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A classical thermodynamic description of a surface requires the introduction of a number of energetic
parameters related to the surface steps. These parameters are the step free energy, the kink creation
energy, and the energetic and entropic interactions between steps. This review will demonstrate how
a statistical analysis of scanning tunneling microscopy images of stepped surfaces can provide
appropriate values of these fundamental energetic parameters. The Si(001) surface is used as a model
system. In order to illustrate the significance of these energetic parameters, two morphological surface
phase transitions are discussed, namely, the thermal roughening transition and the orientational phase
diagram.
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I. INTRODUCTION

Surface steps play a key role in many equilibrium sur-
face processes (e.g., faceting and thermal roughening) as
well as nonequilibrium processes (e.g., crystal growth
and etching) which are very important from a techno-
logical point of view. With this in mind, it is not surpris-
ing that a detailed knowledge of the step-related param-
eters is a prerequisite for determination of the surface
free energy of a vicinal surface. A primary objective of
this review is to assess the information that can be ex-
tracted from surface steps encountered in scanning tun-
neling microscopy (STM) images. With the advent of the
scanning tunneling microscope, developed in 1982 by
Binnig and Rohrer (1982; Binnig et al. 1982a, 1982b), it
became possible to image surfaces on the atomic scale in
real space. In the 1950s, atomic-scale imaging of sharp
metal tips was already possible using the field ion micro-
scope (FIM; Müller, 1951; Tsong, 1988). Nevertheless,
when seeking to identify an unknown structure or mak-
ing exact measurements of structural parameters, it is
still necessary to rely on diffraction experiments. Direct
imaging techniques such as STM and field ion micros-
copy are ideal for studying features that represent a dis-
ruption in the periodicity, such as defects and steps. As
will be shown, observation of these disruptions or devia-
tions from the ideal periodicity will provide the informa-
tion needed to describe quantitatively the thermody-
namic behavior of surfaces. The scanning tunneling
microscope has many advantages relative to the FIM,
notably, the ability to examine a much wider range of
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solids and adsorbates and to view relatively large re-
gions of single-crystal planes with atomic resolution. As
previously shown by a number of scientists, the ener-
getic parameters can be derived from FIM data; how-
ever, the statistical error is generally large due to the
small sample size. STM measurements are possible over
a temperature range from well below room temperature
to as high as 800–1000 K (which is still below the equili-
bration temperature of some materials (Zandvliet, van
Loenen, and Elswijk, 1992).1

This paper briefly reviews how step properties are re-
lated to the thermodynamic properties of surfaces, and
how step-related energetic parameters can be extracted
from atomically resolved images of surfaces. The main
focus is on the method rather than the specific surface
under study. Because steps are also the fundamental
units in surface mass transport, which is required for
morphological phase transitions and kinetically limited
processes (such as growth and etching), the importance
of steps extends beyond the equilibrium properties dis-
cussed in this review.

II. THE Si(001) SURFACE

The technologically important Si(001) surface is at
present the most extensively studied surface. The driv-
ing force for this interest is that currently no less than
95% of the total microelectronic market relies on
Si(001). Although Si(001) has a relatively small surface
unit mesh, the surface displays a wealth of fascinating
phenomena, rendering it an ideal model system for
study. A number of reviews on this surface have ap-
peared (Schlüter, 1988; Griffith and Kochanski, 1990;
Markov, 1995; Liu and Lagally, 1997); however, none of
these reviews has focused on the determination of the
key energetic parameters of Si(001) that govern its ther-
modynamic behavior.

When a silicon crystal is cut along the (001) plane,
each surface atom is left with two dangling bonds. How-
ever, the Si(001) surface reconstructs to form rows of

1The room-temperature or near-room-temperature STM im-
ages of Si(001) surfaces, for example, represent structures
equilibrated at a higher temperature (typically 750–850 K).
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dimerized atoms, yielding a (231) unit cell. The driving
force for reconstruction is the reduction in the number
of dangling bonds from two per surface atom in the un-
reconstructed case to only one in the reconstructed case.
This dimerization was first proposed by Schlier and
Farnsworth (1959) and was first observed in real space
by scanning tunneling microscopy in 1985 (Tromp et al.,
1985; Hamers et al., 1986). Figure 1 shows a schematic
view of the Si(001) surface. The (001) reconstruction es-
tablishes two characteristic directions on the surface, ei-
ther parallel or perpendicular to the substrate dimer
rows in orthogonal [110] directions, leading to many in-
teresting anisotropies. For example, with dimerization
an anisotropic surface stress tensor develops; the surface
is under a tensile stress along the dimer bond and a
compressive stress perpendicular to the dimer bond, i.e.,
along the substrate dimer row. According to ab initio
calculations, the 231 dimerization reduces the energy
by ;1 eV per surface atom. The Si(001) surface remains
dimerized up to temperatures of at least 1475 K. Be-
cause of the tetrahedral bonding configuration in the
diamond lattice, the dimer direction is orthogonal on
terraces separated by an odd number of single-layer
steps, giving rise to the existence of both 231 and 132
domains. There are two different types of single-layer
steps: those that run along the dimer rows of the upper
terrace (SA steps) and those that run perpendicular to
the dimer row direction of the upper terrace (SB steps).
On vicinal Si(001) surfaces misaligned along the [110]
direction, the two types of steps alternate. The SA step
appears to be smooth, while the SB step contains a high
density of thermally excited kinks (Fig. 2). The kinks in
SA (SB) consist of segments of SB (SA) steps. The sur-
face periodicity rotates from 231 to 132 or vice versa at
each single-layer step. Consider now a Si(001) surface
slightly misoriented, by an angle u, in the [110] direction.
The surface misorientation can be accommodated by
single-layer steps and double-layer steps, leading to sur-
faces that are different not only in the height of the step

