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Dramatic advances in the understanding of x-ray absorption fine structure (XAFS) have been made
over the past few decades, which have led ultimately to a highly quantitative theory. This review
covers these developments from a unified multiple-scattering viewpoint. The authors focus on
extended x-ray absorption fine structure (EXAFS) well above an x-ray edge, and, to a lesser extent,
on x-ray absorption near-edge structure (XANES) closer to an edge. The discussion includes both
formal considerations, derived from a many-electron formulation, and practical computational
methods based on independent-electron models, with many-body effects lumped into various inelastic
losses and energy shifts. The main conceptual issues in XAFS theory are identified and their relative
importance is assessed; these include the convergence of the multiple-scattering expansion,
curved-wave effects, the scattering potential, inelastic losses, self-energy shifts, and vibrations and
structural disorder. The advantages and limitations of current computational approaches are
addressed, with particular regard to quantitative experimental comparisons.
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I. INTRODUCTION

X-ray absorption fine structure (XAFS) refers to the
oscillatory structure in the x-ray absorption coefficient
just above an x-ray absorption edge. This turns out to be
a unique signature of a given material; it also depends
on the detailed atomic structure and electronic and vi-
brational properties of the material. For this reason,
XAFS is a very important probe of materials, since
knowledge of local atomic structure, i.e., the species of
atoms present and their locations, is essential to progress
in many scientific fields, whether for biology, chemistry,
electronics, geophysics, metallurgy, or materials science.
However, extracting this information with precision in
the often complicated, aperiodic materials of importance
in modern science and technology is not easy, even with
the subtle and refined experimental techniques currently
available.

Over the past three decades the technique of XAFS
has made great strides toward the goal of providing such
information. The existence of intense new synchrotron
x-ray sources alone was not enough to achieve this goal,
even though such facilities spurred considerable
progress. In addition, the full success of the XAFS tech-
nique must be attributed in large part to advances in
theory, which have led ultimately to a highly quantita-
tive understanding of the phenomena. The purpose of
6212(3)/621(34)/$21.80 ©2000 The American Physical Society
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this article is to review these advances, many of which
have taken place only within the last decade. We focus
primarily on extended XAFS (EXAFS), the fine struc-
ture in the absorption well above an x-ray edge, which is
now largely understood in terms of a high-order
multiple-scattering theory. To a lesser extent, we also
discuss progress in understanding the fine structure close
to an edge, i.e., the x-ray absorption near-edge structure
(XANES), from the same unified one-particle, multiple-
scattering viewpoint. However, the theory of XANES is
not as yet fully quantitative and requires different physi-
cal considerations. Although this field is the subject of
many current investigations, a complete understanding
remains elusive. Therefore this review is generally re-
stricted to the regime where the multiple-scattering ex-
pansion can be assumed to be convergent and the theory
is well established. This region typically begins several
eV or more above an absorption edge. Earlier reviews
of the field are given, for example, by Lee et al. (1981),
and in Koningsberger and Prins (1988). We begin with a
summary of the fundamental physics of x-ray absorption
and a brief historical review of the theory in this field.
We then summarize the key ideas and outline the con-
tent of the remainder of this review.

A. X-ray absorption

X-ray absorption spectroscopy measures the absorp-
tion of x rays as a function of x-ray energy E5\v . More
specifically, the x-ray absorption coefficient m(E)5
2d ln I/dx is determined from the decay in the x-ray
beam intensity I with distance x (Fig. 1). If the absorp-
tion coefficient is plotted as a function of E (Fig. 2), the
experimental data show three general features: (1) an
overall decrease in x-ray absorption with increasing en-
ergy; (2) the presence of a sharp rise at certain energies
called edges, which roughly resembles step-function in-

FIG. 1. Schematic view of x-ray absorption. I0 is the intensity
of the incoming x-ray beam, which has a cross-sectional dimen-
sion (width) a . Inside the slab of absorbing material (of total
depth x), the intensity is i , and there is a loss of intensity dI in
each infinitesimal slab of the material dx . After the x ray has
traversed a distance x into the slab, the intensity has been
reduced to I5I0e2mx, where m is the definition of the absorp-
tion coefficient. This figure was redrawn; it is based on Fig. I.1
of Müller (1980).
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creases in the absorption; and (3) above the edges, a
series of wiggles or oscillatory structure that modulate
the absorption, typically by a few percent of the overall
absorption cross section.

The first feature is illustrative of the well-understood
quantum-mechanical phenomenon of x-ray absorption
by atoms, as described, for example, by Fermi’s ‘‘golden
rule’’ in standard texts (e.g., Messiah, 1966). The energy
position of the second feature is unique to a given ab-
sorption atom and reflects the excitation energy of
inner-shell electrons. The third feature is the XAFS that
is of primary interest in this review. When interpreted
correctly, this feature contains detailed structural infor-
mation, such as interatomic distances and coordination
numbers. The XAFS spectrum x is defined phenomeno-
logically as the normalized, oscillatory part of the x-ray
absorption above a given absorption edge, i.e.,

x~E !5@m~E !2m0~E !#/Dm0 , (1)

where m0(E) is the smoothly varying atomic-like back-
ground absorption (including contributions, if any, from
other edges), and Dm0 is a normalization factor that
arises from the net increase in the total atomic back-
ground absorption at the edge in question. In practice,
this normalization factor is often approximated by the
magnitude of the jump in absorption at the edge. The
error in this approximation can be accounted for by a
small (typically about 10%) correction to the XAFS
Debye-Waller factor, which is called the McMaster cor-
rection (see Sayers and Bunker, 1988).

Each absorption edge is related to a specific atom
present in the material and, more specifically, to a
quantum-mechanical transition that excites a particular
atomic core-orbital electron to the free or unoccupied
continuum levels (ionization of the core orbital). The
nomenclature for x-ray absorption reflects this origin in
the core orbital (Fig. 3). For example, K edges refer to
transitions that excite the innermost 1s electron. The
transition is always to unoccupied states, i.e., to states
with a photoelectron above the Fermi energy, which
leaves behind a core hole. The resulting excited electron
is often referred to as a photoelectron and in a solid
generally has enough kinetic energy to move freely
through the material. This occurs even in insulators,

FIG. 2. Schematic view of x-ray absorption coefficient as a
function of incident photon energy. Four x-ray edges are
shown: K , L1 , L2 , and L3 . Note that the overall decrease in
absorption as a function of energy is punctuated by four sharp,
step-function-like increases at each edge. Above each edge are
the oscillatory wiggles known as the EXAFS. This figure was
redrawn; it is based on Fig. I.2 of Müller (1980).
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since the excited states are almost always extended
states (quasifree states in molecules and conduction-
band states in solids). The energies of the edges (or ion-
ization energies) are unique to the type of atom that
absorbs the x ray, and hence themselves are signatures
of the atomic species present in a material.

The generally weak oscillatory wiggles (Fig. 4) beyond
about 30 eV above the absorption edge were eventually
termed EXAFS (extended x-ray absorption fine struc-
ture) by Prins and Lytle (Lytle, 1965); see Lytle (1999)
for a discussion of the history of this nomenclature. As
noted above, this fine structure contains precise infor-
mation about the local atomic structure around the atom
that absorbed the x ray. In contrast, the region closer to
an edge is often dominated by strong scattering pro-
cesses as well as local atomic resonances in the x-ray
absorption and is generally not as readily interpreted as
EXAFS. This region of strong scattering is referred to as
the x-ray absorption near-edge structure, or XANES,
and typically lies within the first 30 eV of the edge posi-
tion. The more general term XAFS was introduced by
Rehr et al. (1986) to refer to the fine structure in both
XANES and EXAFS, following the recognition that
they both have a common origin, namely, the scattering
of a photoelectron by its environment.

B. Early history of XAFS

Roughly 70 years have elapsed since the phenomenon
of EXAFS was first observed, and it has taken nearly

FIG. 3. The relationship between the x-ray absorption edges
and the corresponding excitation of core electrons. Shown are
the excitations corresponding to the K , L , and M x-ray ab-
sorption edges. The arrows show the threshold energy differ-
ence of each edge. Any transitions higher in energy (to unoc-
cupied states above the Fermi energy EF) are also allowed.
This figure was redrawn; it is based on Fig. 1 of Grunes (1983).
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that long to realize that accurate, detailed, structural in-
formation could be extracted from it and to develop a
quantitative theory. Early progress was impeded by ex-
perimental limitations of the then available x-ray
sources. For recent historical reviews, see, for example,
Lytle (1999) and Stumm von Bordwehr (1989). More-
over, the theoretical interpretation was also not clear cut
at that time. This is not surprising, since a full treatment
turns out to depend on many complicated details of
atomic and molecular structure, high-energy electron-
atom scattering, many-electron processes, vibrational
structure, and disorder. Indeed, much of this physics has
only been unraveled within the past 30 years, and a fully
quantitative theory was not developed until the present
decade. Remarkably, many of the developments needed
to explain EXAFS are complementary to advances in
our understanding of ground-state electronic structure,
e.g., the development of the density-functional formal-
ism (Kohn and Sham, 1965) for band-structure calcula-
tions or low-energy excited states. Unfortunately, how-
ever, many of these modern electronic-structure codes,
such as, for example, the linear muffin-tin orbital code of
Andersen (1975; see also Skriver, 1984) or the full-
potential linear augmented plane-wave codes (e.g.,
Blaha et al., 1997), are not completely applicable at the
high energies typically encountered in XAFS (i.e., they
require additional modifications, such as hugely ex-
panded basis sets and an energy-dependent exchange-
correlation potential; see Sec. III.B.1).

In the early years, the precise origin of EXAFS was
controversial (Parratt, 1959; Azaroff, 1963; Lytle, 1999).
From general principles of quantum-mechanical transi-
tion rates, it was expected that x-ray absorption should
be governed by the Fermi ‘‘golden rule’’ in terms of a
squared transition matrix element times a density of

FIG. 4. The relationship between the x-ray absorption coeffi-
cient m(E), the smooth atomiclike background m0(E), and
x(E) for a Cu K edge. Usually x is plotted as a function of k .
Here the x axis for the x plot has been converted to energy
units to make it consistent with the other plots. The values for
x have been multiplied by a factor of 3 relative to the m(E)
plot to make it show up better. Notice that x oscillates around
zero.
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states for available energy levels. Kronig (1931) origi-
nally interpreted the XAFS oscillations in crystals as a
density-of-states effect, due to the strong diffraction of
electrons by the crystal lattice, the so-called long-range-
order theory. However, the very fine structure present in
the density of states due to long-range Bragg scattering,
e.g., the sharp van Hove–type peaks observed in band-
structure calculations, is generally much too detailed to
explain the observed EXAFS, and attempts to match
EXAFS peaks with predictions of long-range-order
theories proved unsatisfactory. Shortly thereafter, Kro-
nig presented an alternative theory for small molecules,
in which the oscillatory structure in EXAFS was attrib-
uted to the influence of neighboring atoms on the tran-
sition matrix element in the golden rule, i.e., a short-
range-order effect (Kronig, 1932). This type of theory is
most often used today to explain the origin of XAFS,
although, as we shall see later, both long- and short-
range-order theories can be reconciled when appropri-
ate broadening is introduced.

The short-range-order theory reflects the quantum-
mechanical wavelike nature of the final, excited, photo-
electron state. That is, the dominant wiggles in the
XAFS spectrum are interpreted as a quantum-
interference phenomenon. The outgoing photoelectron
can be viewed as a quantum wave that spreads out over
the solid, much as a rock thrown in a pond creates an
expanding spherical wave in water. In the same way that
water waves reflect off of any obstacles in the pond and,
in turn, reflect other waves back toward the original
point of the splash, so will other atoms reflect the elec-
tron wave back towards the original atom (see Fig. 5).
The amplitude of all the reflected electron waves at the
absorbing atom add either constructively or destruc-
tively to the outgoing photoelectron wave and hence

FIG. 5. Pictorial view of the multiple scattering of an outgoing
wave off neighboring atoms. The topmost atom is the original
source of the wave, which diffracts first off the atom at the
lower left and finally off the atom at the lower right. Each
successive outgoing spherical wave is weaker, which is re-
flected in the thickness of the spherical wave fronts. This type
of path is called a triangular path.
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modulate the matrix element between the initial and fi-
nal states that controls the strength of the transition.
Because this interference pattern changes with the en-
ergy of the photoelectron (note that the de Broglie
wavelength l of the electron wave varies inversely with
the wave vector k or momentum of the electron), the
matrix element, and consequently the absorption, will
exhibit similar oscillations.

The modern resolution to the controversy between
the short- and long-range-order approaches lies in the
energy-dependent competition between scattering
strength and inelastic losses. A crucial element is the
recognition that a high-energy, excited photoelectron
state is not infinitely long lived, but must decay as a
function of time and distance and hence cannot probe
long-range effects. This decay is due primarily to inelas-
tic losses (i.e., ‘‘extrinsic losses’’) as it traverses the ma-
terial, either by interacting with and exciting other elec-
trons in the solid, or by creating collective excitations
(e.g., losing energy to plasmon production). In addition,
the intrinsic lifetime of the core-hole state (i.e., ‘‘intrin-
sic losses’’) must be considered. In phenomenological
terms, the original outgoing wave of the excited photo-
electron dies away as it moves further away from the
absorbing atom. Ultimately it becomes too weak to sig-
nificantly reflect any waves off of distant atoms. The re-
turning reflected waves also suffer this same type of ex-
tinction. The net effect is that XAFS can only measure
the local atomic structure over a range limited by the net
lifetime (or effective mean free path) of the excited pho-
toelectron. This range is typically on the order of tens of
angstroms or an inverse lifetime of a few eV and roughly
follows a universal dependence (see, for example, Seah
and Dench, 1979). The short-range-order theory focuses
on this short-range interference between several impor-
tant scattering paths.

The long-range-order theory, on the other hand, em-
phasizes the density of states of the extended, excited-
state, energy levels of the entire material, which can be
important at low energies or for strong scattering. In-
deed, such an approach is often needed for descriptions
of ground-state electronic structure, for example, by
band-structure codes. However, as we shall discuss later
on, properly broadening the results of this type of ap-
proach with the inelastic losses and lifetime consider-
ations in effect washes out the fine structure in the spec-
tra due to the long-range nature of the energy states,
thereby recovering the results of short-range-order
theory at sufficiently high energies. As noted above, the
core hole that is left behind by the excited electron (see
Fig. 3) also has a finite lifetime, since higher-lying atomic
electrons can make transitions to fill this core hole (ei-
ther directly, by falling into the orbital and emitting pho-
tons as radiative transitions, or indirectly in two-electron
nonradiative Auger transitions). Through the uncer-
tainty principle, any state with a finite lifetime does not
have a sharp (or delta-function-like) energy level, but is
better thought of as having a finite width, e.g., a Lorent-
zian line shape. In practice, these intrinsic losses lead to
an additional broadening of the spectrum and dominate
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the effective mean free path at threshold. Core widths
can be as large as several eV for the deeper core states
of heavy atoms, but are relatively small (of the order of
0.1 eV) for light atoms and shallow transitions, com-
pared to the effective widths due to extrinsic losses
(typically about 5 eV). Indeed, residual long-range ef-
fects often persist, especially in materials with long life-
times and strong scattering.

C. Structural information in XAFS

It was only in the early 1970s, following the pioneer-
ing work of Sayers, Stern, and Lytle (1971), that it was
widely recognized that these interference patterns or
wiggles in the XAFS spectra could be used to obtain
quantitative information about the local structure near
an absorbing atom from a short-range-order theory.
This wiggly structure has embedded within it informa-
tion about near-neighbor distances, coordination num-
bers, and fluctuations in bond distances. The main ob-
stacle to extracting this information is the necessity of an
accurate theoretical model or an experimental reference
compound to calibrate the measurements. Theoretical
models are actually preferable, since experimental refer-
ences are not generally useful beyond the first coordina-
tion shell and often are not readily available. Fortu-
nately, such theoretical models for XAFS are now
comparable in accuracy to experimental reference mate-
rials, and they are available throughout the periodic
table; their development was due to many theoretical
advances (for reviews, see, for example, Lee et al., 1981
and Koningsberger and Prins, 1988) that have been fos-
tered and tested by precision experiments over the past
three decades using modern high-intensity synchrotron-
radiation sources. In particular, an accurate, general,
theoretical treatment has emerged during the past sev-
eral years. Thus it now appears that the phenomenon of
XAFS in the extended regime (EXAFS), beyond about
20–30 eV from an edge, is generally well understood
(Rehr et al., 1992; Zabinsky et al., 1995; see also Binsted
et al., 1987, and Filipponi et al., 1995), albeit within ac-
ceptable tolerances. This degree of knowledge is suffi-
cient to make the XAFS technique reliable for experi-
mental structure determinations accurate to about 0.02
Å or better.

The needed theoretical developments did not all come
at once, but through a series of continual refinements
that were incorporated one by one. To give an overview
of these developments it is useful to review the heuristic
treatment of XAFS, starting with the more precise,
semi-phenomenological treatment of Stern et al. (1975),
which led to the now standard EXAFS formula.

