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Since the first attempts to calculate the helium ground state in the early days of Bohr-Sommerfeld
quantization, two-electron atoms have posed a series of unexpected challenges to theoretical physics.
Despite the seemingly simple problem of three charged particles with known interactions, it took
more than half a century after quantum mechanics was established to describe the spectra of
two-electron atoms satisfactorily. The evolution of the understanding of correlated two-electron
dynamics and its importance for doubly excited resonance states is presented here, with an emphasis
on the concepts introduced. The authors begin by reviewing the historical development and
summarizing the progress in measuring the spectra of two-electron atoms and in calculating them by
solving the corresponding Schrödinger equation numerically. They devote the second part of the
review to approximate quantum methods, in particular adiabatic and group-theoretical approaches.
These methods explain and predict the striking regularities of two-electron resonance spectra,
including propensity rules for decay and dipole transitions of resonant states. This progress was made
possible through the identification of approximate dynamical symmetries leading to corresponding
collective quantum numbers for correlated electron-pair dynamics. The quantum numbers are very
different from the independent particle classification, suitable for low-lying states in atomic systems.
The third section of the review describes modern semiclassical concepts and their application to
two-electron atoms. Simple interpretations of the approximate quantum numbers and propensity rules
can be given in terms of a few key periodic orbits of the classical three-body problem. This includes
the puzzling existence of Rydberg series for electron-pair motion. Qualitative and quantitative
semiclassical estimates for doubly excited states are obtained for both regular and chaotic classical
two-electron dynamics using modern semiclassical techniques. These techniques set the stage for a
theoretical investigation of the regime of extreme excitation towards the three-body breakup
threshold. Together with periodic orbit spectroscopy, they supply new tools for the analysis of
complex experimental spectra.
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I. INTRODUCTION

Moon-earth-sun, the oldest, best known but least un-
derstood three-body problem—this is how Martin
Gutzwiller summarized research on the gravitational dy-
namics of three masses in a recent review (Gutzwiller,
1998; see also 1995). Probably a similar statement ap-
plies to the corresponding microscopic three-body sys-
tem, the dynamics of three massive point charges, most
abundantly exemplified in Nature by two-electron at-
oms. The reason in both cases is the nonseparability of
the classical equations of motion and the existence of
chaos in the classical dynamics of the three-body system.

Two-electron atoms have played an important role in
the development of theoretical physics in this century:
They were a catalyst for the quantum theory in the mid
1920s, since the old quantum mechanics of Niels Bohr
and others could not cope with the seemingly simple
problem of calculating the ground state of helium. The
discovery of strong electron-electron correlation effects
in doubly excited resonant states of helium in a seminal
experiment by Madden and Codling in 1963 triggered
the development of group-theoretical and adiabatic
quantum approximations to understand these unex-
pected correlations. Almost 70 years after the failure of
the Bohr-Sommerfeld quantization for helium, two-
electron dynamics were again at the forefront of a re-
vival of the old quantum theory. New semiclassical con-
cepts were introduced by Gutzwiller and others in the
early 1970s, for which Heller and Tomsovic (1993)
coined the term postmodern quantum mechanics. In con-
trast to the old quantum theory, which was based on
(mostly) ad hoc quantization rules for certain classical
orbits, modern semiclassical theory exploits the full clas-
sical dynamics in a systematic way. Based on these ideas,
the first successful semiclassical quantization of helium
was performed by Ezra et al. in 1991.

Bound-state spectra of two-electron atoms could be
calculated efficiently with the help of the Hartree-Fock
self-consistent-field method shortly after the new quan-
tum theory was established. They can be handled to
such accuracy today that they are used for high-
precision measurements and calculations to improve on
the fundamental physical constants. Doubly excited reso-
nant states could not, on the other hand, be tackled by
an effective single-particle method, and over the last 35
years the struggle to understand doubly excited reso-
nances has been the focus of theoretical research on
two-electron atoms. The role of electron correlation has
become more and more important with increasing
double excitation, and the correlated three-body Cou-
lomb dynamics have been found to cause an extremely
rich and complicated resonance spectrum. Hence two-
electron atoms represent a prototype of a (few-body)
system strongly affected by electronic correlation.

From a general perspective the complexity of the
atomic three-body problem can be related to the under-
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lying chaotic classical dynamics, in particular if the sys-
tem is highly excited in an energy regime where infi-
nitely many resonances exist. In this respect, two-
electron atoms are of basic interest not only in atomic
physics but also for the development of concepts of
quantum chaos (see Berry, 1983; Gutzwiller, 1990).

Hence two-electron dynamics remain an active field of
research to the present day. The persistent interest in
the two-electron atomic three-body system lies in the
fact that it is indeed complex enough for rather involved
theoretical concepts (which we shall review), yet it is
simple enough to provide accurate numerical and ex-
perimental data to test the approximation schemes.

A. Scope of this review and related work

After a historical overview we shall concentrate on
the ideas on which our understanding of two-electron
resonances is mainly based today. We distinguish here
approximate quantum concepts such as adiabatic and
group-theoretical methods on the one hand and semi-
classical methods on the other. We shall use the unique
opportunity provided by a review to compare these two
groups of concepts and to work out their mutual rela-
tions. We are not, however, able to cover all aspects of
two-electron systems. We take responsibility for our se-
lection, which is and must be subjective. The selection
has been guided by our aim of summarizing the most
relevant historical developments and providing a per-
spective for future research directions. Therefore we
emphasize qualitative issues and only briefly summarize
the progress in experimental and numerical techniques
(which undoubtedly made possible the present status of
our understanding) in the first part of the review.

A second general restriction refers to the regime of
energy: We shall review only the quasidiscrete spectrum,
i.e., true bound states and resonances. Processes at en-
ergies above the three-particle breakup threshold will
not be discussed. For accounts of this energy regime we
refer the reader to the work of Rau (1984), Fano and
Rau (1986), Byron and Joachain (1989), and Rost
(1998).

On a more technical level, we restrict ourselves to the
nonrelativistic problem of an infinitely heavy nucleus
and two electrons. All three particles are assumed to be
pointlike. This constitutes a well-defined and widely ac-
cepted framework for studying two-electron dynamics
and allows us to compare different theoretical ap-
proaches. Only for deeply bound states and large
nuclear charges do these restrictions lead to inaccurate
approximations. In such cases relativistic and QED ef-
fects as well as the mass polarization terms accounting
for the finite mass of the nucleus must be included in the
theoretical treatment for a direct comparison with high-
precision experimental results. Such calculations have
been carried out by Drake and co-workers (Drake, 1988;
Drake et al., 1993). Although we shall mostly refer to a
nucleus with variable charge Z and two electrons, we
shall almost exclusively discuss helium (Z52) and H2

(Z51). Work on atoms with two active electrons and a
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structured core has been recently reviewed by Aymar
et al. (1996). A detailed account of atomic negative-ion
resonances has been given by Buckman and Clark
(1994). Atomic and other Coulombic three-body sys-
tems have been reviewed by Lin (1995) within the
framework of the hyperspherical approach.

Only within the restrictions stated is it possible to
achieve a reasonable, coherent presentation of the over-
whelming number of articles in this field and of the re-
markable progress made understanding two-electron at-
oms.

We note that, more recently, the correlation problem
of few bound electrons has also become important in the
context of so-called ‘‘artificial atoms.’’ Heitmann and
Kotthaus (1993) provide an overview of such systems in
which the electrons are confined by an electrostatic po-
tential in semiconductor heterostructures to form
‘‘quantum dot helium.’’

B. Content of the review

The review is structured as follows: In a first, mostly
historical, part we cover early attempts to quantize he-
lium (starting from classical mechanics) by Bohr and the
leading physicists who were his contemporaries. Those
attempts were ended by the early quantum-mechanical
proof that helium has a stable ground state. Here, the
first refined semiclassical approaches for highly excited
‘‘planetary atoms’’ will be discussed. We briefly review
the progress in complementary, quantum-variational
methods for the computation of two-electron states in-
cluding resonances. After summarizing the numerical
methods most often used today, we introduce the com-
plex rotation method, which is one of the most powerful
contemporary techniques used to compute resonances.
Simultaneously we describe the state of the art concern-
ing relevant experiments.

In the second part we focus on theoretical concepts
introduced in an effort to understand the regularity in
the resonance spectrum of helium: With group-
theoretical methods it has been possible to identify and
predict multiplets of resonances that share common
properties. Here resonances play a role similar to that of
particles in group-theoretical approaches in elementary-
particle physics. A second successful concept is based on
the introduction of adiabatic variables. In the so-called
‘‘molecular approximation’’ the interelectronic distance
is treated as an adiabatic variable. This approach is very
similar to the Born-Oppenheimer approximation for
molecules. In a second adiabatic approach, the ‘‘hyper-
spherical approximation,’’ the average volume of the
atom characterized by the hyperspherical radius R
5Ar1

21r2
2 is the adiabatic variable. Here the ri are the

electron-nucleus vectors. Both adiabatic approximations
reveal similar key features of the two-electron system
that have not been recognized in other theories. Most
notably the surprising regularity in the decay pattern of
two-electron resonances, the so-called propensity rules,
becomes transparent in the adiabatic approximation. Fi-
nally, some interesting nonmainstream concepts are dis-
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cussed, in particular, the extension of the two-electron
problem from three to arbitrary spatial dimensions.

In the third part of the review we discuss the renais-
sance of semiclassical methods. They offer a viewpoint
of two-electron dynamics complementary to those dis-
cussed in the previous two parts. The broad interest in
understanding the influence of classical chaos on quan-
tum systems has led to a variety of new semiclassical
techniques that are also applicable to nonintegrable dy-
namics, which will be reviewed here briefly.

The semiclassical methods allow for a completely new
approach to two-electron atoms. Instead of trying to
solve the Schrödinger equation explicitly, the focus lies
now on the study of the classical three-body Coulomb
problem and its influence on spectral features of the cor-
responding quantum system. The classical dynamics dif-
fer quite considerably in different phase-space regions
and range from nearly integrable behavior to complete
chaos. In particular, the collinear subspaces (in which all
particles move along the same line) turn out to be of
great importance for the quantum spectrum, which can
be justified on semiclassical grounds.

The systematics of Rydberg resonance series can be
described qualitatively by a small number of character-
istic short periodic orbits in the classical three-body sys-
tem. On a more sophisticated level, periodic orbit theory
provides a new way to analyze the spectral density of
(resonant) states by Fourier transformation. By exploit-
ing the classical information in detail, periodic orbit
trace formulas are able to resolve quantitatively indi-
vidual resonances and bound states from the ground
state across the various two-body fragmentation thresh-
olds. Rydberg series converging to these thresholds can
be obtained from a semiclassical quantum defect theory
with purely classical coupling parameters.

The review ends with a summary and a brief look at
some open questions. These mostly concern the behav-
ior of two-electron resonances with increasing energy in
the nearly unexplored energy regime close to the com-
plete fragmentation threshold, where all three particles
can be free.

II. HELIUMLIKE SYSTEMS: FROM OLD TO MODERN
QUANTUM THEORY

Two-electron atoms share the intriguing property
that, despite the seemingly simple form of the underly-
ing Hamiltonian, their spectral features get exceedingly
complicated with increasing (double) excitation. For a
nucleus with charge Z and infinite mass, the nonrelativ-
istic Hamiltonian reads in atomic units (a.u.) (e5me
51)

H5
p1

21p2
2

2
2

Z

r1
2

Z

r2
1

1
r12

. (1)

Here rk (k51,2) denote the electron-nucleus distances,
and the distance between the electrons is r12 (see Fig. 1).
The nonintegrability of this three-body Coulomb prob-
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lem gives rise to a remarkably rich behavior with respect
both to its quantum features and to its classical dynam-
ics.

The helium atom not only represents a prototype of
an atom with complex spectral structure, but also played
a key role in the development of quantum mechanics
until the end of the 1920s. At that time, the observation
that atomic spectra display discrete levels called for a
completely new type of theory—a quantum theory. The
first theoretical approaches based on Bohr’s quantum
postulates, which were so successful in reproducing the
hydrogen spectrum, failed, however, when applied to
two-electron atoms; a satisfying calculation of the
ground-state energy as well as of excited states of helium
turned out to pose unsolvable problems to a Bohr-
Sommerfeld-like quantization. This method is usually
nowadays referred to as the ‘‘old quantum theory.’’ Its
failure for helium led to a serious crisis of this original
quantum approach to atoms, which was finally super-
seded by the ‘‘new quantum theory’’ formulated by
Schrödinger (1926) and Heisenberg (1925). The latter
formalism was first applied to the helium atom by
Heisenberg (1926), taking into account wave mechanics,
the electron spin, and the Pauli principle.

The two complementary pictures—the (semi)classical
approach to the helium spectrum on the one hand and
the wave-mechanical framework on the other hand—
will guide us throughout this review, and both (after sig-
nificant refinement) complement one another in the
present understanding of three-body Coulomb systems.
We therefore describe in the following section in some
detail the early semiclassical and quantum approaches to
the helium atom, mainly referring to its ground state. In
Sec. II.B we then turn to doubly excited states. We sum-
marize their basic properties and review advanced
quantum-mechanical methods used today to take into
account electron correlation effects. A corresponding
novel approach in the spirit of the old quantum theory, a
‘‘new old quantum theory,’’ i.e., a modern semiclassical
theory, which adequately describes highly (doubly) ex-
cited two-electron atoms, is presented in Sec. IV.

A. Early calculations of two-electron ground states

1. The failure of the ‘‘old quantum theory’’

It is instructive, not only from a historical point of
view, to reconsider the reasons for the failure of the old

FIG. 1. The two-electron atom and its basic coordinates.
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quantum theory when applied to helium. This approach,
which is more a collection of heuristic rules than a real
theory, dates back to the early work on hydrogen by
Bohr. Starting from his postulates on the quantization of
the periodic Kepler motion, he presented a formula for
the energy levels of hydrogen that showed remarkable
agreement with measurements of that time. Hence it

FIG. 2. Examples of periodic configurations of the electron
pair in helium that served as classical models for the ground
state: (a) Bohr, 1913; (b) and (d) Langmuir, 1921; (c) Landé,
1919; (e) Kemble, 1921 and Kramers, 1923 (from Leopold and
Percival, 1980; see also Van Vleck, 1922).
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
was natural to apply the same approach to helium, the
simplest atom with more than one electron. In Bohr’s
first model of helium (Bohr, 1913) the two electrons re-
volve, opposite each other, on the same orbit about the
nucleus as shown in Fig. 2(a). To obtain quantized ener-
gies he applied the condition

R p dq5nh , (2)

where (p ,q) are generalized coordinates and momenta
of the electron pair, h is Planck’s constant, and n is an
integer. The result was discouraging: the ionization en-
ergy of the ground state was about 4 eV too high, com-
pared with the then-experimental value of 24.5 eV.

The following ten years were characterized by a long
sequence of attempts to find an appropriate classical pe-
riodic configuration for the electron-pair motion in he-
lium and to apply quantization conditions of the type of
Eq. (2). A proper computation of the helium ground-
state energy became a challenge for leading theoretical
physicists of that time, including Bohr, Born, Heisen-
berg, Kramers, Landé, Sommerfeld, and Van Vleck, to
name a few.

Some of the proposed periodic orbits of paired-
electron dynamics are depicted in Fig. 2. The corre-
sponding ground-state energies obtained are summa-
rized in Table I. (For a thorough historical account of
this long and tortuous chain of work see, for example,
Mehra and Rechenberg, 1982.) All models considered
gave rather unsatisfactory results for the ground state of
helium. For instance, in Langmuir’s double-circle model,
Fig. 2(d), the ionization energy came out negative, i.e.,
TABLE I. Ground-state energies (in a.u.) of the helium atom: left, semiclassical; right, quantum-mechanical and experimental.
The good agreement of the energy obtained from the Heisenberg-Sommerfeld model (see Fig. 3) must be considered as accidental
(see text). The given result from Solov’ev’s approach was extracted from Fig. 4 of Solov’ev (1985). The asymmetric stretch orbit
(Ezra et al., 1991) is shown in Fig. 13(b), Sec. IV.B. The semiclassical cycle expansion is described in Sec. IV. The theoretical data
do not include finite-mass, relativistic, or QED corrections, except for the result by Drake (1993), which contains relativistic
effects. The difference between the latter result and the latest experimental figures (Bergeson et al., 1998) reflects QED effects.
Some of the data are from Leopold and Percival, 1980, Table I.

Semiclassical Quantal/Experimental
Year Method 2E Year Method 2E

1913 orbit Fig. 2(a), Bohr (1913) 3.06 1927 first order pert. Unsöld (1927) 2.75
1919 orbit Fig. 2(c), Landé (1919) 1927 molecularlike, Slater (1927) 2.895
1921 orbit Fig. 2(b), Langmuir (1921) 2.17 1927 variational, Kellner (1927) 2.873
1921 orbit Fig. 2(d), Langmuir (1921) 2.31 1928 variational, Hylleraas (1928) 2.895
1922 ‘‘hybrid orbit,’’ Van Vleck (1922) 2.765 1929 var., 38 param., Hylleraas (1929) 2.9037
1922 orbit Fig. 3, Heisenberg (1922) 2.904 1959 var., 38 param., Kinoshita (1959) 2.903 722
1923 orbit Fig. 2(e), Kramers (1923) 2.762 1959 perimetric coord., Pekeris (1959) 2.903 724 376
1980 1. order pert., Leopold et al. (1980) 2.7410 1988 Hylleraas type basis, 2.903 724 377
1980 variational, Leopold et al. (1980) 2.8407 Drake (1988) 03415
1985 perturb. theory, Solov’ev (1985) 3.05 1995 perimetric coordinates, 2.903 724 377
1991 as. stretch orbit, Ezra et al. (1991) 3.097 Bürgers et al. (1995) 034 119 589
1991 cycle expansion, Ezra et al. (1991) 2.932 1993 relativ. Drake (1993) 2.903 700 023

1924 experimental, Lyman (1924) 2.9035
1998 exp., Bergeson et al. (1998) 2.903 693 775
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the configuration was unstable. The approaches based
on models (a)–(d) in Fig. 2 were critically summarized
by Van Vleck (1922), who added another, no more suc-
cessful, three-dimensional model (not shown) that can
be viewed as a hybrid of configurations (b) and (d).

The failure of these early quantum approaches for he-
lium was accompanied by a very unsatisfactory result
obtained by Pauli (1922) in his Ph.D. thesis on another
three-body Coulomb system, namely, the hydrogen mol-
ecule ion H2

1 : within the Born-Oppenheimer approxi-
mation, this system is reduced to the (separable) prob-
lem of an electron moving in the field of two fixed
Coulomb centers. By using a Bohr-Sommerfeld quanti-
zation condition he calculated the equilibrium internu-
clear distance to be nearly three times as large as the
correct one (;2 a.u.). Moreover, he found the system to
be metastable instead of being bound.

The approaches to a description of the helium atom as
presented above included all the principal problems of
the old quantum theory: the calculations were based
only on a number of ad hoc rules and postulates that
were open for speculation. A rigorous theoretical frame-
work, which could have been used as a guideline, was
missing. Before presenting the principal shortcomings of
this theory, it is worth mentioning some of the common
beliefs at that time. They led to the models for periodic
electron-pair motion shown in Fig. 2 and hindered a
more rapid understanding of the helium problem. It was
generally assumed that

(i) the ground state of helium was related to a single
periodic orbit of the electron pair;

(ii) the electrons were supposed to move on symmet-
ric orbits in which their distance to the nucleus was
equal at each instant;

(iii) orbits in which the electrons hit the nucleus
(‘‘Pendelbahnen,’’ Born, 1925) were excluded;

(iv) the quantum numbers in quantization conditions
like Eq. (2) were supposed to be integers.

Two who did not take these assumptions for granted
were Sommerfeld and his student Heisenberg. Although
he was mainly involved in problems of turbulence at that
time, Heisenberg’s interest in the helium problem was
stimulated by Bohr in 1922. Sommerfeld and Heisen-
berg devised as a possible classical ground-state configu-
ration a model in which the electrons move on two dif-
ferent Kepler ellipses of the same shape but oriented in
opposite directions: one electron passes through the
perihelion while the second is at its aphelion. Figure 3
shows this configuration sketched by Heisenberg in a
letter to Sommerfeld on October 1922 (Heisenberg,
1922; the role of Heisenberg at this stage of the ‘‘old
quantum theory’’ is also described by Cassidy, 1995). In
his letter, Heisenberg outlined a calculation of the
ground-state energy on the basis of this electron-pair
motion. As an important achievement from today’s
point of view, he introduced, in addition to the quanti-
zation of the radial motion, a second quantization con-
dition (Heisenberg, 1922),
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
R pwdw5nwh , (3)

for the motion of the angle w between the major axes of
the two orbits under the influence of the mutual electron
interaction (see Fig. 3). Moreover, he introduced half
integer quantum numbers, e.g., nw51/2 for the ground
state. Including the interaction in a perturbative manner,
Heisenberg arrived at an ionization potential of 24.6 V,
compared to the best experimental value of 24.5 V at
that time. However, this approach was strongly criticized
by Pauli and Bohr. They did not accept the concept of
noninteger quantum numbers, but thought at that time
that the classical laws of motion had to be modified in
order to achieve agreement with experiment. Heisen-
berg, discouraged by Bohr, never published his calcula-
tions, which may explain why the Heisenberg-
Sommerfeld model, to the best of our knowledge, has
never been mentioned in the atomic physics literature.
Contrary to Bohr, Sommerfeld, encouraged by the re-
sults obtained by Heisenberg, wrote a paper (Sommer-
feld, 1923), referring to Heisenberg’s perturbative re-
sults, in which he suggested the underlying model of
opposite electrons and half-integer quantum numbers as
a possible classical ground-state configuration.

Heisenberg, together with Born, went ahead and
started to attack the more ambitious problem of excited
states in helium. They considered different types of
asymmetric electron configurations and developed an ef-
fective Hamiltonian based on a multipole expansion
scheme for the potential of the outer electron in the
combined field of the nucleus and the inner electron. By
that means they derived a Rydberg formula,

H5
~Z21 !2

~n1d!2 , (4)

where n is the principal quantum number of the outer
electron. The quantum defect d reflects non-Coulombic,
short-ranged parts of the central potential and depends
on the remaining quantum numbers and the configura-
tion considered (Born and Heisenberg, 1923). However,
the obtained energies of the excited states were unsatis-
fying and led Heisenberg and Born to the conclusion
that ‘‘the result of our investigation is completely nega-

FIG. 3. Sketch of the periodic electron-pair motion proposed
by Heisenberg and Sommerfeld as a candidate for a classical
ground-state configuration of helium. The figure is copied from
a letter of Heisenberg to Sommerfeld (Heisenberg, 1922). It
was never published by Heisenberg.
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tive’’ (Born and Heisenberg, 1923).1 For that reason
Heisenberg also lost all confidence in his original
ground-state calculations. From then on he no longer
followed the ideas of the old quantum mechanics but
started to devise his ‘‘new’’ quantum theory based on
conceptually new postulates.

The good agreement between the result of Heisen-
berg’s first perturbative calculations of the helium
ground-state energy (see Table I) mentioned above and
the experimental values must be considered as acciden-
tal: Heisenberg’s perturbative scheme was not appropri-
ate for the case of degenerate classical motion of two
electrons2 and he did not know the role of Maslov indi-
ces (see Sec. IV.A) in quantization conditions. However,
from today’s point of view, the great virtue of the
Heisenberg-Sommerfeld model for the helium ground
state lies in two facts:

(i) The electrons move out of phase on perturbed Ke-
pler ellipses opposite each other. This type of classical
motion comes rather close to the asymmetric stretch pe-
riodic orbit, a collinear out-of-phase motion of the elec-
trons on opposite sides of the nucleus discussed in Sec.
IV.B.2. This kind of electron-pair motion turned out to
be crucial for the structure of ground and symmetrically
excited states (Ezra et al., 1991; Wintgen et al., 1992), as
described in detail in Secs. IV.C and IV.D.3

(ii) Heisenberg introduced ad hoc half integer quan-
tum numbers, which simulate the effect of Maslov indi-
ces.

Due to these two facts the Heisenberg-Sommerfeld
model and the related quantization condition (3) can be
regarded as coming closest to a correct semiclassical de-
scription of the helium ground state compared to all
other models employed in the old quantum theory. We
note, however, that in a rigorous semiclassical treatment
the ground state is more precisely represented by a
whole number of periodic orbits, as will be discussed in
Secs. IV.A and IV.D.2.

The pessimistic mood in the early 1920s concerning a
semiclassical treatment of two-electron atoms becomes
apparent in a conclusion given by Van Vleck (1922):

The conventional quantum theory of atomic struc-
ture does not appear to be able to account for the
properties of even such a simple element as helium,
and to escape from this dilemma some radical modi-
fication in the ordinary conceptions of the quantum
theory or of the electron may be necessary. [p. 842]

1Heisenberg’s and Born’s calculations of asymmetrically ex-
cited states are based on schemes that were later reconsidered
by different authors (e.g., Nikitin and Ostrovskii, 1982; Belov
and Khveshchenko, 1985).

2An appropriate semiclassical perturbative treatment was
later performed by Solov’ev (1985), which will be briefly dis-
cussed in Sec. II.A.2.