FIG. 1. Schematic diagram of a single-layer-stepped Si(001)
surface. The dumbbells represent surface dimers. The two dif-
ferent types of single-layer steps are labeled SA and SB (ao

55.43 Å and a53.84 Å).
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edges and width of the terraces, but also in lattice struc-
ture. The single-layer-stepped surface is a double do-
main surface, exhibiting both 231 and 132 domains,
while the double-layer-stepped surface is a single do-
main surface. For miscut angles larger than about 1.5°
toward [110], double-layer steps begin to form and their
fraction increases with increasing miscut angle toward a
maximum of nearly 100% at 5 –6° (Fig. 3).

III. THE CLASSICAL THERMODYNAMIC MODEL

The classical thermodynamic formalism for describing
surfaces was introduced by Gibbs (1957) and later ex-
tended by Herring (1951). In the 1960’s Gruber and
Mullins (1967) arrived at a particularly important con-
clusion, namely, that the surface free energy is governed

FIG. 2. Scanning tunneling microscope image (1003100 nm2)
of single-layer-stepped Si(001) 0.5° misoriented towards the
[110] direction, obtained at 22-V sample bias and 0.5-nA tun-
neling current.

FIG. 3. Scanning tunneling microscope image (40332 nm2) of
double-layer-stepped Si(001) 4.5° misoriented towards the
[110] direction, obtained at 22-V sample bias and 0.5-nA tun-
neling current.
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by the meandering of steps. More recently Williams and
Bartelt (1991; Williams, 1994) developed statistical-
mechanical theories describing the surface free energy in
terms of step-related parameters. The interested reader
is referred to particularly beautiful reviews by Williams
and Bartelt (1991), Williams (1994), and Jeong and Wil-
liams (1999). To begin, it is appropriate to discuss the
main expression for the surface free energy of a slightly
misoriented low-Miller-index2 surface. Low-Miller-index
surfaces generally correspond to local minima in the sur-
face free energy. At temperature T , the free energy per
unit area g(u ,T) of a surface having a small angle of
misorientation u with respect to a low-Miller-index sur-
face can be calculated by considering the surface as con-
sisting of terraces separated by steps of single-layer
height. The surface free energy per unit area is given by

g~u ,T !5g~0,T !1
f~T !

d
utan uu1q~T !utan uu3, (1)

where g(0,T) refers to the surface free energy per unit
area for the low-Miller-index surface, d is the step
height, f(T) is the free energy per unit length (a i) for
forming a step of height d , and finally q(T)utan uu3
corresponds to the energy cost per unit area due to step-
step interactions. The average spacing between the steps
is given by L5d/tan(u). Since steps cannot cross, there
is a temperature-dependent entropic repulsion between
them, decaying as L22 (Gruber and Mullins, 1967;
Fisher and Fisher, 1982). In general, the energetic step-
step interaction exhibits a similar decay, i.e., ;L22, but
is not temperature dependent. In principle both f(T)
and q(T) will depend on the polar angle f (related to
the averaged direction of the steps with respect to a
high-symmetry direction). However, for the sake of sim-
plicity I consider here only steps running along a high-
symmetry direction, i.e., f50.

IV. DETERMINATION OF STEP-EDGE-RELATED
ENERGETIC PARAMETERS FROM REAL-SPACE
OBSERVATIONS

At zero temperature, steps are always as straight as
possible. The only kinks that are present in steps at zero

