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The onset of shear flow turbulence
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Shear flow turbulence is a complex and interesting phenomenon which has been well known for a long
time. The story of the physical understanding of its onset is a marvellous and recent tale of a unique
nonlinearity. It is the convection term (u • “)u in the equation of motion which rules the transition
to turbulence by introducing a subtle interplay between the nonnormal bunching of flow perturbations
and their nonlinear interaction. By nonnormal coupling to the basic laminar flow, those disturbances
which are misfit to the eigendirections can transiently draw energy from the laminar shear flow and
grow before they ultimately fade away. If their intermediate growth is strong enough, they interact
nonlinearly. This interaction recreates new misfit flow amplitudes, which again start drawing energy,
grow transiently, interact, etc. This feedback loop is able to sustain a flow which, as a consequence of
the nonlinearity, is spatiotemporally deterministic and irregular at the same time. We call this flow
turbulent. The feedback mechanism has to be contrasted to that of a common instability. The laminar
flow stays linearly stable, all eigenvalues have negative, damping real parts. That is, laminar shear flow
passes to turbulence without (linear) instability. The onset of turbulence is the nonnormal-nonlinear
performance of many degrees of freedom and not merely of a single, unstable one. Both features are
mediated by the convective nonlinearity.
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I. THE PHENOMENON AND THE PROBLEM

Turbulent flow is ubiquitous. For example, observe
with fascination the dancing snowflakes in a winter
storm, or the dust and tumbling paper sheets in the
whirling wake of rapidly bypassing trucks, or the roaring
sound of a calcified water pipe with a wide-open faucet,
etc. Fast flow of air or water becomes turbulent, i.e., an
irregular, time-dependent, chaotic-looking eddy flow, in
contrast to the smooth, slowly creeping, laminar flow
with usually a very simple velocity profile. The transition
from the laminar to the turbulent state happens if the
transverse momentum exchange by molecular transport,
whose velocity is n/l , can no longer compete in a suffi-
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ciently effective manner with the advective transport,
whose velocity is of order U, the characteristic velocity
difference across the shear. Here, n is the kinematic vis-
cosity of the fluid, typically of order 1 mm2 s21 through
10 mm2 s21 and l is the characteristic transverse length
scale of the flow, e.g., the pipe radius, the distance be-
tween the atmospheric jet and the ground, etc. Trans-
verse advection thus arises if U@n/l . The dimensionless
quantity U/(nl21), the Reynolds number

Re5Ul/n , (1)

becomes large, typically exceeding a value of about 1500
through 2000 for wall-bounded flow. Such numbers de-
pend, of course, on the precise definition chosen for U
and l. Here U is always understood as the largest char-
acteristic velocity difference provided by the boundary
conditions and l as the corresponding distance.

Textbook examples include shear flows with wider or
smaller gaps between two planes (cf. Fig. 1), and the
sensitive, irritable flame of an (old fashioned!) Bunsen
burner, indicating the two modes of flow through a gas
pipe (cf. Fig. 2). Shear-driven flow, denoted as Couette
flow, and pressure-driven flow, so-called Poiseuille flow
(in plane or circular geometry), are among the most
common flows which show this onset of turbulence,
technically, in a lab, or in devices (wind tunnels). I have
these flows in mind for this Colloquium.

The most simple, naive idea about the two modes of
fluid flow is that at low Re the laminar one is stable, but
loses its stability for large enough Re, and then the tur-
bulent one takes over. This idea has prompted in the last
century the development of stability theory—more pre-
cisely of linear stability theory—connected with the
names of Rayleigh (1880, 1887), Reynolds (1883), Orr
(1907), Sommerfeld (1908), Taylor (1923), Heisenberg
(1924) and others (cf. the textbooks by Chandrasekhar,
6032(2)/603(16)/$18.20 ©2000 The American Physical Society



604 Siegfried Grossmann: The onset of shear flow turbulence
1961; Landau and Lifschitz, 1991; Drazin and Reid,
1981). In particular, one is reminded of Taylor’s impres-
sive success in explaining the roll formation in circular
Couette flow, of the quantitative explanation of the
Rayleigh-Bénard instability (Rayleigh, 1916) with its

FIG. 1. Reynolds’ experiment with dye injection. Upper:
smooth laminar flow in the small gap of width l between two
plane plates, the upper plate being sheared with the velocity U
relative to the lower one. Lower: the spatially and temporally
irregular turbulent flow if the gap is wide enough (gap width l
large enough). From Schlichting (1959).

FIG. 2. Sensitive flame, laminar (left) or turbulent (right), as
triggered by clapping your hand, by hissing with your mouth,
by rattling a bunch of keys, or the like. One has to use an old
fashioned Bunsen burner without flame rebound protection.
From Pohl (1962).
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hexagon or roll patterns, of van Kármán vortices as well
as of several other flow instabilities. The recent most
fascinating advances are the ideas about whole series of
successive instabilities, such as Landau’s quasiperiodic
route to turbulence (Landau, 1944; Hopf, 1948; Landau
and Lifschitz, 1991), the possibility of a few-step route to
chaos by Ruelle and Takens (1971), or the period dou-
bling scenario (Grossmann and Thomae, 1977; Feigen-
baum, 1978; Coullet and Tresser, 1978). All this is in the
spirit of instability or repeated instability theory.

Its basic feature is the discussion of the spectrum of
eigenvalues $l%, which describes the temporal behavior
of sufficiently small disturbances of the laminar flow
U(x) by

du~x,t !5eltvl~x!. (2)

Let us, for example, consider such spectra for distur-
bances of Taylor-Couette flow. This is the flow in the
gap between two concentric, independently rotating cyl-
inders of radii r1 and r2 and the gap width d5r22r1 .
Let the inner cylinder rotate with the angular velocity
v1 and the outer one with v2 , corresponding to the in-
ner and the outer cylinders’ Reynolds numbers R1
5v1r1d/n and R25v2r2d/n . These Reynolds numbers
R1,2 are the external control parameters of the Taylor-
Couette flow. An experiment with co-rotating cylinders
is described by positive R1 and also positive R2 , while
counter-rotating cylinders have (besides the always, by
definition, positive R1) a negative R2 .

A set of spectra of this system for various chosen val-
ues of the control parameters is offered in Fig. 3. The
crossing of the real part lr of an eigenvalue to the right
of the imaginary axis indicates conventional instability
by exponential growth of the corresponding disturbance.
For co-rotating cylinders the transition line is, in es-
sence, given by the Rayleigh line R15(r2 /r1)R2 . For
counter-rotating cylinders the transition line approaches
a curve which exhibits the scaling behavior R1}uR2u3/5

(Esser and Grossmann, 1996).
But, can one imagine that despite increasingly steeper

shear of the laminar flow profile for increasingly faster
uR2u, co- or counter-rotating, at fixed R1 , the laminarity
of the flow is preserved? Indeed, already Couette (1890)
found turbulence in the regime of linear stability. More
extended observations by Coles (1965) of the flow be-
tween counter-rotating cylinders, but also for strongly
co-rotating ones, confirmed this observation (see Fig. 4).
A similar situation occurs in pipe flow, in plane shear
flow, etc. The spectra typically look like the pipe flow
spectrum in Fig. 5. Although completely eigenvalue-
stable, all real parts having lr,0, in all subspaces
@mub# , the flow becomes turbulent. As usual m denotes
the azimuthal and b the axial wave numbers character-
izing the invariant subspaces which arise because of the
rotational and the translational symmetry of the geom-
etry; we have du}exp(imw1ibz/l1lt). Since the spectra
do not change their characteristic fingered structure with
increasing Re, the transition to turbulence is not even
accompanied by a visible signature in the spectrum $l%.
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FIG. 3. A collection of eigenvalue spectra of perturbed
Taylor-Couette flow between concentric cylinders. The ab-
scissa shows the real parts, the ordinate the imaginary parts of
the eigenvalues l. The azimuthal and axial wave numbers, re-
flecting azimuthal and axial symmetry, are fixed to m50 and
b5p . From left to right the rotational speed R25v2r2d/n of
the outer cylinder is growing, from lower to upper the inner
cylinder rotates faster, R15v1r1d/n . Here d5r22r1 is the gap
between the inner radius r1 and the outer one r2 . The radius
ratio was chosen as r1 /r250.9. If the outer cylinder is at rest,
i.e., R250, the laminar flow profile induced the inner cylinder
rotation becomes unstable at R1,c5132.7 for this radius ratio.
The Taylor vortices emerge if one eigenvalue l has crossed the
imaginary axis. Increasing R2.0 at fixed R1 stabilizes the
laminar profile. Counter-rotation of the outer cylinder with
respect to the inner one, with increasingly negative R2 , implies
a shrinking of the unstable inner strip within the gap between
the inner cylinder and the nodal surface at which the velocity
profile has its zero. Because only the flow in this strip can
become unstable, faster counter rotation also stabilizes lami-
narity at given R1 . No eigenvalue is to the right of the imagi-
nary axis. All this is reflected also in spectra with other m and
b, cf. Gebhardt and Grossmann (1993). One can identify
where the borderline of linear stability will be: this line sepa-
rates spectra which have one or more eigenvalues to the right
of the imaginary axis from those spectra whose eigenvalues are
all to the left of it, indicating linear stability.