First, we summarize the main physical quantities of
interest. The x-ray absorption coefficient m(E), which is
the attenuation of the x-ray beam per unit distance, is a
strong function of x-ray energy E5\v and exhibits
abrupt jumps at ‘‘absorption edges,’’ i.e., the thresholds
\v5uEcu for photoexcitation of electrons from deep
atomic core levels Ec . If the x-ray photon has an energy
higher than the threshold energy Ec , the extra energy is
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
taken up by the excited photoelectron as a higher kinetic
energy. In order to separate the structural information
from the energy dependence of the absorption cross sec-
tions, the normalized XAFS spectrum x (see Fig. 4) is
usually defined as the normalized oscillatory part of m,
as in Eq. (1). Conventionally, x is often defined with
respect to the ‘‘photoelectron momentum index’’ k
5A\v2uEcu, as measured from threshold, i.e., one de-
fines x(k) rather than x(E) on an absolute energy scale.
Note too that this definition of k differs from the physi-
cal momentum p in a solid, which reduces to the Fermi
momentum kF at threshold. Often the normalization
constant Dm0 is taken to be the jump in absorption m0 at
the edge (edge-jump normalization), but more precisely
it should be considered as a function of energy in order
to make contact with theory, as discussed below. The
quantity m0 is the relatively smooth, atomic-like, back-
ground absorption of an ‘‘embedded atom,’’ in the ab-
sence of neighboring scatterers (see Fig. 4). This is the
absorption that would, in principle, be measured from a
modified atom, as it exists in a condensed material, if
one could turn off all the interference by the reflected
waves from the neighboring atoms; it thus differs from
that of a free atom.

According to the Fermi golden rule, the x-ray absorp-
tion coefficient m is proportional to a transition matrix
element squared. For highly localized core electrons the
transition matrix element is proportional to the prob-
ability uck(r)u2 that the photoelectron is found at the
atom where the photon is absorbed. (Typically, the core
orbitals are of size 1/Z in Bohr units, where Z is the
atomic number. Throughout this paper we shall gener-
ally use atomic units e5\5m51 in theoretical formu-
las; however, experimental distances will generally be
given in Å and energies in eV.) The total wave ck can
be expressed in terms of an outgoing wave emitted at
the absorbing atom plus incoming waves that are scat-
tered back by neighboring atoms (see Fig. 5). For a wave
reflected straight back by a neighboring shell of atoms,
the phase difference between these components is ap-
proximately 2kR , where R is the distance to the shell of
atoms and k;1/l is the photoelectron wave number, l
being the de Broglie wavelength. Thus l decreases with
increasing energy, and the modulation in m arises from
the alternating constructive and destructive interference
between these components as the photon energy is var-
ied. The amount of interference also depends on the
strength of the reflection from the neighboring atoms
(the backscattering amplitude) and the number of scat-
terers.

The validity of the Kronig short-range-order theory
was largely substantiated by Sayers et al. (1971), who
developed a quantitative parametrization of EXAFS
that has become the standard for much current work:

x~k !5(
R

S0
2NR

uf~k !u
kR2

3sin~2kR12dc1F!e22R/l(k)e22s2k2
. (2)
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Here the structural parameters are the interatomic dis-
tances R , the coordination number (or number of
equivalent scatterers) NR , and the temperature-
dependent rms fluctuation in bond length s, which
should also include effects due to structural disorder. In
addition, f(k)5uf(k)ueiF(k) is the backscattering ampli-
tude, dc is central-atom partial-wave phase shift of the
final state, and l(k) is the energy-dependent XAFS
mean free path (not to be confused with the de Broglie
wavelength). Although the overall amplitude factor S0

2

did not appear in the original formula, we have added it
here for completeness, since the resulting equation can
be obtained from a more detailed many-body theory dis-
cussed below (Sec. II.C), provided the terms are appro-
priately renormalized. Moreover, although the original
EXAFS formula referred only to single-scattering con-
tributions from neighboring shells of atoms, the same
formula can be generalized (Rehr and Albers, 1990) to
represent the contribution from NR equivalent multiple-
scattering contributions of path length 2R as outlined
below. Thus we shall refer to Eq. (2) as the standard
XAFS formula.

In a very transparent and simple form, this formula
contains all of the key elements that a correct theory
must have and also provides a convenient parametriza-
tion for fitting the local atomic structure around the ab-
sorbing atom to the experimental EXAFS data. Most of
the eventual improvements of the theory can be viewed
as successive refinements of these key elements. The de-
pendence of the oscillatory structure on interatomic dis-
tance and energy is clearly reflected by the sin(2kR)
term. The decay of the wave due to the mean free path
or finite lifetime (including core-hole lifetime) of the
photoelectron is captured by the exponential term
e22R/l. This factor is largely responsible for the rela-
tively short range (generally a few tens of Å) in a mate-
rial probed by EXAFS experiment. The strength of the
reflected interfering waves depends on the type and
number of neighboring atoms through the backscatter-
ing amplitude uf(k)u [Fig. 6(a)], and hence is primarily
responsible for the magnitude of the EXAFS signal.
Other factors, namely, the spherical-wave factors 1/kR2

and mean-free-path terms, are secondary but important
for a quantitative behavior of the EXAFS amplitude.
The phase factor F5arg f(k) [Fig. 6(b)] reflects the
quantum-mechanical wavelike nature of the backscatter-
ing. A somewhat larger contribution to the overall phase
is given by the phase shift dc at the absorbing atom,
since the photoelectron sees the potential created by this
atom twice. These phase shifts account for the difference
between the measured and geometrical interatomic dis-
tances, which is typically a few tenths of an Å and must
be corrected by either a theoretical or an experimental
reference standard (see Fig. 7).

Another effect that we have not yet discussed is the
Debye-Waller factor, which is given to a good approxi-
mation by e22s2k2

. This factor is due partly to thermal
effects, which cause all of the atoms to jiggle around
their equilibrium atomic positions. These slight move-
ments smear the sharp interference pattern of the rap-
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
idly varying sin(2kR) term that would be seen if the at-
oms were unmoving (Fig. 8). Effects of structural
disorder are similar, and they give an additive contribu-
tion to s2. This Debye-Waller effect becomes more pro-
nounced the shorter the wavelength of the photoelec-
tron, and hence it cuts off the EXAFS at sufficiently
large energy beyond about k;1/s , which is typically of
order 10 Å21. Thus the Debye-Waller factor is essential
in EXAFS, but is often negligible in XANES, when
s2k2!1. Moreover, since s2 generally increases with
temperature T (the vibrations become larger at higher
temperatures), the EXAFS tends to ‘‘melt’’ at high tem-
peratures, being confined to successively lower regions
of energy. Finally, the overall amplitude factor S0

2 is a
many-body effect due to the relaxation of the system in

FIG. 6. Comparison of the k dependence of the effective back-
scattering amplitude ufeff(p,R)u evaluated at Rnn52.55 Å (solid
line) and for comparison the result for the plane-wave approxi-
mation (long dashes), which is equivalent to setting R5` . The
dotted line, which is the k dependence of the amplitude evalu-
ated at 2Rnn , illustrates the approximate linear dependence of
feff on 1/R . The angle p indicates that the amplitude is for
scattering the wave directly backwards (at 180 degrees). This is
the relevant amplitude for conventional single-scattering EX-
AFS. Part (a) gives the magnitude of feff and part (b) its phase.
This figure was redrawn; it is based on Fig. 1 of Rehr et al.
(1986).
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response to the creation of the core hole. Although S0
2 is

weakly energy dependent, it is usually approximated by
a constant. A fully quantitative theory has yet to be de-
veloped.

The inclusion of inelastic losses and Debye-Waller
factors was crucial to the success of the modern short-

FIG. 7. Filtered total XAFS phase (2dc1F) for the first co-
ordination shell of Cu, Pt, and GeCl4 from FEFF (solid curves)
and from similarly filtered experimental data (dashed curves).
This figure was redrawn; it is based on Fig. 3 of Rehr et al.
(1991).
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range-order theory of XAFS. Moreover, using the rep-
resentation of EXAFS given by Eq. (2), Sayers et al.
(1971) showed that a Fourier transform of the XAFS
with respect to k corresponds to an effective radial dis-
tribution function, with peaks near the first few near-
neighbor distances. This important observation paved
the way for using EXAFS as a general probe of micro-
scopic structural information in molecules and solids.
The technique is especially important in noncrystalline
materials, where lattice methods like x-ray diffraction
can be inapplicable. Conversely, the validity of the long-
range-order theory depends on the absence or weakness
of these decay factors.

A key development has been the development of an
accurate treatment of scattering by taking curved-wave
effects into account. A simplification made in early work
is the approximate treatment of the shape of the elec-
tron waves. At large distances from the center of a wave,
the curvature of a spherical wave front lessens, and it
becomes more and more plane-wave-like. The math-
ematics of the scattering of plane waves is considerably
simpler than that of curved waves and can be treated by
a plane-wave scattering amplitude f(k). This approxi-
mation, which is sometimes called the plane-wave ap-
proximation, was originally used to derive the simple
result of Eq. (2). A more precise treatment of the plane-
wave approximation was later given by Lee and Pendry
(1975), which identified two contributions. One is the
‘‘small-atom’’ or ‘‘point-scattering approximation,’’
namely, the use of plane-wave scattering amplitudes,
and the second is the ‘‘small-wavelength approxima-
tion,’’ which approximates the Hankel-function behav-
ior of the outgoing spherical wave as simple exponen-
tials. At low energies or short distances, where the
FIG. 8. Temperature depen-
dence of EXAFS, k2x(k) data,
for Ag (K edge) at 300, 500,
and 800 K. This figure was pro-
vided by M. Newville.
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curvature is more pronounced, it is especially important
to remove the second approximation. This is fairly easy
to do at the single-scattering level. Indeed, some early
work (Sayers et al., 1971) was based on the ‘‘point-
scattering approximation,’’ although that alone is insuf-
ficient to correct the theory. Subsequently, fast and ac-
curate single-scattering, curved-wave theories were
developed (Müller and Schaich, 1983), but at the ex-
pense of a somewhat more complex mathematical treat-
ment. Later it was shown (Rehr et al., 1986; Rehr and
Albers, 1990) that the entire theory, including multiple-
scattering terms, can be recast exactly as in the standard
EXAFS equation, but with an effective scattering ampli-
tude feff(k,R) replacing the plane-wave scattering ampli-
tude (Fig. 6). A similar result is implicit in the formula-
tion of Lee and Pendry (1975) in terms of a scattering
factor Z . Moreover, a simplified but accurate,
asymptotic, spherical wave approximation for feff was
developed (Rehr et al., 1986), which explains the physi-
cal origin of curved-wave effects in terms of an addi-
tional phase shift in each partial wave of exp@2l (l
11)/2kR2# . Tables of curved-wave phases and ampli-
tudes were also calculated and made available (McKale
et al., 1986; Rehr et al., 1991), thus improving on the
plane-wave phases and amplitudes (Teo and Lee, 1979).

D. Multiple scattering

Another key development in the theory is that of an
accurate treatment of multiple-scattering effects. One
obvious weakness of the phenomenological EXAFS
theory is that it takes into account only the simplest, but
usually the most dominant, form of scattering, i.e., re-
flections by neighboring atoms directly back to the ab-
sorbing atom (this type of scattering is often called
‘‘backscattering’’ or ‘‘single scattering’’). More gener-
ally, atoms can reflect the electron wave onto other at-
oms that then reflect off of still other atoms (Fig. 5).
Such multiple scattering is now known to be essential for
accurate calculations of the absorption coefficient in
most materials. In particular, multiple scattering by at-
oms along a linear path, the so-called focusing or shad-
owing effect, can exceed the backscattering contribu-
tions in magnitude (Lee and Pendry, 1975). The beauty
of the formulation of Sayers et al. (1971) is that a Fou-
rier transform made it possible to filter the contributions
to the absorption by a path-length criterion. For ex-
ample, if the scattering observed in the transform in-
volved the shortest path length (twice the nearest-
neighbor distance), backscattering was the only possible
type of scattering that contributed significantly, and
hence Eq. (2) was essentially correct in this respect, ex-
cept for small corrections due to the leakage of longer-
distance contributions into the first-shell signal. How-
ever, in order to reliably extract more general atomic-
structure information beyond nearest-neighbor bond
distances, it has proved crucial to include multiple-
scattering effects, as we discuss below.

The formal multiple-scattering theory (Beeby, 1964)
of XAFS has been derived based on both the Green’s-
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function method (Schaich, 1973; Ashley and Doniach,
1975) and the wave-function approach (Lee and Pendry,
1975). The pioneering EXAFS theory paper by Lee and
Pendry (1975) showed that the two approaches were
equivalent and gave the first quantitative treatment of
both backscattering and multiple-scattering effects. It
was also found that the much simpler plane-wave ap-
proximation for the backscattering terms, together with
an ad hoc inner potential shift, could be a fairly good
approximation at high energies (Lee et al., 1981). How-
ever, Rehr et al. (1986) showed that curved-wave correc-
tions are actually important at all energies and intro-
duced an asymptotic spherical wave approximation,
which largely accounted for the main curved-wave ef-
fects in backscattering. The plane-wave approximation
also simplifies multiple-scattering calculations, as shown
by Lee and Pendry (1975), but the results generally con-
tain significant errors both in phase and in amplitude.
While somewhat better, the spherical wave approxima-
tion also proved to be unsatisfactory in a fully quantita-
tive theory. Unfortunately, since Clebsch-Gordan coef-
ficients proliferate for higher-order scattering, an exact
treatment of curved-wave contributions based on angu-
lar momentum algebra (Messiah, 1966) is computation-
ally demanding and was a major bottleneck in the devel-
opment of precise theoretical calculations. Despite these
difficulties, analytical curved-wave theories were subse-
quently developed for up to third-order multiple scatter-
ing (i.e., four-leg paths; Gurman et al., 1986). Iterative
methods for going to even higher order were developed
by Natoli and collaborators (Brouder et al., 1989). How-
ever, these methods are all generally limited to small
clusters or low energies due to the large angular mo-
menta and consequent complexity of the calculations.
Moreover, the inclusion of thermal vibrations and disor-
der in such ‘‘exact’’ methods is nontrivial without ap-
proximations such as an average only over the exponen-
tial dependence ^eikR& for a given path length R . For
these reasons, neither the plane-wave approximation,
the spherical wave approximation, nor exact methods
provide practicable schemes for accurate multiple-
scattering calculations of EXAFS much beyond the first
coordination shell.

A strategy that overcomes all of these computational
problems was developed by the present authors (Rehr
and Albers, 1990). This method is based on a rapidly
convergent separable representation of the electron
propagator, which permits fast, accurate calculations of
any multiple-scattering path. However, the calculations
were then limited by a second problem, the exponential
proliferation of multiple-scattering paths of increasing
length. Fortunately, the overwhelming majority of such
paths turn out to have negligible amplitude and can be
eliminated with efficient multiple-scattering path filters
and a fast path-generation and sorting algorithm devel-
oped by Zabinsky et al. (1995). The implementation of
these algorithms into the ab initio EXAFS codes known
as FEFF—named after the effective scattering amplitude
feff in the theory—now makes accurate, high-order,
multiple-scattering calculations of XAFS in general ma-
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terials routine. Due to the success of this prescription,
the multiple-scattering formulation of EXAFS can now
be regarded as a well-understood problem, although the
treatment of inelastic losses and disorder should be im-
proved. This and other approaches will be reviewed in
greater depth later in the paper.

E. Other improvements

Yet another key improvement to early EXAFS theo-
ries came with the replacement of the phenomenological
mean-free-path term by ab initio theoretical calculations
of inelastic losses (Lee and Beni, 1977). This treatment
was based on the complex, energy-dependent, electron-
gas self-energy of Hedin and Lundqvist (1971) in the
local-density approximation. This development also re-
placed the ground-state exchange models by an energy-
dependent exchange potential more appropriate for ex-
cited states. The use of a complex, energy-dependent
self-energy provides a more accurate, system-dependent
description of the damping of the electronic waves in a
material. However, it also complicates the theory, since
the one-electron Hamiltonian is then non-Hermitian
and requires complex phase shifts. Although the Hedin-
Lundqvist model usually leads to excessive loss in the
XANES regime (Tyson et al., 1992; Zabinsky et al.,
1995; Roy and Gurman, 1999), it is generally quite reli-
able for EXAFS. Tables of atomic EXAFS phase shifts
and plane-wave scattering amplitudes based on the
Hedin-Lundqvist model of inelastic losses (Teo and Lee,
1979) served as the original theoretical XAFS standards
for many years. The Hedin-Lundqvist model continues
to be the most widely used self-energy for XAFS calcu-
lations.

