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Supersymmetry is one of the most plausible and theoretically motivated frameworks for extending the
standard model. However, any supersymmetry in Nature must be a broken symmetry. Dynamical
supersymmetry breaking (DSB) is an attractive idea for incorporating supersymmetry into a successful
description of Nature. The study of DSB has recently enjoyed dramatic progress, fueled by advances
in our understanding of the dynamics of supersymmetric field theories. These advances have allowed
for direct analysis of DSB in strongly coupled theories, and for the discovery of new DSB theories,
some of which contradict early criteria for DSB. The authors review these criteria, emphasizing
recently discovered exceptions. They also describe, through many examples, various techniques for
directly establishing DSB by studying the infrared theory, including both older techniques in regions
of weak coupling and new techniques in regions of strong coupling. Finally, they present a list of
representative DSB models, their main properties, and the relations among them.
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I. INTRODUCTION

Supersymmetry (SUSY), which rotates bosons into
fermions and vice versa, is a beautiful theoretical idea.
But Nature is certainly not supersymmetric. If it were,
we would see a fermionic partner for each known gauge
boson, and a scalar partner for each known fermion,
with degenerate masses. But experimentalists have been
looking for ‘‘superpartners’’ long and hard, and so far in
vain, pushing the limits on superpartner masses to
roughly above a 100 GeV. Thus any discussion of super-
symmetry in Nature is necessarily a discussion of broken
supersymmetry.

Still, even broken supersymmetry is theoretically
more appealing than no supersymmetry at all. First, su-
persymmetry provides a solution to the gauge hierarchy
problem. Without supersymmetry, the scalar Higgs mass
is quadratically divergent, so that the natural scale for it
is the fundamental scale of the theory, e.g., the Planck
scale, many orders of magnitude above the electroweak
scale. In a supersymmetric theory, the mass of the scalar
Higgs is tied to the mass of its fermionic superpartner.
Since fermion masses are protected by chiral symme-
tries, the Higgs mass can naturally be around the elec-
troweak scale, and radiative corrections do not destabi-
lize this hierarchy. This success is not spoiled even when
explicit supersymmetry-breaking terms are added to the
Lagrangian of the theory, as long as these terms are
250/72(1)/25(40)/$23.00 ©2000 The American Physical Society
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‘‘soft,’’ that is, they introduce only logarithmic diver-
gences, but no quadratic divergences, into scalar masses.
The appearance of explicit supersymmetry-breaking
terms in the low-energy effective theory can be theoreti-
cally justified if the underlying theory is supersymmetric,
yet the vacuum state breaks supersymmetry spontane-
ously.

While spontaneously broken supersymmetry would
explain the stability of the gauge hierarchy against radia-
tive corrections, it still does not explain the origin of the
hierarchy, that is, the origin of the small mass ratios in
the theory. Indeed, if supersymmetry were broken at the
classical level (tree level), the scale of the soft terms
would be determined by explicit mass parameters in the
supersymmetric Lagrangian, and one would still have to
understand why such parameters are so much smaller
than the Planck scale. However, the origin of the hier-
archy can be understood if supersymmetry is broken dy-
namically (Witten, 1981a). By ‘‘dynamical supersymme-
try breaking’’ (DSB) we mean that supersymmetry is
broken spontaneously in a theory that possesses super-
symmetric vacua at the tree level, with the breaking trig-
gered by dynamical effects. The crucial point about DSB
is that if supersymmetry is unbroken at tree level, super-
symmetric nonrenormalization theorems (Ferrara,
Iliopoulos, and Zumino, 1974; Wess and Zumino, 1974;
Grisaru, Rocek, and Siegel, 1979) imply that it remains
unbroken to all orders in perturbation theory, and can
therefore only be broken by nonperturbative effects,
which are suppressed by roughly e28p2/g2

, where g is the
coupling. The electroweak scale is related to the size of
the soft supersymmetry-breaking terms, and thus it is
proportional to the supersymmetry-breaking scale. The
latter is suppressed by the exponential above, and can
easily be of the correct size, about 17 orders of magni-
tude below the Planck scale.

In addition, supersymmetry, or more precisely, local
supersymmetry, provides the only known framework for
a consistent description of gravity, in the context of
string theory. If indeed the underlying fundamental
physics is described by string theory, one can contem-
plate two qualitatively different scenarios. One is that
SUSY is directly broken by stringy effects. Then, how-
ever, the SUSY-breaking scale is generically around the
string scale (barring new and better understanding of
string vacua), and thus the gauge hierarchy problem is
not solved by supersymmetry. Therefore we shall focus
here on a second possible scenario, namely, that in the
low-energy limit, string theory gives rise to an effective
field theory, and supersymmetry is spontaneously bro-
ken by the dynamics of this low-energy effective theory.

The aim of this review is to describe the phenomenon
of dynamical supersymmetry breaking in field theories
with N51 global supersymmetry. (N counts the number
of supersymmetries. For N51 there are four supersym-
metry charges, and this is the smallest amount of super-
symmetry allowed in four dimensions.)

The restriction on N comes from the fact that only
N51 supersymmetry has chiral matter, which we need
in the low-energy theory if it is to contain the standard
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
model. Moreover, theories with N.1 supersymmetry
are believed to have an exact moduli space and thus are
not expected to exhibit dynamical supersymmetry
breaking.

The restriction to global supersymmetry still allows us
to answer most of the questions we would be interested
in. This situation is quite analogous to studying the
breaking of a gauged bosonic symmetry in, say, a theory
with scalar matter. In that case we can determine the
pattern of symmetry breaking just by studying the scalar
potential. Similarly, we shall be able to determine
whether supersymmetry is broken and, if the theory is
weakly coupled, what the vacuum energy and the light
spectrum are. From our perspective, the most relevant
consequence of ‘‘gauging’’ supersymmetry is the ana-
logue of the Higgs mechanism by which the massless
fermion accompanying supersymmetry breaking, the
Goldstino, is eaten by the gravitino.

As we shall see, supersymmetry is broken if and only
if the vacuum energy is nonzero. Furthermore, as we
mentioned above, if supersymmetry is unbroken at tree
level, it can only be broken by nonperturbative effects.
Thus studying supersymmetry breaking requires under-
standing the nonperturbative dynamics of gauge theo-
ries in the infrared. Fortunately in recent years there has
been tremendous progress in understanding the dynam-
ics of supersymmetric field theories.

The potential of a supersymmetric theory is deter-
mined by two quantities: the Kähler potential, which
contains the kinetic terms for the matter fields, and the
superpotential, a holomorphic function of the matter
fields that controls their Yukawa interactions. Holomor-
phy, together with the symmetries of the theory, may be
used to determine the physical degrees of freedom and
the superpotential of the infrared theory (Seiberg, 1994,
1995). Since the latter two are precisely the ingredients
needed for studying supersymmetry breaking, this
progress has fueled the discovery of many new
supersymmetry-breaking theories, as well as new tech-
niques for establishing supersymmetry breaking.

The structure of this article is as follows. We start by
describing general properties of supersymmetry break-
ing and studying examples of tree-level breaking in Sec.
II. In Sec. III, we discuss indirect methods for finding
theories with dynamical supersymmetry breaking, and
for establishing supersymmetry breaking. As we shall
see, these methods direct the search for supersymmetry
breaking towards chiral theories with no flat directions,
preferably possessing an anomaly-free R symmetry.
These criteria do not amount to necessary conditions for
supersymmetry breaking, and we shall point out ‘‘loop-
holes’’ in the indirect methods that allow the possibility
of supersymmetry breaking in theories that violate all of
the above requirements. Recent developments have led
to the discovery of such SUSY-breaking theories, and
we shall postpone the discussion of representative ex-
amples to Sec. VI. Still, some of the indirect methods we
shall describe, most notably, the breaking of a global
symmetry in a theory with no flat directions, provide the
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most convincing evidence for supersymmetry breaking
in theories that cannot be directly analyzed.

In Secs. IV and V we turn to theories that can be
directly analyzed in the infrared. In the early 1980s, such
studies were limited to a semiclassical analysis in regions
of weak coupling, and we shall describe such analyses in
Sec. IV. The main development in recent years has been
the better understanding of supersymmetric theories in
regions of strong coupling, and we shall study supersym-
metry breaking in such theories in Sec. V. In both cases,
the analysis of supersymmetry breaking involves two in-
gredients. The first is identifying the correct degrees of
freedom of the theory, in terms of which the Kähler
potential is nonsingular. In all the theories we shall
study, in the interior of the moduli space, these are ei-
ther the confined variables or the variables of a dual
theory.1 Indeed, we shall see that duality (Seiberg,
1995)—the fact that different UV theories may lead to
the same infrared physics—can be a useful tool for es-
tablishing supersymmetry breaking, as one can some-
times pick a more convenient theory in which to study
whether supersymmetry is broken or not. A second, re-
lated ingredient is finding the exact superpotential in
terms of the light, physical degrees of freedom.

Having established these two ingredients, at low ener-
gies one then typically has a theory of chiral superfields,
with all gauge dynamics integrated out, with a known
superpotential. The problem of establishing supersym-
metry breaking is then reduced to solving a system of
equations to check whether or not the superpotential
can be extremized.

Although the results we shall use on the infrared de-
grees of freedom and the exact superpotential apply to
supersymmetric theories, they may still be used to argue
for supersymmetry breaking, since the theories we shall
study in this way are obtained by perturbing a supersym-
metric theory. For a sufficiently small perturbation, the
scale of supersymmetry breaking can be made suffi-
ciently small, so that we can work above this scale and
still use known results on the infrared supersymmetric
theory. If supersymmetry is indeed broken in the theory,
the breaking should persist even as the perturbation is
increased. Otherwise, the theory undergoes a phase
transition as some coupling is varied, being supersym-
metric in one region and nonsupersymmetric in another.
However, one does not expect supersymmetric theories
to undergo phase transitions as couplings are varied (In-
triligator and Seiberg, 1994; Seiberg and Witten, 1994a,
1994b).

Having learned various techniques for the analysis of
DSB, we use these in Sec. VI to study a few examples of
theories that break supersymmetry dynamically even
though they violate some of the criteria described in Sec.
III.

Perhaps the most disappointing aspect of the recent
progress in our understanding of supersymmetry break-

1At the boundary of moduli space, the microscopic degrees of
freedom will often be more appropriate.
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ing is that it still has not yielded any organizing principle
to the study and classification of supersymmetry-
breaking theories. In Sec. VII we shall describe one
method for generating new supersymmetry-breaking
theories from known theories. However, this is far from
a full, systematic classification. Nor can we tell immedi-
ately, without detailed analysis, whether a specific
theory breaks supersymmetry or not. For these reasons
we find it useful to present a rough survey of known
models in Sec. VII, pointing out their main features, the
relations between them, and, where applicable, their rel-
evant properties for model-building purposes. While we
shall see many different mechanisms by which super-
symmetry is broken in these examples, the breaking is
almost always the consequence of the interplay between
instanton effects and a tree-level superpotential.

Another area requiring further study is the analysis of
supersymmetry-breaking vacua, and their symmetries
and light spectra, in strongly coupled theories. One may
hope that recently discovered realizations of supersym-
metric gauge theories as extended brane configurations
in string theory will lead to further progress in this di-
rection, as well as to some organizing principle for DSB.
Indeed, several DSB models have been realized as
D-brane configurations in string/M theory; see for ex-
ample de Boer et al. (1998) and Lykken, Poppitz, and
Trivedi (1999). Moreover, in some cases the dynamical
effects leading to supersymmetry breaking were under-
stood in stringy language (de Boer et al., 1998). How-
ever, this approach has yet to lead to results that cannot
be directly obtained in a field-theory analysis.

We limit ourselves in this review to the theoretical
analysis of supersymmetry breaking in different models.
We do not discuss the questions of whether, and how,
this breaking can feed down to the standard model. Ide-
ally, a simple extension of the standard model would
break supersymmetry by itself, generating an acceptable
superpartner spectrum. Unfortunately this is not the
case. In simple supersymmetry-breaking extensions of
the standard model without new gauge interactions,
nonperturbative effects would probably be too small to
generate soft terms of the correct size (Affleck, Dine,
and Seiberg, 1985). Moreover, unless some of the scalars
obtained their masses either radiatively, or from non-
renormalizable operators, some superpartners would be
lighter than the lightest lepton or quark (Dimopoulos
and Georgi, 1981). Thus supersymmetry must be broken
by a new, strongly interacting sector, and then commu-
nicated to the standard model either by supergravity ef-
fects, in which case the soft terms are generated by
higher-dimension operators or occur at the loop level, or
by gauge interactions, in which case the soft terms occur
at the loop level. These different possibilities introduce
different requirements on the SUSY-breaking sector.
For example, gravity mediation often requires singlet
fields that participate in the SUSY-breaking. Simple
models of gauge mediation require a large unbroken
global symmetry at the minimum of the SUSY-breaking
theory, in which the standard-model gauge group can be
embedded. Several of the supersymmetry-breaking



28 Y. Shadmi and Y. Shirman: Dynamical supersymmetry breaking
models discovered recently have some of these desired
properties, and thus allow for improved phenomenologi-
cal models for the communication of supersymmetry
breaking.

Another issue that is important for phenomenological
applications of DSB that we shall not address is the cos-
mological constant problem. In globally supersymmetric
theories, fermionic and bosonic contributions to the
vacuum energy cancel each other and the cosmological
constant vanishes. Upon supersymmetry breaking this is
no longer true, and the cosmological constant is compa-
rable to the scale of supersymmetry breaking. While in a
framework of local supersymmetry a further cancella-
tion is possible, significant fine tuning is required. Even-
tually, a microscopic understanding of such fine tuning is
needed in any successful phenomenological application
of dynamical supersymmetry breaking.

In the body of this review we assume that the reader is
familiar with the general properties of supersymmetric
field theories and rely heavily on symmetries and a num-
ber of exact nonperturbative results obtained in recent
years. The reader who is just beginning the study of su-
persymmetry should first consult the Appendix, where
we briefly present basic facts about supersymmetry and
relevant results to make our presentation self-contained.
For a more complete introduction to SUSY see, for ex-
ample, Bagger and Wess (1991) and Nilles (1984). Sev-
eral excellent reviews of the recent progress in the study
of strongly coupled SUSY gauge theories exist; see, for
example, Intriligator and Seiberg (1996), Peskin (1997),
and Shifman (1997).

In Appendix Sec. 1 we introduce notations and basic
formulas for the Lagrangians of supersymmetric theo-
ries. The knowledge of these results is necessary in every
section of the review. In Sec. 2 we discuss a method for
finding the D-flat directions of a SUSY gauge theory
(directions along which the gauge-interaction terms in
the scalar potential vanish), and the parametrization of
D-flat directions in terms of gauge-invariant operators.
These results are necessary for the study of supersym-
metry breaking in non-Abelian gauge theories, which we
discuss starting in Sec. III.D. In Appendix Secs. 3–7 we
turn to SUSY QCD with different numbers of flavors.
While the results we present are used directly in various
places in Secs. IV–VII, the discussion in the Appendix
also illustrates techniques in the analysis of the dynamics
of general SUSY gauge theories and are applicable to
models with matter transforming in general representa-
tions of the gauge group. The discussion also provides
simple examples of phenomena such as theories with no
quantum moduli spaces, deformed quantum moduli
spaces, confinement without chiral symmetry breaking,
and duality. We shall encounter these phenomena in
various theories throughout the review. References to
analyses of the dynamics of theories other than SU(N)
are collected in Appendix Sec. 8.

We also note that the reader who is interested only in
a general knowledge of DSB can skip Secs. VI and VII.
Section VII.C can be used independently of the rest of
the article as a guide to DSB models.
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Finally, we note that the interested reader can find
several useful reviews of dynamical supersymmetry
breaking which have appeared in the past couple of
years. Short introductions to recent developments can
be found in Skiba (1997), Nelson (1998), Poppitz (1998),
and Thomas (1998). Most notably, the review by Poppitz
and Trivedi (1998), although smaller in scope than the
present review, emphasizes recent developments in the
field. It also contains a discussion of supersymmetry
breaking in quantum-mechanical systems. Shifman and
Vainshtein (1999) give an excellent introduction to in-
stanton techniques and discuss their application for su-
persymmetry breaking. The review by Giudice and Rat-
tazzi (1998) focuses on applications of DSB to building
models of gauge-mediated supersymmetry breaking.

II. GENERALITIES

A. Vacuum energy—the order parameter of SUSY
breaking, and F and D flatness

A positive vacuum energy is a necessary and sufficient
condition for spontaneous SUSY breaking. This follows
from the fact that the Hamiltonian of the theory is re-
lated to the absolute square of the SUSY generators
(see Appendix Sec. 1):

H5
1
4

~Q̄1Q11Q1Q̄11Q̄2Q21Q2Q̄2!. (1)

The energy is then either positive or zero. Furthermore,
a state that is annihilated by Qa has zero energy, and
conversely, a zero-energy state is annihilated by Qa .
Thus the vacuum energy serves as an order parameter
for supersymmetry breaking.

Therefore the study of supersymmetry breaking re-
quires knowledge of the scalar potential of the theory. It
is convenient to formulate the theory in N51 super-
space, where space-time (bosonic) coordinates are
supplemented by anticommuting (fermionic)
coordinates.2 In this formulation fields of different spins
related by supersymmetry are combined in the super-
symmetry multiplets, superfields. Matter fields form chi-
ral superfields, while gauge bosons and their spin 1/2
superpartners form (real) vector superfields. In the su-
perspace formulation, physics, and in particular, the sca-
lar potential, is determined by two functions of the su-
perfields, the superpotential and the Kähler potential.
The superpotential encodes Yukawa-type interactions in
the theory; in particular it contributes to the scalar po-
tential. The superpotential is an analytic function of the
superfields. This fact, together with symmetries and
known (weakly coupled) limits, often allows us to deter-
mine the exact nonperturbative superpotential of the
theory. The Kähler potential, on the other hand, is a real
function of superfields, and can be reliably calculated

2For more detail see Appendix Sec. 1.
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only when a weakly coupled description of the theory
exists. From our perspective, the Kähler potential is im-
portant in two respects. First, it gives rise to gauge-
interaction terms in the scalar potential. Second, it de-
termines the kinetic terms of the matter fields and thus
modifies scalar interactions arising from the superpoten-
tial. Assuming a canonical (quadratic in the fields)
Kähler potential, the scalar potential is

V5(
a

~Da!21(
i

Fi
2 , (2)

where the sum runs over all gauge indices a and all mat-
ter fields f i . In Eq. (2), the D terms and F terms are
auxiliary components of vector and chiral superfields,
respectively. D terms and F terms are not dynamical
and one should solve their equations of motion. In par-
ticular, F terms are given by derivatives of the superpo-
tential (for more details, and the analogous expressions
for D terms, see Appendix Sec. 1):

Fi5
]W

]f i
.

For supersymmetry to remain unbroken, there has to be
some field configuration for which both the F terms and
the D terms vanish.3 In fact, generically such configura-
tions exist not only at isolated points but on a subspace
of the field space. This subspace is often referred to as
the moduli space of the theory.

Classically one could set all superpotential couplings
to zero. Then the moduli space of the theory is the set of
‘‘D-flat directions,’’ along which the D terms vanish. A
particularly useful parametrization of D-flat directions,
which we discuss in Appendix Sec. 2, can be given in
terms of the gauge-invariant operators of the theory
(Luty and Taylor, 1996). Even when small tree-level su-
perpotential couplings are turned on, the vacua will lie
near the D-flat directions. It is convenient therefore to
analyze SUSY gauge theories in two stages. First find
the D-flat directions, then analyze the F terms along
these directions. The latter have classical contributions
from the tree-level superpotential, and may ‘‘lift’’ some,
or all, of the D-flat directions. Since a classical superpo-
tential is a polynomial in the fields, F terms typically
grow for large scalar vacuum expectation values (VEV),
and vanish at the origin.4

3Here we implicitly assumed that the Kähler potential is a
regular function of the fields and has no singularities. For ex-
ample, if the derivatives of the Kähler potential vanish, the
scalar potential can be nonzero even if all F and D terms van-
ish; see Eq. (A6).

4Superpotential terms that are linear in the fields are an im-
portant exception. They lead to potentials that are nonzero
even at the origin. Such terms necessarily involve gauge sin-
glets and require the introduction of some mass scale. How-
ever, a linear term can be generated dynamically. We shall
encounter examples of trilinear, or higher, superpotential
terms that become linear after confinement.
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As mentioned in the Introduction, a key point in the
study of SUSY breaking is the fact that, due to the su-
persymmetric nonrenormalization theorems (Ferrara, Il-
iopoulos, and Zumino, 1974; Wess and Zumino, 1974;
Grisaru, Rocek, and Siegel, 1979; Seiberg, 1993), the
moduli space remains unmodified in perturbation
theory. If the classical potential vanishes for some choice
of VEV’s, it remains exactly zero to all orders in pertur-
bation theory. Thus only nonperturbative effects may
generate a nonzero potential and lift the classical zeros.
Indeed, nonperturbative effects can modify the moduli
space; they can lift the moduli space completely; or, fi-
nally, the quantum moduli space may coincide with the
classical one.

There are numerous possibilities, then, for the behav-
ior of the theory. If a theory breaks supersymmetry, it
has some ground state of positive energy at some point
in field space (or it may, in principle, have several
ground states at different points).5 Alternatively, the
theory may remain supersymmetric, with either one
ground state of zero energy at some point in field space,
or a few ground states at isolated points, or with a con-
tinuum of ground states, corresponding to completely
flat directions that are not lifted either classically or non-
perturbatively. It is also possible that the theory does
not have a stable vacuum state. In such a case, while a
supersymmetric vacuum does not exist, the energy can
become arbitrarily small along some direction on the
moduli space.6 While such a theory can still be given a
cosmological interpretation (Affleck, Dine, and Seiberg,
1984a), we shall not consider it a SUSY-breaking theory
for our purposes.7

Note that supersymmetric theories are very different,
in this respect, from other theories. In a nonsupersym-
metric theory, multiple ground states are usually related
by a symmetry and are therefore physically equivalent.
On the other hand, different ground states of a super-
symmetric theory may describe completely different
physics. For example, classically, one flat direction of an
SU(3) gauge theory with two flavors is [see Appendix
Sec. 4 for details]

5In this latter case the ground states are nondegenerate even
if they appear to have the same energy in a certain approxi-
mation. This is because low-energy physics is nonsupersym-
metric, and the vacuum energy receives quantum corrections
(on top of the nonperturbative effects that led to the nonvan-
ishing energy in the first place). Since different nonsupersym-
metric vacua are nonequivalent, these quantum corrections lift
the degeneracy.

6We shall call such directions in the moduli space ‘‘runaway’’
directions, and study them carefully in Secs. VI.A–VI.B.