2The relation between reciprocal lattice vectors and families
of lattice planes provides a convenient way to specify the ori-
entation of a lattice plane. In general one describes the orien-
tation of a plane by giving a vector normal to the plane. The
three primitive lattice vectors are often used to represent the
normal. The Miller indices of a lattice plane are the coordi-
nates of the shortest reciprocal lattice vector normal to that
plane, with respect to a specified set of primitive reciprocal
lattice vectors. The Miller indices of a lattice plane can be
found in the following way: assume that the lattice plane inter-
sects the coordinate axes in real space at values a , b , c , where
each of these numbers refers to an integer multiple of the cor-
responding basis vector. One then takes the reciprocal values
1/a , 1/b , 1/c and multiplies this set by an integer m in such a
way that m/a , m/b , and m/c are all integers. h5m/a , k
5m/b , and l5m/c are denoted as the Miller indices of the
lattice plane (hkl).
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temperature are the so-called forced kinks. These forced
kinks are necessary in order to accommodate the mis-
alignment of a step with respect to one of the principal
crystal high-symmetry axes. At higher temperatures,
thermally induced kink pairs are also generated. When
viewed along the step edge, there are two types of kinks:
those pointing toward the lower terrace (positive kinks)
and those pointing toward the upper terrace (negative
kinks). The symbol n6k will be used to denote the prob-
ability that there is a jump (or drop) of length 2ak at a
given position in the step edge. A unit of two dimers has
been chosen as the basic building block of the 231 sur-
face, due to the observation that there are two types of
single-layer SB steps, depending on where the dimer row
of the upper terrace ends with respect to the dimer rows
of the lower terrace (rebonded or nonbonded SB step).
Both types of SB single-layer steps have been observed
(Tromp et al., 1985), and hence occasionally kink lengths
of an odd number in a do occur, but in general kinks are
found on a (232) lattice (rebonded SB steps occur
much more frequently than nonbonded SB steps). At
any point on the step, the normalization condition holds:

n01 (
k51

`

~n1k1n2k!51. (2)

In an elegant STM paper, Swartzentruber et al. (1990)
analyzed the kink density along both types of single-
layer step edges (SA and SB) on Si(001), using a Boltz-
mann probability for independent kink excitations, i.e.,
n1k1n2k52n0 exp(2«k /kbT), where «k is the creation
energy of a kink with a length of k units. In retrospect
this paper by Swartzentruber and co-workers (1990)
marked the beginning of a period in which one at-
tempted to extract the fundamental energetic param-
eters from atomically resolved real-space images.3 An
earlier, classic paper (Burton, Cabrera, and Frank, 1951)
had already derived a number of thermodynamic rela-
tions for various kink densities of a step on a (001) sur-
face of a Kossel crystal with isotropic nearest-neighbor
and next-nearest-neighbor interactions. For an aniso-
tropic Si(001) surface, the following thermodynamic re-
lations for different single-layer SA (SB) steps can be
derived (Zandvliet, Elswijk, et al., 1992):

« i(') /kbT52lnS n11n21

n0
2 D , (3)

d/kbT52lnS n6rn0

n6(r21)n61
D , r>2. (4)

Hence « i(') refers to the nearest-neighbor interaction
energy between a unit building block (2a32a) along
(perpendicular to) the substrate-dimer-row direction,
and d refers to the second-nearest-neighbor interaction.

3It should be noted that the application of the Boltzmann
equation in the specific form proposed by Swartzentruber et al.
(1990) leads to correct kink creation energies only in the ab-
sence of an azimuthal misalignment of the steps with respect to
a high-symmetry direction (f50).
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TABLE I. Calculated step-edge formation energies of the Si(001) surface (a53.84 Å).

SA (eV/2a) SB (eV/2a) DA ~eV/2a ! DB (eV/2a)

Chadi (1987) 0.02 0.30 1.08 0.10
Poon et al. (1990, 1992) 0.004 20.022 0.321 20.085
Bowler and Bowler (1998) 0.04 0.16
Oshiyama (1995) 0.18 0.24 0.86 0.34
Swartzentruber et al. (1990) introduced a corner energy
term rather than a second-nearest-neighbor interaction
term to explain the kink length distribution. As has been
discussed extensively by Zandvliet, Elswijk, et al. (1992),
both interpretations, i.e., nearest-neighbor interactions
and corner energy versus nearest-neighbor and next-
nearest-neighbor interactions, are equally valid. Equa-
tions (3) and (4) can be understood as resulting from a
comparison of several different situations that result in
the same overall displacement of the step (the principle
of detailed balancing). The density of thermally excited
kinks in SB steps turns out to be much higher than in SA
steps because the kink creation energy is much lower in
SB steps. For independent kink excitations, the prob-
ability of finding two kinks separated by r units must be
(12n0)n0

r21. Swartzentruber et al. (1990) have shown
that this assumption of independent kink excitations is
indeed correct for Si(001). The step structure of Si(001)
is static at room temperature; this means that the step
roughness is frozen in at some temperature Tf that lies
above room temperature. High-temperature STM mea-
surements of thermally fluctuating steps reveal that the
freeze-in temperature lies somewhere between 750 and
875 K (Zandvliet, van Loenen, and Elswijk, 1992; Kita-
mura et al., 1993; Pearson et al., 1995; Swartzentruber
and Schact, 1995). Using the equations of Burton, Ca-
brera, and Frank, the following values for «'(i) and d
have been found:

«'5~3.660.2!kbTf , (5a)

« i5~5.760.3!kbTf , (5b)

d52~1.060.3!kbTf . (5c)

The step-edge formation energy for SA (SB) step is

ESa5
«'

2
1d5~0.860.4!kbTf , (6a)