FIG. 4. The measurements by Coles (1965) show that one can
observe turbulent flow in the range where all eigenvalues have
negative real parts. Hence turbulence occurs although the
laminar fluid flow is linearly stable. The lower diagram is an
extended version of the box region in the upper diagram. The
radius ratio is r1 /r250.881.
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We have to conclude—and this is the onset-of-
turbulence problem in Couette or Poiseuille flow—that
the laminar-to-turbulent transition is not the conse-
quence of a linear instability of the basic laminar flow as
reflected in the crossing of an eigenvalue over the imagi-
nary axis. We cannot expect disturbances to grow expo-
nentially. What, then, is the physical mechanism which
drives a laminar flow into turbulence? This question of
deceptive plainness is the topic of this Colloquium.

II. UNSTABLE WITHOUT (LINEAR) INSTABILITY

The transition from laminar to turbulent in shear
flows may be described by several generic features.

•Turbulence comes violently, unsteadily, fully, and
has many scales immediately.

•To start turbulence, an initial disturbance of the
laminar flow with finite strength is necessary.

•The transition has no reproducible, sharp, ‘‘critical’’
Reynolds number, as would be characteristic for a linear
instability. The Reynolds number where the transition
happens depends on the type and form as well as on the
level of the disturbance.

FIG. 5. The spectrum of eigenvalues l (Brosa and Grossmann,
1999a; Boberg and Brosa, 1988) (expressed in multiples of
n/a2) describing disturbances vl(x) of the parabolically pro-
filed laminar Hagen-Poiseuille flow through a pipe with radius
a, in the subspace m51, b50.5 of fixed azimuthal and axial
wave numbers of the eigenfunctions. The l’s are labeled ac-
cording to increasing damping. Towards the left, the wave
length of the disturbance becomes shorter, so viscosity domi-
nates via nDvl'2nk2vl . The two branches of the l’s show
the influence of the advection or coupling to the laminar flow,
i.e., of (U•“)vl1(vl•“)U in the equation of motion. If vl is
localized near the wall, it moves very slowly downstream, and
thus its imaginary part l i is small. If it is localized in the center,
it moves with the Hagen-Poiseuille velocity U050.25@(p2
2p1)/L#a2/n , proportional to the kinematic pressure drop
(p22p1)/L along the pipe of length L, therefore ul iu is large.
The viscous modes move with a medium velocity. What hap-
pens if Re is increased by the experimentalist? The wall modes
are hardly influenced, the center and the viscous modes are
faster (i.e., lower in the l plane). The merging point of the
branches moves down and to the left. All these features can
and have been observed also in many spectra of Taylor-
Couette flow disturbances (Gebhardt and Grossmann, 1993).
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•The onset of turbulence has a double threshold: both
the initial disturbance, measured e.g., by its energy
Edist(0) or its amplitude (or norm) idui5AEdist(0), and
the Reynolds number Re have to be large enough; the
disturbance needed is the smaller the larger the Rey-
nolds number already is and vice versa (see Fig. 6).

•The phase space dimension DH , i.e., the number of
degrees of freedom to describe the flow after onset, is
large immediately. This gives us a hint that a too re-
stricted number of degrees of freedom will not properly
model the action of the nonlinear dynamics of the
Navier-Stokes equations.

•There is an indication that the turbulent fluctuations
are transient only (Brosa, 1989), but their lifetimes in-
crease with Re so strongly that the eventual decay can-
not be measured experimentally (as the disturbance
leaves the pipe before decay) nor calculated numerically
(its decay is beyond the length of the runs).

While pipe flow usually becomes turbulent if Re ex-
ceeds a value of about 2000, in various experiments in
which disturbances of the laminar flow could carefully
be avoided or considerably reduced, the onset of turbu-
lence was delayed to Reynolds numbers up to Re
5O(105) (cf. Wygnansky and Champagne, 1973).

In contrast to Poiseuille pipe flow, which is linearly
stable for all Re, in Poiseuille channel flow a critical
Reynolds number of linear instability exists (Lin, 1945a,
1945b, 1946; Orszag, 1971; Orszag and Kells, 1980),
Rec55772. But the experimentally realized laminar
flows usually ‘‘do not wait’’ until Rec but become turbu-
lent already at about Re'1000. This shows particularly
strikingly that the onset-of-turbulence mechanism in this
flow must be different from an eigenvalue instability.

Couette channel flow shows onset of turbulence at Re
of about 1300. A complete double threshold has been
demonstrated experimentally for a certain type of dis-
turbances by Dauchot and Daviaud (1994, 1995) (see
also Bottin et al., 1998). No linear instability is known

FIG. 6. Schematic plot of the double threshold for the transi-
tion to turbulence in shear flows. Since the form and the type
of the disturbance—more or less misfit—is relevant, the
double threshold or transition line between laminar and turbu-
lent flow should be interpreted as the envelope of all lines for
all possible types of disturbances. The exponent g for the scal-
ing of this threshold line idui}Re2g for large Re is expected
to be 1 or slightly larger, as discussed later. For a fixed type of
disturbance, as a function of only one strength parameter, the
threshold seems to be fractal (Eckhardt and Mersmann, 1999),
but this is not resolved in this figure. The range of typical
disturbance amplitudes in an experiment implies a range of
Reynolds numbers in which the transition to turbulence typi-
cally occurs.
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for this flow. (Note that the Reynolds number of this
flow is defined in this Colloquium with U as the relative
velocity between the plates and l as their distance. Often
1
4 of this Re is used, if the plates are sheared against each
other, referring to the shear velocity relative to the neu-
tral plane in the middle and its distance from either
plate.) In the counter-rotating Taylor-Couette system
the onset of turbulence occurs at somewhat larger Re,
about 3000, indicating that the curvature of the geom-
etry seems to suppress the onset of turbulent convection.
This feature can be explained as an effect of reducing
the nonnormality by the centrifugal forces (Gebhardt
and Grossmann, 1999).

There is an impressive amount of important and inter-
esting work to explain the onset of turbulence using the
notions of stability theory, like (exponential) instability,
subcritical transition, amplitude equations, unstable pro-
files, primary (linear) instability—secondary flow—
secondary (linear) instability, and more. A most recent
comprehensive survey of the corresponding references is
available in Monin and Yaglom (1999), who cite review
articles or original work by, e.g., Herbert (1988), Bayly
et al. (1988), Orszag and Kells (1980), Orszag and Patera
(1980, 1983), as well as experimental work, such as, e.g.,
by Nishioka et al. (1975), and many others. The present
Colloquium develops another viewpoint for understand-
ing the onset of turbulence in shear flows.