Perhaps the most pervasive and important influence
of all of the improvements to the phenomenological
short-range-order theory was the development of fast ab
initio computer codes for the calculation of EXAFS, to-
gether with the ready availability of faster computers.
Such ab initio codes replace the need for tables and give
a more accurate treatment of the local environment than
free-atom approximations on which the tables were
based. Most of these codes now include multiple-
scattering effects, which are important for treating the
EXAFS beyond the first coordination shell. For ex-
ample, the earliest such EXAFS code, known as EX-
CURV (Binsted et al., 1987, 1991), incorporated fast algo-
rithms for precise calculations of curved-wave single,
double, and triple scattering effects and also included
EXAFS analysis tools. A significantly improved set of
theoretical standards is based on an automated, ab initio
code FEFF3 developed by the present authors (Rehr
et al., 1991; Mustre de Leon et al., 1991).1 This imple-
mentation of the theory includes both inelastic losses
(which are neglected by McKale et al., 1986) and curved-
wave effects (which are neglected in the Teo-Lee

1Details on obtaining the FEFF codes can be obtained at
http://leonardo.phys.washington.edu/feff/
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tables), together with an ab initio treatment of the mo-
lecular potential based on overlapped atomic densities.
With all of these ingredients, the theoretical XAFS cal-
culations give quantitative agreement with experiment
for a wide range of materials. This formulation typically
yields distance determinations to better than 0.02 Å and
coordination numbers to within 61 (Rehr et al., 1991).
As a result, many of the discrepancies between EXAFS
and other techniques have been eliminated (Dagg et al.,
1993). But neglecting one or the other, as in various
earlier approaches, usually leads to significant errors.
The accurate parametrization (Mustre de Leon et al.,
1991) of the Hedin-Lundqvist self-energy made calcula-
tions of inelastic losses much easier to implement and
speeded up ab initio calculations considerably. Yet an-
other ab initio multiple-scattering EXAFS code is
GNXAS (Filipponi and DiCicco, 1995; Filipponi et al.,
1995), which is based on an efficient grouping of
multiple-scattering paths for structural analysis.2

F. Outline

In the remainder of this paper, we review in more
detail the modern theoretical approaches to XAFS cal-
culations. We focus primarily on the conceptual ideas
needed for an accurate theory of the XAFS spectra x.
For example, because of the large kinetic energy of the
photoelectron state compared to chemical energies, the
physical considerations needed in XAFS theory are
rather different from those in modern ground-state
electronic-structure calculations or in XANES. We also
focus especially on deep-core-level absorption, which
greatly simplifies the treatment of the initial state. Shal-
low core absorption and optical absorption often require
quite different theories (Zangwill and Soven, 1980; Che-
likowsky and Louie, 1996), such as the time-dependent
local-density approximation. This review is not intended
to address fully the case of XANES, in which, for ex-
ample, the multiple-scattering expansion fails. Nor do
we discuss the analysis of XAFS experiment (Binsted
et al., 1987; Koningsberger and Prins, 1988; Filipponi
and Di Cicco, 1995; Filipponi et al., 1995; Newville et al.,
1995; Westre et al., 1995); the development of which has
followed advances in the theory. Because the fine struc-
ture in both EXAFS and XANES involves fundamen-
tally similar quantum-interference effects, they will be
be discussed from a unified viewpoint, hence the short-
ened acronym XAFS. However, this synthesis is, as yet,
not totally successful. For many reasons, especially due
to atomic, chemical, and many-body corrections, the
quantitative treatment of XANES remains a challenging
and generally unsolved problem. For example, various
atomic effects can become important in XANES and
related spectroscopies (see, for example, de Groot, 1994;
Kotani, 1997). For these reasons, we shall generally limit

2Details on obtaining the GNXAS codes are availlable at http://
www.aquila.infn.it/gnxas/
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this review to a treatment of the XAFS x, rather than
the full absorption spectrum m.

The outline for the rest of the paper is as follows: in
Sec. II we discuss the physical processes involved in
x-ray absorption and how they are included in modern
theories of XAFS. In Sec. III we go into great detail to
show how the multiple-scattering theory can be solved.
This section has been emphasized, since it is the key to
extracting the structural information from XAFS. In the
last two sections (IV and V), we introduce additional
complications due to thermal disorder, show how well
the theory compares to experiment, and summarize the
state of XAFS theory. Finally, we mention some connec-
tions between XAFS and related spectroscopies.

II. KEY APPROXIMATIONS

A. One-electron golden-rule approximation

The dominant mechanism for the absorption of hard
(;10 keV) x rays by matter is the photoexcitation of
electrons. Compton scattering is negligible for thin
samples and pair production in the energy range of in-
terest is forbidden. Moreover, the weakness of the elec-
tromagnetic field (even for current third-generation syn-
chrotron x-ray sources) is such that only processes that
are first order in the field are important. In consequence,
the x-ray absorption coefficient is proportional to the
transition rate as given by Fermi’s golden rule. Most
practical calculations of x-ray absorption are based on
the one-electron approximation of the golden rule,

m}(
f

u^c fup•A~r!uc i&u2d~Ef2Ei2\v!. (3)

Unless otherwise specified, for clarity, we shall use
atomic units (e5\5m51) in the formalism presented
in this paper; when results are calculated for comparison
with experiment, energies will be given in eV and dis-
tances in Å. The reduction to an effective one-electron
approximation is discussed in detail in Sec. II.C.2. The
wave functions c i and c f in this equation refer, respec-
tively, to the initial and final eigenstates of the effective
one-electron Hamiltonians H for the initial state and H8
for the final state, with energies Ei and Ef , respectively.
That is, the states c i and c f are generally calculated with
different self-consistent potentials in a DSCF approxi-
mation (Bagus, 1965), where SCF is an acronym for
‘‘self-consistent field.’’ The use of the final-state one-
particle Hamiltonian to calculate c f is equivalent to the
‘‘final-state rule.’’ The quantity p is the momentum op-
erator and A(r) is the vector potential of the incident
electromagnetic field, which may be taken to be a clas-
sical wave of polarization ê'k̂, i.e., A(r,t)> êA0eik•r.

For deep-core excitations, the spatial dependence of
the electromagnetic field (vector potential A) can usu-
ally be neglected (dipole approximation), i.e., eik•r>1.
Quadrupole corrections are of order (Za)2, where Z is
the nuclear charge seen by a core electron and a
>1/137 is the fine-structure constant. Likewise, local-
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field effects are usually negligible for deep-core excita-
tions (Zangwill and Soven, 1980). Several formally
equivalent representations of the dipole operator exist.
For example, using the commutator @H ,r#5p/m , the
momentum form of the dipole operator can be replaced
by the position form,

ê•¹↔ \v

m
ê•r. (4)

Here H is the effective one-particle Hamiltonian and v
the transition frequency. Similarly, one can derive an
acceleration form. Partly owing to its simplicity and
partly for numerical and physical considerations, the po-
sition form seems preferable for XAFS calculations and
deep-core absorption.

B. Scattering potential

As noted in the Introduction, the oscillatory structure
in the XAFS spectra results from the interference be-
tween contributions to the photoelectron wave function
from various paths the excited photoelectron can take as
it scatters off nearby atoms. In an effective one-electron
theory this excited electron, as it traverses the solid or
molecule, behaves as a quasiparticle that moves in an
effective complex-valued ‘‘optical potential.’’ Such a
lossy potential is needed to calculate the phase shifts,
the scattering, and also the damping of the electron. In
this section we discuss how such a potential is con-
structed for practical calculations, as well as the current
advantages and limitations involved.

The nature of the effective one-particle scattering po-
tential V has been considered by several authors (see,
for example, Sham and Kohn, 1966; Hedin and Lun-
dqvist, 1969; Lee and Beni, 1977; and Fujikawa and He-
din, 1989). Because of the excited-state nature of the
photoelectron, its potential differs significantly from that
used in ground-state calculations based on the local-
density approximation familiar from band-structure
theory. The optical potential V appears in the non-
Hermitian but otherwise Schrödinger-like, one-particle
Dyson equation for the photoelectron (quasiparticle)
states c,

F2
1
2

¹21V~E !Gc5Ec (5)

(in atomic units), or its relativistic generalization in
terms of the Dirac equation. Here the operator

V~E !5Vcoul1S~E ! (6)

consists of the net Coulomb potential Vcoul felt by the
photoelectron and a ‘‘self-energy’’ S(E), which is
analogous to the exchange-correlation potential Vxc in
ground-state calculations (Kohn and Sham, 1965). The
functional form of S(E) depends on the particular ap-
proximation used (Sec. II.C.2.a), but a local approxima-
tion appears to be an excellent approximation for high-
energy excited states, partly due to the decrease of the
de Broglie wavelength with increasing energy. It is also
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crucial that the energy dependence of S(E) be taken
into account. Indeed, the variation in S(E) is typically
about 10 eV over the experimental energy range of EX-
AFS. This variation corresponds physically to turning
off the exchange interaction with increasing energy. The
optical potential is also dependent on the particular
N-particle final state being considered and hence de-
pends on both the core-hole state and the atomic/
molecular configuration of the system (Natoli et al.,
1990). Finally, for practical considerations a spherical
muffin-tin geometry, without corrections, is usually ad-
equate for modern EXAFS calculations. In the final two
subsections we discuss the nature of the potential used,
both within the muffin tin itself and in the interstitial
region between the muffin tins. While muffin-tin poten-
tials may be of questionable validity near an x-ray edge
or for total-energy ground-state calculations, nonspheri-
cal corrections generally diminish rapidly with increas-
ing energy and can generally be neglected in the EXAFS
regime. However, muffin-tin jumps can lead to oscilla-
tory behavior of the phase shifts (Loeffen and Pettifer,
1996) and can also show up in the calculated background
absorption m0 (Holland et al., 1978; Rehr et al., 1994).

1. Muffin-tin approximation

Almost all practical XAFS calculations currently rely
on a muffin-tin geometry (cf. Figs. 9, 10, and 11), which
consists of a spherical scattering potential centered on
each atom and a constant value in the interstitial region
between atoms. A tremendous amount of mathematical

FIG. 9. Schematic drawing of a one-dimensional muffin-tin po-
tential. The solid line between the atoms shows how the flat
interstitial potential truncates the true shape of the potential
(cf. dashed line).

FIG. 10. Schematic drawing of a two-dimensional spherical
approximation inside a Wigner-Seitz or Voronoi polyhedron
centered around each atom. This is an illustration of the effect
of spherical muffin-tin-like approximations for real crystals.
This figure was redrawn; it is loosely based on Fig. 50 of Ziman
(1971).
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machinery has been built up over the last century that
relies on spherical symmetry. The spherical muffin-tin
geometry makes it possible to apply this machinery in a
very efficient way. In the multiple-scattering approach
that most directly connects to the underlying atomic
structure of a material (see Sec. III), the muffin tins pro-
vide atomic scattering centers that are described com-
pletely by atomic phase shifts, which are calculated from
spherically symmetric atomiclike potentials inside the
muffin tins. Green’s-function propagators are employed
to connect these scattering centers. Accurate calcula-
tions depend on good potentials, since they determine
the strength of the scattering at each site.

The actual potential in a material (solid or cluster of
atoms) is, of course, more complicated. Near the center
of each atom, the charge density of the atomic core will
be large and dominate the potential. Hence the potential
is approximately atomic-like very close to the nucleus,
where the spherical approximation is highly accurate. In
the outer regions of the atom and between the atoms,
the bonding properties of a material determine the dis-
tribution of charge, and the potential is generally aniso-
tropic. The degree of anisotropy depends on the type of
bonding present (ionic, covalent, or metallic) and the
types of atoms that are bonding. In close-packed metals,
the electronic wave functions overlap so strongly that
the bonding is much more flat and isotropic than in
other, more open systems, where there can be strong
spatial variations.

In EXAFS spectroscopy the kinetic energy of the ex-
cited electron is large, and the electron is less sensitive
to the details of the potential at the outer edges of the
atom and in the regions between the atoms. The elec-
tron is mainly scattered by the inner parts of the atomic
potential and moves more or less freely in the average
potential within the flat interstitial region. It is for this
reason that a spherical muffin-tin potential works so
well. In the near-edge region (XANES) and for ground-
state total-energy calculations, the details of the shape of
the interatomic potential are much more important. In
Sec. II.B.2.a we shall return to a further discussion of
non-muffin-tin effects.

Holland et al. (1978) proposed another effect of the
potential in the outer parts of an atom embedded in a
solid. They suggest that it can give rise to additional
weak backscattering of the photoelectron and hence ex-
tra oscillations in the absorption that resemble EXAFS

FIG. 11. Figure illustrating why a muffin-tin potential is so
named (two-dimensional drawing). This figure was redrawn; it
was based on Fig. 2.7 of Harrison (1970).
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structure, but with an effective distance R that is ap-
proximately half the near-neighbor distance. Additional
work on this subject, which has been termed atomic
XAFS, has been done by Rehr et al. (1995). In particu-
lar, Rehr et al. (1995) suggest that atomic XAFS is sen-
sitive to the nature of the bonding potential. The effect
has been corroborated, for example, by Wende et al.
(1997), Koningsberger et al. (1999), and Ramaker and
O’Grady (1999). However, a definitive theory of atomic
XAFS will likely require corrections to the muffin-tin
approximation. The effects of multielectron excitations
on the atomic background can also be important (Filip-
poni and Di Cicco, 1996), but are typically smaller in
magnitude.

a. Charge density and potential

The potential within a muffin tin depends on the
charge density in this region, and it is essential to use
approximations that conserve overall charge neutrality
for an accurate determination of the energy reference.
Because the muffin tin is centered on a given atom, most
of the charge density is that due to the atom in question,
with only small contributions in the outer parts due to
the tails of neighboring atoms’ charge distributions.

Perhaps the best charge density to use would be that
produced by a modern full-potential self-consistent
electronic-structure calculation (e.g., Blaha et al., 1997).
Such calculations make no shape approximations (i.e.,
they make no muffin-tin or other restrictions on the
shape of the charge density or potential) and include all
modifications of the charge density due to bonding and
other interactions with neighboring atoms. However, as
we shall discuss in Sec. II.B.1.b, such a calculation
should be modified for XAFS by including effects due to
the presence of the core hole. That is, to be consistent
with the final-state rule, the one-electron potential un-
der consideration is usually taken to be the potential of
the final state.

In practice, full-potential calculations are time con-
suming and not yet readily available for many complex
systems studied by XAFS spectroscopies. Remarkably,
they are not usually necessary (except, perhaps, close to
an edge), since scattering off the atomic core is far stron-
ger than scattering off the outer parts of the potential.
Bigger errors come from the treatment of the self-
energy. Thus simpler prescriptions for the potential have
proved to be accurate enough for a wide range of appli-
cations for large excitation energies. The easiest and
most often used approach is based on overlapping, neu-
tral, atomic-charge densities, which turns out to be a
very good approximation to the total ground-state
charge distribution. This prescription, pioneered by
Mattheiss (1964) in the early days of electronic-structure
calculations, requires placing the charge density from a
neutral-atom calculation on each atomic center and then
using a direct superposition of these charges to obtain
the total charge distribution around any given atom. A
muffin tin mainly has the charge density due to the cen-
tral atom. At the edges of the muffin tin, however, some
charge density from neighboring atoms spills in, thus re-
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moving the spherical symmetry. A proper treatment of
this nonspherical charge distribution involves solving a
set of coupled differential equations for the radial wave
functions of different l (angular momentum) instead of
the conventional equation for each l . This is fairly easy
to do and is computationally inexpensive. Suggestions
for how to do this can be found in many places in the
electronic-structure literature, e.g., Evans and Keller
(1971) and Siegel et al. (1976). These corrections are
usually neglected in EXAFS calculations, and the charge
density is spherically averaged, using, for example, the
efficient Loucks (1967) algorithm. The Coulomb poten-
tial is easily calculated for such spherically symmetric
charge densities (Loucks, 1967).

The neutral atomic-charge density may be calculated
in several ways. Both conventional (nonlocal exchange)
Hartree-Fock and local-density-approximation (LDA)
atomic codes are readily available. There are also tables
of charge densities available, such as those by Herman
and Skillman (1963) and Clementi and Roetti (1974).
For heavy atoms, relativistic effects are important and
atomic densities based on a Dirac equation are most
often used, e.g., using the semirelativistic code of Des-
claux (1975) and a generalization of the Dirac-Fock
Desclaux code by Ankudinov and Rehr (1996). LDA
versions of these approaches are usually used for com-
putational efficiency and typically allow a number of dif-
ferent ground-state exchange-correlation potentials to
be used. For example, the von Barth and Grossmann
(1982) exchange-correlation potentials usually yield ac-
curate atomic-charge densities.

In standard electronic-structure calculations a ground-
state LDA exchange-correlation potential is typically
used for crystalline solids, while a Hartree-Fock ex-
change is often used for molecular calculations. As
noted above, for XAFS applications it is important to
take into account the energy dependence of the
exchange-correlation potential, which includes the qua-
siparticle character of the excited electron and reflects
the decreasing importance of the Pauli principle with
increasing energy. XAFS calculations based on ground-
state calculations miss this additional energy depen-
dence and therefore differ systematically from spectra
measured experimentally; see Sec. II.C.2.a.

b. Atomic configurations

In determining the muffin-tin scattering potential, an
important consideration is whether to use (1) (initial-
state rule) the ground-state charge density, or (2) (final-
state rule) the charge density with the core hole present
(which was left behind by the excited photoelectron). In
the latter case, which is currently used most often by
default, the question of the appropriate atomic configu-
ration for the final state with the core hole is not unam-
biguous. For the absorbing atom a reasonable approxi-
mation is a neutral atomic configuration of a free atom
of atomic number Zc11 with a missing electron in a
given core level, corresponding to the fully relaxed ‘‘pri-
mary channel’’ (Rehr et al., 1978). This choice is appro-
priate for low-energy XAFS, and since the primary
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channel usually dominates the XAFS, it is also an ad-
equate approximation at high energies as well. Alterna-
tively one could choose the same configuration as in the
initial state with an appropriate hole and an extra elec-
tron in the lowest unoccupied state. Ionic configurations
are appropriate only for highly ionized materials, but,
due to charge-transfer effects, the net charge on an atom
is usually much smaller than the chemical valence. An-
other choice appropriate for high energies (see, for ex-
ample, Lee and Beni, 1977) is a completely unrelaxed
potential. Usually we have found that XAFS calculated
with a neutral, fully relaxed potential gives very good
agreement with experiment. However, self-consistent
potentials with a better treatment of many-body effects
would be desirable in the future to help avoid these am-
biguities.

2. Interstitial potential

The interstitial region causes more complications for
XAFS than for typical ground-state electronic-structure
calculations or for XANES. These complications are the
following: (1) the most efficient multiple-scattering
treatments assume that the interstitial potential has no
spatial variation (i.e., is constant), which is not generally
true; (2) for excited-state calculations the interstitial re-
gion is lossy and energy dependent; and (3) the critical
parameter for determining structural information (the
wave number k of the excited photoelectron) depends
on the choice made for the average value of the poten-
tial in the interstitial region.

a. Muffin-tin corrections: warping

As discussed above, the electronic charge density in
any real material is more complex than that implied by
the muffin-tin approximation. Inside the muffin tins the
charge density is not perfectly spherical, and in the in-
terstitial region the charge density is not constant. In-
stead, it is often common to find a buildup of charge
between neighboring atoms, where there is significant
bonding. This same effect can be intuitively pictured as a
consequence of overlapping atomic-charge densities,
which also naturally leads to a buildup of charge be-
tween neighboring atoms. In order to evaluate the valid-
ity of the muffin-tin approximation, we review how non-
muffin-tin corrections to the potential are treated in
ground-state electronic-structure calculations.