7We also note that the runaway moduli may be stabilized, and
supersymmetry broken, due to Kähler potential effects when
the theory is coupled to gravity (Dvali and Kakushadze, 1998).
However, since the typical VEV’s in this case will be of Planck
size, the vacuum will be determined by the details of the mi-
croscopic theory at MP , and the dynamical supersymmetry
breaking is not calculable in the low-energy effective-field
theory.
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f5 f̄5S v 0

0 0

0 0

D , (3)

where f and f̄ are the scalar components of the SU(3)
fundamentals and antifundamentals, respectively. For
any given choice of v , the low-energy theory is an
SU(2) gauge theory, whose gauge coupling depends on
v .8 Note also that the flat directions of SUSY theories
may extend to infinity, unlike the customary compact
flat directions of bosonic global symmetries. Further-
more, in the case of other global symmetries, the exis-
tence of a flat direction is usually associated with spon-
taneous breaking of the symmetry, with the massless
Goldstone bosons corresponding to motions along the
flat direction. This is not the case with SUSY. The rea-
son, of course, is that the SUSY generators do not cor-
respond to motions in field space. Theories with unbro-
ken SUSY may have degenerate vacua precisely because
SUSY is unbroken. And, as we shall see in the next
section, theories with spontaneously broken SUSY have
the analog of Goldstone particles even when they only
have a single ground state.

B. The Goldstino

The breaking of any bosonic global symmetry is ac-
companied by the appearance of massless Goldstone
bosons that couple linearly to the symmetry current.
Similarly a theory with broken supersymmetry contains
a massless fermion, which is usually referred to as a
‘‘Goldstone fermion,’’ or, in short, ‘‘Goldstino,’’ that
couples linearly to the SUSY current (Salam and Strath-
dee, 1974, Witten, 1981a).

The Goldstino coupling to the SUSY current can be
expressed as

Ja
m5f sm

a
ḃ c

ḃ

G
1••• , (4)

where c
ḃ

G
is the Goldstino and, as we shall see momen-

tarily, f is a constant that is nonzero when SUSY is bro-
ken. The ellipsis in Eq. (4) stands for terms quadratic in
the fields and for potential derivative terms. Conserva-
tion of the SUSY current then implies that the
Goldstino is massless. To justify Eq. (4), note that, for
broken SUSY (Witten, 1981a),

E d4x ]h ^0uT Ja
h~x ! Jn

ḃ~0 !u0&5^0u$Qa ,Jn
ḃ~0 !%u0&Þ0.

(5)

8Here we consider the classical vacua of the theory. Quantum
mechanically, the flat directions (3) are lifted, and the theory
does not have a stable vacuum. Yet in many models non-
equivalent quantum vacua exist.
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If indeed there is a massless fermion coupling to the
current as in Eq. (4), then the left-hand side of Eq. (5) is
equal to

f2 sh
a
ȧ sn

ḃ

bE d4x]h ^0uT cȧ
G~x ! cb

G~0 !u0&

5f2 sh
a
ȧ sn

ḃ

b
@2iph G~p !ȧb#p→05f2 sn

aḃ , (6)

where G(p) ȧḃ is the Goldstino propagator. So indeed f
is nonzero. Note that a fermion with derivative coupling
to the current would not contribute to the right-hand
side of Eq. (6) because of the additional factors of the
momentum in the numerator. In fact, since from the
SUSY algebra ^0u$Qa ,Jn

ḃ(0)%u0&52Esn
aḃ , with E the

energy, we have f252E .
To see the appearance of the Goldstino more con-

cretely, consider the SUSY current

Ja
m;(

f

dL
d~]mf!

~df!a , (7)

where the sum is over all fields, and (df)a is the shift of
the field f under a SUSY transformation. Because of
Lorentz symmetry, the only linear terms in Eq. (7) come
from vacuum expectation values of (df). Examining
the SUSY transformations of the chiral and vector mul-
tiplets of N51 SUSY (see for example Bagger and
Wess, 1991), we see from Lorentz invariance that the
only fields whose SUSY transformations contain
Lorentz-invariant objects, which can develop VEV’s, are
the matter fermion c i , whose SUSY transformation
gives Fi , and the gauge fermion la, whose transforma-
tion gives Da. One then finds

cG;( ^Fi& c i1
1

&
( ^Da& la, (8)

so that the Goldstino is a linear combination of the chi-
ral and gauge fermions whose auxiliary fields F and D
acquire VEV’s. Note that Eq. (8) actually holds only
with a canonical (quadratic) Kähler potential, otherwise
derivatives of the Kähler potential enter as well. We can
use this to argue that a nonvanishing F VEV or D VEV
is a necessary condition for SUSY breaking. When
SUSY is broken, there is a massless fermion, the Gold-
stino, that transforms inhomogeneously under the action
of the SUSY generators. But the only Lorentz-invariant
objects that appear in the SUSY variations of the N51
multiplets, and that therefore may obtain VEV’s, are the
auxiliary fields F and D . Thus for SUSY breaking to
occur, some F or D fields should develop VEV’s.

In light of the above, it would first seem that if SUSY
is relevant to nature, we should observe the massless
Goldstino. However, we ultimately need to promote
SUSY to a local symmetry to incorporate gravity into
the full theory. In the framework of local supersymme-
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try, the massless Goldstino becomes the longitudinal
component of the gravitino, much like the case of the
Higgs mechanism. The gravitino then has a coupling to
ordinary matter other than the gravitational interaction,
by virtue of its Goldstino component. It should come as
no surprise, then, that the gravitino mass, as well as its
coupling to matter fields, are related to the SUSY-
breaking scale. This has important phenomenological
implications. In particular, in models with low-scale
SUSY breaking, the gravitino is very light, and the decay
of other superpartners into the gravitino may be ob-
served in collider searches for supersymmetry (Stump,
Wiest, and Yuan, 1996; Dimopoulos et al., 1998).

C. Tree-level breaking

1. O’Raifeartaigh models

One of the simplest models of spontaneous supersym-
metry breaking was proposed by O’Raifeartaigh (1975)
and is based on a theory of chiral superfields. Supersym-
metry in the model is broken at tree level: while the
Lagrangian of the model is supersymmetric, even the
classical potential is such that a supersymmetric vacuum
state does not exist.

In addition to giving the simplest example of sponta-
neously broken supersymmetry, the study of
O’Raifeartaigh models will be useful for our later stud-
ies of DSB, as the low-energy description of many dy-
namical models we encounter will be given by an
O’Raifeartaigh-type model.

Before writing down the simplest example of an
O’Raifeartaigh model, let us describe the general prop-
erties of such models. First, we shall restrict our atten-
tion to superpotentials with only positive exponents of
the fields. We shall later analyze a number of models in
which the low-energy description involves superpoten-
tials containing negative exponents of the fields. Such
terms, however, are generated by the nonperturbative
dynamics of the underlying (strongly coupled) micro-
scopic theory, and are not appropriate in the tree-level
superpotential we consider here.

Second, since the superpotential is a polynomial in the
fields, at least one of the fields in this model needs to
appear linearly in the superpotential, or there will be a
supersymmetric vacuum at the origin of the moduli
space.

It would prove useful, for future purposes, to pay spe-
cial attention to the R symmetry of the model. [For the
definition of an R symmetry, see Appendix Sec. 1]. If
this symmetry is unbroken by the superpotential, there
is then at least one field of R charge 2. More generally,
consider a model containing fields f i

c ,i51,.. . ,k with R
charge 2, and fields fa

n , a51,.. . ,l with R charge 0. (For
convenience, we shall call them charged and neutral, re-
spectively, even though various components of the su-
perfields transform differently under R symmetry.) The
most general superpotential respecting the R symmetry
can be written as
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W5(
i51

k

f i
cf i~fa

n!, (9)

and, for supersymmetry to break, at least one of the f i’s,
say f1 , contains a constant term, independent of the
fields. The equations of motion for the R-charged fields
]W/]f i

c5f i(fa
n)50 give k equations for l unknowns

fa
n . If k.l there are no solutions for generic functions

f i , the F-term conditions cannot all be satisfied, and su-
persymmetry is broken.

We can modify these models by adding fields with R
charges 0,QR,2. Since such fields cannot couple to the
fields f i

c while preserving the R symmetry, they will not
change the above discussion, and supersymmetry re-
mains broken. If, on the other hand, fields with negative
R charges are added to the model, the total number of
variables on which the f i’s depend increases, and in gen-
eral supersymmetry is unbroken. Finally, we should note
that adding to the superpotential explicit
R-symmetry-violating couplings that do not involve
fields of R charge 2 will not modify the above discussion.
However, R-symmetry-violating terms that include
fields of R charge 2 will generically lead to the restora-
tion of supersymmetry.

It is also useful to look at the equations of motion for
the R-neutral fields. First, note that their VEV’s are
fixed by minimizing the part of the scalar potential aris-
ing from the F terms of the R-charged fields (the re-
maining terms in the scalar potential vanish at least
when ^f i

c&50 for all i). Therefore there are l F-term
equations depending on k independent variables f i

c . In
a SUSY-breaking model k.l , so there are k2l linear
combinations of the fields f i

c that are left undetermined.
Thus O’Raifeartaigh models necessarily possess direc-
tions of flat (nonzero) potential in the tree-level ap-
proximation (Zumino, 1981; Einhorn and Jones, 1983;
Polchinski, 1983). As we shall discuss later, this is not a
generic situation in models of DSB.

The simplest example of an O’Raifeartaigh model re-
quires two fields with R charge 2, one field with R
charge 0 (k52, l51), and has the superpotential

W5f1~M1
22l1f2!1m2ff2 . (10)

It is easy to see that the F-term conditions for f1 and f2
are incompatible. We can directly minimize the scalar
potential

V5uM1
22l1f2u21um2fu21um2f222l1f1fu2. (11)

The first two terms in Eq. (11) determine the value of f
at the minimum. In the limit m2

2/(l1M1
2)@1 the mini-

mum is found at f50, while for small m2
2/(l1M1

2) we
find f5(M1

22m2
2/2)1/2/l1 . Note that f1 and f2 appear

only in the last term in Eq. (11). This term should be set
to zero for the potential to be extremal with respect to
f1 and f2 . This is achieved when f2522l1ff1 /m2 ,
and therefore at tree level the linear combination
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m2f122l1^f&f2 is arbitrary, as was expected from the
previous discussion. Equivalently, we can parametrize
different vacua by the expectation values of f1 . Note
that different vacua are physically nonequivalent; in par-
ticular the spectrum depends on ^f1& .

It is easy to find the tree-level spectrum of the model.
For any choice of parameters it contains a massless fer-
mion, the Goldstino. The spectrum also contains the sca-
lar field associated with the flat direction whose mass
arises entirely due to radiative corrections (however,
there are no quadratic divergences since the action of
the theory is supersymmetric, although supersymmetry
is not realized linearly). All other states are massive.
Another important feature of this spectrum is that the
supertrace of the mass matrix squared, STrmi

2 , van-
ishes. This property of the spectrum holds for any model
with tree-level supersymmetry breaking (Ferrara, Gi-
rardello, and Palumbo, 1979).

Since supersymmetry is broken, the vacuum degen-
eracy is lifted in perturbation theory. Huq (1976) calcu-
lated the one-loop corrections to the potential of this
model. They are given by

DV~f1!5(
i

~21 !F

64p2 mi~f1!4 lnS mi~f1!2

m2 D , (12)

where the sum is over all massive fields (and the masses
depend on the f1 VEV). Huq (1976) found that the
corrections generate a positive mass for f1 and that the
nonsupersymmetric vacuum is located at f150 with un-
broken R symmetry. He also analyzed a model with an
SU(3) global symmetry and a model constructed by
Fayet (1975) with SU(2)3U(1) symmetry, and in both
cases found that the tree-level modulus acquires positive
mass due to one-loop corrections to the Kähler poten-
tial, leading to the unique vacuum with unbroken R
symmetry. In fact, this conclusion is not surprising. In
the model discussed above, quantum corrections to the
vacuum energy come from the renormalization of the
mass parameter M1

2. Due to the holomorphy of the su-
perpotential, these are completely determined by the
wave function renormalization of f1 and, since the
model is infrared free, necessarily generate a positive
contribution to the scalar potential. It is important to
note that in modifications of the model that include
gauge fields, there may be a negative contribution to the
potential. The balance of the two perturbative effects
may produce a stable minimum at large values of the
modulus VEV (Witten, 1981b).

2. Fayet-Iliopoulos breaking

Another useful example of tree-level supersymmetry
breaking is given by a model with U(1) gauge interac-
tions (Fayet and Illiopoulos, 1974). In this model super-
symmetry breaking is driven by D-term contributions to
the potential, but depending on the parameters of the
Lagrangian, the nonzero vacuum energy comes either
entirely from D-term contributions or from both D and
F terms. To understand how D terms can drive super-
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symmetry breaking, we recall that the Kähler potential
can be written as a function of the gauge-invariant com-
bination of fields

K5f~f†eVf ,W †W,S !, (13)

where f represents matter fields transforming in some
representation of the gauge group, V is a vector super-
field whose supersymmetric field strength is W, and S
represents gauge-singlet fields. In a non-Abelian theory
this is the only possible form of field dependence in the
Kähler potential. In an Abelian theory, however, the D
term of the vector superfield V is invariant under the
gauge and supersymmetry transformations by itself.
Thus, if one does not require parity invariance, the
lowest-order Kähler potential of a U(1) gauge theory
can be written as9

K5Q†eVQ1Q̄†e2VQ̄1jFIV . (14)

This Kähler potential, together with superpotential
mass terms for the matter fields, leads to the following
scalar potential:

V5
g2

2
~ uQu22uQ̄u21j!21m2~ uQu21uQ̄u2!. (15)

It is easy to see that the vacuum energy determined by
this potential is necessarily positive and supersymmetry
is broken. When g2j,m2 both scalar fields have posi-
tive mass and their VEV’s vanish. The positive contribu-
tion to the vacuum energy comes entirely from the D
term in the potential. The scalar mass matrix has eigen-
values m6

2 5m26g2j . The gauge symmetry is unbroken,
and thus the gauge boson remains massless. The matter
fermions retain their mass m , while the gaugino remains
massless and plays the role of the Goldstino. [In accord
with the fact that here ^Fi&50 and ^D&Þ0; see Eq. (8).]

When g2j.m2, the field Q̄ has negative mass and
acquires a VEV. At the minimum of the potential Q
50 and Q̄5v , where v5(2j24m2/g2)1/2. We see that
both the gauge symmetry and supersymmetry are bro-
ken. Moreover, both the D term and the F term are
nonvanishing and supersymmetry breaking is of the
mixed type. One can easily find that the spectrum of the
model contains one vector field and one real scalar field
of mass squared 1

2 g2v2, one complex scalar of mass
squared 2m2, two fermions of mass (m21 1

2 g2v2)1/2, and
a massless Goldstone fermion that is a linear combina-
tion of the Goldstino and the positively charged fermion

l̃5
1

Am21
1

2
g2v2

S ml1
igv

A2
cQD . (16)

9We restrict our attention to two matter multiplets with
charges 61.
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III. INDIRECT CRITERIA FOR DSB

As we have seen in Sec. II.A, the fact that the vacuum
energy is the relevant order parameter immediately
points the way in our quest for SUSY breaking: we
should study the zeros of the scalar potential. This in-
deed is what we shall undertake to do in Secs. IV and
onward. Unfortunately, directly studying the zeros of
the potential will not always be possible, or easy. In this
section we review several alternate ‘‘indirect’’ methods
that are useful in the search for supersymmetry break-
ing.

A. The Witten index

Supersymmetry breaking is related to the existence of
zero-energy states. Rather than looking at the total
number of zero-energy states, it is often useful to con-
sider the Witten index (Witten, 1982), which measures
the difference between the number of bosonic and fer-
mionic states of zero energy,

Tr~21 !F[nB
0 2nF

0 . (17)

If the Witten index is nonzero, there is at least one
state of zero energy, and supersymmetry is unbroken. If
the index vanishes, supersymmetry may either be bro-
ken, with no states of zero energy, or it may be unbro-
ken, with identical numbers of fermionic and bosonic
states of zero energy.

The Witten index is a topological invariant of the
theory. In this lies its usefulness. It may be calculated for
some convenient choice of the parameters of the theory,
and in particular for weak coupling, but the result is
valid generally. To see this, note that in a finite volume,
fermionic and bosonic states of positive energy are
paired by the action of the SUSY generator:

QubE&;AEufE& QufE&;AEubE&, (18)

where ubE& (ufE&) is a bosonic (fermionic) state of en-
ergy E .10 (Recall that states of zero energy are annihi-
lated by Q and are therefore not paired.) Thus, under
‘‘mild’’ variations of the parameters of the theory, states
may move to zero energy and from zero energy, but they
always do so in Bose-Fermi pairs, leaving the Witten
index unchanged.

Let us be a bit more precise now about what is meant
by ‘‘mild’’ variations. As long as a parameter of the
theory, which is originally nonzero, is varied to a differ-
ent nonzero value, we do not expect the Witten index to
change, since different states can only move between
different energy levels in pairs. The danger lies in the
appearance of new states of zero energy. This can hap-
pen if the asymptotic (in field space) behavior of the
potential changes, which may happen if some parameter

10This in fact justifies including only zero-energy states in Eq.
(17). States of nonzero energy do not contribute.
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of the theory is set to zero, or is turned on. In that case,
states may ‘‘come in’’ from infinity or ‘‘move out’’ to
infinity.

The index of several theories was calculated by Wit-
ten (1982). In particular, Witten found that the index of
a pure supersymmetric Yang-Mills theory is nonzero.11

Thus these theories do not break supersymmetry spon-
taneously. An important corollary is that supersymmet-
ric Yang-Mills theories with massive matter (and no
massless matter) do not break supersymmetry either.
The reason is that, at least in weak coupling, one can
take all masses to be large, so that there are no massless
states in these theories beyond those of the pure super-
symmetric Yang-Mills theory, and so the value of the
index is the same as in the pure supersymmetric Yang-
Mills theory.

What happens when the mass of the matter fields is
taken to zero? The theory with zero mass has flat direc-
tions, along which the potential is classically zero (away
from these flat directions the potential behaves as the
fourth power of the field strength). In contrast, the
theory with mass for all matter fields has no classical flat
directions, with the potential growing at least quadrati-
cally for large fields. Thus, as the mass is taken to zero,
the asymptotic behavior of the potential changes, and
the Witten index may change too. In fact, the index is ill
defined in the presence of flat directions, since zero
modes associated with the flat directions lead to a con-
tinuous spectrum of states. (Indeed, to calculate the in-
dex of any theory one needs to consider the theory in a
finite volume so that the resulting spectrum is discrete.)
We therefore cannot say anything about supersymmetry
breaking in massless, nonchiral theories based on the
Witten index of the pure supersymmetric Yang-Mills
theory.

Consider for example supersymmetric QCD with N
colors and F flavors of mass m , which we discuss in
Appendix Secs. 4–7. As explained there, in the presence
of mass terms mj

iQi•Q̄j, the theory has N vacua at

Mi
j[Qi•Q̄j5L(3N2F)/N ~det m !1/Nmi

21 j, (19)

11For SU and SP groups the index is equal to r11, where r is
the rank of the group. This is the same as the number of
gaugino condensates for these groups. More generally, the in-
dex equals the dual coxeter number of the group, which is
different from r11 for some groups, notably some of the SO
groups (Witten, 1998). The fact that the number of gaugino
condensates does not always equal r11, which was believed to
be the value of the index, remained a puzzle until its recent
resolution by Witten (1998). This puzzle partly motivated the
conjecture that supersymmetric Yang-Mills theories have a
vacuum with no gaugino condensate (Kovner and Shifman,
1997). This possibility would have far-reaching consequences
for supersymmetry breaking. The vast majority of theories that
break SUSY do so by virtue of a superpotential generated by
gaugino condensation. A vacuum with no gaugino condensate
would mean an extra ground state, or an entire branch of
ground states, with zero energy and unbroken SUSY.
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corresponding to the N roots of unity. This is in agree-
ment with the Witten index N of pure SU(N) gauge
theory. Consider now the massless limit mj

i→0. For F
,N , the vacua (19) all tend to infinity. The theory has
no ground state at finite field VEV’s. The potential is
nonzero in any finite region of field space and slopes to
zero at infinity. The massless limit of the theory is there-
fore not well defined. For F.N , by taking mj

i→0 in
different ways, any value of Mi

j may be attained. The
massless theory has an entire moduli space of vacua,
parametrized by Mi

j . The N5F case is more subtle, but
in this case too, the theory has a moduli space of vacua.
Thus the ground states of the massless SU(N) theory
with F flavors are drastically different from those of the
massive theory. In these examples we explicitly see how
zero-energy states can disappear to infinity, or come in
from infinity. Again, this is possible because the
asymptotic behavior of the potential changes as the mass
tends to zero. The theory including mass terms has no
flat directions. Asymptotically the potential rises at least
quadratically. The massless theory has classical flat di-
rections. Quantum mechanically, they are completely
lifted for F,N , and the potential asymptotes to zero as
a fractional power of the field. For F>N flat directions
remain even quantum mechanically. In any case, adding
mass terms changes the asymptotic behavior of the po-
tential.

In the examples above, the massive theory was super-
symmetric (with zero-energy states at finite fields
VEV’s) and the massless theory was either supersym-
metric (with a continuum of vacua) or not well defined
(with no ground state). It is natural to ask whether there
exist vectorlike (parity-conserving) theories that break
SUSY as the relevant masses are taken to zero. The
answer to this question is affirmative, as we shall see in
an explicit example in Sec. VI.A.2. It is useful to under-
stand the general properties of the potential in such a
theory. As before, we expect the fully massive theory to
have a nonzero Witten index. The only way to obtain
supersymmetry breaking as the masses are taken to zero
is if the masses change the asymptotic behavior of the
potential. Suppose that for any finite value of the mass
parameter m , the theory possesses a supersymmetric
vacuum at some VEV v0(m), which moves away to in-
finity as some of the masses are taken to zero. Clearly,
for small finite masses, the directional derivative of the
potential with respect to the modulus is negative for
large values of v,v0(m). (The theory may have various
minima for finite values of v , but we are interested in
the asymptotic behavior of the potential at large v .) In
the absence of a phase transition at zero mass, such a
directional derivative will remain nonpositive in the
limit m→0. However, there are still two possibilities.
First, it is possible that the directional derivative is nega-
tive for any finite VEV and only vanishes in the double
limit, m→0,v→` . In such a case the theory does not
have a stable vacuum. However, it is also possible that
the derivative vanishes in the limit m→0 for sufficiently
large but otherwise arbitrary v . If this is the case, the
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asymptotic behavior of the potential changes, and it be-
comes a nonzero constant asymptotically far along the
flat direction, so supersymmetry is broken. However, be-
cause the potential is flat, running effects cannot be ne-
glected. Indeed, as we shall argue in Sec. VI.A.2, such
effects may lift the vacuum degeneracy and determine
the true nonsupersymmetric vacuum.

To summarize, pure supersymmetric Yang-Mills theo-
ries, as well as vectorlike theories with masses for all
matter fields, have a nonzero index and do not break
supersymmetry. When some masses are taken to zero,
the resulting theories have classical flat directions, and
therefore the asymptotic behavior of the potential is dif-
ferent from that of the massive theory. The Witten index
may then change discontinuously and differ, if it is well
defined, from that of the massive theory.