III. NONNORMALITY, A LINEAR STEP TOWARDS
TURBULENCE

In order to identify the mechanism—different from
exponential linear instability—by which the laminar flow
becomes turbulent in the shear flows of interest, let us
analyze the equation of motion. The Navier-Stokes
equation for incompressible flow reads as

] tu52~u•“ !u2“p1nDu. (3)

Here u(x,t) is the velocity field at any position x and
time t, and p(x,t) is the kinematic pressure, i.e., the
physical pressure divided by the constant mass density r.
Let U(x) again denote the laminar flow, satisfying the
physical boundary conditions and solving Eq. (3). We
allow for a deviation du(x,t), i.e., the total velocity field
is u(x,t)5U(x)1du(x,t). The flow deviation, using Eq.
(3), then satisfies

] tdu52~U•“ !du2~du•“ !U2pressure terms

1nDu1~du•“ !du. (4)

The pressure terms have not been detailed here: apart
from their different vectorial character and their long
range nonlocality, they are bilinear in the velocity fields
U and du, like the first two terms written explicitly, or
quadratic in du, like the last one.

As long as du is sufficiently small, the last, quadratic
term can be omitted. The remaining linear part of Eq.
(4) can be solved with the ansatz of Eq. (2), which leads
to the eigenvalue problem

lvl5Lvl . (5)
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Its eigenvalues l and eigenfunctions vl depend on the
laminar flow profile U(x) because L does so.

The next-to-last term in Eq. (4) is of the form 2nk2 in
wave-number space, i.e., if du}exp(ik•x). Its contribu-
tion to the eigenvalues l is purely dissipative, i.e., real
and negative. The first term of Eq. (4) describes the ad-
vection of the disturbance with the laminar flow U, con-
tributing to l an imaginary part proportional to U, given
by ikRe . It is globally energy conserving. The second
term is special: it represents the x- and t-dependent ad-
vection of the laminar field U(x) by the perturbation
du(x,t) and therefore deforms the laminar velocity pro-
file. This advection is independent of the wave number
of the disturbance, but is also } Re. Most importantly, it
is sensitive to the laminar shear profile ] jUi . This matrix
(]U) is generically asymmetric. It has zeros along the
diagonal and asymmetric nonzero off-diagonal entries.
For example, in laminar plane Couette flow, only ]3U1
is nonzero and } Re, while ]1U350 (and analogously
for pipe flow). This asymmetry of the shear matrix re-
flects the characteristic feature of the laminar profiles to
vary perpendicularly to the direction of the flow and to
be translationally invariant in the flow direction. By cal-
culating the products of such a generically nondiagonal
matrix with its adjoint matrix as well as that of the ad-
joint matrix with the original matrix one easily convinces
oneself that the order of the factors in the products mat-
ters. One finds

~]U !~]U !†Þ~]U !†~]U !. (6)

This property of the shear matrix (]U) is transferred
to the linear operator L, which defines the eigenvalue
problem (5) and of which (]U) is one term,

LL†ÞL†L . (7)

But it was precisely the commutability of L with L†

that could guarantee the mutual orthogonality of the
eigenfunctions, as known for Hermitian and for unitary
operators. Such operators with LL†5L†L are called
normal. The linear operator L for the time development
of shear flow disturbances, in contrast, is generically
nonnormal because of Eq. (7).

The distortion of the laminar flow field by the distur-
bance is not energy conserving. The term duj(] jUi)dui
may have any sign, so du may lose energy, but may also
draw energy from the laminar flow. Because all eigen-
values l have negative real parts, any linear disturbance
will lose its energy eventually. But transient gain is also
possible.

It was known already to Orr (1907) that linear distur-
bances of a shear flow can grow for a while. The context
was eigenvalue degeneracy. Several later authors reiter-
ated and expanded on this observation (Landahl, 1980;
Gustavson, 1981; Benney and Gustavson, 1981; Gustav-
son, 1991; Henningson, 1991; Butler and Farrell, 1992,
1993; Henningson et al., 1993). It was, however, Boberg
and Brosa (1988) who became aware of the systematic
importance of a transient increase of small perturbations
of the laminar flow by some appropriate linear mecha-
nism. They still attributed it to the defectiveness of the
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
eigendynamics in the neighborhood of the laminar shear
flow, i.e., to the degeneracy or near degeneracy of some
eigenvalues. When it turned out that such degeneracies
are pretty rare in counter-rotating Taylor-Couette flow
(Gebhardt and Grossmann, 1993), the old argument re-
turned that one or some few accidental degeneracies can
hardly be sufficient and responsible for triggering the
transition to turbulence. It then was the enlightening pa-
per by Trefethen et al. (1993) (see also Reddy and Hen-
ningson, 1993a, 1993b, 1994; Henningson, 1993), which
identified the global feature of nonnormality as the es-
sential property of the linear dynamics in the vicinity of
the laminar flow to be systematically responsible for the
transient growth of disturbances. This, together with the
proper action of the nonlinear interactions between the
temporarily finite disturbances of sufficient amplitude
(Boberg and Brosa, 1988; Brosa and Grossmann, 1999a)
has led to some self-contained understanding of how
laminar flow can become turbulent.

Instead of giving general arguments, let me explain
the consequences of nonnormality for nonspecialists.
Consider the nonnormal matrix

L5S l1 Re

0 l2
D . (8)

Its eigenvalues are l1 and l2 , its eigenvectors are v1
5(1,0)† (already normalized) and v2}(Re/Dl ,1)†. The
size of the nondiagonal element Re can be taken as a
measure of the nonnormality in this case, because LL†

2L†L5Re2. Increasing the Reynolds number Re (and
thus the nonnormality) makes v1 and v2 more and more
parallel. The cos of the angle f they span is cos f
5Re/ARe21uDlu2, implying f→0° for Re→` (and f
590° if Re50). But v1 , v2 remain, of course, linearly
independent unless there is exact degeneracy Dl5l2
2l150 (or if Re5`). Therefore any disturbance can
be expanded in terms of v1 and v2 . The expansion co-
efficients are of order 1 if the vector describing the dis-
turbance points into about the same direction as the
eigenvectors v1 and v2 . But they are of order Re and
thus huge, if the perturbation is nearly perpendicular to
the v’s. In the first case, which may be called a fit distur-
bance, the expansion coefficients simply decay because
the amplitude factors exp(l1,2t) do so. In the second
case of a misfit disturbance the huge expansion coeffi-
cients also shrink exponentially. But since the eigenval-
ues l1 and l2 are different, the coefficients decrease
differently and with different phases. Then the superpo-
sition of the huge v1 and v2 components ceases to result
in a small disturbance, as it did initially. Instead, it fails
to do so more and more, with the consequence that the
net disturbance starts to increase in size, until the super-
position of the still large components is of the same or-
der as the individual amplitudes. Simultaneously, the su-
perposed disturbance is rotated towards the v i
directions. Consequently, the originally misfit flow dis-
turbance at first grows and at the same time turns into
the fit direction, until eventually it decays due to the
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negative real parts of the l’s. A little algebra shows this
quantitatively. By expanding the solution of the linear
equation ] tdu5Ldu in terms of the above mentioned
eigenvectors and determining the expansion coefficients
in terms of the initial values, one finds that an initial
disturbance du(0)5(u1 ,u2)† develops according to

du1~ t !5Fu11u2

Re

Dl
~eDlt21 !Gel1t,

du2~ t !5u2el2t. (9)

While du2(t) decreases, du1(t) may transiently grow
}Re if u2 , the misfit component, is nonzero.

What is the generic feature of this simple example?
The nonnormality of the linear dynamics quite generally
will imply a bunching of the eigendirections. Distur-
bances that fit in this bundle decay. Those which misfit
first grow (algebraically and proportional to the nonnor-
mality, controlled by Re) and only after this transient
increase do they decay.

The bunching of the eigendirections can physically be
understood by the dominant role of the basic laminar
flow. This carries any flow perturbation downstream,
i.e., the eigenflow patterns will predominantly be ori-
ented parallel or antiparallel to the main flow. Circular
flow in the pipe or spanwise flow in the channel, on the
contrary, are very misfit.