In the electronic-structure literature the spatial varia-
tion of the charge density in the interstitial region is
sometimes called ‘‘warping’’ of the potential or charge
density. Methods that include this effect are called ‘‘full-
potential’’ techniques (since the muffin-tin potential
captures only the spherical part of the potential and
misses the spatial dependence in the interstitial region).
Such effects are often important for sensitive bonding
properties.

For EXAFS this effect is of less importance. In addi-
tion to the simplification provided by the kinetic energy
of the photoelectron being typically much larger than
the size of the warping potential, in the muffin-tin ap-
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proximation the spatial variations in the interstitial re-
gion are also reduced by subtracting out the average
interstitial potential. This greatly reduces the perturba-
tion on the photoelectron. It is only in the XANES re-
gime that warping begins to be a potentially serious
problem, and then only within a few eV of the edge.

In band-structure approaches the warping has mainly
been treated by taking advantage of the periodicity of
the crystal. Any periodic function in a given crystal can
be expanded in reciprocal-lattice plane waves. Matrix
elements between the basis set used to expand the
ground-state wave functions are typically reexpanded in
a plane-wave basis, which then makes it mathematically
rather easy to calculate the matrix elements that involve
the interstitial potential. For most XAFS calculational
methods, this periodicity is not assumed (except possibly
in band-structure or exact diagonalization approaches;
see Sec. III.B), and the simplicity introduced through
the plane-wave expansions is not possible. Thus includ-
ing warping within the XAFS formalism has been found
to be very difficult. Although a scattering formalism has
been developed by Natoli et al. (1986), it is difficult to
apply in practice. Alternative approaches based on dis-
crete basis sets have also been implemented in XANES
(Ellis and Goodman, 1984; Joly et al., 1999), but appear
to be computationally difficult to extend to EXAFS en-
ergies.

b. Excited-state effects

The spectrum of photoelectron (quasiparticle) states,
moving in the optical potential V defined by Eq. (5), is
determined from the solution to an electron-atom scat-
tering problem. The unperturbed system contains a pho-
toelectron of energy E and angular momentum L
5(l ,m) moving in a uniform (lossy) optical potential,
which is conventionally taken to be the average value
Vint(E)5^V(E)& in the interstitial region. Note that in
general this uniform potential is energy dependent and
complex valued, and hence the concept of a fixed ‘‘inner
potential’’ in XAFS is not well defined. With Vint(E) as
an energy reference, the inelastic loss in a system is
mostly accounted for by the uniform mean-free-path
term calculated at the interstitial density. The scattering
perturbation is then defined as the difference with re-
spect to the uniform potential, which we denote by a
lower-case v . This potential is usually expressed as a
sum over a set of local potentials v j relative to atomic
sites RW j , i.e.,

v5V~E !2Vint5(
j

v j~rW2RW j!. (7)

Some treatments, e.g., Teo and Lee (1979), use a real
muffin-tin zero. Moreover, since there is virtually no in-
elastic loss in V(E) in the high-density core region of
atoms, the scattering potential v(r ,E) is often amplify-
ing in the core region and hence leads to increases in the
backscattering amplitudes and phases compared with
those defined with respect to the vacuum level (Ekardt
and Thoai, 1981).
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c. Energy reference

The variation of Vint(E) over the range of XAFS en-
ergies roughly amounts to the magnitude of the ground-
state exchange hole, i.e., Vxc;2kF /p in atomic units,
where kF is the Fermi momentum and is typically about
10 eV. To circumvent this ambiguity in the comparison
of theoretical XAFS standards with experiment, it is
useful to define a fixed energy reference E0 , the photo-
absorption energy threshold. Experimentally, this
threshold corresponds to the energy at the onset of an
absorption edge. We emphasize that this threshold en-
ergy is not necessarily the midpoint of the main-edge
step in the x-ray absorption coefficient, but rather at the
onset of absorption for a given edge. Self-consistent cal-
culations are needed to determine E0 precisely (Anku-
dinov et al., 1998). However, values of E0 that are typi-
cally valid to within a few eV may be estimated from the
chemical potential m of a homogeneous electron gas at
the average interstitial-charge density. The errors intro-
duced by the electron-gas approximation and the aver-
aging of the interstitial potential and charge density are
such that these estimates are typically a few eV higher
than those from self-consistent calculations (Müller
et al., 1982; Mustre de Leon et al., 1991; Tyson et al.,
1992; Ankudinov et al., 1998).

3. Relativistic effects

Relativistic effects per se have generally played a sec-
ondary role in XAFS theory. Similarly, spin-dependent
effects are usually negligible and are manifestly impor-
tant only when the dominant spin-independent contribu-
tions are forced to cancel, as in x-ray magnetic circular
dichroism; see, for example, Brouder et al. (1996), Ebert
(1996), and Ankudinov and Rehr (1997). To understand
why this is the case, it is useful to review some basic
aspects of electronic-structure theory.

In atomic theory it has long been recognized that rela-
tivistic effects are only important for very heavy (large-
Z) atoms. For such atoms the kinetic energy of the elec-
trons becomes quite large near the nucleus of the atom
where relativistic corrections are essential. Besides
modifying the wave functions and energy eigenvalues of
the electronic states, these corrections also change the
self-consistent potential. In contrast, at large distances
from the atom the kinetic energy of the outermost elec-
trons responsible for bonding properties and the photo-
ejected electrons are usually well into the nonrelativistic
regime. Thus relativity can strongly affect the produc-
tion of the photoelectron and hence the atomic back-
ground m0 (Grant, 1970) through the dipole matrix ele-
ments, but have a weak effect on the propagation of a
photoelectron (Loucks, 1967).

Multiple scattering in turn involves knowledge of both
the photoelectron propagators connecting different at-
oms and the scattering t matrices, which depend on the
phase shifts of the electrons at a muffin-tin radius.
Clearly the electron propagators, which vary as
exp(ikR), are essentially nonrelativistic (assuming para-
magnetic materials with spin-independent potentials),
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and thus most of the propagation involves knowledge of
the electron’s behavior at large distances from the
nucleus where relativistic effects are usually negligible,
even for heavy atoms at the highest EXAFS energies
(about 1500 eV). Thus the only place where relativity
can play a substantial role is in the phase shifts them-
selves. Relativistic effects enter in two ways for such cal-
culations. Because relativistic effects shift wave func-
tions to distances closer to the nucleus, the self-
consistent potential must include relativistic effects.
Secondly, for heavy atoms the wave function near the
nucleus will be modified and affect the integration of the
wave function for calculating the phase shifts, even if the
correct self-consistent potential is known; this will
modify the phase shift. To account for the first effect, it
is standard to use a fully relativistic solution for the core
electrons to get their correct charge density. Within the
local-density approximation for the electronic potential
this is very easy to do and requires almost no computa-
tional overhead.

For calculating the phase shift of the photoelectron,
some approximations have to be made. The chief prob-
lem is symmetry. For the spherically averaged potentials
used in XAFS, the nonrelativistic wave functions are la-
beled by spin and orbital angular momentum (l ). Rela-
tivistic wave functions have total angular momentum la-
bels j as well as an additional label, usually k (Rose,
1961), which specifies whether the l 1s or the l 2s
component is meant (e.g., whether the d3/2 or d5/2 com-
ponent is being used). Because this difference between
relativistic and nonrelativistic theories arises from the
spin-orbit terms in the Dirac equation, a conventional
approach in many electronic-structure methods has been
to use semirelativistic solutions for the wave function
(Andersen, 1975; Koelling and Harmon, 1977). Such as
approach solves the Dirac equation, but averages the
spin-orbit term over the two j components for each l .
This removes the symmetry label problem. In the outer
part of the atom where the electron is clearly in the
nonrelativistic regime, it is easy to match the semirela-
tivistic wave function onto its nonrelativistic form to find
the phase shifts appropriate for a nonrelativistic
multiple-scattering formalism. This approximation is
very accurate and has been used in electronic-structure
calculations since the mid 1970’s; it also works very well
for XAFS calculations (Mustre de Leon et al., 1991).

For very heavy atoms (e.g., 5d’s, 4f’s, and 5f’s) the
spin-orbit splitting of the outermost valence electrons
can be significant, and a better theory is to retain the
relativistic labels and to use the corresponding relativis-
tic phase shifts (Tyson, 1994). Because the muffin-tin
interstitial regions are in the nonrelativistic regime, one
can form the correct linear superposition (using
Clebsch-Gordan coefficients) of the nonrelativistic
Green’s-function propagators to form propagators of
the correct relativistic symmetry (Ankudinov and Rehr,
1997). The multiple-scattering theory thus can be
straightforwardly generalized from the nonrelativistic
treatment (Gonis, 1992).
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C. Many-body effects

1. Inelastic losses

As we have stressed, the inclusion of damping due to
inelastic losses is a key ingredient in the modern short-
range-order theory of XAFS. These losses give the final
photoelectron state a finite lifetime and hence lead ef-
fectively to a broadened one-electron spectrum. It is tra-
ditional to differentiate two types of inelastic losses in
the photoabsorption, namely, intrinsic and extrinsic pro-
cesses. Extrinsic effects refer to losses in propagation of
the photoelectron and include excitations such as plas-
mons, electron-hole pairs, and inelastic scattering in
which the photoelectron loses energy. Many of these
processes are the same as for an electron beam as it
traverses a solid (Quinn, 1962; Sevier, 1972; Powell,
1974; Seah and Dench, 1979; Wagner et al., 1980). These
losses lead to a decay of the final state, which has been
accounted for phenomenologically by an energy-
dependent mean-free-path l(k), i.e, a path-dependent
decay factor exp@22R/l(k)# of EXAFS amplitudes.
However, such extrinsic losses are more precisely de-
scribed in terms of a complex, energy-dependent self-
energy S(E), which gives both a real energy shift and a
decay (cf. Figs. 12 and 13). Intrinsic losses, on the other
hand, refer to excitations in response to creation of the
core hole. These losses are traditionally accounted for
phenomenologically by a constant many-body
amplitude-reduction factor S0

2. However, more pre-
cisely, the amplitude reduction is energy dependent and
must be described by a complex, path-dependent con-
stant given by a ‘‘phasor sum.’’ We now summarize the
commonly used approximations for these quantities.

2. Extrinsic losses

a. Self-energy

The extrinsic losses and associated energy shifts can
be described in terms of a self-energy operator S(E).
This operator is complex valued and energy dependent

FIG. 12. Real part of the self-energy S(E) in eV. The quasi-
particle energy E1Re S is also shown. For comparison pur-
poses, a dashed line linear in E is also included.
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and arises from the dynamically screened exchange in-
teraction between the photoelectron and the system (cf.
Figs. 12 and 13). This interaction is the analog of the
real-valued exchange-correlation potential Vxc(r) of
ground-state calculations. The real part of S(E) ac-
counts for the energy dependence of the exchange and
causes systematic shifts of location of the EXAFS peaks
compared to the positions obtained for the ground state,
while the imaginary part gives rise to the mean free
path. As in conventional electronic-structure theory, the
many-body nature and interactions of the electrons can
be approximated within a local-density approximation
S(E ,r). The energy dependence of the screened ex-
change is of the order of several eV and decays slowly
with energy, typically over a few hundred eV, but this is
crucial for quantitative calculations of XAFS. Ulti-
mately, the exchange interaction vanishes, and the pho-
toelectron can be treated as a classical particle.

An appropriate generalization of the local-density ap-
proximation for excited states is again based on a uni-
form electron-gas model, e.g., the Hedin-Lundqvist GW/
plasmon-pole self-energy SHL(E ,r) (Hedin and
Lundqvist, 1969; Lundqvist, 1977). Here GW refers to
an approximation for the electron self-energy which ne-
glects vertex corrections, where G is the Green’s-
function operator and W is the screened coulomb inter-
action. This model was introduced into XAFS theory by
Lee and Beni (1977). However, full calculations within
this model are computationally time consuming. Thus in
practice it is preferable to use accurate analytic repre-
sentations in both energy and density (Lu et al., 1989;
Mustre de Leon et al., 1991) of SHL . Although there is
some evidence for positive corrections to the Hedin-
Lundqvist self-energy (Horsch, von der Linden, and Lu-
kas, 1989; Mustre de Leon et al., 1991), the model ap-
pears to be accurate to within a few eV at XAFS
energies. To avoid a discontinuity at the Fermi energy, it
is convenient to shift the self-energy by a constant, i.e.,
S(E ,r)5SHL(E ,r)2SHL(EF ,r)1Vxc(r). The
excited-state potential is therefore given by V(E ,rW)

FIG. 13. Energy dependence of the mean free path l(E) and
the corresponding imaginary part of the self-energy S(E). For
convenience, the same (y-axis) numerical scale was used for
both quantities (one is positive and one is negative). However,
l(E) is in units of Å and the Im S is in eV.
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5V(rW)1Vxc(r)1SHL„E ,r(rW)…2SHL„EF ,r(rW)…. The ad-
vantage of this formulation over other approximations,
such as the nonlocal Hartree-Fock or the analogous
LDA Dirac-Hara self-energies (Chou et al., 1987), is
that extrinsic losses are represented fairly accurately in
terms of the imaginary part of S(E ,r). A disadvantage
is that the plasmon-pole approximation introduces a
weak, unphysical cusp singularity at the onset of plas-
mon excitations in the near-edge region. Other more so-
phisticated approaches to the self-energy have been sug-
gested, but these are mostly formal and have yet to be
widely implemented (Fujikawa and Hedin, 1989;
Fujikawa et al., 1995).

b. Mean free path

The effect of the imaginary part of the self-energy is
similar to Lorentzian broadening of the XAFS spectrum
with a half-width Im S (Schaich, 1973) and accounts for
extrinsic losses. As noted above, the Hedin-Lundqvist
(1971) self-energy SHL(E) yields a good approximation
for these losses (Mustre de Leon et al., 1991) for EX-
AFS. Thus the model generally gives good agreement
(Penn, 1987) with experimental values of the XAFS
mean-free-path l>k/uIm S(E)u for a variety of systems.
This relation follows by expanding the relation (in
atomic units) (1/2)k25(1/2)(k1i/l)25E2S(E). The
quantity l is also in accord with the ‘‘universal’’ mean-
free-path curve (Lindau and Spicer, 1974; Seah and
Dench, 1979), apart from a factor of 2, since the ‘‘uni-
versal curve’’ measures the shorter-range decay in
electron-beam intensities, while the XAFS mean free
path measures the decay in the wave amplitude. Despite
the good agreement for EXAFS, at low energies the
Hedin-Lundqvist model based on the plasmon-pole ap-
proximation tends to give too much loss and moreover
exhibits a sharp, unphysical jump at the onset of the
plasmon excitation energy. This excessive loss can be
corrected, for example, by using an ad hoc position-
averaged approximation, as discussed, for example, by
Penn (1987) and by Roy and Gurman (1999). However,
such an averaging destroys the local behavior of l(r).
Clearly a better treatment is desirable.

c. Energy shifts

A comparison of XAFS peak energies, as calculated
by ground-state band-structure theory or measured in
experiment, reveals a systematic shift that can be repre-
sented at low energies by an approximately linear scal-
ing with energy, i.e., Eexp5Eth(11a), where a is typi-
cally about 0.05 (Materlik et al., 1983). See, for example,
Figs. 12 and 14. Such a scaling is actually consistent with
the effect of a real energy-dependent self-energy or ex-
change interaction, as shown by Mustre de Leon et al.
(1991). Although this effect is ignored in phenomeno-
logical XAFS theories (e.g., theories containing only a
mean free path or an imaginary optical potential), it
could have been anticipated, since the presence of a
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mean-free-path term implies the existence of a real en-
ergy shift due to the dispersion relations satisfied by the
self-energy operator.

3. Intrinsic losses and the initial- and final-state rules

a. Amplitude-reduction factor S0
2

Intrinsic losses correspond to excitations that arise
due to the creation of a core hole in the photoabsorption
process. Although the theory of XAFS is often couched
in a one-electron language, where a single electron
makes a transition from a core orbital to an excited
state, the process is truly many body, and other electrons
are generally excited as well. Examples of intrinsic pro-
cesses are the well-known shakeup and shakeoff excita-
tions in which more than one electron is excited in a
transition. This secondary emission results from a relax-
ation of the N21 electron Fermi sea in response to the
creation of a core hole. Because both of these processes
involve the same final states, their quantum-mechanical
amplitudes can in principle interfere, and hence one can-
not simply add their transition rates. We review here the
treatment of such intrinsic effects given by Rehr et al.
(1978). This treatment ignores interference effects that
can be important near the edge, but appears to be ad-
equate for current EXAFS calculations. In any case, a
fully satisfactory theory has yet to be developed.