3A periodic orbit of the Heisenberg-Sommerfeld type (Fig. 3)
does not really exist as a solution of the classical Hamilton
function, but only as a quasiperiodic motion of that type,
shown in Fig. 4.
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The same negative point of view is expressed in the Vor-
lesungen über Atommechanik (Lectures on the Mechan-
ics of the Atom) by Born (1925). These conclusions,
which mark the end of the old quantum theory, address
the need for a completely different approach, namely
quantum wave mechanics. The essential shortcomings of
the old quantum theory can be summarized as follows:

(i) The role of conjugate points along classical trajec-
tories and their importance in a semiclassical approach
to quantum states (via Maslov indices) were not prop-
erly accounted for.

(ii) The precise role of periodic orbits and their stabil-
ity for systems with nonintegrable or even chaotic clas-
sical dynamics was unknown.

The failure of the old methods on the one hand and
the success of the new quantum theory on the other
hand influenced subsequent research for several de-
cades. Still, in 1941, the helium problem was considered
as ‘‘raising unsolvable problems’’ (Bachelard, 1941). We
are not aware of any serious and successful attempts to
attack the problem using a semiclassical framework until
the 1980s.

For the separable H2
1 problem only item (i) had to be

accounted for. Strand and Reinhardt (1979) employed
an Einstein-Brillouin-Keller quantization procedure for
H2

1 (see Keller, 1958; Gutzwiller, 1990), combined with
a uniform treatment at potential barrier maxima. They
obtained agreement with quantum results to within a
fraction of a percent. As already pointed out by Einstein
(1917), such a quantization scheme, based on the exis-
tence of invariant tori, cannot be applied to noninte-
grable systems. It is therefore not an appropriate frame-
work for the description of the helium atom.

Leopold and Percival (1980) and Solov’ev (1985) at-
tacked the helium problem using improved variational
and perturbative semiclassical methods, respectively. Al-
though these approaches ignore item (ii) they represent
important steps towards a rigorous semiclassical treat-
ment of two-electron atoms. Thus they will be briefly
reviewed in the following subsection before we turn to
quantum approaches for two-electron atoms.

2. Semiclassical perturbative and variational approaches

a. Planetary atoms

More than 50 years after the first attempts to treat
helium, Percival and co-workers were the first to recon-
sider the helium problem from the point of view of the
old quantum theory (Leopold et al., 1980; Leopold and
Percival, 1980). Percival had pointed out that in highly
(doubly) excited atoms the electrons should carry fea-
tures of classically moving particles. He thus coined the
term planetary atoms for these systems (Percival, 1977)
due to their similarity to the gravitational three-body
problem.4 This picture is physically appealing, although
one should keep in mind that a direct transfer of results

4For a recent review of a celestial three-body problem, see
Gutzwiller (1998) on the three-body system moon-earth-sun.
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from the celestial to the atomic three-body problem is
generally not possible for two reasons: First, in gravita-
tional three-body systems, the masses of the three bod-
ies involved usually differ by orders of magnitude. This
often allows for a perturbative treatment since the gravi-
tational interaction depends on the masses (Arnold,
1991). The mutual Coulomb interactions in two-electron
atoms are, on the other hand, of the same magnitude,
and perturbation theory is therefore not a priori appli-
cable. Second, gravitational forces are always attractive,
while the repulsive Coulomb interaction between elec-
trons usually leads to a destabilization of the two-
electron atom. Depending on the initial conditions, the
classical two-electron atom generally autoionizes after a
few revolutions of the electrons around the nucleus. For
a typical example of such a classical autoionizing con-
figuration of equally excited electrons see Fig. 4. The
classical two-electron atom is thus an unbound system at
all energies. Quantum mechanically, the electrons can-
not exchange an arbitrary amount of energy since the
(remaining) He1 ion has a minimum ground-state en-
ergy. This allows for the existence of quantum bound
states.

b. Percival’s and Solov’ev’s treatments

Leopold and Percival (1980) could improve upon the
results of the old quantum theory by introducing a varia-
tional semiclassical approach and, in particular, by
pointing out the relevance of a correct inclusion of
Maslov indices, which lead to noninteger quantum num-
bers. They showed that the ideas of the old quantum
theory were not intrinsically wrong. Moreover, they ar-
gued that semiclassical techniques should be powerful in
dealing with highly doubly excited states in which quan-
tum approaches become increasingly involved. Their
work thus redirected attention to semiclassical ap-
proaches for two-electron systems.

In a first paper, Leopold et al. (1980) used a first-order
perturbative semiclassical scheme. In zero order,
electron-electron interaction is neglected and the dy-
namics are integrable. The electrons evolve on tori and
their motion can be described in terms of the respective
action variables I5(Ir ,Iu ,If) where (r ,u ,f) represent
the usual spherical coordinates. According to the
Einstein-Brillouin-Keller quantization, the quantal
states of the two unperturbed electrons (k51,2) in he-
lium correspond to those tori whose actions fulfill

Ink
5nk\ ; Ilk

5S lk1
1
2 D\ ; Imk

5mk\ , (5)

with the corresponding quantum numbers nk ,lk ,mk
and actions In5Ir1Iu1If ; Il 5 Iu 1 If and Im5If
(Goldstein, 1980).

First-order perturbative corrections to the indepen-
dent electron energies were computed by taking the av-
erage ^1/r12& over the six angle variables corresponding
to the actions Ink

,Ilk
,Imk

. The resulting electron model
obtained by Leopold et al. (1980) for the ground state is
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close to configuration (e) in Fig. 2. The ionization poten-
tial is still about 4 eV lower than the experimental value
(see Table I).

In a second paper, Leopold and Percival (1980) intro-
duced a semiclassical variational treatment of the
ground state and excited states of helium, which turns
out to be superior to perturbative methods. They found
for the ground-state energy E522.8407 a.u., compared
to the exact energy E522.9037 a.u. (see Table I).

In this context, a related semiclassical approach by
Solov’ev (1985) should be mentioned, which, in our
opinion, has not received the attention it deserves.
Solov’ev argued that the unperturbed angular momen-
tum eigenstates (or corresponding tori) used in the ap-
proach of Leopold et al. (1980) are inadequate as zero-
order reference states in a first-order perturbative
treatment of the helium ground state and of symmetri-
cally excited states. The degeneracy in energy of these
states, classically related to the commensurate periods of
the motion along Kepler trajectories, has to be ac-
counted for in an appropriate perturbation theory.

Solov’ev starts from a configuration of two equivalent
electrons moving out of phase on Kepler-like orbits
similar to those shown in Fig. 4. As suitable coordinates
he introduces, besides the single-electron Kepler mo-
tion, the angle between the major axes of the two Kepler
ellipses and the time difference between the passage of
the first and second electron through the perihelion.
Solov’ev achieves an adiabatic separation of the corre-
sponding frequency scales and thereby a decomposition
of the full problem into oscillatory motions in one-
dimensional effective potentials which can be semiclas-
sically quantized. This method, which is particularly well
suited to a description of highly symmetrically excited
states, also gives a reasonable estimate, E'23.05 a.u.,
for the helium ground state.

c. Discussion and summary of further approaches

It is by now well known (Richter and Wintgen, 1990a;
Ezra et al., 1991; Wintgen et al., 1992) that a consider-
able part of helium phase space is classically chaotic.
Hence an Einstein-Brillouin-Keller approximation
based on classical tori, as performed by Leopold et al.
(1980), is in principle not adequate for a description of
the full problem. The same is true of Solov’ev’s treat-
ment applied to helium, since it assumes an effective
decoupling of the different degrees of freedom.

We close this section by noting that the collinear con-
figuration of two electrons on opposite sides of the

FIG. 4. Typical classical out-of-phase motion of the electron
pair in helium obtained from a numerical integration of the full
Hamilton equations of motion. The electrons evolve on per-
turbed Kepler ellipses around the nucleus until they autoionize
after a few revolutions (from Richter, 1991).
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nucleus but moving symmetrically in phase (r15r2),
known as the Wannier orbit, has frequently been pro-
posed in the literature as relevant for symmetrically
doubly excited states (Miller, 1972; Fano, 1983; Harris
et al., 1990a; 1990b; Sadeghpour, 1991). This type of mo-
tion and its importance for doubly excited states is criti-
cally reviewed in Sec. IV.

The periodic orbit originally proposed by Langmuir
for the helium ground state [orbit (b) in Fig. 2] was re-
examined by Dimitrijević and Grujić (1984) and Wesen-
berg et al. (1985). However, the latter authors over-
looked the fact that the Langmuir orbit is indeed stable
(Richter and Wintgen, 1990a), a fact that was not ac-
counted for in their Einstein-Brillouin-Keller-type quan-
tization. Finally, Klar (1986) reconsidered the Langmuir
double-circle model [Fig. 2(d)] and showed that it is
classically stable.

We end the historical review of semiclassical ap-
proaches to two-electron atoms here in the mid 1980s.
We shall return to semiclassical concepts in Sec. IV.
There we review more recent advances in modern semi-
classical theory and apply it to two-electron atoms, tak-
ing into account that the corresponding classical system
is chaotic. In particular, a generalized Einstein-
Brillouin-Keller scheme for excited states will be de-
rived that leads in a natural way to the structure of per-
turbed Rydberg series and quantum defects. In the
following, we shall summarize related pure quantum-
mechanical techniques to solve the Schrödinger equa-
tion directly.

3. Wave-mechanical perturbative and variational results

It is helpful to contrast the semiclassical perturbative
and variational techniques with the corresponding early
quantum-mechanical methods. After Heisenberg’s first
application of the new quantum theory to the helium
problem (Heisenberg, 1926), the quantum-mechanically
calculated ground-state energy of helium was rapidly im-
proved in a number of publications in the late twenties.
The ground-state energies obtained are summarized in
Table I. Unsöld (1927), using first-order quantum per-
turbation theory, obtained an energy with still a rather
large error. Slater (1927) treated helium by reducing it
to the ‘‘molecular’’ problem of one electron in the pres-
ence of two fixed Coulomb centers of charge 2e and
Ze , representing the nucleus and the second electron.
(Similar molecular models were later employed to de-
scribe doubly excited states of two-electron atoms; see
Secs. III.B.1 and III.B.4.)

Quantum-variational methods have proven most suit-
able for obtaining precise results for the ground state or
low-lying states of two-electron atoms and are superior
to perturbative methods. As a very simple trial wave
function for a variational calculation of the ground state
one may use c(r1 ,r2 ,r12)5exp@2(Z2s)(r11r2)#, where
s represents screening in a rather approximate way.
Minimizing the energy functional gives E52(Z
25/16)2, i.e., E522.85 a.u. for the helium ground state
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(Bethe and Salpeter, 1977). However, for the case of H2

this ansatz does not lead to a bounded ground state.
Kellner (1927) was the first to use the Ritz variational

principle and obtained a rather precise ground-state en-
ergy, E522.895 a.u.

His results were improved upon by the variational cal-
culations of Hylleraas (1928, 1929), who finally obtained
E522.9037 a.u. using a trial wave function with 38
variational parameters. This method was again taken up
using large-scale variational calculations by Kinoshita
(1959); see Table I.

First-order perturbation theory is also significantly im-
proved upon by Hartree’s method (see Bethe and Sal-
peter, 1977). It turns out that Hartree-type wave func-
tions are convenient and sufficient approximations to
the ground state for many applications in which electron
correlation effects need not be considered.

For a comprehensive and more detailed discussion of
the different methods used to obtain low-lying states of
two-electron atoms see, for example, Bethe and Salpeter
(1977). A recent overview of ground-state energies in
general Coulombic three-body systems, including exotic
two-electron atoms, is given by Lin (1995). Most accu-
rate ground-state energies are nowadays achieved by di-
agonalization of the two-electron Hamiltonian matrix,
Eq. (1), using large basis sets (see Table I for the case of
He). These methods, which were introduced by Pekeris
(1958, 1959) in his pioneering calculation of the helium
ground state (see Table I), will be presented in Sec.
II.C.2.

B. Doubly excited states: Basic spectral structure
and experimental developments

Since the famous experiment of Madden and Codling
(1963) showed that doubly excited states of two-electron
atoms represent the paradigm for electron correlations
in atomic systems, these states have attracted the con-
tinuous interest of both theoreticians and experimental-
ists. We shall approach these correlation effects step-
wise: in this section we give a preliminary overview of
excited states of helium and H2. Starting from singly
excited states, we introduce doubly excited resonances
on the traditional level of single-particle quantum num-
bers. We then review in Secs. II.B.2–II.B.4 progress in
the understanding of doubly excited states from the ex-
perimental side by pointing out some of the key experi-
ments, which represent the variety of techniques used
and the advances in spectroscopic precision. Experimen-
tal results such as those of Madden and Codling were
incompatible with classification schemes based on the
picture of two independent electrons and have
prompted much theoretical work. In Secs. II.C.1 and
II.C.2, we summarize related computational advances
and outline numerical techniques used at present for ac-
curate quantum-mechanical calculations of highly dou-
bly excited states. Both the numerical and the experi-
mental facts provided here will act as starting and
reference points for the physical pictures, classification
schemes, and approximate methods that represent our
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understanding of correlation effects in doubly excited
atoms up to the present day. They will be developed in
detail in Secs. III and IV.

1. Basic spectral properties

The last section dealt exclusively with the computa-
tions of two-electron ground states, the main issue of
early quantum theory. The question naturally arises of
how to characterize and calculate singly and doubly ex-
cited states. Certain exact symmetries of the three-body
Coulomb problem allow, at least partly, for a classifica-
tion of these quantum states. The overall rotational sym-
metry, related to conservation of the total angular mo-
mentum L and its projection, give rise to L and M as
good quantum numbers. The quantum numbers of the
total spin S and its z component are linked to electron
exchange r1↔r2 through the antisymmetry of the total
wave function. This leads to the distinction between sin-
glet (S50) and triplet (S51) states. Furthermore, re-
flection symmetry infers that the wave functions of the
electron pair are eigenfunctions of the parity operator
P : r1 ,r2→2r1 ,2r2 with eigenvalue p describing even
and odd states. These properties lead to the usual spec-
troscopic notation 2S11Lp (assuming LS coupling).

It may appear appealing to treat two-electron atoms
analogously to many-electron systems, in a mean-field
approach, possibly in a self-consistent way. As a result,
the two electrons both evolve in an effective central po-
tential that suggests their classification in terms of the
usual hydrogenic principal quantum numbers N ,n and
angular momentum quantum numbers l1 ,l2 . In such a
conventional description, (excited) states, e.g., in he-
lium, are organized in Rydberg series (N ,l1 ;n→` ,l2),
which converge to one-particle fragmentation thresh-
olds, IN , of the remaining He1(N) ion. Here N stands
for the principal quantum number of the inner electron.
This model, being based on the individual quantum
numbers, neglects electronic correlations completely but
accounts at least qualitatively for certain general fea-
tures of two-electron states.

In the following, we shall mainly use helium to illus-
trate the general spectral characteristics emerging from
the above model as well as its considerable deficiencies.
Figure 5 shows the 1Se-level diagram of helium as an
example of a spectrum of doubly excited resonant states.
The resonance energies shown were numerically com-
puted by complex rotation (see Sec. II.C.2). Roughly,
the helium spectrum can be divided into three distinct
parts: (i) the ground and singly excited bound states, (ii)
doubly excited resonant states, and (iii) the continuum
above the three-particle breakup threshold, 79 eV (or
2.9037 a.u.) above the ground-state energy.

(i) For the discrete singly excited states (N51;n
51,.. . ,`), singlet (1S ,1P ,1D , . . .) and triplet
(3S ,3P ,3D , . . .) configurations are usually distinguished.
States of the two subsystems with the same principal
quantum numbers differ significantly in their quantum
defects. Triplet levels lie noticeably higher in energy.
This, and the fact that singlet and triplet states do not
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combine optically with each other, led early investiga-
tors to think of two different kinds of helium, parahe-
lium (S50) and orthohelium (S51) (Bethe and Sal-
peter, 1977). Singly excited states converge to the first
ionization threshold I1 , which lies at 2Z2/2 a.u. This
corresponds to an ionization energy of ;24.58 eV for
helium.

(ii) Helium doubly excited states form a doubly infi-
nite (in N and n) sequence of levels lying above the first
ionization threshold. Their (perturbed) Rydberg series
converge to ionization thresholds IN at energies
2Z2/(2N2) (in a.u.), which are characterized by the ex-
cited state N of the remaining inner electron. For ex-
ample, for 1Se states (Fig. 5) there are N different
Rydberg series converging to each IN .

Doubly excited states are embedded in the continua
above the fragmentation thresholds of energetically
lower Rydberg series. Hence they form resonances that
can decay by autoionization, due to the electron-
electron interaction, via coupling to the continua. This
distinguishes them qualitatively from the stable singly
excited states in which the inner electron, in its ground
state, cannot further transfer energy to ionize the outer
one. This picture of singly and doubly excited states and
their difference is purely quantum mechanical and does
not exist for classical two-electron atoms (see Sec.
IV.B.)

(iii) The three-body dynamics in the energy regime
above the three-particle breakup threshold E50 have
been probed by photo double ionization and collision

FIG. 5. Level diagram of the 1Se states of helium from the
ground state to the N58 resonance series close to the three-
particle breakup threshold. There are N Rydberg series con-
verging to each ionization threshold IN . The inset shows the
N55 –8 levels on an enlarged scale.
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experiments. Theoretical descriptions of electron-impact
ionization, often called (e ,2e) reactions, are reviewed
by, for example, Byron and Joachim (1989). In particu-
lar, the region close to the threshold has been studied
extensively. In this region the energy dependence of the
total cross section for three-particle breakup is strongly
influenced by electron-electron correlation leading to
the famous Wannier threshold law (Wannier, 1953). The
physics in this energy region is beyond the scope of this
review; see Rau (1984) and Rost (1998) for extensive
discussions.

The experiment of Madden and Codling (1963) re-
vealed that the simple model of independent-particle an-
gular momentum quantum numbers l1 ,l2 mentioned
above proves inappropriate to characterize a series of
doubly excited states if the electrons can occupy a num-
ber of quasidegenerate (individual electron) configura-
tions. Depending on the degree of excitation, these con-
figurations can be strongly mixed through the electron-
electron interaction, so that there remains no dominant
independent-particle configuration (l1 ,l2) that could be
assigned to a given resonance. In helium or H2 this mix-
ing of independent-particle states is particularly pro-
nounced since, due to the absence of a core, each
electron-nucleus subsystem possesses the high hydro-
genic degeneracy of the energy levels (Eichmann et al.,
1990). Hence, in such doubly excited atoms,
independent-particle states are fragile and correlation
effects should be strongest. Instead of using (l1 ,l2), it is
more appropriate to label the different Rydberg series
converging to the same ionization threshold IN by a
Stark-type quantum number K , which for 1S states runs
from K52N11,2N13, to, N23,N21 (see Sec. III).

Approximate quantum numbers can be uniquely as-
signed for energies in which Rydberg series, converging
to different ionization thresholds, do not overlap. Figure
5 shows that Rydberg series converging to different IN
start to overlap for N>4. The mutual interaction of the
Rydberg series in the energy regime shown in Fig. 5 can
still be treated within quantum defect theory (Seaton,
1983); see, for example, Domke et al. (1991, 1995). This
is only possible for moderate N , where individual per-
turbers can still be identified. However, the assignment
of quantum numbers becomes increasingly difficult
when more than two series of different N overlap (Bür-
gers et al., 1995). The number of resonance series that
interact simultaneously increases further with N , which
renders the conventional description schemes almost im-
possible. This regime close to E50, which is character-
ized by a large number of strongly overlapping reso-
nances, is far from being understood and is becoming a
focus of current research activities.

Before we enter into the theory for correlated doubly
excited states we review the related experimental obser-
vations.

2. Early experimental observation of electronic correlations

After the ground state and singly excited states of
two- and more-electron atoms were fairly well under-
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stood, theoretical surprises from doubly excited states
were not expected. Apart from the regime close to the
double ionization threshold, where an increasing num-
ber of Rydberg series starts to overlap and to interact,
the spectral structure in the energy regime of isolated,
nonoverlapping Rydberg series in Fig. 5 may suggest
that the related doubly excited states behave similar to
singly excited states. Hence an improvement of the
simple independent particle model introduced above
along the lines of a Hartree-Fock description, which had
proven very successful for multielectron atoms, was ap-
pealing. Such an approach implies that two-electron
states are more or less products of single-particle con-
figurations. Given the helium ground state as a domi-
nant 1s2 configuration, the lowest doubly excited states
were therefore expected to be roughly 2s2,2s2p ,2snp
states and so on.

Although the existence of doubly excited resonant
states has been known for about 60 years, the primary
role of correlations in forming collective states of the
electron pair became suddenly evident with the key ex-
periment of Madden and Codling in 1963. This revealed
dramatic deviations from the expectations of Hartree-
Fock-like models. Using synchrotron radiation and re-
cording the absorption spectrum of helium, they could
observe a series of 1Po states converging to the N52
ionization threshold. 1Po states are strongly favored due
to dipole selection rules when probing the helium
ground state 1Se by photo excitation. Within the
independent-particle picture three series were expected:
2snp , 2pns , and 2pnd . Instead, Madden and Codling
observed one dominant, intense series. A second very
faint series could only be guessed and the third series
was not detected. The difference in the intensities was a
clear indication that the electron-electron interaction
leads to so far unknown selection or propensity rules for
radiative excitation. Moreover, the position of the reso-
nances in the strong and weak series did not match any
of the expected combinations 2s2p ,2p2s .

In an early theoretical interpretation of the experi-
mental findings, Cooper et al. (1963) proposed as expla-
nation a strong configuration mixing of the 1Po(2l12l2)
states due to their perfect degeneracy in the limit of
vanishing electron interaction. For reasons of exchange
symmetry, they suggested using combinations of the sum
(1) and the difference (2) of the atomic product wave
functions of the 2snp and 2pns states as an appropriate
basis. Corresponding calculations showed that these lin-
ear combinations indeed shifted the resonance positions
towards the experimentally observed ones. This led to
the original classification of these doubly excited states
as 1 and 2 series. The 1 labels were assigned to states
of the intense series. The observed linewidths, a mea-
sure of the autoionization rates, were reflected in the
photoionization yield: intense lines exhibit large widths.

It took more than 20 years of research before the
early description of doubly excited atomic states could
be backed by a systematic treatment and consistent un-
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derstanding of the astonishing symmetries of two-
electron atoms. The corresponding approaches will be
discussed in Sec. III.

3. Overview of modern spectroscopic techniques

Until about ten years ago, the existing spectroscopic
data for doubly excited two-electron atoms lagged con-
siderably behind theoretical results. This was mainly due
to the fact that appropriate monochromatic light
sources, suitable for high-resolution spectroscopy, were
missing. Such sources could bridge the rather large en-
ergy gap between the ground state and doubly excited
states: in the case of helium, the doubly excited 1Po

resonances lie approximately between 60 and 79 eV
above the ground state. This problem was tackled ex-
perimentally along two main routes, either by direct
double excitation using synchrotron radiation (see Sec.
II.B.3.a) or by studying doubly excited alkaline-earth at-
oms with conventional dye lasers operating in the opti-
cal regime (see Sec. II.B.3.b). Further experimental ef-
forts, partly based on nonphotonic double excitation,
will be summarized in Sec. II.B.4.

a. Double excitation of helium using synchrotron radiation

Until 1990, reliable measurements of resonant states
in helium were limited to the N52 Rydberg series
(Madden and Codling, 1963; Morgan and Ederer, 1984;
Kossmann et al., 1988) and to the lowest states of higher
Rydberg series (Woodruff and Samson, 1982; Kossmann
et al., 1988; Zubek et al., 1989). More recently, the de-
velopment of high-resolution monochromators for syn-
chrotron radiation has led to a striking improvement in
the precision of photo cross sections, which will be dis-
cussed below. Complementary experiments based on
emission spectroscopy even achieved the observation of
partial decay widths. Due to the dipole selection rule for
the single-photon process from the 1Se ground state,
only final doubly excited states of 1Po symmetry can be
detected with this technique. This restriction, however,
facilitates identification of the resonances.

Single-photon double excitation with synchrotron ra-
diation, combined with high-resolution monochromators
such as those at BESSY, Berlin (Domke et al., 1991,
1992, 1995, 1996), and even further improved monochro-
mators at the Advanced Light Source in Berkeley
(Schulz et al., 1996) made it possible to reveal for the
first time several additional Rydberg series. Moreover,
each Rydberg series could be followed up to higher ex-
cited states of the outer electron. In an experimental
breakthrough, Domke et al. (1992) resolved for the first
time the third Rydberg series, 2pnd , below the N52
ionization threshold. This series had been ‘‘missing’’
since the observation of the famous principal
(sp ,2n1) and secondary (sp ,2n2) resonances by Mad-
den and Codling (1963).

The latest experiments on doubly excited helium us-
ing synchrotron radiation at the Advanced Light Source
with further increased photon flux and a resolution of 1
meV (Schulz et al., 1996) were able to measure all three
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series converging to the N52 threshold with improved
precision. The spectra of the three series of autoionizing
states are shown in Fig. 6, which illustrates the experi-
mental progress since the early measurements of Mad-
den and Codling. The most intense (principal, or 1)
series appears in panel (a) as a pure sequence of pro-
nounced Beutler-Fano profiles (Fano, 1961). It is re-
solved up to n526. The first secondary (2) series in
Fig. 6(b), which is visible in panel (a) as a sequence of
tiny peaks, is roughly 100 times less intense than the 1
series. It is convenient to label the different series con-
verging to the same threshold by the (Stark-type) quan-
tum numbers K . This assignment, which is due to Her-
rick (1983), will not be justifed at this stage. (See Sec.
III.C for details, including the introduction of a further
quantum number, T .) The differences in the observed
intensities will be explained in Sec. III.B.3.a; see also
Fig. 10 below. The three observed series in Figs. 6(a)–
(c) can then be classified according to (N ,K)n with K
50, 1, and 21, respectively.