What about chiral (parity-violating) theories? In such
theories, at least some of the matter fields cannot be
given mass. Thus these theories cannot be obtained by
deforming a massive vectorlike theory, and there is no a
priori reason to expect, based on existing computations
of the Witten index, that these theories are supersym-
metric. Indeed, most known examples of supersymmetry
breaking are chiral.

B. Global symmetries and supersymmetry breaking

In this section we shall discuss the connection be-
tween global symmetries and supersymmetry breaking,
which motivates two criteria for supersymmetry break-
ing. While these are useful guidelines for finding
supersymmetry-breaking theories, they are not strict
rules, and we shall encounter several exceptions in the
following.

Consider first a theory with an exact, nonanomalous
global symmetry, and no flat directions. If the global
symmetry is spontaneously broken, there is a massless
scalar field, the Goldstone boson, with no potential.
With unbroken supersymmetry, the Goldstone boson is
part of a chiral supermultiplet that contains an addi-
tional massless scalar, again with no potential. This sca-
lar describes motions along a flat direction of zero po-
tential. But this contradicts our initial assumption that
there are no flat directions. To avoid the contradiction
we should drop the assumption of unbroken supersym-
metry. This gives a powerful tool for establishing super-
symmetry breaking (Affleck, Dine, and Seiberg, 1984b,
1985): If a theory has a spontaneously broken global
symmetry and no flat directions, the theory breaks su-
persymmetry.

We have assumed here that the additional massless
scalar corresponds to motions along a noncompact flat
direction. This is often the case since, in supersymmetric
theories, the superpotential is invariant under the com-
plexified global symmetry, with the Goldstone boson
corresponding to the imaginary part of the relevant
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order parameter, and its supersymmetric partner corre-
sponding to the real part of the order parameter.12

In general, deciding whether a global symmetry is bro-
ken requires detailed knowledge of the potential of the
theory, and is at least as hard as determining whether
the vacuum energy vanishes. However, if a theory is
strongly coupled at the scale at which supersymmetry
might be broken, one cannot directly answer either of
these questions.13 Still, in some cases one may argue,
based on ’t Hooft anomaly-matching conditions (’t
Hooft, 1980), that a global symmetry is broken.

If a global symmetry is unbroken in the ground state,
then the massless fermions of the low-energy theory
should reproduce the global triangle anomalies of the
microscopic theory (’t Hooft, 1980). Thus there should
be a set of fields, with appropriate charges under the
global symmetry, that give a solution to the anomaly-
matching conditions. This fact may be used when trying
to determine whether a theory confines, and how its glo-
bal symmetries are realized in the vacuum. For example,
if the gauge invariants that can be constructed out of the
microscopic fields of the theory saturate the anomaly-
matching conditions for some subgroup of the global
symmetry of the microscopic theory, it is plausible that
the theory confines and that the relevant symmetry sub-
group remains unbroken in the vacuum. In contrast, if
all possible solutions to the anomaly-matching condi-
tions are very complicated, that is, they require a large
set of fields, it is plausible to conclude that the global
symmetry is spontaneously broken.

In the case of an R symmetry there is another way to
determine whether it is spontaneously broken. In many
theories, the scale of supersymmetry breaking is much
lower than the strong-coupling scale, so that supersym-
metry breaking can be studied in a low-energy effective
theory involving chiral superfields only, with all gauge
dynamics integrated out. In fact, the low-energy theory
is an O’Raifeartaigh-like model (with possibly negative
exponents of the fields in the superpotential arising from
nonperturbative effects in the microscopic description).
In some cases it is easy to see that the origin is excluded
from the moduli space, because, for example, the poten-
tial diverges there. Then typically some terms appearing
in the superpotential obtain VEV’s. Since all terms in
the superpotential have R charge 2 this implies that R
symmetry is broken. Obviously such an argument is not
applicable to other global symmetries because the super-
potential is necessarily neutral under non-R symmetries.
So it is often easier to prove that an R symmetry is

12The possibility that the low-energy theory is a theory of
Goldstone bosons and massless chiral fields such that the su-
persymmetric scalar partner of any Goldstone is also a Gold-
stone is ruled out. Such theories can only be coupled to gravity
for discrete values of Newton’s constant (Bagger and Witten,
1982), and so cannot describe the low-energy behavior of
renormalizable gauge theories.

13The most obvious example is a theory that does not possess
any adjustable parameters and has only one scale, like an
SU(5) model of Sec. III.D.
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broken than to prove that a non-R symmetry is broken.
If the theory has no flat directions one can then con-
clude that supersymmetry is broken.

It is not surprising that R symmetries, which do not
commute with supersymmetry, should play a special role
in supersymmetry breaking. Let us discuss this role fur-
ther, following Nelson and Seiberg (1994).

In what follows we shall assume that the gauge dy-
namics were integrated out. Suppose we have a low-
energy theory with a superpotential W($Xi%), where Xi
are chiral fields and i51 . . . n . For supersymmetry to
remain unbroken, the superpotential should be extremal
with respect to all fields,

]W

]Xi
50.

If the theory has no symmetries, the number of un-
knowns Xi equals the number of equations. Similarly, if
the theory has a global symmetry that commutes with
supersymmetry, the number of equations equals the
number of unknowns. To see this note that in this case,
the superpotential can only depend on chiral field com-
binations that are invariant under the symmetry. There-
fore if there are k symmetry generators, the superpoten-
tial depends on n2k invariant quantities [for example,
for a U(1) symmetry these could be Xi /X1

qi /q1, where
i52, . . . ,n , and qi ,q1 are the U(1) charges of Xi ,X1 ,
respectively], while the remaining k fields do not appear
in the superpotential. Thus for supersymmetry to remain
unbroken the superpotential should be extremal with re-
spect to n2k variables, leading to n2k equations in n
2k unknowns. Thus generically there is a solution and
supersymmetry is unbroken.

In contrast, suppose the theory has an R symmetry
that is spontaneously broken. Then there is a field X
with R charge qÞ0, which gets a nonzero VEV. The
superpotential then can be written as

W5X2/qf~Yi5Xi
q/Xqi!,

where qi is the charge of Xi . For supersymmetry to be
unbroken we need

]f

]Yi
50,

and

f50.

Thus there is one more equation than unknowns, and
generically we do not expect a solution. Roughly speak-
ing, what we mean by ‘‘generically’’ is that the superpo-
tential is a generic function of the fields, that is, it con-
tains all terms allowed by the symmetries. We shall
return to this point shortly.

If the extremum of the superpotential were deter-
mined by a system of homogeneous linear equations, the
above discussion would lead us to conclude that an R
symmetry is a necessary condition for supersymmetry
breaking, and a spontaneously broken R symmetry is a
sufficient condition. While this conclusion generally
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holds for theories in which the superpotential is a ge-
neric function consistent with all the symmetries, there
may be exceptions to this rule. This is because the
F-flatness conditions are given by a system of nonlinear
equations that may contain negative powers of fields
(arising from the dynamical superpotential) as well as
terms independent of fields (arising from linear terms,
either generated dynamically or included in the tree-
level superpotential). Such a system of equations is not
guaranteed to have solutions. In fact, we have already
argued in Sec. II.C.1 that we can add explicit
R-symmetry-breaking terms to an O’Raifeartaigh model
without restoring supersymmetry. Later we shall en-
counter other examples of supersymmetry-breaking
models without R symmetry.

Let us make a bit more precise what we mean by a
generic superpotential. The superpotential contains two
parts. One is generated dynamically, and certainly does
not contain all terms allowed by the symmetries
(Seiberg, 1993). In particular, such terms could involve
arbitrarily large negative powers of the fields. The other
part is the classical superpotential, which is a polynomial
(of some degree d) in the fields, that preserves some
global symmetry. Here what we mean by ‘‘generic’’ is
that no term with dimension smaller than or equal to d
that is allowed by this global symmetry was omitted
from the superpotential. On the other hand, the tree-
level superpotential can still be considered generic if the
operators with dimension higher than d are omitted. In-
deed, in a renormalizable Lagrangian with a stable
vacuum we do not expect Planck-scale VEV’s. The
analysis by Nelson and Seiberg (1994) shows that the
inclusion of nonrenormalizable operators can only pro-
duce additional minima with Planck-scale VEV’s, that is
in a region of field space where our approximation of
global supersymmetry is not sufficient anyway. On the
other hand, in models in which a stable vacuum appears
only after the inclusion of nonrenormalizable terms of
dimension d , the typical expectation values will depend
on the Planck scale (or other large scale) but often will
remain much smaller than it. As long as the expectation
values are small compared to the Planck scale, these
minima will remain stable local minima even if opera-
tors of dimension higher than d are added.

We shall encounter several examples of theories that
break supersymmetry even though they do not possess
an R symmetry. In some cases, while the microscopic
theory does not have an R symmetry, there is an effec-
tive, spontaneously broken R symmetry in the low-
energy theory. In other cases, there is not even an effec-
tive R symmetry. In one example, SUSY will be broken
even though the tree-level superpotential is generic and
does not preserve any R symmetry, and there is no ef-
fective R symmetry.

C. Gaugino condensation

Let us now introduce a criterion for SUSY breaking
that is based on gaugino condensation (Meurice and
Veneziano, 1984; Amati, Rossi, and Veneziano, 1985).
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Suppose that a certain chiral superfield (or a linear com-
bination of chiral superfields) does not appear in the
superpotential, yet all the moduli are stabilized. In such
a case the Konishi anomaly (Clark, Piguet, and Sibold,
1979; Konishi, 1984) implies

D̄ 2~F̄eVF!;TrW2, (20)

where D is a supersymmetric covariant derivative [see
Appendix Sec. 1], F is a chiral superfield, and V is the
vector superfield. It is instructive to consider Eq. (20) in
component form. It is given by an anomalous commuta-
tor with the supersymmetry generator Q ,

$Q ,cFf%;ll , (21)

where cF and f are the fermionic and scalar compo-
nents of F, respectively, and l is the gaugino. From this
equation we see that the vacuum energy is proportional
to the lowest component of W2, that is, to ^Trll&.
Therefore if the gaugino condensate forms one can con-
clude that supersymmetry is broken. Note that if the
fields F and F̄ appear in the superpotential, the right-
hand side of Eqs. (20) and (21) can be modified and the
gaugino condensate may form without violating super-
symmetry. For example, if there is a superpotential mass
term, Eq. (21) becomes

$Q ,cFf%5mf̄f1
1

32p2 ll . (22)

The latter equation is compatible with supersymmetry
and determines the VEV’s of the scalar fields in terms of
the gaugino condensate.

This criterion is related to the global symmetry argu-
ments of Affleck, Dine, and Seiberg (1985), since if a
gaugino condensate develops in a theory possessing an
R symmetry, this symmetry is spontaneously broken. In
the absence of flat directions, the Affleck-Dine-Seiberg
argument leads to the conclusion that SUSY is broken.

D. Examples

We shall now demonstrate the techniques described in
Secs. III.B and III.C by a few examples.

1. Spontaneously broken global symmetry:
the SU(5) model

Consider an SU(5) gauge theory with one antisym-
metric tensor (10) A , and one antifundamental F̄ (Af-
fleck, Dine, and Seiberg, 1984b; Meurice and Veneziano,
1984). The global symmetry of the theory is U(1)
3U(1)R , under which we can take the charges of the
fields to be A(1,1) and F̄(23,29). No gauge invariants
can be made out of A and F̄ . Thus there are no flat
directions, and classically the theory has a unique
vacuum at the origin. The theory is strongly coupled
near the origin, and we have no way to determine the
behavior of the quantum theory. Because there are no
chiral gauge invariants, the theory does not admit any
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superpotential. If supersymmetry is broken, the only
possible scale for its breaking is the strong-coupling
scale of SU(5).

Following Affleck, Dine, and Seiberg (1984b) we shall
now use R symmetry to argue that supersymmetry is
indeed broken [in the following subsection we shall con-
sider a gaugino condensation argument put forth by
Meurice and Veneziano (1984)]. Assuming the theory
confines, the massless gauge-invariant fermions of the
confined theory should reproduce the triangle anomalies
generated in the microscopic theory. Affleck, Dine, and
Seiberg (1984b) showed that the minimal number of fer-
mions required, with U(1) and U(1)R charges under 50,
is five. This makes it quite implausible that the full glo-
bal symmetry remains unbroken. But if the global sym-
metry is spontaneously broken and there are no flat di-
rections, the theory breaks supersymmetry by the
arguments of Sec. III.B.

2. Gaugino condensation: the SU(5) model

We now would like to apply the gaugino condensate
argument to the SU(5) model discussed in the previous
subsection. Since the gaugino condensate serves as an
order parameter for supersymmetry breaking, we need
to establish that it is nonzero. To do that we follow Meu-
rice and Veneziano (1984) and consider the correlation
function

P~x ,y ,z !5^T„l2~x !,l2~y !,x~z !…&, (23)

where

x5eabcdela
a8la8

b8F̄c8Ab8c8AbcAde , (24)

and F̄ and A are scalar components of 5̄ and 10, respec-
tively.

In the limit x ,y ,z!L21 one can show that the con-
densate P;L13. Then one can take the limit of large x,
y , and z and, using cluster decomposition properties,
argue that ^ll&Þ0. As a result supersymmetry must be
broken.

3. R symmetry and SUSY breaking

In the example of the SU(5) model we could not ex-
plicitly verify the spontaneous breaking of the global
symmetry, and had to rely on the use of ’t Hooft
anomaly-matching conditions to establish supersymme-
try breaking. Now we consider examples in which we
can explicitly show that R symmetry is spontaneously
broken, and use that to establish supersymmetry break-
ing. While we shall be content to consider only models
with tree-level breaking, similar arguments can be ap-
plied to a number of dynamical models discussed later.

Consider first the O’Raifeartaigh model of Eq. (10).
There is an R symmetry under which f1 ,f2 have R
charge 2, and f has R charge zero. There is also a dis-
crete Z2 symmetry under which f1 is neutral, while f2
and f change sign. The superpotential is the generic one
consistent with the symmetries and supersymmetry is
broken. We can add to the superpotential f to some
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even power so that the R symmetry is broken. Still, su-
persymmetry is broken. However, the superpotential is
no longer generic, and we can add the term f1

2 without
breaking the remaining Z2 symmetry. This term will re-
store supersymmetry.

If we do not wish to impose a discrete symmetry, the
most general superpotential is

W5(
i51

2

Mi
2f i1mif if1l if if

2. (25)

The model with this superpotential still breaks super-
symmetry unless M1 /M25m1 /m25l1 /l2 . Note that if
the parameters are chosen so that this latter equality is
satisfied, the superpotential is independent of one linear
combination of the fields, f̃5(m2f12m1f2)/(m1

2

1m2
2), and thus is not generic.

As another example, consider the superpotential

W5P1X11P2X21A~X1X22L2!1aX1X2 . (26)

For a50 the theory has a U(1)3U(1)R symmetry with
A(0,2), X1(1,0), X2(21,0), P1(21,2), P2(1,2). Super-
symmetry is broken whether or not a50. For aÞ0 the
R symmetry is broken and the potential is no longer
generic. Terms such as P1P2 , A2, which respect the
U(1), could restore supersymmetry. This example is a
simple version of the low-energy theory of the example
we shall study in Sec. VI.C.

4. Generalizations of the SU(5) model

To conclude our presentation of the basic examples of
supersymmetry breaking we construct an infinite class of
models generalizing the SU(5) model discussed earlier
(Meurice and Veneziano, 1984; Affleck, Dine, and
Seiberg, 1985). These models have an SU(2N11)
gauge group, with matter transforming as an antisym-
metric tensor A and 2N23 antifundamentals F̄ i , i
51,.. . ,2N23 (Affleck, Dine, and Seiberg, 1985). For N
.2, all these models have D-flat directions, which are all
lifted by the most general R-symmetry-preserving super-
potential

W5l ijAF̄iF̄ j , (27)

for the appropriate choice of the matrix of coupling con-
stants.

First, note that for small superpotential coupling the
model possesses almost flat directions, and as a result,
part of the dynamics can be analyzed directly. Yet the
scale of the unbroken gauge dynamics in the low-energy
theory is comparable to the scale of SUSY breaking and
the model is not calculable. To analyze supersymmetry
breaking it is convenient to start from the theory with-
out the tree-level superpotential. In this case the models
have classical flat directions along which the effective
theory reduces to the SU(5) theory with an antisym-
metric and an antifundamental as well as the light modu-
lus parametrizing the flat direction. We already know
that in this effective theory SUSY is broken with a
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vacuum energy ;LL
4 . The low-energy scale depends on

the VEV of the modulus as in Eq. (A21), and thus there
is a potential

V~f!;LL
4 ;f2 ~4/13!(4N28). (28)

When small Yukawa couplings are turned on, the flat
directions are stabilized by the balance between the
tree-level contribution of order l2f4 and the dynamical
potential (28). The minimum of the potential then oc-
curs for

f;l2~13/2!(4N15)L with Evac;l8@~N22!/~4N15 !#L4. (29)

We found that the potential is stabilized at finite value
of the modulus and the effective low-energy description
is given in terms of the SUSY-breaking theory. Thus
supersymmetry must be broken in the full theory. We
also note that at the minimum, R symmetry is broken,
giving us additional evidence for supersymmetry break-
ing.

Before concluding this section we comment on the
analogous theories with SU(2N) gauge groups (Affleck,
Dine, and Seiberg, 1985). In this case the tree-level su-
perpotential allowed by symmetries (including R sym-
metry) does not lift all the classical flat directions. On
the other hand, a dynamical superpotential is generated,
pushing the theory away from the origin. Thus the
model does not have a stable ground state. It is possible
to lift all flat directions by adding R-symmetry-breaking
terms to the tree-level superpotential. While lifting the
flat directions, these terms lead to the appearance of a
stable supersymmetric vacuum.

IV. DIRECT ANALYSIS: CALCULABLE MODELS

As we have seen, SUSY breaking is directly related to
the zero-energy properties of the theory, namely, the
ground-state energy and the appearance of the massless
Goldstino. Fortunately, then, to establish SUSY break-
ing, we only need to understand the low-energy behav-
ior of the theory in question. As we shall see, many
models can be described, in certain regions of the
moduli space, by a low-energy O’Raifeartaigh-like effec-
tive theory. The question of whether SUSY is broken
simply amounts to the question of whether all F terms
can vanish simultaneously. The tricky part, of course, is
obtaining the correct low-energy theory. This involves a
number of related ingredients: establishing the correct
degrees of freedom, and determining the superpotential
and the Kähler potential. In many cases, holomorphy
and symmetries indeed determine the superpotential,
but the same is not true for the Kähler potential. How-
ever, if all we care about is whether the energy vanishes
or not, it suffices to know that the Kähler potential is not
singular as a function of the fields that make up the
low-energy theory. This, in turn, is related to whether or
or not we chose the correct degrees of freedom of our
low-energy theory.

We shall divide our discussion into two parts. In this
section we shall consider weakly coupled theories. By
tuning some parameters in the superpotential to be very
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small, we can typically drive some of the fields to large
expectation values, with the gauge symmetry completely
broken, so that all gauge bosons are very heavy. We can
then neglect gauge interactions and write down, as ad-
vertised, a low-energy O’Raifeartaigh-type model. Since
the theory is weakly coupled, we shall also be able to
calculate the Kähler potential and thus completely de-
termine the low-energy theory including the ground-
state energy, the composition of the Goldstino, and the
masses of low-lying states.

But we can also, in many cases, analyze the theory
near the origin in field space, where the theory is very
strongly coupled. If the theory confines, then below the
confinement scale, we are again left with an
O’Raifeartaigh-type model. In Sec. V, we shall see ex-
amples of this kind. In some cases, though we shall not
be able to analyze the theory in question, we shall be
able to analyze a dual theory that, as we just described,
undergoes confinement. In all these cases, however, we
shall not be able to calculate the Kähler potential. Thus,
while we shall ascertain that SUSY is broken, the details
of the low-energy theory, and in particular the vacuum
energy, the unbroken global symmetry, and the masses
of low-lying states, remain unknown.

In the examples we encounter, supersymmetry is bro-
ken due to a variety of effects. Still, it is always the
consequence of the interplay between, on the one hand,
a tree-level superpotential, which gives rise to a nonzero
potential everywhere except at the origin in field space,
and, on the other hand, nonperturbative effects, either
in the form of instantons or gaugino condensation, that
generate a potential that is nonzero at the origin.

A. The 3–2 model

Probably the simplest model of dynamical supersym-
metry breaking is the 3–2 model of Affleck, Dine, and
Seiberg (1985). Here we shall choose the parameters of
the model so that the low-energy effective theory is
weakly coupled, and thus the model is calculable. In this
weakly coupled regime, the main ingredient leading to
supersymmetry breaking in the model is an instanton-
generated superpotential. In Sec. VI.A.2, we shall ana-
lyze the same model in a strongly coupled regime in
which SUSY is broken through the quantum deforma-
tion of the moduli space (which is again the result of
instanton effects). We shall also discuss numerous gen-
eralizations of the 3–2 model.

The model is based on an SU(3)3SU(2) gauge
group with the following matter content [we also show
charges under the global U(1)3U(1)R symmetry of the
model]:

SU~3 ! SU~2 ! U~1 ! U~1 !R

Q 3 2 1/3 1

ū 3̄ 1 24/3 28

d̄ 3̄ 1 2/3 4

L 1 2 21 23. (30)
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Using methods described in Appendix Sec. 2 we can eas-
ily determine the classical moduli space of the model. In
the absence of a tree-level superpotential, it is given by

Qif5Q̄if5S a 0

0 b

0 0
D , L5~0,Aa22b2!, (31)

where Q̄5(ū ,d̄), and i and f are SU(3) color and flavor
indices, respectively. For generic values of a and b the
gauge group is completely broken, and there are three
light chiral fields. While it is not difficult to diagonalize
the mass matrix and find the light degrees of freedom, it
is convenient to use an alternative parametrization of
the classical moduli space in terms of the composite op-
erators

X15Qiad̄ iLbeab, X25Qiaū iLbeab, Y5det~QQ̄ !,
(32)

where Greek indices denote SU(2) gauge indices. The
most general renormalizable superpotential that pre-
serves the U(1)3U(1)R global symmetry is

Wtree5lQd̄L5lX1 . (33)

This superpotential lifts all classical flat directions.
Let us now analyze the quantum theory. To do that

we choose l2!g2
2!g3

2. The former inequality implies
that the minimum of the scalar potential lies very close
to the D-flat direction. To simplify the analysis we shall,
in fact, impose D-flatness conditions.14 The latter in-
equality guarantees that effects due to the SU(2) non-
perturbative dynamics are exponentially suppressed
compared to those due to the SU(3) dynamics. In par-
ticular, at scales below L3 and much bigger than L2 , the
SU(2) gauge theory is weakly coupled and its dynamics
can be neglected. SU(3), on the other hand, confines, so
we can write down an effective theory in terms of its
mesons Ma

f 5Qa•Q̄f, subject to the nonperturbative su-
perpotential

Wnp5
2L3

7

det~QQ̄ !
, (34)

which is generated by an SU(3) instanton. The reader
may now note that in this effective theory, SU(2) ap-
pears anomalous; it has three doublets, Mf51,2, L . How-
ever, this is not too surprising, because the superpoten-
tial (34) drives the fields Q , Q̄ away from the origin, so
that SU(2) is broken everywhere. Indeed, as discussed
in the Appendix, an SU(3) gauge theory with two fla-
vors has no moduli space.