To understand the origin of such intrinsic effects, one
must examine the full many-body expression for the
x-ray absorption spectrum,

m}(
f

u^C f
Nu(

j51

N

pj•A~rj!uC i
N&u2d~Ef2Ei2\v!. (8)

In the Hartree-Fock or density-functional-theory ap-
proximations, for example, the initial and final states are
Slater determinants of one-particle states, calculated
with different self-consistent one-electron potentials, i.e.,
the self-consistant-field approximation, as discussed, for
example, by Bagus (1965). The potential for the initial
state is that of the ground state, while that for the final
states includes a core hole and a photoelectron. The cal-
culation can be simplified if one assumes that the final
state can be factored, i.e., uC f&5uF08

N21&uf f&, which is a

FIG. 14. Comparison of the ground-state band-structure
theory of x-ray absorption with experiment (for a Gd L1
edge), showing the gradually increasing discrepancy between
the peaks in each curve due to linear scaling. This figure was
redrawn; it is based on Fig. 2 of Materlik, Müller, and Wilkins
(1983).
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reasonable approximation at high energies, when the
‘‘sudden approximation’’ is valid. Then the dominant
contribution to the many-body dipole matrix element is
given by

Mfi>^f f8u ê•rufc&^F08
N21uF0

N21&, (9)

where the prime refers to states calculated in the pres-
ence of the core hole. Thus the absorption in the lowest
energy or ‘‘primary channel’’ is reduced in magnitude
from the one-particle expression by a many-body over-
lap integral,

S0
25u^F08

N21uF0
N21&u2. (10)

In this approximation the one-electron matrix element
for the primary channel is consistent with the final-state
rule, i.e., that the core orbital should be calculated with
the initial ground-state Hamiltonian and the final state
with the presence of a fully relaxed core hole (von Barth
and Grossmann, 1982).

b. Excitations

Because of these relaxation effects, the observed EX-
AFS amplitudes are reduced from their one-electron
values by a phenomenological factor, which is usually
taken to be a constant. To see this, one must examine
the contribution from excitations (see Natoli et al.,
1990). Indeed, if S0

2Þ1, there must be contributions from
multielectron transitions in which the (N21)-electron
‘‘ion’’ is left in an excited state uFn8

N21& with excitation
energy En . The net absorption is then given by a sum
over excited states or ‘‘channels’’ n ,

m5(
n

mn5(
n

u^fn8 u ê•rufc&u2Sn
2 , (11)

where the many-body overlap integral Sn
5^Fn8

N21uF0
N21&; also, the energy of the photoelectron

is reduced in accordance with energy conservation by
the excitation energy En . The quantity Sn is usually
small (for nÞ0) and would vanish by orthogonality in
the absence of relaxation. Thus the total absorption in
this approximation is equivalent to a convolution, i.e., to
a broadened one-particle calculation:

m~v!5E
0

v

dv8m̃~v2v8!A~v8!, (12)

where m̃ is the one-electron spectrum and A(v)
5(nSn

2d(v2En) is the excitation spectrum. Moreover,
adding the effect of extrinsic losses (which adds addi-
tional broadening) to this result is equivalent to calcu-
lating the photoelectron state f f with a complex optical
potential. Similar convolution expressions have also
been derived with other formalisms, e.g., the generalized
GW approach of Hedin (1989) and the multichannel
multiple-scattering theory of Natoli (1990). Due to com-
pleteness of the Fn8

N21 states, the sum of the weights Sn
2

is unity. They can be interpreted in the ‘‘sudden ap-
proximation’’ as the probabilities that the ion, initially in
the ground state, finds itself in the nth final excited state,
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uFn8
(N21)&. According to the Manne-Aberg theorem, the

centroid of the excitation spectrum corresponds to
Koopman’s theorem for the transition energy (Manne
and Aberg, 1970). The difference between the centroid
and the onset of absorption is defined as the relaxation
energy. Since Koopman’s theorem involves the ground-
state wave functions, if the excitation spectrum were a
d-function spectrum, the initial-state rule would be valid.
The initial-state rule states that the photoelectron
should be calculated with the ground-state charge den-
sity (i.e., in the absence of a core hole). Such a photo-
electron would then have a Koopman’s energy given by
the difference between one-electron eigenvalues.

At low energies close to threshold, no additional ex-
citations are allowed (by conservation of energy, the
photoexcited electron needs sufficient energy to cause
the additional excitations), and only the primary channel
is available. This is consistent with the final-state rule, in
which the core hole is fully relaxed, since such a photo-
electron energy would include a relaxation energy. Con-
versely, at high energy all the possible channels are ac-
tive, and the average energy of the excitation spectrum
is centered around the Koopman’s theorem value. Since
the XAFS oscillations are widely spread out at high en-
ergies, one can view this spectrum as a smeared d func-
tion, yielding results roughly equivalent to the initial-
state rule.

The above convolution was derived assuming that in-
terference between extrinsic and intrinsic terms can be
neglected, but this is not necessarily valid at low ener-
gies. One effect of this interference is the presence of
‘‘replacement terms’’ in the Hartree-Fock approach
(Friedel, 1969) that give rise to the x-ray edge singular-
ity. An elegant formal treatment of extrinsic and intrin-
sic processes, which also includes the effects of interfer-
ence as well as the crossover between the initial- and the
final-state rules, has been given by Bardyszewski and
Hedin (1985) and further discussed for XAFS by Hedin
(1989). Such interference effects appear to be particu-
larly important in the near-edge region. For example, it
has been shown formally (Inglesfield, 1983; Bardysze-
wski and Hedin, 1985; Fujikawa, 1993) that extrinsic and
intrinsic losses tend to cancel near threshold, and hence
shakeup and shakeoff excitations are suppressed at low
energies.

c. Phasor sum

The effect of intrinsic excitations for XAFS from
paths with path length 2R (Rehr et al., 1978) can be
obtained from a convolution similar to that above, which
can be expressed in terms of a phasor sum,

S2~v ,R !5E
0

v

dv8Ã~v8!e2i[k(v)2k8(v)]R, (13)

where k(v)5Av , k8(v)5Av2v8, and Ã(v)
5A(v)/*0

vdv8A(v8). At intermediate EXAFS ener-
gies, the denominator of Ã is unity, and the phasor sum
is dominated by the primary channel with the value S0

2,
while at both low and very high energies S2 reduces to
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unity. Thus, in general, instead of a constant S0
2, this

result shows that the one-electron XAFS signal x must
be multiplied by an overall complex-valued amplitude-
reduction factor S2(E ,R), which is weakly energy and
path dependent. The overall effect is similar to a small
additional contribution to the mean free path.

III. CURVED-WAVE MULTIPLE-SCATTERING THEORY

A. Multiple-scattering expansion

The development of curved-wave multiple-scattering
theory was a key step in the success of the modern
theory of XAFS. This theory yields a unified treatment
of XAFS, encompassing both EXAFS and XANES, as
well as a formal equivalence between the multiple-
scattering expansion carried to all orders and exact
treatments. For a review of the theory, see, for example,
Fonda (1992). Of central importance is the question of
convergence: how many terms are needed and which are
they? A detailed study (Zabinsky et al., 1995) shows that
neither low-order nor full multiple-scattering theories
are fully satisfactory. Instead, a configurational average
of sufficiently high-order multiple-scattering appears to
be necessary for the convergence of both EXAFS and
XANES calculations. Our review focuses particular at-
tention on the main computational difficulties in calcu-
lating multiple-scattering to high order: (1) the large an-
gular momentum basis needed at high energies, (2) the
exponential proliferation of multiple-scattering paths,
and (3) the need for multiple-scattering Debye-Waller
factors. We illustrate our findings with a typical example
in which high-order multiple-scattering plays a signifi-
cant role: the XAFS of Cu metal and, for comparison,
the band-structure approach.

The starting point for the multiple-scattering theory of
XAFS (Schaich, 1973; Lee and Pendry, 1975) is an ex-
pression for the x-ray absorption m that is equivalent to
the golden rule, but is written in terms of the projected
photoelectron density of final states or, equivalently, the
imaginary part of the one-particle Green’s function, G
5(E2H1iG)21. The Green’s-function formulation is
particularly advantageous for XAFS, since it can natu-
rally incorporate inelastic losses and other quasiparticle
effects and avoids the necessity of explicit calculations of
wave functions. In position space G(r,r8;E) has the
spectral representation

G~r,r8;E !5(
f

c f~r8!c f* ~r8!

E2Ef1iG
, (14)

where c f are final states with energies Ef of the effective
final-state one-particle Hamiltonian H including an ap-
propriately screened core hole, which is described by the
optical potential v(r)5V1S (Sec. II.B), and G is a net
lifetime, including effects of extrinsic and intrinsic losses.
In terms of G , the absorption from a given core level c
is given by

m52
1
p

Im^cu ê•rG~r,r8;E !ê•r8uc&uG~E2EF!, (15)
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where uG is a broadened step function at the Fermi en-
ergy EF . It is now convenient to separate the problem
into a single scatterer at the absorption site (which is
taken to be the ‘‘central atom’’) and the remaining scat-
terers, which are treated in perturbation theory, i.e., G
5Gc1Gsc. Here the local representations of Gc and
Gsc (Ankudinov et al., 1998) are

Gc~r,r8;E !522k(
L

RL~r,!H l ~r.!,

Gsc~r,r8;E !522k (
L ,L8

RL~r!RL8~r8!GL80,L0
sc

~E !,

(16)

where L5(l ,m), RL(r)5i l R l (r)YL( r̂) is the regular
solution to the Dyson equation, and HL(r)
5i l H l (r)YL( r̂)5NL(r)2iRL(r) is the outgoing part.
The main ingredients for the scattering part Gsc are the
dimensionless two-center free propagator GLR,L8R8

0 and
the dimensionless scattering t matrix tLR,L8R8
5eid lR sin(dlR)dRR8dL ,L8 . With these ingredients, the to-
tal scattering-propagator matrix GL8R8,LR

sc (E) can be
obtained by matrix inversion from the full multiple-
scattering equations Gsc5GLR,L8R8

sc
5exp(idl 1id l 8)(1

2G0t)21G0 (matrix indices suppressed). Note that our
scattering formalism is cast in terms of Green’s-function
propagators and phase shifts. A related approach based
on the so-called scattering-path operators t has also
been used in many treatments of XANES (e.g., those of
Durham et al., 1982 and Tyson et al., 1992). Both ap-
proaches are formally equivalent within multiple-
scattering theory for real energies. However, the propa-
gator formalism has somewhat better analyticity
properties; for example, the path-operator formalism
contains singular factors such as (Im tl )/sin2 dl , which
are not unity for complex energies.

An important result of the multiple-scattering formal-
ism (Lee and Pendry, 1975) is that the expression for m
can be factored in terms of an atomic background ab-
sorption modulated by the XAFS x, i.e.,

m5m0~11x l !,

m05u^cu ê•ruRL&u2, (17)

x l 5Im e2id l ^Sm@~12G0t !21G0# l m ,l m&,

where the brackets denote a thermal and configurational
average, and the free propagator G0 is defined to be
zero when RW 5RW 8. This result shows that the atomic
background absorption in XAFS is given by an energy-
dependent, embedded-atom cross section m0 , i.e., the
absorption for an atomiclike state is defined by the cen-
tral potential vc rather than being that for a ‘‘free atom’’
(Rehr et al., 1994). This factorization of m is also particu-
larly important for interpreting XANES (Ankudinov
et al., 1998), since it cleanly separates atomic and scat-
tering parts. In addition, since the imaginary part of G is
the density matrix, Eq. (15) implies that the absorption
from a given final state l is proportional to the pro-
jected density of final states (in the presence of an ap-
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propriately screened core hole) r l8 (E), i.e., m;r l8 ,
which has a similar factorization in terms of an atomic
part and fine structure, i.e.,

r l8 5r0l8 ~11x l8 !. (18)

Here r0l8 is the density of states for an embedded atom.
Because of the similarity between m and r l8 , it is widely
thought that XANES essentially measures the projected
density of states (Müller et al., 1982). However, this in-
terpretation can be misleading, because of final-state ef-
fects such as core-hole effects, lifetime broadening, or
energy shifts. Thus an interpretation of XANES in terms
of the ground-state angular momentum projected den-
sity of states must be used cautiously. Moreover, the
factorization of m and r l into atomic and fine-structure
parts is strictly valid only for real potentials (Tyson et al.,
1992). The correction can be important for XANES and
especially for the shape of the edge rise, since otherwise
the absorption may not be positive definite. However,
the error arises from the cusp singularity in the central-
atom Green’s function in Eq. (16), which leads to a
small additional contribution to the background absorp-
tion close to the Fermi energy and has no effect on the
XAFS x. As shown by Schaich (1973), this real-space
inverse-matrix formulation of XAFS is directly analo-
gous to the Korringa-Kohn-Rostoker band-structure ap-
proach and hence is equivalent to long-range-order
theory. Indeed, the paper by Schaich essentially unified
the long- and short-range-order and theories within
muffin-tin multiple-scattering theory. This formal unifi-
cation based on multiple-scattering theory has also been
discussed, for example, by Benfatto et al. (1986) and by
Natoli et al. (1986). The connection with the short-
range-order theory may be obtained by expanding the
inverse matrix as a geometric series, G0tG0

1G0tG0tG01 . . . ; the first term is missing since G050
when RW 5RW 8. Thus one sees immediately that the exact
result, which is given by the full matrix inverse, can be
expressed equivalently as a sum over all multiple-
scattering paths (provided, of course, that the series is
convergent), and may be labeled by a path index G, i.e.,

x l 5SG Im^e2id l Sm^1muG0tN . . .G0t2G0t1G0u1m&&
(19)

(in matrix notation), in which each distinguishable path
G gives a contribution, xG

5Sm^^1muG0tN . . .G0t2G0t1G0u1m&&. Here t i is the
scattering t matrix at site i , d l is the partial-wave phase
shift at the absorbing atom, and again, the outer brack-
ets indicate a thermal and configurational average. The
relativistic generalization of this formula is similar. The
short-range-order theory of XAFS therefore amounts to
retaining only a finite summation of the multiple-
scattering series, together with the inclusion of Debye-
Waller factors and inelastic losses.

Convergence of the multiple-scattering series is gov-
erned by several factors, such as the mean free path, the
spherical factors (1/kR) for each leg of length R , the
strength of the scattering at each site, and the exponen-
tial decay factor exp@2R/l(k)# due to the mean free
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path. Moreover, as shown, for example, by Rehr (1994),
the Debye-Waller factors introduced by the thermal and
configurational average can aid significantly in the con-
vergence of the multiple-scattering series. For example,
for repeated multiple-scattering paths of n legs, the
Debye-Waller factors converge as a Gaussian in the
number of scatterers, exp(2n2s2k2), which is much
faster than the convergence due to the mean-free path l
alone, exp(2n^R&/l), where ^R& is the mean bond
length. Indeed, this Debye-Waller factor is important,
for example, in studies of ‘‘shape resonances’’ in near-
edge XAFS, which are large, shape-dependent features
in the XANES of low-Z molecules (Stöhr, 1992). As
shown by Rehr et al. (1992), calculations without such a
configurational average (Stöhr and Bauchspeiss, 1991)
can be too sharp.

B. Full multiple-scattering methods

In the previous section we reviewed the multiple-
scattering expansion needed to calculate XAFS. Ideally,
one might want to solve this set of equations exactly,
which is equivalent to summing the expansion to infinite
order. In practice, such an infinite summation requires a
change of technique. In conventional electronic-
structure approaches this summation can be reformu-
lated in terms of a Hamiltonian that is diagonalized in
order to solve for its eigenfunctions, or alternatively a
matrix inversion of the multiple-scattering equations,
Eq. (17). The chief advantages of modern full-potential
electronic-structure methods (Albers, 1989) are that (1)
they provide accurate self-consistent calculations of the
electronic charge densities and potentials appropriate to
the crystalline or molecular environment (i.e., they have
no spherical approximations), (2) they provide an accu-
rate calculation of the Fermi energy relative to the un-
occupied states, and (3) they treat curved-wave effects
exactly and multiple scattering to all orders. For these
reasons, some of the most definitive calculations of
XANES have been based on band-structure methods
(Müller et al., 1982; Albers et al., 1985). Because these
methods use a local-density-functional approximation
(LDA), they also provide excellent ground-state charge
densities, which are needed for the electrostatic compo-
nent of the potential; indeed, this is needed even for
methods that attempt to go beyond the conventional
LDA, such as those for calculating excited-state quasi-
particle spectra.

Given these powerful advantages, one can ask: why
use a finite multiple-scattering approach for XAFS in-
stead? Why not immediately jump to full-potential
methods? The answer is, of course, their equally strong
disadvantages for calculations not close to an x-ray edge:
(1) such methods cannot easily include other important
physics such as Debye-Waller factors, core-hole poten-
tials, and final-state lifetime effects, which are crucial
beyond about 50–100 eV of an edge; (2) they are com-
putationally inefficient since they provide an unneces-
sarily high degree of detail about the electronic structure
(all of the many excited-state eigenstates, van Hove sin-
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gularities, etc.), which are then washed out by the vari-
ous broadenings and lifetime effects encountered in ex-
periment; and (3) they are limited to the near-edge
region because the number of basis-set functions and
orbital angular momentum components that must be in-
cluded is a rapidly increasing function of energy above
the edge. Thus the physics of XANES and EXAFS dif-
fer in several key respects and require different algo-
rithms for accurate treatments. Moreover, since exact
methods have implicitly summed all scattering paths,
one cannot disentangle this information to interpret the
contributions from specific paths, which is needed to ex-
tract bond-length and bond-angle information. That is,
such exact methods are not tuned into the atomic struc-
ture of the material, but instead are focused on indirect
manifestations of the structure, for example, in densities
of states.

1. Band-structure and exact diagonalization methods

Exact diagonalization methods are particularly useful
for XANES calculations. For example, the most success-
ful early methods of band-structure calculation for crys-
talline solids were based on the same muffin-tin approxi-
mation as the multiple-scattering approach: the
augmented plane-wave method and the Korringa-Kohn-
Rostoker method. It has long been known that the two
are equivalent. The chief difference is that the aug-
mented plane wave uses an augmented plane-wave basis
while the Korringa-Kohn-Rostoker is based on multiple-
scattering theory. The Korringa-Kohn-Rostoker method
for a periodic crystal is, in fact, the solution to the infi-
nite multiple-scattering expansion used in XAFS, if one
ignores the core-hole and energy-dependent exchange-
correlation potential.