Besides being able to investigate in detail doubly ex-
cited states below the I2 threshold, Domke et al. (1996)
were able to observe members of all the strongest (prin-
cipal) Rydberg series up to the N59 ionization thresh-
old as well as further secondary series with relatively
weak intensities. The interesting regime of strongly
overlapping and interacting Rydberg series is thus acces-
sible today.

FIG. 6. Observed spectra of autoionizing resonances in helium
after double excitation through synchrotron radiation. Panel
(a) shows an overview spectrum of all three 1Po resonance
series below the N52 ionization threshold I2 , with the domi-
nant, classic Beutler-Fano profiles of the intense principal se-
ries discovered by Madden and Codling (1963). Panels (b) and
(c) depict the secondary series (N ,K)n5(2,1)n8 and
(2,21)n9 ; see Sec. III.C for the notation (from Schulz et al.,
1996).
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Figure 7 shows as an example highly doubly excited
resonances of helium in an energy region below the N
55 threshold, in order to illustrate the recent experi-
mental achievements and to compare them with theoret-
ical results. The dots mark measured cross sections
(Domke et al., 1995). The solid line is not a fit but the
numerical result from a complex rotation calculation
(see Sec. II.C.2) by Wintgen (1994). The pronounced
resonances are related to the principal (K53 in Her-
rick’s classification) Rydberg series with (N55, n
55,.. . ,14). The tiny dips visible in between the pro-
nounced states n55,.. . ,9 reflect the lowest states of a
secondary Rydberg series (N ,K)n5(5,1)n . Similar
agreement between theory and experiment has been ob-
tained by hyperspherical close-coupling calculations
(Tang and Shimamura, 1994; see Sec. II.C.1).

The high-resolution experiments of Schulz et al.
(1996) allowed for the first time observation of the sec-
ondary series (N ,K)n5(3,2)n and (3,0)n . Recent com-
prehensive accounts of these fascinating experimental
developments can be found in Domke et al. (1996) and
Rost et al. (1997). They also include detailed compari-
sons between experiment and theory with respect to
quantum defects, resonance widths, oscillator strengths,
and shape parameters.

The photoabsorption experiments described above
have been recently complemented by electron emission
measurements of partial photoionization cross sections
and photoelectron angular distributions of helium in the
energy region up to the I5 threshold (Menzel et al., 1995,
1996). These experiments also use the Advanced Light
Source to study the resonant photoionization process
He(1s2)1hn→He* (N ,Kn)→He1(j)1e2. The photo-
electron is detected, which makes possible the determi-
nation of the corresponding photoelectron angular dis-
tribution parameters b j (Menzel et al., 1995). The
energy dependence of the related partial cross section s j

FIG. 7. Double excitation resonances 1Po of He in an energy
regime below the N55 threshold. The dots denote experimen-
tal photoabsorption cross sections from the helium ground
state using synchrotron radiation (Domke et al., 1996). The
solid line shows the theoretical prediction based on complex
rotation (see Sec. II.C.2) by Wintgen (1994). The strong dips
represent the principal Rydberg series with approximate quan-
tum numbers n55,.. . ,14 of the outer electron. The irregular
structure at ;76.7 eV is due to interference of the N55 series
with the lowest state in the N56 series.
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is obtained by scanning simultaneously the incident pho-
ton energy and the pass energy of the analyzers of the
emitted electron. A thorough investigation of partial
cross sections and angular distributions is given by Men-
zel et al. (1996) for a large variety of Rydberg series up
to the I5 threshold, including for instance, the weak-
intensity series (N ,K)n5(N ,N24)n . The measured
spectra for s j and b j are in substantial agreement with
the numerical results of Tang and Shimamura (1994).
Recently Sokell et al. (1996) detected long-lived neutral
particles that were generated through the decay of dou-
bly excited states. In their setup, the observed strengths
of different series of doubly excited states are very dif-
ferent from the conventional findings by detecting
charged fragments.

b. Laser double excitation of alkaline-earth atoms

Compared to helium, alkaline-earth atoms have the
experimental advantage of a total two-electron excita-
tion energy of about 15 eV, which can be reached by
resonant multiphoton laser excitation.5 Rydberg states
in alkaline-earth atoms are also thoroughly discussed in
the book by Gallagher (1994). Compared to direct
double excitation from the ground state by synchrotron
excitation, the use of several lasers has the advantage of
making accessible not only 1Po states but a variety of
doubly excited states with different total angular mo-
menta in a controlled way. While these facts render
them favorites for experimental investigations, alkaline-
earth atoms differ from the pure three-body problem
that is preferentially considered in theory. The differ-
ence arises from the spatial extension of the core, which
adds a non-Coulombic potential term and removes the l
degeneracy of valence electron states that penetrate the
core. The corresponding nondegenerate single-electron
configurations are therefore much less affected by
electron-electron interaction, which renders the obser-
vation of related electron correlation effects rather dif-
ficult. Hence elaborate multistep laser excitation tech-
niques have been developed (Camus et al., 1989;
Eichmann et al., 1990; Jones and Gallagher, 1990) in-
volving up to six lasers, which allow for the controlled
excitation of the two valence electrons into states with
nonzero angular momenta and reduced overlap with the
inner core. In particular, excited states with angular mo-
menta l.3 do not penetrate the core and should behave
similarly to those in helium. If the electrons are in addi-
tion asymmetrically excited, ^r1&,^r2&, they are sup-
posed to move in different regions of space, and these
systems can be considered as experimental realizations
of planetary atoms (Roussel et al., 1990; Eichmann et al.,
1992; Seng et al., 1995).

5See Morita and Suzuki (1988) for calcium, Bloomfield et al.
(1984), Camus et al. (1989), Eichmann et al. (1989, 1990) Jones
and Gallagher (1990), and Roussel et al. (1990) for barium,
and Eichmann et al. (1992), Hogervorst (1993), and Seng et al.
(1995) in the case of strontium.
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In two impressive experiments by the groups of Ca-
mus (Camus et al., 1989) and Sandner (Eichmann et al.,
1990), the polarization of the inner electronic wave func-
tion by the outer electron could be observed. This can
be interpreted as a correlation effect. Sandner and co-
workers, for instance, used six lasers to bring the first
valence electron to a highly excited nd state (60<n
<100) and then excited the second valence electron to
l54 states with N56 using isolated core excitation. The
nonpenetrating inner wave function is hydrogenlike and
can therefore be polarized by the outer electron. This
experiment, like the experiment of Camus et al. (1989),
showed a Stark-like energy splitting of the inner elec-
tronic states due to the electric field of the slow outer
electron, which can be assumed to be ‘‘frozen.’’ As will
be discussed in Secs. III.B.4, IV.C.2.a, and IV.D.1, simi-
lar highly correlated states have been predicted theoreti-
cally for helium by Richter and Wintgen (1990b, 1991).
However, in those ‘‘frozen planet’’ states the outer elec-
tron is truly (dynamically) localized in space.

4. Further methods for double excitation

We briefly review further important experimental ap-
proaches here. They probably cannot compete in preci-
sion with high-resolution measurements using synchro-
tron radiation; however, they represent smart and
ingenious alternative techniques to observe doubly ex-
cited states and are in particular suitable for two-
electron systems other than helium.

a. Laser excitation of H2

In a seminal experiment, Bryant and co-workers were
able to reveal several series of doubly excited resonant
states in a relativistic H2 beam (Harris et al., 1990a,
1990b). The spectrum of the negative hydrogen ion H2

exhibits a similar overall structure to that of helium.
However, the border between discrete and continuum
levels, known as the detachment threshold in the case of
H2, is very low and lies at 0.75 eV. Only the H2 ground
state is bound. Furthermore, the series in H2 have di-
pole character at the ionization thresholds stemming
from the long-range potential formed by the polarized
inner H subsystem. This is in contrast to the typical Ry-
dberg series found for all other two-electron atoms. In
the experiments of Harris et al., H2 atoms, provided by
a linear accelerator and moving with relativistic veloci-
ties, intercept a laser beam of laboratory photon energy
E0 at a variable angle a. The experiments made use of
the relativistic Doppler shift leading to an angle-
dependent barycentric photon energy E5E0(1
1b cos a)/(12b2)1/2 with b5v/c . This powerful tool al-
lowed for a tuning of E over a large range, from ap-
proximately 0.03 eV up to 21 eV, covering the whole
interesting regime of resonances in H2, in particular
high-lying states at energies of 10–14 eV. The work by
Harris et al. (1990a, 1990b) contains a comprehensive ac-
count of measured resonance series converging to
threshold from N54 up to N58 and compares these
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with numerical results.6 For a review with emphasis on
atomic negative-ion resonances, we refer the reader to
the work of Buckman and Clark (1994).

b. Dielectronic recombination

Kilgus et al. (1990) made use of the time-reversed
autoionization process (followed by the emission of a
photon), namely, dielectronic recombination of a posi-
tive ion and a free electron, for the formation of doubly
excited states. These experiments were performed in a
heavy-ion storage ring generating stored and cooled O71

ions and an intense electron beam provided by an elec-
tron cooling device. The experiment allowed the obser-
vation of low-lying doubly excited resonant states of the
fairly exotic two-electron system (O61)** .

c. Electron- and ion-impact experiments

In contrast to the rapid advances in photoexcitation
spectroscopy for highly excited states, electron-impact
measurements reveal mainly doubly excited resonances
below the N52 ionization limit in helium (Hicks and
Comer, 1975; van den Brink et al., 1989) and, more re-
cently, below the N53 threshold (Brotton et al., 1997;
Montesquieu et al., 1988). Experiments by Buckmann
et al. (1983) and Buckmann and Newman (1987) have
reached doubly excited states up to N59, but with very
limited energy resolution. However, the advantage of
electron-impact spectroscopy lies in the fact that it al-
lows for the observation of both optically allowed and
forbidden transitions. Hence this method makes it pos-
sible to unveil the full spectral richness. For instance, in
the experiment by Brotton et al. (1997), eleven states
that are optically inaccessible have been observed and
relative cross sections measured.

A more recent alternative technique for double exci-
tation was presented by Moretto-Capelle et al. (1997),
who measured double excitation cross sections of low-
lying states in helium produced in collisions with 100
keV protons. The experimental information was ex-
tracted from electron emission spectra. In related ex-
periments, double excitation was achieved earlier by
double electron capture processes in slow collisions of
highly charged ions with atoms; see, for example,
Stolterfoht et al. (1986), Mack et al. (1989), and Sakaue
et al. (1990).

In conclusion, there exist today a variety of ingenious
experimental techniques for studying the properties of
two-electron atoms. At present, spectra using synchro-
tron radiation exhibit the highest resolution, reaching
the accuracy of state-of-the-art numerical calculations
reviewed in the following section.

6The assignment by Harris et al. (1990a, 1990b) for the so-
called 1 and 2 intrashell Feshbach resonances with symmetric
and asymmetric stretch motion is incompatible with the
present understanding of these resonances; see Sec. IV.C.
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C. Doubly excited states: numerical approaches

1. Brief review of modern numerical methods

A huge number of numerical investigations have im-
proved our understanding of electron-electron correla-
tions in two-electron atoms. In recent years it has be-
come possible to calculate cross sections of two-electron
processes with a number of different numerical meth-
ods. Here we can only briefly mention a few of them
that may be considered as examples of the techniques
currently in use. For further accounts on computational
techniques we refer the reader to previous reviews on
related topics, for instance, those by Fano (1983), Fano
and Rau (1986), Lin (1986, 1995), Buckman and Clark
(1994), and Aymar et al. (1996).

a. Feshbach projection formalism

Among earlier methods that were applied to obtain
the resonance parameters (energies or widths) numeri-
cally, we mention those of Bhatia and Temkin (1975,
1984) based on a Feshbach projection formalism. More
recently, Martin and co-workers proposed an L 2

method combined with the Feshbach formalism that
takes into account interchannel coupling in an algebraic
way [see Cortés and Martin (1993) for H2, Sánchez and
Martin (1993) for He].

b. Hyperspherical approaches

One of the most widely used theoretical approaches
during the last three decades employs hyperspherical co-
ordinates for the solution of the three-particle Schrö-
dinger equation (for reviews see Fano, 1983; Starace,
1988, 1993; Lin, 1995). The application of the adiabatic
hyperspherical approach is twofold:

Starting with the work of Macek (1968), hyperspheri-
cal coordinates have built the framework for the (quali-
tative) understanding and classification (Lin, 1984, 1986)
of resonant states, as will be reviewed in Sec. III.D.

Second, the hyperspherical treatment has been used
for numerical computations of adiabatic energy curves,
wave functions, and transition amplitudes of doubly ex-
cited resonances (see, for example, Sadeghpour and
Greene, 1990; Liu et al., 1991; Park et al., 1991; Sadegh-
pour, 1991). More recently, accurate numerical algo-
rithms based on hyperspherical coordinates have been
developed. The hyperspherical close-coupling method
has become one of the most powerful techniques for
obtaining ab initio results (Tang et al., 1992a, 1992b;
Tang and Shimamura, 1994; for a detailed account see
the review of Lin, 1995). It allows one to compute par-
tial cross sections with high precision (about 1%) and
has recently been extended to provide angular distribu-
tion parameters and differential cross sections as well
(Menzel et al., 1995, 1996), as they are obtained in the
electron emission experiments described in Sec. II.B.3.a.
We note that, in addition to the hyperspherical close-
coupling technique, conventional close-coupling meth-
ods have also been employed (Oza, 1986) to compute
cross sections for two-electron phenomena.
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c. R-matrix method

A further important method, which is among the most
widely used numerical techniques for atomic resonances
and collision processes, is the R-matrix method. We
forego a more detailed account of this method in view of
the recent review by Aymar et al. (1996), which includes
a thorough description of the eigenchannel R-matrix
method. The R-matrix approach has been applied to
doubly excited resonances by Hayes and Scott (1988),
Hamacher and Hinze (1989), Sadeghpour et al. (1992),
and Cheng Pan et al. (1994), to name only a few.

d. Multiconfigurational Hartree-Fock method

The multiconfigurational Hartree-Fock method was
extended to autoionizing states by Froese-Fischer and
Indrees (1990). Nicolaides and co-workers proposed a
related method that they called ‘‘state-specific solution
of the complex-eigenvalue Schrödinger equation.’’ They
developed this approach to study resonant states of
negative ions like H2 (Chrysos et al., 1990) and He2

(Chrysos et al., 1992). This method allows for a calcula-
tion of partial decay widths, in contrast to the complex
rotation method, which is an efficient means to compute
resonance positions and widths and will be presented
next.

2. Complex rotation method

Different methods exist for computing resonance en-
ergies directly by diagonalizing the two-electron Hamil-
tonian using large L 2 basis sets. Besides the stabilization
method (Mandelshtam et al., 1993; Müller et al., 1994),
the complex rotation method (Balslev and Combes, 1971;
Junker, 1982; Reinhardt, 1982; Ho, 1983) has become a
standard approach to various atomic systems with states
coupled to a continuum. This technique allows one to
use bound-state methods to calculate resonant energies,
widths, cross sections, and wave functions of autoioniz-
ing states.

Complex rotation is achieved by complex scaling of
the radial coordinates and momenta according to r
→r exp(iu); p→p exp(2iu) (Ho, 1983). Resonance posi-
tions and widths are obtained from the complex eigen-
values, En2iGn/2, of the corresponding rotated Hamil-
tonian H(u), after diagonalizing H(u) in a basis set of
real square integrable wave functions. This means that
continuum properties are represented by a discrete basis
set.

This method was introduced by Doolen et al. (1974)
for doubly excited two-electron atoms and was then ex-
tensively employed by Ho and co-workers.7 While Ho
has used a Hylleraas-type basis set, Wintgen and co-
workers applied the complex rotation method within a
Sturmian basis set using perimetric coordinates (James
and Coolidge, 1937; Pekeris, 1958); for details see Rich-

7See, for example, Ho and Callaway (1985), Ho (1986), and
Ho (1989) for helium, Ho (1990, 1992) for H2, and Ho and
Bhatia (1992) for 3Pe states in Ps2.
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ter and Wintgen (1991), Richter et al. (1992), and Bür-
gers et al. (1995). Perimetric coordinates, together with
the Sturmian-type basis set, have the great advantage
that they lead to a sparse and banded matrix represen-
tation of the Hamiltonian in algebraic form. The accu-
racy of this method, is such that the nonrelativistic he-
lium ground state, for instance, has been computed with
a precision of up to 18 significant digits (see Table I).8

An extensive list of energies and widths of 1S and 3S
states of helium has been presented by Bürgers et al.
(1995), and for asymmetrically excited electrons (frozen
planet states; see Secs. IV.C.2.a and IV.D.1) by Richter
et al. (1992). A listing of 1Po He resonances converging
to the N52 –7 thresholds is given by Rost et al. (1997).
Results from the complex rotation method will also be
used as a check of the semiclassical calculations in Sec.
IV.

Experimentally, resonant energies are usually not di-
rectly observed but indirectly deduced by excitation
through electron impact or photoabsorption. As re-
viewed in Sec. II.B.3.a, high-precision photoabsorption
spectra have been obtained in state-of-the-art experi-
ments that challenge theory to calculate cross sections
for comparison. This is again possible by using complex
rotation in terms of complex (dipole) matrix elements
(Wintgen and Delande, 1993; Domke et al., 1995; Rost
et al., 1997). An example of such a numerical calculation
of the photoabsorption cross section in helium is given
in Fig. 7. The excellent agreement between the numeri-
cal and the measured curves shows the high precision of
the current state-of-the-art theoretical and experimental
techniques. The most recent complex-scaling photoab-
sorption calculations for helium by Grémaud and De-
lande (1997) cover the energy regime up to the N59
threshold, where various resonances strongly overlap.

In the next section, we present a thorough classifica-
tion and interpretation of the resonances, given so far
only numerically, in terms of approximate quantum
numbers which account for the collective dynamics of
the electron pair (Herrick, 1983; Lin, 1984; Feagin and
Briggs, 1986).

III. APPROXIMATE QUANTUM-MECHANICAL CONCEPTS
FOR TWO-ELECTRON DYNAMICS

Following the discovery of the effects of correlated
electron motion by Madden and Codling (1963), surpris-
ingly different, powerful, and intellectually involved the-
oretical concepts such as adiabatic approximations,
group-theoretical methods, and advanced semiclassical
techniques have been necessary to obtain the level of

8One should, however, keep in mind that relativistic and
finite-mass corrections, which are not included in these calcu-
lations, become relevant at such a level of precision. Results
including these effects were obtained by Drake (1993; see
Table I). They differ from the recent experimental results of
Eikema et al. (1996) and Bergeson et al. (1998; see Table I)
due to the Lamb shift of the helium ground state.
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understanding of two-electron resonances we have
achieved today. With this understanding we can answer
the following crucial questions raised by the experimen-
tal and full numerical data, as summarized in Figs. 5
and 6.

(1) The single-particle picture is not applicable for
two-electron atoms (see Sec. II). Why are two-electron
resonances nevertheless organized in regular (Rydberg)
series? What distinguishes different Rydberg series
quantitatively, i.e., can one calculate quantum defects of
the form introduced in Eq. (4)?

(2) What is the common structure of the wave func-
tions from states belonging to the same Rydberg series?

(3) How can we understand the extreme selectivity in
the photoabsorption cross section for different Rydberg
series, as can be seen, for example, in Fig. 6? What is the
origin of the characteristic autoionization behavior that
leads to differences in the resonance widths of orders of
magnitude for states belonging to different Rydberg se-
ries, as in Fig. 6?

The last question addresses the possible existence of
selection rules, or at least propensity rules, for transi-
tions between two-electron states, in analogy to the well-
known angular momentum selection rules for dipole ma-
trix elements between single-electron states.

A. Overview

Among the many contributions towards answering the
questions raised above, three major theoretical concepts
can be identified: the hyperspherical approach, the alge-
braic approach, and the molecular approximation. These
three qualitative and semiquantitative descriptions could
not have been developed without a continuously in-
creasing set of two-electron resonance data, mostly from
numerical, converged calculations.

The adiabatic hyperspherical approximation was intro-
duced to the problem of two electrons by Macek (1968)
and was later mainly pursued by Fano and co-workers
(for reviews see Fano, 1983; Fano and Rau, 1986; Lin,
1986, 1995). However, it was also followed by collabora-
tions around Matzsusawa and Watanabe in Japan (e.g.,
Atsumi et al., 1990; Tang et al., 1992a; Tolstikhin et al.,
1995) and Klar in Europe (Klar and Klar, 1980; Pelikan
and Klar, 1983). The separation of one variable, the hy-
perradius, leads to a set of adiabatic potential curves
converging to each He1(N) threshold, similar to the
Born-Oppenheimer approximation in molecules. Each
of these potential curves carries an entire Rydberg se-
ries. The non-Coulombic short-range form of the poten-
tial curves accounts naturally for a quantum defect that
is different for each Rydberg series. Hence, by construc-
tion, the hyperspherical adiabatic approximation pro-
vides a partial answer to question (1). Moreover, in days
when computers were not as powerful as today, the hy-
perspherical approach was a convenient way to lower
the computational effort, since the calculation of adia-
batic potential curves, still a substantial numerical task
(see Sec. III.D), is not as involved as the numerical so-
lution of the full problem. However, the structure un-
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derlying each potential curve, i.e., question (2) and
therefore also (3), could not be determined. This goal
was pursued by the algebraic approach.

The algebraic approximation was initiated by Wulf-
man (1968), who tried to use the well-known dynamical
SO(4) symmetry of hydrogen to understand the struc-
ture of two electrons from a coupled representation
SO(4)3SO(4). The idea led Herrick and co-workers
to an enlightening description of two-electron reso-
nances that yielded for the first time an approximate but
complete set of collective quantum numbers (for a re-
view see Herrick, 1983). Various ad hoc coupling
schemes of SO(4) led to the discovery of an astonishing
degree of order in the two-electron resonance spectrum.
In a series of papers, Lin (1983a) succeeded in attaching
approximate quantum numbers from the algebraic ap-
proach uniquely to hyperspherical potential curves. This
was a great step forward and answered, in addition to
question (1), question (2) to a large extent: The exis-
tence of approximate quantum numbers per se revealed
a common structure for each Rydberg series, and Lin
assigned the quantum numbers by following morpho-
logical similarities in the wave functions for the hyper-
spherical potential curves. Still, it was not known if the
approximate quantum numbers corresponded to qua-
siseparability of the problem in a suitable coordinate
system. Such a coordinate system would automatically
lead to an answer for the still open question (3). Could
one find a quasiseparable approximation for two-
electron states that would explain possible selection
rules? It was the third major concept of two-electron
states that provided this separation.

The adiabatic molecular separation was introduced by
Feagin and Briggs (1986); for a review see Rost and
Briggs (1991). This approximation treats the two-
electron atom literally as a molecule, assigning the role
of the adiabatic internuclear axis to the interelectronic
axis. The structure of the adiabatic potential curves is
rather similar to the hyperspherical approach, with one
important difference: the Hamiltonian for fixed inter-
electronic vector r12 is separable in elliptical coordinates,
thereby providing a full set of quantum numbers (which
are in one-to-one correspondence to those derived by
Herrick within the algebraic approach). In addition,
separability implies a coordinate system in which the
wave function for the two electrons can be written ap-
proximately as a product of functions with a well-
defined number of nodes along each coordinate corre-
sponding to the quantum numbers. Hence the
achievements of the hyperspherical and algebraic ap-
proaches could be combined in the molecular approxi-
mation, with the additional benefit of a set of coordi-
nates in which the two-electron resonant wave functions
are approximately separable. The separability permits
the identification and formulation of propensity rules,
and therefore, finally, in addition to answering questions
(1) and (2), also answers question (3).

The molecular description provides the most detailed
information about two-electron resonances since it takes
into account the rather special feature of the singular
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Coulomb potentials. Hence it is probably difficult to
transfer this approach to other (non-Coulombic) few-
body systems.

The algebraic approach also makes heavy use of the
SO(4) structure of the Coulomb problem. Nevertheless,
constructing level multiplets from group-theoretical con-
siderations is a common technique in few-body dynam-
ics and is probably best known from the theory of
quarks (Halzen and Martin, 1984). The algebraic ap-
proach is much more ‘‘transferable’’ between different
few-body problems. In fact, it is the preferred theoreti-
cal concept if the interparticle forces are not known in
detail.

The most general few-body concept is the adiabatic
hyperspherical approximation, especially if the poten-
tials are known. It produces in most cases good quanti-
tative estimates for the energy levels and it has been
used in nuclear physics as well as for the nuclear (non-
Coulombic) motion in molecules containing a small
number of atoms (see, e.g., Hernandez and Clary, 1996).

We shall discuss all three concepts in this section, as
well as a selection of interesting alternative approaches.
For the sake of a pedagogical presentation we present
the molecular approximation first because it appears to
provide the most complete qualitative description of
doubly excited states within a single concept. In particu-
lar, the two limiting collinear cases with Q'180° (elec-
trons on opposite sides of the nucleus) and with Q'0
(electrons on the same side of the nucleus) will become
clear: in the first case the interelectronic axis r12 is taken
as the adiabatic variable R ; in the second case the dis-
tance r. from the nucleus to the outer electron is de-
fined as the adiabatic R . The two collinear configura-
tions persist as structural elements of doubly excited
states even for very high excitation of both electrons,
where the approximate quantum numbers (to be derived
in the present section) lose their meaning. This fact is
based on classical and semiclassical considerations,
which will be presented in Sec. IV.

