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This paper gives the 1998 self-consistent set of values of the basic constants and conversion factors of
physics and chemistry recommended by the Committee on Data for Science and Technology
(CODATA) for international use. Further, it describes in detail the adjustment of the values of the
subset of constants on which the complete 1998 set of recommended values is based. The 1998 set
replaces its immediate predecessor recommended by CODATA in 1986. The new adjustment, which
takes into account all of the data available through 31 December 1998, is a significant advance over its
1986 counterpart. The standard uncertainties (i.e., estimated standard deviations) of the new
recommended values are in most cases about 1/5 to 1/12 and in some cases 1/160 times the standard
uncertainties of the corresponding 1986 values. Moreover, in almost all cases the absolute values of
the differences between the 1998 values and the corresponding 1986 values are less than twice the
standard uncertainties of the 1986 values. The new set of recommended values is available on the
World Wide Web at physics.nist.gov/constants.
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GLOSSARY

AMDC Atomic Mass Data Center, Centre de
Spectrométrie Nucléaire et de Spectrom-
étrie de Masse (CSNSM), Orsay, France

Ar(X) Relative atomic mass of X:
Ar(X)5m(X)/mu

A90 Conventional unit of electric current:
A905V90 /Ω90

Å* Ångström star: λ(W Ka1)50.209 010 0 Å*
ae Electron magnetic moment anomaly:

ae5(ugeu22)/2
am Muon magnetic moment anomaly:

am5(ugmu22)/2
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BIPM Bureau International des Poids et Mesures
(International Bureau of Weights and
Measures), Sèvres, France

BNL Brookhaven National Laboratory, Upton,
New York, USA

CCEM Comité Consultatif d’Électricité et Magne-
tism

CERN European Laboratory for Particle Physics,
Geneva, Switzerland

CIPM Comité International des Poids et Mesures
CODATA Committee on Data for Science and Tech-

nology of the International Council for
Science (ICSU, formerly the International
Council of Scientific Unions)

CPT Combined charge conjugation, parity in-
version, and time reversal

c Speed of light in vacuum
d Deuteron (nucleus of deuterium D, or 2H)
d220 $220% lattice spacing of an ideal crystal of

silicon
d220(X) $220% lattice spacing of silicon crystal X
Eb Binding energy
e Symbol for either member of the electron-

positron pair; when necessary, e2 or e1 is
used to signify the electron or positron

e elementary charge: absolute value of the
charge of the electron

F Faraday constant: F5NAe
FSU Friedrich–Schiller University, Jena, Ger-

many
F90 F905(F/A90) A
G Newtonian constant of gravitation
g Local acceleration of free fall
gd deuteron g-factor: gd5md /mN
ge Electron g-factor: ge52me /mB
gp proton g-factor: gp52mp /mN
gp8 Shielded proton g-factor: gp852mp8/mN
gX(Y) g-factor of particle X in the ground (1S)

state of hydrogenic atom Y
gm Muon g-factor: gm52mm /(e\/2mm)
Harvard Harvard University, Cambridge, Massa-

chusetts, USA
h Helion (nucleus of 3He)
h Planck constant; \5h/2p
ILL Institut Max von Laue-Paul Langevin,

Grenoble, France
IMGC Istituto di Metrologia ‘‘G. Colonnetti,’’

Torino, Italy
IRMM Institute for Reference Materials and

Measurements, Geel, Belgium
KRISS Korea Research Institute of Standards and

Science, Taedok Science Town, Republic
of Korea

KR/VN KRISS-VNIIM Collaboration
KJ Josephson constant: KJ52e/h
KJ290 Conventional value of the Josephson con-

stant KJ : KJ2905483 597.9 GHz V21

k Boltzmann constant: k5R/NA
LAMPF Clinton P. Anderson Meson Physics Facil-
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ity at Los Alamos National Laboratory,
Los Alamos, New Mexico, USA

LKB Laboratoire Kastler-Brossel, Paris, France
LK/LP LKB-LPTF Collaboration
LPTF Laboratoire Primaire du Temps et des

Fréquences, Paris, France
MIT Massachusetts Institute of Technology,

Cambridge, Massachusetts, USA
MPQ Max-Planck-Institute für Quantenoptik,

Garching, Germany
M(X) Molar mass of X: M(X)5Ar(X)Mu
Mu Muonium (m1e2 atom)
Mu Molar mass constant: Mu51023 kg mol21

mu Unified atomic mass constant: mu
5m(12C)/12

mX , m(X) Mass of X (for the electron e, proton p,
and other elementary particles, the first
symbol is used, i.e., me , mp , etc.)

NA Avogadro constant
NIM National Institute of Metrology, Beijing,

China (People’s Republic of)
NIST National Institute of Standards and Tech-

nology, Gaithersburg, Maryland and Boul-
der, Colorado, USA

NML National Measurement Laboratory, Com-
monwealth Scientific and Industrial Re-
search Organization (CSIRO), Lindfield,
Australia

NPL National Physical Laboratory, Teddington,
UK

NRLM National Research Laboratory of Metrol-
ogy, Tsukuba, Japan

n Neutron
PTB Physikalisch-Technische Bundesanstalt,

Braunschweig and Berlin, Germany
p Proton
QED Quantum electrodynamics
Q(x2un) Probability that an observed value of chi-

square for n degrees of freedom would ex-
ceed x2

R Molar gas constant
R̄ Ratio of muon anomaly difference fre-

quency to free proton NMR frequency
RB Birge ratio: RB5(x2/n)1/2

Rd Bound-state nuclear rms charge radius of
the deuteron

RK von Klitzing constant: RK5h/e2

RK290 Conventional value of the von Klitzing
constant RK : RK290525 812.807 V

Rp Bound-state nuclear rms charge radius of
the proton

R` Rydberg constant: R`5meca2/2h
r(xi , xj) Correlation coefficient of estimated values

xi and xj : r(xi , xj)
5u(xi , xj)/@u(xi)u(xj)#

Sc Self-sensitivity coefficient
SI Système International d’Unités (Interna-

tional System of Units)
SIN Schweizerisches Institut für Nuklearfors-
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chung, Villigen, Switzerland (now the Paul
Scherrer Institute, PSI)

T Thermodynamic temperature
Type A Uncertainty evaluation by the statistical

analysis of series of observations
Type B Uncertainty evaluation by means other

than the statistical analysis of series of ob-
servations

t68 Celsius temperature on the International
Practical Temperature Scale of 1968
(IPTS-68)

t90 Celsius temperature on the International
Temperature Scale of 1990 (ITS-90)

USussex University of Sussex, Sussex, UK
UWash University of Washington, Seattle, Wash-

ington, USA
u Unified atomic mass unit: 1 u5mu

5m(12 C)/12
u(xi) Standard uncertainty (i.e., estimated stan-

dard deviation) of an estimated value xi of
a quantity Xi (also simply u)

ur(xi) Relative standard uncertainty of an esti-
mated value xi of a quantity Xi : ur(xi)
5u(xi)/uxiu, xiÞ0 (also simply ur)

u(xi , xj) Covariance of estimated values xi and xj
ur(xi , xj) Relative covariance of estimated values xi

and xj : ur(xi , xj)5u(xi , xj)/(xi xj), xi xj
Þ0

VNIIM D. I. Mendeleyev All-Russian Research
Institute for Metrology, St. Petersburg,
Russian Federation

V90 Conventional unit of voltage based on the
Josephson effect and KJ290 : V90
5(KJ290 /KJ) V

W90 Conventional unit of power: W90
5V90

2 /Ω90
XRCD x-ray crystal density (method of determin-

ing the Avogadro constant NA)
XROI Combined x ray and optical interferom-

eter
xu(Cu Ka1) Cu x unit: λ(Cu Ka1)51 537.400 xu(Cu Ka1)
xu(Mo Ka1) Mo x unit: λ(Mo Ka1)5707.831 xu(Mo Ka1)
x(X) Amount-of-substance fraction of X
Yale Yale University, New Haven, Connecticut,

USA
a Fine-structure constant: a5e2/4pe0\c
a Alpha particle (nucleus of 4He)
ΓX2908 (lo) ΓX2908 (lo)5(gX8 A90)A21, X5p or h
Γp2908 (hi) Γp2908 (hi)5(gp8/A90) A
gp Proton gyromagnetic ratio: gp52mp /\
gp8 Shielded proton gyromagnetic ratio:

gp852mp8/\
gh8 Shielded helion gyromagnetic ratio:

gh852umh8u/\
DnMu Muonium ground-state hyperfine splitting
de Additive correction to the theoretical ex-

pression for the electron magnetic mo-
ment anomaly ae

dMu Additive correction to the theoretical ex-
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pression for the ground-state hyperfine
splitting of muonium DnMu

dX(nLj) Additive correction to the theoretical ex-
pression for an energy level of X (either
hydrogen H or deuterium D) with quan-
tum numbers n, L, and j

dm Additive correction to the theoretical ex-
pression for the muon magnetic moment
anomaly am

e0 Electric constant: e051/m0c2

8 Symbol used to relate an input datum to
its theoretical expression in an observa-
tional equation

k(t) Volume magnetic susceptibility of water at
Celsius temperature t

λ(X Ka1) Wavelength of Ka1 x-ray line of element
X

λmeas Measured wavelength of the 2.2 MeV cap-
ture g ray emitted in the reaction
n1p→d1g

m Symbol for either member of the muon-
antimuon pair; when necessary, m2 or m1

is used to signify the negative muon or
positive muon

mB Bohr magneton: mB5e\/2me
mN Nuclear magneton: mN5e\/2mp
mX(Y) Magnetic moment of particle X in atom Y
m0 Magnetic constant: m054p31027 N/A2

mX , mX8 Magnetic moment, or shielded magnetic
moment, of particle X

n Degrees of freedom of a particular adjust-
ment

n(fp) Difference between muonium hyperfine
splitting Zeeman transition frequencies n34
and n12 at a magnetic flux density B corre-
sponding to the free proton NMR fre-
quency fp

s Stefan-Boltzmann constant:
s5p2k4/60\3c2

t Symbol for either member of the tau-
antitau pair; when necessary, t2 or t1 is
used to signify the negative tau or positve
tau

x2 The statistic ‘‘chi square’’
Ω90 Conventional unit of resistance based on

the quantum Hall effect and RK290 :Ω90
5(RK /RK290) V

I. INTRODUCTION

A. Background

CODATA, the Committee on Data for Science and
Technology, was established in 1966 as an interdiscipli-
nary committee of the International Council for Science
(ICSU), formerly the International Council of Scientific
Unions. It seeks to improve the quality, reliability, pro-
cessing, management, and accessibility of data of impor-
tance to science and technology.
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The CODATA Task Group on Fundamental Con-
stants was established in 1969. Its purpose is to periodi-
cally provide the scientific and technological communi-
ties with a self-consistent set of internationally
recommended values of the basic constants and conver-
sion factors of physics and chemistry based on all of the
relevant data available at a given point in time. The first
such set was published in 1973 (CODATA, 1973; Cohen
and Taylor, 1973) and the second in 1986 (Cohen and
Taylor, 1986; Cohen and Taylor, 1987). This paper gives
the third such set together with a detailed description of
the 1998 adjustment of the values of the subset of con-
stants on which it is based. Like its 1986 predecessor, the
1998 set of recommended values is available on the
World Wide Web at physics.nist.gov/constants.

The 1973 CODATA adjustment, and to some extent
that of 1986, built on the 1969 adjustment of Taylor,
Parker, and Langenberg (1969), which in turn built on
the 1965 adjustment of Cohen and DuMond (1965). Ad-
justments carried out in the 1950s include those of
Bearden and Thomsen (1957) and of Cohen et al.
(1955). The origin of such endeavors is the pioneering
analysis of the values of the constants carried out in the
late 1920s by Birge (1929). [His analysis was published
as the first paper in the first issue of the Reviews of
Modern Physics. Birge (1957) later made insightful ob-
servations concerning the evaluation of the constants
based on 30 years of experience.] Viewed from this per-
spective, the 1998 adjustment is simply the latest in a
continuing series that began 70 years ago.

The 1986 CODATA adjustment took into consider-
ation all relevant data available by 1 January 1986. Since
that closing date, a vast amount of new experimental
and theoretical work has been completed. The relative
standard uncertainties (that is, relative estimated stan-
dard deviations—see Sec. I.C) of the results of this new
work range from about 231023 for measurements of
the Newtonian constant of gravitation, to 3.4310213 for
a measurement of the frequency of the 1S–2S transition
in hydrogen, to essentially zero uncertainty for the ana-
lytic calculation of the sixth-order term in the theoretical
expression for the magnetic moment anomaly of the
electron.

The impact of the new results reported between the
closing date of the 1986 adjustment and mid-1990 on the
1986 recommended values was examined in a status re-
port by Taylor and Cohen (1990). They found that, in
general, the new results would have led to new values of
most of the constants with standard uncertainties one-
fifth to one-seventh of the standard uncertainties as-
signed the 1986 values, and that the absolute values of
the differences between the 1986 values and the new
values would have been less than twice the assigned un-
certainties of the earlier values. The reduction in the
1986 uncertainties was mainly due to three new results: a
new value of the fine-structure constant a obtained from
the electron magnetic moment anomaly, a new value of
the Planck constant h obtained from a moving-coil watt
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
balance experiment, and a new value of the molar gas
constant R obtained from a measurement of the speed
of sound in argon.

Because of the major role that these three additional
data would play in determining the values and uncer-
tainties of the constants in any future adjustment, Taylor
and Cohen suggested that before a new adjustment was
carried out, more data should be in hand that provide a
value of a, of h , and of R with an uncertainty compa-
rable to that of the corresponding new value and that
corroborates it. Although only a value of h that meets
this criterion has become available since their report, the
CODATA Task Group has decided that, because the
1986 set is some 13 years old and because the data al-
ready in hand can yield values of the constants with sig-
nificantly reduced uncertainties, it is time to provide a
new set of recommended values.

Because data that influence our knowledge of the val-
ues of the constants become available nearly continu-
ously, and because of the modern and highly beneficial
trend of having new information immediately and
widely available on the Web, the Task Group has also
decided that 13 years between adjustments is no longer
acceptable. In the future, by taking advantage of the
high degree of automation incorporated by the authors
in the 1998 adjustment, CODATA will issue a new set of
recommended values at least every 4 years, and more
frequently if a new result is reported that has a signifi-
cant impact on the values of the constants. This paper
has been written with this new approach in mind; we
have attempted both to structure it and to include suffi-
cient detail to allow future adjustments to be understood
with only a discussion of new work.

It should be recognized that carrying out an adjust-
ment provides two important results. The obvious one is
a self-consistent set of recommended values of the basic
constants and conversion factors of physics and chemis-
try; the less obvious one is an analysis of the broad spec-
trum of experimental and theoretical information rel-
evant to the constants. In general, such an analysis may
uncover errors in theoretical calculations or experi-
ments, will reevaluate uncertainties so that all are ex-
pressed as standard uncertainties, may identify inconsis-
tencies among results and weaknesses in certain areas,
possibly stimulating new experimental and theoretical
work, and will summarize a large amount of rather di-
verse information in one place.

It has long been recognized that a significant measure
of the correctness and over-all consistency of the basic
theories and experimental methods of physics is the
comparison of the values of the constants as obtained
from widely differing experiments. Nevertheless,
throughout this adjustment, as a working principle, we
assume the validity of the physical theory that underlies
it including special relativity, quantum mechanics, quan-
tum electrodynamics (QED), the standard model of par-
ticle physics, combined charge conjugation, parity inver-
sion, and time-reversal (CPT) invariance, and—as
discussed in Sec. II.D—the theory of the Josephson and
quantum Hall effects, especially the exactness of the re-
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lationships between the Josephson and von Klitzing con-
stants and the elementary charge e and Planck constant
h .

B. Units, quantity symbols, numerical values, numerical
calculations

We generally use in this paper units of the Interna-
tional System of Units, universally abbreviated SI from
the French name Système International d’Unités. De-
tailed descriptions of the SI, which is founded on seven
base units—the meter (m), kilogram (kg), second (s),
ampere (A), kelvin (K), mole (mol), and candela (cd)—
are given in a number of publications (BIPM, 1998; Tay-
lor, 1995).

We also generally employ symbols for quantities rec-
ommended by the International Organization for Stan-
dardization (ISO), the International Electrotechnical
Commission (IEC), the International Union of Pure and
Applied Chemistry (IUPAC), and the International
Union of Pure and Applied Physics (IUPAP) (ISO,
1993b; IEC, 1992; Mills et al., 1993; Cohen and Gia-
como, 1987). Following the recommendations of these
bodies, unit symbols are printed in roman (upright) type
and quantity symbols in italic (sloping) type. A subscript
or superscript on a quantity symbol is in roman type if
descriptive, such as the name of a person or a particle,
and the subscript or superscript is in italic type if it rep-
resents a quantity, a variable, or an index that represents
an integer.

The value of a quantity is expressed as a number
times a unit. Formally, the value of quantity A can be
written as A5$A%•@A# , where $A% is the numerical
value of the quantity A when A is expressed in the unit
[A] (ISO, 1993b). The numerical value $A% can there-
fore be written as $A%5A/@A# , where A/@A# is inter-
preted to mean the ratio of quantity A to a quantity of
the same kind with the value 1 @A# . An example of this
notation is 1 eV5(e/C) J'1.60310219 J, where e/C is
the numerical value of the elementary charge e when e
is expressed in the SI derived unit the coulomb, symbol
C.

Occasionally the reader may find that the stated result
of a calculation involving several quantities differs
slightly from the result one would obtain using the val-
ues of the quantities as given in the text. This is because
values of quantities are presented with a number of sig-
nificant figures appropriate to their associated standard
uncertainties (see the following section), whereas the
calculations are in general performed with values having
more significant figures in order to minimize rounding
error.

C. Uncertainties

Because the uncertainty assigned to a datum deter-
mines its level of agreement with other values of the
same quantity as well as its weight in a least-squares
adjustment, uncertainty evaluation is of critical impor-
tance.
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In evaluating and expressing the uncertainty to be as-
sociated with a result obtained either by measurement
or calculation, we follow to a great extent the philoso-
phy, terminology, and notation of the Guide to the Ex-
pression of Uncertainty in Measurement published by
ISO in the name of seven international organizations,
including IUPAC and IUPAP (ISO, 1993a). [A concise
summary is also available (Taylor and Kuyatt, 1994).]

The basic approach described in the Guide is straight-
forward and has been used in the field of precision mea-
surement and fundamental constants for many years.
The standard uncertainty u(y) (or simply u) of a result y
is taken to represent the estimated standard deviation
(the square root of the estimated variance) of y . If the
result y is obtained as a function of estimated values xi
of other quantities, y5f(x1 , x2 , . . . ), then the standard
uncertainty u(y) is obtained by combining the indi-
vidual standard uncertainty components u(xi), and co-
variances u(xi , xj) where appropriate, using the law of
propagation of uncertainty as given in Eq. (F11) of Ap-
pendix F. [The law of propagation of uncertainty is also
called the ‘‘root-sum-of squares’’ (square root of the
sum of the squares) or rss method.] The relative standard
uncertainty of a result y , ur(y) (or simply ur), is defined
by ur(y)5u(y)/uyu, if yÞ0, with an analogous definition
for individual components of uncertainty.

Further, the evaluation of a standard uncertainty by
the statistical analysis of series of observations is termed
a Type A evaluation, while an evaluation by means other
than the statistical analysis of series of observations is
termed a Type B evaluation. A Type A evaluation of
standard uncertainty is one based on any valid statistical
method for treating data, while a Type B evaluation is
usually based on scientific judgment using all the rel-
evant information available and an assumed probability
distribution for the possible values of the quantity in
question.

As part of our review of the data for the 1998 adjust-
ment, we carefully consider the uncertainty assigned to
each result in order to ensure that it has been properly
evaluated and that it represents a standard uncertainty.
We clearly indicate in the text those cases where we
have had to alter an uncertainty originally assigned by
an author, either because of our reevaluation or our ap-
plication of additional corrections. We also pay careful
attention to correlations among the data, calculating co-
variances and the corresponding correlation coefficients
whenever deemed necessary based on Eqs. (F 7) and
(F12) of Appendix F. However, if the absolute value of
the correlation coefficient is less than about 0.01, the
correlation between those particular items is usually ig-
nored because of its insignificant consequences.

In many cases involving theoretical expressions for
quantities it is necessary to evaluate the uncertainty due
to terms that are likely to exist but are not yet calcu-
lated. In such cases we assign an uncertainty, based on
experience with similar theoretical expressions where
terms are known, such that the absolute value of the
expected contribution of the uncalculated terms has a
probability of 68 % of being smaller than the assigned
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uncertainty, and we assume that such theoretical uncer-
tainties may be treated on an equal footing with statisti-
cally estimated standard deviations. The underlying
probability distribution is taken to be normal to the ex-
tent that there is a 95 % probability that the absolute
value of the contribution of the uncalculated terms is
smaller than twice the assigned uncertainty. Further in
regard to theoretical expressions for quantities, in cases
where only some terms of a given magnitude have been
calculated while other terms that are expected to be of
similar magnitude or even larger have not, we occasion-
ally follow the practice of not including the known terms
and accounting for all omitted terms by means of an
appropriate standard uncertainty.

In presenting numerical data in the text, we follow (in
part) the general form that has become common in the
precision measurement/fundamental constants field.
That is, we usually write a result as, for example,

y51 234.567 89~12!310210 U @9.731028# ,

where U represents a unit symbol and the number in
parentheses is the numerical value of the standard un-
certainty of y referred to the last figures of the quoted
value. The number in square brackets is the relative
standard uncertainty of y . (Note that we do not use
ppm, ppb, and the like to express relative standard un-
certainties, because such symbols are not part of the SI.)
Although not always justified, uncertainties are usually
quoted with two-figure accuracy to limit rounding errors
to an acceptable level. In general, numbers with more
than four figures on either side of the decimal point are
written with the figures in groups of three counting from
the decimal point toward the left and right, with the
exception that when there is a single separated figure
followed by a two-figure standard uncertainty in paren-
theses, the single figure is grouped with the previous
three figures. Thus we write, for example,
1.234 5678(12). It should also be understood that
12 345.6(1.2) means that the standard uncertainty of the
figures 5.6 is 1.2.

D. Data categorization and selection

In the past, the data entering a least-squares adjust-
ment of the constants were divided into two distinct cat-
egories: stochastic input data and auxiliary constants. In
general, stochastic input data were those quantities
whose values were simultaneously adjusted, while auxil-
iary constants were those quantities whose uncertainties
were judged to be sufficiently small, based on the mag-
nitude of the uncertainties and the way the quantities
entered the adjustment, that they could be taken as ex-
act. In other words, if the auxiliary constants were
treated as stochastic data, their values would not be sig-
nificantly changed by the adjustment. The motivation
for this classification scheme was in part computational
convenience (it reduces the number of ‘‘unknowns’’ in
the adjustment and hence the size of the matrices that
must be inverted).
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However, for the following reasons we abandon such
categorization in the 1998 adjustment and treat essen-
tially all quantities on an equal footing. First, with mod-
ern computers computational convenience is not a con-
sideration. Second, dividing the data into these
categories is somewhat arbitrary, and not doing so en-
sures that all components of uncertainty and correla-
tions are taken into account. Finally, as discussed in Sec.
I.A, it is the intention of the CODATA Task Group on
Fundamental Constants to issue sets of recommended
values of the constants more frequently, and one of the
purposes of this paper is to establish the framework for
doing so. Treating all data in essentially the same way
will provide continuity between adjustments by avoiding
changes in the classification of quantities from one ad-
justment to the next.

On the other hand, in a few cases in the current ad-
justment a constant that enters the analysis of input data
is taken as a fixed quantity rather than an adjusted quan-
tity. An example of the most extreme case is the Fermi
coupling constant, which is taken to have the fixed value
given by the Particle Data Group (Caso et al., 1998),
because the data that enter the current adjustment have
a negligible effect on its value. An intermediate case is
where a quantity is in some contexts taken as a variable
and in others as fixed. For example, the electron-muon
mass ratio me /mm is taken as an adjusted quantity in the
theoretical expression for the muonium hyperfine split-
ting, but it is taken as a fixed quantity in the calculation
of the theoretical expression for the magnetic moment
anomaly of the electron ae(th). The reason is that
ae(th) depends so weakly on me /mm that the particular
value used is unimportant. Consistent with these ex-
amples, we only omit the dependence when it is of no
consequence. However, in the intermediate cases, rather
than use arbitrary values for the fixed constants, we ef-
fectively use the 1998 recommended values by iterating
the least-squares adjustment several times and replacing
the fixed values by the adjusted values after each itera-
tion.

As in the 1986 adjustment, the initial selection of the
data for the 1998 adjustment is based on two main cri-
teria: the date on which the result became available and
its uncertainty.

Any datum considered for the 1998 adjustment had to
be available by 31 December 1998. As noted in Sec. I.A,
data that influence our knowledge of the values of the
constants become available nearly continuously, and it is
never a straightforward task to decide when to carry out
a new adjustment. Rather than delay the completion of
the current adjustment until a particular experiment or
calculation is completed, the above closing date was es-
tablished with the knowledge that, based on the new
schedule for adjustments (see Sec. I.A), changes in the
recommended values of the constants that might result
from the completion of work currently underway could
be taken into account within 2 years. A datum was con-
sidered to have met the 31 December 1998 closing date,
even though not yet reported in an archival journal, as
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long as a detailed written description of the work that
allowed a valid standard uncertainty to be assigned to
the datum was available.

As in the 1986 adjustment, each datum considered for
the 1998 adjustment had to have a standard uncertainty
u sufficiently small that its weight w51/u2 was non-
trivial in comparison with the weight of other directly
measured values of the same quantity. This requirement
means that in most cases a result was not considered if
its standard uncertainty was more than about five times
the standard uncertainty of other similar results, corre-
sponding to a weight smaller by a factor of less than
1/25. However, a datum that meets this criterion may
still not be included as a final input datum if it affects the
adjustment only weakly.

This ‘‘factor-of-five rule’’ accounts for the fact that an
experiment that determines the value of a particular
quantity with a valid uncertainty one-fifth to one-tenth
of the uncertainty achieved in another experiment is
necessarily qualitatively different from the other experi-
ment. In particular, it must be assumed that the more
accurate experiment achieved its significantly reduced
uncertainty because it was designed and carried out in
such a way that systematic effects at a level of only mar-
ginal concern in the less accurate experiment were care-
fully investigated.

In a number of cases, a particular laboratory has re-
ported two or more values of the same quantity ob-
tained from similar measurements carried out several
years apart, with the most recent value having a smaller
uncertainty due to improvements in apparatus and tech-
nique. Because of the many factors common to the re-
sults, such as personnel, method, equipment, and experi-
mental environment, they cannot be viewed as fully
independent. Hence, unless there are special circum-
stances (duly noted in the text), we adopt the general
policy that the latest result, which is usually the most
accurate, supersedes the earlier results of the same labo-
ratory.

E. Data evaluation procedures

In the 1986 adjustment, the data were analyzed using
two extended least-squares algorithms that were de-
signed to incorporate information on the reliability of
the initial standard uncertainty u assigned to each input
datum. This information was quantitatively represented
by n, the effective degrees of freedom associated with u ;
it was calculated from the Welch-Satterthwaite formula
and the effective degrees of freedom of each component
of uncertainty that contributed to u . In these calcula-
tions, the effective degrees of freedom of each Type B
component of uncertainty was somewhat arbitrarily
taken to be 1. This generally led to a comparatively
small effective degrees of freedom for each datum.

We have taken the opportunity of the 1998 adjust-
ment to review the idea of trying to quantify the ‘‘uncer-
tainty of an uncertainty’’ and of using the result of such
quantification in a modified least-squares algorithm. Af-
ter due consideration, we have been forced to conclude
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that while such an attempt may seem attractive initially,
it is virtually impossible to implement in a meaningful
way. This conclusion was reached as a consequence of
our detailed review of literally hundreds of experimental
and theoretical results relevant to the fundamental con-
stants, a review which has extended over nearly a 4 year
period and has involved well in excess of 1000 email
exchanges with both experimentalists and theorists in an
effort to understand and evaluate the uncertainties of
their results. Simply stated, because of the complexity of
measurements and calculations in the field of fundamen-
tal constants, it is difficult enough to evaluate the uncer-
tainty of a result in this field in a meaningful way, let
alone the ‘‘uncertainty’’ of that uncertainty. We have
therefore not calculated a value of n for any input datum
and use the standard least-squares algorithm in our data
analyses.

In further support of our approach, we make the fol-
lowing three observations:

First, although carrying out Type B evaluations of un-
certainty is rarely easy, it is our experience that such
evaluations are usually done reliably for known effects.
The difficulty with an experiment or theoretical calcula-
tion most often arises from an unrecognized effect, that
is, an effect for which no component of uncertainty has
been evaluated because its existence was not realized.
Trying to assign an ‘‘uncertainty to an uncertainty’’
based only on known components of uncertainty is not
necessarily reliable.

Second, as emphasized by a CODATA Task-Group-
member, if there are doubts about the reliability of an
initially assigned uncertainty, then one should use the
information on which the doubts are based to reevaluate
it (which in most cases means increasing the uncer-
tainty) so that the doubts are removed. In short, all
available information should be used in the evaluation
of components of uncertainty.

The third and final observation concerns the possibil-
ity of including a margin of safety in the recommended
values of the constants as is sometimes suggested. In
particular, should the uncertainty of the values include
an extra component so that they are ‘‘certain’’ to be
correct? We do not include such an extra component of
uncertainty, but rather give the best values based on all
the available information, which in some cases means
relying on the validity of the result of a single experi-
ment or calculation. This approach, which is consistent
with a view expressed earlier by one of the authors
(Taylor, 1971), provides a faithful representation of our
current state of knowledge with the unavoidable ele-
ment of risk that that knowledge may include an error
or oversight.

F. Outline of paper

The remainder of the paper is organized as follows:
Section II deals with special quantities and units such as
the speed of light in vacuum c , the unified atomic mass
unit u, the conventional values of the Josephson and von
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TABLE I. Some exact quantities relevant to the 1998 adjustment.

Quantity Symbol Value

speed of light in vacuum c , c0 299 792 458 m s21

magnetic constant m0 4p31027 N A22512.566 370 614 . . . 31027 N A22

electric constant e0 (m0c2)2158.854 187 817 . . . 310212 F m21

molar mass of 12C M(12C) 1231023 kg mol21

conventional value of Josephson constant KJ290 483 597.9 GHz V21

conventional value of von Klitzing constant RK290 25 812.807 V
Klitzing constants KJ290 and RK290 , and the conven-
tional electric units that they imply.

Section III and Appendices A to D are the most criti-
cal portions of the paper because they are devoted to
the review of all the available data that might be rel-
evant to the 1998 adjustment. This includes theoretical
expressions for bound-state corrections to magnetic mo-
ments (Sec. III.C.2.), energy levels of the hydrogen atom
(Appendix A), the magnetic moment anomalies of the
electron and muon ae and am (Appendices B and C),
and the ground-state hyperfine splitting in muonium
DnMu (Appendix D).

The experimental data include relative atomic masses
of various atoms, transition frequencies in hydrogen,
magnetic moment ratios involving various atomic par-
ticles such as the electron and muon, values of DnMu ,
shielded gyromagnetic ratios involving the proton and
the helion (nucleus of the 3He atom), values of the Jo-
sephson and von Klitzing constants KJ and RK , the
product KJ

2RK , the $220% lattice spacing of silicon d220 ,
the quotient h/mnd220 (mn is the neutron mass), the Far-
aday and molar gas constants, and the Newtonian con-
stant of gravitation.

In order to keep this paper to an acceptable length,
theoretical calculations and experiments are described
only in sufficient detail to allow the reader to understand
our treatment of them and the critical issues involved, if
any. It is left to the reader to consult the original papers
for additional details and to understand fully the diffi-
culty of experimentally determining the value of a quan-
tity with a relative standard uncertainty of 131028 (one
part in 100 million), or of calculating a fractional contri-
bution of 131028 to the theoretical expression for a
quantity such as DnMu .

There is nothing special about the order in which the
major categories of data are reviewed. It was selected on
the basis of what seemed reasonable to us, but a differ-
ent ordering could very well have been chosen. Simi-
larly, there is nothing special about the order in which
we review measurements of the same quantity from dif-
ferent laboratories. Factors that influenced our ordering
choice in any particular case include the uncertainty
quoted by the experimenters, the date the result was
published, and the alphabetical order of the laborato-
ries.

To avoid confusion, we identify a result by its year of
publication rather than the year the result became avail-
able. For example, if a result was given at a meeting in
1988 but the publication date of the paper formally re-
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porting the result is 1990, the date used in the result’s
identification is 1990 rather than 1988.

Section IV gives our analysis of the data. Their con-
sistency is examined by first comparing directly mea-
sured values of the same quantity, and then by compar-
ing directly measured values of different quantities
through the values of a third quantity such as the fine-
structure constant a or Planck constant h that may be
inferred from the values of the directly measured quan-
tities. The data are then examined using the standard
method of least squares, which is described in Appendix
E, and based on this study the final input data (including
their uncertainties) for the 1998 adjustment are deter-
mined.

Section V gives, in several tables, the 1998 CODATA
recommended values of the basic constants and conver-
sion factors of physics and chemistry. Included among
the tables is the covariance matrix of a selected group of
constants, the utilization of which, together with the law
of propagation of uncertainty, is reviewed in Appendix
F. The tables are followed by a summary of how the
1998 recommended values are obtained from the values
of the subset of constants resulting from the least-
squares fit of the final input data.

Section VI concludes the main text with a comparison
of the 1998 set of recommended values with the 1986 set,
a discussion of the implications of some of the 1998 rec-
ommended values, the outlook for the future based on
work currently underway, and suggestions for future
work.

II. SPECIAL QUANTITIES AND UNITS

Some special quantities and units that are relevant to
the 1998 adjustment are reviewed in the following sec-
tions. Those special quantities with exactly defined nu-
merical values are given in Table I.

A. Speed of light in vacuum c and realization of the meter

The current definition of the unit of length in the SI,
the meter, was adopted by the 17th General Conference
on Weights and Measures (CGPM, Conférence Générale
des Poids et Mesures) in 1983. It reads (BIPM, 1998)
‘‘The meter is the length of the path traveled by light in
vacuum during a time interval of 1/299 792 458 of a sec-
ond.’’ This definition replaced the definition adopted by
the 11th CGPM in 1960 based on the krypton 86 atom,
which in turn replaced the original definition of the
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meter adopted by the first CGPM in 1889 based on the
international Prototype of the meter. As a consequence
of the 1983 definition, the speed of light in vacuum c is
now an exact quantity:

c5299 792 458 m/s. (1)

A number of the experiments relevant to the 1998
adjustment of the constants require an accurate practical
realization of the meter. The three ways to realize the
meter recommended by the International Committee
for Weights and Measures (CIPM, Comité International
des Poids et Mesures) are (BIPM, 1998) (a) by means of
the length l traveled by electromagnetic waves in
vacuum in a time t using the relation l5c t ; (b) by
means of the wavelength in vacuum λ of a plane elec-
tromagnetic wave of frequency f using the relation λ

5c/f ; and (c) by means of one of the CIPM recom-
mended radiations and its stated wavelength or stated
frequency. The CIPM published its first list of recom-
mended values of specified radiations in 1983 (called
‘‘Mise en Pratique of the Definition of the Meter’’), and
subsequently issued an improved and extended Mise en
Pratique in 1992 and again in 1997 (Hudson, 1984;
Quinn, 1993; BIPM, 1998).

For experiments requiring the accurate measurement
of a length, except for those related to the determination
of the Rydberg constant, the changes in the recom-
mended values from one Mise en Pratique to the next
are well below the uncertainties of the experiments and
need not be taken into account. In the case of the Ryd-
berg constant, the changes would need to be taken into
account in analyzing data that span the changes in rec-
ommended values. However, as discussed in Sec. III.B,
the older data are no longer competitive, and in the
newer experiments the frequencies of the relevant lasers
used were determined in terms of the SI definition of the
second based on the cesium atom. That definition is as
follows (BIPM, 1998): ‘‘The second is the duration of
9 192 631 770 periods of the radiation corresponding to
the transition between the two hyperfine levels of the
ground state of the cesium 133 atom.’’

B. Magnetic constant m0 and electric constant e0

The definition of the ampere, the unit of electric cur-
rent in the SI, reads (BIPM, 1998) ‘‘The ampere is that
constant current which, if maintained in two straight
parallel conductors of infinite length, of negligible circu-
lar cross section, and placed 1 meter apart in vacuum,
would produce between these conductors a force equal
to 231027 N/m of length.’’

The expression from electromagnetic theory for the
force F per length l between two straight parallel con-
ductors a distance d apart in vacuum, of infinite length
and negligible cross section, and carrying currents I1 and
I2 is

F

l
5

m0I1I2

2pd
. (2)
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This expression and the definition of the ampere in com-
bination imply that the magnetic constant m0 , also
called the permeability of vacuum, is an exact quantity
given by

m054p31027 N A22

54p31027 H m21

512.566 370 614...31027 N A22. (3)

Because the electric constant e0 , also called the permit-
tivity of vacuum, is related to m0 by the expression e0
51/m0c2, it too is an exact quantity:

e05
1

4p31027 N A22 c2

58.854 187 817...310212 F m21. (4)

C. Electronvolt eV, unified atomic mass unit u, and related
quantities

The electron volt eV and the unified atomic mass unit
u are not units of the SI but are accepted for use with
the SI by the CIPM (BIPM, 1998). Energies and masses
of atomic particles are more conveniently expressed in
eV and u than in the corresponding SI units of energy
and mass, the joule and the kilogram, and in the case of
mass, with significantly smaller uncertainties.

One electronvolt is the kinetic energy acquired by an
electron in passing through a potential difference of 1 V
in vacuum. It is related to the joule by

1 eV5~e/C! J'1.60310219 J, (5)

where e is the elementary charge and e/C is the numeri-
cal value of the elementary charge when expressed in
the unit Coulomb (see Sec. I.B).

The unified atomic mass unit u is 1
12 times the mass

m(12C) of a free (noninteracting) neutral atom of car-
bon 12 at rest and in its ground state:

1 u5mu5
m~12C!

12
'1.66310227 kg, (6)

where the quantity mu is the atomic mass constant.
The relative atomic mass Ar(X) of an elementary par-

ticle, atom, or more generally an entity X, is defined by

Ar~X!5
m~X!

mu
, (7)

where m(X) is the mass of X. Thus Ar(X) is the nu-
merical value of m(X) when m(X) is expressed in u,
and evidently Ar(

12C)512 exactly. [For particles such
as the electron e and proton p, the symbol mX rather
than m(X) is used to denote the mass. Further, for mol-
ecules the term relative molecular mass and symbol
Mr(X) are used.]

The quantity ‘‘amount of substance’’ of a specified el-
ementary entity is one of the seven base quantities of
the SI, and its unit the mole, with symbol mol, is one of
the seven base units of the SI (BIPM, 1998). One mole is
the amount of substance n(X) of a collection of as many
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specified entities X as there are atoms in 0.012 kg of
carbon 12, where it is understood that the carbon atoms
are free, neutral, at rest, and in their ground state.

The molar mass M(X) is the mass of a collection of
entities X divided by the amount of substance n(X) of
the collection. Clearly, the molar mass of free carbon 12
atoms at rest, M(12C), is exactly

M~12C!51231023 kg mol21512 Mu , (8)

where for convenience we introduce the molar mass
constant Mu defined by

Mu51023 kg mol21, (9)

so that in general

M~X!5Ar~X! Mu . (10)

[Mills et al. (1993) use M °̄ to represent 1023 kg mol21,
but we believe that Mu is preferable, because it does not
require a special font.]

The Avogadro constant NA'6.0231023 mol21 is de-
fined as the quotient of the molar mass and atomic mass
constants:

NA5
Mu

mu
, (11)

or equivalently

NA5
M~X!

m~X!
. (12)

For a collection of L different types of free entities
X1, X2, . . . , XL , the total amount of substance of the
collective entity X is

n~X!5(
i51

L

n~Xi!, (13)

and

x~Xi!5
n~Xi!

n~X!
(14)

is the amount-of-substance fraction (also called mole
fraction) of entity Xi . The mean relative atomic mass of
X is given by

Ar~X!5(
i51

L

x~Xi! Ar~Xi!, (15)

and the mean molar mass is

M~X!5Ar~X! Mu . (16)

An example relevant to Sec. III.H is the mean molar
mass M(Ag) of the silver atoms of a given sample con-
taining the two naturally occurring isotopes 107Ag and
109Ag. In this case M(Ag)5Ar(Ag) Mu , where

Ar~Ag!5x~107Ag! Ar~
107Ag!1x~109Ag! Ar~

109Ag!,
(17)

and x(AAg)5n(AAg)/n(Ag) is the amount-of-
substance fraction of the silver isotope of nucleon num-
ber (mass number) A .
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D. Josephson effect and Josephson constant KJ , and
quantum Hall effect and von Klitzing constant RK

This section briefly reviews two truly remarkable
quantum phenomena of condensed-matter physics
known as the Josephson effect and quantum Hall effect,
as they relate to the fundamental physical constants.

1. Josephson effect

It is now well known that the ac and dc Josephson
effects are characteristic of weakly coupled supercon-
ductors, for example, a superconductor-insulator-
superconductor (SIS) tunnel junction, or a
superconductor-normal metal-superconductor (SNS)
weak link [see, for example, the book by Likharev
(1986)]. When such a Josephson device is irradiated with
electromagnetic radiation of frequency f , usually in the
range 10 GHz to 100 GHz, its current vs voltage curve
exhibits current steps at precisely quantized Josephson
voltages UJ . The voltage of the nth step, where n is an
integer, is related to the frequency f by

UJ~n !5
nf

KJ
. (18)

Here KJ is the Josephson constant, formerly called the
Josephson frequency–voltage quotient, because it is
equal to the step number n times the quotient of the
frequency and voltage. [Note that, under certain circum-
stances, steps that accurately obey Eq. (18) with n re-
placed by n6 1

2 may also be observed (Genevès et al.,
1993).]

An impressive body of experimental evidence has ac-
cumulated since the Josephson effect was predicted
nearly 40 years ago (Josephson, 1962) that clearly dem-
onstrates that KJ is a constant of nature. For example,
with different but small uncertainties, KJ has been
shown to be independent of experimental variables such
as irradiation frequency and power, current, step num-
ber, type of superconductor, and type of junction [see
Refs. 12 to 22 of Taylor and Witt (1989)]. In one experi-
ment (Tsai, Jain, and Lukens, 1983) it was shown that KJ
was the same for two SNS junctions composed of differ-
ent superconductors (biased on their n51 steps) to
within the 2310216 relative uncertainty of the compari-
son. More recently, it was shown that KJ for a weak link
of the high-Tc ceramic superconductor YBa2Cu3O72d
was equal to KJ for a weak link of Nb to within the 5
31028 relative uncertainty of the experiment (Tarbeyev
et al., 1991).

The theory of the Josephson effect predicts, and the
experimentally observed universality of KJ is consistent
with the prediction, that

KJ5
2e

h
'483 598 GHz/V, (19)

where e is the elementary charge and h is the Planck
constant (Clarke, 1970; Langenberg and Schrieffer,
1971; Hartle, Scalapino, and Sugar, 1971; Likharev,
1986). Some arguments given for the exactness of Eq.
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(19) are based on the quite general theoretical grounds
of flux conservation (Bloch, 1968, 1970; Fulton, 1973).

In keeping with the experimental and theoretical evi-
dence, we assume for the purpose of the 1998 adjust-
ment, as was assumed for the 1969, 1973, and 1986 ad-
justments (see Sec. I.A), that any correction to Eq. (19)
is negligible compared to the standard uncertainty of
measurements involving KJ . At present this uncertainty
is larger than 431028 KJ , and it is likely to be larger
than 131029 KJ for the foreseeable future.

2. Quantum Hall effect

It is also now well known that the integral and frac-
tional quantum Hall effects are characteristic of a two-
dimensional electron gas (or 2DEG) [see, for example,
the book by Prange and Girvin (1990)]. In practice, such
an electron gas may be realized in a high-mobility semi-
conductor device such as a GaAs–AlxGa12xAs hetero-
structure or a silicon-metal-oxide-semiconductor field-
effect transistor (MOSFET), of usual Hall-bar
geometry, when the applied magnetic flux density B is of
order 10 T and the device is cooled to a temperature of
order 1 K. Under these conditions, the 2D electron gas
is fully quantized and for a fixed current I through the
device, there are regions in the curve of UH vs. B for a
heterostructure, or of UH vs gate voltage Ug for a MOS-
FET, where the Hall voltage UH remains constant as B
or Ug is varied. These regions of constant UH are called
quantized Hall resistance plateaus.

In the limit of zero dissipation in the direction of cur-
rent flow, the quantized Hall resistance of the ith pla-
teau RH(i), which is the quotient of the Hall voltage of
the ith plateau UH(i) and the current I , is quantized:

RH~ i !5
UH~ i !

I
5

RK

i
, (20)

where i is an integer and RK is the von Klitzing constant.
(The integer i has been interpreted as the filling factor—
the number of Landau levels fully occupied and equal to
the number of electrons per flux quantum threading the
sample. We confine our discussion to the integral quan-
tum Hall effect because, to date, no experimental work
on the fractional quantum Hall effect is relevant to the
fundamental constants.) It follows from Eq. (20) that the
von Klitzing constant RK is equal to the quantized Hall
resistance of the ith plateau times the plateau number,
and hence is equal to the resistance of the first plateau.

As with the Josephson effect, a significant body of
experimental evidence has accumulated since the dis-
covery of the quantum Hall effect nearly 20 years ago
(von Klitzing, Dorda, and Pepper, 1980) that clearly
demonstrates that RK as defined by Eq. (20) is a con-
stant of nature. To measure this constant accurately, cer-
tain experimental criteria must be met. These criteria
are given in technical guidelines developed by the
CIPM’s Consultative Committee for Electricity and
Magnetism (CCEM, Comité Consultatif d’Électricité et
Magnetism, formerly Comité Consultatif d’Electricité or
CCE) and published by Delahaye (1989). Although the
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universality of RK has not yet been demonstrated to a
level of uncertainty approaching that for the Josephson
constant KJ , for dc currents in the range 10 mA to 50
mA and for ohmic contacts to the 2D electron gas with
resistances <1V , Jeckelmann, Jeanneret, and Inglis
(1997) have shown RK to be independent of device type,
device material, and plateau number within their experi-
mental relative uncertainty of about 3.5310210. In par-
ticular, these experimenters showed that the anomalous
values of RK observed for certain Si MOSFETs are very
likely due to the resistances of the voltage contacts on
the devices, and that the universal value of RK is found
if all the criteria of the CCEM technical guidelines are
met. In addition, Jeanneret et al. (1995) have shown that
for a specially prepared set of GaAs/AlGaAs hetero-
structures of widths that varied from 10 mm to 1 mm, RK
was independent of device width to within the 131029

relative uncertainty of the measurements. [Tests of the
universality of RK have also been carried out by other
researchers; see for example Refs. 28 to 34 of Taylor and
Witt (1989) and also Delahaye, Satrapinsky, and Witt
(1989); Piquemal et al. (1991); Delahaye and Bournaud
(1991); Hartland et al. (1991).]

The theory of the quantum Hall effect predicts, and
the experimentally observed universality of RK is consis-
tent with the prediction, that

RK5
h

e2
5

m0c

2a
'25 813 V , (21)

where as usual a is the fine-structure constant. There is a
vast literature on the quantum Hall effect [see, for ex-
ample, the bibliography compiled by Van Degrift, Cage,
and Girvin (1991) of important papers of the 1980s]. In
particular, there have been many publications on the
theory behind Eq. (21) and why it is believed to be an
exact relation, some of which invoke rather general prin-
ciples [see, for example, the books by Prange and Girvin
(1990), Stone (1992), and Janßen et al. (1994), the pa-
pers for nonspecialists by Yennie (1987) and Watson
(1996), and the popular article by Halperin (1986)].

In analogy with the Josephson effect, in keeping with
the experimental and theoretical evidence, we assume
for the purpose of the 1998 adjustment, as was assumed
for the 1986 adjustment, that any correction to Eq. (21)
is negligible compared to the standard uncertainty of
experiments involving RK . Currently this uncertainty is
larger than 231028 RK , and it is likely to be larger than
131029 RK for the foreseeable future. Since m0 and c
are exact constants in the SI, this assumption and Eq.
(21) imply that a measurement of RK in the unit V with
a given relative standard uncertainty provides a value of
a with the same relative standard uncertainty.

It is of interest to note that RK, a, and the character-
istic impedance of vacuum Z05Am0 /e05m0c'377 V
are related by

Z052a RK . (22)



363P. J. Mohr and B. N. Taylor: CODATA recommended values
E. Conventional Josephson constant KJ290 , conventional
von Klitzing constant RK290 , and conventional
electric units

It has long been recognized that the Josephson and
quantum Hall effects can be used to realize accurate and
reproducible representations of the (SI) volt and (SI)
ohm (Taylor et al., 1967; von Klitzing et al., 1980). In
order to achieve international uniformity in measure-
ments of voltage and resistance, on 1 January 1990 the
CIPM introduced new representations of the volt and
the ohm for worldwide use based on these effects and
conventional (i.e., adopted) values of the Josephson
constant KJ and von Klitzing constant RK (Quinn, 1989).
These assigned exact values, denoted, respectively, by
KJ290 and RK290 , are

KJ2905483 597.9 GHz/V (23a)

RK290525 812.807 V . (23b)

They were derived by the CCEM of the CIPM from an
analysis of all the relevant data available by 15 June
1988 (Taylor and Witt, 1989). These data included mea-
surements of KJ and RK as well as other fundamental
constants. The goal was to select conventional values of
the Josephson and von Klitzing constants (within certain
constraints) that were as close to their SI values as pos-
sible so that the new volt and ohm representations
would closely approximate the volt and the ohm.

For the purpose of the 1998 adjustment, we interpret
the CIPM’s adoption of KJ290 and RK290 as establishing
conventional, practical units of voltage and resistance
V90 and Ω90 defined by

KJ5483 597.9 GHz/V90 (24a)

RK525 812.807 Ω90 . (24b)

(Note that V90 and Ω90 are printed in italic type in rec-
ognition of the fact that they are physical quantities.)
The conventional units V90 and Ω90 are related to the SI
units V and V by

V905
KJ290

KJ
V (25a)

Ω905
RK

RK290
V , (25b)

which follow from Eqs. (23) and (24).
The conventional units V90 and Ω90 are readily real-

ized in the laboratory: 1 V90 is the voltage across the
terminals of an array of a large number of Josephson
devices in series when the product of the total number
of steps n of the array and the frequency f of the applied
microwave radiation is exactly 483 597.9 GHz [see Eq.
(18)]; and 1 Ω90 is exactly i/25 812.807 times the resis-
tance of the ith quantized Hall resistance plateau [see
Eq. (20)].

In practice, V90 can be realized at the 1 V level with a
relative standard uncertainty of less than 131029; and
Ω90 can be realized at the 1 V level with a relative stan-
dard uncertainty that approaches 131029. Such a small
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
uncertainty for V90 is possible because of the develop-
ment, beginning in the mid-1980s, of series arrays con-
sisting of some 20 000 Josephson tunnel junctions on a
single chip capable of generating well in excess of 10 V
[see, for example, Hamilton, Burroughs, and Benz
(1997); Pöpel (1992)]. The above uncertainties for V90
and Ω90 have been demonstrated, for example, through
comparisons carried out by the International Bureau of
Weights and Measures (BIPM, Bureau International des
Poids et Mesures), of the Josephson effect voltage stan-
dards and the quantum Hall effect resistance standards
of the national metrology institutes of various countries
with BIPM transportable versions of such standards [for
Josephson effect voltage standards see, for example,
Reymann et al. (1998); Quinn (1996); Witt (1995);
Quinn (1994); Reymann and Witt (1993); and for quan-
tum Hall effect resistance standards see Delahaye et al.
(1997); Delahaye et al. (1996); Delahaye et al. (1995)].

Other conventional electric units follow directly from
V90 and Ω90 . Examples are the conventional units of
electric current and power, A905V90 /Ω90 and W90
5V90

2 /Ω90 , which are related to the SI units A and W by

A905
KJ290RK290

KJRK
A (26a)

W905
KJ290

2 RK290

KJ
2RK

W. (26b)

Equation (26b) is noteworthy because, if one assumes
KJ52e/h and RK5h/e2, then

W90

W
5

KJ290
2 RK290

4
h . (27)

Since KJ290 and RK290 have no uncertainty, an experi-
mental determination of the unit ratio W90 /W with a
given uncertainty determines the Planck constant h with
the same relative uncertainty. This is the basis of the
watt-balance measurements of h discussed in Sec. III.G.

It is evident that for a voltage U ,

U5
U

V90
V905

U

V90

KJ290

KJ
V. (28)

That is, the numerical value of U when U is expressed in
the SI unit V, is equal to the numerical value of U when
U is expressed in the conventional unit V90 multiplied
by the ratio KJ290 /KJ . Similar expressions apply to
other electric quantities; those of interest here are resis-
tance R , current I , and power P . To summarize,

U5
U

V90

KJ290

KJ
V (29a)

R5
R

Ω90

RK

RK290
V (29b)

I5
I

A90

KJ290RK290

KJRK
A (29c)

P5
P

W90

KJ290
2 RK290

KJ
2RK

W. (29d)
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Throughout the 1998 adjustment we attempt to ex-
press all electric-unit-dependent quantities in terms of
conventional electric units. However, in some experi-
ments carried out prior to 1990, an alternative value of
KJ was adopted to define the laboratory unit of voltage
VLAB . We denote such values by KJ2LAB and apply ap-
propriate factors to convert to KJ290 . Further, prior to
1990, no laboratory unit of resistance was based on the
conventional value of RK , but in most cases of interest
the laboratory unit of resistance was calibrated using the
quantum Hall effect. That is, RK is known in terms of
ΩLAB at the time of the experiment. On the other hand,
if a laboratory’s practical units of voltage and resistance
were based on artifact voltage and resistance standards
such as standard cells and standard resistors with no
connection to the Josephson or quantum Hall effects,
then we have, for example, in analogy with Eq. (29a),
U5(U/VLAB)(VLAB /V) V, where in general the ratio
VLAB /V is not well known.

F. Acceleration of free fall g

The acceleration of free fall, or acceleration due to
gravity g , is of course not really a fundamental physical
constant: its fractional variation with height near the
Earth’s surface is 2331027 /m, its fractional variation
from equator to pole is about 0.5 %, and it can have
significant fractional variations over a day at a fixed lo-
cation, for example, of order 231027 at 40° latitude,
due mostly to the varying influences of the moon and
sun. For reference purposes, a conventional value called
‘‘standard acceleration of gravity’’ given by

gn59.806 65 m/s2 (30)

has been adopted internationally (BIPM, 1998).
A number of experiments relevant to the 1998 adjust-

ment, for example the measurement of KJ
2RK using a

watt balance (see Sec. III.G), require the determination
of a force based on the weight of a standard of mass and
hence the value of g at the site of the measurement.
Fortunately, significant advances in the development of
highly accurate, portable, and commercially available
absolute gravimeters have been made in recent years
[see, for example, Niebauer et al. (1995) and Sasagawa
et al. (1995)]. Such instruments allow g to be determined
at a given site with a sufficiently small uncertainty that
lack of knowledge of g is not a significant contributor to
the uncertainty of any experiment of interest in the ad-
justment. Indeed, the two most recent international
comparisons of absolute gravimeters, carried out in 1994
(ICAG94) and in 1997 (ICAG97) at the BIPM and or-
ganized by Working Group 6 of the International Grav-
ity Commission, show that g can be determined with
modern absolute gravimeters with a relative standard
uncertainty of the order of 431029 (Marson et al., 1995;
Robertsson, 1999). Although this uncertainty is negli-
gible compared to the approximate 931028 relative
standard uncertainty of the most accurate experiment
that requires knowledge of g , namely, the most recent
measurement of KJ

2RK (see Sec. III.G.2), the uncer-
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tainty of g may no longer be negligible if such experi-
ments achieve their anticipated level of uncertainty.

III. REVIEW OF DATA

This portion of the paper reviews the experimental
data relevant to the 1998 adjustment of the values of the
constants and in some cases the associated theory re-
quired for their interpretation. As summarized in Ap-
pendix E, in a least-squares analysis of the fundamental
constants the numerical data, both experimental and
theoretical, also called observational data or input data,
are expressed as functions of a set of independent vari-
ables called adjusted constants. The functions that relate
the input data to the adjusted constants are called obser-
vational equations, and the least-squares procedure pro-
vides best estimated values, in the least-squares sense, of
the adjusted constants. Thus the focus of this Review of
Data section is the identification and discussion of the
input data and observational equations of interest for
the 1998 adjustment. Although not all observational
equations that we use are explicitly given in the text, all
are summarized in Tables XVII.A.2 and XIX.B.2 of Sec.
IV.C.

A. Relative atomic masses

We consider here the relative atomic masses Ar(X)
(see Sec. II.C) of a number of particles and atoms that
are of interest for the 1998 adjustment. In this work, the
relative atomic masses of the electron Ar(e), neutron
Ar(n), proton Ar(p), deuteron Ar(d), helion Ar(h)
(the helion h is the nucleus of the 3He atom), and alpha
particle Ar(a) are included in the set of adjusted con-
stants. The relevant data are summarized in Tables II to
V, and are discussed in the following sections.

1. Atomic mass evaluation: 1995 update

A self-consistent set of values of the relative atomic
masses of the neutron and neutral atoms has been peri-

TABLE II. Values of the relative atomic masses of various
neutral atoms, as given in the 1995 update to the 1993 atomic
mass evaluation.

Atom
Relative atomic
mass Ar(X)

Relative standard
uncertainty ur

1H 1.007 825 032 14(35) 3.5310210

2H 2.014 101 777 99(36) 1.8310210

3He 3.016 029 309 70(86) 2.8310210

4He 4.002 603 2497(10) 2.5310210

28Si 27.976 926 5327(20) 7.0310211

29Si 28.976 494 719(30) 1.031029

30Si 29.973 770 218(45) 1.531029

36Ar 35.967 546 28(27) 7.631029

38Ar 37.962 732 16(53) 1.431028

40Ar 39.962 383 1232(30) 7.6310211

107Ag 106.905 0930(60) 5.631028

109Ag 108.904 7555(34) 3.131028
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odically generated for use by the scientific community
for many years. The values listed in Table II are taken
from the 1995 update of the 1993 atomic mass evalua-
tion of Audi and Wapstra (1993). The update, also due
to Audi and Wapstra, is available in printed form (Audi
and Wapstra, 1995), and a more extensive electronic
version is available at www-csnsm.in2p3.fr/amdc/
amdc–en.html, the Web site of the Atomic Mass Data
Center (AMDC), Centre de Spectrométrie Nucléaire et
de Spectrométrie de Masse (CSNSM), Orsay, France.

The 1995 update and the 1993 full evaluation are the
most recent compilations available. The latter replaced
the 1983 full evaluation (Wapstra and Audi, 1985), the
results of which were used in the 1986 adjustment, and
the next full evaluation is scheduled for completion in

TABLE III. Ground-state ionization energies for 1H and 2H,
and for neutral and ionized 3He, 4He, and 12C, where E rep-
resents EI or Eb as appropriate (see text).

Atom/ion

Ionization energy

(107 m21) (eV) 109E/muc2

1H 1.096 787 717 13.5984 14.5985
2H 1.097 086 146 13.6021 14.6025
3He I 1.983 002 24.5861 26.3942
3He II 4.388 892 54.4153 58.4173
3He Total 6.371 894 79.0014 84.8115
4He I 1.983 107 24.5874 26.3956
4He II 4.389 089 54.4178 58.4199
4He Total 6.372 195 79.0051 84.8155
12C I 0.908 204 11.2603 12.0884
12C II 1.966 647 24.3833 26.1766
12C III 3.862 410 47.8878 51.4096
12C IV 5.201 784 64.4939 69.2370
12C V 31.623 950 392.087 420.923
12C VI 39.520 614 489.993 526.029
12C Total 83.083 610 1030.105 1105.864

TABLE IV. Input value of the mass ratio 6me /m(12C61) and
the value of Ar(e) it implies; values of Ar(p), Ar(d), Ar(h),
and Ar(a) that may be inferred from the relative atomic
masses of the corresponding neutral atoms as given in Table II;
and input value of the mass ratio m(12C41)/4mp and the value
of Ar(p) it implies.

Quantity Value
Relative standard

uncertainty ur

6me /m(12C61) 0.000 274 365 185 89(58) 2.131029

Ar(e) 0.000 548 579 9111(12) 2.131029

Ar(p) 1.007 276 466 83(35) 3.5310210

Ar(d) 2.013 553 212 68(36) 1.8310210

Ar(h) 3.014 932 234 69(86) 2.8310210

Ar(a) 4.001 506 1747(10) 2.5310210

m(12C41)/4mp 2.977 783 715 20(42) 1.4310210

Ar(p) 1.007 276 466 89(14) 1.4310210
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2000 (Audi and Wapstra, 1999). Many of the values
given in the 1995 update that are of greatest interest to
the 1998 adjustment are strongly influenced by the
highly accurate mass ratio measurements made by both
the MIT and the University of Washington groups using
single ions stored in a Penning trap (DiFilippo et al.,
1995a; DiFilippo et al., 1995b; DiFilippo et al., 1994; Van
Dyck, 1995; Van Dyck, Farnham, and Schwingberg,
1995; Van Dyck, Farnham, and Schwingberg, 1993a;
Van Dyck, Farnham, and Schwingberg, 1993b).

The relative atomic mass of the neutron Ar(n) and its
treatment in the 1998 adjustment are discussed in Sec.
III.A.3.c.

2. Binding energies

To calculate the relative atomic masses of various nu-
clei from the data of Table II, and to calculate Ar(e)
from the measured ratio 6me /m(12C61) (see Sec.
III.A.3.a) and Ar(p) from the measured ratio
m(12C41)/4mp (see Sec. III.A.3.b) requires the ioniza-
tion energies EI given in Table III. In that table, the
value quoted for each atom or ion is the energy required
to remove one electron from the ground state and leave
the atom or ion in the ground state of the next higher
charge state. The total ionization energies, or binding
energies Eb (the sum of the individual ionization ener-
gies), of 3He, 4He, and 12C are also given.

In Table III, the wave numbers for the binding ener-
gies for 1H and 2H are obtained from the 1998 recom-
mended values of the relevant constants and the analysis
of Appendix A. For 4He I we use the wave number
given by Drake and Martin (1998), and for the 3He I and
4He I difference, we use the value recommended by
Martin (1998). The other wave numbers are those given
by Kelly (1987). However, since Kelly’s values for hy-
drogenic helium and hydrogenic carbon are the same as
the values calculated by Erickson (1977) who used the
1973 CODATA value of R` (Cohen and Taylor, 1973),
for completeness we rescale these values by the ratio of
the 1998 to the 1973 recommended values of R` . For
information, we also give the binding energies in eV,
obtained using the 1998 recommended value for the fac-
tor that relates wave numbers in m21 to the equivalent
energy in eV. The last column of the table gives the ratio

TABLE V. The variances, covariances, and correlation coeffi-
cients of the values of the relative atomic masses of hydrogen,
deuterium, and the helium three atom [the covariances involv-
ing Ar(

4He) are negligible]. The numbers in boldface above
the main diagonal are 1018 times the numerical values of the
covariances; the numbers in boldface on the main diagonal are
1018 times the numerical values of the variances; and the num-
bers in italics below the main diagonal are the correlation co-
efficients.

Ar(
1H) Ar(

2H) Ar(
3He)

Ar(
1H) 0.1234 0.0402 0.0027

Ar(
2H) 0.3141 0.1328 0.0088

Ar(
3He) 0.0089 0.0281 0.7330
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of the binding energy to the energy equivalent of the
atomic mass constant obtained using the 1998 recom-
mended value for the factor that relates wave numbers
in m21 to the equivalent mass in u. The uncertainties of
these two conversion factors are negligible in this appli-
cation (see Table XXX for their values). No uncertain-
ties are given for the binding energies in Table III, be-
cause they are inconsequential compared to the
uncertainties of the quantities with which the binding
energies are used. Indeed, binding energies represent
sufficiently small corrections that the number of signifi-
cant digits shown in the last column of the table is more
than needed.

3. Relative atomic masses of e, n, p, d, h, and a particle

We give in Table IV the measured value of the mass
ratio 6me /m(12C61) and the value of the relative atomic
mass of the electron Ar(e) that it implies. These are
followed by the values of the relative atomic masses
Ar(p), Ar(d), Ar(h), and Ar(a) inferred from the data
in Tables II and III. The last two entries are the mea-
sured value of the mass ratio m(12C41)/4mp and the
value of Ar(p) it implies. Each inferred value is in-
dented for clarity and is given for comparison purposes
only; in practice, it is the data from which they are ob-
tained that are used as the input data in the 1998 adjust-
ment (as noted above, the relative atomic masses of p, d,
h, and a are adjusted constants). These data are, in ad-
dition to 6me /m(12C61) and m(12C41)/4mp , the values
of Ar(

1H), Ar(
2H), Ar(

3He), Ar(
4He) given in Table

II, and their relevant covariances given in Table V. The
following subsections discuss in some detail Tables IV
and V and our treatment of Ar(n).

a. Electron

Using a Penning trap mass spectrometer, Farnham,
Van Dyck, and Schwinberg (1995) at the University of
Washington measured the ratio of the cyclotron fre-
quency of a fully ionized carbon 12 atom fc(

12C61)
56eB/2pm(12C61) to the cyclotron frequency of an
electron fc(e)5eB/2pme in the same magnetic flux den-
sity B . The value of the ratio they report, which is based
on the simple mean of six values obtained in separate
runs, is

fc~
12C61!

fc~e!
5

6me

m~12C61!
5

6Ar~e!

Ar~
12C61!

50.000 274 365 185 89~58! @2.131029# .

(31)

Although adequate resolution was achieved for the de-
termination of fc(

12C61) using single ions, most of the
electron cyclotron frequency data were taken using
small clouds consisting of 5 to 13 electrons in order to
achieve the necessary resolution. Because of the insta-
bility of the magnetic flux density B , it was necessary to
acquire data over a time period sufficiently long to de-
termine the fractional drift rate of B , which was about
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2310210 h21, and to average out short-term fluctuations
that on occasion were observed to be as large as 63
31029 B . For example, the value of the frequency ratio
resulting from one of the six runs was obtained by com-
paring 3 d of fc(

12C61) data with 2 d of fc(e) data.
In their experiment Farnham et al. (1995) investigated

and took into account a number of systematic effects,
including the influence of the number of electrons in the
cloud and magnetic-field gradients. The net fractional
correction for such effects that had to be applied to the
simple mean of the six values was 21.631029. The sta-
tistical relative standard uncertainty of the mean was
found to be 1.031029 (Type A), while the relative stan-
dard uncertainty due to all systematic effects was 1.9
31029 (Type B).

The relation of Ar(e) to the ratio 6me /m(12C61) fol-
lows from the expression for the mass m(X) of a neutral
atom X in terms of its constituents:

m~X!c25m~N!c21Zmec
22Eb~X!, (32)

where m(N) is the mass of the nucleus of the atom, Z is
its atomic number, and Eb is the total binding energy of
its Z electrons. This relation together with Eq. (31) and
the definition Ar(

12C)512 yields

Ar~e!5
1
6 F121

Eb~
12C!

muc2 G F11
m~12C61!

6me
G21

, (33)

or the following observational equation for the value of
the ratio given in Eq. (31):

6me

m~12C61!
8

6Ar~e!

1226Ar~e!1Eb~
12C!/muc2

. (34)

Here, the symbol 8 is used, because in general an ob-
servational equation does not express an equality (see
Sec. IV.C). Although the quantity

muc25
2R`hc

a2Ar~e!
(35)

in Eq. (34) is a function of adjusted constants (excepting
c), we take the ratio Eb(12C)/muc2 to be an exact fixed
number, because in this context its uncertainty is negli-
gible and Eq. (34) does not have a significant influence
on its value. There are, however, cases in which the de-
pendence of muc2 on the adjusted constants must be
taken into account.

Using the value of 6me /m(12C61) given in Eq. (31)
and the value of Eb(12C)/muc2 given in Table III, we
obtain from Eq. (33)

Ar~e!50.000 548 579 9111~12! @2.131029# . (36)

Unfortunately, there is no other direct measurement
of Ar(e) with which this result may be compared. How-
ever, using it and the 1998 recommended value of
Ar(p), which has a significantly smaller uncertainty, we
can obtain a value of the mass ratio mp /me and compare
it to other measured values of this ratio. The result for
mp /me based on Eq. (36) is
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mp

me
51 836.152 6670~39! @2.131029# . (37)

This may be compared to mp /me51 836.152 701(37)
@2.031028# , which was obtained from similar Penning
trap cyclotron frequency measurements on single elec-
trons and protons at the University of Washington by
Van Dyck et al. (1986a), and which was used as an aux-
iliary constant in the 1986 adjustment. The two values
are in agreement, differing by less than the standard un-
certainty of their difference.

The two less accurate values mp /me
51 836.152 680(88) and mp /me51 836.152 68(10) also
agree with Eq. (37). The first was obtained by Gabrielse
et al. (1990a) as a result of experiments at CERN (Eu-
ropean Laboratory for Particle Physics, Geneva, Swit-
zerland) to determine the antiproton–proton mass ratio
from cyclotron frequency measurements in a Penning
trap of a radically different geometry than that used in
the University of Washington experiments. The second
was obtained by de Beauvoir et al. (1997) from their
analysis of earlier absolute frequency measurements of
the 2S–8S/D transitions in hydrogen and deuterium car-
ried out for the determination of the Rydberg constant
(see Sec. III.B).

Because the relative standard uncertainty of the Farn-
ham et al. (1995) value of Ar(e) is about one-tenth of
the uncertainty of the value of Ar(e) that could be de-
rived from the Van Dyck et al. (1986a) result for
mp /me , and because both experiments were carried out
in the same laboratory using similar techniques, we view
the 1995 result as superseding the 1986 result. Therefore
the earlier value is not included as an input datum in the
1998 adjustment.

b. Proton, deuteron, helion, and a particle

Values of the relative atomic masses Ar(p), Ar(d),
Ar(h), and Ar(a) may be calculated by dividing Eq.
(32) by muc2 and solving for the relative atomic mass of
the nucleus m(N)/mu5Ar(N). The observational equa-
tion for the relative atomic mass of a neutral atom X in
terms of Ar(N) and Ar(e) is thus

Ar~X!8Ar~N!1ZAr~e!2
Eb~X!

muc2
. (38)

Evaluation of this expression with the relative atomic
masses of the atoms 1H, 2H, 3He, and 4He in Table II,
the 1998 recommended value of Ar(e), and the ratios
Eb /muc2 in Table III yields the inferred values in Table
IV. In this application, the uncertainty of Ar(e) is neg-
ligible.

Because the values of Ar(
1H), Ar(

2H), Ar(
3He), and

Ar(
4He) of Audi and Wapstra (1995) are the results of a

least-squares calculation, they are correlated. Table V
gives their non-negligible covariances and, for informa-
tion, the corresponding correlation coefficients [see Ap-
pendix F, Eq. (F12)], all based on the covariances given
by Audi and Wapstra in the electronic version of their
1995 update.
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Recently, the University of Washington group has sig-
nificantly improved its Penning trap mass spectrometer
by replacing the existing magnet-cryostat system by a
specially designed system that reduces fluctuations of
the applied magnetic flux density B to about 2
310211B h21 (Van Dyck et al., 1999b). Such fluctuations
were a major contributor to the uncertainties of the
group’s earlier mass ratio measurements [see Van Dyck
(1995), Van Dyck et al. (1995), and the above discussion
of the measurement of 6me /m(12C61) by Farnham et al.
(1995)]. Using the new spectrometer, Van Dyck et al.
(1999a) have determined the ratio of the cyclotron fre-
quency of a proton fc(p) to that of a four-times-ionized
carbon 12 atom fc(

12C41) in the same flux density and
obtained (Van Dyck, 1999)

fc~p!

fc~
12C41!

5
m~12C41!

4mp
5

Ar~
12C41!

4Ar~p!

52.977 783 715 20~42! @1.4310210# . (39)

In this first significant mass ratio measurement with the
new spectrometer, Van Dyck et al. (1999a) carefully in-
vestigated a number of systematic effects and assigned a
component of relative standard uncertainty (Type B) to
the frequency ratio in the range 1310211 to 8310211 for
each effect. The two largest components are 8310211

for a residual temperature and/or pressure effect and 7
310211 for the influence of the applied axial drive
power. The statistical relative standard uncertainty
(Type A) is given as 5310211.

The observational equation for the measured ratio
m(12C41)/4mp is, in analogy with Eq. (34),

m~12C41!

4mp
8

1224Ar~e!1@Eb~
12C!2Eb~

12C41!#/muc2

4Ar~p!
,

(40)

where Eb(12C41)/muc2 is the relative atomic mass
equivalent of the binding energy of a 12C41 atom and
from Table III is equal to 946.95231029. Using this re-
sult and the value of Eb(12C)/muc2 also from Table III,
the 1998 recommended value of Ar(e), the uncertainty
of which is negligible in this context, and the value of
m(12C41)/4mp given in Eq. (39), we find from Eq. (40)

Ar~p!51.007 276 466 89~14! @1.4310210# . (41)

This inferred value, which is the last entry of Table IV,
agrees with the inferred value of Ar(p) also given in that
table and which was obtained from Ar(

1H). However,
the value of Ar(p) implied by m(12C41)/4mp has an un-
certainty 0.4 times that of the value implied by Ar(

1H).
Although the 1995 value of Ar(

1H) of Audi and Wap-
stra is based in part on earlier University of Washington
mass ratio measurements, we take both the 1995 value
of Ar(

1H) and the value of m(12C41)/4mp as input data
in the 1998 adjustment. This is justified by the fact that
the new result was obtained from a significantly modi-
fied and improved apparatus.

c. Neutron

The relative atomic mass of the neutron Ar(n) is one
of the results of the least-squares adjustment carried out



368 P. J. Mohr and B. N. Taylor: CODATA recommended values
by Audi and Wapstra to obtain their 1995 recommended
values of relative atomic masses. They give

Ar~n!51.008 664 9233~22! @2.231029# . (42)

The input datum that most affects the adjusted value of
Ar(n), in the sense that its uncertainty makes the largest
contribution to the uncertainty of Ar(n), is the binding
energy of the neutron in the deuteron Sn(d). This bind-
ing energy is determined by measuring the 2.2 MeV cap-
ture g ray emitted in the reaction n1p→d1g. The value
of Sn(d) employed by Audi and Wapstra in their adjust-
ment is the result obtained by Wapstra (1990), who cal-
culated the weighted mean of four different measured
values (Greene et al., 1986; Adam, Hnatowicz, and Ku-
gler, 1983; Van Der Leun and Alderliesten, 1982; Vylov
et al., 1982). The analysis of Wapstra took into account
the known error in all four results due to the approxi-
mate 1.831026 fractional error in the measurement of
the $220% lattice spacing of silicon (see Sec. III.I.1). Of
these four values, that of Greene et al. (1986) carried the
dominant weight and thus played a major role in the
determination of the 1995 value of Ar(n) given in Eq.
(42).

The relation between the neutron mass and the bind-
ing energy Sn(d) is

mnc25mdc22mpc21Sn~d!, (43)

which is equivalent to

Ar~n!5Ar~d!2Ar~p!1
Sn~d!

muc2
, (44)

or

Ar~n!5Ar~
2H!2Ar~

1H!1
Sn~d!

muc2
(45)

if one neglects the inconsequential difference in binding
energy of the electron in hydrogen and deuterium.

The Greene et al. (1986) result for the wavelength of
the critical 2.2 MeV capture g ray was obtained at the
GAMS4 crystal diffraction facility at the high-flux reac-
tor of the Institut Max von Laue-Paul Langevin (ILL),
Grenoble, France, using a flat crystal spectrometer in a
National Institute of Standards and Technology (NIST,
formerly the National Bureau of Standards, NBS),
Gaithersburg, MD, and ILL collaboration. In the follow-
ing 10 years, a number of improvements were incorpo-
rated into the GAMS4 facility including a vibration-
isolation platform for the crystal spectrometer,
improved angle interferometers, a permanently installed
angle calibration facility, advanced g-ray detection in-
strumentation, and temperature stabilization of the
spectrometer. Motivated by the fact that these improve-
ments might have significantly reduced or eliminated er-
rors that were possibly present in the Greene et al.
(1986) determination, in a second NIST-ILL collabora-
tion, Kessler et al. (1999a) remeasured the wavelength
of the 2.2 MeV g ray. Their result, obtained in two sepa-
rate measurement campaigns (February–March 1995
and March 1998), has an uncertainty that is nearly one-
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
sixth of the 131026 relative standard uncertainty of the
earlier result. However, the new result is smaller than
the earlier result by the fractional amount 4.231026.
Although the reason for the discrepancy between the
two values is not fully understood, the NIST-ILL re-
searchers put forward plausible reasons why the earlier
result might be in error. In view of the many GAMS4
improvements and the agreement between the results
obtained in two measurement campaigns 3 years apart
and from three different crystal configurations, the re-
searchers believe that the new result is significantly
more reliable, and it is the only one we consider. [The
uncertainties of the other values used by Wapstra (1990)
in his analysis are so large compared to the uncertainty
of the new result that those values are no longer com-
petitive. Note that the work of Röttger, Paul, and Key-
ser (1997) is not relevant, because they did not employ
an independent calibration of their Ge detector in the
2.2 MeV region.]

The new measurements were carried out with the ILL
GAMS4 two-axis flat silicon crystal spectrometer in
transmission at 26 °C and in air at a pressure p
'100 kPa. All angle measurements were corrected to a
crystal temperature of 22.5 °C using the accepted linear
thermal coefficient of expansion of silicon. Each silicon
crystal in the spectrometer is a 2.5 mm thick plate cut in
such a way that the (220) lattice planes are perpendicu-
lar to the crystal surface and oriented so that the normal
to the crystal planes is normal to the axis of rotation (for
a detailed discussion of the $220% lattice spacing of Si, see
Sec. III.I). The final value of the relevant first-order
Bragg angle from all of the data, taking into account all
known components of uncertainty (both Type A and
Type B), is (in radians)

umeas50.001 452 152 24~25! @1.731027# . (46)

This result is based on 52 Bragg-angle measurements
made in February–March 1995 in two separate orders
and 89 measurements made in March 1998 in three sepa-
rate orders. The angle interferometer of the GAMS4
spectrometer was calibrated once at the time of the 1995
runs and three times at the time of the 1998 runs. The
final result given in Eq. (46) is the weighted mean of the
two values obtained in the two campaigns, and its rela-
tive standard uncertainty includes Type B components
from systematic effects that total 1.131027.

Based on the Bragg relation, the measured wave-
length of the emitted gamma ray λmeas is given by

λmeas52d220~ ILL!S 12
p

c1112c12
D sin umeas . (47)

In Eq. (47), d220(ILL) is the $220% lattice spacing of the
2.5 mm thick silicon crystals of the ILL GAMS4 spec-
trometer at 22.5 °C in vacuum. Further, in Eq. (47), the
volume-compressibility-related term in parentheses,
with elastic constants c115165.7 GPa and c12563.9 GPa
(McSkimin, 1953), accounts for the fact that the crystals
were actually in air at p'100 kPa and the lattice spacing
variables we use in the adjustment apply to Si crystals at
the reference temperature 22.5 °C in vacuum (see Sec.
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III.I). Since the effect of pressure on the lattice spacing
is small and the elastic constants are relatively well
known, this factor introduces no uncertainty. The input
datum determined in this measurement is therefore

λmeas

d220~ ILL!
50.002 904 302 46~50! @1.731027# . (48)

In the NIST-ILL experiment, the protons are in hy-
drogen atoms of a plastic target and the incident neu-
trons have negligible kinetic energy, hence it may be
assumed that the initial state is one of a proton and
neutron at rest. The final state consists of a photon and a
recoiling deuteron. The relativistic kinematics of this re-
action gives

cλmeas

h
52

mn1mp

~mn1mp!22md
2 , (49)

which, with the aid of Eq. (35), yields the following ob-
servational equation for the input datum given in Eq.
(48):

λmeas

d220~ ILL!
8

a2Ar~e!

R`d220~ ILL!

Ar~n!1Ar~p!

@Ar~n!1Ar~p!#22Ar
2~d!

,

(50)

where d220(ILL) on the right-hand side is also an ad-
justed constant. Note that, although treating the recoil
relativistically gives an observational equation that is
simpler than its nonrelativistic analog, the nonrelativistic
treatment is a good approximation. Further, because the
value of Sn(d) used by Audi and Wapstra in their 1995
update has negligible impact on the determination of
their 1995 values of Ar(

1H) and Ar(
2H) (Audi and

Wapstra, 1998), it is legitimate to use the latter as input
data by means of Eq. (38) together with Eqs. (48) and
(50).

As part of their effort to redetermine Sn(d), Kessler
et al. (1999a) compared a presumably representative
sample of the ILL Si crystals to samples of three other Si
crystals in order to obtain the lattice spacing of the ILL
crystal in meters. These three crystals, whose signifi-
cance is discussed in Sec. III.I, are labeled WASO 17,
MO* 4, and SH1. (Note that throughout this paper, the
designation WASO n is abbreviated as Wn in equa-
tions.) The results of the comparisons, which we also
take as input data, are

d220~ ILL!2d220~W17!

d220~ ILL!
528~22!31029 (51)

d220~ ILL!2d220~MO* 4!

d220~ ILL!
586~27!31029 (52)

d220~ ILL!2d220~SH1!

d220~ ILL!
534~22!31029. (53)

Related results from the Physikalisch–Technische
Bundesanstalt (PTB), Braunschweig, Germany, are
given in Sec. III.I, together with additional discussion of
lattice spacing comparisons. Here we note that the dis-
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agreement between NIST and PTB lattice comparison
results reported by Kessler, Schweppe, and Deslattes
(1997) has been reduced to a statistically acceptable
level by subsequent work of the NIST group (Kessler
et al., 1999b). This was accomplished by employing an
improved method of surface preparation of the silicon
samples and eliminating temperature measurement er-
rors. The above results were obtained after these ad-
vances were incorporated into the NIST lattice compari-
son protocol.