In principle, the core hole could be taken into account
in a band-structure approach by using the supercell tech-
nique, which is often used to calculate point defects in a
crystal. In this technique, a number of unit cells are com-
bined to form a larger unit cell (the supercell), which is
then periodically repeated in all directions. Point defects
(like the atom with the single core state missing) are
placed near the center of the unit cell, and the system is
converged until self-consistency is achieved. Supercells
are usually tested for convergence as a function of cell
size. The goal is to reduce defect-defect interactions by
increasing the distance between their periodic replace-
ments. In practice, this approach is expensive computa-
tionally, because of the large basis sets that must be di-
agonalized (diagonalization costs often go up as N3,
where N is the number of basis functions, which typi-
cally scales linearly with the number of atoms in the unit
cell).

With respect to the energy-dependent exchange-
correlation potential, it is probably best to think of it in
terms of a quasiparticle picture of excited states. Strictly
speaking, this goes beyond the customary realm of band-
structure theory, which is mainly directed towards
ground-state properties of solids. It has long been
known that the energy eigenvalues of conventional
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LDA band-structure calculations are not true quasipar-
ticle excitation energies. In practice, this distinction has
been blurred by the often excellent agreement that oc-
curs between these eigenvalues and the observed low-
lying excitation energies. Recent advances in electronic-
structure theory such as the computationally expensive
GW approximation disscussed in Sec. II.C.2.a or other
self-energy corrections have provided some guidance for
calculations of the energies for excited states (Hedin and
Lundqvist 1969; Hybertsen and Louie, 1985; Aryase-
tiawan and Gunnarsson, 1998; Aulbur et al., 2000). Mod-
ern XAFS calculations usually make use of a simplified
LDA GW approximation for the self-energy (Mustre de
Leon et al., 1991). However, as far as we know, a full
GW approach has not yet been applied to XAFS calcu-
lations. Also, band-structure techniques do not auto-
matically include the intrinsic broadening (or lifetime)
of the true quasiparticle excitations, since they treat all
excited states as infinitely sharp (i.e., as exact eigenstates
of the system). However, these broadening effects can
be approximately corrected a posteriori by a Lorentzian
convolution of the spectrum (Rehr et al., 1978; Müller
et al., 1982).

As noted above, most current electronic-structure
methods are now full-potential techniques. This means
that the muffin-tin approximation is superseded, and the
full shape of the true electronic charge density and po-
tential throughout all space is used. Such techniques
yield very accurate results for calculating geometrical
structures of the atoms (by minimizing the total energy
of the system as a function of atomic positions). For
XAFS calculations, such corrections are important only
in the near-edge regime (XANES) for highly covalent
materials with open structures. Well above the edge (the
EXAFS regime) the kinetic energy of the excited pho-
toelectron dominates and non-muffin-tin corrections ap-
pear to be negligible.

The chief technical difficulty in using conventional
band-structure techniques involves limitations in the
choice of basis set. As the wave functions are calculated
at higher and higher energies above the Fermi energy,
more and more basis functions are needed. More specifi-
cally, successively higher orbital angular momentum
components must be included (e.g, f , g , h , and higher),
as well as higher principal quantum numbers (unoccu-
pied states) for the same orbital angular momentum
states that are occupied. The huge increase in basis size
drastically increases computational cost, which often
scales as the cube of the number of basis functions (for
those methods that rely on diagonalization techniques).
The wave functions are also very extended and become
strongly hybridized. The number of energy eigenvalues
also grows tremendously as a function of energy above
the Fermi energy (for example, simple free-electron
theory gives a quadratic density of states as a function of
energy). The combination of these factors typically lim-
its the effectiveness of most band-structure (as well as
cluster) techniques for XAFS calculations to about 100
eV above the edge.
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2. Full multiple-scattering cluster methods

The full multiple-scattering cluster approach is inter-
mediate between band-structure and path-by-path tech-
niques (Johnson, 1973; Dehmer and Dill, 1976; Kutzler
et al., 1980). Like band structures it typically involves
setting up a basis for expanding the system’s wave func-
tions and then diagonalizing a Hamiltonian to solve
variationally for the best set. Alternatively, in the cluster
Green’s-function approach a multiple-scattering matrix
must be inverted (Durham et al., 1982; Ankudinov et al.,
1998). Like the path-by-path approach, these methods
rely on the mean-free-path cutoff for convergence with
respect to cluster size and to suppress surface effects.

It is perhaps easiest to discuss the main idea of the
cluster approach from a pathlike analysis. As we men-
tioned earlier in this article, the main XAFS structure
arises from quantum interference as the excited photo-
electron scatters off nearby atoms. Since the photoelec-
tron has a finite mean free path, in principle, one only
needs to know the electronic structure of the photoelec-
tron for a cluster of atoms around the absorbing site
with a size of the order of the mean free path. This
suggests that, whether one is investigating a periodic
solid or a molecule, an electronic-structure calculation
for a large enough cluster should provide all the relevant
information needed for understanding an XAFS experi-
ment.

In practice there are some additional issues that
should be carefully considered. The first is cluster size:
the cluster chosen must be large enough so that the
boundary conditions imposed by cutting off the cluster
at some finite size do not significantly affect the elec-
tronic structure of the cluster in the region sampled by
the excited photoelectron.

Another consideration is diagonalization costs. As in
the band-structure method discussed above, the basis set
needed to handle highly excited photoelectrons must be
drastically expanded. This requirement again usually re-
stricts the applicability of cluster calculations to the first
100 eV or so above the absorption edge. Despite this
limitation, there are some important advantages of the
full multiple-scattering cluster approach, which make
such calculations very useful in XANES applications of
complex systems. For example, as in the band-structure
approach, multiple scattering within the cluster is
treated to all orders. Although Debye-Waller factors are
neglected, they are relatively unimportant near the edge.
Also, some systems, especially biological systems, often
have no periodicity (i.e., they do not form in crystals)
and have complex asymmetric geometries that would be
nearly impossible to treat from a conventional band-
structure point of view (i.e., as a periodic crystal).

As in band-structure calculations, all of the questions
about constructing the potentials seen by the photoelec-
tron and whether they can be treated by muffin-tin or
full-potential LDA approaches arise. In addition, it is
well known that there can be serious errors in an LDA
approach for excited states, and Hartree-Fock or other
excited-state approaches may be needed. In particular, it
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is often important to take into account the energy de-
pendence of exchange-correlation effects.

The muffin-tin approach can be dangerous for calcu-
lating optimized structures of small molecules by energy
minimization techniques, since large fractions of the
occupied-electron wave functions spill into the intersti-
tial region between atoms, where there are consequently
significant deviations from a constant potential. How-
ever, the high kinetic energy of the photoexcited elec-
tron is not particularly sensitive to these perturbations.
One can therefore argue that muffin-tin approaches are
adequate for the XAFS spectra even when such calcula-
tions give poor results for the ground-state properties of
such systems. This also raises the issue of whether non-
self-consistent potentials (e.g., calculated by overlapping
atomic charge densities) may actually be better than
self-consistent muffin-tin potentials. If the muffin-tin ap-
proximation is poor for the ground-state (nonexcited)
electrons, self-consistency could actually drive the po-
tential into a peculiar, less accurate regime.

Like band structures, many different basis sets and
approaches are possible. A commonly used cluster
multiple-scattering approach is the Xa scattered-wave
method (Johnson, 1973; Kutzler et al., 1980). For a re-
cent discussion see, for example, Tyson et al. (1992),
who also discuss multiple scattering more generally, us-
ing both full and low-order methods. Drawbacks of
these full multiple-scattering approaches are the muffin-
tin potential approximation and the limitation to low
energies. Generalizations that allow for corrections to
the muffin-tin approximation have been treated by Na-
toli et al. (1986). An alternative method, the discrete
variational method of Ellis and Goodman (1984), uses a
local basis that avoids the muffin-tin approximation but
is also limited to low energies, as is the discrete-point
finite-difference method of Joly et al. (1999). Another
development in multiple-scattering calculations was
made by Durham et al. (1982) through the development
of a cluster-based method, which recognized the impor-
tance of scattering in the neighborhood of the absorbing
atom. Their approach attempts to include the most im-
portant multiple-scattering contributions by calculating
multiple scattering to all orders within a given coordina-
tion shell, but only including a limited number of inter-
shell scatterings. The method was improved by Vveden-
sky et al. (1986) to control the number of scatterings
taken into account, and also by Della Longa et al.
(1995). This method has been used extensively for
XANES calculations, but computational problems limit
its use to low energies and small clusters. An alternative
approach is the recently developed continued-fraction
method for summing the multiple-scattering series ex-
actly for paths or clusters (Filipponi, 1991; Filipponi and
DiCicco, 1995; Filipponi et al., 1995). This method is po-
tentially faster than the multiple-scattering cluster meth-
ods, but again becomes very time consuming and hence
not applicable at high energies. Recently the cluster
Green’s-function multiple-scattering method was ex-
tended to permit self-consistent calculations (Ankudi-
nov et al., 1998) yielding both projected electronic den-
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sities of states and x-ray absorption spectra, including an
approximate treatment of Debye-Waller factors.

C. Path-by-path methods

The path-by-path multiple-scattering approach has
proved to be the most useful general method for analyz-
ing EXAFS experiments. Its main advantages are its
computational efficiency and accuracy; moreover, it pro-
vides a geometrical parametrization and interpretation
of EXAFS, which is ideal for analyzing interatomic dis-
tances and other structural quantities. Fourier trans-
forms of the XAFS indicate that the near neighbors gen-
erally give the dominant contributions, but also show
that multiple-scattering contributions from more distant
paths eventually dominate the signal. Although even
merely enumerating the multiple-scattering paths can
quickly become a computational bottleneck, since the
number of paths of a given length grows exponentially
with path length, this can be circumvented, as discussed
below.

1. Exact path methods

The path-by-path approach for calculating multiple-
scattering contributions to XAFS was pioneered by the
work of Lee and Pendry (1975). However, calculations
based on exact multiple-scattering formulas are time
consuming and could only be carried out for single-
scattering paths and a few low-order multiple-scattering
paths. By using the plane-wave approximation, one
could take the path method to high order, but, as dis-
cussed above, that approximation works well only at
high energies with an ad hoc inner-potential shift. A sig-
nificant advance in the theory by Müller and Schaich
(1983) showed, using angular momentum identities, that
exact single-scattering curved-wave calculations could
be calculated in closed form. This was extended by Gur-
man et al. (1986) to permit fast, exact calculations of
low-order multiple-scattering paths. This degree of ap-
proximation can give accurate EXAFS calculations, but
higher-order paths are sometimes important, and, in any
case, the method is so time consuming at high energies
that it is effectively limited to triple-scattering paths. A
more systematic, recursive method for calculating high-
order multiple-scattering paths was derived by Brouder
et al. (1989).

2. Small-atom approximations

Several attempts to improve the plane-wave approxi-
mation have been made, using variants of the small-
atom approximation (Rehr et al., 1986). These authors
show analytically that curved-wave corrections intro-
duce a significant phase shift of order l (l 11)/kR into
each partial wave and hence are important throughout
the entire XAFS regime. That is, the plane-wave ap-
proximation, even with an energy shift, can only be cor-
rect for a single partial wave in a narrow energy range.
Methods based on the small-atom approximation have
good accuracy for single-scattering extended XAFS, but
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lose precision at low energy, and especially for noncol-
linear paths. They are now supplanted by more accurate
numerical methods (see below). However, the small-
atom approximation does serve to illustrate the effects
of curved-wave corrections theory and also provides
quick estimates of the contributions from high-order
multiple-scattering paths, which can be used as path fil-
ters to help solve the path proliferation problem (Zab-
insky, 1995).

3. Separable approximation

A major advance in XAFS theory, which overcomes
all the major computational difficulties of the multiple-
scattering expansion, is based on a separable represen-
tation of the Green’s-function propagators developed by
the present authors (Rehr and Albers, 1990) and will be
referred to as the Rehr-Albers method. The difficulties
addressed include (1) the large angular momentum ba-
sis; (2) the proliferation of multiple-scattering paths; and
(3) the need for correlated multiple-scattering Debye-
Waller factors. The first difficulty, the angular momen-
tum problem, was overcome in two steps. First, by using
rotation matrices, successive bonds in a path can be ro-
tated to the z axis, thereby reducing the problem to a
calculation of ‘‘z-axis propagators’’ (Rehr and Albers,
1990). Propagators along the z axis have mathematical
properties that simplify in an angular momentum basis.
Indeed, the use of z-axis propagators alone is a signifi-
cant improvement, since (1) it separates the angular-
and energy-dependent behavior of the propagators, (2)
it is very accurate at high energy, and (3) it permits an
expansion in the angular quantum number m , as dis-
cussed by Barton and Shirley (1985). However, these
propagators alone do not remove the angular momen-
tum bottleneck, since this representation still couples
high angular momenta, which makes the method ineffi-
cient for high-order calculations. Although the terminol-
ogy ‘‘z-axis propagator’’ is recent, these quantities have
a long history and have been rediscovered several times.
Recursion relations for such propagators were devel-
oped earlier, in particular, by Nozawa (1966). However,
it has recently been found that a stable and accurate
procedure (Manar and Brouder, 1995; Sebilleau, 1995) is
to use the recursive calculations of the separable repre-
sentation, which we now discuss. A related approach is
given by Fritzsche (1992). A detailed discussion of the
convergence of the Rehr-Albers approach is given by
Chen et al. (1998).

The second step of the Rehr-Albers method is an ex-
act, separable representation of the z-axis propagators,
which was inspired by an earlier, low-energy approxima-
tion of Barton and Shirley (1985). The separable repre-
sentation yields an exact matrix factorization of the full
propagator of the form

GLR,L8R85
eikR9

kR9
SlYL ,lỸl ,L8 , (20)

where R95R82R. The generalized spherical harmonic
expansion coefficients Y and Ỹ converge rapidly in pow-
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ers of 1/kR , and hence the representation can usually be
severely truncated. The approach becomes exact at low
energies or for single scattering, and typically only six
terms suffice to within experimental precision for the
full range of wave numbers 1<k<20 Å21 normally en-
countered in XAFS experiments. At lowest order or
high energies the result becomes equivalent to the small-
atom approximation discussed above. The advantage of
the separable representation is that it permits one to
combine and then sum all the factors involving L at a
given site into a scattering matrix Fl8,l

5(LỸl8,LtLYL ,l , which is the analog of the scattering
amplitude. Moreover, the method gives an accurate
curved-wave XAFS formula directly analogous to that
with the plane-wave approximation, but with the usual
scattering amplitudes f(u) replaced by low-order (typi-
cally 636) matrices F . The method can naturally be
generalized to include off-diagonal t matrices with
muffin-tin corrections. The efficiency of the Rehr-Albers
approach is due to this truncated separable representa-
tion, as one can quickly multiply any number of 636
matrices. Thus, for an N-leg path G with scatterers at
R1 ,R2 , . . . ,RN5R0 , the result for the XAFS amplitude
is

xG~p !5Im S0
2 ei(r11r21¯rN12d1)

r1r2¯rN
e2sG

2 p2/2

3Tr M l FN
¯F2F1. (21)

Here ri5p(Ri2Ri21), p5AE2Vmt is the photoelec-
tron momentum measured with respect to the muffin-tin
zero (in Rydberg atomic units), Fi is the scattering ma-
trix at site i , M l is the termination matrix for the final
state of angular momentum l , S0

2 is a many-body reduc-
tion factor, and sG

2 is the mean-square variation in total
path length R tot . The adequacy of 636 matrices was
verified by using the exact z-axis propagators (Rehr and
Albers, 1990), which are slower by one or more orders
of magnitude. Finally, when one substitutes k
5Ap22kF

2 and redefines terms appropriately, it is clear
that the result for xG can be recast exactly in terms of
the standard XAFS formula, but with an effective scat-
tering amplitude feff ,

xG~k !5S0
2 Im

feff

kR2 e2ikR12id l e22s2k2
. (22)

The second difficulty mentioned above is the path-
proliferation problem. Fast multiple-scattering calcula-
tions of a given path are not enough to calculate XAFS
for a material, due to exponential path proliferation.
Fortunately, it turns out that the vast majority of
multiple-scattering paths are of small amplitude and
largely cancel, apart from tolerable random phase fluc-
tuations. Thus the path-proliferation problem can be
overcome by introducing ‘‘filters’’ in the path enumera-
tion scheme to restrict the number of paths under con-
sideration (Zabinsky et al., 1995). Although many paths
are insignificant, it is often not obvious a priori which
must be kept. To automate this procedure, the contribu-
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tion of a given multiple-scattering path can be estimated
using the plane-wave approximation or spherical wave
approximation, and only those paths of amplitude larger
than a given cutoff are retained. This is done with a
constructive ‘‘heap algorithm’’ (Zabinsky et al., 1995)
that only retains the subset of paths less than a given
path-length cutoff that are likely to be important. To
deal with degeneracies, physically equivalent paths are
hash sorted, and only those with amplitudes above a sec-
ond cutoff are retained. That is, each path is assigned a
unique 32-bit number or hash key, based on its geom-
etry, which is independent of orientation and hence easy
to sort. With these filters only a few percent of the
multiple-scattering paths within a given cluster need to
be calculated to yield XAFS accurate to a few percent.
Typically this amounts to around 100 paths. Finally, to
address the third difficulty, Debye-Waller factors are
easily added, usually by the average ^e2ikR&, and ignor-
ing the distance variation of all other terms (see Sec.
IV). In the XANES region, Farges et al. (1997) found
that smaller values of the path cutoffs and typically 1000
or more paths are needed to simulate the spectra when
the multiple-scattering expansion converges.