B. The molecular adiabatic approximation

1. Symmetries and wave functions

Feagin and Briggs (1986, 1988) introduced and formu-
lated the idea of viewing doubly excited atomic states in
terms of molecular potential curves known from H2

1 .
This idea has the appealing consequence that each po-
tential curve comes from a separable adiabatic two-
center Coulomb Hamiltonian (Slater, 1977) with well-
defined quantum numbers and carrying naturally a
(Rydberg) series of two-electron resonances.

In molecular Jacobi coordinates, with R5r12 connect-
ing the two electrons and r5(r ,z ,f) pointing from the
middle of the two electrons to the nucleus, the two-
electron Hamiltonian reads
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Treating the interelectronic axis R as a slow variable in
analogy to the internuclear axis for H2

1 does not seem to
make sense on first glance, since the light electrons are
expected to move fast compared to the heavy nucleus.
However, first, the mass argument must refer to the re-
duced masses involved, which are of comparable magni-
tude for the two electrons and the center of mass of the
nucleus with respect to the electrons, as can be seen
from Eq. (6). Second, the success of adiabatic separa-
tions is not necessarily linked to slow and fast variables
but can also originate in quasiseparability of the system
in the respective variables. Finally, an intuitive argument
can be given in support of the interelectronic axis as an
adiabatic variable for highly excited two-electron reso-
nances, more specifically, if N/Z@1. In this case, the
effect of the attraction between an electron and the
nucleus is much weaker than that of the repulsion be-
tween the electrons, which is expected to dominate the
structure of the resonant states. This is not the case for
the ground state, in which N/Z<1, and it is not too
surprising that a molecular adiabatic separation leads to
a binding energy for helium that is 20% too small
(Hunter and Pritchard, 1967a, 1967b; Hunter et al.,
1968).

In a molecular expansion the spatial wave function is
represented as a sum over products of rotational,
D Mm

L ,S ,t(C ,q ,f), vibrational, f im
L (R), and molecular-

orbital, c im
t (r ,z ;R), wave functions:

CLM
S ,t ~r,R!5(

im
D Mm

L ,S ,t~C ,q ,f!
f im

L ~R !

R
c im

t ~r ,z ;R !. (7)

In a body-fixed frame, connected to the lab-fixed
frame by the Euler angles C,q,f, the interelectronic vec-
tor R is parallel to the z axis. As in Rost et al. (1997),
the azimuthal angular dependence on f is described by
the rotational wave function D Mm

L ,S ,t(C ,q ,f), and the
molecular orbital (MO) c im

t (r ,z ;R) is a wave function
for the center-of-mass motion of the nucleus in the co-
ordinates r, z at fixed internuclear distance R and for a
given quantized azimuthal motion m . The index i counts
the quantized states in (r ,z).

The wave function in Eq. (7) has been constructed to
respect all exact two-electron symmetries; see also Sec.
II.B.1. In particular, the rotational parts consist of a
symmetry-adapted linear combination of Wigner func-
tions DMm

L (C ,q ,f) for the Euler angles (Feagin and
Briggs, 1988),

D Mm
L ,S ,t5DMm

L 1~21 !S1t1L1mDM2m
L . (8)

Hence the wave function in Eq. (7) is an eigenfunction
of the permutation operator P12 for the (identical) elec-
trons P12 : R→2R,r→r with eigenvalue (21)S where S
is the spin of the electron pair, either singlet (S50) or
triplet (S51). Furthermore, it is an eigenfunction of the
parity operator P : R→2R,r→2r with eigenvalues p5
61. The product operator PP12 thus has eigenvalues
(21)Sp5(21) t, which defines the quantum number t
in Eq. (7). The quantum number m is the eigenvalue of
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the projection operator lz where l52ir∧¹r and also of
the body-fixed component Lz of the total angular mo-
mentum L.

The solution of the eigenvalue equation (H
2E)CLM

S ,t 50 reduces, after integration over r and the
Euler angles, to the following set of coupled equations
for the vibrational amplitudes:

2$]2/]R222@Uim
L ~R !2E#%f im

L ~R !

5(
jÞi

Aij
0 ~R !f jm

L ~R !1Aij
1~R !f jm11

L ~R !

1Aij
2~R !f jm21

L ~R !, (9)

where we omitted the dependence on M , S , and t to
simplify the notation. The rotational coupling terms

Aij
6~R !5@~L7m !~L6m11 !#1/2^c imul6 /R2uc jm61&

(10)

change the angular momentum quantum number m ,
while the radial coupling term

Aij
0 ~R !5^c imu2]/]Ruc jm&]/]R (11)

leaves m unchanged.
In the adiabatic approximation the sum in Eq. (7) is

collapsed to one term im with the consequence that the
right-hand side of Eq. (9) is zero, i.e., all couplings to
channels jm8Þim are ignored, and Eq. (9) reduces to a
conventional eigenvalue equation for f im

L (R). For fixed
R the adiabatic molecular wave function c im

t (r ,z ;R) ap-
proximately diagonalizes the two-electron Hamiltonian
if it is an eigenfunction of the two-center Hamiltonian
(Z52 for helium)

hm~R !52
1
2

]2

]z2 2
1

2Ar

]2

]r2Ar2
Z

r1
2

Z

r2
1

m2

2r2 , (12)

which depends parametrically via r1 and r2 on the inter-
electronic distance R . In the adiabatic approximation
the vibrational wave function f im

L (R) is an eigenstate of
the adiabatic potential

Uim
L ~R !5Eim~R !1Cim

L ~R !11/R , (13)

where Eim(R) is an eigenvalue of hm(R) and Cim
L (R)

5^c imuH2hmuc im& is the expectation value of the part
of the Hamiltonian that is not diagonalized by c im .

Note that this is not the standard Born-Oppenheimer
approach, since we have left out parts of the kinetic en-
ergy in r to define the two-center Hamiltonian in Eq.
(12). Therefore the residual kinetic energy 1

4 ¹r
2 [see Eq.

(6)], not diagonalized in Eq. (12), is part of Cim
L (R).

This modified Born-Oppenheimer treatment acknowl-
edges the fact that the reduced masses along both Jacobi
coordinates to be separated adiabatically are of the
same order of magnitude (Rost and Briggs, 1991). Using
the kinetic energy as in Eq. (12) ensures by construction
that the adiabatic correction term Cim

L (R) is zero in the
large-R limit.
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2. Quasiseparability and quantum numbers

The most important feature of the molecular approxi-
mation is the fact that the two-center Hamiltonian in
Eq. (12) is separable in prolate spheroidal coordinates
(Slater, 1977),

l5
r11r2

R
, m5

r12r2

R
, (14)

with

r1,25Ar21~z6R/2!2. (15)

The separability implies a product form for the molecu-
lar orbital

c im5Lnl

m ~l!Mnm

m ~m!, (16)

with quantum numbers nl ,nm that count the nodes
along the respective coordinates.

To summarize, in the molecular approximation indi-
vidual resonances are obtained by computing vibrational
eigenstates according to the Schrödinger equation,

S 2
]2

]R2 1Unl ,nm ,m
L ~R !2En̄D f n̄~R !50. (17)

The vibrational quantum number n̄ specifies the excita-
tion of one electron along a Rydberg series. Physically,
n̄ counts the same states as n in Sec. II.B.1, and the
relation between both quantum numbers is n̄5n2N ,
where N is the principal quantum number of the
He1(N) hydrogenic level for n̄→` . The exact quantum
numbers L ,M ,S ,MS ,p and the approximate quantum
numbers n̄ ,nl ,nm ,m constitute a complete classification
of doubly excited states. Moreover, they imply an ap-
proximate nodal structure of the wave functions, which
in turn leads to propensity rules for radiative transitions
involving doubly excited states as well as autoionization.
Figure 8 illustrates schematically the calculation of a

FIG. 8. Schematic representation of doubly excited states in
helium in an adiabatic approximation. The resonances appear
as vibrational eigenstates (the first two are shown) in a poten-
tial curve that is constructed from an eigenfunction of all exact
symmetries 2S11Lp and of the two-center Coulomb problem
with the respective quantum numbers nl ,nm ,m ; see text. The
states n̄ form a Rydberg series with the limiting energy of the
excited He1(N) ion for n̄→` (from Rost et al., 1997).
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doubly excited two-electron state with all its quantum
numbers in the molecular approximation.

As for other separable problems, the quantum num-
bers do not have to represent the actual number of
nodes along some coordinates. Hydrogen itself is the
best example, in which only the azimuthal quantum
number m5nf specifies directly the number of nodes of
the wave function in the coordinate f. The number of
nodes in u are given by nu5l2m , and the radial nodes
are counted by nr5N2l21; see also Eq. (5). Moreover,
the hydrogen problem separates into many other coor-
dinates besides spherical coordinates (due to its high de-
gree of degeneracy). Relevant for the two-electron
problem is the separation of hydrogen into parabolic co-
ordinates, where again two sets of quantum numbers are
used, the nodal quantum numbers @N1 ,N2 ,m# with N
5N11N21m11 and the ‘‘Stark’’ quantum numbers
(N ,K ,T) with K5N12N2 and T5m (see Bethe and
Salpeter, 1977). While the nodal quantum numbers
count the nodes of the wave function along the parabolic
coordinates, the Stark quantum numbers directly de-
scribe the energy eigenvalues in the presence of a static
electric field (the Stark effect).

To characterize the two-electron potential curves
U(R) from Eq. (13) one can also use parabolic quantum
numbers that classify each U(R) uniquely in the
‘‘separated-atom’’ limit R→` , when the outer electron
has been removed to infinity and merely represents a
static electric field for the inner one. Along an adiabatic
molecular-orbital curve the nodes of the wave functions
do not change. Hence numbers are in one-to-one corre-
spondence:

parabolic molecular Herrick/Stark

N1 5nl5
1
2

~N2K212T !, (18a)

N2 5@nm/2#5
1
2

~N1K212T !, (18b)

umu 5m5 T , (18c)

A5~21 !nm~5 !A . (18d)

The notation @x# stands for the closest integer lower
than x . Herrick was the first to introduce the set of Stark
quantum numbers N ,K ,T for two-electron states. They
emerged from his algebraic approach (Herrick, 1983), to
be discussed in Sec. III.C. Since the information of even
and odd nodes nm is lost in the parabolic/Stark classifi-
cation, an additional quantum number must be intro-
duced, which has been done by Herrick and Sinanoglu
(1975); see Sec. III.C.1. Today this quantum number is
commonly denoted by A , as coined by Lin (1983a). He
used A as a label to characterize hyperspherical poten-
tial curves for two-electron atoms with the values A
561 for an antinodal (1) or nodal (2) line of the
corresponding adiabatic wave functions at r15r2 . More-
over, Lin (1983a) introduced the label A50 for no ap-
parent symmetry with respect to the line r15r2 ; see Sec.
III.D. In the two-center adiabatic approach, A is the
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eigenvalue of the body-fixed electron exchange operator
with values A561 from A5(21)nm. A50 does not
occur in this description. This is the reason why we put
the last equality of Eq. (18d) in parentheses. The corre-
spondence to a hyperspherical potential curve with the
empirical label A50 would be a linear combination of
several molecular potential curves of different symmetry
A .

3. Propensity rules for radiative and nonradiative transitions

a. Autoionization

The approximate constants of motion of Eq. (18)
for correlated two-electron dynamics imply a nodal
structure for the respective resonant states (Rost,
Gersbacher, et al., 1991). In turn this nodal structure
leads to preferences for autoionization (Rost and Briggs,
1990) and dipole transitions (Vollweiter et al., 1991),
which may be easily understood in the molecular lan-
guage of adiabatic potential curves identified by a set
@N1N2m#A of quantum numbers. A small subset of such
potential curves as a function of the adiabatic interelec-
tronic distance R is shown in Fig. 9. The most obvious
features in Fig. 9 are avoided crossings between two po-

FIG. 9. Adiabatic molecular potential curves for two-electron
doubly excited states as a function of the interelectronic dis-
tance R . The resonances appear as vibrational eigenstates in
the potential curves. The energy is plotted as effective quan-
tum number Neff(R)5@22/U(R)#1/2 with Neff(R→`)52,3,4,.. .
indicating directly the He1(N) ionization thresholds. Part (a)
shows potential curves that carry the resonances of the princi-
pal series with quantum numbers @N1 ,N2 ,m#A5@0,N21,1#1,
N52,.. . ,10 from below. Part (b) shows resonances of A521
symmetry for N51,.. . ,9 corresponding to the quantum num-
bers @0,N21,0#2 from below. To guide the eye the black
squares indicate the locus of the avoided crossing; see text
(from Rost et al., 1997).
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tential curves. Their locus as a function of R , indicated
by black squares in Fig. 9(b), follows closely the saddle
point of the two-center Coulomb potential that plays a
crucial role for the three-body Coulomb problem. The
saddle point for fixed R is defined by r11r250, where
the ri are the two electron-nucleus vectors. Moreover,
this is exactly the definition of configuration space occu-
pied by the classical Wannier orbit, which plays a promi-
nent role in the classical understanding of two-electron
dynamics; see Sec. IV.B.2.b.

The avoided crossings may be interpreted in the fol-
lowing way: To the right of such a crossing, the adiabatic
two-electron wave function cnlnm

m (R) has its main con-

tribution in the Coulombic wells, and the contributions
in each well are separated from each other by a classi-
cally forbidden region with a probability density that is
small at the saddle point. To the left of the avoided
crossing, the wave function has its main contribution at
the saddle point. Hence the avoided crossings separate
two regions in R in which the wave function has a dif-
ferent character. As can be seen in Fig. 9, potential
curves whose quantum numbers differ by DN251 (i.e.,
Dnm52) display avoided crossings, which are narrower
for A511 states [whose wave functions have an anti-
node on the saddle, Fig. 9(a)] than for A521 states
[with a node on the saddle, Fig. 9 (b)]. In the latter case
the change in character of the wave function as a func-
tion of R passing an avoided crossing is not so dramatic,
since for reasons of symmetry the wave function is zero
exactly at the saddle point for all R .

The mechanism of autoionization relies on nonadia-
batic transitions in this description, in full analogy to
electronic transitions in molecules. Radial transitions via
Eq. (11) are sensitive to the change of the wave function
as a function of R . Hence they occur preferentially
through an avoided crossing of two potential curves. The
second kind of nonadiabatic transition is due to rota-
tional coupling Dm51 between potential curves accord-
ing to Eq. (10). Finally, there is no explicit mechanism to
change N1 (nl). Hence transitions with DN1Þ0 are
strongly suppressed. From these observations one can
extract three propensity rules for autoionization, which
are labeled according to the relative efficiency of the
underlying decay mechanism:

(A) DN2521 or DN521, DK521, (19a)

(B) Dm521 or DT521, (19b)

(C) DN1521 or DN521, DK511. (19c)

In general, states with A511 have larger widths than
those with A521. This can be expected following the
discussion of Fig. 9 and it can be directly seen from the
experiments, e.g., from Fig. 6. As an example we show in
Fig. 10 the decay systematics for the lowest resonance
n5N of 1Po symmetry in a series @N1N2 ,m#n . Each
box contains the width of the lowest resonance of the
respective series with quantum numbers @N1N2m# . Si-
multaneously, the box represents the continuum
@N1N2m# into which a higher-lying resonance may de-
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cay, as indicated by the arrows and the respective
mechanism (A), (B), or (C).

The states with A511 are located in the upper right
triangle. Those that can decay according to rule (A)
have the largest widths (of the order of 102 meV). The
arrows point to quantum numbers of the continuum into
which these states decay according to rule (A). Close to
the (dashed) diagonal separating A511 and A521
states we see those resonances that cannot decay by (A).
Instead they decay according to (B) by changing their
rotational quantum number. Since this change also im-
plies a change of the quantum number A , the decay
arrow has to cross the diagonal and points to a con-
tinuum state with A521. The rotational decay of these
A511 states is only slightly less effective (by about a
factor of 5) than the decay of the A511 states accord-
ing to (A). Hence we combine all A511 states located
in the upper triangle into class-I states with the relatively
largest widths.

The A521 states below the diagonal that can decay
according to (A) define the class-II states. Their widths
(of the order of 100 meV) are one to two orders of mag-
nitude smaller than the widths of the class-I states.

FIG. 10. Decay modes indicated by arrows with the respective
rule from Eq. (19) for the lowest 1Po resonances in the mani-
folds N52 –4. Each box stands for a continuum channel and
the lowest resonance in this channel. The quantum numbers
@N1N2m# and N ,K are given together with the theoretical and
experimental width in meV from Rost et al. (1997; uncertainty
in parentheses). The dashed diagonal separates A511 and
A521 states.
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Among the A521 states are also class-III states located
directly below the diagonal. They can only decay accord-
ing to (C) along the diagonal, and their widths
(1024 –1022 meV) are more than two orders of magni-
tude smaller than those of class-II resonances; for more
details, see Rost et al. (1997) and Rost and Briggs
(1990).

To summarize, the three propensity rules (A), (B),
and (C) group resonant two-electron states into three
classes I–III. For helium, widths between members of
two classes differ typically by at least two orders of mag-
nitude, GI :GII :GIII'104:102:1. For a semiclassical inter-
pretation of the propensity rules discussed above see
Sec. IV.C.

b. Dipole transitions

Propensity rules for radiative transitions can be de-
rived by analyzing the dipole matrix elements according
to the nodal structure of the resonant wave functions,
which is a simple analytical task on the potential saddle
at 2r[r11r250. This region in configuration space is
most relevant for symmetrically excited electrons with
N'n . It corresponds to the equilibrium geometry of a
linear ABA molecule (Hunter and Berry, 1987). Not
surprisingly, the relevant quantum number,

v252N11m , (20)

for radiative propensities quantizes the twofold-
degenerate bending motion of triatomic molecules and
can be derived by normal-mode analysis about the
saddle point. Dipole matrix elements within the saddle
approximation follow the selection rule (Vollweiter
et al., 1991)

(D) Dv250,61, (21)

which survives for the entire dynamics as a propensity
rule. Rule (D) has been derived from properties of the
doubly excited state involved in the dipole transition. A
preference among the possible transitions according to
(D) can be induced by the second state of the dipole
matrix element (Rost et al., 1997). Such a preference has
also been worked out by Gerasimovich et al. (1996); see
Sec. III.E.3. The propensity rules are also confirmed by
the latest measurements of partial ionization cross sec-
tions (Menzel et al., 1995, 1996).

4. The molecular description of planetary states

For a long time the symmetrically excited states with
N'n were the center of research activities. After 1990
the development of sophisticated laser excitation
schemes of alkaline-earth atoms permitted the prepara-
tion of non-core-penetrating doubly excited states and
the examination of heliumlike three-body systems with
high-resolution laser spectroscopy (Eichmann et al.,
1992). Many features of the experimental spectra for
very asymmetrically doubly excited states (e.g., N56,n
.25) could be understood in the ‘‘frozen planet ap-
proximation’’ (Eichmann et al., 1990) in which the outer,
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very slow electron represents a static electric field for
the inner electron; see also Sec. II.B.3.b.

a. Characteristics of planetary states

In 1990, Richter and Wintgen discovered a new class
of strongly correlated but asymmetrically excited states.
They have remarkable properties, discussed in detail by
Richter et al. (1992), namely, distinct angular and radial
correlations, extremely small decay widths, and respec-
tive wave functions that are quasiseparable into collec-
tive semiclassical and molecular coordinates. The strong
radial and angular correlations of the electrons lead to
the mixing of all single-particle angular momenta l i re-
sulting in the formation of a molecular- (or Stark-) type
inner electronic wave function and a vibrational, highly
nonhydrogenic wave function for the outer electron. As
will be discussed in Sec. IV.B.2.a, the resonances are
associated with a classical phase-space region, where the
three-body Coulomb system becomes nearly integrable.

The resonances exist for arbitrary finite nuclear
charges Z.1. Their existence is inherently tied to the
repulsive electron-electron interaction. In particular,
they do not possess a limiting independent-particle mo-
tion. Hence standard perturbation theory in 1/Z starting
from the independent-particle limit fails in describing
these states. However, they can be described within an
adiabatic approximation.

b. Structure of planetary states
from the adiabatic approximation

The suitable adiabatic variable R for planetary states
is the coordinate r. of the slow outer electron. If the
origin of the internal coordinate r describing the fast
electron is taken as the geometrical midpoint of R, i.e.,
r5r.2R/2 the Hamiltonian for fixed R is that of a two-
center Coulomb problem in which one center, the
nucleus, is attractive while the other center, the slow
electron, is repulsive. The adiabatic wave function for
fixed R is again separable into prolate spheroidal coor-
dinates l̄ ,m̄ ; however, they obviously have a different
meaning from that of Eq. (14), namely,

l̄5
r.1r12

R
, m̄5

r.2r12

R
. (22)

The adiabatic potential curves (Fig. 11) also look very
different from Fig. 8. For each manifold N the upper-
most curve, in which the fast inner electron is highly
polarized towards the outer electron, develops a second-
ary potential well around R;100 a.u. These curves have
n l̄50 and the maximum number of nodes in m̄ , n m̄5N
21. In helium, the minimum is for N>6 deep enough
for vibrational bound states with oscillatorlike eigen-
functions for the outer electron.

The occurrence of minima in the Born-Oppenheimer
potentials is not restricted to MO states with n l̄50. If N
is large enough (i.e., N>16 in the case of helium), the
polarization of an inner-electron state with one off-
radial node (n l̄51) is strong enough to produce a po-
tential well in the adiabatic potential. The adiabatic pic-
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ture not only describes the number of nodes in the wave
functions correctly, but also predicts the shape of the
nodal surfaces: In l̄ and m̄ they appear as nearly straight
lines (Richter et al., 1992), which proves the approxi-
mate separability of the ab initio quantum wave func-
tions in these coordinates (Richter and Wintgen, 1992).

Although the planetary atom resonances are adiabati-
cally separable into prolate spheroidal coordinates as
the intrashell resonances are, one has to keep in mind
the different meaning of the coordinates and the radi-
cally different character of these two sets of states,
which becomes obvious in their decay characteristics.

c. Decay widths

While the adiabatic potential curves representing in-
trashell resonances show pronounced avoided crossings
responsible for an efficient and characteristic decay
mechanism (see Sec. III.B.3.a), such avoided crossings
do not occur for potential curves representing the plan-
etary states (see Fig. 11). Indeed, these states are oscil-
latorlike and they are so different from the hydrogenic
states into which they must decay that they have a re-
markably long lifetime. Moreover, the lifetime increases
exponentially with N such that for states starting from
N'20 radiative decay is more probable than autoion-
ization (Richter and Wintgen, 1991; Richter et al., 1991).
Their asymptotic stability for N→` is connected with
the fact that the classical periodic orbit that supports
these states is stable. This again is in sharp contrast to
the intrashell states in which the collinear subspace with
electrons on different sides of the nucleus contains only
unstable periodic orbits, reflecting the larger instability
of intrashell states; see Sec. IV.B.2.a for a discussion of
the classical collinear dynamics.

5. Conclusions from the adiabatic molecular treatment

The insight into the structure of two-electron reso-
nances gained from the adiabatic molecular treatment

FIG. 11. Born-Oppenheimer potential curves for molecular-
orbital-states belonging to the manifolds N56 and N57 of
helium (from Richter et al., 1992).
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leads to the conclusion that there are two important lim-
iting cases of collinear arrangement of the three par-
ticles:

(i) In an H2
1-like symmetric molecular approximation

with the two electrons forming the adiabatic axis, a col-
linear configuration emerges for increasing N , keeping
the wave function nodeless in the l coordinate of Eq.
(14). Pronounced avoided crossings between the corre-
sponding potential curves belonging to different N indi-
cate the relative instability, i.e., large decay widths, of
these states.

(ii) In a molecular adiabatic approximation, treating
the vector of the outer electron as the slow variable,
states without nodes along the m̄ coordinate form for
increasing N a collinear arrangement with both elec-
trons on the same side of the nucleus (Q'0°).

These so-called planetary states have very small decay
widths. In Sec. IV.B.2.a, we shall see that these two col-
linear configurations emerge very naturally from a clas-
sical analysis. The difference in the decay properties of
these two groups of resonances reflects the difference in
the classical stability of representative periodic orbits
belonging to the respective classical collinear configura-
tions.

A comparison of the two adiabatic molecular descrip-
tions reveals that the long-lived planetary states corre-
spond in the symmetric H2

1-like description to states
with the maximum bending excitation for a given N ,
nl5N21. The propensity rules in Eq. (19), especially
the forbidden transition (19c), also reflect the stability of
planetary states. This shows that the adiabatic molecular
approximation with the interelectronic axis r12 as the
adiabatic variable provides a good overall picture of the
resonance properties. The quantitative representation
for the states with maximal nl is, however, rather poor.
The character of adiabatic wave functions changes quite
drastically in this limit, and the frozen planet states are
quantitatively much better represented in the corre-
sponding adiabatic molecular treatment with R5r. as
the adiabatic variable.

C. The algebraic approach

The idea of understanding the structure of the levels
of doubly excited states in terms of group symmetries
dates back to the work by Wulfman (1968). The real
breakthrough of the algebraic approach, which is mainly
based on properties of the SO(4) group, came with
later work initiated by Wulfman (1973) and Sinanoglu
and Herrick (1975) and completed by Herrick and co-
workers in a series of papers (Herrick and Sinanoglu,
1975; Herrick, 1975a, 1975b; Herrick and Kellman, 1980;
Herrick et al., 1980). A good overview is given by Her-
rick (1983).