It is important to recognize that crystal designations
such as ILL, WASO 17, MO* 4, etc., refer to any one of
several samples from a particular large single-crystal sili-
con boule, and in general precision measurements in-
volving a silicon lattice spacing and lattice spacing com-
parisons are carried out with different samples.
Measurements of lattice spacings as a function of posi-
tion in a boule typically show fractional variations at the
level of 131028 or more over its volume, where the
actual variations depend on the level of impurities in the
boule (Kessler et al., 1999b; Windisch and Becker, 1990).
In general, to account for this variation, we assign a
component of relative standard uncertainty of &
31028 to the lattice spacing of each crystal sample, such
that the measured lattice spacing difference between any
two particular samples from the same boule includes a
component of uncertainty of 231028. Thus the uncer-
tainty of the value of λmeas /d220(ILL) given in Eq. (48)
contains a component of relative standard uncertainty of
&31028 in addition to the components assigned by
Kessler et al. (1999a). For measurements involving
MO* 4 samples, the additional component of uncer-
tainty assigned is (3/&)31028, because the MO* 4 crys-
tal contains an unusually large amount of carbon (Mar-
tin et al., 1999). This uncertainty is consistent with the
fractional difference results obtained at NIST and PTB
using different samples of the MO* 4 crystal.

The standard uncertainty of each of the above frac-
tional differences includes appropriate uncertainty com-
ponents for sample variation as just discussed, the 9.3
31029 standard uncertainty (Type B) of the NIST in-
strument used to compare the lattice spacings of differ-
ent crystals, and the statistically calculated standard un-
certainty (Type A) of order 431029 of each comparison
(Kessler, 1999). This last uncertainty is the standard de-
viation of the mean of several measurements made over
the length of the sample being compared to the ILL
crystal, but due to the limited size of the sample, this
statistical component of uncertainty does not account
for lattice spacing variations among different crystals
from the same boule.

Because there is a total component of uncertainty of
1.631028 common to the uncertainty of the NIST frac-
tional differences given above, the covariance of any two
of them is 258310218 [see Appendix F, Eq. (F7)] and
leads to correlation coefficients of approximately 0.5.

The 1998 recommended value of Ar(n), which relies
heavily on the NIST-ILL measurement of the 2.2 MeV
capture g ray, is
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TABLE VI. Summary of reported values of the Rydberg constant R` with a relative standard uncertainty 10210,ur,1029 and
the 1986 CODATA value (H is hydrogen and D is deuterium).

Authors Laboratorya
Atom and
transition

Reported value
R` /m21 1010ur

CODATA 1986 (Cohen and Taylor, 1987) 10 973 731.534(13) 12
Biraben et al. (1986) LKB H,D: 2S–8D/10D 10 973 731.5692(60) 5.5
Zhao et al. (1986) Yale H,D: 2S–3P 10 973 731.5689(71) 6.5
Zhao et al. (1987, 1989) Yale H,D: 2S–4P 10 973 731.5731(29) 2.6
Beausoleil et al. (1987); Beausoleil (1986) Stanford H: 1S–2S 10 973 731.5715(67) 6.1
Boshier et al. (1987, 1989) Oxford H,D: 1S–2S 10 973 731.5731(31) 2.8
McIntyre et al. (1989) Stanford H: 1S–2S 10 973 731.5686(78) 7.1
Biraben et al. (1989); Garreau et al. (1990a,

1990b, 1990c) LKB H,D: 2S–8D/10D/12D 10 973 731.5709(18) 1.7

aLKB, Laboratoire Kastler-Brossel, Paris (Laboratoire de Spectroscopie Hertzienne prior to 1994).
Ar~n!51.008 664 915 78~55! @5.4310210# . (54)

Comparison of this 1998 value to the 1995 value of Audi
and Wapstra given in Eq. (42) shows that the uncer-
tainty has been reduced by a factor of 4.0 and that the
new value differs from the 1995 value by 3.4 times the
uncertainty of the latter. This substantial change is ap-
parently due to an error in the earlier g-ray measure-
ment of Greene et al. (1986).

B. Hydrogenic transition frequencies and the Rydberg
constant R`

The Rydberg constant is related to other constants by

R`5a2
mec

2h
. (55)

It can be determined to high accuracy by combining the
measured wavelengths or frequencies corresponding to
transitions between levels in hydrogenic atoms having
different principal quantum numbers n with the theoret-
ical expressions for the wavelengths or frequencies.

Although the most accurate values of R` are obtained
from measurements on hydrogen and deuterium, for
completeness we note that similar measurements have
also been carried out in other hydrogenlike systems. Us-
ing Doppler-free two-photon laser spectroscopy, Maas
et al. (1994) have measured the frequency of the 1S–2S
transition in muonium (m1e2 atom) and find

n1,2~Mu!52455 529 002~57! MHz @2.331028# .
(56)

This measurement does not provide a competitive value
of R` at present, because its relative standard uncer-
tainty is of the order of 105 times the uncertainties of
measured transition frequencies in hydrogen. On the
other hand, the value for the muon-electron mass ratio
mm /me implied by this measurement is closer to being
competitive with other values; see Sec. III.C.9.e.

Also using Doppler-free two-photon spectroscopy,
Fee et al. (1993) have measured the 1S–2S transition fre-
quency in positronium (e1e2 atom) and find
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
n1,2~Ps!51233 607 216.4~3.2! MHz @2.631029# .
(57)

Because of its large uncertainty compared to the uncer-
tainties of measured transition frequencies in hydrogen
and because of the substantially larger uncertainty of the
relevant theory (Sapirstein and Yennie, 1990), this result
does not provide a competitive value of R` .

The 1986 CODATA recommended value of R` ,
which is given in Table VI, was based to a large extent
on the 1981 value obtained by Amin, Caldwell, and Li-
chten (1981) at Yale University, suitably corrected for
the 1983 redefinition of the meter. The experiment was
subsequently repeated with a number of improvements,
yielding the result also given in Table VI (Zhao et al.,
1986). The difference between this result and the earlier
result is not understood. However, a number of other
measurements of R` reported after the 1 January 1986
closing date for the 1986 adjustment with relative stan-
dard uncertainties ur,1029 agree with the 1986 value of
Zhao et al. (1986). Such reported values with 10210,ur
,1029 are also listed in Table VI. [Two experiments
with ur.1029 reported after the 1986 closing date are
not included in the table (Hildum et al., 1986; Barr et al.,
1986).]

Because experiments reported after 1990, which are
based on optical frequency metrology, have uncertain-
ties at least an order of magnitude smaller than those in
Table VI, which are based on optical wavelength metrol-
ogy, we do not consider the earlier results any further.

More recent measurements of R` are given in Table
VII. Note that the first six results for the Rydberg con-
stant are based on two principal measurements of fre-
quencies: that of Andreae et al. and (1992) and that of
Nez et al. (1993); the various values for R` from the
same laboratory differ because of differences in the the-
oretical analysis and the auxiliary quantities used.

The measured transition frequencies that we consider
as input data in our own analysis for the least-squares
adjustment are given in Table VIII. These have been
appropriately adjusted to remove the hyperfine shift by
the groups reporting the values. Covariances associated
with values obtained in the same laboratory are, in gen-
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TABLE VII. Summary of some reported values of the Rydberg constant R` with a relative standard uncertainty ur,10210 (H is
hydrogen and D is deuterium).

Authors Laboratorya
Atom and
transition

Reported value
R` /m21 1012ur

Andreae et al. (1992) MPQ H: 1S–2S 10 973 731.568 41(42) 38
Nez et al. (1992) LKB H: 2S–8S/8D 10 973 731.568 30(31) 29
Nez et al. (1993) LKB H: 2S–8S/8D 10 973 731.568 34(24) 22
Weitz et al. (1994); Schmidt-Kaler et al. (1995) MPQ H: 1S–2S 10 973 731.568 44(31) 28
Weitz et al. (1995) MPQ H: 1S–2S 10 973 731.568 49(30) 27
Bourzeix et al. (1996a) LKB H: 2S–8S/8D 10 973 731.568 36(18) 17
de Beauvoir et al. (1997) LKB/LPTF H,D: 2S–8S/8D 10 973 731.568 59(10) 9
Udem et al. (1997) MPQ H: 1S–2S 10 973 731.568 639(91) 8.3

aMPQ, Max-Planck-Institut für Quantenoptik, Garching; LKB, Laboratoire Kastler-Brossel, Paris (Laboratoire de Spectroscopie
Hertzienne prior to 1994); LPTF, Laboratoire Primaire du Temps et des Fréquences, Paris.
eral, not reported in the literature. However, for the
purpose of the 1998 adjustment, we obtained from the
experimental groups the information needed to evaluate
the covariances, and we include them in the least-
squares calculation. These covariances are given in the
form of correlation coefficients in Table XIV.A.2.
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
These data, as well as related data that we do not use,
are reviewed in the following sections, but our discus-
sion is necessarily brief because of the large number of
data and complexity of the experiments; the references
should be consulted for details. Following this review,
we discuss the values of the bound-state root-mean-
TABLE VIII. Summary of measured transition frequencies n considered in the present work for the determination of the Rydberg
constant R` (H is hydrogen and D is deuterium).

Authors Laboratorya Frequency interval(s)
Reported value

n/kHz
Rel. stand.
uncert. ur

Udem et al. (1997) MPQ nH(1S1/2–2S1/2) 2 466 061 413 187.34(84) 3.4310213

Weitz et al. (1995) MPQ nH(2S1/2–4S1/2)2
1
4 nH(1S1/2–2S1/2) 4 797 338(10) 2.131026

nH(2S1/2–4D5/2)2
1
4 nH(1S1/2–2S1/2) 6 490 144(24) 3.731026

nD(2S1/2–4S1/2)2
1
4 nD(1S1/2–2S1/2) 4 801 693(20) 4.231026

nD(2S1/2–4D5/2)2
1
4 nD(1S1/2–2S1/2) 6 494 841(41) 6.331026

Huber et al. (1998) MPQ nD(1S1/2–2S1/2)2nH(1S1/2–2S1/2) 670 994 334.64(15) 2.2310210

de Beauvoir et al. (1997) LKB/LPTF nH(2S1/2–8S1/2) 770 649 350 012.1(8.6) 1.1310211

nH(2S1/2–8D3/2) 770 649 504 450.0(8.3) 1.1310211

nH(2S1/2–8D5/2) 770 649 561 584.2(6.4) 8.3310212

nD(2S1/2–8S1/2) 770 859 041 245.7(6.9) 8.9310212

nD(2S1/2–8D3/2) 770 859 195 701.8(6.3) 8.2310212

nD(2S1/2–8D5/2) 770 859 252 849.5(5.9) 7.7310212

Schwob et al. (1999) LKB/LPTF nH(2S1/2–12D3/2) 799 191 710 472.7(9.4) 1.2310211

nH(2S1/2–12D5/2) 799 191 727 403.7(7.0) 8.7310212

nD(2S1/2–12D3/2) 799 409 168 038.0(8.6) 1.1310211

nD(2S1/2–12D5/2) 799 409 184 966.8(6.8) 8.5310212

Bourzeix et al. (1996b) LKB nH(2S1/2–6S1/2)2
1
4 nH(1S1/2–3S1/2) 4 197 604(21) 4.931026

nH(2S1/2–6D5/2)2
1
4 nH(1S1/2–3S1/2) 4 699 099(10) 2.231026

Berkeland et al. (1995) Yale nH(2S1/2–4P1/2)2
1
4 nH(1S1/2–2S1/2) 4 664 269(15) 3.231026

nH(2S1/2–4P3/2)2
1
4 nH(1S1/2–2S1/2) 6 035 373(10) 1.731026

Hagley and Pipkin (1994) Harvard nH(2S1/2–2P3/2) 9 911 200(12) 1.231026

Lundeen and Pipkin (1986) Harvard nH(2P1/2–2S1/2) 1 057 845.0(9.0) 8.531026

Newton et al. (1979) U. Sussex nH(2P1/2–2S1/2) 1 057 862(20) 1.931025

aMPQ, Max-Planck-Institut für Quantenoptik, Garching; LKB, Laboratoire Kastler-Brossel, Paris; LPTF, Laboratoire Primaire
du Temps et des Fréquences, Paris.
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square (rms) charge radius of the proton and deuteron
that we consider for use as input data. Such radii enter
the theoretical expressions for hydrogenic energy levels,
as discussed in Appendix A.

1. Max Planck Institut für Quantenoptik

The group at the Max Planck Institut für Quantenop-
tik (MPQ) in Garching, Germany and its predecessor at
Stanford University have a long history of high-accuracy
measurements of hydrogenic transition frequencies. The
MPQ frequencies given in Table VIII are the most re-
cent and accurate values reported by the group for the
indicated transitions and transition differences. In keep-
ing with the policy stated at the end of Sec. I.D, we view
the more recent results as superseding the earlier results.
In particular, the 1997 measurement of the 1S–2S tran-
sition (first entry of Table VIII) discussed in the follow-
ing paragraph and on which the last value of R` in Table
VII is based, supersedes the 1992 measurement of this
transition on which the other MPQ values of R` in
Table VII are based.

Prominent among the MPQ results is the 1S1/2–2S1/2
transition frequency with a relative standard uncertainty
of 3.4310213 (Udem et al., 1997). This experiment used
longitudinal Doppler-free two-photon spectroscopy of a
cold atomic beam; the required light at 243 nm was ob-
tained by doubling the frequency of an ultrastable 486
nm dye laser. Using as an intermediate reference a
transportable CH4-stabilized He–Ne laser at 3.39 mm,
Udem et al. (1997) compared the
1S(F51)→2S(F51) resonance frequency to the fre-
quency of a cesium atomic clock using a phase-coherent
laser frequency chain. The method takes advantage of
the near coincidence of the 1S–2S resonance and the
28th harmonic of the He–Ne laser frequency. The 2.1
THz frequency mismatch near the 7th harmonic was
measured using a phase-locked chain of five frequency
dividers. The 3.4310213 relative standard uncertainty is
principally statistical (Type A) and arises mainly from
the instability of the He–Ne reference; the resonant line
shape is sufficiently understood that the line center
could be determined with a relative uncertainty of 1.5
310214 if a sufficiently stable optical frequency standard
were available.

The approximately 5 GHz differences between the
frequencies of the transitions 2S1/2–4S1/2/4D5/2 and one-
fourth the frequency of the transition 1S1/2–2S1/2 in hy-
drogen and deuterium were determined by direct optical
frequency comparisons (Weitz et al., 1995). The 1S–2S
and 2S–4S/4D resonances were observed simultaneously
in separate 1S and 2S atomic beams using two-photon
excitation of each transition. The 243 nm radiation used
to drive the 1S–2S two-photon transition was obtained
by doubling the frequency of a 486 nm stabilized dye
laser as in the 1S–2S experiment described above, and
the 972 nm radiation used to drive the 2S–4S/4D two-
photon transitions was obtained from a stabilized Ti–
sapphire laser. The approximately 5 GHz frequency dif-
ference was determined by measuring the beat
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frequency between the doubled frequency of the 972 nm
radiation and the 486 nm radiation using a fast photodi-
ode. In order to achieve the quoted uncertainty, a num-
ber of effects had to be investigated and appropriate
corrections applied. The latter included corrections for
(i) the rather large ac Stark effect in the 2S–4S/4D tran-
sitions; (ii) second-order Doppler shift based on mea-
surements of the velocity distributions of the hydrogen
and deuterium atoms in the beams; and (iii) second-
order Zeeman shift. (The ac Stark effect was taken into
account by incorporating it in the theoretical line shape
and correcting for the residual dependence on laser
power by extrapolating the beat frequency to zero
power.) Nevertheless, the uncertainties of the frequency
differences are dominated by the statistical uncertainties
(Type A) of the beat frequency measurements. Based
on a detailed uncertainty budget provided by these ex-
perimenters (Weitz, 1998), we have calculated the six
independent pairwise covariances of the four difference
frequencies and, as indicated above, include them in the
calculations for the 1998 adjustment (the corresponding
correlation coefficients range from 0.01 to 0.21).

The 671 GHz difference between the 1S1/2–2S1/2 tran-
sition frequency in deuterium and in hydrogen, com-
monly referred to as the 1S–2S isotope shift, was mea-
sured by comparing each frequency to a CH4-stabilized
He–Ne laser at 3.39 mm via a phase-coherent frequency
chain (Huber et al., 1998). The experiment is somewhat
similar to the measurement of the 1S–2S transition in
hydrogen described above, but in this case the cold
atomic beam contained both hydrogen and deuterium
atoms. Using longitudinal Doppler-free two-photon ex-
citation, Huber et al. (1998) sequentially observed the
1S(F51)→2S(F51) transition frequency in hydrogen
and the 1S(F53/2)→2S(F53/2) transition frequency in
deuterium. All but about 2 % of the frequency differ-
ence between the two resonant frequencies was bridged
with the aid of an optical frequency comb generator
driven at a modulation frequency of 6.34 GHz, spanning
a frequency range of 3.5 THz, and inserted in the fre-
quency chain at a stage where each frequency of 2.5
31015 Hz and the 671 GHz frequency difference is re-
duced to its eighth subharmonic. At this stage it was
possible to compare this eighth subharmonic of each fre-
quency to the fourth harmonic of the He–Ne reference
laser by counting a frequency of 244 MHz in the case of
hydrogen and 1702 MHz in the case of deuterium. The
frequency of the He–Ne laser does not need to be
known, because it drops out when calculating the differ-
ence frequency; it is only required to be stable. How-
ever, its stability is the dominant factor in determining
the 0.15 kHz uncertainty of the final result. The uncer-
tainty contributions from other effects such as ac Stark
shifts, dc Stark shifts, and pressure shifts are insignificant
by comparison.

2. Laboratoire Kastler-Brossel and Laboratoire Primaire du
Temps et des Fréquences

The group at the Laboratoire Kastler-Brossel (LKB),
Ecole Normale Supérieure, et Université Pierre et
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Marie Curie, Paris, France has a history of high-accuracy
spectroscopy of simple atomic systems. Recently the
LKB researchers have collaborated with colleagues at
the Laboratoire Primaire du Temps et des Fréquences
(LPTF), Bureau National de Métrologie-Observatoire
de Paris, to make absolute frequency measurements in
hydrogen and deuterium with relative standard uncer-
tainties of less than 1310211. As in the case of the MPQ
measurements, we view the more recent results of the
LKB/LPTF group as superseding the earlier results of
the LKB group. In particular, the 1997 measurements of
the 2S1/2–8S1/2/8D3/2/8D5/2 transition frequencies in H
and D (Table 8) discussed below supersede the values
obtained earlier.

It should be noted that the LKB/LPTF values given in
Table VIII are revised values provided by Biraben and
Nez (1998) that reflect the remeasurement in terms of
the SI definition of the second of the LPTF CO2 /OsO4
secondary frequency standard (Rovera and Acef, 1999)
as well as a number of improvements in the analysis of
the original data, including corrections for the effects of
stray electric fields and blackbody radiation. Further,
these researchers provided a detailed uncertainty budget
for each of the LKB/LPTF and LKB frequencies which
allows us to calculate the covariances of any two values
(the corresponding correlation coefficients range from
0.02 to 0.67).

The 2S–8S/8D transition frequencies were determined
by inducing two-photon transitions in a metastable
atomic beam of either H or D collinear with counter-
propagating laser beams from a Ti-sapphire laser at 778
nm (de Beauvoir et al., 1997). The theoretical line shape
used to fit the observed resonances took into account
the light shift, saturation of the transition, hyperfine
structure of the 8D levels, second-order Doppler shift
(based on the inferred velocity distribution of the at-
oms), and photoionization of the excited levels. To de-
termine the absolute frequency of the transitions, the
Ti-sapphire laser was compared to a 778 nm (385 THz)
laser diode stabilized via a two-photon transition in Rb.
The comparison was carried out using a Schottky diode
to mix the two optical frequencies together with a 13
GHz microwave signal for H (48.4 GHz for D). The beat
frequency between the third harmonic of the microwave
frequency and the approximate 40 GHz optical fre-
quency difference for H (144 GHz for D) was counted
continuously. The frequency of this laser-diode/Rb laser
at LKB was compared to the frequency of a similar laser
at LPTF by means of a 3 km long optical fiber. The
frequency of the LPTF laser-diode/Rb laser, in turn, was
compared to a Cs clock using a phase-locked frequency
chain and a CO2 /OsO4 secondary frequency standard.
In these measurements, as well as for the other LKB/
LPTF and LKB measurements listed in Table VIII, the
statistical uncertainty (Type A) played a major role in
determining the total uncertainty.

The determination of the 2S–12D transition frequen-
cies was similar to that for the 2S–8S/8D frequencies;
the main difference was in the measurement of the fre-
quency of the 400 THz Ti-sapphire laser used to drive
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the two-photon transitions (Schwob et al., 1999). In this
case, the frequency of the Ti-sapphire laser was mea-
sured by comparing it to the frequency of a similar aux-
iliary Ti-sapphire laser and comparing the sum of this
auxiliary laser’s frequency and the frequency of a 371
THz (809 nm) diode laser to the doubled frequency of
the 385 THz (778 nm) laser-diode/Rb laser standard.
This measurement at the LKB only determined the sum
of the frequencies of the two lasers. Their difference,
and hence the absolute frequency of the 400 THz Ti-
sapphire laser, was determined by comparison to lasers
at the LPTF via two optical fibers connecting the two
laboratories. One fiber was used to compare a 400 THz
laser diode at the LPTF to the 400 THz auxiliary Ti-
sapphire laser and the other to compare a 371 THz laser
diode at the LPTF to the similar laser diode at the LKB.
The 29 THz frequency difference between these two
LPTF lasers was measured in terms of the frequency of
the LPTF CO2 /OsO4 secondary standard, using as an
intermediary the P(8) line of a CO2 laser (10 mm band)
in the case of H or the R(4) line in the case of D. The
2S–12D measurements complement the 2S–8S/8D mea-
surements, because the observed 2S–12D transition fre-
quencies are very sensitive to stray electric fields (the
shift of an energy level due to the quadratic stark effect
varies with principal quantum number n as n7). Hence
the 2S–12D results provide a critical test of the Stark
corrections.

Bourzeix et al. (1996b) determined the approximately
4 GHz differences between the frequencies of the tran-
sitions 2S1/2–6S1/2/6D5/2 and one-fourth the frequency of
the transition 1S1/2–3S1/2 in H by exciting the 2S–6S/6D
two-photon resonance with a Ti-sapphire laser at 820
nm and the 1S–3S two-photon resonance with radiation
from the same laser after two successive frequency-
doubling stages. The approximately 2.4 GHz change in
the frequency of the laser was measured using a Fabry-
Pérot reference cavity. The second doubling of the 820
nm radiation required to induce the 1S–3S two-photon
transition was challenging; the 205 nm UV radiation
consisted of 3 ms pulses at a frequency of 30 kHz and
was obtained by modulating the length of the cavity con-
taining the frequency-doubling crystal. The experiment
was carried out in such a way that the frequency shift of
the UV radiation due to the modulation of the cavity
canceled between successive pulses, and the residual fre-
quency shift was estimated to be less than 3 kHz. The
researchers took a number of effects into account in
analyzing the data and assigning uncertainties, including
possible drift of the laser frequency, second-order Dop-
pler effect, Zeeman shifts, dc Stark shifts, and light
shifts.

3. Yale University

The measurement in hydrogen of the difference be-
tween the 2S1/2–4P1/2/4P3/2 transition frequencies and
one-fourth the 1S1/2–2S1/2 transition frequency carried
out at Yale University used two tunable lasers at 486
nm, one the primary laser, the other the reference laser
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locked to an appropriate saturated absorption line in
130Te2 (Berkeland, Hinds, and Boshier, 1995). The pri-
mary laser was used to observe the 2S–4P single-photon
resonance in one beam of H atoms and, after its fre-
quency was doubled, the Doppler-free two-photon
1S–2S resonance in another beam of H atoms. The first-
order Doppler shift of the 2S–4P resonance was reduced
to a negligible level by ensuring that the laser beam was
nearly perpendicular to the atomic beam. The change in
frequency of the primary laser required to alternately
excite the two transitions was measured by heterodyning
the primary and reference lasers. Each observed reso-
nance was fitted with a theoretical line shape that took
into account, as appropriate, background light, satura-
tion, decreasing metastable beam intensity, measured la-
ser intensity fluctuations, and pressure shift. Corrections
were made for effects such as atomic recoil from the
single-photon absorption, the second-order Doppler
shift, and distribution of atoms among hyperfine sublev-
els of the 2S states. The effect of stray electric and mag-
netic fields was estimated to be negligible. The uncer-
tainty of each transition frequency is dominated by its
statistical uncertainty (Type A). Because the uncertain-
ties of the second-order Doppler shift correction for the
two transitions are common, the two frequencies are
correlated with a correlation coefficient of 0.08 (Boshier,
1998).

4. Harvard University

The measurements in hydrogen of the 2S1/2–2P3/2 in-
terval (Hagley and Pipkin, 1994) and classic 2P1/2–2S1/2
Lamb shift (Lundeen and Pipkin, 1986) carried out at
Harvard University were done in a similar manner using
a fast metastable atomic beam and the well-known
Ramsey separated-oscillatory-field technique. This
method, which employs two separated interaction re-
gions, allows the observation of the transitions with a
linewidth significantly less than the 100 MHz natural
linewidth due to the 1.6 ns finite lifetime of the 2P state.
The 50 keV to 100 keV metastable 2S beam of hydrogen
atoms used in these measurements was produced by
passing a beam of fast protons through nitrogen gas to
capture an electron and then a state selection region to
reduce the 2S(F51) population. (Both measurements
employed F50→F51 transitions.) The technique re-
quires a fast atomic beam so that the decay length of H
atoms in the 2P state is a convenient laboratory distance
(of order 5 cm). Microwave signals that have either 0 or
p phase difference are applied in the two interaction
regions and the depletion of the metastable population
of the beam as a function of microwave frequency is
observed. The narrow decay profile is obtained by tak-
ing the difference between the distributions for the 0
and p phase difference.

In these experiments, a critical factor was control of
the relative phase of the oscillatory fields in the two in-
teraction regions. The main effect of error in the relative
phase was eliminated in both experiments by combining
data with the relative time order of the two interaction
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
regions interchanged. Similarly, residual first-order Dop-
pler shifts were eliminated by reversing the direction of
propagation of the oscillatory fields. Many other pos-
sible corrections and sources of uncertainty were also
considered, including time dilation due to the fast beam
motion, Bloch-Siegert and ac Stark shifts, incomplete
cancellation of the phase-independent part of the 0 and
p phase signals due to power variation, overlap of the
oscillatory fields in the two interaction regions, and the
effect of stray electric and magnetic fields. The statistical
uncertainty (Type A) dominates the uncertainty of the
2S1/2–2P3/2 result of Hagley and Pipkin (1994), while
Type B components of uncertainty dominate the uncer-
tainty of the 2P1/2–2S1/2 result of Lundeen and Pipkin
(1986).

5. University of Sussex

The measurement of the classic 2P1/2–2S1/2 Lamb shift
at the University of Sussex (Newton, Andrews, and Un-
sworth, 1979) was done using a single microwave region
in the form of a 50 V transmission line, which has the
advantage of a higher signal strength, less complex ap-
paratus, and a simpler line-shape analysis compared to
the separated-oscillatory-field approach. In this experi-
ment, a 21 keV beam of hydrogen atoms in the meta-
stable 2S state was produced by charge-exchange colli-
sions of protons with molecular hydrogen gas in a cell
followed by hyperfine state selection to increase the
fraction of atoms in the 2S(F51) state. The beam en-
tered the microwave region in which the microwaves
propagated perpendicular to the beam direction in order
to eliminate first-order Doppler shifts. Residual first-
order Doppler effects were canceled by reversing the
direction of propagation of the microwave fields. The
applied microwave power was carefully controlled in or-
der to keep it constant as the frequency was swept
through the resonance in order to avoid a shift of the
apparent line center. Since the goal of the experiment
was to measure the center of the resonance with an un-
certainty of less than 1

2000 of the linewidth, a reliable ex-
pression for the theoretical line shape was necessary and
required precise knowledge of the electric field in the
transmission line. Possible corrections and sources of
uncertainty considered in this experiment include the
Bloch-Siegert shift, motional electric fields due to the
earth’s magnetic field, time dilation, power and fre-
quency measurement, stray electromagnetic fields, and
n54 resonances. The uncertainty of this result is in fact
dominated by Type B components of uncertainty.

6. Other data

A number of other potentially relevant results have
been reported, but are not included in the 1998 adjust-
ment for a variety of reasons.

The result 1 057 852(15) kHz for the classic hydrogen
Lamb shift obtained by van Wijngaarden, Holuj, and
Drake (1998), based on the anisotropy of emitted pho-
tons in an applied electric field, is not included, because
its agreement with the Harvard University and Univer-
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sity of Sussex values is viewed by van Wijngaarden et al.
(1998) as a verification of the anisotropy method rather
than an independent determination. This verification
was deemed necessary because of the disagreement be-
tween the theoretical value of the Lamb shift in He1 and
the experimental result obtained using this method.

The result 1 057 851.4(1.9) kHz for the Lamb shift in
hydrogen reported by Pal’chikov, Sokolov, and Yakov-
lev (1985) is also omitted. For this experiment, it was
necessary to know the velocity of the metastable beam;
it was determined by measuring the decay length of at-
oms in the 2P state and deducing the velocity from the
theoretically calculated decay rate. This required mea-
surement of the decay length and calculation of the de-
cay rate with an unprecedented relative uncertainty of
less than 231026. These and other issues have been dis-
cussed in the literature, and in our view the reliability of
the measurement and calculation at this level of uncer-
tainty has not been established (Hinds, 1988; Karshen-
boim, 1994a; Pal’chikov, Sokolov, and Yakovlev, 1997;
Karshenboim, 1995a).

Earlier results (mainly for the classic Lamb shift, the
2S1/2–2P3/2 interval, and the fine-structure interval
2P1/2–2P3/2 , all in hydrogen) are omitted either because
of their large uncertainties or significant disagreement
with the more modern measurements. Summaries and
discussion of earlier work are given by Pipkin (1990),
Cohen and Taylor (1973), and Taylor et al. (1969). [Note
that the result of Safinya et al. (1980) listed in Pipkin
(1990) is corrected by Hagley and Pipkin (1994).]

7. Nuclear radii

The theoretical expressions for the finite nuclear size
contributions to hydrogenic energy levels in Appendix
A are given in terms of the bound-state nuclear rms
charge radius RN with N→p, or N→d for H or D. The
values of Rp and Rd that we consider as input data are
determined from elastic electron–nucleon scattering ex-
periments.

A comprehensive analysis of the relevant existing low-
and high-energy e–p data and low-energy neutron–atom
data based on dispersion relations, together with various
theoretical constraints, has yielded the result for the pro-
ton scattering radius rp50.847(8) fm (Mergell, Meißner,
and Dreschsel, 1996). This value differs somewhat from
the earlier value rp50.862(12) fm (Simon et al., 1980).
Although this earlier result is based solely on low-
energy data, such data are the most critical in determin-
ing the value of rp . [We do not consider still earlier
values, for example, rp50.805(11) fm (Hand, Miller, and
Wilson, 1963), because the more recent results had
available a larger set of data and improved methods of
analysis.] Mergell et al. (1996) have stressed the impor-
tance of simultaneously fitting both the proton and the
neutron data and note that if the value of 0.862 fm is
used, one cannot simultaneously fit both sets of data in
their dispersion-theoretical analysis. Clearly, to obtain a
more accurate value of rp , improved low-energy data
are necessary. In the absence of additional information,
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
for the purpose of the 1998 adjustment we take rp
50.8545(120) fm, which is simply the unweighted mean
of the values of Mergell et al. (1996) and Simon et al.
(1980) with the larger of the two uncertainties.

For hydrogen, in the context of the expressions in Ap-
pendix A, Rp is the same as rp , and hence

Rp50.8545~120! fm. (58)

[Note that for the proton, as well as for the deuteron
discussed below, the interpretation of the quoted value
obtained from the scattering data depends on whether
muonic and/or hadronic vacuum polarization has been
included as a correction to the data (Friar, Martorell,
and Sprung, 1999). However, at the level of uncertainty
of current interest, such vacuum polarization effects may
be neglected.]

The world data on elastic electron–deuteron scatter-
ing, consisting of some 340 data points below 10 GeV/c
momentum transfer, has been used by Sick and Traut-
mann (1998) in a thorough analysis that includes Cou-
lomb distortion to determine the deuteron rms charge
radius; the result, including their dispersion correction of
20.0024 fm, is rd52.128(10) fm. These authors empha-
size the importance of treating all of the available data
simultaneously in order to maximally constrain the
momentum-transfer dependence of the form factor and
thereby obtain a reliable value for the rms radius. Be-
cause of the completeness of their treatment, this is the
only result we consider for the 1998 adjustment. We
note that it is consistent with the result of a model cal-
culation by Friar, Martorell, and Sprung (1997) based on
nucleon–nucleon scattering data.

As discussed in Sec. 8 of Appendix A, Rd is related to
rd by

Rd5Ard
21

3

4
S me

md
D 2

|C
2 , (59)

which yields, based on the 1998 recommended values of
me /md and |C ,

Rd52.130~10! fm. (60)

C. Magnetic moments and g-factors

The magnetic moment of any of the three charged
leptons (e, m, t) is written as

m5g
e

2m
s, (61)

where g is the g-factor of the particle, m is its mass, and
s is its spin. In Eq. (61), e is the elementary charge and is
positive. For the negatively charged leptons (e2, m2,
and t2), g is negative, and for the corresponding anti-
particles (e1, m1, and t1) g is positive. CPT invariance
implies that the masses and absolute values of the
g-factors are the same for each particle–antiparticle
pair.

These leptons have eigenvalues of spin projection sz
56\/2, and in the case of the electron and positron it is
conventional to write, based on Eq. (61),
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TABLE IX. Summary of data related to magnetic moments of various particles, and inferred values
of various quantities.

Quantity Value
Relative standard

uncertainty ur Identification Sec. and Eq.

ae 1.159 652 1883(42)31023 3.731029 UWash-87 III.C.1 (68)
a21(ae) 137.035 999 58(52) 3.831029 III.C.1 (72)

me2(H)/mp(H) 2 658.210 7058(66) 1.031028 MIT-72 III.C.3 (95)
me2 /mp 2 658.210 6876(66) 1.031028 III.C.3 (99)

md(D)/me2(D) 24.664 345 392(50)31024 1.131028 MIT-84 III.C.4 (100)
md /me2 24.664 345 537(50)31024 1.131028 III.C.4 (104)

me2(H)/mp8 2 658.215 9430(72) 1.131028 MIT-77 III.C.6 (115)
me2 /mp8 2 658.227 5970(72) 1.131028 III.C.6 (116)

mh8/mp8 20.761 786 1313(33) 4.331029 NPL-93 III.C.7 (117)

mn /mp8 20.684 996 94(16) 2.431027 ILL-79 III.C.8 (122)

mm1 /mp 3.183 3442(17) 5.331027 SIN-82 III.C.9.a (133)
mm /me 206.768 34(11) 5.331027 III.C.9.a (135)

n(fp) 627 994.77(14) kHz 2.231027 LAMPF-82 III.C.9.b (145)
mm1 /mp 3.183 3461(11) 3.631027 III.C.9.b (147)
mm /me 206.768 219(74) 3.631027 III.C.9.b (148)

DnMu 4 463 302.88(16) kHz 3.631028 LAMPF-82 III.C.9.b (144)
a21 137.036 000(20) 1.531027 III.C.9.d (158)

n(fp) 668 223 166(57) Hz 8.631028 LAMPF-99 III.C.9.c (153)
mm1 /mp 3.183 345 13(39) 1.231027 III.C.9.c (155)
mm /me 206.768 283(25) 1.231027 III.C.9.c (156)

DnMu 4 463 302 765(53) Hz 1.231028 LAMPF-99 III.C.9.c (152)
a21 137.035 9932(83) 6.031028 III.C.9.d (159)

R̄ 0.003 707 213(27) 7.231026 CERN-79 III.C.10.a (164)
am 1.165 9231(84)31023 7.231026 III.C.10.a (165)
a21 137.035 18(98) 7.231026 III.C.10.c (169)

R̄1 0.003 707 220(48) 1.331025 BNL-99 III.C.10.b (166)
am 1.165 925(15)31023 1.331025 III.C.10.b (167)
a21 137.0349(18) 1.331025 III.C.10.c (170)
me5
ge

2
mB , (62)

where mB5e\/2me is the Bohr magneton.
For nucleons or nuclei with spin I, the magnetic mo-

ment can be written as

m5g
e

2mp
I, (63)

or

m5gmNi . (64)

In Eq. (64), mN5e\/2mp is the nuclear magneton, de-
fined in analogy with the Bohr magneton, and i is the
spin quantum number of the nucleus defined by I25i(i
11)\2 and Iz52i\ , . . . , (i21)\ , i\ , where Iz is the
spin projection. However, in some publications mo-
ments of nucleons are expressed in terms of the Bohr
magneton with a corresponding change in the definition
of the g-factor.

Magnetic moments, magnetic moment ratios, and
., Vol. 72, No. 2, April 2000
g-factors of various particles which impact the determi-
nation of other constants of interest are discussed in the
following sections, and the relevant data are summa-
rized in Table IX. (The shielded gyromagnetic ratios of
some of the same particles are discussed in Sec. III.D)
Also given in Table IX are values of quantities of inter-
est that may be inferred from the data, as discussed in
connection with each experiment. As in Table IV, each
such inferred value is indented for clarity and is given
only for comparison purposes. In practice, the source
data are used as input data for the 1998 adjustment.

1. Electron magnetic moment anomaly ae

The electron magnetic moment anomaly ae is defined
as

ae5
ugeu22

2
5

umeu
mB

21, (65)

where ge52me /mB is the g-factor of the electron and me
is its magnetic moment. The electron and positron
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anomalies have been measured in a classic series of ex-
periments at the University of Washington in which in-
dividual electrons or positrons are stored in a Penning
trap immersed in a liquid helium bath at 4.2 K in an
applied magnetic flux density of order 5 T (Van Dyck,
Schwinberg, and Dehmelt, 1986b, 1991; Van Dyck,
1990). The anomaly is obtained from the relation ae
5fa /fc by measuring, in the same magnetic flux density
B , the anomaly difference frequency fa5fs2fc and cy-
clotron frequency fc5eB/2pme , where fs5gemBB/h is
the electron spin-flip (often called precession) fre-
quency. In practice, the measured frequencies fa8 and fc8
are shifted from their free-space values fa and fc by the
electrostatic field required to confine the electron in the
trap, and corrections for these shifts must be made from
a measurement of the frequency of the electron’s axial
motion fz .

The values reported for the electron and positron
anomalies by Van Dyck, Schwinberg, and Dehmelt
(1987b) are

ae251.159 652 1884~43!31023 @3.731029# (66a)

ae151.159 652 1879~43!31023 @3.731029# . (66b)

The 4.3310212 standard uncertainty given by these au-
thors for the electron is a combination of the 0.62
310212 statistical standard uncertainty (Type A) of the
weighted mean of four individual measurements, a stan-
dard uncertainty (Type B) of 1.3310212 to allow for a
possible residual microwave power shift, and a standard
uncertainty (Type B) of 4310212 associated with pos-
sible cavity resonance effects. For the positron, the sta-
tistical standard uncertainty of the weighted mean of
five individual measurements is 0.93310212 and the
other uncertainties are the same as for the electron. The
two values agree to well within their combined statistical
uncertainty.

Cavity resonance effects have long been recognized as
a possible source of systematic error in the measurement
of ae (Dehmelt, 1981), a topic reviewed by Gabrielse,
Tan, and Brown (1990b). For more recent work see
Mittlemann, Dehmelt, and Kim (1995), Dehmelt
(1994a), Dehmelt (1994b), Gabrielse and Tan (1994),
Tan and Gabrielse (1993), Dehmelt, Van Dyck, and
Palmer (1992), and Tan and Gabrielse (1991). The un-
certainty of 4310212 assigned by Van Dyck, Schwin-
berg, and Dehmelt (1987b) to take into account possible
cavity resonance effects is based on information derived
from their additional experimental investigations (Van
Dyck et al., 1987a) together with an application of the
theory of Brown et al. (1985a) and Brown et al. (1985b);
see also Dehmelt et al. (1992).

To further study uncertainties due to cavity effects,
Van Dyck et al. (1991) constructed a trap with a lower Q
in order to produce an environment in which interac-
tions with cavity modes would be less significant. That
the interactions with such cavity modes were reduced
was revealed by the fact that in this trap the lifetime
against spontaneous decay of cyclotron orbits was close
to the free-space value, as compared to the trap used to
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obtain the results in Eq. (66), in which the lifetime of the
cyclotron orbits was ten times longer than the free-space
value.

Van Dyck et al. (1991) used this trap to measure ae ,
but, due to the trap’s sensitivity to variations of the am-
bient magnetic field, the results from the 14 runs were
spread out in a distribution that does not appear to be
due to purely random variations. Because of the nature
of the distribution, these authors give the simple mean
of the 14 values as their result for ae and the experimen-
tal standard deviation of the 14 values (relative to the
simple mean) as its uncertainty:

ae2 51.159 652 1855~40!31023 @3.431029# . (67)

No additional component of uncertainty for cavity shifts
was included because the lifetime evidence mentioned
above indicates that the interactions with cavity modes
were negligible at the quoted level of uncertainty. Equa-
tion (67) is consistent with Eq. (66). However, in view of
the nature of the distribution of the results of the 14
runs, Van Dyck et al. (1991) do not consider this result
as replacing the earlier work, but rather as a confirma-
tion of their 4310212 uncertainty assigned to account
for possible cavity effects (Dehmelt and Van Dyck,
1996).

In light of the above discussion, we use the data that
lead to the results given in Eq. (66) to determine a single
experimental value of ae for use in the 1998 adjustment.
Since we assume that CPT invariance holds for the
electron–positron system, that value is obtained by tak-
ing the weighted mean of the data for both the electron
and positron. The result is

ae51.159 652 1883~42!31023 @3.731029# , (68)

where the standard uncertainty consists of the following
components based on the values given by Van Dyck,
Schwinberg, and Dehmelt (1987b): 0.52310212 statisti-
cal standard uncertainty of the weighted mean of the
nine individual measurements (Type A); 1.3310212 for
a possible microwave power shift (Type B); and 4
310212 for possible cavity resonance effects (Type B).
The Birge ratio associated with this weighted mean for
n58 degrees of freedom (see Appendix E) is RB

5Ax2/n50.73, indicating that the data are consistent.
We also note that the unweighted mean of the nine mea-
surements and the experimental standard deviation of
this mean, which are 1.159 652 187 931023 and 0.52
310212, respectively, agree well with the corresponding
weighted values.

It is important to note that the result in Eq. (68) is in
agreement with earlier results of the University of
Washington group, but supersedes those results because
of improvements in methodology and understanding.
For example, the value ae251.159 652 193(4)31023 was
reported in 1984 (Van Dyck, Schwinberg, and Dehmelt,
1984), which was in fact the value used in the 1986 ad-
justment but with the standard uncertainty increased
from the 4310212 assigned by the authors to 10310212

to account for possible cavity effects. [The 1984 value
was subsequently corrected to ae251.159 652 189(4)
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31023 by Van Dyck et al. (1991) as a result of taking
into account the effect of the microwave power.] The
values reported in 1981 were ae251.159 652 200(40)
31023 and ae151.159 652 222(50)31023 (Schwinberg,
Van Dyck, and Dehmelt, 1981; Schwinberg, Van Dyck,
and Dehmelt, 1984; Van Dyck et al., 1984).

A value of the fine-structure constant a can be ob-
tained from the University of Washington weighted
mean experimental value of ae , given in Eq. (68), by
determining the value a(ae) for which ae(exp)5ae(th),
where ae(th) is the theoretical expression for ae as a
function of a. The theory of ae is briefly summarized in
Appendix B; a more detailed review is planned for a
future publication. Following Appendix B, we have

ae~th!5ae~QED!1ae~weak!1ae~had!, (69)

with

ae~QED!5Ce
(2)S a

pD1Ce
(4)S a

pD 2

1Ce
(6)S a

pD 3

1Ce
(8)S a

pD 4

1Ce
(10)S a

pD 5

1¯ , (70)

where the coefficients Ce
(2n) , as well as ae(weak) and

ae(had), are given in Appendix B. As indicated in that
Appendix, the standard uncertainty of ae(th) is

u@ae~th!#51.131021250.9831029ae (71)

and is due almost entirely to the uncertainty of the co-
efficient Ce

(8) .
Equating the theoretical expression with ae(exp)

given in Eq. (68) yields

a21~ae!5137.035 999 58~52! @3.831029# , (72)

which is the value included in Table IX. The uncertainty
of ae(th) is about one-fourth of the uncertainty of
ae(exp), and thus the uncertainty of this inferred value
of a is determined mainly by the uncertainty of ae(exp).
This result has the smallest uncertainty of any value of a
currently available.

2. Bound-state corrections for magnetic moments

The experiments relevant to the magnetic moments of
the particles of interest in this paper are done on hydro-
genic atoms that contain these particles, namely, hydro-
gen, deuterium, and muonium, each in the ground (1S)
state. In order to obtain the free-space magnetic mo-
ments of these particles, it is necessary to apply theoret-
ical corrections to account for the fact that they are
bound. These bound-state corrections are expressed in
terms of the ratio of the bound g-factor to the free
g-factor. Such bound state g-factors are defined by con-
sidering the contribution to the Hamiltonian from the
interaction of the atom with an applied magnetic flux
density B written in terms of the magnetic moments of
the constituent particles in the framework of the Pauli
approximation. For example, for hydrogen we have
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
H5b~H!me2•mp2me2~H!•B2mp~H!•B

5
2p

\
DnH s•I2ge2~H!

mB

\
s•B2gp~H!

mN

\
I•B,

(73)

where b(H) characterizes the strength of the hyperfine
interaction, DnH is the ground-state hyperfine frequency,
s is the spin of the electron, and I is the spin of the
nucleus, i.e., the proton. The individual cases of interest
are discussed in the following paragraphs.

a. Electron in hydrogen

The main theoretical contributions to the g-factor of
the electron ge2(H) in the 1S state of hydrogen may be
categorized as follows:

•Dirac (relativistic) value gD ;
•radiative corrections Dgrad ;
•recoil corrections Dgrec .

Thus we write

ge2~H!5gD1Dgrad1Dgrec1¯ , (74)

where terms accounting for finite nuclear size, nuclear
polarization, weak interactions, etc., are assumed to be
negligible at the current level of uncertainty of the rel-
evant experiments (relative standard uncertainty ur'1
31028).

Breit (1928) obtained the exact value

gD52 2
3 @112A12~Za!2#

522@12 1
3 ~Za!22 1

12 ~Za!41¯# (75)

from the Dirac equation for an electron in the field of a
fixed point charge of magnitude Ze . [Although we are
concerned only with cases in which Z51, in Eq. (75) and
the following discussion we display the Z dependence
explicitly to distinguish between binding corrections and
corrections for a free particle, i.e., for the case Z50.]

The radiative corrections may be written as

Dgrad522FCe
(2)~Za!S a

pD1Ce
(4)~Za!S a

pD 2

1¯G ,

(76)

where the coefficients Ce
(2n)(Za) are slowly varying

functions of Za corresponding to n virtual photons.
These coefficients are defined in direct analogy with the
corresponding coefficients for the free electron given in
Sec. III.C.1 so that

lim
Za→0

Ce
(2n)~Za!5Ce

(2n) . (77)

The coefficient Ce
(2)(Za) has been calculated to sec-

ond order in Za by Grotch (1970a), who finds

Ce
(2)~Za!5Ce

(2)1 1
12 ~Za!21¯

5 1
2 1 1

12 ~Za!21¯

50.500 004 437 . . . 1¯ . (78)
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This result has been confirmed by Faustov (1970) and
Close and Osborn (1971) [see also Lieb (1955); Heg-
strom (1969); Grotch and Hegstrom (1971); Hegstrom
(1971); and Grotch (1971)]. Recently, this coefficient has
been calculated numerically to all orders in Za with
high accuracy by Persson et al. (1997). By assuming that

Ce
(2)(0)5 1

2 exactly and fitting their calculated values at
higher Z to a polynomial in Za , they find for Z51

Ce
(2)~a!50.500 004 469~9 !. (79)

[A similar calculation has been carried out by Blundell,
Cheng, and Sapirstein (1997b), but their results for low
Z have significantly larger uncertainties.] The difference
between Eq. (79) and Eq. (78) is negligible in the
present context, and thus only the lowest-order binding
correction to Ce

(2)(Za) needs to be considered. The
binding corrections to the higher-order coefficients
Ce

(4)(Za), etc., have not been calculated but are ex-
pected to be small, so these coefficients are approxi-
mated by the free electron values. Thus, for the fourth-
order coefficient, we have

Ce
(4)~Za!'Ce

(4)520.328 478 444 00 . . . , (80)

and we make the analogous approximation for the
higher-order coefficients. With these approximations,
the result for Dgrad is

Dgrad522F S Ce
(2)1

1
12

~Za!2D S a

pD
1Ce

(4)S a

pD 2

1Ce
(6)S a

pD 3

1¯G . (81)

The preceding terms DgD and Dgrad are based on the
approximation that the nucleus of the hydrogenic atom
has an infinite mass. The contribution to the bound-state
g-factor associated with the finite mass of the nucleus,
represented here by Dgrec , has been calculated by
Grotch (1970b) with the result

Dgrec52~Za!2
me

mN
1¯ , (82)

where mN is the mass of the nucleus. This term and
higher-order terms have been obtained by Grotch
(1971); Hegstrom (1971); Faustov (1970); Close and Os-
born (1971); and Grotch and Hegstrom (1971) [see also
Hegstrom (1969) and Grotch (1970a)]. We have not in-
cluded these higher-order terms in Eq. (82), because
they are negligible compared to the uncertainty of the
relevant experiments (less than 1 % of the experimental
uncertainty in this case), and because additional terms
that could well be larger, such as the binding corrections
to the fourth-order coefficient Ce

(4) , have not yet been
explicitly calculated.

The quantity of interest is the ratio of the bound-
electron g-factor in hydrogen to the free-electron
g-factor:

ge2~H!

ge2

5
gD1Dgrad1Dgrec1¯

ge2

. (83)
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Substitution of Eqs. (75), (81), and (82) in the numera-
tor, with mN5mp , and substitution of the theoretical
expression for ge2522(11ae) that follows from Sec.
III.C.1 in the denominator, yields

ge2~H!

ge2

512
1
3

~Za!22
1
12

~Za!4

1
1
4

~Za!2S a

pD1
1
2

~Za!2
me

mp
1¯

51217.705331026. (84)

The numerical result is based on the 1998 recommended
values of a and me /mp , but the result is clearly not
sensitive to the exact values used. This is also true for
the binding correction to the g-factor of the proton in
hydrogen and for the corrections to g-factors in deute-
rium and muonium, discussed below. The calculated or
expected magnitude of any contribution not included in
Eq. (84) is less than 131029, which is not significant
compared to the uncertainty of the relevant experi-
ments. This statement also applies to the corresponding
expression for the proton g-factor in hydrogen and to
those for the electron and deuteron g-factors in deute-
rium. Therefore no uncertainty is quoted for the binding
corrections to these g-factors.

b. Proton in hydrogen

For the proton i5 1
2 , and hence according to Eq. (64),

its magnetic moment may be written as

mp5
gp

2
mN , (85)

where gp is the g-factor of the free proton referred to the
nuclear magneton mN5e\/2mp . In analogy with the
electron, the proton magnetic moment anomaly ap is de-
fined as

ap5
gp22

2
5

mp

mN
21'1.793. (86)

However, unlike the electron anomaly ae , the proton
anomaly ap cannot be calculated accurately. Therefore
the bound-state corrections, particularly those involving
ap , are necessarily treated phenomenologically. The ex-
pression for the ratio of the bound proton g-factor
gp(H) to gp analogous to Eq. (84) for the electron is

gp~H!

gp
512

1
3

Za21
1
6

Za2
me

mp

314ap

11ap
1¯

51217.732831026. (87)

The leading correction 2Za2/3 can be viewed as a dia-
magnetic shielding correction that follows from the work
of Lamb (1941). The mass-dependent term, as well as
negligible higher-order mass-dependent terms not in-
cluded here, have been obtained by Grotch (1971); Heg-
strom (1971); Faustov (1970); Close and Osborn (1971);
and Grotch and Hegstrom (1971) [see also Hegstrom
(1969)].
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c. Electron in deuterium

To calculate the binding correction for the g-factor of
the electron in deuterium ge2(D), one may simply re-
place the proton mass mp in Eq. (84) by the mass of the
deuteron md . This yields

ge2~D!

ge2

512
1
3

~Za!22
1
12

~Za!4

1
1
4

~Za!2S a

pD1
1
2

~Za!2
me

md
1¯

51217.712531026. (88)

d. Deuteron in deuterium

The deuteron g-factor is defined by md5gdmN based
on Eq. (64) and the fact that the spin quantum number i
of the deuteron is 1. Although Eq. (87) was derived for
the case i5 1

2 , Grotch (1997) and Eides and Grotch
(1997a), have confirmed that this expression is also valid
for the deuteron, where the deuteron magnetic moment
anomaly ad is defined by

ad5
md

~e\/md!
21'20.143. (89)

Hence the binding correction for the g-factor of the deu-
teron in deuterium gd(D) is obtained by making the re-
placements mp→md and ap→ad in Eq. (87). The result
is

gd~D!

gd
512

1
3

Za21
1
6

Za2
me

md

314ad

11ad
1¯

51217.743631026. (90)

e. Electron in muonium

Muonium, with chemical symbol Mu, is the bound
state of a positive muon m1 and an electron e2. The
binding correction for the g-factor of the electron in
muonium ge2(Mu) may be obtained by simply replacing
the proton mass mp in Eq. (84) by the mass of the muon
mm . The result is

ge2~Mu!

ge2

512
1
3

~Za!2

1
1
4

~Za!2S a

pD1
1
2

~Za!2
me

mm
1¯

51217.59131026, (91)

where the term 2(Za)4/12 has been dropped from Eq.
(84) because it is smaller than neglected higher-order
mass-dependent terms. Although the mass ratio me /mm

is nine times the mass ratio me /mp , higher-order terms
in the mass ratio, which are slightly greater than 1
31029, may be neglected compared to the uncertainty
of the relevant experiment. The same statement applies
to the expression for the g-factor of the muon in muo-
nium discussed in the next paragraph. Therefore no un-
certainty is quoted for either ge2(Mu)/ge2 or
gm1(Mu)/gm1.
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
f. Muon in muonium

The g-factor of the muon gm is defined according to
Eq. (61) by

mm5
gm

2
e\

2mm
5

gm

2
me

mm
mB . (92)

The binding correction for the g-factor of the muon in
muonium gm1(Mu) follows from Eq. (87) by replacing
mp by mm and setting ap to zero. We thereby obtain

gm1~Mu!

gm1

512
1
3

Za21
1
2

Za2
me

mm
1¯

51217.62231026. (93)

g. Comparison of theory and experiment

The theory of bound-state corrections to g-factors has
been tested by a number of experiments. Based on their
measurement of the ratio ge2(87Rb)/ge2 and the earlier
measurement of ge2(H)/ge2(87Rb) by Hughes and Rob-
inson (1969), Tiedeman and Robinson (1977) report the
value ge2(H)/ge251217.709(13)31026. This agrees
with the numerical result in Eq. (84), thereby checking
the Breit correction 2(Za)2/3 and the term
(Za)2(a/p)/4 to relative uncertainties of about 0.07 %
and 40 %, respectively. An independent check of the
Breit correction for Z52 with a relative uncertainty of
about 0.4 % is provided by the measurement of
ge2(4He1)/ge2 by Johnson and Robinson (1980)

Mass-dependent corrections to the bound-state
g-factor have been tested by the work of Walther, Phil-
lips, and Kleppner (1972). Using a pulsed double-mode
hydrogen maser, they obtained the ratio
ge2(H)/ge2(D)5117.22(3)31029. The quotient of Eq.
(84) and Eq. (88) gives the leading correction term in
the theoretical expression for this ratio:

ge2~H!

ge2~D!
511

1
2

~Za!2S me

mp
2

me

md
D1¯

5117.247310291¯ . (94)

The result of Walther et al. (1972) checks this leading
correction term to a relative uncertainty of about 0.4 %.
The next-order term [see the discussion following Eq.
(82)], which contributes approximately 20.0331029,
improves the agreement between experiment and
theory, but is checked only at a level equal to its value.

Earlier measurements of ge2(H)/ge2(D), but with
larger uncertainties, have been reported. Larson, Val-
berg, and Ramsey (1969) obtained 119.4(1.4)31029 for
this ratio, and Hughes and Robinson (1969); Robinson
and Hughes (1971), obtained 117.2(1.2)31029.

The leading correction term in Eq. (94) has been
checked for a different mass to a relative uncertainty of
about 15 % by Larson and Ramsey (1974) who carried
out experiments with hydrogen and tritium. They ob-
tained ge2(H)/ge2(T)51110.7(1.5)31029, which is
consistent with theory.

3. Electron to proton magnetic moment ratio me /mp

The ratio me /mp may be obtained from measurements
of the ratio of the magnetic moment of the electron to
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the magnetic moment of the proton in the 1S state of
hydrogen me2(H)/mp(H). This bound-state ratio is de-
termined from the energy eigenvalues of the Hamil-
tonian of Eq. (73), which are given by the Breit-Rabi
equation (Breit and Rabi, 1931; Millman, Rabi, and Za-
charias, 1938). Using a hydrogen maser operating in an
applied magnetic flux density of 0.35 T to observe simul-
taneously both electron and proton spin-flip transitions
between Zeeman energy levels, Winkler et al. (1972) at
the Massachusetts Institute of Technology (MIT) found

me2~H!

mp~H!
52658.210 7058~66! @1.031028# , (95)

where a minor typographical error in the original publi-
cation has been corrected (Kleppner, 1997). This value
is the result of their preferred quadratic extrapolation
method and is consistent with the value obtained by
their linear extrapolation method. The standard uncer-
tainty is that assigned by Winkler et al. (1972) and is
meant to take into account possible systematic effects,
mainly due to the extrapolation procedure used to ana-
lyze the data; the statistical relative uncertainty (Type
A) was less than 431029. This result, which is in agree-
ment with earlier measurements that have uncertainties
at least a factor of 30 larger, is the only one we need to
consider. [See Taylor et al. (1969) for a discussion of pre-
vious work.]

To obtain the free-particle ratio me /mp from the
bound-particle ratio given in Eq. (95), we apply binding
corrections as follows. From Eq. (73) we have

me2~H!5
ge2~H!

2
mB (96)

and

mp~H!5
gp~H!

2
mN . (97)

These relations together with Eqs. (62) and (85) yield

me2

mp
5

gp~H!

gp
S ge2~H!

ge2
D 21 me2~H!

mp~H!
. (98)

Substituting into this equation the numerical values
from Eqs. (84), (87), and (95), we obtain

me2

mp
5~1227.631029!

me2~H!

mp~H!

52658.210 6876~66! @1.031028# . (99)

The stated standard uncertainty is due entirely to the
uncertainty of the experimental value of me2(H)/mp(H)
because the bound-state corrections are taken as exact,
as discussed in the text following Eq. (84).

4. Deuteron to electron magnetic moment ratio md /me

In a manner similar to that for me /mp , md /me may be
obtained from measurements of the ratio md(D)/me2(D)
in the 1S state of deuterium. Using essentially the same
method as that employed by Winkler et al. (1972) to de-
termine me2(H)/mp(H) as discussed in the previous sec-
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tion, Phillips, Kleppner, and Walther (1984), also at
MIT, measured md(D)/me2(D) and found

md~D!

me2~D!
524.664 345 392~50!31024 @1.131028# .

(100)

Although this result has not been published, we include
it as an input datum, because the method is described in
detail by Winkler et al. (1972) in connection with their
measurement of me2(H)/mp(H).

To obtain the free-particle ratio md /me , in analogy
with the preceding section, we have

me2~D!5
ge2~D!

2
mB , (101)

md~D!5gd~D!mN , (102)

and

md

me2

5
ge2~D!

ge2
S gd~D!

gd
D 21 md~D!

me2~D!
. (103)

With numerical values from Eqs. (88), (90), and (100),
we find

md

me2

5~1131.131029!
md~D!

me2~D!

524.664 345 537~50!31024 @1.131028# .

(104)

5. Deuteron to proton magnetic moment ratio md /mp

The ratio md /mp may be determined by nuclear mag-
netic resonance (NMR) measurements on the molecule
HD. The relevant expression is

md~HD!

mp~HD!
5

@12sd~HD!#md

@12sp~HD!#mp
, (105)

where md(HD) and mp(HD) are the deuteron and pro
ton magnetic moments in HD, respectively, and sd(HD)
and sp(HD) are the corresponding nuclear magnetic
shielding corrections similar to the atomic bound-state
corrections discussed in Sec. III.C.2. The ratio
md(HD)/mp(HD) in turn is given by

md~HD!

mp~HD!
52

fd~HD!

fp~HD!
, (106)

where fd(HD) and fp(HD) are the NMR frequencies of
the deuteron and proton in HD in the same magnetic
flux density B . The factor 2 arises because the spin
quantum number i of the deuteron is 1, while for the
proton it is 1

2 . That is, in general we have for the NMR
frequency f of a nucleus of magnetic moment m in an
applied flux density B

f5
umu
ih

B5
ugumN

h
B5

g

2p
B , (107)

reflecting the fact that in NMR measurements the selec-
tion rule on spin projection in the field direction is Diz
561, where Iz5iz\ . In Eq. (107), the term ugumN /h
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follows from Eq. (64), and the last term defines the gy-
romagnetic ratio of the nucleus g. Equations (105) and
(106) lead to

md

mp
52

12sp~HD!

12sd~HD!

fd~HD!

fp~HD!

52@11sd~HD!2sp~HD!#
fd~HD!

fp~HD!
1¯ , (108)

where the second line follows from the fact that the
nuclear magnetic shielding corrections are small.

Using the NMR method, Wimett (1953) obtained

md

mp
50.307 012 192~15! @4.931028# (109)

based on the assumption that in HD the shielding cor-
rection is the same for the deuteron as it is for the pro-
ton, as suggested by Ramsey (1952), which implies
sd(HD)2sp(HD)50 in Eq. (108). The uncertainty is
that quoted by the author, who simply states that it is
‘‘five times the standard deviation of results obtained in
four independent measurements.’’ Because the descrip-
tion of this experiment provided by Wimett is minimal,
we are unable to give further consideration to the result
in Eq. (109).

A more recent result for md /mp , based on the theo-
retical estimate sd(HD)2sp(HD)515.031029 of Ner-
onov and Barzakh (1977), has been reported by Gorsh-
kov et al. (1989):

md

mp
50.307 012 208 1~4 ! @1.331029# . (110)

The uncertainty, which is apparently only statistical
(Type A), is that given by Gorshkov et al. (1989). Their
measurements were designed to eliminate a particular
systematic error of an earlier similar measurement by
Neronov, Barzakh, and Mukhamadiev (1975). The esti-
mate of Neronov and Barzakh (1977) for sd(HD)
2sp(HD) supplants the earlier theoretical estimate also
given by Neronov et al. (1975).

Because Gorshkov et al. (1989) do not provide suffi-
cient information to allow an independent assessment of
uncertainties due to other possible systematic effects,
and also because there is no confirmation of the theoret
ical value for sd(HD)2sp(HD), we do not consider
this result any further.

6. Electron to shielded proton magnetic moment ratio me /mp8

In many experiments requiring a magnetic field, the
applied magnetic flux density B is calibrated in terms of
the NMR frequency of protons in H2O. Since the ob-
served NMR frequency depends on the properties of the
water sample, such as its purity, shape, and temperature,
we write, based on Eq. (107) with i5 1

2 ,

fp52mp
effB/h , (111)

which defines the effective magnetic moment of the pro-
ton mp

eff for that sample. In the field of fundamental con-
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stants, the sample is taken to be a sphere of pure H2O at
25 °C surrounded by vacuum, and the corresponding ef-
fective proton magnetic moment is denoted by mp8 . Fur-
ther, B is the flux density in vacuum before the sample is
introduced, and the sources of B are assumed to be in-
finitely far away from the sample.

The relation between the shielded magnetic moment
mp8 and the free-proton moment mp can be written as

mp85@12sp8#mp , (112)

which defines the shielding correction sp8 . Results from
experiments in which B is measured using such water
samples can be related to fundamental quantities
through knowledge of the shielded proton moment in
Bohr magnetons mp8/mB . This quantity can be obtained
from the measurement of me2 /mp8 discussed below. [We
assume for the cases of interest in this review that any
nonlinear dependence of the NMR frequency on B is
negligible, and consequently that shielding corrections
such as sp8 are independent of B; see Ramsey (1970).]

a. Temperature dependence of shielded proton magnetic
moment

Petley and Donaldson (1984) have determined experi-
mentally that the temperature-dependent shielded mag-
netic moment of the proton mp* (t) in a spherical sample
of pure H2O over the range 5 °C<t<45 °C can be writ-
ten as

mp* ~ t !

mp8
51210.36~30!31029 °C21~ t225 °C!, (113)

where the uncertainty is that assigned by these research-
ers and is dominated by the component that allows for
possible systematic effects. As pointed out by Petley and
Donaldson (1984), earlier results have larger uncertain-
ties and are consistent with their result. Although we use
Eq. (113) to correct several experimental results to
25 °C, the uncertainties of the corrections are suffi-
ciently small that the correlations introduced among
these results by using the same equation to calculate the
corrections are negligible.

b. Value of me /mp8

Phillips, Cooke, and Kleppner (1977) at MIT, in an
experiment similar to that of Winkler et al. (1972) dis-
cussed in connection with me /mp (see Sec. III.C.3), mea-
sured the ratio of the electron magnetic moment in hy-
drogen to the proton magnetic moment in water. By
comparing the electron spin-flip frequency obtained us-
ing a hydrogen maser operating at 0.35 T to the proton
NMR frequency of a spherical sample of pure H2O at a
temperature t534.7 °C in the same magnetic flux den-
sity, Phillips et al. (1977) found

me2~H!

mp* ~34.7 °C!
52658.216 0091~69! @1.031028# .

(114)
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The uncertainty is that assigned by these researchers
and includes the statistical uncertainty (Type A) and a
number of small uncertainty components arising from
various systematic effects. This value disagrees with the
reported value of the previous most accurate measure-
ment, obtained by Lambe (1968) at Princeton University
nearly 20 years earlier, which has a relative standard
uncertainty of 6.631028. As discussed in detail by Phil-
lips et al. (1977), there are a number of plausible expla-
nations for this disagreement that favor the later value.
Thus we consider only the MIT result.

To obtain me /mp8 , we first write

me2~H!

mp8
5

mp* ~34.7 °C!

mp8

me2~H!

mp* ~34.7 °C!

5~121.005~29!31027!
me2~H!

mp* ~34.7 °C!

52658.215 9430~72! @1.131028# , (115)

based on Eqs. (113) and (114). Using ge2(H)/ge2

5me2(H)/me2 , which follows from Eqs. (96) and (62),
and Eq. (84), we then have

me2

mp8
5S ge2~H!

ge2
D 21 me2~H!

mp8

52658.227 5970~72! @1.131028# . (116)

7. Shielded helion to shielded proton magnetic moment ratio
mh8 /mp8

Because of the inherent difficulties of using water as
an NMR medium to calibrate magnetic flux densities to
the level of accuracy required in present-day experi-
ments in the field of fundamental constants, researchers
at the National Physical Laboratory (NPL), Teddington,
UK, have been developing optically pumped 3He NMR
(Flowers, Petley, and Richards, 1990, 1993; Flowers,
Franks, and Petley, 1995a, 1995b; Flowers et al., 1997;
Flowers et al., 1999). Employing their new techniques,
Flowers et al. (1993) measured the ratio of the magnetic
moment of the helion h, the nucleus of the 3He atom, to
the magnetic moment of the proton in H2O and ob-
tained the result

mh8

mp8
520.761 786 1313~33! @4.331029# . (117)

The assigned uncertainty is that of Flowers et al. (1993)
and is mainly due to a number of nonstatistical (Type B)
standard uncertainty components. The next most accu-
rate experiment has an uncertainty that is about 24 times
larger (Belyi, Il’ina, and Shifrin, 1986) and is not consid-
ered. (The prime on the symbol for the moment indi-
cates that the helion is not free, but is bound in a helium
atom. Further, although the magnetic shielding of the
helion due to the susceptibility of the 3He gas at the
pressures typically used in such experiments is inconse-
quential, thereby making exact sample shape and tem-
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perature unimportant, we nevertheless assume that the
sample is spherical, at 25 °C, and surrounded by
vacuum.)

Neronov and Barzakh (1978) have reported the value
mh8/mp(H2)520.761 786 635(4) @5.231029# for the re-
lated ratio of the helion magnetic moment in 3He to the
magnetic moment of the proton in H2. However, these
authors do not give a detailed breakdown of the uncer-
tainty components due to systematic effects that might
contribute to their experiment, and, as noted by Flowers
et al. (1993), there may be an additional component of
uncertainty due to the effect subsequently discovered by
Gorshkov et al. (1989). [Note that the next most accu-
rate measurement of this quantity has an uncertainty
that is nearly 20 times larger (Williams and Hughes,
1969).]

A value of either the ratio mh8/mp8 or the ratio mh8/mp
could be obtained from the above result of Neronov and
Barzakh (1978) with the aid of a value for either the
shielding correction difference sp(H2)2sp8 or the
shielding correction sp(H2) itself. Neronov and Barzakh
give the measured value sp(H2)2sp(H2O, 21 °C)
50.596(13)31026, which implies sp(H2)2sp8
50.555(13), based on the temperature dependence in
Eq. (113). Taking the values and uncertainties as given,
we find mh8/mp8520.761 786 213(11) @1431029# , which is
in significant disagreement with the result in Eq. (117).
In a similar manner, as noted by Fei (1996), if the
quoted value sp(H2)526.363(4)31026 obtained by
Raynes and Panteli (1983) from a combination of theory
and experimental data is used together with the result
for mh8/mp(H2) of Neronov and Barzakh (1978) and the
result for mh8/mp8 of Flowers et al. (1993), one obtains
sp8525.702(8)31026 based on Eq. (112). At face value,
this result is in agreement with and has a smaller uncer-
tainty than the corresponding result sp8525.689(15)
31026 based on the experiments discussed above in
Secs. III.C.3 and III.C.6. This agreement could be inter-
preted as providing confirmation of the result of Ner-
onov and Barzakh for the ratio mh8/mp , and could indi-
cate that their value for the difference sp(H2)
2sp(H2O, 21 °C) is the source of the discrepancy with
Flowers et al. (1993). On the other hand, the reliability
the value of the screening correction sp(H2) of Raynes
and Panteli (1983) is open to question because of vari-
ous assumptions on which it is based and a lack of ex-
perimental verification. Further, as discussed in the pre-
ceding paragraph, there are questions concerning the
magnitude of the uncertainty that should be assigned to
the result of Neronov and Barzakh (1978), and there is
insufficient information available to resolve these ques-
tions. Therefore we do not include their result as an
input datum.

8. Neutron to shielded proton magnetic moment ratio mn /mp8

The ratio of the magnetic moment of the neutron mn
to that of the shielded proton mp8 may be determined
from the work of Greene et al. (1979, 1977) carried out
at the Institut Laue-Langevin (ILL). Using the Ramsey
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separated-oscillatory-field magnetic resonance tech-
nique with protons in flowing water and slow neutrons in
the same applied magnetic flux density, Greene et al.
(1979) obtained

mn

mp~cyl, 22 °C!
520.684 995 88~16! @2.431027# ,

(118)

where ‘‘cyl’’ indicates that the water sample was cylin-
drical. The uncertainty in Eq. (118) is that assigned by
Greene et al. (1979) and is due mainly to a statistical
relative standard uncertainty (Type A) of 1.731027 and
an uncertainty in the velocity distribution of both the
neutrons and protons which contributes a relative stan-
dard uncertainty (Type B) of 1.431027.

To determine mn /mp8 from the ratio given in Eq. (118),
we first note that that result is based on measurements
made in air, while the symbol mp8 denotes measurement
in vacuum (see Sec. III.C.6). However, from Eq. (120)
below, it can be seen that, to first order in the magnetic
susceptibility of air, the ratio of the neutron and proton
resonant frequencies is the same whether measured in
vacuum or air. (This statement also applies to those ra-
tio measurements discussed in previous sections that
were carried out in air.) The ratio in Eq. (118) can there-
fore be taken as the ratio in vacuum. This vacuum ratio
is then transformed to a result corresponding to a
spherical H2O sample in vacuum at the same tempera-
ture using the relation

mp~cyl, 22 °C!

mp* ~22 °C!
5

11 1
3 k~22 °C!

11 1
2 k~22 °C!

5111.5093~10!31026, (119)

where k(22 °C)529.0559(61)31026 [0.067 %] is the
volume magnetic susceptibility of water at 22 °C. This
value of k(t) is the mass susceptibility result of Auer
(1933) corrected to 22 °C using the H2O mass suscepti-
bility versus temperature data of Philo and Fairbank
(1980) and converted to a volume susceptibility using
the H2O mass density vs. temperature data of Patterson
and Morris (1994). We have also corrected the result of
Auer for the accepted difference between the interna-
tional ampere, which he used in his experiment as a unit
to express the values of currents, and the SI ampere
(Hamer, 1965). We do not consider the work of Piccard
and Devaud (1920) because of the disagreement be-
tween the values of the H2O mass susceptibility ob-
tained from their inductive measurements and their
Cotton-balance measurements of the flux density in
their experiment. [According to Davis (1997), the reason
given by Cotton and Dupouy (1932) for possibly exclud-
ing the inductive flux-density result of Piccard and
Devaud was later shown to be invalid by Dupouy and
Jouaust (1935).] We have taken the 0.067 % relative un-
certainty quoted by Auer (1933) as a relative standard
uncertainty, although it was rather conservatively as-
signed, in order to account for the fact that the two re-
sults of Piccard and Devaud (1920) disagree not only
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
with each other, but also with that of Auer. (If Auer had
followed current practice, his assigned uncertainty
would have been about 0.03 %.)

Fortunately, because the correction for the shape of
the sample used by Greene et al. (1979) is small relative
to the uncertainty of their result, the lack of modern
data for k is not of critical importance. Of course, there
is no shape or temperature correction for mn because of
the low density of the neutrons. (Although we use the
volume magnetic susceptibility of H2O to derive correc-
tions to several experimental results in the 1998 adjust-
ment, the uncertainty of the susceptibility of H2O is suf-
ficiently small that the correlations introduced among
these results by using very nearly the same value of the
susceptibility are negligible.)

Equation (119) follows from the relation for the mag-
netic flux density B i inside an ellipsoid with a volume
magnetic susceptibility k i placed in an originally uniform
flux density Bo in a medium with volume magnetic sus-
ceptibility ko :

B i5
11k i

11ko1e~k i2ko!
Bo , (120)

where e is the demagnetizing factor of the ellipsoid, and
k is related to the permeability m by m5(11k)m0 ; in
vacuum k50. Further, e has the value 1

3 for a sphere and
1
2 for an infinitely long cylinder with axis perpendicular
to the lines of flux [see Sec. 4.18 of Stratton (1941);
Lowes (1974); and Bennett, Page, and Swartzendruber
(1978)]. The fact that the water sample used by Greene
et al. (1979) was a cylinder of finite length might have
the effect of reducing the correction in Eq. (119) by an
amount of the same order as its uncertainty. However
such a decrease, like the uncertainty itself, would be in-
significant in comparison to the uncertainty of the ex-
periment of Greene et al. (1979).

The temperature dependence of the effective mag-
netic moment in water is taken into account by means of
Eq. (113):

mp* ~22 °C!

mp8
5113.108~90!31028. (121)

Equations (118), (119), and (121) together yield

mn

mp8
520.684 996 94~16! @2.431027# . (122)

Because the result of Greene et al. (1979) has an uncer-
tainty that is 1 % of the uncertainty of the next most
accurate measurement involving mn , it is the only one
we need to consider.

9. Muon to proton magnetic moment ratio mm /mp and muon
to electron mass ratio mm /me

a. SIN: mm /mp

A value of the ratio mm /mp may be obtained from the
measurements of Klempt et al. (1982) carried out at the
Swiss Institute for Nuclear Research, Villigen, Switzer-
land (SIN, now the Paul Scherrer Institute or PSI).
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These workers measured, using a stroboscopic tech-
nique, the NMR frequency of positive muons stopped in
spherical targets relative to the NMR frequency of pro-
tons in cylindrical water samples doped with NiSO4 in
the same magnetic flux density B50.75 T. The spherical
targets contained either pure liquid bromine (Br2), liq-
uid bromine with a small admixture of H2O, or pure
H2O. All measurements were made at a temperature of
25 °C. In pure liquid bromine, the muonium and bro-
mine atoms form the molecule MuBr, while in bromine
with H2O and in pure H2O the molecule formed is
MuOH. Thus, in terms of effective moments [see Eq.
(111)], their results may be written as

mm1~sph, MuBr!Br2

mp
eff~cyl!

53.183 3212~20! @6.331027#

(123)

mm1~sph, MuOH!Br2

mp
eff~cyl!

53.183 3341~19! @6.031027#

(124)

mm1~sph, MuOH!H2O

mp
eff~cyl!

53.183 3519~66! @2.131026# ,

(125)

where mp
eff(cyl) is the effective magnetic moment of the

protons in the field-measuring probe, and the uncertain-
ties are statistical (Type A) only.

The corrections to the NMR frequency of the field-
measuring probe found by Klempt et al. (1982), includ-
ing a correction of 20.20(25)31026 due to the strobo-
scopic background, can be expressed as

mp
eff~cyl!

mp~cyl!
5120.95~29!31026, (126)

where the uncertainty is mainly nonstatistical (Type B).
Also in separate measurements, using a high-resolution
NMR spectrometer operated at 25 °C and with long cy-
lindrical samples, Klempt et al. (1982) determined the
NMR frequency of protons in HBr and in H2O, both in
liquid bromine, relative to the NMR frequency of pro-
tons in pure water. The results may be written as

mp~cyl, HBr!Br2

mp~cyl!
5126.55~5 !31026 (127)

mp~cyl, H2O!Br2

mp~cyl!
5122.40~5 !31026. (128)

[Note that the corresponding ratio for water is 1, be-
cause mp(cyl, H2O)H2O[mp(cyl).]

The ratio of magnetic moments mm1 /mp may be ob-
tained using the experimental results given in Eqs. (123)
to (128). The following is the relevant equation for the
case in which muons are captured in a pure bromine
target (similar equations may be written for the other
two cases):
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mm1

mp
5S mm1~sph, MuBr!Br2

mp
eff~cyl!

D S mp
eff~cyl!

mp~cyl! D
3S mp~cyl, HBr!Br2

mp~cyl! D 21S mp~cyl, HBr!Br2

mp~sph, HBr!Br2
D

3S mm1

mp

mp~sph, HBr!Br2

mm1~sph, MuBr!Br2
D . (129)

The first term on the right-hand side of this equation is
approximately equal to the ratio of the magnetic mo-
ments of the free muon and proton. The other terms
take into account the differences in the effective mag-
netic fields seen by the particles. In particular, the sec-
ond term corrects for the characteristics of the field-
measuring probe; the third term accounts for the
difference between the bromine and water environ-
ments for the proton in a cylindrical sample; the fourth
term takes into account the effect of the shape of the
bromine samples; and the fifth term, called the isotope
shift correction, corrects for the difference between the
local environment seen by the muon in the MuBr mol-
ecule and the proton in the HBr molecule. The first
three terms are determined experimentally, and are
given by Eqs. (123), (126), and (127). The fourth and
fifth terms are calculated.

The value of the fourth term is given, as in Eq. (119),
by 12 1

6 k(Br2)5112.19(5)31026, where k(Br2)5

213.12(32)31026 at 25 °C. This value for k(Br2) is
based on the volume susceptibility result obtained by
Broersma (1949) at 20 °C, scaled to 25 °C using ac-
cepted values of the density of Br2 (Kirk-Othmer, 1978).
The result of Broersma appears to be the most reliable
available. Based on the results for water [see Sec.
III.C.8], the temperature dependence of the mass sus-
ceptibility of Br2 is assumed to be negligible compared
to the temperature dependence of its density. The as-
signed uncertainty is our own estimate and is based on
the variability of measurements of this type [see, for ex-
ample, Savithri (1943); and Rao and Govindarajan
(1942)].

The value of the fifth term in Eq. (129) is theoretically
estimated by Klempt et al. (1982) to be 120.78(12)
31026, based on work by Breskman and Kanofsky
(1970); Williams (1971); and Castro, Keller, and Schenck
(1979). Evaluation of Eq. (129) yields

MuBr in Br2:

mm1

mp
53.183 3435~20! @6.431027# . (130)

In the case of MuOH in Br2, the shape correction is
the same as in the MuBr case. For the isotope shift cor-
rection, Klempt et al. (1982) give 120.28(12)31026, es-
timated in the same way as in the MuBr case. [Although
the uncertainties of these isotope shift corrections were
evaluated using a more conservative approach (absolute
sum of the uncertainty components) than normally em-
ployed for other results discussed in this review, we take
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them to be standard uncertainties, as do Klempt et al.
(1982), because an independent evaluation of the uncer-
tainties cannot be done.]