In fact, we can already conclude that supersymmetry
is broken. Since the superpotential (34) drives the fields

14However, in this and in other calculable models it is easy to
take D-term corrections to the scalar potential into account in
numerical calculations.
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Q , Q̄ away from the origin, the R symmetry of the
model is spontaneously broken. Combining this with the
fact that the model has no flat directions, we see, based
on the arguments of Sec. III.B, that the theory breaks
supersymmetry.

Let us go on to analyze supersymmetry breaking in
the theory in more detail. As we saw above, in the ab-
sence of a tree-level superpotential, the theory has a
‘‘runaway’’ vacuum with Q ,Q̄→` . This is precisely
what allows us to find a calculable minimum in this
model. The tree-level superpotential lifts all classical flat
directions. Any minimum would result from a balance
between Wtree , which rises at infinity, and Wnp , which is
singular at the origin. If we choose l to be very small,
the minimum would occur for large Q , Q̄ VEV’s, so that
the gauge symmetry is completely broken, and gauge
interactions are negligible. Thus for a small l!1 we can
conclude that the light degrees of freedom can still be
described by the gauge-invariant operators X1 , X2 , and
Y (in the following we shall see additional arguments
supporting the fact that X1 , X2 , and Y are indeed the
appropriate degrees of freedom). Furthermore, the su-
perpotential in this limit is given by

W5
2L3

7

Y
1lX1 . (35)

We now see explicitly that supersymmetry is broken,
since WX1

5lÞ0. Note that this conclusion depends cru-
cially on the fact that we have the full list of massless
fields. In general, care should be taken in drawing a con-
clusion about supersymmetry breaking based on the
presence of a linear term for a composite field in the
superpotential. If at some special points additional fields
become massless, the Kähler metric is singular, and the
potential V5WiKij*

21Wj* may vanish even if all Wi are
nonzero. Moreover, if the theory has classical flat direc-
tions, it is possible that the Kähler potential (written in
terms of composites) has singularities at the boundaries
of moduli space, with some fields going to infinity and
possibly others to the origin. As a result supersymmetry
may be restored at the origin.

As we saw above, for the choice of parameters L3
@L2 , l!1, the theory is weakly coupled. The Kähler
potential of the low-energy theory is therefore the ca-
nonical Kähler potential in terms of the elementary
fields Q , ū , d̄ , and L , projected on the D-flat direction.
In terms of the gauge-invariant operators it is given by
(Affleck, Dine, and Seiberg, 1985; Bagger, Poppitz, and
Randall, 1994)

K524
A1Bx

x2 , (36)

where A51/2(X1
†X11X2

†X2), B51/3AY†Y , and

x[4AB cosS 1
3

arccos
A

B3/2D . (37)

We therefore have all the ingredients of the low-energy
theory, including the superpotential and the Kähler po-
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tential. This allows us to explicitly minimize the scalar
potential. For details of the analysis, we refer the reader
to Affleck, Dine, and Seiberg (1985) and Bagger, Pop-
pitz, and Randall (1994). Here we just give some quali-
tative results. It is possible to work in terms of either the
elementary fields or the gauge-invariant fields. Simple
dimensional analysis shows that the minimum occurs for
elementary field VEV’s v;l21/7L3 , and that the
vacuum energy is of order l5/14L3 . Explicitly we find
that at the minimum X250, so that the global U(1)
symmetry is unbroken (not surprising, as points of
higher symmetry are extremal). The massless spectrum
contains the Goldstino, a massless fermion of U(1)
charge 22, which saturates the U(1) anomaly, as well as
a massless scalar that is the Goldstone boson of the bro-
ken R symmetry (usually known as the R axion).

This concludes our discussion of the calculable mini-
mum of the 3–2 model, but let us make a few more
comments.

First, the above analysis of supersymmetry breaking
did not involve the strong dynamics of SU(2). It is in-
teresting to see therefore the effect of turning off the
SU(2) gauge interactions. We then have an SU(3)
gauge theory with two flavors, plus two singlets La51,2 ,
and with the superpotential (33). Classically, this super-
potential leaves a set of flat directions. Up to global sym-
metry transformations [which now include an SU(2)
global symmetry], these flat directions are parametrized
by L1 and Q2ū . The nonperturbative dynamics lead to
runaway towards a supersymmetric vacuum at infinity
along this direction.15 This dangerous direction is no
longer D flat when the SU(2) is turned on.

Second, even though so far we have concentrated on
the limit L3@L2 , it is possible to derive the exact super-
potential of the 3–2 model for any choice of couplings,
and to use it to establish supersymmetry breaking. Note
first that the complete list of independent gauge invari-
ants is X1 , X2 , Y , and Z[Q3L (we suppress all indi-
ces). The latter vanishes classically, or more precisely in
the limit L2→0. In the limit L3@L2 , l50, the superpo-
tential is given by Eq. (34). In the limit L2@L3 , l50,
the theory is an SU(2) gauge theory with two flavors
and a quantum constraint that can be implemented in
the superpotential using a Lagrange multiplier A , as
A(Z2L2

4).16 The most general superpotential that re-
spects all the symmetries of the theory is

W5
2L3

7

Y
f~ t ,z8!1A~Z2L2

4!g~ t ,z8!, (38)

where t[lX1Y/L3
7, z8[Z/L2

4 are the only dimension-
less field combinations neutral under all symmetries. In
the limit L3 , l→0 (for which any value of t can be
attained) we find an SU(2) theory with four doublets
(and a set of noninteracting singlet fields). Since the ex-

15We shall discuss the quantum behavior of SUSY QCD
coupled to singlet fields in detail in Sec. VI.A.1.

16Actually, with SU(3) turned off, Z in this superpotential
should be understood as the Pfaffian of the SU(2) mesons.
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act superpotential for this theory is known we find
g(t ,z8)[1. Similarly, in the limit L2→0 we find
f(t ,z8)511t . The exact superpotential is then

W5
2L3

7

Y
1A~Z2L2

4!1lX1 . (39)

It is clear from this superpotential that Z obtains a mass.
To see if the mass is large we need to know the Kähler
potential for this field. In the limit of weakly coupled
SU(2) and l!1 both gauge groups are strongly broken,
and the Kähler potential is close to the classical one.
Since classically Z vanishes, the projection of the classi-
cal Kähler potential on it also vanishes [see Eq. (36)].
For small but nonvanishing L2 the Kähler potential of Z
is suppressed by some function of L2 /v . Restoring the
canonical normalization for the kinetic term, we find
that the mass of Z is enhanced by the inverse of this
function. We were therefore justified in keeping only
X1 , X2 , and Y as the light fields.

Looking at Eq. (39), we can conclude that supersym-
metry is broken for any choice of the parameters of the
theory. However, unlike in the limit L3@L2 , in general
the theory is strongly coupled, and we have no control
over the Kähler potential. Therefore while we may be
able to estimate the scale of supersymmetry breaking we
cannot say anything about the vacuum, e.g., we cannot
establish the pattern of symmetry breaking.

In the above, we first showed that supersymmetry is
broken in a specific limit, and later realized that it is
always broken. Indeed, we do not expect a theory to
break supersymmetry for some choice of parameters
and to develop a supersymmetric minimum for other
choices. The reason is that no phase transitions are ex-
pected to occur in supersymmetric theories as their pa-
rameters are varied (Intriligator and Seiberg, 1994;
Seiberg and Witten, 1994a, 1994b). If a theory is super-
symmetric for some choice of parameters, it remains su-
persymmetric for any choice. This allows us to establish
supersymmetry breaking by considering a convenient
limit. In some theories, including the 3–2 model, we can
establish supersymmetry breaking in different limits.
The details of supersymmetry breaking, such as the
vacuum energy and the source of the breaking, may be
very different in the different limits.

Finally, another interesting feature of the 3–2 model
is the possibility of gauging the global U(1) symmetry,
provided that a new field E1, with U(1) charge 12, is
added to cancel the U(1)3 anomaly. With the addition
of this field, the analysis of dynamical supersymmetry
breaking does not change, since new classical flat direc-
tions do not appear, nor are new tree-level superpoten-
tial terms allowed. This possibility proved to be useful in
phenomenological model building (Dine, Nelson, and
Shirman, 1995). For our purposes, however, the impor-
tance of this U(1) is in the observation (Dine et al.,
1996) that with the addition of E1, the matter content of
the model falls into complete SU(5) representations,
and in fact they are the same representations that are
required for DSB in the SU(5) model of Sec. III.D. In
the following section we shall discuss another simple and
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calculable model of DSB based on an SU(4)3U(1)
gauge group and again see that the matter fields form
complete SU(5) representations. In Sec. VII.A we shall
introduce a method of constructing large classes of DSB
models based on this observation. This method will lead
us to an infinite class of models generalizing the 3–2
model. Many other calculable and noncalculable gener-
alizations will be discussed in Sec. VII.

B. The 4–1 model

Another example of a calculable DSB model is the
4–1 model constructed by Dine et al. (1996) and Poppitz
and Trivedi (1996). Consider an SU(4)3U(1) gauge
group with matter transforming as an antisymmetric ten-
sor of SU(4), A2 [where the subscript indicates U(1)
charge], a fundamental F23 , an antifundamental F̄21 ,
and an SU(4) singlet S4 .

For a range of parameters of the model, the scale of
the gauge dynamics will be below the SUSY-breaking
scale. Thus one could analyze supersymmetry breaking
in terms of the microscopic variables (Dine et al., 1996).
Indeed, in terms of the microscopic variables the Kähler
potential of the light degrees of freedom is nearly ca-
nonical and it is easy to calculate the vacuum energy.
We shall, however, analyze this model in terms of the
gauge-invariant polynomials. Again for convenience we
shall work in a regime in which the couplings are ar-
ranged hierarchically, with the superpotential Yukawa
coupling the smallest, and with the U(1) coupling weak
at the SU(4) strong-coupling scale.17 The SU(4)
moduli space is given by the fields M5FF̄ , X5PfA , and
S . The model possesses a nonanomalous R symmetry,
and the unique superpotential allowed by the symme-
tries is

W5
L4

5

AMX
1l S M . (40)

The tree-level term in the superpotential lifts all classical
flat directions [note that one more condition on the
SU(4) moduli is imposed by the U(1) D term]. Due to
the nonperturbative superpotential the vacuum cannot
lie in the origin of the moduli space of the theory. As a
result, the R symmetry is spontaneously broken at the
minimum of the potential and supersymmetry is broken.

Let us argue that the nonperturbative term in the su-
perpotential (40) is indeed generated. We would also
like to establish that the model is calculable, namely,
that for some choices of parameters, the corrections to
the classical Kähler potential are small near the mini-
mum. To this end, neglect the tree-level superpotential
and consider a region of the classical moduli space with
M ,S2@X . In this region the gauge group is broken
down to an SU(3) subgroup. Apart from the light

17Since both Yukawa and U(1) couplings become weaker in
the infrared we can just choose them to be sufficiently small in
the ultraviolet.
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modulus that controls the scale of the unbroken gauge
group there is one SU(3) flavor in the fundamental rep-
resentation coming from the components of A . In this
effective theory the nonperturbative superpotential is
generated by gaugino condensation

W5
L3

4

Aqq̄
, (41)

where q and q̄ denote light SU(3) fields, and L3
4 is an

SU(3) scale. Using the scale-matching condition

L3
45

L4
5

AM
, (42)

we easily recognize the superpotential (40).
Furthermore we see that the effective SU(3) also

possesses a flat direction along which q and q̄ acquire
VEV’s and the gauge group is broken down to SU(2).
The strong scale of this SU(2) tends to zero along the
flat direction. While the tree-level superpotential stabi-
lizes the theory at finite VEV’s, the corrections to the
classical scalar potential that scale as L2 /v (where v is
the typical VEV) are negligible for sufficiently small l
and therefore the model is calculable. The vacuum en-
ergy in this model was explicitly calculated by Dine et al.
(1996).

It is worth noting that one can add an
R-symmetry-breaking (and nonrenormalizable) term,
MPfA , to the superpotential (40) (Poppitz and Trivedi,
1996). We shall discuss DSB models without R symme-
try in more detail in Sec. VI.C.

V. DIRECT ANALYSIS: STRONGLY COUPLED THEORIES

A. Supersymmetry breaking through confinement

In previous sections we have seen that, at the classical
level, supersymmetric gauge theories without explicit
mass terms possess a zero-energy minimum at least at
the origin of field space. Classical tree-level superpoten-
tials may lift the moduli space, but the supersymmetric
vacuum at the origin survives. In traditional calculable
models of DSB (such as the 3–2 model) the vacuum at
the origin is lifted due to a dynamical superpotential
generated by nonperturbative effects. On the other
hand, in the SU(5) model, no superpotential can be
generated, and supersymmetry is broken by the confin-
ing dynamics. Unfortunately the low-energy spectrum of
the SU(5) model is not known, and thus the main argu-
ments for DSB are based on the complexity of the solu-
tions to the ’t Hooft anomaly-matching conditions. It
would be very useful to investigate a model in which
supersymmetry breaking is generated by the confining
dynamics, with a known low-energy spectrum. In fact a
very simple and instructive model of this type was con-
structed by Intriligator, Seiberg, and Shenker (1995).
This model clearly illustrates the fact that a crucial in-
gredient in studying supersymmetry breaking is the
knowledge of the correct degrees of freedom of the low-
energy theory. Supersymmetry breaking in this theory



42 Y. Shadmi and Y. Shirman: Dynamical supersymmetry breaking
hinges on whether the theory confines or has an inter-
acting Coulomb phase at the origin. It seems very plau-
sible that the theory indeed confines and that supersym-
metry is broken as a result.

The model is based on an SU(2) gauge theory with a
single matter field qabg in a three-index symmetric rep-
resentation. The model is chiral, since the quadratic in-
variant q2 vanishes by the Bose statistics of the super-
fields. It also possesses an R symmetry under which q
has the charge 3/5. Moreover, the model is asymptoti-
cally free, and thus nontrivial infrared dynamics may lift
the supersymmetric vacuum at the origin of field space.
It is therefore a candidate model of DSB according to
traditional criteria for supersymmetry breaking.

The only nontrivial gauge-invariant polynomial that
can be constructed out of q is u5q4 (with appropriate
contraction of indices). This composite parametrizes the
only flat direction of the theory along which the gauge
group is completely broken. R symmetry and holomor-
phy restrict any effective superpotential to be of the
form W5aL21/3u5/6, where L is the dynamical scale of
the theory. This superpotential, however, does not have
a sensible behavior as L→0, since for large u/L4 the
moduli space should be close to the classical one with
W→0. Therefore a50. This means that the quantum
theory also has a moduli space of degenerate vacua. The
moduli space may be lifted by the tree-level nonrenor-
malizable superpotential

W5
l

M
u , (43)

where l is a constant of order 1. In the presence of the
nonrenormalizable term, the model can be thought of as
a low-energy effective description of a more fundamen-
tal theory, which is valid below the scale M . Choosing
L!M , there is a region of moduli space, with L4!u
!M4, in which the gauge dynamics are weak and we
have a good description of the physics in terms of an
effective theory of chiral superfields.

In the presence of the nonrenormalizable term, holo-
morphy and symmetries restrict the exact superpotential
to be

W5
l

M
uf~ t5L2u/M6!, (44)

where the function f is given by the sum of instanton
contributions. In the allowed region, utu!1, f'1 and we
can use the classical superpotential.

Naively, the linear superpotential for u leads to super-
symmetry breaking since FuÞ0. One should remember,
however, that as u is a composite field, its Kähler poten-
tial may be quite complicated. In particular, the Kähler
potential may be singular at some points in the moduli
space, potentially leading to supersymmetry restoration.

To determine the behavior of the Kähler potential,
consider first the theory for large expectation values of
u . In this regime the description of the model should be
semiclassical and thus the Kähler potential scales as

K;Q†Q;~u†u !1/4. (45)
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Indeed this Kähler potential is singular at u50. The sin-
gularity reflects the fact that at u50 the gauge bosons
become massless and must be included in the effective
description. There are two plausible alternatives for the
nature of the singularity in the quantum theory. It is
possible that the theory is in a non-Abelian Coulomb
phase. On the other hand, it is possible that the singu-
larity is smoothed out quantum mechanically. Intriliga-
tor, Seiberg, and Shenker (1995) argued that this latter
option is probably realized since the massless composite
field u satisfies the ’t Hooft anomaly-matching condi-
tions, which is quite nontrivial.18 We shall assume that
this is indeed the case. Then R symmetry, smooth be-
havior near the origin, and semiclassical behavior at in-
finity imply that the Kähler potential is a (smooth) func-
tion of u†u/uLu8 satisfying

K5uLu2k~u†u/uLu8!;H u†u/uLu6, u†u!L8

~u†u !1/4, u†u@L8.
(46)

Combining this form of the Kähler potential with the
superpotential of Eq. (44), with f[1 we find that the
scalar potential

V5~Ku†u!21uWuu25~Ku†u!21U l

MU2

(47)

necessarily breaks supersymmetry with a vacuum energy
of order

E;
uLu6

M2 . (48)

At this point we should comment on several other
interesting properties of the model. Before adding the
tree-level superpotential (43), the effective description
of the confined theory in terms of the u modulus pos-
sesses an accidental global U(1) symmetry (as the
Kähler potential does not depend on the phase of u).
This U(1) is anomalous in terms of the elementary de-
grees of freedom. The tree-level superpotential explic-
itly breaks the R symmetry of the model, as well as the
accidental U(1). However, in the low-energy descrip-
tion there is an effective R symmetry that is a combina-
tion of the U(1)R and accidental U(1) symmetries.
Since R symmetry in the macroscopic description is ex-
plicitly broken by the tree-level superpotential, higher-
order terms can generically correct Eq. (43). These
terms explicitly violate the effective R symmetry of the
low-energy description. According to our analysis in Sec.
III.B this leads to the appearance of supersymmetric
vacua, but these vacua will lie outside the region of va-
lidity uuu,M4 of our analysis, and the nonsupersymmet-
ric minimum will remain a (metastable) local minimum
of the potential.

18See, however, Brodie, Cho, and Intriligator (1998) for a
class of theories in which the existence of simple solutions to
the anomaly-matching conditions suggests that the theories
confine, yet the theories in fact do not confine.
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B. Establishing supersymmetry breaking
through a dual theory

In this section we shall encounter a class of theories,
with SU(N)3SU(N22) gauge symmetry, that break
supersymmetry for odd N . By directly studying these
theories, we can show that they have calculable,
supersymmetry-breaking minima for a certain choice of
parameters. But we cannot show that there is no super-
symmetric minimum, simply because we cannot analyze
the low-energy theory in all regions of the moduli space.
However, we shall be able to construct a Seiberg dual of
the original theory that can be reliably analyzed at low
energy. As we shall see, the dual theory breaks super-
symmetry. We can then conclude that the original
theory breaks supersymmetry as well. The reason is that
at least as long as supersymmetry is unbroken, the two
duals should have the same physics at zero energy. It is
therefore impossible for one of them to be supersym-
metric, with a vacuum at zero energy, and for the other
one to break supersymmetry, with a nonzero-energy
vacuum.

Furthermore, it is possible that the two dual theories
actually agree not just at zero energy but in a small,
finite energy window. In the theories at hand, the scale
of supersymmetry breaking is proportional to some su-
perpotential coupling and can be tuned to be small
enough so that it is within this energy window. It is im-
portant to stress, however, that we only use the dual to
establish that supersymmetry is broken. The details of
supersymmetry breaking may be different between the
original theory and its dual.

While we mostly concentrate on the application of du-
ality to establish supersymmetry breaking, one could
adopt a different point of view and use duality to con-
struct new models of DSB starting with known models.
Generically new models constructed in such a way will
describe completely different yet nonsupersymmetric in-
frared physics.

Let us turn now to our example. The theory we start
with is an SU(N)3SU(N22) (N>5) gauge theory
with fields Qia , transforming as (N ,N22) under the
gauge groups, N22 fields L̄I

i , transforming as (N̄ ,1),
and N fields R̄A

a that transform as (1,N22). We denote
the gauge indices of SU(N) and SU(N22) by i and a,
respectively, while I51 . . . N22 and A51 . . . N are
flavor indices. Note that these theories are chiral—no
mass terms can be added for any of the matter fields.

In the following, we shall outline only the main stages
of the analysis. For details we refer the reader to Pop-
pitz, Shadmi, and Trivedi (1996b). In particular, we omit
numerical factors and some scale factors throughout this
section.

The classical moduli space of the theory is given by
the gauge invariants YIA5L̄I•Q•R̄A , b̄AB

5(R̄N22)AB, and B̄5QN22
•L̄N22 (when appropriate,

all indices are contracted with e tensors), subject to the
classical constraints YIAb̄AB50 and b̄ABB̄;(YN22)AB.
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To lift all classical flat directions, we can add the su-
perpotential

Wtree5lIAYIA1aABb̄AB, (49)

with lIA5ldIA for A<N22, and zero otherwise. aAB is
an antisymmetric matrix whose nonzero elements are
a125 . . . 5a(N22)(N21)5a for odd N , and a125 . . .
5a(N21)N5a for even N .19 Note that the second term
in Eq. (49) is nonrenormalizable for N>6 but has di-
mension 4 for N55.

As it turns out, there is an important difference be-
tween the theories with even and odd N . For odd N , the
superpotential (49) preserves an R symmetry, and one
may expect supersymmetry to break. For even N , there
is no R symmetry that is preserved by Eq. (49), so su-
persymmetry is most likely unbroken. Both of these
statements are indeed borne out by direct analysis, as we
shall see.

It is also easy to check that if we set aAB50 in Eq.
(49), all flat directions are lifted except for the ‘‘baryon’’
directions b̄AB.

To analyze the quantum theory, we can start with the
limit LN@LN22 , where LN and LN22 are the strong-
coupling scales of SU(N) and SU(N22), respectively.
SU(N) has N22 flavors, so gaugino condensation in an
unbroken SU(2) subgroup generates the superpotential

W;S LN
2N12

B̄ D 1/2

. (50)

Thus there is no moduli space. Below LN , SU(N22)
appears anomalous. It is also partially broken. This is
reminiscent of the situation we encountered in the 3–2
model. However, there, because of the SU(3) superpo-
tential, the SU(2) was completely broken. In contrast,
here the SU(N22) is not completely broken, so there
are some strong dynamics associated with the unbroken
group. It is therefore very hard (or impossible) to ana-
lyze the theory (except for a special choice of param-
eters, for which it has a calculable minimum, as we shall
see later). Fortunately we can turn to a dual theory in
which the low-energy dynamics are under control.20

Before we do that, one comment is in order. It is al-
ready clear from Eq. (50) that the electric theory has no
moduli space. In addition, with a50, the theory has clas-
sical flat directions. If these are not lifted quantum me-
chanically, the superpotential (50) pushes some fields to
large VEV’s along these directions. Then for a!1 we
can find a calculable minimum. This indeed is the case.
We shall return to this calculable minimum towards the
end of the section. First, however, we would like to show
that the theory has no supersymmetric vacua. To do
that, we turn to the dual theory.