1. Dynamical SO(4) representations for one-
and two-electron atoms

For the dynamics of the hydrogen atom there is a sec-
ond constant of motion, apart from the angular momen-
tum l, the Runge-Lenz vector (Schiff, 1968),
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A5 1
2 ~ l3p2p3l!1 r̂. (23)

For bound states l and b5(22H)21/2A satisfy commu-
tation relations that correspond to an SO(4)5SU(2)
3SU(2) generating coupling scheme of angular mo-
menta. Each irreducible representation of the dynamical
SO(4) group can be labeled by two indices @p ,q# (Her-
rick, 1983).

For two electrons indicated by indices i51,2 Wulfman
(1968) used initially coupled angular momenta L5l1
1l2 and B85b11b2 to generate an SO(4) algebra.
However, as he himself (Wulfman, 1973) and Sinanoglu
and Herrick (1975) showed later, one should use B5b1
2b2 instead of B8 to describe doubly excited states.
States within irreducible representations generated by L
and B are labeled by uPQLM&, where L ,M are the total
angular momentum and its projection onto a space-fixed
axis, while P ,Q are two new collective quantum num-
bers (Herrick, 1983). Linear combinations of 6uQu
states can be constructed to be eigenfunctions of the
parity operator. For convenience Herrick and Sinanoglu
(1975) defined T5uQu and K5P2n21 where n is the
principal quantum number of the outer electron, i.e., n
>N . From configuration-interaction (CI) calculations in
the basis uPQLM& Herrick and Sinanoglu found that
the Hamilton matrix for intrashell states with N5n is
approximately block diagonal according to DuQu50,
DK50, which means that K and Q are approximate
quantum numbers for doubly excited states. This empiri-
cally found dynamical symmetry was a real surprise, in
particular for the strongly coupled intrashell electrons
with n5N . The existence of the approximate collective
quantum numbers was rationalized as a consequence of
angular correlation by looking at the operator cos Q,
where Q is the interelectronic angle (see Fig. 1). The
evaluation of ^cos Q& is simplified in the absence of ex-
change of the electrons by the operator replacement
cos Q→b1b2 /Nn . In the SO(4) basis uPQLM& this re-
placement leads to

cos Q→2
K

N
1

N2211K22T212l1l2
2Nn

. (24)

The pictorial interpretation of Eq. (24) in the two limits
cos Q'61 is easily given in terms of two Kepler ellipses
for the two electrons, oriented according to their Runge-
Lenz vectors bi . If the two ellipses point in the same
direction we have cos Q'1. The opposite case leads to
cos Q'21. Note that, for cos Q'1, complete degeneracy
of the two single-electron ellipses describing intrashell
electrons will not be possible for finite nuclear charges Z
because the electron-electron interaction would lead to
infinite energy at the point where the two electrons meet
each other. The observation suggests a nontrivial change
in this type of configuration if the electron-electron re-
pulsion is successively increased from the independent-
electron limit. The existence of so-called planetary states
is an interesting consequence; see Secs. III.B.4, IV.C.2.a,
and IV.D.1.

For n@N , i.e., very asymmetrically excited states, Eq.
(24) gives directly cos Q'2K/N, while the operators li in
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the second part lead for smaller n to an admixture of
other SO(4) channels. Hence the explanation in terms
of cos Q is not complete, at least for intrashell states N
5n , where the assignment in terms of K ,T quantum
numbers works very well. We have already seen that the
separability of the two-center Coulomb problem sup-
plies the missing link to understanding why the algebraic
scheme of the coupled SO(4) representation works so
well for intrashell states. In fact the derived quantum
numbers are in one-to-one correspondence, as can be
seen from Eq. (18). We have so far not mentioned the
molecular quantum number A , which can be interpreted
as the body-fixed electron exchange operator. The alge-
braic approach has with T5m basically the same projec-
tion onto a (body-fixed) quantization axis as the molecu-
lar approximation with the interelectronic axis R, here
defined by B}R. Herrick and Sinanoglu (1975) noticed
the existence of A , which they called n (see also Herrick,
1983). The difference between the two groups of states
distinguished by the two possibilities for A are most evi-
dent for states with total angular momentum L50. Then
N5n , i.e., intrashell states, are forbidden by the Pauli
principle for A521. Basically, A561 is a generaliza-
tion of the original classification (2s ,np)6(2p ,ns) by
Fano and Cooper (1965).

2. Multiplets and supermultiplets for intrashell
doubly-excited-state energies

If the K ,T quantum numbers mainly determine the
correlation energy of the doubly excited states, energy
levels ordered according to K ,T should show a charac-
teristic pattern. Noting that L5T defines the lowest pos-
sible total angular momentum for a given T , one can
plot within a manifold for fixed N and A the lowest
resonance energies as a function of T . As a result a
typical ‘‘diamond’’ pattern is obtained in which the en-
ergy axis can be identified with the scale for the quan-
tum number K to a remarkable degree of accuracy
(Herrick, 1983). Apparently, different angular momenta
and discrete symmetries (spin, parity) have only a minor
influence on the spectral ordering.

The SU(2)3SU(2) decomposition with its character-
istic diamond pattern for the energy levels is the basic
multiplet for two-electron resonant states. Herrick and
co-workers investigated other coupling schemes and ad-
ditional quantum labels leading to ‘‘supermultiplets’’
that reveal even more similarities between certain
groups of resonances (Herrick and Kellman, 1980; Her-
rick et al., 1980).

One supermultiplet structure emerges when the two-
electron SO(4) group is decomposed into a series of
SO(3) representations. In fact we deal with @SO(4)#1
3@SO(4)#25SU(2)3SU(2)3SU(2)3SU(2). The
SO(3) representations of this product group are irre-
ducible under the operator d.

2 , where d. is the angular
momentum with the larger eigenvalue d5max(C,D) of
1
2 (L21B2)5D(D11) and 1

2 (L22B2)5C(C11). In
terms of the coupled basis uPQLM& the quantum num-
ber for d. is
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d5
P1Q

2
5

1
2

~N211K1T !, (25)

where the last identity follows from the definition of K
and T for intrashell states N5n . The quantum number
d cannot be related to the dynamics of a physical coor-
dinate directly within the group-theoretical approach.
However, a comparison with the molecular approxima-
tion [Eq. (18)] reveals that d is nothing else but the
number of nodes along the elliptical coordinate l.

In this context we also note that Kellman and Herrick
(1980) as well as Yuh et al. (1981) have formulated a
model for doubly excited states as normal-mode vibra-
tions about the equilibrium position of a linear triatomic
molecule X-Y-X . Clearly, the molecular approximation
directly justifies this model and the interpretation of cer-
tain features in the two-electron resonances as a rovibra-
tional structure. Recent developments in the algebraic
approach can be found in Kellman (1994).

D. The hyperspherical adiabatic approximation

In 1968 Macek proposed an adiabatic separation of
the ‘‘slow’’ radial variable R5Ar1

21r2
2 to describe dou-

bly excited states. A full set of hyperspherical coordi-
nates for two electrons includes the hyperradius R, the
hyperangle a defined by tan a5r2 /r1 , and a set of four
geometrical angles v5(u1 ,f1 ,u2 ,f2) as usual to de-
scribe the positions of the vectors ri in the physical
space. Hyperspherical coordinates had previously been
used in nuclear physics; a general theoretical description
of hyperspherical coordinates is given, for example, by
Fano and Rau (1986). The two-electron Hamiltonian
reads in these coordinates

H52R 25/2
]2

]R 2 R 5/21HR (26)

with

HR5
L2115/4

R 2 1
C~a ,Q!

R , (27)

where L is the grand angular momentum operator in six
dimensions (see Fano and Rau, 1986). The three-body
Coulomb potential in Eq. (27) may be interpreted as
having an angular-dependent charge C(a ,Q) where Q is
the angle between the two electron-nucleus vectors r1
and r2 (see Fig. 1). The ‘‘grand angular momentum’’ op-
erator can be expressed in terms of the two individual
angular momentum operators li and the hyperangle a
(see Fano and Rau, 1986).

1. Potential curves and channel functions

The hyperspherical two-electron wave function is con-
structed to be an eigenfunction of the same exact sym-
metries as Eq. (7) with quantum numbers L ,M ,p ,S and
reads
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CL ,M
S ,t ~R,v!5(

m
R 25/2Fm~R!Fm~v ;R!, (28)

where the adiabatic channel function Fm(v ;R) is an
eigenfunction of HR from Eq. (27) with eigenvalues
E(R). The expansion equation (27) leads to a similar set
of coupled differential equations for the Fm(R) as in the
molecular case for the f i(R) in Eq. (9). The adiabatic
approximation is invoked by truncating the expansion in
m to a single term, which leads to the vibrational eigen-
value equation

S 2
]2

]R 2 2^Fmu
]2

]R 2 uFm&1E~R!2E DFm~R!50.

(29)

The adiabatic hyperspherical representation and the
molecular representation of Eq. (7) have many aspects
in common; a comparison can be found in Abramov
et al. (1997). The differences are twofold. First, in the
molecular approximation the interelectronic vector R is
separated, leaving for fixed R the solution of a three-
dimensional problem, the so-called two-center Coulomb
problem. This separation includes the definition of a
body-fixed frame (along the vector R), which has turned
out to be an important structural property of doubly
excited states. [The approximate quantum number m as
well as the body-fixed exchange quantum number A re-
sult from this property, which is built into the algebraic
approach by taking B5b12b2}R as an SO(4) genera-
tor; see Sec. III.C.1.] The hyperspherical approach sepa-
rates only the scalar hyperradius R, leaving for fixed R a
five-dimensional problem to be solved numerically.
Clearly this requires much more numerical effort, and
different methods have been developed to solve this
problem (see Sec. II.C.1). The effort is rewarded by the
better quantitative prediction of doubly excited reso-
nance energies compared to the molecular approxima-
tion (Koyama et al., 1986, 1989; Fukuda et al., 1987).
However, a qualitative interpretation is difficult. The nu-
merically solved five-dimensional Hamiltonian is not
separable. Hence the approximate separability of the
body-fixed dynamics, built into the molecular approxi-
mation and in the algebraic approach from the begin-
ning, must be reconstructed from the adiabatic potential
curves. There it can be recognized in extremely narrow
avoided crossings. A diabatic passage corresponds to a
conservation of the quantum number m . Without know-
ing this molecular symmetry, Lin worked out in a series
of papers how the algebraic quantum numbers K ,T ,A
could be uniquely assigned to hyperspherical potential
curves (Lin, 1982a, 1982b, 1983b; Lin and Macek, 1984).
He gave rules to identify which curves had to be diabati-
cally connected by comparing patterns of adiabatic hy-
perspherical wave functions. A new feature emerged
through the introduction of the value A50 for potential
curves that did not have the exchange symmetry A
571 in their eigenfunctions. Such potential curves have
been interpreted as having a dominant ‘‘single-particle’’
character. However, as has been discussed in Sec.
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III.B.4, there exist highly correlated planetary states
with another adiabatic axis R5r. . The connection be-
tween Lin’s A50 states and the planetary states has
never been worked out. Nevertheless, it is clear that the
planetary states can be considered as those with maxi-
mum l excitation, nl5N21, and therefore they can be
regarded at least as a subset of Lin’s A50 states. For
reviews of the hyperspherical work up to the mid eight-
ies see Fano (1983) and Lin (1986).

In 1986 Watanabe and Lin reanalyzed the hyper-
spherical potential curves under the assumption that ei-
ther T or m was the quantized projection of the total
angular momentum onto a body-fixed axis; a more de-
tailed investigation followed (Chen et al., 1992). Around
the same time Feagin and Briggs (1986) published the
adiabatic molecular formulation and the close relation
between both concepts became clear (Feagin and
Briggs, 1988).

2. Nodal pattern of wave functions and propensity rules

A second major difference between the hyperspheri-
cal and the molecular adiabatic separation lies in the fact
that the three-dimensional two-center Coulomb prob-
lem is separable, providing naturally a full set of quan-
tum numbers to classify the potential curves (see Sec.
III.B.1). If this quasiseparability is true, it must also
show up in adiabatic hyperspherical wave functions.
Based on their beautifully regular nodal pattern Sadegh-
pour and Greene (1990) recognized the importance of
the quantum number v2 of Eq. (20) and deduced the
propensity rule Dv250 for photoabsorption in H2. This
propensity rule was also verified for other two-electron
systems (Atsumi et al., 1990; Gou et al., 1991; Sadegh-
pour, 1991). It is a special case of the general propensity
rule Eq. (21). Moreover, the nodal pattern of the hyper-
spherical wave functions in Fig. 12 indeed follows the

FIG. 12. Two-electron density for the n151,n253,m51 state
of 1Po symmetry of H2 from an adiabatic hyperspherical cal-
culation (Sadeghpour and Greene, 1990). Overlaid are the
spheroidal nodal lines according to Eq. (14) from Rost et al.
(1991).
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spheroidal coordinates l,m [Eq. (14)] as predicted by the
molecular approximation and pointed out by Rost,
Briggs, and Feagin (1991).

To summarize our comparison of the molecular and
hyperspherical adiabatic treatments, the hyperspherical
approach provides a better quantitative picture, while
the molecular approximation provides a better qualita-
tive representation of two-electron resonances. With to-
day’s computing power it is possible to determine two-
electron resonances fully numerically, making adiabatic
approximations for quantitative predictions unneces-
sary. One of the fully numerical concepts, the hyper-
spherical coupled-channel method (Tang et al., 1992a,
1992b; Abrashkevich et al., 1995; see Sec. II.C.1), has
evolved from the adiabatic hyperspherical approxima-
tion and has been very successful in predicting two-
electron resonance phenomena, in particular photoab-
sorption spectra that are in impressive agreement with
experiment (see Sec. II.B.3.a).

Recently, a hybrid formulation was proposed that
combines the advantages of the hyperspherical and the
molecular descriptions (Tolstikhin et al., 1995).

E. Other quantum-mechanical concepts
for two-electron resonances

1. Dimensional scaling

One of the intellectually most intriguing concepts con-
cerning the hidden symmetries of doubly excited states
is the idea of considering the two-electron Hamiltonian
as a function of the dimension D , with D53 represent-
ing reality. Early work dates back to Herrick (1975b)
and Herrick and Stillinger (1975). More recently, Her-
schbach and co-workers have worked intensively on
D-dimensional scaling in the context of atomic and mo-
lecular problems; for overviews see Witten (1980),
Herschbach et al. (1993), and Herschbach (1993).

We sketch only briefly the idea of dimensional scaling
using the simple one-electron case. General results for
two-electron atoms are presented without going into de-
tail but emphasizing the insight that this concept has
added to our understanding of doubly excited states.

The one-electron problem is separable in D dimen-
sions into an angular part (depending on D21 angles)
and a radial part, for which the Schrödinger equation
reads

S 2
1
2

]2

]R2 1
L~D !@L~D !11#

2R2 2
Z

R
2E DF~R !50. (30)

Here L(D)5L31 1
2 (D23) is the angular momentum

eigenvalue in D dimensions with L3 being the orbital
angular momentum in D53 (Herschbach, 1986). The
function L(D) constitutes the so-called ‘‘dimensional
link,’’ i.e.,

~D ,L !↔~D22i ,L1i !, i50,1,2,.. . , (31)

which means, for example, that the radial wave function
for a spherically symmetric system of L52 in D53 is
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the same as the one for L50 in D57. The two-electron
Hamiltonian does not have spherical symmetry. How-
ever, in the molecular adiabatic approximation it turns
out that the body-fixed adiabatic wave function c from
Eq. (16) remains the same in different dimensions D if
its azimuthal quantum number m(D)5m31 1

2 (D23) is
kept the same, where m3 is the azimuthal quantum num-
ber for D53. This demonstrates once again the strong
influence of the spheroidal nodal structure of the wave
function on two-electron states. This structure is pre-
served, even in arbitrary dimension D . The adiabatic
vibrational motion for a D-dimensional two-electron
state is determined by the potential

V~R !5Vim~R !1
L~D !@L~D !11#2m~D !2

R2

1
~D23 !~D25 !

4R2 , (32)

where the first two terms are the adiabatic potential
Uim

L (R) in D53 from Eq. (13) and Vim does not de-
pend on L(D). The form of Eq. (32) confirms certain
exact interdimensional degeneracies as already found by
Herrick and Stillinger (1975) between (D53, L51) and
(D55, L50), where the additional centrifugal barrier,
the last term in Eq. (32), vanishes.

For higher angular momenta L , the interdimensional
degeneracies according to the dimensional link, Eq.
(31), for L(D) and m(D) are only approximate. Never-
theless, the similarity between certain sets of adiabatic
hyperspherical potential curves of different symmetries,
noticed earlier by Lin (1984), can easily be explained
with the dimensional link Eq. (32). Moreover, one can
define so-called generator states that are ground states
of 1Se symmetry in some dimension D.3 and generate
by virtue of the dimensional link states of different sym-
metry in D53 (Rost et al., 1992).

In a more general context, perturbation theory about
the infinite-dimensional limit 1/D50 (which provides a
simple but nonseparable approximation) has been used
to determine zeroth-order normal modes for correlated
dynamics (Herschbach, 1986). This approach also pro-
vides hints for the existence of approximate quantum
numbers if the evolution of the normal modes is fol-
lowed from 1/D50 to the physical case of D53.

2. The grandparent model and the double Rydberg formula

In analogy to the Rydberg formula for singly excited
states (Friedrich, 1998), it seems tempting to look for a
similar concept for doubly excited states. Indeed, as ar-
gued semiempirically and subsequently confirmed by
numerical and experimental evidence,9 the energies of

9See, for example, Read, 1977, 1982; Buckmann et al., 1983;
Wang, 1986; Buckmann and Newman, 1987; Lin and Wa-
tanabe, 1987; Lin, 1989; Molina, 1989; Read, 1990.
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the lowest intrashell resonances n5N in each manifold
N can be very well described by a ‘‘double Rydberg’’
formula,

EN ,N52
~Z2s!2

~N2m!2 , (33)

where Z2s is the screened charge of the core and m is
a two-electron quantum defect.

Rau (1983) was the first to motivate the existence of
Eq. (33) theoretically with a concept that treats the
highly correlated electron pair as a single particle with
internal degrees of freedom (see also Rau, 1984). Over
the years it has turned out that this point of view leads
to a kind of diabatic zeroth-order approximation (Rost
and Briggs, 1988, 1989; Heim et al., 1997). However, a
diabatic approximation is, in contrast to an adiabatic
one, not uniquely defined. This may be one reason why
the concept of electron pairs, as appealing as it is, never
really succeeded, despite the fact that the double Ryd-
berg formula itself has been refined continuously to de-
scribe asymmetrically excited resonances as well (Sade-
ghpour and Greene, 1990; Burgdörfer et al., 1995).

The most natural explanation for Eq. (33) and for
double Rydberg formulas in general [see Eqs. (56) and
(58)] is provided by a semiclassical treatment (see Sec.
IV.C). A nice quantum-mechanical motivation including
a generalization of Eq. (33) has emerged from analytical
work in the high-Z limit, which will be discussed briefly
in the next section.

3. Work in the limit of large nuclear charge Z

Apart from the well-known algebraic approach dis-
cussed in Sec. III.C a substantial number of papers have
approached doubly excited states from the independent-
electron limit Z→` . Numerical results have been re-
ported, for example, by Bachau (1984, 1988), Macias
and Riera (1986a, 1986b), and Martin et al. (1988). An
analytical method was developed by Dmitrieva and Plin-
dov (1988a, 1988b, 1989, 1990, 1991) to determine from
a perturbative quantum treatment for high Z the behav-
ior of symmetrically excited two-electron states at what
they call the ‘‘lower edge’’ and the ‘‘upper edge’’ of each
manifold N . These are exactly the two collinear symme-
tries with Q'180° and Q'0°. In accordance with the
existence of the double Rydberg formula, they find for
the lower edge an analytical screening constant s
5N2^1/r12&/2 with the constant value s5122/p , and for
the upper edge a screening that increases logarithmically
with N , s}ln N (Dmitrieva and Plindov, 1988a). The
results are only weakly dependent on the total angular
momentum L of the two electrons (Dmitrieva and Plin-
dov, 1990), an observation that is again consistent with
the classical considerations to be discussed below. More
recently, the same group generalized their work to cal-
culate propensity rules in the high-Z limit that compare
favorably with the rules stated in Eq. (21) (Gerasimov-
ich et al., 1996).
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IV. SEMICLASSICAL THEORY
FOR TWO-ELECTRON ATOMS

The various methods developed so far to understand
the structure of two-electron spectra and to describe de-
cay widths and propensity rules for transitions between
different Rydberg series are heavily based on quantum
arguments. The various adiabatic approximations rely
on the quasiseparability of the three-body Coulomb
Schrödinger equation into suitable coordinate systems
and the underlying group-theoretical structure of the
problem.

In this section we shall analyze the complex structure
of quantum spectra of two-electron atoms in terms of
the dynamics of the classical problem, i.e., two electrons
moving in the Coulomb potential of a positively charged
nucleus. Modern developments in semiclassical theory
provide a variety of techniques with which to study the
connections between the structure of quantum spectra
and the dynamics of the corresponding classical system.
Quantum spectra for classically integrable problems
tend to be ordered, and a set of quantum numbers can
be assigned to each level. Wave functions are localized
on classical tori, and there is no interaction between lev-
els corresponding to series with different good quantum
numbers. Quite the opposite is true for classically cha-
otic systems. The quantum spectra have no obvious
structure, and wave functions are extended over the
whole phase space. Energy-level statistics for quantum
spectra are again very different for systems with an in-
tegrable or a chaotic classical counterpart (see, for ex-
ample, Bohigas, 1991; Guhr et al., 1998).

The classical two-electron atom is neither integrable
nor fully chaotic. The apparently regular structure in the
spectrum as well as the breakdown of approximate
quantum numbers for highly doubly excited states and
the enormous variation in the decay widths for reso-
nances can be understood by studying the classical dy-
namics in detail. Qualitative results can be obtained by
exploiting semiclassical periodic orbit theory.

A brief overview of modern semiclassical techniques
is presented in Sec. IV.A. An analysis of the classical
phase-space structure for two-electron atoms will be
presented in Sec. IV.B. A qualitative description of the
quantum spectrum in terms of only a few fundamental
classical periodic orbits will emerge, as discussed in Sec.
IV.C. A more refined picture allows one to calculate
resonances belonging to various Rydberg series quanti-
tatively from the ground state to the single-ionization
thresholds, as discussed in Sec. IV.D.

A. Introduction to modern semiclassical theory

In this section, we shall briefly review semiclassical
concepts that have been developed over the past 20
years in order to understand the influence of classical
order or chaos on quantum mechanics. The techniques
have been especially useful in broadening our under-
standing of two-electron atoms.
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1. Trace formulas and semiclassical zeta functions

We shall focus in the following mainly on the bound-
state and resonance spectra of quantum systems. The
information about the spectrum $En% (with En being
complex in the case of resonances) is contained in the
trace of the Green’s function G5(Ĥ2E)21, i.e.,10

g~E !5Tr G~E !5E dfq G~q,q;E !5(
n

1
E2En

,

(34)

where G(q,q8;E) represents the energy-dependent
Green’s function in coordinate representation and f de-
notes the dimension of the coordinate space.

Various other spectral functions of interest such as the
density of states d(E)5(nd(E2Ĥ) or the spectral de-
terminant D(E)5det(E2Ĥ) are connected to the trace
(34) via the relations

d~E !52
1
p

Im g~E !5(
n

d~E2En!; (35)

D~E !5expF E dE8 g~E8!G5)
n

~E2En!. (36)

Closed semiclassical formulas for the trace of the
Green’s function were first given by Gutzwiller (1971,
1990), Balian and Bloch (1972, 1974), and Berry and
Tabor (1976, 1977). The original derivation by
Gutzwiller starts by writing the time-dependent Green’s
function as a Feynman path integral (Feynman and
Hibbs, 1965) and by recovering the semiclassical Van
Vleck propagator (Gutzwiller, 1967) as the sum over
classical paths using the stationary phase approximation.
The energy-dependent Green’s function G(q,q8;E) can
now be written as the sum over all classical paths from
q→q8 for fixed energy and has the form

Gsc~q,q8;E !5 (
cl .tr

q→q8

A~q,q8;\!ei/\ S(q,q8;E), (37)

with S(q,q8;E)5*q
q8pdq being the action taken along

the classical path and A(q,q8;\) being a path-dependent
amplitude (Gutzwiller, 1967, 1990). The trace integral
(34) may now be evaluated using the semiclassical ex-
pression (37). Alternative derivations of semiclassical
trace formulas have been given by using quantum Poin-
caré maps (Bogomolny, 1992; Doron and Smilansky,
1992).

Closed semiclassical expressions for the trace (34) can
be given for restricted classes of dynamical problems.

10Note that, for scattering problems, the trace is defined only
after subtracting the asymptotic behavior in the separable
limit, i.e., considering g(E)5Tr@G(E)2G0(E)# with G0

5(E2Ĥ0)21 and Ĥ0 the Hamiltonian for noninteracting par-
ticles far from the interaction zone.
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These are the two extreme cases, integrable systems on
the one hand and completely chaotic systems on the
other. The trace can in both cases be written as a sum
over classical periodic orbits of the system. The trace
formulas are, however, very different in nature for the
two extreme classical cases; this will have a profound
influence on the interpretation and semiclassical calcula-
tion of the spectra of two-electron atoms in which both
nearly integrable and chaotic classical dynamics are
present.