Klempt et al. (1982) take 122.0(2.0)31026 as the
corresponding correction for MuOH in H2O from
Crowe et al. (1972). Also in the latter case, the shape

correction is 12 1
6 k(25 °C)5111.509(1)31026, where

k(25 °C)529.0531(61)31026 and is obtained as de-
scribed in Sec. III.C.8. The results are

MuOH in Br2:

mm1

mp
53.183 3448~19! @6.131027# (131)

MuOH in H2O:

mm1

mp
53.183 3473~92! @2931027# . (132)

The uncertainties quoted for the ratios in Eqs. (130) to
(132) do not include the 2.931027 uncertainty common
to all three measurements arising from the relationship
between mp

eff and mp(cyl), as given in Eq. (126). Also not
included in the uncertainties of the first two ratios is
their common 0.5431027 uncertainty due to the Br2
shape correction.

The three ratios are in good agreement. However, fol-
lowing Klempt et al. (1982), the final result is obtained
by taking a weighted mean of only the first two, because
the third has a significantly larger uncertainty arising
from the theoretical estimate of the isotope shift correc-
tion. The weighted mean is

mm1

mp
53.183 3442~17! @5.331027# , (133)

where the final quoted uncertainty consists of the 4.4
31027 relative standard uncertainty of the mean, and
the two common components of uncertainty. As stated
by Klempt et al. (1982), the result given in Eq. (133)
supersedes the initial result reported by Camani et al.
(1978).

Earlier NMR measurements of mm /mp have uncertain-
ties that are sufficiently large that they need not be con-
sidered. This includes the most accurate previous result,
mm1 /mp53.183 346 7(82) @2.631026# , which was ob-
tained by Crowe et al. (1972) and is consistent with Eq.
(133).

The muon to electron mass ratio mm /me and the
muon to proton magnetic moment ratio mm /mp are re-
lated by

mm

me
5S me

mp
D S mm

mp
D 21S gm

ge
D , (134)

where gm is the g-factor of the muon. Because the rela-
tive standard uncertainties of me /mp , gm , and ge are 1
31028 or less, mm /me may be obtained from mm /mp
(and vice versa) with an insignificant increase in uncer-
tainty. Further, any dependence of gm and ge on mm /me
is extremely weak and may be ignored (see Appendices
B and C). Using the 1998 recommended values of these
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
quantities, we find that the Klempt et al. (1982) value of
mm /mp given in Eq. (133) implies

mm

me
5206.768 34~11! @5.331027# . (135)

b. LAMPF 1982: mm /mp

A value of mm /mp may be obtained from measure-
ments of the frequencies of transitions between Zeeman
energy levels in muonium. Until very recently, the most
accurate experiment in a long series of this type [see
Hughes and zu Putlitz (1990) for a review] was carried
out nearly 20 years ago at the Clinton P. Anderson Me-
son Physics Facility at Los Alamos (LAMPF), by an in-
ternational collaboration using a microwave resonance
method. The experiment, the results of which were re-
ported in 1982 (Mariam et al., 1982; see also Mariam,
1981), used the high-intensity, low-momentum ‘‘surface’’
muon beam at LAMPF. Muons were stopped in a mi-
crowave cavity filled with krypton gas at a pressure of
0.5 or 1 atmosphere and in a magnetic flux density of
approximately 1.4 T. A total of 184 pairs of resonance
curves were analyzed for the frequencies of transitions
between the energy levels labeled by the high-field
quantum numbers (ms ,mI). The frequencies are n12 ,

corresponding to the transition ( 1
2 , 1

2 )↔( 1
2 ,2 1

2 ); and

n34 , corresponding to the transition (2 1
2 ,2 1

2 )↔(2 1
2 ,

1 1
2 ). Of these 184 resonance curves, 28 were from a

similar experiment reported in 1977 (Casperson et al.,
1977) in which the pressure of the krypton in the micro-
wave cavity was 1.7 or 5.2 atmospheres. The 184 pairs of
frequencies, after correction to a free proton NMR ref-
erence frequency fp of very nearly 57.972 993 MHz, cor-
responding to a magnetic flux density of about 1.3616 T,
and after correction for a small quadratic krypton gas
density shift, were extrapolated linearly to zero gas den-
sity. The results obtained may be written as

n1251 917 654.053~92! kHz @4.831028# (136)

n3452 545 648.82~12! kHz @4.631028# (137)

r~n12 ,n34!50.18, (138)

where r(n12 ,n34) is the correlation coefficient of n12 and
n34 . The quoted uncertainties and correlation coefficient
follow from the 19 components of uncertainty given by
Mariam (1982). The statistical (Type A) uncertainty is
0.046 kHz for n12 and 0.057 kHz for n34 .

We have considered possible corrections to these fre-
quencies due to the temperature dependence of the pro-
ton magnetic moment in water and due to modification
of the values used by Mariam et al. (1982) for the dia-
magnetic susceptibility of water and the proton magnetic
shielding correction sp8 . We conclude that any change in
the value of mm1 /mp deduced from the frequencies given
in Eqs. (136) and (137) should be well within its uncer-
tainty. The value of the muonium ground-state hyper-
fine splitting DnMu , which also follows from these fre-
quencies, is essentially independent of such corrections.
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The Hamiltonian for muonium is similar to that for
hydrogen given in Eq. (73):

H5b~Mu!me2•mm12me2~Mu!•B2mm1~Mu!•B

5
2p

\
DnMus•I2ge2~Mu!

mB

\
s•B

2gm1~Mu!
me

mm

mB

\
I•B. (139)

The energy eigenvalues of this Hamiltonian are again
given by the Breit-Rabi equation (Breit and Rabi, 1931;
Millman et al., 1938). This yields

DnMu5n341n12 (140)

n~fp!5n342n12 (141)

mm1

mp
5

DnMu
2 2n2~fp!12se fpn~fp!

4se fp
222 fpn~fp!

S gm1~Mu!

gm1
D 21

,

(142)

where fp is the free proton NMR frequency given above.
The quantity gm1(Mu)/gm1 is the bound-state correction
for the muon in muonium given in Eq. (93); and

se5
me2

mp

ge2~Mu!

ge2

, (143)

where ge2(Mu)/ge2 is the bound-state correction for the
electron in muonium given in Eq. (91). Based on Eqs.
(136) to (138), Eqs. (140) and (141) yield

DnMu54 463 302.88~16! kHz @3.631028# (144)

n~fp!5627 994.77~14! kHz @2.231027# (145)

r@DnMu ,n~fp!#50.23. (146)

Taking the 1998 recommended value of me2 /mp , we find
from Eqs. (142) to (146)

mm1

mp
53.183 3461~11! @3.631027# . (147)

(Note that all significant correlations are taken into ac-
count in this and subsequent calculations.)

The LAMPF-82 result given in Eq. (147) agrees with
that obtained at SIN given in Eq. (133); the two differ by
0.94 udiff , where udiff is the standard uncertainty of their
difference.

A value of mm /me may be obtained from the
LAMPF-82 value of mm1 /mp and Eq. (134) as was done
for the SIN value. The result is

mm

me
5206.768 219~74! @3.631027# . (148)

c. LAMPF 1999: mm /mp

Data from a new experiment initiated in the mid-
1980s at LAMPF and designed to measure transition
frequencies between Zeeman energy levels in muonium
with higher accuracy than the earlier experiment of
Mariam et al. (1982) have recently been reported by an
international collaboration that includes some of the re-
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
searchers in the earlier collaboration (Liu et al., 1999).
The measurements were carried out using basically the
same method as in the previous experiment but with a
number of significant improvements, leading to a reduc-
tion in the uncertainty of both mm1 /mp and DnMu by a
factor of 3. [For an early overview of the experiment,
see Hughes (1997).] These advances were in three major
areas: (i) magnetic field: a higher magnetic flux density
with greater homogeneity and stability measured with a
more accurate method (Fei, Hughes, and Prigl, 1997;
Prigl et al., 1996). (ii) Muon beam: higher intensity,
greater purity, and a narrower beam profile. (iii) Reso-
nance line: higher signal-to-background ratio and nar-
rower linewidth, especially when the resonance line-
narrowing technique termed ‘‘old muonium’’ rather
than the conventional technique was used (Boshier
et al., 1995).

In the new experiment, the resonance curves were ob-
tained either by sweeping the magnetic flux density
about a central value of approximately 1.7 T with fixed
microwave frequency, or by sweeping the frequency
with the flux density fixed at this central value. The cen-
ters of the resonance curves were obtained by fitting
them with a theoretical line shape that takes into ac-
count a number of factors such as the measured mag-
netic flux density distribution over the microwave cavity,
the ideal microwave power distributions, and the muon
stopping distribution.

In total, 1270 resonance lines were analyzed: 154 con-
ventional and 726 ‘‘old muonium’’ resonances obtained
by the swept-field method; and 43 conventional and 347
‘‘old muonium’’ resonances obtained by the swept-
frequency method (Kawall, 1998). Each of the transition
frequencies, n12 and n34 , resulting from the fitted line
shape was then converted to the frequency that would
have been obtained if the flux density seen by the muo-
nium atoms had been that corresponding to a free pro-
ton NMR frequency fp of exactly 72.320 000 MHz, cor-
rected for a small quadratic pressure shift due to the fact
that the data were taken with the pressure of the kryp-
ton gas in the microwave cavity at either 0.8 or 1.5 at-
mospheres, and extrapolated linearly to zero gas pres-
sure. The final results from all of the data are given as
(Liu et al., 1999; Liu and Kawall, 1998)

n1251 897 539 800~35! Hz @1.931028# (149)

n3452 565 762 965~43! Hz @1.731028# (150)

r~n12 ,n34!520.07, (151)

where the quoted standard uncertainties are dominated
by statistical components of uncertainty (Type A) but
also contain a number of Type B components arising
from different run-independent and run-dependent ef-
fects.

In the same manner discussed in the previous para-
graph in connection with the 1982 LAMPF experiment,
the 1999 LAMPF results lead to

DnMu54 463 302 765~53! Hz @1.231028# (152)

n~fp!5668 223 166~57! Hz @8.631028# (153)
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r@DnMu ,n~fp!#50.19, (154)

mm1

mp
53.183 345 13~39! @1.231027# , (155)

and

mm

me
5206.768 283~25! @1.231027# . (156)

A comparison of Eqs. (144) and (147) with Eqs. (152)
and (155) shows that the 1999 and 1982 LAMPF deter-
minations are in agreement. Because the two experi-
ments are separated in time by some 15 years, the new
experiment was carried out with a completely different
apparatus, and the uncertainties of the earlier values of
mm1 /mp and DnMu are only three times larger than those
of the newer values, we include the results of both ex-
periments as input data in the 1998 adjustment.

d. LAMPF: DnMu

The experimental value of the muonium ground-state
hyperfine splitting DnMu obtained at LAMPF by Mariam
et al. (1982) is given in Eq. (144) and the value obtained
at LAMPF by Liu et al. (1999) is given in Eq. (152). The
theoretical expression for the splitting is briefly dis-
cussed in Appendix D; a more detailed review is
planned for a future publication. That expression may
be written as

DnMu~th!5
16
3

cR`a2
me

mm
S 11

me

mm
D 23

F~a ,me /mm!

5DnFF~a ,me /mm!, (157)

where, because it provides a significantly more accurate
value, the theoretical expression for the muon magnetic
moment anomaly am , as discussed in Sec. III.C.10 and
Appendix C, is used in the function F. Further, F de-
pends on a and me /mm only weakly compared to the
dependence of DnF on these quantities.

It follows from Eq. (157) that, given experimental val-
ues of DnMu and mm /me , one can calculate a value of a
by equating DnMu(exp) with DnMu(th); or similarly,
given values of DnMu(exp) and a, one can calculate a
value of mm /me . How the available information on
mm /mp , mm /me , and DnMu is treated in the 1998 adjust-
ment is discussed in Sec. IV. Here we point out that
using the 1998 recommended value of R` (the uncer-
tainty of which is negligible in this application) and the
combined LAMPF-82 and SIN values of mm /me , and
equating the LAMPF-82 value of DnMu(exp) with
DnMu(th), we find

a215137.036 000~20! @1.531027# . (158)

The uncertainty of this result is due almost entirely to
the uncertainty of the combined LAMPF-82 and SIN
values of mm /me . [A value of a with a somewhat
smaller uncertainty could be inferred from Eq. (157) by
introducing an explicit factor of a4 through the replace-
ment of R` by the equivalent expression
ca2Ar(e)/@Ar(n)d220(W04)(h/mnd220(W04))# from Eq.
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(283) and using the available experimental data to de-
termine the values of the various quantities other than a
that enter the resulting expression. However, we choose
not to do so in order to obtain a value of a that is inde-
pendent of x-ray data.] Repeating this calculation with
the LAMPF 1982 data replaced by the LAMPF 1999
data yields

a215137.035 9932~83! @6.031028# , (159)

where the uncertainty is again dominated by the uncer-
tainty of the combined LAMPF-99 and SIN values of
mm /me . Finally, by combining the SIN, LAMPF 1982,
and LAMPF 1999 data we obtain what may be called a
muonium value of the fine-structure constant:

a21~DnMu!5137.035 9952~79! @5.731028# . (160)

On the other hand, using the value of a(ae) from Eq.
(72), which has a relative standard uncertainty of only
3.831029, and equating the combined 1982 and 1999
LAMPF values of DnMu(exp) with DnMu(th), we find

mm

me
5206.768 2656~64! @3.131028# , (161)

where the uncertainty arises primarily from the 2.7
31028 relative standard uncertainty of the theory of
DnMu and the 1.131028 relative standard uncertainty of
the 1982–1999 combined experimental value of the hy-
perfine splitting. Because the uncertainty of this value of
mm /me is significantly smaller than that of any of the
three values discussed above, the muonium hyperfine
splitting plays a dominant role in the determination of
this mass ratio in the 1998 adjustment.

e. Other values

There are other values of mm /mp and mm /me , and
they generally agree with those discussed above. How-
ever, they are not competitive because of their relatively
large uncertainties. One such value is the NMR-based
result for mm1 /mp of Crowe et al. (1972), with a relative
standard uncertainty of 2.631026 already given in con-
nection with the SIN experiment. Another is mm /me
5206.768 67(64) @3.131026# based on measurements of
x-ray transitions in muonic 24Mg and 28Si (Beltrami
et al., 1986). [Note that we have corrected the original
result reported by Beltrami et al. (1986) for the approxi-
mate 1.831026 fractional decrease in the value of the
170Tm g-ray wavelength λg that they used as a reference
due to a fractional error of about 1.831026 in the value
of the silicon lattice spacing employed in the determina-
tion of λg ; see Sec. III.I.1.] Still another is mm /me
5206.76907(102) @4.931026# derived from measure-
ments of the 1S–2S transition in muonium, hydrogen,
and deuterium using Doppler-free two-photon laser
spectroscopy, although a value of mm /me with a relative
standard uncertainty of less than 831027 derived from
new measurements of the muonium 1S–2S transition is
expected to be published in 2000 (Schwarz et al., 1995;
Jungmann, 1999). And finally we have mm2 /mp5
23.183 28(15) @4731026# obtained from measurements
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of the frequencies of transitions between Zeeman en-
ergy levels of the muonic helium atom am2e2 (Gardner
et al., 1982).

10. Muon magnetic moment anomaly am

In a manner similar to that for the electron [see Eq.
(65)], the muon magnetic moment anomaly am is defined
as

am5
ugmu22

2
5

ummu
e\/2mm

21, (162)

where, as usual, gm52mm /(e\/2mm) is the g-factor of the
muon and mm is its magnetic moment. The muon
anomaly has been determined experimentally with a
relative standard uncertainty ur57.231026, and more
recently a value with ur51331026 has been obtained
from the first run of an entirely new experiment. By
contrast, a value with ur50.5531026 may be obtained
from the theoretical expression for am . These three val-
ues are discussed in the following sections.

a. CERN

The most accurate experimental value of am comes
from the third g22 experiment at CERN (European
Laboratory for Particle Physics, Geneva, Switzerland),
which was the culmination of nearly 20 years of effort
(Bailey et al., 1979). [For reviews of the early work, see
Farley and Picasso (1990); Combley, Farley, and Picasso
(1981); Farley and Picasso (1979); and Combley (1979).]
The CERN result is based on nine separate runs or mea-
surements with both positive and negative muons over
the period 1974–1976 using the CERN 3.098 GeV/c ,
1.47 T muon storage ring (Drumm et al., 1979). The ba-
sic principle of the experiment is similar to that used for
determining the electron anomaly ae and involves mea-
suring the anomaly difference frequency fa5fs2fc ,
where fs5ugmu(e\/2mm)B/h is the muon spin-flip (often
called precession) frequency in the magnetic flux density
B and where fc5eB/2pmm is the corresponding muon
cyclotron frequency. However, instead of eliminating B
by measuring fc as is done for the electron (see Sec.
III.C.1), B is determined from proton NMR measure-
ments. As a consequence, the value of mm /mp is required
to deduce the value of am from the data. The relevant
equation is

am5
R̄

umm /mpu2R̄
, (163)

where R̄5fa / f̄ p , and f̄ p is the free proton NMR fre-
quency corresponding to the average flux density seen
by the muons in their orbits in the storage ring.

The value of R̄ reported by Bailey et al. (1979) from
the third CERN g22 experiment is

R̄50.003 707 213~27! @7.231026# , (164)

where the uncertainty consists of a 7.031026 statistical
(Type A) relative standard uncertainty component, aris-
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ing from the determination of fa , and a 1.531026 rela-
tive standard uncertainty component (Type B), arising
from a number of systematic effects associated with the
determination of fp . The NMR probes used in mapping,
monitoring, and stabilizing the flux density of the stor-
age ring were calibrated in terms of a long, cylindrical
H2O reference probe containing NiSO4 (Borer and
Lange, 1977). The observed NMR frequency of this ref-
erence probe was converted to the corresponding free-
proton NMR frequency by applying corrections to ac-
count for the paramagnetic Ni11 ions, the cylindrical
shape of the probe, and the proton’s magnetic shielding
in H2O. The first correction was determined experimen-
tally; the second was based on the assumption that the
cylinder was infinitely long and was calculated with the
accepted value of the volume magnetic susceptibility of
H2O, k ; and the third was based on the accepted value
of the proton magnetic shielding correction sp8 . [It
should be noted that the difference between the value of
k used by Bailey et al. (1979) and the value of k that
follows from the discussion of Sec. III.C.8 would lead to
a change in the corresponding correction that is negli-
gible compared to the uncertainty of f̄ p . A similar state-
ment applies to the value of sp8 used by Bailey et al.
(1979) and the 1998 recommended value.]

Equation (164) is the weighted mean of all nine inde-
pendent measurements, five using positive muons and
four using negative muons. The Birge ratio (see Appen-
dix E) associated with this weighted mean (n58) is
RB5Ax2/n50.96, indicating that the data form a consis-
tent set. The m1 and m2 data alone give R̄1

50.003 707 173(36) and R̄250.003 707 256(37), where
each quoted uncertainty is the statistical (Type A) un-
certainty only. The 8431029 difference between R̄2 and
R̄1 is equal to 1.6 udiff , where udiff is the standard un-
certainty of the difference (Type A only) and is not
deemed statistically significant. Since the m1 and m2 val-
ues are consistent and we assume that CPT invariance
holds for the muon–antimuon system as we do for the
electron–positron system (see Sec. III.C.1), taking the
weighted mean of all nine values is the appropriate way
to treat the data.

Because of the relatively large uncertainty of the
CERN result for R̄ , the value of mm /mp used to obtain
am from R̄ and Eq. (163) is not critical. Taking the 1998
recommended value for mm /mp , we find

am51.165 9231~84!31023 @7.231026# . (165)

This result is consistent with the significantly less accu-
rate result from the second CERN g22 experiment,
am51.166 16(31)31023 @2731025# [Bailey et al. (1972)].

b. Brookhaven

A new muon g22 experiment based on the same gen-
eral method employed in the most recent CERN experi-
ment was initiated in the mid-1980s by an international
group of researchers at the Brookhaven National Labo-
ratory (BNL), Upton, New York, USA using the BNL
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Alternating Gradient Synchrotron (AGS). The ultimate
aim of the BNL g22 collaboration is to reduce the un-
certainty of the measured value of am achieved at CERN
by about a factor of 20, corresponding to a relative stan-
dard uncertainty ur53.531027. [For a detailed over-
view of the BNL g22 effort, see Hughes (1998, 1994).]

The main characteristics of the new experiment that
should make this significantly reduced uncertainty pos-
sible include (i) a smaller statistical uncertainty because
of the larger number of stored muons due to the higher
proton beam intensity of the BNL AGS and the even-
tual direct injection of muons into the BNL muon stor-
age ring (the dominant uncertainty component by far in
the CERN determination was the statistical uncer-
tainty); (ii) a superferric 14 m diameter, 1.45 T ‘‘C’’ mag-
net of very high homogeneity and stability, together with
a system of fixed and movable NMR probes with the
potential of measuring the magnetic flux density distri-
bution seen by the circulating muon beam in terms of
the corresponding free proton NMR frequency with ur
5131027 (Fei et al., 1997; Fei, 1995); and (iii) an ad-
vanced detector system with Pb-scintillating fiber elec-
tron calorimeters and the capability of measuring time
intervals with an uncertainty of 20 ps over a time period
of 200 ms.

The principal equipment of the new experiment was
checked out and initial data acquired in a 1997 engineer-
ing run using pion injection into the storage ring. All
critical components performed successfully, including
the positive pion beam line of the AGS, the supercon-
ducting inflector for bringing the pion (and eventually
muon) beam into the storage ring, the storage ring itself,
the NMR magnetic-field measuring system, and the de-
tectors. In early 1999, the BNL g22 collaboration re-
ported a value of fa / f̄ p for m1 with ur51331026 as ob-
tained from these initial data (Carey et al., 1999):

R̄150.003 707 220~48! @1.331025# , (166)

where the 4831029 standard uncertainty arises from a
4731029 statistical uncertainty component (Type A)
and a 1131029 uncertainty component (Type B) from
eight different systematic effects, the associated relative
standard uncertainties of which range from 0.231026 to
2.031026.

This first result from BNL agrees well with that from
CERN given in Eq. (164) and has an uncertainty less
than twice as large. Although a significantly more accu-
rate BNL value is expected from the data acquired in
1998 and 1999 runs using muon injection rather than
pion injection into the storage ring, the experiment is
sufficiently well in hand and the uncertainty of the initial
value of R̄1 is sufficiently small to allow it to be consid-
ered as an input datum in the 1998 adjustment together
with the CERN value of R̄ given in Eq. (164).

Based on Eq. (163), the BNL value of R̄1 implies

am51.165 925~15!31023 @1.331025# . (167)

c. Theory

Appendix C gives a brief summary of the theory of
am ; a more detailed review is planned for a future pub-
lication. In accordance with Appendix C, we have
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am~th!5am~QED!1am~weak!1am~had!,

with

am~QED!5Cm
(2)S a

pD1Cm
(4)S a

pD 2

1Cm
(6)S a

pD 3

1Cm
(8)S a

pD 4

1Cm
(10)S a

pD 5

1••• ,

where the coefficients Cm
(2n) , as well as am(weak) and

am(had), are given in Appendix C. The standard uncer-
tainty of am(th) due to the uncertainties of the coeffi-
cients and the weak and hadronic contributions is
u@am(th)#56.431021055.531027 am and is almost en-
tirely due to the uncertainty of am(had).

Because of the relatively large uncertainty of the the-
oretical expression for am , the value of a used to evalu-
ate it is not particularly critical. The 1998 recommended
value of a yields

am51.165 916 02~64!31023 @5.531027# , (168)

which agrees with the CERN and BNL experimental
results given in Eqs. (165) and (167); the differences be-
tween the two experimental values and the theoretical
value are 0.8 udiff and 0.6 udiff , respectively, where udiff is
the standard uncertainty of the difference. The uncer-
tainties of the CERN and BNL values of am are 13 and
24 times that of the theoretical value, so the 1998 rec-
ommended value of am is determined primarily by the
theoretical expression.

The agreement between theory and experiment may
also be seen by considering the value of a obtained by
equating the theoretical expression for am with the
CERN and BNL experimental values. The results are

a215137.035 18~98! @7.231026# (169)

and

a215137.0349~18! @1.331025# , (170)

which agree with more accurate values such as a21(ae)
given in Eq. (72).

D. Shielded gyromagnetic ratios g8

It follows from Eq. (107) that the gyromagnetic ratio
g of a particle of spin quantum number i and magnetic
moment m is given by

g5
2pf

B
5

v

B
5

umu
i\

, (171)

where f is the precession (i.e., spin-flip) frequency and v
is the angular precession frequency of the particle in the
magnetic flux density B . The SI unit of g is
s21 T215C kg215A s kg21. In this section we review
measurements of the gyromagnetic ratio of the shielded
proton

gp85
2mp8

\
(172)

and of the shielded helion
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gh85
2umh8u

\
, (173)

where, as in previous sections that dealt with magnetic
moment ratios involving these particles, the protons are
those in a spherical sample of pure H2O at 25 °C sur-
rounded by vacuum, and the helions are those in a
spherical sample of low-pressure, pure 3He gas at 25 °C
surrounded by vacuum. Also, as was assumed in these
previous sections, B is the flux density in vacuum before
the sample is introduced and the sources of B are infi-
nitely far from the sample.

In practice, two methods are used to determine the
shielded gyromagnetic ratio g8 of a particle. In the low-
field method B is of the order of 1 mT and is usually
generated by a single-layer precision solenoid carrying
an electric current I . The flux density B is calculated
from the dimensions of the solenoid and the current: B
5m0ksI , where ks is the measured solenoid constant and
has the dimension of reciprocal length. In the high-field
method B is of the order of 0.5 T, is generated by an
electromagnet or a permanent magnet, and is measured
in terms of the force Fe it produces on a straight con-
ducting wire of length l carrying an electric current I :
B5Fe /l I .

In either case the current I is measured in terms of a
practical laboratory unit of current ALAB
5VLAB /ΩLAB , where VLAB and ΩLAB are practical
laboratory units of voltage and resistance. As indicated
in Sec. II.E, the unit VLAB may be based on the Joseph-
son effect or possibly on the mean emf of a group of
standard cells, and the unit ΩLAB may be based on the
quantum Hall effect or possibly on the mean resistance
of a group of standard resistors.

Since in the low-field method g8 is inversely propor-
tional to the current I , and in the high-field method g8 is
directly proportional to I , it follows from the discussion
of Sec. II.E that for a low-field experiment

g85
v

m0ks I
5ΓLAB8 ~ lo!S ALAB

A D 21

, (174)

where ΓLAB8 (lo) is the value of v/m0ksI when I is re-
placed by (I/ALAB)A, that is, when I is taken to be the
numerical value of the current measured in the unit
ALAB times the unit A. For a high-field experiment

g85
v l I

Fe
5ΓLAB8 ~hi!S ALAB

A D , (175)

where ΓLAB8 (hi) is the value of v l I/Fe when I is re-
placed as above. The square root of the product of Eqs.
(174) and (175) is

g85@ΓLAB8 ~ lo!ΓLAB8 ~hi!#1/2, (176)

which shows that if low- and high-field measurements of
g8 are based on the same unit of current ALAB , irre-
spective of how that unit is realized, then the two mea-
surements together yield g8 in its SI unit s21 T21.

If VLAB5V90 and ΩLAB5Ω90 , where V90 and Ω90 are
based on the Josephson and quantum Hall effects and
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the exact, conventional values KJ290 and RK290 for the
Josephson and von Klitzing constants (see Sec. II.E),
then from Eqs. (174) and (175) we have

g85Γ908 ~ lo!
KJRK

KJ290RK290
(177a)

g85Γ908 ~hi!
KJ290RK290

KJRK
, (177b)

where the subscript ‘‘90’’ on Γ8 indicates that ALAB is
taken to be the conventional unit A905V90 /Ω90 .

Low- and high-field measurements of g8 contribute to
the determination of a set of recommended values of the
constants because of the relationship of g8 to constants
of fundamental interest, particularly the fine-structure
constant a and Planck constant h , which are central to
the 1998 adjustment. For example, starting from Eq.
(172) and taking advantage of the fact that the ratio
me2 /mp8 has been accurately measured (see Sec. III.C.6),
we can relate mp8 to me2 , where the latter is well known
in terms of the Bohr magneton mB5e\/2me (see Sec.
III.C.1):

gp85
2
\

mp8

me2

me2

mB
mB5

mp8

me2

ge2

2
e

me
. (178)

Since e252ah/m0c and me52R`h/a2c , Eq. (178) may
be written as

gp85
mp8

me2

ge2

R`
S c

8m0

a5

h D 1/2

. (179)

The results of the gyromagnetic ratio experiments that
we review in the following sections are summarized in
Table X. Also included in the table is the value of a
inferred from each low-field result and the value of h
inferred from each high-field result, as discussed in con-
nection with each experiment. Each inferred value is in-
dented for clarity and is given for comparison purposes
only; in actuality the values of Γ8 are taken as input data
for the 1998 adjustment. (The consistency of the data of
Table X is discussed in Sec. IV.)

1. Proton p

A number of national metrology institutes have long
histories of measuring the gyromagnetic ratio of the
shielded proton. The motivation for such measurements
was, in part, the need to develop a method of measuring
magnetic fields using NMR and to monitor the stability
of the laboratory’s practical unit of current based on
groups of standard cells and standard resistors.

a. NIST: Low field

The National Institute of Standards and Technology
reported its first low-field measurement of gp8 , which
had a relative standard uncertainty of about 431026, in
1958 (Bender and Driscoll, 1958). Its most recent low-
field result was reported in 1989 by Williams et al. (1989)
and has a relative standard uncertainty of 1.131027.
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TABLE X. Summary of data related to shielded gyromagnetic ratios, and inferred values of a and h.

Quantity Value
Relative standard

uncertainty ur Identification Sec. and Eq.

Γp2908 (lo) 2.675 154 05(30)3108 s21 T21 1.131027 NIST-89 III.D.1.a (183)
a21 137.035 9880(51) 3.731028 III.D.1.a (193)

Γp2908 (lo) 2.675 1530(18)3108 s21 T21 6.631027 NIM-95 III.D.1.b (197)
a21 137.036 006(30) 2.231027 III.D.1.b (200)

Γp2908 (hi) 2.675 1525(43)3108 s21 T21 1.631026 NIM-95 III.D.1.b (198)
h 6.626 071(11)310234 J s 1.631026 III.D.1.b (202)

Γp2908 (hi) 2.675 1518(27)3108 s21 T21 1.031026 NPL-79 III.D.1.c (205)
h 6.626 0729(67)310234 J s 1.031026 III.D.1.c (206)

Γh2908 (lo) 2.037 895 37(37)3108 s21 T21 1.831027 KR/VN-98 III.D.2.a (210)
a21 137.035 9853(82) 6.031028 III.D.2.a (212)

Γh2908 (lo) 2.037 897 29(72)3108 s21 T21 3.531027 VNIIM-89 III.D.2.b (214)
a21 137.035 942(16) 1.231027 III.D.2.b (215)
In this experiment, the single-layer precision solenoid
had a length of 2.1 m, a diameter of 0.3 m, and was
wound with 2100 turns of gold-plated copper wire 0.8
mm in diameter; the winding pitch was about 1 mm per
turn. The current through the solenoid was about 1 A,
but additional current was added to segments of the wire
in such a way that the magnetic flux density was insen-
sitive to the diameter of the solenoid to the same extent
that it would be for a 1.5 km long solenoid, and the flux
density was uniform with a fractional variation of less
then 231027 over a spherical volume 8 cm in diameter
at the solenoid’s center. In all, five current sources were
used to energize the solenoid. A movable probe consist-
ing of a set of five coils was guided along the axis of the
solenoid by a fused silica straightedge in order to deter-
mine variations in the diameter and pitch of the wind-
ings. This was done by injecting an ac current having a
special wave form in sequentially selected groups of ten
turns. The probe itself was in vacuum and its position
was measured by laser interferometry (Williams et al.,
1985; Williams, Olsen, and Phillips, 1984; Williams and
Olsen 1979; Olsen and Williams, 1974; Williams and
Olsen, 1972). The proton NMR measurements were car-
ried out at 25 °C using a 3.5 cm diameter spherical
sample of pure H2O. The NMR frequency in the 1.2 mT
magnetic flux density of the solenoid was about 52 kHz
and was measured by the method of nuclear induction.

The result obtained by Williams et al. (1989) may be
written as

gp* 5Γp2NIST* ~ lo!
KJ

KJ2NIST

ΩNIST

V
, (180a)

with

Γp2NIST* ~ lo!52.675 133 76~29!3108 s21 T21

@1.131027# , (180b)
where the standard uncertainty is that assigned by the
experimenters. Here the asterisk indicates that the ex-
periment was carried out in air rather than vacuum,
., Vol. 72, No. 2, April 2000
KJ2NIST5483 593.420 GHz/V was the adopted value of
the Josephson constant KJ used by NIST to define its
laboratory unit of voltage VNIST , and ΩNIST was the
NIST laboratory unit of resistance based on standard
resistors at the time of the experiment, the mean date of
which was 3 April 1988. From measurements of the von
Klitzing constant in terms of ΩNIST made in the period
August 1983 to May 1988 (Cage et al., 1989a), together
with two additional measurements, one made in Decem-
ber 1988 and the other in August 1989 (Cage, 1989),
we find that on this mean date RK
525 812.848 21(29) ΩNIST @1.131028# .

A number of systematic effects were investigated and
accounted for in the experiment of Williams et al.
(1989), including the magnetic susceptibility of the
Earth, of the fused silica solenoid form, and of the tuned
pickup coil used to detect the 52 kHz NMR signal. The
principal sources of uncertainty in the experiment were
the NMR measurements, the susceptibility of the pickup
coil, the measurements of the winding pitch, and the
power coefficient of the resistor used to measure the
solenoid current.

A number of corrections must be applied to the result
given in Eq. (180) to convert it to a value based on the
unit A90 and to account for other effects not initially
considered by Williams et al. (1989). The fractional val-
ues of these corrections, and their standard uncertainties
where applicable, are as follows: 9.26431026 to convert
from KJ2NIST to KJ290 ; 21.596(11)31026 to convert
from ΩNIST /V to RK /RK290 based on the above value of
RK ; 24.0(1.3)31029 to account for the underestima-
tion of the current dependence (loading) of the 6453.2 V
transfer resistors used in the 1980s measurements of RK
in terms of ΩNIST (Elmquist and Dziuba, 1997; Elmquist,
1997; Cage, 1997); 3.6(1.0)31028 due to the effect of
the field of the solenoid on the magnetometer that was
used to null the magnetic field of the Earth (Williams,
1997); and finally, a relatively large correction of
21.160(18)31027 due to the fact that the experiment
was done in air, but was assumed to be done in vacuum.
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A correction for this latter effect, which in this case is
slightly larger than the quoted standard uncertainty, is
also applied to the results of the other shielded gyro-
magnetic ratio experiments considered here. Although
this correction is of only marginal significance for some
of the experiments, we apply it to all in order not to
introduce artificial relative shifts in results for the 1998
adjustment. Based on Eq. (120), one can show that for
low-field experiments, to first order in the volume mag-
netic susceptibilities of H2O and air,

gp85~12eska!gp8
q~ lo!, (181)

where es5
1
3 is the demagnetizing factor for a sphere, ka

is the volume magnetic susceptibility of the air, and
gp8

q(lo) is the quoted value of gp8 as obtained from NMR
measurements carried out in air, but with the corre-
sponding flux density B calculated as if the solenoid gen-
erating B were in vacuum. For high-field experiments,
the corresponding equation is

gp85@11~12es!ka#gp8
q~hi!. (182)

The difference between Eqs. (181) and (182) is due to
the difference in the methods of obtaining B .

To calculate the fractional correction eska , we use the
equation for ka as a function of temperature, pressure,
relative humidity, and amount-of-substance fraction of
CO2 derived by Davis (1998), based on a thorough re-
view of the available experimental and theoretical data.
The relative standard uncertainty given by Davis for the
resulting value of ka is 1 % assuming that all four of
these variables are exactly known, but generally in-
creases to above 1.5 % if the uncertainties of these vari-
ables in a particular experiment are taken into account.
It should be noted that the 1 % uncertainty is sufficiently
small that the correlations among the various values of
Γ8 in Table X introduced by using essentially the same
value of ka to calculate the air correction are negligible.

Application of all the above corrections to the value
given in Eq. (180) yields

Γp2908 ~ lo!52.675 154 05~30!3108 s21 T21 @1.131027# ,
(183)

where Γp2908 is related to gp8 by Eq. (177a).
This result may be compared to that obtained from

the previous NIST low-field gp8 experiment using similar
techniques, but with a solenoid of length 1 m (Williams
and Olsen, 1979). The measurements were carried out
with two different current distributions, one that pro-
duced a nearly uniform magnetic flux density over the
sample volume and one that not only provided an ad-
equately uniform flux density, but also significantly re-
duced the sensitivity of the flux density to the average
diameter of the solenoid. The result reported by Will-
iams and Olsen (1979) is, in analogy with Eq. (180),

Γp2NIST* ~ lo!52.675 132 29~57!3108 s21 T21 @2.131027# ,
(184)

but in this case ΩNIST was the NIST unit of resistance on
22 March 1978, the mean date of the experiment.
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A number of corrections must be applied to this re-
sult, most of which are similar to those applied to the
result reported in 1989. The fractional values of these
corrections, and their uncertainties where applicable,
are as follows: 9.26431026 to convert from KJ2NIST to
KJ290 ; 21.089(26)31026 to convert from ΩNIST /V to
RK /RK290 ; 1.39(39)31028 to correct for the effect of
the solenoid’s field on the magnetometer (Williams,
1997); 21.160(18)31027 for the effect of the air; and
24.7(1.2)31028 for the effect of the Earth’s magnetic
susceptibility as obtained by scaling the corresponding
correction of 21.131027 given by Williams et al. (1989)
by the ratio of the magnetic dipole moments of the so-
lenoids used in the two experiments (Williams, 1997).

The correction for ΩNIST is based on the following
three results: (i) the value

RK525 812.808 31~62! V @2.431028# (185)

obtained from NIST RK-calculable capacitor measure-
ments carried out in 1994–1995 (Jeffery et al., 1998,
1997) and discussed in detail in Sec. III.F.1; (ii) the value

RK525 812.848 35~30! ΩNIST @1.131028# (186)

corresponding to 12 April 1988 based on the measure-
ments of RK in terms of ΩNIST from 1983 to 1989 dis-
cussed above, but including the loading correction (this
date gives the smallest uncertainty for RK); and (iii) the
value

ΩNIST5@120.819~27!31026# V (187)

obtained from NIST calculable capacitor measurements
with a mean date of 2 December 1973 (Cutkosky, 1974).
[Note that because of the 21 year time difference be-
tween the NIST 1973 and 1994–1995 calculable capaci-
tor measurements, and changes in equipment, person-
nel, and technique over this period, the values in Eqs.
(185) and (187) are treated as independent data.] Equa-
tions (185) and (186) imply that on 12 April 1988

ΩNIST5@121.551~27!31026# V , (188)

which together with Eq. (187) implies that the drift rate
of ΩNIST is

dΩNIST

dt
525.10~26!31028 a21, (189)

where a is the unit symbol for year. This drift rate agrees
with the value dΩNIST /dt525.32(29)31028 a21 based
on the 1983 to 1989 RK measurements. We do not use
the result

ΩNIST5@121.594~22!31026# V (190)

based on the NIST calculable capacitor measurements
with a mean date of 17 May 1988 (Shields, Dziuba, and
Layer, 1989), because the more recent NIST work (Jef-
fery et al., 1998, 1997) indicates that the earlier measure-
ments are likely to be in error. We have used the value
of dΩNIST /dt from the NIST 1973 and 1994–1995 calcu-
lable capacitor ohm realizations rather than the value
from the NIST RK measurements, because the time span
of the ohm realizations includes the mean date of the gp8
experiment.
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Application of all of the above corrections to the
value given in Eq. (184) leads to

Γp–908 ~ lo!52.675 153 76~57!3108 s21 T21 @2.131027# ,
(191)

which agrees with the value given in Eq. (183); the two
differ by about one-half of the standard uncertainty of
the 1979 value. Although the uncertainty of the 1979
NIST result is less than twice that of the 1989 NIST
result, in keeping with the policy discussed in Sec. I.D,
only the 1989 value of Γp2908 (lo) is included in the 1998
adjustment.

The value of a that may be inferred from Eq. (183)
follows from the relation

Γp2908 ~ lo!5
KJ290RK290 ge2

4m0R`

mp8

me2

a3, (192)

which is obtained by combining Eqs. (177a) and (179)
and assuming the validity of the relations KJ52e/h
5A8a/m0ch and RK5h/e25m0c/2a . Using the 1998
recommended values for the other relevant quantities,
the uncertainties of which are significantly smaller than
the uncertainty of the NIST experimental result, we find

a215137.035 9880~51! @3.731028# , (193)

where the uncertainty is about one-third the uncertainty
of the NIST value of Γp2908 (lo) because of the cube-root
dependence of alpha on Γp2908 (lo).

b. NIM: Low field and high field

Researchers at the National Institute of Metrology
(NIM), Beijing, PRC, have measured gp8 in both low and
high fields starting in the 1970s. The basic apparatus for
each experiment has remained essentially unchanged
since the first NIM low- and high-field results were re-
ported by Chiao, Liu, and Shen (1980), but a number of
significant improvements in technique and ancillary
equipment have been incorporated over the years (Liu
et al., 1988; Liu et al., 1995). In the low-field experiment
the magnetic flux density B was produced by either
Helmholtz coil No. 2 or Helmholtz coil No. 3. Coil No. 2
had a diameter of 296 mm and consisted of two windings
of 38 turns each of gold-plated copper wire 0.8 mm in
diameter with a winding pitch of 1 mm per turn; coil No.
3 was similar—it was 320 mm in diameter and its two
windings contained 40 turns each. For either coil, B was
about 0.23 mT for a current of 1 A. The dimensions of
the coils, including the diameter of the wire itself, were
determined using laser interferometry. The compara-
tively small magnetic dipole moment of each coil and
the small magnetic susceptibility of the ground at the
remote site of the experiment eliminated the need for a
correction due to the coil’s image moment. However, a
correction for the effect of the magnetic field of a coil on
the system used to compensate for the Earth’s magnetic
field was necessary (Liu, 1997). The experiment was car-
ried out in air with a spherical pure H2O NMR sample at
a mean temperature of 21 °C, and the NMR frequencies
were measured by the free-precession method. The
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dominant components of uncertainty, mainly Type B,
arose from determining the following quantities: the sus-
ceptibilities of the NMR polarization and detection
coils; the power coefficient of the standard resistor used
to measure the coil current; the NMR frequencies; the
location of the current lead to a coil; and the diameters
of the windings, their pitch, and the diameter of the wire
itself.

In the high-field experiment the magnetic flux density
B , produced by a permanent magnet, was about 0.47 T.
The resonance absorption frequency of the cylindrical,
CuSO4-doped H2O proton NMR sample was held con-
stant at 20 MHz by using a signal derived from a crystal
oscillator and by incorporating the sample in a magnet
stabilization system. The conductor used to measure B
was a rectangular coil of four turns of oxygen-free cop-
per wire 0.8 mm in diameter cemented to the edges of a
rectangular fused silica plate 600 mm high, 100 mm
wide, and 10 mm thick. The coil was hung from a bal-
ance beam with its lower edge in the center of the gap of
the magnet. Since the width of the coil was not perfectly
uniform, the effective length l of the current segment is
calculated from measurements of the coil width along its
height together with the difference between the mag-
netic flux density at the points of measurement and the
flux density at the lower edge of the coil. The largest
components of uncertainty were due to the following:
random variations among the six groups of measure-
ments carried out, thought to arise mainly from the
change in zero position of the balance and its automatic
balance system; calibration of the mass standard; and
determination of both the width of the coil and the di-
ameter of the wire.

The most recent NIM measurements yielded (Liu
et al., 1995)

gp* 5Γp2NIM* ~ lo!
KJ

KJ290

ΩNIM

V
, (194a)

with

Γp2NIM* ~ lo!52.675 1534~17!3108 s21 T21

@6.531027# , (194b)

and

gp* 5Γp2NIM* ~hi!
KJ290

KJ

V

ΩNIM
, (195a)

with

Γp2NIM* ~hi!52.675 1536~43!3108 s21 T21

@1.631026# . (195b)

Here the asterisk indicates that the experiments were
carried out in air rather than vacuum, the average tem-
perature of the NMR samples was 21 °C (Liu, 1997), and
for the high-field experiment that the NMR sample was
a cylinder containing H2O with dissolved CuSO4. Fur-
ther, ΩNIM was the NIM laboratory unit of resistance at
the time of the experiments and was based on standard
resistors. The fractional corrections that must be applied
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to these results are as follows: 0.002(121)31026 and
20.002(121)31026 to convert from ΩNIM to RK290 for
the low- and high-field results, respectively, based on
NIM measurements of both RK and ΩNIM in terms of
the ohm as realized by the NIM calculable capacitor
(Liu et al., 1996; Liu, 1997); 24.14(12)31028 to correct
from 21 °C to 25 °C, based on Eq. (113); 21.180(21)
31027 to convert from air to vacuum for the low-field
result; and 20.38(20)31026 to account for the fact that
the high-field experiment was carried out in air with a
finite-length cylindrical NMR sample of H2O containing
CuSO4, in place of 0.43(13)31026 , which was the cor-
rection included in the result reported by Liu et al.
(1995; Liu, 1997). Our high-field correction is the sum of
two terms: 0.40(8)31026 to take into account the fact
that the water contained CuSO4; and 20.78(19)31026

to convert the result for a cylindrical probe with demag-
netizing factor ec containing pure water surrounded by
air to a result corresponding to a spherical probe in
vacuum. This term is based on the equation

gp85@11~ec2es!k~21 °C!1~12ec!ka# gp8
q~hi!,

(196)
which is a generalization of Eq. (182), and where
k(21 °C) is the volume magnetic susceptibility of water
at 21 °C. Our correction for the CuSO4 is based on the
data of Dickinson (1951) and an estimated value of ec
50.44(4).

Application of these corrections yields

Γp2908 ~ lo!52.675 1530~18!3108 s21 T21

@6.631027# (197)

and

Γp2908 ~hi!52.675 1525~43!3108 s21 T21

@1.631026# , (198)

with a correlation coefficient of

r~ lo, hi!520.014 (199)

due to the uncertainty of the common 0.002(121)
31026 ΩNIM to RK290 correction. (The uncertainty
arises mainly from the comparison of a 10 kV resistance
standard calibrated in terms of the quantum Hall effect
and the 1 V resistance standards used to maintain
ΩNIM .)

Based on Eq. (192), we find that the value of a that
may be inferred from the NIM low-field result in Eq.
(197) is

a215137.036 006~30! @2.231027# . (200)

Similarly, based on the relation

Γp2908 ~hi!5
c a2ge2

2KJ290 RK290 R`

mp8

me2

1
h

, (201)

which follows from Eqs. (177b) and (179), we find that
the value of h that may be inferred from the NIM high-
field result in Eq. (198) is

h56.626 071~11!310234 J s @1.631026# . (202)
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In both cases we have used the 1998 recommended val-
ues for the other relevant quantities; their uncertainties
are negligible compared to the NIM values of Γp2908 (lo)
and Γp2908 (hi).

Because the earlier NIM low- and high-field results
are well known only in terms of the NIM laboratory
units VNIM and ΩNIM based on standard cells and stan-
dard resistors, the 1995 results may best be compared to
the earlier results by considering the value of gp8 ob-
tained from Eq. (176). Using that equation, and the re-
sults given in Eqs. (197) and (198), we find

gp852.675 1527~23!3108 s21 T21 @8.631027# .
(203)

This result agrees with the value gp852.675 1541(23)
3108 s21 T21 @8.731027# based on low- and high-field
measurements reported in 1988 (Liu et al., 1988) and the
value gp852.675 1482(49)3108 s21 T21 @1.831026#
based on measurements reported in 1980 (Chiao et al.,
1980), where we have again applied corrections for tem-
perature, air, and probe shape/CuSO4 as appropriate. In
keeping with our policy (see Sec. I.D), only the 1995
results are included in the 1998 adjustment.

c. NPL: High field

The most accurate high-field gp8 experiment was car-
ried out at NPL by Kibble and Hunt (1979). In this ex-
periment, the current-carrying conductor used to mea-
sure the 0.47 T magnetic flux density B of the
electromagnet was a rectangular coil of three turns of
2.5 mm wide by 0.7 mm thick rectangular silver strip
conductor cemented to a rectangular pyrex form 800
mm in height, 187 mm wide, and 3 mm thick and which
hung from one arm of a balance. The current in the coil
was 0.5 A to 5 A, the number of ampere turns used was
1.5 to 15, and the maximum force on the coil, upon re-
versal of the current through it, was equal to the weight
of a 250 g standard of mass. The proton NMR sample
containing pure H2O was in the shape of a cylinder with
rounded ends and with a length-to-diameter ratio of
about five. The NMR signal was observed using a tuned
circuit formed by an inductive coil wound on the sample
and driven at about 20 MHz. The largest sources of un-
certainty in the experiment were the determination of
the width of the coil and its position in the gap of the
magnet.

The result reported by Kibble and Hunt (1979)
(Kibble, 1981) may be written as

gp* 5Γp2NPL* ~hi!
KJ2NPL

KJ

V

ΩNPL
, (204a)

with

Γp2NPL* ~hi!52.675 1701~27!3108 s21 T21

@1.031026# . (204b)

Here the asterisk indicates that the experiment was car-
ried out in air rather than vacuum and the average tem-
perature of the NMR sample was 20.2 °C (Kibble, 1997).
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Further, KJ2NPL5483 594 GHz/V was the adopted value
of KJ used by NPL to define its laboratory unit of volt-
age, and ΩNPL was the NPL laboratory unit of resistance
based on standard resistors at the time of the experi-
ment, the mean date of which may be taken as 15 March
1974. The fractional corrections that must be applied to
this result are as follows: 28.06531026 to convert from
KJ2NPL to KJ290 ; 0.90(15)31026 to convert from
V/ΩNPL to RK290 /RK ; 24.97(14)31028 to correct from
20.2 °C to 25 °C based on Eq. (113); and 21.139(94)
31026 to account for the fact that the experiment was
carried out in air with a cylindrical H2O NMR sample of
finite length, in place of 21.50(10)31026, which as-
sumes that the experiment was carried out in vacuum
with a cylinder of infinite length and was included as a
correction in the result reported by Kibble and Hunt
(1979) (Kibble, 1997).

The ohm correction is based on the relation ΩNPL
5@120.017(150)31026# ΩNIST for 15 March 1974 ob-
tained from the periodic resistance intercomparisons in-
volving the BIPM and the national metrology institutes
(Taylor and Witt, 1986) and on the same procedure to
convert ΩNIST /V to RK /RK290 discussed above in con-
nection with the NIST 1979 low-field gp8 experiment (see
Sec. III.D.1.a). An additional relative standard uncer-
tainty of 0.131026 has been included in the resistance
transfers between NPL and BIPM and between NIST
and BIPM to allow for a variety of possible systematic
effects, and these together account for most of the as-
signed uncertainty of the correction. The air and sample
shape correction is based on Eq. (196) where in this case
k(21 °C) is replaced by k(20.2 °C) and our estimated
value of ec is 0.48(1).

The result after application of the above corrections is

Γp2908 ~hi!52.675 1518~27!3108 s21 T21

@1.031026# , (205)

from which we infer

h56.626 0729~67!310234 J s @1.031026# . (206)

[It should be noted that various input data in the 1998
adjustment such as that in Eq. (205) depend on the same
NIST quantum Hall effect and/or calculable capacitor
measurements; nevertheless, their covariances are negli-
gible.]

2. Helion h

There are two independent low-field determinations
of the gyromagnetic ratio of the shielded helion gh8 to be
considered: one carried out at the Korea Research Insti-
tute of Standards and Science (KRISS), Taedok Science
Town, Republic of Korea, in a collaborative effort with
researchers from the Mendeleyev All-Russian Research
Institute for Metrology (VNIIM), St. Petersburg, Rus-
sian Federation (Shifrin et al., 1999; Shifrin et al., 1998a;
Shifrin et al., 1998b; Kim et al., 1995); and one carried
out at VNIIM itself (Tarbeev et al., 1989). [Note that
although we have defined gh8 to correspond to 25 °C, the
temperature dependence of the shielded helion gyro-
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magnetic ratio is expected to be significantly less than
that of the shielded proton gyromagnetic ratio as given
in Eq. (113). Thus small differences in temperature from
25 °C are ignored.]

a. KRISS/VNIIM: Low field

The sample used in the precision solenoid of the
KRISS/VNIIM experiment was a low-pressure gaseous
4He and 133 Cs cylindrical sample 40 mm in length and
diameter. The quantity measured was the shielded gyro-
magnetic ratio of the 4He(23S1) atom using atomic mag-
netic resonance (AMR). (In the 4He AMR technique,
the 4He atoms are polarized by means of metastable
exchange with alkaline metal atoms polarized by optical
pumping.) In a separate experiment the same 4He
sample was compared in air at an average temperature
of 25 °C with a spherical low-pressure gaseous 3He
sample, thereby allowing gh8 to be obtained (Shifrin
et al., 1997).

The single-layer precision solenoid had a winding
length of 1020 mm, a diameter of 229 mm, and a winding
pitch of 1 mm; it was wound with silver-plated copper
wire 0.8 mm in diameter. The NIST technique of inject-
ing current into the solenoid from five different current
sources was used to generate a uniform magnetic flux
density with significantly reduced dependence on the
mean diameter of the solenoid. The dimensional mea-
surement system was also very similar to that used in the
NIST experiment, but it incorporated a number of re-
finements, including modification of the method of in-
jecting ac current into selected groups of ten turns. Be-
cause the magnetic susceptibility of the ground under
the solenoid was comparatively small, as was the mag-
netic dipole moment of the solenoid, a correction for the
effect of the Earth was not required. Similarly, because
of the comparatively small size of the solenoid’s mag-
netic dipole moment and the distance between the sole-
noid and the sensor used in the system to compensate
the Earth’s magnetic field, a correction for the effect of
the solenoid on the sensor was also not required. The
working voltage and resistance standards employed in
the experiment were calibrated in terms of the Joseph-
son and quantum Hall effects using KJ290 and RK290 .
The uncertainty of the experiment was dominated by
Type B components associated with the measurement of
the dimensions of the solenoid.

The result of the 4He gyromagnetic ratio experiment,
which was carried out at an average temperature of
25 °C, is (Shifrin et al., 1998a; Shifrin, 1997)

g* ~ 4He!5Γ90* ~ 4He, lo!
KJRK

KJ290RK290
, (207a)

with

Γ90* ~ 4He,lo!51.760 788 19~31!31011 s21 T21

@1.831027# ; (207b)

and the result of the 4He–3He comparison experiment is
(Shifrin et al., 1997; Shifrin, 1997)
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g* ~4He!

gh*
5864.022 761~25! @2.931028# , (208)

where for both experiments the asterisk indicates that
the measurements were carried out in air. Together
these equations yield

gh* 5Γh290* ~ lo!
KJRK

KJ290RK290
, (209a)

with

Γh290* ~ lo!52.037 895 61~37!3108 s21 T21

@1.831027# . (209b)

The only correction that needs to be applied to this
result to convert it to the required form is 21.156(20)
31027 Γh290* (lo) to account for the fact that the experi-
ments were done in air. This leads to

Γh2908 ~ lo!52.037 895 37~37!3108 s21 T21

@1.831027# . (210)

The value of a that may be inferred from Eq. (210) fol-
lows from the expression

Γh2908 ~ lo!52
KJ290 RK290 ge2

4m0R`

mh8

me2

a3, (211)

which is analogous to Eq. (192). We find

a215137.035 9853~82! @6.031028# . (212)

b. VNIIM: Low field

The VNIIM low-field helion experiment was carried
out in air at 23 °C with spherical low-pressure 3He
samples. The NMR frequency was measured by free
precession with the 3He atoms first polarized by optical
pumping as was done in the VNIIM experiment that
determined the shielded helion to shielded proton mag-
netic moment ratio (Belyi et al., 1986). The magnetic
field was produced by a four-section, single-layer preci-
sion solenoid 294 mm in diameter and 500 mm long with
a total of 256 turns that generated a magnetic flux den-
sity of 0.57 mT with a current of 1 A. The same solenoid
was used in the magnetic moment ratio experiment of
Belyi et al. (1986) and in the earlier VNIIM low-field
proton gyromagnetic ratio experiment of Studentsov,
Khorev, and Shifrin (1981). Many improvements were
incorporated in the helion gyromagnetic ratio experi-
ment based on the experience gained in the earlier pro-
ton gyromagnetic ratio experiment. For example, special
attention was paid to the stability and calibration of the
emfs of the standard cells used as the working voltage
reference inasmuch as the site at which the experiment
was carried out was 40 km away from the main VNIIM
laboratories. Also, because the largest uncertainty com-
ponent in the earlier proton gyromagnetic ratio experi-
ment was due to the measurement of the diameter of the
windings, the apparatus used to carry out those mea-
surements was improved and the data were more
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complete—the diameter of each turn was determined at
12 points. Because the magnetic dipole moment of the
solenoid used in the VNIIM experiment was compara-
tively small, as was the magnetic susceptibility of the
ground underneath the solenoid, any correction for the
effect of the ground was expected to be insignificant
(Shifrin, 1997). The effect of the magnetic field of the
solenoid on the system used to compensate the Earth’s
magnetic field was taken into account and an appropri-
ate component of uncertainty was included in the ex-
periment’s uncertainty budget (Shifrin, 1997).

The result reported by Tarbeev et al. (1989) (Shifrin,
1997) may be written as

gh* 5Γh2VNIIM* ~ lo!
KJ

KJ2VNIIM

ΩVNIIM

V
(213a)

with

Γh2VNIIM* ~ lo!52.037 890 11~71!3108 s21 T21

@3.531027# , (213b)

where the asterisk indicates that the experiment was
performed in air. Additionally, KJ2VNIIM5483 596.176
GHz/V was the adopted value of KJ used by VNIIM to
define its laboratory unit of voltage, and ΩVNIIM is the
VNIIM laboratory unit of resistance based on standard
resistors at the time of the experiment, the mean date of
which was 20 November 1987 (Shifrin, 1997). The prin-
cipal components of uncertainty contributing to the
quoted uncertainty arise from the measurements of the
diameter and position of each turn, the diameter of the
wire, the distribution of the current over the cross sec-
tion of the wire, the overall shape of the winding, and
the instability of the emfs of the standard cells.

The fractional corrections to be applied to this result
are 3.56531026 to convert from KJ2VNIIM to KJ290 ;
0.072(50)31026 to convert ΩVNIIM /V to RK /RK290 ;
and 21.149(20)31027 for the effect of the air. The cor-
rection for ΩVNIIM is based on a recent VNIIM analysis
of a large body of data from VNIIM as well as other
laboratories (Shifrin, 1997). Application of these correc-
tions to Eq. (213) yields

Γh2908 ~ lo!52.037 897 29~72!3108 s21 T21,

@3.531027# (214)

from which one may infer

a215137.035 942~16! @1.231027# (215)

based on Eq. (211).
It is of interest to compare the VNIIM 1989 helion

low-field result with the VNIIM 1981 proton low-field
result. The value obtained by Studentsov et al. (1981)
may be written as

gp* 5Γp2VNIIM* ~ lo!
V

ṼVNIIM

ΩVNIIM

V
(216a)

with

Γp2VNIIM* ~ lo!52.675 1257~16!3108 s21 T21

@6.031027# , (216b)
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TABLE XI. Summary of data related to the Josephson constant KJ , the von Klitzing constant RK ,
and the Faraday constant F, and inferred values of a and h.

Quantity Value
Relative standard

uncertainty ur Identification Sec. and Eq.

KJ 483 597.91(13) GHz V21 2.731027 NML-89 III.E.1 (221)
h 6.626 0684(36)310234 J s 5.431027 III.E.1 (223)

KJ 483 597.96(15) GHz V21 3.131027 PTB-91 III.E.2 (226)
h 6.626 0670(42)310234 J s 6.331027 III.E.2 (227)

RK 25 812.808 31(62) V 2.431028 NIST-97 III.F.1 (232)
a 137.036 0037(33) 2.431028 III.F.1 (233)

RK 25 812.8071(11) V 4.431028 NML-97 III.F.2 (235)
a 137.035 9973(61) 4.431028 III.F.2 (236)

RK 25 812.8092(14) V 5.431028 NPL-88 III.F.3 (237)
a 137.036 0083(73) 5.431028 III.F.3 (238)

RK 25 812.8084(34) V 1.331027 NIM-95 III.F.4 (239)
a 137.036 004(18) 1.331027 III.F.4 (240)

KJ
2RK 6.036 7625(12)31033 J21 s21 2.031027 NPL-90 III.G.1 (245)
h 6.626 0682(13)310234 J s 2.031027 III.G.1 (246)

KJ
2RK 6.036 761 85(53)31033 J21 s21 8.731028 NIST-98 III.G.2 (248)
h 6.626 068 91(58)310234 J s 8.731028 III.G.2 (249)

F90 96 485.39(13) C mol21 1.331026 NIST-80 III.H.1 (264)
h 6.626 0657(88)310234 J s 1.331026 III.H.1 (265)
where the asterisk indicates that the NMR sample was
spherical, contained pure H2O, and was at 24 °C, and
that the experiment was carried out in air. The quanti-
ties ṼVNIIM and ΩVNIIM are, respectively, the working
unit of voltage based on standard cells used in the ex-
periment and the VNIIM laboratory unit of resistance
based on standard resistors on the mean date of the ex-
periment, which was 1 September 1980 (Tarbeev, 1981).
The value of a that we infer from the result in Eq. (216)
is

a215137.036 208~28! @2.031027# (217)

based on Eq. (192), the result KJ5483 594.983(12)
3109 GHz/ṼVNIIM (Tarbeev, 1981), the result ΩVNIIM
5@120.118(71)31026# Ω90 from the recent VNIIM
analysis mentioned above (Shifrin, 1997), and correc-
tions for temperature and air. We see that the difference
between the 1989 and 1981 results is 8.3 udiff , where udiff
is the standard uncertainty of the difference, and thus
that they strongly disagree. The origin of this disagree-
ment is unknown, but the many improvements incorpo-
rated into the 1989 experiment give it preference over
the 1981 experiment. Further, the value of a that one
may infer from the 1981 result strongly disagrees with all
other values. Thus, in keeping with our policy (see Sec.
1.4), we view the 1989 result as superseding the 1981
result.

3. Other values

There are a number of other results from low- and
high-field gp8 experiments, some of which are nearly 50
years old. We do not consider these for a variety of rea-
., Vol. 72, No. 2, April 2000
sons, such as a noncompetitive uncertainty, the tentative
or preliminary nature of the result, the unavailability of
critical information regarding the experiment, difficul-
ties in relating laboratory electrical units to V90 and Ω90 ,
or such gross disagreement of the result with other data
that it is obvious it contains a large systematic error. The
more recent of these other values are from the follow-
ing: a low-field experiment at the Electrotechnical Labo-
ratory (ETL), Tsukuba, Japan (Nakamura, Kasai, and
Sasaki, 1987); low- and high-field experiments at the
Amt für Standardesierung, Messwesen und Warrenprü-
fung (ASMW), Berlin, the former GDR (Forkert and
Schlesok, 1986); a low-field experiment at the PTB
(Weyand, 1985); and a low-field experiment at the NPL
(Vigoureux and Dupuy, 1980). For reviews of these val-
ues as well as others, see Taylor and Cohen (1990); Co-
hen and Taylor (1987); Cohen and Taylor (1973); and
Taylor et al. (1969).

E. Josephson constant KJ

In this section we consider measurements of the Jo-
sephson constant KJ in its SI unit Hz/V. In the following
three sections we consider measurements of the von Kl-
itzing constant RK in its SI unit V, the quantity KJ

2RK in
its SI unit J21 s21, and the Faraday constant F in the unit
A90 s mol21, where A90 is the conventional unit of cur-
rent based on the Josephson and quantum Hall effects
and the conventional values KJ290 and RK290 (see Sec.
II.E). Since all of these measurements involve KJ and/or
RK , the results are grouped in Table XI, together with
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the values of a and h that may be inferred from the
data, assuming the validity of the relations KJ52e/h and
RK5h/e2.

The quantity KJ is determined by measuring a voltage
U in terms of both a Josephson voltage UJ(n)5nf/KJ
(see Sec. II.D.1) and the SI unit V5m2 kg s23A21. The
comparison can be direct, which leads to

KJ5nf
U/UJ~n !

U/V
V21, (218)

where U/V is the numerical value of U when U is ex-
pressed in the unit V (see Sec. I.B). Alternatively, the
voltage U can be compared to a laboratory unit of volt-
age VLAB known in terms of a particular value of the
Josephson constant KJ2LAB . In this case, the appropri-
ate expression, in analogy with Eq. (29a), is

KJ5KJ2LAB

U/VLAB

U/V
, (219)

where U/VLAB is the numerical value of U when U is
expressed in the unit VLAB . In either case (direct or in
terms of VLAB), U/V is determined by counterbalancing
an electrostatic force arising from the voltage U with a
known gravitational force.

1. NML: Hg electrometer

The determination of KJ at the National Measure-
ment Laboratory (NML) of the Commonwealth Scien-
tific and Industrial Research Organization (CSIRO),
Lindfield, Australia, was carried out by Clothier et al.
(1989) using a liquid-mercury electrometer which was
first proposed by Clothier (1965b) and had its origin in
the attracted-disk electrometer described 130 years ear-
lier by Harris (1834).

The NML Hg electrometer used a vertical electric
field applied to the surface of a pool of Hg to elevate the
pool to a height s of somewhat less than 1 mm relative
to two adjacent Hg pools coupled to it but to which no
field was applied. The electric field was produced by a
voltage U of the order of several kilovolts or more ap-
plied to a metal film electrode on a fused silica optical
flat a distance d of several millimeters above the pool.
The relationship of s , U , and d is uUu5kds1/2 with k
5(2rg/e0er)

1/2, where r is the density of the Hg, g is the
local acceleration of free fall, e051/m0c2 is the electric
constant, and er is the relative permittivity of the gas
between the electrode and the surface of the Hg pool.
To eliminate surface effects on both U and d , the mea-
surements were carried out at two different voltages U1
and U2 , with uU2u.uU1u, and spacings d1 and d2 chosen
such that the electric field strengths U1 /d1 and U2 /d2
(and hence pool elevations s1 and s2) were approxi-
mately the same. In all cases d and s were measured
interferometrically (Clothier, Sloggett, and Bairnsfather,
1980). The voltage difference DU5uU2u2uU1u is given
by

DU5k~d2s2
1/22d1s1

1/2!. (220)
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Since the values of k , d , and s were determined in SI
units, the value of DU obtained from Eq. (220) was in
the unit V. Further, since DU was also determined in
terms of VNML and the latter was based on the value
KJ2NML5483 594 GHz/V, KJ could be obtained from
Eq. (219).

Clothier et al. (1989) carried out their difficult experi-
ment with great care; many subtle systematic effects
were thoroughly investigated, including those associated
with the interferometric measurements of d and s and
with the forces acting on the Hg other than the assumed
electrostatic and gravitational forces. The density of the
Hg used in the experiment was determined by Patterson
and Prowse (1985) [see also Patterson and Prowse 1988]
through comparisons with samples of known density as
determined by Cook (1961) [see also Cook and Stone
1957]. A total of 27 measurements of KJ were carried
out in 1983 at three different pairs of electrode spacings
and two voltage polarities. The final result given by
Clothier et al. (1989) based on 16 of those measurements
is

KJ5483 594@118.087~269!31026# GHz/V

5483 597.91~13! GHz/V @2.731027# , (221)

where the two principal relative standard uncertainty
components contributing to the quoted uncertainty are
1931028 arising from the determination of k and 13
31028 arising from the optical interferometry.

The value of g used by Clothier et al. (1989) was
based on measurements carried out at NML in 1979 by a
Russian team (Sloggett, 1994) using the absolute
gravimeter ‘‘GABL’’ (Arnautov et al., 1979). Similar
measurements carried out at the same site in 1993 by a
Japanese team (Sloggett, 1994; Hanada et al., 1994) gave
a result for g that was smaller than that obtained in 1979
by a fractional amount of about 0.1431026, which may
be compared to the 0.0331026 relative standard uncer-
tainty of their difference. The 1993 value of g implies an
increase in the value of KJ given in Eq. (221) by the
fractional amount 0.0731026. However, there is no ba-
sis for replacing the the Russian result by the Japanese
result since the former has as an assigned uncertainty
half that of the latter, the Russian result includes an
assessment of possible systematic effects while the Japa-
nese result does not, and difficulties with the Japanese
apparatus during the course of the measurements se-
verely curtailed the amount of data obtained (Sloggett,
1994). Further, in the international comparison of abso-
lute gravimeters carried out at the BIPM in 1981 (Bou-
langer, Arnautov, and Scheglov, 1983), the Russian
value of g obtained using GABL was consistent with the
mean value of g obtained using a number of instruments
at the fractional level of 131028.

As pointed out in Sec. III.D, the fine-structure con-
stant a and Planck constant h are central to the 1998
adjustment. Since the relative standard uncertainty of a
is considerably less than that of the NML value of KJ ,
the value of h that may be inferred from it, if one as-
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sumes the validity of the relation KJ52e/h , is of par-
ticular interest. Based on the expression a5e2/4pe0\
5m0ce2/2h , we have

h5
8a

m0cKJ
2 . (222)

Using the value of KJ in Eq. (221) and the 1998 recom-
mended value of a , we find

h56.626 0684~36!310234 J s @5.431027# . (223)

2. PTB: Capacitor voltage balance

The determination of KJ at PTB was carried out by
Funck and Sienknecht (1991) using a voltage balance
consisting of two coaxial cylindrical electrodes 126 mm
and 142 mm in diameter (Sienknecht and Funck, 1986;
Sienknecht and Funck, 1985). The smaller, fixed inner
electrode was suspended from a beam of a balance and
the larger, movable outer electrode could be displaced
in the vertical z direction relative to the suspended elec-
trode. The nominal value of the change in capacitance C
between the electrodes with displacement Dz was
DC/Dz50.38 pF/mm. The displacement was measured
interferometrically and was about 27 mm, corresponding
to a change in capacitance of 10 pF. A 10 kV voltage U
applied between the electrodes and measured in terms
of the Josephson effect using the conventional value of
the Josephson constant KJ290 , produced an electrostatic
force Fe between them equal to the gravitational force
on a 2 g standard of mass ms . More specifically, Fe
5ms g@12r(N2)/rs# , where g is the local acceleration
of free fall at the site of the balance, r(N2) is the mass
density of the nitrogen gas with which the apparatus was
filled, and rs is the mass density of the standard of mass
used to counterbalance the electrostatic force Fe .

The basic equation for the voltage balance is

U5F2~11D !Fe

DC/Dz G1/2

, (224)

where the correction D is determined experimentally
and accounts for the slight variation of Fe with displace-
ment. This expression shows that in order to determine
the voltage U in the unit V so that Eq. (219) can be used
to obtain KJ , DC must be measured in its SI unit the
farad F. This was done by means of a substitution bridge
that compared DC to a 10 pF reference capacitor whose
capacitance was determined in farads with a relative
standard uncertainty of about 3.531028 using the PTB
calculable cross capacitor (Bachmair et al., 1995); the to-
tal relative standard uncertainty assigned to the mea-
surement of DC was about 131027.

The result reported by Funck and Sienknecht (1991)
based on the mean of 48 pairs of values of KJ obtained
in 1989, with the outer electrode both positive and nega-
tive with respect to the grounded inner electrode, is

KJ5KJ290 @120.027~274!31026#

5483 597.89~13! GHz/V @2.731027# . (225)
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The quoted uncertainty is dominated by Type B relative
standard uncertainty components of approximately 2
31027, 131027, and 131027 associated with the deter-
mination of ms , U in terms of the Josephson effect and
KJ290 , and Dz , respectively.

A comparison of capacitance standards in the late
1990s involving several European national metrology in-
stitutes indicated the existence of a possible error in the
PTB calculable cross capacitor (Bachmair, 1997). The
error, confirmed by the early results of a similar but in-
ternational comparison being carried out under the aus-
pices of the CCEM of the CIPM, was traced to a system-
atic error in the fringe-counting system used to
determine the approximate 0.5 m displacement of the
movable electrode of the PTB calculable capacitor and
was exactly one fringe (Bachmair, 1999) [see Sec. III.F
for a brief description of such capacitors]. This means
that any capacitor calibrated in terms of the PTB calcu-
lable capacitor when the fringe-counting system was
malfunctioning was assigned a value that was too small
by the fractional amount 6.1831027. Unfortunately,
PTB researchers are unable to establish whether or not
this error existed at the time in late 1989 when the 10 pF
reference capacitor used in the PTB volt-balance experi-
ment was calibrated; they believe that it is equally likely
that the error was present as not present (Bachmair,
1999). Since KJ depends on the square root of the value
assigned to the 10 pF reference capacitor, this could
have introduced a fractional error of 23.0931027 in the
value of KJ . To account for this possibility, we apply a
fractional correction of 1.55(1.55)31027 to the origi-
nally reported value given in Eq. (225). This leads to

KJ5483 597.96~15! GHz/V @3.131027# , (226)

from which we infer using Eq. (222),

h56.626 0670~42!310234 J s @6.331027# . (227)

3. Other values

A result from the Laboratoire Central des Industries
Électrique (LCIE), Fontenay-aux-Roses, France with a
relative standard uncertainty of 2.431026, obtained us-
ing a Kelvin electrometer, was initially considered as an
input datum in the 1986 adjustment, but was later de-
leted because of its noncompetitive uncertainty (Cohen
and Taylor, 1987); it was not considered by the CCEM
in its analysis of values of KJ that led to KJ290 (Taylor
and Witt, 1989).

The result of Bego and colleagues with a relative stan-
dard uncertainty of 3.531027 obtained in 1987–1988 at
the University of Zagreb, Republic of Croatia, using a
capacitor voltage balance with flat-plate electrodes, was
initially considered by the CCEM in its analysis but was
ultimately rejected because of its significant disagree-
ment with other values (Taylor and Witt, 1989). Subse-
quently, Bego and colleagues identified several unsus-
pected systematic errors in their experiment due mainly
to the difference in the ac and dc capacitance of the
balance electrodes arising from surface effects, the mea-
surement of the displacement of the movable electrode,
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and the voltage dependence of the capacitance of the
electrodes, but they were unable to retroactively correct
their 1987–1988 result (Bego et al., 1993).

In principle, ampere balance experiments could pro-
vide information on the value of KJ , and the results of
six such experiments with relative standard uncertainties
in the range 4.131026 to 9.731026 were initially consid-
ered in the 1986 adjustment (Cohen and Taylor, 1987).
However, all were eventually discarded because of their
disagreement with the other data and/or their negligible
weight. No new ampere balance results have become
available or are expected in the future; such experiments
have been replaced by those involving voltage balances
or moving-coil watt balances (see Sec. III.G).

F. von Klitzing constant RK

The quantity RK is determined by measuring a resis-
tance R in terms of both the resistance RH(i)5RK /i of
the ith quantized Hall resistance plateau (see Sec.
II.D.2) and the SI unit V5m2 kg s23 A22. The compari-
son can be direct, in which case we have

RK5i
R/V

R/RH~ i !
V , (228)

where R/V is the numerical value of R when R is ex-
pressed in the unit V (see Sec. I.B); or instead, the re-
sistance R can be compared to a laboratory unit of re-
sistance ΩLAB known in terms of a particular value of
the von Klitzing constant RK2LAB . In this case the rel-
evant relation, in analogy with Eq. (29b), is

RK5RK2LAB

R/V
R/ΩLAB

, (229)

where R/ΩLAB is the numerical value of R when R is
expressed in the unit ΩLAB . In either case (direct or in
terms of ΩLAB), R/V is determined using a calculable
cross capacitor.

The calculable cross capacitor is based on a theorem
in electrostatics discovered by Thompson and Lampard
(1956; Lampard, 1957). The theorem allows one to con-
struct a cylindrical capacitor (Thompson, 1959) whose
capacitance, to high accuracy, depends only on its
length. (The electric constant e051/m0c2 is also required
but is exactly known, since in the SI m0 and c are exactly
known.) In its most accurate practical form (Clothier,
1965a), the calculable cross capacitor consists of four
long, parallel, identical cylindrical bars in vacuum with
small gaps between their surfaces and oriented vertically
with their axes forming a square array. In addition, there
are grounded cylindrical guard electrodes centered be-
tween the bars at either end of the array, one of which is
movable and the other fixed, and both of which are in-
serted part way into the array along its axis. For such a
configuration, the cross capacitance between diagonally
opposite bars is independent of their diameter and is
determined by the distance between the two guard elec-
trodes. In practice, the known change in capacitance due
to an interferometrically measured displacement of the
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
movable electrode relative to the fixed electrode is com-
pared to the resistance of a reference resistor through a
chain of impedance comparisons which we discuss in
connection with particular experiments. A displacement
of the movable electrode of about 25 cm leads to a
change in cross capacitance of about 0.5 pF.

The uncertainty of RK is determined mainly by the
quality and implementation of the design of the calcu-
lable capacitor and the apparatus used to compare its
capacitance to the resistance of the reference resistor,
and the extent to which systematic effects are under-
stood. These effects include geometrical imperfections
in the calculable capacitor, voltage dependences of ca-
pacitance standards, calibrations of transformer ratios,
and the difference in ac and dc resistance of the refer-
ence resistor, since the impedance measurements are
carried out at ac (for example, v5104 rad/s or approxi-
mately 1592 Hz) and the quantized Hall resistance mea-
surements are carried out at dc. The uncertainty of the
comparison of R with RH(i) or ΩLAB is usually rather
smaller than the combined uncertainties of the calcu-
lable capacitor and impedance chain.

As noted in Sec. II.D.2, if one assumes the validity of
the relation RK5h/e2, RK and the fine-structure con-
stant a are related by

a5
m0c

2RK
. (230)

Since m0 and c are exactly known, the relative uncer-
tainty of the value of a that may be inferred from a
particular experimental value of RK is the same as the
relative uncertainty of that value.

1. NIST: Calculable capacitor

The first NIST calculable cross-capacitor measure-
ments were reported nearly 40 years ago by Cutkosky
(1961). He used a capacitor consisting of horizontal bars
to determine the NIST (then the National Bureau of
Standards, NBS) laboratory unit of resistance based on 1
V standard resistors in terms of the ohm, ΩNIST /V , with
a relative standard uncertainty of about 331026. A new
vertical capacitor of the now classic geometry described
above and pioneered by Clothier (1965a) at NML (then
the National Standards Laboratory, NSL) was con-
structed starting in the late 1960s and culminated in a
measurement of ΩNIST /V , reported in 1974, with a rela-
tive standard uncertainty of 2.731028 (Cutkosky, 1974).
Using the same system, but with a number of improve-
ments, a value for ΩNIST /V was reported in 1989 by
Shields et al. (1989) with a relative standard uncertainty
of 2.231028; and based on this result and measurements
at the same time by Cage et al. (1989a) of RH(4) of a
GaAs/AlGaAs heterostructure in terms of ΩNIST , Cage
et al. (1989b) reported

RK525 812.8@110.280~24!31026# V

525 812.807 23~61! V @2.431028# . (231)

The NIST work to determine RK continued, focusing
on the acquisition of more data and the investigation
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and elimination of possible sources of systematic error.
Based on this new effort, in 1997 Jeffery et al. (1997)
[see also Jeffery et al., 1998] reported

RK525 812.8@110.322~24!31026# V

525 812.808 31~62! V @2.431028# , (232)

which exceeds the 1989 result by the fractional amount
4.231028.

The calculable capacitor and impedance chain used to
obtain the 1997 result were essentially the same as those
used to obtain the 1974 and 1989 results. In brief, the
known 0.5 pF change of capacitance of the NIST calcu-
lable cross capacitor is compared, using a two-terminal-
pair transformer bridge, to the capacitance of a fixed 10
pF portable standard, which in turn is used to calibrate a
bank of five similar 10 pF standards maintained in an oil
bath using a two-terminal-pair 10:1 transformer bridge.
These standards and a 10:1 four-terminal-pair direct
reading ratio set are then used to calibrate a 100 pF
capacitor, and that capacitor and the ratio set are used
to calibrate two 1000 pF capacitors. These in turn are
employed as two arms of a frequency-dependent
quadrature bridge to determine the ac resistance of two
100 kV resistors. Each of these is then compared, using a
100:1 equal-power resistance bridge, to a 1000 V trans-
portable resistor called R311. The difference in ac and
dc resistance of R311 is determined by comparing it to a
special coaxial straight-wire resistor of calculable ac/dc
difference. All ac measurements are done at 1592 Hz.

Starting in the early 1990s, a cryogenic current com-
parator was used to compare RH(4) and RH(2) to a 100
V reference resistor and to compare that resistor to
R311. Prior to this time, RH(4) was compared to 6453.2
V reference resistors using a potentiometric technique
and these were then compared, using classical dc scaling
methods based on a Hamon resistor, to the 1 V resistors
that defined ΩNIST . The resistor R311 was also com-
pared to the 1 V resistors using such classical methods.

The likelihood that the 1989 NIST value of RK was in
error became fully apparent to the NIST researchers in
the early 1990s. Every effort was then made to under-
stand the cause of the error. All critical aspects of the
experiment, on both the ac side and the dc side, were
exhaustively checked but to little avail. It was concluded
that about 0.431028 of the 4.231028 shift between the
1989 and 1997 values was probably due to a loading ef-
fect on the 6453.2 V resistors used in the pre-1990 mea-
surements of RH(4), as mentioned in Sec. III.D.1.a, and
that the ratio of the current transformer in the 100:1
resistance bridge used to measure R311 in terms of the
100 kV ac resistors (see above), which had a history of
being extremely stable and thus was not checked in the
earlier experiment, might have shifted unexpectedly at
the time of those measurements.