There are various confirmations of these features: (i)
The phase space volume V spanned by the first '20 pipe
flow eigenfunctions in the @m51ub50,5# subspace de-
creases drastically with Re, namely V'0.97Re (cf.
Boberg and Brosa, 1988). For Re52000, V is O(10227),
or practically 0 instead of 1, as it was for Re50. (ii) The
overlap matrix ^vluvl8& of normalized eigenfunctions of
counter-rotating Taylor-Couette flow has a broad strip
of nonzero entries along both sides of the diagonal, cf.
Fig. 7 (from Gebhardt and Grossmann, 1993), while for
normal operators it would be dl ,l8 . This figure shows
particularly strikingly that the global property of non-
normality leads to a dramatic global effect of bunching
of many eigenvectors, irrespective of some more or less
accidental degeneracies. All eigenflows which are influ-
enced by the laminar advection are affected. (iii) Pipe
flow eigenfunctions indeed prefer, within the limits en-
forced by incompressibility, to flow downstream or up-
stream but hardly show azimuthal, rotational velocity
components (cf. various flow patterns in Boberg and
Brosa, 1988).

IV. INTERPLAY BETWEEN EIGENFLOW BUNCHING AND
NONLINEARITY

The generic feature of the linear dynamics in the
neighborhood of the laminar flow to show nonnormal
eigenflow bunching will not suffice to trigger the onset of
turbulence, because ultimately any disturbance will still
exponentially decay due to the negative real parts of all
l’s. But if there is sufficient transient amplification, the
nonlinearity can no longer be neglected. This drastically
modifies the nonnormal linear dynamics.
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
Again, a simple argument may serve to demonstrate
the subtle role of the nonlinearity (du•“)du. If “ were
nothing but a vector field, the now finite disturbance du
would be mapped by the nonlinearity onto itself, apart
from a numerical factor (du•“). Then, because du
meanwhile has been turned into a fit disturbance, it is
bound to decay }exp(lt). But, besides transforming like
a vector, “ is a differential operator. Therefore it probes
the space dependence of the disturbance du(x,t) and
thus represents the direction in which the flow field du
changes, which in general is quite different from the di-
rection into which the flow vector du points. As a con-
sequence the nonlinear interaction (du•“)du changes—
besides the magnitude—also the direction of the
disturbance. One can easily convince oneself of this by
considering a very simple example. Take du5C(x ,y)†.
Then (du•“) du5C2(x ,y)†, which, up to an amplifica-
tion factor of C2 , is du again. If one tries, instead, with a
vortex field du5C(2y ,x)†, the nonlinearity maps this
onto (du•“) du52C2(x ,y)†, which is not only ampli-
fied (}C2 as before) but is also of different vectorial
character. The result of the interaction is even perpen-
dicular to the original du.

We conclude that, depending upon the spatial struc-
ture of the transiently grown disturbance, fed by the
basic laminar flow as the external energy source via
nonnormal coupling, a disturbance may, at least in part,
be rotated into the misfit direction again, thus giving rise
to another perturbation, which can draw energy anew.

FIG. 7. The overlap matrix ^vluvl8& of the normalized eigen-
functions vl (l along the ordinate) and vl8 (l8 along the ab-
scissa) for counter-rotating Taylor-Couette flow. The upper
left part of the matrix was calculated with R25210 000 and
@m51ub5p# , the lower right part with R2525000 and @m
52ub5p/2# ; R150 always. The darker the entry, the larger
the overlap, being between 0 and 1. For mutually orthogonal
eigenvectors (as would be the case for a normal matrix) only
the diagonal would be black (since ^vluvl&51), and all other
entries would be white (vl perpendicular to vl8). Here, for
Taylor-Couette flow, the nonnormality implies much overlap.
Data taken from Gebhardt and Grossmann (1993).
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By this combined effect of bunching and nonlinearity a
positive feedback loop is established: small misfit distur-
bance → nonnormal transient amplification → nonlinear
interaction → partial recreation of a misfit field → fur-
ther transient growth, etc.

As models show, this feedback loop, implying alge-
braic and not exponential growth in general, can be very
effective, and, depending on the nonnormal growth rate
and ability to draw sufficient energy to supercede the
losses by dissipation, can even lead to an infinite ampli-
fication. The opposite is also possible: if the number of
energy-providing, misfit modes is too small in compari-
son to a great number of dissipating, fit modes, the feed-
back loop will be too weak and any disturbance will fade
away. In the complete Navier-Stokes dynamics there
seems to be a proper balance between the two types of
mode sets, the energy-providing and the energy-
consuming ones, and the feedback loop is able to sustain
irregular, turbulent fluctuations.

That the full dynamics induces an irregularly fluctuat-
ing velocity field du(x,t) has to be expected because the
equations are nonlinear. But, moreover, the dimension
DH of the phase space involved generically must be
pretty large. The reason is that nonnormality and non-
linearity cannot cooperate directly, infinitesimally, but
only successively. The bunched modes within the sub-
spaces @mub# of fixed symmetry with respect to azi-
muthal rotation (whose wave number is m) and axial
translation (with wave number b) have no mutual inter-
action via nonlinearity. This is due to the selection rules
for the quadratic nonlinearity,

m11m25m3 and b11b25b3 . (10)

Here 1 and 2 label the modes which interact by the con-
vective Navier-Stokes nonlinearity and 3 denotes the re-
sulting mode. Interaction thus takes place between
modes or results in modes of at least two or even three
different symmetry classes. But modes from different
@mub# classes are normal to each other, since modes
with different m, b are automatically mutually orthogo-
nal.

We conclude that several different @mub# symmetry
classes must be involved in the feedback loop in order to
provide interaction as well as sufficiently many modes
within each @mub# to provide bunching. Nonnormal
bunching is necessary for the transient growth of misfit
flow disturbances. The interaction is needed to enable
sufficient directional redistribution of grown-up distur-
bances. Both requirements together easily lead to a
number of modes or a phase space dimension, which is
DH>O(100), in contrast to the much smaller DH near
an instability transition, where only the unstable eigen-
mode and its symmetry-degenerate brethren are impor-
tant.

The feedback loop needs finite (instead of infinitesi-
mal) time, because transient amplification is a necessary
ingredient, and this takes time.

If this and the other time scales as well as the maxi-
mum amplification all scale with the nonnormality, } Re,
one can formulate the above-mentioned feedback con-
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dition quantitatively, leading to a value for the double
threshold scaling exponent g, as first suggested by
Trefethen et al. (1993). Start with a misfit disturbance
;du , have then transient maximum amplification
;Re du followed by nonlinear interaction ;(Re du)2

during average time ; Re, resulting in another misfit
disturbance ;(Re du)2Re . If this is larger than the
original du , the feedback loop will imply growth. Now,
we have noted that the advective contribution (U
•“)du in Eq. (4) also contributes } Re, but on the diag-
onal. This leads to a saturation of the nonnormal bunch-
ing and thus of the maximum amplification }Adu , with
some (large) constant A. The feedback loop growth con-
dition then is

~Adu !2Re>du ,

implying du>c Re2g with g51. (11)

Such a value for g, was first advanced by Trefethen et al.
(1993), and slightly larger ones have been obtained by
various other authors (Butler and Farrell, 1992, 1993;
Lundbladh et al., 1993; Reddy et al., 1993, 1998; Eck-
hardt and Mersmann, 1999; Chapman, 1999) by numeri-
cal analysis of the Navier-Stokes equation. Experimental
values have also appeared, see, e.g., Dauchot and Davi-
aud (1994, 1995), Tillmark and Alfredsson (1992). The
present values of g will be given in Sec. VI.

We conclude with a final observation. Because all the
components involved in the superposition of the DH
modes have a decaying exponential in front, one cannot
exclude—if the deterministic-chaotic feedback loop does
in some short moment not properly keep its intricate
balance—that the turbulent solution fades away. Turbu-
lence then will be of a transient nature (Brosa, 1989;
Eckhardt et al., 1998, 1999).

V. DEMONSTRATION OF THE NONNORMAL-NONLINEAR
TRANSITION MECHANISM

Having described the basic ideas on how turbulence
can be imagined to start in shear flows despite linearly
stable laminarity, let me now demonstrate the validity of
this mechanism by two examples: A low dimensional
model system with a most general second-order nonlin-
earity and a Navier-Stokes-based flow with as few
modes as necessary to retain all relevant features of the
Navier-Stokes dynamics.