In integrable problems, the phase space has a torus
structure in terms of the constants of motions or action
coordinates. The dynamics in each of the f-action coor-
dinates Ji are periodic with frequency v i ; periodic orbits
of the system occur as continuous families on tori with
rational frequency ratios v i /v j for all i ,j . The trace in-
tegration in Eq. (34) can be done analytically using the
Green’s function (37) (Berry and Tabor, 1976, 1977).
The resulting periodic orbit formula coincides essen-
tially with the semiclassical Einstein-Brillouin-Keller
quantization, the multidimensional generalization of the
WKB approximation (Berry and Tabor, 1976;
Gutzwiller, 1990). A semiclassical quantization of inte-
grable or near-integrable dynamics can thus be per-
formed within the usual Einstein-Brillouin-Keller for-
malism; see Sec. IV.D.1.

The other extreme classical case is fully developed
chaos, which is characterized by ergodic motion with
uniform exponential separation of neighboring trajecto-
ries. All periodic orbits are unstable and isolated, form-
ing a dense set of measure zero in phase space. The
trace integral in Eq. (34) can be approximately evalu-
ated by the method of stationary phase giving main con-
tributions at periodic trajectories of the classical dynam-
ics; this leads finally to Gutzwiller’s trace formula
(Gutzwiller, 1990), i.e.,

gsc~E !5 ḡ~E !2
i

\ (
po

Tpo(
r51

` 1

Audet~Mpo
r 21!u

3expF ir
Spo~E !

\
2irspo

p

2 G . (38)

The first sum is taken over all unstable periodic orbits of
the classical system, where the sum over r accounts for
the repetitions. The action S is taken along the orbit and
T represents the period. The Monodromy or stability
matrix M is the Jacobi matrix of the full phase-space
flow in a reduced local phase-space coordinate system
perpendicular to the trajectory and on the energy mani-
fold. It describes the linearized dynamics in the neigh-
borhood of the orbit after one revolution. The stability
of a periodic orbit is characterized by the eigenvalues L
of M.

The integer winding number s, also called the Maslov
index, counts twice the number of revolutions of the
stable or unstable eigenvectors of M around the periodic
trajectories (Creagh et al., 1990; Robbins, 1991). The
smooth part ḡ(E) stems from the limit ḡ(E)
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5limq→q8 G(q,q8) for direct paths q→q8 of zero length.
It is connected to the mean level density via

d̄~E !52
1
p

Im ḡ~E !

5
1

~2p\!f E E dqf dpf d@E2H~p,q!# , (39)

being proportional to the classical phase-space volume
on the energy manifold (Gutzwiller, 1990).

For uniformly chaotic systems, the largest eigenvalue
of the Monodromy matrix increases typically as Lpo
'exp(Tpol0). Here l0.0 denotes the total Liapunov
exponent of the classical dynamics corresponding to the
mean separation of trajectories per unit time (Schuster,
1989). The amplitudes in Eq. (38) behave thus like
udet(Mpo21)u21/2'exp(2Tpol0/2). The number N(T)
of orbits with period less than T , on the other hand,
increases exponentially with T , i.e., N(T)'exp(htT),
where ht is called the topological entropy; for uniformly
chaotic and bound systems, we find typically ht'l0
(Eckhardt and Aurell, 1989).

The above consideration shows that the Gutzwiller
periodic orbit sum (38) is not absolutely convergent for
real energies (Eckhardt and Aurell, 1989). In math-
ematical terms, one has to find a meromorphic extension
of the trace gsc(E) in Eq. (38) as a function of the com-
plex energy from the region of convergence onto (or
below) the real energy axis.

Such a procedure is simplified in scaling systems in
which the dynamics are up to a scaling transformation
independent of the energy. The energy dependence of
the actions is then of the form S(E)5f(E)S0 , and f(E)
is a universal scaling function; the amplitudes are energy
independent. The trace gsc can now be written as a func-
tion of the complex variable z5f(E)/\ . The three-body
Coulomb problem is such a scaling system, as will be
shown in Sec. IV.B.1.

When constructing analytic continuations of semiclas-
sical expressions, it is advantageous to consider a semi-
classical approximation to the spectral determinant (36).
Inserting the semiclassical expression (38) leads to
(Miller, 1975; Voros, 1988)

Dsc~E !;e2ipN̄(E))
po

3expF2(
r51

` exp@ ir„Spo~E !/\2spop/2…#

rAudet~Mpo
r 21!u G

5e2ipN̄(E)zsc
21~E !. (40)

The energy integration is carried out by using the rela-
tion Tpo5]Spo /]E , and N̄(E) denotes the integrated
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
mean level density, Eq. (39) (or mean level staircase
function). The last equality defines the semiclassical zeta
function, zsc

21(E).11

The product in Eq. (40) is again not absolutely con-
vergent. However, the determinant structure of D(E)
allows one to expand the product in a controlled way,
guided by the cumulant expansion for infinite matrices.
These expansions can be shown to lead to convergent
expressions, being analytic in a strip containing the real
axis. The zeros of these functions are then the approxi-
mate eigenvalues of the corresponding quantum prob-
lems. Details will be presented in Sec. IV.A.2 and when
applying this formalism to two-electron atoms in Sec.
IV.D.

2. Semiclassical quantization for chaotic dynamics

In the following, we shall describe how to use periodic
orbit information efficiently to obtain semiclassical esti-
mates for individual eigenvalues. We shall focus on
semiclassical quantization techniques for chaotic sys-
tems; a semiclassical quantization of integrable dynamics
leads to the well-known Einstein-Brillouin-Keller quan-
tization by writing the classical Hamiltonian in action-
angle variables and exploiting the Bohr-Sommerfeld
quantization conditions for the actions (Gutzwiller,
1990, and references therein). The Einstein-Brillouin-
Keller formalism was used by Leopold and Percival
(1980) in an early attempt to quantize helium assuming
an integrable phase-space structure; see Sec. II.A.2. We
shall come back to the Einstein-Brillouin-Keller quanti-
zation when discussing the stable so-called collinear fro-
zen planet configuration in helium in Secs. IV.C.2.a and
IV.D.1.

A semiclassical quantization of classically chaotic dy-
namics can be formulated in terms of all periodic orbits
of the systems with the help of Eqs. (38) or (40). These
periodic orbit formulas are sums or products over an
exponentially increasing number of terms and are not
absolutely convergent on the real energy axis; the out-
come of the summation thus depends on the ordering of
the individual terms in the sum. A natural ordering pa-
rameter for periodic orbit sums is the action or, equiva-
lently, the period of the orbits. The minimal period
needed to resolve structures on the scale of the mean
level spacing 1/d̄(E) is given by the so-called Heisen-
berg time

TH52p\d̄~E !. (41)

Convergence of the trace (38) can be achieved by
Gaussian smoothing (Aurich et al., 1988; Sieber and

11The name originates from the similarity of Eq. (40), with
the Riemann zeta function. Its representation both as a sum
over the natural numbers, zR(s)5(nn2s, and as a product
over the prime numbers, zR(s)5)p(12p2s)21, is also not ab-
solutely convergent for Im s<1. An analytic continuation of
the Riemann zeta function can, however, be given explicitly
(Titchmarsh, 1986).
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Steiner, 1990), which is equivalent to an effective cutoff
in the summation. Inspired by the Riemann-Siegel rela-
tion for the Riemann zeta function (Titchmarsh, 1986),
Berry and Keating (1990) expanded the semiclassical
spectral determinant (40) by multiplying out the various
factors. The terms in the resulting sum are then ordered
with increasing period of the orbits and so-called com-
posite orbits up to half the Heisenberg time. Similar
methods have been reported by Sieber and Steiner
(1991).

The techniques mentioned above are suitable for
bound quantum systems only. In the following we shall
introduce a slightly different concept based on quantum
and classical Poincaré maps and their associated sym-
bolic dynamics. This leads us to the well-controlled
theory of spectral determinants for infinite matrices.
These determinants are calculated in terms of so-called
cumulant expansions, which provide a guide for periodic
orbit expansions of semiclassical zeta functions valid for
both bound spectra and resonances and hence appropri-
ate for two-electron atoms.

The starting point is the semiclassical zeta function
(40), which can be written in the form

z21~E !5det@12T~E !# , (42)

with T being a so-called transfer operator or quantum
map associated with a classical Poincaré map of the
system.12

Neither the classical Poincaré map nor the corre-
sponding quantum transfer operators can in general be
given analytically. The classical map is usually obtained
by solving the equations of motion numerically. The
quantum maps were discussed in the semiclassical con-
text by Bogomolny (1992) and Doron and Smilansky
(1992); methods to construct exact quantum maps have
been proposed by Dietz and Smilansky (1993), Prosen
(1994, 1995, 1996), and Rouvinez and Smilansky (1995).

Quantum eigenvalues correspond to energies E for
which det@12T(E)#50. The determinant can be written
in terms of traces by using the basic relation

det~12T !5exp@Tr log~12T !#

5expS 2 (
n51

` 1
n

Tr TnD . (43)

The traces of Tn can in semiclassical approximation be
written as the sum over all periodic orbits of the nth
return of the classical Poincaré map, i.e., (Bogomolny,
1992)

12A quantum Poincaré map is as a discrete quantum propa-
gator acting on wave functions in an f21 dimensional coordi-
nate space q5(q1 ,. . . ,qf21),

cn11~q8!5E dqf21 T~q,q8;E !cn~q!,

where the integral extends over a chosen Poincaré surface of
section.
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Tr Tsc
n ~E !5(

po

(n) exp„~ i/\! Spo~E !2ispo ~p/2!…

Audet~Mpo21!u
.

(44)

Inserting Eq. (44) into Eq. (43) leads again to the semi-
classical zeta function Eq. (40) as products over periodic
orbits. The computation of determinants and traces of
infinite dimensional operators is well understood (Reed
and Simon, 1972; Wirzba, 1997). The determinant can be
written as a cumulant expansion

z21~E !5det@12T~E !#5 (
m50

`

cm~E !, (45)

where the cumulant or curvature terms cm are defined
recursively as

cm52
1
m (

k50

m21

Tr Tm2kck ; c051. (46)

The sum converges faster than exponential for large m
under very general conditions (see Reed and Simon,
1972; Voros, 1987; Wirzba, 1997).

Writing out the first few terms in the expansion, we
obtain

z21~E !512Tr T2
1
2

@Tr T22~Tr T !2#

2
1
3 S Tr T32

3
2

Tr T2 Tr T1
1
2

~Tr T !3D2
1
4

... .

(47)

The convergence of the cumulant expansion (45) origi-
nates from cancellations between the various traces.
This means that an exponentially increasing number of
periodic orbits contained in Tr Tn is balanced in a deli-
cate way by products of shorter orbits to make the total
curvature term cm decrease exponentially with m .

The cancellation mechanism in the cumulant expan-
sion can be highlighted after writing Eq. (47) in terms of
individual orbits. We may introduce a suitable symbolic
dynamics, i.e., we assume that there is a one-to-one cor-
respondence between trajectories in phase space and the
set of all symbol sequences of n different symbols (Ar-
tuso et al., 1990; Cvitanović, 1998, and references
therein). The symbolic dynamics are in general linked to
a Poincaré surface of sections and the length of the code
marks the iterates of the map. The (collinear) three-
body Coulomb problem is a prototype of a physical sys-
tem in which such a symbolic dynamics exists; see Sec.
IV.B.2.

With the help of a symbolic code, the expansion (47)
can be rewritten as a so-called cycle expansion (Cvi-
tanović, 1988; Artuso et al., 1990). For a binary code de-
noted by the symbols $0,1% (as, e.g., in the collinear
three-body Coulomb problem), the cycle expansion for
z21 reads

zsc
21512t02t12@ t012t0t1#2@ t0012t0t011t0112t01t1#

2¯ , (48)
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with

tpo5
1

P j51
f21ALpo ,j

expS i
Spo~E !

\
2ispo

p

2 D (49)

and Lpo ,j.1 being the f21 leading eigenvalues of the
Monodromy matrix Mpo . [The denominator in Eq.
(42) is here approximated by using udet(Mpo21)u
') j51

f21Lpo ,j ; see Artuso et al., 1990.] The expansion has
the form of a perturbative series: the zeta function is
dominated by short periodic orbits and the contributions
of long orbits become negligible due to increasing can-
cellations between orbits and composite orbits.

The cycle expansion has been tested successfully for
both bound and scattering problems (Cvitanović and
Eckhardt, 1989; Tanner et al., 1991; Wirzba, 1992) and
was used to calculate for the first time bound states (in-
cluding the ground state) and resonances in helium
semiclassically in a consistent way (Ezra et al., 1991).
Still, the essential requirement for a semiclassical treat-
ment of two-electron atoms is the understanding of the
classical dynamics of this three-body Coulomb problem,
which will be summarized below.

B. Two-electron atoms: A classical analysis

In this section we discuss the classical phase-space dy-
namics of two-electron atoms, with an emphasis on he-
lium. We first give a general characterization of the
problem and describe the treatment of the various sin-
gularities present in the equations of motion. We then
concentrate on total angular momentum L50 and iden-
tify three lower-dimensional invariant subspaces of the
full phase space. They are of special importance for dou-
bly excited states and will be studied in detail.

1. General overview: The classical Hamiltonian
and its symmetries

a. Integrals of motion, scaling properties,
and regularization techniques

The classical three-body system can be reduced to
four degrees of freedom after eliminating the center-of-
mass motion and incorporating the conservation of the
total angular momentum. In the special case of zero an-
gular momentum, the motion of the three particles is
confined to a plane fixed in configuration space (Pars,
1965) and the problem reduces to three degrees of free-
dom. We shall as usual work in the infinite nucleus mass
approximation. The classical Hamiltonian for a two-
electron atom is then given by Eq. (1); the Hamiltonian
including finite nucleus mass terms and after elimination
of the center-of-mass coordinates can be found in Rich-
ter et al. (1993).

The energy dependence of the classical dynamics is
equivalent to a scaling transformation of the classical
motion in phase space, since the potential energy in Eq.
(1) is a homogeneous function of the coordinates.
Choosing the canonical transformation
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ri→
1

uEu
ri , pi→AuEupi , i51,2 (50)

and introducing a time transformation t→uEu23/2t elimi-
nates the energy dependence in the classical Hamil-
tonian; the study of the classical dynamics can be re-
stricted to the three distinct cases

H5
p1

2

2
1

p2
2

2
2

Z

r1
2

Z

r2
1

1
r12

5H 11 : E.0

0 : E50

21 : E,0.

(51)

The dynamics for other energy values are now obtained
by the scaling transformation (50).

The H511 regime corresponds to the energy region
in which three-body breakup is possible. There exist no
periodic orbits of the electron pair and at least one elec-
tron always escapes to infinity. The classical dynamics
for E.0 are important when studying the energy de-
pendence of the total quantum cross section for three-
particle fragmentation. The cross section can be de-
duced from purely classical considerations by studying
the classical three-particle breakup along the so-called
Wannier orbit (Wannier, 1953; Eckhardt, 1991). The re-
sulting threshold law was first derived by Wannier
(1953) in the limit E→01 and was later extended to E
.0 (Rost, 1994). A detailed discussion of this energy
regime can be found in Rost (1995, 1998).

The classical dynamics for H521 are linked to the
quantum energy regime E,0 containing the bound and
resonance spectrum of two-electron atoms; see Fig. 5.
Only one electron can escape classically and it will do so
for most starting conditions. We shall discuss the classi-
cal aspects of this energy regime in Sec. IV.B.2.

The classical action S and the (conserved) total angu-
lar momentum L scale as

S→ 1

AuEu
S , L→ 1

AuEu
L. (52)

Note that the angular momentum in the scaled coordi-
nates converges to zero with increasing electronic exci-
tation (E→02) and fixed unscaled L. The dynamics of
highly doubly excited quantum states with moderate to-
tal angular momentum are thus semiclassically con-
nected to a quantization of the planar configuration L
50 in the scaled variables. This fact is exploited when
considering the influence of the classical dynamics at L
50 on quantum states with angular momentum LÞ0;
see Sec. IV.C.3. It also plays an important role when
studying the cross section at the three-particle breakup
threshold E50 (Rost, 1998).

The equations of motion for the three-body Coulomb
problem diverge whenever two of the three particles col-
lide, i.e., an interparticle distance vanishes. The two-
body collisions r150, r250, or r1250 can be regularized
with the help of a so-called Kustaanheimo-Stiefel trans-
formation (Kustaanheimo and Stiefel, 1965; Aarseth and
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FIG. 13. The two collinear configurations: (a) the stable Zee configuration and (b) the chaotic eZe configuration.
Zare, 1974), which allows one to continue solutions of
the classical equations of motion uniquely through the
singular points. The transformation consists of a
coordinate-dependent time transformation that
stretches the time scale near the origin and a suitable
canonical transformation in the coordinates (Richter
et al., 1993).

The singularity at the triple collision r15r25r1250,
on the other hand, cannot be regularized and solutions
going into or emerging from the singularity cannot be
uniquely continued through this point. The dynamics
near the triple collision are extremely sensitive to small
changes in the initial conditions. The triple-collision sin-
gularity is indeed the main source for strong chaos in the
three-body Coulomb problem, as discussed in more de-
tail in Sec. IV.B.2.

b. Symmetries and invariant subspaces

The Hamiltonian for two-electron atoms, Eq. (1), has
discrete symmetries being related to the parity transfor-
mation (r1 ,r2)→(2r1 ,2r2) and the particle exchange
transformation (r1 ,r2)→(r2 ,r1). The latter symmetry is
quantum mechanically linked to the total spin quantum
number due to the antisymmetry of the full wave func-
tion (when neglecting spin orbit coupling; see Secs.
II.B.1 and III.B.1).

The symmetries give rise to invariant subspaces in the
full phase space. Trajectories that start in such a sub-
space will remain there for all times, thus reducing the
relevant degrees of freedom of the dynamics. Invariant
subspaces are an extremely useful tool for studying clas-
sical dynamics in a high-dimensional phase space. They
serve as a low-dimensional window into the full dynam-
ics; access to the full phase space in the vicinity of the
symmetry plane can be obtained by studying the linear-
ized dynamics in all degrees of freedom for trajectories
in the symmetry plane.

The symmetry planes that exist for L50 turn out to
be crucial for an understanding of two-electron spectra
and will be discussed in detail in the following section.
The three existing invariant subspaces are:

(i) the Wannier ridge

r1[r2 ; pr1
[pr2

;

(ii) the collinear eZe configuration

Q[p ; pQ[0;

(iii) the collinear Zee configuration

Q[0; pQ[0.

The particle exchange symmetry allows us to reduce the
configuration space for the collinear configurations to
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
the domain r1>r2 , i.e., we can (and shall henceforth)
always assume r1>r2 and treat an encounter with the
symmetry line r15r2 as hard wall reflection (Wintgen
et al., 1992); the Wannier ridge lies exactly in this sym-
metry plane r15r2 .

2. Invariant subspaces: Collinear configurations and the
Wannier ridge

In the following, we shall discuss the three invariant
subspaces mentioned above for H521. We concentrate
first on the collinear configurations that form the back-
bone of the semiclassical quantization of helium intro-
duced in Secs. IV.C and IV.D.

a. Collinear helium: The Hamiltonian and general properties

Collinear two-electron atoms in the energy regime be-
low the double ionization threshold attracted attention
only recently after their fundamental role for the semi-
classical quantization of the helium spectrum was dis-
covered (Ezra et al., 1991). The classical dynamics of the
collinear subspaces have been investigated in detail by
Blümel and Reinhardt (1991), Ezra et al. (1991), Kim
and Ezra (1991), Richter (1991), Richter et al. (1993),
and Gaspard and Rice (1994). Collinear collision dy-
namics have also been studied by Gu and Yuan (1993)
and Tang et al. (1996) and have been used to develop
the classical S-matrix theory for reactive scattering in
molecular problems by Miller (1974) and others.

Handke et al. (1993) and Dräger et al. (1994) studied
the so-called s-wave helium, which is similar to the eZe
classical collinear dynamics; even so, the quantum argu-
ments motivating this model are quite different. The
model treats the electrons as pure s waves, i.e., the clas-
sical dynamics of both electrons take place only in the
radial direction. Electron-electron repulsion is included
through an effective screening of the nucleus by the ac-
tual inner electron as seen by the then-outer electron.
The screening is assumed to change abruptly whenever
the electrons change places, i.e., the inner electron be-
comes the outer one and vice versa, which makes the
classical dynamics nontrivial. Classical calculations for
collinear three-particle Coulomb problems with mass ra-
tios different from those found in two-electron atoms
have been performed by Duan et al. (1999).

The collinear configurations in two-electron atoms are
four-dimensional invariant subspaces of the six-
dimensional phase space L50; the three particles move
along a common axis with both electrons either on the
same side of the nucleus (Zee or Q50 configuration) or
on opposite sides of the nucleus (eZe or Q5p configu-
ration); see Fig. 13. The two degrees of freedom are the



529Tanner, Richter, and Rost: Theory of two-electron atoms
FIG. 14. Poincaré map (r250) for the two collinear configurations and Z52: (a) Q50; (b) Q5p . The frozen planet orbit is at
the center of the stable island in (a).
electron-nucleus distances r1 and r2 . The collinear
Hamiltonian is given by

H65
p1

2

2
1

p2
2

2
2

Z

r1
2

Z

r2
1

1
ur16r2u

521, (53)

and the 6 signs correspond to the two possible configu-
rations.

In the Zee case, surprisingly, the electron-electron re-
pulsion leads to a stabilization of the dynamics for Z
.1. The electrons cannot penetrate each other, and
there is a well-defined inner and outer electron for all
times. The inner electron bounces back and forth into
the nucleus while the outer electron performs an oscil-
lation at a finite distance from the nucleus, which is in
turn driven by the motion of the inner electron; see Fig.
13(a). The dynamics can best be monitored in a Poin-
caré surface of section; see Fig. 14(a) (Richter, 1991;
Wintgen et al., 1994); we here choose r250, i.e., we plot
the momentum and position of the outer electron, when-
ever the inner electron hits the nucleus. The shortest
periodic orbit, which is at the center of the large stable
island, corresponds to a configuration in which the outer
electron is almost frozen at a finite distance from the
nucleus (frozen planet orbit; Richter and Wintgen,
1990b; Richter et al., 1992).13 The frozen planet orbit is
indeed stable and the stable island surrounding it domi-
nates the whole phase space for Z52; see Fig. 14(a).
The frozen planet orbit is also stable with respect to the
Q degree of freedom perpendicular to the symmetry
plane, thus forming the center of a stable island in all six
phase-space coordinates. This behavior persists over
a wide range of Z values (Richter, 1991) and under
pertubations by a microwave field (Schlagheck and
Buchleitner, 1998) as well as for angular momentum L
Þ0 (Yamamoto and Kaneko, 1993). The frozen planet

13The extreme localization of the outer electron justifies the
use of r1 as an adiabatic parameter in the molecular treatment
of the corresponding quantum states; see Sec. III.B.4.
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orbit proves in particular that the dynamics of two-
electron atoms are not ergodic.

This is in contrast to the eZe configuration in which
triple collisions can occur [see Fig. 13(b)]; the energy
transfer between the electrons depends sensitively on
how the particles approach the origin and chaos prevails.
The fundamental difference in the dynamics in both
cases can be seen in the Poincaré surface of sections; see
Figs. 14(a) and 14(b). No stable islands are visible in the
eZe configuration, and the region near the origin in the
Poincaré plane is completely structureless. In the follow-
ing, we list some basic properties of the dynamics for the
collinear subspaces (see Richter et al., 1993; Blümel and
Reinhardt, 1997; as well as Handke et al., 1993, for the
related s-wave helium):

• Both collinear configurations are unbound in the
sense that one electron (say electron 1) can escape,
i.e., ionize classically, with an arbitrary amount of
kinetic energy. The Hamiltonian (53) has in the
limit r1→` the form of two noninteracting Kepler
problems, i.e.,

H →
r1→`

S p2
2

2
2

Z

r2
D 1S p1

2

2
2

Z21
r1

D . (54)

The dynamics in both configurations are equivalent
in this limit, which is also reflected in the toruslike
structure for large r1 in both Figs. 14(a) and 14(b).
Note, however, that the tori are not closed in the
eZe configuration when the outer electron returns to
the nucleus. A typical trajectory alternates here be-
tween chaotic motion near the nucleus and time in-
tervals with regular dynamics for r1@r2 until the
outer electron eventually escapes to infinity without
returning to the nucleus. The periodic orbit at r1
[` , p1[0 corresponds to the limiting case of an
electron escaping with zero kinetic energy.

• There exists a symbolic dynamics for the chaotic
eZe configuration, which maps each trajectory one
to one onto a binary symbol string. The symbols are
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obtained from the rules
1, if a trajectory hits the line r15r2 between two
collisions with the nucleus r250;
0, otherwise.

The symbolic dynamics are generated by the triple-
collision orbits, i.e., those trajectories starting in or
ending at the singular point r15r250.
Periodic orbits in the eZe subspace can be charac-
terized by a periodic symbol string ā
5 . . . aaaa . . . where a is a finite symbol string of
length n ; the number of periodic orbits increases
exponentially with the code length and thus with
the period and the orbits are all unstable with re-
spect to the dynamics in the collinear plane. The
asymmetric stretch orbit 1̄ is the shortest orbit in
this subspace; see upper left picture in Fig. 15. The
marginally stable orbit r1[` , p1[0 discussed
above would have the notation 0̄ in our code. Some
periodic orbits together with their code are dis-
played in Fig. 15.