Because the 1997 NIST value of RK given in Eq. (232)
is based on a much more extensive body of data than is
the 1989 value, including the results of an extremely
thorough investigation of possible systematic errors, we
use only the 1997 value in the 1998 adjustment. This is
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consistent with the view of Jeffery et al. (1998) that the
newer result supersedes the earlier result. The 2.4
31028 relative standard uncertainty of this value, which
is smaller by about a factor of 2 than the next most
accurate measured value of RK , consists of the following
major components (mainly Type B): 1.931028 associ-
ated with measurement of the bank of 10 pF capacitors
in terms of the NIST calculable cross capacitor, which
includes 1.531028 from possible geometrical imperfec-
tions of the calculable capacitor; 1.331028 associated
with measurement of R311 in terms of the 10 pF bank;
and 0.731028 associated with measurement of R311 in
terms of RH(2) and RH(4). The value of a that may be
inferred from the NIST 1997 value of RK is, from Eq.
(230),

a215137.036 0037~33! @2.431028# . (233)

2. NML: Calculable capacitor

Clothier (1965a) completed the construction of his
pioneering calculable cross capacitor at NML in the
early 1960s. At the same time he and NML colleagues
developed the ac and dc apparatus required to relate its
known capacitance to the 1 V resistance standards on
which ΩNML was based. The complete system was func-
tional in 1963, at which time measurements of ΩNML /V
commenced. Results obtained in 1964 and 1967, to-
gether with a detailed description of the system and its
uncertainty, were given by Thompson (1968). The sys-
tem was used on a regular basis to maintain ΩNML until
the introduction by the CIPM, starting 1 January 1990,
of the ohm representation based on the quantum Hall
effect and the conventional value RK290 (see Sec. II.E).
Small (1987) briefly summarized the results obtained
through 1986, described the improvements made to the
system since it was first used, discussed a correction that
had to be applied retroactively to the results obtained
starting in 1974, and reassessed the uncertainty of the
system. He concluded that a resistance of one ohm could
be determined in ohms with a relative standard uncer-
tainty of 6.231028.

Based on such calculable capacitor measurements and
measurements of RH(4) of one GaAs/AlGaAs hetero-
structure and RH(2) of another in terms of 1 V resis-
tance standards, Ricketts and Cage (1987) reported RK
525 812.8099(20) V @7.831028# . This work was carried
out from November 1985 to May 1986. Subsequently the
NML calculable capacitor was dismantled, carefully
checked, and reassembled, the quantum Hall resistance
measurement system was improved, and additional mea-
surements were carried out over the period December
1987 to April 1988. From the new data, and the earlier
data after minor adjustment based on information
gained during the course of the new measurements,
Small, Ricketts, and Coogan (1989) obtained

RK525 812.8@110.363~66!31026# V

525 812.8094~17! V @6.631028# . (234)
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In the NML system, a 1
6 pF change in capacitance of

the calculable capacitor is compared to that of a 1
6 pF

reference capacitor, which in turn is compared to the
capacitance of two other similar capacitors. The 0.5 pF
capacitance of the three in parallel is then compared to
the capacitance of two 5 nF capacitors in four 10:1 steps.
These two capacitors are subsequently used in a
frequency-dependent quadrature bridge to determine
the ac resistance of two 20 kV resistors, and the ac/dc
difference in resistance of the two in parallel is deter-
mined using a 10 kV transfer resistor of known ac/dc
difference. Finally, the dc resistance of the two parallel
20 kV resistors is compared to the 1 V reference resis-
tors used to maintain ΩNML using a Hamon resistor of
ratio 104:1. All ac measurements are carried out at 1592
Hz. In the NML quantized Hall resistance measurement
system, RH(4) is compared potentiometrically to a
6453.2 V reference resistor, RH(2) to two such resistors
in series, and the 6453.2 V resistors are compared to the
1 V reference resistors used to maintain ΩNML via a Ha-

mon resistor of ratio 64534
9 :1.

As part of the December 1987 to April 1988 redeter-
mination of RK , a possible error in the NML calculable
capacitor due to the spreading of the four main bars as
the upper movable guard electrode is lowered was inves-
tigated and a fractional correction for this effect of 6.4
31028 was incorporated into the reported result. To
check the reliability of this correction and to eliminate
the need for it in future measurements, a compensating
spike was added to the end of the fixed guard electrode
after the redetermination was completed. Subsequent
measurements uncovered an unsuspected error in the
calculable capacitor arising from the need to tilt the
lower guard electrode in order to align the interferom-
eter used to determine the displacement of the movable
guard electrode (Small et al., 1997). This error was elimi-
nated and a new determination of RK undertaken after
the calculable capacitor was dismantled, cleaned, and re-
assembled, and after a number of improvements were
incorporated in both the ac and dc measurement sys-
tems. The reliability of the quantized Hall resistance
portion of the system was subsequently confirmed
through comparisons with BIPM (Small et al., 1997) and
NIST (Jeffery et al., 1997) using 1 V traveling resistors.

Based on measurements carried out from December
1994 to April 1995 and a complete reassessment of un-
certainties, in 1997 Small et al. (1997) reported

RK5RK290 @110.4~4.4!31028#

525 812.8071~11! V @4.431028# , (235)

where the quoted relative standard uncertainty consists
of the following principal components: 3.231028 associ-
ated with the calculable capacitor, which includes 3.0
31028 due to geometrical imperfections; 2.431028 as-
sociated with linking of the calculable capacitor to the 1
V standard resistors used to maintain ΩNML ; and 1.9
31028 associated with measurement of RH(i) in terms
of these resistors. Because of the problems associated
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
with the 1989 value of RK , we use the result reported in
1997 as the NML value of RK in the 1998 adjustment.
The value of a it implies is

a215137.035 9973~61! @4.431028# . (236)

3. NPL: Calculable capacitor

The NPL calculable cross capacitor (Rayner, 1972) is
similar in design to those of NIST and NML and the
impedance chain that links it to a 1 kV resistor (Jones
and Kibble, 1985) is similar to that of NIST with all ac
measurements being carried out at 1592 Hz. The 0.4 pF
capacitance change of the NPL calculable capacitor is
stepped up to 10 pF, then to 1000 pF in three 10:1 steps,
transferred to a 100 kV ac resistance using a frequency-
dependent quadrature bridge, and stepped down to a 1
kV ac resistance in a single 100:1 step. In the initial work
(Jones and Kibble, 1985; Hartland, Davies and Wood,
1985) the dc resistance of this resistor was determined
by comparing it at ac and dc to two quadrifiliar resistors
whose ac resistance at 1592 Hz and dc resistance is the
same. In subsequent work (Hartland et al., 1987; Hart-
land, Jones, and Legg, 1988), instead of determining the
ac/dc difference of the 1 kV resistor, such a quadrifiliar
resistor was measured at ac and then compared at dc
with a group of four 1 kV resistors, two of which were
then used to determine the resistance of the 100 V resis-
tors used in the quantized Hall resistance measure-
ments. The relative standard uncertainty for linking a 10
pF capacitor to the calculable capacitor is 2.831028,
which includes the uncertainty associated with the calcu-
lable capacitor itself; and that for linking a so-calibrated
10 pF capacitor to one of the 100 V quantized Hall re-
sistance resistors is 4.431028.

The result for RK reported in 1988 by NPL is (Hart-
land et al., 1988)

RK5RK290 @110.356~54!31026#

525 812.8092~14! V @5.431028# (237)

and was obtained by comparing the i52 plateau of a
GaAs/AlGaAs heterostructure to a 200 V resistor using
a cryogenic current comparator. The latter resistor con-
sisted of two 100 V resistors calibrated in terms of the 1
kV resistors known in terms of the calculable capacitor
as described above. The relative standard uncertainty of
the RH(2) to 200 V resistance comparison is 1.0
31028. The 1988 NPL value of RK is consistent with
values given earlier when the calculable capacitor and
the impedance chain were in a less refined state and
when the quantized Hall resistance measurement system
was being developed; in 1987 Hartland et al. (1987)
reported RK525 812.8106(17) V @6.731028# , while in
1985 Hartland et al. (1985) reported RK
525 812.8083(46) V @1.831027# . The value of a that
one may infer from the NPL 1988 value of RK is

a215137.036 0083~73! @5.431028# . (238)

4. NIM: Calculable capacitor

The NIM calculable cross capacitor (Zhang, 1985) dif-
fers markedly from the now classic version of Clothier
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used at NIST, NML, and NPL. The four bars are hori-
zontal and the length that determines its known 0.5 pF
capacitance is the fixed distance between two narrow
insulating gaps about 8 mm wide in two of the four bars.
This distance, about 256 mm, is determined by the NIM
length metrology laboratory using modern dimensional
measurement techniques. The two bars with gaps, called
detector electrodes, are actually well-ground fused silica
tubes covered with a vacuum-evaporated Cr–Al–Cr
composite film 0.1 mm thick with the gaps formed using
a photoetching technique.

In the NIM experiment to determine RK , the dc re-
sistance of a transportable 1 kV resistor used in connec-
tion with the quantized Hall resistance measurements
was determined in terms of the known 0.5 pF capaci-
tance of the NIM calculable capacitor through an im-
pedance chain in which the 0.5 pF capacitance is stepped
up to 1 nF in one 2:1 and three 10:1 steps using a two-
terminal transformer bridge, and then to 10 nF using a
four-terminal arrangement of the bridge. This capaci-
tance is compared to the ac resistance of a 10 kV resistor
using a quadrature bridge, which is then compared to
the resistance of the 1 kV transportable resistor using a
four-terminal transformer bridge (Ruan et al., 1988;
Zhang et al., 1995). The difference between the ac and
dc resistance of this resistor was determined by compar-
ing it to a special 1 kV resistor whose ac/dc difference
could be calculated from its dimensions. Again, all ac
measurements were performed at 1592 Hz.

The NIM quantized Hall resistance measurements
were carried out using several different GaAs/AlGaAs
heterostructures biased on the i52 plateau (Zhang
et al., 1995; Zhang et al., 1993; Zhang et al., 1992; Zhang
et al., 1991). The NIM system for relating RH(2) to a
resistance of 1 kV is based on 1:1 potentiometric resis-
tance comparisons and two specialized resistance net-
works. A number of improvements were incorporated in
the system since it was first described by Zhang et al.
(1991) and the quoted relative standard uncertainty of
relating RH(2) to the resistance of the 1 kV transport-
able resistor is now 1.431028 (Zhang et al., 1995). The
relative standard uncertainty of the 0.5 pF capacitance
of the calculable capacitor is given as 1031028 and that
for relating the impedance of the capacitor to the resis-
tance of the 1 kV transportable resistor is 8.431028.
The final result for RK , as reported in 1995 by Zhang
et al. (1995), is

RK525 812.8084~34! V @1.331027# , (239)

where it should be noted that the significantly smaller
uncertainty of the NIM calculable capacitor and imped-
ance chain given by Zhang et al. (1995) compared to that
given by Ruan et al. (1988) and by Zhang (1985) is due
to significant improvements in the apparatus and the
evaluation of all uncertainty components as estimated
standard deviations (Liu, 1998).

The value of RK given in Eq. (239) agrees with the
value 25 812.8055(156) V @6.1 3 1027# reported in 1988
by Zhang et al. (1988). It was obtained using the NIM
calculable capacitor in a less developed state, a more
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
conservative approach to uncertainty evaluation in use
at NIM at the time, and a different and less accurate
quantized Hall resistance measurement system. The
value of a that may be inferred from the 1995 NIM re-
sult is

a215137.036 004~18! @1.331027# . (240)

5. Other values

In addition to those discussed above, three values of
RK directly based on calculable capacitor measurements,
with quoted relative standard uncertainties of 22
31028, 2631028, and 3231028, have been reported.
These values were obtained by researchers at LCIE
(Delahaye et al., 1987), ETL (Shida et al., 1989), and at
VNIIM together with colleagues at the Institute of Met-
rological Service (IMS), Moscow (Kuznetsov et al.,
1988). Because their uncertainties are 9 to 13 times
larger than the 2.431028 uncertainty of the NIST value
of RK , which has the smallest uncertainty, and because
all seven values of RK are consistent, we follow the prin-
ciples given in Sec. 1.4 and do not include these three
additional values as input data.

G. Product KJ
2RK

A value of the product KJ
2RK is of importance to the

determination of the Planck constant h , because if one
assumes the relations KJ52e/h and RK5h/e2 are valid,
then

h5
4

KJ
2RK

. (241)

In analogy with the determination of KJ and RK (see
Secs. III.E and III.F), the product KJ

2RK can be deter-
mined by measuring a power P in terms of both a power
Pe(n ,i)5UJ

2(n)/RH(i) and the SI unit W5m2 kg s23,
with UJ(n)5nf/KJ and RH(i)5RK /i . If the comparison
is direct, the applicable expression is

KJ
2RK5n2f2i

P/Pe~n ,i !
P/W

W21, (242)

where P/W is the numerical value of P when P is ex-
pressed in the unit W. If instead the power P is com-
pared to a laboratory unit of power WLAB
5VLAB

2 /ΩLAB , where the laboratory units of voltage
and resistance VLAB and ΩLAB are known in terms of
particular values of the Josephson constant KJ2LAB and
von Klitzing constant RK2LAB , respectively, then the ap-
plicable expression, in analogy with Eq. (29d), is

KJ
2RK5KJ2LAB

2 RK2LAB

P/WLAB

P/W
. (243)

A practical approach that allows KJ
2RK to be deter-

mined with high accuracy based on the above formula-
tion was first proposed by Kibble at NPL nearly 25 years
ago (Kibble, 1975). Kibble’s idea is elegantly simple and
was a direct outgrowth of his measurement with Hunt of
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the shielded proton gyromagnetic ratio gp8 by the high-
field method (see Sec. III.D.1.c).

The basic principle is illustrated by the following sim-
plified example. Consider a straight, conducting wire of
length l carrying a current I in a uniform applied mag-
netic flux density B perpendicular to l . The force on the
conductor is Fe5BlI , and if this force is balanced by the
gravitational force on a mass standard with mass ms ,
then BlI5ms g , where g is the local acceleration of free
fall. If the same conductor without an applied current is
moved with velocity v in a direction perpendicular to B
and l , a voltage Uv5Blv is induced across its ends. The
elimination of the product Bl leads to

UvI5Fev5ms gv . (244)

If Uv is measured by means of the Josephson effect, I is
measured by means of both the Josephson and quantum
Hall effects, and ms , g , and v are measured in their
respective SI units, then the same power P5UvI will be
known both in terms of these effects and in terms of the
SI watt, thereby determining KJ

2RK . The beauty of Kib-
ble’s approach is that it does not require measuring the
dimensions of an object or a magnetic flux density; the
only length measurement required is that needed to de-
termine a velocity. In practice, the movable conductor is
a coil with many turns, hence such an apparatus has
come to be called a moving-coil watt balance. To date
two laboratories, NPL and NIST, have determined
KJ

2RK using this method.

1. NPL: Watt balance

Shortly after Kibble’s original proposal of 1975,
Kibble and Robinson (1977) carried out a theoretical
study of its feasibility based on the NPL apparatus used
to determine gp8 by the high-field method (Kibble and
Hunt, 1979). This apparatus was then appropriately
modified, and the promising progress made with it was
reported in 1983 by Kibble, Smith, and Robinson (1983).
The final result of the experiment was given in 1990 by
Kibble, Robinson, and Belliss (1990). That result may be
written as

KJ
2RK5KJ2NPL

2 RK2NPL @1116.14~20!31026#

56.036 7625~12!31033 J21 s21 @2.031027# ,

(245)

where KJ2NPL5483 594 GHz/V and RK2NPL
525 812.809 2 V.

The magnetic flux density used in the NPL experi-
ment was 0.7 T and was generated by a permanent mag-
net. The moving coil consisted of two flat rectangular
coils above one another in a vertical plane and con-
nected in series opposition. Its total number of turns was
3362, its mean width 0.25 m, and its mass about 30 kg.
When carrying a current I of 10 mA in the 0.7 T flux
density, the change in force DF on the coil upon reversal
of the current, which corresponds to twice the force Fe
of Eq. (244), was equal to the gravitational force on a 1
kg standard of mass. The current I was determined by
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
placing a reference resistor of resistance R5100 V
known in terms of RK2NPL in series with the coil and
measuring the 1 V potential difference Ur across its ter-
minals in terms of VNPL , which was defined in terms of
the Josephson effect and KJ2NPL . The coil was sus-
pended between the pole faces of the magnet from one
end of a massive balance beam and the change in force
DF was determined by substitution weighing in such a
way that the balance beam was always in a horizontal
position.

The measurement of DF and I as just described gives
the quotient Fe /I of the quantities Fe and I in Eq. (244).
The quotient Uv /v of the quantities Uv and v in Eq.
(244) was obtained by rotating the balance around its
central knife edge in such a way that the coil, now in its
open circuit mode, moved 615 mm about its central po-
sition (i.e., balance beam horizontal) at a velocity of 2
mm/s. The velocity was determined interferometrically
and the 1 V induced voltage Uv across the coil was mea-
sured in terms of VNPL and hence in terms of KJ2NPL .
The quotient v/Uv was determined at five different
points along the coil’s trajectory when it was ascending
or descending, a parabolic curve fitted to these points,
and the quotient at the coil’s central position calculated.
This procedure was necessary, because the flux density
was not perfectly uniform over the coil’s trajectory.

The final NPL result given in Eq. (245) is the un-
weighted mean of 50 values obtained from July 1987 to
May 1988. A result based on the unweighted mean of 27
values obtained from January 1985 to June 1985 agrees
with it, but the uncertainty of the earlier result is four
times larger. Because of this large difference in uncer-
tainty and the many minor improvements in equipment
and measurement technique incorporated in the 1987/
1988 measurements, Kibble et al. (1990) took no account
of the earlier data in arriving at their final result. Of the
50 1987/1988 values, 12 were obtained with a coil current
of 5 mA and a 0.5 kg mass standard. The statistical
(Type A) relative standard deviation of the 50 values is
3.331027 and the relative standard deviation of their
mean is 0.4731027. The principal components of rela-
tive standard uncertainty due to possible systematic ef-
fects, all of which were obtained from Type B evalua-
tions, are 1.131027 associated with the measurement of
voltage and 0.531027 associated with the refractive in-
dex and density of air (the entire experiment was carried
out in air, including the interferometric measurements
of v and the weighings).

During the course of their work, Kibble et al. (1990)
searched for and eliminated many systematic errors. The
effects studied included coil misalignment, simple and
torsional pendulum-like motions of the coil, the effect of
the current in the coil on the permanent magnet, and the
dependence of the measured value of KJ

2RK on coil ve-
locity. However, Kibble et al. (1990) could not com-
pletely account for the observed variations among the 50
values. In particular, the four values obtained from 15
February 1988 to 24 February 1988 deviated from the
mean of all 50 values by an unexpectedly large amount.
Nevertheless, since in general as many changes as pos-
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sible were made between measurement runs and there
was no reason to believe that any of these changes in-
troduced a systematic error, Kibble et al. (1990) did not
include any additional component of uncertainty to ac-
count for the possibility that the variations between val-
ues were not entirely due to random effects.

For the purpose of the 1998 adjustment, Kibble and
Robinson (1998) reconsidered their uncertainty assign-
ment and suggested that, to allow for this possibility, the
data should be viewed as a collection of five uncorre-
lated groups of data with different means, and therefore
the statistical standard deviation of the mean is obtained
by dividing the 3.331027 statistical relative standard de-
viation of the 50 values by A5 rather than A50. The
uncertainty quoted in Eq. (245) reflects this suggestion.
The value of h that may be inferred from the 1990 NPL
value of KJ

2RK according to Eq. (241) is

h56.626 0682~13!310234 J s @2.031027# . (246)

Based on the experience gained in the experiment just
described, a new apparatus has been designed and con-
structed at NPL by Robinson and Kibble (1997) that is
expected to yield a relative standard uncertainty of the
order of 131028. The apparatus, which has the cylindri-
cal symmetry of the NIST apparatus to be described in
the next section, uses the same balance beam but little
else from the earlier experiment. Two horizontal circu-
lar coils, one above the other on the same cylindrical
form, are suspended from one end of the balance beam.
Each coil is in the radial magnetic flux density in the gap
between two concentric annular permanent magnets.

The coils have 340 turns each and are about 330 mm
in diameter. Much of the apparatus—magnet, coils, in-
terferometer for measuring the position of the coils, and
balance—are in a vacuum chamber to eliminate the un-
certainty associated with the refractive index and density
of air. The magnitude of the induced voltage Uv and
force Fe are the same as in the earlier apparatus. How-
ever, to significantly reduce the uncertainty of the volt-
age measurements in both the Uv /v and Fe /I portions
of the experiment, and to simplify how the experiment is
carried out, the apparatus is directly connected to the
NPL Josephson array voltage standard. Although the ar-
ray standard is some 60 m away in another building, the
watt-balance experimenters are able to select, with a
relative standard uncertainty of about 131029, any Jo-
sephson voltage less than 1.5 V and directly measure
both the induced voltage Uv and the voltage Ur across
the series reference resistor. As a consequence, within
broad ranges, coil traversals may be carried out at any
velocity and weighings with any standard of mass. Fur-
ther, although the NPL quantum Hall effect resistance
standard is also located 60 m away, it too has been con-
nected to the apparatus; an automated calibration of the
reference resistor in terms of RK290 is now done every
few months with a relative standard uncertainty ap-
proaching 131029. Many other improvements and re-
finements have been incorporated in the new apparatus
as well, including an on-site absolute gravimeter for de-
termining g as needed with a relative standard uncer-
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tainty significantly less than 131028. However, no result
for KJ

2RK has been reported at the time of writing (Oc-
tober 1999).

2. NIST: Watt balance

Work on a moving-coil watt balance at NIST began
shortly after Kibble proposed his new approach. Pre-
liminary studies were carried out with a Pellat-type
‘‘electrodynamometer’’ consisting of a rotatable coil
with its axis vertical resting on a balance and immersed
in the uniform horizontal magnetic flux density at the
center of a long solenoid (Olsen, Phillips, and Williams,
1984; Olsen et al., 1980a).

At the same time, a special vertical magnet (1.5 m
high, 240 mm nominal radius) consisting of upper and
lower superconducting solenoids and smaller compensa-
tion windings, connected in series opposition, was de-
signed and constructed (Olsen, Phillips, and Williams,
1980b; Chen et al., 1982). The solenoids generate, for a
current of about 5 A in the solenoids and 66 mA in the
compensation windings, an axially symmetric radial flux
density of about 0.1 T in the region traversed by a mov-
ing coil that encircles the solenoids in the watt-balance
experiment. The magnetic flux density over the vertical
extent of this region has a fractional variation of less
than 0.05 % and the product Br , where r is the radial
distance from the axis of the solenoids, has a fractional
variation of a few times 1026. These characteristics of
the flux density keep the variations of Uv /v and Fe /I
over the moving coil’s trajectory within reasonable
bounds and ensure that, if the diameter of the moving
coil changes due to small changes in temperature, or if
the coil’s axis does not exactly coincide with the axis of
the solenoids, significant errors do not occur. The super-
conducting solenoid is, of course, in a liquid helium
Dewar, with the moving coil in the air outside.

In order to avoid the additional complexities that the
superconducting solenoid would introduce while they
developed the other portions of the apparatus, the NIST
researchers constructed a similar room-temperature so-
lenoid cooled by immersion in an oil bath and which
provided a maximum flux density of about 2 mT (Olsen
et al., 1985). For this value of B , the voltage induced in a
2355-turn moving coil of mean radius 350 mm and trav-
eling at 2 mm/s was 20 mV. Reversing a current of 50
mA in the coil resulted in a change in force on the coil
equal to the gravitational force on a standard of mass of
about 100 g. Using this apparatus and methods compa-
rable to those discussed below, in 1989 Olsen et al.
(1989) and Cage et al. (1989b) reported

KJ
2RK5KJ2NIST

2 RK2NIST@1116.69~1.33!31026#

56.036 7605~80!31033 J21 s21 @1.331026# ,

(247)

where KJ2NIST5483 593.420 GHz/V; and RK2NIST
525 812.848 47(30) ΩNIST on the mean date of the ex-
periment, which was 15 May 1988, based on our analysis
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discussed in connection with the NIST low-field gp8 de-
termination [see Eq. (184) and the subsequent text].

Upon completion of the 1988 measurements, the
NIST researchers installed the superconducting solenoid
and undertook the additional work necessary to obtain a
value of KJ

2RK with a significantly reduced uncertainty
(Steiner et al., 1997; Gillespie et al., 1997; Fujii et al.,
1997; Stenbakken et al., 1996; Olsen et al., 1991). The
final result from this phase of the NIST effort was re-
ported in 1998 by Williams et al. (1998) and is

KJ
2RK5KJ290

2 RK290@120.008~87!31026#

56.036 761 85~53!31033 J21 s21 @8.731028# .

(248)

The earlier NIST value is consistent with this value, but
has an uncertainty about 15 times larger.

The moving coil in the new measurements was the
same as in the 1988 measurements. However, when tra-
versing its 85 mm trajectory in the 0.1 T flux density of
the superconducting solenoids at a velocity of 2 mm/s, it
generated an induced voltage of 1 V, and the change in
force on the coil when the 10 mA current through it was
reversed was equal to the gravitational force of a 1 kg
mass standard. Thus the use of the new magnet led to
increases in the force and voltage by factors of 10 and
50, respectively, thereby allowing these quantities to be
determined with considerably smaller uncertainties.

The balance was also essentially the same as that used
in the earlier measurements, but with an improved main
knife edge. It consisted of a wheel about 610 mm in
diameter and 25 mm thick with the knife edge serving as
its axle. The moving coil was suspended from a three-
arm spider, which in turn was suspended from the wheel
by a band of fine wires that went around the wheel and
hung from both sides. An absolute gravimeter, a refrac-
tometer for help in determining the index of refraction
of air, and a three-axis interferometer were incorporated
in the new experiment as well as many new instruments
and procedures, especially for aligning the apparatus. In
this and the earlier experiment, to reduce voltage noise
from ambient ac electromagnetic fields and from vibra-
tional motion of the moving coil relative to the super-
conducting solenoids, the voltage and velocity differ-
ences between the moving coil and a similar but fixed
suspended reference coil were the quantities actually
measured.

In the 1998 NIST measurements, Uv /v was sampled
approximately 650 times during a single up or down tra-
versal of the moving coil. In a typical run, the data from
ten pairs of such transversals, interspersed with weigh-
ings at a particular point to determine Fe /I , were used
to determine the profile of the flux density. This profile
in turn was used to correct the data from each traversal.
These corrected data were then used to determine the
value of Uv /v at the point where Fe /I was determined,
thereby yielding a single measurement of KJ

2RK . The
result given in Eq. (248) is the mean of 989 values ob-
tained over the period January 1998 to April 1998. The
statistical relative standard deviation of these values
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(Type A) is 1431028. Although the 989 values were
very nearly normally distributed, because of occasional
small changes in the measured value of KJ

2RK that could
not be completely explained, Williams et al. (1998), took
as their statistical relative standard uncertainty 3.0
31028, based on treating the 989 individual values as a
collection of 22 uncorrelated groups of data. Thus the
1431028 statistical relative standard deviation of the
989 values was divided by A22 rather than A989 to ob-
tain the statistical relative standard uncertainty of the
mean. The three largest components of relative standard
uncertainty due to possible systematic effects, as ob-
tained from Type B evaluations, are 4.331028 for the
index of refraction of the air, 4.031028 for apparatus
alignment, and 3.031028 for relating the measured volt-
ages to KJ290 .

During the course of their work, the NIST researchers
investigated many possible sources of error. For ex-
ample, special attention was paid to possible errors due
to misalignment of the apparatus (Gillespie et al., 1997;
Stenbakken et al., 1996). Determining the index of re-
fraction of air was particularly troublesome, due in part
to the size of the apparatus, outgassing of the compo-
nents, and gaseous helium leaking into the air. Improve-
ments now being introduced into the apparatus should
alleviate this as well as other difficulties and lead to a
reduced uncertainty (Steiner, Newell, and Williams,
1999). The improvements include converting to vacuum
operation, incorporating a programmable Josephson ar-
ray voltage standard directly into the experiment, and
possibly replacing the wheel balance with a dual flexure-
strip balance.

As in other similar cases, we consider the 1989 NIST
result as being superseded by the 1998 result given in
Eq. (248) and include only the latter in the 1998 adjust-
ment. The value of h that it implies is

h56.626 068 91~58!310234 J s @8.731028# . (249)

H. Faraday constant F

The Faraday constant F is equal to the Avogadro con-
stant NA times the elementary charge e , F5NAe ; its SI
unit is coulomb per mole, C mol215A s mol21. It deter-
mines the amount of substance n(X) of an entity X that
is deposited or dissolved during electrolysis by the pas-
sage of a quantity of electricity or charge Q5It due to
the flow of a current I in a time t . The Faraday constant
F is related to the molar mass M(X) (see Sec. II.C),
electrochemical equivalent E(X), and valence z of en-
tity X by

F5
M~X!

zE~X!
, (250)

where E(X) is the mass md(X) of entity X deposited or
dissolved divided by the amount of charge Q5It trans-
ferred during the electrolysis:

E~X!5
md~X!

It
. (251)
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Obtaining F experimentally thus involves determining
E(X) with SI unit kg A s21 and M(X) with SI unit
kg mol21.

In practice, as in other experiments that require the
measurement of an electric current, the quantity I in Eq.
(251) is measured in terms of a laboratory unit of cur-
rent ALAB5VLAB /ΩLAB (see Sec. II.E). Since E(X)
varies inversely with I , and hence F varies directly with
I , the situation is identical to that for low- and high-field
measurements of shielded gyromagnetic ratios. Based
on the discussion of Sec. III.D and Eqs. (177a) and
(177b), we may immediately write

E~X!5E90~X!
KJRK

KJ290RK290
, (252)

where E90(X) is the value of md(X)/It when I is re-
placed by (I/A90) A; that is, when I is taken to be the
numerical value of the current measured in the unit A90
times the unit A; and

F5F90

KJ290RK290

KJRK
, (253)

where

F905
M~X!

zE90~X!
. (254)

As in the case of shielded gyromagnetic ratios, if VLAB
and ΩLAB are not based on the Josephson and quantum
Hall effects and the conventional values KJ290 and
RK290 , then Eq. (252) has a modified but similar form.
In particular, in the one experiment considered here, the
appropriate expression is obtained by replacing E90(X),
KJ290 , and RK /RK290 by ELAB(X), KJ2LAB , and
ΩLAB /V , respectively, and it is necessary to apply cor-
rections to ELAB(X) to convert it to E90(X).

It follows from the relations F5NAe , e252ah/m0c ,
me52R`h/ca2, and NA5Ar(e)Mu /me , where Mu
51023 kg mol21 (see Sec. II.C), that

F5
Ar~e!Mu

R`
S c

2m0

a5

h D 1/2

, (255)

and thus, from Eq. (253), that

F905
KJRK

KJ290RK290

Ar~e!Mu

R`
S c

2m0

a5

h D 1/2

. (256)

If one assumes the validity of the expressions KJ
52e/h and RK5h/e2, the latter equation can be written
as

F905
cMu

KJ290RK290

Ar~e!a2

R`h
, (257)

which would be the observational equation for F90 .
Also of interest is the relation

NA5
KJ290RK290

2
F90 . (258)

Because KJ290 and RK290 have no uncertainty, a deter-
mination of the Faraday constant when the relevant cur-
rent is measured in the unit A90 is a determination of
NA .
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1. NIST: Ag coulometer

There is one high-accuracy experimental value of F90
available, that from NIST. The NIST determination of
E(Ag) by Bower and Davis (1980) used the silver dis-
solution coulometer pioneered by Craig et al. (1960) in
their earlier determination of F at NIST. It is based on
the anodic dissolution by electrolysis of silver, which is
monovalent, into a solution of perchloric acid containing
a small amount of silver perchlorate. The basic chemical
reaction is Ag→Ag11e2 and occurs at the anode, which
in the NIST work was a highly purified silver bar. By
operating the coulometer at the proper potential, one
can ensure that any chemical reactions of the constitu-
ents of the solutions other than the desired reaction are
negligible.

The amount of silver dissolved for the passage of a
given amount of charge Q5It is found by weighing the
bar before and after electrolysis. However, some of the
anode is lost by mechanical separation rather than by
electrolytic dissolution. Craig et al. (1960) addressed this
problem of silver residue by recovering the mechanically
separated silver and weighing it, a most difficult task. To
reduce the uncertainty arising from such weighings,
Davis and Bower (1979) developed a novel electrolytic
method of determining the residue. In their approach,
the silver particles were converted into silver ions dis-
solved in an electrolyte and the ionic silver plated onto a
platinum cathode. The correction applied to Eq. (251)
was then the amount of charge that passed during the
electrolysis rather than the mass of the silver particles
lost.

Bower and Davis (1980) carried out eight definitive
measurements of E(Ag), the mean date of which was 15
March 1975. In these eight runs, the mass of the silver
dissolved and the current used was either 3 g and 100
mA or 5 g and 200 mA; the duration of the runs was
between 13 ks and 44 ks (3.6 h and 12.2 h). The final
result based on the mean of the eight values may be
expressed as

E~Ag!5ENIST~Ag!
KJ

KJ2NIST

ΩNIST

V
, (259)

with

ENIST~Ag!51.117 9646~15!31026 kg C21

@1.331026# , (260)

and includes a fractional correction of 1.68(49)31026 to
account for impurities in the silver samples. This correc-
tion is based on additional analyses of the impurity con-
tent of the silver that were motivated by the 1986 adjust-
ment (Taylor, 1985). The relative statistical standard
deviation of the mean of the eight values is 0.8531026

(Type A), and the relative standard uncertainty due to
weighing, and measuring voltage, resistance, time, and
the residue is 0.8531026 (Type B).

The fractional values of the corrections that must be
applied to ENIST(Ag) in Eq. (260) to convert it to a value
based on A90 are obtained in the same manner as in the
case of Γp2NIST* (lo) in Eq. (184) and are as follows:
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9.26431026 to convert from KJ2NIST5483 593.420
GHz/V to KJ290 ; and 20.935(33)31026 to convert
from ΩNIST /V to RK /RK290 based on the value RK
525 812.831 14(85) ΩNIST on the 15 March 1975 mean
date of the eight runs. Application of these corrections
yields

E9051.117 9739~15!31026 kg C21 @1.331026# .
(261)

Naturally occurring silver contains the two isotopes
107Ag and 109Ag in nearly equal abundance. In a sepa-
rate experiment, Powell, Murphy, and Gramlich (1982)
determined the ratio r795n(107Ag)/n(109Ag), the ratio
of the amount of substance of 107Ag to the amount of
substance of 109Ag, for the silver used in the E(Ag)
measurements. The result is

r7951.076 376~60! @5.631025# , (262)

where the uncertainty has been recalculated by Eber-
hardt (1981) of NIST following the method used
throughout the 1998 adjustment (see Sec. I.C). This re-
sult was obtained by the arduous but well-developed
technique known as absolute isotopic-ratio mass spec-
trometry, which combines high-accuracy chemical assay
with high-accuracy mass spectrometry. In this technique,
the mass spectrometers used to determine amount-of-
substance ratios are calibrated using synthetic mixtures
of known isotopic composition prepared from nearly
pure separated isotopes.

Based on Eq. (17) with x(107Ag)5r79 /(11r79),
x(109Ag)51/(11r79), r79 given in Eq. (262), and
Ar(

107Ag) and Ar(
109Ag) given in Table II, the mean

relative atomic mass of the silver used in the NIST mea-
surements of E(Ag) is

Ar~Ag!5107.868 147~28! @2.631027# , (263)

where we have taken into account the fact that
Ar(

107Ag) and Ar(
109Ag) are correlated with a correla-

tion coefficient of 0.087 (Audi and Wapstra, 1998). How-
ever, the uncertainty of Ar(Ag) is dominated by the un-
certainty of r79 , hence the covariances of Ar(Ag) and
other values of Ar(X) used as input data in the 1998
adjustment are negligible.

The relation M(Ag)5Ar(Ag)Mu , and Eqs. (254),
(261), and (263) lead to

F90596 485.39~13! C mol21 @1.331026# . (264)

Following our usual policy, we view the 1980 NIST re-
sult in Eq. (264) as superseding the earlier and similar
1960 NIST result reported by Craig et al. (1960), which
has an uncertainty five times larger (Cohen and Taylor,
1973). The value of h that may be inferred from Eq.
(257) using the 1980 result for F90 and the values from
the 1998 adjustment for the other quantities in that
equation is

h56.626 0657~88!310234 J s @1.331026# , (265)

where the uncertainties of the other quantities are neg-
ligible compared to the uncertainty of F90 .
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2. Other values

The two other values of the Faraday constant avail-
able have relative standard uncertainties of about 1
31025 and are not considered competitive for use in the
1998 adjustment. One was obtained at NIST by
Marinenko and Taylor (1968) [see also Cohen and Tay-
lor (1973)] from measurements of the electrochemical
equivalent of benzoic acid and of oxalic acid dihydrate.
The other was obtained at NIST by Koch (1980) from
measurements of the electrochemical equivalent of
4-aminopyridine.

I. $220% lattice spacing of silicon d220

The crystal plane spacings of silicon and related topics
have been reviewed over the last several years by a
number of authors (Martin et al., 1998; Becker et al.,
1996; Mana and Zosi, 1995; Becker and Mana, 1994). In
brief, silicon is a cubic crystal with the same crystal
structure as diamond; it has eight atoms per face-
centered cubic unit cell of edge length a'543 pm, which
is commonly called the silicon lattice parameter. The lat-
tice spacing dhkl of any plane characterized by Miller
indices h , k , l in the full set of planes $h ,k ,l% that are
equivalent by symmetry is related to a by dhkl

5a/Ah21k21l2.
The three naturally occurring isotopes of silicon are

28Si, 29Si, and 30Si. The amount of substance fractions
x(28Si), x(29Si), and x(30Si) of natural silicon are ap-
proximately 0.92, 0.05, and 0.03, respectively. The linear
temperature coefficient of expansion of silicon at room
temperature, and hence of a and dhkl , is about 2.56
31026 K21. Its elastic constants are such that
(Da/a)/Dp'23.4310212 Pa21, and thus the fractional
change in a for a pressure change Dp of 100 kPa or
about one standard atmosphere is 23.431027.

The $220% lattice spacing of silicon is obviously not a
fundamental constant in the usual sense. Nevertheless,
for practical purposes one can consider the lattice pa-
rameter a , and hence d220 , of an impurity-free crystal-
lographically perfect or ‘‘ideal’’ silicon crystal under
specified conditions (principally temperature, pressure,
and isotopic composition) to be an invariant quantity of
nature. Currently the reference temperature and pres-
sure adopted are t90522.5 °C and p50 (i.e., vacuum),
where t90 is Celsius temperature as defined on the Inter-
national Temperature Scale of 1990, ITS-90 (Preston-
Thomas, 1990). However, to date no reference values
for isotopic composition have been adopted, because the
variation of a due to the variations of the composition of
the crystals used is taken to be negligible at the current
level of experimental uncertainty.

The degree to which a particular high-quality silicon
crystal grown by the floating-zone technique represents
an ideal silicon crystal depends primarily on the amount
of carbon (C) and oxygen (O) impurities it contains.
Based on experimental and theoretical investigations of
the effect of C and O on silicon lattice spacings (Win-
disch and Becker, 1990), it is believed possible to relate
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TABLE XII. Summary of data related to the $220% lattice spacing of particular silicon crystals and the
quotient h/mnd220(W04) together with inferred values of a.

Quantity Value
Relative standard

uncertainty ur Identification Sec. and Eq.

h/mnd220(W04) 2 060.267 004(84) m s21 4.131028 PTB-99 III.K.1(282)

d220(W4.2a) 192 015.563(12) fm 6.231028 PTB-81 III.I.1 (272)
a21 137.036 0119(51) 3.731028 III.K.1(284)

d220(MO*4) 192 015.551(6) fm 3.431028 IMGC-94 III.I.2 (273)
a21 137.036 0100(37) 2.731028 III.K.1(285)

d220(SH1) 192 015.587(11) fm 5.631028 NRLM-97 III.I.3 (274)
a21 137.036 0017(47) 3.431028 III.K.1(286)
the lattice parameter of such a crystal using its measured
C and O content (if sufficiently small) to the lattice pa-
rameter of an ideal crystal with a relative standard un-
certainty of about 131028 (Martin et al., 1998).

To relate the lattice spacings of crystals used in differ-
ent experiments, it is necessary in the 1998 adjustment
to include information on lattice spacing differences.
The fractional difference @d220(X)2d220(ref)#/d220(ref)
of the $220% lattice spacing of a sample of crystal X and
that of a sample of a reference crystal ref can be deter-
mined with a relative standard uncertainty in the range
531029 to about 231028, depending on the instrument
used and the lattice spacing uniformity of the samples.
Both PTB (Windisch and Becker, 1988) and NIST
(Kessler et al., 1994) have constructed lattice compara-
tors based on x-ray double crystal nondispersive diffrac-
tometry, and these instruments are used regularly to
compare the lattice spacings of different samples. In par-
ticular, as a result of improvements recently made to the
PTB apparatus (Martin et al., 1999), PTB comparisons
have achieved a high degree of internal consistency;
measured lattice spacing fractional differences and cal-
culated differences based on measured C and O content
agree to within about 231028 (Martin et al., 1998).

Lattice spacing fractional differences obtained at
NIST by Kessler et al. (1999a) that we take as input data
are given in Sec. III.A.3.c, Eqs. (51) to (53), in connec-
tion with the discussion of the relative atomic mass of
the neutron Ar(n). The following are the fractional dif-
ferences obtained at PTB by Martin et al. (1998) that we
also take as input data:

d220~W4.2a!2d220~W04!

d220~W04!
521~21!31029 (266)

d220~W17!2d220~W04!

d220~W04!
522~22!31029 (267)

d220~MO*4!2d220~W04!

d220~W04!
52103~28!31029 (268)

d220~SH1!2d220~W04!

d220~W04!
5223~21!31029. (269)

In analogy with our treatment of the uncertainties of the
NIST lattice spacing fractional differences (see Sec.
., Vol. 72, No. 2, April 2000
III.A.3.c), the uncertainties we assign to these PTB dif-
ferences consist of the following components: 531029

associated with the PTB lattice comparator itself; a sta-
tistical component arising from the observed variation of
the lattice spacing along the length of the sample being
compared to the WASO 04 reference sample; and &
31028 d220(X) for each sample X entering a comparison
(including the WASO 04 sample), except that for the
MO* 4 sample&31028 is replaced by (3/&)31028. As
discussed in connection with the NIST results, this last
uncertainty component accounts for the fact that in gen-
eral, the $220% lattice spacing of different samples from
the same boule deviate from the mean value of the
boule. The total component of uncertainty common to
the uncertainty of each of these PTB lattice spacing dif-
ferences is 1.531028 (Becker, 1998), and hence the co-
variance of any two of these fractional differences is
219310218 (the correlation coefficients are about 0.4).
Note that since the same reference sample of WASO 04
was used in the PTB lattice spacing comparisons and we
take these covariances into account, the extra compo-
nent of uncertainty assigned to d220 of the WASO 04
reference sample does not increase the uncertainty of
the difference between the lattice spacings of two other
crystal samples derived from the comparison of each to
the WASO 04 sample.

The $220% lattice spacing of silicon is relevant to the
1998 adjustment not only because of its relationship to
Ar(n), but also because of the availability of an accurate
value of h/mnd220(W04), where h/mn is the quotient of
the Planck constant and the neutron mass. Further, cur-
rent measurements of the Avogadro constant NA by the
x-ray crystal density method involve d220(X). We discuss
below three determinations of d220(X) in meters using a
combined x-ray and optical interferometer carried out at
three different laboratories: PTB, crystal WASO 4.2a;
the Istituto di Metrologia ‘‘G. Colonnetti’’ (IMGC),
Torino, Italy, crystal MO* 4; and the National Research
Laboratory of Metrology (NRLM), Tsukuba, Japan,
crystal SH1. In Sec. III.J we discuss the status of mea-
surements of the molar volume of silicon Vm(Si) in the
context of determining NA ; and in Sec. III.K we discuss
the measurement of h/mnd220(W04) as well as the quo-
tient h/m(133Cs). Table XII summarizes the data and



411P. J. Mohr and B. N. Taylor: CODATA recommended values
gives values of the fine-structure constant a that may be
inferred from the data; the calculation of these values is
discussed in the relevant portion of the text. As in pre-
vious similar tables, the inferred values are indented for
clarity and are given for comparison purposes only. [No
values of Vm(Si) and h/m(133Cs) are given for the rea-
sons discussed in Secs. III.J and III.K.2.]

As discussed at the beginning of this section, the lat-
tice spacing of an ideal silicon crystal of naturally occur-
ring isotopic composition d220 can be deduced from the
lattice spacing of a real crystal sample. Based on both
experiment and theory, Martin et al. (1998) have pro-
posed a number of criteria that a silicon crystal should
meet in order to allow d220 to be obtained from its lattice
spacing. Further, these workers established that WASO
04 meets these criteria reasonably well and that d220 can
be calculated from d220(W04) simply by taking into ac-
count the effect of C and O on the latter. The relevant
expression is (Martin et al., 1999)

d2202d220~W04!

d220~W04!
515~11!31029, (270)

where the standard uncertainty arises from the 431029

standard uncertainty of the correction for C and O and a
1031029 standard uncertainty assigned to account for
the fact that WASO 04 may not fully meet all of the
criteria. Equation (270) is also taken as an input datum
in order to obtain a recommended value of d220 as well
as its covariances with the other 1998 recommended val-
ues. As pointed out by Martin et al. (1998), because
MO* 4 contains a large amount of carbon and SH1 may
possibly contain voids, it is less clear how well these
crystals meet the criteria needed to deduce d220 from
their lattice spacings.

1. PTB: X-ray/optical interferometer

X-ray interferometry began nearly 35 years ago with
the publication of the now classic letter of Bonse and
Hart (1965). The field developed rapidly, and the many
significant accomplishments of its first decade were re-
viewed by Hart (1975), Deslattes (1980), and Bonse and
Graeff (1977). The first high-accuracy x-ray interfero-
metric value of the $220% lattice spacing of silicon was
obtained at NIST in the 1970s in pioneering work by
Deslattes and colleagues, initiated in the 1960s, using a
combined x-ray and optical interferometer or ‘‘XROI’’
(Deslattes and Henins, 1973; Deslattes et al., 1974; Des-
lattes et al., 1976; Deslattes, 1980). Its assigned relative
standard uncertainty was ur51.531027. Subsequently
the NIST value was found to be too large by a fractional
amount of approximately 1.831026, but a final value
from an improved NIST x-ray/optical interferometer
(designated XROI-II) designed to eliminate the appar-
ent cause of the error has not been reported (Becker,
Seyfried, and Siegert, 1982; Deslattes et al., 1987; Des-
lattes, 1988; Deslattes and Kessler, 1991).

In brief, an XROI used to measure the $220% lattice
spacing of a particular silicon crystal in meters consists
of three thin, flat, and parallel crystals cut from the same
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
silicon single crystal in such a way that the (220) lattice
planes are perpendicular to the surfaces of the three
crystals. The initial structure is monolithic (the three
crystals or lamellae are like ‘‘fins’’), but the monolith is
then cut so that one of the end crystals, called the ana-
lyzer, can be moved relative to the other two. A mo-
noenergetic x-ray beam (for example, 17 keV Mo Ka1
radiation) impinges upon the first fixed crystal, called
the splitter, and is coherently split into two beams by
Laue diffraction. The two beams impinge upon the sec-
ond (middle) fixed crystal, called the mirror, and are
again Laue diffracted. Two of the four diffracted beams
overlap and produce an interference pattern at the po-
sition of the analyzer. The analyzer is moved in a direc-
tion parallel to the mirror so that its planes are aligned,
then ‘‘antialigned’’ with the interference pattern
maxima, and intensity variations of the x rays passing
through the analyzer are measured. The spatial period
of these intensity variations, or x-ray fringes, is equal to
the (220) lattice plane spacing of the analyzer. By mea-
suring the displacement of the analyzer relative to the
fixed splitter and mirror via optical interferometry as the
analyzer is moved parallel to the mirror, one can deter-
mine d220 of the analyzer by comparing the period of the
x-ray fringes to the period of the optical fringes. The
relevant relation is d2205(m/n)λ/2, where n is the num-
ber of x-ray fringes corresponding to m optical fringes of
period λ/2, and λ'633 nm is the wavelength of the laser
used to illuminate the optical interferometer. For this
value of λ, n/m'1648. Typically (but see the following
section), the x-ray fringes are scanned by displacing the
analyzer less than 80 mm (m,250). Successful opera-
tion of an XROI is a challenge, and the geometric, ther-
mal, and vibrational requirements are severe. Of par-
ticular importance is controlling (or, so that appropriate
corrections can be applied, measuring) the unwanted
motions of the analyzer—the goal is to move it along a
perfectly straight line. Indeed, the error in the NIST lat-
tice spacing determination is attributed to a problem
with the trajectory of the analyzer (Deslattes et al., 1987;
Deslattes, 1988; Deslattes and Kessler, 1991).

The XROI determination of the $220% lattice spacing
of silicon at the PTB was initiated in the 1970s, and mea-
surements of d220 of silicon crystal WASO 4.2a were car-
ried out in the early 1980s (Becker et al., 1981; Seyfried,
1984; Becker and Siegert, 1984; Siegert and Becker,
1984; Becker et al., 1982). The special features of the
PTB XROI included (i) a double parallel spring transla-
tion stage to move the analyzer with very small guiding
errors, thereby maintaining the visibility of the x-ray
fringes for displacements as large as 40 mm, or about 120
optical fringes; (ii) polished ends of the splitter/mirror
monolith and of the analyzer portion of the XROI used
for the optical interferometry, forming mirrors that were
part of the three crystals themselves; (iii) displacement
of the analyzer determined by the two-beam interferom-
etry technique using an optical polarization interferom-
eter; and (iv) optimization of the point of impact of the
optical interferometer’s laser beam on the analyzer in
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order to reduce the correction (but not the uncertainty)
for Abbe offset error to a negligible level, and choice of
the waist of the laser beam so that only a very small
correction due to wave-front nonplanarity (Fresnel
phase shift or diffraction) was necessary.

In the initial PTB determination, 170 values of the
ratio n/m were obtained from 170 bidirectional scans
carried out in vacuum over about 18 d at temperatures
t68522.42 °C to t68522.50 °C, where t68 is Celsius tem-
perature as defined on the International Practical Tem-
perature Scale of 1968 or IPTS-68 (Preston-Thomas,
1969). Each value was corrected as necessary to the ref-
erence temperature t68522.5 °C using the accepted lin-
ear thermal coefficient of expansion of silicon. In addi-
tion, the mean of the 170 values (obtained by fitting a
Gaussian probability distribution to them) was corrected
by the fractional amount 23.931028 to account for
Fresnel diffraction and cosine error. The mean value of
n/m was then combined with the measured value of λ to
obtain d220(W4.2a). The result reported by Becker et al.
(1981) is

d220* ~W4.2a!5192 015.560~12! fm @6.231028# ,
(271)

where the asterisk indicates that the reference tempera-
ture is t68522.5 °C. [Note that the &31028d220(W4.2a)
component of uncertainty to account for sample varia-
tion discussed in Sec. III.I has been included in the un-
certainty of this value.] However, in the 1998 adjustment
we take as the reference temperature for measurements
involving the crystal plane spacings of silicon t90
522.5 °C (see Sec. III.I). Since t902t68525.5 mK at the
temperature of interest (Preston-Thomas, 1990) and the
linear temperature coefficient of expansion of silicon at
these temperatures is 2.5631026 K21 (Becker et al.,
1981), the value of d220(W4.2a) given in Eq. (271) must
be increased by the fractional amount 1.431028. The
final result is

d220~W4.2a!5192 015.563~12! fm @6.231028# .
(272)

In the PTB experiment, the two principal relative
standard uncertainty components (both Type B) are
5.131028 for the measurement of temperature and lack
of exact knowledge of the thermal expansion coefficient
of WASO 4.2a and 3.031028 for possible Abbe error.
The statistical relative standard uncertainty (Type A) of
the mean value of n/m as obtained from the Gaussian fit
of the 170 values is only 0.431028.

Because the PTB result of Becker et al. (1981) dis-
agreed with the earlier NIST result of Deslattes et al.
(1976), the PTB researchers repeated their determina-
tion of d220(W4.2a) under varied experimental conditions
in order to investigate possible errors due to unsus-
pected systematic effects (Becker et al., 1982). Prior to
the remeasurement, they disassembled and then reas-
sembled the apparatus, realigned the x-ray and optical
interferometers, made other adjustments, and improved
their measurement of temperature. They then derived
13 values of d220(W4.2a) from 13 runs, with from 13 to 78
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bidirectional scans per run for a total of 414 values. Run
1 was carried out with the analyzer and interferometer
laser beam optimally aligned, while runs 2 to 12 were
carried out with the analyzer tilted from its optimal ori-
entation by different amounts and the laser beam dis-
placed from its optimal position by different amounts.
After correction for the errors thereby introduced, the
values of d220(W4.2a) obtained from runs 2 to 12 as well
as run 1 were found to agree with each other and with
the original result reported by Becker et al. (1981). Al-
though the remeasurement consisted of 414 scans com-
pared to the 170 scans of the initial determination, the
remeasurement is viewed as supporting the result of that
determination, not replacing it. (As part of their effort
to understand the disagreement between the NIST and
PTB lattice spacing values, the PTB researchers also
showed, via direct lattice spacing comparisons, that d220
of the crystals used by NIST and PTB was the same
within 231027d220 , and hence that the 1.831026 frac-
tional difference between the NIST and PTB values
could not be explained by a difference in the lattice
spacing of the crystals.)

2. IMGC: X-ray/optical interferometer

Researchers at IMGC began their XROI determina-
tion of the $220% lattice spacing of silicon in the 1970s
and first observed x-ray fringes late in the decade (Basile
et al., 1978). The work continued and a preliminary
value of d220 for a particular sample of silicon with an
assigned relative standard uncertainty ur52.831027 was
presented in 1988, together with a detailed description
of the IMGC XROI (Basile et al., 1989). Subsequently
the apparatus as well as the procedures used to analyze
the data were significantly improved, and the value

d220~MO*4!5192 015.551~6 ! fm @3.431028# (273)

for the crystal MO* 4 at the reference conditions p50
and t90522.5 °C was reported by Basile et al. (1994),
Basile et al. (1995b). [Note that the (3/&)
31028d220(MO*4) component of uncertainty to account
for sample variation discussed in Sec. III.I has been in-
cluded in the uncertainty of this value.] Their result is
based on the mean of 196 values of n/m obtained over a
period of many months by moving the analyzer between
optical orders m50 and m5270 (85 mm displacement),
where each value is typically the average of 20 data col-
lected in a 30 min measurement cycle. The largest cor-
rection by far that had to be applied to the mean value is
22.531028 due to Fresnel diffraction, and the largest
contribution to the relative standard uncertainty of
d220(MO*4) is 1.831028 (Type B) due to lack of exact
knowledge of the analyzer’s trajectory. Other Type B
relative standard uncertainty components include 0.8
31028 for each of the following effects: Fresnel diffrac-
tion, XROI temperature, Abbe error, and variations of
the thickness of the analyzer.

The many refinements incorporated into the IMGC
experiment that enabled d220(MO*4) to be determined
with such a small uncertainty are described in a series of
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papers cited by Basile et al. (1994) [see also Bergamin
et al. 1999]. The key advances were a larger displace-
ment of the analyzer, an XROI with a two-beam
polarization-encoded optical interferometer that al-
lowed the displacement of the analyzer and its unwanted
rotations to be simultaneously measured, and a detailed
analysis and understanding of the x-ray and optical in-
terference patterns. In particular, the unwanted rota-
tions of the analyzer as it is displaced were measured by
monitoring the differential displacements (phase shifts)
between four portions of the optical interference pattern
and automatically adjusting the tilt of the analyzer trans-
lation stage to compensate for the rotation.

Upon completion of the measurements on which the
result given in Eq. (273) is based, the IMGC researchers
began work that should eventually allow d220 of a par-
ticular crystal to be determined with a relative standard
uncertainty approaching 131029. The issues addressed
so far include the theory of the scanning x-ray interfer-
ometer (Mana and Vittone, 1997a; Mana and Vittone,
1997b), beam astigmatism in laser interferometry (Ber-
gamin et al., 1997a), and how to displace the analyzer by
up to 2 mm, corresponding to some 6000 optical fringes
or 107 x-ray fringes (Bergamin et al., 1997b). Recently,
Bergamin et al. (1999) reported the results of a series of
additional measurements of d220(MO*4) carried out from
October 1996 to January 1997. The same x-ray interfer-
ometer was used in this remeasurement as was used to
obtain the result given in Eq. (273), but first the entire
XROI was disassembled and reassembled, the laser of
the optical interferometer replaced, and a new transla-
tion stage or guide for the analyzer crystal as described
by Bergamin et al. (1997b) was installed. The new guide
allowed the analyzer to smoothly scan the x-ray fringes
at a speed of 1 pm/s to 0.1 mm/s for displacements of up
to 2 mm; unwanted rotations of the analyzer were no
larger than 1 nrad. By averaging the results obtained
from a typical sequence of 45 scans with analyzer dis-
placements of about 1.6 mm or 5000 optical fringes, the
statistical relative standard deviation of the mean value
of n/m was reduced to less than 131029. This implies
that in a time period of 1 h, one can investigate a pos-
sible systematic error as small as about 131029d220 .

Using this improved XROI, Bergamin et al. (1999)
studied the effect of crystal temperature [the coefficient
of thermal expansion of MO*4 was determined from
measurements of d220(MO*4) over the range t90521 °C
to t90523.5 °C (Bergamin et al., 1997c)], lattice strain,
unwanted rotations and transverse displacements of the
analyzer, laser diffraction in the optical interferometer,
and residual gas pressure in the vacuum chamber hous-
ing the XROI. The five values of d220(MO*4) obtained in
these studies varied from 192 015.547 fm to 192 015.552
fm with standard uncertainties of 0.004 fm assigned to
each, corresponding to ur52.131028. Because these ad-
ditional values are viewed by Bergamin et al. (1999) as
providing confirmation of the 1994 result rather than re-
placing it, we take Eq. (273) as the input datum for
d220(MO*4) in the 1998 adjustment.
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3. NRLM: X-ray/optical interferometer

The effort at NRLM to determine the $220% lattice
spacing of silicon began in the 1970s; a review of the
initial work was presented in 1988 by Tanaka, Na-
kayama, and Kuroda (1989). A first result for d220 of
crystal SH1 with a relative standard uncertainty ur51.6
31027 was reported several years later by Fujimoto
et al. (1995a), following the further development of the
NRLM XROI [see, for example, Nakayama, Tanaka
and Kuroda, (1991a); Nakayama et al. (1991b); Na-
kayama et al. (1993); Fujimoto, Tanaka, and Nakayama,
(1995b)]. Improvements made to the early apparatus in-
clude a new polarization-type optical interferometer
with picometer resolution to measure the displacement
of the analyzer, a new translation stage for the analyzer
that significantly reduced its unwanted motions, a feed-
back system based on an angular interferometer with 3
nrad resolution to correct for unwanted rotations of the
analyzer during displacements of up to 100 mm, and the
addition of a trajectory interferometer to measure un-
wanted rectilinear movements of the analyzer.

The dominant contribution by far to the 1.631027

relative standard uncertainty of the 1995 result was the
1.631027 statistical relative standard deviation (Type
A) of the approximately 900 individual values of
d220(SH1) obtained from bidirectional scans of up to 250
optical fringes, corresponding to analyzer displacements
of about 80 mm. The scatter of the data, which was pe-
riodic in time and correlated with the temperature of the
XROI, and which over the 18 d of measurements was as
large as 631027d220(SH1) peak-to-peak, was identified
by Fujimoto et al. (1995a) to be due to the reflection of
light from the surface of a quarter wave plate inserted in
the optical path of the interferometer used to measure
analyzer displacements. This problem was addressed in
a new series of measurements by inclining the plate so
that the reflected light did not interfere with the inter-
ferometer’s main optical beam. As a consequence, the
scatter decreased by a factor of 3. Based on 829
temperature-corrected values of n/m obtained from 829
bidirectional scans of up to m5214 (displacements up to
about 70 mm), each lasting about 23 min and carried out
over 15 d at temperatures within 200 mK of t90
522.5 °C, Nakayama and Fujimoto (1997) found for the
reference conditions p50 and t90522.5 °C

d220~SH1!5192 015.587~11! fm @5.631028# . (274)

[Note that the &31028d220(SH1) component of uncer-
tainty to account for sample variation discussed in Sec.
3.9 has been included in the uncertainty of this value.]

The 829 values of n/m varied slowly but periodically
over the 15 d of data taking, with an amplitude of about
531028 (n/m) relative to the mean. This effect was in-
vestigated by carrying out a considerable number of the
829 scans with the x-ray interferometer rotated from its
optimum alignment with respect to the optical interfer-
ometer by up to 68000 nrad. Based on the values of
n/m obtained from these scans and their lack of corre-
lation with the temperature of the XROI, Nakayama
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and Fujimoto (1997) concluded that the value of n/m
lies within the 531028 (n/m) amplitude of the periodic
variation.

The principal fractional correction that Nakayama
and Fujimoto (1997) had to apply to the observed mean
value of n/m was 216.031028 to account for the 251
mm width of the beam of the optical interferometer
(Fresnel diffraction); the two other required fractional
corrections, that for cosine error and scan direction,
were less than 131028 each. The 5.631028 relative
standard uncertainty of the result is mainly due to the
5.031028 statistical relative standard deviation of the
829 values (Type A). This can be compared to the rela-
tive standard uncertainties (Type B) assigned for pos-
sible Abbe error and for the Fresnel diffraction correc-
tion, the two largest additional components (other than
our &31028 for sample variation), which are only 1.0
31028 and 0.831028, respectively.

We use the value given in Eq. (274) as the input da-
tum for d220(SH1) in the 1998 adjustment.

J. Molar volume of silicon Vm(Si)

It follows from Eq. (12) as applied to silicon that the
Avogadro constant NA is given by

NA5
M~ASi!
m~ASi!

, (275)

where M(ASi) and m(ASi) are the molar mass and mass
of silicon atoms of a particular nucleon number A , re-
spectively. However, in keeping with the discussion of
Sec. III.I, we suppose that we are dealing with an ideal
silicon crystal at t90522.5 °C in vacuum with a particular
isotopic composition. Hence M(ASi) and m(ASi) in Eq.
(275) are replaced by M(Si) and m(Si), the mean molar
mass and mean mass of the silicon atoms (see Sec. II.C).
Further, since the binding energy of each silicon atom in
a silicon crystal is only about 5 eV, M(Si) and m(Si)
may be viewed as the molar mass and mass of free sili-
con atoms instead of silicon atoms in a crystal.

The mean mass m(Si) is related to the mean volume
of a silicon atom a3/n and the mass density of the silicon
crystal r(Si) by

m~Si!5r~Si!
a3

n
, (276)

where a is the edge length of the cubic unit cell as de-
fined in Sec. III.I and n is the number of silicon atoms
per unit cell, and where it is understood that the same
reference conditions apply to r(Si) as to a (that is, t90
522.5 °C and vacuum). In terms of the mean molar vol-
ume of silicon,

Vm~Si!5
M~Si!
r~Si!

5
Ar~Si!Mu

r~Si!
, (277)

Eq. (275) can be written as

NA5
Vm~Si!

a3/n
5

Ar~Si!Mu

A8 d220
3 r~Si!

, (278)
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since n58 for an ideal silicon crystal and a5A8d220 (see
Sec. III.I). From this point of view, the Avogadro con-
stant is equal to the quotient of the mean molar volume
of silicon to the mean volume of a silicon atom.

It is clear from the above discussion that a value of
NA can be obtained from measurements of Vm(Si) and
d220 . This method of determining NA is called the x-ray
crystal density or XRCD method, and in its modern
form as applied to silicon was pioneered at NIST by
Deslattes and colleagues in the early 1970s (Deslattes
et al., 1974). It follows from Eq. (278) that an XRCD
determination of NA involves three separate experi-
ments: determination of d220 using a combined x-ray and
optical interferometer or XROI as discussed in Sec.
III.I.1; determination of the amount of substance ratios
n(29Si)/n(28Si) and n(30Si)/n(28Si)—and hence amount-
of-substance fractions x(ASi)—using the absolute isoto-
pic ratio mass spectrometry technique in order to deter-
mine the mean relative atomic mass Ar(Si); and
determination of r(Si). However, real silicon crystals
contain chemical impurities (see Sec. III.I), which im-
plies that the measured values of d220 and Vm(Si)
5Ar(Si)Mu /r(Si) may not correspond to those of an
ideal crystal, n may not be exactly equal to eight, and
the unit cell may be distorted (Siegert, Becker, and Sey-
fried, 1984). Further, because in practice lattice spacing
and density measurements are carried out on different
samples of a particular boule, information about sample
homogeneity is required. This means that the silicon
crystals must be carefully characterized both structurally
and chemically so that appropriate corrections can be
applied to the measured values of d220 and Vm(Si),
thereby allowing Eq. (278) to be used to determine NA .

Since the pioneering work at NIST, significant
progress has been made in all three experimental areas,
but also in characterizing and understanding the imper-
fections of real silicon crystals. The most accurate mea-
surement of d220 of a particular crystal sample is that
carried out at IMGC and has a quoted relative standard
uncertainty ur52.631028 (Basile et al., 1994); amount-
of-substance ratio measurements at the Institute of Ref-
erence Materials and Measurements (IRMM), Geel,
Belgium, have now reached the point where the quoted
relative standard uncertainty of Ar(Si) for a particular
sample is ur51.331027 (Gonfiantini et al., 1997); the
most accurate measurement of r(Si) is that carried out
at NRLM and has a quoted relative standard uncer-
tainty ur51.131027 (Fujii et al., 1995); and it is believed
that d220 of a high-quality real crystal can represent d220
of an ideal crystal with a relative standard uncertainty of
131028 (see Sec. III.I).

The considerable effort being expended internation-
ally on the improved determination of NA is motivated
in part by the desire to replace the current artifact-based
definition of the unit of mass in the SI—the international
prototype of the kilogram—by a definition based on an
invariant property of nature such as the mass of a speci-
fied number of particular atoms (Quinn, 1991; Taylor,
1991) or a specified sum for the frequencies of a collec-
tion of photons (Taylor and Mohr, 1999). To coordinate
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this international effort, the Consultative Committee for
Mass and Related Quantities (CCM, Comité Consultatif
pour la Masse et les grandeurs apparentées) of the CIPM
has formed a subcommittee, the CCM Working Group
on the Avogadro Constant, with representatives from all
major research groups working in areas relevant to the
determination of NA by the XRCD method. Its present
chairman is P. Becker of the PTB.

Nevertheless, in spite of the impressive advances
made in the last decade or so, not the least of which is
the improved understanding of the imperfections of real
silicon crystals, the current well-known (De Bièvre et al.,
1997), but not yet well-understood, inconsistencies in a
number of experimental values of Vm(Si) are deemed
sufficiently troublesome to preclude the use of any value
of Vm(Si) in the 1998 adjustment. The decision to ex-
clude such values was reached in collaboration with, and
has the full support of, the CCM Working Group on the
Avogadro Constant (Becker, 1997). The possible cause
of these inconsistencies is currently under intensive in-
vestigation, and it is expected that once it is identified
values of Vm(Si) can be included in future adjustments.
For completeness we very briefly summarize the current
situation.

As indicated in Sec. III.I, the fractional variation of
d220 with the observed variation of the isotopic compo-
sition of the silicon crystals used in high-accuracy experi-
ments is considered negligible. Hence Eq. (278) implies
that, after correction for impurities, values of Vm(Si)
should be nearly invariant. However, the values of
Vm(Si) obtained at IMGC for two crystals (Basile et al.,
1995a), as well as the value obtained at NRLM for its
crystal, differ from other IMGC values and values ob-
tained at PTB by unexpectedly large amounts (De
Bièvre et al., 1997). Indeed, the NRLM value exceeds
that of PTB by 3.431026 Vm(Si). Because for each of
these values M(Si) is based on similar measurements
carried out at IRMM, and the comparison of silicon den-
sity standards among laboratories shows that the frac-
tional difference between measurements of density at
NRLM and at PTB is less than 231027 (Bettin et al.,
1997), the observed anomalously low density of the
NRLM silicon is very likely to be real. Such a low den-
sity could be explained by the presence of unexpected
voids (Deslattes and Kessler, 1999), which would have
to account for about 1.5 mm3 of missing silicon in a 1 kg
sample.

It is worthwhile to note that from Eq. (278) and the
relations me52R`h/ca2 and NA5Ar(e)Mu /me one ob-
tains the observational equation

Vm~Si!8
& cMuAr~e!a2d220

3

R`h
(279)

for measured values of Vm(Si).

K. Quotient of Planck constant and particle mass h/m(X)

It follows from the relation R`5a2mec/2h that

a5F2R`

c

Ar~X!

Ar~e!

h

m~X!G
1/2

, (280)
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where Ar(X) is the relative atomic mass of particle X
with mass m(X) and Ar(e) is the relative atomic mass of
the electron (see Sec. III.A). Since c is an exactly known
constant, the relative standard uncertainty of R` is less
than 1310211, that of Ar(e) is about 231029, and the
relative atomic masses of many particles and atoms have
relative standard uncertainties comparable to or smaller
than that of the electron, Eq. (280) yields a value of a
with a competitive uncertainty if h/m(X) is determined
with a sufficiently small uncertainty. In this section we
review two determinations of h/m(X), one for the neu-
tron and the other for the 133Cs atom. As already noted
in Sec. III.I, the neutron result is included in Table XII
of that section.

1. Quotient h/mn

Although the PTB determination of h/mn had its ori-
gins in a proposal by Stedman (1968), Weirauch (1975)
had serious difficulties in implementing the particular
method suggested and developed an alternative ap-
proach (Weirauch, 1978). The basic idea is to use the de
Broglie relation p5mnv5h/λ to determine h/mn5λv
for the neutron by measuring both the de Broglie wave-
length λ and the corresponding velocity v of slow neu-
trons. The PTB experiment (Krüger, Nistler, and Wei-
rauch, 1998; Krüger, Nistler, and Weirauch, 1995) was
carried out at the high-flux reactor of ILL after initial
investigations at PTB using the PTB reactor (Krüger,
Nistler, and Weirauch, 1984b; Weirauch, Krüger, and
Nistler, 1980). In the experiment, the de Broglie wave-
length λ'0.25 mm of slow neutrons in a monochromatic
horizontal beam was determined by back reflection
(Bragg angle of 90°) from the (311) lattice planes per-
pendicular to v of a single crystal of silicon; and the
velocity v'1600 m/s of the neutrons was determined by
a special time-of-flight method. In brief, the neutrons in
the beam were first spin polarized and then the direction
of the polarization modulated at a known frequency n
'750 kHz by having the beam pass through a ‘‘mean-
der’’ coil. The modulated beam then traveled to the sili-
con crystal, was back-reflected along its original path,
and again passed through the meander coil, which again
modulated the direction of the spin of the neutrons in
the beam. The resulting total modulation, which is the
superposition of the two modulations and depends on
the round-trip time-of-flight of the neutrons, was ana-
lyzed and measured as a function of the distance l be-
tween the center of the meander coil and the silicon
crystal. The mean neutron current Ī(l) at the detector is
of the form

Ī~ l !5
I0

2 H 12J0F2Φ̂ cosS 2pnl

v D G J , (281)

where Φ̂'1.6p is the modulation amplitude and J0 is the
zero-order Bessel function. The velocity v is related to
the distance Dl'1 mm between the main minima of Ī(l)
by v52nDl52Dl/t , where t is the modulation period.
Thus the neutrons traverse a distance 2Dl in the



416 P. J. Mohr and B. N. Taylor: CODATA recommended values
time t. To achieve high accuracy, the distance between
the crystal and the meander coil was changed by 10 m,
corresponding to over 9400 main minima, Ī(l) was mea-
sured for one main minimum at either end of the path,
and a curve fitted to Ī(l) over the entire path based on
Eq. (281) with Φ̂ and Dl as free parameters. The experi-
ment was carried out in a vacuum chamber at a pressure
of between 1 Pa and 10 Pa. The distance l was measured
interferometrically and a small correction applied to ac-
count for the index of refraction of the residual air.

The work at ILL was documented in a number of
progress reports published in the 1980s (Krüger, Nistler,
and Weirauch, 1984a; Krüger, Nistler, and Weirauch,
1986; Krüger, Nistler, and Weirauch, 1989b; Krüger, Nis-
tler, and Weirauch, 1989a). The result from a series of 13
measurements carried out from April 1989 to March
1991, when the ILL reactor closed for about 4 years for
repairs and improvements, was reported in 1995 by
Krüger et al. (1995). The final result of the PTB effort
reported by Krüger et al. (1998) was based on a second
series of ten measurements carried out from August
1995 to November 1996 together with the first series of
13 measurements. This result may be written as (Krüger,
Nistler, and Weirauch, 1999)

h

mnd220~W04!
52 060.267 004~84! m s21 @4.131028# ,

(282)

where, as discussed in Sec. III.I, d220(W04) is the $220%
lattice spacing of the crystal WASO 04 at t90522.5 °C in
vacuum. The assigned uncertainty is that of the PTB
researchers combined with 131028 h/mnd220(W04),
which accounts for possible lattice spacing variations of
the samples of the crystals used in the h/mnd220(X) mea-
surements, and &31028 h/mnd220(W04), which ac-
counts for the possible lattice spacing variation of the
crystal WASO 04. [See the discussion in Sec. III.I fol-
lowing Eqs. (266) to (269); as explained below, the sili-
con crystals used in the PTB h/mn experiment were
compared to WASO 04.] Because the relative standard
uncertainty of the value of h/mnd220(W04) given in Eq.
(282) includes the 1.531028 total component of uncer-
tainty common to the PTB fractional lattice spacing dif-
ferences given in Eqs. (266) to (269), the covariance of
this value and any of the fractional differences is 451
310215 m s21 (the correlation coefficients are about 0.2).

The result of the second series of measurements is in
excellent agreement with that of the first, even though
nearly 4 years separated the two series and a number of
potentially significant changes were made in the experi-
ment for the second series. These modifications included
the removal of some major components of the apparatus
and their subsequent reinstallation and readjustment; re-
placement of the lasers used in the interferometric de-
termination of l and the synthesizer used to generate the
n'750 kHz modulation frequency; recalibration of the
resistors used to measure the temperature of the silicon
crystal; the use of two new silicon crystals; and signifi-
cantly increased measuring time, which led to a reduc-
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
tion in the statistical uncertainty in determining the pe-
riod of the fitted Ī(l) curve. The uncertainty of
h/mnd220(W04) is in fact largely due to this statistical
uncertainty (Type A), which arises to a significant extent
from the thermal expansion of components associated
with the interferometry. The largest nonstatistical (Type
B) component of relative standard uncertainty, about
1.131028, is associated with measuring the temperature
of the silicon crystal. Knowledge of the temperature of
the crystal is of critical importance, because the linear
temperature coefficient of expansion of silicon aSi , and
hence of its lattice spacings, is large: aSi52.56
31026 K21.

Two silicon crystals, Si 1 and Si 2, were employed in
the first series and three crystals, Si 2, Si 4, and Si 5, in
the second. After the first series, the lattice spacing of a
sample of Si 1 was compared to that of reference crystal
WASO REF, and the result of the comparison was used
for both Si 1 and Si 2, because these were cut one after
the other from the same boule. After the second series,
the lattice spacings of samples of Si 1, Si 2, Si 4, and Si 5
were compared to that of the new reference crystal
WASO 04, thereby determining the lattice spacing of
each crystal in terms of the lattice spacing of WASO 04.
As for the samples used in the first series, these compari-
sons were carried out in the PTB X-Ray Metrology Sec-
tion, but the improved instrument mentioned in Sec.
III.I was used in the latter set. The fact that the differ-
ences among the 23 individual values of h/mnd220(W04)
are consistent with the uncertainties assigned to each
value indicates that the lattice spacing differences of the
h/mn crystals, arising from C and O impurities and other
imperfections, are adequately accounted for by the dif-
ference measurements relative to WASO 04.

The observational equation, which follows from Eq.
(280), for the measured value of h/mnd220(W04) given in
Eq. (282) is

h

mnd220~W04!
8

ca2Ar~e!

2R`Ar~n!d220~W04!
. (283)

From this expression and the value of h/mnd220(W04),
one can infer a value of a using any one of the three
available absolute silicon lattice spacing measurements
(PTB, IMGC, or NRLM; see Sec. III.I) together with its
relation to d220(W04) as determined from the NIST and
PTB lattice spacing fractional differences given in Secs.
III.A.3.c and III.I. Using the 1998 recommended value
of R` , values of Ar(e) and Ar(n) consistent with Eqs.
(31), (34), (48), (50), and (283), we obtain from the PTB
measurement

a215137.036 0119~51! @3.731028# , (284)

from the IMGC measurement

a215137.036 0100~37! @2.731028# , (285)

and from the NRLM measurement

a215137.036 0017~47! @3.431028# . (286)

(These are the inferred values included in Table XII of
Sec. III.I.) The three absolute lattice spacing measure-
ments together yield what may be called an h/mn value
of alpha:
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a21~h/mn!5137.036 0084~33! @2.431028# . (287)

It is important to note that the observational equa-
tions for λmeas /d220(ILL) and h/mnd220(W04) [Eqs. (50)
and (283)] may be combined to give

Ar~n!5
1

122e
$@~122e!Ar

2~d!1e2Ar
2~p!#1/2

2~12e!Ar~p!%, (288)

where

e5
1
c F h

mnd220~W04!GF λmeas

d220~ ILL!G
21 d220~W04!

d220~ ILL!

'0.0024. (289)

Of particular interest here is the fact that Ar(n) depends
only on the relative lattice spacing of the two crystals,
and not on the absolute values of their lattice spacings in
meters. Indeed, if the same silicon crystal were used to
measure the two quotients in square brackets, then not
even a lattice spacing comparison would be necessary.
This route to Ar(n) is important in the determination of
the 1998 recommended value of the mass of the neutron
mn in the unified atomic mass unit mn /u5Ar(n).

2. Quotient h/m( 133Cs)

The atomic recoil frequency shift of photons absorbed
and emitted by cesium atoms is being measured at Stan-
ford University in order to determine the quotient
h/m( 133Cs) and thus the fine-structure constant (Young,
Kasevich, and Chu, 1997; Peters et al., 1997).

In its simplest form, the atomic recoil frequency shift
follows from energy and momentum conservation. If a
photon of frequency n1 propagating in the x direction is
absorbed by an atom of mass m initially at rest, and a
second photon of frequency n2 is emitted by the atom in
the 2x direction, then the difference between the two
frequencies is given by

Dn5n12n25
2hn2

mc2 S 12
Dn

2n
1¯ D , (290)

where n1'n2'n , and n is the relevant resonant transi-
tion frequency in the atom. For the cesium atom with n
equal to the frequency of the D1 line, the correction
term Dn/2n is about 1310211. Under the assumption
that such terms are negligible, h/m is given by

h

m
5

c2Dn

2n2
. (291)

This recoil frequency shift leads to spectral doubling in
saturation absorption spectroscopy as predicted by
Kol’chenko, Rautian, and Sokolovskiı̌ (1968) and opti-
cally resolved by Hall, Bordé, and Uehara (1976). Hall
et al. (1976) also pointed out that the splitting provides a
measure of h/m .

The determination of h/m with high accuracy by mea-
suring the atomic recoil frequency shift of photons is
rather more difficult than the above discussion might
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imply. In the experiment to measure DnCs at Stanford,
full use is made of the laser cooling of neutral atoms,
velocity-selective stimulated Raman transitions to ob-
serve matter-wave interference, and the concept of
Ramsey separated-oscillatory-field spectroscopy. By em-
ploying these light-pulse atom-interferometry tech-
niques, Weiss, Young, and Chu (1994) and Weiss,
Young and Chu (1993) were able to obtain a value of
DnCs in 2 h of data taking with a statistical relative stan-
dard uncertainty (Type A) of 131027, but found that
the resulting value of h/m(133Cs) was smaller than the
expected value by the fractional amount 8.531027. Al-
though Weiss et al. (1994) could not identify a particular
systematic effect in the measurement of DnCs that might
have caused such a difference, they believed that it was
mainly due to imperfections of the Raman laser beams.
In order to reduce this and a number of other possible
systematic effects, as well as to significantly reduce the
scatter of the data, the Stanford researchers made major
modifications to their apparatus (Young, 1997). The fo-
cus of these changes was the following: improved vibra-
tion isolation, reduced magnetic-field shifts, longer inter-
ferometer interaction times, more efficient atomic state
transfers, smaller errors from wave-front distortions,
and reduced ac Stark shifts. As a consequence of their
efforts, a statistical relative standard uncertainty of 1
31027 for DnCs could be obtained with the improved
apparatus in 1 min of data taking rather than in 2 h of
data taking as with the unmodified apparatus. Moreover,
from the observed variation of values of DnCs with
changes in experimental parameters, it was concluded
that systematic effects were also reduced (Young, 1997).

The value of DnCs based on data obtained with the
improved apparatus, as given by Young (1997) in his
Ph.D. thesis, is assigned a relative standard uncertainty
ur55.631028, which consists of a statistical component
of 2.231028 (Type A) and components totaling 5.2
31028 (Type B) to account for various systematic ef-
fects. Of these components, the largest by far is 5.0
31028 to account for the observed variations of DnCs
with the number N of mirror (p) laser pulses occurring
between the two pairs of beam splitter (p/2) laser pulses
of the atom interferometer and with the time T between
the two pulses of a given pair.

Since the cause of this systematic effect was not un-
derstood, it was decided not to formally publish Young’s
result for DnCs but to continue to try to understand and
improve the apparatus (Chu, Hensley, and Young,
1998). As a result of this additional work, variation of
the experimental values of DnCs was discovered to be
due in part to unwanted phase shifts in the atom inter-
ferometer when the frequency of a synthesizer used to
compensate for the Doppler shift from gravity was
changed (Chu et al., 1998). Replacement of the synthe-
sizer solved this problem. The experiment is continuing
and efforts to eliminate the observed dependence of the
DnCs data on the shape (intensity vs. time) of the beam
splitter pulses are underway (Hensley, 1999).