ESb5
« i

2
1d5~1.8560.4!kbTf . (6b)

The kink formation energy for a kink with a length of k
units in an SA (SB) step is

Ekink ,Sa5k
« i

2
1~k21 !d5kESb2d , k>1, (7a)

Ekink ,Sb5k
«'

2
1~k21 !d5kESa2d , k>1. (7b)

Double-layer step edges and their kink formation en-
ergies can be determined in a similar manner. One en-
counters, however, a fundamental problem, namely, that
., Vol. 72, No. 2, April 2000
double-layer-stepped Si(001) exhibits only type-B
double-layer (DB) steps. Hence only the step-edge for-
mation energy of the energetically unfavorable type-A
double-layer (DA) step edge can be determined. By
counting the kinks in the DB steps on Si(001) Zandvliet
et al. (1996) have found a DA step-edge formation en-
ergy of 4.5 kbTf . In order to determine the DB step-
edge formation energy, one must count the frequency
with which a DB step edge splits into a pair of single-
layer steps separated by 2a . The energy difference be-
tween a rebonded DB step and two single-layer steps is
ESa1ESb1Estrain2EDb .4 Hence the relative probabil-
ity that this splitting will occur in a pair of single-layer
steps is exp2(ESa1ESb1Estrain2EDb)/kbTf . For double-
layer-stepped Si(001), the strain term Estrain can be ne-
glected. Using the above derived values for ESa ,Sb and
the experimentally determined relative probability of
step splitting (0.31), Zandvliet et al. (1996) found a value
of EDb51.5 kbTf . Eaglesham et al. (1993) measured the
equilibrium shape of voids in Si formed by MeV He
implantation and annealing. From this equilibrium
shape they were able to extract the surface free energy
g(u ,Tf). The edge formation energy for the DB step
obtained from dg/du was determined to be 92 meV/2a .
This value is in good agreement with that extracted from
STM experiments, assuming a reasonable freeze-in tem-
perature of 775 K.

Before considering the step-step interactions, it is in-
teresting to compare the experimentally obtained step-
edge formation energies with available theoretical data.
The first calculations of these energies for Si(001) were
performed by Chadi (1987), who used semiempirical
tight-binding total energy calculations and found the fol-
lowing energies: 0.02 eV/2a (SA), 0.10 eV/2a (DB), 0.30
eV/2a (SB) to 1.08 eV/2a (DA). Later Poon et al. (1990,
1992) used atomistic calculations with the Stillinger-
Weber interatomic potential and found significantly dif-
ferent step-edge formation energies. The various theo-
retically calculated and experimentally determined
energies are summarized in Tables I and II.

In addition to the step-edge and kink creation ener-
gies, step interaction energies can be extracted from a
statistical analysis of STM images. Data from large num-
bers of images like Fig. 2 can be compiled to measure
the strength as well as the form of the interactions be-
tween steps. When the steps are sufficiently far apart,
they do not ‘‘feel’’ each other. However, as they come

4For the sake of simplicity, the force-dipole interaction be-
tween two single-layer steps has been omitted.
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TABLE II. Measured step-edge formation energies of the Si(001) surface (a53.84 Å).

SA (eV/2a) SB (eV/2a) DA (eV/2a) DB (eV/2a)

Swartzentruber et al. (1990)a 0.056 0.18
Eaglesham et al. (1993) 0.092
Pearson et al. (1995) 0.064
Bartelt and Tromp (1996) 0.056 0.14
Laracuente and Whitman (2000)b 0.060 0.12
Zandvliet, Elswijk, van Loenen,
and Dijkkamp (1992)b,c

0.052 0.12 0.30 0.10

a Freeze-in temperature of 875 K.
b Freeze-in temperature of 775 K.
c Zandvliet, van Dijken, and Poelsema (1996).
closer, they begin to repel one another. Basically there
are two types of step interactions. The first has a purely
entropic origin and emerges because steps are not al-
lowed to cross (Gruber and Mullins, 1967; Fisher and
Fisher, 1982; Bartelt et al., 1990, 1992a, 1992b). Each
step-step collision decreases the number of configura-
tions available per step by a factor of 2 and thus reduces
the entropy by an amount kb ln 2. The increase in free
energy per step-step collision is therefore kbT ln 2. The
Gruber-Mullins (1967) model of a meandering step
trapped between two hard walls, is well suited to the
Si(001) surface, where the SB and SA steps correspond
to the meandering step and hard wall, respectively (see
Fig. 4). An estimate of the average spacing between suc-
cessive step-step collisions can easily be obtained from
this model by introducing the mean-square length ^k2&
of a kink in an SB step (Zandvliet and Elswijk, 1993),

^k2&5

(
k52`

`

k2e2Ekink ,Sb(k)/kbT

(
k52`

`

e2Ekink ,Sb(k)/kbT

. (8)

The roughness of the steps is now most easily charac-
terized by the correlation function ^(h02hr)