19In fact, one can lift all flat directions with other choices for
lIA and aAB ; see Poppitz, Shadmi, and Trivedi (1996b).

20The appearance of the superpotential (50) can be seen in
the dual theory as well (Poppitz, Shadmi, and Trivedi, 1996b).
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We construct the dual theory in the limit LN22
@LN . However, it is expected to give a valid description
of the original theory in the infrared for any LN22 /LN
(Poppitz, Shadmi, and Trivedi, 1996a). The dual theory
is obtained by dualizing the SU(N22). This can be
thought of as the process of first turning off the SU(N)
coupling, so that we are left with an SU(N22) with N
flavors. Dualizing this theory we find an SU(2) theory
with N flavors. Finally, we switch the SU(N) coupling
back on in this dual theory.

The dual theory then has SU(N)3SU(2) gauge sym-
metry, with the following field content:

SU~N ! SU~2 !

qn
i N̄ 2

r̄An 1 2

1
m

MiA N 1

L̄I
i N̄ 1 (51)

The SU(2) singlets MiA correspond to the SU(N22)
mesons qi•RA , and m is a mass scale that relates the
strong-coupling scales of SU(N22) and SU(2):
LN22

2N26L2
62N;mN.

In addition, the dual theory has a Yukawa superpo-
tential:

W5
1
m

MaAr̄A
•qa. (52)

Note that in this dual theory, SU(2) has N flavors, so
naively it is in the dual regime. We shall soon see, how-
ever, that the combination of the Yukawa superpoten-
tial (52) and the SU(N) dynamics drives the theory into
the confining regime.

To see that, note that SU(N) now has N flavors, and
therefore a quantum modified moduli space. Below the
SU(N) confining scale,21 we can write down an effective
theory in terms of the SU(N) mesons NAn;MiAqn

i and
YIA;MiAL̄I

i , and the SU(N) baryons B;det(MaA)
and

B̄ 8;q2
•L̄N22;QN22

•L̄N22;B̄,

where in the last equation we used the baryon map of
supersymmetric QCD, Eq. (A38). Here we omit various
scales as well as numerical coefficients.

In terms of these variables, the SU(2) still has 2N
doublets, NA and r̄A, but the superpotential (52) now
turns into

W;NA• r̄A, (53)

which gives masses to all SU(2) doublets. Thus indeed,
as SU(N) confines, the Yukawa couplings turn into
mass terms and drive SU(2) into the confining regime.

21This scale is not LN . Rather, it is a combination of LN ,
LN22 , and m (Poppitz, Shadmi, and Trivedi, 1996b).
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Since SU(2) is now confining, with mass terms for all
its doublets, we should work in terms of its mesons, all
of which obtain VEV’s. A convenient way of keeping
track of the correct VEV’s is to add the superpotential

W;S PfV

L2L
62ND 1/~N22 !

. (54)

Here L2L is the SU(2) scale after SU(N) confines, and
V stands collectively for the SU(2) mesons @N2# , @ r̄2# ,
and @N• r̄# . We use brackets to indicate that these me-
sons should now be thought of as single fields.

In addition, recall that the SU(N) dynamics lead to a
constraint that can be implemented through the super-
potential

A~@N2#•YN222BB̄2L̄NL
2N !, (55)

where A is a Lagrange multiplier and L̄NL is the SU(N)
scale.

Combining Eqs. (55), (54), and (53) with the tree-level
superpotential, which now has the form

lIAYIA1aAB@ r̄A
• r̄B# , (56)

we have the complete superpotential. Note that in the
last step we used the supersymmetric QCD baryon map
b̄AB; r̄A

• r̄B.
We now have a low-energy field theory with all gauge

dynamics integrated out. This low-energy theory consists
of the fields B, B̄, YIA , @N2# , @r2# , and @N•r# , with a
superpotential that is given by adding Eqs. (53) through
(56). We can then check whether all F terms vanish si-
multaneously. This is a rather tedious task, and we refer
the interested reader to Poppitz, Shadmi, and Trivedi
(1996b). As the analysis shows, for odd N , no solution
exists, and supersymmetry is broken. For even N a so-
lution does exist.

It is interesting to see what happens before adding the
tree-level superpotential. In that case, the F equations
have no solution for finite field VEV’s. Furthermore, for
a50 and lÞ0, the different F terms tend to zero as
some of the baryons b̄AB tend to infinity.

One difficulty that we glossed over in the above dis-
cussion is related to the fact that after SU(N) confines,
the SU(2) scale L2L is field dependent. If this scale van-
ishes, additional fields may become massless, and the
Kähler potential in terms of the degrees of freedom we
have kept so far may become singular. To resolve this
issue, we can add a heavy SU(N) flavor. In this case no
scale is field dependent, and the analysis confirms the
results stated above. In particular, we find that super-
symmetry is broken for odd N . For further details see
Poppitz, Shadmi, and Trivedi (1996b).

To summarize, while we could not in general analyze
the original SU(N)3SU(N22) theory, we were able to
show that it breaks supersymmetry for odd N by study-
ing its dual SU(N)3SU(2) theory.

To complete our discussion of this theory, we now
turn to the calculable minimum we mentioned earlier.
This minimum can be studied in the electric theory it-
self, so duality plays no role in the analysis.



45Y. Shadmi and Y. Shirman: Dynamical supersymmetry breaking
As we have already mentioned, with a50, all F terms
asymptote to zero along the baryonic flat direction. Let
us now see this in the electric theory. We choose a par-
ticular baryon direction with RA

i 5vdA
i . This corre-

sponds to b̄(N21)N;vN22, with all other b̄AB50. Along
this direction, SU(N22) is completely broken, so for
large v we can neglect its effects. Furthermore, the first
term in Eq. (49) gives masses lv to all SU(N) flavors
(in the following we set l51 for convenience). At low
energies we are thus left with a pure SU(N) whose scale
LNL satisfies LNL

3N ;vN22LN
2N12 . Gaugino condensation

in this theory then leads to a superpotential

W;~vN22!1/N;~ b̄(N21)N!1/N. (57)

We thus have a low-energy theory in terms of the bary-
ons b̄AB, with the superpotential Eq. (57) (for a50), so
the F term for b̄(N21)N behaves as F;(b̄(N21)N)1/N 21,
which goes to zero as b̄(N21)N→` . But whether this is a
runaway direction or not depends on the Kähler poten-
tial. In fact, it can be argued (Shirman, 1996) that the
Kähler potential is canonical in terms of the elementary
fields R̄A, up to small corrections. Thus if the F terms
for R̄A tend to zero along this direction, there is a run-
away minimum at infinity. Indeed, these F terms behave
as v @(N22)/N# 215v22/N and asymptote to zero as v→` .

Adding now a small aÞ0, the potential can be stabi-
lized as v→` , with a supersymmetry-breaking minimum
for large values of v . Note that for N>6, the baryon
term in Eq. (49) is nonrenormalizable, so a is naturally
small. In fact, as was shown in Poppitz and Trivedi
(1997), this minimum can be analyzed using a simple
s-model approach and is interesting for model-building
purposes, as there is a large unbroken global symmetry
at the minimum in which, a priori at least, one can em-
bed the standard-model gauge group.

C. Integrating matter in and out

In Sec. III.D we discussed the supersymmetry-
breaking SU(5) model with matter in the antisymmetric
tensor and in the antifundamental representations. This
model does not possess any classical or dynamical super-
potential and does not have flat directions. We gave two
arguments establishing DSB. One was based on the
complexity of solutions to ’t Hooft anomaly-matching
conditions, while the other was based on the formation
of the gaugino condensate. We also discussed generali-
zations of the SU(5) model.

Here we shall use the same class of theories to illus-
trate another method of analysis that is useful in noncal-
culable models (Murayama, 1995; Poppitz and Trivedi,
1996). In this method we modify the model of interest to
make it calculable through the introduction of extra vec-
torlike matter. When these vectorlike matter fields are
massless, the models typically possess flat directions
along which the gauge group is broken and the theory is
in a weak-coupling regime. For small masses of these
matter fields the weak-coupling approximation is still re-
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liable and the theory remains calculable. Thus the modi-
fied theory with small masses allows a direct analysis of
supersymmetry breaking. Then we consider the limit of
infinite vectorlike matter mass. In this limit the vector-
like matter decouples and we are left with the original
theory. If supersymmetry is broken in the modified
theory with the additional light fields, holomorphy argu-
ments ensure that it is broken for any finite values of
masses. Moreover, since the theories that we have in
mind do not have classical flat directions both for finite
and infinite masses, we expect that the asymptotic be-
havior of the scalar potential (and therefore the Witten
index) remains unchanged in the infinite mass limit.
Thus the assumption that no phase transition occurs
when going to the infinite mass limit leads us to the
conclusion that supersymmetry is broken in the original
strongly coupled model. We stress that this approach
gives strong evidence for supersymmetry breaking, yet
does not help in understanding the strongly coupled
SUSY-breaking vacuum. The reason is that as the mass
of the vectorlike matter becomes large, m;L , control
of the Kähler potential is lost and the theory becomes
noncalculable.

We now discuss the application of this method to the
models at hand, following Poppitz and Trivedi (1996).
We consider models with an SU(2N11) gauge group,
an antisymmetric tensor Aab , 2N231Nf antifunda-
mentals Q̄i

a , (i51,.. . ,2N231Nf), and Nf fundamentals
Qa

a , (a51,.. . ,Nf). It is convenient to start with the case
Nf53 and then to integrate out vectorlike matter. The
classical moduli space is described by the following
gauge-invariant operators:

Mi
a5Q̄i

aQa
a ,

Xij5AabQ̄i
aQ̄j

b ,

Ya5ea1 ,.. . ,a2N11Aa1 ,a2
¯Aa2N21a2N

Qa2N11

a ,

Z5ea1 ,.. . ,a2N11Aa1a2
¯Aa2N23,2N22

Qa2N21

a

3Qa2N

b Qa2N11

c eabc . (58)

These moduli overcount by one the number of the mass-
less degrees of freedom at a generic point of the moduli
space, and thus are related by a single constraint that
easily follows from the Bose statistics of the superfields

Y•M2
•XN212

k

3
ZPfX50, (59)

where appropriate contraction of indices is assumed.
Vacuum expectation values of the moduli (58) satisfying
the constraint (59) describe nonequivalent classical
vacuum states. The Kähler potential of the theory writ-
ten in terms of the gauge-invariant composites is singu-
lar at the origin. As usual this singularity reflects the fact
that the gauge symmetry is restored at the origin of the
moduli space and additional massless degrees of free-
dom descend into the low-energy theory. In complete
analogy with supersymmetric QCD [see Eq. (A28)] this
constraint is modified by nonperturbative effects,
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Y•M2
•XN212

k

3
ZPfX5L4N12. (60)

As a result, the origin of field space where the gauge
symmetry is completely restored does not belong to the
quantum moduli space. The Kähler potential is nonsin-
gular in any finite region of the moduli space, and we
have good control of the physics. We note in passing
that the Kähler potential may still become singular at
the boundaries of the (D-flat) moduli space, where a
subgroup of the original SU(2N11) gauge group re-
mains unbroken (corresponding to the situation with
some moduli VEV’s vanishing while other VEV’s tend
to infinity). In Sec. VI.B. we shall carefully consider
models in which the physics in such boundary regions is
important. For the time being we note that as long as the
classical superpotential of the theory lifts all flat direc-
tions, such boundary regions are not accessible and we
do not need to worry about them.

Having understood the properties of the moduli
space, we turn to the tree-level superpotential. The full
superpotential of the theory with three vectorlike flavors
can be written as

W35LS Y•M2
•Xk212

N

3
ZPfX2L2(2N11)D

1ma
i Mi

a1l ijXij , (61)

where ma
i is a rank three-mass matrix, and the matrix of

Yukawa couplings l is chosen so that all classical flat
directions are lifted. We can now vary the masses ma

i to
move in the parameter space between the Nf53 and
Nf50 theories. However, it is useful to first choose only
one mass eigenvalue to be large, so that the effective
description is of two light vectorlike flavors. In such a
case the superpotential takes the form

W25
L(2)

4N13

eacYaMi1

c e i1 ...i2N21Xi2i3
•••Xi2N22i2N21

1ma
i Mi

a1l ijXij , (62)

where the low-energy scale L(2) is given by the usual
scale-matching condition, L(2)

4N135mL4N12, and the
tree-level terms include only fields of the Nf52 model.
We note that the nonperturbative term in Eq. (62) is
generated by a one-instanton term in the gauge theory.
By solving the equations of motion for the mesons Mi

a it
is easy to see that the F-flatness conditions cannot be
satisfied. Together with the regularity of the Kähler po-
tential in any finite region of the moduli space and the
absence of classical flat directions, this implies super-
symmetry breaking (Poppitz and Trivedi, 1996). We
note that for small masses m!L and couplings l!1 the
theory is in a semiclassical regime and the low-energy
theory is calculable. As the masses are increased, control
of the Kähler potential and, as a result, calculability are
lost, yet supersymmetry remains broken. For large
masses, m@L , the effective description is given by the
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Nf50 models, so that we have given an additional argu-
ment for supersymmetry breaking in these noncalcu-
lable theories.

VI. VIOLATIONS OF INDIRECT CRITERIA FOR DSB

So far we have concentrated on models satisfying the
Affleck-Dine-Seiberg (1985) criteria for dynamical
SUSY breaking. These criteria restricted model-building
efforts to chiral models with R symmetries and with no
flat directions. In recent years a number of nonchiral
models, models with classical flat directions, and models
with no R symmetry have been shown to break super-
symmetry dynamically. In this section we shall discuss
such examples in turn.

A. Nonchiral models

1. SUSY QCD with singlets

We shall start the discussion of nonchiral models with
SUSY QCD coupled to gauge-singlet fields. We shall
vary the number of flavors in the theory and analyze the
quantum behavior along the classical flat directions. We
should warn the reader that generically these models do
not break supersymmetry. However, this analysis will
lead us to the nonchiral Intriligator-Thomas-Izawa-
Yanagida model of DSB (Intriligator and Thomas,
1996a; Izawa and Yanagida, 1996) discussed in the fol-
lowing subsection. Along the way we shall develop use-
ful techniques for the analysis of flat directions and illus-
trate them in additional examples in Sec. VI.B.

Consider an SU(N) gauge theory with Nf flavors
coupled to a single gauge-singlet field through the super-
potential

W5S Qi•Q̄i . (63)

This superpotential lifts one classical flat direction of
SUSY QCD, namely, Mij5vd ij . On the other hand,
there is a flat direction along which S is nonvanishing.
Along this direction the VEV of S plays the role of a
mass for the quark superfields.22

For large S the effective theory is pure supersymmet-
ric Yang-Mills with an effective strong-coupling scale
LSYM

3N 5SNfL3N2Nf, where S denotes the expectation
value and L is the original SU(N) scale. Gaugino con-
densation in the effective theory generates the superpo-
tential

W5LSYM
3 5SNf /NL~3N2Nf!/N. (64)

The superpotential (64) gives an effective description at
scales much smaller than ^S& , yet the fluctuations of S
itself remain massless, and Eq. (64) can be considered as
an effective superpotential for this modulus, leading to
the scalar potential

22Note that unlike the case with a tree-level mass term, the
superpotential preserves a nonanomalous R symmetry, which
is only broken spontaneously by the S VEV.
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V5L2~3N2Nf!/NuSu2~Nf2N !/N. (65)

Note that this effective description is valid only for S
@L . We see that for Nf,N this potential slopes to zero
at infinity, and the vacuum energy is arbitrarily small for
large S , exactly in the region in which our effective de-
scription is reliable. For Nf>N the potential for S is
nonvanishing at infinity (Affleck, Dine, and Seiberg,
1985). Of course, the stabilization of this direction in the
case Nf>Nc does not imply supersymmetry breaking (or
even the existence of a stable vacuum) in the full model.
First, the analysis performed so far is not valid near the
origin of field space. In addition there are many unlifted
mesonic and baryonic flat directions. Yet this suggests a
way to stabilize other flat directions. Namely, one could
couple the quarks to Nf

2 gauge-singlet fields23

W5(
ij

k

l ij Sij Qi•Q̄j , (66)

where the matrix of Yukawa coupling constants has
maximal rank, and in the following we shall choose it to
be l ij5l d ij .24 The superpotential (66) lifts all mesonic
flat directions Mij5QiQ̄j . If baryonic branches of the
moduli space exist, they can be lifted by introducing ad-
ditional nonrenormalizable couplings to singlets, but we
shall leave these directions aside for the moment.

Along the singlet flat directions all quark superfields
generically become massive, and the effective theory is
pure supersymmetric Yang-Mills with the superpotential

W5lNf /NS̃Nf /NL~3N2Nf!/N, (67)

where S̃5(det S)1/Nf. This is just a direct generalization
of Eq. (64), and we see that the flat direction is stabilized
quantum mechanically for Nf>N . A somewhat more
careful analysis would show that the stabilization hap-
pens for all directions Sij as we shall see below.

To better understand the quantum behavior of the
model, we shall repeat the above analysis in more detail.
We write the scalar potential in the form25

V5(
i

Nf S U ]W

]Qi
U2

1U ]W

]Q̄i
U2D 1(

ij

Nf U ]W

]Sij
U2

, (68)

where W includes all possible nonperturbative contribu-
tions. A supersymmetric minimum in the model exists if
all three terms in Eq. (68) vanish. The first two contri-
butions in this potential reproduce the scalar potential

23In this case, the singlets transform under the global
SU(Nf)L3SU(Nf)R group, and the chiral symmetry is
preserved by the superpotential. It is spontaneously broken by
the Sij VEV’s.

24Recall that the only fact we need to know about the Kähler
potential to establish supersymmetry breaking is that it is non-
singular in the appropriate variables. As a result we can fur-
ther rescale l to one by field redefinitions, but it would be
useful for us to keep it explicit.

25This potential, of course, is further modified by corrections
to the Kähler potential.
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of SUSY QCD with Nf flavors and with the mass matrix
mij5l Sij . We can therefore use Eq. (A24) of the Ap-
pendix to find the meson expectation values for which
these terms vanish:

Mij5@det~lS !L3N2Nf#1/NS 1
lS D

ij

. (69)

Note that analyticity requires that Eq. (69) is satisfied
for all values of Nf . We can now substitute this solution
back into Eq. (68):

V5(
ij

Nf U]W

]Sij
U2

5ulu2(
ij

uMiju2

5ulu2~Nf/N !udet~S !L3N2Nfu2/N(
ij

US 1
S D

ij
U2

. (70)

It is easy to see that this term is minimized by Sij5S̃d ij
[(det S)1/Nfd ij . Therefore the scalar potential for the
lightest modulus S̃ is

V5ulNf L3N2Nf S̃Nf2Nu2/N. (71)

This is just the potential that could be derived from Eq.
(67) and we again see that the flat direction is lifted if
Nf>N . In fact we can now make a stronger statement.
When Nf5N11 the model is s-confining (Csaki,
Schmaltz, and Skiba, 1997c), and near the origin has a
weakly coupled description in terms of composite (me-
sonic and baryonic) degrees of freedom. As a result the
potential (70) is reliable near the origin, and we see that
supersymmetry is restored there. When Nf.N11 the
weakly coupled description is given in terms of the dual
gauge theory, and it is also possible to show that a su-
persymmetric vacuum exists at the origin.

The most interesting case for our purposes is Nf5N ,
where the vacuum energy is independent of the value of
S̃ in the approximation that the Kähler potential is clas-
sical. This statement is equivalent to the statement that
the energy is constant and nonvanishing everywhere on
the mesonic branch of the moduli space. So far we have
not considered the baryonic flat directions. In fact, in the
model with Nf5N flavors and the superpotential (66)
the potential slopes to zero along the baryonic direc-
tions. However, it is easy to see that a simple modifica-
tion leads to DSB (Intriligator and Thomas, 1996a;
Izawa and Yanagida, 1996). This modification requires
the introduction of two additional gauge-singlet fields
with nonrenormalizable couplings to the SU(N) bary-
ons (in the N52 case the new couplings are renormal-
izable).

2. The Intriligator-Thomas-Izawa-Yanagida model

Let us concentrate on a particular case with SU(2)
gauge group with two flavors of matter fields in the fun-
damental representation (four doublets Qi , i51,.. . ,4).
Because the matter fields are in the pseudoreal repre-
sentation, the superpotential (66) with Nf

2 singlets does
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not lift all the mesonic flat directions.26 Two mesonic flat
directions remain and lead to a supersymmetric mini-
mum at infinity in direct analogy with the baryonic flat
directions for general N . A slight modification of the
theory with Nf

21256 singlets lifts all mesonic flat direc-
tions

W5(
ij

lSij Mij , (72)

where Mij5Qi•Qj , and Sij transform in the antisym-
metric representation of the global SU(4)F symmetry.27

Furthermore, we notice that near the origin of the
moduli space, the theory has a weakly coupled descrip-
tion in terms of the mesons Mij . Thus our preceding
discussion immediately leads us to the conclusion that
supersymmetry is broken.

Let us understand qualitatively the mechanism of su-
persymmetry breaking. The nonperturbative dynamics
generate the quantum constraint

Pf~M !5L2
4 . (73)

This quantum constraint modifies the moduli space.
While the origin Mij50 belongs to the classical moduli
space, it does not lie on the quantum moduli space. On
the other hand, the S F-terms only vanish at the origin,
Mij50. Supersymmetry is therefore broken because the
F-flatness conditions are incompatible with the quantum
moduli space.

It is often convenient to impose the quantum con-
straint through a Lagrange multiplier in the superpoten-
tial. Then the full superpotential is

W5l S M 1A ~PfM2L2
4!, (74)

where A is the Lagrange multiplier field. For l!1 the
vacuum will lie close to the SU(2) quantum moduli
space. Thus one can consider the superpotential (72) as
a small perturbation around the vacuum of the Nf5Nc
supersymmetric QCD with masses m5l^S&.28 In this
approximation the scalar potential is given again by Eq.
(70) and is minimized when (up to symmetry transfor-
mations)

S̃5S125S34 ,

S135S145S235S2450, (75)

M125M345
1

lS̃
S L2

4

Pf~lS !
D 5L2

4 .

26Note that the superpotential (66) does not preserve the glo-
bal SU(4)F symmetry of the SU(2) with four doublets.

27For simplicity we have chosen l to respect global SU(4)
symmetry, but this is not necessary.

28This approximation is equivalent to satisfying the equation
of motion for the Lagrange multiplier A .
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The vacuum energy is then given by

V5ulu2L2
4 . (76)

Thus we have a nonchiral (left-right symmetric)
model29 that breaks supersymmetry. Indeed, as we men-
tioned in Sec. III.A, the Witten index can change discon-
tinuously if the asymptotic behavior of the classical po-
tential changes. Consider modifying the Intriligator-
Thomas-Izawa-Yanagida model by turning on a mass
term for the singlet mS2. For sufficiently large mass, the
low-energy effective theory is pure supersymmetric
Yang-Mills, and the Witten index Tr(21)FÞ0. This is
therefore true for any nonvanishing value of m . As the
limit m→0 is taken, the asymptotic behavior of the po-
tential changes (there is now a classical flat direction
with SÞ0) and the Witten index vanishes. Note that, in
accord with our discussion in Sec. III.A, the potential
(76) is flat along the S-flat direction.