It is noteworthy that a significantly improved value
(ur'1310210) of the relevant 133Cs resonance fre-
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quency neff characteristic of the Stanford experiment is
now available from the frequency measurements of the
133Cs D1 line reported by Udem et al. (1999); and that a
similarly improved value (ur,2310210) of Ar(

133Cs)
has been obtained by Bradley et al. (1999). Since the
relative standard uncertainty of Ar(e) is about 231029

and that of R` is less than 1310211, the uncertainty of
the value of a that can be inferred from Eq. (280) as
applied to 133Cs,

a5F2R`

c

Ar~
133Cs!

Ar~e!

h

m~ 133Cs!
G 1/2

(292)

with

h

m~ 133Cs!
5

c2DnCs

2neff
2 , (293)

is to a large extent dictated by the uncertainty of the
experimental value of DnCs . If DnCs were to be mea-
sured with a relative standard uncertainty ur5531029,
which seems feasible (Chu et al., 1998), one would have
a value of a with ur52.731029. This is to be compared
to the uncertainty of the value of a inferred from the
electron magnetic moment anomaly ae :ur53.831029

[see Eq. (72)].
In view of the fact that possible systematic errors are

still being investigated, no value of DnCs is included in
the 1998 adjustment.

L. Hyperfine structure

The ground-state hyperfine splittings of hydrogen,
muonium, and positronium, DnH , DnMu , and DnPs , re-
spectively, are nearly proportional to a2R` , hence a
value of a can be obtained by equating an experimental
value for a splitting to its corresponding theoretical ex-
pression. Because of the simplicity of these atoms, one
expects that both the experimental value and theoretical
expression can be known with high accuracy. Indeed, a
value of a with a relative standard uncertainty ur55.7
31028 is deduced in this way in Sec. III.C.9.d from data
on muonium.

For hydrogen, the uncertainties of experimental val-
ues of DnH as obtained by measuring the frequency of a
well characterized hydrogen maser are extraordinarily
small. For example, 20 years ago Petit, Desaintfuscien,
and Audoin (1980) reported

DnH51 420 405 751.773~1 ! Hz @7310213# . (294)

Nevertheless, a useful value of a cannot be derived from
this impressive result, because the uncertainty of the
theoretical expression for DnH is ur'531026, nearly
seven orders of magnitude larger than that of the experi-
mental value. The problem is that the contributions to
DnH due to the finite size and internal structure of the
proton are large and difficult to calculate accurately
(Karshenboim, 1997b; Bodwin and Yennie, 1988). Espe-
cially troublesome is the contribution arising from the
polarizability of the proton. For example, based on an
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
analysis of spin-dependent inelastic electron-proton
scattering data, the fractional contribution dpol of the
proton polarizability to DnH can only be bounded by
udpolu,431026 (Hughes and Kuti, 1983). [Because the
muon is a structureless point-like particle, the problems
of finite size and internal structure do not exist for
DnMu .]

It is also not yet possible to obtain a useful value of a
from DnPs . The experimental value with the smallest un-
certainty is that reported by Ritter et al. (1984):

DnPs5203.389 10~74! GHz @3.631026# . (295)

Further, although progress has been made in recent
years in the calculation of DnPs , Czarnecki, Melnikov,
and Yelkhovsky (1999) estimate that its uncertainty due
to uncalculated terms is ur52.331026.

In summary, only the muonium hyperfine splitting
DnMu , which is discussed in detail in Secs. III.C.9.b to
III.C.9.d and in Appendix D, is of interest in the 1998
adjustment.

M. Fine structure

As in the case of hyperfine splittings (see the previous
section), fine-structure transition frequencies are nearly
proportional to a2R` , and hence may also be used to
deduce a value of a. Data related to the fine structure of
hydrogen and deuterium are discussed in Sec. III.B in
connection with the Rydberg constant. The three experi-
mental results deemed useful for the 1998 adjustment
are a value for the frequency of the interval 2S1/2–2P3/2
obtained at Harvard University by Hagley and Pipkin
(1994), and two values for the frequency of the interval
2P1/2–2S1/2 (the classic Lamb shift), one obtained at Har-
vard University by Lundeen and Pipkin (1986), and the
other at the University of Sussex by Newton et al.
(1979). Combining the values for these intervals and
comparing experiment and theory for the inferred inter-
val 2P1/2–2P3/2 would provide a value of a with relative
standard uncertainty ur'731027, where the uncer-
tainty would be largely from experiment. Although such
a value is not competitive, we include these data in the
adjustment because they influence the value of R` .

The accuracy of the experimental determination of
fine-structure frequencies involving hydrogen or deute-
rium 2P states is limited by the large natural widths of
the levels. On the other hand, the 23PJ states of 4He
cannot decay to the ground 11S0 state by allowed electric
dipole transitions, so their levels are relatively narrow.
Because the transition frequencies corresponding to the
differences in energy of the three 23P levels can be both
measured and calculated with reasonable accuracy, the
fine structure of 4He has long been viewed as a potential
source of a reliable value of a.

The three frequencies of interest are n01'29.6 GHz,
n12'2.29 GHz, and n02'31.9 GHz, which correspond to
the intervals 23P1–23P0 , 23P2–23P1 , and 23P2–23P0 , re-
spectively. Improvements in experiment have been espe-
cially significant during the last decade [for a review of
the early work, see Pichanick and Hughes (1990)]. For
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example, the group at the European Laboratory for
Non-Linear Spectroscopy (LENS), Firenze, Italy has re-
ported the value (Minardi et al., 1999)

n01529 616 949.7~2.0! kHz @6.831028# , (296)

and three other groups are carrying out similar measure-
ments: one at Harvard University (Roach, Levy, and
Gabrielse, 1998), one at York University, Canada
(Storry and Hessels, 1998), and one at the University of
North Texas (Koehler et al., 1999; Shiner, Dixson, and
Zhao, 1994). If the theoretical expression for n01 were
exactly known, the result of Minardi et al. (1999) given
in Eq. (296) would yield a value of a with ur53.4
31028.

Although the last decade has seen progress in the cal-
culation of the 23PJ transition frequencies, the uncer-
tainty of the theoretical expression for n01 due to uncal-
culated terms is estimated to be of the order of ten times
that of the LENS result (Zhang and Drake, 1996) and
would lead to an uncertainty ur5331027 in the value of
a. Because a value of a with this uncertainty is not com-
petitive, the 4He fine-structure data are not included in
the 1998 adjustment. On the other hand, as with the
experimental measurements, theoretical calculations are
in progress, and the 4He fine structure could eventually
provide a useful value of a.

N. Molar gas constant R

The equation of state of a real gas of atoms or mol-
ecules in thermal equilibrium at the thermodynamic
temperature T , of amount of substance n , and occupy-
ing a volume V , can be written as a virial expansion
(Colclough, 1973):

p5RT
n

V F11
n

V
B~T !1

n2

V2
C~T !1•••G . (297)

Here p is the pressure of the gas, R'8.31 J mol21 is the
molar gas constant, and B(T) is the first virial coeffi-
cient, C(T) is the second, etc. For an ideal gas the atoms
or molecules do not interact, all of the virial coefficients
are zero, and the equation of state reduces to the famil-
iar pV5nRT .

In a similar manner, the square of the speed of sound
ca

2(p ,T) in a real gas at the pressure p and thermody-
namic temperature T can be written as (Colclough,
1973)

ca
2~p ,T !5A0~T !1A1~T !p1A2~T !p21A3~T !p3

1••• , (298)
where A1(T) is the first acoustic virial coefficient,
A2(T) is the second, etc. In the limit p→0, we have

ca
2~0,T !5A0~T !5

g0RT

Ar~X!Mu
, (299)

where the expression on the right-hand side is the
square of the speed of sound for an unbounded ideal
gas, and where g05cp /cV is the ratio of the specific heat
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capacity of the gas at constant pressure to that at con-
stant volume, Ar(X) is the relative atomic mass of the
atoms or molecules of the gas, and Mu51023 kg mol21.
For a monatomic ideal gas, g055/3.

The most important of the historical measurements of
R , which are based on Eq. (297) and were carried out by
the so-called method of limited density, have been care-
fully reviewed by Colclough (1984b) [see also Quinn,
Colclough, and Chandler (1976)]. In this approach one
measures p and the mass m(p) of different amounts of a
gas (usually O2 or N2) occupying a constant volume V at
the temperature T05273.15 K (the ice point). The quan-
tity L(p)5(p0 /p)m(p)/V , where p05101.325 kPa
(one standard atmosphere), is then extrapolated to p
50 and R is calculated from the relation R
5p0Ar(X)Mu /L(0)T0 . Although it was thought that
the values of R obtained by this method had relative
standard uncertainties of the order of ur5331025,
Quinn et al. (1976) and Colclough (1984b) conclude that
errors from a number of systematic effects had been
overlooked and that ur is significantly larger than 3
31025. Thus these values of R were not considered for
use in the 1986 adjustment (Cohen and Taylor, 1987),
and we exclude them here as well.

The 1986 recommended value of R was based on
measurements of the speed of sound in argon carried
out at NPL in the 1970s using an acoustic interferometer
(Quinn et al., 1976; Colclough, Quinn, and Chandler,
1979). Values of ca

2(p ,T tw), where T tw5273.16 K is the
triple point of water, were obtained in the pressure
range p530 kPa to 1.3 MPa and extrapolated to p50 in
order to determine A0(T tw)5ca

2(0,T tw), and hence R
from the relation

R5
ca

2~0,T tw!Ar~Ar!Mu

g0T tw
, (300)

which follows from Eq. (299). [Recall that in the SI the
triple point of water, T tw5273.16 K, defines the kelvin:
‘‘The kelvin, unit of thermodynamic temperature, is the
fraction 1/273.16 of the thermodynamic temperature of
the triple point of water.’’ (BIPM, 1998)] The uncer-
tainty assigned to the 1986 recommended value is ur
58.431026.

In the latter half of the 1980s, after completion of the
1986 adjustment, researchers at NIST also determined
the molar gas constant from measurements of the speed
of sound in argon at T5T tw (Moldover et al., 1988a;
Moldover et al., 1988b). However, they used a spherical
acoustic resonator in the pressure range p525 kPa to p
50.5 MPa to determine A0(T tw) rather than an acoustic
interferometer. Consequently, they were able to obtain
a value of R with ur51.831026, an uncertainty that is
about one-fifth that of the NPL result. Both values,
which are in agreement and are discussed in the follow-
ing two sections, are included as input data in the 1998
adjustment.

Since R cannot be expressed as a function of any
other of our adjusted constants, we take R itself as an
adjusted constant and the relation
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R8R (301)

as the observational equation for the NIST and NPL
measured values of R .

1. NIST: Speed of sound in argon

In contrast to the variable path length, 5.6 kHz fixed-
frequency cylindrical acoustic interferometer used by
Colclough et al. (1979) at NPL to measure ca

2(p ,T tw)
[see the following section], Moldover et al. (1988a) at
NIST employed a spherical acoustic resonator of fixed
dimensions (180 mm inside diameter) operated near five
different radially symmetric modes at frequencies in the
range 2.4 kHz to 9.5 kHz. The applicable relation is

ca
2~p ,T tw!5F f0n~p ,T tw!

n0n
G2

V2/3, (302)

where p is the pressure of the argon gas in the resonator
at T5T tw , f0n(p ,T tw) is the measured resonance fre-
quency of the nth mode of the resonator, n0n is an
eigenfrequency which is exactly known from the theory
of such resonators, and V is the volume of the resonator.
In practice, corrections must be applied to the measured
frequencies in order to use this equation. The largest
such corrections are due to the absorption effect of the
thermal boundary layer between the argon gas and the
inside surface of the resonator and to the motion of the
resonator wall. (Because of the boundary layer, the
measured value of ca is less than that in the unbounded
fluid.) These corrections were obtained from theory, the
known thermodynamic transport properties of Ar, and
the known mechanical properties of the stainless steel
from which the resonator was fabricated. Further, they
were confirmed by various experimental studies, includ-
ing acoustic measurements of the half-widths of the
resonances.

As emphasized by Moldover et al. (1988a), there are
two important advantages of the NIST spherical resona-
tor over the NPL cylindrical interferometer. First, cor-
rections to the radial-mode frequencies f0n(p ,T tw) from
the boundary layer are a factor of 10 smaller for the 180
mm diameter spherical resonator than for the
longitudinal-mode frequencies of the 30 mm diameter
cylindrical interferometer. Second, because resonances
in the sphere are an order of magnitude narrower than
in the cylinder, significantly smaller electroacoustic
transducers can be used to excite them. As a conse-
quence, the radially symmetric resonances are perturbed
only in a minor, easily corrected manner.

In the NIST experiment, the volume V of the resona-
tor at T5T tw was measured by determining the mass of
the amount of mercury of known density that was re-
quired to fill it when the resonator was at this tempera-
ture. The mercury used was traceable to the mercury
whose density was measured by Cook (1961) [see also
Cook and Stone (1957)] with a relative standard uncer-
tainty ur54.231027. The mercury employed in the
NML Hg electrometer determination of KJ (see Sec.
III.E.1) was also traceable to the same mercury. Con-
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verting the resonator’s volume determined in the weigh-
ing configuration to the resonator’s volume in the acous-
tic resonances configuration required a net fractional
correction of 4.82(17)31026 to account for a variety of
effects, the largest of which was due to replacing the
‘‘drive’’ and ‘‘receive’’ transducers by plugs when the
resonator was filled with mercury.

The volume of the resonator was measured three
times, twice in September 1985 and once in April 1986,
and speed-of-sound measurements were carried out dur-
ing three separate fillings of the resonator with argon,
two in late March 1986 and one in early April 1986. The
total data set used to obtain A0(T)5ca

2(0,T) by ex-
trapolation to p50 consisted of 70 ca

2(p ,T tw) vs. p data
points obtained from measurements of the frequencies
of the five modes f02 to f06 at each of 14 different values
of p in the range 25 kPa to 0.5 MPa. In extrapolating to
p50, Moldover et al. (1988a) used a value of the third
acoustic virial coefficient A3(T) from the literature and
also included an additional term in Eq. (298) of the form
A21p21 to account for imperfect thermal accommoda-
tion. The result of the extrapolation is

A0~T tw!5ca
2~0,T tw!

594 756.178~144! m2 s22 @1.531026# ,

(303)

where the quoted uncertainty consists of 11 relative
standard uncertainty components, the two largest of
which are statistical (Type A): 8.031027 from the cali-
bration of the platinum resistance thermometer used to
measure the temperature of the resonator and 6.8
31027 from the extrapolation to p50. Other significant
components (Type B) are 6.731027 due to the thermal
expansion of the mercury; 5.931027 from the effect on
the determination of the resonator’s volume of a pos-
sible error in the location of the resonator’s transducers;
and 3.731027 due to a vertical temperature gradient
from the bottom to the top of the resonator.

The speed-of-sound measurements were made on a
working argon gas sample designated Ar–M. The value
of Ar(Ar–M)/g0 was determined by comparing the
speed of sound in Ar–M to the speed of sound in an
isotopically enriched, highly purified 40Ar sample, desig-
nated Ar-40, whose relative atomic mass could be calcu-
lated from the relative atomic masses of its constituent
gases and the measured amount-of-substance fractions
of those gases. Using the fractions given by Moldover
et al. (1988a), the 1995 values of Ar(

40Ar), Ar(
38Ar),

and Ar(
36Ar) given in Table II, and the 1995 recom-

mended values of the relative atomic masses of naturally
occurring Ne, Kr, and Xe (Coplen, 1996), the only sig-
nificant impurities in the Ar-40 sample, one finds

Ar~Ar-40!539.962 519~34! @8.431027# , (304)

where the uncertainty is dominated by the uncertainty
of the chromatographically determined amount-of-
substance fraction of Xe in the Ar-40 sample. Moldover
et al. (1988a) argue that since Ar, Ne, Kr, and Xe are
monatomic gases and the electronic contributions to g0
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are negligible at the values of p and T used in the mea-
surements of ca

2(p ,T), it can be assumed that g055/3
for this sample. Thus Eq. (304) leads to

Ar~Ar-40!

g0
523.977 511~20! @8.531027# . (305)

Moldover et al. (1988a) were only able to set an upper
limit of 4.531026 on the amount-of-substance fraction
of N2 in the Ar-40 sample. Based on their analysis, the
fractional decrease in the above value of Ar(Ar-40)/g0
that the N2 might cause due to its different relative
atomic mass and different values of cp and cV is less
than 1.531027, which may be compared to the 8.4
31027 relative standard uncertainty of Ar(Ar-40).
However, since only an upper limit was set for the
amount-of-substance fraction of nitrogen and the actual
amount could have been considerably smaller, we have
not included a correction for this effect, but instead have
included an additional relative standard uncertainty
component of half of this possible fractional error in the
uncertainty of the above value of Ar(Ar-40)/g0 .

The result of the Ar–M to Ar-40 speed-of-sound com-
parisons, done at p'115 kPa and T'273.2 K, is

ca~Ar-40!

ca~Ar–M!
5120.000 184 09~20! @2.031027# .

(306)

Following the well-founded assumption of Moldover
et al. (1988a) that with sufficient accuracy for the present
experiment one can take

ca
2~Ar-40!

ca
2~Ar–M!

5
Ar~Ar–M!/g0

Ar~Ar-40!/g0
(307)

[see Eq. (300)], one finds from Eqs. (305) and (306)

Ar~Ar–M!

g0
523.968 684~22! @9.431027# . (308)

This result, the result for ca
2(0,T tw) given in Eq. (303),

and Eq. (300) yield

R58.314 471~15! J mol21 K21 @1.831026# . (309)

It should be emphasized that Moldover et al. (1988a)
carefully investigated both experimentally and theoreti-
cally many possible sources of error in the experiment in
order to substantiate their assigned uncertainty.

Recently, Moldover et al. (1999) reported the results
of measurements at NIST of thermodynamic tempera-
ture in the range 217 K to 303 K using the same spheri-
cal resonator as was used to determine R . From data
mainly acquired in 1992, they deduced a value for the
triple point of gallium T tg that was 4.3(8) mK larger than
the value obtained by Moldover and Trusler (1988) in
May 1986 with the gas-constant resonator, shortly after
the acquisition of the data on which the NIST value of R
is based. From data acquired when the resonator was
filled with xenon in the course of the new measure-
ments, Moldover et al. (1999) conjecture that the 1986
value of T tg was in error because the argon used in the
measurements became progressively contaminated over
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
time. However, because all of the gas-constant resonator
data used to determine R were obtained over an 8 d
period and were mutually consistent, Moldover et al.
(1999) and Moldover (1990) conclude that there is no
evidence that contamination was a problem when the
gas-constant data were acquired.

Because both the NIST result for R and the NML
result for KJ are based on the same measured value of
the density of mercury, and the uncertainty of that value
is not negligible in either experiment, the two values are
correlated with the non-negligible correlation coefficient
r50.068.

2. NPL: Speed of sound in argon

In 1976, Quinn et al. (1976) reported the final result of
the first NPL determination of R using a variable-path-
length, cylindrical acoustic interferometer. In the NPL
experiment, a transducer of frequency f55.6 kHz was
located at the bottom end of a 30 mm diameter cylindri-
cal vertical cavity immersed in an ice bath and filled with
Ar at a pressure p . The transducer, with an accelerom-
eter attached to its diaphragm to measure its total im-
pedance, excited and monitored the cavity’s resonant
frequencies as the acoustic reflector forming the top of
the cavity was moved and its displacement measured by
means of optical interferometry. Resonances were sepa-
rated by Dl5λ/2, where Dl is the change in length of the
cavity and λ is the wavelength of the standing wave in
the cavity. The speed of sound was calculated from the
known excitation frequency f and the value of λ, which
was determined from the measured separations of five
resonances.

The most significant correction that Quinn et al.
(1976) had to make to their measured values of
ca

2(p ,T tw) was due to the thermal boundary layer. In the
NPL experiment the fractional correction applied to ca
was rather large because of the comparatively small di-
ameter of the cylindrical cavity: about 331023 at p
530 kPa and 131023 at p5200 kPa. The absorption co-
efficient required to evaluate this correction was deter-
mined from measurements, by means of the accelerom-
eter, of the complex impedance of the transducer
(arising from its own mechanical impedance and that
due to the gas loading) when the acoustic reflector was
moved through the five resonances. The total data set
employed for this purpose consisted of the 98 ca

2(p ,T tw)
vs. p data points used to obtain ca

2(0,T tw) by extrapola-
tion to p50, with p in the range 30 kPa to 200 kPa, plus
seven additional data points acquired at pressures of
about 10 kPa and 20 kPa.

Because the 98 data points showed significant curva-
ture, Quinn et al. (1976) fit them with the function
ca

2(p ,T tw)5A0(T)1A1(T)p1A2(T)p2 to obtain
ca

2(0,T tw). This gave a very small value for A1(T) and a
surprisingly large value for A2(T). Subsequently, based
on work on Ar–Ar intermolecular potentials and mea-
surements of A2(T), Rowlinson and Tildesley (1977)
argued that the Quinn et al. (1976) value of A1(T) was
too small and that the ca

2(p ,T tw) vs. p isotherm in the
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pressure range 30 kPa to 200 kPa should be essentially
linear. This led to the discovery that a systematic error
due to the nonlinearity of the transducer had been over-
looked by Quinn et al. (1976) (Colclough, 1979a; Col-
clough, 1979b). When the correction for this error was
applied to the 98 original data points, together with ad-
ditional corrections for some relatively minor effects,
Colclough et al. (1979) found that the resulting isotherm
was nearly linear with a slope close to that predicted by
Rowlinson and Tildesley (1977). Further, they found
that the implied value of R was smaller by the fractional
amount 1.631024 than the value reported by Quinn
et al. (1976).

Colclough et al. (1979) also obtained 48 new data
points in the pressure range 200 kPa to 1.3 MPa in order
to further clarify the earlier measurements. The new
data were acquired by essentially the same method, but
with an apparatus modified to withstand higher pres-
sures. A new transducer was installed as well, and in the
new work all of the critical electronic and mechanical
components were carefully adjusted before the measure-
ments began so that subsequent corrections for small
misadjustments would not be required as in the work of
Quinn et al. (1976). Colclough et al. (1979) readily ob-
served a reduced low-pressure nonlinear behavior in the
new transducer; however, the effect was negligible at p
.20 kPa and hence was not a problem in the new mea-
surements.

Inasmuch as the corrected data of Quinn et al. (1976)
and the new high-pressure data of Colclough et al.
(1979) were highly consistent, the latter workers com-
bined all of the data (146 data points) and fit them with
a function containing A2(T). The final result is (Col-
clough et al., 1979; Colclough, 1984a)

ca
2~0,T tw!594 756.75~78! m2 s22 @8.231026# , (310)

where the principal relative standard uncertainty com-
ponents are a 6.131026 Type A component from the fit
to the data, and the following Type B components: 4
31026 from the calibration of the instrumentation used
to measure the absorption coefficient, 2.731026 each for
the transducer nonlinearity correction and the correc-
tion for molecular slip, and 1.731026 from the measure-
ment of temperature.

To calculate the relative atomic mass of the argon
sample used in the NPL experiment, we follow the gen-
eral approach employed in the 1986 adjustment (Cohen
and Taylor, 1987). We use the amount of substance ratio
n(36Ar)atm /n(40Ar)atm50.003 378(17) for atmospheric
argon as determined by Nier (1950), and the ratios
n(38Ar)NPL /n(36Ar)NPL50.189(1)
and @n(36Ar)NPL /n(40Ar)NPL#/@n(36Ar)atm /n(40Ar)atm#
50.994 44(21) as determined at IRMM, Geel, Belgium
and given by Quinn et al. (1976). Here the subscript
‘‘atm’’ indicates ‘‘Ar naturally occurring in the atmo-
sphere’’ and the subscript ‘‘NPL’’ indicates the argon
used in the NPL speed-of-sound measurements. We as-
sume that the atmospheric argon prepared at IRMM by
purifying air has the same isotopic composition as the
atmospheric argon prepared in a similar manner by Nier
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
(1950). The assigned uncertainties are our own esti-
mates. For the ratios obtained by Nier (1950), we take
into account his assigned probable error (50 % confi-
dence level) and the range of values expected for the
ratios in naturally occurring argon as deduced by the
IUPAC Commission on Atomic Weights and Isotopic
Abundances (Rosman and Taylor, 1998). For the ratios
determined by IRMM, we assume that the uncertainties
quoted by Quinn et al. (1976) are standard uncertainties.
Using these data and the 1995 values of Ar(

40Ar),
Ar(

38Ar), and Ar(
36Ar) given in Table II, we obtain for

the relative atomic mass of the NPL argon

Ar~Ar!NPL539.947 752~75! @1.931026# . (311)

Quinn et al. (1976) found that their argon sample typi-
cally contained N2 and water vapor with amount-of-
substance fractions x of 1431026 and 231026, respec-
tively, and that in 1 day’s data taking the amount of
substance fraction of N2 never increased to more than
2031026. Taking into account the differences between
the relative atomic masses and values of cp and cV of N2
and Ar, we find, based on the treatment of Moldover
et al. (1988a), that x(N2)51431026 leads to a fractional
decrease in R of 0.4531026. Similarly, we find that
x(H2O)5231026 decreases R by the fractional amount
0.2331026. Although these corrections are marginal at
best, we apply them for completeness, assuming that in
each case the uncertainty is equal to one-half of the cor-
rection. Combining the value of Ar(Ar)NPL in Eq. (311)
with the value of ca

2(0,T tw) given in Eq. (310), we thus
obtain from Eq. (300)

R58.314 504~70! J mol21 K21 @8.431026# .
(312)

Although both the NIST and NPL values of R are
based on the same values of Ar(

40Ar), Ar(
38Ar), and

Ar(
36Ar), the uncertainties of these relative atomic

masses are sufficiently small that the covariance of the
two values of R is negligible.

O. Boltzmann constant k

As is well known (Feynman, Leighton, and Sands,
1963), the Boltzmann constant k'1.38310223 J K21, the
basic constant of statistical mechanics and thermody-
namics, is the constant of proportionality between ther-
modynamic temperature T and the mean kinetic energy
of an atom or molecule of an ideal gas in thermal equi-
librium at the temperature T :

1
2 m^v2&5 3

2 kT . (313)

Here m is the mass of the atom or molecule and ^v2& is
its mean-square velocity. The Boltzmann constant is re-
lated to the molar gas constant R and Avogadro con-
stant NA by

k5
R

NA
. (314)
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Since me52R`h/ca2 and NA5Ar(e)Mu /me , where
Mu51023 kg mol21, one may write

NA5
cAr~e!Mua

2

2R`h
, (315)

which leads to

k5
2R`h

cAr~e!Mua
2

R . (316)

The most accurate directly measured value of R has a
relative standard uncertainty ur51.831026 (see Sec.
III.N.1), while for the group of constants multiplying R
in Eq. (316) we have ur,131027. This implies that a
value of k with ur51.831026 can be inferred from that
equation, and hence to be at all useful in the 1998 ad-
justment a directly measured value of k should have ur
,131025.

Unfortunately, no such value is currently available,
although an experiment that could conceivably reach
this level of uncertainty was undertaken in the 1980s by
Storm (1986). It was based on measuring the mean-
square-voltage ^U2&, or Johnson noise voltage, in a
bandwidth Df across the terminals of a resistor of resis-
tance Rs in thermal equilibrium at the temperature T .
According to the Nyquist theorem, these quantities are
related by ^U2&54kTRsDf , an expression with a frac-
tional error of less than 131026 for frequencies less
than 1 MHz and T,25 K. [For a status report on
Johnson noise thermometry, see White et al. (1996).]
Since in such experiments the voltage and resistance can
best be measured in terms of the conventional electric
units V90 and Ω90 (see Sec. II.E), in analogy with the
measurement of gyromagnetic ratios and of the Faraday
constant (see Secs. III.D and III.H), one has

k5K90

KJ290
2 RK290

4
h , (317)

where K90 is the numerical value of ^U2&/4TRsDf ob-
tained in the experiment multiplied by the unit W s K21.
Since KJ290 and RK290 are defined quantities with no
uncertainty, Eq. (317) shows that the experiment actu-
ally determines k/h in SI units, not k .

If a measured value of the quantity K90 with a suffi-
ciently small uncertainty becomes available, it can be
included in a least-squares adjustment based on the 1998
set of adjusted constants by means of the observational
equation

K908
8R`R

cKJ290
2 RK290 Ar~e!Mua

2
, (318)

which follows from Eqs. (316) and (317).
Another approach to the possible determination of k ,

emphasized recently by Pendrill (1996), is based on the
virial expansion of the Clausius–Mossotti equation for a
real gas of atoms of amount of substance n occupying a
volume V :

e2e0

e12e0
5

n

V
AeS 11

n

V
Be1

n2

V2
Ce1••• D . (319)
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Here e is the permittivity of the gas, e0 is the exactly
known electric constant (see Sec. II.B), Ae is the molar
polarizability of the atoms, and Be , Ce , etc., are the
dielectric virial coefficients. The molar polarizability Ae
is related to the molar gas constant R , the Boltzmann
constant k , and the static electric dipole polarizability of
the atoms a0 by

Ae5
Ra0

3e0k
. (320)

Hence a measurement of Ae /R together with a theoret-
ical value for a0 yields a value of k .

By expressing the quotient n/V in Eq. (319) in terms
of pressure p, temperature T, and R by means of Eq.
(297), one can in fact determine the quantity Ae /R ex-
perimentally using dielectric constant gas thermometry
(Luther, Grohmann, and Fellmuth, 1996). In this tech-
nique, the fractional change in capacitance DC(p)
5C(p)/C(0)21 of a suitable gas-filled capacitor at a
constant temperature T is determined as a function of
the pressure p of the gas: The capacitance C of the ca-
pacitor is measured with the space between its elec-
trodes filled with the gas at various pressures p and with
the space evacuated so that p50. A polynomial fit to the
resulting p vs. DC(p) data points, together with knowl-
edge of the dependence of the dimensions of the capaci-
tor on p , yields Ae /R . The value with the smallest un-
certainty determined to date is that obtained by Luther
et al. (1996) for 4He over the temperature range 4.2 K to
27 K (Fellmuth, 1999):

Ae

R
56.221 12~19!31028 K Pa21 @3.031025# .

(321)

Equation (321) is the final result of work that had
yielded the preliminary value reported by Grohmann
and Luther (1992), but in contrast to their value the as-
signed uncertainty in Eq. (321) includes all known com-
ponents. [Note that Eq. (321) is not actually given by
Luther et al. (1996), but can be inferred from the agree-
ment of the dielectric constant gas thermometry tem-
perature scale and the NPL-75 constant volume gas
thermometry scale (Fellmuth, 1999).]

Ab initio calculations of the static electric dipole po-
larizability of the 11S ground state of the 4He atom in
the 4He reduced atomic unit of electric polarizability,
a0* (4He)5a0(4He)/4pe0a0

3(11me /ma)3, have been
carried out over the years by a number of workers (a0 is
the Bohr radius and me /ma is the electron to a particle
mass ratio). In terms of this calculated value and the
experimentally determined value of Ae /R for 4He, Eq.
(320) yields

k5
4pa0

3~11me /ma!3

3

a0* ~4He!

~Ae /R ! 4He
. (322)

A value of a0* (4He) can be obtained by combining
the nonrelativistic result a0* (4He)NR51.383 241 . . . of
Bhatia and Drachman (1994) with the relativistic correc-
tion Da0* (4He)R527.6531025 of Johnson and Cheng
(1996):
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a0* ~4He!51.383 165. (323)

Using this value with the experimental value of Ae /R
given in Eq. (321), we obtain from Eq. (322) and the
1998 recommended values of a0 and me /ma , whose un-
certainties are negligible in this context,

k51.380 625310223 J K21. (324)

We have deliberately avoided assigning an uncer-
tainty to the above value of a0* (4He), and hence to this
deduced value of k , because of the large variations in
the values of a0* (4He) obtained by different authors and
the omission of potentially important terms. Pendrill
(1996) assigns ur5131025 to the above value of
a0* (4He), but Luther et al. (1996), after a careful review
of the literature, assign ur51.931025. Our own review
supports a larger value as well. We therefore conclude
that, although improvements in both experiment and
theory may make it useful for a future adjustment, this
route to k is not useful for the 1998 adjustment. As a
consequence, the 1998 recommended value of k is cal-
culated from Eq. (316) using the recommended values of
the adjusted constants R` , h , R , Ar(e), and a.

P. Stefan-Boltzmann constant s

The radiant exitance M of an ideal thermal radiator
or blackbody (also called a Planckian radiator) at the
thermodynamic temperature T is given by

M5sT4, (325)

where s'5.6731028 W m22 K24 is the Stefan-
Boltzmann constant (Quinn and Martin, 1985). It is re-
lated to c , h , and the Boltzmann constant k by

s5
2p5k4

15h3c2
, (326)

which becomes, with the aid of Eq. (316) of the previous
section,

s5
32p5h

15c6 S R`R

Ar~e!Mua
2D 4

. (327)

In analogy with our discussion of k , the value of s that
can be inferred from Eq. (327) using the most accurate
directly measured value of the molar gas constant R has
a relative standard uncertainty ur57.131026 (essen-
tially four times that of R). Thus to be at all useful in the
1998 adjustment, a directly measured value of s should
have ur,431025.

Unfortunately, the most accurate direct value of s has
an uncertainty of ur51.331024. It was obtained by
Quinn and Martin (1985) at NPL using a cryogenic ab-
solute radiometer in which the radiant power emitted by
a blackbody is compared to electric power. [The prin-
ciple of operation of such radiometers is sometimes
called ‘‘electrical substitution radiometry’’ (Martin, Fox,
and Key, 1985).] The result of Quinn and Martin (1985),
as revised for comparison purposes in the 1986 adjust-
ment (Cohen and Taylor, 1987), is s55.669 59(76)
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31028 W m22 K24 @1.331024# , which may be com-
pared to the 1998 recommended value s
55.670 400(40)31028 W m22 K24 @7.031026# . (Any
change in the revised value resulting from our improved
knowledge of the value of the NPL representation of the
watt at the time of the experiment in terms of the watt is
not expected to be significant.) A new experiment using
a much improved radiometer is now underway at NPL
with the goal of obtaining a direct value of s with ur
5131025 (Martin and Haycocks, 1998). Clearly, such a
result would be quite competitive.

In the new NPL experiment the electric power is mea-
sured in terms of the conventional electric unit W90 , not
the watt W (see Sec. II.E). This means that, in analogy
with the discussion of the previous section regarding the
Johnson noise determination of k , one has

s5S90

KJ290
2 RK290

4
h , (328)

where S90 is the numerical value of M/T4 obtained in
the experiment multiplied by the unit W m22 K24. Also
in analogy with the Johnson noise determination of k ,
since KJ290 and RK290 are defined quantities with no
uncertainty, Eq. (328) shows that the experiment actu-
ally determines s/h in SI units, not s. When the antici-
pated measured value of the quantity S90 becomes avail-
able, it can be included in a least-squares adjustment
based on the 1998 set of adjusted constants by means of
the observational equation

S908
128p5

15c6KJ290
2 RK290

S R`R

Ar~e!Mua
2D 4

, (329)

which follows from Eqs. (327) and (328).
Because there are no direct data related to the Stefan-

Boltzmann constant for use in the 1998 adjustment, the
recommended value of s is calculated from Eq. (327) in
the same way the recommended value of k is calculated
from Eq. (316).

Q. Newtonian constant of gravitation G

There is no recognized quantitative theoretical rela-
tionship between the Newtonian constant of gravitation
G and other fundamental physical constants. Moreover,
because the experimental values of G currently avail-
able are independent of the other data relevant to the
1998 adjustment, they contribute only to the determina-
tion of the 1998 recommended value of G itself and can
be considered independently of the other data.

The 1986 CODATA recommended value of G is (Co-
hen and Taylor, 1987)

G56.672 59~85!310211 m3 kg21 s22 @1.331024# .
(330)

This value, but with one-half the uncertainty, was ob-
tained at NIST in a NIST-University of Virginia (NIST-
UVA) collaboration by Luther and Towler (1982) [see
also Luther and Towler (1984)]. The experiment em-
ployed a rather classic torsion balance operated in the
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dynamic mode and the time-of-swing method. In this
approach the angular oscillation frequency of the bal-
ance is determined by measuring the angular position of
the balance as a function of time. The NIST-UVA bal-
ance consisted of a quartz torsion fiber about 12 mm in
diameter and 40 cm long with a 7 g, dumbbell-like small-
mass system, or test mass, suspended from its center at
the end of the fiber with its axis horizontal. The test
mass consisted of two tungsten disks about 2.5 mm thick
and 7.2 mm in diameter, the centers of which were con-
nected by a tungsten rod about 1 mm in diameter and 29
mm long. A small mirror attached to the fiber was used
with an autocollimator to determine the balance’s angu-
lar position. The large-mass system, or source mass,
which provided the gravitational torque on the balance,
consisted of two tungsten spheres, each about 10.2 cm in
diameter and with a mass of about 10.5 kg. With the
source masses in their ‘‘far’’ position (in this case, re-
moved), the period of oscillation of the balance was
about 6 min, and the change in period with the source
masses in their ‘‘near’’ position was a few percent. In
this position, the source masses were located at opposite
ends of the dumbbell in its rest position with their cen-
ters in line with the axis of the dumbbell and separated
by about 14 cm. The value of G was obtained from the
change in angular frequency of the torsion balance and
the calculation of the gravitational potential energy of
the small-mass system in the gravitational field of the
large-mass system, based on measurements of the di-
mensions, angles, masses, and densities of the compo-
nents of the apparatus, as appropriate. (Calculations of
this type are required in all experiments to determine
G .) Although Luther and Towler (1982) had originally
assigned a relative standard uncertainty ur56.431025 to
their result, this was doubled by the CODATA Task
Group on Fundamental Constants to reflect the fact that
measurements of G have historically been rather diffi-
cult to carry out and, since the experiment was expected
to continue, the result of Luther and Towler (1982) was
not final.

Four other values of G were initially considered for
use in the 1986 adjustment but were subsequently re-
jected for one or more of the following reasons: the un-
certainty was not competitive, the data were internally
inconsistent, or there was insufficient information to
make a reliable uncertainty assessment. These four val-
ues were the 1973 CODATA recommended value (Co-
hen and Taylor, 1973)

G56.6720~41!310211 m3 kg21 s22 @6.131024# ,
(331)

which is the weighted mean of the result obtained in the
1920s by Heyl (1930) and the result obtained in 1940 by
Heyl and Chrzanowski (1942); the result of Pontikis
(1972)

G56.6714~6 !310211 m3 kg21 s22 @9.031025# ;
(332)

the value reported by Sagitov et al. (1979)
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
G56.6745~8 !310211 m3 kg21 s22 @1.231024# ;
(333)

and the result of Karagyoz, Silin, and Iszmaylov (1981)

G56.6364~15!310211 m3 kg21 s22 @2.331024# .
(334)

Each of these values was obtained using a fiber-based
torsion balance operated in the dynamic mode. Heyl
(1930) and Heyl and Chrzanowski (1942) used the time-
of-swing method to determine the angular oscillation
frequency of the balance, as did Sagitov et al. (1979) and
Karagyoz et al. (1981), while Pontikis (1972) used a reso-
nance method.

Since the completion of the 1986 adjustment, a num-
ber of values of G with uncertainties sufficiently small to
be of interest have been reported. Those available prior
to 1997 are reviewed by Gillies (1997). More recent re-
sults were reviewed at the November 1998 conference in
London organized by the Institute of Physics to mark
the bicentenary of the publication of Cavendish’s classic
determination of G . The conference was entitled ‘‘The
Gravitational Constant: Theory and Experiment 200
Years after Cavendish,’’ and the papers presented at it
appear in the June 1999 issue of Measurement Science
and Technology.

Prominent among the post-1986 values is the result
obtained at PTB by Michaelis, Haars, and Augustin
(1996),

G56.715 40~56!310211 m3 kg21 s22 @8.331025# ,
(335)

using a horizontal balance beam supported by a body
floating in liquid mercury. A gravitational torque ap-
plied to the beam was balanced, and thereby measured,
against a compensating torque produced electrostati-
cally by a quadrant electrometer. By employing a mer-
cury bearing rather than a torsion fiber, Michaelis et al.
(1996) were able to use a 240 g test-mass system, signifi-
cantly increasing the gravitational force in the experi-
ment. The system consisted of two glass-ceramic 120 g
cylindrical test masses suspended from opposite ends of
the beam with their axes horizontal and perpendicular
to the axis of the beam. The source-mass system that
provided the torsional couple on the test masses con-
sisted of four cylindrical masses, one at each end of each
test mass with its axis in line with the axis of the test
mass. The pair of source masses on opposite sides and
ends of the balance beam were alternately brought to
their near and far positions, thereby applying an alter-
nating torsional couple to the balance of equal magni-
tude and opposite sign.

A voltage applied to the quadrant electrometer pro-
duced the compensating torque required to prevent an
angular displacement of the balance. The value of G was
calculated from this voltage and the dependence of the
capacitance of the electrometer on angular displacement
of the balance beam dC/du , which was measured with a
capacitance bridge in a separate experiment.

The PTB value for G exceeds the 1986 CODATA
recommended value by 42 udiff , where udiff is the stan-
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TABLE XIII. Summary of the principal experimental values of the Newtonian constant of gravitation G with relative standard
uncertainties ur,231023 reported since the completion of the 1986 CODATA adjustment of the values of the constants, together
with the 1986 and 1998 CODATA recommended values. (See the text for brief discussions of the experiments.)

Item
No. Source Identification Method

1011 G

m3 kg21 s22
Rel. stand.
uncert. ur

1. 1986 CODATA, from
Luther and Towler (1982)

CODATA-86 Fiber torsion balance,
dynamic mode

6.672 59(85) 1.331024

2. Michaelis et al. (1996) PTB-95 Floating balance beam,
compensation mode

6.715 40(56) 8.331025

3. Bagley and Luther (1997) LANL-97 Fiber torsion balance,
dynamic mode

6.6740(7) 1.031024

4. Karagioz et al. (1998) TR&D-98 Fiber torsion balance,
dynamic mode

6.6729(5) 7.831025

5. Schwarz et al. (1999, 1998) JILA-98 Freely-falling body,
acceleration change

6.6873(94) 1.431023

6. Luo et al. (1999) HUST-99 Fiber torsion balance,
dynamic mode

6.6699(7) 1.031024

7. Fitzgerald and Armstrong (1999) MSL-99 Fiber torsion balance,
compensation mode

6.6742(7) 1.031024

8. Richman et al. (1999) BIPM-99 Strip torsion balance,
static deflection

6.683(11) 1.731023

9. Nolting et al. (1999) UZur-99 Stationary body,
weight change

6.6754(15) 2.231024

10. Kleinevoss et al. (1999) UWup-99 Suspended body,
displacement

6.6735(29) 4.331024

11. 1998 CODATA CODATA-98 1986 CODATA value,
increased uncertainty

6.673(10) 1.531023
dard uncertainty of their difference, and hence the two
values are in severe disagreement. Michaelis et al. (1996)
looked intensively for a possible error in their work
which could explain the discrepancy, but to no avail.

Since the 1986 adjustment, an additional factor affect-
ing torsion-balance experiments has come to light. The
determination of G using a fiber-based torsion balance
operated in the dynamic mode and the time-of-swing
method requires the measurement of a small change in
the long oscillation period of the balance. For this appli-
cation the torsional spring constant of the fiber should
ideally be independent of frequency at extremely low
frequencies, for example, at 3 mHz. From theoretical
considerations based on accepted theories of the anelas-
ticity of solids, Kuroda (1995) proposed that the anelas-
ticity of such fibers is large enough to cause a value of G
determined in this way to be biased by the multiplicative
factor (111/pQ), where Q is the quality factor of the
main torsional mode of the fiber and it is assumed that
the damping of the torsional balance is solely due to
losses in the fiber. For Q5103, the fractional error is
about 331024. The existence of such a frequency-
dependent torsional spring constant has in fact been
demonstrated experimentally by Bagley and Luther
(1997) as part of their experiment to determine G (dis-
cussed briefly below) and by Matsumura et al. (1998)
[see also Kuroda (1999)].

Table XIII summarizes the most important of the val-
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
ues of G with ur,231023 that have been reported since
1986, and Fig. 1 compares them graphically. The stated
value of G , including its uncertainty, is that quoted by
the laboratory and is the most recent value available
(one or more earlier results have been published by a
number of the laboratories).

For purposes of comparison, Table XIII and Fig. 1
also include the 1986 and 1998 recommended values of
G . The 1998 value,

G56.673~10!310211 m3 kg21 s22 @1.531023# ,
(336)

is the same as the 1986 value but its uncertainty is about
a factor of 12 larger. The 1998 recommended value is the
result of a careful review of the status of measurements
of G by the CODATA Task Group on Fundamental
Constants and is based on the following considerations:

(i) Although the PTB experiment was carefully car-
ried out, the resulting value of G is in severe dis-
agreement with most other values, and a plausible
explanation has not yet been found.

(ii) The effect of torsion fiber anelasticity, which can
be quite large, is still under investigation.

(iii) Most of the experiments that have yielded the
post-1986 values of G in Table XIII are still un-
derway, and in each such case a result with a
smaller uncertainty is anticipated. In fact, the Los
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Alamos National Laboratory (LANL-97), Mea-
surement Standards Laboratory (MSL-99), BIPM
(BIPM-99), University of Zurich (UZur-99), and
University of Wuppertal (UWup-99) results are
preliminary. Also, as discussed at the Cavendish
conference, there are at least two other experi-
ments well underway that could yield values of G
with ur'131025 in the next several years (Gun-
dlach, 1999; Newman and Bantel, 1999).

(iv) The 1986 CODATA recommended value of G
has become a convenient reference against which
all other values are compared, and there are in-
sufficient data on which to base a new value that
is significantly different.

(v) The uncertainty assigned to the 1998 recom-
mended value G98 must reflect the existence of
the PTB result GPTB , the anelasticity problem,
and the historic difficulty of determining G .

(vi) The convenient standard uncertainty u(G98)
50.010310211 m3 kg21 s22 meets these require-
ments. Chosen so that GPTB2G98'4 udiff , it has
the effect of reducing the discrepancy between the
PTB value and the recommended value by a fac-
tor of 10 and producing a recommended value
that encompasses all other values, except that
from PTB, to within about 1.5 times the recom-
mended value’s standard uncertainty.

Because we do not obtain the 1998 recommended
value of G from an in-depth numerical analysis of the
available data, we do not give a detailed review of the
values of G and their uncertainties, which are summa-
rized in Table XIII. Rather, we simply make a few co-
gent remarks about a value and/or provide a brief over-
view of the experiment as we have done above for the
NIST-UVA and PTB efforts. In each case the cited pa-
per should be consulted for references to earlier work.

FIG. 1. Graphical comparison of the values of the Newtonian
constant of gravitation G summarized in Table XIII. An open
circle indicates that the value is preliminary. (For the meanings
of the identifying abbreviations in the figure, see the Glossary
at the beginning of the text.)
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(1) CODATA-86. A rough estimate of the Q of the
quartz fiber employed in the NIST-UVA experiment of
Luther and Towler (1982) is 2000 (Kuroda, 1999), which
implies that the resulting value of G could be fraction-
ally too large due to torsion fiber anelasticity by as much
as 1.631024 or about 1.2 ur .

(2) PTB-95. Michaelis et al. (1996) obtained two dif-
ferent values of G in their experiment, one with tung-
sten source masses of mass 900 g and one with source
masses of identical size but made of the same glass-
ceramic material as the test masses. The tungsten result
is given in the table; the glass-ceramic result is G
56.7174(20)310211 m3 kg21 s22 @3.031024# . The two
agree, but the uncertainty of the latter value is 3.6 times
larger because of a much reduced signal due to the sig-
nificantly smaller density (a factor of 1

7.5) of the glass-
ceramic source masses.

(3) LANL-97. The experiment of Bagley and Luther
(1997) at the Los Alamos National Laboratory (LANL)
is in many ways similar to the NIST-UVA experiment of
Luther and Towler (1982); it used the same dumbbell
test mass and tungsten source masses. However, in the
measurement of Bagley and Luther (1997), the far posi-
tion of the source masses was a 90° rotation from their
near position rather than removal. To test the anelastic-
ity hypothesis of Kuroda (1995), Bagley and Luther
(1997) used two different tungsten fibers, one with a Q
of 950, the other with a Q of about 490. They found that
the Q5490 result for G exceeded the Q5950 result by
the fractional amount 34531026 compared to 315
31026 predicted by the theory of Kuroda (1995). This
level of agreement was interpreted by Bagley and
Luther (1997) as confirming the theory. They therefore
applied the appropriate fractional correction to each re-
sult (65031026 and 33531026, respectively) and com-
bined the two to obtain the value given in Table XIII.
This work is being continued, and the reported results
are considered preliminary.

(4) TR&D-98. The long-term researchers involved in
the torsion-balance determination of G published by
Karagioz, Izmaylov and Gillies (1998) are now at the
Tribotech Research and Development Company
(TR&D), Moscow, Russian Federation. The reported
result, obtained using a torsion balance operated in the
dynamic mode and the time-of-swing method, is the
weighted mean of 12 values obtained from 12 series of
measurements carried out from 1985 to 1989 as part of
an effort to determine G that was initiated in Moscow
over 25 years ago. The experiment was continuously im-
proved over this period, with the measurements in 1985
and 1986 being done with version 1 of the apparatus, in
1987 with version 2, and in 1988 and 1989 with version 3.
In version 3, a 25 mm diameter, 23 cm long fiber sup-
ported a 5.3 g test mass at its center. The test mass con-
sisted of a cylindrical beam 23 cm long and 1.8 mm in
diameter with its axis horizontal and with a 1.6 g spheri-
cal mass of diameter 7.2 mm at each end. The source-
mass system consisted of two spherical masses at oppo-
site ends of the suspended test mass with their centers
aligned with the axis of the suspended beam. These
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masses could be moved individually or together along
this axis. The different source masses used throughout
the 5 years of measurements were one of brass (12.2 cm
in diameter, mass of 8.0 kg), one of bronze (10.2 cm in
diameter, mass of 4.9 kg), and several made of bearing
steel (10.1 cm in diameter, mass of 4.3 kg).

In the early series of measurements only a single
source mass was used and it was placed sequentially in
four positions at distances 19.2 cm, 21.2 cm, 25.2 cm, and
47.2 cm from the torsion fiber. In the later series of mea-
surements two source masses were used and placed sym-
metrically about the rotation axis at the same four dis-
tances as above. During the course of the
measurements, a temporal shift of up to 0.001G and of
unknown cause was observed in the values obtained.
Karagioz et al. (1998) expect to publish an article on this
aspect of their observations.

(5) JILA-98. The ‘‘free fall’’ experiment of Schwarz
et al. (1999); and Schwarz et al. (1998) carried out at
JILA (NIST-University of Colorado joint institute) in
Boulder, Colorado is perhaps conceptually the simplest
of all measurements of G . In this approach, one mea-
sures the change in the acceleration of free fall g of a
freely falling test mass whose trajectory is perturbed by
a source mass placed alternately above and below the
region in which the test mass falls. Conducting the ex-
periment in this differential mode eliminates errors
present in conventional absolute gravimetry that would
be five times larger than acceptible to reach the goal of
determining G with ur5231023.

The basis of the JILA experiment was a commercial
absolute gravimeter in which the position as a function
of time of a falling corner-cube reflector that defines one
arm of a Michelson-type interferometer is measured by
laser interferometry. The acceleration of the reflector
(the test mass) as a function of vertical position is deter-
mined from a fourth-order polynomial fit to the 700 po-
sition versus time points obtained over the 20 cm drop.
The polynomial employed is that appropriate for an ob-
ject falling in a linear gravitational field. The fractional
change in acceleration was about 831028 when the to-
roidal (doughnut shaped) 500 kg primarily tungsten
source mass surrounding the gravimeter was moved the
35 cm from its upper to its lower position. The value of
G was extracted from the measured values of the
change in acceleration by calculating the perturbing
gravitational field of the source mass as a function of the
position of the test mass and G , integrating the equation
of motion to produce a series of theoretical position vs.
time points and fitting them to the same fourth-order
polynomial as was used to determine the acceleration of
the test mass.

Two series of measurements were carried out, one in
May 1997 and one in May 1998. A number of modifica-
tions were made to the apparatus between the series in
order to reduce the scatter of the data, but quite surpris-
ingly the scatter of the 1998 data was worse than that of
the 1997 data. The weighted mean of the two values of
G obtained in the two series, which agree well, has a
relative standard uncertainty ur54.131024. Schwarz
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
et al. (1999) combined this uncertainty with a compo-
nent of 1.3531023 to account for the low-frequency
scatter, thereby obtaining ur51.431023. The value
given in Table XIII is the weighted mean together with
this uncertainty.

(6) HUST-99. The determination of G by Luo et al.
(1999) at the Huazhong University of Science and Tech-
nology (HUST), Wuhan, People’s Republic of China
used a torsion balance operated in the dynamic mode
and the time-of-swing method. The balance consisted of
a horizontal aluminum beam with a mass and length of
about 55 g and 400 mm, respectively, suspended from its
center by a 25 mm diameter tungsten torsion fiber about
0.5 m in length and with a Q of approximately 3.6
3104. A copper test mass of mass approximately 32 g
was suspended from each end of the balance beam by 50
mm diam tungsten fibers, about 435 mm and 20 mm in
length, respectively, so that the vertical separation of the
two test masses was about 415 mm. Because of the high
Q of the fiber, Luo et al. (1999) believe that fiber anelas-
ticity is not a problem in their experiment.

The source-mass system consisted of two 6.25 kg
stainless steel cylinders, 100 mm in length and diameter,
placed with their axes horizontal and perpendicular to
the axes of the balance beam and on either side of the
lower test mass in such a way that the axes of the test
mass and the two source masses were in line. In their
near position, the faces of the source masses opposite
one another and between which the test mass hung were
separated by 60 mm; in the far position the source
masses were removed. With the source masses in place,
the period of the torsion balance was about 74 min; with
the source masses removed, the period was about 58
min, corresponding to a fractional change of about 27 %.
The angular position of the beam was determined as a
function of time by means of a small mirror attached to
the beam and an optical lever employing a He–Ne laser.

Luo et al. (1999) recognized the serious and well-
known nonlinear effects characteristic of their torsion
balance configuration: a very long torsion balance beam
and test masses at significantly different heights exacer-
bate the nonlinear effects in the angular motion of the
torsion balance due to inhomogeneities in the back-
ground gravitational field. Thus the angular oscillation
frequencies with the source masses in their near and far
positions were extracted from the angle-time data by a
nonlinear least-squares fitting procedure. Luo et al.
(1999) are planning to design a new torsion balance in
order to reduce the nonlinear effects in their apparatus
and obtain a value of G with a reduced uncertainty.

(7) MSL-99. The measurements of G using a torsion
balance operating in the compensation mode at the
Measurement Standards Laboratory (MSL), Industrial
Research, Lower Hutt, New Zealand was initiated in the
early 1990s by Fitzgerald and Armstrong (1999). In the
MSL approach, the gravitational torque produced on
the test mass by the source masses is compensated by an
electrostatically induced torque. Because the torsion fi-
ber does not twist (the suspended test mass remains sta-
tionary), fiber anelasticity is not a problem.
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In the current version of the MSL apparatus, the fiber
is made of tungsten, is 1 m in length, and has a rectan-
gular cross section of 0.340 mm by 17 mm. The test mass
suspended from the fiber, which also serves as the vane
of the electrometer that provides the electrostatic torque
to compensate the gravitational torque, is a horizontal
532 g copper cylinder 19 mm in diameter and 220 mm
long. The two source masses are 28 kg stainless steel
cylinders 438 mm long and 101 mm in diameter with
their axes vertical; they rest on a turntable centered on
the axis of the fiber and are positioned on opposite sides
of the fiber. The turntable is rotated around the test
mass and in each revolution is stopped in the four posi-
tions that produce maximum torque on the test mass.
The value of G is calculated from the voltage that must
be applied to the electrometer to balance the gravita-
tional torque on the test mass when the turntable is
stopped and from dC/du , the change in capacitance of
the electrometer with angular displacement of the test
mass. This quantity is determined in a separate experi-
ment by measuring the angular acceleration of the test
mass when a voltage UA is applied to the electrometer.
The angular acceleration is measured by giving the en-
tire torsion balance the same acceleration as the sus-
pended test mass, thereby keeping the fiber from twist-
ing.

The value of G given in Table XIII is from measure-
ments done in 1998 with the version of the balance just
described. This balance, as well as the experiment as a
whole, contains a number of improvements compared to
the balance and techniques used in a series of measure-
ments carried out in 1995. In fact, the new work uncov-
ered a fractional error in the earlier result of about 1.3
31023 caused by the omission of a second-order term in
the calculation of the torque between the source masses
and the suspended test mass. Fitzgerald and Armstrong
(1999) give as the corrected result of the earlier experi-
ment G56.6746(10)310211 m3 kg21 s22, which agrees
with the new result.

(8) BIPM-99. The torsion balance experiment of
Richman et al. (1999) at the BIPM was begun in the
mid-1990s and is in its early stages. The key ingredient
of the balance is a thin, heavily loaded, copper–
beryllium alloy torsion strip 160 mm long, 2.5 mm wide,
and 30 mm thick that serves as its suspension element.
Because 90 % of the stiffness of the strip is due to its
load and only 10 % to its elasticity, anelasticity effects
are greatly reduced. Four symmetrically arranged (i.e.,
90° apart) test masses rest on a circular plate suspended
from its center by the torsion strip and together with the
plate form the oscillating ‘‘pendulum’’ of the balance;
they are 1.2 kg cylinders of about 56 mm diameter and
height with their axes vertical and made of a copper–
tellurium alloy. The four source masses are 15.5 kg cyl-
inders of about 130 mm diameter and height made from
the same alloy; they rest on a carousel, again with their
axes vertical. The axis of the carousel also coincides with
that of the torsion strip and the source masses resting on
it are arranged so that they are farther from the torsion
strip than are the test masses. When aligned with the
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four test masses, the radial distance between the sur-
faces of each source mass and its corresponding test
mass is 7 mm. Torque on the torsion strip is generated
when the carousel is rotated from the aligned position
(6231028 N m maximum for 619° angular displace-
ment).

The value of G in Table XIII is the first result of the
experiment and was obtained by measuring the differ-
ence in the angular displacement of the balance with the
source masses in the two maximum torque positions and
determining the stiffness of the torsional strip from the
measured oscillation frequency of the balance. Future
work with the balance under servo control with the
gravitational torque balanced by an electrostatic torque
is underway, and a value of G with ur<131024 is an-
ticipated by operating the balance in this compensation
mode.

(9) UZur-99. The University of Zurich determination
of G by Nolting et al. (1999) was initiated in the early
1990s and is being carried out at the Paul Scherrer Insti-
tute, Villigen, Switzerland; it grew out of the Geigerwald
storage-lake measurement of G by Hubler, Cornaz, and
Kündig (1995). In the new experiment, a commercial
single-pan, flexure-strip balance, modified to achieve a
resolution of 100 ng and a reproducibility of 300 ng, is
used to measure the change in the difference in weight
of two cylindrical test masses when the position of two
source masses is changed. The test masses are 1 kg cop-
per weights in fixed positions; the movable source
masses, which surround the test masses, are toroidal
stainless steel tanks 0.7 m high, of outer and inner diam-
eters 1.05 m and 0.1 m, and of volume 500 L. The axes of
the test masses and source masses are vertical and coin-
cident, and the test masses are about 1.4 m apart. In
position I the source masses are almost touching and the
upper test mass is at the upper end of the upper source
mass while the lower test mass is at the lower end of the
lower source mass. In position II, the two source masses
are separated by about 1.4 m so that the upper test mass
is at the lower end of the upper source mass and the
lower test mass is at the upper end of the lower source
mass. In each position, the difference in weight of the
test masses is determined by weighing them alternately
many times with the single-pan balance.

In the first University of Zurich determination of G
with this apparatus, the tanks were filled with water and
produced a change in the difference in weight of the two
test masses equivalent to 110 mg when the tanks were in
positions I and II. The value of G given in Table XIII is
the result of 20 d of such measurements from which the
change in the weight difference was determined with a
statistical uncertainty (Type A) equivalent to 9 ng.

In the winter of 1997/1998, the tanks were filled with
mercury, thereby increasing the change in weight differ-
ence to the equivalent of 800 mg. Two series of measure-
ments with Hg were carried out that yielded values of G
that differed by the fractional amount 1.631024, which
was somewhat larger than the random variations within
each run. Nevertheless, for the moment Nolting et al.
(1999) take the simple mean of the two values, G
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56.6749(14)310211 m3 kg21 s22 @2.231024# , as the re-
sult of the two series for Hg, but have included in their
assigned relative standard uncertainty a component of
8.031025 to account for the discrepancy. Although no
satisfactory explanation of the disagreement has yet
been found, Nolting et al. (1999) suppose that balance
nonlinearity may play a role. Work to resolve this prob-
lem is continuing, and Nolting et al. (1999) believe that
their goal of determining G with ur51.031025 is still
achievable.

(10) UWup-99. The experiment of Kleinevoss et al.
(1999) at the University of Wuppertal, Wuppertal, Ger-
many was begun in 1988. The apparatus consists of two
microwave reflectors a distance b524 cm apart, each
with a polished concave spherical surface and suspended
by tungsten wires 2.6 m long. The reflectors, with their
concave surfaces facing each other, form a Fabry-Pérot
microwave resonator. A 576 kg brass cylindrical source
mass is placed on the outer side of each reflector with its
axis coincident with the axis of the resonator and the
other source mass. The two source masses are moved
symmetrically and simultaneously at intervals of 12 min
from a reference position away from the reflectors to a
measuring position near the reflectors. This causes the
distance between the reflectors to change due to the
change in gravitational forces acting on them. The mea-
sured quantity is the change in resonant frequency of the
resonator Df arising from the change in its length Db
'12 nm. The value of G in the table is the mean of
three values obtained in mid-1998 from three different
measuring positions. The work is continuing and Kleine-
voss et al. (1999) hope to obtain a value of G with ur
,131024 from the current apparatus.

R. X-ray units

The three most important units that historically have
been used to express the wavelengths of x-ray lines are
the copper Ka1 x unit, symbol xu(Cu Ka1), the molyb-
denum Ka1 x unit, symbol xu(Mo Ka1), and the ång-
strom star, symbol Å* . These units are defined by as-
signing an exact conventional value to the wavelength of
the Cu Ka1 , Mo Ka1 , and W Ka1 x-ray lines when each
is expressed in its corresponding unit:

λ~Cu Ka1!51 537.400 xu~Cu Ka1! (337)

λ~Mo Ka1!5707.831 xu~Mo Ka1! (338)

λ~W Ka1!50.209 010 0 Å* . (339)

Following the practice initiated in the 1986 adjustment,
we also give in this adjustment a recommended value in
meters for each of these units. The relevant data from
which these values are derived and how we include that
data in the 1998 adjustment are briefly discussed below.
Other measurements involving the lattice spacings of
silicon crystals and the comparison of the lattice spac-
ings of different crystals are discussed in Sec. III.A.3.c
and in Sec. III.I. Based on that discussion, when neces-
sary we take 0.0131026, 6.40(8)31026, and 20.34
31026 as the fractional corrections to convert d220(Si) at
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t68522.5 °C to t90522.5 °C, d220(Si) at t90522.5 °C to
t90525 °C, and d220(Si) at p50 to p5100 kPa, respec-
tively.

In a collaboration between Friedrich-Schiller Univer-
sity (FSU), Jena, Germany and the PTB, Härtwig et al.
(1991) determined the wavelength of the Cu Ka1 line in
terms of the lattice parameter a of a sample of the PTB
crystal WASO 9 using the Bond method, an x-ray dif-
fractometer technique that is a special version of the
classic Bragg spectrometer technique. Based on the
measured difference between a of crystal WASO 9 and
a of PTB crystal WASO 4.2a as reported by Windisch
and Becker (1990), the result of Härtwig et al. (1991) can
be written as

λ~Cu Ka1!

d220~W4.2a!
5

λ~Cu Ka1!

d220* ~W9!

d220* ~W9!

d220~W4.2a!

50.802 327 11~24! @3.031027# . (340)

Here the asterisk indicates that the reference conditions
for d220 of crystal WASO 9 are p5101.325 kPa and t68
520 °C rather than our standard reference conditions
p50, t90522.5 °C. The assigned uncertainty is domi-
nated by the 2.831027 total relative standard uncer-
tainty component arising from different aspects of the
determination of the ratio λ(Cu Ka1)/d220* (W9), the
largest of which is 2.331027 due to the uncertainties of
various corrections; the relative standard deviation of
the mean of the 146 individual measurements of the ra-
tio is only 531028. The relative standard uncertainty of
the ratio d220* (W9)/d220(W4.2a) is ur51131028 and con-
tains a component of 731028 (Type B) to account for
the observed large variations of the lattice parameter of
the WASO 9 crystal due to the inhomogeneity of its
impurity content (Windisch and Becker, 1990). [Note
that the covariances of the result given in Eq. (340) with
all the other PTB x-ray results are negligible.]

Using a double flat silicon crystal spectrometer,
Kessler, Deslattes, and Henins (1979) at NIST compared
the wavelength of the W Ka1 line to the lattice param-
eter of the diffraction crystal of the spectrometer. Their
result can be expressed as

λ~W Ka1!

d220~N!
5

λ~W Ka1!

d220* ~W!

d220* ~W!

d220~N!

50.108 852 175~98! @9.031027# , (341)

where d220(N) denotes the $220% lattice spacing of the
NIST XROI crystal (see Sec. III.I.1) at our standard ref-
erence conditions p50 and t90522.5 °C, and d220* (W) is
the $220% lattice spacing of the spectrometer’s diffraction
crystal at p5100 kPa and t68522.5 °C. The uncertainty
is dominated by the 8.831027 statistical relative stan-
dard uncertainty (Type A) associated with the measure-
ments of the ratio λ(W Ka1)/d220* (W); the ratio of the
lattice parameters of the W and N crystals was deter-
mined by Kessler et al. (1979) in a separate experiment
with the significantly smaller uncertainty ur5731028.
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Also at NIST and using a spectrometer similar to that
of Kessler et al. (1979) but with the two crystals cut from
the same boule from which the NIST XROI crystal was
cut and only 10 mm from it, Deslattes and Henins (1973)
compared the Mo Ka1 and Cu Ka1 x-ray lines to the lat-
tice parameter of the diffraction crystal. The reference
conditions for these measurements are p5100 kPa and
t68525 °C. Data were taken in both transmission and
reflection for each x-ray line and averaged; the final re-
sults can be written as

λ~Mo Ka1!

d220~N!
50.369 406 04~19! @5.331027# (342)

λ~Cu Ka1!

d220~N!
50.802 328 04~77! @9.631027# . (343)

The uncertainties are essentially those assigned by the
experimenters and include components due to the index
of refraction of silicon (required to evaluate the Bragg
equation for the reflection data), measurement of tem-
perature and angle, alignment of the apparatus, and
scatter of the data. Although the two ratios have some
common components of uncertainty, their covariance
can be assumed to be negligible.

More recently, NIST researchers have measured the
difference between d220(N) and d220 of PTB crystal
WASO 17, where the $220% lattice spacing of WASO 17
is relevant to the determination of the relative atomic
mass of the neutron (see Secs. III.A.3.c and III.I). The
result is (Kessler et al., 1997; Kessler, 1999)

d220~W17!2d220~N!

d220~W17!
57~17!31029 (344)

and reflects the new NIST lattice comparison protocol
(see Sec. III.A.3.c). The correlation coefficients of this
fractional difference and the other NIST fractional dif-
ferences given in Eqs. (51) to (53) are in the range 20.37
to 0.15.

In order to obtain best values in the least-squares
sense for xu(Cu Ka1), xu(Mo Ka1), and Å* , we take
these units to be adjusted constants. Thus the observa-
tional equations for the data of Eqs. (340) to (343) are

λ~Cu Ka1!

d220~N!
8

1 537.400 xu~Cu Ka1!

d220~N!
(345)

λ~Mo Ka1!

d220~N!
8

707.831 xu~Mo Ka1!

d220~N!
(346)

λ~W Ka1!

d220~N!
8

0.209 010 0 Å*

d220~N!
(347)

λ~Cu Ka1!

d220~W4.2a!
8

1 537.400 xu~Cu Ka1!

d220~W4.2a!
, (348)

where d220(N) is taken to be an adjusted constant and
d220(W17) and d220(W4.2a) are adjusted constants as well.
In this context, the NIST XROI crystal simply plays the
role of an intermediate reference crystal; a directly mea-
sured value of its $220% lattice spacing d220(N) in meters
is not required.
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S. Other quantities

As pointed out in Sec. I.D, there are a few cases in the
1998 adjustment where an inexact constant that enters
the analysis of input data is taken to be a fixed quantity
rather than an adjusted quantity, because the input data
have a negligible effect on its value. Three such con-
stants, used in the calculation of the theoretical expres-
sions for the electron and muon magnetic moment
anomalies ae and am (see Appendices B and C), are the
mass of the tau lepton mt , the Fermi coupling constant
GF , and sine squared of the weak mixing angle sin2 uW .
The values we adopt for these constants are based on
the most recent report of the Particle Data Group (Caso
et al., 1998):

mtc251 777.05~29! MeV @1.631024# (349)

GF

~\c !3
51.166 39~1 !31025 GeV22 @8.631026#

(350)

sin2 uW50.2224~19! @8.731023# . (351)

Note, however, that the uncertainty assigned to mtc2 by
the Particle Data Group is unsymmetrical and equal to
10.29 MeV, 20.26 MeV. For simplicity and because it is
not at all critical, we have symmetrized the uncertainty
by taking it to be 0.29 MeV. Also, the definition of
sin2 uW depends on the renormalization prescription
used. We take as its definition sin2 uW5sW

2 [1
2(mW /mZ)2 based on the on-shell scheme, where mW
and mZ are the masses of the W6 and Z0 bosons, respec-
tively, because this definition is conceptually simple and
is that employed in the calculation of the electroweak
contributions to ae and am (Czarnecki, Krause, and
Marciano, 1996). The recommended value for the mass
ratio of these bosons is mW /mZ50.8818(11), which
leads to our adopted value of sin2 uW given above. On
the other hand, the value recommended by the Particle
Data Group (Caso et al., 1998) is based on a particular
variant of the modified minimal subtraction (MS)
scheme, which gives the much more accurate value
sin2 uW(MZ)50.231 24(24).

IV. ANALYSIS OF DATA

In this portion of the paper, we analyze the previously
discussed input data with the exception of the values of
the Newtonian constant of gravitation G , since the latter
have already been dealt with in Sec. III.Q. Based on this
analysis, the focus of which is the compatibility of the
data and the extent to which a particular datum would
contribute to the determination of the 1998 recom-
mended values of the constants, we select the final input
data for the 1998 adjustment, decide how the data are to
be treated, and carry out the final least-squares calcula-
tion from which the 1998 recommended values are ob-
tained. Our analysis proceeds in three stages.

First we compare directly measured values of the
same quantity, that is, data of the same type. An ex-
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ample is the four measured values of the von Klitzing
constant RK .

Next we compare directly measured values of differ-
ent quantities, that is, data of different types, through
the values of a third quantity that may be inferred from
the values of the directly measured quantities. Promi-
nent among these inferred values are the fine-structure
constant a and the Planck constant h . For example, the
four directly measured values of RK are compared to the
one directly measured value of the magnetic moment
anomaly ae through the five values of a that can be in-
ferred from the five directly measured values. We have,
of course, anticipated such comparisons by calculating
values of a and h whenever appropriate as part of our
review of the data. Such calculations are meaningful be-
cause many of the data of interest can be viewed as
belonging to either one of two categories: data that de-
termine a or data that determine h . Contributing to this
dichotomy is the fact that the uncertainties of the mea-
sured values of those quantities that can be expressed as
a combination of a and h , such as the Josephson con-
stant KJ5(8a/m0ch)1/2, are significantly larger than the
uncertainty of a. Thus these measured values only pro-
vide competitive information regarding h , not a.

Finally, we carry out a multivariate analysis of the
data using the well-known method of least squares,
which we briefly summarize in Appendix E as it is nor-
mally applied to the determination of recommended val-
ues of the fundamental constants. (Because computing a
weighted mean is equivalent to applying the method of
least squares in one dimension, that is, to the case of one
variable, we in fact also employ the method of least
squares in the first and second stages of our data analy-
sis.)

Although the multivariate analysis of the data pro-
vides the most detailed, quantitative information regard-
ing its overall consistency and the relative importance of
individual items of data, because of the large number of
such items and their diversity, and because a multivari-
ate analysis is somewhat complex, this approach is not
especially transparent. On the other hand, although less
complete than the multivariate analysis, comparisons of
data of the same type, and comparisons of data of dif-
ferent types through the inferred value of a third quan-
tity, are convenient methods for obtaining a general
overview of the compatibility of the data and for identi-
fying those data that are of greatest importance.

The principal input data relevant to the determination
of the Rydberg constant R` are not strongly coupled to
the principal input data relevant to the determination of
the other constants. We therefore carry out the first two
stages of our data analysis on the two categories of
data—Rydberg constant and other—independently. The
third stage, multivariate analysis, is at first also carried
out independently, but then on all of the data together.
In fact, because of the complex nature of the Rydberg
constant data, its second-stage analysis is actually done
as a multivariate analysis. The two categories of data,
with individual items appropriately numbered, are given
in Tables XIV.A.1 and XIV.B.1. The covariances of the
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data in each table are given in the form of correlation
coefficients in companion Tables XIV.A.2 and XIV.B.2.
(Note that throughout this Analysis of Data portion of
the paper, the letters ‘‘A’’ and ‘‘B’’ are associated with
data in the first and second categories, respectively.
Also, there are no correlations between the data in
Table XIV.A.1 and the data in Table XIV.B.1.) The
portions of the text where the data and their correlations
are discussed are indicated in the last column of Tables
XIV.A.1 and XIV.B.1. [In Table XIV.B.1, the quantity
R̄1 given in Eq. (166), Sec. III.C.10.b, is denoted by R̄ ,
since by CPT invariance the sign of the charge is imma-
terial.]

The d ’s given in Tables XIV.A.1 and XIV.B.1 are ad-
ditive corrections to various theoretical expressions that
represent our lack of knowledge of those expressions.
That is, each of the expressions includes an appropriate
d as an additive correction, where the initial estimate of
each d is zero but with an appropriate standard uncer-
tainty. In Table XIV.A.1 the d ’s are associated with the
theoretical expressions for the energy levels of hydrogen
(H) or deuterium (D) as indicated, while in Table
XIV.B.1 the d ’s are associated with the theoretical ex-
pressions for the electron and muon magnetic moment
anomalies ae and am , and the ground-state hyperfine
splitting of muonium DnMu . These expressions are re-
quired to relate measured values of the frequencies of
transitions between energy levels in H and D, ae , am ,
and DnMu to adjusted constants such as a and R` . The
expressions and our initial values for the uncertainties of
the d ’s are discussed in Appendices A to D. Although
the uncertainties depend on values of various constants,
the uncertainties of the constants themselves are negli-
gible in the calculation of the uncertainties of the d ’s.

A. Comparison of data of the same type

This mode of comparison is obviously applicable only
when there are two or more measurements of the same
quantity. If there are only two measurements x1 and x2 ,
we simply compare them through their difference ∆
5ux12x2u and the standard deviation of their difference
udiff5Au2(x1)1u2(x2), since in this case the Birge ratio
is given by RB5Ax2/n5∆/udiff with degrees of freedom
n51 (see Appendix E). If there are N measurements
with N.2, we compare them by computing their
weighted mean and resulting x2 and/or Birge ratio RB

5Ax2/n with n5N21.

1. Rydberg constant data

The classic hydrogen Lamb shift is the only quantity
in Table XIV.A.1 with more than one measured value.
The Harvard University and the University of Sussex
results for this interval, items A14.1 and A14.2, agree:
∆50.8 udiff . The uncertainty of the Sussex value is 2.2
times that of the Harvard value, hence the weights of the
two values in the calculation of their weighted mean are
0.83 and 0.17, respectively. Although these are the
weights for their weighted mean, the effective weights of
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TABLE XIV.A.1. Summary of principal input data for the determination of the 1998 recommended value of the Rydberg constant
R` . [The notation for the additive corrections dX(nLj) in this table has the same meaning as the notation dnLj

X in Appendix A,
Sec. 12.]

Item
number Input datum Value

Relative standard
uncertaintya ur Identification Sec.

A1 nH(1S1/2–2S1/2) 2 466 061 413 187.34(84) kHz 3.4310213 MPQ-97 III.B.1
A2 nH(2S1/2–8S1/2) 770 649 350 012.1(8.6) kHz 1.1310211 LK/LP-97 III.B.2
A3 nH(2S1/2–8D3/2) 770 649 504 450.0(8.3) kHz 1.1310211 LK/LP-97 III.B.2
A4 nH(2S1/2–8D5/2) 770 649 561 584.2(6.4) kHz 8.3310212 LK/LP-97 III.B.2
A5 nH(2S1/2–12D3/2) 799 191 710 472.7(9.4) kHz 1.2310211 LK/LP-99 III.B.2
A6 nH(2S1/2–12D5/2) 799 191 727 403.7(7.0) kHz 8.7310212 LK/LP-99 III.B.2
A7 nH(2S1/2–4S1/2)2

1
4 nH(1S1/2–2S1/2) 4 797 338(10) kHz 2.131026 MPQ-95 III.B.1

A8 nH(2S1/2–4D5/2)2
1
4 nH(1S1/2–2S1/2) 6 490 144(24) kHz 3.731026 MPQ-95 III.B.1

A9 nH(2S1/2–6S1/2)2
1
4 nH(1S1/2–3S1/2) 4 197 604(21) kHz 4.931026 LKB-96 III.B.2

A10 nH(2S1/2–6D5/2)2
1
4 nH(1S1/2–3S1/2) 4 699 099(10) kHz 2.231026 LKB-96 III.B.2

A11 nH(2S1/2–4P1/2)2
1
4 nH(1S1/2–2S1/2) 4 664 269(15) kHz 3.231026 Yale-95 III.B.3

A12 nH(2S1/2–4P3/2)2
1
4 nH(1S1/2–2S1/2) 6 035 373(10) kHz 1.731026 Yale-95 III.B.3

A13 nH(2S1/2–2P3/2) 9 911 200(12) kHz 1.231026 Harvard-94 III.B.4
A14.1 nH(2P1/2–2S1/2) 1 057 845.0(9.0) kHz 8.531026 Harvard-86 III.B.4
A14.2 nH(2P1/2–2S1/2) 1 057 862(20) kHz 1.931025 USussex-79 III.B.5

A15 Rp 0.8545(120) fm 1.431022 Rp-98 III.B.7

A16 nD(2S1/2–8S1/2) 770 859 041 245.7(6.9) kHz 8.9310212 LK/LP-97 III.B.2
A17 nD(2S1/2–8D3/2) 770 859 195 701.8(6.3) kHz 8.2310212 LK/LP-97 III.B.2
A18 nD(2S1/2–8D5/2) 770 859 252 849.5(5.9) kHz 7.7310212 LK/LP-97 III.B.2
A19 nD(2S1/2–12D3/2) 799 409 168 038.0(8.6) kHz 1.1310211 LK/LP-99 III.B.2
A20 nD(2S1/2–12D5/2) 799 409 184 966.8(6.8) kHz 8.5310212 LK/LP-99 III.B.2
A21 nD(2S1/2–4S1/2)2

1
4 nD(1S1/2–2S1/2) 4 801 693(20) kHz 4.231026 MPQ-95 III.B.1

A22 nD(2S1/2–4D5/2)2
1
4 nD(1S1/2–2S1/2) 6 494 841(41) kHz 6.331026 MPQ-95 III.B.1

A23 Rd 2.130(10) fm 4.731023 Rd-98 III.B.7

A24 nD(1S1/2–2S1/2)2nH(1S1/2–2S1/2) 670 994 334.64(15) kHz 2.2310210 MPQ-98 III.B.1
A25 dH(1S1/2)/h 0(90) kHz @2.7310211# theory App. A
A26 dH(2S1/2)/h 0(11) kHz @1.4310211# theory App. A
A27 dH(3S1/2)/h 0.0(3.3) kHz @9.1310212# theory App. A
A28 dH(4S1/2)/h 0.0(1.4) kHz @6.8310212# theory App. A
A29 dH(6S1/2)/h 0.00(42) kHz @4.5310212# theory App. A
A30 dH(8S1/2)/h 0.00(18) kHz @3.4310212# theory App. A
A31 dH(2P1/2)/h 0.0(1.1) kHz @1.3310212# theory App. A
A32 dH(4P1/2)/h 0.00(14) kHz @6.6310213# theory App. A
A33 dH(2P3/2)/h 0.0(1.1) kHz @1.3310212# theory App. A
A34 dH(4P3/2)/h 0.00(14) kHz @6.6310213# theory App. A
A35 dH(8D3/2)/h 0.000(17) kHz @3.3310213# theory App. A
A36 dH(12D3/2)/h 0.0000(50) kHz @2.2310213# theory App. A
A37 dH(4D5/2)/h 0.00(14) kHz @6.6310213# theory App. A
A38 dH(6D5/2)/h 0.000(40) kHz @4.4310213# theory App. A
A39 dH(8D5/2)/h 0.000(17) kHz @3.3310213# theory App. A
A40 dH(12D5/2)/h 0.0000(50) kHz @2.2310213# theory App. A

A41 dD(1S1/2)/h 0(89) kHz @2.7310211# theory App. A
A42 dD(2S1/2)/h 0(11) kHz @1.4310211# theory App. A
A43 dD(4S1/2)/h 0.0(1.4) kHz @6.8310212# theory App. A
A44 dD(8S1/2)/h 0.00(17) kHz @3.4310212# theory App. A
A45 dD(8D3/2)/h 0.000(11) kHz @2.2310213# theory App. A
A46 dD(12D3/2)/h 0.0000(34) kHz @1.5310213# theory App. A
A47 dD(4D5/2)/h 0.000(92) kHz @4.5310213# theory App. A
A48 dD(8D5/2)/h 0.000(11) kHz @2.2310213# theory App. A
A49 dD(12D5/2)/h 0.0000(34) kHz @1.5310213# theory App. A

aThe values in brackets are relative to the frequency equivalent of the binding energy of the indicated level.
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TABLE XIV.A.2. Non-negligible correlation coefficients r(xi , xj) of the input data related to R` given in Table XIV.A.1. For
simplicity, the two items of data to which a particular correlation coefficient corresponds are identified by their item numbers in
Table XIV.A.1.

r(A2, A3)50.348 r(A5, A20)50.114 r(A25, A27)50.999 r(A30, A44)50.998
r(A2, A4)50.453 r(A6, A9)50.028 r(A25, A28)50.999 r(A31, A32)50.990
r(A2, A5)50.090 r(A6, A10)50.055 r(A25, A29)50.999 r(A33, A34)50.990
r(A2, A6)50.121 r(A6, A16)50.151 r(A25, A30)50.999 r(A35, A36)50.990
r(A2, A9)50.023 r(A6, A17)50.165 r(A25, A41)50.998 r(A35, A45)50.944

r(A2, A10)50.045 r(A6, A18)50.175 r(A25, A42)50.998 r(A35, A46)50.935
r(A2, A16)50.123 r(A6, A19)50.121 r(A25, A43)50.998 r(A36, A45)50.935
r(A2, A17)50.133 r(A6, A20)50.152 r(A25, A44)50.997 r(A36, A46)50.944
r(A2, A18)50.142 r(A7, A8)50.105 r(A26, A27)50.999 r(A37, A38)50.990
r(A2, A19)50.098 r(A7, A21)50.210 r(A26, A28)50.999 r(A37, A39)50.990
r(A2, A20)50.124 r(A7, A22)50.040 r(A26, A29)50.999 r(A37, A40)50.990
r(A3, A4)50.470 r(A8, A21)50.027 r(A26, A30)50.998 r(A37, A47)50.944
r(A3, A5)50.093 r(A8, A22)50.047 r(A26, A41)50.998 r(A37, A48)50.935
r(A3, A6)50.125 r(A9, A10)50.141 r(A26, A42)50.998 r(A37, A49)50.935
r(A3, A9)50.023 r(A9, A16)50.028 r(A26, A43)50.997 r(A38, A39)50.990

r(A3, A10)50.047 r(A9, A17)50.031 r(A26, A44)50.997 r(A38, A40)50.990
r(A3, A16)50.127 r(A9, A18)50.033 r(A27, A28)50.999 r(A38, A47)50.935
r(A3, A17)50.139 r(A9, A19)50.023 r(A27, A29)50.998 r(A38, A48)50.935
r(A3, A18)50.147 r(A9, A20)50.028 r(A27, A30)50.998 r(A38, A49)50.935
r(A3, A19)50.102 r(A10, A16)50.056 r(A27, A41)50.997 r(A39, A40)50.990
r(A3, A20)50.128 r(A10, A17)50.061 r(A27, A42)50.997 r(A39, A47)50.935
r(A4, A5)50.121 r(A10, A18)50.065 r(A27, A43)50.997 r(A39, A48)50.944
r(A4, A6)50.162 r(A10, A19)50.045 r(A27, A44)50.997 r(A39, A49)50.935
r(A4, A9)50.030 r(A10, A20)50.057 r(A28, A29)50.998 r(A40, A47)50.935

r(A4, A10)50.060 r(A11, A12)50.083 r(A28, A30)50.998 r(A40, A48)50.935
r(A4, A16)50.165 r(A16, A17)50.570 r(A28, A41)50.998 r(A40, A49)50.944
r(A4, A17)50.180 r(A16, A18)50.612 r(A28, A42)50.997 r(A41, A42)50.999
r(A4, A18)50.191 r(A16, A19)50.123 r(A28, A43)50.998 r(A41, A43)50.999
r(A4, A19)50.132 r(A16, A20)50.155 r(A28, A44)50.997 r(A41, A44)50.999
r(A4, A20)50.166 r(A17, A18)50.667 r(A29, A30)50.998 r(A42, A43)50.999
r(A5, A6)50.475 r(A17, A19)50.134 r(A29, A41)50.997 r(A42, A44)50.998
r(A5, A9)50.021 r(A17, A20)50.169 r(A29, A42)50.997 r(A43, A44)50.998

r(A5, A10)50.041 r(A18, A19)50.142 r(A29, A43)50.997 r(A45, A46)50.990
r(A5, A16)50.113 r(A18, A20)50.179 r(A29, A44)50.996 r(A47, A48)50.990
r(A5, A17)50.123 r(A19, A20)50.522 r(A30, A41)50.997 r(A47, A49)50.990
r(A5, A18)50.130 r(A21, A22)50.011 r(A30, A42)50.997 r(A48, A49)50.990
r(A5, A19)50.090 r(A25, A26)50.999 r(A30, A43)50.997
these data in the full least-squares calculation involving
all of the data of Table XIV.A.1 is less, because the
remaining experimental and theoretical data provide in-
formation about this interval as well. In the case of the
Lamb shift, they produce an indirect value of the inter-
val with a significantly smaller uncertainty than either
directly measured value. This is a common feature of a
least-squares analysis and, in fact, in some cases the un-
certainty of the indirect value is so small that one or
more of the directly measured values are inconsequen-
tial.