• Strong chaos and electron escape in the eZe con-
figuration originates from the triple collision. Large
energy and momentum transfer between the elec-
trons that leads to subsequent ionization can hap-
pen only if the particles come close to the triple
collision. The Wannier orbit running along the line
r15r2 is a triple-collision orbit; numerical evidence
suggests that this orbit is infinitely unstable in the
collinear subspace, i.e., for angular momentum L
50 (Richter and Wintgen, 1990a; Kim and Ezra,
1991); see also the discussion in Secs. IV.B.2.b and
IV.C.3.

• Both collinear configurations are stable with respect
to linear perturbation perpendicular to the collinear
phase space; the Zee configuration is at the center
of a six-dimensional stable island of the L50 phase
space. The eZe configuration is stable in the bend-
ing motion corresponding to the dynamics in the Q
degree of freedom.

FIG. 15. Some unstable periodic orbits in the chaotic collinear
eZe configuration, shown together with their binary code; the
fundamental asymmetric stretch orbit is displayed in the upper
left corner together with the potential contours V(r1 ,r2)
52 Z/r1 2 Z/r2 1 1/ur11r2u in the classically allowed regime
V<21.
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The last point is maybe the most important in the quan-
tum context. The collinear dynamics are disconnected
from the rest of the L50 phase space due to the stability
in the Q degree of freedom. Two-electron atom eigen-
states are localized along the collinear axis because
there is an enhanced classical probability of remaining
close to the collinear configuration (Wintgen et al.,
1994). The quantum and semiclassical consequences of
this observation are discussed in Secs. IV.C and IV.D.

b. The symmetry plane of the Wannier ridge

The symmetry plane of symmetric collective electron
motion r1[r25r , pr1

[pr2
5pr is known as the Wannier

ridge (Fano, 1983). The electron-pair motion in the
phase-space region near the symmetry plane r15r2
plays an important role in Wannier’s classical descrip-
tion of the three-particle breakup at small energies E
.0 (Wannier, 1953; Eckhardt, 1991). The classical dy-
namics for E,0 are, however, bound and ionization is
prevented classically. The Wannier ridge was also pro-
posed to be of importance for quantum resonances be-
low the three-particle breakup threshold E50, espe-
cially for symmetrically excited resonances (Fano, 1983;
Harris et al., 1990a, 1990b). We shall discuss this aspect
in more detail at the end of the section.

The dynamics in the Wannier ridge subspace are of
mixed behavior, i.e., classical chaotic regions and regular
motion within stable islands coexist. The phase-space
dynamics follow the typical KAM scenario (Arnold,
1979) from regular to chaotic dynamics when changing
the nuclear charge from Z51/4 to Z5` (Richter, 1991;
Richter et al., 1993). In Figs. 16(a)–16(d), the phase-
space structure is shown for various Z values in the
Poincaré surface of section Q5p . The coordinates X ,
PX correspond to r , pr , respectively, after suitable res-
caling (Richter et al., 1993). The limit Z→1/4 is inte-
grable (Richter et al., 1993) and the phase space is filled
by invariant tori grouped around the so-called Langmuir
orbit (Langmuir, 1921); see Fig. 16(a). The Langmuir
orbit corresponds to electron-pair dynamics exhibiting
strong bending vibration as shown in Fig. 2(b). An in-
creasing number of (resonant) tori are destroyed when
Z becomes larger; see Figs. 16(b)–16(d). Chains of ellip-
tic and hyperbolic fixed points appear and chaotic bands
are formed along the hyperbolic fixed points expanding
with increasing Z .

The physically relevant cases Z51 (H2) and Z52
(helium) [Figs. 16(b) and 16(c)] exhibit a mixed regular
and chaotic phase space. The elliptic island around the
Langmuir orbit is preserved and clearly dominates the
Poincaré section. The Langmuir orbit becomes unstable
at Z'5.6 and a new orbit born at the bifurcation point
converges to a collinear Zee configuration in the limit
Z→` (Richter, 1991; Müller and Burgdörfer, 1993). The
limit of large nuclear charge Z5100 is depicted in Fig.
16(d). The phase space is now mainly covered with rem-
nants of tori or so-called KAM tori (MacKay et al.,
1984).
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FIG. 16. Poincaré surface of section Q5p in the Wannier ridge configuration for varying Z values: (a) Z50.26; (b) Z51; (c)
Z52; (d) Z5100 (adapted from Richter et al., 1993).
The Wannier ridge is, in contrast to the collinear sub-
spaces, mostly unstable with respect to perturbations
away from the symmetry plane. This is intuitively clear;
a small asymmetry in the electron dynamics tends to get
amplified due to the electron-electron repulsion and the
trajectory ‘‘falls off’’ the Wannier ridge. Numerical sta-
bility analysis for helium shows that the 25 shortest pe-
riodic orbits on the Wannier ridge (apart from the Lang-
muir orbit) are all extremely unstable with respect to
hyperangle a5arctan(r1 /r2) (Richter, 1991); the dynam-
ics on the Wannier ridge are thus strongly coupled to the
rest of the phase space due to the instability in a. Local-
ization of quantum states on the Wannier ridge can
therefore not be expected semiclassically.

There is, however, one exception: the Langmuir orbit
is only moderately unstable in a for most Z values and is
even stable for helium, i.e., Z52 (Richter and Wintgen,
1990a). The Wannier ridge is thus strictly speaking not
globally unstable in the a coordinate, as conjectured by
Wesenberg et al. (1985) and Fano and Rau (1986). The
stable island indicates the existence of sharp resonances
in helium associated with a quantization of the Lang-
muir orbit; see also the discussion in Sec. IV.C.2.b.

Another ‘‘fundamental’’ mode on the Wannier ridge
is the Wannier orbit Q5p , pQ50. It is the only orbit
that exists both in the collinear subspace eZe and on the
Wannier ridge. (The Wannier orbit forms the boundary
of the Poincaré surface in Fig. 16.) The orbit has at-
tracted particular attention in the past, in models of the
electron dynamics in symmetrically doubly excited states
in H2 and helium (Miller, 1972; Fano, 1983; Harris et al.,
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1990a, 1990b; Sadeghpour, 1991). Studies by Richter and
Wintgen (1990a) indicate, however, that the Wannier or-
bit is infinitely unstable for L50, reflecting the nonregu-
larizability of the dynamics at the triple-collision point.
The influence of the Wannier orbit on the quantum
spectrum can thus be dismissed on semiclassical
grounds. The semiclassical prediction has been con-
firmed by quantum calculations. Wave functions of sym-
metrically excited states tend to be localized perpendicu-
lar to the Wannier orbit (Ezra et al., 1991; Kim and
Ezra, 1991; Richter and Wintgen, 1993). The Wannier
orbit is also absent in a spectral Fourier analysis (Rich-
ter, 1991; Blümel and Reinhard, 1992; Qiu et al., 1996)
even for angular momentum LÞ0 (Grémaud and Gas-
pard, 1998). A detailed discussion is given in Sec. IV.C.3.

C. Qualitative semiclassical analysis of the two-electron
spectrum from fundamental periodic modes

1. Classical interpretation of the spectral structure
of two-electron atoms

The structure of the classical dynamics presented in
the last section explains many details of the quantum
spectrum qualitatively, including propensity rules and
widths of resonances, without even referring explicitly to
semiclassical arguments.

In the following, we shall restrict the discussion to L
50, i.e., we shall analyze the 1Se or 3Se spectrum of
two-electron atoms, especially of helium, as shown in
Fig. 5. Considering total angular momentum L50 im-
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plies M50 and also T50 [in Herrick’s notation; see Eq.
(18)]. We are thus dealing with states below the diagonal
in Fig. 10; the transition (B), i.e., Dm521, in Eq. (19)
does not occur.

The two collinear invariant subspaces discussed in
Sec. IV.B.2 are stable with respect to perturbation in the
angle Q; this implies an enhanced probability of staying
close to the collinear configuration both classically and
quantum mechanically, as well as localization of quan-
tum states (resonances) on these configurations. The ap-
proximate quantum numbers associated with the collin-
ear configurations can be identified by exploiting
Herrick’s relation (24) for the expectation value of the
interelectronic angle Q, which for large excitation of the
outer electron n→` reads

^cos Q& →
n→`

2
K

N
52

N12N2

N11N211
(55)

[the above quantum numbers are introduced in Sec.
III.B.1; see also Eq. (18)]. The Rydberg series with
maximum K5N21 and ^cos Q&'21 are linked to the
eZe configuration Q5p (the corresponding series in
Fig. 10 are those in the bottom row). The series with
minimal K512N and ^cos Q&'1 are the states associ-
ated with the Zee subspace and Q50. These are the
series directly below the diagonal in Fig. 10.

The existence of distinct noninteracting Rydberg se-
ries for fixed N can semiclassically be related to the sta-
bility of the classical dynamics in the Q degree of free-
dom. The Rydberg series with maximal/minimal K
interact least with the rest of the spectrum because the
classical dynamics near the corresponding collinear sub-
spaces are disconnected from the rest of the classical
phase space. The dynamics in the eZe configuration are,
however, strongly chaotic. We thus expect mixing be-
tween series with different N but maximal K , i.e., DN
521, DK521, which is exactly the propensity rule
(A), i.e., DN1521 listed in Eq. (19). The Zee configu-
ration is fully stable in all degrees of freedom. Interac-
tion between series localized in this collinear subspace,
i.e., between series that have minimal K but different N
quantum numbers, is exponentially suppressed. This in
turn corresponds to the suppression of transition (C) in
Eq. (19), i.e., DN521, DK51, or equivalently DN2
521, as discussed in a completely different context in
Sec. III.B.3.a.

The difference in the resonance widths can be under-
stood along the same lines. The states associated with
the Zee configuration can only decay via (dynamical)
tunneling (semiclassically described by complex classical
paths) and thus have extremely small decay widths and
very long lifetimes. The quantum states as well as the
classical dynamics are trapped in the classically stable
island, and autoionization is exponentially suppressed
(Richter and Wintgen, 1991). In the eZe subspace, clas-
sical escape is fast along the collinear axis due to the
chaotic dynamics. The typical resonance widths are thus
orders of magnitude larger than in the stable collinear
configuration. Classical escape happens when the two
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
electrons approach the nucleus almost symmetrically
along the Wannier orbit, allowing for large momentum
transfer between the particles; see also Sec. IV.B.2.a.
The Wannier orbit being the link between the collinear
eZe configuration and the unstable Wannier-ridge sub-
space (Sec. IV.B.2.b) is thus an effective escape channel,
in agreement with the findings in the molecular adia-
batic picture; see Sec. III.B.3.a and Fig. 9. More detailed
studies of resonance widths in this K regime were un-
dertaken by Blümel and Reinhardt (1992, 1997) and
Burgdörfer et al. (1997); they studied in particular the
transition from regular resonance structures into the
Ericson regime of overlapping and strongly interacting
resonances (Ericson, 1960), where an assignment of
quantum numbers loses its meaning.

The picture is less clear for intermediate K values in a
given N manifold. The classical phase space has not
been studied systematically in this region, i.e., for Q
'p/2. The dynamics are expected to be mixing here in
all degrees of freedom, i.e., there are no regions of sta-
bility shielded from the rest of the phase space. Numeri-
cal studies of the quantum spectrum indicate increasing
interference between all Rydberg series. A breakdown
of any approximate scheme of quantum numbers in the
regime K'0 and N>9 is indeed observed (Bürgers
et al., 1995; Rost and Tanner, 1997). The largest reso-
nance widths in each N manifold are typically found in
this intermediate K regime, where classical escape can
occur along two degrees of freedom.

2. Single-periodic-orbit quantization

In order to get quantitative semiclassical approxima-
tions for two-electron resonance positions, a detailed
knowledge of the periodic orbits of the system is essen-
tial; see Sec. IV.A. We cannot hope to obtain the full
spectrum including all the Rydberg series in each N
manifold, even when restricting ourselves to S states; the
high dimensionality of the classical phase space makes a
systematic study of the full set of periodic orbits almost
impossible. However, a description of Rydberg series
that correspond to classical configurations centered on
the collinear subspaces is feasible in light of the previous
paragraph. In particular, symmetrically excited intrashell
states with ^r1&'^r2& and wave functions concentrated
near the origin can be semiclassically reached by consid-
ering the fundamental short periodic orbits only. A full
semiclassical treatment of asymmetrically excited states,
including complete Rydberg series up to the various
single-ionization thresholds, will be presented in Sec.
IV.D.

a. The frozen planet orbit

The two-electron states corresponding to the Zee
configuration can be treated within an Einstein-
Brillouin-Keller quantization; see Sec. IV.A.2. The cen-
ter of the classical stability island [see Fig. 14(a)] is
dominated by the behavior around the fixed point, the
frozen planet periodic orbit. The dynamics in the vicinity
of this central orbit can be well described by a harmonic
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TABLE II. Total binding energies 2E for 1Se states obtained by single periodic orbit (PO) quan-
tization of the asymmetric stretch orbit Eq. (58) and the frozen planet orbit Eq. (56), compared with
full quantum-mechanical (QM) calculations based on complex rotation (Bürgers et al., 1995).

Asymmetric stretch orbit Frozen planet orbit
(N ,K)n PO QM (N ,K)n PO QM

(1,0)1 3.097 2.904
(2,1)2 0.804 0.778 (2,21)2

(3,2)3 0.362 0.354 (3,22)3 0.248 0.257
(4,3)4 0.205 0.201 (4,23)4 0.1394 0.1411
(5,4)5 0.1317 0.1294 (5,24)5 0.0892 0.0896
(6,5)6 0.0917 0.0903 (6,25)6 0.061 89 0.062 05
(7,6)7 0.0675 0.0665 (7,26)7 0.045 46 0.045 54
(8,7)8 0.0517 0.0510 (8,27)8 0.034 80 0.034 84
(9,8)9 0.0409 0.0403 (9,28)9 0.027 49 0.027 52
(10,9)10 0.0332 0.0327 (10,29)10 0.022 27 0.022 28
approximation. The winding numbers, i.e., the frequency
ratios v1 /v2 for the motion on and perpendicular to the
frozen planet orbit, are approximately constant for tori
close to the central fixed point. This makes it possible to
perform a harmonic-oscillator quantization of the core
region of the stable island by considering the frozen
planet orbit and its normal modes only; the correspond-
ing quantum states are called the frozen planet states.
Richter and Wintgen (1990b, 1991) were able to give a
simple double Rydberg formula for collinear Zee reso-
nance states,

Em ,k ,n̄52
~SFP/2p!2

F S m1
1
2 D12S k1

1
2 Ds11S n̄1

1
2 Ds2G2 ,

m ,k ,n̄50,1,2,.. . , (56)

which is similar to semiempirical formulas like Eq. (33),
described in Sec. III.E.2. The parameters entering the
Rydberg formula are now completely determined in
terms of classical properties of the frozen planet orbit;
SFP/2 is the (scaled) action of the orbit and s1 , s2 are
the winding numbers for the dynamics in the Q degree
of freedom perpendicular to the collinear subspace and
for the dynamics in the collinear plane, respectively.
(We have SFP/2p51.4915, s150.4616, and s250.0677
for helium.) The classical parameters are obtained by
integrating the linearized dynamics in the neighborhood
of the orbit over all degrees of freedom. There are two
equivalent degrees of freedom perpendicular to the col-
linear space, which give rise to the additional factor 2 in
Eq. (56). The quantum numbers (m ,k ,n̄) can be related
to excitation (of normal modes) parallel (m) and per-
pendicular (n̄) to the periodic orbit and to excitation in
the bending degree of freedom (k). We obtain the fol-
lowing identification with the Herrick/Stark quantum
numbers (N ,K)n in Eq. (18) and the MO quantum num-
bers (n̄m ,n̄l) n̄ for planetary atom states introduced in
Sec. III.B.4:
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frozen planet r.adiabatic Herrick/Stark

m 5n̄m5
1
2

~N2K21 ! (57a)

k 5n̄l5
1
2

~N1K21 ! (57b)

n̄ 5n̄5 n2N . (57c)

A semiclassical description of the Zee configuration is
thus equivalent to the molecular adiabatic approxima-
tion of planetary atom states (with r15r. being the
adiabatic invariant; cf. Sec. III.B.4).

The results from Eq. (56) are in good agreement with
full quantum calculations for moderate excitation in k
and n̄ , as can be seen from Table II. The frozen planet
approximation becomes increasingly better in the semi-
classical limit N→` and exceeds even results obtained
from the adiabatic MO approximation in Sec. III.B.4
(Richter et al., 1992).

The localization of Zee quantum states on the frozen
planet orbit can be observed in the probability densities
of numerically obtained quantum wave functions in the
Q50 plane; see Fig. 17. The excitations along (m) and
perpendicular (n̄) to the periodic orbit are clearly vis-
ible as a regular nodal pattern in the wave functions.

The collinear alignment is weakened with increasing
excitation in k and the approximations leading to Eq.
(56) break down in this limit. Similarly, the limit n̄→`
violates the assumption of being close to the center of
the island. Equation (56) indeed does not converge to
the correct single ionization thresholds for n̄→` , as has
been pointed out by Ostrovsky and Prudov (1993), and
nonharmonic corrections have to be included in a full
Einstein-Brillouin-Keller calculation (Wintgen and
Richter, 1994); see also Sec. IV.D.1.

The frozen planet configuration does not exist for H2,
i.e., Z51, where the Zee subspace is purely repulsive
(Richter et al., 1992; Gaspard and Rice, 1994). The exis-
tence of frozen planet states also plays an important part
in the possible formation of nondispersive two-electron
wave packets in helium driven by an electromagnetic
field (Schlagheck and Buchleitner, 1999); the classical
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frozen planet configuration has futhermore been ob-
served for mass ratios different from those of two-
electron atoms and has led to the prediction of a new
form of a quasistable binding mechanism for antiprotons
in atoms (Richter et al., 1991).

b. The Langmuir orbit

A semiclassical quantization of the Langmuir orbit
[see Fig. 2(b)] has been proposed by several authors to
approximate the helium ground state (Langmuir, 1921;
Dimitrijević and Grujić, 1984; Wesenberg et al., 1985).
However, the attempts failed due to the use of incorrect
quantization conditions, i.e., an incorrect consideration
of the motion perpendicular to the periodic orbit. Rich-
ter and Wintgen (1990a) predicted long-lived resonant
states for helium with energies given by a double Ryd-
berg formula like Eq. (56) after discovering that the
Langmuir orbit is stable in all degrees of freedom; see
also Sec. IV.B.2.b. The phase-space volume covered by
the stable island around the Langmuir orbit is, however,
extremely small yielding upper bounds for the number
of states associated with the island (Berry, 1983). Long-
lived resonant states localized on the Langmuir orbit are
expected only in the limit of extremely high double ex-
citation (Richter and Wintgen, 1990a); Müller and Burg-
dörfer (1993) give N>500 as an estimate for the first
Langmuir resonance. Müller et al. (1992) extended the
double-Rydberg formula to low energies and thus ob-
tained approximations for low-lying resonance energies
with N<15 and moderately doubly excited states. They
proposed that these Langmuir states correspond to sym-
metrically excited resonances with maximal bending ex-
citation belonging to the energetically uppermost Ryd-
berg series with minimal K512N quantum number
(Müller and Burgdörfer, 1993). The semiclassical results
of the last section and quantum calculations for doubly
excited states in helium with principal quantum numbers
N<10 suggest, however, that resonances belonging to
minimal K are of the frozen-planet type and are related
to the collinear Zee configuration (Richter and

FIG. 17. Frozen planet states, localized along the classical fro-
zen planet orbit [Fig. 13(a)], corresponding to the quantum
numbers m ,k ,n̄ : (a) m ,k ,n̄56,0,0; (b) m ,k ,n̄5(6,0,2) in 1Se

helium; the corresponding (N ,K)n notation is (a) (7,26)7 and
(b) (7,26)9 . The completely symmetrized version of the wave
functions is obtained by reflection on the axis r15r2 (from
Richter et al., 1992).
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Wintgen, 1993). The Langmuir orbit is expected to play
an important role for intermediate K values, K'0, and
this point of view is supported by results from spectral
Fourier transformation (Qiu et al., 1996); see also Sec.
IV.C.3.

c. The asymmetric stretch orbit

The eZe collinear configuration is energetically the
most favored subspace, with both electrons being far
apart on opposite sites of the nucleus; the configuration
is thus a candidate for a semiclassical quantization of the
ground state and symmetrically excited intrashell states
(corresponding to maximal K5N21 and N5n). The
fundamental mode in the eZe dynamics close to the
nucleus is characterized by the shortest periodic orbit,
the asymmetric stretch orbit in Fig. 15. Even though the
dynamics in the eZe configuration are chaotic and all
periodic orbits including the asymmetric stretch orbit
are unstable, we may try to perform a single periodic
orbit quantization in a way similar to that outlined in the
last few paragraphs. This step will be justified in more
detail in Sec. IV.D. A naive asymmetric stretch quanti-
zation indeed provides a surprisingly accurate double
Rydberg formula for intrashell resonances in two-
electron atoms (Ezra et al., 1991; Wintgen et al., 1992):

Em ,k52
~SAS/2p!2

Fm1
1
2

12S k1
1
2 DsASG2 , m ,k50,1,2,.. . .

(58)

We obtain SAS/2p51.8290 for the periodic orbit action
in helium and sAS50.5393 for the winding number for
the dynamics in the bending degree of freedom. The
quantum numbers m and k describe excitation along
and perpendicular to the orbit, which in turn correspond
to intrashell excitation and vibrational excitation in the
bending degree of freedom, respectively. We obtain the
following identification with the Herrick and MO quan-
tum numbers in Eq. (18):

asymmetric stretch r12 adiabatic Herrick/Stark

m5 @nm/2#5
1
2

~N1K21 !,

(59a)

k5 nl5
1
2

~N2K21 !.

(59b)

Note that the quantum number n̄ in Eq. (57c) represent-
ing asymmetric excitation perpendicular to the orbit
within the collinear plane is absent here due to the in-
stability of the orbit. The collinear eZe quantum num-
bers are indeed equivalent to the quantum numbers ob-
tained from the molecular approximation [cf. Eq. (18)]
with fixed interelectronic axis as described in Sec.
III.B.1.

A comparison of Eq. (58) with quantum results is
shown in Table II for symmetrically excited states N
5n , i.e., the lowest states in each Rydberg series K
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5N21. The overall good agreement (including the
ground state) emphasizes the importance of the asym-
metric stretch orbit as a fundamental mode for both the
bound and the resonance spectrum in two-electron at-
oms; see also Table I. The agreement of the Heisenberg-
Sommerfeld model, Fig. (3), is not purely accidental; it
captures the main ingredients of the dynamics by intro-
ducing asymmetric near-collinear motion. Equation (58)
also explains semiclassically the existence of double-
Rydberg formula found by Rau (1983) and Molina
(1989) for symmetrically excited (intrashell) resonances;
see Eq. (33) and the discussion in Sec. III.E.2. Müller
and co-workers were able to give a semiempirical triple
Rydberg formula that contains the semiclassical expres-
sions in Eq. (58) in the limit K5N21 but covers a wide
range in K and N , reproducing true quantum results
with astonishing accuracy (Müller, 1993; Qiu et al.,
1996).

The localization of intrashell wave functions on the
asymmetric stretch orbit is shown in Fig. 18. The nodal
pattern corresponds to excitation along the orbit de-
scribed by the m quantum number. The tendency of
wave functions being repelled from the (very unstable)
triple collision and from the Wannier orbit r15r2 can be
observed here. Similar localization phenomena are
found in collinear ABA molecules, where the corre-
sponding wave functions are known as hyperspherical
modes (Bisseling et al., 1987, and references therein).

To resolve asymmetric states with n.N , more de-
tailed information about the chaotic electron dynamics
is needed. This information is provided by including
more unstable periodic orbits, which can be incorpo-
rated into a quantization schema when making use of
the cycle-expansion technique discussed in Sec. IV.A.2.
We shall present details in Sec. IV.D.2.

3. Spectral Fourier analysis

The connection between classical periodic orbits and
quantum traces as outlined in Sec. IV.A.1 allows one to

FIG. 18. The (m ,l ,k)5(5,0,0) wave function (projected onto
Q5p) in 3Se helium; (N ,K)n5(6,5)6 ; the localization along
the asymmetric stretch orbit [see Fig. 13(b)] is clearly visible
(from Wintgen et al., 1992).
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analyze experimental or numerical quantum spectra by
Fourier transformation. The method is based on
Gutzwiller’s formula (38), which for scaling systems has
the form

d~z !5(
n

d~z2zn!'d̄~z !1(
po

ApoeizSpo. (60)

The sum is taken over all periodic orbits (po) of the
system and z is the scaling parameter; we have S(E)/\
5z(E ;\)Spo5(\A2E)21Spo [cf. Eq. (52)], for two-
electron atoms, and zn are the scaled quantum eigenval-
ues. According to Eq. (60), a Fourier transformation of
the quantum density of states with respect to z (after
subtracting the smooth background d̄ on both sides) re-
veals peaks at the actions of classical periodic orbits.
The technique is especially useful for analyzing ‘‘cha-
otic’’ spectra, i.e., spectra that show no obvious structure
in terms of good or approximate quantum numbers. The
Fourier transformation uncovers long-range correlations
between quantum eigenvalues that may pass unobserved
when studying a raw spectrum showing strong level in-
terference on short energy scales (Eichmann et al.,
1988). The related scaled energy spectroscopy was first
applied to hydrogen in a constant magnetic field
(Wintgen, 1987; Holle et al., 1988; Friedrich and
Wintgen, 1989) and has now become a standard tool in
atomic and molecular spectroscopy.