At the level of analysis we have performed so far,
there is a pseudoflat direction parametrized by S̃ . Since
S̃ is the only light field in the low-energy theory and the
superpotential (74) is exact, this direction would be ex-
actly flat if the Kähler potential for S were canonical.
However, quantum contributions to the Kähler potential
lift the degeneracy. For sufficiently small l and large
l ^S& it is possible to show (Arkani-Hamed and Mu-
rayama, 1998; Dimopoulos et al., 1998) by renormaliza-
tion group arguments that the quantum corrections due
to the wave-function renormalization of S are calculable
and lead to a logarithmic growth of the potential at large
S . It is possible to construct modifications of the
Intriligator-Thomas-Izawa-Yanagida models with calcu-
lable (but not necessarily global) supersymmetry break-
ing (Murayama, 1997; Dimopoulos et al., 1998). This is
achieved by gauging a subgroup of the global symmetry
under which S transforms. As a result, the wave-
function renormalization of S as well as the vacuum en-
ergy depend on both the Yukawa and gauge coupling.
For an appropriate choice of parameters, a local mini-
mum of the potential exists for a large S VEV realizing
Witten’s (1981b) idea of inverted hierarchy in a model
with dynamical supersymmetry breaking.

On the other hand, the exact superpotential of the
theory (74) is of an O’Raifeartaigh type. Thus it is natu-
ral to ask whether there exists a region of the model’s
parameters such that near the origin of the moduli space
(where, in particular, the singlet VEV is zero), the

29Practically, what is usually meant by a nonchiral model is
that all fields can be given masses. This issue is a bit subtle in
the Intriligator-Thomas-Izawa-Yanagida model, as quark mass
terms can be absorbed by a redefinition of the singlets. Still,
one may first give masses to the singlets and integrate them
out, and then introduce quark masses, so that ultimately all
fields become heavy.
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strong coupling dynamics decouple and the potential is
calculable. Indeed, Chacko, Luty, and Ponton (1998)
have argued that for sufficiently small coupling l, and
S̃!L2 /l , the contributions of the strong dynamics to
the scalar potential are small compared with the contri-
butions of the light particles of mass l^S&. The latter
contribution is calculable, and it was found in Chacko,
Luty, and Ponton (1998) that there exists a minimum of
the potential at S̃50. Moreover, it was argued that the
calculability breaks down only when the Yukawa cou-
pling l has nonperturbative strength. Finally, another
minimum of the potential may exist at S̃;O(L2 /l);
however, this possibility cannot be verified at present,
since the strong-coupling dynamics are important in this
region.

We should also mention several obvious but useful
generalizations of the Intriligator-Thomas-Izawa-
Yanagida model. Consider an SP(N) gauge group with
N11 flavors of matter fields in the fundamental repre-
sentation. This theory has an SU(2N12) flavor symme-
try. When the quarks are coupled to gauge-singlet fields
transforming in the antisymmetric representation of the
flavor symmetry group, supersymmetry is broken in ex-
actly the same way as in the SU(2) model. A slightly
more complicated generalization is based on an SU(N)
gauge group with Nf5N flavors. In this case the bary-
onic operators B and B̄ are required to parametrize the
quantum moduli space. Therefore the superpotential
(72) will not be sufficient for supersymmetry breaking.
In particular there will be a supersymmetric solution
Mij50, BB̄5LN

2N . Supersymmetry is broken if two ad-
ditional fields, X and X̄ , with superpotential couplings
l1X̄B1l2XB̄ are added to the superpotential. To en-
force this structure of the superpotential one can gauge
baryon number. We should note that in the case of the
SU(N) models, the renormalization-group argument we
used to show that the potential grows at large singlet
VEV’s is not applicable to the X and X̄ directions.
Other models with quantum-modified moduli spaces can
also break supersymmetry when each invariant appear-
ing in the constraint is coupled to a gauge-singlet Csaki-
Schmaltz-Skiba (1997b).

Before closing this section we would like to reanalyze,
following Intriligator and Thomas (1996a), the familiar
3–2 model of Affleck, Dine, and Seiberg (1985) dis-
cussed in Sec. IV.A in a different limit, L2@L3 . We
shall see that the description of supersymmetry breaking
is quite different in this limit. First, note that from the
point of view of the SU(2) gauge group we have the
matter content of the Intriligator-Thomas-Izawa-
Yanagida model, namely, four SU(2) doublets (three
Q’s and L) and six singlets (ū and d̄). The superpoten-
tial couplings of the 3–2 models are not sufficient to lift
all classical flat directions, and in addition to the ‘‘sin-
glets’’ there is an SU(2) meson that can acquire a VEV.
(Of course all these flat directions, including the ‘‘sin-
glet’’ ones, are lifted by SU(3) D terms as we learned in
Sec. IV.A.) Let us parametrize the SU(2) mesons by
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Mij5QiQj , Mi45QiL , where the summation over
SU(2) indices is suppressed. In these variables the su-
perpotential of the model is

W5A~PfM2L2
4!1ld̄ iMi4 , (77)

where A is a Lagrange multiplier. Extremizing the su-
perpotential with respect to d̄ we find that the scalar
potential contains terms

V5(
i

3

uMi4u21••• . (78)

By an SU(3) rotation we can set M145M2450. Thus
supersymmetry is restored if it is possible that M345e2

→0. In turn this requirement and the quantum con-
straint (73) mean that

M125
L2

4

e2 →` . (79)

At large expectation values the quantum moduli space
approaches the classical one. Thus Eq. (79) can only be
satisfied if the model possesses classical flat directions.
But as we already know, when the SU(3) D-flatness
conditions are imposed, the model does not have flat
directions. Therefore supersymmetry must be broken.
The natural expectation values of the (canonically nor-
malized) fields at the minimum of the potential are of
order O(L2); therefore the quantum corrections to the
Kähler potential are significant and one can only esti-
mate the vacuum energy in this limit, V;ul2L4u.

B. Quantum removal of flat directions

In the previous section we encountered the
Intriligator-Thomas-Izawa-Yanagida model, which
breaks supersymmetry even though it has a classical flat
direction. Quantum mechanically, the potential becomes
nonzero and flat (up to logarithmic corrections) far
along this flat direction. It is in fact possible for quantum
effects to completely ‘‘lift’’ classical flat directions, gen-
erating a growing potential along these directions. Thus
it is possible for theories with classical flat directions to
break supersymmetry, with a stable, supersymmetry-
breaking minimum. We shall now build upon the in-
sights gained in our analysis of supersymmetric QCD in
the previous section to develop a method for determin-
ing when classical flat directions are lifted quantum me-
chanically. We shall also discuss some examples in which
this happens.

As will become clear from our discussion, a crucial
requirement for the quantum removal of flat directions
is that some gauge dynamics become strong along the
flat direction. In many models, the opposite happens;
that is, the gauge group is completely broken along the
flat direction and the dynamics become weaker as S in-
creases. However, it may be the case that along the flat
direction some gauge group remains unbroken, and
fields charged under it obtain masses proportional to S .
Then the dynamics associated with this gauge group be-
come strong and may lift the flat direction.
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We should stress that in this section we shall be asking
two separate questions. First, we shall ask if quantum
effects can stabilize the potential along a given flat di-
rection. It is most convenient to answer this question by
finding a set of degrees of freedom that give a weakly
coupled description of the theory in the region of inter-
est on the moduli space. However, if the quantum stabi-
lization of the potential indeed happens, the vacuum
may well lie in the genuinely strongly coupled region.
Thus an affirmative answer to the first question is not
sufficient to give an affirmative answer to our second
question, which is to determine whether supersymmetry
is broken in the model. To answer this second question
we shall need to consider the properties of the exact
superpotential in the strong-coupling region.

Following Shirman (1996), consider a model with clas-
sical flat directions. Assume for simplicity that there is a
single modulus S . In the approximation of a canonical
Kähler potential, the scalar potential of the model can
be written as

V5Vr1VS5( U]W

]f i
U2

1U]W

]S U2

. (80)

The applicability of this scalar potential is restricted by
the assumption that the Kähler potential is canonical.
However, for large enough S VEV’s the description of
the physics often simplifies, and in fact it may be pos-
sible to find a description in which the theory (or a sec-
tor of the theory) is weakly coupled. In such a limit, it is
convenient to analyze the theory in two steps. First, one
considers a ‘‘reduced’’ theory with the scalar potential
Vr , where S plays a role of the fixed parameter. One
then studies the behavior of the scalar potential of the
‘‘reduced’’ theory as a function of S as well as contribu-
tions of VS . Let us consider various possibilities.

1. A SUSY-breaking reduced theory

Suppose that the potential Vr in the reduced theory
along the flat direction is nonzero, so that the reduced
theory breaks supersymmetry. If Vr is an increasing
function of S , it is clear that the flat direction is stabi-
lized. Typically, Vr→0 as S→0, but even if Vr tends to a
nonvanishing constant one cannot conclude at this stage
that supersymmetry is broken in the full theory. This is
because the theory is typically in a strong-coupling re-
gime near the origin of the moduli space, and therefore
the assumption of a canonical Kähler potential as well as
the separation of the scalar potential into the sum of two
terms is not justified. An example of a model with such
behavior is an SU(4)3SU(3)3U(1) model of Csaki,
Randall, and Skiba (1996); see Sec. VII.A. Classically
there is a flat direction along which the gauge group is
broken down to SU(4)3U(1) and the matter is the
same as in the 4–1 model discussed in Sec. IV.B. The
strong-coupling scale of the effective SU(4) gauge
group grows with the modulus, and the flat direction is
stabilized (Shirman, 1996). Additional analysis per-
formed by Csaki, Randall, and Skiba (1996) shows that
there is no supersymmetric vacuum at the origin, thus
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allowing them to conclude that SUSY is broken. This
mechanism of quantum removal of classical flat direc-
tions is quite generic for discarded generator models
(see Sec. VII.A).

Another possibility is that Vr is a decreasing function
of the modulus leading to a runaway behavior at mod-
erate values of S . In this case contributions from VS
should be included in the analysis. Since the stable
vacuum (if it exists at all) will be found at large values of
S , the separation of the scalar potential into two terms is
well justified. We can therefore conclude that as long as
VS stabilizes the flat direction, SUSY is broken. If, how-
ever, VS→0 as S→` the theory does not have a stable
vacuum. A very basic example of such behavior is the
antisymmetric tensor models discussed in Sec. III. D.4.
In these models the effective theory along the classical
flat direction is SUSY breaking SU(5) with the scale
vanishing at the boundary of the moduli space. The
theory does not have a stable vacuum. Introducing a
tree-level superpotential lifts all classical flat directions,
stabilizes the potential, and breaks supersymmetry. Note
that there is no weak-coupling description anywhere on
the moduli space of the model. This means that the
separation of the scalar potential into Vr and VS is not a
priori justified. However, Vr arises from nonperturba-
tive effects in the Kähler potential while VS arises from
the tree-level superpotential. As a result there are no
interference effects between Vr and VS and we can
separate the potential into two positive definite terms.

2. A supersymmetric reduced theory

Now we would like to consider models in which Vr
50 has solutions for all values of S (or for a set of
moduli). In these cases we have to analyze the behavior
of VS subject to the condition that Vr50 is satisfied. It is
instructive to consider as examples two classes of analo-
gous models with the gauge groups SP(N/2)3SU(N
21) (Intriligator and Thomas, 1996a) and SU(N)
3SU(N21) (Poppitz, Shadmi, and Trivedi, 1996a).

We begin with the model of Intriligator and Thomas
(1996a). The matter content is Q;(N ,N21), L
;(N ,1), Ra;(1,N21 ), with the tree-level superpoten-
tial

Wtree5lQLR̄21
1
M (

a ,b.2

N

labQ2R̄aR̄b . (81)

This superpotential leaves classical flat directions associ-
ated with the SU(N21) antibaryons b̄a5(Q̄N21)a

5vN21 (we shall denote the R VEV’s by v). The exact
superpotential was found in Intriligator and Thomas
(1996a) and was used to show that there is no supersym-
metric vacuum in the finite region of moduli space. Here
we shall confine ourselves to discussing the physics along
the classical baryonic flat directions.

Without loss of generality, we can consider the flat
direction S[b̄15vN21. Along this direction, SU(N
21) is completely broken. On the other hand, all SP
flavors get masses proportional to v through the tree-
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level superpotential, so that we are left with a pure
SP(N/2) that gets stronger for larger S . Gaugino con-
densation in this group then produces the superpotential

WS;S2/~N12 !, (82)

leading to the potential

VS5U]W

]S U2

;S2 2N/~N12 !. (83)

(Note that here Vr50.) Actually, we can obtain this re-
sult starting from the exact superpotential. However, at
scales S@L1 the relevant degrees of freedom are the
elementary ones, so we should consider the behavior of
the potential in terms of v ,

VS;v2~N24 !/~N12 !. (84)

We see that for N.4 it increases along the classical flat
direction. Thus the classical flat direction is stabilized
quantum mechanically. The analysis of the theory in the
finite region of the field space (Intriligator and Thomas,
1996a) shows that SUSY is broken.

We would like to compare these results with the be-
havior of the model of Poppitz, Shadmi, and Trivedi
(1996a) based on an SU(N)3SU(N21) gauge group
with matter in the fundamental representations: Q
;(N ,N21), L̄i;(N̄ ,1), and R̄a(1,N21), where i
51¯N21, and a51¯N . The tree-level superpotential
is given by

Wtree5(
ia

l iaQL̄iR̄a1aab̄a, (85)

where b̄a5(R̄N21)a is an antibaryon of SU(N21). This
superpotential lifts all flat directions as long as the cou-
plings are chosen so that (Poppitz, Shadmi, and Trivedi
1996a) l ia has maximal rank and

l iaaaÞ0. (86)

Since we are interested in understanding the physics
along the flat directions we shall set aa50. Then there
are classical flat directions parametrized by the SU(N
21) antibaryons, in complete analogy with the SU(N
21)3SP(N/2) model discussed above. Again, along
the direction S[b̄N, SU(N21) is broken, and all fla-
vors of SU(N) obtain mass. SU(N) gaugino condensa-
tion generates the potential

VS;S22@~N21!/N#. (87)

Again, this potential can also be obtained from the exact
superpotential of the theory, which was obtained by
Poppitz, Shadmi, and Trivedi (1996a). In terms of the
VEV of the elementary field R̄ we then have

VS;v22/N.

Unlike the case of the Intriligator-Thomas model, the
runaway behavior persists and the model does not have
a stable vacuum state. Turning on aa according to Eq.
(86), all flat directions are lifted. This, together with the
analysis of Poppitz, Shadmi, and Trivedi (1996a), which
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
shows that there is no supersymmetric minimum in the
finite region of moduli space, allows us to conclude that
supersymmetry is broken.

As we mentioned in the beginning of this subsection,
the key ingredient in quantum lifting of flat directions is
that the dynamics of some gauge group become strong
along the flat direction. This in fact happens in both the
SU3SP and the SU3SU examples we saw above, as,
along the relevant flat direction, one group factor re-
mains unbroken and fields charged under it obtain
masses. However, the numerical factors are such that
the potential grows along the flat direction in the first
example, and slopes to zero in the second.

While general criteria for the determination of the
quantum behavior along classical flat directions do not
exist, we have illustrated several techniques that are use-
ful for the analysis. We should also stress that we have
concentrated on the simplest examples with a single
modulus. In more general situations it is not sufficient to
perform an analysis for each flat direction separately,
assuming that other moduli are stabilized. One should
do a complete analysis allowing all moduli to obtain in-
dependent VEV’s consistent with D and F flatness con-
ditions. In particular one should study the moduli that
do not appear in the tree-level superpotential.

C. Supersymmetry breaking with no R symmetry

In Sec. III.B we discussed the relation between SUSY
breaking and R symmetries. We saw that theories with a
spontaneously broken R symmetry and no flat directions
break SUSY. We also saw that if R breaking terms are
added to the superpotential, SUSY is typically restored.
We emphasized that both these statements assume that
the superpotential is generic, that is, all terms allowed by
the symmetries appear.

In this section we shall encounter a theory with the
most general renormalizable superpotential allowed by
symmetries, which breaks supersymmetry even though it
does not have an R symmetry. Furthermore, unlike the
theory of Sec. V.A, it does not possess an effective R
symmetry in the low-energy description. As we shall see,
the reason supersymmetry is broken is that the dynami-
cal superpotential is not generic.

The model we describe is an SU(4)3SU(3) gauge
theory studied by Poppitz, Shadmi, and Trivedi (1996a),
which is the first in a series of SU(N)3SU(N21) mod-
els that we have already discussed from a different per-
spective in Sec. VI.B. Here we only state some of the
results. The matter content is Q;(4,3), L̄i;(4̄,1), and
R̄a;(1,3̄) with i51 . . . 3, a51 . . . 4. We can add the
classical superpotential

W5l (
i51

3

Q•L̄i•R̄i1l8Q•L̄1•R̄41a~R̄3!11b~R̄3!4,

(88)

with appropriate contractions of the gauge indices [in
particular, (R̄3)a stands for the SU(3) ‘‘baryon’’ with
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the field R̄a omitted]. This superpotential does not pre-
serve any R symmetry. It is the most general renormal-
izable superpotential preserving an SU(2) global sym-
metry that rotates L̄2 ,L̄3 together with R̄2 ,R̄3 . In
addition, it lifts all the classical flat directions of the
model. If we add nonrenormalizable terms to this super-
potential, (supersymmetric) minima will appear at
Planckian field strength. These extra minima will not de-
stabilize the nonsupersymmetric minima we shall be
discussing.30

As was shown by Poppitz, Shadmi, and Trivedi
(1996a), the theory breaks supersymmetry. This can be
established by carefully analyzing the low-energy theory.
In the limit that the SU(3) dynamics is stronger, SU(3)
confines, giving a low-energy theory in which SU(4) has
four flavors. After SU(4) confines one has an
O’Raifeartaigh-like theory, with the fields Yia

5Q•L̄i•R̄a , b̄a5(R̄3)a, B̄5Q3L3, Pa5Q3(Q•R̄a),
and B5det(Q•R̄) (the last two vanish classically). Tak-
ing into account the dynamically generated superpoten-
tial we find that the full superpotential is given by

W5
Pab̄a2B

L3
5 1A ~P•Y32B̄ B2L4

9L3
5!

1l (
i51

3

Yii1l8 Y141a b̄11b b̄4, (89)

where A is a Lagrange multiplier and L4 ,L3 are the
scales of SU(4),SU(3), respectively. This superpoten-
tial does not preserve any effective R symmetry in terms
of the variables of the low-energy theory. Still, as was
shown by Poppitz, Shadmi, and Trivedi (1996a), super-
symmetry is broken. The crucial point is that the
Lagrange multiplier A only appears linearly in Eq. (89).
If the superpotential contained terms with higher pow-
ers of A , supersymmetry would be restored. Note that
the superpotential (89) is reminiscent of the superpoten-
tial (10) of the simplest O’Raifeartaigh model, with A
playing the role of f1 . In the absence of an R symmetry,
one cannot rule out the presence of higher powers of f1
in Eq. (10), whereas in the dynamically generated super-
potential (89), A only appears linearly.

Other examples have been found that break super-
symmetry even though the microscopic theory does not
have an R symmetry. These include, among others, the
4–3–1 model of Leigh, Randall, and Rattazzi (1997) and
the 4–1 model with the superpotential term MPfA (Pop-

30Other models in this class (with N.4) are nonrenormaliz-
able, and we do not have a reason to neglect nonrenormaliz-
able operators. For N<6 the generalization of Eq. (88) still
gives the most general superpotential up to operators whose
dimension is smaller than or equal to the dimension of the
baryon. Therefore the expected SUSY-breaking minimum is
still a stable local minimum. In models with N.6, the most
general superpotential with no R symmetry and operators
whose dimension does not exceed the dimension of the baryon
operator will generically preserve supersymmetry.
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pitz and Trivedi, 1996), as well as, as we have men-
tioned, the model of Intriligator, Seiberg, and Shenker
(1995). In most of these examples, either the tree-level
superpotential is not generic or there is an effective R
symmetry in the low-energy theory.

VII. DSB MODELS AND MODEL-BUILDING TOOLS

So far we have discussed several important models
that illustrate the main methods and subtleties in the
analysis of DSB. Many more models (in fact many infi-
nite classes of models) have been constructed in recent
years. The methods of analysis we have described can be
used for these models. In fact, often both the method of
analysis and the dynamics itself are analogous to one or
the other models discussed in previous sections. Thus it
is not practical to present a detailed investigation of ev-
ery known model of DSB.

On the other hand, in many cases the dynamics are
not well understood beyond the conclusion that SUSY
must be broken, and further investigation of the dynam-
ics as well as the connection between different mecha-
nisms and models of SUSY breaking may lead to better
understanding of the general conditions for DSB. There-
fore in this section we shall give a list of known models,
briefly discussing how SUSY is broken. We shall empha-
size the relations between various models and give a
partial classification. In addition we shall introduce a
useful model-building method that can be used to con-
struct new models.

We shall also discuss in this section supersymmetry
breaking in theories with anomalous U(1)’s that give an
example of dynamical SUSY breaking through the
Fayet-Iliopolous mechanism.

A. Discarded generator models

Let us recall the observation that both the 4–1 and the
3–2 models have a gauge group that is a subgroup of
SU(5), while the matter content (after adding E1 in the
3–2 model) falls into antisymmetric tensor and antifun-
damental representations—exactly as needed for DSB
in SU(5). Based on this observation, Dine et al. (1996)
proposed the following method of constructing new
DSB models. Take a known model of dynamical super-
symmetry breaking without classical flat directions and
discard some of the group generators. This reduces the
number of D-flatness conditions and therefore leads to
the appearance of flat directions. On the other hand, the
most general tree-level superpotential allowed by the
smaller symmetry may lift all the moduli. It is also pos-
sible that a unique nonperturbative superpotential will
be allowed in such a ‘‘reduced’’ model. This construction
is guaranteed to yield anomaly-free chiral models that
often possess a nonanomalous R symmetry, and thus are
good candidates for dynamical supersymmetry breaking.
If a model constructed using this prescription breaks su-
persymmetry it is often calculable, since for small super-
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potential couplings it typically possesses almost flat di-
rections along which the effective description may be
weakly coupled.

In fact, the 3–2 and 4–1 models are the simplest ex-
amples of two infinite classes of DSB models based on
SU(2N21)3SU(2)3U(1) (Dine et al., 1996) and on
SU(2N)3U(1) (Dine et al., 1996; Poppitz and Trivedi,
1996) gauge groups, which can be constructed by using
the discarded generator method.