A. Two-mode model of the onset of turbulence

Let us first look at a very simple model to mimick the
time evolution of a flow disturbance. We describe the
deviation from laminar flow by only two mode ampli-
tudes, ut5@u1(t),u2(t)# , each one complex. Thus the
number of degrees of freedom is DH54. Their nonnor-
mal linear dynamics is constructed in keeping with the
general ideas discussed above. For their interaction, the
most general quadratic form in the components u1 and
u2 is taken, restricted only by demanding that the equa-
tion of motion conserves energy and generates chaotic
dynamics in at least some range of the Reynolds
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FIG. 8. Left column, upper: Time develop-
ment of the amplitude iuti , starting from the
initial disturbance (0,1), for different Rey-
nolds numbers Re. Streamwise homogeneity
of the disturbance, i.e., kx50, is assumed,
which amounts to skipping the imaginary di-
agonal terms. Middle: Same for increased ini-
tial disturbance but fixed Re51000. Lower:
Chaotic time dependence of the real part of
one component [case of largest Re and u(0)].
Right column: From upper to lower the same
as in the corresponding plot to the left, but
with nonzero streamwise wave number kx

Þ0, i.e., including the streamwise advection
of the disturbance and the corresponding
imaginary diagonal terms in L. For further
details, see Gebhardt and Grossmann (1994).
number Re. We thus define the model by the following
equation of motion for the two complex amplitudes
(Gebhardt and Grossmann, 1994):

u̇ t5Lut1B~ut ,ut!, with L5Ln1LU . (12)

Here the matrix Ln stands for the dissipative operator
nD, and the second matrix LU represents the non-
normal coupling to the laminar flow,

Ln5S 218

238D ,

LU5ReS 0.8i 0.7S 12
siui

11siui D
0 1.1i

D . (13)

Time is measured in multiples of (n/l2)21. The numbers
in the damping matrix Ln correspond to the values of nD
expressed in wave number space by 2nk2 of the modes
with the smallest wave numbers k252p2/l2 and 5p2/l2.
The imaginary diagonal elements in LU represent the
advection by the laminar field U of the disturbance
(}ik), and the off-diagonal element } 0.7 mimics the
distortion (du•“)U of the laminar flow by the distur-
bance. Both are } Re. The additional off-diagonal term
} s is introduced to switch off the nonnormality if iuti
approaches O(Re). For this reason we choose the value
s510/Re for the parameter s. Mathematically this
switchoff is necessary because without it the disturbance
turns out to grow indefinitely, iuti→` ; the feedback
loop simply is too effective. Physically it represents the
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flattening of the turbulent mean profile in the bulk,
which diminishes the mean shear, ]3^U1&'0, and thus
no nonnormality is left in the interior of the flow vol-
ume.

The second-order nonlinearity B with the components
Bi (i51,2) is taken in its most general form Bi
5Sbijlujul , restricted only by energy conservation
u* B1uB* 50 for all u. We chose the matrix elements
bijl to remix the components and to generate a deter-
ministic chaotic dynamics, but they are otherwise arbi-
trary. No recourse to the Navier-Stokes nonlinearity
(u•“)u could be made under these constraints, however
simple they are.

This model has been studied in detail by Gebhardt
and Grossmann (1994) (see also Baggett and Trefethen
(1997), where it has been compared with other low di-
mensional models). It gives the double threshold and
other characteristic features of the nonnormal-nonlinear
turbulence transition, some of which are displayed in
Fig. 8.

An intuitively rather puzzling question can be an-
swered by this simple model. The loss of energy stability
in the shear flows through pipes or channels is known to
happen at much lower Re already than the onset of tur-
bulence. Namely, energy stability is lost at Re5O(80)
(cf. Joseph, 1976; Drazin and Reid, 1981), while turbu-
lence sets in at Re5O(1200) or more. How can this be
compatible? How can one understand that despite the
possibility that the disturbances grow in energy, turbu-
lence does not set in?
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The temporal development of small disturbances ut is
characterized by L of Eqs. (12) and (13) after setting B
and s equal to zero. This then describes the linear dy-
namics of the velocity field ut . For the energy of the
disturbance, measured by iuti2, the relevant linear op-
erator is LE5L1L†. It is Hermitian, and its eigenval-
ues are real (but different from l1l* ). LE develops a
positive eigenvalue, which appears if Re exceeds ReES
574.7. The puzzle now is that LE has an eigenvalue
lE.0, and thus the energy iuti2 can grow, but neverthe-
less the laminar flow is stable: Since the l’s of L all have
negative real parts, ut decays, and turbulence does not
set in before Re5O(1000).

To resolve this puzzle we consider the ‘‘equation of
motion’’ for the energy,

diuti2

dt
5^utu~L1L†!ut&5lE~ t !iuti2. (14)

The time-dependent rate lE(t) may be introduced:

lE~ t !5^ut
0uLEut

0&5(
a

lEa
u^Va

0uut
0&u2. (15)

Here lEa
, a51,2, are the two energy eigenvalues, one of

them negative, the other one positive beyond ReES .
The set of Va

0 are the energy eigenvectors, normalized
and mutually orthogonal. ut

0 is the normalized solution
of the linearized equation of motion (11) for the field
amplitude itself. It is a unit vector.

Now, initially, if ut50
0 is parallel to the unstable eigen-

direction uV1
0&, we have lE(t)'lE1

.0. The disturbance
grows. But in the course of time ut is rotated into the fit
direction. It then turns out to have equal overlap matrix
elements with both (all) LE eigenvectors (the latter
forming a complete orthonormal basis). Thus the contri-
butions u^Va

0uut
0&u are the same for all a, and

lE~ t large!;(
a

lEa
,0. (16)

For L defined by Eq. (12) one obtains lE(t large);lE1

1lE2
'(2182381Re)1(2182382Re)52112. The

large terms 1Re and 2Re cancel each other and
thereby lose their dominance.

We note that energy instability and relaminarization
of the flow are compatible because the (linear) flow is
turned around into that very small section of the phase
space which is defined by the fit eigenbundle. The eigen-
directions of the energy operator, spanning the phase
space as a complete orthonormal basis, all have the
same projections on the L eigenbundle. Therefore the
unstable directions with positive lE are more than com-
pensated by the stable components with lE,0. It is
again the bunching due to nonnormality which is re-
sponsible for this interesting mechanism.

As has been described, if the transient growth be-
comes strong enough, the quadratic term }u2, i.e., the
interaction of the velocity field with itself, will become
sizable. This interaction drives at least parts of the dis-
turbance, which had just been turned linearly into the
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direction of the eigenbundle, out of that eigendirection.
This then misfit, scattered part of the disturbance now
takes notice of the unstable LE eigendirections again,
grows further, etc., as explained above.

B. Mode-reduced Navier-Stokes dynamics

Let us consider now the second example. Instead of
studying a model dynamics, the Navier-Stokes equation
for incompressible fluid flow itself is solved. The ap-
proximation here consists in admitting a finite number
of modes only, but interacting with the Navier-Stokes
nonlinearity itself. In fact, we even try to reduce this
number of modes as much as possible, but still can iden-
tify and demonstrate the nonnormal-nonlinear onset
mechanism. For details see Brosa and Grossmann
(1999a).

Because the nonnormality parallelizes those eigen-
flows which are sizably affected by the advection with
the laminar flow rather than by the dissipation, the nu-
merical handling of the Navier-Stokes dynamics in the
basis of eigenflows becomes difficult. For example, the
overlap matrix ^vluvl8&, cf. Fig. 7, is close to being sin-
gular. More precisely, it has a large condition number,
i.e., a large ratio between its largest and its smallest ei-
genvalue. To bypass numerical problems arising from
these specific properties of the eigenflow basis, caused
by the nonnormality of the linear operator L, it is useful
to employ the QR decomposition of the eigenflow basis
$vl% of linearly independent but nonorthogonal unit vec-
tors in each @mub# subspace of fixed azimuthal and axial
wave numbers m and b. Here R is an upper triangular
matrix (zero entries below the diagonal) and Q is uni-
tary. The Q eigenstates $qk% then span the @mub# sub-
space with mutually orthogonal flow patterns. These can
be ordered, in addition, according to their ability to tran-
siently being amplified, denoted as amplification quality.
This notion is defined quantitatively as the ratio of the
maximum energy along the linearly calculated solution
to the initial energy.