2&, where r
is the distance measured parallel to the step edge and hr
is the deviation measured perpendicular to the step edge
with respect to a fixed, but arbitrarily chosen, reference
line that runs parallel to the step edge. For an isolated
step (or for steps spaced far apart), the mean-square
displacement diverges linearly with r . This result follows
immediately from the random distribution of kinks in a
step at equilibrium „i.e., ^(h02hr)

2&5^k2&r
…. In Fig. 5,

FIG. 4. Schematic drawing of a meandering step edge (SB)
trapped between two neighboring straight step edges (SA).
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the mean-square displacement for the two types of
single-layer steps extracted for a 0.5° misoriented
Si(001) surface is shown. The slopes in Fig. 5 are consis-
tent with experimental values of the interaction energy
between the dimers, as listed in Eqs. (5a)–(5c). Up to
values of approximately 20 dimer-dimer row spacings,
the behavior is almost linear; however, at larger dis-
tances a deviation from this linearity arises due to the
presence of step interactions (Zandvliet, Wormeester,
et al., 1993; Zandvliet, Louwsma, et al., 1995). If L is the
average spacing between neighboring steps, the average
spacing between successive collisions is L2/^k2&. The in-
crease in free energy per unit step-edge length due to
entropic step repulsion is thus ^k2&L22kbT ln 2. If, for
instance, L520(2a) and ^k2&Sb51.7(2a)2, the spacing
between successive step collisions is approximately 235
units or 1800 Å.

The second type of step interaction has an energetic
origin and generally also decays as L22. From elasticity
theory it can be shown that a crystal with degenerate
phases and an anisotropic surface stress tensor can lower
its energy with respect to a uniform single-domain sur-
face by forming an ordered domain configuration

FIG. 5. Mean-square displacement, ^(h02hr)
2&, measured in

units of (2a)2, of both types of single-layer steps vs the posi-
tion r , measured in units of 2a (57.7 Å) along the step. The
slopes in this figure are directly related to the parameters «' ,
« i , and d.
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(Marchenko, 1981; Alerhand et al., 1988). This reduction
in energy comes from a long-range elastic or strain re-
laxation, driven by the difference in the surface stress of
both domains. In the particular case of Si(001), the sur-
face stress is compressive perpendicular to the dimer
bond (s') and tensile along the dimer bond (s i). The
strain relaxation energy (per unit step length) for the
single-layer stepped surface with terrace width L is (Al-
erhand et al., 1988; 1990)

Estrain~L !52
~12n!

2pm
~s i2s'!2 lnS L

pa D
52C lnS L

pa D , (9)

where n and m are the Poisson ratio and bulk modulus of
Si, respectively, and a is the microscopic cutoff length
(i.e., the surface lattice constant). The potential V(h ,L)
felt by a wandering step that is displaced h atomic posi-
tions out from the middle is then

V~h ,L !5Estrain~L1h !1Estrain~L2h !

'22C lnS L

pa D1CS h

L D 2

. (10)

The last term in Eq. (10), C/L2, refers to the step-step
interaction per lattice spacing. In general, the problem
of interacting noncrossing steps can be mapped onto the
problem of interacting, spinless fermions (Joós et al.,
1991). The step-distance distribution P(h ,L) is hence
found simply by solving the 1D Schrödinger equation.
Assuming no energetic step interactions, P(h ,L)
5(1/L)cos2(ph/2L), whereas for the case of energetic
step interactions behaving as 2C ln L the step-distance
distribution is given by

P~h ,L !5
1

wA2p
e2 ~h2/2w2!, (11)

where w is the width of the Gaussian,

w~T ,L !5S kbT^k2&L2

8C D 1/4

. (12)

The distribution of terrace lengths (hi) determined
from several STM images of adjacent areas is shown in
Fig. 6. If the weak shoulders, located symmetrically
around the main peak, are neglected, the data can be
fitted with a Gaussian of width w'4 –5. Hence a surface
stress anisotropy s i2s' of 0.960.2 eV/a2 is obtained
(Zandvliet and Elswijk, 1993; Swartzentruber et al.,
1993). Besides the step interaction originating from the
anisotropic surface stress tensor of Si(001), an additional
direct step interaction decaying as L22 (due to force-
dipole interactions) is sometimes added (Swartzentruber
et al., 1993). However, for large terrace widths the force-
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
monopole step interactions (ln L) predominate over the
direct step interaction (L22).5

V. MORPHOLOGICAL SURFACE PHASE TRANSITIONS

A. Thermal roughening of (001) facets of Si

Phase transitions occur because all systems in thermo-
dynamic equilibrium seek to minimize their free energy
F5U2TS . One phase will supplant another at a given
temperature because different states partition their free
energy between the U and TS terms in different ways.
The idea that, in principle, there exists a roughening
transition at a surface was put forward by Burton, Ca-
brera, and Frank (1951). Inspired by Onsager’s (1944)
solution of the two-dimensional Ising model, they con-
jectured that single-crystal surfaces in equilibrium with
their vapor, melt, or solution, would become rough
above a certain temperature. Macroscopically, the
roughening transition of a surface is characterized by the
disappearance of facets from the equilibrium shape. On
the other hand, microscopically, this transition is defined
by the free energy’s becoming zero on a facet or, equiva-
lently, by the appearance of strong fluctuations in the
location of the facet. The formation energy of steps can
be so high that the roughening temperature sometimes
lies near or even above the melting point. On vicinal
surfaces the thermal generation of kinks is responsible
for roughening. Since thermal generation of a kink re-
quires substantially less energy than the formation of a
step on a facet, the roughening temperature of a vicinal
surface is considerably lower than the roughening tem-
perature of a facet.