Scaled energy spectroscopy was first applied to helium
by Kim and Ezra (1991) and Richter (1991), who no-
ticed that the Wannier orbit was indeed absent from the
Fourier spectrum. This result could be traced back to
the fact that the Wannier orbit is infinitely unstable (see
also Sec. IV.B.2.b), leading to a vanishing amplitude Apo
in Gutzwiller’s formula [Eq. (60)]. Similar results were
reported by Blümel and Reinhard (1992) for the two-
dimensional collinear model and by Dräger et al. (1994)
for the s-wave model. The most thorough study of the
Fourier-transformed helium 1Se spectrum has so far
been undertaken by Qiu et al. (1996; see also Burgdörfer
et al., 1997) based on ab initio quantum calculations by
Bürgers et al. (1995). Their results confirm the picture
drawn in the previous paragraphs; the asymmetric
stretch orbit and the frozen planet orbit dominate the
Fourier spectrum for quantum states with maximal and
minimal K , respectively. The resolution of the Fourier
analysis could be considerably enhanced by extrapolat-
ing an empirical formula for the 1Se spectrum (Burgdör-
fer et al., 1995) to energies above the N515 threshold.
Up to 100 orbits of the collinear subspaces could be
identified in the Fourier spectrum of the empirical
double-Rydberg formula; see Fig. 19. Interestingly, the
contribution of the Langmuir orbit was found to domi-
nate the spectrum for intermediate K values, i.e., K
'0, and N.15.

Recently, Greḿaud and Gaspard (1998) studied the
Fourier transformation of the total 1Se and 1Po helium
spectrum up to N57. As expected from the classical
angular momentum scaling in Eq. (52), the Fourier spec-
trum in both cases is dominated by the collinear asym-
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FIG. 19. Fourier transformation of the 1Se (N ,N21)n spectrum corresponding to the chaotic eZe configuration. Dominant peaks
are visible at the actions s of various periodic orbits, cf. Fig. 15. Note that the symbol code is (1 ,2) here corresponding to (0,1)
in the notation of Sec. IV.B.2.a (from Qiu et al., 1996).
metric stretch and frozen planet orbits in the L50 clas-
sical dynamics. Even P wave functions localized on the
asymmetric stretch orbits were found. This again em-
phasizes the importance of the asymmetric stretch and
the frozen planet orbits as the fundamental modes in
two-electron atoms. The connection between quantum
states with LÞ0 and the classical L50 dynamics can be
understood in terms of the scaling relation (52).

D. Quantitative determination of resonances
from semiclassical summation techniques

The semiclassical approximations for bound and reso-
nance states in two-electron atoms in Secs. IV.C.2.a and
IV.C.2.c were based on a quantization of the shortest
periodic orbits in the collinear subspaces. The double
Rydberg formulas (56) and (58) provide good approxi-
mations for low-lying states in the corresponding
(N ,K)n series, i.e., for N'n . They fail, however, to re-
produce both asymmetrically excited states and Rydberg
series converging to the various single ionization thresh-
olds IN2Z2/2N2. Resonances close to the thresholds be-
long to extremely asymmetric states ^r1&@^r2& and can
only be resolved semiclassically, if the classical dynamics
in the limit r1→` are taken appropriately into account.
We first consider the almost integrable Zee configura-
tion, which can be treated within the more conventional
framework of Einstein-Brillouin-Keller quantization.
We shall then use the cycle expansion technique and
obtain asymmetric excited resonances n>N for chaotic
collinear eZe states by including long unstable periodic
orbits. A special periodic orbit summation technique is
introduced in Sec. IV.D.3, which contains the dynamics
in the limit r1→` . The corresponding zeta functions re-
solve the correct Rydberg structure and a semiclassical
quantum defect theory can be derived.

1. Einstein-Brillouin-Keller quantization of asymmetric
electronic excitations

The double Rydberg formula (56) is based on a har-
monic approximation of the torus structure in Fig. 14(a)
in the vicinity of the center fixed point. In order to de-
scribe the full dynamics of the stable island in the whole
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collinear subspace, we may take advantage of the near-
integrable nature of the Zee configuration. Local ca-
nonical transformations to action/angle variables can be
found in principle, in which the two-electron atom
Hamiltonian takes on the form

H~p1 ,r1 ,p2 ,r2 ,Q ,pQ!5H~J1 ,J2 ,J3 ,f1 ,f2 ,f3!

'H~J1 ,J2 ,J3!, (61)

and the usual Einstein-Brillouin-Keller quantization
may be performed as indicated in Sec. IV.A.2. There is
in general no procedure to derive the local action (and
conjugated angle) variables analytically. Methods to de-
termine such transformations numerically have been de-
veloped by Bohigas et al. (1993; see also Percival, 1974,
and Martens and Ezra, 1987), and applied to the collin-
ear Zee problem by Wintgen and Richter (1994).

Following Wintgen and Richter (1994), we may char-
acterize the torus structure in Fig. 14(a) not by actions
J1 , J2 but in terms of a winding number a5v2 /v1 with
v i5]H/]Ji , i51,2 being the frequencies. The winding
number of an (approximately) closed curve in Fig. 14(a)
can be determined numerically by integrating a trajec-
tory on that curve. The action S5*p dq of a trajectory
after the first return to the Poincaré section can again be
obtained numerically but may be written alternatively
for fixed energy as

S~a!52p@J1~a!1aJ2~a!# . (62)

In the notation above, J1 represents approximately the
radial motion of the inner electron and J2 the radial
motion of the outer electron. A third degree of freedom,
J3 , is identified with the bending degree of freedom and
we have J350 in the collinear plane. A second impor-
tant relation between actions and winding numbers
holds on the energy manifold. Using dE5v1 dJ1
1v2 dJ250, we obtain

]S

]a
52pJ2~a!. (63)

The frozen planet orbit corresponds to S(aFP)5SFP
with aFP (50.067 650 for helium) being the stability in-
dex of the periodic orbit in the collinear plane; see Sec.
IV.C.2.a. The periodic orbit condition implies
dS/dauaFP

52pJ250.
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For vanishing electron-electron interaction in the limit
r1→` we obtain J1→` and a→0. The collinear Hamil-
tonian (53) then approaches the independent electron
limit, Eq. (54), and the action S(a) can be given analyti-
cally, i.e.,

lim
a→0

S~a!5
2pZ

A22E
F11S Z21

Z
a D 2/3G3/2

. (64)

The third degree of freedom J3 perpendicular to the
collinear configuration gives rise to an additional term in
Eq. (62), which for small J3Þ0 can again be written as a
function of a only, i.e.,

S~a!52p@J1~a!1aJ2~a!12a3~a!J3~a!# .

The winding number a3 as a function of a is obtained
from the linearized dynamics perpendicular to the col-
linear plane (Wintgen and Richter, 1994).

Inserting the Einstein-Brillouin-Keller quantization
condition J15m1 1

2 , J25n̄1 1
2 , J35k1 1

2 in Eqs. (62)
and (63) together with the (numerically obtained) S(a)
curve, and exploiting the scaling relation for the actions
(52), leads to quantized energy levels Em ,k ,n̄ .

The quantum numbers (m ,k ,n̄) are identical to those
in Eq. (57). However, the Rydberg structure of the two-
electron spectrum together with the correct single ion-
ization thresholds is now fully reproduced, which is
guaranteed by incorporating the asymptotic S(a) be-
havior, Eq. (64). Moreover, the quantitative agreement
is remarkably good even down to the lowest states in
each series, in which strong electron-electron interaction
near the frozen planet orbit contributes dominantly
(Wintgen and Richter, 1994).

Ostrovsky (1992) and Ostrovsky and Prudov (1993)
proposed an alternative approach by expanding the
electron-electron interaction in a multipole series lead-
ing to an independent electron-type approximation. The
model reproduces the structure of Rydberg series but
cannot account for the correlated electron dynamics,
which are reflected in the formation of the frozen planet
configuration.

2. Semiclassical zeta function and symmetrically
excited states

A semiclassical treatment of the classically chaotic
collinear dynamics (Q5p) cannot rely on a torus quan-
tization, as indicated in the previous section, and must
fall back upon the periodic orbit theory developed in
Sec. IV.A. Ezra et al. (1991; see also Wintgen et al.,
1992) were the first to study the semiclassical eZe spec-
trum including all relevant degrees of freedom. Similar
collinear models (neglecting, however, the stable degree
of freedom perpendicular to the collinear subspace)
were studied by Blümel and Reinhard (1992) and
Dräger et al. (1994).

The two-electron bound states or resonances associ-
ated with the eZe collinear space can be expressed as
the zeros of the semiclassical zeta function (40) written
as a product over all periodic orbits. For the collinear
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
subspace (including all degrees of freedom in the Mono-
dromy matrix M), it has the form

zsc
21~z !5 )

k50

`

zk
21~z !5 )

k50

`

)
l50

`

)
po

~12tpo
(k ,l)!. (65)

The products over k and l originate from an expansion
of udet(M21)u21/2 in Eq. (40) in terms of the stable (k)
and unstable (l) eigenvalues of M. The higher terms in l
corresponding to the unstable degree of freedom can in
general be neglected and we will set l50 henceforth.
The index k accounts for the stable bending dynamics in
the angle Q and corresponds to an approximate quan-
tum number, the vibrational quantum number intro-
duced in Eq. (59) in Sec. IV.C.2.c. The spectrum associ-
ated with a given k quantum number corresponds to the
zeros of the individual zeta functions zk

21 .
The periodic orbit weights tpo

(k) in Eq. (65) are of the
form

tpo
(k)~z !5

1

ALpo

expF izSpo2inpop24piS k1
1
2 DspoG .

(66)

Here Lpo is the eigenvalue of M along the unstable di-
rection; the winding number in the unstable degree of
freedom is linked to the code length npo of the periodic
orbit in the binary symbolic dynamics introduced in Sec.
IV.B.2.a. The winding number associated with the stable
degree of freedom is spo . The energy dependence is
contained in the scaling variable z5\21(2E)21/2.

The zeta functions zk
21 above can be rewritten in

terms of a cumulant expansion; see Sec. IV.A.2. Includ-
ing only the first term in a binary cycle expansion, as in
Eq. (48), leads to a quantization condition

zk
21'12t1

(k)5
!

0. (67)

The term t1
(k) is the contribution from the asymmetric

stretch orbit, the fundamental periodic mode of the col-
linear configuration (see Fig. 15). Note that the orbit ‘‘0’’
is absent in collinear two-electron atoms. The quantiza-
tion condition given by Eq. (67) is the leading term in a
zeta function expansion and justifies the single periodic
orbit quantization (58) introduced in Sec. IV.C.2.c.

The unstable asymmetric stretch orbit can only ac-
count for the phase-space region r1'r2 and thus for in-
trashell states; the dynamics of asymmetric electron mo-
tion are represented by longer periodic orbits, as shown
in Fig. 15. The contributions of these orbits are included
by taking into account higher terms in a cycle expansion
as introduced in Sec. IV.A.2 for each of the semiclassical
zeta functions zk

21 separately. By making use of the sym-
bolic dynamics, we obtain an expanded zeta function of
the form (48), i.e.,

zk
21~z !5(

j50

`

cj512@ t0
(k)2t1

(k)#2@ t01
(k)2t0

(k)t1
(k)#

2@ t001
(k)2t0

(k)t01
(k)1t011

(k)2t01
(k)t1

(k)#2••• . (68)
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TABLE III. Real part of the zeros of z0
21 obtained by cycle expansion of length j . The exact

quantum energies are in the last column. The states are labeled by their principal quantum numbers.
A line as entry indicates a missing zero at that level of approximation.

N n j51 j54 j58 j512 j516 2Eqm

1 1 3.0970 2.9692 2.9001 2.9390 2.9248 2.9037

2 2 0.8044 0.7714 0.7744 0.7730 0.7727 0.7779
2 3 0.5698 0.5906 0.5916 0.5902 0.5899
2 4 0.5383 0.5429 0.5449

3 3 0.3622 0.3472 0.3543 0.3535 0.3503 0.3535
3 4 0.2812 0.2808 0.2808 0.2811
3 5 0.2550 0.2561 0.2559 0.2560
3 6 0.2416 0.2433 0.2438

4 4 0.2050 0.1962 0.1980 0.2004 0.2012 0.2010
4 5 0.1655 0.1650 0.1654 0.1657 0.1657
4 6 0.1508 0.1505 0.1507 0.1508
4 7 0.1413 0.1426 0.1426 0.1426
The weights tpo
(k) are given by Eq. (66) and the cumulant

terms cj defined in Eq. (45) contain all contributions of
orbits and composite orbits having the same total sym-
bol length j . The expanded zeta functions depend only
on the classical actions, stability indices, and winding
numbers, which have to be determined numerically by
integrating the equations of motion along the periodic
orbits (Richter et al., 1993). We set t050 in Eq. (68) due
to the absence of the orbit ‘‘0.’’ This fact has serious
consequences related to the existence of Rydberg series
and will be discussed in Sec. IV.D.3.

The cycle-expanded zeta functions, Eq. (68), yield
good approximations of the energies for intrashell reso-
nant states n5N ; cf. Table III. Moreover, subsequent
states with n.N in each Rydberg series are gradually
revealed with increasing j , i.e., by including higher cu-
mulants and thus longer and longer orbits in the cycle
expansion.

Even interference effects between states in overlap-
ping Rydberg series for N>4 can be resolved semiclas-
sically (Wintgen et al., 1994). Results of equal quality
have been obtained for H2 (including weak-magnetic-
field effects) by Gaspard and Rice (1994). Moderate ex-
citation in Q can be accounted for by choosing k.0 in
Eq. (68) (Wintgen et al., 1992). Classical and semiclassi-
cal studies beyond the linear approximation in the Q
dynamics have been reported by Grujić and Simonović
(1995).

3. Rydberg series and semiclassical quantum defect theory
for collinear eZe states

The cycle-expansion technique presented above pro-
vides results of considerable accuracy for intra-shell
resonant states and states with moderate asymmetric ex-
citation. However, it cannot resolve the Rydberg struc-
ture at the single ionization thresholds, which must in-
clude the classical dynamics in the limit r1→`
corresponding to very long periodic orbits and thus long
., Vol. 72, No. 2, April 2000
symbol codes. A connection of the phase-space regions
for small and large r1 is less obvious than in the Zee
configuration, in which invariant tori provide the transi-
tion. The classical dynamics in the collinear eZe sub-
space show a gradual change from chaos to regular dy-
namics with increasing r1 , cf. Fig. 14(b), and a smooth
link between these two limits can be provided by the
periodic orbits of the system, as will be shown next.

Tanner and Wintgen (1995) proposed to rewrite the
expansion (68) in a way that includes regular orbits
stretching out along the r1 axis up to infinity (an ex-
ample of such an orbit is the 000 001 orbit in Fig. 15)
before dealing with the complicated chaotic dynamics
near the nucleus (represented, for example, by the
001 011 orbit in Fig. 15). The new expansion schema for
the zeta function (65) corresponds to switching from the
binary alphabet (0,1) to an infinite letter alphabet ac-
cording to the rule (Tanner et al., 1996; Rost and Tan-
ner, 1997)

10n21→n ; 10n2110m21→nm . . . ,

and 0n stands for n 0’s occurring successively in a row.
The expansion is now written in terms of infinite sums
over the regular 0 tails explicitly, i.e.,

zk
21~z !512 (

n51

`

tn
(k)2 (

m51

`

(
n51

` 1
2

~ tmn
(k)2tm

(k)tn
(k)!

2(
l51

`

(
m51

`

(
n51

`

. . . , (69)

and the periodic orbit weights are again given by Eq.
(66). The fundamental term 12(n51

` tn
(k) contains peri-

odic orbits with code 10n21. It can be seen as the build-
ing block for the zeta function; its zeros reproduce the
gross structure of the Rydberg spectrum. Subsequent
terms in Eq. (69) give corrections that account for inter-
actions between overlapping Rydberg series correspond-
ing to different N quantum numbers.
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A quasi-Einstein-Brillouin-Keller formula can be de-
rived revealing the basic structure of the spectrum by
approximating the zeta function by its fundamental term
only (Tanner and Wintgen, 1995; Rost and Tanner,
1997), i.e.,

zk
21~z !'12 (

n51

`

tn
(k)~z !

'12 (
m52`

` E
1

`

dn e2pimn tn
(k)~z !. (70)

Poisson summation has been used in the last step and n
is now a continuous variable. Approximating the inte-
grals by stationary phase yields the condition

]

]n Fz
S~n !

2p
2S m1

1
2 Dn22S k1

1
2 Ds~n !G50, (71)

with S(n) corresponding to the actions of periodic orbits
with symbol codes 01n21. The quantization condition

zk
21(E)'12(n51

` tn
(k) !

50 implies (in stationary phase

approximation) the phase quantization

z
S~n !

2p
2S m1

1
2 D n22S k1

1
2 D s~n !5n̄1

1
8

, (72)

with integer n̄>0. Equations (71) and (72) correspond
exactly to the Einstein-Brillouin-Keller quantization in
Eqs. (62) and (63). The regular chaos transition produc-
ing nonclosed tori in phase space leads to the unusual
action quantization condition n̄11/8 for the motion of
the outer electron.

The quasi-Einstein-Brillouin-Keller quantization us-
ing Eqs. (71) and (72) in the same way as in Sec. IV.D.1
reproduces Rydberg series converging to the correct
ionization thresholds and coincide well with full three-
dimensional quantum calculations, especially in the
large n̄ limit (Tanner and Wintgen, 1995). It does not
capture the interaction between overlapping Rydberg
series manifesting itself in perturber states. These states
can be resolved by including higher terms in the expan-
sion (69) (Tanner and Wintgen, 1995).

The quasi-Einstein-Brillouin-Keller formalism allows
the derivation of a simple estimate for quantum defects
at threshold energies. The quantum defect nN ,K(E) is
defined as the smooth function through the points
(Friedrich, 1998)

E(N ,K)n
5IN2

1
2@n2n~E(N ,K)n

!#2 , (73)

where n>N counts the states successively up to the
threshold energy IN . The quasi-Einstein-Brillouin-
Keller approximation for the threshold values nN ,K is
given by the simple formula (Rost and Tanner, 1997)

nN ,K~IN!5~11s0! N22S k1
1
2 D s02

1
8

1nper , (74)

where nper counts the number of perturber states in the
N series and s0 , s0 are coefficients determined by peri-
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odic orbit data (one obtains s0520.437 09, s0
50.304 91 for helium). Equation (74) is in good agree-
ment with quantum results (see Table IV). The unusual
phase 1/8, arising from the nonclosure of the tori in
phase space, is especially crucial at the thresholds.

The infinite periodic orbit sums thus account for the
quasiregular dynamics in the separable limit of noninter-
acting electrons. The Rydberg series structure of the
spectrum is correctly described, and the resonances fol-
low a simple Einstein-Brillouin-Keller quantization
scheme near the thresholds. The chaoticity of the central
phase-space region plays, however, a crucial role in re-
producing mixing and interference between overlapping
series.

V. CONCLUSION AND OUTLOOK

A. Summary

We can distinguish roughly three periods in which
characteristic problems in two-electron atoms, most
clearly exemplified in helium, have been addressed.
These periods reflect a shift in interest towards higher
excitation energies.

1. Helium after 1920: The quest for quantum mechanics

The failure of the old quantum theory to describe a
stable two-electron atom, as described in Sec. II, trig-
gered the invention and development of quantum me-
chanics. Once the basic formalism had been established
by Heisenberg and Schrödinger, early variational calcu-
lations produced remarkably good results for the ground
state. This quick success was possible because the varia-
tional technique was already known (the Rayleigh-Ritz
variational principle). The central-field approximation
together with the Hartree-Fock self-consistent-field
method finally made it possible to understand and com-
pute large parts of the periodic table, including excited
bound states of helium. The pictures and ideas devel-
oped in a semiclassical context for two-electron atoms
within the old quantum mechanics were obsolete and
quickly forgotten in view of the success of the new quan-
tum wave mechanics.

2. Helium after 1960: The need to go beyond
the Hartree-Fock approximation

With the seminal synchrotron absorption experiments
leading to doubly excited states in the early 1960’s it
became clear that the effective single-particle picture,
familiar from the successful Hartree-Fock approxima-
tion, was inadequate for two-electron resonances. As a

TABLE IV. Quantum defects at the various threshold ener-
gies IN522/N2 (from Rost and Tanner, 1997).

N 1 2 3 4 5 6 7

MQDT 0.140 0.685 1.272 2.785 3.410 4.953 6.391
QEBK 0.133 0.696 1.259 2.822 3.385 4.948 6.510
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consequence, sophisticated alternative quantum ap-
proximations were developed over the next 30 years.
The most important concepts were a group-theoretical
approach and two adiabatic approximations, as de-
scribed in Sec. III. These concepts successfully explained
the high degree of nontrivial regularity in the spectra of
two-electron resonances, i.e., features that could not and
cannot be accounted for by an effective single-particle
picture. Rather, they are intrinsically related to the cor-
related dynamics of two electrons.

3. Helium after 1990: The quest for new concepts
to understand the extreme excitation regime

Over the last decade the regime of extremely high
excitation of both electrons, i.e., N'n>10, has become
feasible both experimentally and computationally. For
these high excitations the approximate quantum num-
bers begin to lose their meaning and the regularities in
the two-electron resonance spectrum start to dissolve.
Moreover, even if applicable, the spectroscopic concept
of isolated resonances identified by a set of quantum
numbers becomes very questionable if the density of
resonances per unit energy tends to infinity, which is the
case towards the three-body breakup limit E50 with
N'n→` . Hence one needs an alternative concept to
understand two-electron dynamics in this regime of ex-
treme double excitation. This concept is provided by the
modern semiclassical approach. Its development over
the last few years, reviewed in Sec. IV, reveals impres-
sive progress in the quantitative description of the reso-
nances by cycle expansion and the quasi-Einstein-
Brillouin-Keller approach. The backbone of these
semiclassical descriptions are the periodic orbits of the
full classical two-electron system without approxima-
tions.

It is very gratifying to see that from the shortest and
simplest periodic orbits and from their stability proper-
ties one can draw a picture of two-electron excitation
dynamics that agrees perfectly well with the results of
the quantum approximations explaining the regular
spectrum of intermediate double excitation. The asym-
metric stretch and the frozen planet orbit can carry
quantized two-electron resonances. The third funda-
mental collinear orbit, the Wannier orbit, is too unstable
for resonance formation. Instead, it represents the main
decay path for the resonances.

However, the periodic orbits have one advantage that
goes beyond the simple structural picture discussed
above: A representation of the spectra in terms of peri-
odic orbits, in particular through periodic orbit spectros-
copy, does not rely on an explicit quantization scheme
based on the quasiseparability of the problem into (col-
lective) coordinates or the existence of approximate
quantum numbers. This advantage might lead the way
into the extreme excitation regime, where the increase
of resonances renders meaningless a description in terms
of assigned quantum numbers. Moreover, the limit of
high excitations naturally calls for semiclassical methods.
One tool, which has already proved very useful for char-
acterizing dynamical features in the extreme excitation
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
limit for hydrogen in a magnetic field, is scaled periodic
orbit spectroscopy. As described in Sec. IV.C.3, the in-
credibly complex energy spectrum with many (overlap-
ping) resonances can look quite ordered, if properly
Fourier transformed into the time domain in which
peaks at certain times indicate the periods of relevant
periodic orbits.

B. Outlook

An important and interesting issue for the future is
two-electron dynamics in the extreme excitation limit
towards the three-body breakup threshold.

• Which kinds of resonances will survive as isolated
identifiable structures?

• Will collective effects arise and which observable
signature do they produce?

• Is chaotic behavior directly observable?

We expect that most of these questions can be discussed
theoretically in the context of classical nonlinear dynam-
ics. Some of them have already been addressed. In par-
ticular, it has been argued that Ericson fluctuations
(Ericson, 1960) may occur in two-electron spectra (Rost
and Wintgen, 1996; Blümel and Reinhardt, 1997; Burg-
dörfer et al., 1997; Grémaud and Delande, 1997). This
shows that, in the extreme excitation regime, features
could be possible that are common to many few-body
systems.

Working towards a solution of these questions can
make the helium atom once again a catalyst for the de-
velopment of novel concepts and perspectives for few-
body physics.
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Thürwächter, A. Vollweiter, and D. Wintgen. For fre-
quent discussions on two-electron dynamics we thank R.
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Kossmann, H., B. Krässig, and V. Schmidt, 1988, J. Phys. B 21,

1489.
Koyama, N., H. Fukuda, T. Motoyama, and M. Matsuzawa,

1986, J. Phys. B 19, L331.
Koyama, N., A. Takafuji, and M. Matsuzawa, 1989, J. Phys. B

22, 553.
Kramers, H. A., 1923, Z. Phys. 13, 312.
Kustaanheimo, P., and E. Stiefel, 1965, J. Reine Angew Math.

278, 204P.
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tgen, and E. A. Solov’ev, 1991, Phys. Rev. Lett. 66, 149.
Richter, K., G. Tanner, and D. Wintgen, 1993, Phys. Rev. A

48, 4182.
Richter, K., and D. Wintgen, 1990a, J. Phys. B 23, L197.
Richter, K., and D. Wintgen, 1990b, Phys. Rev. Lett. 65, 1965.
Richter, K., and D. Wintgen, 1991, J. Phys. B 24, L565.
Richter, K., and D. Wintgen, 1992, in Atomic Physics 13, ed-
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