The eigenstates vl with low labels, defined in Fig. 5,
are dominated by the laminar advection and only
weakly damped. As one expects, it indeed turns out that
they are fit flow patterns with only poor or no transient
amplification quality. Those with the high labels, in con-
trast, are hardly influenced by the laminar advection but
are strongly damped. And since they are dominated by
the nDu term in Eqs. (3) and (4), which is Hermitian,
they are mutually orthogonal. For both reasons they also
have only bad amplification quality. Most effective in
their quality of transient amplification are the modes in
the palm range between the spreading fingers, the ‘‘Y’’
of the spectrum in Fig. 5. These states are not yet too
strongly damped and they are not yet too much influ-
enced by advection, and therefore fit less well into the
bundle of fit eigenvectors with small l. Nonnormality
and transient amplification become strong for these vl .

One can isolate the combined properties of small
damping and being most misfit by performing the QR
decomposition with the backward sequence
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$vN ,vN21 ,. . . ,v1% of eigenmodes. N must not be too
small. For Re52000 the value of N520 is convenient,
the smallest possible N we could identify as leading to
some noteworthy amplification quality being 8. The cor-
respondingly ordered q flows q1 ,q2 ,. . . ,qk , . . . ,qN have
decreasing damping and increasing amplification quality
with growing index k.

Next, the concept of communicating classes is intro-
duced. These are sets of several @mub# classes with dif-
ferent azimuthal and axial wave numbers, which are
connected by the interaction via the m ,b selection rules
(10). The smallest nontrivial communicating set of [mub]
classes is the triple $[1u0.5], [21u0.5], [0u1.0]%.

In Fig. 9 solutions obtained with various numbers N of
modes per @mub# class are shown. If N is only 7 or 8
there is not sufficient transient amplification, the misfit
component is too weak. If N513, sufficiently many mis-
fit modes are included and therefore sufficient transient
growth occurs. But this set of modes has insufficiently
many damped modes. As a result the energy even grows
ad infinitum. If N520, the energy input and the damping
are balanced. The solutions calculated with this set of 3
communicating classes with chosen azimuthal (m) and
axial (b) wave numbers, containing N520 complex
modes each, thus with 3320325120 real amplitudes,
fluctuate long and irregularly, cf. Figs. 9 and 10.

We now can analyze some details of the nonlinear
interaction in this set of modes, in order to check and to
verify the validity of the picture about the onset of tur-
bulence, which has been developed here. For instance,
we observe that modes which have lost their transient
amplification qualities, as, e.g., k51 in @m50ub51.0#
and k55 in [1u0.5], interact to give a k58 mode in the
symmetry class [21u0.5], which has a large potential for
transient growth. In Fig. 11 this as well as another such
example are offered. It gives confirmation of the partial
redistribution process of the fit modes into the misfit
directions by the nonlinearity.

FIG. 9. Time development of the energy of the disturbance,
Edist(t). The parameters are Re52000, N57, 8, 13, or 20
modes per @mub# class, and three such communicating classes.
Initial disturbance: Superposition of the least damped eigen-
modes in [1u0.5] and [0u1.0]. These are fit disturbances, which
decay. Their interaction produces misfit components, which
are then amplified.
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With such about 100 well-chosen, real amplitudes, the
solutions of the Navier-Stokes equation reproduce the
characteristic double threshold (cf. Fig. 6). The smallest
possible mode number we could find to do so comprised
33832548 real amplitudes. Why are O(100) real am-
plitudes necessary although the four-amplitude model of
Sec. V.1 already showed the onset of turbulence despite
stable laminarity? The reason is, in the four-amplitude
model the most general interaction matrix bijl (under
reasonable physical constraints only) had to be used.
This most general matrix cannot be derived from the
Navier-Stokes nonlinearity (u•“)u; on the contrary, the
four-amplitude model fails, if one restricts oneself to the
Navier-Stokes-generated interaction of the available
amplitudes. In the Navier-Stokes-based calculations of
this section more modes are needed, because the physi-
cally correct interaction is kept.

One can also calculate the corresponding flow profile,
although at these still rather low Re and with so few
modes this is not very firm. But the tendency of flatten-
ing the parabolic Hagen-Poiseuille flow profile in the
interior of the pipe and indication of developing a steep
boundary layer are already found, cf. Fig. 10 in Brosa
and Grossmann (1999a).

Thus these mode-reduced Navier-Stokes solutions
seem to confirm the nonnormal-nonlinear mechanism of
transition to turbulence described in the previous sec-
tions.

VI. THE DOUBLE THRESHOLD SCALING

Until now we have concentrated on explaining the
mechanism which leads to a double threshold for the
onset of turbulence despite stable laminarity, idui
}Re2g. It describes the necessary size of disturbances at
a given Re or the necessary Reynolds number Re at a
given disturbance level to trigger the onset of turbu-
lence. Or, stating it alternatively, the domain of stable
laminarity, the basin of attraction of the laminar flow,
shrinks algebraically with increasing Re.

Stable laminarity—being the subject for the Adams
Prize of the University of Cambridge for 1888—in a de-
creasing domain with increasing Reynolds number has
been described, incidentally, more than a hundred years

FIG. 10. Long-lasting fluctuations in the system with Re
52000, N520, and three communicating classes.
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ago by Lord Kelvin (Thomson, 1887): ‘‘It seems prob-
able, almost certain indeed, that analysis...will demon-
strate that the steady motion is stable for any viscosity,
however small; and that the practical unsteadiness
pointed out by Stokes forty-four years ago, and so admi-
rably investigated experimentally five or six years ago by
Osborne Reynolds, is to be explained by limits of stabil-
ity becoming narrower and narrower the smaller the vis-
cosity.’’ (Lord Kelvin then presented a proof for plane
Couette flow.)

Meanwhile some properties of this double threshold
have been clarified. As is clear from the description of
the nonnormal-nonlinear mechanism, the onset of tur-
bulence depends on the type and on the details of the
triggering disturbance and not only on its strength alone.

FIG. 11. Nonlinear time development of a system of three
communicating classes, eight modes each, for Re52000. The
integration time is finite but still sufficiently small so that only
about one interaction can happen. Along the abscissas each
figure (upper as well as lower) shows the intensities of the
eight modes in the three classes [1u0.5] (abbreviated as 11 in
the graph), [0u1.0], and [21u0.5]. The circles s indicate the
initial amplitudes, the full dots d the final ones after t53.45.
The sum of the initial as well as of the final intensities has been
normalized to 1, therefore we speak of ‘‘relative intensities.’’
Upper: Two energy consuming, fit modes, namely k51 in
[0u1.0] and k55 in [1u0.5], produce misfit amplitudes in
[21u0.5] (with labels k55 and k58), which have good ampli-
fication quality. Lower: A misfit mode, k58 in [21u0.5] and a
fit one, k55 in [1u0.5] by their interaction produce low ampli-
fication quality modes, k51 through 4 in [0u1.0]. These are
needed to create other amplitudes of high amplification quality
as was just shown in Fig. 11, upper.
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But for a fixed type of disturbance as a function of one
parameter only, say the strength, the double threshold
curve seems to be fractal. This was shown with reduced
mode number solutions of the Navier-Stokes dynamics
by Eckhardt and Mersmann (1999). The envelope of
their fractal boundary between laminar and turbulent
runs shows an algebraic scaling }Re2g with g'1, in the
range Re<4000. Of course, experimentally uncontrol-
lable fluctuations of the initial conditions will smear out
too detailed fine structures of the transition curve. Nev-
ertheless it is of interest to look to experiment for such
structures in the onset range, cf. Darbyshire and Mullin
(1995).