5Adding the force-dipole interaction term ld(a/L)2 results in
a step interaction energy Estep ,

Estep52C lnS L

paD1ldS a

LD2

.

A best fit of the terrace width distribution is obtained for
ld /C5125 (Swartzentruber et al., 1993). Hence the force-
dipole term plays a role only for very small terrace widths.

FIG. 6. Normalized terrace-width distribution P(h ,L) vs ter-
race width h in units of 2a (57.68 Å).
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The most logical way to proceed is to model the Si
surface by a compact structure of rigid elementary build-
ing blocks in a simple cubic arrangement. Because the
Si(001) surface is dimerized even at temperatures as
high as 1475 K (Tromp and Reuter, 1992; Bartelt et al.,
1994; Bartelt and Tromp, 1996) it seems most natural to
take dimers as the elementary building blocks. However,
since kink excitations in both monatomic step edges are
mapped on a 232 lattice, it is more natural to take a
unit of two surface dimers as an elementary building
block. Because both the step-edge formation and the
kink formation energies are known it is quite straight-
forward to determine the free energies of the A- and
B-type step edges. As has been discussed above, one can
easily determine these energies by simply measuring the
Boltzmann factors for the various kink excitations and
assuming a reasonable freeze-in temperature of step
roughness. At first sight it might be expected that the
step free energy of the two types of steps might vanish at
different temperatures. Below it is shown that both step
free energies vanish at precisely the same temperature
Tr . The step free energy per unit length and per unit
step height f is defined as

f52kbT ln Z52kbT lnS (
i

e2Ei /kbTD , (13)

where the summation runs over all possible step con-
figurations and Ei refers to the formation energy of the
ith configuration.6

The partition function Z of an SA (SB) step edge is
given by

ZSa(Sb)5e2ESa(Sb) /kbTS 112 (
k51

`

e2Ekink ,Sa(Sb)(k)/kbTD
(14)

and hence

fSa(Sb)5
«'(i)

2
1d2kbT lnS 11

2e2(« i(')/2)/kbT

12e2(« i(')/2 1d)/kbTD .

(15)

The roughening temperature can be found by solving

e2« i/2kbTr1e2«'/2kbTr

1e2(« i1«')/2kbTr~22e2d/kbTr!1ed/kbTr50. (16)

This expression is symmetric in «'(i) and therefore
the step free energies of both types of steps vanish at the

6For «'(i)@kbT and d50, simple expressions for the parti-
tion sum and step free energy are found,

ZSa(Sb)5e2«'(i)/2kbTS 112(
k51

`

e2k« i(')/2kbTD
'e2«'(i)/2kbT~11^k2&Sa(Sb)!,

fSa(Sb)52kbT ln Z'
«'(i)

2
2kbT ln~11^k2&Sa(Sb)!

'
«'(i)

2
2kbT^k2&Sa(Sb) .
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same temperature Tr (1430 K). At 1483 K low-energy
electron microscopy (LEEM) images show that the steps
become suddenly very rough and at slightly higher tem-
peratures all contrast is lost (Tromp and Reuter, 1992).
Near the roughening transition, entropic and energetic
interactions between the steps also become important.
These interactions are not taken into account here and it
could be expected that the step free energies will ap-
proach zero more gradually than indicated by expression
(15). As the entropic repulsion depends on the kink for-
mation energy, it would be reasonable to expect that the
degeneracy of the roughening temperature of both
single-layer steps is lifted by the anisotropy in the en-
tropic repulsion. However, the difference between SA
and SB single-layer steps eventually disappears when
one approaches the roughening temperature.

Because the step-edge formation and kink creation
energies of both A- and B-type biatomic steps are
known, similar expressions for the free energies of bi-
atomic steps can also be derived (Zandvliet et al., 1996).
However, the step-edge free energy of the double steps7

vanishes at a temperature of 2570 K, which greatly ex-
ceeds the melting temperature of 1683 K for Si.