2. Other data

Other data refers to the input data related to the con-
stants (R` and G excepted) given in Tables XIV.B.1 and
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XIV.B.2. There are nine different quantities in Table
XIV.B.1 that have more than one measured value. We
discuss each in turn.

DnMu . The LAMPF 1982 and the LAMPF 1999 values
of the muonium ground-state hyperfine splitting, items
B17.1 and B17.2, are in agreement: ∆50.7 udiff . The un-
certainty of the 1982 result exceeds that of the 1999 re-
sult by the factor 3.0, leading to a weight of 0.90 for the
1999 value and a weight of 0.10 for the 1982 value in the
calculation of their weighted mean.

R̄ . The CERN value of R̄ , item B19.1, and the
Brookhaven value of R̄ , item B19.2, agree: ∆
50.1 udiff . Because the uncertainty of the Brookhaven
value is 1.8 times that of the CERN value, the weights of
the CERN and Brookhaven values in the calculation of
their weighted mean are 0.77 and 0.23, respectively.
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TABLE XIV.B.1. Summary of principal input data for the determination of the 1998 recommended values of the fundamental
constants (R` and G excepted).

Item
number Input datum Value

Relative standard
uncertaintya ur Identification Sec. and Eq.

B1 Ar(
1H) 1.007 825 032 14(35) 3.5310210 AMDC-95 III.A.1

B2 Ar(
2H) 2.014 101 777 99(36) 1.8310210 AMDC-95 III.A.1

B3 Ar(
3He) 3.016 029 309 70(86) 2.8310210 AMDC-95 III.A.1

B4 Ar(
4He) 4.002 603 2497(10) 2.5310210 AMDC-95 III.A.1

B5 6me /m(12C61) 0.000 274 365 185 89(58) 2.131029 UWash-95 III.A.3.a (31)
B6 m(12C41)/4mp 2.977 783 715 20(42) 1.4310210 UWash-99 III.A.3.b (39)
B7 ae 1.159 652 1883(42)31023 3.731029 UWash-87 III.C.1 (68)
B8 de 0.0(1.1)310212 @0.9831029] theory App. B (B24)
B9 me2(H)/mp(H) 2 658.210 7058(66) 1.031028 MIT-72 III.C.3 (95)
B10 md(D)/me2(D) 24.664 345 392(50)31024 1.131028 MIT-84 III.C.4 (100)
B11 me2(H)/mp8 2 658.215 9430(72) 1.131028 MIT-77 III.C.6.b (115)
B12 mh8/mp8 20.761 786 1313(33) 4.331029 NPL-93 III.C.7 (117)
B13 mn /mp8 20.684 996 94(16) 2.431027 ILL-79 III.C.8 (122)
B14 mm1 /mp 3.183 3442(17) 5.331027 SIN-82 III.C.9.a (133)
B15 n(58 MHz) 627 994.77(14) kHz 2.231027 LAMPF-82 III.C.9.b (145)
B16 n(72 MHz) 668 223 166(57) Hz 8.631028 LAMPF-99 III.C.9.c (153)
B17.1 DnMu 4 463 302.88(16) kHz 3.631028 LAMPF-82 III.C.9.b (144)
B17.2 DnMu 4 463 302 765(53) Hz 1.231028 LAMPF-99 III.C.9.c (152)
B18 dMu 0.0(1.2)31021 kHz @2.731028] theory App. D (D13)
B19.1 R̄ 0.003 707 213(27) 7.231026 CERN-79 III.C.10.a (164)

B19.2 R̄ 0.003 707 220(48) 1.331025 BNL-99 III.C.10.b (166)

B20 dm 0.0(6.4)310210 @5.531027] theory App. C (C35)
B21.1 Γp2908 (lo) 2.675 154 05(30)3108 s21 T21 1.131027 NIST-89 III.D.1.a (183)
B21.2 Γp2908 (lo) 2.675 1530(18)3108 s21 T21 6.631027 NIM-95 III.D.1.b (197)
B22.1 Γp2908 (hi) 2.675 1525(43)3108 s21 T21 1.631026 NIM-95 III.D.1.b (198)
B22.2 Γp2908 (hi) 2.675 1518(27)3108 s21 T21 1.031026 NPL-79 III.D.1.c (205)
B23.1 Γh2908 (lo) 2.037 895 37(37)3108 s21 T21 1.831027 KR/VN-98 III.D.2.a (210)
B23.2 Γh2908 (lo) 2.037 897 29(72)3108 s21 T21 3.531027 VNIIM-89 III.D.2.b (214)
B24.1 KJ 483 597.91(13) GHz V21 2.731027 NML-89 III.E.1 (221)
B24.2 KJ 483 597.96(15) GHz V21 3.131027 PTB-91 III.E.2 (226)
B25.1 RK 25 812.808 31(62) V 2.431028 NIST-97 III.F.1 (232)
B25.2 RK 25 812.8071(11) V 4.431028 NML-97 III.F.2 (235)
B25.3 RK 25 812.8092(14) V 5.431028 NPL-88 III.F.3 (237)
B25.4 RK 25 812.8084(34) V 1.331027 NIM-95 III.F.4 (239)
B26.1 KJ

2RK 6.036 7625(12)31033 J21 s21 2.031027 NPL-90 III.G.1 (245)
B26.2 KJ

2RK 6.036 761 85(53)31033 J21 s21 8.731028 NIST-98 III.G.2 (248)
B27 F90 96 485.39(13) C mol21 1.331026 NIST-80 III.H.1 (264)
B28 λmeas /d220(ILL) 0.002 904 302 46(50) 1.731027 NIST-99 III.A.3.c (48)
B29 h/mnd220(W04) 2 060.267 004(84) m s21 4.131028 PTB-99 III.K.1 (282)
B30 12d220(W17)/d220(ILL) 28(22)31029 @2.231028# NIST-99 III.A.3.c (51)
B31 12d220(MO*4)/d220(ILL) 86(27)31029 @2.731028# NIST-99 III.A.3.c (52)
B32 12d220(SH1)/d220(ILL) 34(22)31029 @2.231028# NIST-99 III.A.3.c (53)
B33 12d220(N)/d220(W17) 7(17)31029 @1.731028# NIST-99 III.R (344)
B34 d220(W4.2a)/d220(W04)21 21(21)31029 @2.131028# PTB-98 III.I (266)
B35 d220(W17)/d220(W04)21 22(22)31029 @2.231028# PTB-98 III.I (267)
B36 d220(MO*4)/d220(W04)21 2103(28)31029 @2.831028# PTB-98 III.I (268)
B37 d220(SH1)/d220(W04)21 223(21)31029 @2.131028# PTB-98 III.I (269)
B38 d220 /d220(W04)21 15(11)31029 @1.131028# PTB-99 III.I (270)
B39 d220(W4.2a) 192 015.563(12) fm 6.231028 PTB-81 III.I.1 (272)
B40 d220(MO*4) 192 015.551(6) fm 3.431028 IMGC-94 III.I.2 (273)
B41 d220(SH1) 192 015.587(11) fm 5.631028 NRLM-97 III.I.3 (274)
B42.1 R 8.314 471(15) J mol21 K21 1.831026 NIST-88 III.N.1 (309)
B42.2 R 8.314 504(70) J mol21 K21 8.431026 NPL-79 III.N.2 (312)
B43 λ(Cu Ka1)/d220(W4.2a) 0.802 327 11(24) 3.031027 FSU/PTB-91 III.R (340)
B44 λ(W Ka1)/d220(N) 0.108 852 175(98) 9.031027 NIST-79 III.R (341)
B45 λ(Mo Ka1)/d220(N) 0.369 406 04(19) 5.331027 NIST-73 III.R (342)
B46 λ(Cu Ka1)/d220(N) 0.802 328 04(77) 9.631027 NIST-73 III.R (343)

aThe values in brackets are relative to ae ,am ,DnMu , or 1, as appropriate.
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TABLE XIV.B.2. Non-negligible correlation coefficients r(xi , xj) of the input data related to the
constants (R` and G excepted) given in Table XIV.B.1. For simplicity, the two items of data to which
a particular correlation coefficient corresponds are identified by their item numbers in
Table XIV.B.1.

r(B1, B2)50.314 r(B29, B34)50.258 r(B30, B33)520.375 r(B34, B37)50.502
r(B1, B3)50.009 r(B29, B35)50.241 r(B31, B32)50.421 r(B35, B36)50.347
r(B2, B3)50.028 r(B29, B36)50.192 r(B31, B33)50.125 r(B35, B37)50.469
r(B15, B17.1)50.227 r(B29, B37)50.258 r(B32, B33)50.153 r(B36, B37)50.372
r(B16, B17.2)50.195 r(B30, B31)50.421 r(B34, B35)50.469
r(B21.2, B22.1)520.014 r(B30, B32)50.516 r(B34, B36)50.372
Γp2908 (lo). For the NIST and NIM values of Γp2908 (lo),
items B21.1 and B21.2, ∆50.6 udiff , and hence they
agree. However, the uncertainty of the NIM value ex-
ceeds that of the NIST value by a factor of 6.0, implying
that in the calculation of the weighted mean of the two
values, the weight of the NIST value is 0.97 and that of
the NIM value is 0.03. We therefore conclude that the
NIM value provides a limited amount of additional in-
formation.

Γp2908 (hi). The NIM and NPL values of Γp2908 (hi),
items B22.1 and B22.2, agree; ∆50.1 udiff . Further, the
uncertainty of the NIM value is 1.6 times that of the
NPL value, implying that the weights of the NPL and
NIM values in the calculation of their weighted mean
are 0.72 and 0.28, respectively.

Γh2908 (lo). The KRISS/VNIIM and VNIIM values of
Γh2908 (lo), items B23.1 and B23.2, do not agree; ∆
52.4 udiff . The ratio of the uncertainty of the VNIIM
value to that of the KRISS/VNIIM value is 2.0, so that in
the calculation of their weighted mean, the weight of the
KRISS/VNIIM value is 0.79 and that of the VNIIM
value is 0.21.

KJ . For the NML and PTB values of KJ , items B24.1
and B24.2, ∆50.3 udiff , indicating agreement. The un-
certainty of the NML value is 1.2 times that of the PTB
value, implying that the weights of the NML and PTB
values in the calculation of their weighted mean are 0.58
and 0.42, respectively.

RK . The values of RK from NIST, NML, NPL, and
NIM, items B25.1, B25.2, B25.3, and B25.4, are in agree-
ment. Calculation of their weighted mean R̂K yields x2

51.46 for n53, RB50.70, and Q(1.46u3)50.69, where
Q(x2un) is the probability that an observed value of x2

for n degrees of freedom would exceed x2 (see Appen-
dix E). The normalized residuals, ri5@RK,i

2R̂K#/u(RK,i), for the four values are 0.18, 20.95, 0.72,
and 0.06, respectively, and their weights in the calcula-
tion of their weighted mean are 0.65, 0.19, 0.13, and 0.02.
Clearly, the amount of additional information provided
by the NIM result is limited.

KJ
2RK . Items B26.1 and B26.2, the NPL and NIST

values of KJ
2RK , are consistent; ∆50.5 udiff . The ratio of

the uncertainty of the NPL value to that of the NIST
value is 2.3, leading to weights for the NIST and NPL
values in the calculation of their weighted mean of 0.84
and 0.16, respectively.
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R . The NIST and NPL values of R , items B42.1 and
B42.2, are consistent; ∆50.5 udiff . However, because the
uncertainty of the NPL value is 4.7 times that of the
NIST value, the respective weights of the NIST and
NPL values in the calculation of their weighted mean
are 0.96 and 0.04. Thus the additional information con-
tributed by the NPL result is limited.

In summary, we have identified a significant inconsis-
tency between the two measurements of Γh2908 (lo),
items B23.1 and B23.2; and three data that provide lim-
ited information: the NIM value of Γp2908 (lo), item
B21.2; the NIM value of RK , item B25.4; and the NPL
value of R, item B42.2.

B. Comparison of data of different types

For the data related to the Rydberg constant, the
comparisons are mainly through inferred values of R` .
However, some comparisons are possible through in-
ferred values of the bound-state rms charge radius of the
proton Rp or of the deuteron Rd . For the data not
closely related to the Rydberg constant, the comparisons
are mainly through inferred values of a and h .

1. Rydberg constant data

As mentioned in the first part of Sec. IV, because of
the complex nature of the Rydberg-constant data, their
second-stage analysis is best done using a multivariate
analysis. Hence we postpone comparing the data
through the values of R` , Rp , and Rd they imply until
Sec. IV.C.

2. Other data

Although the data of Tables XIV.B.1 and XIV.B.2 are
compared in this section by means of inferred values of
a and h , we first recall that the SIN value of mm1 /mp ,
item B14, the LAMPF value of n(58 MHz), item B15,
and the LAMPF value of n(72 MHz), item B16, can be
compared through inferred values of the muon-electron
mass ratio mm /me . These values of mm /me , which are
summarized in Table IX, Sec. III.C, are in agreement
and have relative standard uncertainties of 5.331027,
3.631027, and 1.231027, respectively. However, be-
cause the value of mm /me that can be inferred from the
1982 and 1999 LAMPF values of DnMu , items B17.1 and
B17.2, together with the theoretical expression for this
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TABLE XV. Comparison of the input data given in Tables XIV.B.1 and XIV.B.2 via inferred values
of the fine-structure constant a in order of increasing standard uncertainty.

Primary
source

Item
number Identification Sec. and Eq. a21

Relative standard
uncertainty ur

ae B7 UWash-87 III.C.1 (72) 137.035 999 58(52) 3.831029

RK B25.1 NIST-97 III.F.1 (233) 137.036 0037(33) 2.431028

h/mnd220(W04) B29 PTB-99 III.K.1 (282)
d220(MO*4) B40 IMGC-94 III.K.1 (285) 137.036 0100(37) 2.731028

d220(SH1) B41 NRLM-97 III.K.1 (286) 137.036 0017(47) 3.431028

d220(W4.2a) B39 PTB-81 III.K.1 (284) 137.036 0119(51) 3.731028

Γp2908 (lo) B21.1 NIST-89 III.D.1.a (193) 137.035 9880(51) 3.731028

RK B25.2 NML-97 III.F.2 (236) 137.035 9973(61) 4.431028

RK B25.3 NPL-88 III.F.3 (238) 137.036 0083(73) 5.431028

Γh2908 (lo) B23.1 KR/VN-98 III.D.2.a (212) 137.035 9853(82) 6.031028

DnMu B17.2 LAMPF-99 III.C.9.d (159) 137.035 9932(83) 6.031028

Γh2908 (lo) B23.2 VNIIM-89 III.D.2.b (215) 137.035 942(16) 1.231027

RK B25.4 NIM-95 III.F.4 (240) 137.036 004(18) 1.331027

DnMu B17.1 LAMPF-82 III.C.9.d (158) 137.036 000(20) 1.531027

Γp2908 (lo) B21.2 NIM-95 III.D.1.b (200) 137.036 006(30) 2.231027

R̄ B19.1 CERN-79 III.C.10.c (169) 137.035 18(98) 7.231026

R̄ B19.2 BNL-99 III.C.10.c (170) 137.0349(18) 1.331025
splitting has a relative standard uncertainty of only ur
'331028 [see Eq. (161), Sec. III.C.9.d], the 1998 rec-
ommended value of mm /me is principally determined by
the indirect value generated from items B17.1, B17.2, a,
and the theoretical expression.

Table XV and Fig. 2 numerically and graphically com-
pare a significant portion of the data of Tables XIV.B.1
and XIV.B.2 through inferred values of a. (For simplic-
ity, the figure compares only data whose inferred values
of a have a relative standard uncertainty ur,131027.)

Inspection of the table and figure shows that some of
the values of a are not in good agreement, implying that

FIG. 2. Graphical comparison of the input data related to the
constants (R` and G excepted) given in Tables XIV.B.1 and
XIV.B.2 via inferred values of the fine-structure constant a as
summarized in Table XV, in order of increasing standard un-
certainty.
., Vol. 72, No. 2, April 2000
some of the data of Table XIV.B.1 disagree. Most no-
table in this regard is the VNIIM value of Γp2908 (lo),
item B23.2; its inferred value of a is significantly larger
than any other value and exceeds the value of a with the
smallest uncertainty, that implied by the University of
Washington measured value of ae , item B7, by over
3.5 udiff . Moreover, its uncertainty is nearly 30 times
larger, implying that its contribution to any least-squares
adjustment that includes this value of ae and the theo-
retical expression for ae will be negligible. This state-
ment applies as well to the NIM value of RK , item
B25.4, the NIM value of Γp2908 (lo), item B21.2, and the
CERN and BNL values of R̄ , items B19.1 and B19.2,
because of their comparatively large uncertainties and
the fact that they mainly determine a. However, the
statement does not apply to the LAMPF values of
DnMu , items B17.1 and B17.2, because, as noted at the
beginning of this section, these items, a, and the theo-
retical expression for DnMu generate an indirect value of
mm /me with an uncertainty significantly smaller than
any other value.

The compatibility of the inferred values of a of Table
XV, and hence of the input data from which they were
principally obtained, may be brought into sharper focus
in the following way: We put aside the first of the last six
values in the table because of its severe disagreement
with the other values, and also the last five values be-
cause their uncertainties are so large that they contrib-
ute little additional information, even though they agree
among themselves and with the other data. We then
combine the remaining values to obtain (in order of in-
creasing value for a21)

a21~Γ908 !5137.035 9871~43! @3.231028# (352)
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a21~DnMu!5137.035 9952~79! @5.731028# (353)

a21~ae!5137.035 999 58~52! @3.831029# (354)

a21~RK!5137.036 0030~27! @2.031028# (355)

a21~h/mn!5137.036 0084~33! @2.431028# , (356)

where a21(Γ908 ) is the combined result from the NIST
measurement of Γp2908 (lo) and the KRISS/VNIIM mea-
surement of Γh2908 (lo), items B.21.1 and B.23.1 (the ex-
periments are similar and the two inferred values of a
agree); a21(DnMu) is the muonium value of the fine-
structure constant given in Eq. (160), Sec. III.C.9.d;
a21(ae) is the electron magnetic moment anomaly value
(the first entry of Table XV); a21(RK) is the weighted
mean of the three values from the NIST, NML, and
NPL measurements of RK (they are in agreement—see
Sec. IV.A.2); and a21(h/mn) is the h/mn value of a
given in Eq. (287), Sec. III.K.1 [for the calculation of this
value, Q(4.6u4)50.33, and d220(SH1) has the largest nor-
malized residual: r51.67]. These five values of a are
compared graphically in Fig. 3.

Ignoring the small correlations between some of the
values, we find for their weighted mean

FIG. 3. Graphical comparison of the five values of the inverse
fine-structure constant a21 given in Eqs. (352) to (356), in or-
der of increasing value of a21.
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137.035 999 72(50) @3.631029# , with RB52.1 and
Q(17.5u4)50.0016. The normalized residuals of the five
values are 22.9, 20.6, 20.3, 1.2, and 2.7, with a21(Γ908 )
responsible for 48 % of x2 and a21(h/mn) for 41 %.
Clearly, the data do not agree well. However, note that
because the uncertainty of a21(ae) is significantly
smaller than that of any of the other values, and because
a21(Γ908 ) and a21(h/mn) tend to counterbalance one
another, the weighted mean exceeds a21(ae) by less
than 0.3 times the standard uncertainty of a21(ae), a
shift that is not particularly significant. We thus expect
that even if all of the input data of Table XIV.B.1 are
retained, the 1998 recommended value of a will be de-
termined mainly by a(ae).

Table XVI and Fig. 4 numerically and graphically
compare by means of inferred values of h many of the
data of Tables XIV.B.1 and XIV.B.2 that have not been
compared in Table XV and Fig. 2 through inferred val-
ues of a. Examination of Table XVI and Fig. 4 shows
that the values of h are in agreement, implying that the
seven input data from which they primarily are derived
are consistent: the absolute value of the difference ∆

FIG. 4. Graphical comparison of the input data related to the
constants (R` and G excepted) given in Tables XIV.B.1 and
XIV.B.2 via inferred values of the Planck constant h as sum-
marized in Table XVI, in order of increasing standard uncer-
tainty.
TABLE XVI. Comparison of the input data given in Tables XIV.B.1 and XIV.B.2 via inferred values
of the Planck constant h in order of increasing standard uncertainty.

Primary
source

Item
number Identification Sec. and Eq. h/(J s)

Relative standard
uncertainty ur

KJ
2RK B26.2 NIST-98 III.G.2 (249) 6.626 068 91(58)310234 8.731028

KJ
2RK B26.1 NPL-90 III.G.1 (246) 6.626 0682(13)310234 2.031027

KJ B24.1 NML-89 III.E.1 (223) 6.626 0684(36)310234 5.431027

KJ B24.2 PTB-91 III.E.2 (227) 6.626 0670(42)310234 6.331027

Γp2908 (hi) B22.2 NPL-79 III.D.1.c (206) 6.626 0729(67)310234 1.031026

F90 B27 NIST-80 III.H.1 (265) 6.626 0657(88)310234 1.331026

Γp2908 (hi) B22.1 NIM-95 III.D.1.b (202) 6.626 071(11)310234 1.631026
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between any two values of h is less than the standard
uncertainty of their difference udiff , and in most cases ∆
is significantly less than udiff . (To obtain h from KJ re-
quires a value of a and to obtain h from Γp2908 (hi) or F90
requires a value of a2. Although the above discussion
indicates that a number of values of a are available, the
possible variation of a is sufficiently small that its impact
on the agreement among the values of h is inconsequen-
tial.)

Because the uncertainties of the values of h from the
NIST and NPL values of KJ

2RK , items B26.2 and B26.1,
are rather smaller than the uncertainties of the other
values of h , we expect that the 1998 recommended value
of h will be determined to a large extent by these two
input data.

C. Multivariate analysis of data

Our third stage of data analysis proceeds in three
steps. First we analyze the Rydberg constant data of
Tables XIV.A.1 and XIV.A.2, then the other data of
Tables XIV.B.1 and XIV.B.2 and then all of the data
together. In this analysis, the input data are related to
the adjusted constants by means of appropriate observa-
tional equations. In those equations, the symbol 8 is
used to indicate that an observed value of an input da-
tum of the particular type shown on the left-hand side is
ideally given by the function of the adjusted constants
on the right-hand side. In general, an observational
equation in a least-squares adjustment does not express
an equality, because it is one of an overdetermined set
of equations relating the data to the adjusted constants.
In particular, in an observational equation of the form
Z8Z , the measured value (left-hand side) of a quantity
does not in general equal the adjusted value (right-hand
side) of that quantity. The best estimate of a quantity is
given by its observational equation evaluated with the
least-squares estimated values of the adjusted constants
on which it depends (see Appendix E).

1. Rydberg constant data

The input data of Table XIV.A.1, together with their
correlation coefficients in Table XIV.A.2, are examined
by carrying out various fits or adjustments based on the
method of least squares as summarized in Appendix E.
These 50 input data are of 49 different types and can be
expressed in terms of 28 adjusted constants. It is these
variables that are the ‘‘unknowns’’ of the adjustment
and for which best estimated values in the least-squares
sense are obtained. The 28 adjusted constants are given
in Table XVII.A.1, and the observational equations that
relate the 49 different types of input data to the adjusted
constants are given in Table XVII.A.2.

The following comments apply to the observational
equations given in Table XVII.A.2 and our use of them
in this section.

(i) The first argument in the expression for the energy
of a level does not denote an adjusted constant, but in-
dicates the state under consideration.
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(ii) Because in this section we are interested only in
the internal consistency of the data that pertain to R` ,
and because the results of our least-squares analysis of
those data depend only weakly on the values of a,
Ar(e), Ar(p), and Ar(d) employed, we temporarily take
for these quantities their 1998 recommended values with
no uncertainties.

Our multivariate analysis of the Rydberg-constant
data of Tables XIV.A.1 and XIV.A.2 has involved many
individual least-squares adjustments; the results of the
most informative of these are summarized in Table
XVIII. Since the key adjusted physical constants in the
observational equations used to analyze the data are R`

and the bound-state rms charge radii Rp and Rd , we
include in that table the values of these quantities result-
ing from each adjustment. We discuss in turn each of the
six adjustments listed in the table.

Adjustment 1. This adjustment involves all 50 input
data of Table XIV.A.1, together with the correlation co-

TABLE XVII.A.1. The 28 adjusted constants (variables) used
in the least-squares multivariate analysis of the Rydberg con-
stant data given in Tables XIV.A.1 and XIV.A.2. These ad-
justed constants appear as arguments of the functions on the
right-hand side of the observational equations of Table
XVII.A.2. [The notation for hydrogenic energy levels EX(nLj)
and for additive corrections dX(nLj) in this table have the
same meaning as the notations EnLj

X and dnLj
X in Appendix A,

Sec. 12.]

Adjusted constant Symbol

Rydberg constant R`

bound-state proton rms charge radius Rp

additive correction to EH(1S1/2) dH(1S1/2)
additive correction to EH(2S1/2) dH(2S1/2)
additive correction to EH(3S1/2) dH(3S1/2)
additive correction to EH(4S1/2) dH(4S1/2)
additive correction to EH(6S1/2) dH(6S1/2)
additive correction to EH(8S1/2) dH(8S1/2)
additive correction to EH(2P1/2) dH(2P1/2)
additive correction to EH(4P1/2) dH(4P1/2)
additive correction to EH(2P3/2) dH(2P3/2)
additive correction to EH(4P3/2) dH(4P3/2)
additive correction to EH(8D3/2) dH(8D3/2)
additive correction to EH(12D3/2) dH(12D3/2)
additive correction to EH(4D5/2) dH(4D5/2)
additive correction to EH(6D5/2) dH(6D5/2)
additive correction to EH(8D5/2) dH(8D5/2)
additive correction to EH(12D5/2) dH(12D5/2)
bound-state deuteron rms charge radius Rd

additive correction to ED(1S1/2) dD(1S1/2)
additive correction to ED(2S1/2) dD(2S1/2)
additive correction to ED(4S1/2) dD(4S1/2)
additive correction to ED(8S1/2) dD(8S1/2)
additive correction to ED(8D3/2) dD(8D3/2)
additive correction to ED(12D3/2) dD(12D3/2)
additive correction to ED(4D5/2) dD(4D5/2)
additive correction to ED(8D5/2) dD(8D5/2)
additive correction to ED(12D5/2) dD(12D5/2)
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TABLE XVII.A.2 Observational equations that express the input data related to R` in Tables XIV.A.1 and XIV.A.2 as functions
of the adjusted constants in Table XVII.A.1. The numbers in the first column correspond to the numbers in the first column of
Table XIV.A.1. The expressions for the energy levels of hydrogenic atoms are discussed in Appendix A. As pointed out in Sec. 12
of that Appendix, EX(nLj)/h is in fact proportional to cR` and independent of h , hence h is not an adjusted constant in these
equations. [The notation for hydrogenic energy levels EX(nLj) and for additive corrections dX(nLj) in this table have the same
meaning as the notations EnLj

X and dnLj
X in Appendix A, Sec. 12.] See Sec. IV.C for an explanation of the symbol 8.

Type of input
datum Observational equation

A1 –A6, A13, A14 nH~n1L1j1
2n2L2j2

! 8 @EH~n2L2j2
;R` ,a ,Ar~e!,Ar~p!,Rp ,dH~n2L2j2

!!

2EH~n1L1j1
;R` ,a ,Ar~e!,Ar~p!,Rp ,dH~n1L1j1

!!]/h

A7 –A12 nH~n1L1j1
2n2L2j2

!2
1
4 nH~n3L3j3

2n4L4j4
! 8 $EH~n2L2j2

;R` ,a ,Ar~e!,Ar~p!,Rp ,dH~n2L2j2
!!

2EH~n1L1j1
;R` ,a ,Ar~e!,Ar~p!,Rp ,dH~n1L1j1

!!

2
1
4 @EH~n4L4j4

;R` ,a ,Ar~e!,Ar~p!,Rp ,dH~n4L4j4
!!

2EH~n3L3j3
;R` ,a ,Ar~e!,Ar~p!,Rp ,dH~n3L3j3

!!]%/h

A15 Rp 8 Rp

A16–A20 nD~n1L1j1
2n2L2j2

! 8 @ED~n2L2j2
;R` ,a ,Ar~e!,Ar~d!,Rd ,dD~n2L2j2

!!

2ED~n1L1j1
;R` ,a ,Ar~e!,Ar~d!,Rd ,dD~n1L1j1

!!]/h

A21–A22 nD~n1L1j1
2n2L2j2

!2
1
4 nD~n3L3j3

2n4L4j4
! 8 $ED~n2L2j2

;R` ,a ,Ar~e!,Ar~d!,Rd ,dD~n2L2j2
!!

2ED~n1L1j1
;R` ,a ,Ar~e!,Ar~d!,Rd ,dD~n1L1j1

!!

2
1
4 @ED~n4L4j4

;R` ,a ,Ar~e!,Ar~d!,Rd ,dD~n4L4j4
!!

2ED~n3L3j3
;R` ,a ,Ar~e!,Ar~d!,Rd ,dD~n3L3j3

!!]%/h

A23 Rd 8 Rd

A24 nD~1S1/222S1/2!2nH~1S1/222S1/2! 8 $ED~2S1/2 ;R` ,a ,Ar~e!,Ar~d!,Rd ,dD~2S1/2!!

2ED~1S1/2 ;R` ,a ,Ar~e!,Ar~d!,Rd ,dD~1S1/2!!

2@EH~2S1/2 ;R` ,a ,Ar~e!,Ar~p!,Rp ,dH~2S1/2!!

2EH~1S1/2 ;R` ,a ,Ar~e!,Ar~p!,Rp ,dH~1S1/2!!]%/h

A25–A40 dH~nLj! 8 dH~nLj!

A41–A49 dD~nLj! 8 dD~nLj!

TABLE XVIII. Summary of the results of some of the least-squares adjustments used to analyze the
input data related to R` given in Tables XIV.A.1 and XIV.A.2. The values of R` , Rp , and Rd are
those obtained in the indicated adjustment, N is the number of input data, M is the number of
adjusted constants, n5N2M is the degrees of freedom, RB5Ax2/n is the Birge ratio, and Q(x2un)
is the probability that the observed value of x2 for n degrees of freedom would have exceeded that
observed value.

Adj. N M n x2 RB Q(x2un) R` /m21 ur(R`) Rp /fm Rd /fm

1 50 28 22 12.7 0.76 0.94 10 973 731.568 521(81) 7.3310212 0.859(10) 2.1331(42)
2 48 28 20 10.4 0.72 0.96 10 973 731.568 549(83) 7.5310212 0.907(32) 2.153(14)
3 31 18 13 7.4 0.75 0.88 10 973 731.568 556(96) 8.7310212 0.908(33)
4 16 11 5 2.1 0.65 0.84 10 973 731.568 32(30) 2.7310211 2.133(28)
5 36 28 8 4.8 0.78 0.78 10 973 731.568 59(16) 1.5310211 0.910(35) 2.154(15)
6 39 25 14 8.5 0.78 0.86 10 973 731.568 53(10) 9.2310212 0.903(35) 2.151(16)
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
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efficients of Table XIV.A.2, expressed in terms of the 28
adjusted constants of Table XVII.A.1 by means of the
49 different observational equations of Table XVII.A.2;
the degrees of freedom for this adjustment is n522.

Since this adjustment includes all of the data related
to R` and the Birge ratio is RB50.76 with Q(12.7u22)
50.94, the data are shown to be consistent. Further, no
normalized residual ri exceeds 1.5. However, the nor-
malized residual of each dX(nS1/2), n51,2,3,4,6,8, is in
the narrow range 21.410,ri,21.406, which shows a
systematic deviation between theory and experiment
corresponding to 126/n3 kHz for nS1/2 states. The most
likely sources for this difference are a deviation of the
value of the proton charge radius and/or the deuteron
charge radius predicted by the spectroscopic data from
the values deduced from scattering experiments, an un-
calculated contribution to the energy levels from the
two-photon QED correction that exceeds the estimated
uncertainty for this term, or a combination of these. Al-
though the normalized residuals of the input data for Rp
and Rd in this adjustment are 20.34 and 20.35, respec-
tively, these small values are a result of the small uncer-
tainties of the input data compared to the uncertainties
associated with the spectroscopic predictions.

Adjustment 2. This adjustment is the same as adjust-
ment 1, except that the input data for the charge radii
Rp , item A15, and Rd , item A23, are omitted. Thus the
transition frequencies alone determine the adjusted val-
ues of these constants.

When the proton and deuteron charge radii are al-
lowed to vary freely, they take on values that eliminate
the systematic deviation seen in adjustment 1 regardless
of its source. In fact, the absolute value of the normal-
ized residuals of all of the d ’s in this adjustment are less
than 0.04, and for nS1/2 states, 0.0001 or less. The differ-
ence between the deduced values of the Rydberg con-
stant from this adjustment and adjustment 1 is about
1
3 ur(R`), while the uncertainty itself is increased by less
than 3 %. This value of R` is preferable to the value
from adjustment 1, because the adjustment from which
it is obtained provides significantly better consistency
between theory and experiment, while its uncertainty is
not significantly larger.

Adjustments 3 and 4. Here the hydrogen data (adjust-
ment 3) and deuterium data (adjustment 4) are consid-
ered separately in order to investigate the consistency of
the H and D data. For the reasons given in the discus-
sion of adjustment 2, the input datum for Rp is not in-
cluded in adjustment 3 and the input datum for Rd is not
included in adjustment 4. In either case the measure-
ment of the H–D isotope shift, item A24, is also omitted.

We see from Table XVIII that the values of R` re-
sulting from these two adjustments agree, although the
uncertainty of R` from adjustment 4 (deuterium) is
about three times larger than the uncertainty from ad-
justment 3 (hydrogen).

Adjustments 5 and 6. The aim of these adjustments is
to check the consistency of the MPQ and the LKB-LKB/
LPTF data. Hence the MPQ data (adjustment 5) and the
LKB and LKB/LPTF data (adjustment 6) are consid-
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
ered separately, again with Rp and Rd omitted. In both
adjustments, the Yale, Harvard, and Sussex data, items
A11, A12, A13, A14.1, and A14.2, are included.

We see that the adjusted values of R` agree, as do the
adjusted values of Rp and Rd .

Based on the above analysis, we conclude that the
preferred way of treating the Rydberg-constant data is
adjustment 2. The reason is that by omitting as input
data the values of Rp and Rd obtained from electron-
scattering data and allowing their values to be deter-
mined entirely by the spectroscopic data, we eliminate
the systematic difference between theory and experi-
ment observed in adjustment 1, whatever its source. Al-
though doing so increases the uncertainty in the de-
duced value of the Rydberg constant, the increase is
very small and the resulting value of the Rydberg con-
stant has the advantage of being based on a consistent
set of data. For all of the adjustments with the input data
for Rp and Rd omitted, the values for these quantities
predicted by the spectroscopic data are in agreement
with each other and differ (particularly for the proton)
from the input values deduced from electron-scattering
experiments. However, since the difference between the
spectroscopic and the scattering values for the two radii
corresponds to a change of only 1.4 times the uncer-
tainty of dX(nS1/2), one cannot make a conclusive state-
ment about the implications of the difference.

2. Other data

As we did in the previous section for the Rydberg-
constant data, we examine here the input data related to
the constants (R` and G excepted) of Table XIV.B.1,
together with the correlation coefficients in Table
XIV.B.2, by means of a multivariate analysis based on
the method of least squares as summarized in Appendix
E. These 57 input data are of 46 different types and can
be expressed in terms of the 29 adjusted constants given
in Table XIX.B.1. The observational equations that re-
late the 46 different types of input data to the adjusted
constants are given in Table XIX.B.2. The following
comments apply to these equations and our use of them
in this section.

(i) The last column of the table gives the section in
which the basis of the observational equation in ques-
tion is discussed. (Equations of the form Z8Z are self
explanatory and no section is indicated.)

(ii) The various ratios of binding energies Eb(X) to
the energy equivalent of the atomic mass constant muc2

in the observational equations for input data of type B1
to B6 are taken as exact (see Sec. III.A.2).

(iii) The bound-state corrections ge2(H)/ge2 ,
gp(H)/gp , ge2(D)/ge2 , and gd(D)/gd in the observa-
tional equations for input data of type B9 to B11 are
taken as exact; and similarly, the bound-state corrections
ge2(Mu)/ge2 and gm1(Mu)/gm1 in the observational
equations for input data of type B15 and B16, but which
are not explicitly shown, are taken as exact (see Sec.
III.C.2.). Note also that in the observational equation
for these two input data, the exact proton NMR refer-
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ence frequency fp is not an adjusted constant but is in-
cluded in the equation to indicate that it is a function of
fp .

(iv) The theoretical expression for the electron mag-
netic moment anomaly ae in terms of a and de is given in
Appendix B, Eq. (B23); and that for the muon magnetic
moment anomaly am in terms of a and dm is given in
Appendix C, Eq. (C34).

(v) The theoretical expressions for ae and/or am are
part of the observational equations for input data of
type B14 to B17, B19, and B21 to B23, but are not ex-
plicitly shown in the equations for B15 to B17, since for
simplicity the observational equations for input data of
type B15 to B17 are not written as explicit functions of
the adjusted constants.

(vi) The observational equation for items B15 and
B16 is based on Eqs. (134), (142), and (143) of Sec.
III.C.9, and includes the functions ae(a ,de) and

TABLE XIX.B.1. The 29 adjusted constants (variables) used
in the least-squares multivariate analysis of the input data
given in Tables XIV.B.1 and XIV.B.2. These adjusted con-
stants appear as arguments of the functions on the right-hand
side of the observational equations of Table XIX.B.2.

Adjusted constant Symbol

electron relative atomic mass Ar(e)
proton relative atomic mass Ar(p)
neutron relative atomic mass Ar(n)
deuteron relative atomic mass Ar(d)
helion relative atomic mass Ar(h)
alpha particle relative atomic mass Ar(a)
fine-structure constant a
additive correction to ae(th) de

electron-proton magnetic moment ratio me2 /mp

deuteron-electron magnetic moment ratio md /me2

electron to shielded proton
magnetic moment ratio me2 /mp8

shielded helion to shielded proton
magnetic moment ratio mh8/mp8

neutron to shielded proton
magnetic moment ratio mn /mp8

electron-muon mass ratio me /mm

additive correction to DnMu(th) dMu

additive correction to am(th) dm

Planck constant h
molar gas constant R
copper Ka1 x unit xu(Cu Ka1)
molybdenum Ka1 x unit xu(Mo Ka1)
ångstrom star Å*
d220 of Si crystal ILL d220(ILL)
d220 of Si crystal N d220(N)
d220 of Si crystal WASO 17 d220(W17)
d220 of Si crystal WASO 04 d220(W04)
d220 of Si crystal WASO 4.2a d220(W4.2a)
d220 of Si crystal MO*4 d220(MO*4)
d220 of Si crystal SH1 d220(SH1)
d220 of an ideal Si crystal d220
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am(a ,dm), as well as the theoretical expression for input
data of type B17, DnMu . The latter expression is dis-
cussed in Appendix D and is a function of R` , a,
me /mm , am(a ,dm), and dMu .

(vii) In analogy with the analysis of the Rydberg-
constant data, in this section we are interested only in
the internal consistency of the other data. Because the
results of our least-squares analysis of these data depend
only weakly on the value of R` employed, we tempo-
rarily take the 1998 recommended value for it with no
uncertainty.

As for our multivariate analysis of the Rydberg-
constant data, our multivariate analysis of the data of
Tables XIV.B.1 and XIV.B.2 has involved many indi-
vidual least-squares adjustments. The data used in some
of the more informative of these adjustments are sum-
marized in Table XX by indicating the items of data
omitted, and the results of the adjustments themselves
are summarized in Table XXI. Since the key quantities
in determining a large number of the 1998 recom-
mended values of the constants are a and h , the values
of these quantities resulting from each adjustment are
the focus of the analysis and are given in the table. We
discuss each of the nine adjustments in turn.

Adjustment 1. This adjustment involves all N557 in-
put data of Tables XIV.B.1 and XIV.B.2, expressed in
terms of the M529 adjusted constants of Table XIX.B.1
through the 46 different observational equations of
Table XIX.B.2; the degrees of freedom for this adjust-
ment is n5N2M528.

As anticipated from the analyses of Secs. IV.A.2 and
IV.B.2, the value of x2 for this adjustment is significantly
larger than n. Also as anticipated, the principal contribu-
tor to the unacceptably large value of x2 is item B23.2,
the VNIIM value of Γh2908 (lo). Its normalized residual is
r53.6 and it is responsible for 31 % of x2. However, its
self-sensitivity coefficient Sc is only 0.20 %. (Sc is a mea-
sure of how the least-squares estimated value of a given
type of input datum depends on a particular measured
value of that type of datum; see Appendix E.) This value
of Sc confirms the limited potential of this datum for
contributing to the 1998 adjustment that was identified
in Sec. IV.B.2.

Adjustment 2. When the VNIIM value of Γh2908 (lo) is
eliminated, one obtains a quite acceptable value of x2.
The three input data with the largest normalized residu-
als are then the NIST value of Γp2908 (lo), item B21.1,
with r52.3; the PTB value of h/mnd220(W04) , item B29,
with r522.0; and the KRISS/VNIIM value of Γh2908 (lo),
item B23.1, with r51.8. The self-sensitivity coefficients
Sc of the three input data are 1.9 %, 38 %, and 0.78 %.
The comparatively large normalized residuals are no
surprise in view of the discussion of Sec. IV.B.2. The fact
that Sc for item B29 is only 38 % can be understood by
recognizing that the adjusted value of a and the mean of
the three values of d220(X) together produce an indirect
value of h/mnd220(W04) with a comparatively small un-
certainty.
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TABLE XIX.B.2. Observational equations that express the input data in Tables XIV.B.1 and
XIV.B.2 as functions of the adjusted constants in Table XIX.B.1. The numbers in the first column
correspond to the numbers in the first column of Table XIV.B.1. For simplicity, the lengthier func-
tions are not explicitly given. See Sec. IV.C for an explanation of the symbol 8.

Type of input
datum Observational equation Sec.

B1 Ar~
1H! 8 Ar~p!1Ar~e!2Eb~

1H!/muc2 III.A.3.b

B2 Ar~
2H! 8 Ar~d!1Ar~e!2Eb~

2H!/muc2 III.A.3.b

B3 Ar~
3He! 8 Ar~h!12Ar~e!2Eb~

3He!/muc2 III.A.3.b

B4 Ar~
4He! 8 Ar~a!12Ar~e!2Eb~

4He!/muc2 III.A.3.b

B5
6me

m~12C61!
8

6Ar~e!

1226Ar~e!1Eb~
12C!/muc2

III.A.3.a

B6
m~12C41!

4mp

8
1224Ar~e!1@Eb~

12C!2Eb~
12C41!#/muc2

4Ar~p!
III.A.3.b

B7 ae 8 ae~a ,de! App. B

B8 de 8 de

B9
me2~H!

mp~H!
8

ge2~H!

ge2
S gp~H!

gp
D 21 me2

mp
III.C.3

B10
md~D!

me2~D!
8

gd~D!

gd
S ge2~D!

ge2
D 21 md

me2

III.C.4

B11
me2~H!

mp8
8

ge2~H!

ge2

me2

mp8
III.C.6.b

B12
mh8

mp8
8

mh8

mp8

B13
mn

mp8
8

mn

mp8

B14
mm1

mp
8 2

11am~a ,dm!

11ae~a ,de!

me

mm

me2

mp
III.C.9.a

B15, B16 n~fp! 8 nS fp ;R` ,a ,
me

mm
,
me2

mp
,de ,dm ,dMuD III.C.9.b

B17 DnMu 8 DnMuS R` ,a ,
me

mm
,dm ,dMuD App. D

B18 dMu 8 dMu

B19 R̄ 8 2
am~a ,dm!

11ae~a ,de!

me

mm

me2

mp
III.C.10.a

B20 dm 8 dm

B21 Γp2908 ~ lo! 8 2
KJ290 RK290 @11ae~a ,de!#a

3

2m0R`
S me2

mp8
D 21

III.D.1.a

B22 Γp2908 ~hi! 8 2
c@11ae~a ,de!#a

2

KJ290 RK290 R`h S me2

mp8
D 21

III.D.1.b

B23 Γh2908 ~ lo! 8
KJ290 RK290 @11ae~a ,de!#a

3

2m0R`
S me2

mp8
D 21 mh8

mp8
III.D.2.a

B24 KJ 8 S 8a

m0ch D 1/2

III.E.1

B25 RK 8
m0c

2a
III.F

B26 KJ
2RK 8

4
h

III.G
., Vol. 72, No. 2, April 2000



444 P. J. Mohr and B. N. Taylor: CODATA recommended values

Rev. Mod. Phys
TABLE XX. Summary of the input data given in Tables XIV.B.1 and XIV.B.2 that are omitted from
one or more of the adjustments 1 to 9 summarized in Table XXI and discussed in the text. (Omission
is indicated by s, inclusion by d.)

Item
number Symbol Identification

Adjustment number

1 2 3 4 5 6 7 8 9

B8 de theory d d s s d d d d d

B14 mm1 /mp SIN-82 d d d d d d d s s

B19.1 R̄ CERN-79 d d d d d d d s s

B19.2 R̄ BNL-99 d d d d d d d s s

B21.1 Γp2908 (lo) NIST-89 d d d d s d s d s

B21.2 Γp2908 (lo) NIM-95 d d d d s d s s s

B22.1 Γp2908 (hi) NIM-95 d d d d d d d s s

B22.2 Γp2908 (hi) NPL-79 d d d d d d d s s

B23.1 Γh2908 (lo) KR/VN-98 d d d d s d s s s

B23.2 Γh2908 (lo) VNIIM-89 d s d s s s s s s

B24.2 KJ PTB-91 d d d d d d d d s

B25.2 RK NML-97 d d d d d d d s s

B25.3 RK NPL-88 d d d d d d d s s

B25.4 RK NIM-95 d d d d d d d s s

B26.1 KJ
2RK NPL-90 d d d s d d d d d

B26.2 KJ
2RK NIST-98 d d d s d d d d d

B27 F90 NIST-80 d d d d d d d s s

B39 d220(W4.2a) PTB-81 d d d d d s s d d

B40 d220(MO*4) IMGC-94 d d d d d s s d d

B41 d220(SH1) NRLM-97 d d d d d s s d d

TABLE XIX.B.2 (Continued).

Type of input
datum Observational equation Sec.

B27 F90 8
cMu Ar~e!a2

KJ290 RK290 R`h
III.H

B28
λmeas

d220~ILL!
8

a2Ar~e!

R`d220~ ILL!

Ar~n!1Ar~p!

@Ar~n!1Ar~p!#22Ar
2~d!

III.A.3.c

B29
h

mnd220~W04!
8

cAr~e!a2

2R`Ar~n!d220~W04!
III.K.1

B30–B33 12
d220~Y!

d220~X!
8 12

d220~Y!

d220~X!

B34–B37
d220~X!

d220~Y!
21 8

d220~X!

d220~Y!
21

B38
d220

d220~W04!
21 8

d220

d220~W04!
21

B39–B41 d220~X! 8 d220~X!

B42 R 8 R

B43, B46
λ~Cu Ka1!

d220~X!
8

1 537.400 xu~Cu Ka1!

d220~X!
III.R

B44
λ~W Ka1!

d220~N!
8

0.209 010 0 Å*

d220~N!
III.R

B45
λ~Mo Ka1!

d220~N!
8

707.831 xu~Mo Ka1!

d220~N!
III.R
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TABLE XXI. Summary of the results of some of the least-squares adjustments used to analyze the input data given in Tables
XIV.B.1 and XIV.B.2. The values of a and h are those obtained in the indicated adjustment, N is the number of input data, M is
the number of adjusted constants, n5N2M is the degrees of freedom, RB5Ax2/n is the Birge ratio, and Q(x2un) is the
probability that the observed value of x2 for n degrees of freedom would have exceeded that observed value.

Adj. N M n x2 RB Q(x2un) a21 ur(a21) h/(J s) ur(h)

1 57 29 28 41.4 1.2 0.05 137.035 999 68(50) 3.631029 6.626 068 78(52)310234 7.831028

2 56 29 27 28.7 1.0 0.38 137.035 999 73(50) 3.631029 6.626 068 78(52)310234 7.831028

3 57 29 28 40.9 1.2 0.05 137.036 0008(18) 1.331028 6.626 068 78(52)310234 7.831028

4 54 29 25 27.4 1.0 0.34 137.036 0015(18) 1.331028 6.626 0684(24)310234 3.631027

5 53 29 24 20.0 0.9 0.70 137.035 999 90(50) 3.731029 6.626 068 78(52)310234 7.831028

6 53 29 24 17.5 0.9 0.83 137.035 999 52(50) 3.731029 6.626 068 78(52)310234 7.831028

7 50 29 21 9.1 0.7 0.99 137.035 999 69(51) 3.731029 6.626 068 78(52)310234 7.831028

8 45 29 16 21.8 1.2 0.15 137.035 999 76(50) 3.731029 6.626 068 76(52)310234 7.831028

9 43 29 14 16.1 1.1 0.30 137.035 999 88(51) 3.731029 6.626 068 79(52)310234 7.931028
Adjustment 3. This adjustment demonstrates formally
that the VNIIM value of Γh2908 (lo) is not incompatible
just with ae . As shown in Sec. IV.B.2, ae provides a
value of a with an uncertainty that is significantly
smaller than that of any other value. To eliminate
a(ae), we increase the standard uncertainty u(de) of de
by the multiplicative factor 106. (This is what an open
circle means in the row corresponding to de in Table
XX.) In this case the normalized residual of the VNIIM
value is 3.6; it is responsible for 32 % of x2, and its self-
sensitivity coefficient is 1.3 %. Because of the obvious
severe disagreement of this input datum with the other
data and negligible contribution to any reasonable ad-
justment, we omit it from all other adjustments without
comment.

Adjustment 4. To examine the robustness of the values
of a and h , we eliminate those input data that contribute
most significantly to their determination. Based on the
discussions of Secs. IV.A.2 and IV.B.2, these are a(ae)
for a and the NIST and NPL values of KJ

2RK , items
B26.1 and B26.2, for h. We see that the value of a of
adjustment 2 differs from the value of a of adjustment 4
by 1.0 times the uncertainty of a of adjustment 4, and
the latter uncertainty is 3.6 times the uncertainty of a of
adjustment 2. For h , the corresponding numbers are
0.18 and 4.6.

We conclude that the values of a and h are in fact
fairly robust.

Adjustments 5, 6, and 7. The first of these adjustments
shows the effect of deleting all three remaining low-field
gyromagnetic ratio results, especially the NIST value of
Γp2908 (lo), item B21.1, and the KRISS/VNIIM value of
Γh2908 (lo), item B23.1; the second shows the effect of
deleting the PTB, IMCG, and NRLM values of d220(X),
items B39, B40, and B41; and the third shows the effect
of deleting all six of these input data. The adjustments
reflect the results that would have been obtained in Sec.
IV.B.2 if the weighted mean of the five values of a had
been computed with a(Γ908 ) deleted, then with a(h/mn)
deleted, and finally with both deleted.

Adjustment 8. A considerable number of input data
contribute only marginally to the determination of the
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
values of the adjusted constants as measured by their
values of Sc in adjustment 1. In adjustment 8, we omit
those input data that have values of Sc,1 % unless they
are a subset of the data of an experiment that provides
input data with Sc.1 %. The only input datum consid-
ered in this section that falls in the latter category is the
1982 LAMPF value of n(58 MHz), item B15. (There are
four input data related to the Rydberg constant that also
fall into the latter category based on adjustment 1 of
Sec. IV.C.1: items A8, A9, A21, and A22.)

As expected, the changes in the values of a and h and
in their uncertainties are inconsequential; the absolute
value of the change in a between adjustments 2 and 8 is
about 1

18 times the standard uncertainty of a, and the
absolute value of the change in h is about 1

26 times the
standard uncertainty of h .

Adjustment 9. Here we extend the concept of adjust-
ment 8 by eliminating all input data that in adjustment 1
have values of Sc,2 %. Because this cutoff for Sc now
eliminates the NIST value of Γp2908 (lo), item B21.1,
which in adjustment 8 provides a higher value of a that
counterbalances the lower values of a from RK and
h/mnd220(W04) , the absolute value of the change in a is
larger than that between adjustments 2 and 8. Neverthe-
less, the absolute value of the change in a between ad-
justments 2 and 9 is still only about 1/3.4 times the stan-
dard uncertainty of a. On the other hand, the absolute
value of the change in h is smaller; it is only about 1/75
times the standard uncertainty of h .

In summary, we have identified and eliminated one
significantly discrepant input datum, item B23.2, the
VNIIM value of Γh2908 (lo), and have demonstrated the
robustness of the adjusted values of a and h .

Based on the analysis and discussion of the other data
as given here and in Secs. IV.A.2 and IV.B.2, we con-
clude that adjustment 8 as summarized in Tables XX
and XXI is the preferred way of treating these data. To
reiterate, 45 of the 57 input data of Tables XIV.B.1 and
XIV.B.2 are used in the adjustment, its 29 adjusted con-
stants are as given in Table XIX.B.1, RB51.17, and
Q(21.8u16)50.15. Each input datum comes from an ex-
periment that provides data with a self-sensitivity coef-
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TABLE XXII. Summary of the results of some of the least-squares adjustments used to analyze all of the input data given in
Tables XIV.A.1, XIV.A.2, XIV.B.1, and XIV.B.2. The values of R` , a, and h are those obtained in the indicated adjustment, N

is the number of input data, M is the number of adjusted constants, n5N2M is the degrees of freedom, RB5Ax2/n is the Birge
ratio, and Q(x2un) is the probability that the observed value of x2 for n degrees of freedom would have exceeded that observed
value.

Adj. N M n x2 RB Q(x2un) R` /m21 a21 h/(J s)

1 93 57 36 32.2 0.95 0.65 10 973 731.568 549(83) 137.035 999 76(50) 6.626 068 76(52)310234

2 107 57 50 54.1 1.04 0.32 10 973 731.568 521(81) 137.035 999 67(50) 6.626 068 78(52)310234

3 106 57 49 41.4 0.92 0.77 10 973 731.568 521(81) 137.035 999 73(50) 6.626 068 78(52)310234
ficient of Sc.1 %. We choose this adjustment, rather
than adjustment 2 or 9 of Table XXI, because the data
of truly marginal significance have been eliminated from
it, but those data of slightly greater significance and
which have some impact on the adjusted value of a are
retained. We choose not to expand the uncertainties ini-
tially assigned the input data that determine the value of
a in order to reflect the lack of agreement of some of
these data, because the data principally involved in the
disagreements have such magnitudes and uncertainties
that their effect on the value of a is small. More to the
point, we see little justification for expanding the uncer-
tainties initially assigned the data that determine the ad-
justed value of a, which includes ae(exp) and de and
which would lead to an increased uncertainty of the ad-
justed value, because of disagreements involving data
that contribute only in a marginal way to that value.

It should also be recognized that deleting input data
with values of Sc,1 % is consistent with the criterion
used in the initial data selection process, namely, that
each input datum considered for the 1998 adjustment
had to have a weight that was nontrivial in comparison
with the weight of other directly measured values of the
same quantity; see Sec. I.D.

3. All data

Here we summarize the multivariate analysis of all of
the input data given in Tables XIV.A.1, XIV.A.2,
XIV.B.1, and XIV.B.2 together. In fact, there is little to
discuss that has not already been covered in the previous
two sections, in which we have summarized the indepen-
dent multivariate analysis of the two categories of data.
Because the data in these two categories—Rydberg con-
stant and other—are only weakly coupled, the preferred
adjustment for the data in each category, adjustment 2
of Table XVIII and adjustment 8 of Table XXI, can be
combined to yield the preferred adjustment for all of the
data together.

In summary, the preferred adjustment uses as input
data all of the data related to R` given in Tables
XIV.A.1 and XIV.A.2 except the values of Rp and Rd ,
items A15 and A23; and all of the data related to the
constants (R` and G excepted) given in Tables XIV.B.1
and XIV.B.2 except the 1982 SIN value of mm1 /mp , item
B14; the 1979 CERN and 1999 Brookhaven values of R̄ ,
items B19.1 and B19.2; the 1995 NIM values of Γp2908 (lo)
and Γp2908 (hi), items B21.2 and B22.1; the 1979 NPL
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
value of Γp2908 (hi), item B22.2; the 1998 KRISS-VNIIM
and 1989 VNIIM values of Γh2908 (lo), items B23.1 and
B23.2; the 1997 NML, 1988 NPL, and 1995 NIM values
of RK , items B25.2, B25.3, and B25.4; and the NIST
value of F90 , item B27. The input data with the largest
residuals, and hence those that make the dominant con-
tributions to x2, are the 1989 NIST value of Γp2908 (lo),
item B21.1 with r52.33; the 1999 PTB value of
h/mnd220(W04), item B29 with r521.97; the 1994
IMGC value of d220(MO* 4), item B40 with r521.48;
and the 1981 PTB value of d220(W4.2a), item B39 with
r521.48. All other input data have uru,1.2.

Some of the results of this adjustment, denoted as ad-
justment 1, are summarized in Table XXII. A compari-
son of the values of R` , a, and h that follow from it to
the corresponding values of the preferred independent
adjustments of the data shows the weak dependence of
the data in each category on the data in the other cat-
egory. For comparison purposes, we also summarize in
Table XXII the results from two other adjustments
based on the combined data. Adjustment 2 uses all of
the data, including item B23.2, the inconsistent 1989
VNIIM value of Γh2908 (lo); and adjustment 3 uses all of
the data except this item. Clearly, there are no surprises
in the results.

D. Final selection of data and least-squares adjustment

Based on the data analysis and discussion of the pre-
vious sections, we choose adjustment 1 as summarized in
Table XXII of the previous section to obtain the 1998
recommended values of the constants. In this adjust-
ment, 93 of the 107 items of data given in Tables
XIV.A.1 and XIV.B.1, together with their correlation
coefficients given in Tables XIV.A.2 and XIV.B.2, are
used as input data. The adjustment has degrees of free-
dom n536, x2532.2, RB50.95, and Q(32.4u36)50.65,
and the 57 adjusted constants employed are those given
in Tables XVII.A.1 and XIX.B.1. Each input datum
comes from an experiment that provides data with a
self-sensitivity coefficient Sc.1 %. The values of the
constants deduced from adjustment 1 are given in the
following section.

V. THE 1998 CODATA RECOMMENDED VALUES

As indicated in Sec. IV.D, the 1998 recommended val-
ues of the constants are based on least-squares adjust-
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TABLE XXIII. An abbreviated list of the CODATA recommended values of the fundamental
constants of physics and chemistry based on the 1998 adjustment.

Quantity Symbol Numerical value Unit
Relative std.

uncert. ur

speed of light in vacuum c ,c0 299 792 458 m s21 (exact)
magnetic constant m0 4p31027 N A22

512.566 370 614 . . . 31027 N A22 (exact)
electric constant 1/m0c2 e0 8.854 187 817 . . . 310212 F m21 (exact)
Newtonian constant

of gravitation G 6.673(10)310211 m3 kg21 s22 1.531023

Planck constant h 6.626 068 76(52)310234 J s 7.831028

h/2p \ 1.054 571 596(82)310234 J s 7.831028

elementary charge e 1.602 176 462(63)310219 C 3.931028

magnetic flux quantum h/2e Φ0 2.067 833 636(81)310215 Wb 3.931028

conductance quantum 2e2/h G0 7.748 091 696(28)31025 S 3.731029

electron mass me 9.109 381 88(72)310231 kg 7.931028

proton mass mp 1.672 621 58(13)310227 kg 7.931028

proton-electron mass ratio mp /me 1 836.152 6675(39) 2.131029

fine-structure constant e2/4pe0\c a 7.297 352 533(27)31023 3.731029

inverse fine-structure constant a21 137.035 999 76(50) 3.731029

Rydberg constant a2mec/2h R` 10 973 731.568 549(83) m21 7.6310212

Avogadro constant NA ,L 6.022 141 99(47)31023 mol21 7.931028

Faraday constant NAe F 96 485.3415(39) C mol21 4.031028

molar gas constant R 8.314 472(15) J mol21 K21 1.731026

Boltzmann constant R/NA k 1.380 6503(24)310223 J K21 1.731026

Stefan–Boltzmann constant
(p2/60)k4/\3c2 s 5.670 400(40)31028 W m22 K24 7.031026

Non-SI units accepted for use with the SI
electron volt: (e/C) J
(unified) atomic mass unit

eV 1.602 176 462(63)310219 J 3.931028

1 u5mu5
1

12 m(12C)
51023 kg mol21/NA

u 1.660 538 73(13)310227 kg 7.931028
ment 1 of Table XXII. The direct result of this adjust-
ment is best estimated values in the least-squares sense
of the 57 adjusted constants given in Tables XVII.A.1
and XIX.B.1 together with their variances and covari-
ances. All of the 1998 recommended values and their
uncertainties are obtained from these 57 constants and,
as appropriate: (i) those constants that have defined val-
ues such as c and m0 ; (ii) the value of G adopted in Sec
III.Q; and (iii) values of mt , GF , and sin2 uW given in
Sec. III.S. How this is done is described in Sec. V.B,
which immediately follows the tables of recommended
values given in Sec. V.A.

A. Tables of values

The 1998 CODATA recommended values of the basic
constants and conversion factors of physics and chemis-
try, including the values of related quantities, are given
in Tables XXIII to XXX. Table XXIII is a highly abbre-
viated list containing the values of the constants and
conversion factors most commonly used. Table XXIV is
a much more extensive list of values categorized as fol-
lows: UNIVERSAL; ELECTROMAGNETIC;
ATOMIC AND NUCLEAR; and PHYSICOCHEMI-
CAL. The ATOMIC AND NUCLEAR category is sub-
., Vol. 72, No. 2, April 2000
divided into ten subcategories: General; Electroweak;
Electron, e2; Muon, m2; Tau, t2; Proton, p; Neutron, n;
Deuteron, d; Helion, h; and Alpha particle, a. Table
XXV gives the variances, covariances, and correlation
coefficients of a selected group of constants. (Applica-
tion of the covariance matrix is discussed in Appendix
F.) Table XXVI gives the internationally adopted values
of various quantities; Table XXVII lists the values of a
number of x-ray-related quantities; Table XXVIII lists
the values of various non-SI units; and Tables XXIX and
XXX give the values of various energy equivalents.

All of the values given in Tables XXIII to XXX are
available on the Web pages of the Fundamental Con-
stants Data Center of the NIST Physics Laboratory at
physics.nist.gov/constants. This electronic version of the
1998 CODATA recommended values of the constants
also includes a much more extensive correlation coeffi-
cient matrix. Indeed, the correlation coefficient of any
two constants listed in the tables is accessible on the
Web site, as well as the automatic conversion of the
value of an energy-related quantity expressed in one
unit to the corresponding value expressed in another
unit (in essence, an automated version of Tables XXIX
and XXX).
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TABLE XXIV. The CODATA recommended values of the fundamental constants of physics and chemistry based on the 1998
adjustment.

Quantity Symbol Numerical value Unit
Relative std.
uncert. ur

UNIVERSAL
speed of light in vacuum c ,c0 299 792 458 m s21 (exact)
magnetic constant m0 4p31027 N A22

512.566 370 614 . . . 31027 N A22 (exact)
electric constant 1/m0c2 e0 8.854 187 817 . . . 310212 F m21 (exact)
characteristic impedance

of vacuum Am0 /e05m0c Z0 376.730 313 461 . . . V (exact)
Newtonian constant

of gravitation G 6.673(10)310211 m3 kg21 s22 1.531023

G/\c 6.707(10)310239 (GeV/c2)22 1.531023

Planck constant h 6.626 068 76(52)310234 J s 7.831028

in eV s 4.135 667 27(16)310215 eV s 3.931028

h/2p \ 1.054 571 596(82)310234 J s 7.831028

in eV s 6.582 118 89(26)310216 eV s 3.931028

Planck mass (\c/G)1/2 mP 2.1767(16)31028 kg 7.531024

Planck length \/mPc5(\G/c3)1/2 lP 1.6160(12)310235 m 7.531024

Planck time lP /c5(\G/c5)1/2 tP 5.3906(40)310244 s 7.531024

ELECTROMAGNETIC
elementary charge e 1.602 176 462(63)310219 C 3.931028

e/h 2.417 989 491(95)31014 A J21 3.931028

magnetic flux quantum h/2e Φ0 2.067 833 636(81)310215 Wb 3.931028

conductance quantum 2e2/h G0 7.748 091 696(28)31025 S 3.731029

inverse of conductance quantum G0
21 12 906.403 786(47) V 3.731029

Josephson constanta 2e/h KJ 483 597.898(19)3109 Hz V21 3.931028

von Klitzing constantb

h/e25m0c/2a RK 25 812.807 572(95) V 3.731029

Bohr magneton e\/2me mB 927.400 899(37)310226 J T21 4.031028

in eV T21 5.788 381 749(43)31025 eV T21 7.331029

mB /h 13.996 246 24(56)3109 Hz T21 4.031028

mB /hc 46.686 4521(19) m21 T21 4.031028

mB /k 0.671 7131(12) K T21 1.731026

nuclear magneton e\/2mp mN 5.050 783 17(20)310227 J T21 4.031028

in eV T21 3.152 451 238(24)31028 eV T21 7.631029

mN /h 7.622 593 96(31) MHz T21 4.031028

mN /hc 2.542 623 66(10)31022 m21 T21 4.031028

mN /k 3.658 2638(64)31024 K T21 1.731026

ATOMIC AND NUCLEAR

General
fine-structure constant e2/4pe0\c a 7.297 352 533(27)31023 3.731029

inverse fine-structure constant a21 137.035 999 76(50) 3.731029

Rydberg constant a2mec/2h R` 10 973 731.568 549(83) m21 7.6310212

R`c 3.289 841 960 368(25)31015 Hz 7.6310212

R`hc 2.179 871 90(17)310218 J 7.831028

R`hc in eV 13.605 691 72(53) eV 3.931028

Bohr radius a/4pR`54pe0\2/mee
2 a0 0.529 177 2083(19)310210 m 3.731029

Hartree energy e2/4pe0a052R`hc
5a2mec

2 Eh 4.359 743 81(34)310218 J 7.831028

in eV 27.211 3834(11) eV 3.931028

quantum of circulation h/2me 3.636 947 516(27)31024 m2 s21 7.331029

h/me 7.273 895 032(53)31024 m2 s21 7.331029
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TABLE XXIV (Continued).

Quantity Symbol Numerical value Unit
Relative std.
uncert. ur

Electroweak
Fermi coupling constantc GF /(\c)3 1.166 39(1)31025 GeV22 8.631026

weak mixing angled uW (on-shell scheme)
sin2uW5sW

2 [12(mW/mZ)2 sin2 uW 0.2224(19) 8.731023

Electron, e2

electron mass me 9.109 381 88(72)310231 kg 7.931028

in u, me5Ar(e) u (electron
relative atomic mass times u) 5.485 799 110(12)31024 u 2.131029

energy equivalent mec
2 8.187 104 14(64)310214 J 7.931028

in MeV 0.510 998 902(21) MeV 4.031028

electron–muon mass ratio me /mm 4.836 332 10(15)31023 3.031028

electron–tau mass ratio me /mt 2.875 55(47)31024 1.631024

electron–proton mass ratio me /mp 5.446 170 232(12)31024 2.131029

electron–neutron mass ratio me /mn 5.438 673 462(12)31024 2.231029

electron–deuteron mass ratio me /md 2.724 437 1170(58)31024 2.131029

electron to alpha particle mass ratio me /ma 1.370 933 5611(29)31024 2.131029

electron charge to mass quotient 2e/me 21.758 820 174(71)31011 C kg21 4.031028

electron molar mass NAme M(e),Me 5.485 799 110(12)31027 kg mol21 2.131029

Compton wavelength h/mec λC 2.426 310 215(18)310212 m 7.331029

λC/2p5aa05a2/4pR` |C 386.159 2642(28)310215 m 7.331029

classical electron radius a2a0 re 2.817 940 285(31)310215 m 1.131028

Thomson cross section (8p/3)re
2 se 0.665 245 854(15)310228 m2 2.231028

electron magnetic moment me 2928.476 362(37)310226 J T21 4.031028

to Bohr magneton ratio me /mB 21.001 159 652 1869(41) 4.1310212

to nuclear magneton ratio me /mN 21 838.281 9660(39) 2.131029

electron magnetic moment
anomaly umeu/mB21 ae 1.159 652 1869(41)31023 3.531029

electron g-factor 22(11ae) ge 22.002 319 304 3737(82) 4.1310212

electron–muon
magnetic moment ratio me /mm 206.766 9720(63) 3.031028

electron–proton
magnetic moment ratio me /mp 2 658.210 6875(66) 1.031028

electron to shielded proton
magnetic moment ratio me /mp8 2 658.227 5954(71) 1.131028

(H2O, sphere, 25 °C)
electron–neutron
magnetic moment ratio me /mn 960.920 50(23) 2.431027

electron–deuteron
magnetic moment ratio me /md 22 143.923 498(23) 1.131028

electron to shielded helione

magnetic moment ratio me /mh8 864.058 255(10) 1.231028

(gas, sphere, 25 °C)
electron gyromagnetic ratio 2umeu/\ ge 1.760 859 794(71)31011 s21 T21 4.031028

ge /2p 28 024.9540(11) MHz T21 4.031028

Muon, m2

muon mass mm 1.883 531 09(16)310228 kg 8.431028

in u, mm5Ar(m) u (muon
relative atomic mass times u) 0.113 428 9168(34) u 3.031028

energy equivalent mmc2 1.692 833 32(14)310211 J 8.431028

in MeV 105.658 3568(52) MeV 4.931028

muon–electron mass ratio mm /me 206.768 2657(63) 3.031028
Rev. Mod. Phys., Vol. 72, No. 2, April 2000



450 P. J. Mohr and B. N. Taylor: CODATA recommended values
TABLE XXIV (Continued).

Quantity Symbol Numerical value Unit
Relative std.
uncert. ur

muon–tau mass ratio mm /mt 5.945 72(97)31022 1.631024

muon–proton mass ratio mm /mp 0.112 609 5173(34) 3.031028

muon–neutron mass ratio mm /mn 0.112 454 5079(34) 3.031028

muon molar mass NAmm M(m),Mm 0.113 428 9168(34)31023 kg mol21 3.031028

muon Compton wavelength h/mmc λC,m 11.734 441 97(35)310215 m 2.931028

λC,m/2p |C,m 1.867 594 444(55)310215 m 2.931028

muon magnetic moment mm 24.490 448 13(22)310226 J T21 4.931028

to Bohr magneton ratio mm /mB 24.841 970 85(15)31023 3.031028

to nuclear magneton ratio mm /mN 28.890 597 70(27) 3.031028

muon magnetic moment anomaly
ummu/(e\/2mm)21 am 1.165 916 02(64)31023 5.531027

muon g-factor 22(11am) gm 22.002 331 8320(13) 6.4310210

muon–proton
magnetic moment ratio mm /mp 23.183 345 39(10) 3.231028

Tau, t2

tau massf mt 3.167 88(52)310227 kg 1.631024

in u, mt5Ar (t) u (tau
relative atomic mass times u) 1.907 74(31) u 1.631024

energy equivalent mtc
2 2.847 15(46)310210 J 1.631024

in MeV 1 777.05(29) MeV 1.631024

tau–electron mass ratio mt /me 3 477.60(57) 1.631024

tau–muon mass ratio mt /mm 16.8188(27) 1.631024

tau–proton mass ratio mt /mp 1.893 96(31) 1.631024

tau–neutron mass ratio mt /mn 1.891 35(31) 1.631024

tau–molar mass NAmt M(t),Mt 1.907 74(31)31023 kg mol21 1.631024

tau Compton wavelength h/mtc λC,t 0.697 70(11)310215 m 1.631024

λC,t /2p |C,t 0.111 042(18)310215 m 1.631024

Proton, p
proton mass mp 1.672 621 58(13)310227 kg 7.931028

in u, mp5Ar(p) u (proton
relative atomic mass times u) 1.007 276 466 88(13) u 1.3310210

energy equivalent mpc2 1.503 277 31(12)310210 J 7.931028

in MeV 938.271 998(38) MeV 4.031028

proton–electron mass ratio mp /me 1 836.152 6675(39) 2.131029

proton–muon mass ratio mp /mm 8.880 244 08(27) 3.031028

proton–tau mass ratio mp /mt 0.527 994(86) 1.631024

proton–neutron mass ratio mp /mn 0.998 623 478 55(58) 5.8310210

proton charge to mass quotient e/mp 9.578 834 08(38)3107 C kg21 4.031028

proton molar mass NAmp M(p),Mp 1.007 276 466 88(13)31023 kg mol21 1.3310210

proton Compton wavelength h/mpc λC,p 1.321 409 847(10)310215 m 7.631029

λC,p /2p |C,p 0.210 308 9089(16)310215 m 7.631029

proton magnetic moment mp 1.410 606 633(58)310226 J T21 4.131028

to Bohr magneton ratio mp /mB 1.521 032 203(15)31023 1.031028

to nuclear magneton ratio mp /mN 2.792 847 337(29) 1.031028

proton g-factor 2mp /mN gp 5.585 694 675(57) 1.031028

proton–neutron
magnetic moment ratio mp /mn 21.459 898 05(34) 2.431027

shielded proton magnetic moment mp8 1.410 570 399(59)310226 J T21 4.231028

(H2O, sphere, 25 °C)
to Bohr magneton ratio mp8/mB 1.520 993 132(16)31023 1.131028

to nuclear magneton ratio mp8/mN 2.792 775 597(31) 1.131028
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TABLE XXIV (Continued).

Quantity Symbol Numerical value Unit
Relative std.
uncert. ur

proton magnetic shielding
correction 12mp8/mp sp8 25.687(15)31026 5.731024

(H2O, sphere, 25 °C)
proton gyromagnetic ratio 2mp /\ gp 2.675 222 12(11)3108 s21 T21 4.131028

gp /2p 42.577 4825(18) MHz T21 4.131028

shielded proton gyromagnetic
ratio 2mp8/\ gp8 2.675 153 41(11)3108 s21 T21 4.231028

(H2O, sphere, 25 °C)
gp8/2p 42.576 3888(18) MHz T21 4.231028

Neutron, n
neutron mass mn 1.674 927 16(13)310227 kg 7.931028

in u, mn5Ar(n) u (neutron
relative atomic mass times u) 1.008 664 915 78(55) u 5.4310210

energy equivalent mnc2 1.505 349 46(12)310210 J 7.931028

in MeV 939.565 330(38) MeV 4.031028

neutron–electron mass ratio mn /me 1 838.683 6550(40) 2.231029

neutron–muon mass ratio mn /mm 8.892 484 78(27) 3.031028

neutron–tau mass ratio mn /mt 0.528 722(86) 1.631024

neutron–proton mass ratio mn /mp 1.001 378 418 87(58) 5.8310210

neutron molar mass NAmn M(n),Mn 1.008 664 915 78(55)31023 kg mol21 5.4310210

neutron Compton wavelength h/mnc λC,n 1.319 590 898(10)310215 m 7.631029

λC,n/2p |C,n 0.210 019 4142(16)310215 m 7.631029

neutron magnetic moment mn 20.966 236 40(23)310226 J T21 2.431027

to Bohr magneton ratio mn /mB 21.041 875 63(25)31023 2.431027

to nuclear magneton ratio mn /mN 21.913 042 72(45) 2.431027

neutron g-factor 2mn /mN gn 23.826 085 45(90) 2.431027

neutron–electron
magnetic moment ratio mn /me 1.040 668 82(25)31023 2.431027

neutron–proton
magnetic moment ratio mn /mp 20.684 979 34(16) 2.431027

neutron to shielded proton
magnetic moment ratio mn /mp8 20.684 996 94(16) 2.431027

(H2O, sphere, 25 °C)
neutron gyromagnetic ratio 2umnu/\ gn 1.832 471 88(44)3108 s21 T21 2.431027

gn /2p 29.164 6958(70) MHz T21 2.431027

Deuteron, d
deuteron mass md 3.343 583 09(26)310227 kg 7.931028

in u, md5Ar(d) u (deuteron
relative atomic mass times u) 2.013 553 212 71(35) u 1.7310210

energy equivalent mdc2 3.005 062 62(24)310210 J 7.931028

in MeV 1 875.612 762(75) MeV 4.031028

deuteron–electron mass ratio md /me 3 670.482 9550(78) 2.131029

deuteron–proton mass ratio md /mp 1.999 007 500 83(41) 2.0310210

deuteron molar mass NAmd M(d),Md 2.013 553 212 71(35)31023 kg mol21 1.7310210

deuteron magnetic moment md 0.433 073 457(18)310226 J T21 4.231028

to Bohr magneton ratio md /mB 0.466 975 4556(50)31023 1.131028

to nuclear magneton ratio md /mN 0.857 438 2284(94) 1.131028

deuteron–electron
magnetic moment ratio md /me 24.664 345 537(50)31024 1.131028

deuteron–proton
magnetic moment ratio md /mp 0.307 012 2083(45) 1.531028
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TABLE XXIV (Continued).