D. Alternative methods and extensions

Various alternatives to the path-by-path method have
been discussed. For example, the group n or GNXAS
method (Filipponi and Di Cicco, 1995; Filipponi et al.,
1995) systematically combines all the multiple-scattering
contributions for a given set of n sites within a cluster.
This approach has conceptual simplicity in that the
multiple-scattering series contains many fewer distinct
terms than the path-by-path methods. This overcomes
the path-proliferation problem, and grouping the terms
in this way has been shown to lead to faster convergence
of the multiple-scattering series. On the other hand,
each such term then contains contributions at a number
of distinct path lengths, which complicates the treatment
of vibrational and structural disorder and requires a nu-
merical configurational average. However, the approach
emphasizes the desirability in path-by-path methods of
forming path groups, which combine all significant paths
of a given path length, to achieve optimal convergence.
The GNXAS approach also uses a recursion method in
the XANES region, which is usually efficient compared
to exact matrix-inversion schemes. Yet another ap-
proach to XANES (Fujikawa, 1993) is based on reparti-
tioning the multiple-scattering matrix to sum exactly cer-
tain strong multiple-scattering terms (such as the
multiple scattering from near neighbors to the absorbing
atom), while treating the remaining terms with a path-
by-path expansion. In our view, the development of such
efficient approaches will be important in solving the still
intractable problem of XANES calculations in large
clusters. Yet another approach is that of Huasheng and
Tong (1999), based on an iterative multiple-scattering
scheme.
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E. Example of multiple-scattering approaches

The Rehr-Albers approach (Rehr and Albers, 1990)
has proved to be a powerful method for XAFS calcula-
tions in general materials. In many cases in which the
multiple-scattering expansion converges adequately, the
approach also yields good results for XANES. One of
the first examples is the calculation of s* shape reso-
nances in small molecules, which dominate the fine
structure in XANES, referred to as near-edge XAFS
(Stöhr, 1992). For these systems, the Rehr-Albers ap-
proach gave generally good agreement with Xa calcula-
tions (Stöhr and Bauchspeiss, 1991) and also showed the
importance of multiple-scattering Debye-Waller factors
in comparisons with experiment (Zabinsky et al., 1995).

Another example of the accuracy of the Rehr-Albers
multiple-scattering approach is the case of Cu metal (see
Rehr et al., 1992, and Figs. 15 and 16). Because of its
close-packed structure and strong scattering potentials,
fcc Cu provides a severe test for multiple-scattering
theories. Indeed, there are about 106 paths of length less

FIG. 15. Comparison of multiple-scattering calculations of
x(k) from the FEFF code with experiment (for Cu). This figure
is redrawn from Fig. 2(a) of Zabinsky et al. (1995).

FIG. 16. Comparison of the Fourier transform of multiple-
scattering calculations of x(k) from the FEFF code in real
space @x(r)# with experiment (for Cu). This figure is redrawn
from Fig. 2(b) of Zabinsky et al. (1995).
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than the typical mean free path (about 20 Å), and the
original calculations that demonstrated the convergence
of the multiple-scattering series to band-structure accu-
racy required several CRAY CPU hours to complete
(Fig. 17). However, the introduction of path filters with
a cutoff set to 4% of the first-shell amplitude eliminates
most of these paths. The value 4% roughly corresponds
to the magnitude of experimental noise. For example,
only 54 of the 17 134 paths out to the eighth shell survive
the path filters, and of those paths, those with more than
four legs contained collinear scatterings (cf. Table I and
Fig. 18). Such collinear paths have long been known to
be important (Lee and Pendry, 1975), due to the large
forward-scattering focusing effect of an intermediate
atom on the contribution from a given path. Surpris-
ingly, however, the calculations on Cu showed that tri-
angular paths are also important and can be comparable
in importance to focusing paths, especially for short
bond lengths (cf. Table II and Fig. 19). On the other
hand, higher-order noncollinear paths tend to be negli-
gible; such paths involve a product of scattering ampli-
tudes, which can only be significant at rather low energy.
Highly automated methods based on the Rehr-Albers
approach now provide the main algorithm for much cur-
rent XAFS analysis work (see, for example, Newville
et al., 1995).

Finally, Farges et al. (1997) have shown the conver-
gence of the finite multiple-scattering path expansion in
the near-edge region of certain complex minerals,
namely, Ba2TiO4 and K2TiO5, with the Rehr-Albers ap-
proach (see, for example, Fig. 20). Note that all XANES
features in this figure, including the ‘‘pre-edge’’ features,
are reproduced by the calculations.

IV. DEBYE-WALLER FACTORS AND DISORDER

A. Introduction

The XAFS Debye-Waller factor arises as a natural
consequence of fluctuations in interatomic distances. At

FIG. 17. Comparison of multiple-scattering calculations of
x-ray absorption from the FEFF code with band-structure cal-
culations for x(k) for Cu.
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finite temperatures, as the atoms vibrate around their
equilibrium lattice sites, they slightly alter the interfer-
ence pattern for a given path. The net signal results from
an average of ^e2ikR& over many paths, which tends to
smudge details of the XAFS amplitude at higher values
of k (shorter wavelength). This factor is analogous to
that encountered in x-ray diffraction and generally adds
an exponential decay factor to the XAFS amplitude
(Crozier et al., 1988). Because of its near-Gaussian form,
e2W'exp(22s2k2), this factor is largely responsible for
the exponential decay of XAFS with increasing energy
(or k) and for its temperature dependence (see Fig. 8).
Its crucial importance in quantitative XAFS theory was
recognized early by Schmidt (1961, 1963) and is one of
the key ingredients in the modern XAFS equation (Say-
ers et al., 1971). Such factors are generally ignored in
most ground-state electronic-structure and quantum-
chemistry calculations, since s2k2!1 at sufficiently low
energies. Additionally, there are anharmonic corrections
that are necessary for understanding the effects of ther-
mal expansion on XAFS (Eisenberger and Brown,
1979). Currently the standard treatment of such vibra-
tional and configurational disorder is based on phenom-
enological models, such as the correlated Einstein

TABLE I. List of the first 20 most important multiple-
scattering paths for fcc Cu. For each path, the table contains
Reff (one-half of the total path length), the relative mean path
amplitude Ccw in percent (where the first path is arbitrarily
assigned a value of 100%), the lengths of each leg using Lee
and Pendry’s notation (Lee and Pendry, 1975), the degeneracy
of the path, the total number of legs in the path, and a brief
description of the shape of the path. The mean path amplitude
is an average of ux(k)u over nine evenly spaced k points. This
table is a partial reproduction of Table I of Zabinsky et al.
(1995), where a more complete description is given. See also
Fig. 18 for a pictorial representation of some of the paths.

Path Reff(Å) Ccw(%) Label Degeneracy Legs Comment

1 2.56 100.00 11 12 2 ss, 1st shell
2 3.61 20.23 22 6 2 ss, 2nd shell
3 3.83 12.28 111 48 3 triangle
4 4.36 8.96 211 48 3 triangle
5 4.43 44.77 33 24 2 ss, 3rd shell
6 4.77 13.47 311 96 3 triangle
7 4.77 6.99 131 48 3 triangle
8 5.11 14.32 44 12 2 ss, 4th shell
9 5.11 32.63 411 24 3 shadow
10 5.11 7.17 141 12 3 linear
11 5.11 4.04 1111 48 4 dogleg
12 5.11 24.16 1111 12 4 shadow
13 5.11 8.74 1111 12 4 linear
14 5.30 4.02 321 48 3 triangle
15 5.30 4.55 312 48 3 triangle
16 5.71 6.15 313 48 3 triangle
17 5.72 19.93 55 24 2 ss, 5th shell
18 5.94 4.83 512 48 3 triangle
19 5.94 5.31 251 48 3 triangle
20 6.05 4.83 431 96 3 triangle
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(Sevillano et al., 1979) and correlated Debye (Beni and
Platzman, 1976) models. However, these models are
only marginally satisfactory in current XAFS theory. In
the future, it would be desirable to calculate these fac-
tors from an ab initio approach, which is quite difficult at
present (Dimakis and Bunker, 1998; Poiarkova and
Rehr, 1999). The summary below is not intended to be
exhaustive, but to highlight the most important aspects
of this topic. For additional discussion, the reader is re-
ferred to various reviews (e.g., Crozier et al., 1988;
Dalba and Fornasini, 1997).

B. Formal properties

The XAFS Debye-Waller factor can be viewed as a
result of averaging the contribution to the XAFS signal
from a given scattering path over all thermally accessible
configurations of the atoms in that path. It is not neces-
sary to distinguish between single- and multiple-

FIG. 18. Possible scattering paths in the (110) plane of an fcc
lattice. The upper left corner of the figure shows the relation-
ship between atom distances and near-neighbor distances
(nn5near neighbor). The labels ss, shadow, linear, and tri-
angle are the same path descriptions that are referred to in
Table I. In particular, ss stands for single scattering. Compar-
ing the descriptions with the actual path should make evident
why these descriptions were chosen. The labels such as 11, 411,
etc., are Lee and Pendry’s notation (Lee and Pendry, 1975).
They essentially give the near-neighbor distance of each leg in
the path. The distances between atoms in the horizontal direc-
tion are 0.707 that of the distance between atoms in the verti-
cal direction (the cube-edge distance). For this (110) plane of
atoms, along the horizontal direction one has, successively, a
corner atom, an atom in the center of a face, and then the next
corner atom diagonal to the first, and so on. Some curved ar-
rows were used to make the paths clearer; without them, some
of the arrows would overlap each other and hence obscure
each other.
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TABLE II. Analysis to determine the relative importance of
different types of paths for fcc Cu. The first 56 paths are sorted
into categories. A total importance is defined as the sum of
mean path amplitude factors (see caption for Table I for the
meaning of this term) for each of the 56 paths. The importance
column is this same sum, except restricted to the type of path
listed in each row, and normalized so that the sum over all
path types adds up to 100% (the total importance). The num-
ber column is the number of each type of path. The last line,
all other paths, is the amplitude difference between the 56-
path run and a 1215-path run, and is a measure of the relative
importance of paths beyond the first 56 paths. This table is the
same as Table II of Zabinsky et al. (1995), where a more com-
plete description is given.

Number Importance (%) Path type

15 46.19 single scattering

15 24.23 shadow

4 4.40 linear

17 20.67 triangle

2 2.28 triangle, shadow leg

2 1.48 dogleg

1 .73 quadrilateral

1159 9.50 all other paths
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scattering paths, since both are parametrized similarly in
terms of an effective scattering amplitude feff in the stan-
dard curved-wave XAFS formula (Poiarkova and Rehr,
1998). To a very good approximation one can ignore (or
lump into the distribution function) the weak configura-
tional dependence of the scattering factor, feff /kR2, so
that the multiple-scattering Debye-Waller exp(2WG) for
a path G comes only from the average over the oscilla-
tory factor in the XAFS equation, i.e.,

^e2ikr&5e2ikRe2WG(k), (23)

where R5R tot/2 denotes the mean half-total path length
for a multiple-scattering path of total length R tot and
instantaneous half-length r . In the remainder of this sec-
tion we shall ignore the path-index subscript G, unless it
is needed explicitly. The thermal part of the average can
be calculated from statistical-mechanical methods and a
lattice Hamiltonian H (or dynamical matrix D),

^ei2kr&5
Tr e2bHei2kr

Tr e2bH , (24)

where b51/kBT . In addition, there may also be static
disorder, which is obtained by a further configurational
average. To the extent that thermal and configurational
disorder are independent, their contributions to the net
Debye-Waller factor are simply additive.
FIG. 19. Contributions of different types of multiple-scattering paths to x(k) for Cu. Single-scattering paths are those that go from
the central atom to another atom and then scatter back to the central atom. Triangular paths are those for which the path starts
at the central atom, hits two other atoms, and then returns to the central atom. Shadowing paths are those for which a path starts
at a central atom, hits another atom, and then goes straight through (in exactly the same direction) to hit another atom, before
returning through the previous atom to the central atom. Because the forward scattering amplitude is large, shadowing paths can
be accentuated by this ‘‘focusing’’ effect. The curve labeled ‘‘total’’ is the sum over all paths. The absolute values of each
contribution are plotted. Because phase information is not retained in the figure, destructive interference between some of the
contributions can reduce the absolute value of the total below the absolute value of some of the contributions. See also Fig. 3 of
Zabinsky et al. (1995) for a similar figure.
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The main difference between the Debye-Waller fac-
tors in XAFS and those, for example, in x-ray diffrac-
tion, is the dependence of the XAFS Debye-Waller fac-
tor on displacement correlations. Only those
displacements that change the total path length affect
the interference pattern. To see this, let ui be the dis-
placement from equilibrium of the ion at site i , so that,
neglecting terms of order ui

2 , the effective path length
for a scattering path with n legs is

r.R1
1
2 (

i51

n

~ui2ui1!•R̂ii1 . (25)

Here, i15i11 mod(n), R[(1/2)( iRii1 is, as before,
the effective equilibrium half-path length, and Rii1 is the
equilibrium vector between atoms i and i1 . From the
Born-Oppenheimer approximation, the ion motion can
be regarded as stationary during the photoexcitation
process. Hence the thermal averages are to be carried
out in the ground state prior to the x-ray absorption,
rather than in the relaxed final states. Now, for any har-
monic Hamiltonian or Gaussian disorder one has the
exact result (Maradudin et al., 1971)

K ei2k(
i

(ui2ui1)•R̂ii1L5e22k2s2
. (26)

FIG. 20. Comparison of the experimental Ti K XANES spec-
trum for b-Ba2TiO4 with theoretical spectra from FEFF

multiple-scattering calculations on TiO4 and TiO4Ba8 clusters.
In the small-cluster calculations, the TiO4 unit was embedded
in the larger cluster, which is representative of the medium-
range environment around Ti in this crystal structure. The la-
bel n indicates the maximum number of legs allowed in the
multiple-scattering paths. Note that, as additional multiple-
scattering paths are included, the theoretical calculation slowly
converges to experiment. This figure is Fig. 7 of Farges et al.
(1997), where more details can be found.
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Here, s2 denotes the mean-square fluctuation in the ef-
fective path length R , s25(1/4)^@( i51

n (ui2ui1)
•R̂ii1#2&. For example, in the single-scattering case with
two atoms at sites 0 and R,

sR
2 5^@~uR2u0!•R̂#2&

5^~uR•R̂ !2&1^~u0•R̂ !2&22^~uR•R̂ !~u0•R̂ !&. (27)

The displacement correlations decay algebraically with
distance, and the scalar products insure that only modes
contributing to motion along a bond path are important.
Therefore the XAFS Debye-Waller factor provides a
measure of the displacement-displacement correlation
function.

As discussed by Sevillano et al. (1979), the tempera-
ture dependence of s2 in the harmonic approximation
(see Fig. 21) can be calculated in terms of a certain pro-
jected local vibrational density of states rG(v) and is
therefore determined by the local vibrational structure
in the vicinity of the path of interest,

s2~T !5
\

2mG
E

0

vmax dv

v
rG~v!coth

b\v

2
. (28)

Here, mG is an appropriate reduced mass for the scatter-
ing path G, and vmax is the maximum frequency of the
lattice motion. For example, for single scattering the
projected density of modes l is

rSS~v!5(
l

F SAmR

MR
eR~l!2AmR

M0
e0~l! D •R̂G 2

3d~v2vl!, (29)

where vl denote the eigenfrequencies of the dynamical
matrix D , and eR(l) the normalized eigenvectors.
Equation-of-motion approaches for efficient calculations
of rG(v) and s2, including quantum effects, have re-
cently been discussed by Poiarkova and Rehr (1998).

C. Phenomenological models

Unfortunately, the dynamical matrix or even the local
spring constants are not known in most cases of interest,
and hence in practice one must often rely on simpler,
phenomenological approximations. Two such methods
are the correlated Debye and correlated Einstein mod-
els, which have been modified from the conventional
Debye and Einstein models to approximately account
for displacement-displacement correlations.

1. Correlated Debye model

The correlated Debye model was introduced in XAFS
theory by Beni and Platzman (1976). As in the original
Debye model (see, for example, Ashcroft and Mermin,
1976), the model assumes a homogeneous system with a
constant speed of sound and a maximum phonon fre-
quency vD and gives a Debye integral for the
displacement-displacement correlation function.
Equivalently, the model gives a spherical approximation
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FIG. 21. Temperature dependence of the rms fluctuation s2 as a function of temperature T for a variety of Debye-Waller models.
The calculations were done for a 459-atom cluster of Cu. The nomenclature EM, CD, and CE stands for equation of motion,
correlated Debye, and correlated Einstein, respectively. Single-scattering (SS) calculations were single shell, and those labeled 111
also included 111 triangular paths. The experimental data were from: exp-A (Greegor and Lytle, 1979) and exp-B (Stern et al.,
1980). This figure was adapted from Fig. 5 of Poiarkova and Rehr (1998), where a more detailed description of the results may be
found.
to s2 with a projected vibrational density of states for an
atomic bond (0,R) of the form (Sevillano et al., 1979)

rR~v!5
3v2

wD
3 F12

sin~vR/c !

vR/c G . (30)

Here, vD5kBuD /\ is the Debye frequency, uD is the
Debye temperature, c5vD /kD is the Debye approxima-
tion for the speed of sound, kD5(6p2N/V)1/3, and N/V
is the atomic density number of the crystal. The second
term in the brackets accounts for correlations and de-
pends on bond length.