A plot of the single- and double-layer step free ener-
gies versus temperature is presented in Fig. 7. It should
be noted that Mètois and Wolf (1993; Pimpinelli and
Mètois, 1994) found that sublimation holes appear in the
terraces of Si(001) prior to roughening [indicating that
the roughening of Si(001) has a kinetic rather than a
thermodynamic origin]. However, the increasing step
fluctuations observed by Bartelt et al. (1994) below 1375
K, where sublimation is very small, suggest that rough-
ening has a thermodynamic origin. Although the dimer-
ized Si(001) surface is clearly anisotropic, it should be
realized that even unreconstructed Si(001) is aniso-
tropic. The easiest way to demonstrate this is to recall

7Here the breaking up of the double-layer steps into a pair of
single-layer steps has not been taken into account. Including
this excitation will lower the temperature at which the free
energies of a double-layer step vanish.

FIG. 7. Step free energies of single- and double-layer steps vs
temperature T . Values for the single-layer steps: «'

53.6 kbTf , « i55.7 kbTf and d52kbTf . Values for the
double-layer steps: EDa54.5 kbTf and EDb51.5 kbTf (Tf

5 825 K).
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that a diamond lattice basically consists of two interpen-
etrating fcc sublattices, which are rotated by 90° with
respect to each other. A perfect (001) facet can only be
terminated by one of the two fcc sublattices.

Thermal roughening of a vicinal surface is closely re-
lated to roughening of a low-index facet. On vicinal sur-
faces, where steps are already present, thermal forma-
tion of kinks is responsible for roughening. Since the
creation of an adatom-vacancy pair is energetically
much more expensive than the creation of a pair of
kinks, it is obvious that the roughening temperature of a
vicinal surface lies far below the roughening tempera-
ture of a facet. The creation of a kink pair depends not
only on the kink creation energy but also on the strength
of the (repulsive) interaction between the steps. If this
step interaction is large, the extent of wandering of the
steps will be limited and the roughening temperature
will be relatively high. The terrace-ledge-kink model of
Villain, Grempel, and Lapujoulade (1985) describes the
roughening of vicinal surfaces. These authors demon-
strated that the roughening temperature of a vicinal sur-
face depends on two energetic parameters, namely, the
kink creation energy and the step-step interaction. Us-
ing this theory it can be shown that vicinal Si(001)
roughens at a temperature well below the freeze-in
temperature Tf of the step roughness (Zandvliet,
Wormeester, et al., 1993; Hegeman et al., 1995).

B. Orientational phase diagram of Si(001)

A vicinal crystal surface, i.e., one slightly misoriented
with respect to a low-Miller-index facet, consists of ter-
races separated by steps that accommodate the misori-
entation. Vicinal surfaces can exhibit different structural
phases, since steps of different types may be favored
depending on temperature T or miscut angle u. Con-
sider now a Si(001) surface, slightly misoriented, by an
angle u, in the [110] direction. The surface misorienta-
tion can be accommodated by single-layer steps or
double-layer steps, leading to surfaces that differ not
only in the height of the step edges and the width of the
terraces, but also in the lattice structure. The single-
layer-stepped surface is a double domain exhibiting both
231 and 132 domains, while the double-layer-stepped
surface is a single domain. Experimentally it has been
observed that for u larger than 4 –5°, the surface con-
tains predominantly double-layer steps (Wierenga et al.,
1987; Aumann et al., 1988), whereas for smaller miscut
angles the surface is single-layer stepped. Also, for small
miscut angles, Si(001) exhibits an interesting sequence
of phase transitions. For miscut angles smaller than ap-
proximately 0.03°, a hill and valley structure with step
loops is observed (Tromp, 1993), whereas a phase of
wavy steps coexisting with a phase of relatively straight
steps is observed in the range 0.03–0.1° (Tromp and
Reuter, 1992). If the miscut angle lies in the range from
0.1° up to 1.5–2°, two types, one much straighter than
the other, of single-layer step edges are found
(Dijkkamp et al., 1990; Swartzentruber et al., 1990). The
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most prominent transition is without any doubt the tran-
sition from a single-layer-stepped surface to a double-
layer-stepped surface.

To understand this transition, let us compare the step-
edge free energies of a pair of single-layer steps (fSa
1fSb) with the double-layer step free energy (fDb). As
outlined above, there are two types of single-layer steps:
SA and SB . Both types are necessary to accommodate
the misorientation. On a double-layer-stepped surface,
all terraces have the same orientation, and only one type
of double-layer step is required. The DB step is always
found in STM experiments, as expected, since the DA
step has a much higher formation energy. Although the
sum of the step-edge formation energies of pair of
single-layer steps (172 meV/2a) is significantly higher
than the formation energy of a DB step (100 meV/2a), a
single-layer-stepped surface is found experimentally for
small misorientations. Because the entropy of the steps
has not been taken into account here, this comparison is
only appropriate at T50 K. It is natural to assume that
the entropy of a pair of single-layer steps is much larger
than the entropy of a single wandering double-layer step
(Dey et al., 1996).8

With increasing temperature, the difference between
the step free energy of a single-layer-stepped surface
and a double-layer-stepped surface, i.e., fSA1fSA
2fDB , will decrease. However, this is not the only con-
tribution that will favor single-layer steps for small mis-
orientations. From elasticity theory it can be shown that
a crystal with degenerate phases and an anisotropic sur-
face stress tensor can lower its energy with respect to a
uniform single-domain surface by forming an ordered
domain configuration. This reduction in energy comes
from long-range elastic or strain relaxation that is driven
by the difference in surface stress between the two do-
mains. In the particular case of Si(001), the surface stress
is compressive perpendicular to the dimer bond (s')
and tensile along the dimer bond (s i). The surface
stress anisotropy is experimentally found to be s i2s'

50.960.2 eV/a2. The strain relaxation energy (per unit
area) for a single-layer-stepped surface with terrace
width L is (Alerhand et al., 1988; 1990)

Estrain8 ~L !52
~12n!