To construct these theories one starts with an
SU(2N11) theory with matter transforming as an anti-
symmetric tensor A and 2N23 antifundamentals F̄ .
Then one requires gauge invariance under, for example,
an SU(2N21)3SU(2)3(1) subgroup, with the U(1)
generator being

T5diag@2,.. . ,2,2~2N21 !,2~2N21 !# . (90)

Under this group the matter fields decompose as

A~ 1,4 !,F~ ,2,322N !,S~1,1,224N !,

F̄a~ ,1,22 !,fa~1,2,2N21 !,a51,.. . ,2N23. (91)

The most general superpotential consistent with the
symmetries is

W5gabAF̄aF̄b1habSfafb1laFF̄afa. (92)

This superpotential lifts all classical flat directions. Mod-
els of this class have nonanomalous R symmetry and
supersymmetry is broken. It is interesting to observe
that the coupling hab in the superpotential above could
be set to zero without restoring supersymmetry. While
for h50 classical flat directions appear, they are lifted
by quantum effects.

The construction of the SU(2N)3U(1) DSB series is
quite analogous. The matter fields in this class of models
are

A2 , F12n , F̄21
a , Sn

a , a51,.. . ,2N23, (93)

where subscripts denote U(1) charges and superscripts
are flavor indices. With the most general superpotential
allowed by symmetries, the models break supersymme-
try.

Clearly one can consider many other subgroups of
SU(2N11), and in fact several other classes of broken
generator models were constructed: SU(2N22)
3SU(3)3U(1) models (Csaki, Randall, and Skiba,
1996; Chou, 1997), and SU(2N23)3SU(4)3U(1) and
SU(2N24)3SU(5)3U(1) models (Csaki et al., 1996).
While these models are similar by construction to those
we discussed above, the supersymmetry-breaking dy-
namics are quite different, and various models in this
class can have confinement, dual descriptions, and quan-
tum removal of classical flat directions. Since we have
already considered the simplest and most illuminating
examples of these phenomena in DSB models, we shall
not give a detailed discussion of all possible discarded
generator models. We shall restrict ourselves to the
mention of the SP(2)3U(1) model by Csaki, Schmaltz,
and Skiba (1997a). This model is interesting because it is
an example of the discarded generator model in which
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
the rank of the gauge group is reduced compared to the
‘‘parent’’ theory. The matter fields in this model are

SP~2 ! U~1 !

A 2

Q1 23

Q2 21

S1 1 2

S2 1 4 (94)

Nonrenormalizable couplings are required to lift all flat
directions. The full superpotential is

W5
L7~Q1Q2!

2~A !2~Q1Q2!22~Q1AQ2!2 1Q1Q2S2

1Q1AQ2S1 , (95)

where the first term is generated dynamically.
The existence of a general method for constructing

discarded generator models suggests that there may ex-
ist a unified description of these models. In fact, Leigh,
Randall, and Rattazzi (1997) found exactly such a de-
scription. It is based on the antisymmetric tensor models
supplemented by a chiral field S in the adjoint represen-
tation of the gauge group. We are interested in finding
an effective description of the discarded generator mod-
els, or more generally of the models with U(1)k21

3) i51
k SU(ni) gauge groups (where ( i51

k ni52N11)
and the light matter given by decomposing the antisym-
metric tensor and antifundamentals of SU(2N11) un-
der the unbroken gauge group. The adjoint S needs to
be heavy in such a vacuum. This can be achieved by
introducing the superpotential for the adjoint

WS5 (
i52

k11 si

i
Tr S i. (96)

We shall be most interested in the case k52. For generic
coefficients si there are several discrete vacua in which S
is heavy and the model contains matter in desired rep-
resentations. Note that in the most symmetric vacuum
S50, the low-energy physics is described by the anti-
symmetric tensor model, and SUSY is broken. For su-
persymmetry to be broken in other vacua one needs to
lift the classical flat directions associated with the light
fields, which requires the following tree-level superpo-
tential:

W5
1
2

mS21
1
3

s3 Tr S31l1
ijF̄ iAF̄j1l2

ijF̄ iASF̄ j

1l3
ijF̄ iSASF̄ j . (97)

This superpotential is chosen so that in each vacuum of
interest it exactly reproduces the superpotential needed
for supersymmetry breaking. Leigh, Randall, and Rat-
tazzi (1997) showed that in the full model supersymme-
try is broken for any value of the adjoint mass including
m50. This latter conclusion at first seems quite unusual,
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since the one-loop beta function coefficient of the model
is b052N14. In the SU(2N11) model this might sug-
gest that, at least in the absence of the superpotential
the theory is in a non-Abelian Coulomb phase. How-
ever, the analysis of Leigh, Randall, and Rattazzi (1997)
showed that the superpotential is indeed quite relevant
and, when certain requirements on the Yukawa cou-
plings are satisfied, SUSY is broken. A similar construc-
tion with k.2 (that is, models with more than two non-
Abelian factors and/or more than one Abelian factor in
the gauge group) was shown (Leigh, Randall, and Rat-
tazzi, 1997) not to break supersymmetry.

B. Supersymmetry breaking from an anomalous U(1)

Theories with an anomalous U(1) provide a simple
mechanism for supersymmetry breaking (Binetruy and
Dudas, 1996; Dvali and Pomarol, 1996). Such theories
contain a Fayet-Iliopoulos term, so supersymmetry can
be broken just as in the Fayet-Iliopoulos model we dis-
cussed in Sec. II.C.2. In fact, the anomalous U(1) theo-
ries discussed below are the only known examples in
which the Fayet-Iliopoulos mechanism of supersymme-
try breaking can be realized dynamically. In the absence
of any superpotential, at least one field with an appro-
priate U(1) charge develops a VEV to cancel the Fayet-
Iliopoulos term. One can then introduce an (effective)
superpotential mass term for this field so that some F
term and the D term cannot vanish simultaneously and
supersymmetry is broken.

In our discussion of the Fayet-Iliopoulos model in Sec.
II.C.2 we simply put in a tree-level Fayet-Iliopoulos
term by hand. It is well known that a U(1) D term can
be renormalized at one loop (Fischler et al., 1981; Wit-
ten, 1981a). Such renormalization is proportional to the
sum of the charges of the matter fields and therefore
vanishes unless the theory is anomalous. Indeed, in
many string models, the low-energy field theory contains
an anomalous U(1), whose anomalies are cancelled by
shifts of the dilaton-axion superfield, through the Green-
Schwarz mechanism (Green and Schwarz, 1984). A
Fayet-Iliopoulos term is generated for this U(1) by
string loops. As far as the low-energy field theory is con-
cerned, we can treat this Fayet-Iliopoulos term as if it
were put in by hand. The only subtleties associated with
supersymmetry breaking involve the dilaton superfield.

Consider a theory with an anomalous U(1) gauge
symmetry with

dGS5
1

192p2 (
i

qi , (98)

where qi denote the U(1) charges of the different fields
of the theory. The dilaton superfield S then transforms
as

S→S1i
dGS

2
a , (99)

under the U(1) transformation Am→Am1]ma , where
Am is the U(1) vector boson. To be gauge invariant, the
dilaton Kähler potential is then of the form
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K5K~S1S* 2dGSV !, (100)

where V is the U(1) vector superfield. This then gives
the Fayet-Iliopoulos term

j252
dGS

2
]K

]S
. (101)

Following Arkani-Hamed, Dine, and Martin (1998), we
shall consider the model of Binetruy and Dudas (1996),
which has, in addition to the anomalous U(1), an
SU(N) gauge symmetry. The model contains the field
f, an SU(N) singlet with U(1) charge 21 (assuming
dGS.0), and one flavor of SU(N), that is, fields Q and
Q̄ transforming as (N ,q) and (N̄ ,q̄) under SU(N)
3U(1). Working in terms of the SU(N) meson M
5QQ̄ , the superpotential is given by

W5mM S f

MP
D q1q̄

1~N21 !S L3N21

M D 1/~N21 !

, (102)

where the first term is a tree-level term and the second
term is generated dynamically by SU(N) instantons.
The potential will also contain contributions from the
U(1) D term, which is given by

D52g2@~q1q̄ !uMu2ufu21j2# , (103)

where g is the U(1) gauge coupling. Minimizing the po-
tential, one finds that supersymmetry is broken. f wants
to develop a VEB to cancel j2, but because of the
SU(N) dynamics, the meson t develops a VEV, which
then generates, through the first term in Eq. (102), a
mass term for f, so that the potential does not vanish.

It is important to recall, though, that the SU(N) scale
depends on the dilaton superfield. This dependence is
most easily fixed by requiring that the second term in
Eq. (102) is U(1) invariant, giving

L3N215MP
3N21 e22(q1q̄)S/dGS. (104)

One can then minimize the potential in terms of t , f,
and the dilaton S . At the minimum, the D term as well
as the t , f, and dilaton F -terms are nonzero.

Note that if the dilaton superfield is neglected in the
above analysis, the theory seems to have no Goldstino,
as the gaugino and matter fermions obtain masses either
by the Higgs mechanism or through the superpotential.
In fact, as was shown by Arkani-Hamed, Dine, and Mar-
tin (1998), the Goldstino in these theories is a combina-
tion of the gaugino, the matter fermion, and the dilatino.
In this basis the Goldstino wave function is given by

S D

&g
,Fi ,A]2K

]S2 FSD , (105)

where D , Fi , and FS stand for the D term, the ith mat-
ter field F term, and the dilaton F term at the minimum,
respectively.

C. List of models and literature guide

Finally, in this section we shall present an extensive
(but certainly incomplete) list of models known to break
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supersymmetry, with references to the original papers in
which these models were introduced. While some of the
models discussed below have been studied in great de-
tail, frequently it is only known that a given model
breaks supersymmetry, but the low-energy spectrum and
the properties of the vacuum have not been studied. In
addition to the examples presented below, many other
models have appeared in the literature. New
supersymmetry-breaking theories can be constructed
from the known models in a variety of ways. Moreover,
for phenomenological purposes it is often sufficient to
find a model with a local nonsupersymmetric minimum.
While establishing the existence of a local nonsupersym-
metric minimum may sometimes be more difficult than
establishing the absence of any supersymmetric vacuum,
the methods involved in the analysis are essentially the
same, and we shall not discuss such models here.

• SU(5) with an antisymmetric tensor and an antifun-
damental (Meurice and Veneziano, 1984; Affleck, Dine,
and Seiberg, 1985). The arguments of Affleck, Dine, and
Seiberg (1985) were based on the difficulty of satisfying
’t Hooft anomaly-matching conditions, while the Meu-
rice and Veneziano (1984) argument was based on
gaugino condensation. The model is not calculable. Mu-
rayama (1995) and Poppitz and Trivedi (1996) have used
the method of integrating in and out vectorlike matter to
give additional arguments for DSB in the model. Pouliot
(1996) constructed a dual of the SU(5) model and
showed that the dual breaks SUSY at tree level. For the
discussion of the model in the present review see Sec.
III.D and V.C.

• SU(2N11) with an antisymmetric tensor A , 2N
23 antifundamentals F̄ , and the superpotential

W5l ijAF̄iF̄ j , (106)

where l has the maximal rank (Affleck, Dine, and
Seiberg, 1985). These are generalizations of the SU(5)
model. The integrating in and out method was used by
Poppitz and Trivedi (1996) to further analyze these
models. See Sec. III.D and also Sec. VII.A.

• SO(10) with a single matter multiplet in the spinor
representation [16 of SO(10); Affleck, Dine, and
Seiberg, 1984c]. The analysis of supersymmetry breaking
in this model is very similar to that of the noncalculable
SU(5) model. Indeed, the SU(5) model may be con-
structed from the SO(10) model by using the discarded
generator method. Murayama (1995) discussed DSB in
this model in the presence of an extra field in the vector
10 representation of SO(10). For a small mass of the
extra field, the theory is calculable, and assuming no
phase transition, SUSY remains broken when the vector
is integrated out. Pouliot and Strassler (1996) considered
the same theory by adding an arbitrary number N.5 of
vector fields and constructing the dual SU(N25)
theory. They showed that the dual breaks SUSY when
masses for the vectors are turned on. All these argu-
ments can only be used as additional evidence of DSB in
the SO(10) model, but do not allow one to analyze the
vacuum and low-energy spectrum of the theory.

• The two-generation SU(5) model (Affleck, Dine,
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
and Seiberg, 1984d; Meurice and Veneziano, 1984):
SU(5) with two antisymmetric tensors and two antifun-
damentals, with the superpotential

W5lA1F̄1F̄2 . (107)

Affleck, Dine, and Seiberg (1984d) showed that the
model is calculable. In fact, historically this is the first
calculable model with supersymmetry breaking driven
by an instanton-induced superpotential. The vacuum
and the low-energy spectrum of the model were ana-
lyzed in detail by ter Veldhuis (1996). ter Veldhuis
(1998) also analyzed generalizations of this model,
which include extra vectorlike matter with a mass term
in the superpotential.

• The 322 model (Affleck, Dine, and Seiberg, 1985);
SU(3)3SU(2) with

Q~3,2!, ū~ 3̄ ,1!, d̄~ 3̄ ,1!, L~1,2!, (108)

with the superpotential

W5lQLd̄ . (109)

This model is calculable. The analysis of the vacuum and
low-energy spectrum can be found in Affleck, Dine, and
Seiberg (1985) and Bagger, Poppitz, and Randall (1994).
The model possesses a global U(1) symmetry that can
be gauged without restoring SUSY; the relevant details
of the vacuum structure in this case can be found in
Dine, Nelson, and Shirman (1995). See Secs. IV.A and
VI.A.2.

• Discarded generator models. These include
SU(n1)3SU(n2)3U(1) and SU(2N)3(1) subgroup
of SU(2N11) (with n11n252N11) with matter given
by the decomposition of the antisymmetric tensor and
2N23 antifundamentals of SU(2N11) under the ap-
propriate gauge group. This construction was proposed
in Dine et al. (1996). For details see Sec. VII.A. The two
smallest models in this class are the 322 model (Sec.
IV.A) and the 421 model (Sec. IV.B). The SU(2N)
3U(1) models were first constructed in Dine et al.
(1996) and Poppitz and Trivedi (1996); the SU(2N
21)3SU(2)3U(1) models can be found in Dine et al.
(1996); the SU(2N22)3SU(3)3U(1) models are
considered in Csaki, Randall, and Skiba (1996)31; finally,
the SU(2N23)3SU(4)3U(1) models are discussed
in Csaki et al. (1996). A unified description of this class
of models, as well as of the noncalculable SU(2N11)
models, is given in Leigh, Randall, and Rattazzi (1997).
Another example of the models in this class is the
SP(2)3U(1) model of Csaki, Randall, and Skiba
(1997a).

• SU(2N11)3SU(2) (Dine et al., 1996) with

Q;~ , !, L;~1, !, Qi;~ ,1!, i51,2, (110)

and with a superpotential similar to that of the 322
model. These models are obvious generalizations of the
322 model. The dynamics in this class of models are

31See also Chou (1997).
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very similar to those of the 322 model. For detailed
analysis see Intriligator and Thomas (1996b). The low-
energy physics of the SU(5)3SU(2) model in this
class, in the limit of a strong SU(2), is described by the
noncalculable SU(5) model (Intriligator and Thomas,
1996b) to which we have paid so much attention in this
review.

• SU(7)3SP(1) and SU(9)3SP(2) (Intriligator
and Thomas, 1996b). These models are obtained by du-
alizing the SU(7)3SU(2) and SU(9)3SU(2) models
of the previous paragraph. The matter content is

A~ ,1!, F~ ,1!, P̄~ , !,

L~1, !, Ū~ ,1!, D̄~ ,1!, (111)

and the superpotential

W5AP̄P̄1FP̄L . (112)

Note that these models can be constructed starting from
the antisymmetric tensor models of Affleck, Dine, and
Seiberg (1985), by gauging a maximal global symmetry
and adding matter to cancel all anomalies with the most
general superpotential.

• SU(2N11)3U(1) with

A;~A ,1!, F;~ ,2!, F̄ i;~ ,1!, D;~1,2!, (113)

where i51,.. . ,N22 (Dine et al., 1996). To lift all flat
directions, a nonrenormalizable superpotential is re-
quired:

W5 (
i ,j51

2N22

g ijAF̄iF̄ j1lF̄2N21FD

1
1
M (

i ,j51

2N22

a ijF̄ iF̄ jFF . (114)

• SU(2N11)3SP(M), N>M21 with

Q;~ , !, Q̄i;~ ,1!, L;~1, !, (115)

where i51,.. . ,2M is a flavor index (Dine et al., 1996).
These are generalizations of the 3–2 model with a non-
renormalizable superpotential.

The SU(2N11) dynamics generate a dynamical su-
perpotential (Dine et al., 1996). In addition, a quantum
constraint is generated by the SP(M) dynamics for N
5M . The tree-level superpotential

W5lQ̄2QL1 (
i ,j.2

2M

g ijQ
2Q̄jQ̄j (116)

lifts all flat directions, and supersymmetry is broken. For
details see Dine et al. (1996) and Intriligator and Tho-
mas (1996a).

For N5M11, the tree-level superpotential (116) does
not lift all classical flat directions, yet they are lifted by
nonperturbative effects (Intriligator and Thomas, 1996a;
Shirman, 1996) and SUSY is broken. We discussed this
model in Sec. VI.B. [Note that in that section, we used a
different notation for SP and referred to this theory as
SU(N21)3SP(N/2).]
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It is also useful to note that for M11,N , the SP(M)
dynamics can have a dual description. Intriligator and
Thomas (1996b) argued that the dual description with
SU(2N11)3SP(N2M21) gauge group and matter
content, which includes the symmetric tensor of
SU(2N11) as well as (anti)fundamentals and bifunda-
mentals, breaks SUSY. When N.3M12 it is only the
dual description that is asymptotically free and can be
interpreted as a microscopic theory.

An interesting modification of these models (Luty and
Terning, 1998) is an SU(2N11)3SP(N11) theory
with

Q;~ , !, Q̄i;~ ,1!, La;~1, !, (117)

where i51,.. . ,2(N11) and a51,.. . ,2N11. We note that
this version of the model possesses an SU(2N11)
3U(1)3U(1)R global symmetry. Luty and Terning
(1998) considered only the renormalizable superpoten-
tial

W5lQ̄QL , (118)

where l has maximal rank. They showed that while this
model has a large number of classical flat directions, all
of them are lifted quantum mechanically. One can now
add mass terms for some flavors of the SP(N11) fields
La . For an appropriately chosen mass matrix, supersym-
metry remains broken. Choosing a mass matrix of maxi-
mal rank and integrating out the massive matter, we re-
cover the nonrenormalizable model discussed above.

• Nonrenormalizable SU(2N)3U(1) model (Dine
et al., 1996) with chiral superfields transforming under
the gauge group and a global SU(2N24) symmetry as

A;~ ,2N24,1 !, F̄;@ ,2~2N22 !, # ,

S;~1,2N , !. (119)

The superpotential required to stabilize all flat direc-
tions,

W5AFFS , (120)

explicitly breaks the global symmetry down to a sub-
group. The anomaly-free SU(N22) subgroup of the
global symmetry can be gauged without restoring SUSY.

• Nonrenormalizable SU(N)3U(1) models (Dine
et al., 1996). The matter content is [we also give charges
under a maximal global SU(N23) symmetry]

A;~ ,22N ,1!, N;~M ,1,1 !, N̄i;~ ,N21, !,

Si;~1,2N , !), Sij;~1,2N , !, (121)

where i , j51,.. . ,N23. The superpotential

W5l iN̄ iNSi1g ijAN̄iN̄jSij (122)

lifts all flat directions while preserving a global symme-
try. Note that for N54, Sij does not exist and this is just
the 4–1 model of Sec. IV.B.

• SU(N)3SU(N21) (Poppitz, Shadmi, and Trivedi,
1996a) and SU(N)3SU(N22) (Poppitz, Shadmi, and
Trivedi, 1996b). The SU(N)3SU(N21) models were
discussed in Sec. VI.B. We discussed SUSY breaking
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without R symmetry in these models in Sec. VI.C. The
SU(N)3SU(N22) models, which are similar by con-
struction but have very different dynamics, are discussed
in Sec. V.B. Both classes of models have calculable
minima with an unbroken global symmetry @SU(N22)
and SP(N23), respectively; Poppitz and Trivedi, 1997;
Shadmi, 1997; Arkani-Hamed et al., 1998].

• Intriligator-Thomas-Izawa-Yanagida models (In-
triligator and Thomas, 1996a; Izawa and Yanagida,
1996) and their modifications. We discussed these mod-
els in Sec. VI.A.2. They are based on an SU(N)
@SP(N)# gauge group with N (N11) flavors of matter
in the fundamental representation coupled to a set of
gauge-singlet fields in such a way that all D-flat direc-
tions are lifted. Even after supersymmetry breaking
these models possess a flat direction that is only lifted by
(perturbative) corrections to the Kähler potential. In
Shirman (1996), Arkani-Hamed and Murayama (1998),
and Dimopoulos et al. (1998) it was argued that the per-
turbative corrections generate a growing potential for
large VEV’s along this direction. By gauging a subgroup
of the global symmetry it is possible to obtain a modifi-
cation of the model with a calculable local SUSY-
breaking minimum at large VEV’s (Murayama, 1997;
Dimopoulos et al., 1998). These models can be general-
ized in the following way. Take any model with a quan-
tum modified constraint and couple all gauge-invariant
operators to singlet fields. Since the quantum constraint
becomes incompatible with the singlet F-term condi-
tions, supersymmetry must be broken (Csaki, Schmaltz,
and Skiba, 1997b). As an example consider an SO(7)
gauge group with five matter multiplets transforming in
the spinor representation. The theory possesses an
SU(5) global symmetry and a U(1)R under which all
matter fields are neutral. The gauge invariant compos-
ites transform as an antisymmetric tensor A and antifun-
damental F̄ of the global symmetry. The quantum con-
straint is

A51AF̄45L10. (123)

Coupling all gauge invariants to gauge singlets Ã and F
and implementing the constraint through the Lagrange
multiplier l we find

W5ÃA1FF̄1l~A51AF̄42L10!, (124)

and obviously SUSY is broken. We note that the model
is nonrenormalizable.

• SU(2) with one I53/2 matter field (Intriligator,
Seiberg, and Shenker, 1995). We discussed this theory in
Sec. V.A. A nonrenormalizable tree-level superpotential
lifts all classical flat directions. The theory confines, no
superpotential is generated dynamically, and supersym-
metry is broken since the tree-level superpotential can-
not be extremized in terms of the confined field.

• SU(7) with two symmetric tensors, Sa , a51,2, six
antifundamentals Q̄i , i51,.. . ,6, and the tree-level su-
perpotential

W5(
i

3

S1Q̄2iQ̄2i211S2Q̄2iQ̄2i11 , (125)
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where in summing over i we identify 7;1 (Nelson and
Thomas, 1996; Csaki, Schmaltz, and Skiba, 1997b). This
is another example of SUSY breaking through confine-
ment, which we saw in the Intriligator-Seiberg-Shenker
(1995) model in Sec. V.A. The superpotential lifts all
classical flat directions while preserving a global
anomaly-free U(1)3U(1)R symmetry. SU(7) dynamics
lead to confinement, and generates the nonperturbative
superpotential

Wdyn5
1

L13 H2N2, (126)

where Hij
a 5SaQ̄iQ̄j and Ni5S4Q̄i . Near the origin of

the moduli space the Kähler potential is canonical in
terms of the composite fields. Solving the equations of
motion for Hij

a one finds that at least some of the com-
posite fields acquire VEV’s, breaking the global symme-
try and therefore supersymmetry.