The present values of the double threshold scaling ex-
ponent g obtained by careful numerical simulations of
the Navier-Stokes equation (Lundbladh et al., 1993;
Reddy et al., 1998) are g51 and g5 5

4 for, respectively,
streamwise and oblique initial flow structures in plane
Couette (shear) flow. The corresponding values for
plane Poiseuille, i.e., pressure driven flow, are g5 7

4 in
both cases of streamwise or oblique initial perturbations.
Recent asymptotic analysis of the Navier-Stokes equa-
tions (Chapman, 1999), i.e., order of magnitude com-
parison of the relevant terms for large Re and looking
for the transient amplification potential of the modes
and their interaction order, led to a slightly higher
double threshold, meaning smaller values for the scaling
exponents, g51 and g5 7

6 for plane Couette and g5 3
2

and g5 17
12 , respectively, for plane Poiseuille flows. The

first values again refer to streamwise, the second to ob-
lique initial disturbances.

The difference between the analytically and the nu-
merically obtained scaling exponents g was traced back
by Chapman (1999) to not yet being in the asymptotic
Re range numerically. There are also other cases in
which one meets appreciable deviations of the numerical
from the asymptotic exponents. The scaling of the
present best energy-dissipation-rate bound for plane
Couette flow, «/(U3L21)}Re2a, may serve as an ex-
ample. One finds a50.08 in the range up to the not at all
small value of Re'106, but a50.18(1) asymptotically
in Re (Nicodemus et al., 1999; cf. Fig. 1 of that paper).

VII. LARGE PHASE SPACE DIMENSION

As was explained earlier, the intricate interplay of the
nonnormal bunching and the nonlinear interaction im-
plied by the convective nonlinearity (u•“)u needs quite
a number of degrees of freedom to function. The small-
est we found was 48, and for longer turbulent runs, 120.
But there are more and larger sets of communicating
classes in the Reynolds number range, where the onset
of turbulence occurs. Depending on the initial condi-
tions, they too may contribute. And the interaction
couples them. Thus it is of considerable interest to esti-
mate how large the number of degrees of freedom near
the onset of turbulence really is, i.e., how large the cor-
responding phase space dimension DH has to be, and
which are the physical reasons for its magnitude.
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There exist rigorous upper bounds for DH (Ruelle,
1982, 1984; Lieb, 1984). It is not yet clear to what extent
these might be overestimates. One may also evaluate
DH rather directly to get an appropriate, though nonrig-
orous estimate (Grossmann, 1994), following Ruelle’s
line of argument. One uses the relation between the di-
mension DH and the Lyapunov spectrum $L1>L2>¯

>Lb>¯% of the nonlinear dynamical system at hand
(Kaplan and Yorke, 1979). It states that DH is the larg-
est number for which the sum of Lyapunov exponents
ordered according to decreasing size is still positive,

(
b

DH

Lb>0. (17)

To calculate the Lb spectrum of a Navier-Stokes flow
u(x,t) one has to analyze the growth rates of small de-
viations averaged along the actual flow. The linear op-
erator determining the growth of idui2 is LE5nD
1(“u)sym . Surely, the spectrum of the Laplacean alone
is 2nk2. The second term, originating from the Navier-
Stokes nonlinearity and depending on x and t, appears
to be of insurmountable difficulty. Its matrix form is
(]ui /]xj1]uj /]xi)/2. It becomes tractable if one simpli-
fies drastically (Ruelle, 1982) by diagonalizing it with
respect to the vector indices i,j and, furthermore, by ne-
glecting its space and time dependence by taking its
mean value along the solution trajectory, thus erasing
the wild field fluctuations. These two steps mean to sub-
stitute the x, t-dependent field derivative matrix opera-
tor by the number A«/2n . Then LE becomes a diagonal
multiplication operator and Lb5Lk52nk21A«/2n .
Counting the number of k5(2pl21)n in the largest
sphere satisfying the inequality (17), n having integer
components, allows us to determine DH . For more de-
tails see Grossmann (1994).

The result for the phase space dimension DH neces-
sary to describe a turbulent flow whose inner, viscous
length scale is h5(n3/«)1/4 reads

DH.0.0216S l

h D 3

.S l

3.6h D 3

. (18)

If the mean energy dissipation rate « in the bulk is ex-
pressed in terms of Re via «5U3l21c«(Re), one obtains
for not too small Re the constant value c«'0.6 (Lohse,
1994; Grossmann, 1995). Thus omitting possible inter-
mittency corrections, the phase space dimension of a
turbulent fluid flow with Reynolds number Re reads (up
to intermittency corrections) as

DH.0.015 Re9/4. (19)

In the range of small Re, one finds c«5Re21, therefore

DH.0.0216 Re3/2, Re small. (20)

Applying these expressions for DH one finds that if the
onset of turbulence happens at Re'1500, the typical
phase space dimension (number of degrees of freedom)
of the curly, irregularly fluctuating flow is, using Eqs.
(18) and (19), DH5O(105), and l/3.6h5O(60). That is,
N520 complex modes or 40 real ones for the radial di-
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rection is about sufficient. But the other spatial direc-
tions w and z, characterized by the wave numbers m and
b, are not yet sufficiently resolved with only three com-
municating classes @mub# . One has to expect that more
@mub# blocks have to be added if the full dynamics and
observed small scale patterns near onset are to be re-
solved.

Note that h'l/200, i.e., there are indeed not only tem-
porally but also spatially decorrelated flow fluctuations.

If a flow experiences a conventional linear instability,
one typically finds l'7.5h (cf. Esser and Grossmann,
1996). Then Eq. (18) tells us that DH5O(9) and only a
few degrees of freedom are involved. The corresponding
Reynolds number can be evaluated according to Eq.
(20) and is Rec5O(60). Indeed, Taylor-Couette flow
with a rotating inner cylinder becomes unstable for
Re1,c'70 for intermediate values of the radius ratio
r1 /r2 . And energy instability in pipe flow and in plane
Couette flow occurs at Re5O(80).

The very different mechanisms of linear instability
and of nonnormal-nonlinear onset are clearly reflected
thus also in the number of the participating degrees of
freedom. These are only a few in the former case but
quite many in the latter transition mechanism.

Fully developed turbulent flow with Re'53106 has,
incidentally, as many as DH5O(1013) degrees of free-
dom. This seems huge but is still small in view of the
infinitely many degrees of freedom for a continuous flow
field. Typical inner lengths are about h'3 mm, and thus
the DH density is O(1 cm23).

VIII. PHASE SPACE STRUCTURES NEAR ONSET

Until now we have analyzed the mechanism for the
transition to turbulence. Another interesting question is,
how large on average are the amplitudes of the turbu-
lent flow fluctuations? This question also arises, of
course, for eigenvalue-unstable transitions; there it usu-
ally can be answered by including the nonlinear terms in
the (Landau-type) free energy. At shear turbulence on-
set this question seems to find its answer in a character-
istic feature of complex systems dynamics enjoying cha-
otic time development: In the phase space of chaotic
systems there is a skeleton of periodic states, although
unstable (Ruelle, 1978; Eckmann and Ruelle, 1985; Cvi-
tanović, 1988). Chaotic trajectories can be approximated
by motion on this skeleton. Consequently, if one knows
these unstable periodic orbits, one will know the typical
amplitudes. By unstable periodic orbit analysis one can
even calculate the average properties of chaotic systems
(at least of hyperbolic ones) with surprising accuracy
(Cvitanović, 1988; Eckhardt and Ott, 1994; Eckhardt
and Grossmann, 1994, etc.). The number of such states
increases strongly with the control parameter.

It thus has to be expected that similar unstable phase
space orbits are present also in turbulent flows, increas-
ingly more so with increasing Re. The simplest ones are
the period one or stationary (unstable) solutions of the
dynamic equations. In fluid flow these are stationary
flow patterns, which solve the time-independent Navier-
Stokes equation but are different from the laminar solu-
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tion. Indeed, after a first, single, additional time-
independent flow had been discovered (Nagata 1990,
1997; Clever and Busse, 1992, 1997), recently Eckhardt,
Marzinzik, and Schmiegel (1998) found a rich structure
of stationary Navier-Stokes solutions w(x) using a re-
duced (962 degrees of freedom) mode number code. In
contrast to the laminar flow, which is (linearly) stable,
these further states, w(x), are unstable. They are born in
a saddle-node-like bifurcation when one increases the
Reynolds number Re and are expected to have many
unstable and also many (though fewer) stable directions
in phase space. The first of these additional stationary
solutions appears at Re'500 (Re depending on the con-
sidered symmetry subclass of the flow and also on the
aspect ratio of the flow’s geometry). For larger Re, an
increasing number of stationary solutions emerge, form-
ing a tangle of states in the parameter plane spanned by
the disturbance energy Edist(w) versus the Reynolds
number Re, as displayed in Fig. 12. There are indications
(Eckhardt, 1999) that besides this set of time-
independent states also periodic unstable states exist.