Quantity Symbol Numerical value Unit
Relative std.
uncert. ur

deuteron–neutron
magnetic moment ratio md /mn 20.448 206 52(11) 2.431027

Helion, h
helion masse mh 5.006 411 74(39)310227 kg 7.931028

in u, mh5Ar(h) u (helion
relative atomic mass times u) 3.014 932 234 69(86) u 2.8310210

energy equivalent mhc2 4.499 538 48(35)310210 J 7.931028

in MeV 2 808.391 32(11) MeV 4.031028

helion–electron mass ratio mh /me 5 495.885 238(12) 2.131029

helion–proton mass ratio mh /mp 2.993 152 658 50(93) 3.1310210

helion molar mass NAmh M(h),Mh 3.014 932 234 69(86)31023 kg mol21 2.8310210

shielded helion magnetic moment mh8 21.074 552 967(45)310226 J T21 4.231028

(gas, sphere, 25 °C)
to Bohr magneton ratio mh8/mB 21.158 671 474(14)31023 1.231028

to nuclear magneton ratio mh8/mN 22.127 497 718(25) 1.231028

shielded helion to proton
magnetic moment ratio mh8/mp 20.761 766 563(12) 1.531028

(gas, sphere, 25 °C)
shielded helion to shielded proton

magnetic moment ratio mh8/mp8 20.761 786 1313(33) 4.331029

(gas/H2O, spheres, 25 °C)
shielded helion gyromagnetic

ratio 2umh8u/\ gh8 2.037 894 764(85)3108 s21 T21 4.231028

(gas, sphere, 25 °C)

gh8/2p 32.434 1025(14) MHz T21 4.231028

Alpha particle, a

alpha particle mass ma 6.644 655 98(52)310227 kg 7.931028

in u, ma5Ar(a) u (alpha particle
relative atomic mass times u) 4.001 506 1747(10) u 2.5310210

energy equivalent mac2 5.971 918 97(47)310210 J 7.931028

in MeV 3 727.379 04(15) MeV 4.031028

alpha particle to electron mass ratio ma /me 7 294.299 508(16) 2.131029

alpha particle to proton mass ratio ma /mp 3.972 599 6846(11) 2.8310210

alpha particle molar mass NAma M(a),Ma 4.001 506 1747(10)31023 kg mol21 2.5310210

PHYSICOCHEMICAL
Avogadro constant NA ,L 6.022 141 99(47)31023 mol21 7.931028

atomic mass constant

mu5
1

12 m(12C)51u mu 1.660 538 73(13)310227 kg 7.931028

51023 kg mol21/NA

energy equivalent muc2 1.492 417 78(12)310210 J 7.931028

in MeV 931.494 013(37) MeV 4.031028

Faraday constantg NAe F 96 485.3415(39) C mol21 4.031028

molar Planck constant NAh 3.990 312 689(30)310210 J s mol21 7.631029

NAhc 0.119 626 564 92(91) J m mol21 7.631029

molar gas constant R 8.314 472(15) J mol21 K21 1.731026

Boltzmann constant R/NA k 1.380 6503(24)310223 J K21 1.731026

in eV K21 8.617 342(15)31025 eV K21 1.731026

k/h 2.083 6644(36)31010 Hz K21 1.731026

k/hc 69.503 56(12) m21 K21 1.731026
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TABLE XXV. The variances, covariances, and correlation coefficients of the values of a selected
group of constants based on the 1998 CODATA adjustment. The numbers in boldface above the
main diagonal are 1016 times the values of the relative covariances; the numbers in boldface on the
main diagonal are 1016 times the values of the relative variances; and the numbers in italics below the
main diagonal are the correlation coefficients.a

a h e me NA me /mm F

a 0.135 0.005 0.070 À0.265 0.264 À0.259 0.334
h 0.002 61.129 30.567 61.119 À61.119 À0.009 À30.552
e 0.049 0.999 15.318 30.427 À30.428 À0.134 À15.109

me 20.092 0.996 0.990 61.648 À61.647 0.509 À31.220
NA 0.092 20.995 20.990 21.000 61.691 À0.508 31.263

me /mm 20.233 0.000 20.011 0.021 20.021 9.189 À0.642
F 0.226 20.972 20.960 20.989 0.990 20.053 16.154

aThe relative covariance ur(xi , xj) is defined according to ur(xi , xj)5u(xi , xj)/(xi xj), where
u(xi , xj) is the covariance of xi and xj ; the relative variance ur

2(xi) is defined according to
ur

2(xi)5u2(xi)/xi
25ur(xi , xi)5u(xi , xi)/xi

2 , where u2(xi) is the variance of xi ; and the correlation
coefficient is defined according to r(xi , xj)5u(xi , xj)/@u(xi)u(xj)#5ur(xi , xj)/@ur(xi)ur(xj)# .

TABLE XXIV (Continued).

Quantity Symbol Numerical value Unit
Relative std.
uncert. ur

molar volume of ideal gas RT/p
T5273.15 K, p5101.325 kPa Vm 22.413 996(39)31023 m3 mol21 1.731026

Loschmidt constant NA /Vm n0 2.686 7775(47)31025 m23 1.731026

T5273.15 K, p5100 kPa Vm 22.710 981(40)31023 m3 mol21 1.731026

Sackur-Tetrode constant
(absolute entropy constant)h

5
2 1ln@(2pmu kT1 /h2)3/2kT1 /p0]
T151 K, p0 5 100 kPa S0 /R 21.151 7048(44) 3.831026

T151 K, p0 5 101.325 kPa 21.164 8678(44) 3.731026

Stefan-Boltzmann constant
(p2/60)k4/\3c2 s 5.670 400(40)31028 W m22 K24 7.031026

first radiation constant 2phc2 c1 3.741 771 07(29)310216 W m2 7.831028

first radiation constant for spectral radiance 2hc2 c1L 1.191 042 722(93)310216 W m2 sr21 7.831028

second radiation constant hc/k c2 1.438 7752(25)31022 m K 1.731026

Wien displacement law constant
b5λmaxT5c2/4.965 114 231 . . . b 2.897 7686(51)31023 m K 1.731026

aSee Table XXVI for the conventional value adopted internationally for realizing representations of the volt using the Josephson
effect.

bSee Table XXVI for the conventional value adopted internationally for realizing representations of the ohm using the quantum
Hall effect.

cValue recommended by the Particle Data Group (Caso et al., 1998).
dBased on the ratio of the masses of the W and Z bosons mW/mZ recommended by the Particle Data Group (Caso et al., 1998).

The value for sin2uW they recommend, which is based on a particular variant of the modified minimal subtraction (MS) scheme, is
sin2ûW(MZ)50.231 24(24).

eThe helion, symbol h, is the nucleus of the 3He atom.
fThis and all other values involving mt are based on the value of mtc

2 in MeV recommended by the Particle Data Group (Caso
et al., 1998), but with a standard uncertainty of 0.29 MeV rather than the quoted uncertainty of 20.26 MeV, 10.29 MeV.

gThe numerical value of F to be used in coulometric chemical measurements is 96 485.3432(76) [7.931028] when the relevant
current is measured in terms of representations of the volt and ohm based on the Josephson and quantum Hall effects and the
internationally adopted conventional values of the Josephson and von Klitzing constants KJ290 and RK290 given in Table XXVI.

hThe entropy of an ideal monoatomic gas of relative atomic mass Ar is given by S5S01
3
2 R ln Ar2R ln(p/p0)1

5
2 R ln(T/K).
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TABLE XXVI. Internationally adopted values of various quantities.

Quantity Symbol Numerical value Unit
Relative std.
uncert. ur

molar mass of 12C M(12C) 1231023 kg mol21 (exact)
molar mass constanta M(12C)/12 Mu 131023 kg mol21 (exact)
conventional value of Josephson
constantb KJ290 483 597.9 GHz V21 (exact)

conventional value of von Klitzing
constantc RK290 25 812.807 V (exact)

standard atmosphere 101 325 Pa (exact)
standard acceleration of gravity gn 9.806 65 m s22 (exact)

aThe relative atomic mass Ar(X) of particle X with mass m(X) is defined by Ar(X)5m(X)/mu ,
where mu5m(12C)/125Mu /NA51 u is the atomic mass constant, NA is the Avogadro constant, and
u is the (unified) atomic mass unit. Thus the mass of particle X is m(X)5Ar(X) u and the molar
mass of X is M(X)5Ar(X)Mu .

bThis is the value adopted internationally for realizing representations of the volt using the Joseph-
son effect.

cThis is the value adopted internationally for realizing representations of the ohm using the quan-
tum Hall effect.
B. Calculational details

Here we provide some particulars of how the 1998
recommended values and their uncertainties as given in
the tables of the previous section are obtained from the
values of the 57 adjusted constants listed in Tables
XVII.A.1 and XIX.B.1 of Secs. IV.C.1. and IV.C.2. and
from the values of other quantities such as c and G as
appropriate (see the beginning of Sec. V).

We first note that the values of many of the adjusted
constants are themselves included in the tables. Their
standard uncertainties are the positive square roots of
the diagonal elements of the covariance matrix of the
adjusted constants (see Appendix E). Their covariances,
some of which are given in Table XXV in relative form
as well as in the form of correlation coefficients, are the
off-diagonal elements. As indicated in Appendix E, the
evaluation of the uncertainty of a quantity calculated
from two or more adjusted constants requires their co-
., Vol. 72, No. 2, April 2000
variances. Appendix F reviews the law of propagation of
uncertainty and gives an example of how such evalua-
tions are done. This is the basis for expanding Table
XXV to include the relative covariances and correlation
coefficients of, for example, the constants e and me with
each other and with the adjusted constants a and h .
Indeed, on this basis, and as noted at the start of the
previous section, the Web version of Table XXV allows
one to access the correlation coefficient of any two con-
stants listed in the tables of the previous section.

We now consider the tables of that section, our goal
being to indicate how all quantities of interest are re-
lated to the 57 adjusted constants. For each entry, unless
otherwise indicated, the value of the quantity is derived
from the expression given in the column labeled ‘‘Quan-
tity’’ or the column labeled ‘‘Symbol,’’ or both. For ex-
ample, consider the electron mass me and the quantum
of circulation h/2me . The electron mass is derived from
the adjusted constants via
TABLE XXVII. Values of some x-ray-related quantities based on the 1998 CODATA adjustment of the values of the constants.

Quantity Symbol Numerical value Unit
Relative std.

uncert. ur

Cu x unit: λ(Cu Ka1)/1537.400 xu(Cu Ka1) 1.002 077 03(28)310213 m 2.831027

Mo x unit: λ(Mo Ka1)/707.831 xu(Mo Ka1) 1.002 099 59(53)310213 m 5.331027

ångstrom star: λ(W Ka1)/0.209 010 0 Å* 1.000 015 01(90)310210 m 9.031027

lattice parametera of Si a 543.102 088(16)310212 m 2.931028

(in vacuum, 22.5 °C)
$220% lattice spacing of Si a/A8 d220 192.015 5845(56)310212 m 2.931028

(in vacuum, 22.5 °C)
molar volume of Si
M(Si)/r(Si)5NAa3/8 Vm(Si) 12.058 8369(14)31026 m3 mol21 1.231027

(in vacuum, 22.5 °C)

aThis is the lattice parameter (unit cell edge length) of an ideal single crystal of naturally occurring Si free of impurities and
imperfections, and is deduced from measurements on extremely pure and nearly perfect single crystals of Si by correcting for the
effects of impurities.
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TABLE XXVIII. The values in SI units of some non-SI units based on the 1998 CODATA adjustment of the values of the
constants.

Quantity Symbol Numerical value Unit
Relative std.
uncert. ur

Non-SI units accepted for use with the SI
electron volt: (e/C) J eV 1.602 176 462(63)310219 J 3.931028

(unified) atomic mass unit:

1 u5mu5
1

12 m(12C) u 1.660 538 73(13)310227 kg 7.931028

51023 kg mol 21/NA

Natural units (n.u.)
n.u. of velocity:
speed of light in vacuum c ,c0 299 792 458 m s21 (exact)

n.u. of action:
reduced Planck constant (h/2p) \ 1.054 571 596(82)310234 J s 7.831028

in eV s 6.582 118 89(26)310216 eV s 3.931028

n.u. of mass:
electron mass me 9.109 381 88(72)310231 kg 7.931028

n.u. of energy mec
2 8.187 104 14(64)310214 J 7.931028

in MeV 0.510 998 902(21) MeV 4.031028

n.u. of momentum mec 2.730 923 98(21)310222 kg m s21 7.931028

in MeV/c 0.510 998 902(21) MeV/c 4.031028

n.u. of length (\/mec) |C 386.159 2642(28)310215 m 7.331029

n.u. of time \/mec
2 1.288 088 6555(95)310221 s 7.331029

Atomic units (a.u.)
a.u. of charge:
elementary charge e 1.602 176 462(63)310219 C 3.931028

a.u. of mass:
electron mass me 9.109 381 88(72)310231 kg 7.931028

a.u. of action:
reduced Planck constant (h/2p) \ 1.054 571 596(82)310234 J s 7.831028

a.u. of length:
Bohr radius (bohr) (a/4pR`) a0 0.529 177 2083(19)310210 m 3.731029

a.u. of energy:
Hartree energy (hartree) Eh 4.359 743 81(34)310218 J 7.831028

(e2/4pe0a052R`hc5a2mec
2)

a.u. of time \/Eh 2.418 884 326 500(18)310217 s 7.6310212

a.u. of force Eh /a0 8.238 721 81(64)31028 N 7.831028

a.u. of velocity (ac) a0Eh /\ 2.187 691 2529(80)3106 m s21 3.731029

a.u. of momentum \/a0 1.992 851 51(16)310224 kg m s21 7.831028

a.u. of current eEh /\ 6.623 617 53(26)31023 A 3.931028

a.u. of charge density e/a0
3 1.081 202 285(43)31012 C m23 4.031028

a.u. of electric potential Eh /e 27.211 3834(11) V 3.931028

a.u. of electric field Eh /ea0 5.142 206 24(20)31011 V m21 3.931028

a.u. of electric field gradient Eh /ea0
2 9.717 361 53(39)31021 V m22 4.031028

a.u. of electric dipole moment ea0 8.478 352 67(33)310230 C m 3.931028

a.u. of electric quadrupole moment ea0
2 4.486 551 00(18)310240 C m2 4.031028

a.u. of electric polarizability e2a0
2/Eh 1.648 777 251(18)310241 C2 m2 J21 1.131028

a.u. of first hyperpolarizability e3a0
3/Eh

2 3.206 361 57(14)310253 C3 m3 J22 4.231028

a.u. of second hyperpolarizability e4a0
4/Eh

3 6.235 381 12(51)310265 C4 m4 J23 8.131028

a.u. of magnetic flux density \/ea0
2 2.350 517 349(94)3105 T 4.031028

a.u. of magnetic
dipole moment (2mB) \e/me 1.854 801 799(75)310223 J T21 4.031028

a.u. of magnetizability e2a0
2/me 7.891 036 41(14)310229 J T22 1.831028

a.u. of permittivity (107/c2) e2/a0Eh 1.112 650 056 . . . 310210 F m21 (exact)
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
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TABLE XXIX. Values of some energy equivalents derived from the relations E5mc25hc/λ5hn5kT and based on the 1998
CODATA adjustment of the values of the constants; 1 eV5(e/C) J, 1 u5mu5

1
12 m(12C)51023 kg mol21/NA , and Eh52R`hc

5a2mec
2 is the Hartree energy (hartree).

Relevant unit

J kg m21 Hz

1 J (1 J)5 (1 J)/c25 (1 J)/hc5 (1 J)/h5

1 J 1.112 650 056310217 kg 5.034 117 62(39)31024 m21 1.509 190 50(12)31033 Hz

1 kg (1 kg)c25 (1 kg)5 (1 kg)c/h5 (1 kg)c2/h5

8.987 551 78731016 J 1 kg 4.524 439 29(35)31041 m21 1.356 392 77(11)31050 Hz

1 m21 (1 m21)hc5 (1 m21)h/c5 (1 m21)5 (1 m21)c5

1.986 445 44(16)310225 J 2.210 218 63(17)310242 kg 1 m21 299 792 458 Hz

1 Hz (1 Hz)h5 (1 Hz)h/c25 (1 Hz)/c5 (1 Hz)5

6.626 068 76(52)310234 J 7.372 495 78(58)310251 kg 3.335 640 95231029 m21 1 Hz

1 K (1 K)k5 (1 K)k/c25 (1 K)k/hc5 (1 K)k/h5

1.380 6503(24)310223 J 1.536 1807(27)310240 kg 69.503 56(12) m21 2.083 6644(36)31010 Hz

1 eV (1 eV)5 (1 eV)/c25 (1 eV)/hc5 (1 eV)/h5

1.602 176 462(63)310219 J 1.782 661 731(70)310236 kg 8.065 544 77(32)3105 m21 2.417 989 491(95)31014 Hz

1 u (1 u)c25 (1 u)5 (1 u)c/h5 (1 u)c2/h5

1.492 417 78(12)310210 J 1.660 538 73(13)310227 kg 7.513 006 658(57)31014 m21 2.252 342 733(17)31023 Hz

1 Eh (1 Eh)5 (1 Eh)/c25 (1 Eh)/hc5 (1 Eh)/h5

4.359 743 81(34)310218 J 4.850 869 19(38)310235 kg 2.194 746 313 710(17)3107 m21 6.579 683 920 735(50)31015 Hz
me5
2R`h

ca2
, (357)

and it is understood that the quantum of circulation is
derived from the adjusted constants by replacing me in
h/me with this expression. The result is
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h

2me
5

ca2

4R`
. (358)

We begin our discussion with Table XXIV, since all
quantities in Table XXIII are contained in subsequent
tables.
TABLE XXX. Values of some energy equivalents derived from the relations E5mc25hc/λ5hn5kT and based on the 1998
CODATA adjustment of the values of the constants; 1 eV5(e/C) J, 1 u5mu5

1
12 m(12C)51023 kg mol21/NA , and Eh52R`hc

5a2mec
2 is the Hartree energy (hartree).

Relevant unit

K eV u Eh

1 J (1 J)/k5 (1 J)5 (1 J)/c25 (1 J)5

7.242 964(13)31022 K 6.241 509 74(24)31018 eV 6.700 536 62(53)3109 u 2.293 712 76(18)31017 Eh

1 kg (1 kg)c2/k5 (1 kg)c25 (1 kg)5 (1 kg)c25

6.509 651(11)31039 K 5.609 589 21(22)31035 eV 6.022 141 99(47)31026 u 2.061 486 22(16)31034 Eh

1 m21 (1 m21)hc/k5 (1 m21)hc5 (1 m21)h/c5 (1 m21)hc5

1.438 7752(25)31022 K 1.239 841 857(49)31026 eV 1.331 025 042(10)310215 u 4.556 335 252 750(35)31028 Eh

1 Hz (1 Hz)h/k5 (1 Hz)h5 (1 Hz)h/c25 (1 Hz)h5

4.799 2374(84)310211 K 4.135 667 27(16)310215 eV 4.439 821 637(34)310224 u 1.519 829 846 003(12)310216 Eh

1 K (1 K)5 (1 K)k5 (1 K)k/c25 (1 K)k5

1 K 8.617 342(15)31025 eV 9.251 098(16)310214 u 3.166 8153(55)31026 Eh

1 eV (1 eV)/k5 (1 eV)5 (1 eV)/c25 (1 eV)5

1.160 4506(20)3104 K 1 eV 1.073 544 206(43)31029 u 3.674 932 60(14)31022 Eh

1 u (1 u)c2/k5 (1 u)c25 (1 u)5 (1 u)c25

1.080 9528(19)31013 K 931.494 013(37)3106 eV 1 u 3.423 177 709(26)3107 Eh

1 Eh (1 Eh)/k5 (1 Eh)5 (1 Eh)/c25 (1 Eh)5

3.157 7465(55)3105 K 27.211 3834(11) eV 2.921 262 304(22)31028 u 1 Eh
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UNIVERSAL: The value of G is that adopted in Sec.
III.Q.

The numerical value of h when h is expressed in the
unit eV is @h/(J s)#/@e/C# , where the elementary charge
e is derived from the expression

e5S 2ah

m0c D 1/2

. (359)

All energies expressed in joules are reexpressed in elec-
tron volts by dividing by e/C.

ELECTROMAGNETIC: The elementary charge e
and electron mass me are obtained as already indicated.

The Boltzmann constant k is derived from the molar
gas constant R , which is an adjusted constant, and the
Avogadro constant NA :

k5
R

NA
, NA5

Ar~e!Mu

me
, (360)

where Ar(e) is an adjusted constant and Mu
51023 kg/mol is the molar mass constant.

The Bohr magneton mB is obtained from the expres-
sion given in the table, namely,

mB5
e\

2me
5S ca5h

32p2m0R`
2 D 1/2

, (361)

and the nuclear magneton mN follows from

mN5mB

Ar~e!

Ar~p!
, (362)

where Ar(p) is an adjusted constant.
ATOMIC AND NUCLEAR: General. The quantities

a, R` , and h are, of course, adjusted constants. The
Bohr radius is derived from a05a/4pR` and the Har-
tree energy from Eh52R`hc .

ATOMIC AND NUCLEAR: Electroweak. The
Fermi coupling constant GF /(\c)3 and sin2 uW , where
uW is the weak mixing angle, are as stated in Sec. III.S.

ATOMIC AND NUCLEAR: Electron, e2. The elec-
tron mass is obtained as indicated above, and the nu-
merical value of me in u is Ar(e).

The electron–muon mass ratio me /mm is an adjusted
constant, and the electron–tau mass ratio me /mt is ob-
tained from the ratio of mec

2 expressed in MeV to mt c2

expressed in MeV, where the latter is as stated in Sec.
III.S.

The mass ratios me /mp , me /mn , me /md , and me /ma

are given by Ar(e)/Ar(p), Ar(e)/Ar(n), Ar(e)/Ar(d),
and Ar(e)/Ar(a), respectively, where all of these rela-
tive atomic masses are adjusted constants. The electron
molar mass follows from M(e)5Ar(e)Mu .

The electron magnetic moment me2 is derived from

me25S me2

mB
DmB , (363)

where the electron magnetic moment to Bohr magneton
ratio follows from

me2

mB
5

ge2

2
52~11ae!, (364)
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and ge2 is the electron g-factor. The electron magnetic
moment anomaly ae , in turn, is derived from the theo-
retical expression for ae evaluated with the adjusted con-
stants a and de . The latter is

de50.1~1.1!310212. (365)

The electron magnetic moment to nuclear magneton
ratio follows from

me2

mN
5

me2

mB

Ar~p!

Ar~e!
. (366)

The adjusted constants me2 /mp , me2 /mp8 , mn /mp8 ,
mh8/mp8 , and me /mm are the basis of the various magnetic
moment ratios under Electron, e2. We first note that

mm2

mp
5

me

mm

me2

mp

gm2

ge2

, (367)

where gm2522(11am) and the muon magnetic mo-
ment anomaly am is derived from the theoretical expres-
sion for am , evaluated with the adjusted constants a and
dm . The latter is

dm50.0~6.4!310210. (368)

(By taking the theoretical value to be the recommended
value, we implicitly assume that contributions to am be-
yond the standard model are negligible.) We then have

me2

mm2
5

me2

mp
S mm2

mp
D 21

me2

mn
5

me2

mp8
S mn

mp8
D 21

me2

mh8
5

me2

mp8
S mh8

mp8
D 21

. (369)

ATOMIC AND NUCLEAR: Muon, m2. The muon
mass is obtained from

mm5meS me

mm
D 21

. (370)

Its numerical value in u is Ar(e)/(me /mm), and the
muon molar mass is given by M(m)
5Ar(e)Mu /(me /mm). The mass ratio mm /mt is derived
in the same way as me /mt (see Electron, e2). The
muon–proton mass ratio follows from

mm

mp
5

Ar~e!

Ar~p! S me

mm
D 21

, (371)

and the muon–neutron mass ratio follows from the same
expression but with p replaced by n.

The quantities am , gm2, and mm2 /mp are discussed
above in Electron, e2. The other quantities involving
the muon magnetic moment are derived from

mm25S mm2

mp
Dmp ,

mm2

mB
5

mm2

mp

mp

mB
,
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mm2

mN
5

mm2

mB

Ar~p!

Ar~e!
, (372)

where the quantities mp and mp /mB are discussed in Pro-
ton, p.

ATOMIC AND NUCLEAR: Tau, t2. The mass
of the positive tau in kg is obtained by multiplying
its value in MeV by 106(e/C)/c2. Its numerical value
in u is Ar(e)(mt /me), where the electron-tau mass
ratio me /mt is discussed in Electron, e2. The other mass
ratios follow from mt /mm5(mt /me)(me /mm), mt /mp
5(mt /me)@Ar(e)/Ar(p)# , and mt /mn5(mt /me)
3@Ar(e)/Ar(n)# . The molar mass of the tau is given by
M(t)5Ar(e)Mu(mt /me).

ATOMIC AND NUCLEAR: Proton, p. The proton
mass is derived from

mp5me

Ar~p!

Ar~e!
, (373)

and the numerical value of mp in u is Ar(p), mp /me
5Ar(p)/Ar(e), mp /mm5(mp /me)(me /mm), mp /mt

5(me /mt)@Ar(p)/Ar(e)# , mp /mn5Ar(p)/Ar(n), and
M(p)5Ar(p)Mu .

The adjusted constants me2 /mp , me2 /mp8 , and mn /mp8
are the basis of the quantities involving mp or mp8 . One
has

mp5
mp

mB
mB

mp

mB
5

me2

mB
S me2

mp
D 21

mp

mN
5

mp

mB

Ar~p!

Ar~e!

mp

mn
5

me2

mp8
S me2

mp
D 21S mn

mp8
D 21

. (374)

The quantities mp8 , mp8/mB , and mp8/mN also follow from
the first three of these expressions but with mp replaced
everywhere by mp8 .

The proton magnetic shielding correction is derived
from

sp8512S me2

mp
D S me2

mp8
D 21

. (375)

ATOMIC AND NUCLEAR: Neutron, n. The neu-
tron mass follows from

mn5me

Ar~n!

Ar~e!
, (376)

and the numerical value of mn in u is Ar(n), mn /me
5Ar(n)/Ar(e), mn /mm5(mn /me)(me /mm), mn /mt

5(me /mt)@Ar(n)/Ar(e)# , mn /mp5Ar(n)/Ar(p), and
M(n)5Ar(n)Mu .

The basis of all quantities involving mn is the adjusted
constant mn /mp8 . We have

mn5S mn

mp8
Dmp8
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mn

mB
5

mn

mp8

mp8

mB

mn

mN
5

mn

mB

Ar~p!

Ar~e!

mn

me2

5
mn

mp8
S me2

mp8
D 21

mn

mp
5

mn

me2

me2

mp
. (377)

ATOMIC AND NUCLEAR: Deuteron, d. The deu-
teron mass is derived from

md5me

Ar~d!

Ar~e!
, (378)

and the numerical value of md in u is Ar(d), md /me
5Ar(d)/Ar(e), md /mp5Ar(d)/Ar(p), and M(d)
5Ar(d)Mu .

The basis of all quantities involving md is the adjusted
constant md /me2 . One has

md5S md

me2
Dme2

md

mB
5

md

me2

me2

mB

md

mN
5

md

mB

Ar~p!

Ar~e!

md

mp
5

md

me2

me2

mp

md

mn
5

md

me2

me2

mp8
S mn

mp8
D 21

. (379)

ATOMIC AND NUCLEAR: Helion, h. The helion
mass follows from

mh5me

Ar~h!

Ar~e!
, (380)

and the numerical value of mh in u is Ar(h), mh /me
5Ar(h)/Ar(e), mh /mp5Ar(h)/Ar(p), and M(h)
5Ar(h)Mu .

The basis of all quantities involving mh8 is the adjusted
constant mh8/mp8 . We have

mh85S mh8

mp8
Dmp8

mh8

mB
5

mh8

mp8

mp8

mB

mh8

mN
5

mh8

mp8

mp8

mN

mh8

mp
5

mh8

mp8

me

mp
S me

mp8
D 21

. (381)
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ATOMIC AND NUCLEAR: Alpha particle, a. As in
previous similar cases, the alpha particle mass is derived
from

ma5me

Ar~a!

Ar~e!
, (382)

and the numerical value of ma in u is Ar(a), ma /me
5Ar(a)/Ar(e), ma /mp5Ar(a)/Ar(p), and M(a)
5Ar(a)Mu .

PHYSICOCHEMICAL: All of the values follow from
the relations given in the Quantity and/or Symbol col-
umns and the expressions for k , NA , and e given above.
The number 4.965 114 231 . . . in the equation for the
Wien displacement law constant b is the nonzero root of
the equation 5(e2x21)1x50 (Stone, 1963).

Table XXV. This table was discussed at the beginning
of this section on calculational details.

Table XXVI. The first two entries are discussed in
Sec. II.C, the next two in Sec. II.E, and the last two
entries are from the BIPM SI Brochure (BIPM, 1998).
[The quantity gn is also discussed in Sec. II.F.]

Table XXVII. The Cu x unit xu(Cu Ka1), the Mo x
unit xu(Mo Ka1), and the Å* are adjusted constants.
The quantity d220 , which is the $220% lattice spacing of
an ideal single crystal of naturally occurring silicon in
vacuum at t90522.5 °C, is also an adjusted constant, and
the lattice parameter a of silicon (the edge length of the
silicon cubic unit cell) is related to d220 by a5A8d220 .
The expression for NA is given under ELECTROMAG-
NETIC, Eq. (360).

Table XXVIII. The values in this table follow directly
from the relations given in the Quantity and/or Symbol
columns and the expressions given above for the con-
stants e , NA , and me .

Table XXIX. The numerical values given in the first
four rows are the numerical values of the constants in-
dicated above the values when those constants are ex-
pressed in their respective SI units. For example, the
number 1.356 392 77(11)31050 (last entry of row 2) is
@c2/(m s21)2#/@h/(J s)# , which can be conveniently de-
noted by $c2/h%SI . For the last three rows, the full com-
bination of constants whose numerical values give the
numerical value indicated are, respectively by row, e ,
e/c2, e/hc , and e/h ; muc2, mu , muc/h , and muc2/h ;
2R`hc , 2R`h/c , 2R` , and 2R`c .

Table XXX. The situation for this table is similar to
that for Table XXIX but somewhat more involved. The
full combination of constants of the last three rows of
the column labeled ‘‘K’’ are e/k , muc2/k , and 2R`hc/k .
For the columns labeled ‘‘eV,’’ ‘‘u,’’ and ‘‘Eh ,’’ the full
combination of constants for the seven nontrivial rows
of each column are, respectively, by column, 1/e , c2/e ,
hc/e , h/e , k/e , muc2/e , and 2R`hc/e ; 1/muc2, 1/mu ,
h/muc , h/muc2, k/muc2, e/muc2, and 2R`h/muc ;
1/2R`hc , c/2R`h , 1/2R` , 1/2R`c , k/2R`hc , e/2R`hc ,
and muc/2R`h .

VI. SUMMARY AND CONCLUSION

We close by first comparing the 1998 and 1986 CO-
DATA recommended values of the fundamental physi-
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cal constants and identifying those advances made since
1986 that are most responsible for our current improved
knowledge of the constants. This is followed by a brief
discussion of some of the conclusions that can be drawn
from the 1998 values and adjustment. Finally, we look to
the future and make some suggestions regarding the ex-
perimental and theoretical work required to solidify and
continue the progress of the last 13 years.

A. Comparison of 1998 and 1986 CODATA recommended
values

The 1998 CODATA set of recommended values of
the fundamental physical constants is a major step for-
ward relative to its 1986 predecessor. The 1998 and 1986
adjustments considered all data available by 31 Decem-
ber 1998 and 1 January 1986, respectively. As one would
hope, the 13 year period between these adjustments has
seen extraordinary experimental and theoretical ad-
vances in the precision measurement/fundamental con-
stants field. The fact that the standard uncertainties of
many of the 1998 recommended values are about 1

5 to 1
12 ,

and in the case of R` and some associated constants, 1
160,

times the standard uncertainties of the corresponding
1986 values is an indication of the remarkable nature of
these advances. Moreover, the absolute values of the
differences between the 1986 values and the correspond-
ing 1998 values are almost all less than twice the stan-
dard uncertainties of the 1986 values. The reduction of
uncertainties and the relatively small shifts of values are
apparent from Table XXXI, which compares the recom-
mended values of a representative group of constants
from the two adjustments. A subset of the constants of
this group is compared graphically in Fig. 5.

Table XXXI also exhibits regularities that can be at-
tributed to the interdependence of the various constants.
This behavior is not influenced by the fact that the ad-
justed constants (i.e., variables of the adjustment) em-
ployed in 1986 and 1998 are different, but it does depend
on the fact that for both adjustments ur(R)@ur(h)
@ur(a)@ur(R`). In the context of the 1998 adjustment,
much of this behavior can be understood by examining
the functional dependence of the derived constants on
the adjusted constants R` , a, h , and R . This depen-
dence is such that the uncertainties of the derived con-
stants are mainly determined by the uncertainty of ei-
ther a, h , or R .

For example, a and the Bohr radius a0 have the same
relative standard uncertainty, and that of the Compton
wavelength is twice as large: ur(λC)52ur(a0)52ur(a).
This is because the value of a0 is calculated from the
relation a05a/4pR` and since ur(a)@ur(R`), ur(a0) is
essentially equal to ur(a). Similarly, λC is obtained from
the relation λC5a2/2pR` , hence ur(λC)'ur(a2)
52ur(a). A further consequence of these relations is
the near equality of the ratios of the 1986 uncertainties
to the 1998 uncertainties, as well as the near equality of
their values of Dr , where Dr is the change in the value
of a constant from 1986 to 1998 relative to its 1986 stan-
dard uncertainty. The classical electron radius re with
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ur(re)53ur(a) and the Thomson cross section se with
ur(se)56ur(a) follow a similar pattern, since re is cal-
culated from re5a2a05a3/4pR` and se from se
5(8p/3)re

25a6/6pR`
2 . (Since the von Klitzing constant

TABLE XXXI. Comparison of the 1998 and 1986 CODATA
adjustments of the values of the constants by comparison of
the corresponding recommended values of a representative
group of constants. Here Dr is the 1998 value minus the 1986
value divided by the standard uncertainty u of the 1986 value
(i.e., Dr is the change in the value of the constant from 1986 to
1998 relative to its 1986 standard uncertainty).

Quantity
1998 rel. std.

uncert. ur

1986 rel. std.
uncert. ur

Ratio 1986 ur
to 1998 ur Dr

a 3.731029 4.531028 12.2 21.7
RK 3.731029 4.531028 12.2 1.7
a0 3.731029 4.531028 12.2 21.7
λC 7.331029 8.931028 12.2 21.7
re 1.131028 1.331027 12.2 21.7
se 2.231028 2.731027 12.2 21.7
h 7.831028 6.031027 7.7 21.7

me 7.931028 5.931027 7.5 21.5
NA 7.931028 5.931027 7.5 1.5
Eh 7.831028 6.031027 7.7 21.7
c1 7.831028 6.031027 7.7 21.7
e 3.931028 3.031027 7.8 21.8

KJ 3.931028 3.031027 7.6 1.6
F 4.031028 3.031027 7.5 1.1
gp8 4.231028 3.031027 7.3 1.1
mB 4.031028 3.431027 8.3 22.1
mN 4.031028 3.431027 8.3 22.0
me 4.031028 3.431027 8.3 2.1
mp 4.131028 3.431027 8.1 22.1
R 1.731026 8.431026 4.8 20.5
k 1.731026 8.531026 4.8 20.6

Vm 1.731026 8.431026 4.8 20.5
c2 1.731026 8.431026 4.8 0.5
s 7.031026 3.431025 4.8 20.6
G 1.531023 1.331024 0.1 0.0
R` 7.6310212 1.231029 157.1 2.7

me /mp 2.131029 2.031028 9.5 0.9
me /mm 3.031028 1.531027 4.9 20.1
Ar(e) 2.131029 2.331028 11.1 0.7
Ar(p) 1.3310210 1.231028 91.6 20.2
Ar(n) 5.4310210 1.431028 25.6 0.8
Ar(d) 1.7310210 1.231028 68.9 0.0
d220 2.931028 2.131027 7.1 1.1
ge 4.1310212 1.0310211 2.4 0.6
gm 6.4310210 8.431029 13.1 0.8

mp /mB 1.031028 1.031028 1.0 0.1
mp /mN 1.031028 2.231028 2.2 20.8
mn /mN 2.431027 2.431027 1.0 0.1
md /mN 1.131028 2.831028 2.6 20.1
me /mp 1.031028 1.031028 1.0 0.1
mn /mp 2.431027 2.431027 1.0 0.0
md /mp 1.531028 1.731028 1.1 0.9
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is calculated from RK5m0c/2a , Dr for a and RK have
opposite signs.)

In an analogous way, the 12 constants me through mp
in column 1 of Table XXXI are calculated from expres-

sions that contain a factor hp, where p51, 21, 1
2, or 2 1

2 ,
as well as other constants (such as a) that have relative
standard uncertainties rather smaller than ur(h). Thus
the uncertainties of these 12 constants are approxi-
mately ur(h) or 1

2 ur(h). Also, the values of the ratios of
the 1986 to 1998 uncertainties for h and these constants
are the same to within about 15 %. On the other hand,
their values of uDru vary more widely, because of
changes in the values of the other constants on which
they depend. [It is mere coincidence that the value of
uDru for those constants whose uncertainties are mainly
determined by ur(a) is the same as it is for some of
those constants whose uncertainties are mainly deter-
mined by ur(h).]

Table XXXI exhibits analogous behavior for the con-
stants R , k , Vm , c2 , and s ; the values of the last four
are calculated from expressions that contain a factor Rp,
where p51, 21, or 4, as well as other constants that
have relative standard uncertainties much smaller than
ur(R).

Unique among all of the 1998 recommended values is
the Newtonian constant of gravitation G ; its uncertainty
is larger than that of the 1986 value by nearly a factor of
12. As explained in detail in Sec. III.Q, for several rea-
sons, including the existence of a value of G from a
credible experiment that differs significantly from the
1986 value, the CODATA Task Group on Fundamental
Constants decided to increase the relative standard un-
certainty of the 1986 value from ur51.2831024 to ur
51.531023, but to retain the value itself.

FIG. 5. Graphical comparison of the 1998 and 1986 CODATA
recommended values of some of the constants listed in Table
XXXI. As in that table, Dr is the 1998 value minus the 1986
value divided by the standard uncertainty u of the 1986 value
(i.e., Dr is the change in the value of the constant from 1986 to
1998 relative to its 1986 standard uncertainty).
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The largest relative shift in the value of a constant
between 1986 and 1998 is Dr52.7 for R` . On the other
hand, with a 1986 to 1998 uncertainty ratio of 157, the
value of R` has undergone the largest reduction in un-
certainty. The shift in value is due to the fact that the
1986 recommended value of R` was mainly based on a
1981 experimental result that was subsequently shown to
be in error. The large uncertainty reduction is due
mainly to the fact that starting at about the beginning of
the 1990s, optical frequency metrology replaced optical
wavelength metrology as the method of choice for de-
termining transition frequencies of hydrogenic atoms.
Major improvements in the theory of the energy levels
of such atoms also contributed significantly to the reduc-
tion in uncertainty.

Although a more accurate value of R` is partially re-
sponsible for our current improved knowledge of the
values of the constants, three other post-1986 advances
have also played important roles.

(i) A better experimental determination of the
anomalous magnetic moment of the electron ae and an
improved theoretical expression for ae are to a large ex-
tent responsible for the 1998 recommended value of a,
which has the impressively small uncertainty ur53.7
31029. As pointed out above, a plays a key role in de-
termining the recommended values of many constants.

(ii) The moving-coil watt balance, which was con-
ceived some 25 years ago and was first brought to a
useful operational state in the late 1980s, provided two
results for KJ

2RK54/h with comparatively small uncer-
tainties. The 1998 recommended value of h with ur
57.831028 is mainly due to these results, and, as also
discussed above, h plays a major role in determining the
recommended values of many constants.

(iii) The determination of R by measuring the speed
of sound in argon using a spherical acoustic resonator
yielded a value with ur51.831026, approximately1

5

times the uncertainty ur58.431026 of the value ob-
tained earlier using a cylindrical acoustic interferometer
and on which the 1986 recommended value is based.
The new result is primarily responsible for the 1998 rec-
ommended value with ur51.731026 and consequently
for the improved values of the various constants that
depend on R .

Of course, better measurements and calculations of a
number of other quantities also contributed to improv-
ing our overall knowledge of the values of the constants.
Noteworthy are the Penning-trap mass ratio measure-
ments that led to the improved values of the relative
atomic masses Ar(e), Ar(p), Ar(d), etc; the crystal dif-
fraction determination of the binding energy of the neu-
tron in the deuteron that led to the improved value of
Ar(n); the Zeeman transition-frequency determination
of DnMu that, together with the QED-based, theoreti-
cally calculated expression for DnMu , led to the im-
proved value of me /mm ; and the new and more accurate
measurements of the d220 lattice spacing of nearly per-
fect silicon crystals, together with the measurement of
the quotient h/mnd220(W04) and better methods of com-
paring the lattice spacings of crystals and characterizing
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their quality, that led to the improved value of d220 of an
ideal crystal. By comparison, there has been no im-
provement in our knowledge of magnetic-moment re-
lated constants such as mp /mB , mn /mN , me /mp , and
mn /mp , because there have been no new relevant mea-
surements. (The reductions in uncertainties of mp /mN
and md /mN are mainly due to the reduction in uncer-
tainty of me /mp .)

B. Some implications for physics and metrology of the
1998 CODATA recommended values and adjustment

Reliable values of the fundamental physical constants
and related energy conversion factors have long been
necessary for a variety of practical applications. Promi-
nent among these are calculations required for the
analysis and compilation of data and the preparation of
databases in various areas of science and technology in-
cluding high energy, nuclear, atomic and molecular, con-
densed matter, chemical, and statistical physics. The
1998 recommended values with their significantly
smaller uncertainties should, therefore, have a positive
influence on a broad range of activities in many fields.

More recently, values of constants have become in-
creasingly important to metrology. As discussed in Sec.
II.E, starting 1 January 1990 the CIPM introduced new,
practical representations of the volt and the ohm for
international use based on the Josephson and quantum
Hall effects and exact conventional values of the Joseph-
son and von Klitzing constants. As noted in that section,
the adoption of these exact values, KJ290
5483 597.9 GHz/V and RK290525 812.807 V , can be in-
terpreted as establishing conventional, practical units of
voltage and resistance, V90 and Ω90 , that are related to
the volt V and ohm V by

V905
KJ290

KJ
V (383)

Ω905
RK

RK290
V . (384)

These equations and the 1998 recommended values of
KJ and RK lead to

V905@110.4~3.9!31028# V (385)

Ω905@112.22~37!31028# V , (386)

which show that the practical unit of voltage V90 exceeds
V by the fractional amount 0.4(3.9)31028, and the
practical unit of resistance Ω90 exceeds V by the frac-
tional amount 2.22(37)31028. This means that mea-
sured voltages traceable to the Josephson effect and
KJ290 and measured resistances traceable to the quan-
tum Hall effect and RK290 are too small relative to the
SI by the same fractional amounts. Although these de-
viations from the SI, which follow from the 1998 adjust-
ment, are inconsequential for the vast majority of mea-
surements and are well within the original estimates of
the CCEM (Taylor and Witt, 1989), corrections to ac-
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count for them may need to be applied in those rare
cases where consistency with the SI is critical.

A possible future use of fundamental constants in me-
trology is in the redefinition of the kilogram. As the au-
thors have recently pointed out (Taylor and Mohr,
1999), if moving-coil watt-balance determinations of h
can achieve a relative standard uncertainty of ur51
31028, then it becomes attractive to redefine the kilo-
gram in such a way that the value of h is fixed, thereby
allowing the watt balance to be used to directly calibrate
standards of mass. [Such a definition would be analo-
gous to the current definition of the meter, which has the
effect of fixing the value of c . A redefinition of the ki-
logram that fixes the value of NA has been proposed as
well (Taylor, 1991).] It is also conceivable that if the
Boltzmann constant k can be determined with a suffi-
ciently small uncertainty, the kelvin could be redefined
in such a way as to fix the value of k . Increasing the
number of SI units and their practical representations
that are based on invariants of nature—the fundamental
constants—rather than on a material artifact or a prop-
erty of a body that depends on the body’s composition is
highly appealing for both practical and esthetic reasons.

The focus of this paper has been the review of the
currently available experimental and theoretical data
relevant to the fundamental constants and how those
data are used to obtain the 1998 CODATA set of rec-
ommended values, rather than what the data can tell us
about the basic theories and experimental methods of
physics. Although we plan to address this question in
greater detail in a future publication, we briefly delin-
eate in the following paragraphs a few of the conclusions
that may be drawn from the 1998 adjustment regarding
physics and metrology. These specific conclusions can be
prefaced with the general conclusion that the 1998 ad-
justment provides no evidence of problems with either:
(1) the basic theories of physics—special relativity,
quantum mechanics, QED, the standard model, etc.; or
(2) the broad range of metrological techniques used in
experiments to determine values of the constants:
Penning-trap mass spectrometry, optical frequency me-
trology, optical interferometry, voltage and resistance
measurements based on the Josephson and quantum
Hall effects, etc.

Josephson effect. The observed consistency of the val-
ues of h deduced from measurements of KJ

2RK , KJ ,
Γp2908 (hi), and F90 (see Table XVI) supports the impor-
tant assumption that KJ52e/h . Further, since these
measurements required the use of a wide variety of met-
rological techniques—from laser interferometry to ana-
lytical chemistry—the consistency of the values of h also
suggests that the uncertainties associated with these
techniques are understood and have been properly
evaluated.

Quantum Hall effect and QED. The values of a in-
ferred from measurements of the diverse group of con-
stants ae , RK , h/mnd220(W04), Γp2908 (lo), Γh2908 (lo),
DnMu , and R`, together with measurements of d220(X),
me2 /mp8 , mh8/mp8 , and mm1 /mp , are broadly consistent
(see Table XV). This consistency supports the important
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assumption that RK5h/e25m0c/2a . It also supports the
validity of the QED calculations required to obtain the-
oretical expressions for ae , am , DnMu , ge2(H)/ge2,
gp(H)/gp , ge2(D)/ge2, gd(D)/gd , ge2(Mu)/ge2, and
gm1(Mu)/gm1.

On the other hand, the various values of a are not as
consistent as one would perhaps like; of special concern
are those values of a obtained from gyromagnetic ratio
measurements and from neutron/x-ray diffraction mea-
surements. Although the causes of the differences be-
tween some of these values of a and the other values are
not yet known, they may indicate that the measurement
methods required to determine the dimensions of a pre-
cision solenoid and the lattice spacing of a crystal of
silicon are not fully understood.

Hydrogenic energy levels, p and d bound-state rms
charge radii, and QED. As pointed out in Sec. IV.C.1,
there is a systematic deviation between theory and ex-
periment for hydrogenic energy levels corresponding to
126/n3 kHz for nS1/2 states. Its most likely causes are a
difference between the proton and/or the deuteron rms
charge radius predicted by the hydrogenic spectroscopic
data from the values derived from scattering data, an
uncalculated contribution to hydrogenic energy levels
from the two-photon QED correction that exceeds the
latter’s assigned uncertainty, or a combination of the
two.

Nevertheless, the agreement of the value of R` de-
duced from all of the Rydberg-constant data with the
values deduced from subsets of that data (see Table
XVIII) supports the overall validity of the QED-based
calculations of hydrogenic energy levels.

Molar volume of silicon. As discussed in Sec. III.J,
values of the molar volume of silicon Vm(Si) are not
included as input data in the 1998 adjustment because of
discrepancies among them. These discrepancies indicate
that our understanding of the floating zone crystal-
growing process as applied to silicon and the effects of
impurities, vacancies, and self-interstitials on the prop-
erties of silicon may not yet be complete.

Molar gas constant, speed of sound, and thermometry.
The two existing high-accuracy determinations of R , one
from measurements of the speed-of-sound in argon us-
ing a spherical acoustic resonator and the other from
similar measurements using a cylindrical acoustic inter-
ferometer, are consistent. This agreement indicates that
the complex nature of the propagation of sound in such
devices is satisfactorily understood and that the determi-
nation of thermodynamic temperatures from speed-of-
sound measurements should be reliable.

Newtonian constant of gravitation. The current value
of G has the largest relative standard uncertainty by far
of any of the basic constants of physics given in the 1998
CODATA set of recommended values, with the excep-
tion of sin2 uW . It has long been recognized that the rea-
son this measure of the strength of the most pervasive
force in the universe is so poorly known is the weakness
of the gravitational force compared to the weak, electro-
magnetic (electroweak), and strong forces. Nevertheless,
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because of gravity’s central role in physics, the large un-
certainty of G is disconcerting. One hopes that work
currently underway (see the following section) will solve
the problem.

C. Outlook and suggestions for future work

It is difficult to imagine how the rate of progress of the
past 13 years in improving our knowledge of the values
of the constants can be sustained. The relative standard
uncertainties of some constants are now in the range 4
310212,ur,6310210, and the uncertainties of most
others are in the range 131029,ur,131027. One
wonders if experimentalists can continue to devise ever
more ingenious methods of overcoming the limitations
of electrical and mechanical noise and if theorists can
continue to devise ever more sophisticated techniques of
calculating contributions from an expanding number of
complex Feynman diagrams so that our knowledge of
the constants can continue to advance at the current
pace. Although it is obvious that this question cannot be
answered unequivocally, the impressive level of achieve-
ments of researchers in the precision measurement/
fundamental constant field over the past century is a
sound reason to be optimistic about the future. Indeed,
there are a number of experiments already underway
that, if successful, will lead to values of important con-
stants with significantly reduced uncertainties. We touch
upon some of these experiments in the paragraphs be-
low, in which we make suggestions regarding future
work based on what we believe are the main weaknesses
of the 1998 adjustment.

It is an axiom in the precision measurement/
fundamental constant field that the best way to establish
confidence in the result of an experiment or calculation
is to have it repeated in another laboratory, preferably
by a dissimilar method. (The different results should
have comparable uncertainties.) Although it does not
guarantee that an unsuspected error in a result will be
found, history shows that it is an excellent way of dis-
covering an error if one exists.

Unfortunately, such redundancy is all too rare among
the input data of the 1998 adjustment. As seen above, a,
h , and R play a major role in the determination of many
constants, yet the adjusted value of each is to a large
extent determined by a pair of input data or a single
input datum. These data are briefly summarized below,
accompanied by our related suggestions for future work.

Fine-structure constant. In the case of a, the two criti-
cal data are the experimental value of ae determined at
the University of Washington and de , the additive cor-
rection to the theoretical expression for ae . The uncer-
tainty of de is dominated by the 0.0384 uncertainty of the
eighth-order coefficient A1

(8) as calculated by Kinoshita;
it leads to ur@ae(th)#51.031029, which is about 1

4 times
the uncertainty ur53.731029 of the experimental value.
The uncertainty of a that can be inferred from ae is ur
53.831029, about 1

6 times that of the next most accu-
rate value. We therefore believe that the most important
tasks regarding alpha are
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
(i) a second experimental determination of ae with
ur,531029;

(ii) a second calculation of A1
(8) with u,0.04; and

(iii) a determination of a with ur,531029 by an en-
tirely different method.

Point (i) is currently being addressed by the Univer-
sity of Washington group (Mittlemann, Ioannou, and
Dehmelt, 1999) and by a group at Harvard University
(Peil and Gabrielse, 1999). To the best of our knowl-
edge, point (ii) is not being addressed, although Ki-
noshita continues to check and improve his calculation
of A1

(8) and his assessment of its uncertainty. With re-
gard to point (iii), it could actually be addressed in the
very near future by the experiment at Stanford Univer-
sity to obtain a from a measurement of h/m(133Cs) [see
Sec. III.K.2].

Planck constant. In the case of h , the most critical
datum is the value of KJ

2RK54/h obtained at NIST using
a moving-coil-watt balance; its relative standard uncer-
tainty ur58.731028 is 1

2.3 times that of the next most
accurate value of h , which was determined at NPL also
using a moving-coil watt balance. Thus it is our view that
the highest-priority tasks with regard to h are

(i) a second moving-coil watt balance determination
of h with ur,931028;

(ii) determination of other constants such as NA and
F with sufficiently small uncertainties that a value
of h with ur,931028 can be inferred from them;
and

(iii) a moving-coil watt balance determination of h
with ur'231028 and determinations of other
constants such as NA and F from which such val-
ues of h can be inferred.

Point (i) and the first part of (iii) are being addressed
by efforts at both NIST and NPL to significantly im-
prove their watt-balance experiments; results with rela-
tive standard uncertainties of a few times 1028 or less
are expected in several years. Further, a new moving-
coil watt balance experiment that should be competitive
with those at NIST and NPL has been initiated at the
Swiss Federal Office of Metrology (OFMET), Bern–
Wabern, Switzerland (Beer et al., 1999).

Point (ii) and the second part of (iii) are mainly being
addressed by the international effort to determine the
Avogadro constant by the XRCD method with the
smallest possible uncertainty in order to replace the cur-
rent definition of the kilogram. The Planck constant h
may be obtained from NA from the relation

h5
cAr~e!Mua

2

2R`NA
. (387)

Since ur is less than 831029 for the group of constants
multiplying 1/NA , a value of NA with ur'231028 will
yield a value of h with nearly the latter uncertainty. Al-
though it is not yet clear that the XRCD method is ca-
pable of providing such a value of h , it is the best alter-
nate route to h that we presently have. It should,
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therefore, continue to be vigorously pursued, even
though to achieve this uncertainty will require major ad-
vances in characterizing near-ideal single crystals of sili-
con and in measuring their density and isotopic compo-
sition.

Although the route to NA and hence h through the
Faraday constant F using the relations

NA5
KJ290RK290

2
F90 (388)

h5
cAr~e!Mua

2

KJ290RK290R`F90
(389)

is being investigated at PTB in an experiment that is
equivalent to determining F90 in vacuum rather than in
an electrolyte (Gläser, 1991), it is in its very early stages.
Nevertheless, it should also be vigorously pursued so
that its potential can be realistically assessed.

Other experiments that, like the moving-coil watt bal-
ance, compare electric power to mechanical power (or
equivalently, electric energy to mechanical energy) are
also in various stages of development. These include the
levitated superconducting body experiment at NRLM
(Fujii et al., 1999) and an experiment using a moving-
capacitor balance at the University of Zagreb (Bego,
Butorac, and Ilić, 1999). Variations of the moving-coil
watt balance itself are being investigated at the Istituto
Elettrotecnico Nazionale (IEN) ‘‘Galileo Ferraris,’’
Torino, Italy (Cabiati, 1991). In view of the importance
of h to the determination of the values of many con-
stants, all of these efforts are highly warranted.

Molar gas constant. For R , the key datum is the NIST
value with ur51.831026 obtained from measurements
of the speed of sound in argon using a spherical acoustic
resonator; its uncertainty is 1

4.7 times that of the NPL
value, the only other result of interest, which was also
obtained from speed-of-sound measurements in argon
but using a cylindrical acoustic interferometer. We
therefore believe that the most important tasks with re-
gard to R are

(i) a second direct determination of R with ur no
larger than 231026;

(ii) determinations of other constants such as k and s
with sufficiently small uncertainties that a value of
R with ur'231026 or less can be inferred from
them; and

(iii) speed-of-sound determinations of R with ur'5
31027 and determinations of other constants
such as k and s from which such values of R can
be inferred.

Of the three critical constants a, h , and R , the molar
gas constant is the most problematic; there are no other
values of R with an uncertainty as small as that of the
NIST value on the horizon from any source, let alone a
value with a significantly smaller uncertainty. As far as
we are aware, the only relevant experiment being ac-
tively pursued is the NPL determination of s/h using
electrical substitution radiometry (see Sec. III.P). If it
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achieves its goal of ur(s/h)5131025, it could provide a
value of R with ur(R)52.531026, compared to ur(R)
51.831026 for the NIST value and ur(R)58.431026

for the NPL value. Although the new NPL experiment
will not really address any of the above points, it is still
highly important: it does not depend on speed-of-sound
measurements in argon, and the uncertainty of the value
of R that one expects to be able to infer from it is only
about 1.4 times larger than that of the NIST value.

A possible approach to improving our knowledge of
R is for metrologists at the national metrology institutes
to join forces in an international collaborative effort
much like the effort now underway to improve our
knowledge of NA . Perhaps the CCM Working Group
on the Avogadro Constant (see Sec. III.J) can serve as a
model for a CCT Working Group on the Molar Gas
Constant (CCT is the abbreviation of the Comité Con-
sultatif de Thermométrie of the CIPM). In view of the
key role played by R in the determination of important
thermodynamic and radiometric constants such as k , s,
Vm , c2 , and b , such an effort would be well justified.

Our discussion of a, h , and R can be summarized as
follows: In the next few years, work already well under-
way has the possibility of confirming the 1998 recom-
mended values of these constants, and hence the values
of the many other constants deduced from them, as well
as providing values of a and h with uncertainties about
1
4 times those of the 1998 recommended values. Such
new values of a and h will lead to new values of many
other constants with comparably reduced uncertainties,
thereby continuing the rapid progress of the past 13
years.

Although confirming and reducing the current uncer-
tainties of a, h , and R through improved measurements
and calculations would have the greatest impact on ad-
vancing our overall knowledge of the values of the con-
stants, confirming and reducing the uncertainties of
other constants would also have significant benefits. We
address this issue with the following comments.

Josephson and quantum Hall effects. Although the
current experimental and theoretical evidence for the
exactness of the relations KJ52e/h and RK5h/e2

5m0c/2a is quite strong, efforts by both experimental-
ists and theorists to increase this evidence are encour-
aged. Soundly based quantitative estimates of the limi-
tations of these relations are especially of interest.

Relative atomic masses. Of the basic particles e, n, p, d,
h, and a, the relative atomic mass of the electron Ar(e)
is the least well known; its uncertainty is ur52.131029

compared to, for example, the uncertainty ur51.3
310210 of Ar(p). Because Ar(e) enters the expressions
from which a number of constants are derived, for ex-
ample, those for the energy levels of hydrogenic atoms,
in order to fully use the anticipated advances in the mea-
sured and calculated values of various quantities, an im-
proved value of Ar(e) with an uncertainty of say ur52
310210 will be necessary. Moreover, there is only one
high-accuracy input datum related to Ar(e) currently
available.
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Experiment and theory relevant to the Rydberg con-
stant. Because of limitations in the theory of the energy
levels of hydrogen and deuterium, full advantage cannot
yet be taken of the existing measurements of H and D
transition frequencies to deduce a value of R` . Since
the uncertainty in the theory is dominated by the uncer-
tainty of the two-photon corrections, reducing this un-
certainty is crucial for continued progress. Of compa-
rable importance is sorting out the relationships
between the bound-state proton and deuteron rms
charge radii and those obtained from scattering data.
Improved experimental determinations of these radii
would be of great help in this regard; such a result for
the proton radius is expected from the determination of
the Lamb shift in muonic hydrogen by an international
group at PSI (Taqqu et al., 1999). Of course, results from
additional high-accuracy measurements of transition fre-
quencies in H and D are always of value.

Experiment and theory relevant to the magnetic mo-
ment anomaly of the muon. The uncertainty of the the-
oretical expression for am is dominated by the uncer-
tainty of the hadronic contribution am(had), which in
turn is dominated by the uncertainty of the cross section
for the production of hadrons in e1e2 collisions at low
energies. Because at present the theoretical value of am

has a significantly smaller uncertainty than the experi-
mental value, the 1998 recommended value of am is the
theoretical value. This means that, at least for the mo-
ment, to advance our knowledge of am requires an im-
proved measurement of the cross section. Such a mea-
surement is also required to test the standard model
through the comparison of the theoretical value of am

with the significantly improved experimental value an-
ticipated from the ongoing muon g22 experiment at
Brookhaven National Laboratory, which could eventu-
ally produce a result for am with an uncertainty compa-
rable to that of the best anticipated theoretical result.
How a more accurate value of the cross section can be
obtained at the f factory DAFNE of the Laboratori
Nazionali di Frascati, Italy is described by Spagnolo
(1999).

Experiment and theory relevant to magnetic moment
ratios. Measurements of various magnetic moment ratios
such as me2(H)/mp(H) and mn /mp8 and theoretical calcu-
lations of bound-state corrections for those measure-
ments carried out in atoms are to a large extent respon-
sible for the recommended values of such important
constants as me2 /mp , mp /mN , mn /mp , mh8/mN , md , etc.
However, in each case there is only one input datum
available—other values are simply not competitive. Ad-
ditional measurements are clearly called for, we would
hope with smaller uncertainties, so that our knowledge
of these important constants can advance. Current work
at NPL associated with its helion NMR program (see
Sec. III.C.7) should in fact lead to better values of
me2(H)/mp(H) and me2(H)/mp8 , but this is the only ef-
fort of its type of which we are aware. When such im-
proved results become available, it may be necessary to
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
improve the calculation of bound-state corrections so
that full advantage can be taken of their small uncertain-
ties.

Experiment and theory relevant to the muonium hyper-
fine splitting. The existing measurements of the frequen-
cies of transitions between Zeeman energy levels in
muonium have uncertainties such that the value of a
that can be obtained by comparing the experimentally
determined value of DnMu with its theoretical expression
has a relative standard uncertainty of ur55.731028.
This uncertainty is dominated by the uncertainty of the
value of me /mm that can be deduced from the measure-
ments. On the other hand, the experimental value of
DnMu , which has an uncertainty ur51.131028, together
with its QED-based theoretical expression and the most
accurate individual value of a yields a value for this
mass ratio whose uncertainty is dominated by the uncer-
tainty ur52.731028 of the theoretical expression. Thus
reduction of this uncertainty by an order of magnitude
through improvement in the theory would lead to a re-
duction in the uncertainty of this important ratio by
nearly a factor of 3. We believe that this is motivation
enough to improve the theory. However, such theoreti-
cal advances might also stimulate new efforts to improve
the transition-frequency measurements, the end result of
which could be a highly competitive value of a from
muonium.

Theory of hydrogen hyperfine splitting. To take advan-
tage of the phenomenally small uncertainty ur57
310213 of the experimentally determined value of DnH
to derive a competitive value of a will require major
theoretical work. Most important at present is the con-
tribution to DnH of the polarizability of the proton
udpolu,431026. In view of the great potential DnH has
in providing a highly accurate value of a, any improve-
ment in its theoretical expression would be of value.

Experiment and theory relevant to the fine structure of
4He. Measurements and theoretical calculations of the
transition frequencies corresponding to the differences
in energy of the three 23P levels of 4He currently under-
way have the potential of eventually providing a value of
a with ur'531029. In view of the importance of such a
value, both experimental and theoretical work in this
area warrants sustained effort.

Experiment and theory relevant to the Boltzmann con-
stant. The route to the molar gas constant R via the
Boltzmann constant k was not specifically mentioned in
our discussion of R in the earlier part of this section,
because the possible routes to k are problematic. Of the
two approaches described in Sec. III.O, the 4He molar
polarizability/dielectric constant gas thermometry
method would seem to be the most promising. Although
major advances in both theory and experiment are re-
quired in order to use it to obtain a competitive value of
k and hence R , they seem to be within the realm of
possibility. [On the experimental side, see, for example,
Moldover (1998).] Thus we encourage continued theo-
retical and experimental work in this field.

Newtonian constant of gravitation. As discussed in de-
tail in Sec. III.Q, the present situation regarding G is
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quite unsatisfactory; new measurements with ur'1
31025 are critically needed. Fortunately, as also dis-
cussed in that section, a number of experiments that
should achieve this level of uncertainty are well under-
way.

In summary, two broad conclusions can be drawn
from this review: The first is that the uncertainties of the
values of the fundamental constants have been reduced
to a remarkably low level by extraordinary research in
the recent past. The second is that there are numerous
and challenging opportunities for both experimentalists
and theorists to make important contributions to the ad-
vancement of our knowledge of the values of the funda-
mental constants in the future. The reason that these
opportunities must be seized is, of course, no mystery; as
F. K. Richtmyer (1932) said nearly 70 years ago, ‘‘ . . . the
whole history of physics proves that a new discovery is
quite likely to be found lurking in the next decimal
place.’’
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APPENDIX A: THEORY RELEVANT TO THE RYDBERG
CONSTANT

This appendix gives a brief summary of the theory of
the energy levels of the hydrogen atom relevant to the
determination of the Rydberg constant R` based on
measurements of the frequencies of transitions between
those levels. It is an updated version of an earlier review
by one of the authors (Mohr, 1996). For brevity, refer-
ences to most historical works are not included.

The energy levels of hydrogen-like atoms are deter-
mined mainly by the Dirac eigenvalue, QED effects
such as self energy and vacuum polarization, and nuclear
size and motion effects. We consider each of these con-
tributions in turn.

Although the uncertainties of the theoretical contri-
butions to a particular energy level are independent, in
many cases the uncertainties of contributions of the
same type to different energy levels are not independent
and (mainly for S states) vary as 1/n3. (Note that, for
historical reasons, contributions that vary as 1/n3 are
called ‘‘state independent.’’) As discussed at the end of
this Appendix, in such cases we take the covariances of
the theoretical expressions for different energy levels
into account. To facilitate the calculation of covariances,
we distinguish between two types of uncertainty compo-
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nents for each contribution to an energy level: u0 and
un . For a given isotope (H or D), an uncertainty u0 /n3

is associated with an uncalculated term (or terms) of the
form A(L,j)/n3, where A(L,j) is a particular but un-
known constant for a set of levels n, L, j for a given L
and j and any n (L5S, P, . . . ). An uncertainty un /n3 is
associated with terms of the form B(n ,L,j)/n3, where
B(n ,L,j) is an unknown function of n . The former lead
to nonzero covariances while the latter do not [the
B(n ,L,j) are assumed to be independent], except possi-
bly for the same energy levels of different isotopes. In
addition, many of the contributions to the theoretical
expression for a particular energy level of H or D are
the same (except for the effect of the mass difference of
the nuclei) and thus in general no distinction is made in
the text between their uncertainties. In those few cases
where the uncertainties are independent, we so indicate.
The level of uncertainty in the theory of current S states
corresponds to values of u0/h in the range 1 kHz to 100
kHz and to values of un/h in the range 1 kHz to 10 kHz.
In fact, as discussed below, u0/h exceeds 10 kHz only for
the two-photon correction. Uncertainty components of
interest in the theory of the difference between the
1S–2S transition frequencies in hydrogen and deuterium
are also at the level of 1 kHz to 10 kHz. In keeping with
Sec. I.C, all uncertainties discussed in this and the fol-
lowing three appendices, including those due to uncalcu-
lated terms, are meant to be standard uncertainties.

1. Dirac eigenvalue

The binding energy of an electron in a static Coulomb
field (the external electric field of a point nucleus of
charge Ze with infinite mass) is determined predomi-
nantly by the Dirac eigenvalue

ED5F11
~Za!2

~n2d!2G21/2

mec
2, (A1)

where n is the principal quantum number,

d5uku2@k22~Za!2#1/2, (A2)

and k is the angular momentum-parity quantum number
(k521,1,22,2,23 for S1/2 , P1/2 , P3/2 , D3/2 , and D5/2
states, respectively). States with the same principal
quantum number n and angular momentum quantum
number j5uku2 1

2 have degenerate eigenvalues. The
nonrelativistic orbital angular momentum is given by l
5uk1 1

2 u2 1
2 . (Although we are interested only in the

case where the nuclear charge is e , we retain the atomic
number Z in order to indicate the nature of various
terms.)

Corrections to the Dirac eigenvalue that take into ac-
count the finite mass of the nucleus mN are included in
the more general expression for atomic energy levels,
which replaces Eq. (A1) (Barker and Glover, 1955; Sa-
pirstein and Yennie, 1990):
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EM5Mc21@f~n ,j !21#mrc
22@f~n ,j !21#2

mr
2c2

2M

1
12d l0

k~2l11 !

~Za!4mr
3c2

2n3mN
2 1¯ , (A3)

where

f~n ,j !5F11
~Za!2

~n2d!2G21/2

, (A4)

M5me1mN , and mr5memN /(me1mN) is the reduced
mass.

2. Relativistic recoil

Relativistic corrections to Eq. (A3) associated with
motion of the nucleus are considered relativistic-recoil
corrections. The leading term, to lowest order in Za and
all orders in me /mN , is (Erickson, 1977; Sapirstein and
Yennie, 1990)

ES5
mr

3

me
2mN

~Za!5

pn3
mec

2

3H 1
3

d l0 ln~Za!222
8
3

ln k0~n ,l !2
1
9

d l02
7
3

an

2
2

mN
2 2me

2 d l0FmN
2 lnS me

mr
D2me

2 lnS mN

mr
D G J ,

(A5)

where

an522F lnS 2
n D1(

i51

n 1
i

112
1

2nGd l0

1
12d l0

l~ l11 !~2l11 !
. (A6)

To lowest order in the mass ratio, higher-order correc-
tions in Za have been extensively investigated; the con-
tribution of next order in Za can be written as

ER5
me

mN

~Za!6

n3
mec

2D60 , (A7)

where

D6054 ln 22
7
2

for nS1/2 ,

(A8)

D605F32
l~ l11 !

n2 G 2

~4l221 !~2l13 !
for l>1,

and the contribution to the 1S state is 27.4 kHz. The
result for S states was first obtained by Pachucki and
Grotch (1995) and subsequently confirmed by Eides and
Grotch (1997c). It is supported by a complete numerical
calculation to all orders in Za , which gives
27.16(1) kHz for the terms of order (Za)6 and higher
for the 1S state at Z51 (Shabaev et al., 1998). Because
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of this consensus, we do not take into account two other
results, 2.77 kHz and 216.4 kHz, for the same contribu-
tion (Elkhovskiı̌, 1996; Yelkhovsky, 1998). The expres-
sion for D60 for P states was first obtained by Golosov
et al. (1995), and the general expression for all l>1
given in Eq. (A8) was obtained by Elkhovskiı̌ (1996).
We include the result of Elkhovskiı̌ (1996) for states
with l.1 even though we do not consider the corre-
sponding result for S states, because the ambiguity asso-
ciated with the short-distance behavior of the relevant
operators that leads to the disagreements for S states is
not present in the contributions for l>1.

The all-order results of Shabaev et al. (1998), ex-
pressed in their notation, are

ER5
me

mN

~Za!6

n3
mec

2FDP~Za!

pZa G , (A9)

where

DP~a!5H 20.016 16~3 ! 1S1/2 ,

20.016 17~5 ! 2S1/2 ,

0.007 72~1 ! 2P1/2 .

(A10)

These are the values that we use for these states. (Note
that for the 2P1/2 state we have added an explicit uncer-
tainty to the originally quoted number 0.007 72 to reflect
its implied uncertainty.)

On the other hand, no all-order calculation exists for
states for n>3. Since the theoretical expression for D60
for S states in Eq. (A8) is independent of n and the
complete calculated values in Eq. (A10) for n51 and
n52 are nearly equal, we take the value DP(a)5
20.016 17(5) for all higher S states. By similar reason-
ing, since the general expression in Eq. (A8) for l51 is
only weakly dependent on n , we take the value DP(a)
50.007 72(1) for the 2P1/2 state and DP(a)
50.007 72(10) for all other P1/2 and P3/2 states, where the
uncertainty is expanded to reflect the approximate na-
ture of the value. [We do not use the result DP(a)
50.0075(4) for the P3/2 state obtained by Artemyev,
Shabaev, and Yerokin (1995) because of its large uncer-
tainty.] For D states, we use the contribution given by
Eq. (A7) and the general expression in Eq. (A8) with a
relative uncertainty of 1 % to account for higher-order
terms in Za , guided by the P state all-orders calculation.
Higher-order terms in me /mN beyond Eq. (A5) are ex-
pected to be negligible at the level of uncertainty of cur-
rent interest. (See, for example, Boikova, Tyukhtyaev,
and Faustov 1998.) In fact, all of the relativistic-recoil
uncertainties discussed in this section are negligible at
this level and are not included in our calculations.

3. Nuclear polarization

Another effect involving specific properties of the
nucleus, in addition to relativistic recoil, is nuclear po-
larization. It arises from interactions between the elec-
tron and nucleus in which the nucleus is excited from the
ground state to virtual higher states.
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This effect has been calculated for hydrogen for the
1S state by Khriplovich and Sen’kov (1998), who find
EP /h520.071(13) kHz, and is currently of marginal
significance. For n S states we employ that value multi-
plied by 1/n3, since it is mainly proportional to the
square of the wave function at the origin. We take the
effect to be zero in states of higher l .

For deuterium, the effect is much larger. A recent cal-
culation by Friar and Payne (1997a), which includes cor-
rections that go beyond their unretarded-dipole approxi-
mation calculation (Friar and Payne, 1997c), gives
18.58(7) kHz for the 1S–2S transition. Because of the
near 1/n3 dependence of this contribution, the value for
the 1S state is 221.23(8) kHz (Friar, 1998). In addition
to this deuteron polarizability, the polarizability contri-
butions of the constituent particles, 20.071(13) kHz
from the proton and 20.061(12) kHz from the neutron
for the 1S state, should be taken into account, although
the contribution of the proton polarizability to the H–D
isotope shift vanishes (Khriplovich, 1998; Friar, 1998;
Pachucki, 1998). As for hydrogen, we assume that the
effect is negligible in higher-l states.

In summary, the results for deuterium as well as hy-
drogen are

EP~H!520.071~13!h
d l0

n3
kHz

EP~D!5221.37~8 !h
d l0

n3
kHz. (A11)

Although we include these contributions to the energy
levels, we do not include their uncertainties because
they are negligible.

4. Self energy

The second-order (in e, first-order in a) level shift due
to the one-photon electron self energy, the lowest-order
radiative correction, is given by

ESE
(2)5

a

p

~Za!4

n3
F~Za!mec

2, (A12)

where

F~Za!5A41ln~Za!221A401A50 ~Za!

1A62 ~Za!2ln2~Za!22

1A61 ~Za!2ln~Za!221GSE~Za! ~Za!2,

(A13)

with (Erickson and Yennie, 1965)

A415
4
3

d l0

A4052
4
3

ln k0~n ,l !1
10
9

d l02
1

2k~2l11 !
~12d l0!

A505S 139
32

22 ln 2 Dp d l0 (A14)
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A6252d l0

A615F4S 11
1
2

1¯1
1
n D1

28
3

ln 224 ln n

2
601
180

2
77

45n2Gd l01S 12
1

n2D S 2
15

1
1
3

d j
1
2 D d l1

1
96n2232l~ l11 !

3n2~2l21 !~2l !~2l11 !~2l12 !~2l13 !

3~12d l0!.

[As usual, the first subscript on the A’s in Eq. (A13)
refers to the power of Za and the second subscript to
the power of ln(Za)22.] Bethe logarithms ln k0(n,l) that
appear in Eq. (A14), needed for this and possibly future
work, are given in Table XXXII (Drake and Swainson,
1990).

The function GSE(Za) in Eq. (A13) gives the higher-
order contribution (in Za) to the self energy. The low-Z
limit of this function, GSE(0)5A60 , has been calculated
for various states by Pachucki and others (Pachucki,
1993b; Jentschura and Pachucki, 1996; Jentschura, Soff,
and Mohr, 1997). Values for the function at Z51,
GSE(a), are given in Table XXXIII. For the 1S1/2 state
the value in the table is based on a direct numerical
evaluation (Jentschura, Mohr, and Soff, 1999), and for
the other states the values are based on extrapolation to
Z51 of numerical values for GSE(Za) calculated at
higher Z (Kotochigova, Mohr, and Taylor, 1999; Mohr
and Kim, 1992; Mohr, 1992). The extrapolations for P
states take into account the values of GSE(0) when
known. Similar extrapolations of GSE(Za) to Z51 and

TABLE XXXII. Bethe logarithms ln k0(n,l) relevant to the
determination of R` .

n S P D

1 2.984 128 556
2 2.811 769 893 20.030 016 709
3 2.767 663 612 20.038 190 229 20.005 232 148
4 2.749 811 840 20.041 954 895 20.006 740 939
6 2.735 664 207 20.045 312 198 20.008 147 204
8 2.730 267 261 20.046 741 352 20.008 785 043

12 2.726 179 341 20.047 917 112 20.009 342 954

TABLE XXXIII. Values of the function GSE(a).

n S1/2 P1/2 P3/2 D3/2 D5/2

1 230.290 24(2)
2 231.17(3) 20.98(1) 20.48(1)
3 231.01(6) 21.13(1) 20.57(1) 0.00(1) 0.00(1)
4 230.87(5) 21.17(1) 20.61(1) 0.00(1) 0.00(1)
6 230.82(8) 21.23(3) 20.63(3) 0.00(1) 0.00(1)
8 230.80(9) 21.25(4) 20.64(4) 0.00(1) 0.00(1)

12 230.77(13) 21.28(6) 20.66(6) 0.00(1) 0.00(1)
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TABLE XXXIV. Values of the function GVP
(1)(a).

n S1/2 P1/2 P3/2 D3/2 D5/2

1 20.618 724
2 20.808 872 20.064 006 20.014 132
3 20.814 530 20.075 859 20.016 750 20.000 000 20.000 000
4 20.806 579 20.080 007 20.017 666 20.000 000 20.000 000
6 20.791 450 20.082 970 20.018 320 20.000 000 20.000 000
8 20.781 197 20.084 007 20.018 549 20.000 000 20.000 000

12 20.769 151 20.084 748 20.018 713 20.000 000 20.000 000
2 for states with n51 and 2 based on earlier numerical
calculations have been done by van Wijngaarden,
Kwela, and Drake (1991). Karshenboim (1994a) has
done extrapolations to Z51 for the 1S1/2–2S1/2 differ-
ence and for the P1/2 state, obtaining results slightly dif-
ferent from those given in Table XXXIII. We use the
values in the table because of their broader coverage
and better agreement with the independent semianalytic
calculations at Z50. These values are also in agreement
with earlier results of Mohr (1996).

The dominant effect of the finite mass of the nucleus
on the self energy correction is taken into account by
multiplying each term of F(Za) by the reduced-mass
factor (mr /me)

3, except that the magnetic moment term
21/@2k(2l11)# in A40 is instead multiplied by the fac-
tor (mr /me)

2. This prescription is consistent with the
result for P states obtained by Golosov et al. (1995). In
addition, the argument (Za)22 of the logarithms is re-
placed by (me /mr)(Za)22 (Sapirstein and Yennie,
1990).

The uncertainty of the self energy contribution to a
given level arises entirely from the uncertainty of
GSE(a) listed in Table XXXIII and is taken to be en-
tirely of type un .

5. Vacuum polarization

The second-order vacuum polarization level shift, due
to the creation of a virtual electron–positron pair in the
exchange of photons between the electron and the
nucleus, is

EVP
(2)5

a

p

~Za!4

n3 H~Za!mec
2, (A15)

where the function H(Za) is divided into the part cor-
responding to the Uehling potential, denoted here by
H(1)(Za), and the higher-order remainder H(R)(Za)
5H(3)(Za)1H(5)(Za)1¯ , where the superscript de-
notes the order in powers of the external field. The in-
dividual terms are expanded in a power series in Za as

H(1)~Za!5C401C50~Za!1C61~Za!2ln~Za!22

1GVP
(1)~Za!~Za!2 (A16)

H(R)~Za!5GVP
(R)~Za!~Za!2, (A17)
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C4052 4
15 d l0

C505
5

48 pd l0

C6152 2
15 d l0 . (A18)

The part GVP
(1)(Za) arises from the Uehling potential,

and is readily calculated numerically (Mohr, 1982; Ko-
tochigova et al., 1999); values are given in Table
XXXIV. The higher-order remainder GVP

(R)(Za) has
been considered by Wichmann and Kroll, and the lead-
ing terms in powers of Za are (Wichmann and Kroll,
1956; Mohr, 1975; Mohr, 1983)

GVP
(R)~Za!5~ 19

45 2 1
27 p2!d l0

1~ 1
16 2 31

2880 p2!p~Za!d l01¯ . (A19)

Complete numerical calculations of H(Za) have been
done to all orders in Za for high Z , and those results
are consistent with the low-Z expression in Eq. (A19)
(Johnson and Soff, 1985). The uncertainty in the vacuum
polarization contribution is due to higher-order omitted
terms that are estimated to contribute 13(Za)2 in Eq.
(A19) and hence this uncertainty is negligible.

In a manner similar to that for the self energy, the
effect of the finite mass of the nucleus is taken into ac-
count by multiplying Eq. (A15) by the factor (mr /me)

3

and including a multiplicative factor of (me /mr) in the
argument of the logarithm in Eq. (A16).

There is also a second-order vacuum polarization
level shift due to the creation of virtual particle pairs
other than the e1e2 pair. The predominant contribution
for nS states arises from m1m2, with the leading term
being (Karshenboim, 1995b)

EmVP
(2) 5

a

p

~Za!4

n3 S 2
4
15D S me

mm
D 2S mr

me
D 3

mec
2. (A20)

The next-order term in the contribution of muon
vacuum polarization to nS states is of relative order
Zame /mm and is therefore negligible. The analogous
contribution EtVP

(2) from t1t2 (218 Hz for the 1S state) is
also negligible at the level of uncertainty of current in-
terest.

For the hadronic vacuum polarization contribution,
we take the recent result given by Friar et al. (1999) that
utilizes all available e1e2 scattering data:
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Ehad VP
(2) 50.671~15!EmVP

(2) , (A21)

where the uncertainty is of type u0 . This result is con-
sistent with but has a smaller uncertainty than earlier
results (Friar et al., 1999).

The muonic and hadronic vacuum polarization contri-
butions are negligible for P and D states.

