the KTeV result we need to better
understand the value of ms that is currently used to
parametrize hadronic matrix elements of the crucial op-
erators Q6 and Q8 [for a more detailed discussion see
Keum et al. (1999)].

On the other hand, as we argue in the summary of
Sec. VI, it is premature to take a value of «8/« at the
1023 level as a signal of new physics. In particular, it is
worth observing that

• One of the standard-model predictions, which re-
produces the DI51/2 selection rule and obtains all
matrix elements, is in good agreement with the ex-
perimental average in Eq. (8.2);

• As is shown by the VSA and VSA1 toy models,
and as the Trieste calculation implies, the inclusion
of NLO chiral corrections might alone be sufficient
to increase the standard-model value obtained in
the present phenomenological and quenched lattice
predictions.

At any rate, efforts to improve all theoretical esti-
mates are now required. In particular, a confident as-
sessement of the size of B6 from lattice will be crucial.

As discussed in Sec. VI.C, the uncertainty in all
present theoretical estimates may be substantially re-
duced by a better determination of Im lt , whose error is
presently dominated by the uncertainty on B̂K . A pre-
cise determination of Im lt is expected in the next few
years from B physics at the B factories and at the had-
ronic colliders. In addition, the rare kaon decays KL
→p0nn̄ and K1→p1nn̄ provide together a clean probe
of Im lt (Buchalla and Buras, 1996). While evidence of

FIG. 13. The new 2-s KTeV result (area enclosed by the long-
dashed lines) is compared with the combined 2-s experimental
bounds of NA31 and E731 (area enclosed by the short-dashed
lines). The combined average in Eq. (8.2) is shown (2-s) by the
gray band. The München, Roma, and Trieste theoretical esti-
mates for «8/« are shown with their central values. The
München and Roma predictions include Gaussian treatment of
the input parameters, while the uncertainty in the Trieste esti-
mate corresponds to flat parameter spanning. The second
München prediction (light gray) corresponds to taking a low
ms range [see Eq. (6.24)].
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the latter has been seen at the Brookhaven National
Laboratory, a new experiment at the same laboratory
has been proposed to measure Br(KL→p0nn̄) to within
10% precision by the year 2005. This will allow a deter-
mination of Im lt with a similar accuracy.

In conclusion, the determination of «8/« is a great
challenge to both experimentalists and theorists. As
more precise experimental data become available, im-
provements in the theoretical calculations are also ex-
pected. We hope that the interplay of the two will shed
more light on the flavor structure of the standard model
and on some nonperturbative aspects of QCD.

Note added. As of July 1999, the NA48 Collaboration
(CERN) has announced the preliminary result (Fanti
et al., 1999)

Re «8/«5~18.567.3!31024,

based on the data collected in 1997 (about 20% of all
data).

By computing the average among the two 1992 ex-
periments (NA31 and E731) and the preliminary results
of KTeV and NA48 one obtains

Re «8/«5~21.264.6!31024,

where the error has been inflated according to the Par-
ticle Data Group procedure (in our case s→s
3Ax2/3), to be used when averaging over experimental
data with substantially different central values.
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