Since the unstable stationary states determined nu-
merically are born in a saddle-node bifurcation with
stable and (more) unstable manifolds, the phase point of
an actual physical flow solution u(x,t) of the Navier-
Stokes equation will, in the vicinity of the stationary
states, be attracted in some phase space directions and
repelled in others. Being repelled from one such state, it
temporarily becomes attracted by another, is then re-
pelled also there, etc. Therefore the phase point of the
physical flow in the course of time travels erratically
through the tangle of stationary states, whose threads
attract and repel it, again and again, irregularly, until it
eventually ‘‘falls’’ through the tangle and approaches the
laminar state. The set of unstable stationary states thus
constitutes a strange repeller in the phase space of flows.
Knowing this set enables one to estimate the typical de-
viations of the turbulent velocity from the laminar one

FIG. 12. The tangle of unstable stationary states, which are
denoted by w(x), in the parameter space energy Edist(w) ver-
sus Re, from Eckhardt et al. (1998) (by courtesy of Bruno Eck-
hardt and Armin Schmiegel, who provided this figure prior to
publication). The states in this figure have been calculated with
302 (real) degrees of freedom, Fourier modes in the x and y
directions, and Legendre polynomials in the z direction. Only
time-independent states with a certain symmetry of the flow
pattern are shown. The solid lines connect states related by a
continuous deformation of their flow patterns. The symbols d,
h, etc., label different types of unstable stationary flow fields.
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and also the typical amplitudes of the turbulent fluctua-
tions about their mean. And also, the idea is obvious
that the appearance of this repeller with increasing Re
should indicate and be related to the first possibility of
turbulent solutions by the nonnormal-nonlinear transi-
tion to turbulence. This then might answer the question
for the lowest Reynolds number Reborder , where the
double threshold starts. Possibly the threshold curve has
a pole there (cf. Fig. 6). The data seem to indicate that
the scaling exponent for the approach to this asymptote
is different from g, the asymptotic exponent for Re
→` (Dauchot and Daviaud, 1995).

The envelope to the energies of the presently known
unstable stationary states plotted in their Reynolds num-
ber dependence seems to decrease algebraically with Re
roughly }Re2g8, with g8>1, in the range Re<40 000
(Eckhardt et al., 1998). If the suggested relation between
the possibility of turbulent solutions and the stationary
solutions proves to be valid, g8 should coincide with g,
the double threshold exponent.

IX. STREAMWISE FLOW PATTERNS, TWO OR THREE
DIMENSIONAL?

In experiment, after the onset of turbulence, the mean
flow profile changes. This has to be reproduced by the
time average of u(x,t), if the time development of those
flow modes is inserted, which participate when calculat-
ing the solution. In the mode-reduced Navier-Stokes dy-
namics (Sec. V.B) this can indeed be shown to happen
(Brosa and Grossmann, 1999a). To learn even more, let
me recall which modes are participating. Part of the
eigenflows is oriented in the basic flow direction, i.e.,
streamwise. Some energy dissipating, smaller wave-
length modes are also included. These dissipating modes
are advected streamwise. But also misfit modes must be
present; these are excited by the nonlinear interaction
again and again. Such misfit modes are not dominated
by the laminar advection. Instead they are wall normal
and spanwise flows. One therefore expects that the onset
mechanism needs three-dimensional flow perturbations.

That three-dimensional disturbances for the onset of
turbulence are necessary can be confirmed explicitly
within the nonnormal-nonlinear mechanism (Brosa and
Grossmann, 1999b). Comparing two- and three-
dimensional flow perturbations, one finds the necessary
transient amplification quality only in three dimensions.
Two-dimensional modes turn out to have almost zero
amplification quality. One also finds that the modes
which have largest qualities are streamwise oriented
rolls, kx→0, lky'1. The well-known failure of two-
dimensional theories, as, e.g., the Orr-Sommerfeld equa-
tion (Orr, 1907; Sommerfeld, 1908) but also later ones,
thus finds its explanation in that it suppresses the possi-
bility of transient growth by not properly admitting the
nonnormal bunching of the high quality eigenfunctions
in phase space.

Flow patterns which mirror these features have been
considered by Waleffe, Kim, and Hamilton (1993), Wal-
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effe (1995), and Hamilton, Kim, and Waleffe (1995). For
a sketch of the relevant flow pattern, see Fig. 13.

Another set of illuminating results has been obtained
by reduced-mode number Navier-Stokes calculations of
plane Couette flow (Schmiegel and Eckhardt, 1999a,
1999b). The time development of vortex-type initial per-
turbations with different orientations was studied, in
particular their lifetimes and the relaxation to the turbu-
lent state. These authors also try to identify the smallest
onset-of-turbulence border by adiabatically following
turbulent states from larger down to smaller Reynolds
numbers with appropriate annealing rates. In experi-
mental observations this border depends, as we must ex-
pect, on the type of the disturbance; Re values between
1120 and 1480 have been reported. The calculations also
shed further light on the mentioned relation between
the turbulence onset and the existence of the unstable
stationary states w(x) with finite Edist(w) (cf. Sec. VIII).
There are indications that turbulence can be maintained
down to Re51000, but that below this value the domain
of attraction of the turbulent state is too small to be
detectable. By this we mean that the subtle nonnormal-
nonlinear mechanism is no longer successful, at least
within the mode-number-reduced model. Incidentally,
the Nagata-Clever-Busse state mentioned above exists
for Re>500 already.

X. SUMMARY

This Colloquium was devoted to drawing a physical
picture of the mechanism which is responsible for the
onset of turbulence despite (linear) stability of the lami-
nar shear flow. Various approaches and notions have
been advocated to solve this old problem: instability,
subcritical transition, bistability, nonlinear instability,
secondary instability, and growth by destabilization.
Here I described and provided confirming arguments for
a subtle mechanism of nonnormal growth of distur-
bances that have not yet adapted to the flow, and are
rotated to become adapted, fit ones, complemented by
their nonlinear interaction, which remixes and recreates

FIG. 13. Schematic plot of streamwise streaks (stripes of larger
or smaller velocity, as indicated by the arrows) and rolls at the
onset of turbulence in plane Couette flow. The rolls’ amplitude
v , together with the shear s, feed the streaks u, which in turn
excite a wavy instability w, that resupports the rolls v , etc.; cf.
Waleffe (1995).
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
misfit components anew. The mechanism cannot be un-
derstood in terms of the eigenvalues but rests on the
bunching of a subset of eigenfunctions, induced by their
coupling to the laminar flow advection. These are the
main ingredients of an algebraically increasing and sus-
tainedly fluctuating disturbance of the laminar flow,
called turbulence.

Such an enterprise needs a large number of degrees of
freedom. Various other notions of recent emphasis in
stability analysis and pattern formation are not relevant
to the problem. One has no eigenvalue instability, no
bifurcation or period doubling, no center manifold theo-
rem, no Landau-Hopf-Ruelle-Takens sequence 1-2-3-`.
All this has never been observed in various Couette or
Poiseuille shear flows at the onset of turbulence. In
contrast, the mechanism rests on the multiple effects of
this absolutely unique convective nonlinearity (u•“)u:
nonnormality, coupling to the energy supply, bunching
of the disturbance eigenspace, proper remixing via qua-
dratic interaction and comparison of the spatial vortex
structure (probed by means of “) with the local flow
direction.

Further elucidation, confirmation, explaining existing
experimental observations, and useful application of the
insights into this exciting mechanism of transition to tur-
bulence are the challenge now.
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