2pmL
~s i2s'!2 lnS L

pa0
D

52
C

L
lnS L

pa0
D . (17)

The double-layer-stepped surface is a single-domain
structure in which all the terraces have the same orien-
tation, and no strain relaxation occurs. Hence the free-
energy difference between a single-layer- and double-
layer-stepped surface with misorientation is

Df5fSa1fSb22C lnS L

pa0
D2fDb . (18)

8The step-doubling transition found on W(430) is an excep-
tion to the rule that two single wandering single-layer steps
have more entropy than a single double-layer step.
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For sufficiently large terrace width L , the strain relax-
ation term stabilizes the single-layer-stepped surface.
The condition Df50 defines a first-order transition at

uc5arctanS d

pa0
e(fDb2fSa2fSb/2C)D , (19)

where d is the single-layer step height (51.36 Å). Above
the temperature at which the steps are frozen in (here
we have assumed Tf5825 K), the critical miscut angle
uc depends on the temperature. A plot of calculated uc
versus temperature (T.Tf) is shown in Fig. 8. The
model predicts that for annealed Si(001) the transition
between the single-layer- and double-layer-stepped sur-
face takes place at ;2°. STM experiments have re-
vealed that Si(001) is single-layer stepped for a miscut
angle below 1° and double-layer stepped above 4°. In
the range 1 –4° single- and double-layer steps have been
found experimentally to coexist.

Bartelt et al. (1991) pointed out that in principle there
should be a range of u over which the surface facets into
regions with a low density of single-layer steps and small
u and regions with a high density of double-layer steps
and large u. By plotting the free energy per projected
area in the (001) plane for single-layer and double-layer
phases of the model versus tan(u) (i.e., step density), one
immediately sees that the free-energy function is con-
cave near the point of intersection of the two curves.
Thermodynamic stability requires that the free-energy
function be convex as a function of tan(u). Construction
of the appropriate tie lines (‘‘Gibbs’s construction’’)
shows that the surface is unstable with respect to the
breakup into a phase with a low density of single-layer
steps and a phase with a higher density of double-layer
steps. However, Alerhand et al. (1991) argued that such
a coexistence of phases would require faceting of the
surface, and hence substantial mass transport, which
might not be kinetically allowed. Somewhat later Pehlke
and Tersoff (1991a) showed that there is neither an
abrupt transition from single-layer to double-layer steps
with a change in angle nor a coexistence between spatial
regions of single- and double-layer steps. Instead, as the
angle increases past a critical value, pairs of single-layer
steps collapse into double-layer steps in a complex pat-

FIG. 8. Critical angle uc vs temperature T (Tf5825 K). SL
and DL refer to single-layer- and double-layer-stepped
Si(001), respectively. The mixed phase refers to a coexistence
region where both SL and DL steps are found.
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tern, so that at zero temperature the surface undergoes a
cascade of transitions resembling a ‘‘devil’s staircase’’
(Bak and Bruinsma, 1982; Pehlke and Tersoff, 1991a).
Finally, Pehlke and Tersoff (1991b) calculated the full
temperature-angle phase diagram of Si(001) and pointed
out that there is a critical point in the phase diagram
above which there is no phase transition at all. In their
model they included the breakup of DB steps into pairs
of single-layer steps. It is this excitation which blurs the
distinction between single- and double-layer steps at
high temperature, leading to a critical point in the phase
diagram of Si(001). However, because of uncertainty in
the values of the parameters that enter their model, they
could not rule out the possibility that the critical tem-
perature might be above the freeze-in temperature of
the step structure.

VI. CONCLUSIONS

The thermodynamic behavior of surfaces is governed
by the surface free energy. The surface free energy de-
pends on four parameters, namely, the step free energy,
the kink creation energy, the interaction energy between
steps, and the free energy of the facet. In this review it
has been shown that scanning tunneling microscopy im-
ages of a surface can provide, in principle, three of these
four key parameters. The Si(001) surface is used as a
model system. In order to illustrate the significance of
these step-related energetic parameters, two morpho-
logical surface transitions of Si(001) have been dis-
cussed. The method proposed here is, in principle, gen-
erally applicable to other surfaces as well. However, the
applicability is more satisfactory for semiconductor sur-
faces, for which step and kink energies can be associated
with covalent bonds, than for metal surfaces.
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