6. Two-photon corrections

Corrections from two virtual photons, of order a2,
have been calculated as a power series in Za :

E(4)5S a

pD 2 ~Za!4

n3
mec

2F(4)~Za!, (A22)

where

F(4)~Za!5B401B50~Za!1B63~Za!2ln3~Za!22

1B62~Za!2ln2~Za!221¯

5B401~Za!G(4)~Za!. (A23)

Because the possible terms B61(Za)2ln(Za)22,
B60(Za)2, and higher-order terms are essentially un-
known, they are not included in Eq. (A23), although
fragmentary information about B61 exists (Eides and
Grotch, 1995a, Karshenboim, 1996c; Mallampalli and
Sapirstein, 1996, 1998). Uncertainties to account for
omitted terms are discussed at the end of this section.

The level shifts of order (a/p)2(Za)4mec
2 that give

rise to B40 are well known and are characterized as a
self-energy correction

ESE
(4)5S a

pD 2 ~Za!4

n3
mec

2

3F2p2 ln 22
49

108
p22

4819
1296

23z~3 !Gd l0 ,

(A24)

a magnetic moment correction

EMM
(4) 5S a

pD 2 ~Za!4

n3
mec

2

3F1
2

p2 ln 22
1
12

p22
197
144

2
3
4

z~3 !G 1
k~2l11 !

,

(A25)

and a vacuum polarization correction

EVP
(4)5S a

pD 2 ~Za!4

n3
mec

2F2
82
81Gd l0 , (A26)

where z is the Riemann zeta function. The total for B40
is

B405F2p2 ln 22
49

108
p22

6131
1296

23z~3 !Gd l0

1F1
2

p2 ln 22
1
12

p22
197
144

2
3
4

z~3 !G 1
k~2l11 !

.

(A27)
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The terms of order (a/p)2(Za)5mec
2 that give rise to

B50 can be divided into two classes depending on
whether the corresponding Feynman diagrams do or do
not have closed electron loops. The former category
gives (Pachucki, 1993a; Eides, Grotch, and Shelyuto,
1997)

EEL
(4)5S a

pD 2 ~Za!5

n3
mec

2@2.710 614~10!#d l0 , (A28)

while the latter category gives (Eides and Shelyuto,
1995; Pachucki, 1994)

ENL
(4)5S a

pD 2 ~Za!5

n3
mec

2@224.2668~31!#d l0 . (A29)

By combining these results, one obtains

B505221.5561~31!d l0 . (A30)

The next coefficient, as obtained by Karshenboim,
(1993a), is

B6352
8
27

d l0 . (A31)

It has been confirmed by Pachucki (1998), provided the
assumptions made by Karshenboim (1993a) are em-
ployed. The term arises from a single diagram, which we
label l l , consisting of two self-energy loops, and we de-
fine G l l

(4)(Za) to be the part of G(4)(Za) that corre-
sponds to this diagram. It is given by

G l l
(4)~Za!52.299 53 d l02 8

27 d l0~Za!ln3~Za!22

1¯ , (A32)

where

B50
l l 52.299 53 (A33)

is the portion of B50 corresponding to this diagram (the
diagram makes no contribution to B40 : B40

l l 50). On the
other hand, Mallampalli and Sapirstein (1998) have
done a numerical calculation of G l l

(4)(Za) for the 1S
state for various values of Z to all orders in Za . From
their results, they obtain an estimate for B63 which dif-
fers from the value in Eq. (A31). Moreover, the calcu-
lated contribution of the diagram at Z51 is negative,
while the lowest-order term B50

l l is positive, which could
be taken as a possible indication of the necessity of an
all-orders calculation. Mallampalli and Sapirstein (1998)
obtained G l l

(4)(a)522.87(5), in contrast to the value
G l l

(4)(a)50.24 . . . in Eq. (A32). More recently,
Goidenko et al. (1999) have calculated the contribution
of the same diagram and obtain a result consistent with
the coefficient in Eq. (A31), although they do not give
values for Z51 or 2, because the numerical uncertainty
is too large. They find that for 3<Z<20 their results can
be fitted by the function

G l l
(4)~Za!52.299 532 8

27 ~Za!ln3~Za!22

2@1.0~1 !#~Za!ln2~Za!22, (A34)
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which gives G l l
(4)(a)520.47 at Z51. In view of the dis-

agreement of these values of G l l
(4)(a), for the purpose

of our evaluation, we take the average of the two ex-
treme results above (22.87 and 0.24) with an uncer-
tainty of half their difference:

G l l
(4)~a!521.3~1.6!, (A35)

where we assume a 1/n3 scaling to obtain values for nS
states other than 1S, as done by Mallampalli and Sa-
pirstein (1998).

For S states the coefficient B62 has been calculated to
be (Karshenboim, 1996b)

B625
16
9 S C1c~n !2ln n2

1
n

1
1

4n2D , (A36)

where c is the psi function (Abromowitz and Stegun,
1965) and C is an unknown constant independent of n
[only the difference B62(1)2B62(n) was calculated].
For P states the calculated value is (Karshenboim,
1996b)

B625
4
27

n221

n2
. (A37)

There is no calculation of B62 for D states.
In summary, the two-photon contribution is calculated

from Eq. (A22) with F(4)(Za) approximated by

B401~Za!~B502B50
l l !1~Za!G l l

(4)~Za!

1B62~Za!2ln2~Za!22 (A38)

for nS states, by

B401B62~Za!2ln2~Za!22 (A39)

for nP states, and by

B40 (A40)

for states with l.1. As in the case of the order-a self-
energy and vacuum polarization contributions, the
dominant effect of the finite mass of the nucleus is taken
into account by multiplying each term of the two-photon
contribution by the reduced-mass factor (mr /me)

3, ex-
cept that the magnetic moment term, Eq. (A25), is in-
stead multiplied by the factor (mr /me)

2. In addition, the
argument (Za)22 of the logarithms is replaced by
(me /mr)(Za)22.

The uncertainties associated with the two-photon cor-
rections in addition to those given in Eqs. (A30) and
(A35) are as follows:

nS states: The leading uncalculated term is the con-
stant C in B62 [see Eq. (A36)]. Based on the relative
magnitudes of the coefficients of the power series of the
one-photon self energy and the calculated coefficients of
the two-photon corrections, we take C50 with u0(C)
55. We expect that this will also account for the uncer-
tainties u0(B61) and u0(B60) due to the fact that the
coefficients B61 and B60 are uncalculated. Thus we have
u0(B62)5 80

9 and un(B62)50. (In general, we shall as-
sume that a reasonable estimate for the uncertainty of
the first uncalculated term is sufficiently large to account
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for the uncertainty of higher-order terms, which is con-
sistent with the known results for the one-photon dia-
grams.) The first two-photon component of uncertainty
of the type un evidently is un(B61). As suggested by the
value of the difference B62(n51)2B62(n52)5 16

9 ln 2

2 7
3521.1 . . . , and the pattern of values of the one-

photon power-series coefficients, we take un(B61)52
for this component of uncertainty. The uncertainty of
the two-photon contribution is by far the dominant un-
certainty for the 1S state: u0/h589 kHz and un/h
52 kHz.

nP states: Based on the calculated value for B62 in Eq.
(A37) and the one-photon power-series pattern, we take
u0(B61)50.2 and un(B61)50.02.

nD states: Because there is no information regarding
B62 for D states, we simply take the P-state values as
uncertainties for the corresponding D-state uncertain-
ties: u0(B62)50.1 and un(B62)50.01.

7. Three-photon corrections

Corrections from three virtual photons, of order a3,
have not been calculated, although an isolated term has
been considered (Eides and Grotch, 1995a). Presumably
they take the form

E(6)5S a

pD 3 ~Za!4

n3
mec

2@T401¯# , (A41)

in analogy with the two-photon corrections. To account
for such uncalculated terms, we take T40 to be zero but
with standard uncertainties u0(T40)51 and un(T40)
50.01, based on the values of the one- and two-photon
contributions. These values are taken for all states, be-
cause the two-photon contribution is comparable for all
states.

8. Finite nuclear size

At low Z , the leading contribution due to the finite
size of the nucleus is

ENS
(0)5ENSd l0 , (A42)

where

ENS5
2
3 S mr

me
D 3 ~Za!2

n3
mec

2S ZaRN

|C
D 2

; (A43)

RN is the bound-state root-mean-square (rms) charge
radius of the nucleus and |C is the Compton wavelength
of the electron divided by 2p. The bound-state rms
charge radius RN is defined by the formulation in this
Appendix and, except for the proton, differs from the
scattering rms charge radius rN . (The difference in the
conventional definitions of rN for the proton and deu-
teron and its significance is discussed later in this sec-
tion.) The leading higher-order contributions have been
examined by Friar (1979b) with the following results:

For S states the total contribution is

ENS5ENS~11h1u!, (A44)
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where h is a correction of nonrelativistic origin and u is
a relativistic correction. Friar (1979b) gives general ex-
pressions for these corrections in terms of various mo-
ments of the nuclear charge distribution. The values of
the corrections depend only weakly on the model as-
sumed for the distribution. The expressions for h and u
are

h52Ch

mr

me

ZaRN

|C
(A45)

and

u5u01un , (A46)

where

u05~Za!2F2lnS mr

me

ZaRN

|C
D1CuG (A47)

and

un5~Za!2F ln n2c~n !2g1
~5n19 !~n21 !

4n2 G . (A48)

In the latter expression, g50.577 215 . . . is Euler’s con-
stant. The quantities Ch and Cu are numerical constants
that contain all of the model dependence. The term u0 is
independent of n and gives the largest correction due to
the model-independent logarithm. The n-dependent
term un is model independent. This latter term has been
confirmed by Karshenboim (1997a).

For hydrogen we assume a Gaussian charge distribu-
tion for the proton, which gives

Ch5
16

3A3p
'1.7 (A49)

Cu50.465 457 . . . . (A50)

The variations of Ch and Cu are less than 0.16 and 0.06,
respectively, between the Gaussian distribution and ei-
ther the uniform or the exponential distribution. For
deuterium we take the results given by Friar and Payne
(1997b), which lead to (Friar, 1998)

Ch52.0 (A51)

Cu50.383~3 !, (A52)

where the uncertainty of Cu simply indicates the spread
in values resulting from various potential models for the
deuteron.

For the P1/2 states in hydrogen we have (Friar, 1979b)

ENS5ENS
~Za!2~n221 !

4n2
. (A53)

For P3/2 states and D states the nuclear-size contribution
is negligible.

As alluded to above, the conventional definitions of
the scattering rms charge radius rp of the proton and rd
of the deuteron differ. For hydrogen, the nuclear-size
effects are evaluated with

Rp5rp . (A54)
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However, in the case of the deuteron, the Darwin-Foldy
contribution

EDF52
~Za!4mr

3c2

2n3mN
2 d l0 , (A55)

which appears as the term proportional to d l0 in Eq.
(A3), is included in the definition of rd (Friar et al.,
1997). Consequently, for deuterium the nuclear-size ef-
fects can be evaluated with

Rd5Ard
21

3

4
S me

md
D 2

|C
2 (A56)

to avoid double counting of the Darwin-Foldy contribu-
tion. Alternatively, one could take Rd equal to rd and
omit the Darwin-Foldy term in Eq. (A3). We take the
former approach in the 1998 adjustment, because it is
consistent with the existing atomic physics bound-state
literature and with a nuclear-size contribution to energy
levels that vanishes for a finite-mass point nucleus.

The uncertainty in the finite nuclear-size contribution,
apart from that of the value of RN , is assigned as fol-
lows:

nS states: The uncertainty associated with the model
dependence of the nuclear charge distribution gives the
largest contribution of type u0 . For hydrogen, a reason-
able estimate is u0(Ch)50.1 and u0(Cu)50.04 based on
the difference between the Gaussian and uniform mod-
els. For deuterium, as noted by Friar and Payne (1997b),
the uncertainty quoted for Cu could be larger than the
value in Eq. (A52) if various aspects of the charge dis-
tribution model of the deuteron were changed. To allow
for this variation, we consider the uncertainties u0(Ch)
and u0(Cu) to be the same for deuterium as for hydro-
gen. However, the uncertainty arising from these values
of u0 as well as from omitted higher-order uncalculated
terms, such as 1

2 u0
2 , is negligible. Because un is model

independent, the uncertainty un is due entirely to omit-
ted higher-order uncalculated terms. Nevertheless, since
such terms are negligible at the current level of interest,
we take un50 in both hydrogen and deuterium.

nP1/2 states: The expression for the nP1/2-state contri-
bution given in Eq. (A53) has no model dependence,
and omitted higher-order uncalculated terms are negli-
gible. We therefore take u05un50.

In summary, the uncertainty of the nuclear-size con-
tribution, apart from that due to the rms radius of the
nucleus, is negligible.

9. Nuclear-size correction to self energy and vacuum
polarization

In addition to the direct effect of finite nuclear size on
energy levels, its effect on the previously discussed self
energy and vacuum polarization contributions must also
be considered.

For the self energy, the additional contribution due to
the finite size of the nucleus is (Eides and Grotch, 1997b;
Pachucki, 1993c)
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ENSE5a
3
2

a~Za!ENSd l0 , (A57)

where a521.985(1), and for the vacuum polarization it
is (Friar, 1979a)

ENVP5
3
4

a~Za!ENSd l0 . (A58)

The contribution ENSE is consistent with an extrapola-
tion to Z50 of the numerical results of Mohr and Soff
(1993), and ENVP has been obtained independently by
Hylton (1985) and Eides and Grotch (1997b). These
contributions are sufficiently small that their uncertain-
ties may be ignored. The contributions are negligible for
P and D states.

10. Radiative-recoil corrections

The dominant effect of nuclear motion on the self en-
ergy and vacuum polarization has been taken into ac-
count by including appropriate reduced-mass factors.
The additional contributions over and above this pre-
scription are termed radiative-recoil effects. The leading
such term has been considered by Bhatt and Grotch
(1987) and by Pachucki (1995), but the two results are
not in complete agreement. In this article we employ the
more recent result of Pachucki (1995),

ERR521.364 49~1 !a
~Za!5

n3

me

mN
mec

2d l0 , (A59)

which incorporated a number of crosschecks because of
the disagreement. One of the small corrections included
by Pachucki (1995) but not by Bhatt and Grotch (1987)
has been confirmed by Eides and Grotch (1995b). (As
indicated by the factor d l0 , this contribution is zero for
all states with l>1.)

For the uncertainty, we take the next term, which is of
relative order Za , with numerical coefficients 100 for u0
and 10 for un . These coefficients are roughly what one
would expect for the higher-order uncalculated terms,
where the large coefficients arise from terms of order
ln2(Za)22 and ln(Za)22. We note that this uncertainty
estimate is larger than the difference between the results
of Bhatt and Grotch (1987) and Pachucki (1995).

11. Nucleus self energy

An additional contribution due to the self energy of
the nucleus has been given by Pachucki (1995):

ESEN5
4Z2a~Za!4

3pn3

mr
3

mN
2 c2

3F lnS mN

mr~Za!2D d l02ln k0~n ,l !G . (A60)

Although we include this term in our calculation, we
essentially take the term itself as its uncertainty,
Au0

21un
2 /n35uESENu, where un5uESEN(1S)

28ESEN(2S)u for l50, un5u8ESEN(2P)227ESEN(3P)u
for l51, and un5u27ESEN(3D)264ESEN(4D)u for l52.
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The reasons for assigning such a large uncertainty in-
clude the fact that this term is associated with the defi-
nition of the rms charge radius of the nucleus, and there
is ambiguity in the definition of the radius at the level of
the second term in Eq. (A60). Further, there are the
questions of whether, in the case of the deuteron, mN
should be the mass of the deuteron or of the proton and
whether this contribution can be treated without regard
to nuclear polarization (Friar, 1998).

12. Total energy and uncertainty

The total energy EnLj
X of a particular level (where

L5S, P, . . . and X5H, D) is just the sum of the various
contributions listed above plus an additive correction
dnLj

X that accounts for the uncertainty in the theoretical
expression for EnLj

X . Our theoretical estimate of the
value of dnLj

X for a particular level is zero with a standard
uncertainty of u(dnLj

X ) equal to the square root of the
sum of the squares of the individual uncertainties of the
contributions, since, as they are defined above, the con-
tributions to the energy of a given level are independent.
(Components of uncertainty associated with the funda-
mental constants are not included here, because they are
determined by the least-squares adjustment itself.) Thus
we have

u2~dnLj
X !5(

i

u0i
2 ~XLj !1uni

2 ~XLj !

n6
, (A61)

where the individual values u0i(XLj) and uni(XLj) are
enumerated in the sections above (denoted there simply
as u0 and un).

The covariance of any two d ’s follows from Eq. (F7)
of Appendix F and for a given isotope X is

u~dn1Lj
X ,dn2Lj

X !5(
i

u0i
2 ~XLj !

~n1n2!3
. (A62)

For covariances between d ’s for hydrogen and deute-
rium, we have for states of the same n

u~dnLj
H ,dnLj

D !

5 (
i5ic

u0i~HLj !u0i~DLj !1uni~HLj !uni~DLj !

n6
,

(A63)

and for n1Þn2

u~dn1Lj
H ,dn2Lj

D !5 (
i5ic

u0i~HLj !u0i~DLj !

~n1n2!3
, (A64)

where the summation is over the uncertainties common
to hydrogen and deuterium. In most cases, the uncer-
tainties can in fact be viewed as common except for a
known multiplicative factor that contains all of the mass

dependence. We assume that u(dn1Lj
X ,dn2L8j8

X8 ) is negli-

gible if LÞL8 or jÞj8.
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The values of u(dnLj
X ) of interest for the 1998 adjust-

ment are given in Table XIV.A.1 of Sec. IV, and the
nonnegligible covariances of the d ’s are given in the
form of correlation coefficients in Table XIV.A.2 of that
section. These coefficients are as large as 0.999.

Since the transitions between levels are measured in
frequency units (Hz), in order to apply the above equa-
tions for the energy level contributions we divide the
theoretical expression for the energy difference DE of
the transition by the Planck constant h to convert it to a
frequency. Further, since we take the Rydberg constant
R`5a2mec/2h (expressed in m21) rather than the elec-
tron mass me to be an adjusted constant, we replace the
group of constants a2mec

2/2h in DE/h by cR` .

13. Transition frequencies between levels with n52

As an indication of the consistency of the theory sum-
marized above and the experimental data, we list values
of the transition frequencies between levels with n52 in
hydrogen. These results are based on values of the con-
stants obtained in a variation of the 1998 least-squares
adjustment in which the measurements of the directly
related transitions (items A13, A14.1, and A14.2 in
Table XIV.A.1) are not included. The results are

nH~2P1/222S1/2!51 057 844.9~3.2! kHz @3.031026#

nH~2S1/222P3/2!59 911 196.3~3.2! kHz @3.231027#

nH~2P1/222P3/2!510 969 041.2~1.5! kHz @1.431027# ,
(A65)

which agree well with the relevant experimental results
of that table. The uncertainty of the Lamb shift
nH(2P1/2–2S1/2) obtained this way is about an order of
magnitude smaller than the theoretical uncertainty of
the 2S1/2 level itself, because the experimental informa-
tion reduces the uncertainty of d2S1/2

H .

APPENDIX B: THEORY OF ELECTRON MAGNETIC
MOMENT ANOMALY

This Appendix gives a brief summary of the current
theory of ae , the magnetic moment anomaly of the elec-
tron. A summary of the theory of am , the muon
anomaly, is given in Appendix C. As indicated in Sec.
III.C.1, Eq. (65), ae is defined according to

ae5
ugeu22

2
5

umeu
mB

21. (B1)

The theoretical expression for ae may be written as

ae~th!5ae~QED!1ae~weak!1ae~had!, (B2)

where the terms denoted by QED, weak, and had ac-
count for the purely quantum electrodynamic, predomi-
nantly electroweak, and predominantly hadronic (i.e.,
strong interaction) contributions to ae , respectively. The
QED contribution may be written as (Kinoshita, Nižić,
and Okamoto, 1990)
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ae~QED!5A11A2~me /mm!1A2~me /mt!

1A3~me /mm ,me /mt!. (B3)

The term A1 is mass independent and the other terms
are functions of the indicated mass ratios. For these
terms the lepton in the numerator of the mass ratio is
the particle under consideration, while the lepton in the
denominator of the ratio is the virtual particle that is the
source of the vacuum polarization that gives rise to the
term.

Each of the four terms on the right-hand side of Eq.
(B3) is expressed as a power series in the fine-structure
constant a:

Ai5Ai
(2)S a

pD1Ai
(4)S a

pD 2

1Ai
(6)S a

pD 3

1Ai
(8)S a

pD 4

1¯ . (B4)

The fine-structure constant a is proportional to the
square of the elementary charge e, so the order of a term
containing (a/p)n is 2n and its coefficient is called the
2nth-order coefficient.

The second-order coefficient A1
(2) , which is the lead-

ing coefficient in ae(QED), arises from one Feynman
diagram and is the famous Schwinger term (Schwinger,
1948, 1949):

A1
(2)5 1

2 . (B5)

The fourth-order coefficient A1
(4) arises from seven

diagrams and has been known analytically for about 40
years (Sommerfield, 1957, 1958; Petermann, 1957, 1958):

A1
(4)5

3z~3 !

4
2

p2 ln 2
2

1
p2

12
1

197
144

520.328 478 965 579 . . . , (B6)

where z(n) is the Riemann zeta function of argument n .
The sixth-order coefficient A1

(6) arises from 72 dia-
grams and is now also known analytically after nearly 30
years of effort by many researchers [see Roskies,
Remiddi, and Levine (1990) for a review of the early
work]. It was not until 1996 that the last three remaining
distinct diagrams were calculated analytically, thereby
completing the theoretical expression for A1

(6) . The final
result is

A1
(6)5

100 a4

3
2

215z~5 !

24
1

83p2z~3 !

72
1

139z~3 !

18

1
25 ln4 2

18
2

25p2 ln2 2
18

2
298p2 ln 2

9
2

239p4

2160

1
17101p2

810
1

28259
5184

51.181 241 456... , (B7)

where a45(n51
` 1/(2nn4)50.517 479 061... . Recent

work leading to this expression has been carried out by
Laporta and Remiddi (1991, 1995, 1996); Laporta
(1993c, 1995).
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A total of 891 Feynman diagrams give rise to the
eighth-order coefficient A1

(8) , and only a few of these
are known analytically. However, in a major effort be-
gun in the 1970s, Kinoshita and collaborators have cal-
culated A1

(8) numerically [see Kinoshita (1990) for a re-
view of the early work]. The current best estimate of this
coefficient reported by Kinoshita is (Kinoshita, 1998;
Hughes and Kinoshita, 1999)

A1
(8)521.5098~384!. (B8)

This value differs from A1
(8)521.4092(384) reported

previously (Kinoshita, 1996, 1997), but it is believed to
be more accurate because of a significant increase in the
number of integration points used in the calculation. Ki-
noshita has retained the uncertainty of the earlier result
in the new result despite the higher accuracy of the cal-
culations on which the new result is based, pending his
completion of a more precise error analysis. Note that
the numerical results agree with the analytic results for
those few eighth-order diagrams that are known analyti-
cally. Further, the same numerical techniques used to
evaluate the eighth-order diagrams have been used to
evaluate all fourth- and sixth-order diagrams, and good
agreement with the corresponding analytic results is
found. For example, the numerical results obtained by
Kinoshita (1995) for eight subgroups, consisting of 50
out of the 72 diagrams that give rise to A1

(6) , agree with
the corresponding analytic results.

To place in perspective the contributions to ae(th) of
A1

(8) and other relatively small terms discussed in the
remainder of this Appendix, we recall that the most ac-
curate experimental value of ae has a standard uncer-
tainty of 4.231021253.731029 ae [see Eq. (68), Sec.
III.C.1] and note that (a/p)452931021252531029 ae .
Thus the 0.0384 standard uncertainty of A1

(8) contributes
a standard uncertainty to ae(th) of 1.131021250.96
31029 ae .

Little is known about the tenth-order coefficient A1
(10)

and higher-order coefficients. However, since (a/p)5

50.06831021250.05831029 ae , A1
(10) and higher coeffi-

cients are not yet a major concern. To evaluate the con-
tribution to the uncertainty of ae(th) due to lack of
knowledge of A1

(10) , we assume that the probable error
(50 % confidence level) is equal to the absolute value of
A1

(10) as roughly estimated by u(A1
(8)/A1

(6))A1
(8)u51.9.

For a normal distribution this corresponds to a standard
uncertainty of 2.9, and hence we take A1

(10)50.0(2.9) to
calculate ae(th). Because the 2.9 standard uncertainty of
A1

(10) contributes a standard uncertainty component to
ae(th) of only 0.1931021250.1731029 ae , the uncer-
tainty contributions to ae(th) from all other higher-
order coefficients are assumed to be negligible.

The lowest-order nonvanishing mass-dependent coef-
ficient is A2

(4)(x), where x denotes either me /mm or
me /mt , as indicated in Eq. (B3). A complete series ex-
pansion for A2

(4)(x) in powers of x and ln x (x,1) is
known (Samuel and Li, 1991; Li, Mendel, and Samuel,
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1993; Czarnecki and Skrzypek, 1999). Evaluation of the
power series using the 1998 recommended values of the
mass ratios yields

A2
(4)~me /mm!55.197 387 62~32!31027 (B9)

A2
(4)~me /mt!51.837 50~60!31029, (B10)

where the standard uncertainties are due to the uncer-
tainties of the mass ratios. To place these coefficients in
perspective, we note that their contributions to ae(th)
are

A2
(4)~me /mm!S a

pD 2

52.804310212

52.41831029 ae

A2
(4)~me /mt!S a

pD 2

50.010310212

50.00931029 ae . (B11)

These contributions are so small that the uncertainties
of the mass ratios are not significant. This statement also
applies to all other mass-dependent contributions to
ae(th).

The next coefficient in the series is A2
(6)(x). It is

known in terms of a series expansion in x with a suffi-
cient number of powers of x to ensure that the omitted
terms are negligible (Laporta, 1993b; Laporta and
Remiddi, 1993). Using the 1998 recommended values of
the mass ratios, one obtains

A2
(6)~me /mm!527.373 942 53~33!31026

A2
(6)~me /mt!526.5815~19!31028. (B12)

To put these coefficients in perspective, we note that

A2
(6)~me /mm!S a

pD 3

520.092310212

520.08031029 ae

A2
(6)~me /mt!S a

pD 3

520.001310212

520.00131029 ae . (B13)

In view of the smallness of these contributions, the next
coefficient in the series, A2

(8)(x), as well as higher-order
coefficients, may be ignored.

The lowest-order nonvanishing coefficient in the term
A3(me /mm ,me /mt) is A3

(6)(me /mm ,me /mt). Evaluat-
ing the expression for this coefficient (Lautrup, 1977;
Samuel and Li, 1991) by numerical integration using the
1998 recommended values of the mass ratios, we obtain

A3
(6)~me /mm ,me /mt!51.91310213. (B14)

The contribution of this coefficient to ae(th) is 2.4
31022152.1310218 ae , which is so small that it may be
ignored. Higher-order coefficients in this series may, of
course, also be ignored.

The calculation of electroweak and hadronic contribu-
tions to lepton magnetic moment anomalies initially fo-
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cused on the muon rather than the electron, because the
contributions are significantly larger and thus of greater
importance for heavier leptons. We therefore discuss
them in greater detail in the following Appendix, which
deals with the theory of am . Here we simply give the
results as they apply to the electron.

For the electroweak contribution we have

ae~weak!5
GFme

2

8p2&

5
3

3F11
1
5

~124 sin2 uW!21C
a

p
1•••G

50.0297~7 !310212

50.0256~6 !31029 ae , (B15)

where GF is the Fermi coupling constant; uW is the weak
mixing angle with sin2 uW512(mW /mZ)2, where
mW /mZ is the ratio of the mass of the W6 to the mass of
the Z0; and C52150 as calculated by Czarnecki et al.
(1996) and accounts for two-loop contributions to
ae(weak). The quoted standard uncertainty is taken to
be the 3310211 uncertainty of the electroweak contribu-
tion to am(th) multiplied by the factor (me /mm)2, since
am(weak) varies approximately as mm

2 . In obtaining the
numerical value of ae(weak), we have used the 1998
recommended values of the relevant constants that ap-
pear in Eq. (B15). Clearly, ae(weak) is not yet a signifi-
cant contribution to ae(th).

The hadronic contribution is

ae~had!51.631~19!310212

51.407~17!31029 ae (B16)

and is the sum of the following three contributions:
ae

(4)(had)51.875(18)310212 obtained by Davier and
Höcker (1998b); ae

(6a)(had)520.225(5)310212 given
by Krause (1997); and ae

(gg)(had)520.0185(36)310212

obtained by multiplying the corresponding result for the
muon of Hayakawa and Kinoshita (1998) by the factor
(me /mm)2, since am

(gg)(had) is assumed to vary approxi-
mately as mm

2 . The contribution ae(had), although
larger than ae(weak), is not yet of major significance.

For our least-squares adjustment, we require ae(th) as
a function of a. Since the dependence on a of any con-
tribution other than ae(QED) is negligible, we obtain a
convenient form for the function by combining terms in
ae(QED) that have like powers of a/p. This leads to the
following summary of the above results:

ae~th!5ae~QED!1ae~weak!1ae~had!, (B17)
where

ae~QED!5Ce
(2)S a

pD1Ce
(4)S a

pD 2

1Ce
(6)S a

pD 3

1Ce
(8)S a

pD 4

1Ce
(10)S a

pD 5

1••• , (B18)

with

Ce
(2)50.5
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Ce
(4)520.328 478 444 00

Ce
(6)51.181 234 017

Ce
(8)521.5098~384!

Ce
(10)50.0~2.9!, (B19)

and where

ae~weak!50.030~1 !310212 (B20)

and

ae~had!51.631~19!310212. (B21)

The standard uncertainty of ae(th) from the uncertain-
ties of the terms listed above, other than that due to a, is

u@ae~th!#51.131021251.031029 ae . (B22)

This uncertainty is dominated by the uncertainty of the
coefficient Ce

(8) . In fact, if Ce
(8) were exactly known, the

standard uncertainty of ae(th) would be only 0.19
31021250.1731029 ae . (Note that the uncertainties of
Ce

(4) and Ce
(6) are beyond the digits shown and contrib-

ute negligible components of uncertainty to u@ae(th)# .)
For the purpose of the least-squares calculations car-

ried out in Sec. IV, we define an additive correction de
to ae(th) to account for the lack of exact knowledge of
ae(th), and hence the complete theoretical expression
for the electron anomaly is

ae~a ,de!5ae~th!1de . (B23)

Our theoretical estimate of de is zero and its standard
uncertainty is u@ae(th)# :

de50.0~1.1!310212. (B24)

APPENDIX C: THEORY OF MUON MAGNETIC MOMENT
ANOMALY

This Appendix gives a brief summary of the current
theory of the magnetic moment anomaly of the muon
am . A similar summary of the theory of the electron
anomaly ae is given in Appendix B. [For a review of the
early work on the theory of am , see Kinoshita and Mar-
ciano (1990).] As indicated in Sec. III.C.10, Eq. (162), am

is defined according to

am5
ugmu22

2
5

ummu
e\/2mm

21. (C1)

As for the electron, the theoretical expression for am

may be written as

am~th!5am~QED!1am~weak!1am~had!, (C2)

where the terms denoted by QED, weak, and had ac-
count for the purely quantum electrodynamic, predomi-
nantly electroweak, and predominantly hadronic (i.e.,
strong interaction) contributions to am , respectively.
Also in the same manner as for the electron, the QED
contribution may be written as (Kinoshita et al., 1990)

am~QED!5A11A2~mm /me!1A2~mm /mt!

1A3~mm /me ,mm /mt!. (C3)
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The mass-dependent terms are a function of the indi-
cated mass ratios, and we again note that for these terms
the lepton in the numerator of the mass ratio is the par-
ticle under consideration, while the lepton in the de-
nominator of the ratio is the virtual particle that is the
source of the vacuum polarization that gives rise to the
term.

As for the electron, each of the four terms on the
right-hand side of Eq. (C3) is expressed as a power se-
ries in the fine-structure constant a:

Ai5Ai
(2)S a

pD1Ai
(4)S a

pD 2

1Ai
(6)S a

pD 3

1Ai
(8)S a

pD 4

1••• . (C4)

The mass-independent term A1 , which is given in Ap-
pendix B, is the same for all three charged leptons. The
standard uncertainty of A1 is 0.1131021150.097
31028 am . To place this uncertainty in perspective, as
well as the values and uncertainties of other contribu-
tions to am(th) discussed in this Appendix, we note that
the standard uncertainty of am(th) is currently domi-
nated by the 6431021155531028 am uncertainty of
am(had), and it will be a challenge to reduce the uncer-
tainty of am(had) by as much as a factor of 10 (Czar-
necki and Krause, 1996). Further, the standard uncer-
tainty of the most accurate experimental value of am is
840310211572031028 am [see Eq. (165), Sec.
III.C.10.a], and the goal of the new experiment under-
way at Brookhaven National Laboratory is to reduce
this uncertainty by a factor of about 20 (see Sec.
III.C.10.b), which would imply an uncertainty of about
40310211'3531028 am .

As for the electron, the lowest-order nonvanishing
mass-dependent coefficient is A2

(4)(x). In the case of the
muon [see Eq. (C3)], x is either mm /me , which is greater
than 1, or mm /mt , which is less than 1. A complete se-
ries expansion in powers of 1/x and ln x for x.1 is
known and, as indicated in Appendix B, a series expan-
sion in x and ln x for x,1 is also known (Samuel and Li,
1991; Li, Mendel, and Samuel, 1993; Czarnecki and
Skrzypek, 1999). Evaluation of these power series using
the 1998 recommended values of the mass ratios yields

A2
(4)~mm /me!51.094 258 2828~98! (C5)

A2
(4)~mm /mt!50.000 078 059~25!, (C6)

where the standard uncertainties are due to the uncer-
tainties of the mass ratios. The contributions of these
coefficients to am(th) are

A2
(4)~mm /me!S a

pD 2

5590 405.9860~53!310211

5506 387.5988~45!31028 am

A2
(4)~mm /mt!S a

pD 2

542.117~14!310211

536.123~12!31028 am . (C7)
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(For comparisons of this type we use the 1998 recom-
mended values of a and am , but ignore their uncertain-
ties.) For these terms, as well as all other mass-
dependent terms, the uncertainties of the mass ratios are
of no practical significance.

The next coefficient, A2
(6)(x), is known in terms of a

series expansion in x , for both x,1 and x.1, with a
sufficient number of powers of x to ensure that the omit-
ted terms are negligible (Laporta, 1993b; Laporta and
Remiddi, 1993). Using the 1998 recommended values of
the mass ratios, one obtains

A2
(6)~mm /me!522.868 379 36~23! (C8)

A2
(6)~mm /mt!50.000 360 54~21!. (C9)

The contributions of these coefficients to am(th) are

A2
(6)~mm /me!S a

pD 3

528 660.367 33~29!310211

524 581.821 55~24!31028 am

A2
(6)~mm /mt!S a

pD 3

50.451 85~26!310211

50.387 55~22!31028am . (C10)

The contribution of A2
(6)(mm /mt) to am(th) is suffi-

ciently small that the contribution from the next coeffi-
cient in that series, which is A2

(8)(mm /mt), and from
higher-order coefficients may be assumed to be negli-
gible. This is not the case for the contribution of the next
coefficient in the series A2

(2n)(mm /me), which is
A2

(8)(mm /me). The calculation of this coefficient is
based mainly on numerical evaluations by Kinoshita and
co-workers of the corresponding 469 Feynman diagrams.
The current best estimate is

A2
(8)~mm /me!5127.50~41!, (C11)

where the quoted uncertainty is due to the uncertainty
of the numerical integrations. Recent work leading to
Eq. (C11) has been carried out by Kinoshita et al.
(1990); Kinoshita (1993); Laporta (1993a); and Baikov
and Broadhurst (1995). The contribution of this coeffi-
cient to am(th) is

A2
(8)~mm /me!S a

pD 4

5371.2~1.2!310211

5318.3~1.0!31028am . (C12)

The contribution itself is significant, but its uncertainty is
of little consequence.

An estimate of the next coefficient in the series, which
is A2

(10)(mm /me), is

A2
(10)~mm /me!5930~170!, (C13)

based on the work of Kinoshita et al. (1990) and Karsh-
enboim (1993b). Its contribution to am(th) is

A2
(10)~mm /me!S a

pD 5

56.3~1.1!310211

55.4~1.0!31028am . (C14)
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The contribution itself is of marginal significance, and its
uncertainty is of little consequence. In view of the small-
ness of this contribution, it is assumed that higher-order
coefficients in the series may be neglected.

In analogy with the electron, the lowest-order nonva-
nishing coefficient in the term A3(mm /me ,mm /mt) is
A3

(6)(mm /me ,mm /mt). Evaluating the series expansion
of Czarnecki and Skrzypek (1999) for this coefficient us-
ing the 1998 recommended values of the mass ratios, we
obtain

A3
(6)~mm /me ,mm /mt!50.000 527 63~17!, (C15)

where the uncertainty is due mainly to the uncertainty of
mt . This result is consistent with the evaluation of the
analytic expression for A3

(6)(mm /me ,mm /mt) (Lautrup,
1977; Samuel and Li, 1991) by numerical integration.
The contribution of this coefficient to am(th) is

A3
(6)~mm /me ,mm /mt!S a

pD 3

50.661 26~21!310211

50.567 16~18!31028am , (C16)

which is of no practical consequence. Nevertheless, the
next coefficient in the series has been estimated numeri-
cally. The result is (Kinoshita et al., 1990)

A3
(8)~mm /me ,mm /mt!50.079~3 !, (C17)

and its contribution to am(th) is

A3
(8)~mm /me ,mm /mt!S a

pD 4

50.2300~87!310211

50.1973~75!31028am , (C18)

which again is of no practical consequence. In view of
the smallness of this contribution, higher-order coeffi-
cients are assumed to be negligible.

The electroweak contribution to am(th) can be char-
acterized by the number of closed loops in the relevant
Feynman diagrams:

am~weak!5am
(1l )~weak!1am

(2l )~weak!1¯ ,
(C19)

where 1l indicates one loop, 2l indicates two loops, etc.
The dominant contribution to am(weak) arises from
one-loop diagrams involving W and Z bosons; the con-
tribution from the Higgs boson is negligible for any rea-
sonable estimated value of its mass. The two-loop con-
tribution is further divided into fermionic and bosonic
contributions:

am
(2l )~weak!5am

(2l )~ferm!1am
(2l )~bos!, (C20)

where am
(2l )(ferm) denotes the two-loop contribution

arising from closed fermion loops, and am
(2l )(bos) de-

notes the remaining two-loop contribution.
The electroweak contribution may be written as

(Czarnecki, Krause, and Marciano, 1995)
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am~weak!5
GFmm

2

8p2&

5
3

3F11
1
5

~124 sin2 uW!21C
a

p
1¯G ,

(C21)

where GF is the Fermi coupling constant; uW is the weak
mixing angle with sin2 uW512(mW /mZ)2, where
mW /mZ is the ratio of the mass of the W6 to the mass of
the Z0; and the value C5297 has been calculated by
Czarnecki et al. (1996) and accounts for fermion and bo-
son two-loop contributions to am(weak). Equation
(C21) yields am(weak)5151(4)310211, where the stan-
dard uncertainty is that quoted by Czarnecki et al.
(1996) and is due to uncertainties in the Higgs mass,
quark two-loop effects, and possible three- or higher-
loop contributions. In recent work, Degrassi and Giu-
dice (1998) have calculated the dependence of the coef-
ficients of the leading logarithmic terms of am

(2l )(ferm)
on sin2 uW and the leading logarithmic terms of the
three-loop contribution am

(3l )(ferm). These additional
terms provide small corrections to the value of Czar-
necki et al. (1996); the combined result is (Degrassi and
Giudice, 1998)

am~weak!5153~3 !310211

5131~3 !31028am . (C22)

[Other work related to am(weak) has been carried out
by Kuraev, Kukhto, and Schiller (1990); Kukhto et al.
(1992); and Peris, Perrottet, and de Rafael (1995).] The
electroweak contribution to am(th) is significant, but its
uncertainty is of little consequence.

The hadronic contribution to am(th) may be written as

am~had!5am
(4)~had!1am

(6a)~had!1am
(gg)~had!1¯ ,

(C23)
where am

(4)(had) and am
(6a)(had) arise from hadronic

vacuum polarization and are of order (a/p)2 and
(a/p)3, respectively; and am

(gg)(had) arises from had-
ronic light-by-light vacuum polarization. [The a in the
superscript of ae

(6a)(had) indicates that not all of the
sixth-order terms are included. Further, am

(gg)(had) is
also of sixth order.]

The most accurate calculation of the contribution
am

(4)(had) is that of Davier and Höcker (1998b) and is
based on improved theory together with experimental
data from both the production of hadrons in e1e2 colli-
sions and the decay of the t into hadrons. Their result is

am
(4)~had!56924~62!310211, (C24)

where the quoted standard uncertainty is due to uncer-
tainties in both the theory and experimental data. This
value, which is the one that we shall employ, is in agree-
ment with but has a smaller uncertainty than earlier re-
sults, some of which were based on e1e2 scattering data
alone (Davier and Höcker, 1998a; Alemany, Davier, and
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Höcker, 1998; Alemany, 1997; Brown and Worstell,
1996; Jegerlehner, 1996; Eidelman and Jegerlehner,
1995).

For am
(6a)(had) we take the value calculated by Krause

(1997),

am
(6a)~had!52101~6 !310211. (C25)

This result is a refinement of the earlier estimate of Ki-
noshita, Nižić, and Okamoto (1985) and incorporates an
improved theoretical method. Further, it is based on the
analysis by Eidelman and Jegerlehner (1995) of the ex-
perimental data for the process e1e2→ hadrons, and
that analysis includes more recent data than the earlier
estimate.

For am
(gg)(had) we take the value

am
(gg)~had!5279.2~15.4!310211, (C26)

quoted by Hayakawa and Kinoshita (1998), which is
consistent with but has a smaller uncertainty than the
result am

(gg)(had)5292(32)310211 of Bijnens, Pallante,
and Prades (1996). Both of these estimates include the
effect of the h8 meson in addition to the effects of the p0

and h mesons in the diagram that makes the largest con-
tribution to am

(gg)(had). These results may be compared
to the estimate am

(gg)(had)5252(18)310211, which
does not include the effect of the h8 (Hayakawa, Ki-
noshita, and Sanda, 1996).

Adding Eqs. (C24), (C25), and (C26), one obtains

am~had!56744~64!310211

55784~55!31028am . (C27)

Clearly, the uncertainty of am(had) is the dominant con-
tribution to the uncertainty of am(th).

Following the same procedure as with ae(th) in Ap-
pendix B, by adding terms in am(QED) that have like
powers of a/p, including the results for A1 given in that
Appendix, we summarize the theory of am as follows:

am~th!5am~QED!1am~weak!1am~had!, (C28)

where

am~QED!5Cm
(2)S a

pD1Cm
(4)S a

pD 2

1Cm
(6)S a

pD 3

1Cm
(8)S a

pD 4

1Cm
(10)S a

pD 5

1¯ , (C29)

with

Cm
(2)50.5

Cm
(4)50.765 857 376~27!

Cm
(6)524.050 508 98~44!

Cm
(8)5126.07~41!

Cm
(10)5930~170!, (C30)

and where
am~weak!5153~3 !310211 (C31)

and
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am~had!56744~64!310211. (C32)

The standard uncertainty of am(th) from the uncertain-
ties of the terms listed above, other than that due to a, is

u@am~th!#56.431021055531028am (C33)

and is primarily due to the uncertainty of am(had). In
fact, if am(had) were exactly known, the standard uncer-
tainty of am(th) would be only 3.431021152.931028am

and would be due mainly to the uncertainty of
am(weak). If both am(had) and am(weak) were exactly
known, the uncertainty of am(th) would be only 1.7
31021151.431028am , which is just the uncertainty of
am(QED). [Note that the uncertainties of Cm

(4) and Cm
(6)

are negligible.]
In a manner similar to that for ae(th), for the purpose

of the least-squares calculations carried out in Sec. IV,
we define an additive correction dm to am(th) to account
for the lack of exact knowledge of am(th), and hence the
complete theoretical expression for the muon anomaly is

am~a ,dm!5am~th!1dm . (C34)

Our theoretical estimate of dm is zero and its standard
uncertainty is u@am(th)# :

dm50.0~6.4!310210. (C35)

Although am(th) and ae(th) have common components
of uncertainty, due mainly to the uncertainty of A1

(8) ,
u@am(th)# is so large due to the uncertainty of am(had)
that the covariance of dm and de is negligible.

APPENDIX D: THEORY OF MUONIUM GROUND-STATE
HYPERFINE SPLITTING

This Appendix gives a brief summary of the present
theory of DnMu , the ground-state hyperfine splitting of
muonium (m1e2 atom). The dominant part of the split-
ting is given by the Fermi formula (Fermi, 1930)

DnF5
16
3

cR`Z3a2
me

mm
F11

me

mm
G23

, (D1)

where the last factor is the reduced mass correction.
(Note that although the charge of the muon is e , some of
the expressions in this Appendix correspond to a muon
with charge Ze in order to indicate the nature of various
terms.) The full theoretical expression may be written as

DnMu~th!5DnD1Dnrad1Dnrec

1Dnr–r1Dnweak1Dnhad , (D2)

where the terms labeled D, rad, rec, r–r, weak, and had
account for the Dirac (relativistic), radiative, recoil,
radiative-recoil, electroweak, and hadronic (i.e., strong
interaction) contributions to the hyperfine splitting, re-
spectively. [See Sapirstein and Yennie (1990) and Bod-
win, Yennie, and Gregorio (1985) for reviews of the
early work.]

The contribution DnD is given by the Dirac equation
and was calculated exactly to all orders in Za by Breit
(1930). The first few terms in the power-series expansion
in Za are
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DnD5DnF~11am!@11 3
2 ~Za!21 17

8 ~Za!41¯# ,

(D3)
where am is the muon magnetic moment anomaly (see
Appendix C).

The radiative corrections are of the form

Dnrad5DnF~11am!FD(2)~Za!S a

pD
1D(4)~Za!S a

pD 2

1¯G , (D4)

where the functions D(2n)(Za) are contributions associ-
ated with n virtual photons. In the limit Za→0, each of
these functions is equal to the corresponding coefficient
A1

(2n) in the theoretical expression for ae as discussed in
Appendix B. [The mass-dependent QED, electroweak,
and hadronic contributions to ae are negligible in the
context of DnMu(th) and need not be considered.] The
functions D(2n)(Za) are as follows:

D(2)~Za!5A1
(2)1~ ln 22 5

2 !pZa

1@2 2
3 ln2~Za!221~ 281

360

2 8
3 ln 2 !ln~Za!22

116.9037 . . . #~Za!2

1@~ 5
2 ln 22 547

96 !ln~Za!22#p~Za!3

1G~Za!~Za!3, (D5)

where A1
(2)5 1

2 , as given in Appendix B. The number
16.9037 . . . includes a numerical integration that is
readily carried out to high accuracy. The function
G(Za) accounts for all higher-order contributions in
powers of Za and can be divided into parts that corre-
spond to a self-energy Feynman diagram and a vacuum
polarization diagram, G(Za)5GSE(Za)1GVP(Za).
The self-energy part is estimated to be GSE(Za)5
212.0(2.0). The vacuum polarization part GVP is ex-
pected to be negligible compared to the uncertainty of
the self-energy part. Work relevant to Eq. (D5) has been
carried out by Schneider, Greiner, and Soff (1994); Nio
(1995); Karshenboim (1996a); Pachucki (1996); Nio and
Kinoshita (1997); Blundell, Cheng, and Sapirstein
(1997a); and Sunnergren et al. (1998).

For D(4)(Za) we have

D(4)~Za!5A1
(4)10.7717~4 !pZa1@2 1

3 ln2~Za!22

286~18!#~Za!21¯ , (D6)

where A1
(4) is as given in Appendix B. The number

0.7717(4) is the sum of various contributions, some of
which are evaluated numerically (Eides, Karshenboim,
and Shelyuto, 1989b, 1990, 1991; Karshenboim, Shely-
uto, and É ı̆des, 1992; Kinoshita and Nio, 1994, 1996; Ei-
des and Shelyuto, 1995). The ln2(Za)22 contribution is
from Karshenboim (1993a). The number 286(18) [cor-
responding to 20.110(23) kHz] is an estimate of the
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contribution of a ln(Za)22 term and a constant term
(Nio, 1995; Kinoshita, 1996).

Finally,

D(6)~Za!5A1
(6)1¯ , (D7)

where only the leading contribution is given for the
sixth-order term, because no binding correction has yet
been calculated. Higher-order functions D(2n)(Za) with
n.3 are expected to be negligible.

The recoil contribution is given by

Dnrec5DnF

me

mm
H 2

3

12~me /mm!2
lnS mm

me
D Za

p

1
1

~11me /mm!2 F ln~Za!2228 ln 21
65
18G

3~Za!2

1F2
3
2

lnS mm

me
D ln~Za!222

1
6

ln2~Za!22

257~22!G ~Za!3

p J 1¯ , (D8)

where the number 257(22) [corresponding to
20.151(60) kHz] is an estimate of the contribution of a
ln(Za)22 term and a constant term (Nio, 1995; Ki-
noshita, 1996). The term of order
ln(mm /me)ln(Za)22(Za)3/p is discussed by Karshen-
boim (1994b), by Nio (1995), and by Kinoshita and Nio
(1994). The term of order ln2(Za)22(Za)3/p is from
Karshenboim (1993a).

The radiative-recoil contribution is

Dnr–r5nFS a

pD 2 me

mm
H F22 ln2S mm

me
D1

13
12

lnS mm

me
D

1
21
2

z~3 !1
p2

6
1

35
9 G1

4
3

pa ln2 a22

1F2
4
3

ln3S mm

me
D1

4
3

ln2S mm

me
D143.1G a

pJ
2nFa2S me

mm
D 2S 6 ln 21

13
6 D1¯ , (D9)

where for simplicity the explicit dependence on Z is not
shown. The number 43.1 (corresponding to 0.012 kHz) is
an estimate of the ln(mm /me) and constant terms. The
more recent work on which this equation is based was
carried out by Eides and Shelyuto (1984); Eides, Karsh-
enboim, and Shelyuto (1989a); Li, Samuel, and Eides
(1993); Karshenboim (1993a); and Eides, Grotch, and
Shelyuto (1998).

The electroweak contribution due to the exchange of
a Z0 boson (Bég and Feinberg, 1974; Eides, 1996) and
the hadronic contribution due to vacuum polarization
involving hadrons (Sapirstein, Terray, and Yennie, 1984;
Karimkhodzhaev and Faustov, 1991; Faustov, Ka-
rimkhodzhaev, and Martyneko, 1999) are given by
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Dnweak520.065 kHz (D10)

Dnhad50.240~7 ! kHz. (D11)

The standard uncertainty of DnMu(th), not including
the uncertainties of the quantities R` , a, me /mm , and
am , consists of the following components: 0.009 kHz
@0.231028# due to the uncertainty 2.0 of GSE(Za) in
the function D(2)(Za); 0.023 kHz @0.531028# from the
uncertainty 18 of the number 86 in the function
D(4)(Za) [the uncertainty 0.0004 of the number 0.7717
in D(4)(Za) is negligible]; 0.060 kHz @1.331028# due to
the uncertainty 22 of the number 57 in Dnrec ; 0.008 kHz
@0.231028# to reflect a possible uncalculated recoil con-
tribution with absolute value of order DnF(me /mm)
3(Za)4ln2(Za)22; 0.104 kHz @2.331028# to reflect pos-
sible uncalculated radiative-recoil contributions with ab-
solute values of order DnF(a/p)2(me /mm)pa ln a22 and
DnF(a/p)2(me /mm)pa ; and 0.007 kHz @0.231028# due
to the uncertainty of Dnhad . Note that the uncertainties
arising from the uncalculated terms are standard uncer-
tainties based on hypothetical numerical coefficients
suggested by analogous calculated terms in DnMu(th).
Any contribution to DnMu(th) not explicitly included in
Eqs. (D3) to (D11) or reflected in the uncertainty evalu-
ation is assumed to be less than about 0.005 kHz @0.1
31028# , and therefore negligible at the level of uncer-
tainty of current interest.

Combining the above components, we obtain for the
standard uncertainty of DnMu(th)

u@DnMu~th!#50.12 kHz @2.731028# . (D12)

In analogy with our treatment of inexactly known theo-
retical expressions in the previous three appendices, we
represent the theoretical uncertainty of DnMu(th) by
adding to it the term

dMu50.00~12! kHz. (D13)

The theory summarized above predicts

DnMu54 463 302.67~27! kHz @6.131028# , (D14)

based on values of the constants obtained from a varia-
tion of the 1998 least-squares adjustment that omits the
two LAMPF measured values of DnMu . The main source
of uncertainty is that of the mass ratio me /mm that ap-
pears in the theoretical expression as an overall factor.
However, the relative standard uncertainty is about one-
half that of the LAMPF-99 value of me /mm given in Eq.
(156), Sec. III.C.9.c, because in the least-squares adjust-
ment the theoretical expression for DnMu(th) is used in
the observational equation for the LAMPF values of
n(fp) [see Eq. (142), Sec. III.C.9.b]. The explicit depen-
dence of DnMu(th) on the mass ratio modifies the rela-
tion between me /mm and n(fp) in such a way that the
uncertainty of the resulting value of the mass ratio is
about half as large as the value in Eq. (156). An alter-
native approach to the calculation of the theoretical
value of DnMu would be to use an experimental value of
DnMu in the observational equation, but such an ap-
proach would yield a result that is dependent on the
experimental value.
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
The predicted and experimental values of DnMu [see
Eqs. (144) and (152) of Secs. III.C.9.b and III.C.9.c] are
in good agreement, as expected from the inferred values
of a discussed in Sec. III.C.9.d.

APPENDIX E: METHOD OF LEAST SQUARES

This Appendix gives a concise summary of the least-
squares method as it is used to obtain a unique set of
values of the fundamental constants from the available
data. The resulting set of constants may be regarded as
conventional values or best estimates, depending on
one’s point of view. The method of least squares has its
origins in the work of Legendre (1805); Gauss (1809);
Laplace (1812); and Gauss (1823). More recently, Ait-
ken (1934) [see also Sheppard (1912)] has considered
the case in which the data are not independent, and we
follow his approach. Cohen (1951) has emphasized the
fact that correlations among the data should be taken
into account in an evaluation of the fundamental con-
stants.

We suppose that there are N measured (or in some
cases calculated) values qi of various quantities with
standard uncertainties ui5u(qi), variances uii5ui

2 , and
covariances uij5u(qi ,qj), where uji5uij . For example,
q1 could be a measured value of the anomalous mag-
netic moment of the electron ae , q2 a measured value of
the Josephson constant KJ , etc. These values are called
input data or observational data.

A set of M quantities zj with M<N , called adjusted
constants, is then chosen such that each input datum qi
can be expressed as a function f i of one or more of the
adjusted constants zj through the set of N observational
equations

qi8f i~z ![f i~z1 ,z2 , . . . ,zM!; i51,2, . . . ,N .
(E1)

For example, z1 could be the fine-structure constant a
and z2 the Planck constant h . There is no unique choice
for the adjusted constants; however, they must be cho-
sen such that none can be expressed as a function of the
others and the value of each is determined by some sub-
set of the expressions in Eq. (E1). The dotted equal sign
8 in Eq. (E1) denotes the fact that in general the left
and right sides are not equal, since the set of equations
may be, and usually is, overdetermined (N>M). For
the example of the Josephson constant given above, the
observational equation is

q28S 8z1

m0cz2
D 1/2

, (E2)

where z15a and z25h .
Most of the observational equations in the 1998 ad-

justment are nonlinear, so in order to apply linear ma-
trix methods, we linearize Eq. (E1) using a first-order
Taylor series around starting (sometimes called fiducial)
values sj that are nearly equal to the expected values of
the adjusted constants:
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qi8f i~s !1(
j51

M
]f i~s !

]sj
~zj2sj!1••• . (E3)

We then define new variables

yi5qi2f i~s !

xj5zj2sj (E4)

to obtain to first order

yi8(
j51

M

aijxj , (E5)

where

aij5
]f i~s !

]sj
. (E6)

In matrix notation, Eq. (E5) may be written simply as

Y8AX, (E7)

where Y is a column matrix with N elements y1 , y2 , . . .
yN , A is a rectangular matrix with N rows and M col-
umns with elements a11 , a12 , . . . , a1M , . . . , aN1 ,
aN2 , . . . , aNM , and X is a column matrix with M ele-
ments x1 , x2 , . . . , xM . Similarly qi , f i(s), zj , and sj are
elements of matrices Q, F, Z, and S.

To obtain the best value of X, and hence of Z, we
minimize the product

S5~Y2AX!ÁV21~Y2AX! (E8)

with respect to X, where the symbol Á indicates trans-
pose, and V is the N3N covariance matrix of the input
data, also denoted cov(Y), with elements uij (W5V21 is
often called the weight matrix). The solution X̂, with el-
ements x̂ j , that minimizes S is

X̂5GAÁV21Y, (E9)

where

G5~AÁV21A!21. (E10)

The covariance matrix of the solution X̂, which follows
from the propagation of uncertainty relation (see Ap-
pendix F), is G:

cov~X̂!5~GAÁV21!V~GAÁV21!Á5G. (E11)

We take Ŷ as the best estimate of Y, where

Ŷ5AX̂, (E12)

with

cov~Ŷ!5AGAÁ. (E13)

We thus have

Ŷ5CY, (E14)

where

C5A~AÁV21A!21AÁV21. (E15)

The elements of Ŷ so obtained are the best estimates
for the quantities represented by Y in the following
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sense: If we consider an estimate of the quantities rep-
resented by Y of the form Y85DY such that the sum of
the squares of the uncertainties of Y8 as given by the
trace of the covariance matrix cov(Y8)5DVDÁ is a
minimum, subject to the condition that the matrix D
reproduces any set of data of the form AX (that is,
DAX5AX for any X), then D5C, where C is just the
matrix in Eq. (E15) obtained by the least-squares
method, and hence Y85Ŷ (Aitken, 1934).

Of course, we are not interested in X̂ and Ŷ per se, but
rather the best estimate Ẑ of the adjusted constants and
the best estimate Q̂, corresponding to the measured
quantities Q, given by

Ẑ5S1X̂

Q̂5F1Ŷ. (E16)

Since S and F have no uncertainty associated with them,
we have

cov~Ẑ!5cov~X̂!5G

cov~Q̂!5cov~Ŷ!5AGAÁ. (E17)

In general, the values of the adjusted constants Ẑ are
correlated; their variances and covariances are the ele-
ments of the covariance matrix G. Thus this matrix is
necessary for the evaluation of the uncertainty of a
quantity calculated from two or more adjusted con-
stants, as discussed in Appendix F.

Since the observational equations are nonlinear, the
solution of the linear approximation described above
does not provide an exact solution of the nonlinear
problem, even though it provides values of the adjusted
constants that are an improvement over the starting (fi-
ducial) values. To obtain more precise values, we use the
improved values of the adjusted constants as starting
values for a new linear approximation. This procedure is
iterated until the new values and the starting values dif-
fer by a very small fraction of the uncertainties of the
adjusted constants u( ẑ j)5u( x̂ j). Our convergence con-
dition is

(
j51

M x̂j
2

u2~ x̂ j!
,10220. (E18)

In most cases, two iterations are sufficient to reach con-
vergence, although in some cases more may be neces-
sary. The number of iterations needed depends on how
close the original starting values of the sj are to the val-
ues of the ẑ j in the final iteration.

Once the iterative process is complete, F, A, and C
can be evaluated at the final values of the adjusted con-
stants ẑ j (denoted by F̂, Â, and Ĉ) and we have

Q̂5F̂1Ĉ~Q2F̂!, (E19)

which implicitly describes the relation between small
changes in the input data Q and the best estimates of the
corresponding quantities Q̂. If the elements of Q are
exactly the input data values, then the second term on



483P. J. Mohr and B. N. Taylor: CODATA recommended values
the right-hand side of Eq. (E19) vanishes. However, it is
of interest to ask to what extent a change in a particular
input datum qi causes a change in its best estimated
value q̂ i . The relationship between these changes is
given by

]q̂ i

]qi
5 ĉ ii , (E20)

where ĉ ii is the i ,i element of Ĉ. For convenience, we
call ĉ ii the self-sensitivity coefficient Sc of a particular
input datum because it measures the influence of that
datum on the best estimated value of the corresponding
quantity. For the final 1998 least-squares adjustment, all
of the coefficients lie in the range 0,Sc<1, even though
this limit is not a necessary condition when there are
correlations among the input data. If Sc for a particular
input datum is of the order of 0.01 or less, the datum
does not play a significant role in determining the best
estimated value of the corresponding quantity and could
be discarded with little effect. The reason for such a
small value for Sc could be the existence of another in-
put datum of the same type with a significantly smaller
uncertainty, or the generation by other input data of an
indirect value of the corresponding quantity with a very
small uncertainty.

A measure of the consistency of the input data is ob-
tained by computing the Birge ratio

RB5Ax2/n , (E21)

where n5N2M is the degrees of freedom of the least-
squares calculation, and x2 is given by

x25~Q2Q̂!ÁV21~QÀQ̂!, (E22)

which is the minimum value of S as given by Eq. (E8)
evaluated in the final iteration. To the extent that corre-
lations among the data may be neglected, the contribu-
tion to x2 of each item of data is ri

2 , where ri is the
normalized residual of qi :

ri5
qi2q̂ i

ui
, (E23)

and in the limit of a large number of degrees of freedom,
the Birge ratio is the square root of the average of the
squares of the normalized residuals. A Birge ratio sub-
stantially larger than one suggests that the data are in-
consistent. Similarly, a normalized residual ri signifi-
cantly larger than one for an input datum suggests that
the datum is inconsistent with the other data.

Inconsistencies among input data in a least-squares
adjustment of the constants are not likely to be purely
statistical, because the uncertainties of the data are in
general dominated by Type B components associated
with systematic effects and there is an insufficient num-
ber of experiments and calculations to treat the collec-
tion of results statistically. Further, hindsight shows that
disagreements between measured (or calculated) results
are usually due to unrecognized effects for which no al-
lowance has been made in the uncertainty evaluation.
Nevertheless, for comparison purposes (i.e., as general
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
indicators), we can still consider the values of x2 and RB

that are expected in a purely statistical analysis.
If the probability distribution associated with each in-

put datum is assumed to be normal with mean qi and
variance ui

2 , then the expected value of x2 is n5N
2M with standard deviation A2n . Thus a value of the
Birge ratio greater than 11A2/n would suggest a pos-
sible inconsistency in the data. In addition, for a given
value of n, the probability that an observed value of chi
square would exceed x2 is (Abromowitz and Stegun,
1965)

Q~x2un!5
1

GS n

2 D Ex2

`

dxS x

2 D n/2 e2x/2

x
. (E24)

Hence the function Q(x2un) evaluated with x2 equal to
the observed value is the likelihood of obtaining an ob-
served value that large or larger. A value of Q(x2un)
much less than one would therefore indicate that x2 is
significantly larger than expected, suggesting a possible
inconsistency in the data.

If an input datum that is independent of all other in-
put data, together with a corresponding new adjusted
constant, is added to an adjustment, then the Birge ratio
remains unchanged, because the contribution of the new
datum to x2 is zero and the degrees of freedom n5N
2M remains unchanged. More generally, any number of
data for a quantity that is independent of the rest of the
adjustment, as would be the case for the Newtonian con-
stant of gravitation G , may be treated separately by an
application of the least-squares method. Such a one-
variable least-squares computation is identical to calcu-
lating the weighted mean of these values. In the one-
dimensional case, the observational equation is qi8z , so
the matrix A is a single-column matrix with all elements
equal to 1, and the matrix C in Eq. (E15) has elements
given by

cij5 (
k51

N

wkjY (
n ,m51

N

wnm , (E25)

where the wij are elements of the weight matrix W
5V21. Since the observational equation is linear, we
may take F50 and only one iteration is needed. In this
case, Eq. (E14) yields

q̂ i5(
j51

N

cijqj , (E26)

with standard uncertainty

u~ q̂ i!5S (
n ,m51

N

wnmD 21/2

. (E27)

In the case where there are only two observations, the
equations for their weighted mean take a simple form:

q̂ i5
~u2

22u12!q11~u1
22u12!q2

u1
21u2

222u12
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u~ q̂ i!5S u1
2u2

22u12
2

u1
21u2

222u12
D 1/2

. (E28)

APPENDIX F: USE OF THE COVARIANCE MATRIX

As pointed out in Appendix E, the values of the ad-
justed constants resulting from a least-squares fit are
correlated. Consequently, proper evaluation of the un-
certainty of the value of a quantity based on two or
more adjusted constants must take these correlations
into account. This appendix reviews the law of propaga-
tion of uncertainty and indicates how the uncertainties
of many of the 1998 recommended values can be calcu-
lated from the condensed covariance matrix given in
Table XXV. As noted in Sec. V.A, the covariances of all
the 1998 recommended values are given in the form of
correlation coefficients at the Web site of the NIST Fun-
damental Constants Data Center: physics.nist.gov/
constants.

The 1998 recommended values of the constants are
calculated as functions of the 57 adjusted constants, as
described in Sec. V.B. Most of these functions are
simple products of powers of a few of the adjusted con-
stants. With the adjusted constants denoted by ẑ j and
the recommended constants by p̂ i , these relations are
indicated by

p̂ i~ ẑ1 , ẑ2 , . . . , ẑM!; i51,2... ,K , (F1)

where M is the number of adjusted constants and K is
the total number of recommended constants. Functions
of the form p̂35 ẑ2 are, of course, included. The stan-
dard formula for the propagation of uncertainty gives
the covariances of the recommended constants u(p̂k ,p̂ l)
[as well as variances u2(p̂k)5u(p̂k ,p̂k)] in terms of the
covariances of the adjusted constants u( ẑ i , ẑ j) (ISO,
1993a):

u~ p̂k ,p̂ l!5 (
i ,j51

M
]p̂k

] ẑ i

]p̂ l

] ẑ j
u~ ẑ i , ẑ j!. (F2)

The covariances u( ẑ i , ẑ j) are the elements of the cova-
riance matrix Ĝ given by

Ĝ5~ÂÁV21Â!21, (F3)

where Â and V are as defined in Appendix E; that is, Â
is the matrix defined by Eq. (E6) evaluated in the final
iteration of the least-squares calculation, and V is the
covariance matrix of the observational data. In our
evaluation of the recommended constants, the partial
derivatives in Eq. (F2) (most of which are zero) are both
calculated analytically and translated into FORTRAN by
computer.

In Eq. (F2) the set of variables ẑ j can be extended to
include any number of the derived constants p̂ i in addi-
tion to the original adjusted constants on the right-hand
side. Of course, the range of the covariance calculation,
the p̂ i on the left-hand side of Eq. (F2), can also be
extended to combinations of constants not included in
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the 1998 set of recommended values. As an example of
an application of Eq. (F2) in a case where the zj have
been extended, we consider the uncertainty of the 1998
recommended value of the Bohr magneton mB based on
the expression

mB5
e\

2me
5

eh

4pme
. (F4)

The relevant derivatives are just

]mB

]e
5

mB

e

]mB

]h
5

mB

h

]mB

]me
52

mB

me
, (F5)

and the resulting relation takes a particularly simple
form if expressed in terms of relative variances ur

2(xi)
5u2(xi)/xi

25u(xi , xi)/xi
2 and relative covariances

ur(xi , xj)5u(xi , xj)/(xi xj):

ur
2~mB!5ur

2~e !1ur
2~h !1ur

2~me!

12ur~e ,h !22ur~e ,me!

22ur~h ,me!. (F6)

Substitution of the appropriate numbers from Table
XXV yields ur(mB)54.031028, in agreement with the
value listed in Table XXIV. It is of interest to note that
the result would be 1.231027 if covariances were ne-
glected.

The matrix form of uncertainty propagation is applied
in a number of instances in Appendix E. If we have a set
of quantities ŷk( x̂1 , x̂2 , . . . , x̂M) that depend on M quan-
tities x̂ i , then the covariance u( ŷk , ŷ l) of ŷk and ŷ l is
related to the covariance u( x̂ i , x̂ j) of x̂ i and x̂ j by

u~ ŷk , ŷ l!5 (
i ,j51

M
] ŷk

] x̂ i

] ŷ l

] x̂ j
u~ x̂ i , x̂ j!. (F7)

If the relationship between x̂ i and ŷk is linear as in Eq.
(E12) of Appendix E, then it is useful to write Eq. (F7)
in matrix form following the definitions of that Appen-
dix. In particular, from Eq. (E12) we have

] ŷk

] x̂ i
5aki , (F8)

where aki is an element of the matrix A. Further, if
cov(X̂) and cov(Ŷ) are the covariance matrices of X̂ and
Ŷ with matrix elements u( x̂ i , x̂ j) and u( ŷk , ŷ l), respec-
tively, then we have

cov~Ŷ!kl5 (
i ,j51

M

aki alj cov~X̂! ij , (F9)
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or

cov~Ŷ!5A cov~X̂!AÁ, (F10)

which corresponds to Eq. (E13).
Finally, we note that the general law of propagation of

uncertainty in Eq. (F7) [see also Eq. (F2)] as applied to
the uncertainty of a quantity is often written in the form

u2~yk!5(
i51

N S ]yk

]xi
D 2

u2~xi!

12 (
i51

N21

(
j5i11

N
]yk

]xi

]yk

]xj
u~xi , xj!. (F11)

The covariance in this equation can also be written in
terms of the correlation coefficient of xi and xj defined
by

r~xi , xj!5
u~xi , xj!

u~xi!u~xj!
, (F12)

where 21<r(xi , xj)<1.
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S. Röttger, 1996, PTB-Mitt. 106, 321–329.
Becker, P., K. Dorenwendt, G. Ebeling, R. Lauer, W. Lucas,

R. Probst, H.-J. Rademacher, G. Reim, P. Seyfried, and H.
Siegert, 1981, Phys. Rev. Lett. 46, 1540–1543.

Becker, P., and G. Mana, 1994, Metrologia 31, 203–209.
Becker, P., P. Seyfried, and H. Siegert, 1982, Z. Phys. B: Con-

dens. Matter 48, 17–21.
Becker, P., and H. Siegert, 1984, in Precision Measurement and

Fundamental Constants II, edited by B. N. Taylor and W. D.
Phillips (NBS Spec. Pub. 617, U.S. Government Printing Of-
fice, Washington, D.C.), pp. 317–320.

Beer, W., B. Jeanneret, B. Jeckelmann, P. Richard, A.
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Krüger, E., W. Nistler, and W. Weirauch, 1999, Metrologia 36,
147–148.

Kukhto, T. V., E. A. Kuraev, A. Schiller, and Z. K. Silagadze,
1992, Nucl. Phys. B 371, 567–596.

Kuraev, E. A., T. V. Kukhto, and A. Schiller, 1990, Yad. Fiz.
51, 1631–1637 [Sov. Phys. JETP 51, 1031–1035 (1990)].

Kuroda, K., 1995, Phys. Rev. Lett. 75, 2796–2798.
Kuroda, K., 1999, Meas. Sci. Technol. 10, 435–438.
Kuznetsov, V. A., V. Y. Kaminskii, S. N. Libedev, V. M. Pu-

dalov, V. V. Sazhin, S. G. Semenchinsky, and A. K. Yanysh,
1988, Document CCE/88-3, 18th meeting of the Comité Con-
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Probabilités, Vol. II (Ve. Courcier, Paris).
Laporta, S., 1993a, Phys. Lett. B 312, 495–500.
Laporta, S., 1993b, Nuovo Cimento Soc. Ital. Fis., B 106, 675–

683.
Laporta, S., 1993c, Phys. Rev. D 47, 4793–4795.
Laporta, S., 1995, Phys. Lett. B 343, 421–426.
Laporta, S., and E. Remiddi, 1991, Phys. Lett. B 265, 182–184.
Laporta, S., and E. Remiddi, 1993, Phys. Lett. B 301, 440–446.
Laporta, S., and E. Remiddi, 1995, Phys. Lett. B 356, 390–397.
Laporta, S., and E. Remiddi, 1996, Phys. Lett. B 379, 283–291.
Larson, D. J., and N. F. Ramsey, 1974, Phys. Rev. A 9, 1543–

1548.
Larson, D. J., P. A. Valberg, and N. F. Ramsey, 1969, Phys.

Rev. Lett. 23, 1369–1372.
Lautrup, B., 1977, Phys. Lett. 69B, 109–111.
Legendre, A. M., 1805, Nouvelles méthodes pour la détermina-
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Mills, I., T. Cvitaš, K. Homann, N. Kallay, and K. Kuchitsu,

1993, Quantities, Units and Symbols in Physical Chemistry,
2nd ed. (Blackwell Scientific, for the International Union of
Pure and Applied Chemistry, Oxford).

Minardi, F., G. Bianchini, P. C. Pastor, G. Giusfredi, F. S.
Pavone, and M. Inguscio, 1999, Phys. Rev. Lett. 82, 1112–
1115.

Mittlemann, R., H. Dehmelt, and S. Kim, 1995, Phys. Rev.
Lett. 75, 2839–2842.

Mittlemann, R. K., I. I. Ioannou, and H. G. Dehmelt, 1999, in
Trapped Charged Particles and Fundamental Physics, AIP
Conf. Proc. No. 457, edited by D. H. E. Dubin and D.
Schneider (American Institute of Physics, Woodbury), pp.
13–21.



492 P. J. Mohr and B. N. Taylor: CODATA recommended values
Mohr, P. J., 1975, in Beam-Foil Spectroscopy, edited by I. A.
Sellin, and D. J. Pegg (Plenum, New York), Vol. 1 pp. 89–96.

Mohr, P. J., 1982, Phys. Rev. A 26, 2338–2354.
Mohr, P. J., 1983, At. Data Nucl. Data Tables 29, 453–466.
Mohr, P. J., 1992, Phys. Rev. A 46, 4421–4424.
Mohr, P. J., 1996, in Atomic, Molecular, & Optical Physics

Handbook, edited by G. W. F. Drake (American Institute of
Physics, Woodbury), Chap. 28, pp. 341–351.

Mohr, P. J., and Y.-K. Kim, 1992, Phys. Rev. A 45, 2727–2735.
Mohr, P. J., and G. Soff, 1993, Phys. Rev. Lett. 70, 158–161.
Moldover, M. R., 1990, private communication.
Moldover, M. R., 1998, J. Res. Natl. Inst. Stand. Technol. 103,

167–175.
Moldover, M. R., S. J. Boyes, C. W. Meyer, and A. R. H.

Goodwin, 1999, J. Res. Natl. Inst. Stand. Technol. 104, 11–46.
Moldover, M. R., and J. P. M. Trusler, 1988, Metrologia 25,

165–187.
Moldover, M. R., J. P. M. Trusler, T. J. Edwards, J. B. Mehl,

and R. S. Davis, 1988a, J. Res. Natl. Bur. Stand. 93, 85–144.
Moldover, M. R., J. P. M. Trusler, T. J. Edwards, J. B. Mehl,

and R. S. Davis, 1988b, Phys. Rev. Lett. 60, 249–252.
Nakamura, H., N. Kasai, and H. Sasaki, 1987, IEEE Trans.

Instrum. Meas. IM-36, 196–200.
Nakayama, K., and H. Fujimoto, 1997, IEEE Trans. Instrum.

Meas. 46, 580–583.
Nakayama, K., H. Fujimoto, M. Tanaka, and K. Kuroda, 1993,

IEEE Trans. Instrum. Meas. 42, 401–404.
Nakayama, K., M. Tanaka, and K. Kuroda, 1991a, IEEE

Trans. Instrum. Meas. 40, 108–109.
Nakayama, K., M. Tanaka, F. Shiota, and K. Kuroda, 1991b,

Metrologia 28, 483–502.
Neronov, Y. I., and A. E. Barzakh, 1977, Zh. Eksp. Teor. Fiz.

72, 1659–1669 [Sov. Phys. JETP 45, 871–876 (1977)].
Neronov, Y. I., and A. E. Barzakh, 1978, Zh. Eksp. Teor. Fiz.

75, 1521–1540 [Sov. Phys. JETP 48, 769–778 (1978)].
Neronov, Y. I., A. E. Barzakh, and K. Mukhamadiev, 1975,

Zh. Eksp. Teor. Fiz. 69, 1872–1882 [Sov. Phys. JETP 42, 950–
954 (1975)].

Newman, R. D., and M. K. Bantel, 1999, Meas. Sci. Technol.
10, 445–453.

Newton, G., D. A. Andrews, and P. J. Unsworth, 1979, Philos.
Trans. R. Soc. London, Ser. A 290, 373–404.

Nez, F., et al., 1992, Phys. Rev. Lett. 69, 2326–2329.
Nez, F., M. D. Plimmer, S. Bourzeix, L. Julien, F. Biraben, R.

Felder, Y. Millerioux, and P. De Natale, 1993, Europhys.
Lett. 24, 635–640.

Niebauer, T. M., G. S. Sasagawa, J. E. Faller, R. Hilt, and F.
Klopping, 1995, Metrologia 32, 159–180.

Nier, A. O., 1950, Phys. Rev. 77, 789–793.
Nio, M., 1995, Ph.D. thesis (Cornell University).
Nio, M., and T. Kinoshita, 1997, Phys. Rev. D 55, 7267–7290.
Nolting, F., J. Schurr, S. Schlamminger, and W. Kündig, 1999,

Meas. Sci. Technol. 10, 487–491.
Olsen, P. T., V. E. Bower, W. D. Phillips, E. R. Williams, and

G. R. Jones, Jr., 1985, IEEE Trans. Instrum. Meas. IM-34,
175–181.

Olsen, P. T., M. E. Cage, W. D. Phillips, and E. R. Williams,
1980a, IEEE Trans. Instrum. Meas. IM-29, 234–237.

Olsen, P. T., R. E. Elmquist, W. D. Phillips, E. R. Williams, G.
R. Jones, Jr., and V. E. Bower, 1989, IEEE Trans. Instrum.
Meas. 38, 238–244.

Olsen, P. T., W. D. Phillips, and E. R. Williams, 1980b, J. Res.
Natl. Bur. Stand. 85, 257–272.
Rev. Mod. Phys., Vol. 72, No. 2, April 2000
Olsen, P. T., W. D. Phillips, and E. R. Williams, 1984, in Pre-
cision Measurement and Fundamental Constants II, edited by
B. N. Taylor and W. D. Phillps (NBS Spec. Pub. 617, U.S.
Government Printing Office, Washington, D.C.), pp. 475–
478.

Olsen, P. T., W. L. Tew, Jr., E. R. Williams, R. E. Elmquist,
and H. Sasaki, 1991, IEEE Trans. Instrum. Meas. 40, 115–
120.

Olsen, P. T., and E. R. Williams, 1974, IEEE Trans. Instrum.
Meas. IM-23, 302–305.

Pachucki, K., 1993a, Phys. Rev. A 48, 2609–2614.
Pachucki, K., 1993b, Ann. Phys. (N.Y.) 226, 1–87.
Pachucki, K., 1993c, Phys. Rev. A 48, 120–128.
Pachucki, K., 1994, Phys. Rev. Lett. 72, 3154–3157.
Pachucki, K., 1995, Phys. Rev. A 52, 1079–1085.
Pachucki, K., 1996, Phys. Rev. A 54, 1994–1998.
Pachucki, K., 1998, private communication.
Pachucki, K., and H. Grotch, 1995, Phys. Rev. A 51, 1854–

1862.
Pal’chikov, V. G., Y. L. Sokolov, and V. P. Yakovlev, 1985,

Metrologia 21, 99–105.
Pal’chikov, V. G., Y. L. Sokolov, and V. P. Yakovlev, 1997,

Phys. Scr. 55, 33–40.
Patterson, J. B., and E. C. Morris, 1994, Metrologia 31, 277–

288.
Patterson, J. B., and D. B. Prowse, 1985, Metrologia 21, 107–

113.
Patterson, J. B., and D. B. Prowse, 1988, Metrologia 25, 121–

123.
Peil, S., and G. Gabrielse, 1999, Phys. Rev. Lett. 83, 1287–

1290.
Pendrill, L. R., 1996, J. Phys. B 29, 3581–3586.
Peris, S., M. Perrottet, and E. de Rafael, 1995, Phys. Lett. B

355, 523–530.
Persson, H., S. Salomonson, P. Sunnergren, and I. Lindgren,

1997, Phys. Rev. A 56, R2499–R2502.
Petermann, A., 1957, Helv. Phys. Acta 30, 407–408.
Petermann, A., 1958, Nucl. Phys. 5, 677–683.
Peters, A., K. Y. Chung, B. Young, J. Hensley, and S. Chu,

1997, Philos. Trans. R. Soc. London, Ser. A 355, 2223–2233.
Petit, P., M. Desaintfuscien, and C. Audoin, 1980, Metrologia

16, 7–14; 16, 184 (E).
Petley, B. W., and R. W. Donaldson, 1984, Metrologia 20, 81–

83.
Phillips, W. D., D. Kleppner, and F. G. Walther, 1984, private

communication.
Phillips, W. D., W. E. Cooke, and D. Kleppner, 1977, Metro-

logia 13, 179–195.
Philo, J. S., and W. M. Fairbank, 1980, J. Chem. Phys. 72,

4429–4433.
Piccard, A., and A. Devaud, 1920, Arch. Sci. Phys. Nat. 2,

455–485.
Pichanick, F. M. J., and V. W. Hughes, 1990, in Quantum Elec-

trodynamics, edited by T. Kinoshita (World Scientific, Sin-
gapore), Chap. 17, pp. 905–936.

Pipkin, F. M., 1990, in Quantum Electrodynamics, edited by T.
Kinoshita (World Scientific, Singapore), Chap. 14, pp. 696–
773.

Piquemal, F., B. Etienne, J.-P. Andre, and J.-N. Patillon, 1991,
IEEE Trans. Instrum. Meas. 40, 234–236.

Pontikis, C., 1972, C. R. Acad. Sci. Ser. B 274, 437–440.
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