2. Correlated Einstein model

The correlated Einstein model approximates the pro-
jected vibrational density of states with a single delta
function, centered at the effective vibrational frequency
vE

G for a given multiple-scattering path G:

r j~v!5d~v2vE
G !. (31)

The appropriate Einstein frequency vE
G can be inter-

preted (Frenkel and Rehr, 1993; Hung and Rehr, 1997)
in terms of the local potential energy in a normalized
lattice state corresponding to path G. For example, in the
single-scattering case, vE is related to the local effective
bond-stretching force constant kR5mR vE

2 (R). This
value of vE(R) is equivalent to the natural vibrational
frequency of the bond (0,R) together with all attached
neighboring bonds, but regarding all other masses as
fixed. Similarly, the potential energy (1/2)ks2 of a
stretched path with path-length fluctuation 2s is equal
to that of a single spring model with reduced mass m and
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spring constant k[mvE
2 . Although the Debye model is

often better than the Einstein approximation for systems
with acoustic modes, neither is usually adequate for het-
erogeneous systems. One can also obtain an estimate of
vE

G by scaling the Debye temperature (Sevillano et al.,
1979; Lottici, 1987).

D. Radial distribution function

The configurational and thermal average ^¯& can be
defined in terms of a radial distribution function appro-
priate to a given path. For weak disorder, the distribu-
tion function can be approximated by a Gaussian, with
width s2. Anharmonic corrections and any skew in the
radial distribution generally lead to corrections to the
Gaussian form of the Debye-Waller factor. Due to the
limited data range of the XAFS (generally between
about 2 and 20 Å21), the precise nature of the
radial distribution function cannot generally be deter-
mined. It is often useful, however, to parametrize this
distribution function, particularly in disordered systems.
Alternatively, one can define the XAFS entirely in terms
of the contributions from the various irreducible n-atom
distribution functions, as in the GNXAS approach (Filip-
poni and DiCicco, 1995; Filipponi et al., 1995). However,
such n-atom distributions are considerably more compli-
cated than two-atom distributions and have weaker
XAFS contributions, so this can be difficult to achieve in
practice.
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E. Cumulant expansion

The cumulant moments (Kubo, 1962) of the distribu-
tion (or cumulants) are more stably determined and
have a more natural interpretation. The use of cumu-
lants for XAFS was introduced by Rehr (1979), who
showed that the XAFS Debye-Waller factor is generally
complex and has a natural cumulant expansion in pow-
ers of k of the form

^ei2k(r2R)&5exp (
n50

`
~2ik !n

n!
s(n)5e2W1iF, (32)

where s(n) denotes the nth cumulant average. The lead-
ing cumulants (with respect to the mean) are given by
(see Crozier et al., 1988)

s(1)5^~r2R !&, (33)

s(2)5^~r2R !2&[s2~T !, (34)

s(3)5^~r2R !3&, (35)

s(4)5^~r2R !4&23 ~s(2)!2. (36)

Explicit examples of such cumulants are discussed by
Bunker (1983). Thus, neglecting small contributions
from the mean free path (which implies a complex k),
the amplitude of the XAFS Debye-Waller factor
exp(2W) contains only even moments, W(k)52 s2k2

2(2/3) s(4)1 . . . , whereas odd moments contribute to
the XAFS phase F(k)52ks(1)2(4/3) s(3)k31 . . . . The
k3 behavior is particularly important for large disorder.
If not corrected for, the term with the third cumulant
gives rise to an apparent contraction of distances ex-
tracted from XAFS experiment with increasing tem-
perature (Eisenberger and Brown, 1979). This anhar-
monic effect on the XAFS phase is illustrated in Fig. 8,
which shows the XAFS for Ag at various temperatures.

Recently it has been found that these anharmonic cor-
rections can be roughly accounted for by taking advan-
tage of certain algebraic relations between the cumu-
lants. These relations have been derived by making use
of an effective cubic, anharmonic pair potential V(x)
5(1/2)kx21k3x3 for a given path, where x5r2R . The
effective coupling constants in these relations are those
for an anharmonic correlated Einstein model that takes
into account the interatomic potentials as well as contri-
butions from neighboring springs (Frenkel and Rehr,
1993; Hung and Rehr, 1997). For example, it was found
(Stern et al., 1990; Wenzel et al., 1990) that in the classi-
cal limit the cumulant ratio s j

(3)/s j
(1)s j

2(T)52. This re-
lation breaks down at low temperatures T,TD , but has
been generalized (Frenkel and Rehr, 1993) to yield re-
lations for s(1) and s(3) in terms of s2(T) and the net
thermal expansion,

s(1)52
3k3

k
s2~T !. (37)

Thus calculations of s2(T) alone suffice to determine
the anharmonic corrections up to an overall constant.
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
Moreover, Hung and Rehr (1997) show that the cumu-
lant ratio, including quantum corrections, can be ex-
pressed as

s j
(3)

s j
(1)s j

2~T !
522

4
3 F s0j

2

s j
2~T !G

2

. (38)

Here s0
25\@2mvE(R)#21 is the zero-point contribution

to s2(T).
There are a host of corrections to these results (Dalba

and Fornasini, 1999). Most are relatively small and gen-
erally negligible compared to uncertainties in the
Debye-Waller factors, which are typically of the order of
10–20%. For example, there are small corrections from
the distance dependence of the spherical wave factors
1/R2 in the XAFS formula. These can be lumped into an
effective distribution function with a slightly different
peak position, leading to a correction to s(1)'4ks2/R .
In addition, there are Debye-Waller spherical wave cor-
rections in the effective scattering amplitude, which can
be estimated using the spherical wave approximation
(Rehr et al., 1986). This yields an additional energy-
independent amplitude factor for each partial wave
l , t l →t l exp(2Wl ), where W l '22s2l (l 11)/R2

(Fujikawa et al., 1999). These corrections tend to reduce
the Debye-Waller factor. In addition, because of ther-
mal expansion, all the microscopic force constants are
expected to vary with temperature and pressure. This
yields an additional weak, linear, anharmonic, tempera-
ture dependence in s2(T) at high temperatures, i.e.,
s2(T)→s2(T)(11cT), where c is proportional to k3
and the Gruneisen parameter. Quartic and higher-order
cubic (;k3

2) terms in the effective potential also lead to
corrections that are linear in T .

V. CONCLUSIONS

A series of remarkable advances in the theory of x-ray
absorption spectroscopy has been made over the past
few decades, spurred in part by the availability of mod-
ern synchrotron-radiation x-ray sources. As a result, the
theory of extended x-ray absorption fine structure is
now in a very mature state that provides a qualitative
understanding of all the physical processes involved, as
well as a detailed quantitative agreement with experi-
ment. The key ingredients in the theory differ from
those needed in conventional ground-state electronic-
structure calculations and include high angular momen-
tum scattering processes in a non-Hermitian optical po-
tential and Debye-Waller factors to account for
vibrations and disorder. Automated computer codes
that implement the theory are now available for general
materials. The success of the modern theory represents
one of the few cases in which theoretical efforts have
explicitly focused on the quantitative treatment of an
experimental technique and shows what can be achieved
with such a focus.

A large factor in the success of the theory is the trac-
tability of the physics in the regime in which it operates.
In this case, the accuracy of the many approximations
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made is due largely to the high kinetic energy of the
excited photoelectron, which dominates much of the
physics. This also explains why EXAFS is such an excel-
lent tool for probing local structure, since path-
interference effects at large wave numbers dominate
other competing physics. Moreover, at high energies the
one-electron theory is a good approximation, and many-
body effects can be incorporated in an energy-
dependent self-energy that can be well approximated by
the local-density approximation. Also, at high energy,
scattering is relatively weak and can be treated to an
excellent approximation by a finite, albeit high-order,
multiple-scattering expansion, in the short-range order
theory. Indeed, the essential difference between EXAFS
and XANES is found to lie in the strength of the scat-
tering, with the crossover energy being typically about
30 eV or less. Interestingly, curved-wave corrections are
important at all energies, and simpler approximations
such as the plane-wave approximation or the spherical
wave approximation are inadequate even at high ener-
gies. In addition, it suffices to use spherical approxima-
tions for the scattering potentials at high energies, e.g.,
the muffin-tin model, and to ignore self-consistency.
Debye-Waller factors that account for displacement-
displacement correlations and disorder are especially
important in achieving the correct amplitudes. Finally,
an account of anharmonicity is important in order to
achieve a proper understanding of the temperature de-
pendence of the XAFS phase. Remarkably, the standard
EXAFS equation of Sayers et al. (1971) turns out to be a
robust parametrization of the modern theory, provided
that all quantities in the equation are appropriately re-
defined.

Although most of the physical quantities needed in
the theory can be determined by ab initio calculations, a
few quantities must still be determined phenomenologi-
cally. These remaining, poorly known quantities mainly
affect the EXAFS amplitudes. For example, the corre-
lated Debye model, with the Debye temperature TD as
a single fitting parameter, is often a reasonable approxi-
mation, although improvements are desirable in aniso-
tropic systems. Moreover, it would be useful to have a
fully ab initio procedure for the Debye-Waller factors
and anharmonic corrections; this generalization would
require total-energy calculations, which is presently im-
practical in general systems. Secondly, various many-
body effects that determine the magnitude of the ampli-
tude reduction factor S0

2 are not quantitatively
understood. Similarly, the behavior of the self-energy is
currently based on rather simple electron-gas models
and should be improved to achieve more accurate deter-
minations of the mean free path and self-energy shifts.
Thus, although the XAFS technique probes electronic
excited states of the materials under investigation, the
excited states themselves play a secondary role in modi-
fying the basic interference fingerprint of the underlying
fine structure. Nevertheless, such amplitudes and phases
are critical to the application of the EXAFS technique
to extract accurate distances and coordination numbers
from experiment. While much work still needs to be
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
done to refine various aspects of the theory and to make
the tool more useful in extracting subtle structural de-
tails of complicated materials, the major pieces of phys-
ics are now well in hand.

The most troubling and difficult aspects of x-ray ab-
sorption occur in the near-edge region. There the
present theories are at best only in semiquantitative
agreement with experiment. This is precisely where the
dominance of the large kinetic energy of the excited
photoelectron breaks down, and scattering and bonding
effects are important. In this regime, the details of the
spatially complex, potential-energy surface between at-
oms starts to become significant, and the complications
of excited-state physics (e.g., intra-atomic excitations
such as shakeup and shakeoff, exciton excitations, and
resonance structures and phenomena) make the theory
much less tractable and general. However, the factoriza-
tion of XANES into an atomic background and XAFS
contributions, i.e., m5m0(11x), can still be used to
separate out the atomic and scattering contributions.
The scattering contributions to the XANES appear in x
and must be treated with a full multiple-scattering ap-
proach when the multiple-scattering expansion breaks
down. Moreover, much of the underlying near-edge phe-
nomenon depends not just on the atomic structure of the
material, but much more significantly on the details of
the electronic structure (e.g., whether the system is a
metal, insulator, or semiconductor). For example, the
screening of the core hole appears to be system depen-
dent and can dramatically affect the behavior of m0 .
Similarly, there can be local-field corrections to the di-
pole operator and hence the atomic cross section can
become important for shallow-core excitations. Thus the
accurate calculation of the atomic background is an im-
portant challenge for future theories and is of critical
importance to an accurate interpretation of XANES. It
is for these reasons that this review has focused prima-
rily on the fine structure in the higher-energy x-ray ab-
sorption.

The success of EXAFS theory as a structural probe
suggests the fruitfulness of extending the theory to re-
lated experimental probes such as electron energy-loss
fine structure (see, for example, Denboer et al., 1994;
Rez et al., 1998), diffraction anomalous fine structure
(see, for example, Cross et al., 1998), x-ray magnetic cir-
cular dichroism (see, for example, Thole et al., 1992;
Ebert and Schütz, 1996), and photoelectron diffraction
(see, for example, Fadley, 1991; Kaduwela et al., 1991).
The basic physics in all of these techniques involves
similar high-order electron-atom multiple-scattering
processes, which can all be treated with similar theoret-
ical tools. Indeed, much work along these lines is cur-
rently in progress.
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APPENDIX: MUFFIN-TIN RADII

In a muffin-tin approach, an important consideration
is the choice made for the size of the muffin tins. Since
this is rarely, if ever, discussed in the literature, in this
appendix we have collected the conventional wisdom
about how such a choice may be rationally made and the
pros and cons of different choices.

Within a muffin-tin approximation it is important to
optimize the calculation by adjusting the size of the muf-
fin tins surrounding each atom (both the central atom
whose core electron is being excited and neighboring
atoms). Ideally, one would like to have a full-potential
method for XAFS that would take into account the full
spatial dependence of the charge density (see the discus-
sion in Sec. II.B.2.a). In the absence of such a method,
some reasonable choice has to be made for the muffin-
tin radii of all the different atoms. Like all approxima-
tions, such a choice is based on intuition and experience.
For XAFS one can try a number of ideas derived from
the early history of electronic-structure calculations,
when muffin-tin calculations were extensively employed.

Muffin-tin approximations fall into two general
classes: overlapping and nonoverlapping. The nonover-
lapping case usually tries to maximize the radii so that
the muffin tins touch or nearly touch. This is done to
minimize the amount of interstitial region, where the
potential is treated less accurately than inside the muffin
tins. The overlapped case requires criteria for how big to
make the muffin tins. This and related issues will be dis-
cussed below. Either case involves some choice of rela-
tive size for different types of atoms and how to scale
them.

Three different approaches to choosing relative radii
are often employed:

(1) Empirical radii based on experimental consider-
ations of diverse phenomena such as Pauling, covalent,
metallic, or other radii can be used to scale the relative
size of different atomic muffin tins.

(2) The muffin tins can be adjusted until the ground-
state potentials (including Coulomb and exchange cor-
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relation) at the boundary of neighboring atoms are ap-
proximately equal (Johnson, 1973). This approach is
based on the intuitive idea that the potential should not
jump discontinuously across boundaries. It is often ap-
plied to the case of muffin tins that nearly touch each
other. It can sometimes be an unrealizable condition for
systems with three or more types of atoms that touch at
different places.

(3) Norman (1976) has suggested counting charge to
determine relative radii. In this prescription the atomic
charge densities are overlapped, and the radii around
the atoms are chosen such that the spherically averaged
charge within each radius contains an amount equal to
the neutral atom, analogous to the Seitz radius rs used in
solid-state physics. This has proved to be a reliable and
easily automated prescription and hence is probably
most often employed in practice. Indeed, this is the stan-
dard approach used in most of our XAFS calculations
(Mustre de Leon et al., 1991; Zabinsky et al., 1995). For
strongly ionic systems this prescription is sometimes
modified to take into account charge transfer (i.e., inte-
grating the radius out to a value such that a few extra
electrons or a few less electrons are within the sphere—
this would correspond to a negative or positive ion). For
molecular complexes that carry a charge, an outer shell
of charge, or ‘‘Watson sphere,’’ is often added to simu-
late effects of global charge neutrality. Different sugges-
tions have been made as to where to place the Watson
sphere (Johnson, 1973; Vaughan, Tossell, and Johnson,
1974).

Conventional multiple-scattering theory involves non-
overlapping muffin-tin spheres. At one time this was re-
garded as the only available choice. More recently, some
electronic-structure methods have analytically continued
this approach to larger radii such that the different
spheres overlap; see, for example, the method devel-
oped by Andersen, (1975; Skriver, 1984). Analytical con-
tinuation means that the formalism is derived for non-
overlapping spheres, and then the radii for the
overlapping spheres are simply used. The use of overlap-
ping spheres is driven by the large interstitial regions
that can sometimes occur in open structures with large
atom-size differences. Overlapping the spheres can de-
crease the amount of interstitial volume and hence re-
duce the effects of potential inhomogeneity in the inter-
stitial volume. In a crystalline solid the overlapping
sphere sizes are often scaled so that the net sum of the
muffin-tin volumes equals the volume of the unit cell. In
this case the sphere radii are usually called Wigner-Seitz
radii, in analogy to a procedure used in one of the first
electronic-structure approximations (Wigner and Seitz,
1934). The argument is then made that the interstitial
region can be neglected. In practice, such overlapping
electronic-structure calculations have often been more
accurate than calculations with nonoverlapping spheres.
It appears that the overlap somehow partially compen-
sates for non-muffin-tin variations in the charge density.
For noncrystalline solids, it is less clear how one should
scale the overlapping radii. Fortunately, for XAFS,
overlapping muffin tins and ionized atoms have often
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been found to have little effect on the calculated spectra.
Again, the physical reason is that electron-atom scatter-
ing is dominated by the nearly spherical potential deep
within a muffin tin; however, this approximation be-
comes less accurate in the XANES region.

Whether or not the spheres are overlapped, it is still
necessary to choose the zero of energy in the interstitial
region where the effective potential is considered to be a
constant, since this determines the kinetic energy of the
excited electron (the k vector). In close-packed crystal-
line solids there is a well-established procedure devel-
oped in the early days of electronic-structure calcula-
tions for nonoverlapping muffin tins. This procedure,
which involves a simple averaging of the charge between
the muffin-tin radius and the Wigner-Seitz radius, is dis-
cussed by Loucks (1967). This method can be general-
ized to noncrystalline materials in terms of the Norman
radius. Overlapping spheres have also been proposed
for molecular calculations (see, for example, Herman
1977) and compared with nonoverlapping sphere calcu-
lations (Rosch, Klemperer, and Johnson, 1973; Batra
and Robaux, 1974; Norman, 1974). The results were
mixed–better for some properties using the overlapping,
and in other cases worse. In our experience, overlapping
of spheres can improve the calculated XAFS spectra in
the near edge, but otherwise has little effect.
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