• SO(12)3U(1) and SU(6)3U(1) (Csaki,
Schmaltz, and Skiba, 1997b). The matter content of the
SO(12)3U(1) model is (32,1), (12,24), (1,8), (1,2),
(1,6). The matter content of the SU(6)3U(1) model is
(20,1), (6,23), (6̄,23), (1,4), (1,2). These models are
constructed by starting with a nonchiral theory with a
dynamical superpotential and gauging a global U(1)
symmetry (adding the necessary fields to make the full
theory anomaly free) in a way that makes the theory
chiral. Supersymmetry is broken by the interplay be-
tween a dynamically generated superpotential and the
tree-level superpotential.
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APPENDIX: SOME RESULTS ON SUSY GAUGE
THEORIES

In this Appendix we shall briefly review some results
in supersymmetric gauge theories. Our main goal here is
to introduce notations [which will mainly follow those of
Bagger and Wess (1991)], and to summarize the results
necessary to make the present review self-contained.
Much more detailed reviews of the progress in our un-
derstanding of supersymmetric gauge theories exist in
the literature, e.g., Intriligator and Seiberg (1996), Pes-
kin (1997), and Shifman (1997).

1. Notations and superspace Lagrangian

We shall consider an effective low-energy theory of
light degrees of freedom well above the possible scale of
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supersymmetry breaking. In this case the effective ac-
tion will have linearly realized supersymmetry, and it is
convenient to write an effective supersymmetric La-
grangian in N51 superspace, where four (bosonic)
space-time coordinates are supplemented by four anti-
commuting (fermionic) coordinates ua and ū ȧ, a51,2.
The light matter fields combine into chiral superfields32

F5f1A2uc1Q2F , (A1)

while gauge bosons and their superpartners combine
into vector superfields

V52usmūAm1iu2ū l̄2i ū2ul1
1
2

u2ū2D , (A2)

where we have used the Wess-Zumino gauge.
The effective supersymmetric Lagrangian for a theory

with gauge group G and matter fields F i transforming in
the representation r of the gauge group (with Ta being a
generator of this representation) can be written as

L5E d4uK~F†,eV•TF!1
1
g2 E d2uW aWa1H.c

1E d2uW~F!1H.c. (A3)

The first term in Eq. (A3) is a Kähler potential that
contains, among others, kinetic terms for the matter
fields. The Kähler potential also contributes gauge-
interaction terms to the scalar potential. The second
term in Eq. (A3) is the kinetic term for the gauge fields.
In particular, W a52 1

4 DDDaV , where D is a superspace
derivative, is a supersymmetric generalization of the
gauge field strength Fmn. The last term in Eq. (A3) is the
superpotential.

The superpotential is a holomorphic function of chiral
superfields and obeys powerful nonrenormalization
theorems. In particular, in perturbation theory the su-
perpotential can only be modified by field rescalings
(which can be absorbed into renormalization of the
Kähler potential). Using holomorphy, symmetries of the
theory, and known weakly coupled limits it is often pos-
sible to determine the superpotential exactly, including
all nonperturbative effects. Similarly, the kinetic term
for the gauge multiplet is a holomorphic function allow-
ing one to obtain exact results on the renormalization of
the gauge coupling.

The Kähler potential, on the other hand, can be a
general real-valued function of F† and F consistent with
symmetries. Classically it is given by

K5F†eV•TF , (A4)

but quantum mechanically it is renormalized both per-
turbatively and nonperturbatively.

In studying the dynamical behavior of the supersym-
metric theory it is often useful to remember that the
Hamiltonian is determined by the supersymmetry gen-
erators

32We shall usually use the same notation for a chiral super-
field and its lowest scalar component.
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H5
1
4

~Q̄1Q11Q1Q̄11Q̄2Q21Q2Q̄2!. (A5)

From Eq. (A5) we see that a supersymmetric vacuum
state (a state annihilated by the supersymmetry charges)
has vanishing energy. Therefore a particularly important
role (especially in the analysis of supersymmetry break-
ing) is played by the scalar potential of the theory

V5
1
2

g2(
a

~Da!21Fi
†gij

21Fj , (A6)

where gij5]2K/]F†i]F j, and the auxiliary fields F and
D are given in terms of the scalar fields by

Fi5
]

]F i
W ,

Da5(
i

F†itaF i, (A7)

where in Fi one takes the derivatives of the superpoten-
tial with respect to the different superfields and then
keeps only the lowest component, and in Da, F i stands
for the scalar field of the F i supermultiplet.

Typically a supersymmetric gauge theory possesses a
set of directions in field space (called D-flat directions)
along which Da50 for all a . Along some or all of these
D-flat directions, the F-flatness conditions, Fi50, can
also be satisfied. The subspace of field space in which the
scalar potential vanishes is called a moduli space and to
a large degree determines the low-energy dynamics.

The study of nonperturbative effects in SUSY gauge
theories relies heavily on the use of symmetries. An im-
portant role, especially in the applications to dynamical
supersymmetry breaking, is played by an ‘‘R symme-
try.’’ We therefore pause to introduce this symmetry.
Under an R symmetry, the fermionic coordinates rotate
as

u→eiau . (A8)

A chiral field with R charge q transforms under this
symmetry as follows:

F~x ,u , ū !→e2iqaF~x ,eiau ,e2iqaū !. (A9)

Note that different component fields transform differ-
ently under R symmetry, and thus it does not commute
with supersymmetry. On the other hand, the vector su-
perfield V is neutral under R symmetry (therefore the
gaugino transforms as l→e2ial). Clearly there always
exists an assignment of R-symmetry charges to the su-
perfields such that the Kähler potential contribution to
the action is invariant under R symmetry. On the other
hand, the superpotential contributions to the action ex-
plicitly break R symmetry unless the superpotential has
charge 2 under R symmetry.

In the following subsections we shall discuss methods
for determining the classical moduli space. We shall also
describe the quantum behavior of supersymmetric QCD
with various choices of the matter content. At the end of
this section we shall comment on analogous results for
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models with different gauge groups and matter content.
These results will provide us with the tools needed to
analyze supersymmetry breaking.

2. D-flat directions

Classically, one could set all superpotential couplings
to zero. Then the moduli space of the theory is deter-
mined by D-flatness conditions. Even when tree-level
superpotential couplings are turned on but remain small,
the vacuum states of the theory will lie near the solu-
tions of D-flatness conditions (still in the classical ap-
proximation). It is convenient, therefore, to analyze
SUSY gauge theories in two stages. First find a submani-
fold in the field space on which the D terms vanish, and
then analyze the full theory, including both tree-level
and nonperturbative contributions to the superpotential.

We start by describing a useful technique for finding
the D-flat directions of a theory (Affleck, Dine, and
Seiberg, 1984c, 1985) with SU(N) gauge symmetry.
Consider the N3N matrix

Dj
i5f†l~Aj

i! l
kfk , (A10)

where (Aj
i) l

k are the real generators of GL(N). For f in
the fundamental representation (Aj

i) l
k5d l

id j
k [the gener-

alization of (Aj
i) for a general multiindex representation

is obvious]. It is easy to see that the vanishing of all Da’s
is equivalent to the requirement that Dj

i be proportional
to the unit matrix, Dj

i;d j
i . To show this it is sufficient to

note that Da5Dj
il i

aj , where la are generators of
SU(N) in the fundamental representation.

Another way to parametrize the moduli space is by
the use of gauge-invariant composite operators. It has
been shown that a complete set of such operators is in
one-to-one correspondence with the space of D-flat di-
rections (Luty and Taylor, 1996). An important feature
of this latter parametrization of the moduli space is that
in some cases there exist gauge-invariant operators that
vanish identically due to the Bose statistic of the super-
fields. For this reason they do not have counterparts in
the ‘‘elementary’’ parametrization of the moduli space.
However, due to quantum effects these operators typi-
cally describe light (composite) degrees of freedom of
the low-energy theory and play an important role in the
dynamics.

3. Pure supersymmetric SU(Nc) theory

The Lagrangian of a pure supersymmetric Yang-Mills
theory can be written as

L5
1

4gW
2 E d2uW aWa1H.c. (A11)

The Wilsonian coupling constant in the Lagrangian can
be promoted to a VEV of the background chiral super-
field 1/gW

2 →S5 1/gW
2 2i (Q/8p2). Since the physics is

independent of shifts in Q, the Wilsonian gauge coupling
in Eq. (A11) receives corrections only at one loop. On
the other hand, the gauge-coupling constant in the 1PI
action receives contributions at all orders in perturba-
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tion theory. These two coupling constants can be related
by field redefinitions (Shifman and Vainshtein, 1986,
1991). In the following we shall always use the Wilso-
nian action and work with Wilsonian coupling constants.
We shall use functional knowledge of the exact beta
functions only to establish the scaling dimensions of the
composite operators in our discussion of duality in Ap-
pendix Sec. 7.

Supersymmetric Yang-Mills is a strongly interacting
non-Abelian theory very much like QCD. In particular
it is believed that it confines and develops a mass gap.
By using symmetry arguments it is possible to show that
if the gaugino condensate develops it has the form

^ll&5const3LSYM
3 5const3m3e2 8p2/Ncg2

. (A12)

In fact the constant can be exactly calculated (Novikov
et al., 1983; Shifman and Vainshtein, 1988). The theory
has Nc supersymmetric vacuum states.

4. Nf,Nc : Affleck-Dine-Seiberg superpotential

As a next step one can consider an SU(Nc) gauge
theory with Nf(,Nc) flavors of matter fields in the fun-
damental Q and antifundamental Q̄ representations.
This theory possesses a large nonanomalous global sym-
metry under which matter fields transform as follows:

SU~Nf!L3SU~Nf!R3U~1 !B3U~1 !R

Q Nf 1 1
Nf2Nc

Nf

Q̄ 1 N̄f 21
Nf2Nc

Nf
. (A13)

Classically there are D-flat directions along which the
scalar potential vanishes. Using the techniques described
above we can parametrize these flat directions (up to
symmetry transformations) by

Q5S v1

v2

.. .

vNf

. . . . . . . . . . . .

D 5Q̄ . (A14)

These flat directions can also be parametrized by the
VEV’s of the gauge-invariant operators Mij5QiQ̄j .
These composite degrees of freedom give a better
(weakly coupled) description near the origin of moduli
space where the theory is in a confined regime.

In this model a unique nonperturbative superpotential
is allowed by the symmetries (Affleck, Dine, and
Seiberg, 1984a)

Wdyn5S L3Nc2Nf

det~QQ̄ !
D 1/~Nc2Nf!

, (A15)

where L is the renormalization group-invariant scale of
the theory. It has been shown (Affleck, Dine, and
Seiberg, 1984a; Cordes, 1986) that this superpotential is
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in fact generated by instanton effects for Nf5Nc21. It is
generated by gaugino condensation in all other cases.

Before proving this last statement, let us pause for a
moment and discuss the relation between the
renormalization-group-invariant scales of the micro-
scopic and effective theories. Suppose the microscopic
theory is SU(Nc) with Nf flavors. As has been men-
tioned above, the Wilsonian coupling (Shifman and
Vainshtein, 1986, 1991) of the theory runs only at one
loop

1
g2~m!

5
1

g2~M !
1

b0

16p2 lnS m

M D . (A16)

Suppose also that at a scale v some fields in the theory
become massive, and the physics below this scale is de-
scribed by an SU(Nc8) gauge group with Nf8 flavors. The
Wilsonian coupling of the effective theory is

1

gL
2 ~m!

5
1

gL
2 ~M !

1
b̃0

16p2 lnS m

M D . (A17)

In Eqs. (A16) and (A17) b053Nc2Nf and b̃053Nc8
2Nf8 are the b-function coefficients. But the couplings
should be equal at the scale m5v . This allows us to
derive scale-matching conditions. For example, take an
SU(Nc) theory with Nf flavors. Its renormalization-
group-invariant scale is given by

L3Nc2Nf5m3Nc2Nf expS 2
8p2

g2 D . (A18)

If one of the matter fields is massive with mass m@L ,
the effective theory has Nf21 flavors and its scale is

LL
3Nc2Nf11

5m3Nc2Nf11 expS 2
8p2

g2 D . (A19)

Requiring equality of couplings at the scale of the mass
we find

LL
3Nc2Nf11

5mL3Nc2Nf. (A20)

In a general case the equation above becomes

LL
b̃05v b̃02b0Lb0, (A21)

where v represents a generic VEV and/or mass in the
theory.

Now in the Nf5Nc21 theory with small masses m
!L an instanton calculation (Affleck, Dine, and
Seiberg, 1984a; Cordes, 1986) is reliable and gives Eq.
(A15). Due to the holomorphicity of the superpotential
the result can be extrapolated into the region of moduli
space where one flavor, say Nfth, is heavy, mNfNf

@L . It
decouples from the low-energy effective theory. Solving
the equations of motion for the heavy field and using the
scale-matching condition (A21) one finds the superpo-
tential (A15) for the effective theory with Nf5Nc22
flavors. In the low-energy effective theory this superpo-
tential can be interpreted as arising from gaugino con-
densation. One can continue this procedure by induction
and not only derive the superpotential for arbitrary Nf
,Nc but also fix the numerical coefficient in front of the
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
superpotential. (This coefficient can be absorbed into
the definition of L, and we shall set it to 1 most of the
time.)

Even though the classical flat directions are lifted in
the massless theory by the superpotential (A15), the sca-
lar potential

V5(
i

S U ]W

]Qi
U2

1U]W

]Q̄
U2D (A22)

tends to zero as Q5Q̄→` and as a result the theory
does not possess a stable vacuum state. In our discussion
of DSB we discuss examples in which flat directions may
be not only lifted but stabilized due to nonperturbative
effects (see Sec. VI.B).

One could lift classical flat directions by adding a mass
term to the superpotential

Wtree5mijQiQ̄j . (A23)

Note that this superpotential explicitly breaks the
U(1)R symmetry. In Sec. III.B we argue that this is of-
ten a signal of unbroken supersymmetry. It is easy to
find the supersymmetric vacua in this model. In terms of
the meson fields they are given by

Mij5@det~m !L3Nc2Nf#1/NcS 1
mij

D . (A24)

It is also worth noting that if some number of matter
fields are massive they decouple from the low-energy
theory and can be integrated out. Solving the equations
of motion for the massive fields one can find the super-
potential of Eq. (A15) and the solution (A24) for the
VEV’s of the remaining light fields.

5. Nf5Nc : quantum moduli space

Additional flat directions exist for Nf5Nc . The most
general expression for the flat directions is

Q5S a1 . . .

a2 . . .

. . . . . .

aNc . . .
D

Q̄5S b1 . . .

b2 . . .

. . . . . .

bNc . . .
D (A25)

subject to the condition

uaiu22ubiu25v2. (A26)

As was mentioned above, the flat directions can be pa-
rametrized by VEV’s of gauge-invariant polynomials. In
this case new flat directions can be represented by fields
with the quantum numbers of baryons33 B5QN and an-

33Summation over both color and flavor indices is implied.
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tibaryons B̄5Q̄N. Note, however, that due to the Bose
statistics of the superfields, the gauge-invariant polyno-
mials obey the constraint classically,

det M2BB̄50. (A27)

Seiberg (1994, 1995) showed that this constraint is modi-
fied quantum mechanically:

det~M !2BB̄5L2N. (A28)

We refer the reader to Seiberg (1994), Intriligator and
Seiberg (1996), Peskin (1997), and Shifman (1997) for a
detailed explanation of this result.

It is often convenient to enforce this quantum-
mechanical constraint by introducing a Lagrange multi-
plier term in the superpotential

W5A@det~M !2BB̄2L2N#1mijMij . (A29)

Once again the validity of this superpotential can be
verified in the limit that some of the matter fields are
heavy and decouple from the low-energy theory. Inte-
grating them out leads to the superpotential (A15) for
the light matter.

Naively, the Kähler potential of the Nf5Nc theory is
singular at the origin. This corresponds to the fact that at
the origin, the full gauge group SU(Nc) is restored and
additional degrees of freedom become massless. This
singular point, however, does not belong to the quantum
moduli space. SU(Nc) cannot be restored because of
the constraint (A28), and the Kähler potential in terms
of composite degrees of freedom is nonsingular. In the
infrared mesons and baryons represent a good descrip-
tion of the theory. One of many nontrivial tests they
pass is ’t Hooft anomaly-matching conditions (’t Hooft,
1980). Far from the origin the quantum moduli space is
very close to classical one and the elementary degrees of
freedom should represent a good (weakly coupled) de-
scription of the theory.

6. Nf5Nc11

In this case there are Nf baryons and antibaryons
transforming under the global SU(Nf)L3SU(Nf)R as
(Nf ,1) and (1,N̄f), respectively. Classically, the gauge
invariants obey the constraints

det~M !2BiMijB̄j50,

BiMij5MijB̄j50. (A30)

These constraints are not modified quantum mechani-
cally. One can easily see this by adding a tree-level su-
perpotential Wtree5( ijmijMij . Holomorphy guarantees
that meson VEV’s are given by Eq. (A24). Taking vari-
ous limits of the mass matrix one can see that the me-
sons Mij can have any values on the moduli space. This
can also be shown for the baryons.

In terms of the elementary fields the Kähler potential
is singular at the origin, reflecting the fact that SU(Nc)
is restored there and additional degrees of freedom be-
come massless. In terms of composite degrees of free-
dom the Kähler potential is regular, and they represent
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a suitable infrared description of the theory. As in the
case Nf5Nc , ’t Hooft anomaly-matching conditions are
satisfied by the effective description. In this model, the
constraints can be implemented by the superpotential

W5
1

L2Nc21 ~BiMijB̄j2det M !. (A31)

Adding mass for one flavor correctly leads to the Nf
5Nc model.

7. Nf.Nc11: dual descriptions of the infrared physics

We shall start from the case 3
2 Nc,Nf,3Nc . This

theory flows to an infrared fixed point (Seiberg, 1995).
Seiberg (1995) suggested that in the vicinity of the infra-
red fixed point the theory admits a dual, ‘‘magnetic,’’
description with the same global symmetries but in
terms of a theory with a different gauge group. This
theory is based on the gauge group SU(Nf2Nc) with
Nf flavors of q and q̄ transforming as fundamentals and
antifundamentals, respectively, as well as gauge-singlet
fields M , corresponding to the mesons of the original
(‘‘electric’’) theory. The global-symmetry charges are
given by

SU~Nf!L3SU~Nf!R3U~1 !B3U~1 !R

q N̄f 1
Nc

Nf2Nc

Nc

Nf

q̄ 1 Nf 2
Nc

Nf2Nc

Nc

Nf

M Nf N̄f 0 2
Nf2Nc

Nc
. (A32)

The magnetic theory also flows to a fixed point. How-
ever, in the magnetic theory a tree-level superpotential
is allowed by symmetries

W5Mqq̄ . (A33)

In the presence of this superpotential the theory flows to
a new fixed point, which is identical to the fixed point of
the ‘‘electric’’ theory.

At the fixed point the superconformal symmetry can
be used to understand the behavior of the theory. For
example, the scaling dimensions of the gauge-invariant
operators are known. The exact beta function for the
coupling in 1PI action (in the electric description) is
given by (Novikov et al., 1983; Shifman and Vainshtein,
1986, 1991)

b~g !5
g2

16p2

3Nc2Nf1Nfg~g2!

12Nc ~g2/8p2!

(A34)
g~g !52

g2

16p2

Nc
221

Nc
1O~g4!.

At the zero of the b function the anomalous dimension
is g523Nc /Nf11, and one finds

D~QQ̄ !521g53
Nf2Nc

Nf
. (A35)
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The dimension of the baryon operators can be deter-
mined by exploiting the R symmetry (Seiberg, 1995)

D~B !5D~B̄ !5
3Nc~Nf2Nc!

2Nf
. (A36)

This allows one to determine the scaling of the Kähler
potential near the fixed point both in the electric and in
the magnetic description

Ke;~QQ̄ !2Nf/3~Nf2Nc!, (A37)

Km;~qq̄ !2Nf/3Nc.

Let us summarize the correspondence between the
electric and magnetic theories:

Mij5QiQ̄j→Mij ,

W5mijMij→W5mijMij1Mijqiq̄ j ,

b ,b̄→B ,B̄ . (A38)

By performing a second duality transformation one can
verify that in fact the magnetic meson is identified with
the composite electric meson through the equations of
motion.

The scales of the electric and the magnetic theories
are related by

L3Nc2NfL̃3(Nf2Nc)2Nf5~21 !Nf2NcmNf, (A39)

where the scale m is needed to map the composite elec-
tric meson QQ̄ into an elementary magnetic meson M .
These fields have the same dimension at the infrared
fixed point, but different dimensions in the ultraviolet.

If the number of flavors is Nc11,Nf,
3
2 Nc one can

construct a dual description in a similar way. In that case
only the electric description is asymptotically free and
makes sense in the ultraviolet.

8. Other models

There are numerous generalizations of the results pre-
sented in previous subsections to theories with different
gauge groups and matter fields. Here we mention some
of the generalizations that will be useful for our discus-
sion of supersymmetry breaking.

Results analogous to those for supersymmetry QCD
can be found for SP(N) theories with Nf flavors of mat-
ter fields transforming in the fundamental
representation34 (Intriligator and Pouliot, 1995). The
one-loop b-function coefficient is given by

b053~Nc11 !2Nf . (A40)

This can be compared to the one-loop b function of the
SU(N) models given in Eq. (A16). In fact, one can find
many of the results for SP(N) theories by making the
substitution Nc→Nc11 in the expressions for SU(N)
models (and rewriting determinants as Pfaffians). The

34In our notation SP(1)5SU(2), and Nf flavors correspond
to 2Nf fields.
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theory does not have baryons for any number of flavors.
The supersymmetric vacuum is given by

Mij5QiQj5@Pf~m !L3(Nc11)#1/~Nc11 !S 1
mij

D . (A41)

We can easily see that for Nf5Nc11, the quantum con-
straint is different from the classical one:

Pf~M !5L2(Nc11). (A42)

If the number of flavors is Nf.Nc12 there is a dual
description analogous to the one for the SU(N) theo-
ries.

We conclude this section by mentioning several other
classes of models that are useful in the study of super-
symmetry breaking. Poppitz and Trivedi (1996) studied
quantum moduli space and exact superpotentials in
SU(N) gauge theories with matter in the antisymmetric
tensor, fundamental, and antifundamental representa-
tions. In the case without fundamental fields Pouliot
(1996) has constructed a dual by using Berkooz’s (1996)
deconfining trick. In Poppitz, Shadmi, and Trivedi
(1996a) duality was studied in the product group theo-
ries and it was shown that dual models can be con-
structed by using single group duality.
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